Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / gallivm / lp_bld_pack.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 /**
30 * @file
31 * Helper functions for packing/unpacking.
32 *
33 * Pack/unpacking is necessary for conversion between types of different
34 * bit width.
35 *
36 * They are also commonly used when an computation needs higher
37 * precision for the intermediate values. For example, if one needs the
38 * function:
39 *
40 * c = compute(a, b);
41 *
42 * to use more precision for intermediate results then one should implement it
43 * as:
44 *
45 * LLVMValueRef
46 * compute(LLVMBuilderRef builder struct lp_type type, LLVMValueRef a, LLVMValueRef b)
47 * {
48 * struct lp_type wide_type = lp_wider_type(type);
49 * LLVMValueRef al, ah, bl, bh, cl, ch, c;
50 *
51 * lp_build_unpack2(builder, type, wide_type, a, &al, &ah);
52 * lp_build_unpack2(builder, type, wide_type, b, &bl, &bh);
53 *
54 * cl = compute_half(al, bl);
55 * ch = compute_half(ah, bh);
56 *
57 * c = lp_build_pack2(bld->builder, wide_type, type, cl, ch);
58 *
59 * return c;
60 * }
61 *
62 * where compute_half() would do the computation for half the elements with
63 * twice the precision.
64 *
65 * @author Jose Fonseca <jfonseca@vmware.com>
66 */
67
68
69 #include "util/u_debug.h"
70 #include "util/u_math.h"
71 #include "util/u_cpu_detect.h"
72 #include "util/u_memory.h"
73
74 #include "lp_bld_type.h"
75 #include "lp_bld_const.h"
76 #include "lp_bld_init.h"
77 #include "lp_bld_intr.h"
78 #include "lp_bld_arit.h"
79 #include "lp_bld_pack.h"
80 #include "lp_bld_swizzle.h"
81
82
83 /**
84 * Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
85 */
86 static LLVMValueRef
87 lp_build_const_unpack_shuffle(struct gallivm_state *gallivm,
88 unsigned n, unsigned lo_hi)
89 {
90 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
91 unsigned i, j;
92
93 assert(n <= LP_MAX_VECTOR_LENGTH);
94 assert(lo_hi < 2);
95
96 /* TODO: cache results in a static table */
97
98 for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
99 elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
100 elems[i + 1] = lp_build_const_int32(gallivm, n + j);
101 }
102
103 return LLVMConstVector(elems, n);
104 }
105
106 /**
107 * Similar to lp_build_const_unpack_shuffle but for special AVX 256bit unpack.
108 * See comment above lp_build_interleave2_half for more details.
109 */
110 static LLVMValueRef
111 lp_build_const_unpack_shuffle_half(struct gallivm_state *gallivm,
112 unsigned n, unsigned lo_hi)
113 {
114 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
115 unsigned i, j;
116
117 assert(n <= LP_MAX_VECTOR_LENGTH);
118 assert(lo_hi < 2);
119
120 for (i = 0, j = lo_hi*(n/4); i < n; i += 2, ++j) {
121 if (i == (n / 2))
122 j += n / 4;
123
124 elems[i + 0] = lp_build_const_int32(gallivm, 0 + j);
125 elems[i + 1] = lp_build_const_int32(gallivm, n + j);
126 }
127
128 return LLVMConstVector(elems, n);
129 }
130
131 /**
132 * Build shuffle vectors that match PACKxx (SSE) instructions or
133 * VPERM (Altivec).
134 */
135 static LLVMValueRef
136 lp_build_const_pack_shuffle(struct gallivm_state *gallivm, unsigned n)
137 {
138 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
139 unsigned i;
140
141 assert(n <= LP_MAX_VECTOR_LENGTH);
142
143 for(i = 0; i < n; ++i)
144 #ifdef PIPE_ARCH_LITTLE_ENDIAN
145 elems[i] = lp_build_const_int32(gallivm, 2*i);
146 #else
147 elems[i] = lp_build_const_int32(gallivm, 2*i+1);
148 #endif
149
150 return LLVMConstVector(elems, n);
151 }
152
153 /**
154 * Return a vector with elements src[start:start+size]
155 * Most useful for getting half the values out of a 256bit sized vector,
156 * otherwise may cause data rearrangement to happen.
157 */
158 LLVMValueRef
159 lp_build_extract_range(struct gallivm_state *gallivm,
160 LLVMValueRef src,
161 unsigned start,
162 unsigned size)
163 {
164 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
165 unsigned i;
166
167 assert(size <= ARRAY_SIZE(elems));
168
169 for (i = 0; i < size; ++i)
170 elems[i] = lp_build_const_int32(gallivm, i + start);
171
172 if (size == 1) {
173 return LLVMBuildExtractElement(gallivm->builder, src, elems[0], "");
174 }
175 else {
176 return LLVMBuildShuffleVector(gallivm->builder, src, src,
177 LLVMConstVector(elems, size), "");
178 }
179 }
180
181 /**
182 * Concatenates several (must be a power of 2) vectors (of same type)
183 * into a larger one.
184 * Most useful for building up a 256bit sized vector out of two 128bit ones.
185 */
186 LLVMValueRef
187 lp_build_concat(struct gallivm_state *gallivm,
188 LLVMValueRef src[],
189 struct lp_type src_type,
190 unsigned num_vectors)
191 {
192 unsigned new_length, i;
193 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH/2];
194 LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
195
196 assert(src_type.length * num_vectors <= ARRAY_SIZE(shuffles));
197 assert(util_is_power_of_two(num_vectors));
198
199 new_length = src_type.length;
200
201 for (i = 0; i < num_vectors; i++)
202 tmp[i] = src[i];
203
204 while (num_vectors > 1) {
205 num_vectors >>= 1;
206 new_length <<= 1;
207 for (i = 0; i < new_length; i++) {
208 shuffles[i] = lp_build_const_int32(gallivm, i);
209 }
210 for (i = 0; i < num_vectors; i++) {
211 tmp[i] = LLVMBuildShuffleVector(gallivm->builder, tmp[i*2], tmp[i*2 + 1],
212 LLVMConstVector(shuffles, new_length), "");
213 }
214 }
215
216 return tmp[0];
217 }
218
219
220 /**
221 * Combines vectors to reduce from num_srcs to num_dsts.
222 * Returns the number of src vectors concatenated in a single dst.
223 *
224 * num_srcs must be exactly divisible by num_dsts.
225 *
226 * e.g. For num_srcs = 4 and src = [x, y, z, w]
227 * num_dsts = 1 dst = [xyzw] return = 4
228 * num_dsts = 2 dst = [xy, zw] return = 2
229 */
230 int
231 lp_build_concat_n(struct gallivm_state *gallivm,
232 struct lp_type src_type,
233 LLVMValueRef *src,
234 unsigned num_srcs,
235 LLVMValueRef *dst,
236 unsigned num_dsts)
237 {
238 int size = num_srcs / num_dsts;
239 unsigned i;
240
241 assert(num_srcs >= num_dsts);
242 assert((num_srcs % size) == 0);
243
244 if (num_srcs == num_dsts) {
245 for (i = 0; i < num_dsts; ++i) {
246 dst[i] = src[i];
247 }
248 return 1;
249 }
250
251 for (i = 0; i < num_dsts; ++i) {
252 dst[i] = lp_build_concat(gallivm, &src[i * size], src_type, size);
253 }
254
255 return size;
256 }
257
258
259 /**
260 * Un-interleave vector.
261 * This will return a vector consisting of every second element
262 * (depending on lo_hi, beginning at 0 or 1).
263 * The returned vector size (elems and width) will only be half
264 * that of the source vector.
265 */
266 LLVMValueRef
267 lp_build_uninterleave1(struct gallivm_state *gallivm,
268 unsigned num_elems,
269 LLVMValueRef a,
270 unsigned lo_hi)
271 {
272 LLVMValueRef shuffle, elems[LP_MAX_VECTOR_LENGTH];
273 unsigned i;
274 assert(num_elems <= LP_MAX_VECTOR_LENGTH);
275
276 for (i = 0; i < num_elems / 2; ++i)
277 elems[i] = lp_build_const_int32(gallivm, 2*i + lo_hi);
278
279 shuffle = LLVMConstVector(elems, num_elems / 2);
280
281 return LLVMBuildShuffleVector(gallivm->builder, a, a, shuffle, "");
282 }
283
284
285 /**
286 * Interleave vector elements.
287 *
288 * Matches the PUNPCKLxx and PUNPCKHxx SSE instructions
289 * (but not for 256bit AVX vectors).
290 */
291 LLVMValueRef
292 lp_build_interleave2(struct gallivm_state *gallivm,
293 struct lp_type type,
294 LLVMValueRef a,
295 LLVMValueRef b,
296 unsigned lo_hi)
297 {
298 LLVMValueRef shuffle;
299
300 if (type.length == 2 && type.width == 128 && util_cpu_caps.has_avx) {
301 /*
302 * XXX: This is a workaround for llvm code generation deficiency. Strangely
303 * enough, while this needs vinsertf128/vextractf128 instructions (hence
304 * a natural match when using 2x128bit vectors) the "normal" unpack shuffle
305 * generates code ranging from atrocious (llvm 3.1) to terrible (llvm 3.2, 3.3).
306 * So use some different shuffles instead (the exact shuffles don't seem to
307 * matter, as long as not using 128bit wide vectors, works with 8x32 or 4x64).
308 */
309 struct lp_type tmp_type = type;
310 LLVMValueRef srchalf[2], tmpdst;
311 tmp_type.length = 4;
312 tmp_type.width = 64;
313 a = LLVMBuildBitCast(gallivm->builder, a, lp_build_vec_type(gallivm, tmp_type), "");
314 b = LLVMBuildBitCast(gallivm->builder, b, lp_build_vec_type(gallivm, tmp_type), "");
315 srchalf[0] = lp_build_extract_range(gallivm, a, lo_hi * 2, 2);
316 srchalf[1] = lp_build_extract_range(gallivm, b, lo_hi * 2, 2);
317 tmp_type.length = 2;
318 tmpdst = lp_build_concat(gallivm, srchalf, tmp_type, 2);
319 return LLVMBuildBitCast(gallivm->builder, tmpdst, lp_build_vec_type(gallivm, type), "");
320 }
321
322 shuffle = lp_build_const_unpack_shuffle(gallivm, type.length, lo_hi);
323
324 return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
325 }
326
327 /**
328 * Interleave vector elements but with 256 bit,
329 * treats it as interleave with 2 concatenated 128 bit vectors.
330 *
331 * This differs to lp_build_interleave2 as that function would do the following (for lo):
332 * a0 b0 a1 b1 a2 b2 a3 b3, and this does not compile into an AVX unpack instruction.
333 *
334 *
335 * An example interleave 8x float with 8x float on AVX 256bit unpack:
336 * a0 a1 a2 a3 a4 a5 a6 a7 <-> b0 b1 b2 b3 b4 b5 b6 b7
337 *
338 * Equivalent to interleaving 2x 128 bit vectors
339 * a0 a1 a2 a3 <-> b0 b1 b2 b3 concatenated with a4 a5 a6 a7 <-> b4 b5 b6 b7
340 *
341 * So interleave-lo would result in:
342 * a0 b0 a1 b1 a4 b4 a5 b5
343 *
344 * And interleave-hi would result in:
345 * a2 b2 a3 b3 a6 b6 a7 b7
346 */
347 LLVMValueRef
348 lp_build_interleave2_half(struct gallivm_state *gallivm,
349 struct lp_type type,
350 LLVMValueRef a,
351 LLVMValueRef b,
352 unsigned lo_hi)
353 {
354 if (type.length * type.width == 256) {
355 LLVMValueRef shuffle = lp_build_const_unpack_shuffle_half(gallivm, type.length, lo_hi);
356 return LLVMBuildShuffleVector(gallivm->builder, a, b, shuffle, "");
357 } else {
358 return lp_build_interleave2(gallivm, type, a, b, lo_hi);
359 }
360 }
361
362
363 /**
364 * Double the bit width.
365 *
366 * This will only change the number of bits the values are represented, not the
367 * values themselves.
368 *
369 */
370 void
371 lp_build_unpack2(struct gallivm_state *gallivm,
372 struct lp_type src_type,
373 struct lp_type dst_type,
374 LLVMValueRef src,
375 LLVMValueRef *dst_lo,
376 LLVMValueRef *dst_hi)
377 {
378 LLVMBuilderRef builder = gallivm->builder;
379 LLVMValueRef msb;
380 LLVMTypeRef dst_vec_type;
381
382 assert(!src_type.floating);
383 assert(!dst_type.floating);
384 assert(dst_type.width == src_type.width * 2);
385 assert(dst_type.length * 2 == src_type.length);
386
387 if(dst_type.sign && src_type.sign) {
388 /* Replicate the sign bit in the most significant bits */
389 msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(gallivm, src_type, src_type.width - 1), "");
390 }
391 else
392 /* Most significant bits always zero */
393 msb = lp_build_zero(gallivm, src_type);
394
395 /* Interleave bits */
396 #ifdef PIPE_ARCH_LITTLE_ENDIAN
397 *dst_lo = lp_build_interleave2(gallivm, src_type, src, msb, 0);
398 *dst_hi = lp_build_interleave2(gallivm, src_type, src, msb, 1);
399
400 #else
401 *dst_lo = lp_build_interleave2(gallivm, src_type, msb, src, 0);
402 *dst_hi = lp_build_interleave2(gallivm, src_type, msb, src, 1);
403 #endif
404
405 /* Cast the result into the new type (twice as wide) */
406
407 dst_vec_type = lp_build_vec_type(gallivm, dst_type);
408
409 *dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, "");
410 *dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, "");
411 }
412
413
414 /**
415 * Double the bit width, with an order which fits the cpu nicely.
416 *
417 * This will only change the number of bits the values are represented, not the
418 * values themselves.
419 *
420 * The order of the results is not guaranteed, other than it will match
421 * the corresponding lp_build_pack2_native call.
422 */
423 void
424 lp_build_unpack2_native(struct gallivm_state *gallivm,
425 struct lp_type src_type,
426 struct lp_type dst_type,
427 LLVMValueRef src,
428 LLVMValueRef *dst_lo,
429 LLVMValueRef *dst_hi)
430 {
431 LLVMBuilderRef builder = gallivm->builder;
432 LLVMValueRef msb;
433 LLVMTypeRef dst_vec_type;
434
435 assert(!src_type.floating);
436 assert(!dst_type.floating);
437 assert(dst_type.width == src_type.width * 2);
438 assert(dst_type.length * 2 == src_type.length);
439
440 if(dst_type.sign && src_type.sign) {
441 /* Replicate the sign bit in the most significant bits */
442 msb = LLVMBuildAShr(builder, src,
443 lp_build_const_int_vec(gallivm, src_type, src_type.width - 1), "");
444 }
445 else
446 /* Most significant bits always zero */
447 msb = lp_build_zero(gallivm, src_type);
448
449 /* Interleave bits */
450 #ifdef PIPE_ARCH_LITTLE_ENDIAN
451 if (src_type.length * src_type.width == 256 && util_cpu_caps.has_avx2) {
452 *dst_lo = lp_build_interleave2_half(gallivm, src_type, src, msb, 0);
453 *dst_hi = lp_build_interleave2_half(gallivm, src_type, src, msb, 1);
454 } else {
455 *dst_lo = lp_build_interleave2(gallivm, src_type, src, msb, 0);
456 *dst_hi = lp_build_interleave2(gallivm, src_type, src, msb, 1);
457 }
458 #else
459 *dst_lo = lp_build_interleave2(gallivm, src_type, msb, src, 0);
460 *dst_hi = lp_build_interleave2(gallivm, src_type, msb, src, 1);
461 #endif
462
463 /* Cast the result into the new type (twice as wide) */
464
465 dst_vec_type = lp_build_vec_type(gallivm, dst_type);
466
467 *dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, "");
468 *dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, "");
469 }
470
471
472 /**
473 * Expand the bit width.
474 *
475 * This will only change the number of bits the values are represented, not the
476 * values themselves.
477 */
478 void
479 lp_build_unpack(struct gallivm_state *gallivm,
480 struct lp_type src_type,
481 struct lp_type dst_type,
482 LLVMValueRef src,
483 LLVMValueRef *dst, unsigned num_dsts)
484 {
485 unsigned num_tmps;
486 unsigned i;
487
488 /* Register width must remain constant */
489 assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
490
491 /* We must not loose or gain channels. Only precision */
492 assert(src_type.length == dst_type.length * num_dsts);
493
494 num_tmps = 1;
495 dst[0] = src;
496
497 while(src_type.width < dst_type.width) {
498 struct lp_type tmp_type = src_type;
499
500 tmp_type.width *= 2;
501 tmp_type.length /= 2;
502
503 for(i = num_tmps; i--; ) {
504 lp_build_unpack2(gallivm, src_type, tmp_type, dst[i], &dst[2*i + 0],
505 &dst[2*i + 1]);
506 }
507
508 src_type = tmp_type;
509
510 num_tmps *= 2;
511 }
512
513 assert(num_tmps == num_dsts);
514 }
515
516
517 /**
518 * Non-interleaved pack.
519 *
520 * This will move values as
521 * (LSB) (MSB)
522 * lo = l0 __ l1 __ l2 __.. __ ln __
523 * hi = h0 __ h1 __ h2 __.. __ hn __
524 * res = l0 l1 l2 .. ln h0 h1 h2 .. hn
525 *
526 * This will only change the number of bits the values are represented, not the
527 * values themselves.
528 *
529 * It is assumed the values are already clamped into the destination type range.
530 * Values outside that range will produce undefined results. Use
531 * lp_build_packs2 instead.
532 */
533 LLVMValueRef
534 lp_build_pack2(struct gallivm_state *gallivm,
535 struct lp_type src_type,
536 struct lp_type dst_type,
537 LLVMValueRef lo,
538 LLVMValueRef hi)
539 {
540 LLVMBuilderRef builder = gallivm->builder;
541 LLVMTypeRef dst_vec_type = lp_build_vec_type(gallivm, dst_type);
542 LLVMValueRef shuffle;
543 LLVMValueRef res = NULL;
544 struct lp_type intr_type = dst_type;
545
546 assert(!src_type.floating);
547 assert(!dst_type.floating);
548 assert(src_type.width == dst_type.width * 2);
549 assert(src_type.length * 2 == dst_type.length);
550
551 /* Check for special cases first */
552 if ((util_cpu_caps.has_sse2 || util_cpu_caps.has_altivec) &&
553 src_type.width * src_type.length >= 128) {
554 const char *intrinsic = NULL;
555 boolean swap_intrinsic_operands = FALSE;
556
557 switch(src_type.width) {
558 case 32:
559 if (util_cpu_caps.has_sse2) {
560 if (dst_type.sign) {
561 intrinsic = "llvm.x86.sse2.packssdw.128";
562 } else {
563 if (util_cpu_caps.has_sse4_1) {
564 intrinsic = "llvm.x86.sse41.packusdw";
565 }
566 }
567 } else if (util_cpu_caps.has_altivec) {
568 if (dst_type.sign) {
569 intrinsic = "llvm.ppc.altivec.vpkswss";
570 } else {
571 intrinsic = "llvm.ppc.altivec.vpkuwus";
572 }
573 #ifdef PIPE_ARCH_LITTLE_ENDIAN
574 swap_intrinsic_operands = TRUE;
575 #endif
576 }
577 break;
578 case 16:
579 if (dst_type.sign) {
580 if (util_cpu_caps.has_sse2) {
581 intrinsic = "llvm.x86.sse2.packsswb.128";
582 } else if (util_cpu_caps.has_altivec) {
583 intrinsic = "llvm.ppc.altivec.vpkshss";
584 #ifdef PIPE_ARCH_LITTLE_ENDIAN
585 swap_intrinsic_operands = TRUE;
586 #endif
587 }
588 } else {
589 if (util_cpu_caps.has_sse2) {
590 intrinsic = "llvm.x86.sse2.packuswb.128";
591 } else if (util_cpu_caps.has_altivec) {
592 intrinsic = "llvm.ppc.altivec.vpkshus";
593 #ifdef PIPE_ARCH_LITTLE_ENDIAN
594 swap_intrinsic_operands = TRUE;
595 #endif
596 }
597 }
598 break;
599 /* default uses generic shuffle below */
600 }
601 if (intrinsic) {
602 if (src_type.width * src_type.length == 128) {
603 LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type);
604 if (swap_intrinsic_operands) {
605 res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, hi, lo);
606 } else {
607 res = lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type, lo, hi);
608 }
609 if (dst_vec_type != intr_vec_type) {
610 res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
611 }
612 }
613 else {
614 int num_split = src_type.width * src_type.length / 128;
615 int i;
616 int nlen = 128 / src_type.width;
617 int lo_off = swap_intrinsic_operands ? nlen : 0;
618 int hi_off = swap_intrinsic_operands ? 0 : nlen;
619 struct lp_type ndst_type = lp_type_unorm(dst_type.width, 128);
620 struct lp_type nintr_type = lp_type_unorm(intr_type.width, 128);
621 LLVMValueRef tmpres[LP_MAX_VECTOR_WIDTH / 128];
622 LLVMValueRef tmplo, tmphi;
623 LLVMTypeRef ndst_vec_type = lp_build_vec_type(gallivm, ndst_type);
624 LLVMTypeRef nintr_vec_type = lp_build_vec_type(gallivm, nintr_type);
625
626 assert(num_split <= LP_MAX_VECTOR_WIDTH / 128);
627
628 for (i = 0; i < num_split / 2; i++) {
629 tmplo = lp_build_extract_range(gallivm,
630 lo, i*nlen*2 + lo_off, nlen);
631 tmphi = lp_build_extract_range(gallivm,
632 lo, i*nlen*2 + hi_off, nlen);
633 tmpres[i] = lp_build_intrinsic_binary(builder, intrinsic,
634 nintr_vec_type, tmplo, tmphi);
635 if (ndst_vec_type != nintr_vec_type) {
636 tmpres[i] = LLVMBuildBitCast(builder, tmpres[i], ndst_vec_type, "");
637 }
638 }
639 for (i = 0; i < num_split / 2; i++) {
640 tmplo = lp_build_extract_range(gallivm,
641 hi, i*nlen*2 + lo_off, nlen);
642 tmphi = lp_build_extract_range(gallivm,
643 hi, i*nlen*2 + hi_off, nlen);
644 tmpres[i+num_split/2] = lp_build_intrinsic_binary(builder, intrinsic,
645 nintr_vec_type,
646 tmplo, tmphi);
647 if (ndst_vec_type != nintr_vec_type) {
648 tmpres[i+num_split/2] = LLVMBuildBitCast(builder, tmpres[i+num_split/2],
649 ndst_vec_type, "");
650 }
651 }
652 res = lp_build_concat(gallivm, tmpres, ndst_type, num_split);
653 }
654 return res;
655 }
656 }
657
658 /* generic shuffle */
659 lo = LLVMBuildBitCast(builder, lo, dst_vec_type, "");
660 hi = LLVMBuildBitCast(builder, hi, dst_vec_type, "");
661
662 shuffle = lp_build_const_pack_shuffle(gallivm, dst_type.length);
663
664 res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, "");
665
666 return res;
667 }
668
669
670 /**
671 * Non-interleaved native pack.
672 *
673 * Similar to lp_build_pack2, but the ordering of values is not
674 * guaranteed, other than it will match lp_build_unpack2_native.
675 *
676 * In particular, with avx2, the lower and upper 128bits of the vectors will
677 * be packed independently, so that (with 32bit->16bit values)
678 * (LSB) (MSB)
679 * lo = l0 __ l1 __ l2 __ l3 __ l4 __ l5 __ l6 __ l7 __
680 * hi = h0 __ h1 __ h2 __ h3 __ h4 __ h5 __ h6 __ h7 __
681 * res = l0 l1 l2 l3 h0 h1 h2 h3 l4 l5 l6 l7 h4 h5 h6 h7
682 *
683 * This will only change the number of bits the values are represented, not the
684 * values themselves.
685 *
686 * It is assumed the values are already clamped into the destination type range.
687 * Values outside that range will produce undefined results.
688 */
689 LLVMValueRef
690 lp_build_pack2_native(struct gallivm_state *gallivm,
691 struct lp_type src_type,
692 struct lp_type dst_type,
693 LLVMValueRef lo,
694 LLVMValueRef hi)
695 {
696 LLVMBuilderRef builder = gallivm->builder;
697 struct lp_type intr_type = dst_type;
698 const char *intrinsic = NULL;
699
700 assert(!src_type.floating);
701 assert(!dst_type.floating);
702 assert(src_type.width == dst_type.width * 2);
703 assert(src_type.length * 2 == dst_type.length);
704
705 /* At this point only have special case for avx2 */
706 if (src_type.length * src_type.width == 256 &&
707 util_cpu_caps.has_avx2) {
708 switch(src_type.width) {
709 case 32:
710 if (dst_type.sign) {
711 intrinsic = "llvm.x86.avx2.packssdw";
712 } else {
713 intrinsic = "llvm.x86.avx2.packusdw";
714 }
715 break;
716 case 16:
717 if (dst_type.sign) {
718 intrinsic = "llvm.x86.avx2.packsswb";
719 } else {
720 intrinsic = "llvm.x86.avx2.packuswb";
721 }
722 break;
723 }
724 }
725 if (intrinsic) {
726 LLVMTypeRef intr_vec_type = lp_build_vec_type(gallivm, intr_type);
727 return lp_build_intrinsic_binary(builder, intrinsic, intr_vec_type,
728 lo, hi);
729 }
730 else {
731 return lp_build_pack2(gallivm, src_type, dst_type, lo, hi);
732 }
733 }
734
735 /**
736 * Non-interleaved pack and saturate.
737 *
738 * Same as lp_build_pack2 but will saturate values so that they fit into the
739 * destination type.
740 */
741 LLVMValueRef
742 lp_build_packs2(struct gallivm_state *gallivm,
743 struct lp_type src_type,
744 struct lp_type dst_type,
745 LLVMValueRef lo,
746 LLVMValueRef hi)
747 {
748 boolean clamp;
749
750 assert(!src_type.floating);
751 assert(!dst_type.floating);
752 assert(src_type.sign == dst_type.sign);
753 assert(src_type.width == dst_type.width * 2);
754 assert(src_type.length * 2 == dst_type.length);
755
756 clamp = TRUE;
757
758 /* All X86 SSE non-interleaved pack instructions take signed inputs and
759 * saturate them, so no need to clamp for those cases. */
760 if(util_cpu_caps.has_sse2 &&
761 src_type.width * src_type.length >= 128 &&
762 src_type.sign &&
763 (src_type.width == 32 || src_type.width == 16))
764 clamp = FALSE;
765
766 if(clamp) {
767 struct lp_build_context bld;
768 unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width;
769 LLVMValueRef dst_max = lp_build_const_int_vec(gallivm, src_type,
770 ((unsigned long long)1 << dst_bits) - 1);
771 lp_build_context_init(&bld, gallivm, src_type);
772 lo = lp_build_min(&bld, lo, dst_max);
773 hi = lp_build_min(&bld, hi, dst_max);
774 /* FIXME: What about lower bound? */
775 }
776
777 return lp_build_pack2(gallivm, src_type, dst_type, lo, hi);
778 }
779
780
781 /**
782 * Truncate the bit width.
783 *
784 * TODO: Handle saturation consistently.
785 */
786 LLVMValueRef
787 lp_build_pack(struct gallivm_state *gallivm,
788 struct lp_type src_type,
789 struct lp_type dst_type,
790 boolean clamped,
791 const LLVMValueRef *src, unsigned num_srcs)
792 {
793 LLVMValueRef (*pack2)(struct gallivm_state *gallivm,
794 struct lp_type src_type,
795 struct lp_type dst_type,
796 LLVMValueRef lo,
797 LLVMValueRef hi);
798 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
799 unsigned i;
800
801 /* Register width must remain constant */
802 assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
803
804 /* We must not loose or gain channels. Only precision */
805 assert(src_type.length * num_srcs == dst_type.length);
806
807 if(clamped)
808 pack2 = &lp_build_pack2;
809 else
810 pack2 = &lp_build_packs2;
811
812 for(i = 0; i < num_srcs; ++i)
813 tmp[i] = src[i];
814
815 while(src_type.width > dst_type.width) {
816 struct lp_type tmp_type = src_type;
817
818 tmp_type.width /= 2;
819 tmp_type.length *= 2;
820
821 /* Take in consideration the sign changes only in the last step */
822 if(tmp_type.width == dst_type.width)
823 tmp_type.sign = dst_type.sign;
824
825 num_srcs /= 2;
826
827 for(i = 0; i < num_srcs; ++i)
828 tmp[i] = pack2(gallivm, src_type, tmp_type,
829 tmp[2*i + 0], tmp[2*i + 1]);
830
831 src_type = tmp_type;
832 }
833
834 assert(num_srcs == 1);
835
836 return tmp[0];
837 }
838
839
840 /**
841 * Truncate or expand the bitwidth.
842 *
843 * NOTE: Getting the right sign flags is crucial here, as we employ some
844 * intrinsics that do saturation.
845 */
846 void
847 lp_build_resize(struct gallivm_state *gallivm,
848 struct lp_type src_type,
849 struct lp_type dst_type,
850 const LLVMValueRef *src, unsigned num_srcs,
851 LLVMValueRef *dst, unsigned num_dsts)
852 {
853 LLVMBuilderRef builder = gallivm->builder;
854 LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
855 unsigned i;
856
857 /*
858 * We don't support float <-> int conversion here. That must be done
859 * before/after calling this function.
860 */
861 assert(src_type.floating == dst_type.floating);
862
863 /*
864 * We don't support double <-> float conversion yet, although it could be
865 * added with little effort.
866 */
867 assert((!src_type.floating && !dst_type.floating) ||
868 src_type.width == dst_type.width);
869
870 /* We must not loose or gain channels. Only precision */
871 assert(src_type.length * num_srcs == dst_type.length * num_dsts);
872
873 assert(src_type.length <= LP_MAX_VECTOR_LENGTH);
874 assert(dst_type.length <= LP_MAX_VECTOR_LENGTH);
875 assert(num_srcs <= LP_MAX_VECTOR_LENGTH);
876 assert(num_dsts <= LP_MAX_VECTOR_LENGTH);
877
878 if (src_type.width > dst_type.width) {
879 /*
880 * Truncate bit width.
881 */
882
883 /* Conversion must be M:1 */
884 assert(num_dsts == 1);
885
886 if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
887 /*
888 * Register width remains constant -- use vector packing intrinsics
889 */
890 tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, src, num_srcs);
891 }
892 else {
893 if (src_type.width / dst_type.width > num_srcs) {
894 /*
895 * First change src vectors size (with shuffle) so they have the
896 * same size as the destination vector, then pack normally.
897 * Note: cannot use cast/extract because llvm generates atrocious code.
898 */
899 unsigned size_ratio = (src_type.width * src_type.length) /
900 (dst_type.length * dst_type.width);
901 unsigned new_length = src_type.length / size_ratio;
902
903 for (i = 0; i < size_ratio * num_srcs; i++) {
904 unsigned start_index = (i % size_ratio) * new_length;
905 tmp[i] = lp_build_extract_range(gallivm, src[i / size_ratio],
906 start_index, new_length);
907 }
908 num_srcs *= size_ratio;
909 src_type.length = new_length;
910 tmp[0] = lp_build_pack(gallivm, src_type, dst_type, TRUE, tmp, num_srcs);
911 }
912 else {
913 /*
914 * Truncate bit width but expand vector size - first pack
915 * then expand simply because this should be more AVX-friendly
916 * for the cases we probably hit.
917 */
918 unsigned size_ratio = (dst_type.width * dst_type.length) /
919 (src_type.length * src_type.width);
920 unsigned num_pack_srcs = num_srcs / size_ratio;
921 dst_type.length = dst_type.length / size_ratio;
922
923 for (i = 0; i < size_ratio; i++) {
924 tmp[i] = lp_build_pack(gallivm, src_type, dst_type, TRUE,
925 &src[i*num_pack_srcs], num_pack_srcs);
926 }
927 tmp[0] = lp_build_concat(gallivm, tmp, dst_type, size_ratio);
928 }
929 }
930 }
931 else if (src_type.width < dst_type.width) {
932 /*
933 * Expand bit width.
934 */
935
936 /* Conversion must be 1:N */
937 assert(num_srcs == 1);
938
939 if (src_type.width * src_type.length == dst_type.width * dst_type.length) {
940 /*
941 * Register width remains constant -- use vector unpack intrinsics
942 */
943 lp_build_unpack(gallivm, src_type, dst_type, src[0], tmp, num_dsts);
944 }
945 else {
946 /*
947 * Do it element-wise.
948 */
949 assert(src_type.length * num_srcs == dst_type.length * num_dsts);
950
951 for (i = 0; i < num_dsts; i++) {
952 tmp[i] = lp_build_undef(gallivm, dst_type);
953 }
954
955 for (i = 0; i < src_type.length; ++i) {
956 unsigned j = i / dst_type.length;
957 LLVMValueRef srcindex = lp_build_const_int32(gallivm, i);
958 LLVMValueRef dstindex = lp_build_const_int32(gallivm, i % dst_type.length);
959 LLVMValueRef val = LLVMBuildExtractElement(builder, src[0], srcindex, "");
960
961 if (src_type.sign && dst_type.sign) {
962 val = LLVMBuildSExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
963 } else {
964 val = LLVMBuildZExt(builder, val, lp_build_elem_type(gallivm, dst_type), "");
965 }
966 tmp[j] = LLVMBuildInsertElement(builder, tmp[j], val, dstindex, "");
967 }
968 }
969 }
970 else {
971 /*
972 * No-op
973 */
974
975 /* "Conversion" must be N:N */
976 assert(num_srcs == num_dsts);
977
978 for(i = 0; i < num_dsts; ++i)
979 tmp[i] = src[i];
980 }
981
982 for(i = 0; i < num_dsts; ++i)
983 dst[i] = tmp[i];
984 }
985
986
987 /**
988 * Expands src vector from src.length to dst_length
989 */
990 LLVMValueRef
991 lp_build_pad_vector(struct gallivm_state *gallivm,
992 LLVMValueRef src,
993 unsigned dst_length)
994 {
995 LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
996 LLVMValueRef undef;
997 LLVMTypeRef type;
998 unsigned i, src_length;
999
1000 type = LLVMTypeOf(src);
1001
1002 if (LLVMGetTypeKind(type) != LLVMVectorTypeKind) {
1003 /* Can't use ShuffleVector on non-vector type */
1004 undef = LLVMGetUndef(LLVMVectorType(type, dst_length));
1005 return LLVMBuildInsertElement(gallivm->builder, undef, src, lp_build_const_int32(gallivm, 0), "");
1006 }
1007
1008 undef = LLVMGetUndef(type);
1009 src_length = LLVMGetVectorSize(type);
1010
1011 assert(dst_length <= ARRAY_SIZE(elems));
1012 assert(dst_length >= src_length);
1013
1014 if (src_length == dst_length)
1015 return src;
1016
1017 /* All elements from src vector */
1018 for (i = 0; i < src_length; ++i)
1019 elems[i] = lp_build_const_int32(gallivm, i);
1020
1021 /* Undef fill remaining space */
1022 for (i = src_length; i < dst_length; ++i)
1023 elems[i] = lp_build_const_int32(gallivm, src_length);
1024
1025 /* Combine the two vectors */
1026 return LLVMBuildShuffleVector(gallivm->builder, src, undef, LLVMConstVector(elems, dst_length), "");
1027 }