docs: document more MESA_GLSL env var options
[mesa.git] / docs / shading.html
1 <HTML>
2
3 <TITLE>Shading Language Support</TITLE>
4
5 <link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7 <BODY>
8
9 <H1>Shading Language Support</H1>
10
11 <p>
12 This page describes the features and status of Mesa's support for the
13 <a href="http://opengl.org/documentation/glsl/" target="_parent">
14 OpenGL Shading Language</a>.
15 </p>
16
17 <p>
18 Last updated on 15 December 2008.
19 </p>
20
21 <p>
22 Contents
23 </p>
24 <ul>
25 <li><a href="#envvars">Environment variables</a>
26 <li><a href="#120">GLSL 1.20 support</a>
27 <li><a href="#unsup">Unsupported Features</a>
28 <li><a href="#notes">Implementation Notes</a>
29 <li><a href="#hints">Programming Hints</a>
30 <li><a href="#standalone">Stand-alone GLSL Compiler</a>
31 <li><a href="#implementation">Compiler Implementation</a>
32 <li><a href="#validation">Compiler Validation</a>
33 </ul>
34
35
36
37 <a name="envvars">
38 <h2>Environment Variables</h2>
39
40 <p>
41 The <b>MESA_GLSL</b> environment variable can be set to a comma-separated
42 list of keywords to control some aspects of the GLSL compiler and shader
43 execution. These are generally used for debugging.
44 </p>
45 <ul>
46 <li>dump - print GLSL shader code to stdout at link time
47 <li>log - log all GLSL shaders to files.
48 The filenames will be "shader_X.vert" or "shader_X.frag" where X
49 the shader ID.
50 <li>nopt - disable compiler optimizations
51 <li>opt - force compiler optimizations
52 <li>uniform - print message to stdout when glUniform is called
53 <li>nopvert - force vertex shaders to be a simple shader that just transforms
54 the vertex position with ftransform() and passes through the color and
55 texcoord[0] attributes.
56 <li>nopfrag - force fragment shader to be a simple shader that passes
57 through the color attribute.
58 </ul>
59 <p>
60 Example: export MESA_GLSL=dump,nopt
61 </p>
62
63
64 <a name="120">
65 <h2>GLSL 1.20 support</h2>
66
67 <p>
68 GLSL version 1.20 is supported in Mesa 7.3 and later.
69 Among the features/differences of GLSL 1.20 are:
70 <ul>
71 <li><code>mat2x3, mat2x4</code>, etc. types and functions
72 <li><code>transpose(), outerProduct(), matrixCompMult()</code> functions
73 (but untested)
74 <li>precision qualifiers (lowp, mediump, highp)
75 <li><code>invariant</code> qualifier
76 <li><code>array.length()</code> method
77 <li><code>float[5] a;</code> array syntax
78 <li><code>centroid</code> qualifier
79 <li>unsized array constructors
80 <li>initializers for uniforms
81 <li>const initializers calling built-in functions
82 </ul>
83
84
85
86 <a name="unsup">
87 <h2>Unsupported Features</h2>
88
89 <p>
90 The following features of the shading language are not yet fully supported
91 in Mesa:
92 </p>
93
94 <ul>
95 <li>Linking of multiple shaders does not always work. Currently, linking
96 is implemented through shader concatenation and re-compiling. This
97 doesn't always work because of some #pragma and preprocessor issues.
98 <li>gl_ClipVertex
99 <li>The gl_Color and gl_SecondaryColor varying vars are interpolated
100 without perspective correction
101 </ul>
102
103 <p>
104 All other major features of the shading language should function.
105 </p>
106
107
108 <a name="notes">
109 <h2>Implementation Notes</h2>
110
111 <ul>
112 <li>Shading language programs are compiled into low-level programs
113 very similar to those of GL_ARB_vertex/fragment_program.
114 <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
115 float[4] registers.
116 <li>Float constants and variables are packed so that up to four floats
117 can occupy one program parameter/register.
118 <li>All function calls are inlined.
119 <li>Shaders which use too many registers will not compile.
120 <li>The quality of generated code is pretty good, register usage is fair.
121 <li>Shader error detection and reporting of errors (InfoLog) is not
122 very good yet.
123 <li>The ftransform() function doesn't necessarily match the results of
124 fixed-function transformation.
125 </ul>
126
127 <p>
128 These issues will be addressed/resolved in the future.
129 </p>
130
131
132 <a name="hints">
133 <h2>Programming Hints</h2>
134
135 <ul>
136 <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
137 This improves the efficiency of function inlining.
138 </li>
139 <br>
140 <li>To reduce register usage, declare variables within smaller scopes.
141 For example, the following code:
142 <pre>
143 void main()
144 {
145 vec4 a1, a2, b1, b2;
146 gl_Position = expression using a1, a2.
147 gl_Color = expression using b1, b2;
148 }
149 </pre>
150 Can be rewritten as follows to use half as many registers:
151 <pre>
152 void main()
153 {
154 {
155 vec4 a1, a2;
156 gl_Position = expression using a1, a2.
157 }
158 {
159 vec4 b1, b2;
160 gl_Color = expression using b1, b2;
161 }
162 }
163 </pre>
164 Alternately, rather than using several float variables, use
165 a vec4 instead. Use swizzling and writemasks to access the
166 components of the vec4 as floats.
167 </li>
168 <br>
169 <li>Use the built-in library functions whenever possible.
170 For example, instead of writing this:
171 <pre>
172 float x = 1.0 / sqrt(y);
173 </pre>
174 Write this:
175 <pre>
176 float x = inversesqrt(y);
177 </pre>
178 <li>
179 Use ++i when possible as it's more efficient than i++
180 </li>
181 </ul>
182
183
184 <a name="standalone">
185 <h2>Stand-alone GLSL Compiler</h2>
186
187 <p>
188 A unique stand-alone GLSL compiler driver has been added to Mesa.
189 <p>
190
191 <p>
192 The stand-alone compiler (like a conventional command-line compiler)
193 is a tool that accepts Shading Language programs and emits low-level
194 GPU programs.
195 </p>
196
197 <p>
198 This tool is useful for:
199 <p>
200 <ul>
201 <li>Inspecting GPU code to gain insight into compilation
202 <li>Generating initial GPU code for subsequent hand-tuning
203 <li>Debugging the GLSL compiler itself
204 </ul>
205
206 <p>
207 After building Mesa, the glslcompiler can be built by manually running:
208 </p>
209 <pre>
210 make realclean
211 make linux
212 cd src/mesa/drivers/glslcompiler
213 make
214 </pre>
215
216
217 <p>
218 Here's an example of using the compiler to compile a vertex shader and
219 emit GL_ARB_vertex_program-style instructions:
220 </p>
221 <pre>
222 bin/glslcompiler --debug --numbers --fs progs/glsl/CH06-brick.frag.txt
223 </pre>
224 <p>
225 results in:
226 </p>
227 <pre>
228 # Fragment Program/Shader
229 0: RCP TEMP[4].x, UNIFORM[2].xxxx;
230 1: RCP TEMP[4].y, UNIFORM[2].yyyy;
231 2: MUL TEMP[3].xy, VARYING[0], TEMP[4];
232 3: MOV TEMP[1], TEMP[3];
233 4: MUL TEMP[0].w, TEMP[1].yyyy, CONST[4].xxxx;
234 5: FRC TEMP[1].z, TEMP[0].wwww;
235 6: SGT.C TEMP[0].w, TEMP[1].zzzz, CONST[4].xxxx;
236 7: IF (NE.wwww); # (if false, goto 9);
237 8: ADD TEMP[1].x, TEMP[1].xxxx, CONST[4].xxxx;
238 9: ENDIF;
239 10: FRC TEMP[1].xy, TEMP[1];
240 11: SGT TEMP[2].xy, UNIFORM[3], TEMP[1];
241 12: MUL TEMP[1].z, TEMP[2].xxxx, TEMP[2].yyyy;
242 13: LRP TEMP[0], TEMP[1].zzzz, UNIFORM[0], UNIFORM[1];
243 14: MUL TEMP[0].xyz, TEMP[0], VARYING[1].xxxx;
244 15: MOV OUTPUT[0].xyz, TEMP[0];
245 16: MOV OUTPUT[0].w, CONST[4].yyyy;
246 17: END
247 </pre>
248
249 <p>
250 Note that some shading language constructs (such as uniform and varying
251 variables) aren't expressible in ARB or NV-style programs.
252 Therefore, the resulting output is not always legal by definition of
253 those program languages.
254 </p>
255 <p>
256 Also note that this compiler driver is still under development.
257 Over time, the correctness of the GPU programs, with respect to the ARB
258 and NV languagues, should improve.
259 </p>
260
261
262
263 <a name="implementation">
264 <h2>Compiler Implementation</h2>
265
266 <p>
267 The source code for Mesa's shading language compiler is in the
268 <code>src/mesa/shader/slang/</code> directory.
269 </p>
270
271 <p>
272 The compiler follows a fairly standard design and basically works as follows:
273 </p>
274 <ul>
275 <li>The input string is tokenized (see grammar.c) and parsed
276 (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
277 The nodes in this tree are slang_operation structures
278 (see slang_compile_operation.h).
279 The nodes are decorated with symbol table, scoping and datatype information.
280 <li>The AST is converted into an Intermediate representation (IR) tree
281 (see the slang_codegen.c file).
282 The IR nodes represent basic GPU instructions, like add, dot product,
283 move, etc.
284 The IR tree is mostly a binary tree, but a few nodes have three or four
285 children.
286 In principle, the IR tree could be executed by doing an in-order traversal.
287 <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
288 This is also when registers are allocated to store variables and temps.
289 <li>In the future, a pattern-matching code generator-generator may be
290 used for code generation.
291 Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
292 patterns in IR trees, compute weights for subtrees and use the weights
293 to select the best instructions to represent the sub-tree.
294 <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
295 gl_program object (see mtypes.h).
296 <li>When a fragment shader and vertex shader are linked (see slang_link.c)
297 the varying vars are matched up, uniforms are merged, and vertex
298 attributes are resolved (rewriting instructions as needed).
299 </ul>
300
301 <p>
302 The final vertex and fragment programs may be interpreted in software
303 (see prog_execute.c) or translated into a specific hardware architecture
304 (see drivers/dri/i915/i915_fragprog.c for example).
305 </p>
306
307 <h3>Code Generation Options</h3>
308
309 <p>
310 Internally, there are several options that control the compiler's code
311 generation and instruction selection.
312 These options are seen in the gl_shader_state struct and may be set
313 by the device driver to indicate its preferences:
314
315 <pre>
316 struct gl_shader_state
317 {
318 ...
319 /** Driver-selectable options: */
320 GLboolean EmitHighLevelInstructions;
321 GLboolean EmitCondCodes;
322 GLboolean EmitComments;
323 };
324 </pre>
325
326 <ul>
327 <li>EmitHighLevelInstructions
328 <br>
329 This option controls instruction selection for loops and conditionals.
330 If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
331 instructions will be emitted.
332 Otherwise, those constructs will be implemented with BRA instructions.
333 </li>
334
335 <li>EmitCondCodes
336 <br>
337 If set, condition codes (ala GL_NV_fragment_program) will be used for
338 branching and looping.
339 Otherwise, ordinary registers will be used (the IF instruction will
340 examine the first operand's X component and do the if-part if non-zero).
341 This option is only relevant if EmitHighLevelInstructions is set.
342 </li>
343
344 <li>EmitComments
345 <br>
346 If set, instructions will be annoted with comments to help with debugging.
347 Extra NOP instructions will also be inserted.
348 </br>
349
350 </ul>
351
352
353 <a name="validation">
354 <h2>Compiler Validation</h2>
355
356 <p>
357 A <a href="http://glean.sf.net" target="_parent">Glean</a> test has
358 been create to exercise the GLSL compiler.
359 </p>
360 <p>
361 The <em>glsl1</em> test runs over 170 sub-tests to check that the language
362 features and built-in functions work properly.
363 This test should be run frequently while working on the compiler to catch
364 regressions.
365 </p>
366 <p>
367 The test coverage is reasonably broad and complete but additional tests
368 should be added.
369 </p>
370
371
372 </BODY>
373 </HTML>