sim, kvm: make KvmVM a System parameter
[gem5.git] / ext / dsent / model / std_cells / MUX2.cc
1 /* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22 #include "model/std_cells/MUX2.h"
23
24 #include <cmath>
25
26 #include "model/PortInfo.h"
27 #include "model/TransitionInfo.h"
28 #include "model/EventInfo.h"
29 #include "model/std_cells/StdCellLib.h"
30 #include "model/std_cells/CellMacros.h"
31 #include "model/timing_graph/ElectricalNet.h"
32 #include "model/timing_graph/ElectricalDriver.h"
33 #include "model/timing_graph/ElectricalLoad.h"
34 #include "model/timing_graph/ElectricalDelay.h"
35
36 namespace DSENT
37 {
38 using std::ceil;
39 using std::max;
40
41 MUX2::MUX2(const String& instance_name_, const TechModel* tech_model_)
42 : StdCell(instance_name_, tech_model_)
43 {
44 initProperties();
45 }
46
47 MUX2::~MUX2()
48 {}
49
50 void MUX2::initProperties()
51 {
52 return;
53 }
54
55 void MUX2::constructModel()
56 {
57 // All constructModel should do is create Area/NDDPower/Energy Results as
58 // well as instantiate any sub-instances using only the hard parameters
59
60 createInputPort("A");
61 createInputPort("B");
62 createInputPort("S0");
63 createOutputPort("Y");
64
65 createLoad("A_Cap");
66 createLoad("B_Cap");
67 createLoad("S0_Cap");
68 createDelay("A_to_Y_delay");
69 createDelay("B_to_Y_delay");
70 createDelay("S0_to_Y_delay");
71 createDriver("Y_Ron", true);
72
73 ElectricalLoad* a_cap = getLoad("A_Cap");
74 ElectricalLoad* b_cap = getLoad("B_Cap");
75 ElectricalLoad* s0_cap = getLoad("S0_Cap");
76 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
77 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
78 ElectricalDelay* s0_to_y_delay = getDelay("S0_to_Y_delay");
79 ElectricalDriver* y_ron = getDriver("Y_Ron");
80
81 getNet("A")->addDownstreamNode(a_cap);
82 getNet("B")->addDownstreamNode(b_cap);
83 getNet("S0")->addDownstreamNode(s0_cap);
84 a_cap->addDownstreamNode(a_to_y_delay);
85 b_cap->addDownstreamNode(b_to_y_delay);
86 s0_cap->addDownstreamNode(s0_to_y_delay);
87 a_to_y_delay->addDownstreamNode(y_ron);
88 b_to_y_delay->addDownstreamNode(y_ron);
89 s0_to_y_delay->addDownstreamNode(y_ron);
90 y_ron->addDownstreamNode(getNet("Y"));
91
92 // Create Area result
93 createElectricalAtomicResults();
94 getEventInfo("Idle")->setStaticTransitionInfos();
95 // Create MUX2 Event Energy Result
96 createElectricalEventAtomicResult("MUX2");
97
98
99 return;
100 }
101
102 void MUX2::updateModel()
103 {
104 // Get parameters
105 double drive_strength = getDrivingStrength();
106 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
107
108 // Standard cell cache string
109 String cell_name = "MUX2_X" + (String) drive_strength;
110
111 // Get timing parameters
112 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
113 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
114 getLoad("S0_Cap")->setLoadCap(cache->get(cell_name + "->Cap->S0"));
115
116 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
117 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
118 getDelay("S0_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->S0_to_Y"));
119
120 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
121
122 // Set the cell area
123 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
124 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
125
126 return;
127 }
128
129 void MUX2::evaluateModel()
130 {
131 return;
132 }
133
134 void MUX2::useModel()
135 {
136 // Get parameters
137 double drive_strength = getDrivingStrength();
138 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
139
140 // Standard cell cache string
141 String cell_name = "MUX2_X" + (String) drive_strength;
142
143 // Propagate the transition and get the 0->1 transition count
144 propagateTransitionInfo();
145 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
146 double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
147 double P_S0 = getInputPort("S0")->getTransitionInfo().getProbability1();
148 double S0_num_trans_01 = getInputPort("S0")->getTransitionInfo().getNumberTransitions01();
149 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
150
151 // Calculate leakage
152 double leakage = 0;
153 leakage += cache->get(cell_name + "->Leakage->!A!B!S0") * (1 - P_A) * (1 - P_B) * (1 - P_S0);
154 leakage += cache->get(cell_name + "->Leakage->!A!BS0") * (1 - P_A) * (1 - P_B) * P_S0;
155 leakage += cache->get(cell_name + "->Leakage->!AB!S0") * (1 - P_A) * P_B * (1 - P_S0);
156 leakage += cache->get(cell_name + "->Leakage->!ABS0") * (1 - P_A) * P_B * P_S0;
157 leakage += cache->get(cell_name + "->Leakage->A!B!S0") * P_A * (1 - P_B) * (1 - P_S0);
158 leakage += cache->get(cell_name + "->Leakage->A!BS0") * P_A * (1 - P_B) * P_S0;
159 leakage += cache->get(cell_name + "->Leakage->AB!S0") * P_A * P_B * (1 - P_S0);
160 leakage += cache->get(cell_name + "->Leakage->ABS0") * P_A * P_B * P_S0;
161 getNddPowerResult("Leakage")->setValue(leakage);
162
163 // Get VDD
164 double vdd = getTechModel()->get("Vdd");
165
166 // Get capacitances
167 double s0_b_cap = cache->get(cell_name + "->Cap->S0_b");
168 double y_bar_cap = cache->get(cell_name + "->Cap->Y_b");
169 double y_cap = cache->get(cell_name + "->Cap->Y");
170 double y_load_cap = getNet("Y")->getTotalDownstreamCap();
171 // Create mux2 event energy
172 double mux2_event_energy = 0.0;
173 mux2_event_energy += (s0_b_cap) * S0_num_trans_01;
174 mux2_event_energy += (y_bar_cap + y_cap + y_load_cap) * Y_num_trans_01;
175 mux2_event_energy *= vdd * vdd;
176 getEventResult("MUX2")->setValue(mux2_event_energy);
177
178 return;
179 }
180
181 void MUX2::propagateTransitionInfo()
182 {
183 // Get input signal transition info
184 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
185 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
186 const TransitionInfo& trans_S0 = getInputPort("S0")->getTransitionInfo();
187
188 // Scale all transition information to the highest freq multiplier
189 double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_S0.getFrequencyMultiplier());
190 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
191 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
192 const TransitionInfo& scaled_trans_S0 = trans_S0.scaleFrequencyMultiplier(max_freq_mult);
193
194 // Compute the probability of each transition on a given cycle
195 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
196 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
197 double A_prob_10 = A_prob_01;
198 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
199 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
200 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
201 double B_prob_10 = B_prob_01;
202 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
203 double S0_prob_00 = scaled_trans_S0.getNumberTransitions00() / max_freq_mult;
204 double S0_prob_01 = scaled_trans_S0.getNumberTransitions01() / max_freq_mult;
205 double S0_prob_10 = S0_prob_01;
206 double S0_prob_11 = scaled_trans_S0.getNumberTransitions11() / max_freq_mult;
207
208 // Compute output probabilities
209 double Y_prob_00 = S0_prob_00 * A_prob_00 +
210 S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_00 + B_prob_10) +
211 S0_prob_10 * (A_prob_00 + A_prob_10) * (B_prob_00 + B_prob_01) +
212 S0_prob_11 * B_prob_00;
213 double Y_prob_01 = S0_prob_00 * A_prob_01 +
214 S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_01 + B_prob_11) +
215 S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_00 + B_prob_01) +
216 S0_prob_11 * B_prob_01;
217 double Y_prob_11 = S0_prob_00 * A_prob_11 +
218 S0_prob_01 * (A_prob_10 + A_prob_11) * (B_prob_01 + B_prob_11) +
219 S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_10 + B_prob_11) +
220 S0_prob_11 * B_prob_11;
221
222 // Check that probabilities add up to 1.0 with some finite tolerance
223 ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
224 "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" +
225 (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
226
227 // Turn probability of transitions per cycle into number of transitions per time unit
228 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
229 getOutputPort("Y")->setTransitionInfo(trans_Y);
230
231 return;
232 }
233
234 // Creates the standard cell, characterizes and abstracts away the details
235 void MUX2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
236 {
237 // Get parameters
238 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
239 Map<double>* cache = cell_lib_->getStdCellCache();
240
241 // Standard cell cache string
242 String cell_name = "MUX2_X" + (String) drive_strength_;
243
244 Log::printLine("=== " + cell_name + " ===");
245
246 // Now actually build the full standard cell model
247 createInputPort("A");
248 createInputPort("B");
249 createInputPort("S0");
250 createOutputPort("Y");
251
252 createNet("S0_b");
253 createNet("Y_b");
254
255 // Adds macros
256 CellMacros::addInverter(this, "INV1", false, true, "S0", "S0_b");
257 CellMacros::addInverter(this, "INV2", false, true, "Y_b", "Y");
258 CellMacros::addTristate(this, "INVZ1", true, true, true, true, "A", "S0_b", "S0", "Y_b");
259 CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B", "S0", "S0_b", "Y_b");
260
261 // I have no idea how to size each of the parts haha
262 CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
263 CellMacros::updateInverter(this, "INV2", drive_strength_ * 1.000);
264 CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.500);
265 CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.500);
266
267 // Cache area result
268 double area = 0.0;
269 area += gate_pitch * getTotalHeight() * 1;
270 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
271 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
272 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
273 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
274 cache->set(cell_name + "->ActiveArea", area);
275 Log::printLine(cell_name + "->ActiveArea=" + (String) area);
276
277 // --------------------------------------------------------------------
278 // Cache Leakage Power (for every single signal combination)
279 // --------------------------------------------------------------------
280 double leakage_000 = 0; //!A, !B, !S0
281 double leakage_001 = 0; //!A, !B, S0
282 double leakage_010 = 0; //!A, B, !S0
283 double leakage_011 = 0; //!A, B, S0
284 double leakage_100 = 0; //A, !B, !S0
285 double leakage_101 = 0; //A, !B, S0
286 double leakage_110 = 0; //A, B, !S0
287 double leakage_111 = 0; //A, B, S0
288
289 //This is so painful...
290 leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
291 leakage_000 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
292 leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
293 leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
294
295 leakage_001 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
296 leakage_001 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
297 leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
298 leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
299
300 leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
301 leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
302 leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
303 leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
304
305 leakage_011 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
306 leakage_011 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
307 leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
308 leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
309
310 leakage_100 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
311 leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
312 leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
313 leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
314
315 leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
316 leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
317 leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
318 leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
319
320 leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
321 leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
322 leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
323 leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
324
325 leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
326 leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
327 leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
328 leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
329
330 cache->set(cell_name + "->Leakage->!A!B!S0", leakage_000);
331 cache->set(cell_name + "->Leakage->!A!BS0", leakage_001);
332 cache->set(cell_name + "->Leakage->!AB!S0", leakage_010);
333 cache->set(cell_name + "->Leakage->!ABS0", leakage_011);
334 cache->set(cell_name + "->Leakage->A!B!S0", leakage_100);
335 cache->set(cell_name + "->Leakage->A!BS0", leakage_101);
336 cache->set(cell_name + "->Leakage->AB!S0", leakage_110);
337 cache->set(cell_name + "->Leakage->ABS0", leakage_111);
338 Log::printLine(cell_name + "->Leakage->!A!B!S0=" + (String) leakage_000);
339 Log::printLine(cell_name + "->Leakage->!A!BS0=" + (String) leakage_001);
340 Log::printLine(cell_name + "->Leakage->!AB!S0=" + (String) leakage_010);
341 Log::printLine(cell_name + "->Leakage->!ABS0=" + (String) leakage_011);
342 Log::printLine(cell_name + "->Leakage->A!B!S0=" + (String) leakage_100);
343 Log::printLine(cell_name + "->Leakage->A!BS0=" + (String) leakage_101);
344 Log::printLine(cell_name + "->Leakage->AB!S0=" + (String) leakage_110);
345 Log::printLine(cell_name + "->Leakage->ABS0=" + (String) leakage_111);
346
347 // Cache event energy results
348 /*
349 double event_a_flip = 0.0;
350 event_a_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
351 cache->set(cell_name + "->Event_A_Flip", event_a_flip);
352 Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
353
354 double event_b_flip = 0.0;
355 event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
356 cache->set(cell_name + "->Event_B_Flip", event_b_flip);
357 Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
358
359 double event_s0_flip = 0.0;
360 event_s0_flip += getGenProperties()->get("INV1_A_Flip").toDouble();
361 event_s0_flip += getGenProperties()->get("INV1_ZN_Flip").toDouble();
362 event_s0_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
363 event_s0_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
364 cache->set(cell_name + "->Event_S0_Flip", event_s0_flip);
365 Log::printLine(cell_name + "->Event_S0_Flip=" + (String) event_s0_flip);
366
367 double event_y_flip = 0.0;
368 event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
369 event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
370 event_y_flip += getGenProperties()->get("INV2_A_Flip").toDouble();
371 event_y_flip += getGenProperties()->get("INV2_ZN_Flip").toDouble();
372 cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
373 Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
374
375 double a_cap = getLoad("INVZ1_CgA")->getLoadCap();
376 double b_cap = getLoad("INVZ2_CgA")->getLoadCap();
377 double s0_cap = getLoad("INV1_CgA")->getLoadCap() + getLoad("INVZ1_CgOEN")->getLoadCap() + getLoad("INVZ2_CgOE")->getLoadCap();
378 double y_ron = getDriver("INV2_RonZN")->getOutputRes();
379 */
380 // --------------------------------------------------------------------
381
382 // --------------------------------------------------------------------
383 // Get Node capacitances
384 // --------------------------------------------------------------------
385 double a_cap = getNet("A")->getTotalDownstreamCap();
386 double b_cap = getNet("B")->getTotalDownstreamCap();
387 double s0_cap = getNet("S0")->getTotalDownstreamCap();
388 double s0_b_cap = getNet("S0_b")->getTotalDownstreamCap();
389 double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
390 double y_cap = getNet("Y")->getTotalDownstreamCap();
391
392 cache->set(cell_name + "->Cap->A", a_cap);
393 cache->set(cell_name + "->Cap->B", b_cap);
394 cache->set(cell_name + "->Cap->S0", s0_cap);
395 cache->set(cell_name + "->Cap->S0_b", s0_b_cap);
396 cache->set(cell_name + "->Cap->Y_b", y_b_cap);
397 cache->set(cell_name + "->Cap->Y", y_cap);
398
399 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
400 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
401 Log::printLine(cell_name + "->Cap->S0=" + (String) s0_cap);
402 Log::printLine(cell_name + "->Cap->S0_b=" + (String) s0_b_cap);
403 Log::printLine(cell_name + "->Cap->Y_b=" + (String) y_b_cap);
404 Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
405 // --------------------------------------------------------------------
406
407 // --------------------------------------------------------------------
408 // Build Internal Delay Model
409 // --------------------------------------------------------------------
410 // Build abstracted timing model
411 double y_ron = getDriver("INV2_RonZN")->getOutputRes();
412
413 double a_to_y_delay = 0.0;
414 a_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
415 a_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
416
417 double b_to_y_delay = 0.0;
418 b_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
419 b_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
420
421 double s0_to_y_delay = 0.0;
422 s0_to_y_delay += getDriver("INV1_RonZN")->calculateDelay();
423 s0_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ1_RonZN")->calculateDelay());
424 s0_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
425
426 cache->set(cell_name + "->DriveRes->Y", y_ron);
427 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
428 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
429 cache->set(cell_name + "->Delay->S0_to_Y", s0_to_y_delay);
430
431 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
432 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
433 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
434 Log::printLine(cell_name + "->Delay->S0_to_Y=" + (String) s0_to_y_delay);
435 // --------------------------------------------------------------------
436
437 return;
438 }
439
440 } // namespace DSENT
441