sim, kvm: make KvmVM a System parameter
[gem5.git] / ext / dsent / model / std_cells / BUF.cc
1 /* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22 #include "model/std_cells/BUF.h"
23
24 #include <cmath>
25
26 #include "model/PortInfo.h"
27 #include "model/TransitionInfo.h"
28 #include "model/EventInfo.h"
29 #include "model/std_cells/StdCellLib.h"
30 #include "model/std_cells/CellMacros.h"
31 #include "model/timing_graph/ElectricalNet.h"
32 #include "model/timing_graph/ElectricalDriver.h"
33 #include "model/timing_graph/ElectricalLoad.h"
34 #include "model/timing_graph/ElectricalDelay.h"
35
36 namespace DSENT
37 {
38 using std::max;
39
40 BUF::BUF(const String& instance_name_, const TechModel* tech_model_)
41 : StdCell(instance_name_, tech_model_)
42 {
43 initProperties();
44 }
45
46 BUF::~BUF()
47 {}
48
49 void BUF::initProperties()
50 {
51 return;
52 }
53
54 void BUF::constructModel()
55 {
56 createInputPort("A");
57 createOutputPort("Y");
58
59 createLoad("A_Cap");
60 createDelay("A_to_Y_delay");
61 createDriver("Y_Ron", true);
62
63 ElectricalLoad* a_cap = getLoad("A_Cap");
64 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
65 ElectricalDriver* y_ron = getDriver("Y_Ron");
66
67 getNet("A")->addDownstreamNode(a_cap);
68 a_cap->addDownstreamNode(a_to_y_delay);
69 a_to_y_delay->addDownstreamNode(y_ron);
70 y_ron->addDownstreamNode(getNet("Y"));
71
72 // Create Area result
73 // Create NDD Power result
74 createElectricalAtomicResults();
75 // Create OR Event Energy Result
76 createElectricalEventAtomicResult("BUF");
77
78 getEventInfo("Idle")->setStaticTransitionInfos();
79
80 return;
81 }
82
83 void BUF::updateModel()
84 {
85 // Get parameters
86 double drive_strength = getDrivingStrength();
87 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
88
89 // Standard cell cache string
90 const String& cell_name = "BUF_X" + (String) drive_strength;
91
92 // Get timing parameters
93 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
94 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
95 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
96
97 // Set the cell area
98 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
99 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
100
101 return;
102 }
103
104 void BUF::evaluateModel()
105 {
106 return;
107 }
108
109 void BUF::useModel()
110 {
111 // Get parameters
112 double drive_strength = getDrivingStrength();
113 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
114
115 // Stadard cell cache string
116 const String& cell_name = "BUF_X" + (String) drive_strength;
117
118 // Propagate the transition info and get the 0->1 transtion count
119 propagateTransitionInfo();
120 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
121 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
122
123 // Calculate leakage
124 double leakage = 0;
125 leakage += cache->get(cell_name + "->Leakage->!A") * (1 - P_A);
126 leakage += cache->get(cell_name + "->Leakage->A") * P_A;
127 getNddPowerResult("Leakage")->setValue(leakage);
128
129 // Get VDD
130 double vdd = getTechModel()->get("Vdd");
131
132 // Get capacitances
133 double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
134 double y_cap = cache->get(cell_name + "->Cap->Y");
135 double y_load_cap = getNet("Y")->getTotalDownstreamCap();
136
137 // Calculate BUFEvent energy
138 double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
139 getEventResult("BUF")->setValue(energy_per_trans_01 * Y_num_trans_01);
140
141 return;
142 }
143
144 void BUF::propagateTransitionInfo()
145 {
146 // Get input signal transition info
147 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
148
149 getOutputPort("Y")->setTransitionInfo(trans_A);
150 return;
151 }
152
153 // Creates the standard cell, characterizes and abstracts away the details
154 void BUF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
155 {
156 // Get parameters
157 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
158 Map<double>* cache = cell_lib_->getStdCellCache();
159
160 // Stadard cell cache string
161 const String& cell_name = "BUF_X" + (String) drive_strength_;
162
163 Log::printLine("=== " + cell_name + " ===");
164
165 // Now actually build the full standard cell model
166 createInputPort("A");
167 createOutputPort("Y");
168
169 createNet("Y_b");
170
171 // Adds macros
172 CellMacros::addInverter(this, "INV0", false, true, "A", "Y_b");
173 CellMacros::addInverter(this, "INV1", false, true, "Y_b", "Y");
174
175 // Update macros
176 CellMacros::updateInverter(this, "INV0", drive_strength_ * 0.367);
177 CellMacros::updateInverter(this, "INV1", drive_strength_ * 1.0);
178
179 // Cache area result
180 double area = 0.0;
181 area += gate_pitch * getTotalHeight() * 1;
182 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV0_GatePitches").toDouble();
183 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
184 cache->set(cell_name + "->ActiveArea", area);
185 Log::printLine(cell_name + "->ActiveArea=" + (String)area);
186
187 // --------------------------------------------------------------------
188 // Leakage Model Calculation
189 // --------------------------------------------------------------------
190 // Cache leakage power results (for every single signal combination)
191 double leakage_0 = 0.0; // !A
192 double leakage_1 = 0.0; // A
193
194 leakage_0 += getGenProperties()->get("INV0_LeakagePower_0").toDouble();
195 leakage_0 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
196
197 leakage_1 += getGenProperties()->get("INV0_LeakagePower_1").toDouble();
198 leakage_1 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
199
200 cache->set(cell_name + "->Leakage->!A", leakage_0);
201 cache->set(cell_name + "->Leakage->A", leakage_1);
202 Log::printLine(cell_name + "->Leakage->!A=" + (String) leakage_0);
203 Log::printLine(cell_name + "->Leakage->A=" + (String) leakage_1);
204 // --------------------------------------------------------------------
205
206 // --------------------------------------------------------------------
207 // Get Node Capacitances
208 // --------------------------------------------------------------------
209 double a_cap = getNet("A")->getTotalDownstreamCap();
210 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
211 double y_cap = getNet("Y")->getTotalDownstreamCap();
212
213 cache->set(cell_name + "->Cap->A", a_cap);
214 cache->set(cell_name + "->Cap->Y_b", y_b_cap);
215 cache->set(cell_name + "->Cap->Y", y_cap);
216 Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
217 Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
218 Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
219 // --------------------------------------------------------------------
220
221 // --------------------------------------------------------------------
222 // Build Internal Delay Model
223 // --------------------------------------------------------------------
224 double y_ron = getDriver("INV1_RonZN")->getOutputRes();
225 double a_to_y_delay = getDriver("INV0_RonZN")->calculateDelay() +
226 getDriver("INV1_RonZN")->calculateDelay();
227
228 cache->set(cell_name + "->DriveRes->Y", y_ron);
229 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
230 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
231 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
232 // --------------------------------------------------------------------
233
234 return;
235 }
236 } // namespace DSENT
237