sim, kvm: make KvmVM a System parameter
[gem5.git] / ext / dsent / model / std_cells / LATQ.cc
1 /* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22 #include "model/std_cells/LATQ.h"
23
24 #include <cmath>
25
26 #include "model/PortInfo.h"
27 #include "model/TransitionInfo.h"
28 #include "model/EventInfo.h"
29 #include "model/std_cells/StdCellLib.h"
30 #include "model/std_cells/CellMacros.h"
31 #include "model/timing_graph/ElectricalNet.h"
32 #include "model/timing_graph/ElectricalDriver.h"
33 #include "model/timing_graph/ElectricalLoad.h"
34 #include "model/timing_graph/ElectricalDelay.h"
35
36 namespace DSENT
37 {
38 using std::ceil;
39 using std::max;
40 using std::min;
41
42 LATQ::LATQ(const String& instance_name_, const TechModel* tech_model_)
43 : StdCell(instance_name_, tech_model_)
44 {
45 initProperties();
46 }
47
48 LATQ::~LATQ()
49 {}
50
51 void LATQ::initProperties()
52 {
53 return;
54 }
55
56 void LATQ::constructModel()
57 {
58 // All constructModel should do is create Area/NDDPower/Energy Results as
59 // well as instantiate any sub-instances using only the hard parameters
60
61 createInputPort("D");
62 createInputPort("G");
63 createOutputPort("Q");
64
65 createLoad("D_Cap");
66 createLoad("G_Cap");
67 createDelay("D_to_Q_delay");
68 createDelay("G_to_Q_delay");
69 createDriver("Q_Ron", true);
70
71 ElectricalLoad* d_cap = getLoad("D_Cap");
72 ElectricalLoad* g_cap = getLoad("G_Cap");
73 ElectricalDelay* d_to_q_delay = getDelay("D_to_Q_delay");
74 ElectricalDelay* g_to_q_delay = getDelay("G_to_Q_delay");
75 ElectricalDriver* q_ron = getDriver("Q_Ron");
76
77 getNet("D")->addDownstreamNode(d_cap);
78 getNet("G")->addDownstreamNode(g_cap);
79 d_cap->addDownstreamNode(d_to_q_delay);
80 g_cap->addDownstreamNode(g_to_q_delay);
81 g_to_q_delay->addDownstreamNode(q_ron);
82 q_ron->addDownstreamNode(getNet("Q"));
83
84 // Create Area result
85 // Create NDD Power result
86 createElectricalAtomicResults();
87 // Create G Event Energy Result
88 createElectricalEventAtomicResult("G");
89 // Create DFF Event Energy Result
90 createElectricalEventAtomicResult("LATD");
91 createElectricalEventAtomicResult("LATQ");
92 // Create Idle event for leakage
93 // G pin is assumed to be on all the time
94 //createElectricalEventAtomicResult("Idle");
95 getEventInfo("Idle")->setStaticTransitionInfos();
96 return;
97 }
98
99 void LATQ::updateModel()
100 {
101 // Get parameters
102 double drive_strength = getDrivingStrength();
103 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
104
105 // Standard cell cache string
106 String cell_name = "LATQ_X" + (String) drive_strength;
107
108 // Get timing parameters
109 getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D"));
110 getLoad("G_Cap")->setLoadCap(cache->get(cell_name + "->Cap->G"));
111 getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q"));
112 getDelay("G_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->G_to_Q"));
113 getDelay("D_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->D_to_Q"));
114
115 // Set the cell area
116 getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
117 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
118
119 return;
120 }
121
122 void LATQ::evaluateModel()
123 {
124 return;
125 }
126
127 void LATQ::useModel()
128 {
129 // Get parameters
130 double drive_strength = getDrivingStrength();
131 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
132
133 // Standard cell cache string
134 String cell_name = "LATQ_X" + (String) drive_strength;
135
136 // Propagate the transition info and get P_D, P_M, and P_Q
137 propagateTransitionInfo();
138 double P_D = getInputPort("D")->getTransitionInfo().getProbability1();
139 double P_G = getInputPort("G")->getTransitionInfo().getProbability1();
140 double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1();
141 double G_num_trans_01 = getInputPort("G")->getTransitionInfo().getNumberTransitions01();
142 double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01();
143 double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01();
144
145 // Calculate leakage
146 double leakage = 0;
147 leakage += cache->get(cell_name + "->Leakage->!D!G!Q") * (1 - P_D) * (1 - P_G) * (1 - P_Q);
148 leakage += cache->get(cell_name + "->Leakage->!D!GQ") * (1 - P_D) * (1 - P_G) * P_Q;
149 leakage += cache->get(cell_name + "->Leakage->!DG!Q") * (1 - P_D) * P_G * (1 - P_Q);
150 leakage += cache->get(cell_name + "->Leakage->D!G!Q") * P_D * (1 - P_G) * (1 - P_Q);
151 leakage += cache->get(cell_name + "->Leakage->D!GQ") * P_D * (1 - P_G) * P_Q;
152 leakage += cache->get(cell_name + "->Leakage->DGQ") * P_D * P_G * P_Q;
153 getNddPowerResult("Leakage")->setValue(leakage);
154
155 // Get VDD
156 double vdd = getTechModel()->get("Vdd");
157
158 // Get capacitances
159 double g_b_cap = cache->get(cell_name + "->Cap->G_b");
160 double d_b_cap = cache->get(cell_name + "->Cap->D_b");
161 double q_i_cap = cache->get(cell_name + "->Cap->Q_i");
162 double q_b_cap = cache->get(cell_name + "->Cap->Q_b");
163 double q_cap = cache->get(cell_name + "->Cap->Q");
164 double q_load_cap = getNet("Q")->getTotalDownstreamCap();
165
166 // Calculate G Event energy
167 double g_event_energy = 0.0;
168 g_event_energy += (g_b_cap) * G_num_trans_01;
169 g_event_energy *= vdd * vdd;
170 getEventResult("G")->setValue(g_event_energy);
171 // Calculate LATD Event energy
172 double latd_event_energy = 0.0;
173 latd_event_energy += (d_b_cap) * D_num_trans_01;
174 latd_event_energy *= vdd * vdd;
175 getEventResult("LATD")->setValue(latd_event_energy);
176 // Calculate LATQ Event energy
177 double latq_event_energy = 0.0;
178 latq_event_energy += (q_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01;
179 latq_event_energy *= vdd * vdd;
180 getEventResult("LATQ")->setValue(latq_event_energy);
181
182 return;
183 }
184
185 void LATQ::propagateTransitionInfo()
186 {
187 const TransitionInfo& trans_G = getInputPort("G")->getTransitionInfo();
188 const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo();
189
190 double G_num_trans_01 = trans_G.getNumberTransitions01();
191 double G_num_trans_10 = G_num_trans_01;
192 double G_num_trans_00 = trans_G.getNumberTransitions00();
193 double D_freq_mult = trans_D.getFrequencyMultiplier();
194
195 // If the latch is sampling just as fast or faster than input data signal
196 // Then it can capture all transitions (though it should be normalized to clock)
197 if((G_num_trans_10 + G_num_trans_00) >= D_freq_mult)
198 {
199 const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(G_num_trans_10 + G_num_trans_00);
200 getOutputPort("Q")->setTransitionInfo(trans_Q);
201 }
202 // If the latch is sampling slower than the input data signal, then input
203 // will look like they transition more
204 else
205 {
206 // Calculate scale ratio
207 double scale_ratio = (G_num_trans_10 + G_num_trans_00) / D_freq_mult;
208 // 00 and 11 transitions become fewer
209 double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11());
210 double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio;
211 double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio;
212 // 01 and 10 transitions become more frequent
213 double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff;
214
215 // Create final transition info, remembering to apply scaling ratio to normalize to G
216 const TransitionInfo trans_Q( D_scaled_num_trans_00 * scale_ratio,
217 D_scaled_num_trans_10 * scale_ratio,
218 D_scaled_num_trans_11 * scale_ratio);
219 getOutputPort("Q")->setTransitionInfo(trans_Q);
220 }
221
222 return;
223 }
224
225 // Creates the standard cell, characterizes and abstracts away the details
226 void LATQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
227 {
228 // Get parameters
229 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
230 Map<double>* cache = cell_lib_->getStdCellCache();
231
232 // Standard cell cache string
233 String cell_name = "LATQ_X" + (String) drive_strength_;
234
235 Log::printLine("=== " + cell_name + " ===");
236
237
238 // Now actually build the full standard cell model
239 createInputPort("D");
240 createInputPort("G");
241 createOutputPort("Q");
242
243 createNet("D_b");
244 createNet("Q_i");
245 createNet("Q_b");
246 createNet("G_b");
247
248 // Adds macros
249 CellMacros::addInverter(this, "INV1", false, true, "D", "D_b");
250 CellMacros::addInverter(this, "INV2", false, true, "Q_i", "Q_b");
251 CellMacros::addInverter(this, "INV3", false, true, "Q_b", "Q");
252 CellMacros::addInverter(this, "INV4", false, true, "G", "G_b");
253 CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "G", "G_b", "Q_i"); //trace timing through A->ZN path only
254 CellMacros::addTristate(this, "INVZ2", false, false, false, false, "Q_b", "G_b", "G", "Q_i"); //don't trace timing through the feedback path
255
256 // Update macros
257 CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125);
258 CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5);
259 CellMacros::updateInverter(this, "INV3", drive_strength_ * 1.0);
260 CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.125);
261 CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5);
262 CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625);
263
264 // Cache area result
265 double area = 0.0;
266 area += gate_pitch * getTotalHeight() * 1;
267 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
268 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
269 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
270 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
271 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
272 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
273 cache->set(cell_name + "->Area->Active", area);
274 cache->set(cell_name + "->Area->Metal1Wire", area); //Cover-block m1 area
275 Log::printLine(cell_name + "->Area->Active=" + (String) area);
276 Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
277
278 // --------------------------------------------------------------------
279 // Leakage Model Calculation
280 // --------------------------------------------------------------------
281 // Cache leakage power results (for every single signal combination)
282 double leakage_000 = 0; //!D, !G, !Q
283 double leakage_001 = 0; //!D, !G, Q
284 double leakage_010 = 0; //!D, G, !Q
285 double leakage_100 = 0; //D, !G, !Q
286 double leakage_101 = 0; //D, !G, Q
287 double leakage_111 = 0; //D, G, Q
288
289 //This is so painful...
290 leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
291 leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
292 leakage_000 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
293 leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
294 leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
295 leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
296
297 leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
298 leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
299 leakage_001 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
300 leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
301 leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
302 leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
303
304 leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
305 leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
306 leakage_010 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
307 leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
308 leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
309 leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
310
311 leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
312 leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
313 leakage_100 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
314 leakage_100 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
315 leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
316 leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
317
318 leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
319 leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
320 leakage_101 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
321 leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
322 leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
323 leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
324
325 leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
326 leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
327 leakage_111 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
328 leakage_111 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
329 leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
330 leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
331
332 cache->set(cell_name + "->Leakage->!D!G!Q", leakage_000);
333 cache->set(cell_name + "->Leakage->!D!GQ", leakage_001);
334 cache->set(cell_name + "->Leakage->!DG!Q", leakage_010);
335 cache->set(cell_name + "->Leakage->D!G!Q", leakage_100);
336 cache->set(cell_name + "->Leakage->D!GQ", leakage_101);
337 cache->set(cell_name + "->Leakage->DGQ", leakage_111);
338 Log::printLine(cell_name + "->Leakage->!D!G!Q=" + (String) leakage_000);
339 Log::printLine(cell_name + "->Leakage->!D!GQ=" + (String) leakage_001);
340 Log::printLine(cell_name + "->Leakage->!DG!Q=" + (String) leakage_010);
341 Log::printLine(cell_name + "->Leakage->D!G!Q=" + (String) leakage_100);
342 Log::printLine(cell_name + "->Leakage->D!GQ=" + (String) leakage_101);
343 Log::printLine(cell_name + "->Leakage->DGQ=" + (String) leakage_111);
344 // --------------------------------------------------------------------
345
346 // --------------------------------------------------------------------
347 // Get Node Capacitances
348 // --------------------------------------------------------------------
349 double d_cap = getNet("D")->getTotalDownstreamCap();
350 double d_b_cap = getNet("D_b")->getTotalDownstreamCap();
351 double q_i_cap = getNet("Q_i")->getTotalDownstreamCap();
352 double q_b_cap = getNet("Q_b")->getTotalDownstreamCap();
353 double q_cap = getNet("Q")->getTotalDownstreamCap();
354 double g_cap = getNet("G")->getTotalDownstreamCap();
355 double g_b_cap = getNet("G_b")->getTotalDownstreamCap();
356
357 cache->set(cell_name + "->Cap->D", d_cap);
358 cache->set(cell_name + "->Cap->D_b", d_b_cap);
359 cache->set(cell_name + "->Cap->Q_i", q_i_cap);
360 cache->set(cell_name + "->Cap->Q_b", q_b_cap);
361 cache->set(cell_name + "->Cap->Q", q_cap);
362 cache->set(cell_name + "->Cap->G", g_cap);
363 cache->set(cell_name + "->Cap->G_b", g_b_cap);
364
365 Log::printLine(cell_name + "->Cap->D=" + (String) d_cap);
366 Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap);
367 Log::printLine(cell_name + "->Cap->Q_i=" + (String) q_i_cap);
368 Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap);
369 Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap);
370 Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);
371 Log::printLine(cell_name + "->Cap->G_b=" + (String) g_b_cap);
372 // --------------------------------------------------------------------
373
374 // --------------------------------------------------------------------
375 // Build Internal Delay Model
376 // --------------------------------------------------------------------
377 double q_ron = getDriver("INV3_RonZN")->getOutputRes();
378
379 double d_to_q_delay = getDriver("INV1_RonZN")->calculateDelay() +
380 getDriver("INVZ1_RonZN")->calculateDelay() +
381 getDriver("INV2_RonZN")->calculateDelay() +
382 getDriver("INV3_RonZN")->calculateDelay();
383 double g_to_q_delay = getDriver("INV4_RonZN")->calculateDelay() +
384 getDriver("INVZ1_RonZN")->calculateDelay() +
385 getDriver("INV2_RonZN")->calculateDelay() +
386 getDriver("INV3_RonZN")->calculateDelay();
387
388 cache->set(cell_name + "->DriveRes->Q", q_ron);
389 cache->set(cell_name + "->Delay->D_to_Q", d_to_q_delay);
390 cache->set(cell_name + "->Delay->G_to_Q", g_to_q_delay);
391 Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron);
392 Log::printLine(cell_name + "->Delay->D_to_Q=" + (String) d_to_q_delay);
393 Log::printLine(cell_name + "->Delay->G_to_Q=" + (String) g_to_q_delay);
394
395 return;
396 // --------------------------------------------------------------------
397
398 }
399
400 } // namespace DSENT
401