Merge branch 'master' into autoconf2
[mesa.git] / docs / shading.html
1 <HTML>
2
3 <TITLE>Shading Language Support</TITLE>
4
5 <link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7 <BODY>
8
9 <H1>Shading Language Support</H1>
10
11 <p>
12 This page describes the features and status of Mesa's support for the
13 <a href="http://opengl.org/documentation/glsl/" target="_parent">
14 OpenGL Shading Language</a>.
15 </p>
16
17 <p>
18 Last updated on 28 March 2007.
19 </p>
20
21 <p>
22 Contents
23 </p>
24 <ul>
25 <li><a href="#unsup">Unsupported Features</a>
26 <li><a href="#notes">Implementation Notes</a>
27 <li><a href="#hints">Programming Hints</a>
28 <li><a href="#standalone">Stand-alone Compiler</a>
29 <li><a href="#implementation">Compiler Implementation</a>
30 <li><a href="#validation">Compiler Validation</a>
31 </ul>
32
33
34 <a name="unsup">
35 <h2>Unsupported Features</h2>
36
37 <p>
38 The following features of the shading language are not yet supported
39 in Mesa:
40 </p>
41
42 <ul>
43 <li>Dereferencing arrays with non-constant indexes
44 <li>Comparison of user-defined structs
45 <li>Linking of multiple shaders is not supported
46 <li>gl_ClipVertex
47 <li>The derivative functions such as dFdx() are not implemented
48 <li>The inverse trig functions asin(), acos(), and atan() are not implemented
49 <li>The gl_Color and gl_SecondaryColor varying vars are interpolated
50 without perspective correction
51 <li>Floating point literal suffixes 'f' and 'F' aren't allowed.
52 </ul>
53
54 <p>
55 All other major features of the shading language should function.
56 </p>
57
58
59 <a name="notes">
60 <h2>Implementation Notes</h2>
61
62 <ul>
63 <li>Shading language programs are compiled into low-level programs
64 very similar to those of GL_ARB_vertex/fragment_program.
65 <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
66 float[4] registers.
67 <li>Float constants and variables are packed so that up to four floats
68 can occupy one program parameter/register.
69 <li>All function calls are inlined.
70 <li>Shaders which use too many registers will not compile.
71 <li>The quality of generated code is pretty good, register usage is fair.
72 <li>Shader error detection and reporting of errors (InfoLog) is not
73 very good yet.
74 <li>The ftransform() function doesn't necessarily match the results of
75 fixed-function transformation.
76 </ul>
77
78 <p>
79 These issues will be addressed/resolved in the future.
80 </p>
81
82
83 <a name="hints">
84 <h2>Programming Hints</h2>
85
86 <ul>
87 <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
88 This improves the efficiency of function inlining.
89 </li>
90 <br>
91 <li>To reduce register usage, declare variables within smaller scopes.
92 For example, the following code:
93 <pre>
94 void main()
95 {
96 vec4 a1, a2, b1, b2;
97 gl_Position = expression using a1, a2.
98 gl_Color = expression using b1, b2;
99 }
100 </pre>
101 Can be rewritten as follows to use half as many registers:
102 <pre>
103 void main()
104 {
105 {
106 vec4 a1, a2;
107 gl_Position = expression using a1, a2.
108 }
109 {
110 vec4 b1, b2;
111 gl_Color = expression using b1, b2;
112 }
113 }
114 </pre>
115 Alternately, rather than using several float variables, use
116 a vec4 instead. Use swizzling and writemasks to access the
117 components of the vec4 as floats.
118 </li>
119 <br>
120 <li>Use the built-in library functions whenever possible.
121 For example, instead of writing this:
122 <pre>
123 float x = 1.0 / sqrt(y);
124 </pre>
125 Write this:
126 <pre>
127 float x = inversesqrt(y);
128 </pre>
129 <li>
130 Use ++i when possible as it's more efficient than i++
131 </li>
132 </ul>
133
134
135 <a name="standalone">
136 <h2>Stand-alone Compiler</h2>
137
138 <p>
139 A unique stand-alone GLSL compiler driver has been added to Mesa.
140 <p>
141
142 <p>
143 The stand-alone compiler (like a conventional command-line compiler)
144 is a tool that accepts Shading Language programs and emits low-level
145 GPU programs.
146 </p>
147
148 <p>
149 This tool is useful for:
150 <p>
151 <ul>
152 <li>Inspecting GPU code to gain insight into compilation
153 <li>Generating initial GPU code for subsequent hand-tuning
154 <li>Debugging the GLSL compiler itself
155 </ul>
156
157 <p>
158 To build the glslcompiler program (this will be improved someday):
159 </p>
160 <pre>
161 cd src/mesa
162 make libmesa.a
163 cd drivers/glslcompiler
164 make
165 </pre>
166
167
168 <p>
169 Here's an example of using the compiler to compile a vertex shader and
170 emit GL_ARB_vertex_program-style instructions:
171 </p>
172 <pre>
173 glslcompiler --arb --linenumbers --vs vertshader.txt
174 </pre>
175 <p>
176 The output may look similar to this:
177 </p>
178 <pre>
179 !!ARBvp1.0
180 0: MOV result.texcoord[0], vertex.texcoord[0];
181 1: DP4 temp0.x, state.matrix.mvp.row[0], vertex.position;
182 2: DP4 temp0.y, state.matrix.mvp.row[1], vertex.position;
183 3: DP4 temp0.z, state.matrix.mvp.row[2], vertex.position;
184 4: DP4 temp0.w, state.matrix.mvp.row[3], vertex.position;
185 5: MOV result.position, temp0;
186 6: END
187 </pre>
188
189 <p>
190 Note that some shading language constructs (such as uniform and varying
191 variables) aren't expressible in ARB or NV-style programs.
192 Therefore, the resulting output is not always legal by definition of
193 those program languages.
194 </p>
195 <p>
196 Also note that this compiler driver is still under development.
197 Over time, the correctness of the GPU programs, with respect to the ARB
198 and NV languagues, should improve.
199 </p>
200
201
202
203 <a name="implementation">
204 <h2>Compiler Implementation</h2>
205
206 <p>
207 The source code for Mesa's shading language compiler is in the
208 <code>src/mesa/shader/slang/</code> directory.
209 </p>
210
211 <p>
212 The compiler follows a fairly standard design and basically works as follows:
213 </p>
214 <ul>
215 <li>The input string is tokenized (see grammar.c) and parsed
216 (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
217 The nodes in this tree are slang_operation structures
218 (see slang_compile_operation.h).
219 The nodes are decorated with symbol table, scoping and datatype information.
220 <li>The AST is converted into an Intermediate representation (IR) tree
221 (see the slang_codegen.c file).
222 The IR nodes represent basic GPU instructions, like add, dot product,
223 move, etc.
224 The IR tree is mostly a binary tree, but a few nodes have three or four
225 children.
226 In principle, the IR tree could be executed by doing an in-order traversal.
227 <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
228 This is also when registers are allocated to store variables and temps.
229 <li>In the future, a pattern-matching code generator-generator may be
230 used for code generation.
231 Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
232 patterns in IR trees, compute weights for subtrees and use the weights
233 to select the best instructions to represent the sub-tree.
234 <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
235 gl_program object (see mtypes.h).
236 <li>When a fragment shader and vertex shader are linked (see slang_link.c)
237 the varying vars are matched up, uniforms are merged, and vertex
238 attributes are resolved (rewriting instructions as needed).
239 </ul>
240
241 <p>
242 The final vertex and fragment programs may be interpreted in software
243 (see prog_execute.c) or translated into a specific hardware architecture
244 (see drivers/dri/i915/i915_fragprog.c for example).
245 </p>
246
247 <h3>Code Generation Options</h3>
248
249 <p>
250 Internally, there are several options that control the compiler's code
251 generation and instruction selection.
252 These options are seen in the gl_shader_state struct and may be set
253 by the device driver to indicate its preferences:
254
255 <pre>
256 struct gl_shader_state
257 {
258 ...
259 /** Driver-selectable options: */
260 GLboolean EmitHighLevelInstructions;
261 GLboolean EmitCondCodes;
262 GLboolean EmitComments;
263 };
264 </pre>
265
266 <ul>
267 <li>EmitHighLevelInstructions
268 <br>
269 This option controls instruction selection for loops and conditionals.
270 If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
271 instructions will be emitted.
272 Otherwise, those constructs will be implemented with BRA instructions.
273 </li>
274
275 <li>EmitCondCodes
276 <br>
277 If set, condition codes (ala GL_NV_fragment_program) will be used for
278 branching and looping.
279 Otherwise, ordinary registers will be used (the IF instruction will
280 examine the first operand's X component and do the if-part if non-zero).
281 This option is only relevant if EmitHighLevelInstructions is set.
282 </li>
283
284 <li>EmitComments
285 <br>
286 If set, instructions will be annoted with comments to help with debugging.
287 Extra NOP instructions will also be inserted.
288 </br>
289
290 </ul>
291
292
293 <a name="validation">
294 <h2>Compiler Validation</h2>
295
296 <p>
297 A new <a href="http://glean.sf.net" target="_parent">Glean</a> test has
298 been create to exercise the GLSL compiler.
299 </p>
300 <p>
301 The <em>glsl1</em> test runs over 150 sub-tests to check that the language
302 features and built-in functions work properly.
303 This test should be run frequently while working on the compiler to catch
304 regressions.
305 </p>
306 <p>
307 The test coverage is reasonably broad and complete but additional tests
308 should be added.
309 </p>
310
311
312 </BODY>
313 </HTML>