gl_ClipVertex not supported yet
[mesa.git] / docs / shading.html
1 <HTML>
2
3 <TITLE>Shading Language Support</TITLE>
4
5 <link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7 <BODY>
8
9 <H1>Shading Language Support</H1>
10
11 <p>
12 This page describes the features and status of Mesa's support for the
13 <a href="http://opengl.org/documentation/glsl/" target="_parent">
14 OpenGL Shading Language</a>.
15 </p>
16
17 <p>
18 Last updated on 17 Feb 2007.
19 </p>
20
21 <p>
22 Contents
23 </p>
24 <ul>
25 <li><a href="#unsup">Unsupported Features</a>
26 <li><a href="#notes">Implementation Notes</a>
27 <li><a href="#hints">Programming Hints</a>
28 <li><a href="#standalone">Stand-alone Compiler</a>
29 <li><a href="#implementation">Compiler Implementation</a>
30 </ul>
31
32
33 <a name="unsup">
34 <h2>Unsupported Features</h2>
35
36 <p>
37 The following features of the shading language are not yet supported
38 in Mesa:
39 </p>
40
41 <ul>
42 <li>Dereferencing arrays with non-constant indexes
43 <li>User-defined structs
44 <li>Linking of multiple shaders is not supported
45 <li>Integer operations are not fully implemented (most are implemented
46 as floating point).
47 <li>gl_ClipVertex
48 </ul>
49
50 <p>
51 All other major features of the shading language should function.
52 </p>
53
54
55 <a name="notes">
56 <h2>Implementation Notes</h2>
57
58 <ul>
59 <li>Shading language programs are compiled into low-level programs
60 very similar to those of GL_ARB_vertex/fragment_program.
61 <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
62 float[4] registers.
63 <li>Float constants and variables are packed so that up to four floats
64 can occupy one program parameter/register.
65 <li>All function calls are inlined.
66 <li>Shaders which use too many registers will not compile.
67 <li>The quality of generated code is pretty good, register usage is fair.
68 <li>Shader error detection and reporting of errors (InfoLog) is not
69 very good yet.
70 <li>There are massive memory leaks in the compiler.
71 </ul>
72
73 <p>
74 These issues will be addressed/resolved in the future.
75 </p>
76
77
78 <a name="hints">
79 <h2>Programming Hints</h2>
80
81 <ul>
82 <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
83 This improves the efficiency of function inlining.
84 </li>
85 <br>
86 <li>To reduce register usage, declare variables within smaller scopes.
87 For example, the following code:
88 <pre>
89 void main()
90 {
91 vec4 a1, a2, b1, b2;
92 gl_Position = expression using a1, a2.
93 gl_Color = expression using b1, b2;
94 }
95 </pre>
96 Can be rewritten as follows to use half as many registers:
97 <pre>
98 void main()
99 {
100 {
101 vec4 a1, a2;
102 gl_Position = expression using a1, a2.
103 }
104 {
105 vec4 b1, b2;
106 gl_Color = expression using b1, b2;
107 }
108 }
109 </pre>
110 Alternately, rather than using several float variables, use
111 a vec4 instead. Use swizzling and writemasks to access the
112 components of the vec4 as floats.
113 </li>
114 <br>
115 <li>Use the built-in library functions whenever possible.
116 For example, instead of writing this:
117 <pre>
118 float x = 1.0 / sqrt(y);
119 </pre>
120 Write this:
121 <pre>
122 float x = inversesqrt(y);
123 </pre>
124 </ul>
125
126
127 <a name="standalone">
128 <h2>Stand-alone Compiler</h2>
129
130 <p>
131 A unique stand-alone GLSL compiler driver has been added to Mesa.
132 <p>
133
134 <p>
135 The stand-alone compiler (like a conventional command-line compiler)
136 is a tool that accepts Shading Language programs and emits low-level
137 GPU programs.
138 </p>
139
140 <p>
141 This tool is useful for:
142 <p>
143 <ul>
144 <li>Inspecting GPU code to gain insight into compilation
145 <li>Generating initial GPU code for subsequent hand-tuning
146 <li>Debugging the GLSL compiler itself
147 </ul>
148
149 <p>
150 To build the glslcompiler program (this will be improved someday):
151 </p>
152 <pre>
153 cd src/mesa
154 make libmesa.a
155 cd drivers/glslcompiler
156 make
157 </pre>
158
159
160 <p>
161 Here's an example of using the compiler to compile a vertex shader and
162 emit GL_ARB_vertex_program-style instructions:
163 </p>
164 <pre>
165 glslcompiler --arb --linenumbers --vs vertshader.txt
166 </pre>
167 <p>
168 The output may look similar to this:
169 </p>
170 <pre>
171 !!ARBvp1.0
172 0: MOV result.texcoord[0], vertex.texcoord[0];
173 1: DP4 temp0.x, state.matrix.mvp.row[0], vertex.position;
174 2: DP4 temp0.y, state.matrix.mvp.row[1], vertex.position;
175 3: DP4 temp0.z, state.matrix.mvp.row[2], vertex.position;
176 4: DP4 temp0.w, state.matrix.mvp.row[3], vertex.position;
177 5: MOV result.position, temp0;
178 6: END
179 </pre>
180
181 <p>
182 Note that some shading language constructs (such as uniform and varying
183 variables) aren't expressible in ARB or NV-style programs.
184 Therefore, the resulting output is not always legal by definition of
185 those program languages.
186 </p>
187 <p>
188 Also note that this compiler driver is still under development.
189 Over time, the correctness of the GPU programs, with respect to the ARB
190 and NV languagues, should improve.
191 </p>
192
193
194
195 <a name="implementation">
196 <h2>Compiler Implementation</h2>
197
198 <p>
199 The source code for Mesa's shading language compiler is in the
200 <code>src/mesa/shader/slang/</code> directory.
201 </p>
202
203 <p>
204 The compiler follows a fairly standard design and basically works as follows:
205 </p>
206 <ul>
207 <li>The input string is tokenized (see grammar.c) and parsed
208 (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
209 The nodes in this tree are slang_operation structures
210 (see slang_compile_operation.h).
211 The nodes are decorated with symbol table, scoping and datatype information.
212 <li>The AST is converted into an Intermediate representation (IR) tree
213 (see the slang_codegen.c file).
214 The IR nodes represent basic GPU instructions, like add, dot product,
215 move, etc.
216 The IR tree is mostly a binary tree, but a few nodes have three or four
217 children.
218 In principle, the IR tree could be executed by doing an in-order traversal.
219 <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
220 This is also when registers are allocated to store variables and temps.
221 <li>In the future, a pattern-matching code generator-generator may be
222 used for code generation.
223 Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
224 patterns in IR trees, compute weights for subtrees and use the weights
225 to select the best instructions to represent the sub-tree.
226 <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
227 gl_program object (see mtypes.h).
228 <li>When a fragment shader and vertex shader are linked (see slang_link.c)
229 the varying vars are matched up, uniforms are merged, and vertex
230 attributes are resolved (rewriting instructions as needed).
231 </ul>
232
233 <p>
234 The final vertex and fragment programs may be interpreted in software
235 (see prog_execute.c) or translated into a specific hardware architecture
236 (see drivers/dri/i915/i915_fragprog.c for example).
237 </p>
238
239
240
241 </BODY>
242 </HTML>