memory leaks fixed
[mesa.git] / docs / shading.html
1 <HTML>
2
3 <TITLE>Shading Language Support</TITLE>
4
5 <link rel="stylesheet" type="text/css" href="mesa.css"></head>
6
7 <BODY>
8
9 <H1>Shading Language Support</H1>
10
11 <p>
12 This page describes the features and status of Mesa's support for the
13 <a href="http://opengl.org/documentation/glsl/" target="_parent">
14 OpenGL Shading Language</a>.
15 </p>
16
17 <p>
18 Last updated on 28 March 2007.
19 </p>
20
21 <p>
22 Contents
23 </p>
24 <ul>
25 <li><a href="#unsup">Unsupported Features</a>
26 <li><a href="#notes">Implementation Notes</a>
27 <li><a href="#hints">Programming Hints</a>
28 <li><a href="#standalone">Stand-alone Compiler</a>
29 <li><a href="#implementation">Compiler Implementation</a>
30 <li><a href="#validation">Compiler Validation</a>
31 </ul>
32
33
34 <a name="unsup">
35 <h2>Unsupported Features</h2>
36
37 <p>
38 The following features of the shading language are not yet supported
39 in Mesa:
40 </p>
41
42 <ul>
43 <li>Dereferencing arrays with non-constant indexes
44 <li>Comparison of user-defined structs
45 <li>Linking of multiple shaders is not supported
46 <li>gl_ClipVertex
47 <li>The derivative functions such as dFdx() are not implemented
48 </ul>
49
50 <p>
51 All other major features of the shading language should function.
52 </p>
53
54
55 <a name="notes">
56 <h2>Implementation Notes</h2>
57
58 <ul>
59 <li>Shading language programs are compiled into low-level programs
60 very similar to those of GL_ARB_vertex/fragment_program.
61 <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
62 float[4] registers.
63 <li>Float constants and variables are packed so that up to four floats
64 can occupy one program parameter/register.
65 <li>All function calls are inlined.
66 <li>Shaders which use too many registers will not compile.
67 <li>The quality of generated code is pretty good, register usage is fair.
68 <li>Shader error detection and reporting of errors (InfoLog) is not
69 very good yet.
70 <li>The ftransform() function doesn't necessarily match the results of
71 fixed-function transformation.
72 </ul>
73
74 <p>
75 These issues will be addressed/resolved in the future.
76 </p>
77
78
79 <a name="hints">
80 <h2>Programming Hints</h2>
81
82 <ul>
83 <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
84 This improves the efficiency of function inlining.
85 </li>
86 <br>
87 <li>To reduce register usage, declare variables within smaller scopes.
88 For example, the following code:
89 <pre>
90 void main()
91 {
92 vec4 a1, a2, b1, b2;
93 gl_Position = expression using a1, a2.
94 gl_Color = expression using b1, b2;
95 }
96 </pre>
97 Can be rewritten as follows to use half as many registers:
98 <pre>
99 void main()
100 {
101 {
102 vec4 a1, a2;
103 gl_Position = expression using a1, a2.
104 }
105 {
106 vec4 b1, b2;
107 gl_Color = expression using b1, b2;
108 }
109 }
110 </pre>
111 Alternately, rather than using several float variables, use
112 a vec4 instead. Use swizzling and writemasks to access the
113 components of the vec4 as floats.
114 </li>
115 <br>
116 <li>Use the built-in library functions whenever possible.
117 For example, instead of writing this:
118 <pre>
119 float x = 1.0 / sqrt(y);
120 </pre>
121 Write this:
122 <pre>
123 float x = inversesqrt(y);
124 </pre>
125 <li>
126 Use ++i when possible as it's more efficient than i++
127 </li>
128 </ul>
129
130
131 <a name="standalone">
132 <h2>Stand-alone Compiler</h2>
133
134 <p>
135 A unique stand-alone GLSL compiler driver has been added to Mesa.
136 <p>
137
138 <p>
139 The stand-alone compiler (like a conventional command-line compiler)
140 is a tool that accepts Shading Language programs and emits low-level
141 GPU programs.
142 </p>
143
144 <p>
145 This tool is useful for:
146 <p>
147 <ul>
148 <li>Inspecting GPU code to gain insight into compilation
149 <li>Generating initial GPU code for subsequent hand-tuning
150 <li>Debugging the GLSL compiler itself
151 </ul>
152
153 <p>
154 To build the glslcompiler program (this will be improved someday):
155 </p>
156 <pre>
157 cd src/mesa
158 make libmesa.a
159 cd drivers/glslcompiler
160 make
161 </pre>
162
163
164 <p>
165 Here's an example of using the compiler to compile a vertex shader and
166 emit GL_ARB_vertex_program-style instructions:
167 </p>
168 <pre>
169 glslcompiler --arb --linenumbers --vs vertshader.txt
170 </pre>
171 <p>
172 The output may look similar to this:
173 </p>
174 <pre>
175 !!ARBvp1.0
176 0: MOV result.texcoord[0], vertex.texcoord[0];
177 1: DP4 temp0.x, state.matrix.mvp.row[0], vertex.position;
178 2: DP4 temp0.y, state.matrix.mvp.row[1], vertex.position;
179 3: DP4 temp0.z, state.matrix.mvp.row[2], vertex.position;
180 4: DP4 temp0.w, state.matrix.mvp.row[3], vertex.position;
181 5: MOV result.position, temp0;
182 6: END
183 </pre>
184
185 <p>
186 Note that some shading language constructs (such as uniform and varying
187 variables) aren't expressible in ARB or NV-style programs.
188 Therefore, the resulting output is not always legal by definition of
189 those program languages.
190 </p>
191 <p>
192 Also note that this compiler driver is still under development.
193 Over time, the correctness of the GPU programs, with respect to the ARB
194 and NV languagues, should improve.
195 </p>
196
197
198
199 <a name="implementation">
200 <h2>Compiler Implementation</h2>
201
202 <p>
203 The source code for Mesa's shading language compiler is in the
204 <code>src/mesa/shader/slang/</code> directory.
205 </p>
206
207 <p>
208 The compiler follows a fairly standard design and basically works as follows:
209 </p>
210 <ul>
211 <li>The input string is tokenized (see grammar.c) and parsed
212 (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
213 The nodes in this tree are slang_operation structures
214 (see slang_compile_operation.h).
215 The nodes are decorated with symbol table, scoping and datatype information.
216 <li>The AST is converted into an Intermediate representation (IR) tree
217 (see the slang_codegen.c file).
218 The IR nodes represent basic GPU instructions, like add, dot product,
219 move, etc.
220 The IR tree is mostly a binary tree, but a few nodes have three or four
221 children.
222 In principle, the IR tree could be executed by doing an in-order traversal.
223 <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
224 This is also when registers are allocated to store variables and temps.
225 <li>In the future, a pattern-matching code generator-generator may be
226 used for code generation.
227 Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
228 patterns in IR trees, compute weights for subtrees and use the weights
229 to select the best instructions to represent the sub-tree.
230 <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
231 gl_program object (see mtypes.h).
232 <li>When a fragment shader and vertex shader are linked (see slang_link.c)
233 the varying vars are matched up, uniforms are merged, and vertex
234 attributes are resolved (rewriting instructions as needed).
235 </ul>
236
237 <p>
238 The final vertex and fragment programs may be interpreted in software
239 (see prog_execute.c) or translated into a specific hardware architecture
240 (see drivers/dri/i915/i915_fragprog.c for example).
241 </p>
242
243 <h3>Code Generation Options</h3>
244
245 <p>
246 Internally, there are several options that control the compiler's code
247 generation and instruction selection.
248 These options are seen in the gl_shader_state struct and may be set
249 by the device driver to indicate its preferences:
250
251 <pre>
252 struct gl_shader_state
253 {
254 ...
255 /** Driver-selectable options: */
256 GLboolean EmitHighLevelInstructions;
257 GLboolean EmitCondCodes;
258 GLboolean EmitComments;
259 };
260 </pre>
261
262 <ul>
263 <li>EmitHighLevelInstructions
264 <br>
265 This option controls instruction selection for loops and conditionals.
266 If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
267 instructions will be emitted.
268 Otherwise, those constructs will be implemented with BRA instructions.
269 </li>
270
271 <li>EmitCondCodes
272 <br>
273 If set, condition codes (ala GL_NV_fragment_program) will be used for
274 branching and looping.
275 Otherwise, ordinary registers will be used (the IF instruction will
276 examine the first operand's X component and do the if-part if non-zero).
277 This option is only relevant if EmitHighLevelInstructions is set.
278 </li>
279
280 <li>EmitComments
281 <br>
282 If set, instructions will be annoted with comments to help with debugging.
283 Extra NOP instructions will also be inserted.
284 </br>
285
286 </ul>
287
288
289 <a name="validation">
290 <h2>Compiler Validation</h2>
291
292 <p>
293 A new <a href="http://glean.sf.net" target="_parent">Glean</a> test has
294 been create to exercise the GLSL compiler.
295 </p>
296 <p>
297 The <em>glsl1</em> test runs over 150 sub-tests to check that the language
298 features and built-in functions work properly.
299 This test should be run frequently while working on the compiler to catch
300 regressions.
301 </p>
302 <p>
303 The test coverage is reasonably broad and complete but additional tests
304 should be added.
305 </p>
306
307
308 </BODY>
309 </HTML>