1a60e5b708dbbd8019b0d946c6b77dd43aa7a68c
[mesa.git] / docs / shading.html
1 <HTML>
2
3 <TITLE>Shading Language Support</TITLE>
4
5 <link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7 <BODY>
8
9 <H1>Shading Language Support</H1>
10
11 <p>
12 This page describes the features and status of Mesa's support for the
13 <a href="http://opengl.org/documentation/glsl/" target="_parent">
14 OpenGL Shading Language</a>.
15 </p>
16
17 <p>
18 Last updated on 28 March 2007.
19 </p>
20
21 <p>
22 Contents
23 </p>
24 <ul>
25 <li><a href="#unsup">Unsupported Features</a>
26 <li><a href="#notes">Implementation Notes</a>
27 <li><a href="#hints">Programming Hints</a>
28 <li><a href="#standalone">Stand-alone GLSL Compiler</a>
29 <li><a href="#implementation">Compiler Implementation</a>
30 <li><a href="#validation">Compiler Validation</a>
31 </ul>
32
33
34 <a name="unsup">
35 <h2>Unsupported Features</h2>
36
37 <p>
38 The following features of the shading language are not yet supported
39 in Mesa:
40 </p>
41
42 <ul>
43 <li>Dereferencing arrays with non-constant indexes
44 <li>Comparison of user-defined structs
45 <li>Linking of multiple shaders is not supported
46 <li>gl_ClipVertex
47 <li>The derivative functions such as dFdx() are not implemented
48 <li>The inverse trig functions asin(), acos(), and atan() are not implemented
49 <li>The gl_Color and gl_SecondaryColor varying vars are interpolated
50 without perspective correction
51 <li>Floating point literal suffixes 'f' and 'F' aren't allowed.
52 </ul>
53
54 <p>
55 All other major features of the shading language should function.
56 </p>
57
58
59 <a name="notes">
60 <h2>Implementation Notes</h2>
61
62 <ul>
63 <li>Shading language programs are compiled into low-level programs
64 very similar to those of GL_ARB_vertex/fragment_program.
65 <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
66 float[4] registers.
67 <li>Float constants and variables are packed so that up to four floats
68 can occupy one program parameter/register.
69 <li>All function calls are inlined.
70 <li>Shaders which use too many registers will not compile.
71 <li>The quality of generated code is pretty good, register usage is fair.
72 <li>Shader error detection and reporting of errors (InfoLog) is not
73 very good yet.
74 <li>The ftransform() function doesn't necessarily match the results of
75 fixed-function transformation.
76 </ul>
77
78 <p>
79 These issues will be addressed/resolved in the future.
80 </p>
81
82
83 <a name="hints">
84 <h2>Programming Hints</h2>
85
86 <ul>
87 <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
88 This improves the efficiency of function inlining.
89 </li>
90 <br>
91 <li>To reduce register usage, declare variables within smaller scopes.
92 For example, the following code:
93 <pre>
94 void main()
95 {
96 vec4 a1, a2, b1, b2;
97 gl_Position = expression using a1, a2.
98 gl_Color = expression using b1, b2;
99 }
100 </pre>
101 Can be rewritten as follows to use half as many registers:
102 <pre>
103 void main()
104 {
105 {
106 vec4 a1, a2;
107 gl_Position = expression using a1, a2.
108 }
109 {
110 vec4 b1, b2;
111 gl_Color = expression using b1, b2;
112 }
113 }
114 </pre>
115 Alternately, rather than using several float variables, use
116 a vec4 instead. Use swizzling and writemasks to access the
117 components of the vec4 as floats.
118 </li>
119 <br>
120 <li>Use the built-in library functions whenever possible.
121 For example, instead of writing this:
122 <pre>
123 float x = 1.0 / sqrt(y);
124 </pre>
125 Write this:
126 <pre>
127 float x = inversesqrt(y);
128 </pre>
129 <li>
130 Use ++i when possible as it's more efficient than i++
131 </li>
132 </ul>
133
134
135 <a name="standalone">
136 <h2>Stand-alone GLSL Compiler</h2>
137
138 <p>
139 A unique stand-alone GLSL compiler driver has been added to Mesa.
140 <p>
141
142 <p>
143 The stand-alone compiler (like a conventional command-line compiler)
144 is a tool that accepts Shading Language programs and emits low-level
145 GPU programs.
146 </p>
147
148 <p>
149 This tool is useful for:
150 <p>
151 <ul>
152 <li>Inspecting GPU code to gain insight into compilation
153 <li>Generating initial GPU code for subsequent hand-tuning
154 <li>Debugging the GLSL compiler itself
155 </ul>
156
157 <p>
158 After building Mesa the glslcompiler should be found in the Mesa/bin/ directory.
159 If it's not there, it can be built manually:
160 </p>
161 <pre>
162 cd src/mesa/drivers/glslcompiler
163 make
164 </pre>
165
166
167 <p>
168 Here's an example of using the compiler to compile a vertex shader and
169 emit GL_ARB_vertex_program-style instructions:
170 </p>
171 <pre>
172 bin/glslcompiler --debug --numbers --fs progs/glsl/CH06-brick.frag.txt
173 </pre>
174 <p>
175 results in:
176 </p>
177 <pre>
178 # Fragment Program/Shader
179 0: RCP TEMP[4].x, UNIFORM[2].xxxx;
180 1: RCP TEMP[4].y, UNIFORM[2].yyyy;
181 2: MUL TEMP[3].xy, VARYING[0], TEMP[4];
182 3: MOV TEMP[1], TEMP[3];
183 4: MUL TEMP[0].w, TEMP[1].yyyy, CONST[4].xxxx;
184 5: FRC TEMP[1].z, TEMP[0].wwww;
185 6: SGT.C TEMP[0].w, TEMP[1].zzzz, CONST[4].xxxx;
186 7: IF (NE.wwww); # (if false, goto 9);
187 8: ADD TEMP[1].x, TEMP[1].xxxx, CONST[4].xxxx;
188 9: ENDIF;
189 10: FRC TEMP[1].xy, TEMP[1];
190 11: SGT TEMP[2].xy, UNIFORM[3], TEMP[1];
191 12: MUL TEMP[1].z, TEMP[2].xxxx, TEMP[2].yyyy;
192 13: LRP TEMP[0], TEMP[1].zzzz, UNIFORM[0], UNIFORM[1];
193 14: MUL TEMP[0].xyz, TEMP[0], VARYING[1].xxxx;
194 15: MOV OUTPUT[0].xyz, TEMP[0];
195 16: MOV OUTPUT[0].w, CONST[4].yyyy;
196 17: END
197 </pre>
198
199 <p>
200 Note that some shading language constructs (such as uniform and varying
201 variables) aren't expressible in ARB or NV-style programs.
202 Therefore, the resulting output is not always legal by definition of
203 those program languages.
204 </p>
205 <p>
206 Also note that this compiler driver is still under development.
207 Over time, the correctness of the GPU programs, with respect to the ARB
208 and NV languagues, should improve.
209 </p>
210
211
212
213 <a name="implementation">
214 <h2>Compiler Implementation</h2>
215
216 <p>
217 The source code for Mesa's shading language compiler is in the
218 <code>src/mesa/shader/slang/</code> directory.
219 </p>
220
221 <p>
222 The compiler follows a fairly standard design and basically works as follows:
223 </p>
224 <ul>
225 <li>The input string is tokenized (see grammar.c) and parsed
226 (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
227 The nodes in this tree are slang_operation structures
228 (see slang_compile_operation.h).
229 The nodes are decorated with symbol table, scoping and datatype information.
230 <li>The AST is converted into an Intermediate representation (IR) tree
231 (see the slang_codegen.c file).
232 The IR nodes represent basic GPU instructions, like add, dot product,
233 move, etc.
234 The IR tree is mostly a binary tree, but a few nodes have three or four
235 children.
236 In principle, the IR tree could be executed by doing an in-order traversal.
237 <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
238 This is also when registers are allocated to store variables and temps.
239 <li>In the future, a pattern-matching code generator-generator may be
240 used for code generation.
241 Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
242 patterns in IR trees, compute weights for subtrees and use the weights
243 to select the best instructions to represent the sub-tree.
244 <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
245 gl_program object (see mtypes.h).
246 <li>When a fragment shader and vertex shader are linked (see slang_link.c)
247 the varying vars are matched up, uniforms are merged, and vertex
248 attributes are resolved (rewriting instructions as needed).
249 </ul>
250
251 <p>
252 The final vertex and fragment programs may be interpreted in software
253 (see prog_execute.c) or translated into a specific hardware architecture
254 (see drivers/dri/i915/i915_fragprog.c for example).
255 </p>
256
257 <h3>Code Generation Options</h3>
258
259 <p>
260 Internally, there are several options that control the compiler's code
261 generation and instruction selection.
262 These options are seen in the gl_shader_state struct and may be set
263 by the device driver to indicate its preferences:
264
265 <pre>
266 struct gl_shader_state
267 {
268 ...
269 /** Driver-selectable options: */
270 GLboolean EmitHighLevelInstructions;
271 GLboolean EmitCondCodes;
272 GLboolean EmitComments;
273 };
274 </pre>
275
276 <ul>
277 <li>EmitHighLevelInstructions
278 <br>
279 This option controls instruction selection for loops and conditionals.
280 If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
281 instructions will be emitted.
282 Otherwise, those constructs will be implemented with BRA instructions.
283 </li>
284
285 <li>EmitCondCodes
286 <br>
287 If set, condition codes (ala GL_NV_fragment_program) will be used for
288 branching and looping.
289 Otherwise, ordinary registers will be used (the IF instruction will
290 examine the first operand's X component and do the if-part if non-zero).
291 This option is only relevant if EmitHighLevelInstructions is set.
292 </li>
293
294 <li>EmitComments
295 <br>
296 If set, instructions will be annoted with comments to help with debugging.
297 Extra NOP instructions will also be inserted.
298 </br>
299
300 </ul>
301
302
303 <a name="validation">
304 <h2>Compiler Validation</h2>
305
306 <p>
307 A new <a href="http://glean.sf.net" target="_parent">Glean</a> test has
308 been create to exercise the GLSL compiler.
309 </p>
310 <p>
311 The <em>glsl1</em> test runs over 150 sub-tests to check that the language
312 features and built-in functions work properly.
313 This test should be run frequently while working on the compiler to catch
314 regressions.
315 </p>
316 <p>
317 The test coverage is reasonably broad and complete but additional tests
318 should be added.
319 </p>
320
321
322 </BODY>
323 </HTML>