sim, kvm: make KvmVM a System parameter
[gem5.git] / ext / dsent / model / std_cells / AND2.cc
1 /* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22 #include "model/std_cells/AND2.h"
23
24 #include <cmath>
25
26 #include "model/PortInfo.h"
27 #include "model/TransitionInfo.h"
28 #include "model/EventInfo.h"
29 #include "model/std_cells/StdCellLib.h"
30 #include "model/std_cells/CellMacros.h"
31 #include "model/timing_graph/ElectricalNet.h"
32 #include "model/timing_graph/ElectricalDriver.h"
33 #include "model/timing_graph/ElectricalLoad.h"
34 #include "model/timing_graph/ElectricalDelay.h"
35
36 namespace DSENT
37 {
38 using std::max;
39
40 AND2::AND2(const String& instance_name_, const TechModel* tech_model_)
41 : StdCell(instance_name_, tech_model_)
42 {
43 initProperties();
44 }
45
46 AND2::~AND2()
47 {}
48
49 void AND2::initProperties()
50 {
51 return;
52 }
53
54 void AND2::constructModel()
55 {
56 // All constructModel should do is create Area/NDDPower/Energy Results as
57 // well as instantiate any sub-instances using only the hard parameters
58
59 createInputPort("A");
60 createInputPort("B");
61 createOutputPort("Y");
62
63 createLoad("A_Cap");
64 createLoad("B_Cap");
65 createDelay("A_to_Y_delay");
66 createDelay("B_to_Y_delay");
67 createDriver("Y_Ron", true);
68
69 ElectricalLoad* a_cap = getLoad("A_Cap");
70 ElectricalLoad* b_cap = getLoad("B_Cap");
71 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
72 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
73 ElectricalDriver* y_ron = getDriver("Y_Ron");
74
75 getNet("A")->addDownstreamNode(a_cap);
76 getNet("B")->addDownstreamNode(b_cap);
77 a_cap->addDownstreamNode(a_to_y_delay);
78 b_cap->addDownstreamNode(b_to_y_delay);
79 a_to_y_delay->addDownstreamNode(y_ron);
80 b_to_y_delay->addDownstreamNode(y_ron);
81 y_ron->addDownstreamNode(getNet("Y"));
82
83 // Create Area result
84 // Create NDD Power result
85 createElectricalAtomicResults();
86 getEventInfo("Idle")->setStaticTransitionInfos();
87 // Create AND Event Energy Result
88 createElectricalEventAtomicResult("AND2");
89
90 return;
91 }
92
93 void AND2::updateModel()
94 {
95 // All updateModel should do is calculate numbers for the Area/NDDPower/Energy
96 // Results as anything else that needs to be done using either soft or hard parameters
97
98 // Get parameters
99 double drive_strength = getDrivingStrength();
100 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
101
102 // Standard cell cache string
103 String cell_name = "AND2_X" + (String) drive_strength;
104
105 // Get timing parameters
106 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
107 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
108 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
109 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
110 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
111
112 // Set the cell area
113 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
114 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
115
116 return;
117 }
118
119 void AND2::evaluateModel()
120 {
121 return;
122 }
123
124 void AND2::useModel()
125 {
126 // Get parameters
127 double drive_strength = getDrivingStrength();
128 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
129
130 // Standard cell cache string
131 String cell_name = "AND2_X" + (String) drive_strength;
132
133 // Propagate the transition info and get the 0->1 transtion count
134 propagateTransitionInfo();
135 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
136 double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
137 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
138
139 // Calculate leakage
140 double leakage = 0;
141 leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
142 leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
143 leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
144 leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
145 getNddPowerResult("Leakage")->setValue(leakage);
146
147 // Get VDD
148 double vdd = getTechModel()->get("Vdd");
149
150 // Get capacitances
151 double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
152 double y_cap = cache->get(cell_name + "->Cap->Y");
153 double y_load_cap = getNet("Y")->getTotalDownstreamCap();
154
155 // Calculate AND2Event energy
156 double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
157 getEventResult("AND2")->setValue(energy_per_trans_01 * Y_num_trans_01);
158
159 return;
160 }
161
162 void AND2::propagateTransitionInfo()
163 {
164 // Get input signal transition info
165 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
166 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
167
168 double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
169 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
170 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
171
172 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
173 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
174 double A_prob_10 = A_prob_01;
175 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
176 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
177 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
178 double B_prob_10 = B_prob_01;
179 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
180
181 // Set output transition info
182 double Y_prob_00 = A_prob_00 +
183 A_prob_01 * (B_prob_00 + B_prob_10) +
184 A_prob_10 * (B_prob_00 + B_prob_01) +
185 A_prob_11 * B_prob_00;
186 double Y_prob_01 = A_prob_01 * (B_prob_01 + B_prob_11) +
187 A_prob_11 * B_prob_01;
188 double Y_prob_11 = A_prob_11 * B_prob_11;
189
190 // Check that probabilities add up to 1.0 with some finite tolerance
191 ASSERT(LibUtil::Math::isEqual(Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11, 1.0), "[Error] " + getInstanceName() +
192 "Output transition probabilities must add up to 1 (" + (String) Y_prob_00 + ", " +
193 (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
194
195 // Turn probability of transitions per cycle into number of transitions per time unit
196 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
197 getOutputPort("Y")->setTransitionInfo(trans_Y);
198 return;
199 }
200
201 void AND2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
202 {
203 // Standard cell cache string
204 String cell_name = "AND2_X" + (String) drive_strength_;
205
206 Log::printLine("=== " + cell_name + " ===");
207
208 // Get parameters
209 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
210 Map<double>* cache = cell_lib_->getStdCellCache();
211
212 // Now actually build the full standard cell model
213 // Create the two input ports
214 createInputPort("A");
215 createInputPort("B");
216 createOutputPort("Y");
217
218 createNet("Y_b");
219
220 // Adds macros
221 CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "Y_b");
222 CellMacros::addInverter(this, "INV", false, true, "Y_b", "Y");
223 CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.5);
224 CellMacros::updateInverter(this, "INV", drive_strength_ * 1.0);
225
226 // Cache area result
227 double area = 0.0;
228 area += gate_pitch * getTotalHeight() * 1;
229 area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble();
230 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV_GatePitches").toDouble();
231 cache->set(cell_name + "->ActiveArea", area);
232 Log::printLine(cell_name + "->ActiveArea=" + (String) area);
233
234 // --------------------------------------------------------------------
235 // Leakage Model Calculation
236 // --------------------------------------------------------------------
237 double leakage_00 = getGenProperties()->get("NAND2_LeakagePower_00").toDouble() +
238 getGenProperties()->get("INV_LeakagePower_0").toDouble();
239 double leakage_01 = getGenProperties()->get("NAND2_LeakagePower_01").toDouble() +
240 getGenProperties()->get("INV_LeakagePower_0").toDouble();
241 double leakage_10 = getGenProperties()->get("NAND2_LeakagePower_10").toDouble() +
242 getGenProperties()->get("INV_LeakagePower_0").toDouble();
243 double leakage_11 = getGenProperties()->get("NAND2_LeakagePower_11").toDouble() +
244 getGenProperties()->get("INV_LeakagePower_1").toDouble();
245 cache->set(cell_name + "->Leakage->!A!B", leakage_00);
246 cache->set(cell_name + "->Leakage->!AB", leakage_01);
247 cache->set(cell_name + "->Leakage->A!B", leakage_10);
248 cache->set(cell_name + "->Leakage->AB", leakage_11);
249 Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
250 Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
251 Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
252 Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
253 // --------------------------------------------------------------------
254
255 // --------------------------------------------------------------------
256 // Get Node Capacitances
257 // --------------------------------------------------------------------
258 double a_cap = getNet("A")->getTotalDownstreamCap();
259 double b_cap = getNet("B")->getTotalDownstreamCap();
260 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
261 double y_cap = getNet("Y")->getTotalDownstreamCap();
262
263 cache->set(cell_name + "->Cap->A", a_cap);
264 cache->set(cell_name + "->Cap->B", b_cap);
265 cache->set(cell_name + "->Cap->Y_b", y_b_cap);
266 cache->set(cell_name + "->Cap->Y", y_cap);
267 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
268 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
269 Log::printLine(cell_name + "->Cap->Y=" + (String) y_b_cap);
270 Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
271 // --------------------------------------------------------------------
272
273 // --------------------------------------------------------------------
274 // Build Internal Delay Model
275 // --------------------------------------------------------------------
276 double y_ron = getDriver("INV_RonZN")->getOutputRes();
277 double a_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() +
278 getDriver("INV_RonZN")->calculateDelay();
279 double b_to_y_delay = getDriver("NAND2_RonZN")->calculateDelay() +
280 getDriver("INV_RonZN")->calculateDelay();
281
282 cache->set(cell_name + "->DriveRes->Y", y_ron);
283 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
284 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
285 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
286 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
287 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
288 // --------------------------------------------------------------------
289
290 return;
291
292 }
293 } // namespace DSENT