57b23789e41eefb7fe9c0126d0625f50d47e8d87
[mesa.git] / docs / xlibdriver.html
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
2 <html lang="en">
3 <head>
4 <meta http-equiv="content-type" content="text/html; charset=utf-8">
5 <title>Xlib Software Driver</title>
6 <link rel="stylesheet" type="text/css" href="mesa.css">
7 </head>
8 <body>
9
10 <h1>Xlib Software Driver</h1>
11
12 <p>
13 Mesa's Xlib driver provides an emulation of the GLX interface so that
14 OpenGL programs which use the GLX API can render to any X display, even
15 those that don't support the GLX extension.
16 Effectively, the Xlib driver converts all OpenGL rendering into Xlib calls.
17 </p>
18
19 <p>
20 The Xlib driver is the oldest Mesa driver and the most mature of Mesa's
21 software-only drivers.
22 </p>
23
24 <p>
25 Since the Xlib driver <em>emulates</em> the GLX extension, it's not
26 totally conformant with a true GLX implementation.
27 The differences are fairly obscure, however.
28 </p>
29
30 <p>
31 The unique features of the Xlib driver follows.
32 </p>
33
34
35 <h2>X Visual Selection</h2>
36 <p>
37 Mesa supports RGB(A) rendering into almost any X visual type and depth.
38 </p>
39 <p>
40 The glXChooseVisual function tries to choose the best X visual
41 for the given attribute list. However, if this doesn't suit your needs
42 you can force Mesa to use any X visual you want (any supported by your
43 X server that is) by setting the <b>MESA_RGB_VISUAL</b> and
44 <b>MESA_CI_VISUAL</b>
45 environment variables.
46 When an RGB visual is requested, glXChooseVisual
47 will first look if the MESA_RGB_VISUAL variable is defined.
48 If so, it will try to use the specified visual.
49 Similarly, when a color index visual is requested, glXChooseVisual will
50 look for the MESA_CI_VISUAL variable.
51 </p>
52
53 <p>
54 The format of accepted values is: <code>visual-class depth</code>
55 </p>
56 <p>
57 Here are some examples:
58 </p>
59 <pre>
60 using csh:
61 % setenv MESA_RGB_VISUAL "TrueColor 8" // 8-bit TrueColor
62 % setenv MESA_CI_VISUAL "PseudoColor 12" // 12-bit PseudoColor
63 % setenv MESA_RGB_VISUAL "PseudoColor 8" // 8-bit PseudoColor
64
65 using bash:
66 $ export MESA_RGB_VISUAL="TrueColor 8"
67 $ export MESA_CI_VISUAL="PseudoColor 12"
68 $ export MESA_RGB_VISUAL="PseudoColor 8"
69 </pre>
70
71
72 <h2>Double Buffering</h2>
73 <p>
74 Mesa can use either an X Pixmap or XImage as the back color buffer when in
75 double-buffer mode.
76 The default is to use an XImage.
77 The <b>MESA_BACK_BUFFER</b> environment variable can override this.
78 The valid values for <b>MESA_BACK_BUFFER</b> are: <b>Pixmap</b> and
79 <b>XImage</b> (only the first letter is checked, case doesn't matter).
80 </p>
81
82 <p>
83 Using XImage is almost always faster than a Pixmap since it resides in
84 the application's address space.
85 When glXSwapBuffers() is called, XPutImage() or XShmPutImage() is used
86 to transfer the XImage to the on-screen window.
87 </p>
88 <p>
89 A Pixmap may be faster when doing remote rendering of a simple scene.
90 Some OpenGL features will be very slow with a Pixmap (for example, blending
91 will require a round-trip message for pixel readback.)
92 </p>
93 <p>
94 Experiment with the MESA_BACK_BUFFER variable to see which is faster
95 for your application.
96 </p>
97
98
99 <h2>Colormaps</h2>
100 <p>
101 When using Mesa directly or with GLX, it's up to the application
102 writer to create a window with an appropriate colormap. The GLUT
103 toolkit tris to minimize colormap <em>flashing</em> by sharing
104 colormaps when possible. Specifically, if the visual and depth of the
105 window matches that of the root window, the root window's colormap
106 will be shared by the Mesa window. Otherwise, a new, private colormap
107 will be allocated.
108 </p>
109
110 <p>
111 When sharing the root colormap, Mesa may be unable to allocate the colors
112 it needs, resulting in poor color quality. This can happen when a
113 large number of colorcells in the root colormap are already allocated.
114 To prevent colormap sharing in GLUT, set the
115 <b>MESA_PRIVATE_CMAP</b> environment variable. The value isn't
116 significant.
117 </p>
118
119
120 <h2>Gamma Correction</h2>
121 <p>
122 To compensate for the nonlinear relationship between pixel values
123 and displayed intensities, there is a gamma correction feature in
124 Mesa. Some systems, such as Silicon Graphics, support gamma
125 correction in hardware (man gamma) so you won't need to use Mesa's
126 gamma facility. Other systems, however, may need gamma adjustment
127 to produce images which look correct. If you believe that
128 Mesa's images are too dim, read on.
129 </p>
130
131 <p>
132 Gamma correction is controlled with the <b>MESA_GAMMA</b> environment
133 variable. Its value is of the form <b>Gr Gg Gb</b> or just <b>G</b> where
134 Gr is the red gamma value, Gg is the green gamma value, Gb is the
135 blue gamma value and G is one gamma value to use for all three
136 channels. Each value is a positive real number typically in the
137 range 1.0 to 2.5.
138 The defaults are all 1.0, effectively disabling gamma correction.
139 Examples:
140 </p>
141 <pre>
142 % export MESA_GAMMA="2.3 2.2 2.4" // separate R,G,B values
143 % export MESA_GAMMA="2.0" // same gamma for R,G,B
144 </pre>
145 <p>
146 The progs/demos/gamma.c program may help you to determine reasonable gamma
147 value for your display. With correct gamma values, the color intensities
148 displayed in the top row (drawn by dithering) should nearly match those
149 in the bottom row (drawn as grays).
150 </p>
151
152 <p>
153 Alex De Bruyn reports that gamma values of 1.6, 1.6 and 1.9 work well
154 on HP displays using the HP-ColorRecovery technology.
155 </p>
156
157 <p>
158 Mesa implements gamma correction with a lookup table which translates
159 a "linear" pixel value to a gamma-corrected pixel value. There is a
160 small performance penalty. Gamma correction only works in RGB mode.
161 Also be aware that pixel values read back from the frame buffer will
162 not be "un-corrected" so glReadPixels may not return the same data
163 drawn with glDrawPixels.
164 </p>
165
166 <p>
167 For more information about gamma correction see:
168 <a href="http://www.inforamp.net/~poynton/notes/colour_and_gamma/GammaFAQ.html">
169 the Gamma FAQ</a>
170 </p>
171
172
173 <h2>Overlay Planes</h2>
174 <p>
175 Hardware overlay planes are supported by the Xlib driver. To
176 determine if your X server has overlay support you can test for the
177 SERVER_OVERLAY_VISUALS property:
178 </p>
179 <pre>
180 xprop -root | grep SERVER_OVERLAY_VISUALS
181 </pre>
182
183
184 <h2>HPCR Dithering</h2>
185 <p>
186 If you set the <b>MESA_HPCR_CLEAR</b> environment variable then dithering
187 will be used when clearing the color buffer. This is only applicable
188 to HP systems with the HPCR (Color Recovery) feature.
189 This incurs a small performance penalty.
190 </p>
191
192
193 <h2>Extensions</h2>
194 <p>
195 The following MESA-specific extensions are implemented in the Xlib driver.
196 </p>
197
198 <h3>GLX_MESA_pixmap_colormap</h3>
199
200 <p>
201 This extension adds the GLX function:
202 </p>
203 <pre>
204 GLXPixmap glXCreateGLXPixmapMESA( Display *dpy, XVisualInfo *visual,
205 Pixmap pixmap, Colormap cmap )
206 </pre>
207 <p>
208 It is an alternative to the standard glXCreateGLXPixmap() function.
209 Since Mesa supports RGB rendering into any X visual, not just True-
210 Color or DirectColor, Mesa needs colormap information to convert RGB
211 values into pixel values. An X window carries this information but a
212 pixmap does not. This function associates a colormap to a GLX pixmap.
213 See the xdemos/glxpixmap.c file for an example of how to use this
214 extension.
215 </p>
216 <p>
217 <a href="MESA_pixmap_colormap.spec">GLX_MESA_pixmap_colormap specification</a>
218 </p>
219
220
221 <h3>GLX_MESA_release_buffers</h3>
222 <p>
223 Mesa associates a set of ancillary (depth, accumulation, stencil and
224 alpha) buffers with each X window it draws into. These ancillary
225 buffers are allocated for each X window the first time the X window
226 is passed to glXMakeCurrent(). Mesa, however, can't detect when an
227 X window has been destroyed in order to free the ancillary buffers.
228 </p>
229 <p>
230 The best it can do is to check for recently destroyed windows whenever
231 the client calls the glXCreateContext() or glXDestroyContext()
232 functions. This may not be sufficient in all situations though.
233 </p>
234 <p>
235 The GLX_MESA_release_buffers extension allows a client to explicitly
236 deallocate the ancillary buffers by calling glxReleaseBuffersMESA()
237 just before an X window is destroyed. For example:
238 </p>
239 <pre>
240 #ifdef GLX_MESA_release_buffers
241 glXReleaseBuffersMESA( dpy, window );
242 #endif
243 XDestroyWindow( dpy, window );
244 </pre>
245 <p>
246 <a href="MESA_release_buffers.spec">GLX_MESA_release_buffers specification</a>
247 </p>
248 <p>
249 This extension was added in Mesa 2.0.
250 </p>
251
252 <h3>GLX_MESA_copy_sub_buffer</h3>
253 <p>
254 This extension adds the glXCopySubBufferMESA() function. It works
255 like glXSwapBuffers() but only copies a sub-region of the window
256 instead of the whole window.
257 </p>
258 <p>
259 <a href="MESA_copy_sub_buffer.spec">GLX_MESA_copy_sub_buffer specification</a>
260 </p>
261 <p>
262 This extension was added in Mesa 2.6
263 </p>
264
265 <h2>Summary of X-related environment variables</h2>
266 <pre>
267 MESA_RGB_VISUAL - specifies the X visual and depth for RGB mode (X only)
268 MESA_CI_VISUAL - specifies the X visual and depth for CI mode (X only)
269 MESA_BACK_BUFFER - specifies how to implement the back color buffer (X only)
270 MESA_PRIVATE_CMAP - force aux/tk libraries to use private colormaps (X only)
271 MESA_GAMMA - gamma correction coefficients (X only)
272 </pre>
273
274
275 </body>
276 </html>