Ran "indent", for GNU coding style; some code & comments still need fixup.
[binutils-gdb.git] / gas / config / atof-ns32k.c
1 /* atof_ns32k.c - turn a Flonum into a ns32k floating point number
2 Copyright (C) 1987 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 1, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* this is atof-m68k.c hacked for ns32k */
21
22 #include "as.h"
23
24 extern FLONUM_TYPE generic_floating_point_number; /* Flonums returned here. */
25
26 extern const char EXP_CHARS[];
27 /* Precision in LittleNums. */
28 #define MAX_PRECISION (4)
29 #define F_PRECISION (2)
30 #define D_PRECISION (4)
31
32 /* Length in LittleNums of guard bits. */
33 #define GUARD (2)
34
35 int /* Number of chars in flonum type 'letter'. */
36 atof_sizeof (letter)
37 char letter;
38 {
39 int return_value;
40
41 /*
42 * Permitting uppercase letters is probably a bad idea.
43 * Please use only lower-cased letters in case the upper-cased
44 * ones become unsupported!
45 */
46 switch (letter)
47 {
48 case 'f':
49 return_value = F_PRECISION;
50 break;
51
52 case 'd':
53 return_value = D_PRECISION;
54 break;
55
56 default:
57 return_value = 0;
58 break;
59 }
60 return (return_value);
61 }
62
63 static unsigned long int mask[] =
64 {
65 0x00000000,
66 0x00000001,
67 0x00000003,
68 0x00000007,
69 0x0000000f,
70 0x0000001f,
71 0x0000003f,
72 0x0000007f,
73 0x000000ff,
74 0x000001ff,
75 0x000003ff,
76 0x000007ff,
77 0x00000fff,
78 0x00001fff,
79 0x00003fff,
80 0x00007fff,
81 0x0000ffff,
82 0x0001ffff,
83 0x0003ffff,
84 0x0007ffff,
85 0x000fffff,
86 0x001fffff,
87 0x003fffff,
88 0x007fffff,
89 0x00ffffff,
90 0x01ffffff,
91 0x03ffffff,
92 0x07ffffff,
93 0x0fffffff,
94 0x1fffffff,
95 0x3fffffff,
96 0x7fffffff,
97 0xffffffff
98 };
99 \f
100 static int bits_left_in_littlenum;
101 static int littlenums_left;
102 static LITTLENUM_TYPE *littlenum_pointer;
103
104 static int
105 next_bits (number_of_bits)
106 int number_of_bits;
107 {
108 int return_value;
109
110 if (!littlenums_left)
111 return 0;
112 if (number_of_bits >= bits_left_in_littlenum)
113 {
114 return_value = mask[bits_left_in_littlenum] & *littlenum_pointer;
115 number_of_bits -= bits_left_in_littlenum;
116 return_value <<= number_of_bits;
117 if (littlenums_left)
118 {
119 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS - number_of_bits;
120 littlenum_pointer--;
121 --littlenums_left;
122 return_value |= (*littlenum_pointer >> bits_left_in_littlenum) & mask[number_of_bits];
123 }
124 }
125 else
126 {
127 bits_left_in_littlenum -= number_of_bits;
128 return_value = mask[number_of_bits] & (*littlenum_pointer >> bits_left_in_littlenum);
129 }
130 return (return_value);
131 }
132
133 static void
134 make_invalid_floating_point_number (words)
135 LITTLENUM_TYPE *words;
136 {
137 words[0] = ((unsigned) -1) >> 1; /* Zero the leftmost bit */
138 words[1] = -1;
139 words[2] = -1;
140 words[3] = -1;
141 }
142 \f
143 /***********************************************************************\
144 * *
145 * Warning: this returns 16-bit LITTLENUMs, because that is *
146 * what the VAX thinks in. It is up to the caller to figure *
147 * out any alignment problems and to conspire for the bytes/word *
148 * to be emitted in the right order. Bigendians beware! *
149 * *
150 \***********************************************************************/
151
152 char * /* Return pointer past text consumed. */
153 atof_ns32k (str, what_kind, words)
154 char *str; /* Text to convert to binary. */
155 char what_kind; /* 'd', 'f', 'g', 'h' */
156 LITTLENUM_TYPE *words; /* Build the binary here. */
157 {
158 FLONUM_TYPE f;
159 LITTLENUM_TYPE bits[MAX_PRECISION + MAX_PRECISION + GUARD];
160 /* Extra bits for zeroed low-order bits. */
161 /* The 1st MAX_PRECISION are zeroed, */
162 /* the last contain flonum bits. */
163 char *return_value;
164 int precision; /* Number of 16-bit words in the format. */
165 long int exponent_bits;
166
167 long int exponent_1;
168 long int exponent_2;
169 long int exponent_3;
170 long int exponent_4;
171 int exponent_skippage;
172 LITTLENUM_TYPE word1;
173 LITTLENUM_TYPE *lp;
174
175 return_value = str;
176 f.low = bits + MAX_PRECISION;
177 f.high = NULL;
178 f.leader = NULL;
179 f.exponent = NULL;
180 f.sign = '\0';
181
182 /* Use more LittleNums than seems */
183 /* necessary: the highest flonum may have */
184 /* 15 leading 0 bits, so could be useless. */
185
186 bzero (bits, sizeof (LITTLENUM_TYPE) * MAX_PRECISION);
187
188 switch (what_kind)
189 {
190 case 'f':
191 precision = F_PRECISION;
192 exponent_bits = 8;
193 break;
194
195 case 'd':
196 precision = D_PRECISION;
197 exponent_bits = 11;
198 break;
199
200 default:
201 make_invalid_floating_point_number (words);
202 return NULL;
203 }
204
205 f.high = f.low + precision - 1 + GUARD;
206
207 if (atof_generic (&return_value, ".", EXP_CHARS, &f))
208 {
209 as_warn ("Error converting floating point number (Exponent overflow?)");
210 make_invalid_floating_point_number (words);
211 return NULL;
212 }
213
214 if (f.low > f.leader)
215 {
216 /* 0.0e0 seen. */
217 bzero (words, sizeof (LITTLENUM_TYPE) * precision);
218 return return_value;
219 }
220
221 if (f.sign != '+' && f.sign != '-')
222 {
223 make_invalid_floating_point_number (words);
224 return NULL;
225 }
226
227
228 /*
229 * All vaxen floating_point formats (so far) have:
230 * Bit 15 is sign bit.
231 * Bits 14:n are excess-whatever exponent.
232 * Bits n-1:0 (if any) are most significant bits of fraction.
233 * Bits 15:0 of the next word are the next most significant bits.
234 * And so on for each other word.
235 *
236 * So we need: number of bits of exponent, number of bits of
237 * mantissa.
238 */
239 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
240 littlenum_pointer = f.leader;
241 littlenums_left = 1 + f.leader - f.low;
242 /* Seek (and forget) 1st significant bit */
243 for (exponent_skippage = 0; !next_bits (1); exponent_skippage++)
244 ;
245 exponent_1 = f.exponent + f.leader + 1 - f.low;
246 /* Radix LITTLENUM_RADIX, point just higher than f.leader. */
247 exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
248 /* Radix 2. */
249 exponent_3 = exponent_2 - exponent_skippage;
250 /* Forget leading zeros, forget 1st bit. */
251 exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
252 /* Offset exponent. */
253
254 if (exponent_4 & ~mask[exponent_bits])
255 {
256 /*
257 * Exponent overflow. Lose immediately.
258 */
259
260 /*
261 * We leave return_value alone: admit we read the
262 * number, but return a floating exception
263 * because we can't encode the number.
264 */
265
266 as_warn ("Exponent overflow in floating-point number");
267 make_invalid_floating_point_number (words);
268 return return_value;
269 }
270 lp = words;
271
272 /* Word 1. Sign, exponent and perhaps high bits. */
273 /* Assume 2's complement integers. */
274 word1 = ((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits)) |
275 ((f.sign == '+') ? 0 : 0x8000) | next_bits (15 - exponent_bits);
276 *lp++ = word1;
277
278 /* The rest of the words are just mantissa bits. */
279 for (; lp < words + precision; lp++)
280 *lp = next_bits (LITTLENUM_NUMBER_OF_BITS);
281
282 if (next_bits (1))
283 {
284 unsigned long int carry;
285 /*
286 * Since the NEXT bit is a 1, round UP the mantissa.
287 * The cunning design of these hidden-1 floats permits
288 * us to let the mantissa overflow into the exponent, and
289 * it 'does the right thing'. However, we lose if the
290 * highest-order bit of the lowest-order word flips.
291 * Is that clear?
292 */
293
294
295 /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
296 Please allow at least 1 more bit in carry than is in a LITTLENUM.
297 We need that extra bit to hold a carry during a LITTLENUM carry
298 propagation. Another extra bit (kept 0) will assure us that we
299 don't get a sticky sign bit after shifting right, and that
300 permits us to propagate the carry without any masking of bits.
301 #endif */
302 for (carry = 1, lp--; carry && (lp >= words); lp--)
303 {
304 carry = *lp + carry;
305 *lp = carry;
306 carry >>= LITTLENUM_NUMBER_OF_BITS;
307 }
308 if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
309 {
310 /* We leave return_value alone: admit we read the
311 * number, but return a floating exception
312 * because we can't encode the number.
313 */
314 make_invalid_floating_point_number (words);
315 return return_value;
316 }
317 }
318 return (return_value);
319 }
320
321 /* This is really identical to atof_ns32k except for some details */
322
323 gen_to_words (words, precision, exponent_bits)
324 LITTLENUM_TYPE *words;
325 long int exponent_bits;
326 {
327 int return_value = 0;
328
329 long int exponent_1;
330 long int exponent_2;
331 long int exponent_3;
332 long int exponent_4;
333 int exponent_skippage;
334 LITTLENUM_TYPE word1;
335 LITTLENUM_TYPE *lp;
336
337 if (generic_floating_point_number.low > generic_floating_point_number.leader)
338 {
339 /* 0.0e0 seen. */
340 bzero (words, sizeof (LITTLENUM_TYPE) * precision);
341 return return_value;
342 }
343
344 /*
345 * All vaxen floating_point formats (so far) have:
346 * Bit 15 is sign bit.
347 * Bits 14:n are excess-whatever exponent.
348 * Bits n-1:0 (if any) are most significant bits of fraction.
349 * Bits 15:0 of the next word are the next most significant bits.
350 * And so on for each other word.
351 *
352 * So we need: number of bits of exponent, number of bits of
353 * mantissa.
354 */
355 bits_left_in_littlenum = LITTLENUM_NUMBER_OF_BITS;
356 littlenum_pointer = generic_floating_point_number.leader;
357 littlenums_left = 1 + generic_floating_point_number.leader - generic_floating_point_number.low;
358 /* Seek (and forget) 1st significant bit */
359 for (exponent_skippage = 0; !next_bits (1); exponent_skippage++)
360 ;
361 exponent_1 = generic_floating_point_number.exponent + generic_floating_point_number.leader + 1 -
362 generic_floating_point_number.low;
363 /* Radix LITTLENUM_RADIX, point just higher than generic_floating_point_number.leader. */
364 exponent_2 = exponent_1 * LITTLENUM_NUMBER_OF_BITS;
365 /* Radix 2. */
366 exponent_3 = exponent_2 - exponent_skippage;
367 /* Forget leading zeros, forget 1st bit. */
368 exponent_4 = exponent_3 + ((1 << (exponent_bits - 1)) - 2);
369 /* Offset exponent. */
370
371 if (exponent_4 & ~mask[exponent_bits])
372 {
373 /*
374 * Exponent overflow. Lose immediately.
375 */
376
377 /*
378 * We leave return_value alone: admit we read the
379 * number, but return a floating exception
380 * because we can't encode the number.
381 */
382
383 make_invalid_floating_point_number (words);
384 return return_value;
385 }
386 lp = words;
387
388 /* Word 1. Sign, exponent and perhaps high bits. */
389 /* Assume 2's complement integers. */
390 word1 = ((exponent_4 & mask[exponent_bits]) << (15 - exponent_bits)) |
391 ((generic_floating_point_number.sign == '+') ? 0 : 0x8000) | next_bits (15 - exponent_bits);
392 *lp++ = word1;
393
394 /* The rest of the words are just mantissa bits. */
395 for (; lp < words + precision; lp++)
396 *lp = next_bits (LITTLENUM_NUMBER_OF_BITS);
397
398 if (next_bits (1))
399 {
400 unsigned long int carry;
401 /*
402 * Since the NEXT bit is a 1, round UP the mantissa.
403 * The cunning design of these hidden-1 floats permits
404 * us to let the mantissa overflow into the exponent, and
405 * it 'does the right thing'. However, we lose if the
406 * highest-order bit of the lowest-order word flips.
407 * Is that clear?
408 */
409
410
411 /* #if (sizeof(carry)) < ((sizeof(bits[0]) * BITS_PER_CHAR) + 2)
412 Please allow at least 1 more bit in carry than is in a LITTLENUM.
413 We need that extra bit to hold a carry during a LITTLENUM carry
414 propagation. Another extra bit (kept 0) will assure us that we
415 don't get a sticky sign bit after shifting right, and that
416 permits us to propagate the carry without any masking of bits.
417 #endif */
418 for (carry = 1, lp--; carry && (lp >= words); lp--)
419 {
420 carry = *lp + carry;
421 *lp = carry;
422 carry >>= LITTLENUM_NUMBER_OF_BITS;
423 }
424 if ((word1 ^ *words) & (1 << (LITTLENUM_NUMBER_OF_BITS - 1)))
425 {
426 /* We leave return_value alone: admit we read the
427 * number, but return a floating exception
428 * because we can't encode the number.
429 */
430 make_invalid_floating_point_number (words);
431 return return_value;
432 }
433 }
434 return (return_value);
435 }
436
437 /* This routine is a real kludge. Someone really should do it better, but
438 I'm too lazy, and I don't understand this stuff all too well anyway
439 (JF)
440 */
441 void
442 int_to_gen (x)
443 long x;
444 {
445 char buf[20];
446 char *bufp;
447
448 sprintf (buf, "%ld", x);
449 bufp = &buf[0];
450 if (atof_generic (&bufp, ".", EXP_CHARS, &generic_floating_point_number))
451 as_warn ("Error converting number to floating point (Exponent overflow?)");
452 }