ca2477e83eb699bd30260f4099b5f0c8f38e7dd5
[gem5.git] / ext / pybind11 / docs / classes.rst
1 .. _classes:
2
3 Object-oriented code
4 ####################
5
6 Creating bindings for a custom type
7 ===================================
8
9 Let's now look at a more complex example where we'll create bindings for a
10 custom C++ data structure named ``Pet``. Its definition is given below:
11
12 .. code-block:: cpp
13
14 struct Pet {
15 Pet(const std::string &name) : name(name) { }
16 void setName(const std::string &name_) { name = name_; }
17 const std::string &getName() const { return name; }
18
19 std::string name;
20 };
21
22 The binding code for ``Pet`` looks as follows:
23
24 .. code-block:: cpp
25
26 #include <pybind11/pybind11.h>
27
28 namespace py = pybind11;
29
30 PYBIND11_MODULE(example, m) {
31 py::class_<Pet>(m, "Pet")
32 .def(py::init<const std::string &>())
33 .def("setName", &Pet::setName)
34 .def("getName", &Pet::getName);
35 }
36
37 :class:`class_` creates bindings for a C++ *class* or *struct*-style data
38 structure. :func:`init` is a convenience function that takes the types of a
39 constructor's parameters as template arguments and wraps the corresponding
40 constructor (see the :ref:`custom_constructors` section for details). An
41 interactive Python session demonstrating this example is shown below:
42
43 .. code-block:: pycon
44
45 % python
46 >>> import example
47 >>> p = example.Pet('Molly')
48 >>> print(p)
49 <example.Pet object at 0x10cd98060>
50 >>> p.getName()
51 u'Molly'
52 >>> p.setName('Charly')
53 >>> p.getName()
54 u'Charly'
55
56 .. seealso::
57
58 Static member functions can be bound in the same way using
59 :func:`class_::def_static`.
60
61 Keyword and default arguments
62 =============================
63 It is possible to specify keyword and default arguments using the syntax
64 discussed in the previous chapter. Refer to the sections :ref:`keyword_args`
65 and :ref:`default_args` for details.
66
67 Binding lambda functions
68 ========================
69
70 Note how ``print(p)`` produced a rather useless summary of our data structure in the example above:
71
72 .. code-block:: pycon
73
74 >>> print(p)
75 <example.Pet object at 0x10cd98060>
76
77 To address this, we could bind an utility function that returns a human-readable
78 summary to the special method slot named ``__repr__``. Unfortunately, there is no
79 suitable functionality in the ``Pet`` data structure, and it would be nice if
80 we did not have to change it. This can easily be accomplished by binding a
81 Lambda function instead:
82
83 .. code-block:: cpp
84
85 py::class_<Pet>(m, "Pet")
86 .def(py::init<const std::string &>())
87 .def("setName", &Pet::setName)
88 .def("getName", &Pet::getName)
89 .def("__repr__",
90 [](const Pet &a) {
91 return "<example.Pet named '" + a.name + "'>";
92 }
93 );
94
95 Both stateless [#f1]_ and stateful lambda closures are supported by pybind11.
96 With the above change, the same Python code now produces the following output:
97
98 .. code-block:: pycon
99
100 >>> print(p)
101 <example.Pet named 'Molly'>
102
103 .. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
104
105 .. _properties:
106
107 Instance and static fields
108 ==========================
109
110 We can also directly expose the ``name`` field using the
111 :func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly`
112 method also exists for ``const`` fields.
113
114 .. code-block:: cpp
115
116 py::class_<Pet>(m, "Pet")
117 .def(py::init<const std::string &>())
118 .def_readwrite("name", &Pet::name)
119 // ... remainder ...
120
121 This makes it possible to write
122
123 .. code-block:: pycon
124
125 >>> p = example.Pet('Molly')
126 >>> p.name
127 u'Molly'
128 >>> p.name = 'Charly'
129 >>> p.name
130 u'Charly'
131
132 Now suppose that ``Pet::name`` was a private internal variable
133 that can only be accessed via setters and getters.
134
135 .. code-block:: cpp
136
137 class Pet {
138 public:
139 Pet(const std::string &name) : name(name) { }
140 void setName(const std::string &name_) { name = name_; }
141 const std::string &getName() const { return name; }
142 private:
143 std::string name;
144 };
145
146 In this case, the method :func:`class_::def_property`
147 (:func:`class_::def_property_readonly` for read-only data) can be used to
148 provide a field-like interface within Python that will transparently call
149 the setter and getter functions:
150
151 .. code-block:: cpp
152
153 py::class_<Pet>(m, "Pet")
154 .def(py::init<const std::string &>())
155 .def_property("name", &Pet::getName, &Pet::setName)
156 // ... remainder ...
157
158 .. seealso::
159
160 Similar functions :func:`class_::def_readwrite_static`,
161 :func:`class_::def_readonly_static` :func:`class_::def_property_static`,
162 and :func:`class_::def_property_readonly_static` are provided for binding
163 static variables and properties. Please also see the section on
164 :ref:`static_properties` in the advanced part of the documentation.
165
166 Dynamic attributes
167 ==================
168
169 Native Python classes can pick up new attributes dynamically:
170
171 .. code-block:: pycon
172
173 >>> class Pet:
174 ... name = 'Molly'
175 ...
176 >>> p = Pet()
177 >>> p.name = 'Charly' # overwrite existing
178 >>> p.age = 2 # dynamically add a new attribute
179
180 By default, classes exported from C++ do not support this and the only writable
181 attributes are the ones explicitly defined using :func:`class_::def_readwrite`
182 or :func:`class_::def_property`.
183
184 .. code-block:: cpp
185
186 py::class_<Pet>(m, "Pet")
187 .def(py::init<>())
188 .def_readwrite("name", &Pet::name);
189
190 Trying to set any other attribute results in an error:
191
192 .. code-block:: pycon
193
194 >>> p = example.Pet()
195 >>> p.name = 'Charly' # OK, attribute defined in C++
196 >>> p.age = 2 # fail
197 AttributeError: 'Pet' object has no attribute 'age'
198
199 To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag
200 must be added to the :class:`py::class_` constructor:
201
202 .. code-block:: cpp
203
204 py::class_<Pet>(m, "Pet", py::dynamic_attr())
205 .def(py::init<>())
206 .def_readwrite("name", &Pet::name);
207
208 Now everything works as expected:
209
210 .. code-block:: pycon
211
212 >>> p = example.Pet()
213 >>> p.name = 'Charly' # OK, overwrite value in C++
214 >>> p.age = 2 # OK, dynamically add a new attribute
215 >>> p.__dict__ # just like a native Python class
216 {'age': 2}
217
218 Note that there is a small runtime cost for a class with dynamic attributes.
219 Not only because of the addition of a ``__dict__``, but also because of more
220 expensive garbage collection tracking which must be activated to resolve
221 possible circular references. Native Python classes incur this same cost by
222 default, so this is not anything to worry about. By default, pybind11 classes
223 are more efficient than native Python classes. Enabling dynamic attributes
224 just brings them on par.
225
226 .. _inheritance:
227
228 Inheritance and automatic upcasting
229 ===================================
230
231 Suppose now that the example consists of two data structures with an
232 inheritance relationship:
233
234 .. code-block:: cpp
235
236 struct Pet {
237 Pet(const std::string &name) : name(name) { }
238 std::string name;
239 };
240
241 struct Dog : Pet {
242 Dog(const std::string &name) : Pet(name) { }
243 std::string bark() const { return "woof!"; }
244 };
245
246 There are two different ways of indicating a hierarchical relationship to
247 pybind11: the first specifies the C++ base class as an extra template
248 parameter of the :class:`class_`:
249
250 .. code-block:: cpp
251
252 py::class_<Pet>(m, "Pet")
253 .def(py::init<const std::string &>())
254 .def_readwrite("name", &Pet::name);
255
256 // Method 1: template parameter:
257 py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
258 .def(py::init<const std::string &>())
259 .def("bark", &Dog::bark);
260
261 Alternatively, we can also assign a name to the previously bound ``Pet``
262 :class:`class_` object and reference it when binding the ``Dog`` class:
263
264 .. code-block:: cpp
265
266 py::class_<Pet> pet(m, "Pet");
267 pet.def(py::init<const std::string &>())
268 .def_readwrite("name", &Pet::name);
269
270 // Method 2: pass parent class_ object:
271 py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
272 .def(py::init<const std::string &>())
273 .def("bark", &Dog::bark);
274
275 Functionality-wise, both approaches are equivalent. Afterwards, instances will
276 expose fields and methods of both types:
277
278 .. code-block:: pycon
279
280 >>> p = example.Dog('Molly')
281 >>> p.name
282 u'Molly'
283 >>> p.bark()
284 u'woof!'
285
286 The C++ classes defined above are regular non-polymorphic types with an
287 inheritance relationship. This is reflected in Python:
288
289 .. code-block:: cpp
290
291 // Return a base pointer to a derived instance
292 m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
293
294 .. code-block:: pycon
295
296 >>> p = example.pet_store()
297 >>> type(p) # `Dog` instance behind `Pet` pointer
298 Pet # no pointer upcasting for regular non-polymorphic types
299 >>> p.bark()
300 AttributeError: 'Pet' object has no attribute 'bark'
301
302 The function returned a ``Dog`` instance, but because it's a non-polymorphic
303 type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only
304 considered polymorphic if it has at least one virtual function and pybind11
305 will automatically recognize this:
306
307 .. code-block:: cpp
308
309 struct PolymorphicPet {
310 virtual ~PolymorphicPet() = default;
311 };
312
313 struct PolymorphicDog : PolymorphicPet {
314 std::string bark() const { return "woof!"; }
315 };
316
317 // Same binding code
318 py::class_<PolymorphicPet>(m, "PolymorphicPet");
319 py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
320 .def(py::init<>())
321 .def("bark", &PolymorphicDog::bark);
322
323 // Again, return a base pointer to a derived instance
324 m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
325
326 .. code-block:: pycon
327
328 >>> p = example.pet_store2()
329 >>> type(p)
330 PolymorphicDog # automatically upcast
331 >>> p.bark()
332 u'woof!'
333
334 Given a pointer to a polymorphic base, pybind11 performs automatic upcasting
335 to the actual derived type. Note that this goes beyond the usual situation in
336 C++: we don't just get access to the virtual functions of the base, we get the
337 concrete derived type including functions and attributes that the base type may
338 not even be aware of.
339
340 .. seealso::
341
342 For more information about polymorphic behavior see :ref:`overriding_virtuals`.
343
344
345 Overloaded methods
346 ==================
347
348 Sometimes there are several overloaded C++ methods with the same name taking
349 different kinds of input arguments:
350
351 .. code-block:: cpp
352
353 struct Pet {
354 Pet(const std::string &name, int age) : name(name), age(age) { }
355
356 void set(int age_) { age = age_; }
357 void set(const std::string &name_) { name = name_; }
358
359 std::string name;
360 int age;
361 };
362
363 Attempting to bind ``Pet::set`` will cause an error since the compiler does not
364 know which method the user intended to select. We can disambiguate by casting
365 them to function pointers. Binding multiple functions to the same Python name
366 automatically creates a chain of function overloads that will be tried in
367 sequence.
368
369 .. code-block:: cpp
370
371 py::class_<Pet>(m, "Pet")
372 .def(py::init<const std::string &, int>())
373 .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age")
374 .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name");
375
376 The overload signatures are also visible in the method's docstring:
377
378 .. code-block:: pycon
379
380 >>> help(example.Pet)
381
382 class Pet(__builtin__.object)
383 | Methods defined here:
384 |
385 | __init__(...)
386 | Signature : (Pet, str, int) -> NoneType
387 |
388 | set(...)
389 | 1. Signature : (Pet, int) -> NoneType
390 |
391 | Set the pet's age
392 |
393 | 2. Signature : (Pet, str) -> NoneType
394 |
395 | Set the pet's name
396
397 If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative
398 syntax to cast the overloaded function:
399
400 .. code-block:: cpp
401
402 py::class_<Pet>(m, "Pet")
403 .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
404 .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
405
406 Here, ``py::overload_cast`` only requires the parameter types to be specified.
407 The return type and class are deduced. This avoids the additional noise of
408 ``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based
409 on constness, the ``py::const_`` tag should be used:
410
411 .. code-block:: cpp
412
413 struct Widget {
414 int foo(int x, float y);
415 int foo(int x, float y) const;
416 };
417
418 py::class_<Widget>(m, "Widget")
419 .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
420 .def("foo_const", py::overload_cast<int, float>(&Widget::foo, py::const_));
421
422
423 .. [#cpp14] A compiler which supports the ``-std=c++14`` flag
424 or Visual Studio 2015 Update 2 and newer.
425
426 .. note::
427
428 To define multiple overloaded constructors, simply declare one after the
429 other using the ``.def(py::init<...>())`` syntax. The existing machinery
430 for specifying keyword and default arguments also works.
431
432 Enumerations and internal types
433 ===============================
434
435 Let's now suppose that the example class contains an internal enumeration type,
436 e.g.:
437
438 .. code-block:: cpp
439
440 struct Pet {
441 enum Kind {
442 Dog = 0,
443 Cat
444 };
445
446 Pet(const std::string &name, Kind type) : name(name), type(type) { }
447
448 std::string name;
449 Kind type;
450 };
451
452 The binding code for this example looks as follows:
453
454 .. code-block:: cpp
455
456 py::class_<Pet> pet(m, "Pet");
457
458 pet.def(py::init<const std::string &, Pet::Kind>())
459 .def_readwrite("name", &Pet::name)
460 .def_readwrite("type", &Pet::type);
461
462 py::enum_<Pet::Kind>(pet, "Kind")
463 .value("Dog", Pet::Kind::Dog)
464 .value("Cat", Pet::Kind::Cat)
465 .export_values();
466
467 To ensure that the ``Kind`` type is created within the scope of ``Pet``, the
468 ``pet`` :class:`class_` instance must be supplied to the :class:`enum_`.
469 constructor. The :func:`enum_::export_values` function exports the enum entries
470 into the parent scope, which should be skipped for newer C++11-style strongly
471 typed enums.
472
473 .. code-block:: pycon
474
475 >>> p = Pet('Lucy', Pet.Cat)
476 >>> p.type
477 Kind.Cat
478 >>> int(p.type)
479 1L
480
481 The entries defined by the enumeration type are exposed in the ``__members__`` property:
482
483 .. code-block:: pycon
484
485 >>> Pet.Kind.__members__
486 {'Dog': Kind.Dog, 'Cat': Kind.Cat}
487
488 .. note::
489
490 When the special tag ``py::arithmetic()`` is specified to the ``enum_``
491 constructor, pybind11 creates an enumeration that also supports rudimentary
492 arithmetic and bit-level operations like comparisons, and, or, xor, negation,
493 etc.
494
495 .. code-block:: cpp
496
497 py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
498 ...
499
500 By default, these are omitted to conserve space.