sim, kvm: make KvmVM a System parameter
[gem5.git] / ext / dsent / model / std_cells / XOR2.cc
1 /* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22 #include "model/std_cells/XOR2.h"
23
24 #include <cmath>
25
26 #include "model/PortInfo.h"
27 #include "model/EventInfo.h"
28 #include "model/TransitionInfo.h"
29 #include "model/std_cells/StdCellLib.h"
30 #include "model/std_cells/CellMacros.h"
31 #include "model/timing_graph/ElectricalNet.h"
32 #include "model/timing_graph/ElectricalDriver.h"
33 #include "model/timing_graph/ElectricalLoad.h"
34 #include "model/timing_graph/ElectricalDelay.h"
35
36 namespace DSENT
37 {
38 using std::ceil;
39 using std::max;
40
41 XOR2::XOR2(const String& instance_name_, const TechModel* tech_model_)
42 : StdCell(instance_name_, tech_model_)
43 {
44 initProperties();
45 }
46
47 XOR2::~XOR2()
48 {}
49
50 void XOR2::initProperties()
51 {
52 return;
53 }
54
55 void XOR2::constructModel()
56 {
57 // All constructModel should do is create Area/NDDPower/Energy Results as
58 // well as instantiate any sub-instances using only the hard parameters
59
60 createInputPort("A");
61 createInputPort("B");
62 createOutputPort("Y");
63
64 createLoad("A_Cap");
65 createLoad("B_Cap");
66 createDelay("A_to_Y_delay");
67 createDelay("B_to_Y_delay");
68 createDriver("Y_Ron", true);
69
70 ElectricalLoad* a_cap = getLoad("A_Cap");
71 ElectricalLoad* b_cap = getLoad("B_Cap");
72 ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
73 ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
74 ElectricalDriver* y_ron = getDriver("Y_Ron");
75
76 getNet("A")->addDownstreamNode(a_cap);
77 getNet("B")->addDownstreamNode(b_cap);
78 a_cap->addDownstreamNode(a_to_y_delay);
79 b_cap->addDownstreamNode(b_to_y_delay);
80 a_to_y_delay->addDownstreamNode(y_ron);
81 b_to_y_delay->addDownstreamNode(y_ron);
82 y_ron->addDownstreamNode(getNet("Y"));
83
84 // Create Area result
85 // Create NDD Power result
86 createElectricalAtomicResults();
87 // Create XOR2 Event Energy Result
88 createElectricalEventAtomicResult("XOR2");
89
90 getEventInfo("Idle")->setStaticTransitionInfos();
91
92 return;
93 }
94
95 void XOR2::updateModel()
96 {
97 // Get parameters
98 double drive_strength = getDrivingStrength();
99 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
100
101 // Standard cell cache string
102 String cell_name = "XOR2_X" + (String) drive_strength;
103
104 // Get timing parameters
105 getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
106 getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
107
108 getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
109 getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
110
111 getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
112
113 // Set the cell area
114 getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
115 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
116
117 return;
118 }
119
120 void XOR2::evaluateModel()
121 {
122 return;
123 }
124
125 void XOR2::useModel()
126 {
127 // Get parameters
128 double drive_strength = getDrivingStrength();
129 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
130
131 // Standard cell cache string
132 String cell_name = "XOR2_X" + (String) drive_strength;
133
134 // Propagate the transition info and get the 0->1 transtion count
135 propagateTransitionInfo();
136 double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
137 double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
138 double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01();
139 double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01();
140 double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
141
142 // Calculate leakage
143 double leakage = 0;
144 leakage += cache->get(cell_name + "->Leakage->!A!B") * (1 - P_A) * (1 - P_B);
145 leakage += cache->get(cell_name + "->Leakage->!AB") * (1 - P_A) * P_B;
146 leakage += cache->get(cell_name + "->Leakage->A!B") * P_A * (1 - P_B);
147 leakage += cache->get(cell_name + "->Leakage->AB") * P_A * P_B;
148 getNddPowerResult("Leakage")->setValue(leakage);
149
150 // Get VDD
151 double vdd = getTechModel()->get("Vdd");
152
153 // Get capacitances
154 double a_b_cap = cache->get(cell_name + "->Cap->A_b");
155 double b_b_cap = cache->get(cell_name + "->Cap->B_b");
156 double y_cap = cache->get(cell_name + "->Cap->Y");
157 double y_load_cap = getNet("Y")->getTotalDownstreamCap();
158
159 // Calculate XOR Event energy
160 double xor2_event_result = 0.0;
161 xor2_event_result += a_b_cap * A_num_trans_01;
162 xor2_event_result += b_b_cap * B_num_trans_01;
163 xor2_event_result += (y_cap + y_load_cap) * Y_num_trans_01;
164 xor2_event_result *= vdd * vdd;
165 getEventResult("XOR2")->setValue(xor2_event_result);
166
167 return;
168 }
169
170 void XOR2::propagateTransitionInfo()
171 {
172 // Get input signal transition info
173 const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
174 const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
175
176 double max_freq_mult = max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier());
177 const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
178 const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
179
180
181 double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
182 double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
183 double A_prob_10 = A_prob_01;
184 double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
185 double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
186 double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
187 double B_prob_10 = B_prob_01;
188 double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
189
190 // Set output transition info
191 double Y_prob_00 = A_prob_00 * B_prob_00 +
192 A_prob_01 * B_prob_01 +
193 A_prob_10 * B_prob_10 +
194 A_prob_11 * B_prob_11;
195 double Y_prob_01 = A_prob_00 * B_prob_01 +
196 A_prob_01 * B_prob_00 +
197 A_prob_10 * B_prob_11 +
198 A_prob_11 * B_prob_10;
199 double Y_prob_11 = A_prob_00 * B_prob_11 +
200 A_prob_01 * B_prob_10 +
201 A_prob_10 * B_prob_01 +
202 A_prob_11 * B_prob_00;
203
204 // Check that probabilities add up to 1.0 with some finite tolerance
205 ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
206 "[Error] " + getInstanceName() + "Output transition probabilities must add up to 1 (" +
207 (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
208
209 // Turn probability of transitions per cycle into number of transitions per time unit
210 TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
211 getOutputPort("Y")->setTransitionInfo(trans_Y);
212 return;
213 }
214
215 // Creates the standard cell, characterizes and abstracts away the details
216 void XOR2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
217 {
218 // Get parameters
219 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
220 Map<double>* cache = cell_lib_->getStdCellCache();
221
222 // Standard cell cache string
223 String cell_name = "XOR2_X" + (String) drive_strength_;
224
225 Log::printLine("=== " + cell_name + " ===");
226
227 // Now actually build the full standard cell model
228 createInputPort("A");
229 createInputPort("B");
230 createOutputPort("Y");
231
232 createNet("A_b");
233 createNet("B_b");
234
235 // Adds macros
236 CellMacros::addInverter(this, "INV1", false, true, "A", "A_b");
237 CellMacros::addInverter(this, "INV2", false, true, "B", "B_b");
238 CellMacros::addTristate(this, "INVZ1", true, true, true, true, "B", "A", "A_b", "Y");
239 CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B_b", "A_b", "A", "Y");
240
241 // I have no idea how to size each of the parts haha
242 CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.500);
243 CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.500);
244 CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 1.000);
245 CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 1.000);
246
247 // Cache area result
248 double area = 0.0;
249 area += gate_pitch * getTotalHeight() * 1;
250 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
251 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
252 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
253 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
254 cache->set(cell_name + "->ActiveArea", area);
255 Log::printLine(cell_name + "->ActiveArea=" + (String) area);
256
257 // --------------------------------------------------------------------
258 // Leakage Model Calculation
259 // --------------------------------------------------------------------
260 // Cache leakage power results (for every single signal combination)
261 double leakage_00 = 0; //!A, !B
262 double leakage_01 = 0; //!A, B
263 double leakage_10 = 0; //A, !B
264 double leakage_11 = 0; //A, B
265
266 //This is so painful...
267 leakage_00 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
268 leakage_00 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
269 leakage_00 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
270 leakage_00 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
271
272 leakage_01 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
273 leakage_01 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
274 leakage_01 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
275 leakage_01 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
276
277 leakage_10 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
278 leakage_10 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
279 leakage_10 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
280 leakage_10 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
281
282 leakage_11 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
283 leakage_11 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
284 leakage_11 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
285 leakage_11 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
286
287 cache->set(cell_name + "->Leakage->!A!B", leakage_00);
288 cache->set(cell_name + "->Leakage->!AB", leakage_01);
289 cache->set(cell_name + "->Leakage->A!B", leakage_10);
290 cache->set(cell_name + "->Leakage->AB", leakage_11);
291 Log::printLine(cell_name + "->Leakage->!A!B=" + (String) leakage_00);
292 Log::printLine(cell_name + "->Leakage->!AB=" + (String) leakage_01);
293 Log::printLine(cell_name + "->Leakage->A!B=" + (String) leakage_10);
294 Log::printLine(cell_name + "->Leakage->AB=" + (String) leakage_11);
295 // --------------------------------------------------------------------
296
297 // Cache event energy results
298 /*
299 double event_a_flip = 0.0;
300 event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
301 event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
302 event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
303 cache->set(cell_name + "->Event_A_Flip", event_a_flip);
304 Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
305
306 double event_b_flip = 0.0;
307 event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
308 event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
309 event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble();
310 cache->set(cell_name + "->Event_B_Flip", event_b_flip);
311 Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
312
313 double event_y_flip = 0.0;
314 event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
315 event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
316 cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
317 Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
318 */
319
320 // --------------------------------------------------------------------
321 // Get Node Capacitances
322 // --------------------------------------------------------------------
323 // Build abstracted timing model
324 double a_cap = getNet("A")->getTotalDownstreamCap();
325 double b_cap = getNet("B")->getTotalDownstreamCap();
326 double a_b_cap = getNet("A_b")->getTotalDownstreamCap();
327 double b_b_cap = getNet("B_b")->getTotalDownstreamCap();
328 double y_cap = getNet("Y")->getTotalDownstreamCap();
329
330 cache->set(cell_name + "->Cap->A", a_cap);
331 cache->set(cell_name + "->Cap->B", b_cap);
332 cache->set(cell_name + "->Cap->A_b", a_b_cap);
333 cache->set(cell_name + "->Cap->B_b", b_b_cap);
334 cache->set(cell_name + "->Cap->Y", y_cap);
335 Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
336 Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
337 Log::printLine(cell_name + "->Cap->A=" + (String) a_b_cap);
338 Log::printLine(cell_name + "->Cap->B=" + (String) b_b_cap);
339 Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
340 // --------------------------------------------------------------------
341
342 // --------------------------------------------------------------------
343 // Build Internal Delay Model
344 // --------------------------------------------------------------------
345 double y_ron = (getDriver("INVZ1_RonZN")->getOutputRes() + getDriver("INVZ2_RonZN")->getOutputRes()) / 2;
346
347 double a_to_y_delay = 0.0;
348 a_to_y_delay += getDriver("INV1_RonZN")->calculateDelay();
349 a_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay());
350
351 double b_to_y_delay = 0.0;
352 b_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay());
353
354 cache->set(cell_name + "->DriveRes->Y", y_ron);
355 cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
356 cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
357 Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
358 Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
359 Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
360 // --------------------------------------------------------------------
361
362 return;
363 }
364
365 } // namespace DSENT
366