sim, kvm: make KvmVM a System parameter
[gem5.git] / ext / dsent / model / optical / OpticalLinkBackendRx.cc
1 /* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22 #include "model/optical/OpticalLinkBackendRx.h"
23
24 #include "util/Constants.h"
25 #include "model/PortInfo.h"
26 #include "model/TransitionInfo.h"
27 #include "model/EventInfo.h"
28 #include "model/electrical/DemuxTreeDeserializer.h"
29 #include "model/electrical/BarrelShifter.h"
30 #include "model/electrical/Multiplexer.h"
31 #include <cmath>
32
33 namespace DSENT
34 {
35 // TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch
36 // to curve fitting the CICC paper, which uses results from a monte-carlo sim. Also, there is
37 // redundant code between this one and the tx one...
38
39 OpticalLinkBackendRx::OpticalLinkBackendRx(const String& instance_name_, const TechModel* tech_model_)
40 : ElectricalModel(instance_name_, tech_model_)
41 {
42 initParameters();
43 initProperties();
44 }
45
46 OpticalLinkBackendRx::~OpticalLinkBackendRx()
47 {}
48
49 void OpticalLinkBackendRx::initParameters()
50 {
51 addParameterName("OutBits");
52 addParameterName("CoreDataRate");
53 addParameterName("LinkDataRate");
54 addParameterName("RingTuningMethod");
55 addParameterName("BitDuplicate");
56 return;
57 }
58
59 void OpticalLinkBackendRx::initProperties()
60 {
61 return;
62 }
63
64 void OpticalLinkBackendRx::constructModel()
65 {
66 unsigned int out_bits = getParameter("OutBits");
67 double core_data_rate = getParameter("CoreDataRate");
68 double link_data_rate = getParameter("LinkDataRate");
69 const String& tuning_method = getParameter("RingTuningMethod");
70 bool bit_duplicate = getParameter("BitDuplicate");
71
72 // Calculate deserialization ratio
73 unsigned int deserialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate);
74 ASSERT(deserialization_ratio == link_data_rate / core_data_rate,
75 "[Error] " + getInstanceName() + " -> Cannot have non-integer deserialization ratios!");
76 ASSERT((deserialization_ratio & (deserialization_ratio - 1)) == 0,
77 "[Error] " + getInstanceName() + " -> Deserialization ratio must be a power of 2");
78
79 // Calculate output width
80 unsigned int in_bits = out_bits / deserialization_ratio;
81 ASSERT(out_bits >= deserialization_ratio, "[Error] " + getInstanceName() +
82 " -> Output width must be >= deserialization ratio!");
83 ASSERT(floor((double) out_bits / deserialization_ratio) == in_bits,
84 "[Error] " + getInstanceName() + " -> Output width must be a multiple of the serialization ratio!");
85
86 getGenProperties()->set("DeserializationRatio", deserialization_ratio);
87 getGenProperties()->set("InBits", in_bits);
88
89 // Create ports
90 createInputPort("In", makeNetIndex(0, in_bits-1));
91 createInputPort("LinkCK");
92 createOutputPort("Out", makeNetIndex(0, out_bits-1));
93
94 //Create energy, power, and area results
95 createElectricalResults();
96 // Create ring heating power cost
97 addNddPowerResult(new AtomicResult("RingTuning"));
98 // Create process bits event
99 createElectricalEventResult("ProcessBits");
100 getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) deserialization_ratio / 2.0, 0.0));
101 // Set conditions during idle state
102 getEventInfo("Idle")->setStaticTransitionInfos();
103 getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) deserialization_ratio / 2.0, 0.0));
104
105 // Create deserializer
106 const String& deserializer_name = "Deserializer";
107 DemuxTreeDeserializer* deserializer = new DemuxTreeDeserializer(deserializer_name, getTechModel());
108 deserializer->setParameter("OutBits", out_bits);
109 deserializer->setParameter("InDataRate", link_data_rate);
110 deserializer->setParameter("OutDataRate", core_data_rate);
111 deserializer->setParameter("BitDuplicate", bit_duplicate);
112 deserializer->construct();
113
114 addSubInstances(deserializer, 1.0);
115 addElectricalSubResults(deserializer, 1.0);
116 getEventResult("ProcessBits")->addSubResult(deserializer->getEventResult("Deserialize"), deserializer_name, 1.0);
117
118 if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
119 {
120 // If a bit reshuffling backend is present, create the reshuffling backend
121 unsigned int reorder_degree = getBitReorderDegree();
122
123 // Create intermediate nets
124 createNet("ReorderIn", makeNetIndex(0, in_bits+reorder_degree-1));
125 assign("ReorderIn", makeNetIndex(0, in_bits-1), "In");
126 assign("ReorderIn", makeNetIndex(in_bits, in_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1));
127 createNet("DeserializerIn", makeNetIndex(0, in_bits-1));
128 createNet("BarrelShiftIn", makeNetIndex(0, out_bits-1));
129
130 // Create bit reorder muxes
131 const String& reorder_mux_name = "ReorderMux";
132 Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel());
133 reorder_mux->setParameter("NumberBits", in_bits);
134 reorder_mux->setParameter("NumberInputs", reorder_degree);
135 reorder_mux->setParameter("BitDuplicate", bit_duplicate);
136 reorder_mux->construct();
137
138 // Create barrelshifter
139 unsigned int shift_index_min = (unsigned int)ceil(log2(deserialization_ratio));
140 unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(out_bits)) - 1);
141
142 // Remember some things
143 getGenProperties()->set("ReorderDegree", reorder_degree);
144 getGenProperties()->set("ShiftIndexMin", shift_index_min);
145 getGenProperties()->set("ShiftIndexMax", shift_index_max);
146
147 const String& barrel_shift_name = "BarrelShifter";
148 BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel());
149 barrel_shift->setParameter("NumberBits", out_bits);
150 barrel_shift->setParameter("ShiftIndexMax", shift_index_max);
151 barrel_shift->setParameter("ShiftIndexMin", shift_index_min);
152 barrel_shift->setParameter("BitDuplicate", bit_duplicate);
153 barrel_shift->construct();
154
155 // Connect serializer
156 portConnect(deserializer, "In", "DeserializerIn");
157 portConnect(deserializer, "Out", "BarrelShiftIn");
158 portConnect(deserializer, "InCK", "LinkCK");
159
160 // Connect barrelshifter
161 // TODO: Connect barrelshift shifts!
162 portConnect(barrel_shift, "In", "BarrelShiftIn");
163 portConnect(barrel_shift, "Out", "Out");
164
165 // Connect bit reorder muxes
166 // TODO: Connect re-order multiplex select signals!
167 for (unsigned int i = 0; i < reorder_degree; i++)
168 portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+in_bits-1));
169 portConnect(reorder_mux, "Out", "DeserializerIn");
170
171 addSubInstances(barrel_shift, 1.0);
172 addSubInstances(reorder_mux, 1.0);
173 addElectricalSubResults(barrel_shift, 1.0);
174 addElectricalSubResults(reorder_mux, 1.0);
175 getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0);
176 getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0);
177 }
178 else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
179 {
180 // If no bit reshuffling backend is present, then just connect deserializer up
181 portConnect(deserializer, "In", "In");
182 portConnect(deserializer, "Out", "Out");
183 portConnect(deserializer, "InCK", "LinkCK");
184 }
185 else
186 {
187 ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
188 }
189
190 return;
191 }
192
193 void OpticalLinkBackendRx::updateModel()
194 {
195 // Update everyone
196 Model::updateModel();
197 // Update ring tuning power
198 getNddPowerResult("RingTuning")->setValue(getRingTuningPower());
199 return;
200 }
201
202 void OpticalLinkBackendRx::propagateTransitionInfo()
203 {
204 // Get parameters
205 const String& tuning_method = getParameter("RingTuningMethod");;
206
207 // Get properties
208
209 // Update the deserializer
210 if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
211 {
212 // Get generated properties
213 unsigned int reorder_degree = getGenProperties()->get("ReorderDegree");
214 unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin");
215 unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax");
216
217 // Reorder mux shift select bits
218 unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree));
219
220 // Create bit reorder muxes
221 const String& reorder_mux_name = "ReorderMux";
222 ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name);
223 for (unsigned int i = 0; i < reorder_degree; ++i)
224 propagatePortTransitionInfo(reorder_mux, "In" + (String) i, "In");
225 // Set select transitions to be 0, since these are statically configured
226 for (unsigned int i = 0; i < reorder_sel_bits; ++i)
227 reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
228 reorder_mux->use();
229
230 // Update the deserializer
231 ElectricalModel* deserializer = (ElectricalModel*) getSubInstance("Deserializer");
232 propagatePortTransitionInfo(deserializer, "In", reorder_mux, "Out");
233 propagatePortTransitionInfo(deserializer, "InCK", "LinkCK");
234 deserializer->use();
235
236 // Update barrel shifter
237 const String& barrel_shift_name = "BarrelShifter";
238 ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name);
239 propagatePortTransitionInfo(barrel_shift, "In", deserializer, "Out");
240 // Set shift transitions to be very low (since it is affected by slow temperature time constants)
241 for (unsigned int i = shift_index_min; i <= shift_index_max; ++i)
242 barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499));
243 barrel_shift->use();
244
245 // Set output transition info
246 propagatePortTransitionInfo("Out", barrel_shift, "Out");
247 }
248 else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
249 {
250 // Update the deserializer
251 ElectricalModel* deserializer = (ElectricalModel*) getSubInstance("Deserializer");
252 propagatePortTransitionInfo(deserializer, "In", "In");
253 propagatePortTransitionInfo(deserializer, "InCK", "LinkCK");
254 deserializer->use();
255
256 // Set output transition info
257 propagatePortTransitionInfo("Out", deserializer, "Out");
258 }
259 else
260 {
261 ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
262 }
263
264 return;
265 }
266
267 double OpticalLinkBackendRx::getRingTuningPower()
268 {
269 // Get properties
270 const String& tuning_method = getParameter("RingTuningMethod");;
271 unsigned int number_rings = getGenProperties()->get("InBits");
272
273 // Get tech model parameters
274 double R = getTechModel()->get("Ring->Radius");
275 double n_g = getTechModel()->get("Ring->GroupIndex");
276 double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency");
277 // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
278 double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency");
279 double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
280 double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma");
281 double T_max = getTechModel()->get("Ring->TemperatureMax");
282 double T_min = getTechModel()->get("Ring->TemperatureMin");
283 double T = getTechModel()->get("Temperature");
284
285 // Get constants
286 double c = Constants::c;
287 double pi = Constants::pi;
288
289 double tuning_power = 0.0;
290
291 if (tuning_method == "ThermalWithBitReshuffle")
292 {
293 // When an electrical backend is present, rings only have to tune to the nearest channel
294 // This can be approximated as each ring tuning to something exactly 1 channel away
295
296 // Setup calculations
297 double L = 2 * pi * R; // Optical length
298 double FSR = c / (n_g * L); // Free spectral range
299 double freq_sep = FSR / number_rings; // Channel separation
300
301 // Calculate tuning power
302 tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency);
303 }
304 else if (tuning_method == "ElectricalAssistWithBitReshuffle")
305 {
306 // Electrical assistance allows for a fraction of the tuning range to be
307 // covered electrically. This is most pronounced when the tuning range is small,
308 // such is the case when bit reshuffling is applied
309
310 // Get electrically tunable range
311 double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq");
312
313 // Setup calculations
314 double L = 2 * pi * R; // Optical length
315 double FSR = c / (n_g * L); // Free spectral range
316 double freq_sep = FSR / number_rings; // Channel separation
317 double heating_range = std::max(0.0, freq_sep - max_assist); // The distance needed to bridge using heaters
318
319 // Calculate tuning power, which is really only the power spent on heating since
320 // distance tuned electrically is pretty much free
321 tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency);
322 }
323 else if (tuning_method == "FullThermal")
324 {
325 // If there is no bit reshuffling backend, each ring must tune to an
326 // absolute channel frequency. Since we can only heat rings (and not cool),
327 // we can only red-shift (decrease frequency). Thus, a fabrication bias
328 // must be applied such that under any process and temperature corner, the
329 // ring resonance remains above channel resonance
330 // I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against
331 // the full temperature range
332 double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) +
333 (T_max - T_min) * tuning_efficiency;
334
335 // The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as
336 double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency;
337
338 // Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies)
339 tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency);
340 }
341 else if (tuning_method == "AthermalWithTrim")
342 {
343 // Athermal!
344 tuning_power = 0;
345 }
346 else
347 {
348 ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
349 }
350
351 return tuning_power;
352 }
353
354 unsigned int OpticalLinkBackendRx::getBitReorderDegree()
355 {
356 // Get properties
357 unsigned int number_rings = getGenProperties()->get("InBits");
358
359 // Get tech model parameters
360 double R = getTechModel()->get("Ring->Radius");
361 double n_g = getTechModel()->get("Ring->GroupIndex");
362 // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
363 double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
364
365 // Get constants
366 double c = Constants::c;
367 double pi = Constants::pi;
368
369 // Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend
370 // Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local
371 // Can potentially throw each ring to a channel several channels away. This just calculates
372 // the degree of bit reorder muxing needed to realign bits in the correct order
373
374 // Setup calculations
375 double L = 2 * pi * R; // Optical length
376 double FSR = c / (n_g * L); // Free spectral range
377 double freq_sep = FSR / number_rings; // Channel separation
378 // Using 4 sigmas as the worst re-ordering case (must double to get both sides)
379 unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep);
380
381 return worst_case_channels;
382 }
383
384 } // namespace DSENT
385