[binutils][aarch64] New SVE_Zm3_11_INDEX operand.
[binutils-gdb.git] / gas / config / tc-aarch64.c
1 /* tc-aarch64.c -- Assemble for the AArch64 ISA
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GAS.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the license, or
11 (at your option) any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING3. If not,
20 see <http://www.gnu.org/licenses/>. */
21
22 #include "as.h"
23 #include <limits.h>
24 #include <stdarg.h>
25 #include "bfd_stdint.h"
26 #define NO_RELOC 0
27 #include "safe-ctype.h"
28 #include "subsegs.h"
29 #include "obstack.h"
30
31 #ifdef OBJ_ELF
32 #include "elf/aarch64.h"
33 #include "dw2gencfi.h"
34 #endif
35
36 #include "dwarf2dbg.h"
37
38 /* Types of processor to assemble for. */
39 #ifndef CPU_DEFAULT
40 #define CPU_DEFAULT AARCH64_ARCH_V8
41 #endif
42
43 #define streq(a, b) (strcmp (a, b) == 0)
44
45 #define END_OF_INSN '\0'
46
47 static aarch64_feature_set cpu_variant;
48
49 /* Variables that we set while parsing command-line options. Once all
50 options have been read we re-process these values to set the real
51 assembly flags. */
52 static const aarch64_feature_set *mcpu_cpu_opt = NULL;
53 static const aarch64_feature_set *march_cpu_opt = NULL;
54
55 /* Constants for known architecture features. */
56 static const aarch64_feature_set cpu_default = CPU_DEFAULT;
57
58 /* Currently active instruction sequence. */
59 static aarch64_instr_sequence *insn_sequence = NULL;
60
61 #ifdef OBJ_ELF
62 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
63 static symbolS *GOT_symbol;
64
65 /* Which ABI to use. */
66 enum aarch64_abi_type
67 {
68 AARCH64_ABI_NONE = 0,
69 AARCH64_ABI_LP64 = 1,
70 AARCH64_ABI_ILP32 = 2
71 };
72
73 #ifndef DEFAULT_ARCH
74 #define DEFAULT_ARCH "aarch64"
75 #endif
76
77 /* DEFAULT_ARCH is initialized in gas/configure.tgt. */
78 static const char *default_arch = DEFAULT_ARCH;
79
80 /* AArch64 ABI for the output file. */
81 static enum aarch64_abi_type aarch64_abi = AARCH64_ABI_NONE;
82
83 /* When non-zero, program to a 32-bit model, in which the C data types
84 int, long and all pointer types are 32-bit objects (ILP32); or to a
85 64-bit model, in which the C int type is 32-bits but the C long type
86 and all pointer types are 64-bit objects (LP64). */
87 #define ilp32_p (aarch64_abi == AARCH64_ABI_ILP32)
88 #endif
89
90 enum vector_el_type
91 {
92 NT_invtype = -1,
93 NT_b,
94 NT_h,
95 NT_s,
96 NT_d,
97 NT_q,
98 NT_zero,
99 NT_merge
100 };
101
102 /* Bits for DEFINED field in vector_type_el. */
103 #define NTA_HASTYPE 1
104 #define NTA_HASINDEX 2
105 #define NTA_HASVARWIDTH 4
106
107 struct vector_type_el
108 {
109 enum vector_el_type type;
110 unsigned char defined;
111 unsigned width;
112 int64_t index;
113 };
114
115 #define FIXUP_F_HAS_EXPLICIT_SHIFT 0x00000001
116
117 struct reloc
118 {
119 bfd_reloc_code_real_type type;
120 expressionS exp;
121 int pc_rel;
122 enum aarch64_opnd opnd;
123 uint32_t flags;
124 unsigned need_libopcodes_p : 1;
125 };
126
127 struct aarch64_instruction
128 {
129 /* libopcodes structure for instruction intermediate representation. */
130 aarch64_inst base;
131 /* Record assembly errors found during the parsing. */
132 struct
133 {
134 enum aarch64_operand_error_kind kind;
135 const char *error;
136 } parsing_error;
137 /* The condition that appears in the assembly line. */
138 int cond;
139 /* Relocation information (including the GAS internal fixup). */
140 struct reloc reloc;
141 /* Need to generate an immediate in the literal pool. */
142 unsigned gen_lit_pool : 1;
143 };
144
145 typedef struct aarch64_instruction aarch64_instruction;
146
147 static aarch64_instruction inst;
148
149 static bfd_boolean parse_operands (char *, const aarch64_opcode *);
150 static bfd_boolean programmer_friendly_fixup (aarch64_instruction *);
151
152 #ifdef OBJ_ELF
153 # define now_instr_sequence seg_info \
154 (now_seg)->tc_segment_info_data.insn_sequence
155 #else
156 static struct aarch64_instr_sequence now_instr_sequence;
157 #endif
158
159 /* Diagnostics inline function utilities.
160
161 These are lightweight utilities which should only be called by parse_operands
162 and other parsers. GAS processes each assembly line by parsing it against
163 instruction template(s), in the case of multiple templates (for the same
164 mnemonic name), those templates are tried one by one until one succeeds or
165 all fail. An assembly line may fail a few templates before being
166 successfully parsed; an error saved here in most cases is not a user error
167 but an error indicating the current template is not the right template.
168 Therefore it is very important that errors can be saved at a low cost during
169 the parsing; we don't want to slow down the whole parsing by recording
170 non-user errors in detail.
171
172 Remember that the objective is to help GAS pick up the most appropriate
173 error message in the case of multiple templates, e.g. FMOV which has 8
174 templates. */
175
176 static inline void
177 clear_error (void)
178 {
179 inst.parsing_error.kind = AARCH64_OPDE_NIL;
180 inst.parsing_error.error = NULL;
181 }
182
183 static inline bfd_boolean
184 error_p (void)
185 {
186 return inst.parsing_error.kind != AARCH64_OPDE_NIL;
187 }
188
189 static inline const char *
190 get_error_message (void)
191 {
192 return inst.parsing_error.error;
193 }
194
195 static inline enum aarch64_operand_error_kind
196 get_error_kind (void)
197 {
198 return inst.parsing_error.kind;
199 }
200
201 static inline void
202 set_error (enum aarch64_operand_error_kind kind, const char *error)
203 {
204 inst.parsing_error.kind = kind;
205 inst.parsing_error.error = error;
206 }
207
208 static inline void
209 set_recoverable_error (const char *error)
210 {
211 set_error (AARCH64_OPDE_RECOVERABLE, error);
212 }
213
214 /* Use the DESC field of the corresponding aarch64_operand entry to compose
215 the error message. */
216 static inline void
217 set_default_error (void)
218 {
219 set_error (AARCH64_OPDE_SYNTAX_ERROR, NULL);
220 }
221
222 static inline void
223 set_syntax_error (const char *error)
224 {
225 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
226 }
227
228 static inline void
229 set_first_syntax_error (const char *error)
230 {
231 if (! error_p ())
232 set_error (AARCH64_OPDE_SYNTAX_ERROR, error);
233 }
234
235 static inline void
236 set_fatal_syntax_error (const char *error)
237 {
238 set_error (AARCH64_OPDE_FATAL_SYNTAX_ERROR, error);
239 }
240 \f
241 /* Number of littlenums required to hold an extended precision number. */
242 #define MAX_LITTLENUMS 6
243
244 /* Return value for certain parsers when the parsing fails; those parsers
245 return the information of the parsed result, e.g. register number, on
246 success. */
247 #define PARSE_FAIL -1
248
249 /* This is an invalid condition code that means no conditional field is
250 present. */
251 #define COND_ALWAYS 0x10
252
253 typedef struct
254 {
255 const char *template;
256 unsigned long value;
257 } asm_barrier_opt;
258
259 typedef struct
260 {
261 const char *template;
262 uint32_t value;
263 } asm_nzcv;
264
265 struct reloc_entry
266 {
267 char *name;
268 bfd_reloc_code_real_type reloc;
269 };
270
271 /* Macros to define the register types and masks for the purpose
272 of parsing. */
273
274 #undef AARCH64_REG_TYPES
275 #define AARCH64_REG_TYPES \
276 BASIC_REG_TYPE(R_32) /* w[0-30] */ \
277 BASIC_REG_TYPE(R_64) /* x[0-30] */ \
278 BASIC_REG_TYPE(SP_32) /* wsp */ \
279 BASIC_REG_TYPE(SP_64) /* sp */ \
280 BASIC_REG_TYPE(Z_32) /* wzr */ \
281 BASIC_REG_TYPE(Z_64) /* xzr */ \
282 BASIC_REG_TYPE(FP_B) /* b[0-31] *//* NOTE: keep FP_[BHSDQ] consecutive! */\
283 BASIC_REG_TYPE(FP_H) /* h[0-31] */ \
284 BASIC_REG_TYPE(FP_S) /* s[0-31] */ \
285 BASIC_REG_TYPE(FP_D) /* d[0-31] */ \
286 BASIC_REG_TYPE(FP_Q) /* q[0-31] */ \
287 BASIC_REG_TYPE(VN) /* v[0-31] */ \
288 BASIC_REG_TYPE(ZN) /* z[0-31] */ \
289 BASIC_REG_TYPE(PN) /* p[0-15] */ \
290 /* Typecheck: any 64-bit int reg (inc SP exc XZR). */ \
291 MULTI_REG_TYPE(R64_SP, REG_TYPE(R_64) | REG_TYPE(SP_64)) \
292 /* Typecheck: same, plus SVE registers. */ \
293 MULTI_REG_TYPE(SVE_BASE, REG_TYPE(R_64) | REG_TYPE(SP_64) \
294 | REG_TYPE(ZN)) \
295 /* Typecheck: x[0-30], w[0-30] or [xw]zr. */ \
296 MULTI_REG_TYPE(R_Z, REG_TYPE(R_32) | REG_TYPE(R_64) \
297 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
298 /* Typecheck: same, plus SVE registers. */ \
299 MULTI_REG_TYPE(SVE_OFFSET, REG_TYPE(R_32) | REG_TYPE(R_64) \
300 | REG_TYPE(Z_32) | REG_TYPE(Z_64) \
301 | REG_TYPE(ZN)) \
302 /* Typecheck: x[0-30], w[0-30] or {w}sp. */ \
303 MULTI_REG_TYPE(R_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
304 | REG_TYPE(SP_32) | REG_TYPE(SP_64)) \
305 /* Typecheck: any int (inc {W}SP inc [WX]ZR). */ \
306 MULTI_REG_TYPE(R_Z_SP, REG_TYPE(R_32) | REG_TYPE(R_64) \
307 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
308 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
309 /* Typecheck: any [BHSDQ]P FP. */ \
310 MULTI_REG_TYPE(BHSDQ, REG_TYPE(FP_B) | REG_TYPE(FP_H) \
311 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
312 /* Typecheck: any int or [BHSDQ]P FP or V reg (exc SP inc [WX]ZR). */ \
313 MULTI_REG_TYPE(R_Z_BHSDQ_V, REG_TYPE(R_32) | REG_TYPE(R_64) \
314 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
315 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
316 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q)) \
317 /* Typecheck: as above, but also Zn, Pn, and {W}SP. This should only \
318 be used for SVE instructions, since Zn and Pn are valid symbols \
319 in other contexts. */ \
320 MULTI_REG_TYPE(R_Z_SP_BHSDQ_VZP, REG_TYPE(R_32) | REG_TYPE(R_64) \
321 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
322 | REG_TYPE(Z_32) | REG_TYPE(Z_64) | REG_TYPE(VN) \
323 | REG_TYPE(FP_B) | REG_TYPE(FP_H) \
324 | REG_TYPE(FP_S) | REG_TYPE(FP_D) | REG_TYPE(FP_Q) \
325 | REG_TYPE(ZN) | REG_TYPE(PN)) \
326 /* Any integer register; used for error messages only. */ \
327 MULTI_REG_TYPE(R_N, REG_TYPE(R_32) | REG_TYPE(R_64) \
328 | REG_TYPE(SP_32) | REG_TYPE(SP_64) \
329 | REG_TYPE(Z_32) | REG_TYPE(Z_64)) \
330 /* Pseudo type to mark the end of the enumerator sequence. */ \
331 BASIC_REG_TYPE(MAX)
332
333 #undef BASIC_REG_TYPE
334 #define BASIC_REG_TYPE(T) REG_TYPE_##T,
335 #undef MULTI_REG_TYPE
336 #define MULTI_REG_TYPE(T,V) BASIC_REG_TYPE(T)
337
338 /* Register type enumerators. */
339 typedef enum aarch64_reg_type_
340 {
341 /* A list of REG_TYPE_*. */
342 AARCH64_REG_TYPES
343 } aarch64_reg_type;
344
345 #undef BASIC_REG_TYPE
346 #define BASIC_REG_TYPE(T) 1 << REG_TYPE_##T,
347 #undef REG_TYPE
348 #define REG_TYPE(T) (1 << REG_TYPE_##T)
349 #undef MULTI_REG_TYPE
350 #define MULTI_REG_TYPE(T,V) V,
351
352 /* Structure for a hash table entry for a register. */
353 typedef struct
354 {
355 const char *name;
356 unsigned char number;
357 ENUM_BITFIELD (aarch64_reg_type_) type : 8;
358 unsigned char builtin;
359 } reg_entry;
360
361 /* Values indexed by aarch64_reg_type to assist the type checking. */
362 static const unsigned reg_type_masks[] =
363 {
364 AARCH64_REG_TYPES
365 };
366
367 #undef BASIC_REG_TYPE
368 #undef REG_TYPE
369 #undef MULTI_REG_TYPE
370 #undef AARCH64_REG_TYPES
371
372 /* Diagnostics used when we don't get a register of the expected type.
373 Note: this has to synchronized with aarch64_reg_type definitions
374 above. */
375 static const char *
376 get_reg_expected_msg (aarch64_reg_type reg_type)
377 {
378 const char *msg;
379
380 switch (reg_type)
381 {
382 case REG_TYPE_R_32:
383 msg = N_("integer 32-bit register expected");
384 break;
385 case REG_TYPE_R_64:
386 msg = N_("integer 64-bit register expected");
387 break;
388 case REG_TYPE_R_N:
389 msg = N_("integer register expected");
390 break;
391 case REG_TYPE_R64_SP:
392 msg = N_("64-bit integer or SP register expected");
393 break;
394 case REG_TYPE_SVE_BASE:
395 msg = N_("base register expected");
396 break;
397 case REG_TYPE_R_Z:
398 msg = N_("integer or zero register expected");
399 break;
400 case REG_TYPE_SVE_OFFSET:
401 msg = N_("offset register expected");
402 break;
403 case REG_TYPE_R_SP:
404 msg = N_("integer or SP register expected");
405 break;
406 case REG_TYPE_R_Z_SP:
407 msg = N_("integer, zero or SP register expected");
408 break;
409 case REG_TYPE_FP_B:
410 msg = N_("8-bit SIMD scalar register expected");
411 break;
412 case REG_TYPE_FP_H:
413 msg = N_("16-bit SIMD scalar or floating-point half precision "
414 "register expected");
415 break;
416 case REG_TYPE_FP_S:
417 msg = N_("32-bit SIMD scalar or floating-point single precision "
418 "register expected");
419 break;
420 case REG_TYPE_FP_D:
421 msg = N_("64-bit SIMD scalar or floating-point double precision "
422 "register expected");
423 break;
424 case REG_TYPE_FP_Q:
425 msg = N_("128-bit SIMD scalar or floating-point quad precision "
426 "register expected");
427 break;
428 case REG_TYPE_R_Z_BHSDQ_V:
429 case REG_TYPE_R_Z_SP_BHSDQ_VZP:
430 msg = N_("register expected");
431 break;
432 case REG_TYPE_BHSDQ: /* any [BHSDQ]P FP */
433 msg = N_("SIMD scalar or floating-point register expected");
434 break;
435 case REG_TYPE_VN: /* any V reg */
436 msg = N_("vector register expected");
437 break;
438 case REG_TYPE_ZN:
439 msg = N_("SVE vector register expected");
440 break;
441 case REG_TYPE_PN:
442 msg = N_("SVE predicate register expected");
443 break;
444 default:
445 as_fatal (_("invalid register type %d"), reg_type);
446 }
447 return msg;
448 }
449
450 /* Some well known registers that we refer to directly elsewhere. */
451 #define REG_SP 31
452
453 /* Instructions take 4 bytes in the object file. */
454 #define INSN_SIZE 4
455
456 static struct hash_control *aarch64_ops_hsh;
457 static struct hash_control *aarch64_cond_hsh;
458 static struct hash_control *aarch64_shift_hsh;
459 static struct hash_control *aarch64_sys_regs_hsh;
460 static struct hash_control *aarch64_pstatefield_hsh;
461 static struct hash_control *aarch64_sys_regs_ic_hsh;
462 static struct hash_control *aarch64_sys_regs_dc_hsh;
463 static struct hash_control *aarch64_sys_regs_at_hsh;
464 static struct hash_control *aarch64_sys_regs_tlbi_hsh;
465 static struct hash_control *aarch64_sys_regs_sr_hsh;
466 static struct hash_control *aarch64_reg_hsh;
467 static struct hash_control *aarch64_barrier_opt_hsh;
468 static struct hash_control *aarch64_nzcv_hsh;
469 static struct hash_control *aarch64_pldop_hsh;
470 static struct hash_control *aarch64_hint_opt_hsh;
471
472 /* Stuff needed to resolve the label ambiguity
473 As:
474 ...
475 label: <insn>
476 may differ from:
477 ...
478 label:
479 <insn> */
480
481 static symbolS *last_label_seen;
482
483 /* Literal pool structure. Held on a per-section
484 and per-sub-section basis. */
485
486 #define MAX_LITERAL_POOL_SIZE 1024
487 typedef struct literal_expression
488 {
489 expressionS exp;
490 /* If exp.op == O_big then this bignum holds a copy of the global bignum value. */
491 LITTLENUM_TYPE * bignum;
492 } literal_expression;
493
494 typedef struct literal_pool
495 {
496 literal_expression literals[MAX_LITERAL_POOL_SIZE];
497 unsigned int next_free_entry;
498 unsigned int id;
499 symbolS *symbol;
500 segT section;
501 subsegT sub_section;
502 int size;
503 struct literal_pool *next;
504 } literal_pool;
505
506 /* Pointer to a linked list of literal pools. */
507 static literal_pool *list_of_pools = NULL;
508 \f
509 /* Pure syntax. */
510
511 /* This array holds the chars that always start a comment. If the
512 pre-processor is disabled, these aren't very useful. */
513 const char comment_chars[] = "";
514
515 /* This array holds the chars that only start a comment at the beginning of
516 a line. If the line seems to have the form '# 123 filename'
517 .line and .file directives will appear in the pre-processed output. */
518 /* Note that input_file.c hand checks for '#' at the beginning of the
519 first line of the input file. This is because the compiler outputs
520 #NO_APP at the beginning of its output. */
521 /* Also note that comments like this one will always work. */
522 const char line_comment_chars[] = "#";
523
524 const char line_separator_chars[] = ";";
525
526 /* Chars that can be used to separate mant
527 from exp in floating point numbers. */
528 const char EXP_CHARS[] = "eE";
529
530 /* Chars that mean this number is a floating point constant. */
531 /* As in 0f12.456 */
532 /* or 0d1.2345e12 */
533
534 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
535
536 /* Prefix character that indicates the start of an immediate value. */
537 #define is_immediate_prefix(C) ((C) == '#')
538
539 /* Separator character handling. */
540
541 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
542
543 static inline bfd_boolean
544 skip_past_char (char **str, char c)
545 {
546 if (**str == c)
547 {
548 (*str)++;
549 return TRUE;
550 }
551 else
552 return FALSE;
553 }
554
555 #define skip_past_comma(str) skip_past_char (str, ',')
556
557 /* Arithmetic expressions (possibly involving symbols). */
558
559 static bfd_boolean in_my_get_expression_p = FALSE;
560
561 /* Third argument to my_get_expression. */
562 #define GE_NO_PREFIX 0
563 #define GE_OPT_PREFIX 1
564
565 /* Return TRUE if the string pointed by *STR is successfully parsed
566 as an valid expression; *EP will be filled with the information of
567 such an expression. Otherwise return FALSE. */
568
569 static bfd_boolean
570 my_get_expression (expressionS * ep, char **str, int prefix_mode,
571 int reject_absent)
572 {
573 char *save_in;
574 segT seg;
575 int prefix_present_p = 0;
576
577 switch (prefix_mode)
578 {
579 case GE_NO_PREFIX:
580 break;
581 case GE_OPT_PREFIX:
582 if (is_immediate_prefix (**str))
583 {
584 (*str)++;
585 prefix_present_p = 1;
586 }
587 break;
588 default:
589 abort ();
590 }
591
592 memset (ep, 0, sizeof (expressionS));
593
594 save_in = input_line_pointer;
595 input_line_pointer = *str;
596 in_my_get_expression_p = TRUE;
597 seg = expression (ep);
598 in_my_get_expression_p = FALSE;
599
600 if (ep->X_op == O_illegal || (reject_absent && ep->X_op == O_absent))
601 {
602 /* We found a bad expression in md_operand(). */
603 *str = input_line_pointer;
604 input_line_pointer = save_in;
605 if (prefix_present_p && ! error_p ())
606 set_fatal_syntax_error (_("bad expression"));
607 else
608 set_first_syntax_error (_("bad expression"));
609 return FALSE;
610 }
611
612 #ifdef OBJ_AOUT
613 if (seg != absolute_section
614 && seg != text_section
615 && seg != data_section
616 && seg != bss_section && seg != undefined_section)
617 {
618 set_syntax_error (_("bad segment"));
619 *str = input_line_pointer;
620 input_line_pointer = save_in;
621 return FALSE;
622 }
623 #else
624 (void) seg;
625 #endif
626
627 *str = input_line_pointer;
628 input_line_pointer = save_in;
629 return TRUE;
630 }
631
632 /* Turn a string in input_line_pointer into a floating point constant
633 of type TYPE, and store the appropriate bytes in *LITP. The number
634 of LITTLENUMS emitted is stored in *SIZEP. An error message is
635 returned, or NULL on OK. */
636
637 const char *
638 md_atof (int type, char *litP, int *sizeP)
639 {
640 return ieee_md_atof (type, litP, sizeP, target_big_endian);
641 }
642
643 /* We handle all bad expressions here, so that we can report the faulty
644 instruction in the error message. */
645 void
646 md_operand (expressionS * exp)
647 {
648 if (in_my_get_expression_p)
649 exp->X_op = O_illegal;
650 }
651
652 /* Immediate values. */
653
654 /* Errors may be set multiple times during parsing or bit encoding
655 (particularly in the Neon bits), but usually the earliest error which is set
656 will be the most meaningful. Avoid overwriting it with later (cascading)
657 errors by calling this function. */
658
659 static void
660 first_error (const char *error)
661 {
662 if (! error_p ())
663 set_syntax_error (error);
664 }
665
666 /* Similar to first_error, but this function accepts formatted error
667 message. */
668 static void
669 first_error_fmt (const char *format, ...)
670 {
671 va_list args;
672 enum
673 { size = 100 };
674 /* N.B. this single buffer will not cause error messages for different
675 instructions to pollute each other; this is because at the end of
676 processing of each assembly line, error message if any will be
677 collected by as_bad. */
678 static char buffer[size];
679
680 if (! error_p ())
681 {
682 int ret ATTRIBUTE_UNUSED;
683 va_start (args, format);
684 ret = vsnprintf (buffer, size, format, args);
685 know (ret <= size - 1 && ret >= 0);
686 va_end (args);
687 set_syntax_error (buffer);
688 }
689 }
690
691 /* Register parsing. */
692
693 /* Generic register parser which is called by other specialized
694 register parsers.
695 CCP points to what should be the beginning of a register name.
696 If it is indeed a valid register name, advance CCP over it and
697 return the reg_entry structure; otherwise return NULL.
698 It does not issue diagnostics. */
699
700 static reg_entry *
701 parse_reg (char **ccp)
702 {
703 char *start = *ccp;
704 char *p;
705 reg_entry *reg;
706
707 #ifdef REGISTER_PREFIX
708 if (*start != REGISTER_PREFIX)
709 return NULL;
710 start++;
711 #endif
712
713 p = start;
714 if (!ISALPHA (*p) || !is_name_beginner (*p))
715 return NULL;
716
717 do
718 p++;
719 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
720
721 reg = (reg_entry *) hash_find_n (aarch64_reg_hsh, start, p - start);
722
723 if (!reg)
724 return NULL;
725
726 *ccp = p;
727 return reg;
728 }
729
730 /* Return TRUE if REG->TYPE is a valid type of TYPE; otherwise
731 return FALSE. */
732 static bfd_boolean
733 aarch64_check_reg_type (const reg_entry *reg, aarch64_reg_type type)
734 {
735 return (reg_type_masks[type] & (1 << reg->type)) != 0;
736 }
737
738 /* Try to parse a base or offset register. Allow SVE base and offset
739 registers if REG_TYPE includes SVE registers. Return the register
740 entry on success, setting *QUALIFIER to the register qualifier.
741 Return null otherwise.
742
743 Note that this function does not issue any diagnostics. */
744
745 static const reg_entry *
746 aarch64_addr_reg_parse (char **ccp, aarch64_reg_type reg_type,
747 aarch64_opnd_qualifier_t *qualifier)
748 {
749 char *str = *ccp;
750 const reg_entry *reg = parse_reg (&str);
751
752 if (reg == NULL)
753 return NULL;
754
755 switch (reg->type)
756 {
757 case REG_TYPE_R_32:
758 case REG_TYPE_SP_32:
759 case REG_TYPE_Z_32:
760 *qualifier = AARCH64_OPND_QLF_W;
761 break;
762
763 case REG_TYPE_R_64:
764 case REG_TYPE_SP_64:
765 case REG_TYPE_Z_64:
766 *qualifier = AARCH64_OPND_QLF_X;
767 break;
768
769 case REG_TYPE_ZN:
770 if ((reg_type_masks[reg_type] & (1 << REG_TYPE_ZN)) == 0
771 || str[0] != '.')
772 return NULL;
773 switch (TOLOWER (str[1]))
774 {
775 case 's':
776 *qualifier = AARCH64_OPND_QLF_S_S;
777 break;
778 case 'd':
779 *qualifier = AARCH64_OPND_QLF_S_D;
780 break;
781 default:
782 return NULL;
783 }
784 str += 2;
785 break;
786
787 default:
788 return NULL;
789 }
790
791 *ccp = str;
792
793 return reg;
794 }
795
796 /* Try to parse a base or offset register. Return the register entry
797 on success, setting *QUALIFIER to the register qualifier. Return null
798 otherwise.
799
800 Note that this function does not issue any diagnostics. */
801
802 static const reg_entry *
803 aarch64_reg_parse_32_64 (char **ccp, aarch64_opnd_qualifier_t *qualifier)
804 {
805 return aarch64_addr_reg_parse (ccp, REG_TYPE_R_Z_SP, qualifier);
806 }
807
808 /* Parse the qualifier of a vector register or vector element of type
809 REG_TYPE. Fill in *PARSED_TYPE and return TRUE if the parsing
810 succeeds; otherwise return FALSE.
811
812 Accept only one occurrence of:
813 4b 8b 16b 2h 4h 8h 2s 4s 1d 2d
814 b h s d q */
815 static bfd_boolean
816 parse_vector_type_for_operand (aarch64_reg_type reg_type,
817 struct vector_type_el *parsed_type, char **str)
818 {
819 char *ptr = *str;
820 unsigned width;
821 unsigned element_size;
822 enum vector_el_type type;
823
824 /* skip '.' */
825 gas_assert (*ptr == '.');
826 ptr++;
827
828 if (reg_type == REG_TYPE_ZN || reg_type == REG_TYPE_PN || !ISDIGIT (*ptr))
829 {
830 width = 0;
831 goto elt_size;
832 }
833 width = strtoul (ptr, &ptr, 10);
834 if (width != 1 && width != 2 && width != 4 && width != 8 && width != 16)
835 {
836 first_error_fmt (_("bad size %d in vector width specifier"), width);
837 return FALSE;
838 }
839
840 elt_size:
841 switch (TOLOWER (*ptr))
842 {
843 case 'b':
844 type = NT_b;
845 element_size = 8;
846 break;
847 case 'h':
848 type = NT_h;
849 element_size = 16;
850 break;
851 case 's':
852 type = NT_s;
853 element_size = 32;
854 break;
855 case 'd':
856 type = NT_d;
857 element_size = 64;
858 break;
859 case 'q':
860 if (reg_type == REG_TYPE_ZN || width == 1)
861 {
862 type = NT_q;
863 element_size = 128;
864 break;
865 }
866 /* fall through. */
867 default:
868 if (*ptr != '\0')
869 first_error_fmt (_("unexpected character `%c' in element size"), *ptr);
870 else
871 first_error (_("missing element size"));
872 return FALSE;
873 }
874 if (width != 0 && width * element_size != 64
875 && width * element_size != 128
876 && !(width == 2 && element_size == 16)
877 && !(width == 4 && element_size == 8))
878 {
879 first_error_fmt (_
880 ("invalid element size %d and vector size combination %c"),
881 width, *ptr);
882 return FALSE;
883 }
884 ptr++;
885
886 parsed_type->type = type;
887 parsed_type->width = width;
888
889 *str = ptr;
890
891 return TRUE;
892 }
893
894 /* *STR contains an SVE zero/merge predication suffix. Parse it into
895 *PARSED_TYPE and point *STR at the end of the suffix. */
896
897 static bfd_boolean
898 parse_predication_for_operand (struct vector_type_el *parsed_type, char **str)
899 {
900 char *ptr = *str;
901
902 /* Skip '/'. */
903 gas_assert (*ptr == '/');
904 ptr++;
905 switch (TOLOWER (*ptr))
906 {
907 case 'z':
908 parsed_type->type = NT_zero;
909 break;
910 case 'm':
911 parsed_type->type = NT_merge;
912 break;
913 default:
914 if (*ptr != '\0' && *ptr != ',')
915 first_error_fmt (_("unexpected character `%c' in predication type"),
916 *ptr);
917 else
918 first_error (_("missing predication type"));
919 return FALSE;
920 }
921 parsed_type->width = 0;
922 *str = ptr + 1;
923 return TRUE;
924 }
925
926 /* Parse a register of the type TYPE.
927
928 Return PARSE_FAIL if the string pointed by *CCP is not a valid register
929 name or the parsed register is not of TYPE.
930
931 Otherwise return the register number, and optionally fill in the actual
932 type of the register in *RTYPE when multiple alternatives were given, and
933 return the register shape and element index information in *TYPEINFO.
934
935 IN_REG_LIST should be set with TRUE if the caller is parsing a register
936 list. */
937
938 static int
939 parse_typed_reg (char **ccp, aarch64_reg_type type, aarch64_reg_type *rtype,
940 struct vector_type_el *typeinfo, bfd_boolean in_reg_list)
941 {
942 char *str = *ccp;
943 const reg_entry *reg = parse_reg (&str);
944 struct vector_type_el atype;
945 struct vector_type_el parsetype;
946 bfd_boolean is_typed_vecreg = FALSE;
947
948 atype.defined = 0;
949 atype.type = NT_invtype;
950 atype.width = -1;
951 atype.index = 0;
952
953 if (reg == NULL)
954 {
955 if (typeinfo)
956 *typeinfo = atype;
957 set_default_error ();
958 return PARSE_FAIL;
959 }
960
961 if (! aarch64_check_reg_type (reg, type))
962 {
963 DEBUG_TRACE ("reg type check failed");
964 set_default_error ();
965 return PARSE_FAIL;
966 }
967 type = reg->type;
968
969 if ((type == REG_TYPE_VN || type == REG_TYPE_ZN || type == REG_TYPE_PN)
970 && (*str == '.' || (type == REG_TYPE_PN && *str == '/')))
971 {
972 if (*str == '.')
973 {
974 if (!parse_vector_type_for_operand (type, &parsetype, &str))
975 return PARSE_FAIL;
976 }
977 else
978 {
979 if (!parse_predication_for_operand (&parsetype, &str))
980 return PARSE_FAIL;
981 }
982
983 /* Register if of the form Vn.[bhsdq]. */
984 is_typed_vecreg = TRUE;
985
986 if (type == REG_TYPE_ZN || type == REG_TYPE_PN)
987 {
988 /* The width is always variable; we don't allow an integer width
989 to be specified. */
990 gas_assert (parsetype.width == 0);
991 atype.defined |= NTA_HASVARWIDTH | NTA_HASTYPE;
992 }
993 else if (parsetype.width == 0)
994 /* Expect index. In the new scheme we cannot have
995 Vn.[bhsdq] represent a scalar. Therefore any
996 Vn.[bhsdq] should have an index following it.
997 Except in reglists of course. */
998 atype.defined |= NTA_HASINDEX;
999 else
1000 atype.defined |= NTA_HASTYPE;
1001
1002 atype.type = parsetype.type;
1003 atype.width = parsetype.width;
1004 }
1005
1006 if (skip_past_char (&str, '['))
1007 {
1008 expressionS exp;
1009
1010 /* Reject Sn[index] syntax. */
1011 if (!is_typed_vecreg)
1012 {
1013 first_error (_("this type of register can't be indexed"));
1014 return PARSE_FAIL;
1015 }
1016
1017 if (in_reg_list)
1018 {
1019 first_error (_("index not allowed inside register list"));
1020 return PARSE_FAIL;
1021 }
1022
1023 atype.defined |= NTA_HASINDEX;
1024
1025 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1026
1027 if (exp.X_op != O_constant)
1028 {
1029 first_error (_("constant expression required"));
1030 return PARSE_FAIL;
1031 }
1032
1033 if (! skip_past_char (&str, ']'))
1034 return PARSE_FAIL;
1035
1036 atype.index = exp.X_add_number;
1037 }
1038 else if (!in_reg_list && (atype.defined & NTA_HASINDEX) != 0)
1039 {
1040 /* Indexed vector register expected. */
1041 first_error (_("indexed vector register expected"));
1042 return PARSE_FAIL;
1043 }
1044
1045 /* A vector reg Vn should be typed or indexed. */
1046 if (type == REG_TYPE_VN && atype.defined == 0)
1047 {
1048 first_error (_("invalid use of vector register"));
1049 }
1050
1051 if (typeinfo)
1052 *typeinfo = atype;
1053
1054 if (rtype)
1055 *rtype = type;
1056
1057 *ccp = str;
1058
1059 return reg->number;
1060 }
1061
1062 /* Parse register.
1063
1064 Return the register number on success; return PARSE_FAIL otherwise.
1065
1066 If RTYPE is not NULL, return in *RTYPE the (possibly restricted) type of
1067 the register (e.g. NEON double or quad reg when either has been requested).
1068
1069 If this is a NEON vector register with additional type information, fill
1070 in the struct pointed to by VECTYPE (if non-NULL).
1071
1072 This parser does not handle register list. */
1073
1074 static int
1075 aarch64_reg_parse (char **ccp, aarch64_reg_type type,
1076 aarch64_reg_type *rtype, struct vector_type_el *vectype)
1077 {
1078 struct vector_type_el atype;
1079 char *str = *ccp;
1080 int reg = parse_typed_reg (&str, type, rtype, &atype,
1081 /*in_reg_list= */ FALSE);
1082
1083 if (reg == PARSE_FAIL)
1084 return PARSE_FAIL;
1085
1086 if (vectype)
1087 *vectype = atype;
1088
1089 *ccp = str;
1090
1091 return reg;
1092 }
1093
1094 static inline bfd_boolean
1095 eq_vector_type_el (struct vector_type_el e1, struct vector_type_el e2)
1096 {
1097 return
1098 e1.type == e2.type
1099 && e1.defined == e2.defined
1100 && e1.width == e2.width && e1.index == e2.index;
1101 }
1102
1103 /* This function parses a list of vector registers of type TYPE.
1104 On success, it returns the parsed register list information in the
1105 following encoded format:
1106
1107 bit 18-22 | 13-17 | 7-11 | 2-6 | 0-1
1108 4th regno | 3rd regno | 2nd regno | 1st regno | num_of_reg
1109
1110 The information of the register shape and/or index is returned in
1111 *VECTYPE.
1112
1113 It returns PARSE_FAIL if the register list is invalid.
1114
1115 The list contains one to four registers.
1116 Each register can be one of:
1117 <Vt>.<T>[<index>]
1118 <Vt>.<T>
1119 All <T> should be identical.
1120 All <index> should be identical.
1121 There are restrictions on <Vt> numbers which are checked later
1122 (by reg_list_valid_p). */
1123
1124 static int
1125 parse_vector_reg_list (char **ccp, aarch64_reg_type type,
1126 struct vector_type_el *vectype)
1127 {
1128 char *str = *ccp;
1129 int nb_regs;
1130 struct vector_type_el typeinfo, typeinfo_first;
1131 int val, val_range;
1132 int in_range;
1133 int ret_val;
1134 int i;
1135 bfd_boolean error = FALSE;
1136 bfd_boolean expect_index = FALSE;
1137
1138 if (*str != '{')
1139 {
1140 set_syntax_error (_("expecting {"));
1141 return PARSE_FAIL;
1142 }
1143 str++;
1144
1145 nb_regs = 0;
1146 typeinfo_first.defined = 0;
1147 typeinfo_first.type = NT_invtype;
1148 typeinfo_first.width = -1;
1149 typeinfo_first.index = 0;
1150 ret_val = 0;
1151 val = -1;
1152 val_range = -1;
1153 in_range = 0;
1154 do
1155 {
1156 if (in_range)
1157 {
1158 str++; /* skip over '-' */
1159 val_range = val;
1160 }
1161 val = parse_typed_reg (&str, type, NULL, &typeinfo,
1162 /*in_reg_list= */ TRUE);
1163 if (val == PARSE_FAIL)
1164 {
1165 set_first_syntax_error (_("invalid vector register in list"));
1166 error = TRUE;
1167 continue;
1168 }
1169 /* reject [bhsd]n */
1170 if (type == REG_TYPE_VN && typeinfo.defined == 0)
1171 {
1172 set_first_syntax_error (_("invalid scalar register in list"));
1173 error = TRUE;
1174 continue;
1175 }
1176
1177 if (typeinfo.defined & NTA_HASINDEX)
1178 expect_index = TRUE;
1179
1180 if (in_range)
1181 {
1182 if (val < val_range)
1183 {
1184 set_first_syntax_error
1185 (_("invalid range in vector register list"));
1186 error = TRUE;
1187 }
1188 val_range++;
1189 }
1190 else
1191 {
1192 val_range = val;
1193 if (nb_regs == 0)
1194 typeinfo_first = typeinfo;
1195 else if (! eq_vector_type_el (typeinfo_first, typeinfo))
1196 {
1197 set_first_syntax_error
1198 (_("type mismatch in vector register list"));
1199 error = TRUE;
1200 }
1201 }
1202 if (! error)
1203 for (i = val_range; i <= val; i++)
1204 {
1205 ret_val |= i << (5 * nb_regs);
1206 nb_regs++;
1207 }
1208 in_range = 0;
1209 }
1210 while (skip_past_comma (&str) || (in_range = 1, *str == '-'));
1211
1212 skip_whitespace (str);
1213 if (*str != '}')
1214 {
1215 set_first_syntax_error (_("end of vector register list not found"));
1216 error = TRUE;
1217 }
1218 str++;
1219
1220 skip_whitespace (str);
1221
1222 if (expect_index)
1223 {
1224 if (skip_past_char (&str, '['))
1225 {
1226 expressionS exp;
1227
1228 my_get_expression (&exp, &str, GE_NO_PREFIX, 1);
1229 if (exp.X_op != O_constant)
1230 {
1231 set_first_syntax_error (_("constant expression required."));
1232 error = TRUE;
1233 }
1234 if (! skip_past_char (&str, ']'))
1235 error = TRUE;
1236 else
1237 typeinfo_first.index = exp.X_add_number;
1238 }
1239 else
1240 {
1241 set_first_syntax_error (_("expected index"));
1242 error = TRUE;
1243 }
1244 }
1245
1246 if (nb_regs > 4)
1247 {
1248 set_first_syntax_error (_("too many registers in vector register list"));
1249 error = TRUE;
1250 }
1251 else if (nb_regs == 0)
1252 {
1253 set_first_syntax_error (_("empty vector register list"));
1254 error = TRUE;
1255 }
1256
1257 *ccp = str;
1258 if (! error)
1259 *vectype = typeinfo_first;
1260
1261 return error ? PARSE_FAIL : (ret_val << 2) | (nb_regs - 1);
1262 }
1263
1264 /* Directives: register aliases. */
1265
1266 static reg_entry *
1267 insert_reg_alias (char *str, int number, aarch64_reg_type type)
1268 {
1269 reg_entry *new;
1270 const char *name;
1271
1272 if ((new = hash_find (aarch64_reg_hsh, str)) != 0)
1273 {
1274 if (new->builtin)
1275 as_warn (_("ignoring attempt to redefine built-in register '%s'"),
1276 str);
1277
1278 /* Only warn about a redefinition if it's not defined as the
1279 same register. */
1280 else if (new->number != number || new->type != type)
1281 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1282
1283 return NULL;
1284 }
1285
1286 name = xstrdup (str);
1287 new = XNEW (reg_entry);
1288
1289 new->name = name;
1290 new->number = number;
1291 new->type = type;
1292 new->builtin = FALSE;
1293
1294 if (hash_insert (aarch64_reg_hsh, name, (void *) new))
1295 abort ();
1296
1297 return new;
1298 }
1299
1300 /* Look for the .req directive. This is of the form:
1301
1302 new_register_name .req existing_register_name
1303
1304 If we find one, or if it looks sufficiently like one that we want to
1305 handle any error here, return TRUE. Otherwise return FALSE. */
1306
1307 static bfd_boolean
1308 create_register_alias (char *newname, char *p)
1309 {
1310 const reg_entry *old;
1311 char *oldname, *nbuf;
1312 size_t nlen;
1313
1314 /* The input scrubber ensures that whitespace after the mnemonic is
1315 collapsed to single spaces. */
1316 oldname = p;
1317 if (strncmp (oldname, " .req ", 6) != 0)
1318 return FALSE;
1319
1320 oldname += 6;
1321 if (*oldname == '\0')
1322 return FALSE;
1323
1324 old = hash_find (aarch64_reg_hsh, oldname);
1325 if (!old)
1326 {
1327 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
1328 return TRUE;
1329 }
1330
1331 /* If TC_CASE_SENSITIVE is defined, then newname already points to
1332 the desired alias name, and p points to its end. If not, then
1333 the desired alias name is in the global original_case_string. */
1334 #ifdef TC_CASE_SENSITIVE
1335 nlen = p - newname;
1336 #else
1337 newname = original_case_string;
1338 nlen = strlen (newname);
1339 #endif
1340
1341 nbuf = xmemdup0 (newname, nlen);
1342
1343 /* Create aliases under the new name as stated; an all-lowercase
1344 version of the new name; and an all-uppercase version of the new
1345 name. */
1346 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
1347 {
1348 for (p = nbuf; *p; p++)
1349 *p = TOUPPER (*p);
1350
1351 if (strncmp (nbuf, newname, nlen))
1352 {
1353 /* If this attempt to create an additional alias fails, do not bother
1354 trying to create the all-lower case alias. We will fail and issue
1355 a second, duplicate error message. This situation arises when the
1356 programmer does something like:
1357 foo .req r0
1358 Foo .req r1
1359 The second .req creates the "Foo" alias but then fails to create
1360 the artificial FOO alias because it has already been created by the
1361 first .req. */
1362 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
1363 {
1364 free (nbuf);
1365 return TRUE;
1366 }
1367 }
1368
1369 for (p = nbuf; *p; p++)
1370 *p = TOLOWER (*p);
1371
1372 if (strncmp (nbuf, newname, nlen))
1373 insert_reg_alias (nbuf, old->number, old->type);
1374 }
1375
1376 free (nbuf);
1377 return TRUE;
1378 }
1379
1380 /* Should never be called, as .req goes between the alias and the
1381 register name, not at the beginning of the line. */
1382 static void
1383 s_req (int a ATTRIBUTE_UNUSED)
1384 {
1385 as_bad (_("invalid syntax for .req directive"));
1386 }
1387
1388 /* The .unreq directive deletes an alias which was previously defined
1389 by .req. For example:
1390
1391 my_alias .req r11
1392 .unreq my_alias */
1393
1394 static void
1395 s_unreq (int a ATTRIBUTE_UNUSED)
1396 {
1397 char *name;
1398 char saved_char;
1399
1400 name = input_line_pointer;
1401
1402 while (*input_line_pointer != 0
1403 && *input_line_pointer != ' ' && *input_line_pointer != '\n')
1404 ++input_line_pointer;
1405
1406 saved_char = *input_line_pointer;
1407 *input_line_pointer = 0;
1408
1409 if (!*name)
1410 as_bad (_("invalid syntax for .unreq directive"));
1411 else
1412 {
1413 reg_entry *reg = hash_find (aarch64_reg_hsh, name);
1414
1415 if (!reg)
1416 as_bad (_("unknown register alias '%s'"), name);
1417 else if (reg->builtin)
1418 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
1419 name);
1420 else
1421 {
1422 char *p;
1423 char *nbuf;
1424
1425 hash_delete (aarch64_reg_hsh, name, FALSE);
1426 free ((char *) reg->name);
1427 free (reg);
1428
1429 /* Also locate the all upper case and all lower case versions.
1430 Do not complain if we cannot find one or the other as it
1431 was probably deleted above. */
1432
1433 nbuf = strdup (name);
1434 for (p = nbuf; *p; p++)
1435 *p = TOUPPER (*p);
1436 reg = hash_find (aarch64_reg_hsh, nbuf);
1437 if (reg)
1438 {
1439 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1440 free ((char *) reg->name);
1441 free (reg);
1442 }
1443
1444 for (p = nbuf; *p; p++)
1445 *p = TOLOWER (*p);
1446 reg = hash_find (aarch64_reg_hsh, nbuf);
1447 if (reg)
1448 {
1449 hash_delete (aarch64_reg_hsh, nbuf, FALSE);
1450 free ((char *) reg->name);
1451 free (reg);
1452 }
1453
1454 free (nbuf);
1455 }
1456 }
1457
1458 *input_line_pointer = saved_char;
1459 demand_empty_rest_of_line ();
1460 }
1461
1462 /* Directives: Instruction set selection. */
1463
1464 #ifdef OBJ_ELF
1465 /* This code is to handle mapping symbols as defined in the ARM AArch64 ELF
1466 spec. (See "Mapping symbols", section 4.5.4, ARM AAELF64 version 0.05).
1467 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
1468 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
1469
1470 /* Create a new mapping symbol for the transition to STATE. */
1471
1472 static void
1473 make_mapping_symbol (enum mstate state, valueT value, fragS * frag)
1474 {
1475 symbolS *symbolP;
1476 const char *symname;
1477 int type;
1478
1479 switch (state)
1480 {
1481 case MAP_DATA:
1482 symname = "$d";
1483 type = BSF_NO_FLAGS;
1484 break;
1485 case MAP_INSN:
1486 symname = "$x";
1487 type = BSF_NO_FLAGS;
1488 break;
1489 default:
1490 abort ();
1491 }
1492
1493 symbolP = symbol_new (symname, now_seg, value, frag);
1494 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
1495
1496 /* Save the mapping symbols for future reference. Also check that
1497 we do not place two mapping symbols at the same offset within a
1498 frag. We'll handle overlap between frags in
1499 check_mapping_symbols.
1500
1501 If .fill or other data filling directive generates zero sized data,
1502 the mapping symbol for the following code will have the same value
1503 as the one generated for the data filling directive. In this case,
1504 we replace the old symbol with the new one at the same address. */
1505 if (value == 0)
1506 {
1507 if (frag->tc_frag_data.first_map != NULL)
1508 {
1509 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
1510 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP,
1511 &symbol_lastP);
1512 }
1513 frag->tc_frag_data.first_map = symbolP;
1514 }
1515 if (frag->tc_frag_data.last_map != NULL)
1516 {
1517 know (S_GET_VALUE (frag->tc_frag_data.last_map) <=
1518 S_GET_VALUE (symbolP));
1519 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
1520 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP,
1521 &symbol_lastP);
1522 }
1523 frag->tc_frag_data.last_map = symbolP;
1524 }
1525
1526 /* We must sometimes convert a region marked as code to data during
1527 code alignment, if an odd number of bytes have to be padded. The
1528 code mapping symbol is pushed to an aligned address. */
1529
1530 static void
1531 insert_data_mapping_symbol (enum mstate state,
1532 valueT value, fragS * frag, offsetT bytes)
1533 {
1534 /* If there was already a mapping symbol, remove it. */
1535 if (frag->tc_frag_data.last_map != NULL
1536 && S_GET_VALUE (frag->tc_frag_data.last_map) ==
1537 frag->fr_address + value)
1538 {
1539 symbolS *symp = frag->tc_frag_data.last_map;
1540
1541 if (value == 0)
1542 {
1543 know (frag->tc_frag_data.first_map == symp);
1544 frag->tc_frag_data.first_map = NULL;
1545 }
1546 frag->tc_frag_data.last_map = NULL;
1547 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
1548 }
1549
1550 make_mapping_symbol (MAP_DATA, value, frag);
1551 make_mapping_symbol (state, value + bytes, frag);
1552 }
1553
1554 static void mapping_state_2 (enum mstate state, int max_chars);
1555
1556 /* Set the mapping state to STATE. Only call this when about to
1557 emit some STATE bytes to the file. */
1558
1559 void
1560 mapping_state (enum mstate state)
1561 {
1562 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1563
1564 if (state == MAP_INSN)
1565 /* AArch64 instructions require 4-byte alignment. When emitting
1566 instructions into any section, record the appropriate section
1567 alignment. */
1568 record_alignment (now_seg, 2);
1569
1570 if (mapstate == state)
1571 /* The mapping symbol has already been emitted.
1572 There is nothing else to do. */
1573 return;
1574
1575 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
1576 if (TRANSITION (MAP_UNDEFINED, MAP_DATA) && !subseg_text_p (now_seg))
1577 /* Emit MAP_DATA within executable section in order. Otherwise, it will be
1578 evaluated later in the next else. */
1579 return;
1580 else if (TRANSITION (MAP_UNDEFINED, MAP_INSN))
1581 {
1582 /* Only add the symbol if the offset is > 0:
1583 if we're at the first frag, check it's size > 0;
1584 if we're not at the first frag, then for sure
1585 the offset is > 0. */
1586 struct frag *const frag_first = seg_info (now_seg)->frchainP->frch_root;
1587 const int add_symbol = (frag_now != frag_first)
1588 || (frag_now_fix () > 0);
1589
1590 if (add_symbol)
1591 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
1592 }
1593 #undef TRANSITION
1594
1595 mapping_state_2 (state, 0);
1596 }
1597
1598 /* Same as mapping_state, but MAX_CHARS bytes have already been
1599 allocated. Put the mapping symbol that far back. */
1600
1601 static void
1602 mapping_state_2 (enum mstate state, int max_chars)
1603 {
1604 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1605
1606 if (!SEG_NORMAL (now_seg))
1607 return;
1608
1609 if (mapstate == state)
1610 /* The mapping symbol has already been emitted.
1611 There is nothing else to do. */
1612 return;
1613
1614 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
1615 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
1616 }
1617 #else
1618 #define mapping_state(x) /* nothing */
1619 #define mapping_state_2(x, y) /* nothing */
1620 #endif
1621
1622 /* Directives: sectioning and alignment. */
1623
1624 static void
1625 s_bss (int ignore ATTRIBUTE_UNUSED)
1626 {
1627 /* We don't support putting frags in the BSS segment, we fake it by
1628 marking in_bss, then looking at s_skip for clues. */
1629 subseg_set (bss_section, 0);
1630 demand_empty_rest_of_line ();
1631 mapping_state (MAP_DATA);
1632 }
1633
1634 static void
1635 s_even (int ignore ATTRIBUTE_UNUSED)
1636 {
1637 /* Never make frag if expect extra pass. */
1638 if (!need_pass_2)
1639 frag_align (1, 0, 0);
1640
1641 record_alignment (now_seg, 1);
1642
1643 demand_empty_rest_of_line ();
1644 }
1645
1646 /* Directives: Literal pools. */
1647
1648 static literal_pool *
1649 find_literal_pool (int size)
1650 {
1651 literal_pool *pool;
1652
1653 for (pool = list_of_pools; pool != NULL; pool = pool->next)
1654 {
1655 if (pool->section == now_seg
1656 && pool->sub_section == now_subseg && pool->size == size)
1657 break;
1658 }
1659
1660 return pool;
1661 }
1662
1663 static literal_pool *
1664 find_or_make_literal_pool (int size)
1665 {
1666 /* Next literal pool ID number. */
1667 static unsigned int latest_pool_num = 1;
1668 literal_pool *pool;
1669
1670 pool = find_literal_pool (size);
1671
1672 if (pool == NULL)
1673 {
1674 /* Create a new pool. */
1675 pool = XNEW (literal_pool);
1676 if (!pool)
1677 return NULL;
1678
1679 /* Currently we always put the literal pool in the current text
1680 section. If we were generating "small" model code where we
1681 knew that all code and initialised data was within 1MB then
1682 we could output literals to mergeable, read-only data
1683 sections. */
1684
1685 pool->next_free_entry = 0;
1686 pool->section = now_seg;
1687 pool->sub_section = now_subseg;
1688 pool->size = size;
1689 pool->next = list_of_pools;
1690 pool->symbol = NULL;
1691
1692 /* Add it to the list. */
1693 list_of_pools = pool;
1694 }
1695
1696 /* New pools, and emptied pools, will have a NULL symbol. */
1697 if (pool->symbol == NULL)
1698 {
1699 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
1700 (valueT) 0, &zero_address_frag);
1701 pool->id = latest_pool_num++;
1702 }
1703
1704 /* Done. */
1705 return pool;
1706 }
1707
1708 /* Add the literal of size SIZE in *EXP to the relevant literal pool.
1709 Return TRUE on success, otherwise return FALSE. */
1710 static bfd_boolean
1711 add_to_lit_pool (expressionS *exp, int size)
1712 {
1713 literal_pool *pool;
1714 unsigned int entry;
1715
1716 pool = find_or_make_literal_pool (size);
1717
1718 /* Check if this literal value is already in the pool. */
1719 for (entry = 0; entry < pool->next_free_entry; entry++)
1720 {
1721 expressionS * litexp = & pool->literals[entry].exp;
1722
1723 if ((litexp->X_op == exp->X_op)
1724 && (exp->X_op == O_constant)
1725 && (litexp->X_add_number == exp->X_add_number)
1726 && (litexp->X_unsigned == exp->X_unsigned))
1727 break;
1728
1729 if ((litexp->X_op == exp->X_op)
1730 && (exp->X_op == O_symbol)
1731 && (litexp->X_add_number == exp->X_add_number)
1732 && (litexp->X_add_symbol == exp->X_add_symbol)
1733 && (litexp->X_op_symbol == exp->X_op_symbol))
1734 break;
1735 }
1736
1737 /* Do we need to create a new entry? */
1738 if (entry == pool->next_free_entry)
1739 {
1740 if (entry >= MAX_LITERAL_POOL_SIZE)
1741 {
1742 set_syntax_error (_("literal pool overflow"));
1743 return FALSE;
1744 }
1745
1746 pool->literals[entry].exp = *exp;
1747 pool->next_free_entry += 1;
1748 if (exp->X_op == O_big)
1749 {
1750 /* PR 16688: Bignums are held in a single global array. We must
1751 copy and preserve that value now, before it is overwritten. */
1752 pool->literals[entry].bignum = XNEWVEC (LITTLENUM_TYPE,
1753 exp->X_add_number);
1754 memcpy (pool->literals[entry].bignum, generic_bignum,
1755 CHARS_PER_LITTLENUM * exp->X_add_number);
1756 }
1757 else
1758 pool->literals[entry].bignum = NULL;
1759 }
1760
1761 exp->X_op = O_symbol;
1762 exp->X_add_number = ((int) entry) * size;
1763 exp->X_add_symbol = pool->symbol;
1764
1765 return TRUE;
1766 }
1767
1768 /* Can't use symbol_new here, so have to create a symbol and then at
1769 a later date assign it a value. That's what these functions do. */
1770
1771 static void
1772 symbol_locate (symbolS * symbolP,
1773 const char *name,/* It is copied, the caller can modify. */
1774 segT segment, /* Segment identifier (SEG_<something>). */
1775 valueT valu, /* Symbol value. */
1776 fragS * frag) /* Associated fragment. */
1777 {
1778 size_t name_length;
1779 char *preserved_copy_of_name;
1780
1781 name_length = strlen (name) + 1; /* +1 for \0. */
1782 obstack_grow (&notes, name, name_length);
1783 preserved_copy_of_name = obstack_finish (&notes);
1784
1785 #ifdef tc_canonicalize_symbol_name
1786 preserved_copy_of_name =
1787 tc_canonicalize_symbol_name (preserved_copy_of_name);
1788 #endif
1789
1790 S_SET_NAME (symbolP, preserved_copy_of_name);
1791
1792 S_SET_SEGMENT (symbolP, segment);
1793 S_SET_VALUE (symbolP, valu);
1794 symbol_clear_list_pointers (symbolP);
1795
1796 symbol_set_frag (symbolP, frag);
1797
1798 /* Link to end of symbol chain. */
1799 {
1800 extern int symbol_table_frozen;
1801
1802 if (symbol_table_frozen)
1803 abort ();
1804 }
1805
1806 symbol_append (symbolP, symbol_lastP, &symbol_rootP, &symbol_lastP);
1807
1808 obj_symbol_new_hook (symbolP);
1809
1810 #ifdef tc_symbol_new_hook
1811 tc_symbol_new_hook (symbolP);
1812 #endif
1813
1814 #ifdef DEBUG_SYMS
1815 verify_symbol_chain (symbol_rootP, symbol_lastP);
1816 #endif /* DEBUG_SYMS */
1817 }
1818
1819
1820 static void
1821 s_ltorg (int ignored ATTRIBUTE_UNUSED)
1822 {
1823 unsigned int entry;
1824 literal_pool *pool;
1825 char sym_name[20];
1826 int align;
1827
1828 for (align = 2; align <= 4; align++)
1829 {
1830 int size = 1 << align;
1831
1832 pool = find_literal_pool (size);
1833 if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0)
1834 continue;
1835
1836 /* Align pool as you have word accesses.
1837 Only make a frag if we have to. */
1838 if (!need_pass_2)
1839 frag_align (align, 0, 0);
1840
1841 mapping_state (MAP_DATA);
1842
1843 record_alignment (now_seg, align);
1844
1845 sprintf (sym_name, "$$lit_\002%x", pool->id);
1846
1847 symbol_locate (pool->symbol, sym_name, now_seg,
1848 (valueT) frag_now_fix (), frag_now);
1849 symbol_table_insert (pool->symbol);
1850
1851 for (entry = 0; entry < pool->next_free_entry; entry++)
1852 {
1853 expressionS * exp = & pool->literals[entry].exp;
1854
1855 if (exp->X_op == O_big)
1856 {
1857 /* PR 16688: Restore the global bignum value. */
1858 gas_assert (pool->literals[entry].bignum != NULL);
1859 memcpy (generic_bignum, pool->literals[entry].bignum,
1860 CHARS_PER_LITTLENUM * exp->X_add_number);
1861 }
1862
1863 /* First output the expression in the instruction to the pool. */
1864 emit_expr (exp, size); /* .word|.xword */
1865
1866 if (exp->X_op == O_big)
1867 {
1868 free (pool->literals[entry].bignum);
1869 pool->literals[entry].bignum = NULL;
1870 }
1871 }
1872
1873 /* Mark the pool as empty. */
1874 pool->next_free_entry = 0;
1875 pool->symbol = NULL;
1876 }
1877 }
1878
1879 #ifdef OBJ_ELF
1880 /* Forward declarations for functions below, in the MD interface
1881 section. */
1882 static fixS *fix_new_aarch64 (fragS *, int, short, expressionS *, int, int);
1883 static struct reloc_table_entry * find_reloc_table_entry (char **);
1884
1885 /* Directives: Data. */
1886 /* N.B. the support for relocation suffix in this directive needs to be
1887 implemented properly. */
1888
1889 static void
1890 s_aarch64_elf_cons (int nbytes)
1891 {
1892 expressionS exp;
1893
1894 #ifdef md_flush_pending_output
1895 md_flush_pending_output ();
1896 #endif
1897
1898 if (is_it_end_of_statement ())
1899 {
1900 demand_empty_rest_of_line ();
1901 return;
1902 }
1903
1904 #ifdef md_cons_align
1905 md_cons_align (nbytes);
1906 #endif
1907
1908 mapping_state (MAP_DATA);
1909 do
1910 {
1911 struct reloc_table_entry *reloc;
1912
1913 expression (&exp);
1914
1915 if (exp.X_op != O_symbol)
1916 emit_expr (&exp, (unsigned int) nbytes);
1917 else
1918 {
1919 skip_past_char (&input_line_pointer, '#');
1920 if (skip_past_char (&input_line_pointer, ':'))
1921 {
1922 reloc = find_reloc_table_entry (&input_line_pointer);
1923 if (reloc == NULL)
1924 as_bad (_("unrecognized relocation suffix"));
1925 else
1926 as_bad (_("unimplemented relocation suffix"));
1927 ignore_rest_of_line ();
1928 return;
1929 }
1930 else
1931 emit_expr (&exp, (unsigned int) nbytes);
1932 }
1933 }
1934 while (*input_line_pointer++ == ',');
1935
1936 /* Put terminator back into stream. */
1937 input_line_pointer--;
1938 demand_empty_rest_of_line ();
1939 }
1940
1941 #endif /* OBJ_ELF */
1942
1943 /* Output a 32-bit word, but mark as an instruction. */
1944
1945 static void
1946 s_aarch64_inst (int ignored ATTRIBUTE_UNUSED)
1947 {
1948 expressionS exp;
1949
1950 #ifdef md_flush_pending_output
1951 md_flush_pending_output ();
1952 #endif
1953
1954 if (is_it_end_of_statement ())
1955 {
1956 demand_empty_rest_of_line ();
1957 return;
1958 }
1959
1960 /* Sections are assumed to start aligned. In executable section, there is no
1961 MAP_DATA symbol pending. So we only align the address during
1962 MAP_DATA --> MAP_INSN transition.
1963 For other sections, this is not guaranteed. */
1964 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
1965 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
1966 frag_align_code (2, 0);
1967
1968 #ifdef OBJ_ELF
1969 mapping_state (MAP_INSN);
1970 #endif
1971
1972 do
1973 {
1974 expression (&exp);
1975 if (exp.X_op != O_constant)
1976 {
1977 as_bad (_("constant expression required"));
1978 ignore_rest_of_line ();
1979 return;
1980 }
1981
1982 if (target_big_endian)
1983 {
1984 unsigned int val = exp.X_add_number;
1985 exp.X_add_number = SWAP_32 (val);
1986 }
1987 emit_expr (&exp, 4);
1988 }
1989 while (*input_line_pointer++ == ',');
1990
1991 /* Put terminator back into stream. */
1992 input_line_pointer--;
1993 demand_empty_rest_of_line ();
1994 }
1995
1996 static void
1997 s_aarch64_cfi_b_key_frame (int ignored ATTRIBUTE_UNUSED)
1998 {
1999 demand_empty_rest_of_line ();
2000 struct fde_entry *fde = frchain_now->frch_cfi_data->cur_fde_data;
2001 fde->pauth_key = AARCH64_PAUTH_KEY_B;
2002 }
2003
2004 #ifdef OBJ_ELF
2005 /* Emit BFD_RELOC_AARCH64_TLSDESC_ADD on the next ADD instruction. */
2006
2007 static void
2008 s_tlsdescadd (int ignored ATTRIBUTE_UNUSED)
2009 {
2010 expressionS exp;
2011
2012 expression (&exp);
2013 frag_grow (4);
2014 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2015 BFD_RELOC_AARCH64_TLSDESC_ADD);
2016
2017 demand_empty_rest_of_line ();
2018 }
2019
2020 /* Emit BFD_RELOC_AARCH64_TLSDESC_CALL on the next BLR instruction. */
2021
2022 static void
2023 s_tlsdesccall (int ignored ATTRIBUTE_UNUSED)
2024 {
2025 expressionS exp;
2026
2027 /* Since we're just labelling the code, there's no need to define a
2028 mapping symbol. */
2029 expression (&exp);
2030 /* Make sure there is enough room in this frag for the following
2031 blr. This trick only works if the blr follows immediately after
2032 the .tlsdesc directive. */
2033 frag_grow (4);
2034 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2035 BFD_RELOC_AARCH64_TLSDESC_CALL);
2036
2037 demand_empty_rest_of_line ();
2038 }
2039
2040 /* Emit BFD_RELOC_AARCH64_TLSDESC_LDR on the next LDR instruction. */
2041
2042 static void
2043 s_tlsdescldr (int ignored ATTRIBUTE_UNUSED)
2044 {
2045 expressionS exp;
2046
2047 expression (&exp);
2048 frag_grow (4);
2049 fix_new_aarch64 (frag_now, frag_more (0) - frag_now->fr_literal, 4, &exp, 0,
2050 BFD_RELOC_AARCH64_TLSDESC_LDR);
2051
2052 demand_empty_rest_of_line ();
2053 }
2054 #endif /* OBJ_ELF */
2055
2056 static void s_aarch64_arch (int);
2057 static void s_aarch64_cpu (int);
2058 static void s_aarch64_arch_extension (int);
2059
2060 /* This table describes all the machine specific pseudo-ops the assembler
2061 has to support. The fields are:
2062 pseudo-op name without dot
2063 function to call to execute this pseudo-op
2064 Integer arg to pass to the function. */
2065
2066 const pseudo_typeS md_pseudo_table[] = {
2067 /* Never called because '.req' does not start a line. */
2068 {"req", s_req, 0},
2069 {"unreq", s_unreq, 0},
2070 {"bss", s_bss, 0},
2071 {"even", s_even, 0},
2072 {"ltorg", s_ltorg, 0},
2073 {"pool", s_ltorg, 0},
2074 {"cpu", s_aarch64_cpu, 0},
2075 {"arch", s_aarch64_arch, 0},
2076 {"arch_extension", s_aarch64_arch_extension, 0},
2077 {"inst", s_aarch64_inst, 0},
2078 {"cfi_b_key_frame", s_aarch64_cfi_b_key_frame, 0},
2079 #ifdef OBJ_ELF
2080 {"tlsdescadd", s_tlsdescadd, 0},
2081 {"tlsdesccall", s_tlsdesccall, 0},
2082 {"tlsdescldr", s_tlsdescldr, 0},
2083 {"word", s_aarch64_elf_cons, 4},
2084 {"long", s_aarch64_elf_cons, 4},
2085 {"xword", s_aarch64_elf_cons, 8},
2086 {"dword", s_aarch64_elf_cons, 8},
2087 #endif
2088 {0, 0, 0}
2089 };
2090 \f
2091
2092 /* Check whether STR points to a register name followed by a comma or the
2093 end of line; REG_TYPE indicates which register types are checked
2094 against. Return TRUE if STR is such a register name; otherwise return
2095 FALSE. The function does not intend to produce any diagnostics, but since
2096 the register parser aarch64_reg_parse, which is called by this function,
2097 does produce diagnostics, we call clear_error to clear any diagnostics
2098 that may be generated by aarch64_reg_parse.
2099 Also, the function returns FALSE directly if there is any user error
2100 present at the function entry. This prevents the existing diagnostics
2101 state from being spoiled.
2102 The function currently serves parse_constant_immediate and
2103 parse_big_immediate only. */
2104 static bfd_boolean
2105 reg_name_p (char *str, aarch64_reg_type reg_type)
2106 {
2107 int reg;
2108
2109 /* Prevent the diagnostics state from being spoiled. */
2110 if (error_p ())
2111 return FALSE;
2112
2113 reg = aarch64_reg_parse (&str, reg_type, NULL, NULL);
2114
2115 /* Clear the parsing error that may be set by the reg parser. */
2116 clear_error ();
2117
2118 if (reg == PARSE_FAIL)
2119 return FALSE;
2120
2121 skip_whitespace (str);
2122 if (*str == ',' || is_end_of_line[(unsigned int) *str])
2123 return TRUE;
2124
2125 return FALSE;
2126 }
2127
2128 /* Parser functions used exclusively in instruction operands. */
2129
2130 /* Parse an immediate expression which may not be constant.
2131
2132 To prevent the expression parser from pushing a register name
2133 into the symbol table as an undefined symbol, firstly a check is
2134 done to find out whether STR is a register of type REG_TYPE followed
2135 by a comma or the end of line. Return FALSE if STR is such a string. */
2136
2137 static bfd_boolean
2138 parse_immediate_expression (char **str, expressionS *exp,
2139 aarch64_reg_type reg_type)
2140 {
2141 if (reg_name_p (*str, reg_type))
2142 {
2143 set_recoverable_error (_("immediate operand required"));
2144 return FALSE;
2145 }
2146
2147 my_get_expression (exp, str, GE_OPT_PREFIX, 1);
2148
2149 if (exp->X_op == O_absent)
2150 {
2151 set_fatal_syntax_error (_("missing immediate expression"));
2152 return FALSE;
2153 }
2154
2155 return TRUE;
2156 }
2157
2158 /* Constant immediate-value read function for use in insn parsing.
2159 STR points to the beginning of the immediate (with the optional
2160 leading #); *VAL receives the value. REG_TYPE says which register
2161 names should be treated as registers rather than as symbolic immediates.
2162
2163 Return TRUE on success; otherwise return FALSE. */
2164
2165 static bfd_boolean
2166 parse_constant_immediate (char **str, int64_t *val, aarch64_reg_type reg_type)
2167 {
2168 expressionS exp;
2169
2170 if (! parse_immediate_expression (str, &exp, reg_type))
2171 return FALSE;
2172
2173 if (exp.X_op != O_constant)
2174 {
2175 set_syntax_error (_("constant expression required"));
2176 return FALSE;
2177 }
2178
2179 *val = exp.X_add_number;
2180 return TRUE;
2181 }
2182
2183 static uint32_t
2184 encode_imm_float_bits (uint32_t imm)
2185 {
2186 return ((imm >> 19) & 0x7f) /* b[25:19] -> b[6:0] */
2187 | ((imm >> (31 - 7)) & 0x80); /* b[31] -> b[7] */
2188 }
2189
2190 /* Return TRUE if the single-precision floating-point value encoded in IMM
2191 can be expressed in the AArch64 8-bit signed floating-point format with
2192 3-bit exponent and normalized 4 bits of precision; in other words, the
2193 floating-point value must be expressable as
2194 (+/-) n / 16 * power (2, r)
2195 where n and r are integers such that 16 <= n <=31 and -3 <= r <= 4. */
2196
2197 static bfd_boolean
2198 aarch64_imm_float_p (uint32_t imm)
2199 {
2200 /* If a single-precision floating-point value has the following bit
2201 pattern, it can be expressed in the AArch64 8-bit floating-point
2202 format:
2203
2204 3 32222222 2221111111111
2205 1 09876543 21098765432109876543210
2206 n Eeeeeexx xxxx0000000000000000000
2207
2208 where n, e and each x are either 0 or 1 independently, with
2209 E == ~ e. */
2210
2211 uint32_t pattern;
2212
2213 /* Prepare the pattern for 'Eeeeee'. */
2214 if (((imm >> 30) & 0x1) == 0)
2215 pattern = 0x3e000000;
2216 else
2217 pattern = 0x40000000;
2218
2219 return (imm & 0x7ffff) == 0 /* lower 19 bits are 0. */
2220 && ((imm & 0x7e000000) == pattern); /* bits 25 - 29 == ~ bit 30. */
2221 }
2222
2223 /* Return TRUE if the IEEE double value encoded in IMM can be expressed
2224 as an IEEE float without any loss of precision. Store the value in
2225 *FPWORD if so. */
2226
2227 static bfd_boolean
2228 can_convert_double_to_float (uint64_t imm, uint32_t *fpword)
2229 {
2230 /* If a double-precision floating-point value has the following bit
2231 pattern, it can be expressed in a float:
2232
2233 6 66655555555 5544 44444444 33333333 33222222 22221111 111111
2234 3 21098765432 1098 76543210 98765432 10987654 32109876 54321098 76543210
2235 n E~~~eeeeeee ssss ssssssss ssssssss SSS00000 00000000 00000000 00000000
2236
2237 -----------------------------> nEeeeeee esssssss ssssssss sssssSSS
2238 if Eeee_eeee != 1111_1111
2239
2240 where n, e, s and S are either 0 or 1 independently and where ~ is the
2241 inverse of E. */
2242
2243 uint32_t pattern;
2244 uint32_t high32 = imm >> 32;
2245 uint32_t low32 = imm;
2246
2247 /* Lower 29 bits need to be 0s. */
2248 if ((imm & 0x1fffffff) != 0)
2249 return FALSE;
2250
2251 /* Prepare the pattern for 'Eeeeeeeee'. */
2252 if (((high32 >> 30) & 0x1) == 0)
2253 pattern = 0x38000000;
2254 else
2255 pattern = 0x40000000;
2256
2257 /* Check E~~~. */
2258 if ((high32 & 0x78000000) != pattern)
2259 return FALSE;
2260
2261 /* Check Eeee_eeee != 1111_1111. */
2262 if ((high32 & 0x7ff00000) == 0x47f00000)
2263 return FALSE;
2264
2265 *fpword = ((high32 & 0xc0000000) /* 1 n bit and 1 E bit. */
2266 | ((high32 << 3) & 0x3ffffff8) /* 7 e and 20 s bits. */
2267 | (low32 >> 29)); /* 3 S bits. */
2268 return TRUE;
2269 }
2270
2271 /* Return true if we should treat OPERAND as a double-precision
2272 floating-point operand rather than a single-precision one. */
2273 static bfd_boolean
2274 double_precision_operand_p (const aarch64_opnd_info *operand)
2275 {
2276 /* Check for unsuffixed SVE registers, which are allowed
2277 for LDR and STR but not in instructions that require an
2278 immediate. We get better error messages if we arbitrarily
2279 pick one size, parse the immediate normally, and then
2280 report the match failure in the normal way. */
2281 return (operand->qualifier == AARCH64_OPND_QLF_NIL
2282 || aarch64_get_qualifier_esize (operand->qualifier) == 8);
2283 }
2284
2285 /* Parse a floating-point immediate. Return TRUE on success and return the
2286 value in *IMMED in the format of IEEE754 single-precision encoding.
2287 *CCP points to the start of the string; DP_P is TRUE when the immediate
2288 is expected to be in double-precision (N.B. this only matters when
2289 hexadecimal representation is involved). REG_TYPE says which register
2290 names should be treated as registers rather than as symbolic immediates.
2291
2292 This routine accepts any IEEE float; it is up to the callers to reject
2293 invalid ones. */
2294
2295 static bfd_boolean
2296 parse_aarch64_imm_float (char **ccp, int *immed, bfd_boolean dp_p,
2297 aarch64_reg_type reg_type)
2298 {
2299 char *str = *ccp;
2300 char *fpnum;
2301 LITTLENUM_TYPE words[MAX_LITTLENUMS];
2302 int64_t val = 0;
2303 unsigned fpword = 0;
2304 bfd_boolean hex_p = FALSE;
2305
2306 skip_past_char (&str, '#');
2307
2308 fpnum = str;
2309 skip_whitespace (fpnum);
2310
2311 if (strncmp (fpnum, "0x", 2) == 0)
2312 {
2313 /* Support the hexadecimal representation of the IEEE754 encoding.
2314 Double-precision is expected when DP_P is TRUE, otherwise the
2315 representation should be in single-precision. */
2316 if (! parse_constant_immediate (&str, &val, reg_type))
2317 goto invalid_fp;
2318
2319 if (dp_p)
2320 {
2321 if (!can_convert_double_to_float (val, &fpword))
2322 goto invalid_fp;
2323 }
2324 else if ((uint64_t) val > 0xffffffff)
2325 goto invalid_fp;
2326 else
2327 fpword = val;
2328
2329 hex_p = TRUE;
2330 }
2331 else if (reg_name_p (str, reg_type))
2332 {
2333 set_recoverable_error (_("immediate operand required"));
2334 return FALSE;
2335 }
2336
2337 if (! hex_p)
2338 {
2339 int i;
2340
2341 if ((str = atof_ieee (str, 's', words)) == NULL)
2342 goto invalid_fp;
2343
2344 /* Our FP word must be 32 bits (single-precision FP). */
2345 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
2346 {
2347 fpword <<= LITTLENUM_NUMBER_OF_BITS;
2348 fpword |= words[i];
2349 }
2350 }
2351
2352 *immed = fpword;
2353 *ccp = str;
2354 return TRUE;
2355
2356 invalid_fp:
2357 set_fatal_syntax_error (_("invalid floating-point constant"));
2358 return FALSE;
2359 }
2360
2361 /* Less-generic immediate-value read function with the possibility of loading
2362 a big (64-bit) immediate, as required by AdvSIMD Modified immediate
2363 instructions.
2364
2365 To prevent the expression parser from pushing a register name into the
2366 symbol table as an undefined symbol, a check is firstly done to find
2367 out whether STR is a register of type REG_TYPE followed by a comma or
2368 the end of line. Return FALSE if STR is such a register. */
2369
2370 static bfd_boolean
2371 parse_big_immediate (char **str, int64_t *imm, aarch64_reg_type reg_type)
2372 {
2373 char *ptr = *str;
2374
2375 if (reg_name_p (ptr, reg_type))
2376 {
2377 set_syntax_error (_("immediate operand required"));
2378 return FALSE;
2379 }
2380
2381 my_get_expression (&inst.reloc.exp, &ptr, GE_OPT_PREFIX, 1);
2382
2383 if (inst.reloc.exp.X_op == O_constant)
2384 *imm = inst.reloc.exp.X_add_number;
2385
2386 *str = ptr;
2387
2388 return TRUE;
2389 }
2390
2391 /* Set operand IDX of the *INSTR that needs a GAS internal fixup.
2392 if NEED_LIBOPCODES is non-zero, the fixup will need
2393 assistance from the libopcodes. */
2394
2395 static inline void
2396 aarch64_set_gas_internal_fixup (struct reloc *reloc,
2397 const aarch64_opnd_info *operand,
2398 int need_libopcodes_p)
2399 {
2400 reloc->type = BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2401 reloc->opnd = operand->type;
2402 if (need_libopcodes_p)
2403 reloc->need_libopcodes_p = 1;
2404 };
2405
2406 /* Return TRUE if the instruction needs to be fixed up later internally by
2407 the GAS; otherwise return FALSE. */
2408
2409 static inline bfd_boolean
2410 aarch64_gas_internal_fixup_p (void)
2411 {
2412 return inst.reloc.type == BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP;
2413 }
2414
2415 /* Assign the immediate value to the relevant field in *OPERAND if
2416 RELOC->EXP is a constant expression; otherwise, flag that *OPERAND
2417 needs an internal fixup in a later stage.
2418 ADDR_OFF_P determines whether it is the field ADDR.OFFSET.IMM or
2419 IMM.VALUE that may get assigned with the constant. */
2420 static inline void
2421 assign_imm_if_const_or_fixup_later (struct reloc *reloc,
2422 aarch64_opnd_info *operand,
2423 int addr_off_p,
2424 int need_libopcodes_p,
2425 int skip_p)
2426 {
2427 if (reloc->exp.X_op == O_constant)
2428 {
2429 if (addr_off_p)
2430 operand->addr.offset.imm = reloc->exp.X_add_number;
2431 else
2432 operand->imm.value = reloc->exp.X_add_number;
2433 reloc->type = BFD_RELOC_UNUSED;
2434 }
2435 else
2436 {
2437 aarch64_set_gas_internal_fixup (reloc, operand, need_libopcodes_p);
2438 /* Tell libopcodes to ignore this operand or not. This is helpful
2439 when one of the operands needs to be fixed up later but we need
2440 libopcodes to check the other operands. */
2441 operand->skip = skip_p;
2442 }
2443 }
2444
2445 /* Relocation modifiers. Each entry in the table contains the textual
2446 name for the relocation which may be placed before a symbol used as
2447 a load/store offset, or add immediate. It must be surrounded by a
2448 leading and trailing colon, for example:
2449
2450 ldr x0, [x1, #:rello:varsym]
2451 add x0, x1, #:rello:varsym */
2452
2453 struct reloc_table_entry
2454 {
2455 const char *name;
2456 int pc_rel;
2457 bfd_reloc_code_real_type adr_type;
2458 bfd_reloc_code_real_type adrp_type;
2459 bfd_reloc_code_real_type movw_type;
2460 bfd_reloc_code_real_type add_type;
2461 bfd_reloc_code_real_type ldst_type;
2462 bfd_reloc_code_real_type ld_literal_type;
2463 };
2464
2465 static struct reloc_table_entry reloc_table[] = {
2466 /* Low 12 bits of absolute address: ADD/i and LDR/STR */
2467 {"lo12", 0,
2468 0, /* adr_type */
2469 0,
2470 0,
2471 BFD_RELOC_AARCH64_ADD_LO12,
2472 BFD_RELOC_AARCH64_LDST_LO12,
2473 0},
2474
2475 /* Higher 21 bits of pc-relative page offset: ADRP */
2476 {"pg_hi21", 1,
2477 0, /* adr_type */
2478 BFD_RELOC_AARCH64_ADR_HI21_PCREL,
2479 0,
2480 0,
2481 0,
2482 0},
2483
2484 /* Higher 21 bits of pc-relative page offset: ADRP, no check */
2485 {"pg_hi21_nc", 1,
2486 0, /* adr_type */
2487 BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL,
2488 0,
2489 0,
2490 0,
2491 0},
2492
2493 /* Most significant bits 0-15 of unsigned address/value: MOVZ */
2494 {"abs_g0", 0,
2495 0, /* adr_type */
2496 0,
2497 BFD_RELOC_AARCH64_MOVW_G0,
2498 0,
2499 0,
2500 0},
2501
2502 /* Most significant bits 0-15 of signed address/value: MOVN/Z */
2503 {"abs_g0_s", 0,
2504 0, /* adr_type */
2505 0,
2506 BFD_RELOC_AARCH64_MOVW_G0_S,
2507 0,
2508 0,
2509 0},
2510
2511 /* Less significant bits 0-15 of address/value: MOVK, no check */
2512 {"abs_g0_nc", 0,
2513 0, /* adr_type */
2514 0,
2515 BFD_RELOC_AARCH64_MOVW_G0_NC,
2516 0,
2517 0,
2518 0},
2519
2520 /* Most significant bits 16-31 of unsigned address/value: MOVZ */
2521 {"abs_g1", 0,
2522 0, /* adr_type */
2523 0,
2524 BFD_RELOC_AARCH64_MOVW_G1,
2525 0,
2526 0,
2527 0},
2528
2529 /* Most significant bits 16-31 of signed address/value: MOVN/Z */
2530 {"abs_g1_s", 0,
2531 0, /* adr_type */
2532 0,
2533 BFD_RELOC_AARCH64_MOVW_G1_S,
2534 0,
2535 0,
2536 0},
2537
2538 /* Less significant bits 16-31 of address/value: MOVK, no check */
2539 {"abs_g1_nc", 0,
2540 0, /* adr_type */
2541 0,
2542 BFD_RELOC_AARCH64_MOVW_G1_NC,
2543 0,
2544 0,
2545 0},
2546
2547 /* Most significant bits 32-47 of unsigned address/value: MOVZ */
2548 {"abs_g2", 0,
2549 0, /* adr_type */
2550 0,
2551 BFD_RELOC_AARCH64_MOVW_G2,
2552 0,
2553 0,
2554 0},
2555
2556 /* Most significant bits 32-47 of signed address/value: MOVN/Z */
2557 {"abs_g2_s", 0,
2558 0, /* adr_type */
2559 0,
2560 BFD_RELOC_AARCH64_MOVW_G2_S,
2561 0,
2562 0,
2563 0},
2564
2565 /* Less significant bits 32-47 of address/value: MOVK, no check */
2566 {"abs_g2_nc", 0,
2567 0, /* adr_type */
2568 0,
2569 BFD_RELOC_AARCH64_MOVW_G2_NC,
2570 0,
2571 0,
2572 0},
2573
2574 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2575 {"abs_g3", 0,
2576 0, /* adr_type */
2577 0,
2578 BFD_RELOC_AARCH64_MOVW_G3,
2579 0,
2580 0,
2581 0},
2582
2583 /* Most significant bits 0-15 of signed/unsigned address/value: MOVZ */
2584 {"prel_g0", 1,
2585 0, /* adr_type */
2586 0,
2587 BFD_RELOC_AARCH64_MOVW_PREL_G0,
2588 0,
2589 0,
2590 0},
2591
2592 /* Most significant bits 0-15 of signed/unsigned address/value: MOVK */
2593 {"prel_g0_nc", 1,
2594 0, /* adr_type */
2595 0,
2596 BFD_RELOC_AARCH64_MOVW_PREL_G0_NC,
2597 0,
2598 0,
2599 0},
2600
2601 /* Most significant bits 16-31 of signed/unsigned address/value: MOVZ */
2602 {"prel_g1", 1,
2603 0, /* adr_type */
2604 0,
2605 BFD_RELOC_AARCH64_MOVW_PREL_G1,
2606 0,
2607 0,
2608 0},
2609
2610 /* Most significant bits 16-31 of signed/unsigned address/value: MOVK */
2611 {"prel_g1_nc", 1,
2612 0, /* adr_type */
2613 0,
2614 BFD_RELOC_AARCH64_MOVW_PREL_G1_NC,
2615 0,
2616 0,
2617 0},
2618
2619 /* Most significant bits 32-47 of signed/unsigned address/value: MOVZ */
2620 {"prel_g2", 1,
2621 0, /* adr_type */
2622 0,
2623 BFD_RELOC_AARCH64_MOVW_PREL_G2,
2624 0,
2625 0,
2626 0},
2627
2628 /* Most significant bits 32-47 of signed/unsigned address/value: MOVK */
2629 {"prel_g2_nc", 1,
2630 0, /* adr_type */
2631 0,
2632 BFD_RELOC_AARCH64_MOVW_PREL_G2_NC,
2633 0,
2634 0,
2635 0},
2636
2637 /* Most significant bits 48-63 of signed/unsigned address/value: MOVZ */
2638 {"prel_g3", 1,
2639 0, /* adr_type */
2640 0,
2641 BFD_RELOC_AARCH64_MOVW_PREL_G3,
2642 0,
2643 0,
2644 0},
2645
2646 /* Get to the page containing GOT entry for a symbol. */
2647 {"got", 1,
2648 0, /* adr_type */
2649 BFD_RELOC_AARCH64_ADR_GOT_PAGE,
2650 0,
2651 0,
2652 0,
2653 BFD_RELOC_AARCH64_GOT_LD_PREL19},
2654
2655 /* 12 bit offset into the page containing GOT entry for that symbol. */
2656 {"got_lo12", 0,
2657 0, /* adr_type */
2658 0,
2659 0,
2660 0,
2661 BFD_RELOC_AARCH64_LD_GOT_LO12_NC,
2662 0},
2663
2664 /* 0-15 bits of address/value: MOVk, no check. */
2665 {"gotoff_g0_nc", 0,
2666 0, /* adr_type */
2667 0,
2668 BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC,
2669 0,
2670 0,
2671 0},
2672
2673 /* Most significant bits 16-31 of address/value: MOVZ. */
2674 {"gotoff_g1", 0,
2675 0, /* adr_type */
2676 0,
2677 BFD_RELOC_AARCH64_MOVW_GOTOFF_G1,
2678 0,
2679 0,
2680 0},
2681
2682 /* 15 bit offset into the page containing GOT entry for that symbol. */
2683 {"gotoff_lo15", 0,
2684 0, /* adr_type */
2685 0,
2686 0,
2687 0,
2688 BFD_RELOC_AARCH64_LD64_GOTOFF_LO15,
2689 0},
2690
2691 /* Get to the page containing GOT TLS entry for a symbol */
2692 {"gottprel_g0_nc", 0,
2693 0, /* adr_type */
2694 0,
2695 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC,
2696 0,
2697 0,
2698 0},
2699
2700 /* Get to the page containing GOT TLS entry for a symbol */
2701 {"gottprel_g1", 0,
2702 0, /* adr_type */
2703 0,
2704 BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1,
2705 0,
2706 0,
2707 0},
2708
2709 /* Get to the page containing GOT TLS entry for a symbol */
2710 {"tlsgd", 0,
2711 BFD_RELOC_AARCH64_TLSGD_ADR_PREL21, /* adr_type */
2712 BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21,
2713 0,
2714 0,
2715 0,
2716 0},
2717
2718 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2719 {"tlsgd_lo12", 0,
2720 0, /* adr_type */
2721 0,
2722 0,
2723 BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC,
2724 0,
2725 0},
2726
2727 /* Lower 16 bits address/value: MOVk. */
2728 {"tlsgd_g0_nc", 0,
2729 0, /* adr_type */
2730 0,
2731 BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC,
2732 0,
2733 0,
2734 0},
2735
2736 /* Most significant bits 16-31 of address/value: MOVZ. */
2737 {"tlsgd_g1", 0,
2738 0, /* adr_type */
2739 0,
2740 BFD_RELOC_AARCH64_TLSGD_MOVW_G1,
2741 0,
2742 0,
2743 0},
2744
2745 /* Get to the page containing GOT TLS entry for a symbol */
2746 {"tlsdesc", 0,
2747 BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21, /* adr_type */
2748 BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21,
2749 0,
2750 0,
2751 0,
2752 BFD_RELOC_AARCH64_TLSDESC_LD_PREL19},
2753
2754 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2755 {"tlsdesc_lo12", 0,
2756 0, /* adr_type */
2757 0,
2758 0,
2759 BFD_RELOC_AARCH64_TLSDESC_ADD_LO12,
2760 BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC,
2761 0},
2762
2763 /* Get to the page containing GOT TLS entry for a symbol.
2764 The same as GD, we allocate two consecutive GOT slots
2765 for module index and module offset, the only difference
2766 with GD is the module offset should be initialized to
2767 zero without any outstanding runtime relocation. */
2768 {"tlsldm", 0,
2769 BFD_RELOC_AARCH64_TLSLD_ADR_PREL21, /* adr_type */
2770 BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21,
2771 0,
2772 0,
2773 0,
2774 0},
2775
2776 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2777 {"tlsldm_lo12_nc", 0,
2778 0, /* adr_type */
2779 0,
2780 0,
2781 BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC,
2782 0,
2783 0},
2784
2785 /* 12 bit offset into the module TLS base address. */
2786 {"dtprel_lo12", 0,
2787 0, /* adr_type */
2788 0,
2789 0,
2790 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12,
2791 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12,
2792 0},
2793
2794 /* Same as dtprel_lo12, no overflow check. */
2795 {"dtprel_lo12_nc", 0,
2796 0, /* adr_type */
2797 0,
2798 0,
2799 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC,
2800 BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC,
2801 0},
2802
2803 /* bits[23:12] of offset to the module TLS base address. */
2804 {"dtprel_hi12", 0,
2805 0, /* adr_type */
2806 0,
2807 0,
2808 BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12,
2809 0,
2810 0},
2811
2812 /* bits[15:0] of offset to the module TLS base address. */
2813 {"dtprel_g0", 0,
2814 0, /* adr_type */
2815 0,
2816 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0,
2817 0,
2818 0,
2819 0},
2820
2821 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0. */
2822 {"dtprel_g0_nc", 0,
2823 0, /* adr_type */
2824 0,
2825 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC,
2826 0,
2827 0,
2828 0},
2829
2830 /* bits[31:16] of offset to the module TLS base address. */
2831 {"dtprel_g1", 0,
2832 0, /* adr_type */
2833 0,
2834 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1,
2835 0,
2836 0,
2837 0},
2838
2839 /* No overflow check version of BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1. */
2840 {"dtprel_g1_nc", 0,
2841 0, /* adr_type */
2842 0,
2843 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC,
2844 0,
2845 0,
2846 0},
2847
2848 /* bits[47:32] of offset to the module TLS base address. */
2849 {"dtprel_g2", 0,
2850 0, /* adr_type */
2851 0,
2852 BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2,
2853 0,
2854 0,
2855 0},
2856
2857 /* Lower 16 bit offset into GOT entry for a symbol */
2858 {"tlsdesc_off_g0_nc", 0,
2859 0, /* adr_type */
2860 0,
2861 BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC,
2862 0,
2863 0,
2864 0},
2865
2866 /* Higher 16 bit offset into GOT entry for a symbol */
2867 {"tlsdesc_off_g1", 0,
2868 0, /* adr_type */
2869 0,
2870 BFD_RELOC_AARCH64_TLSDESC_OFF_G1,
2871 0,
2872 0,
2873 0},
2874
2875 /* Get to the page containing GOT TLS entry for a symbol */
2876 {"gottprel", 0,
2877 0, /* adr_type */
2878 BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21,
2879 0,
2880 0,
2881 0,
2882 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19},
2883
2884 /* 12 bit offset into the page containing GOT TLS entry for a symbol */
2885 {"gottprel_lo12", 0,
2886 0, /* adr_type */
2887 0,
2888 0,
2889 0,
2890 BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC,
2891 0},
2892
2893 /* Get tp offset for a symbol. */
2894 {"tprel", 0,
2895 0, /* adr_type */
2896 0,
2897 0,
2898 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2899 0,
2900 0},
2901
2902 /* Get tp offset for a symbol. */
2903 {"tprel_lo12", 0,
2904 0, /* adr_type */
2905 0,
2906 0,
2907 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12,
2908 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12,
2909 0},
2910
2911 /* Get tp offset for a symbol. */
2912 {"tprel_hi12", 0,
2913 0, /* adr_type */
2914 0,
2915 0,
2916 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12,
2917 0,
2918 0},
2919
2920 /* Get tp offset for a symbol. */
2921 {"tprel_lo12_nc", 0,
2922 0, /* adr_type */
2923 0,
2924 0,
2925 BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC,
2926 BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC,
2927 0},
2928
2929 /* Most significant bits 32-47 of address/value: MOVZ. */
2930 {"tprel_g2", 0,
2931 0, /* adr_type */
2932 0,
2933 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2,
2934 0,
2935 0,
2936 0},
2937
2938 /* Most significant bits 16-31 of address/value: MOVZ. */
2939 {"tprel_g1", 0,
2940 0, /* adr_type */
2941 0,
2942 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1,
2943 0,
2944 0,
2945 0},
2946
2947 /* Most significant bits 16-31 of address/value: MOVZ, no check. */
2948 {"tprel_g1_nc", 0,
2949 0, /* adr_type */
2950 0,
2951 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC,
2952 0,
2953 0,
2954 0},
2955
2956 /* Most significant bits 0-15 of address/value: MOVZ. */
2957 {"tprel_g0", 0,
2958 0, /* adr_type */
2959 0,
2960 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0,
2961 0,
2962 0,
2963 0},
2964
2965 /* Most significant bits 0-15 of address/value: MOVZ, no check. */
2966 {"tprel_g0_nc", 0,
2967 0, /* adr_type */
2968 0,
2969 BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC,
2970 0,
2971 0,
2972 0},
2973
2974 /* 15bit offset from got entry to base address of GOT table. */
2975 {"gotpage_lo15", 0,
2976 0,
2977 0,
2978 0,
2979 0,
2980 BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15,
2981 0},
2982
2983 /* 14bit offset from got entry to base address of GOT table. */
2984 {"gotpage_lo14", 0,
2985 0,
2986 0,
2987 0,
2988 0,
2989 BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14,
2990 0},
2991 };
2992
2993 /* Given the address of a pointer pointing to the textual name of a
2994 relocation as may appear in assembler source, attempt to find its
2995 details in reloc_table. The pointer will be updated to the character
2996 after the trailing colon. On failure, NULL will be returned;
2997 otherwise return the reloc_table_entry. */
2998
2999 static struct reloc_table_entry *
3000 find_reloc_table_entry (char **str)
3001 {
3002 unsigned int i;
3003 for (i = 0; i < ARRAY_SIZE (reloc_table); i++)
3004 {
3005 int length = strlen (reloc_table[i].name);
3006
3007 if (strncasecmp (reloc_table[i].name, *str, length) == 0
3008 && (*str)[length] == ':')
3009 {
3010 *str += (length + 1);
3011 return &reloc_table[i];
3012 }
3013 }
3014
3015 return NULL;
3016 }
3017
3018 /* Mode argument to parse_shift and parser_shifter_operand. */
3019 enum parse_shift_mode
3020 {
3021 SHIFTED_NONE, /* no shifter allowed */
3022 SHIFTED_ARITH_IMM, /* "rn{,lsl|lsr|asl|asr|uxt|sxt #n}" or
3023 "#imm{,lsl #n}" */
3024 SHIFTED_LOGIC_IMM, /* "rn{,lsl|lsr|asl|asr|ror #n}" or
3025 "#imm" */
3026 SHIFTED_LSL, /* bare "lsl #n" */
3027 SHIFTED_MUL, /* bare "mul #n" */
3028 SHIFTED_LSL_MSL, /* "lsl|msl #n" */
3029 SHIFTED_MUL_VL, /* "mul vl" */
3030 SHIFTED_REG_OFFSET /* [su]xtw|sxtx {#n} or lsl #n */
3031 };
3032
3033 /* Parse a <shift> operator on an AArch64 data processing instruction.
3034 Return TRUE on success; otherwise return FALSE. */
3035 static bfd_boolean
3036 parse_shift (char **str, aarch64_opnd_info *operand, enum parse_shift_mode mode)
3037 {
3038 const struct aarch64_name_value_pair *shift_op;
3039 enum aarch64_modifier_kind kind;
3040 expressionS exp;
3041 int exp_has_prefix;
3042 char *s = *str;
3043 char *p = s;
3044
3045 for (p = *str; ISALPHA (*p); p++)
3046 ;
3047
3048 if (p == *str)
3049 {
3050 set_syntax_error (_("shift expression expected"));
3051 return FALSE;
3052 }
3053
3054 shift_op = hash_find_n (aarch64_shift_hsh, *str, p - *str);
3055
3056 if (shift_op == NULL)
3057 {
3058 set_syntax_error (_("shift operator expected"));
3059 return FALSE;
3060 }
3061
3062 kind = aarch64_get_operand_modifier (shift_op);
3063
3064 if (kind == AARCH64_MOD_MSL && mode != SHIFTED_LSL_MSL)
3065 {
3066 set_syntax_error (_("invalid use of 'MSL'"));
3067 return FALSE;
3068 }
3069
3070 if (kind == AARCH64_MOD_MUL
3071 && mode != SHIFTED_MUL
3072 && mode != SHIFTED_MUL_VL)
3073 {
3074 set_syntax_error (_("invalid use of 'MUL'"));
3075 return FALSE;
3076 }
3077
3078 switch (mode)
3079 {
3080 case SHIFTED_LOGIC_IMM:
3081 if (aarch64_extend_operator_p (kind))
3082 {
3083 set_syntax_error (_("extending shift is not permitted"));
3084 return FALSE;
3085 }
3086 break;
3087
3088 case SHIFTED_ARITH_IMM:
3089 if (kind == AARCH64_MOD_ROR)
3090 {
3091 set_syntax_error (_("'ROR' shift is not permitted"));
3092 return FALSE;
3093 }
3094 break;
3095
3096 case SHIFTED_LSL:
3097 if (kind != AARCH64_MOD_LSL)
3098 {
3099 set_syntax_error (_("only 'LSL' shift is permitted"));
3100 return FALSE;
3101 }
3102 break;
3103
3104 case SHIFTED_MUL:
3105 if (kind != AARCH64_MOD_MUL)
3106 {
3107 set_syntax_error (_("only 'MUL' is permitted"));
3108 return FALSE;
3109 }
3110 break;
3111
3112 case SHIFTED_MUL_VL:
3113 /* "MUL VL" consists of two separate tokens. Require the first
3114 token to be "MUL" and look for a following "VL". */
3115 if (kind == AARCH64_MOD_MUL)
3116 {
3117 skip_whitespace (p);
3118 if (strncasecmp (p, "vl", 2) == 0 && !ISALPHA (p[2]))
3119 {
3120 p += 2;
3121 kind = AARCH64_MOD_MUL_VL;
3122 break;
3123 }
3124 }
3125 set_syntax_error (_("only 'MUL VL' is permitted"));
3126 return FALSE;
3127
3128 case SHIFTED_REG_OFFSET:
3129 if (kind != AARCH64_MOD_UXTW && kind != AARCH64_MOD_LSL
3130 && kind != AARCH64_MOD_SXTW && kind != AARCH64_MOD_SXTX)
3131 {
3132 set_fatal_syntax_error
3133 (_("invalid shift for the register offset addressing mode"));
3134 return FALSE;
3135 }
3136 break;
3137
3138 case SHIFTED_LSL_MSL:
3139 if (kind != AARCH64_MOD_LSL && kind != AARCH64_MOD_MSL)
3140 {
3141 set_syntax_error (_("invalid shift operator"));
3142 return FALSE;
3143 }
3144 break;
3145
3146 default:
3147 abort ();
3148 }
3149
3150 /* Whitespace can appear here if the next thing is a bare digit. */
3151 skip_whitespace (p);
3152
3153 /* Parse shift amount. */
3154 exp_has_prefix = 0;
3155 if ((mode == SHIFTED_REG_OFFSET && *p == ']') || kind == AARCH64_MOD_MUL_VL)
3156 exp.X_op = O_absent;
3157 else
3158 {
3159 if (is_immediate_prefix (*p))
3160 {
3161 p++;
3162 exp_has_prefix = 1;
3163 }
3164 my_get_expression (&exp, &p, GE_NO_PREFIX, 0);
3165 }
3166 if (kind == AARCH64_MOD_MUL_VL)
3167 /* For consistency, give MUL VL the same shift amount as an implicit
3168 MUL #1. */
3169 operand->shifter.amount = 1;
3170 else if (exp.X_op == O_absent)
3171 {
3172 if (!aarch64_extend_operator_p (kind) || exp_has_prefix)
3173 {
3174 set_syntax_error (_("missing shift amount"));
3175 return FALSE;
3176 }
3177 operand->shifter.amount = 0;
3178 }
3179 else if (exp.X_op != O_constant)
3180 {
3181 set_syntax_error (_("constant shift amount required"));
3182 return FALSE;
3183 }
3184 /* For parsing purposes, MUL #n has no inherent range. The range
3185 depends on the operand and will be checked by operand-specific
3186 routines. */
3187 else if (kind != AARCH64_MOD_MUL
3188 && (exp.X_add_number < 0 || exp.X_add_number > 63))
3189 {
3190 set_fatal_syntax_error (_("shift amount out of range 0 to 63"));
3191 return FALSE;
3192 }
3193 else
3194 {
3195 operand->shifter.amount = exp.X_add_number;
3196 operand->shifter.amount_present = 1;
3197 }
3198
3199 operand->shifter.operator_present = 1;
3200 operand->shifter.kind = kind;
3201
3202 *str = p;
3203 return TRUE;
3204 }
3205
3206 /* Parse a <shifter_operand> for a data processing instruction:
3207
3208 #<immediate>
3209 #<immediate>, LSL #imm
3210
3211 Validation of immediate operands is deferred to md_apply_fix.
3212
3213 Return TRUE on success; otherwise return FALSE. */
3214
3215 static bfd_boolean
3216 parse_shifter_operand_imm (char **str, aarch64_opnd_info *operand,
3217 enum parse_shift_mode mode)
3218 {
3219 char *p;
3220
3221 if (mode != SHIFTED_ARITH_IMM && mode != SHIFTED_LOGIC_IMM)
3222 return FALSE;
3223
3224 p = *str;
3225
3226 /* Accept an immediate expression. */
3227 if (! my_get_expression (&inst.reloc.exp, &p, GE_OPT_PREFIX, 1))
3228 return FALSE;
3229
3230 /* Accept optional LSL for arithmetic immediate values. */
3231 if (mode == SHIFTED_ARITH_IMM && skip_past_comma (&p))
3232 if (! parse_shift (&p, operand, SHIFTED_LSL))
3233 return FALSE;
3234
3235 /* Not accept any shifter for logical immediate values. */
3236 if (mode == SHIFTED_LOGIC_IMM && skip_past_comma (&p)
3237 && parse_shift (&p, operand, mode))
3238 {
3239 set_syntax_error (_("unexpected shift operator"));
3240 return FALSE;
3241 }
3242
3243 *str = p;
3244 return TRUE;
3245 }
3246
3247 /* Parse a <shifter_operand> for a data processing instruction:
3248
3249 <Rm>
3250 <Rm>, <shift>
3251 #<immediate>
3252 #<immediate>, LSL #imm
3253
3254 where <shift> is handled by parse_shift above, and the last two
3255 cases are handled by the function above.
3256
3257 Validation of immediate operands is deferred to md_apply_fix.
3258
3259 Return TRUE on success; otherwise return FALSE. */
3260
3261 static bfd_boolean
3262 parse_shifter_operand (char **str, aarch64_opnd_info *operand,
3263 enum parse_shift_mode mode)
3264 {
3265 const reg_entry *reg;
3266 aarch64_opnd_qualifier_t qualifier;
3267 enum aarch64_operand_class opd_class
3268 = aarch64_get_operand_class (operand->type);
3269
3270 reg = aarch64_reg_parse_32_64 (str, &qualifier);
3271 if (reg)
3272 {
3273 if (opd_class == AARCH64_OPND_CLASS_IMMEDIATE)
3274 {
3275 set_syntax_error (_("unexpected register in the immediate operand"));
3276 return FALSE;
3277 }
3278
3279 if (!aarch64_check_reg_type (reg, REG_TYPE_R_Z))
3280 {
3281 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_Z)));
3282 return FALSE;
3283 }
3284
3285 operand->reg.regno = reg->number;
3286 operand->qualifier = qualifier;
3287
3288 /* Accept optional shift operation on register. */
3289 if (! skip_past_comma (str))
3290 return TRUE;
3291
3292 if (! parse_shift (str, operand, mode))
3293 return FALSE;
3294
3295 return TRUE;
3296 }
3297 else if (opd_class == AARCH64_OPND_CLASS_MODIFIED_REG)
3298 {
3299 set_syntax_error
3300 (_("integer register expected in the extended/shifted operand "
3301 "register"));
3302 return FALSE;
3303 }
3304
3305 /* We have a shifted immediate variable. */
3306 return parse_shifter_operand_imm (str, operand, mode);
3307 }
3308
3309 /* Return TRUE on success; return FALSE otherwise. */
3310
3311 static bfd_boolean
3312 parse_shifter_operand_reloc (char **str, aarch64_opnd_info *operand,
3313 enum parse_shift_mode mode)
3314 {
3315 char *p = *str;
3316
3317 /* Determine if we have the sequence of characters #: or just :
3318 coming next. If we do, then we check for a :rello: relocation
3319 modifier. If we don't, punt the whole lot to
3320 parse_shifter_operand. */
3321
3322 if ((p[0] == '#' && p[1] == ':') || p[0] == ':')
3323 {
3324 struct reloc_table_entry *entry;
3325
3326 if (p[0] == '#')
3327 p += 2;
3328 else
3329 p++;
3330 *str = p;
3331
3332 /* Try to parse a relocation. Anything else is an error. */
3333 if (!(entry = find_reloc_table_entry (str)))
3334 {
3335 set_syntax_error (_("unknown relocation modifier"));
3336 return FALSE;
3337 }
3338
3339 if (entry->add_type == 0)
3340 {
3341 set_syntax_error
3342 (_("this relocation modifier is not allowed on this instruction"));
3343 return FALSE;
3344 }
3345
3346 /* Save str before we decompose it. */
3347 p = *str;
3348
3349 /* Next, we parse the expression. */
3350 if (! my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX, 1))
3351 return FALSE;
3352
3353 /* Record the relocation type (use the ADD variant here). */
3354 inst.reloc.type = entry->add_type;
3355 inst.reloc.pc_rel = entry->pc_rel;
3356
3357 /* If str is empty, we've reached the end, stop here. */
3358 if (**str == '\0')
3359 return TRUE;
3360
3361 /* Otherwise, we have a shifted reloc modifier, so rewind to
3362 recover the variable name and continue parsing for the shifter. */
3363 *str = p;
3364 return parse_shifter_operand_imm (str, operand, mode);
3365 }
3366
3367 return parse_shifter_operand (str, operand, mode);
3368 }
3369
3370 /* Parse all forms of an address expression. Information is written
3371 to *OPERAND and/or inst.reloc.
3372
3373 The A64 instruction set has the following addressing modes:
3374
3375 Offset
3376 [base] // in SIMD ld/st structure
3377 [base{,#0}] // in ld/st exclusive
3378 [base{,#imm}]
3379 [base,Xm{,LSL #imm}]
3380 [base,Xm,SXTX {#imm}]
3381 [base,Wm,(S|U)XTW {#imm}]
3382 Pre-indexed
3383 [base,#imm]!
3384 Post-indexed
3385 [base],#imm
3386 [base],Xm // in SIMD ld/st structure
3387 PC-relative (literal)
3388 label
3389 SVE:
3390 [base,#imm,MUL VL]
3391 [base,Zm.D{,LSL #imm}]
3392 [base,Zm.S,(S|U)XTW {#imm}]
3393 [base,Zm.D,(S|U)XTW {#imm}] // ignores top 32 bits of Zm.D elements
3394 [Zn.S,#imm]
3395 [Zn.D,#imm]
3396 [Zn.S,Zm.S{,LSL #imm}] // in ADR
3397 [Zn.D,Zm.D{,LSL #imm}] // in ADR
3398 [Zn.D,Zm.D,(S|U)XTW {#imm}] // in ADR
3399
3400 (As a convenience, the notation "=immediate" is permitted in conjunction
3401 with the pc-relative literal load instructions to automatically place an
3402 immediate value or symbolic address in a nearby literal pool and generate
3403 a hidden label which references it.)
3404
3405 Upon a successful parsing, the address structure in *OPERAND will be
3406 filled in the following way:
3407
3408 .base_regno = <base>
3409 .offset.is_reg // 1 if the offset is a register
3410 .offset.imm = <imm>
3411 .offset.regno = <Rm>
3412
3413 For different addressing modes defined in the A64 ISA:
3414
3415 Offset
3416 .pcrel=0; .preind=1; .postind=0; .writeback=0
3417 Pre-indexed
3418 .pcrel=0; .preind=1; .postind=0; .writeback=1
3419 Post-indexed
3420 .pcrel=0; .preind=0; .postind=1; .writeback=1
3421 PC-relative (literal)
3422 .pcrel=1; .preind=1; .postind=0; .writeback=0
3423
3424 The shift/extension information, if any, will be stored in .shifter.
3425 The base and offset qualifiers will be stored in *BASE_QUALIFIER and
3426 *OFFSET_QUALIFIER respectively, with NIL being used if there's no
3427 corresponding register.
3428
3429 BASE_TYPE says which types of base register should be accepted and
3430 OFFSET_TYPE says the same for offset registers. IMM_SHIFT_MODE
3431 is the type of shifter that is allowed for immediate offsets,
3432 or SHIFTED_NONE if none.
3433
3434 In all other respects, it is the caller's responsibility to check
3435 for addressing modes not supported by the instruction, and to set
3436 inst.reloc.type. */
3437
3438 static bfd_boolean
3439 parse_address_main (char **str, aarch64_opnd_info *operand,
3440 aarch64_opnd_qualifier_t *base_qualifier,
3441 aarch64_opnd_qualifier_t *offset_qualifier,
3442 aarch64_reg_type base_type, aarch64_reg_type offset_type,
3443 enum parse_shift_mode imm_shift_mode)
3444 {
3445 char *p = *str;
3446 const reg_entry *reg;
3447 expressionS *exp = &inst.reloc.exp;
3448
3449 *base_qualifier = AARCH64_OPND_QLF_NIL;
3450 *offset_qualifier = AARCH64_OPND_QLF_NIL;
3451 if (! skip_past_char (&p, '['))
3452 {
3453 /* =immediate or label. */
3454 operand->addr.pcrel = 1;
3455 operand->addr.preind = 1;
3456
3457 /* #:<reloc_op>:<symbol> */
3458 skip_past_char (&p, '#');
3459 if (skip_past_char (&p, ':'))
3460 {
3461 bfd_reloc_code_real_type ty;
3462 struct reloc_table_entry *entry;
3463
3464 /* Try to parse a relocation modifier. Anything else is
3465 an error. */
3466 entry = find_reloc_table_entry (&p);
3467 if (! entry)
3468 {
3469 set_syntax_error (_("unknown relocation modifier"));
3470 return FALSE;
3471 }
3472
3473 switch (operand->type)
3474 {
3475 case AARCH64_OPND_ADDR_PCREL21:
3476 /* adr */
3477 ty = entry->adr_type;
3478 break;
3479
3480 default:
3481 ty = entry->ld_literal_type;
3482 break;
3483 }
3484
3485 if (ty == 0)
3486 {
3487 set_syntax_error
3488 (_("this relocation modifier is not allowed on this "
3489 "instruction"));
3490 return FALSE;
3491 }
3492
3493 /* #:<reloc_op>: */
3494 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3495 {
3496 set_syntax_error (_("invalid relocation expression"));
3497 return FALSE;
3498 }
3499
3500 /* #:<reloc_op>:<expr> */
3501 /* Record the relocation type. */
3502 inst.reloc.type = ty;
3503 inst.reloc.pc_rel = entry->pc_rel;
3504 }
3505 else
3506 {
3507
3508 if (skip_past_char (&p, '='))
3509 /* =immediate; need to generate the literal in the literal pool. */
3510 inst.gen_lit_pool = 1;
3511
3512 if (!my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3513 {
3514 set_syntax_error (_("invalid address"));
3515 return FALSE;
3516 }
3517 }
3518
3519 *str = p;
3520 return TRUE;
3521 }
3522
3523 /* [ */
3524
3525 reg = aarch64_addr_reg_parse (&p, base_type, base_qualifier);
3526 if (!reg || !aarch64_check_reg_type (reg, base_type))
3527 {
3528 set_syntax_error (_(get_reg_expected_msg (base_type)));
3529 return FALSE;
3530 }
3531 operand->addr.base_regno = reg->number;
3532
3533 /* [Xn */
3534 if (skip_past_comma (&p))
3535 {
3536 /* [Xn, */
3537 operand->addr.preind = 1;
3538
3539 reg = aarch64_addr_reg_parse (&p, offset_type, offset_qualifier);
3540 if (reg)
3541 {
3542 if (!aarch64_check_reg_type (reg, offset_type))
3543 {
3544 set_syntax_error (_(get_reg_expected_msg (offset_type)));
3545 return FALSE;
3546 }
3547
3548 /* [Xn,Rm */
3549 operand->addr.offset.regno = reg->number;
3550 operand->addr.offset.is_reg = 1;
3551 /* Shifted index. */
3552 if (skip_past_comma (&p))
3553 {
3554 /* [Xn,Rm, */
3555 if (! parse_shift (&p, operand, SHIFTED_REG_OFFSET))
3556 /* Use the diagnostics set in parse_shift, so not set new
3557 error message here. */
3558 return FALSE;
3559 }
3560 /* We only accept:
3561 [base,Xm{,LSL #imm}]
3562 [base,Xm,SXTX {#imm}]
3563 [base,Wm,(S|U)XTW {#imm}] */
3564 if (operand->shifter.kind == AARCH64_MOD_NONE
3565 || operand->shifter.kind == AARCH64_MOD_LSL
3566 || operand->shifter.kind == AARCH64_MOD_SXTX)
3567 {
3568 if (*offset_qualifier == AARCH64_OPND_QLF_W)
3569 {
3570 set_syntax_error (_("invalid use of 32-bit register offset"));
3571 return FALSE;
3572 }
3573 if (aarch64_get_qualifier_esize (*base_qualifier)
3574 != aarch64_get_qualifier_esize (*offset_qualifier))
3575 {
3576 set_syntax_error (_("offset has different size from base"));
3577 return FALSE;
3578 }
3579 }
3580 else if (*offset_qualifier == AARCH64_OPND_QLF_X)
3581 {
3582 set_syntax_error (_("invalid use of 64-bit register offset"));
3583 return FALSE;
3584 }
3585 }
3586 else
3587 {
3588 /* [Xn,#:<reloc_op>:<symbol> */
3589 skip_past_char (&p, '#');
3590 if (skip_past_char (&p, ':'))
3591 {
3592 struct reloc_table_entry *entry;
3593
3594 /* Try to parse a relocation modifier. Anything else is
3595 an error. */
3596 if (!(entry = find_reloc_table_entry (&p)))
3597 {
3598 set_syntax_error (_("unknown relocation modifier"));
3599 return FALSE;
3600 }
3601
3602 if (entry->ldst_type == 0)
3603 {
3604 set_syntax_error
3605 (_("this relocation modifier is not allowed on this "
3606 "instruction"));
3607 return FALSE;
3608 }
3609
3610 /* [Xn,#:<reloc_op>: */
3611 /* We now have the group relocation table entry corresponding to
3612 the name in the assembler source. Next, we parse the
3613 expression. */
3614 if (! my_get_expression (exp, &p, GE_NO_PREFIX, 1))
3615 {
3616 set_syntax_error (_("invalid relocation expression"));
3617 return FALSE;
3618 }
3619
3620 /* [Xn,#:<reloc_op>:<expr> */
3621 /* Record the load/store relocation type. */
3622 inst.reloc.type = entry->ldst_type;
3623 inst.reloc.pc_rel = entry->pc_rel;
3624 }
3625 else
3626 {
3627 if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3628 {
3629 set_syntax_error (_("invalid expression in the address"));
3630 return FALSE;
3631 }
3632 /* [Xn,<expr> */
3633 if (imm_shift_mode != SHIFTED_NONE && skip_past_comma (&p))
3634 /* [Xn,<expr>,<shifter> */
3635 if (! parse_shift (&p, operand, imm_shift_mode))
3636 return FALSE;
3637 }
3638 }
3639 }
3640
3641 if (! skip_past_char (&p, ']'))
3642 {
3643 set_syntax_error (_("']' expected"));
3644 return FALSE;
3645 }
3646
3647 if (skip_past_char (&p, '!'))
3648 {
3649 if (operand->addr.preind && operand->addr.offset.is_reg)
3650 {
3651 set_syntax_error (_("register offset not allowed in pre-indexed "
3652 "addressing mode"));
3653 return FALSE;
3654 }
3655 /* [Xn]! */
3656 operand->addr.writeback = 1;
3657 }
3658 else if (skip_past_comma (&p))
3659 {
3660 /* [Xn], */
3661 operand->addr.postind = 1;
3662 operand->addr.writeback = 1;
3663
3664 if (operand->addr.preind)
3665 {
3666 set_syntax_error (_("cannot combine pre- and post-indexing"));
3667 return FALSE;
3668 }
3669
3670 reg = aarch64_reg_parse_32_64 (&p, offset_qualifier);
3671 if (reg)
3672 {
3673 /* [Xn],Xm */
3674 if (!aarch64_check_reg_type (reg, REG_TYPE_R_64))
3675 {
3676 set_syntax_error (_(get_reg_expected_msg (REG_TYPE_R_64)));
3677 return FALSE;
3678 }
3679
3680 operand->addr.offset.regno = reg->number;
3681 operand->addr.offset.is_reg = 1;
3682 }
3683 else if (! my_get_expression (exp, &p, GE_OPT_PREFIX, 1))
3684 {
3685 /* [Xn],#expr */
3686 set_syntax_error (_("invalid expression in the address"));
3687 return FALSE;
3688 }
3689 }
3690
3691 /* If at this point neither .preind nor .postind is set, we have a
3692 bare [Rn]{!}; reject [Rn]! accept [Rn] as a shorthand for [Rn,#0]. */
3693 if (operand->addr.preind == 0 && operand->addr.postind == 0)
3694 {
3695 if (operand->addr.writeback)
3696 {
3697 /* Reject [Rn]! */
3698 set_syntax_error (_("missing offset in the pre-indexed address"));
3699 return FALSE;
3700 }
3701
3702 operand->addr.preind = 1;
3703 inst.reloc.exp.X_op = O_constant;
3704 inst.reloc.exp.X_add_number = 0;
3705 }
3706
3707 *str = p;
3708 return TRUE;
3709 }
3710
3711 /* Parse a base AArch64 address (as opposed to an SVE one). Return TRUE
3712 on success. */
3713 static bfd_boolean
3714 parse_address (char **str, aarch64_opnd_info *operand)
3715 {
3716 aarch64_opnd_qualifier_t base_qualifier, offset_qualifier;
3717 return parse_address_main (str, operand, &base_qualifier, &offset_qualifier,
3718 REG_TYPE_R64_SP, REG_TYPE_R_Z, SHIFTED_NONE);
3719 }
3720
3721 /* Parse an address in which SVE vector registers and MUL VL are allowed.
3722 The arguments have the same meaning as for parse_address_main.
3723 Return TRUE on success. */
3724 static bfd_boolean
3725 parse_sve_address (char **str, aarch64_opnd_info *operand,
3726 aarch64_opnd_qualifier_t *base_qualifier,
3727 aarch64_opnd_qualifier_t *offset_qualifier)
3728 {
3729 return parse_address_main (str, operand, base_qualifier, offset_qualifier,
3730 REG_TYPE_SVE_BASE, REG_TYPE_SVE_OFFSET,
3731 SHIFTED_MUL_VL);
3732 }
3733
3734 /* Parse an operand for a MOVZ, MOVN or MOVK instruction.
3735 Return TRUE on success; otherwise return FALSE. */
3736 static bfd_boolean
3737 parse_half (char **str, int *internal_fixup_p)
3738 {
3739 char *p = *str;
3740
3741 skip_past_char (&p, '#');
3742
3743 gas_assert (internal_fixup_p);
3744 *internal_fixup_p = 0;
3745
3746 if (*p == ':')
3747 {
3748 struct reloc_table_entry *entry;
3749
3750 /* Try to parse a relocation. Anything else is an error. */
3751 ++p;
3752 if (!(entry = find_reloc_table_entry (&p)))
3753 {
3754 set_syntax_error (_("unknown relocation modifier"));
3755 return FALSE;
3756 }
3757
3758 if (entry->movw_type == 0)
3759 {
3760 set_syntax_error
3761 (_("this relocation modifier is not allowed on this instruction"));
3762 return FALSE;
3763 }
3764
3765 inst.reloc.type = entry->movw_type;
3766 }
3767 else
3768 *internal_fixup_p = 1;
3769
3770 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3771 return FALSE;
3772
3773 *str = p;
3774 return TRUE;
3775 }
3776
3777 /* Parse an operand for an ADRP instruction:
3778 ADRP <Xd>, <label>
3779 Return TRUE on success; otherwise return FALSE. */
3780
3781 static bfd_boolean
3782 parse_adrp (char **str)
3783 {
3784 char *p;
3785
3786 p = *str;
3787 if (*p == ':')
3788 {
3789 struct reloc_table_entry *entry;
3790
3791 /* Try to parse a relocation. Anything else is an error. */
3792 ++p;
3793 if (!(entry = find_reloc_table_entry (&p)))
3794 {
3795 set_syntax_error (_("unknown relocation modifier"));
3796 return FALSE;
3797 }
3798
3799 if (entry->adrp_type == 0)
3800 {
3801 set_syntax_error
3802 (_("this relocation modifier is not allowed on this instruction"));
3803 return FALSE;
3804 }
3805
3806 inst.reloc.type = entry->adrp_type;
3807 }
3808 else
3809 inst.reloc.type = BFD_RELOC_AARCH64_ADR_HI21_PCREL;
3810
3811 inst.reloc.pc_rel = 1;
3812
3813 if (! my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX, 1))
3814 return FALSE;
3815
3816 *str = p;
3817 return TRUE;
3818 }
3819
3820 /* Miscellaneous. */
3821
3822 /* Parse a symbolic operand such as "pow2" at *STR. ARRAY is an array
3823 of SIZE tokens in which index I gives the token for field value I,
3824 or is null if field value I is invalid. REG_TYPE says which register
3825 names should be treated as registers rather than as symbolic immediates.
3826
3827 Return true on success, moving *STR past the operand and storing the
3828 field value in *VAL. */
3829
3830 static int
3831 parse_enum_string (char **str, int64_t *val, const char *const *array,
3832 size_t size, aarch64_reg_type reg_type)
3833 {
3834 expressionS exp;
3835 char *p, *q;
3836 size_t i;
3837
3838 /* Match C-like tokens. */
3839 p = q = *str;
3840 while (ISALNUM (*q))
3841 q++;
3842
3843 for (i = 0; i < size; ++i)
3844 if (array[i]
3845 && strncasecmp (array[i], p, q - p) == 0
3846 && array[i][q - p] == 0)
3847 {
3848 *val = i;
3849 *str = q;
3850 return TRUE;
3851 }
3852
3853 if (!parse_immediate_expression (&p, &exp, reg_type))
3854 return FALSE;
3855
3856 if (exp.X_op == O_constant
3857 && (uint64_t) exp.X_add_number < size)
3858 {
3859 *val = exp.X_add_number;
3860 *str = p;
3861 return TRUE;
3862 }
3863
3864 /* Use the default error for this operand. */
3865 return FALSE;
3866 }
3867
3868 /* Parse an option for a preload instruction. Returns the encoding for the
3869 option, or PARSE_FAIL. */
3870
3871 static int
3872 parse_pldop (char **str)
3873 {
3874 char *p, *q;
3875 const struct aarch64_name_value_pair *o;
3876
3877 p = q = *str;
3878 while (ISALNUM (*q))
3879 q++;
3880
3881 o = hash_find_n (aarch64_pldop_hsh, p, q - p);
3882 if (!o)
3883 return PARSE_FAIL;
3884
3885 *str = q;
3886 return o->value;
3887 }
3888
3889 /* Parse an option for a barrier instruction. Returns the encoding for the
3890 option, or PARSE_FAIL. */
3891
3892 static int
3893 parse_barrier (char **str)
3894 {
3895 char *p, *q;
3896 const asm_barrier_opt *o;
3897
3898 p = q = *str;
3899 while (ISALPHA (*q))
3900 q++;
3901
3902 o = hash_find_n (aarch64_barrier_opt_hsh, p, q - p);
3903 if (!o)
3904 return PARSE_FAIL;
3905
3906 *str = q;
3907 return o->value;
3908 }
3909
3910 /* Parse an operand for a PSB barrier. Set *HINT_OPT to the hint-option record
3911 return 0 if successful. Otherwise return PARSE_FAIL. */
3912
3913 static int
3914 parse_barrier_psb (char **str,
3915 const struct aarch64_name_value_pair ** hint_opt)
3916 {
3917 char *p, *q;
3918 const struct aarch64_name_value_pair *o;
3919
3920 p = q = *str;
3921 while (ISALPHA (*q))
3922 q++;
3923
3924 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3925 if (!o)
3926 {
3927 set_fatal_syntax_error
3928 ( _("unknown or missing option to PSB"));
3929 return PARSE_FAIL;
3930 }
3931
3932 if (o->value != 0x11)
3933 {
3934 /* PSB only accepts option name 'CSYNC'. */
3935 set_syntax_error
3936 (_("the specified option is not accepted for PSB"));
3937 return PARSE_FAIL;
3938 }
3939
3940 *str = q;
3941 *hint_opt = o;
3942 return 0;
3943 }
3944
3945 /* Parse an operand for BTI. Set *HINT_OPT to the hint-option record
3946 return 0 if successful. Otherwise return PARSE_FAIL. */
3947
3948 static int
3949 parse_bti_operand (char **str,
3950 const struct aarch64_name_value_pair ** hint_opt)
3951 {
3952 char *p, *q;
3953 const struct aarch64_name_value_pair *o;
3954
3955 p = q = *str;
3956 while (ISALPHA (*q))
3957 q++;
3958
3959 o = hash_find_n (aarch64_hint_opt_hsh, p, q - p);
3960 if (!o)
3961 {
3962 set_fatal_syntax_error
3963 ( _("unknown option to BTI"));
3964 return PARSE_FAIL;
3965 }
3966
3967 switch (o->value)
3968 {
3969 /* Valid BTI operands. */
3970 case HINT_OPD_C:
3971 case HINT_OPD_J:
3972 case HINT_OPD_JC:
3973 break;
3974
3975 default:
3976 set_syntax_error
3977 (_("unknown option to BTI"));
3978 return PARSE_FAIL;
3979 }
3980
3981 *str = q;
3982 *hint_opt = o;
3983 return 0;
3984 }
3985
3986 /* Parse a system register or a PSTATE field name for an MSR/MRS instruction.
3987 Returns the encoding for the option, or PARSE_FAIL.
3988
3989 If IMPLE_DEFINED_P is non-zero, the function will also try to parse the
3990 implementation defined system register name S<op0>_<op1>_<Cn>_<Cm>_<op2>.
3991
3992 If PSTATEFIELD_P is non-zero, the function will parse the name as a PSTATE
3993 field, otherwise as a system register.
3994 */
3995
3996 static int
3997 parse_sys_reg (char **str, struct hash_control *sys_regs,
3998 int imple_defined_p, int pstatefield_p,
3999 uint32_t* flags)
4000 {
4001 char *p, *q;
4002 char buf[32];
4003 const aarch64_sys_reg *o;
4004 int value;
4005
4006 p = buf;
4007 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4008 if (p < buf + 31)
4009 *p++ = TOLOWER (*q);
4010 *p = '\0';
4011 /* Assert that BUF be large enough. */
4012 gas_assert (p - buf == q - *str);
4013
4014 o = hash_find (sys_regs, buf);
4015 if (!o)
4016 {
4017 if (!imple_defined_p)
4018 return PARSE_FAIL;
4019 else
4020 {
4021 /* Parse S<op0>_<op1>_<Cn>_<Cm>_<op2>. */
4022 unsigned int op0, op1, cn, cm, op2;
4023
4024 if (sscanf (buf, "s%u_%u_c%u_c%u_%u", &op0, &op1, &cn, &cm, &op2)
4025 != 5)
4026 return PARSE_FAIL;
4027 if (op0 > 3 || op1 > 7 || cn > 15 || cm > 15 || op2 > 7)
4028 return PARSE_FAIL;
4029 value = (op0 << 14) | (op1 << 11) | (cn << 7) | (cm << 3) | op2;
4030 if (flags)
4031 *flags = 0;
4032 }
4033 }
4034 else
4035 {
4036 if (pstatefield_p && !aarch64_pstatefield_supported_p (cpu_variant, o))
4037 as_bad (_("selected processor does not support PSTATE field "
4038 "name '%s'"), buf);
4039 if (!pstatefield_p && !aarch64_sys_reg_supported_p (cpu_variant, o))
4040 as_bad (_("selected processor does not support system register "
4041 "name '%s'"), buf);
4042 if (aarch64_sys_reg_deprecated_p (o))
4043 as_warn (_("system register name '%s' is deprecated and may be "
4044 "removed in a future release"), buf);
4045 value = o->value;
4046 if (flags)
4047 *flags = o->flags;
4048 }
4049
4050 *str = q;
4051 return value;
4052 }
4053
4054 /* Parse a system reg for ic/dc/at/tlbi instructions. Returns the table entry
4055 for the option, or NULL. */
4056
4057 static const aarch64_sys_ins_reg *
4058 parse_sys_ins_reg (char **str, struct hash_control *sys_ins_regs)
4059 {
4060 char *p, *q;
4061 char buf[32];
4062 const aarch64_sys_ins_reg *o;
4063
4064 p = buf;
4065 for (q = *str; ISALNUM (*q) || *q == '_'; q++)
4066 if (p < buf + 31)
4067 *p++ = TOLOWER (*q);
4068 *p = '\0';
4069
4070 o = hash_find (sys_ins_regs, buf);
4071 if (!o)
4072 return NULL;
4073
4074 if (!aarch64_sys_ins_reg_supported_p (cpu_variant, o))
4075 as_bad (_("selected processor does not support system register "
4076 "name '%s'"), buf);
4077
4078 *str = q;
4079 return o;
4080 }
4081 \f
4082 #define po_char_or_fail(chr) do { \
4083 if (! skip_past_char (&str, chr)) \
4084 goto failure; \
4085 } while (0)
4086
4087 #define po_reg_or_fail(regtype) do { \
4088 val = aarch64_reg_parse (&str, regtype, &rtype, NULL); \
4089 if (val == PARSE_FAIL) \
4090 { \
4091 set_default_error (); \
4092 goto failure; \
4093 } \
4094 } while (0)
4095
4096 #define po_int_reg_or_fail(reg_type) do { \
4097 reg = aarch64_reg_parse_32_64 (&str, &qualifier); \
4098 if (!reg || !aarch64_check_reg_type (reg, reg_type)) \
4099 { \
4100 set_default_error (); \
4101 goto failure; \
4102 } \
4103 info->reg.regno = reg->number; \
4104 info->qualifier = qualifier; \
4105 } while (0)
4106
4107 #define po_imm_nc_or_fail() do { \
4108 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4109 goto failure; \
4110 } while (0)
4111
4112 #define po_imm_or_fail(min, max) do { \
4113 if (! parse_constant_immediate (&str, &val, imm_reg_type)) \
4114 goto failure; \
4115 if (val < min || val > max) \
4116 { \
4117 set_fatal_syntax_error (_("immediate value out of range "\
4118 #min " to "#max)); \
4119 goto failure; \
4120 } \
4121 } while (0)
4122
4123 #define po_enum_or_fail(array) do { \
4124 if (!parse_enum_string (&str, &val, array, \
4125 ARRAY_SIZE (array), imm_reg_type)) \
4126 goto failure; \
4127 } while (0)
4128
4129 #define po_misc_or_fail(expr) do { \
4130 if (!expr) \
4131 goto failure; \
4132 } while (0)
4133 \f
4134 /* encode the 12-bit imm field of Add/sub immediate */
4135 static inline uint32_t
4136 encode_addsub_imm (uint32_t imm)
4137 {
4138 return imm << 10;
4139 }
4140
4141 /* encode the shift amount field of Add/sub immediate */
4142 static inline uint32_t
4143 encode_addsub_imm_shift_amount (uint32_t cnt)
4144 {
4145 return cnt << 22;
4146 }
4147
4148
4149 /* encode the imm field of Adr instruction */
4150 static inline uint32_t
4151 encode_adr_imm (uint32_t imm)
4152 {
4153 return (((imm & 0x3) << 29) /* [1:0] -> [30:29] */
4154 | ((imm & (0x7ffff << 2)) << 3)); /* [20:2] -> [23:5] */
4155 }
4156
4157 /* encode the immediate field of Move wide immediate */
4158 static inline uint32_t
4159 encode_movw_imm (uint32_t imm)
4160 {
4161 return imm << 5;
4162 }
4163
4164 /* encode the 26-bit offset of unconditional branch */
4165 static inline uint32_t
4166 encode_branch_ofs_26 (uint32_t ofs)
4167 {
4168 return ofs & ((1 << 26) - 1);
4169 }
4170
4171 /* encode the 19-bit offset of conditional branch and compare & branch */
4172 static inline uint32_t
4173 encode_cond_branch_ofs_19 (uint32_t ofs)
4174 {
4175 return (ofs & ((1 << 19) - 1)) << 5;
4176 }
4177
4178 /* encode the 19-bit offset of ld literal */
4179 static inline uint32_t
4180 encode_ld_lit_ofs_19 (uint32_t ofs)
4181 {
4182 return (ofs & ((1 << 19) - 1)) << 5;
4183 }
4184
4185 /* Encode the 14-bit offset of test & branch. */
4186 static inline uint32_t
4187 encode_tst_branch_ofs_14 (uint32_t ofs)
4188 {
4189 return (ofs & ((1 << 14) - 1)) << 5;
4190 }
4191
4192 /* Encode the 16-bit imm field of svc/hvc/smc. */
4193 static inline uint32_t
4194 encode_svc_imm (uint32_t imm)
4195 {
4196 return imm << 5;
4197 }
4198
4199 /* Reencode add(s) to sub(s), or sub(s) to add(s). */
4200 static inline uint32_t
4201 reencode_addsub_switch_add_sub (uint32_t opcode)
4202 {
4203 return opcode ^ (1 << 30);
4204 }
4205
4206 static inline uint32_t
4207 reencode_movzn_to_movz (uint32_t opcode)
4208 {
4209 return opcode | (1 << 30);
4210 }
4211
4212 static inline uint32_t
4213 reencode_movzn_to_movn (uint32_t opcode)
4214 {
4215 return opcode & ~(1 << 30);
4216 }
4217
4218 /* Overall per-instruction processing. */
4219
4220 /* We need to be able to fix up arbitrary expressions in some statements.
4221 This is so that we can handle symbols that are an arbitrary distance from
4222 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
4223 which returns part of an address in a form which will be valid for
4224 a data instruction. We do this by pushing the expression into a symbol
4225 in the expr_section, and creating a fix for that. */
4226
4227 static fixS *
4228 fix_new_aarch64 (fragS * frag,
4229 int where,
4230 short int size, expressionS * exp, int pc_rel, int reloc)
4231 {
4232 fixS *new_fix;
4233
4234 switch (exp->X_op)
4235 {
4236 case O_constant:
4237 case O_symbol:
4238 case O_add:
4239 case O_subtract:
4240 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
4241 break;
4242
4243 default:
4244 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
4245 pc_rel, reloc);
4246 break;
4247 }
4248 return new_fix;
4249 }
4250 \f
4251 /* Diagnostics on operands errors. */
4252
4253 /* By default, output verbose error message.
4254 Disable the verbose error message by -mno-verbose-error. */
4255 static int verbose_error_p = 1;
4256
4257 #ifdef DEBUG_AARCH64
4258 /* N.B. this is only for the purpose of debugging. */
4259 const char* operand_mismatch_kind_names[] =
4260 {
4261 "AARCH64_OPDE_NIL",
4262 "AARCH64_OPDE_RECOVERABLE",
4263 "AARCH64_OPDE_SYNTAX_ERROR",
4264 "AARCH64_OPDE_FATAL_SYNTAX_ERROR",
4265 "AARCH64_OPDE_INVALID_VARIANT",
4266 "AARCH64_OPDE_OUT_OF_RANGE",
4267 "AARCH64_OPDE_UNALIGNED",
4268 "AARCH64_OPDE_REG_LIST",
4269 "AARCH64_OPDE_OTHER_ERROR",
4270 };
4271 #endif /* DEBUG_AARCH64 */
4272
4273 /* Return TRUE if LHS is of higher severity than RHS, otherwise return FALSE.
4274
4275 When multiple errors of different kinds are found in the same assembly
4276 line, only the error of the highest severity will be picked up for
4277 issuing the diagnostics. */
4278
4279 static inline bfd_boolean
4280 operand_error_higher_severity_p (enum aarch64_operand_error_kind lhs,
4281 enum aarch64_operand_error_kind rhs)
4282 {
4283 gas_assert (AARCH64_OPDE_RECOVERABLE > AARCH64_OPDE_NIL);
4284 gas_assert (AARCH64_OPDE_SYNTAX_ERROR > AARCH64_OPDE_RECOVERABLE);
4285 gas_assert (AARCH64_OPDE_FATAL_SYNTAX_ERROR > AARCH64_OPDE_SYNTAX_ERROR);
4286 gas_assert (AARCH64_OPDE_INVALID_VARIANT > AARCH64_OPDE_FATAL_SYNTAX_ERROR);
4287 gas_assert (AARCH64_OPDE_OUT_OF_RANGE > AARCH64_OPDE_INVALID_VARIANT);
4288 gas_assert (AARCH64_OPDE_UNALIGNED > AARCH64_OPDE_OUT_OF_RANGE);
4289 gas_assert (AARCH64_OPDE_REG_LIST > AARCH64_OPDE_UNALIGNED);
4290 gas_assert (AARCH64_OPDE_OTHER_ERROR > AARCH64_OPDE_REG_LIST);
4291 return lhs > rhs;
4292 }
4293
4294 /* Helper routine to get the mnemonic name from the assembly instruction
4295 line; should only be called for the diagnosis purpose, as there is
4296 string copy operation involved, which may affect the runtime
4297 performance if used in elsewhere. */
4298
4299 static const char*
4300 get_mnemonic_name (const char *str)
4301 {
4302 static char mnemonic[32];
4303 char *ptr;
4304
4305 /* Get the first 15 bytes and assume that the full name is included. */
4306 strncpy (mnemonic, str, 31);
4307 mnemonic[31] = '\0';
4308
4309 /* Scan up to the end of the mnemonic, which must end in white space,
4310 '.', or end of string. */
4311 for (ptr = mnemonic; is_part_of_name(*ptr); ++ptr)
4312 ;
4313
4314 *ptr = '\0';
4315
4316 /* Append '...' to the truncated long name. */
4317 if (ptr - mnemonic == 31)
4318 mnemonic[28] = mnemonic[29] = mnemonic[30] = '.';
4319
4320 return mnemonic;
4321 }
4322
4323 static void
4324 reset_aarch64_instruction (aarch64_instruction *instruction)
4325 {
4326 memset (instruction, '\0', sizeof (aarch64_instruction));
4327 instruction->reloc.type = BFD_RELOC_UNUSED;
4328 }
4329
4330 /* Data structures storing one user error in the assembly code related to
4331 operands. */
4332
4333 struct operand_error_record
4334 {
4335 const aarch64_opcode *opcode;
4336 aarch64_operand_error detail;
4337 struct operand_error_record *next;
4338 };
4339
4340 typedef struct operand_error_record operand_error_record;
4341
4342 struct operand_errors
4343 {
4344 operand_error_record *head;
4345 operand_error_record *tail;
4346 };
4347
4348 typedef struct operand_errors operand_errors;
4349
4350 /* Top-level data structure reporting user errors for the current line of
4351 the assembly code.
4352 The way md_assemble works is that all opcodes sharing the same mnemonic
4353 name are iterated to find a match to the assembly line. In this data
4354 structure, each of the such opcodes will have one operand_error_record
4355 allocated and inserted. In other words, excessive errors related with
4356 a single opcode are disregarded. */
4357 operand_errors operand_error_report;
4358
4359 /* Free record nodes. */
4360 static operand_error_record *free_opnd_error_record_nodes = NULL;
4361
4362 /* Initialize the data structure that stores the operand mismatch
4363 information on assembling one line of the assembly code. */
4364 static void
4365 init_operand_error_report (void)
4366 {
4367 if (operand_error_report.head != NULL)
4368 {
4369 gas_assert (operand_error_report.tail != NULL);
4370 operand_error_report.tail->next = free_opnd_error_record_nodes;
4371 free_opnd_error_record_nodes = operand_error_report.head;
4372 operand_error_report.head = NULL;
4373 operand_error_report.tail = NULL;
4374 return;
4375 }
4376 gas_assert (operand_error_report.tail == NULL);
4377 }
4378
4379 /* Return TRUE if some operand error has been recorded during the
4380 parsing of the current assembly line using the opcode *OPCODE;
4381 otherwise return FALSE. */
4382 static inline bfd_boolean
4383 opcode_has_operand_error_p (const aarch64_opcode *opcode)
4384 {
4385 operand_error_record *record = operand_error_report.head;
4386 return record && record->opcode == opcode;
4387 }
4388
4389 /* Add the error record *NEW_RECORD to operand_error_report. The record's
4390 OPCODE field is initialized with OPCODE.
4391 N.B. only one record for each opcode, i.e. the maximum of one error is
4392 recorded for each instruction template. */
4393
4394 static void
4395 add_operand_error_record (const operand_error_record* new_record)
4396 {
4397 const aarch64_opcode *opcode = new_record->opcode;
4398 operand_error_record* record = operand_error_report.head;
4399
4400 /* The record may have been created for this opcode. If not, we need
4401 to prepare one. */
4402 if (! opcode_has_operand_error_p (opcode))
4403 {
4404 /* Get one empty record. */
4405 if (free_opnd_error_record_nodes == NULL)
4406 {
4407 record = XNEW (operand_error_record);
4408 }
4409 else
4410 {
4411 record = free_opnd_error_record_nodes;
4412 free_opnd_error_record_nodes = record->next;
4413 }
4414 record->opcode = opcode;
4415 /* Insert at the head. */
4416 record->next = operand_error_report.head;
4417 operand_error_report.head = record;
4418 if (operand_error_report.tail == NULL)
4419 operand_error_report.tail = record;
4420 }
4421 else if (record->detail.kind != AARCH64_OPDE_NIL
4422 && record->detail.index <= new_record->detail.index
4423 && operand_error_higher_severity_p (record->detail.kind,
4424 new_record->detail.kind))
4425 {
4426 /* In the case of multiple errors found on operands related with a
4427 single opcode, only record the error of the leftmost operand and
4428 only if the error is of higher severity. */
4429 DEBUG_TRACE ("error %s on operand %d not added to the report due to"
4430 " the existing error %s on operand %d",
4431 operand_mismatch_kind_names[new_record->detail.kind],
4432 new_record->detail.index,
4433 operand_mismatch_kind_names[record->detail.kind],
4434 record->detail.index);
4435 return;
4436 }
4437
4438 record->detail = new_record->detail;
4439 }
4440
4441 static inline void
4442 record_operand_error_info (const aarch64_opcode *opcode,
4443 aarch64_operand_error *error_info)
4444 {
4445 operand_error_record record;
4446 record.opcode = opcode;
4447 record.detail = *error_info;
4448 add_operand_error_record (&record);
4449 }
4450
4451 /* Record an error of kind KIND and, if ERROR is not NULL, of the detailed
4452 error message *ERROR, for operand IDX (count from 0). */
4453
4454 static void
4455 record_operand_error (const aarch64_opcode *opcode, int idx,
4456 enum aarch64_operand_error_kind kind,
4457 const char* error)
4458 {
4459 aarch64_operand_error info;
4460 memset(&info, 0, sizeof (info));
4461 info.index = idx;
4462 info.kind = kind;
4463 info.error = error;
4464 info.non_fatal = FALSE;
4465 record_operand_error_info (opcode, &info);
4466 }
4467
4468 static void
4469 record_operand_error_with_data (const aarch64_opcode *opcode, int idx,
4470 enum aarch64_operand_error_kind kind,
4471 const char* error, const int *extra_data)
4472 {
4473 aarch64_operand_error info;
4474 info.index = idx;
4475 info.kind = kind;
4476 info.error = error;
4477 info.data[0] = extra_data[0];
4478 info.data[1] = extra_data[1];
4479 info.data[2] = extra_data[2];
4480 info.non_fatal = FALSE;
4481 record_operand_error_info (opcode, &info);
4482 }
4483
4484 static void
4485 record_operand_out_of_range_error (const aarch64_opcode *opcode, int idx,
4486 const char* error, int lower_bound,
4487 int upper_bound)
4488 {
4489 int data[3] = {lower_bound, upper_bound, 0};
4490 record_operand_error_with_data (opcode, idx, AARCH64_OPDE_OUT_OF_RANGE,
4491 error, data);
4492 }
4493
4494 /* Remove the operand error record for *OPCODE. */
4495 static void ATTRIBUTE_UNUSED
4496 remove_operand_error_record (const aarch64_opcode *opcode)
4497 {
4498 if (opcode_has_operand_error_p (opcode))
4499 {
4500 operand_error_record* record = operand_error_report.head;
4501 gas_assert (record != NULL && operand_error_report.tail != NULL);
4502 operand_error_report.head = record->next;
4503 record->next = free_opnd_error_record_nodes;
4504 free_opnd_error_record_nodes = record;
4505 if (operand_error_report.head == NULL)
4506 {
4507 gas_assert (operand_error_report.tail == record);
4508 operand_error_report.tail = NULL;
4509 }
4510 }
4511 }
4512
4513 /* Given the instruction in *INSTR, return the index of the best matched
4514 qualifier sequence in the list (an array) headed by QUALIFIERS_LIST.
4515
4516 Return -1 if there is no qualifier sequence; return the first match
4517 if there is multiple matches found. */
4518
4519 static int
4520 find_best_match (const aarch64_inst *instr,
4521 const aarch64_opnd_qualifier_seq_t *qualifiers_list)
4522 {
4523 int i, num_opnds, max_num_matched, idx;
4524
4525 num_opnds = aarch64_num_of_operands (instr->opcode);
4526 if (num_opnds == 0)
4527 {
4528 DEBUG_TRACE ("no operand");
4529 return -1;
4530 }
4531
4532 max_num_matched = 0;
4533 idx = 0;
4534
4535 /* For each pattern. */
4536 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4537 {
4538 int j, num_matched;
4539 const aarch64_opnd_qualifier_t *qualifiers = *qualifiers_list;
4540
4541 /* Most opcodes has much fewer patterns in the list. */
4542 if (empty_qualifier_sequence_p (qualifiers))
4543 {
4544 DEBUG_TRACE_IF (i == 0, "empty list of qualifier sequence");
4545 break;
4546 }
4547
4548 for (j = 0, num_matched = 0; j < num_opnds; ++j, ++qualifiers)
4549 if (*qualifiers == instr->operands[j].qualifier)
4550 ++num_matched;
4551
4552 if (num_matched > max_num_matched)
4553 {
4554 max_num_matched = num_matched;
4555 idx = i;
4556 }
4557 }
4558
4559 DEBUG_TRACE ("return with %d", idx);
4560 return idx;
4561 }
4562
4563 /* Assign qualifiers in the qualifier sequence (headed by QUALIFIERS) to the
4564 corresponding operands in *INSTR. */
4565
4566 static inline void
4567 assign_qualifier_sequence (aarch64_inst *instr,
4568 const aarch64_opnd_qualifier_t *qualifiers)
4569 {
4570 int i = 0;
4571 int num_opnds = aarch64_num_of_operands (instr->opcode);
4572 gas_assert (num_opnds);
4573 for (i = 0; i < num_opnds; ++i, ++qualifiers)
4574 instr->operands[i].qualifier = *qualifiers;
4575 }
4576
4577 /* Print operands for the diagnosis purpose. */
4578
4579 static void
4580 print_operands (char *buf, const aarch64_opcode *opcode,
4581 const aarch64_opnd_info *opnds)
4582 {
4583 int i;
4584
4585 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
4586 {
4587 char str[128];
4588
4589 /* We regard the opcode operand info more, however we also look into
4590 the inst->operands to support the disassembling of the optional
4591 operand.
4592 The two operand code should be the same in all cases, apart from
4593 when the operand can be optional. */
4594 if (opcode->operands[i] == AARCH64_OPND_NIL
4595 || opnds[i].type == AARCH64_OPND_NIL)
4596 break;
4597
4598 /* Generate the operand string in STR. */
4599 aarch64_print_operand (str, sizeof (str), 0, opcode, opnds, i, NULL, NULL,
4600 NULL);
4601
4602 /* Delimiter. */
4603 if (str[0] != '\0')
4604 strcat (buf, i == 0 ? " " : ", ");
4605
4606 /* Append the operand string. */
4607 strcat (buf, str);
4608 }
4609 }
4610
4611 /* Send to stderr a string as information. */
4612
4613 static void
4614 output_info (const char *format, ...)
4615 {
4616 const char *file;
4617 unsigned int line;
4618 va_list args;
4619
4620 file = as_where (&line);
4621 if (file)
4622 {
4623 if (line != 0)
4624 fprintf (stderr, "%s:%u: ", file, line);
4625 else
4626 fprintf (stderr, "%s: ", file);
4627 }
4628 fprintf (stderr, _("Info: "));
4629 va_start (args, format);
4630 vfprintf (stderr, format, args);
4631 va_end (args);
4632 (void) putc ('\n', stderr);
4633 }
4634
4635 /* Output one operand error record. */
4636
4637 static void
4638 output_operand_error_record (const operand_error_record *record, char *str)
4639 {
4640 const aarch64_operand_error *detail = &record->detail;
4641 int idx = detail->index;
4642 const aarch64_opcode *opcode = record->opcode;
4643 enum aarch64_opnd opd_code = (idx >= 0 ? opcode->operands[idx]
4644 : AARCH64_OPND_NIL);
4645
4646 typedef void (*handler_t)(const char *format, ...);
4647 handler_t handler = detail->non_fatal ? as_warn : as_bad;
4648
4649 switch (detail->kind)
4650 {
4651 case AARCH64_OPDE_NIL:
4652 gas_assert (0);
4653 break;
4654 case AARCH64_OPDE_SYNTAX_ERROR:
4655 case AARCH64_OPDE_RECOVERABLE:
4656 case AARCH64_OPDE_FATAL_SYNTAX_ERROR:
4657 case AARCH64_OPDE_OTHER_ERROR:
4658 /* Use the prepared error message if there is, otherwise use the
4659 operand description string to describe the error. */
4660 if (detail->error != NULL)
4661 {
4662 if (idx < 0)
4663 handler (_("%s -- `%s'"), detail->error, str);
4664 else
4665 handler (_("%s at operand %d -- `%s'"),
4666 detail->error, idx + 1, str);
4667 }
4668 else
4669 {
4670 gas_assert (idx >= 0);
4671 handler (_("operand %d must be %s -- `%s'"), idx + 1,
4672 aarch64_get_operand_desc (opd_code), str);
4673 }
4674 break;
4675
4676 case AARCH64_OPDE_INVALID_VARIANT:
4677 handler (_("operand mismatch -- `%s'"), str);
4678 if (verbose_error_p)
4679 {
4680 /* We will try to correct the erroneous instruction and also provide
4681 more information e.g. all other valid variants.
4682
4683 The string representation of the corrected instruction and other
4684 valid variants are generated by
4685
4686 1) obtaining the intermediate representation of the erroneous
4687 instruction;
4688 2) manipulating the IR, e.g. replacing the operand qualifier;
4689 3) printing out the instruction by calling the printer functions
4690 shared with the disassembler.
4691
4692 The limitation of this method is that the exact input assembly
4693 line cannot be accurately reproduced in some cases, for example an
4694 optional operand present in the actual assembly line will be
4695 omitted in the output; likewise for the optional syntax rules,
4696 e.g. the # before the immediate. Another limitation is that the
4697 assembly symbols and relocation operations in the assembly line
4698 currently cannot be printed out in the error report. Last but not
4699 least, when there is other error(s) co-exist with this error, the
4700 'corrected' instruction may be still incorrect, e.g. given
4701 'ldnp h0,h1,[x0,#6]!'
4702 this diagnosis will provide the version:
4703 'ldnp s0,s1,[x0,#6]!'
4704 which is still not right. */
4705 size_t len = strlen (get_mnemonic_name (str));
4706 int i, qlf_idx;
4707 bfd_boolean result;
4708 char buf[2048];
4709 aarch64_inst *inst_base = &inst.base;
4710 const aarch64_opnd_qualifier_seq_t *qualifiers_list;
4711
4712 /* Init inst. */
4713 reset_aarch64_instruction (&inst);
4714 inst_base->opcode = opcode;
4715
4716 /* Reset the error report so that there is no side effect on the
4717 following operand parsing. */
4718 init_operand_error_report ();
4719
4720 /* Fill inst. */
4721 result = parse_operands (str + len, opcode)
4722 && programmer_friendly_fixup (&inst);
4723 gas_assert (result);
4724 result = aarch64_opcode_encode (opcode, inst_base, &inst_base->value,
4725 NULL, NULL, insn_sequence);
4726 gas_assert (!result);
4727
4728 /* Find the most matched qualifier sequence. */
4729 qlf_idx = find_best_match (inst_base, opcode->qualifiers_list);
4730 gas_assert (qlf_idx > -1);
4731
4732 /* Assign the qualifiers. */
4733 assign_qualifier_sequence (inst_base,
4734 opcode->qualifiers_list[qlf_idx]);
4735
4736 /* Print the hint. */
4737 output_info (_(" did you mean this?"));
4738 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4739 print_operands (buf, opcode, inst_base->operands);
4740 output_info (_(" %s"), buf);
4741
4742 /* Print out other variant(s) if there is any. */
4743 if (qlf_idx != 0 ||
4744 !empty_qualifier_sequence_p (opcode->qualifiers_list[1]))
4745 output_info (_(" other valid variant(s):"));
4746
4747 /* For each pattern. */
4748 qualifiers_list = opcode->qualifiers_list;
4749 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
4750 {
4751 /* Most opcodes has much fewer patterns in the list.
4752 First NIL qualifier indicates the end in the list. */
4753 if (empty_qualifier_sequence_p (*qualifiers_list))
4754 break;
4755
4756 if (i != qlf_idx)
4757 {
4758 /* Mnemonics name. */
4759 snprintf (buf, sizeof (buf), "\t%s", get_mnemonic_name (str));
4760
4761 /* Assign the qualifiers. */
4762 assign_qualifier_sequence (inst_base, *qualifiers_list);
4763
4764 /* Print instruction. */
4765 print_operands (buf, opcode, inst_base->operands);
4766
4767 output_info (_(" %s"), buf);
4768 }
4769 }
4770 }
4771 break;
4772
4773 case AARCH64_OPDE_UNTIED_OPERAND:
4774 handler (_("operand %d must be the same register as operand 1 -- `%s'"),
4775 detail->index + 1, str);
4776 break;
4777
4778 case AARCH64_OPDE_OUT_OF_RANGE:
4779 if (detail->data[0] != detail->data[1])
4780 handler (_("%s out of range %d to %d at operand %d -- `%s'"),
4781 detail->error ? detail->error : _("immediate value"),
4782 detail->data[0], detail->data[1], idx + 1, str);
4783 else
4784 handler (_("%s must be %d at operand %d -- `%s'"),
4785 detail->error ? detail->error : _("immediate value"),
4786 detail->data[0], idx + 1, str);
4787 break;
4788
4789 case AARCH64_OPDE_REG_LIST:
4790 if (detail->data[0] == 1)
4791 handler (_("invalid number of registers in the list; "
4792 "only 1 register is expected at operand %d -- `%s'"),
4793 idx + 1, str);
4794 else
4795 handler (_("invalid number of registers in the list; "
4796 "%d registers are expected at operand %d -- `%s'"),
4797 detail->data[0], idx + 1, str);
4798 break;
4799
4800 case AARCH64_OPDE_UNALIGNED:
4801 handler (_("immediate value must be a multiple of "
4802 "%d at operand %d -- `%s'"),
4803 detail->data[0], idx + 1, str);
4804 break;
4805
4806 default:
4807 gas_assert (0);
4808 break;
4809 }
4810 }
4811
4812 /* Process and output the error message about the operand mismatching.
4813
4814 When this function is called, the operand error information had
4815 been collected for an assembly line and there will be multiple
4816 errors in the case of multiple instruction templates; output the
4817 error message that most closely describes the problem.
4818
4819 The errors to be printed can be filtered on printing all errors
4820 or only non-fatal errors. This distinction has to be made because
4821 the error buffer may already be filled with fatal errors we don't want to
4822 print due to the different instruction templates. */
4823
4824 static void
4825 output_operand_error_report (char *str, bfd_boolean non_fatal_only)
4826 {
4827 int largest_error_pos;
4828 const char *msg = NULL;
4829 enum aarch64_operand_error_kind kind;
4830 operand_error_record *curr;
4831 operand_error_record *head = operand_error_report.head;
4832 operand_error_record *record = NULL;
4833
4834 /* No error to report. */
4835 if (head == NULL)
4836 return;
4837
4838 gas_assert (head != NULL && operand_error_report.tail != NULL);
4839
4840 /* Only one error. */
4841 if (head == operand_error_report.tail)
4842 {
4843 /* If the only error is a non-fatal one and we don't want to print it,
4844 just exit. */
4845 if (!non_fatal_only || head->detail.non_fatal)
4846 {
4847 DEBUG_TRACE ("single opcode entry with error kind: %s",
4848 operand_mismatch_kind_names[head->detail.kind]);
4849 output_operand_error_record (head, str);
4850 }
4851 return;
4852 }
4853
4854 /* Find the error kind of the highest severity. */
4855 DEBUG_TRACE ("multiple opcode entries with error kind");
4856 kind = AARCH64_OPDE_NIL;
4857 for (curr = head; curr != NULL; curr = curr->next)
4858 {
4859 gas_assert (curr->detail.kind != AARCH64_OPDE_NIL);
4860 DEBUG_TRACE ("\t%s", operand_mismatch_kind_names[curr->detail.kind]);
4861 if (operand_error_higher_severity_p (curr->detail.kind, kind)
4862 && (!non_fatal_only || (non_fatal_only && curr->detail.non_fatal)))
4863 kind = curr->detail.kind;
4864 }
4865
4866 gas_assert (kind != AARCH64_OPDE_NIL || non_fatal_only);
4867
4868 /* Pick up one of errors of KIND to report. */
4869 largest_error_pos = -2; /* Index can be -1 which means unknown index. */
4870 for (curr = head; curr != NULL; curr = curr->next)
4871 {
4872 /* If we don't want to print non-fatal errors then don't consider them
4873 at all. */
4874 if (curr->detail.kind != kind
4875 || (non_fatal_only && !curr->detail.non_fatal))
4876 continue;
4877 /* If there are multiple errors, pick up the one with the highest
4878 mismatching operand index. In the case of multiple errors with
4879 the equally highest operand index, pick up the first one or the
4880 first one with non-NULL error message. */
4881 if (curr->detail.index > largest_error_pos
4882 || (curr->detail.index == largest_error_pos && msg == NULL
4883 && curr->detail.error != NULL))
4884 {
4885 largest_error_pos = curr->detail.index;
4886 record = curr;
4887 msg = record->detail.error;
4888 }
4889 }
4890
4891 /* The way errors are collected in the back-end is a bit non-intuitive. But
4892 essentially, because each operand template is tried recursively you may
4893 always have errors collected from the previous tried OPND. These are
4894 usually skipped if there is one successful match. However now with the
4895 non-fatal errors we have to ignore those previously collected hard errors
4896 when we're only interested in printing the non-fatal ones. This condition
4897 prevents us from printing errors that are not appropriate, since we did
4898 match a condition, but it also has warnings that it wants to print. */
4899 if (non_fatal_only && !record)
4900 return;
4901
4902 gas_assert (largest_error_pos != -2 && record != NULL);
4903 DEBUG_TRACE ("Pick up error kind %s to report",
4904 operand_mismatch_kind_names[record->detail.kind]);
4905
4906 /* Output. */
4907 output_operand_error_record (record, str);
4908 }
4909 \f
4910 /* Write an AARCH64 instruction to buf - always little-endian. */
4911 static void
4912 put_aarch64_insn (char *buf, uint32_t insn)
4913 {
4914 unsigned char *where = (unsigned char *) buf;
4915 where[0] = insn;
4916 where[1] = insn >> 8;
4917 where[2] = insn >> 16;
4918 where[3] = insn >> 24;
4919 }
4920
4921 static uint32_t
4922 get_aarch64_insn (char *buf)
4923 {
4924 unsigned char *where = (unsigned char *) buf;
4925 uint32_t result;
4926 result = (where[0] | (where[1] << 8) | (where[2] << 16) | (where[3] << 24));
4927 return result;
4928 }
4929
4930 static void
4931 output_inst (struct aarch64_inst *new_inst)
4932 {
4933 char *to = NULL;
4934
4935 to = frag_more (INSN_SIZE);
4936
4937 frag_now->tc_frag_data.recorded = 1;
4938
4939 put_aarch64_insn (to, inst.base.value);
4940
4941 if (inst.reloc.type != BFD_RELOC_UNUSED)
4942 {
4943 fixS *fixp = fix_new_aarch64 (frag_now, to - frag_now->fr_literal,
4944 INSN_SIZE, &inst.reloc.exp,
4945 inst.reloc.pc_rel,
4946 inst.reloc.type);
4947 DEBUG_TRACE ("Prepared relocation fix up");
4948 /* Don't check the addend value against the instruction size,
4949 that's the job of our code in md_apply_fix(). */
4950 fixp->fx_no_overflow = 1;
4951 if (new_inst != NULL)
4952 fixp->tc_fix_data.inst = new_inst;
4953 if (aarch64_gas_internal_fixup_p ())
4954 {
4955 gas_assert (inst.reloc.opnd != AARCH64_OPND_NIL);
4956 fixp->tc_fix_data.opnd = inst.reloc.opnd;
4957 fixp->fx_addnumber = inst.reloc.flags;
4958 }
4959 }
4960
4961 dwarf2_emit_insn (INSN_SIZE);
4962 }
4963
4964 /* Link together opcodes of the same name. */
4965
4966 struct templates
4967 {
4968 aarch64_opcode *opcode;
4969 struct templates *next;
4970 };
4971
4972 typedef struct templates templates;
4973
4974 static templates *
4975 lookup_mnemonic (const char *start, int len)
4976 {
4977 templates *templ = NULL;
4978
4979 templ = hash_find_n (aarch64_ops_hsh, start, len);
4980 return templ;
4981 }
4982
4983 /* Subroutine of md_assemble, responsible for looking up the primary
4984 opcode from the mnemonic the user wrote. STR points to the
4985 beginning of the mnemonic. */
4986
4987 static templates *
4988 opcode_lookup (char **str)
4989 {
4990 char *end, *base, *dot;
4991 const aarch64_cond *cond;
4992 char condname[16];
4993 int len;
4994
4995 /* Scan up to the end of the mnemonic, which must end in white space,
4996 '.', or end of string. */
4997 dot = 0;
4998 for (base = end = *str; is_part_of_name(*end); end++)
4999 if (*end == '.' && !dot)
5000 dot = end;
5001
5002 if (end == base || dot == base)
5003 return 0;
5004
5005 inst.cond = COND_ALWAYS;
5006
5007 /* Handle a possible condition. */
5008 if (dot)
5009 {
5010 cond = hash_find_n (aarch64_cond_hsh, dot + 1, end - dot - 1);
5011 if (cond)
5012 {
5013 inst.cond = cond->value;
5014 *str = end;
5015 }
5016 else
5017 {
5018 *str = dot;
5019 return 0;
5020 }
5021 len = dot - base;
5022 }
5023 else
5024 {
5025 *str = end;
5026 len = end - base;
5027 }
5028
5029 if (inst.cond == COND_ALWAYS)
5030 {
5031 /* Look for unaffixed mnemonic. */
5032 return lookup_mnemonic (base, len);
5033 }
5034 else if (len <= 13)
5035 {
5036 /* append ".c" to mnemonic if conditional */
5037 memcpy (condname, base, len);
5038 memcpy (condname + len, ".c", 2);
5039 base = condname;
5040 len += 2;
5041 return lookup_mnemonic (base, len);
5042 }
5043
5044 return NULL;
5045 }
5046
5047 /* Internal helper routine converting a vector_type_el structure *VECTYPE
5048 to a corresponding operand qualifier. */
5049
5050 static inline aarch64_opnd_qualifier_t
5051 vectype_to_qualifier (const struct vector_type_el *vectype)
5052 {
5053 /* Element size in bytes indexed by vector_el_type. */
5054 const unsigned char ele_size[5]
5055 = {1, 2, 4, 8, 16};
5056 const unsigned int ele_base [5] =
5057 {
5058 AARCH64_OPND_QLF_V_4B,
5059 AARCH64_OPND_QLF_V_2H,
5060 AARCH64_OPND_QLF_V_2S,
5061 AARCH64_OPND_QLF_V_1D,
5062 AARCH64_OPND_QLF_V_1Q
5063 };
5064
5065 if (!vectype->defined || vectype->type == NT_invtype)
5066 goto vectype_conversion_fail;
5067
5068 if (vectype->type == NT_zero)
5069 return AARCH64_OPND_QLF_P_Z;
5070 if (vectype->type == NT_merge)
5071 return AARCH64_OPND_QLF_P_M;
5072
5073 gas_assert (vectype->type >= NT_b && vectype->type <= NT_q);
5074
5075 if (vectype->defined & (NTA_HASINDEX | NTA_HASVARWIDTH))
5076 {
5077 /* Special case S_4B. */
5078 if (vectype->type == NT_b && vectype->width == 4)
5079 return AARCH64_OPND_QLF_S_4B;
5080
5081 /* Vector element register. */
5082 return AARCH64_OPND_QLF_S_B + vectype->type;
5083 }
5084 else
5085 {
5086 /* Vector register. */
5087 int reg_size = ele_size[vectype->type] * vectype->width;
5088 unsigned offset;
5089 unsigned shift;
5090 if (reg_size != 16 && reg_size != 8 && reg_size != 4)
5091 goto vectype_conversion_fail;
5092
5093 /* The conversion is by calculating the offset from the base operand
5094 qualifier for the vector type. The operand qualifiers are regular
5095 enough that the offset can established by shifting the vector width by
5096 a vector-type dependent amount. */
5097 shift = 0;
5098 if (vectype->type == NT_b)
5099 shift = 3;
5100 else if (vectype->type == NT_h || vectype->type == NT_s)
5101 shift = 2;
5102 else if (vectype->type >= NT_d)
5103 shift = 1;
5104 else
5105 gas_assert (0);
5106
5107 offset = ele_base [vectype->type] + (vectype->width >> shift);
5108 gas_assert (AARCH64_OPND_QLF_V_4B <= offset
5109 && offset <= AARCH64_OPND_QLF_V_1Q);
5110 return offset;
5111 }
5112
5113 vectype_conversion_fail:
5114 first_error (_("bad vector arrangement type"));
5115 return AARCH64_OPND_QLF_NIL;
5116 }
5117
5118 /* Process an optional operand that is found omitted from the assembly line.
5119 Fill *OPERAND for such an operand of type TYPE. OPCODE points to the
5120 instruction's opcode entry while IDX is the index of this omitted operand.
5121 */
5122
5123 static void
5124 process_omitted_operand (enum aarch64_opnd type, const aarch64_opcode *opcode,
5125 int idx, aarch64_opnd_info *operand)
5126 {
5127 aarch64_insn default_value = get_optional_operand_default_value (opcode);
5128 gas_assert (optional_operand_p (opcode, idx));
5129 gas_assert (!operand->present);
5130
5131 switch (type)
5132 {
5133 case AARCH64_OPND_Rd:
5134 case AARCH64_OPND_Rn:
5135 case AARCH64_OPND_Rm:
5136 case AARCH64_OPND_Rt:
5137 case AARCH64_OPND_Rt2:
5138 case AARCH64_OPND_Rt_SP:
5139 case AARCH64_OPND_Rs:
5140 case AARCH64_OPND_Ra:
5141 case AARCH64_OPND_Rt_SYS:
5142 case AARCH64_OPND_Rd_SP:
5143 case AARCH64_OPND_Rn_SP:
5144 case AARCH64_OPND_Rm_SP:
5145 case AARCH64_OPND_Fd:
5146 case AARCH64_OPND_Fn:
5147 case AARCH64_OPND_Fm:
5148 case AARCH64_OPND_Fa:
5149 case AARCH64_OPND_Ft:
5150 case AARCH64_OPND_Ft2:
5151 case AARCH64_OPND_Sd:
5152 case AARCH64_OPND_Sn:
5153 case AARCH64_OPND_Sm:
5154 case AARCH64_OPND_Va:
5155 case AARCH64_OPND_Vd:
5156 case AARCH64_OPND_Vn:
5157 case AARCH64_OPND_Vm:
5158 case AARCH64_OPND_VdD1:
5159 case AARCH64_OPND_VnD1:
5160 operand->reg.regno = default_value;
5161 break;
5162
5163 case AARCH64_OPND_Ed:
5164 case AARCH64_OPND_En:
5165 case AARCH64_OPND_Em:
5166 case AARCH64_OPND_Em16:
5167 case AARCH64_OPND_SM3_IMM2:
5168 operand->reglane.regno = default_value;
5169 break;
5170
5171 case AARCH64_OPND_IDX:
5172 case AARCH64_OPND_BIT_NUM:
5173 case AARCH64_OPND_IMMR:
5174 case AARCH64_OPND_IMMS:
5175 case AARCH64_OPND_SHLL_IMM:
5176 case AARCH64_OPND_IMM_VLSL:
5177 case AARCH64_OPND_IMM_VLSR:
5178 case AARCH64_OPND_CCMP_IMM:
5179 case AARCH64_OPND_FBITS:
5180 case AARCH64_OPND_UIMM4:
5181 case AARCH64_OPND_UIMM3_OP1:
5182 case AARCH64_OPND_UIMM3_OP2:
5183 case AARCH64_OPND_IMM:
5184 case AARCH64_OPND_IMM_2:
5185 case AARCH64_OPND_WIDTH:
5186 case AARCH64_OPND_UIMM7:
5187 case AARCH64_OPND_NZCV:
5188 case AARCH64_OPND_SVE_PATTERN:
5189 case AARCH64_OPND_SVE_PRFOP:
5190 operand->imm.value = default_value;
5191 break;
5192
5193 case AARCH64_OPND_SVE_PATTERN_SCALED:
5194 operand->imm.value = default_value;
5195 operand->shifter.kind = AARCH64_MOD_MUL;
5196 operand->shifter.amount = 1;
5197 break;
5198
5199 case AARCH64_OPND_EXCEPTION:
5200 inst.reloc.type = BFD_RELOC_UNUSED;
5201 break;
5202
5203 case AARCH64_OPND_BARRIER_ISB:
5204 operand->barrier = aarch64_barrier_options + default_value;
5205 break;
5206
5207 case AARCH64_OPND_BTI_TARGET:
5208 operand->hint_option = aarch64_hint_options + default_value;
5209 break;
5210
5211 default:
5212 break;
5213 }
5214 }
5215
5216 /* Process the relocation type for move wide instructions.
5217 Return TRUE on success; otherwise return FALSE. */
5218
5219 static bfd_boolean
5220 process_movw_reloc_info (void)
5221 {
5222 int is32;
5223 unsigned shift;
5224
5225 is32 = inst.base.operands[0].qualifier == AARCH64_OPND_QLF_W ? 1 : 0;
5226
5227 if (inst.base.opcode->op == OP_MOVK)
5228 switch (inst.reloc.type)
5229 {
5230 case BFD_RELOC_AARCH64_MOVW_G0_S:
5231 case BFD_RELOC_AARCH64_MOVW_G1_S:
5232 case BFD_RELOC_AARCH64_MOVW_G2_S:
5233 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5234 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5235 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5236 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5237 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5238 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5239 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5240 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5241 set_syntax_error
5242 (_("the specified relocation type is not allowed for MOVK"));
5243 return FALSE;
5244 default:
5245 break;
5246 }
5247
5248 switch (inst.reloc.type)
5249 {
5250 case BFD_RELOC_AARCH64_MOVW_G0:
5251 case BFD_RELOC_AARCH64_MOVW_G0_NC:
5252 case BFD_RELOC_AARCH64_MOVW_G0_S:
5253 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
5254 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
5255 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
5256 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
5257 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
5258 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5259 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
5260 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5261 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
5262 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5263 shift = 0;
5264 break;
5265 case BFD_RELOC_AARCH64_MOVW_G1:
5266 case BFD_RELOC_AARCH64_MOVW_G1_NC:
5267 case BFD_RELOC_AARCH64_MOVW_G1_S:
5268 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
5269 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
5270 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
5271 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
5272 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
5273 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5274 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
5275 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
5276 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
5277 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5278 shift = 16;
5279 break;
5280 case BFD_RELOC_AARCH64_MOVW_G2:
5281 case BFD_RELOC_AARCH64_MOVW_G2_NC:
5282 case BFD_RELOC_AARCH64_MOVW_G2_S:
5283 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
5284 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
5285 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
5286 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
5287 if (is32)
5288 {
5289 set_fatal_syntax_error
5290 (_("the specified relocation type is not allowed for 32-bit "
5291 "register"));
5292 return FALSE;
5293 }
5294 shift = 32;
5295 break;
5296 case BFD_RELOC_AARCH64_MOVW_G3:
5297 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
5298 if (is32)
5299 {
5300 set_fatal_syntax_error
5301 (_("the specified relocation type is not allowed for 32-bit "
5302 "register"));
5303 return FALSE;
5304 }
5305 shift = 48;
5306 break;
5307 default:
5308 /* More cases should be added when more MOVW-related relocation types
5309 are supported in GAS. */
5310 gas_assert (aarch64_gas_internal_fixup_p ());
5311 /* The shift amount should have already been set by the parser. */
5312 return TRUE;
5313 }
5314 inst.base.operands[1].shifter.amount = shift;
5315 return TRUE;
5316 }
5317
5318 /* A primitive log calculator. */
5319
5320 static inline unsigned int
5321 get_logsz (unsigned int size)
5322 {
5323 const unsigned char ls[16] =
5324 {0, 1, -1, 2, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 4};
5325 if (size > 16)
5326 {
5327 gas_assert (0);
5328 return -1;
5329 }
5330 gas_assert (ls[size - 1] != (unsigned char)-1);
5331 return ls[size - 1];
5332 }
5333
5334 /* Determine and return the real reloc type code for an instruction
5335 with the pseudo reloc type code BFD_RELOC_AARCH64_LDST_LO12. */
5336
5337 static inline bfd_reloc_code_real_type
5338 ldst_lo12_determine_real_reloc_type (void)
5339 {
5340 unsigned logsz;
5341 enum aarch64_opnd_qualifier opd0_qlf = inst.base.operands[0].qualifier;
5342 enum aarch64_opnd_qualifier opd1_qlf = inst.base.operands[1].qualifier;
5343
5344 const bfd_reloc_code_real_type reloc_ldst_lo12[5][5] = {
5345 {
5346 BFD_RELOC_AARCH64_LDST8_LO12,
5347 BFD_RELOC_AARCH64_LDST16_LO12,
5348 BFD_RELOC_AARCH64_LDST32_LO12,
5349 BFD_RELOC_AARCH64_LDST64_LO12,
5350 BFD_RELOC_AARCH64_LDST128_LO12
5351 },
5352 {
5353 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12,
5354 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12,
5355 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12,
5356 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12,
5357 BFD_RELOC_AARCH64_NONE
5358 },
5359 {
5360 BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC,
5361 BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC,
5362 BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC,
5363 BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC,
5364 BFD_RELOC_AARCH64_NONE
5365 },
5366 {
5367 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12,
5368 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12,
5369 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12,
5370 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12,
5371 BFD_RELOC_AARCH64_NONE
5372 },
5373 {
5374 BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC,
5375 BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC,
5376 BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC,
5377 BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC,
5378 BFD_RELOC_AARCH64_NONE
5379 }
5380 };
5381
5382 gas_assert (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
5383 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5384 || (inst.reloc.type
5385 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
5386 || (inst.reloc.type
5387 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
5388 || (inst.reloc.type
5389 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC));
5390 gas_assert (inst.base.opcode->operands[1] == AARCH64_OPND_ADDR_UIMM12);
5391
5392 if (opd1_qlf == AARCH64_OPND_QLF_NIL)
5393 opd1_qlf =
5394 aarch64_get_expected_qualifier (inst.base.opcode->qualifiers_list,
5395 1, opd0_qlf, 0);
5396 gas_assert (opd1_qlf != AARCH64_OPND_QLF_NIL);
5397
5398 logsz = get_logsz (aarch64_get_qualifier_esize (opd1_qlf));
5399 if (inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12
5400 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC
5401 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12
5402 || inst.reloc.type == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC)
5403 gas_assert (logsz <= 3);
5404 else
5405 gas_assert (logsz <= 4);
5406
5407 /* In reloc.c, these pseudo relocation types should be defined in similar
5408 order as above reloc_ldst_lo12 array. Because the array index calculation
5409 below relies on this. */
5410 return reloc_ldst_lo12[inst.reloc.type - BFD_RELOC_AARCH64_LDST_LO12][logsz];
5411 }
5412
5413 /* Check whether a register list REGINFO is valid. The registers must be
5414 numbered in increasing order (modulo 32), in increments of one or two.
5415
5416 If ACCEPT_ALTERNATE is non-zero, the register numbers should be in
5417 increments of two.
5418
5419 Return FALSE if such a register list is invalid, otherwise return TRUE. */
5420
5421 static bfd_boolean
5422 reg_list_valid_p (uint32_t reginfo, int accept_alternate)
5423 {
5424 uint32_t i, nb_regs, prev_regno, incr;
5425
5426 nb_regs = 1 + (reginfo & 0x3);
5427 reginfo >>= 2;
5428 prev_regno = reginfo & 0x1f;
5429 incr = accept_alternate ? 2 : 1;
5430
5431 for (i = 1; i < nb_regs; ++i)
5432 {
5433 uint32_t curr_regno;
5434 reginfo >>= 5;
5435 curr_regno = reginfo & 0x1f;
5436 if (curr_regno != ((prev_regno + incr) & 0x1f))
5437 return FALSE;
5438 prev_regno = curr_regno;
5439 }
5440
5441 return TRUE;
5442 }
5443
5444 /* Generic instruction operand parser. This does no encoding and no
5445 semantic validation; it merely squirrels values away in the inst
5446 structure. Returns TRUE or FALSE depending on whether the
5447 specified grammar matched. */
5448
5449 static bfd_boolean
5450 parse_operands (char *str, const aarch64_opcode *opcode)
5451 {
5452 int i;
5453 char *backtrack_pos = 0;
5454 const enum aarch64_opnd *operands = opcode->operands;
5455 aarch64_reg_type imm_reg_type;
5456
5457 clear_error ();
5458 skip_whitespace (str);
5459
5460 if (AARCH64_CPU_HAS_FEATURE (AARCH64_FEATURE_SVE, *opcode->avariant))
5461 imm_reg_type = REG_TYPE_R_Z_SP_BHSDQ_VZP;
5462 else
5463 imm_reg_type = REG_TYPE_R_Z_BHSDQ_V;
5464
5465 for (i = 0; operands[i] != AARCH64_OPND_NIL; i++)
5466 {
5467 int64_t val;
5468 const reg_entry *reg;
5469 int comma_skipped_p = 0;
5470 aarch64_reg_type rtype;
5471 struct vector_type_el vectype;
5472 aarch64_opnd_qualifier_t qualifier, base_qualifier, offset_qualifier;
5473 aarch64_opnd_info *info = &inst.base.operands[i];
5474 aarch64_reg_type reg_type;
5475
5476 DEBUG_TRACE ("parse operand %d", i);
5477
5478 /* Assign the operand code. */
5479 info->type = operands[i];
5480
5481 if (optional_operand_p (opcode, i))
5482 {
5483 /* Remember where we are in case we need to backtrack. */
5484 gas_assert (!backtrack_pos);
5485 backtrack_pos = str;
5486 }
5487
5488 /* Expect comma between operands; the backtrack mechanism will take
5489 care of cases of omitted optional operand. */
5490 if (i > 0 && ! skip_past_char (&str, ','))
5491 {
5492 set_syntax_error (_("comma expected between operands"));
5493 goto failure;
5494 }
5495 else
5496 comma_skipped_p = 1;
5497
5498 switch (operands[i])
5499 {
5500 case AARCH64_OPND_Rd:
5501 case AARCH64_OPND_Rn:
5502 case AARCH64_OPND_Rm:
5503 case AARCH64_OPND_Rt:
5504 case AARCH64_OPND_Rt2:
5505 case AARCH64_OPND_Rs:
5506 case AARCH64_OPND_Ra:
5507 case AARCH64_OPND_Rt_SYS:
5508 case AARCH64_OPND_PAIRREG:
5509 case AARCH64_OPND_SVE_Rm:
5510 po_int_reg_or_fail (REG_TYPE_R_Z);
5511 break;
5512
5513 case AARCH64_OPND_Rd_SP:
5514 case AARCH64_OPND_Rn_SP:
5515 case AARCH64_OPND_Rt_SP:
5516 case AARCH64_OPND_SVE_Rn_SP:
5517 case AARCH64_OPND_Rm_SP:
5518 po_int_reg_or_fail (REG_TYPE_R_SP);
5519 break;
5520
5521 case AARCH64_OPND_Rm_EXT:
5522 case AARCH64_OPND_Rm_SFT:
5523 po_misc_or_fail (parse_shifter_operand
5524 (&str, info, (operands[i] == AARCH64_OPND_Rm_EXT
5525 ? SHIFTED_ARITH_IMM
5526 : SHIFTED_LOGIC_IMM)));
5527 if (!info->shifter.operator_present)
5528 {
5529 /* Default to LSL if not present. Libopcodes prefers shifter
5530 kind to be explicit. */
5531 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5532 info->shifter.kind = AARCH64_MOD_LSL;
5533 /* For Rm_EXT, libopcodes will carry out further check on whether
5534 or not stack pointer is used in the instruction (Recall that
5535 "the extend operator is not optional unless at least one of
5536 "Rd" or "Rn" is '11111' (i.e. WSP)"). */
5537 }
5538 break;
5539
5540 case AARCH64_OPND_Fd:
5541 case AARCH64_OPND_Fn:
5542 case AARCH64_OPND_Fm:
5543 case AARCH64_OPND_Fa:
5544 case AARCH64_OPND_Ft:
5545 case AARCH64_OPND_Ft2:
5546 case AARCH64_OPND_Sd:
5547 case AARCH64_OPND_Sn:
5548 case AARCH64_OPND_Sm:
5549 case AARCH64_OPND_SVE_VZn:
5550 case AARCH64_OPND_SVE_Vd:
5551 case AARCH64_OPND_SVE_Vm:
5552 case AARCH64_OPND_SVE_Vn:
5553 val = aarch64_reg_parse (&str, REG_TYPE_BHSDQ, &rtype, NULL);
5554 if (val == PARSE_FAIL)
5555 {
5556 first_error (_(get_reg_expected_msg (REG_TYPE_BHSDQ)));
5557 goto failure;
5558 }
5559 gas_assert (rtype >= REG_TYPE_FP_B && rtype <= REG_TYPE_FP_Q);
5560
5561 info->reg.regno = val;
5562 info->qualifier = AARCH64_OPND_QLF_S_B + (rtype - REG_TYPE_FP_B);
5563 break;
5564
5565 case AARCH64_OPND_SVE_Pd:
5566 case AARCH64_OPND_SVE_Pg3:
5567 case AARCH64_OPND_SVE_Pg4_5:
5568 case AARCH64_OPND_SVE_Pg4_10:
5569 case AARCH64_OPND_SVE_Pg4_16:
5570 case AARCH64_OPND_SVE_Pm:
5571 case AARCH64_OPND_SVE_Pn:
5572 case AARCH64_OPND_SVE_Pt:
5573 reg_type = REG_TYPE_PN;
5574 goto vector_reg;
5575
5576 case AARCH64_OPND_SVE_Za_5:
5577 case AARCH64_OPND_SVE_Za_16:
5578 case AARCH64_OPND_SVE_Zd:
5579 case AARCH64_OPND_SVE_Zm_5:
5580 case AARCH64_OPND_SVE_Zm_16:
5581 case AARCH64_OPND_SVE_Zn:
5582 case AARCH64_OPND_SVE_Zt:
5583 reg_type = REG_TYPE_ZN;
5584 goto vector_reg;
5585
5586 case AARCH64_OPND_Va:
5587 case AARCH64_OPND_Vd:
5588 case AARCH64_OPND_Vn:
5589 case AARCH64_OPND_Vm:
5590 reg_type = REG_TYPE_VN;
5591 vector_reg:
5592 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5593 if (val == PARSE_FAIL)
5594 {
5595 first_error (_(get_reg_expected_msg (reg_type)));
5596 goto failure;
5597 }
5598 if (vectype.defined & NTA_HASINDEX)
5599 goto failure;
5600
5601 info->reg.regno = val;
5602 if ((reg_type == REG_TYPE_PN || reg_type == REG_TYPE_ZN)
5603 && vectype.type == NT_invtype)
5604 /* Unqualified Pn and Zn registers are allowed in certain
5605 contexts. Rely on F_STRICT qualifier checking to catch
5606 invalid uses. */
5607 info->qualifier = AARCH64_OPND_QLF_NIL;
5608 else
5609 {
5610 info->qualifier = vectype_to_qualifier (&vectype);
5611 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5612 goto failure;
5613 }
5614 break;
5615
5616 case AARCH64_OPND_VdD1:
5617 case AARCH64_OPND_VnD1:
5618 val = aarch64_reg_parse (&str, REG_TYPE_VN, NULL, &vectype);
5619 if (val == PARSE_FAIL)
5620 {
5621 set_first_syntax_error (_(get_reg_expected_msg (REG_TYPE_VN)));
5622 goto failure;
5623 }
5624 if (vectype.type != NT_d || vectype.index != 1)
5625 {
5626 set_fatal_syntax_error
5627 (_("the top half of a 128-bit FP/SIMD register is expected"));
5628 goto failure;
5629 }
5630 info->reg.regno = val;
5631 /* N.B: VdD1 and VnD1 are treated as an fp or advsimd scalar register
5632 here; it is correct for the purpose of encoding/decoding since
5633 only the register number is explicitly encoded in the related
5634 instructions, although this appears a bit hacky. */
5635 info->qualifier = AARCH64_OPND_QLF_S_D;
5636 break;
5637
5638 case AARCH64_OPND_SVE_Zm3_INDEX:
5639 case AARCH64_OPND_SVE_Zm3_22_INDEX:
5640 case AARCH64_OPND_SVE_Zm3_11_INDEX:
5641 case AARCH64_OPND_SVE_Zm4_INDEX:
5642 case AARCH64_OPND_SVE_Zn_INDEX:
5643 reg_type = REG_TYPE_ZN;
5644 goto vector_reg_index;
5645
5646 case AARCH64_OPND_Ed:
5647 case AARCH64_OPND_En:
5648 case AARCH64_OPND_Em:
5649 case AARCH64_OPND_Em16:
5650 case AARCH64_OPND_SM3_IMM2:
5651 reg_type = REG_TYPE_VN;
5652 vector_reg_index:
5653 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5654 if (val == PARSE_FAIL)
5655 {
5656 first_error (_(get_reg_expected_msg (reg_type)));
5657 goto failure;
5658 }
5659 if (vectype.type == NT_invtype || !(vectype.defined & NTA_HASINDEX))
5660 goto failure;
5661
5662 info->reglane.regno = val;
5663 info->reglane.index = vectype.index;
5664 info->qualifier = vectype_to_qualifier (&vectype);
5665 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5666 goto failure;
5667 break;
5668
5669 case AARCH64_OPND_SVE_ZnxN:
5670 case AARCH64_OPND_SVE_ZtxN:
5671 reg_type = REG_TYPE_ZN;
5672 goto vector_reg_list;
5673
5674 case AARCH64_OPND_LVn:
5675 case AARCH64_OPND_LVt:
5676 case AARCH64_OPND_LVt_AL:
5677 case AARCH64_OPND_LEt:
5678 reg_type = REG_TYPE_VN;
5679 vector_reg_list:
5680 if (reg_type == REG_TYPE_ZN
5681 && get_opcode_dependent_value (opcode) == 1
5682 && *str != '{')
5683 {
5684 val = aarch64_reg_parse (&str, reg_type, NULL, &vectype);
5685 if (val == PARSE_FAIL)
5686 {
5687 first_error (_(get_reg_expected_msg (reg_type)));
5688 goto failure;
5689 }
5690 info->reglist.first_regno = val;
5691 info->reglist.num_regs = 1;
5692 }
5693 else
5694 {
5695 val = parse_vector_reg_list (&str, reg_type, &vectype);
5696 if (val == PARSE_FAIL)
5697 goto failure;
5698 if (! reg_list_valid_p (val, /* accept_alternate */ 0))
5699 {
5700 set_fatal_syntax_error (_("invalid register list"));
5701 goto failure;
5702 }
5703 info->reglist.first_regno = (val >> 2) & 0x1f;
5704 info->reglist.num_regs = (val & 0x3) + 1;
5705 }
5706 if (operands[i] == AARCH64_OPND_LEt)
5707 {
5708 if (!(vectype.defined & NTA_HASINDEX))
5709 goto failure;
5710 info->reglist.has_index = 1;
5711 info->reglist.index = vectype.index;
5712 }
5713 else
5714 {
5715 if (vectype.defined & NTA_HASINDEX)
5716 goto failure;
5717 if (!(vectype.defined & NTA_HASTYPE))
5718 {
5719 if (reg_type == REG_TYPE_ZN)
5720 set_fatal_syntax_error (_("missing type suffix"));
5721 goto failure;
5722 }
5723 }
5724 info->qualifier = vectype_to_qualifier (&vectype);
5725 if (info->qualifier == AARCH64_OPND_QLF_NIL)
5726 goto failure;
5727 break;
5728
5729 case AARCH64_OPND_CRn:
5730 case AARCH64_OPND_CRm:
5731 {
5732 char prefix = *(str++);
5733 if (prefix != 'c' && prefix != 'C')
5734 goto failure;
5735
5736 po_imm_nc_or_fail ();
5737 if (val > 15)
5738 {
5739 set_fatal_syntax_error (_(N_ ("C0 - C15 expected")));
5740 goto failure;
5741 }
5742 info->qualifier = AARCH64_OPND_QLF_CR;
5743 info->imm.value = val;
5744 break;
5745 }
5746
5747 case AARCH64_OPND_SHLL_IMM:
5748 case AARCH64_OPND_IMM_VLSR:
5749 po_imm_or_fail (1, 64);
5750 info->imm.value = val;
5751 break;
5752
5753 case AARCH64_OPND_CCMP_IMM:
5754 case AARCH64_OPND_SIMM5:
5755 case AARCH64_OPND_FBITS:
5756 case AARCH64_OPND_TME_UIMM16:
5757 case AARCH64_OPND_UIMM4:
5758 case AARCH64_OPND_UIMM4_ADDG:
5759 case AARCH64_OPND_UIMM10:
5760 case AARCH64_OPND_UIMM3_OP1:
5761 case AARCH64_OPND_UIMM3_OP2:
5762 case AARCH64_OPND_IMM_VLSL:
5763 case AARCH64_OPND_IMM:
5764 case AARCH64_OPND_IMM_2:
5765 case AARCH64_OPND_WIDTH:
5766 case AARCH64_OPND_SVE_INV_LIMM:
5767 case AARCH64_OPND_SVE_LIMM:
5768 case AARCH64_OPND_SVE_LIMM_MOV:
5769 case AARCH64_OPND_SVE_SHLIMM_PRED:
5770 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
5771 case AARCH64_OPND_SVE_SHRIMM_PRED:
5772 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
5773 case AARCH64_OPND_SVE_SIMM5:
5774 case AARCH64_OPND_SVE_SIMM5B:
5775 case AARCH64_OPND_SVE_SIMM6:
5776 case AARCH64_OPND_SVE_SIMM8:
5777 case AARCH64_OPND_SVE_UIMM3:
5778 case AARCH64_OPND_SVE_UIMM7:
5779 case AARCH64_OPND_SVE_UIMM8:
5780 case AARCH64_OPND_SVE_UIMM8_53:
5781 case AARCH64_OPND_IMM_ROT1:
5782 case AARCH64_OPND_IMM_ROT2:
5783 case AARCH64_OPND_IMM_ROT3:
5784 case AARCH64_OPND_SVE_IMM_ROT1:
5785 case AARCH64_OPND_SVE_IMM_ROT2:
5786 case AARCH64_OPND_SVE_IMM_ROT3:
5787 po_imm_nc_or_fail ();
5788 info->imm.value = val;
5789 break;
5790
5791 case AARCH64_OPND_SVE_AIMM:
5792 case AARCH64_OPND_SVE_ASIMM:
5793 po_imm_nc_or_fail ();
5794 info->imm.value = val;
5795 skip_whitespace (str);
5796 if (skip_past_comma (&str))
5797 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
5798 else
5799 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
5800 break;
5801
5802 case AARCH64_OPND_SVE_PATTERN:
5803 po_enum_or_fail (aarch64_sve_pattern_array);
5804 info->imm.value = val;
5805 break;
5806
5807 case AARCH64_OPND_SVE_PATTERN_SCALED:
5808 po_enum_or_fail (aarch64_sve_pattern_array);
5809 info->imm.value = val;
5810 if (skip_past_comma (&str)
5811 && !parse_shift (&str, info, SHIFTED_MUL))
5812 goto failure;
5813 if (!info->shifter.operator_present)
5814 {
5815 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5816 info->shifter.kind = AARCH64_MOD_MUL;
5817 info->shifter.amount = 1;
5818 }
5819 break;
5820
5821 case AARCH64_OPND_SVE_PRFOP:
5822 po_enum_or_fail (aarch64_sve_prfop_array);
5823 info->imm.value = val;
5824 break;
5825
5826 case AARCH64_OPND_UIMM7:
5827 po_imm_or_fail (0, 127);
5828 info->imm.value = val;
5829 break;
5830
5831 case AARCH64_OPND_IDX:
5832 case AARCH64_OPND_MASK:
5833 case AARCH64_OPND_BIT_NUM:
5834 case AARCH64_OPND_IMMR:
5835 case AARCH64_OPND_IMMS:
5836 po_imm_or_fail (0, 63);
5837 info->imm.value = val;
5838 break;
5839
5840 case AARCH64_OPND_IMM0:
5841 po_imm_nc_or_fail ();
5842 if (val != 0)
5843 {
5844 set_fatal_syntax_error (_("immediate zero expected"));
5845 goto failure;
5846 }
5847 info->imm.value = 0;
5848 break;
5849
5850 case AARCH64_OPND_FPIMM0:
5851 {
5852 int qfloat;
5853 bfd_boolean res1 = FALSE, res2 = FALSE;
5854 /* N.B. -0.0 will be rejected; although -0.0 shouldn't be rejected,
5855 it is probably not worth the effort to support it. */
5856 if (!(res1 = parse_aarch64_imm_float (&str, &qfloat, FALSE,
5857 imm_reg_type))
5858 && (error_p ()
5859 || !(res2 = parse_constant_immediate (&str, &val,
5860 imm_reg_type))))
5861 goto failure;
5862 if ((res1 && qfloat == 0) || (res2 && val == 0))
5863 {
5864 info->imm.value = 0;
5865 info->imm.is_fp = 1;
5866 break;
5867 }
5868 set_fatal_syntax_error (_("immediate zero expected"));
5869 goto failure;
5870 }
5871
5872 case AARCH64_OPND_IMM_MOV:
5873 {
5874 char *saved = str;
5875 if (reg_name_p (str, REG_TYPE_R_Z_SP) ||
5876 reg_name_p (str, REG_TYPE_VN))
5877 goto failure;
5878 str = saved;
5879 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5880 GE_OPT_PREFIX, 1));
5881 /* The MOV immediate alias will be fixed up by fix_mov_imm_insn
5882 later. fix_mov_imm_insn will try to determine a machine
5883 instruction (MOVZ, MOVN or ORR) for it and will issue an error
5884 message if the immediate cannot be moved by a single
5885 instruction. */
5886 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
5887 inst.base.operands[i].skip = 1;
5888 }
5889 break;
5890
5891 case AARCH64_OPND_SIMD_IMM:
5892 case AARCH64_OPND_SIMD_IMM_SFT:
5893 if (! parse_big_immediate (&str, &val, imm_reg_type))
5894 goto failure;
5895 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5896 /* addr_off_p */ 0,
5897 /* need_libopcodes_p */ 1,
5898 /* skip_p */ 1);
5899 /* Parse shift.
5900 N.B. although AARCH64_OPND_SIMD_IMM doesn't permit any
5901 shift, we don't check it here; we leave the checking to
5902 the libopcodes (operand_general_constraint_met_p). By
5903 doing this, we achieve better diagnostics. */
5904 if (skip_past_comma (&str)
5905 && ! parse_shift (&str, info, SHIFTED_LSL_MSL))
5906 goto failure;
5907 if (!info->shifter.operator_present
5908 && info->type == AARCH64_OPND_SIMD_IMM_SFT)
5909 {
5910 /* Default to LSL if not present. Libopcodes prefers shifter
5911 kind to be explicit. */
5912 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
5913 info->shifter.kind = AARCH64_MOD_LSL;
5914 }
5915 break;
5916
5917 case AARCH64_OPND_FPIMM:
5918 case AARCH64_OPND_SIMD_FPIMM:
5919 case AARCH64_OPND_SVE_FPIMM8:
5920 {
5921 int qfloat;
5922 bfd_boolean dp_p;
5923
5924 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5925 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type)
5926 || !aarch64_imm_float_p (qfloat))
5927 {
5928 if (!error_p ())
5929 set_fatal_syntax_error (_("invalid floating-point"
5930 " constant"));
5931 goto failure;
5932 }
5933 inst.base.operands[i].imm.value = encode_imm_float_bits (qfloat);
5934 inst.base.operands[i].imm.is_fp = 1;
5935 }
5936 break;
5937
5938 case AARCH64_OPND_SVE_I1_HALF_ONE:
5939 case AARCH64_OPND_SVE_I1_HALF_TWO:
5940 case AARCH64_OPND_SVE_I1_ZERO_ONE:
5941 {
5942 int qfloat;
5943 bfd_boolean dp_p;
5944
5945 dp_p = double_precision_operand_p (&inst.base.operands[0]);
5946 if (!parse_aarch64_imm_float (&str, &qfloat, dp_p, imm_reg_type))
5947 {
5948 if (!error_p ())
5949 set_fatal_syntax_error (_("invalid floating-point"
5950 " constant"));
5951 goto failure;
5952 }
5953 inst.base.operands[i].imm.value = qfloat;
5954 inst.base.operands[i].imm.is_fp = 1;
5955 }
5956 break;
5957
5958 case AARCH64_OPND_LIMM:
5959 po_misc_or_fail (parse_shifter_operand (&str, info,
5960 SHIFTED_LOGIC_IMM));
5961 if (info->shifter.operator_present)
5962 {
5963 set_fatal_syntax_error
5964 (_("shift not allowed for bitmask immediate"));
5965 goto failure;
5966 }
5967 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
5968 /* addr_off_p */ 0,
5969 /* need_libopcodes_p */ 1,
5970 /* skip_p */ 1);
5971 break;
5972
5973 case AARCH64_OPND_AIMM:
5974 if (opcode->op == OP_ADD)
5975 /* ADD may have relocation types. */
5976 po_misc_or_fail (parse_shifter_operand_reloc (&str, info,
5977 SHIFTED_ARITH_IMM));
5978 else
5979 po_misc_or_fail (parse_shifter_operand (&str, info,
5980 SHIFTED_ARITH_IMM));
5981 switch (inst.reloc.type)
5982 {
5983 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
5984 info->shifter.amount = 12;
5985 break;
5986 case BFD_RELOC_UNUSED:
5987 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
5988 if (info->shifter.kind != AARCH64_MOD_NONE)
5989 inst.reloc.flags = FIXUP_F_HAS_EXPLICIT_SHIFT;
5990 inst.reloc.pc_rel = 0;
5991 break;
5992 default:
5993 break;
5994 }
5995 info->imm.value = 0;
5996 if (!info->shifter.operator_present)
5997 {
5998 /* Default to LSL if not present. Libopcodes prefers shifter
5999 kind to be explicit. */
6000 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6001 info->shifter.kind = AARCH64_MOD_LSL;
6002 }
6003 break;
6004
6005 case AARCH64_OPND_HALF:
6006 {
6007 /* #<imm16> or relocation. */
6008 int internal_fixup_p;
6009 po_misc_or_fail (parse_half (&str, &internal_fixup_p));
6010 if (internal_fixup_p)
6011 aarch64_set_gas_internal_fixup (&inst.reloc, info, 0);
6012 skip_whitespace (str);
6013 if (skip_past_comma (&str))
6014 {
6015 /* {, LSL #<shift>} */
6016 if (! aarch64_gas_internal_fixup_p ())
6017 {
6018 set_fatal_syntax_error (_("can't mix relocation modifier "
6019 "with explicit shift"));
6020 goto failure;
6021 }
6022 po_misc_or_fail (parse_shift (&str, info, SHIFTED_LSL));
6023 }
6024 else
6025 inst.base.operands[i].shifter.amount = 0;
6026 inst.base.operands[i].shifter.kind = AARCH64_MOD_LSL;
6027 inst.base.operands[i].imm.value = 0;
6028 if (! process_movw_reloc_info ())
6029 goto failure;
6030 }
6031 break;
6032
6033 case AARCH64_OPND_EXCEPTION:
6034 po_misc_or_fail (parse_immediate_expression (&str, &inst.reloc.exp,
6035 imm_reg_type));
6036 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6037 /* addr_off_p */ 0,
6038 /* need_libopcodes_p */ 0,
6039 /* skip_p */ 1);
6040 break;
6041
6042 case AARCH64_OPND_NZCV:
6043 {
6044 const asm_nzcv *nzcv = hash_find_n (aarch64_nzcv_hsh, str, 4);
6045 if (nzcv != NULL)
6046 {
6047 str += 4;
6048 info->imm.value = nzcv->value;
6049 break;
6050 }
6051 po_imm_or_fail (0, 15);
6052 info->imm.value = val;
6053 }
6054 break;
6055
6056 case AARCH64_OPND_COND:
6057 case AARCH64_OPND_COND1:
6058 {
6059 char *start = str;
6060 do
6061 str++;
6062 while (ISALPHA (*str));
6063 info->cond = hash_find_n (aarch64_cond_hsh, start, str - start);
6064 if (info->cond == NULL)
6065 {
6066 set_syntax_error (_("invalid condition"));
6067 goto failure;
6068 }
6069 else if (operands[i] == AARCH64_OPND_COND1
6070 && (info->cond->value & 0xe) == 0xe)
6071 {
6072 /* Do not allow AL or NV. */
6073 set_default_error ();
6074 goto failure;
6075 }
6076 }
6077 break;
6078
6079 case AARCH64_OPND_ADDR_ADRP:
6080 po_misc_or_fail (parse_adrp (&str));
6081 /* Clear the value as operand needs to be relocated. */
6082 info->imm.value = 0;
6083 break;
6084
6085 case AARCH64_OPND_ADDR_PCREL14:
6086 case AARCH64_OPND_ADDR_PCREL19:
6087 case AARCH64_OPND_ADDR_PCREL21:
6088 case AARCH64_OPND_ADDR_PCREL26:
6089 po_misc_or_fail (parse_address (&str, info));
6090 if (!info->addr.pcrel)
6091 {
6092 set_syntax_error (_("invalid pc-relative address"));
6093 goto failure;
6094 }
6095 if (inst.gen_lit_pool
6096 && (opcode->iclass != loadlit || opcode->op == OP_PRFM_LIT))
6097 {
6098 /* Only permit "=value" in the literal load instructions.
6099 The literal will be generated by programmer_friendly_fixup. */
6100 set_syntax_error (_("invalid use of \"=immediate\""));
6101 goto failure;
6102 }
6103 if (inst.reloc.exp.X_op == O_symbol && find_reloc_table_entry (&str))
6104 {
6105 set_syntax_error (_("unrecognized relocation suffix"));
6106 goto failure;
6107 }
6108 if (inst.reloc.exp.X_op == O_constant && !inst.gen_lit_pool)
6109 {
6110 info->imm.value = inst.reloc.exp.X_add_number;
6111 inst.reloc.type = BFD_RELOC_UNUSED;
6112 }
6113 else
6114 {
6115 info->imm.value = 0;
6116 if (inst.reloc.type == BFD_RELOC_UNUSED)
6117 switch (opcode->iclass)
6118 {
6119 case compbranch:
6120 case condbranch:
6121 /* e.g. CBZ or B.COND */
6122 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6123 inst.reloc.type = BFD_RELOC_AARCH64_BRANCH19;
6124 break;
6125 case testbranch:
6126 /* e.g. TBZ */
6127 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL14);
6128 inst.reloc.type = BFD_RELOC_AARCH64_TSTBR14;
6129 break;
6130 case branch_imm:
6131 /* e.g. B or BL */
6132 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL26);
6133 inst.reloc.type =
6134 (opcode->op == OP_BL) ? BFD_RELOC_AARCH64_CALL26
6135 : BFD_RELOC_AARCH64_JUMP26;
6136 break;
6137 case loadlit:
6138 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL19);
6139 inst.reloc.type = BFD_RELOC_AARCH64_LD_LO19_PCREL;
6140 break;
6141 case pcreladdr:
6142 gas_assert (operands[i] == AARCH64_OPND_ADDR_PCREL21);
6143 inst.reloc.type = BFD_RELOC_AARCH64_ADR_LO21_PCREL;
6144 break;
6145 default:
6146 gas_assert (0);
6147 abort ();
6148 }
6149 inst.reloc.pc_rel = 1;
6150 }
6151 break;
6152
6153 case AARCH64_OPND_ADDR_SIMPLE:
6154 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
6155 {
6156 /* [<Xn|SP>{, #<simm>}] */
6157 char *start = str;
6158 /* First use the normal address-parsing routines, to get
6159 the usual syntax errors. */
6160 po_misc_or_fail (parse_address (&str, info));
6161 if (info->addr.pcrel || info->addr.offset.is_reg
6162 || !info->addr.preind || info->addr.postind
6163 || info->addr.writeback)
6164 {
6165 set_syntax_error (_("invalid addressing mode"));
6166 goto failure;
6167 }
6168
6169 /* Then retry, matching the specific syntax of these addresses. */
6170 str = start;
6171 po_char_or_fail ('[');
6172 po_reg_or_fail (REG_TYPE_R64_SP);
6173 /* Accept optional ", #0". */
6174 if (operands[i] == AARCH64_OPND_ADDR_SIMPLE
6175 && skip_past_char (&str, ','))
6176 {
6177 skip_past_char (&str, '#');
6178 if (! skip_past_char (&str, '0'))
6179 {
6180 set_fatal_syntax_error
6181 (_("the optional immediate offset can only be 0"));
6182 goto failure;
6183 }
6184 }
6185 po_char_or_fail (']');
6186 break;
6187 }
6188
6189 case AARCH64_OPND_ADDR_REGOFF:
6190 /* [<Xn|SP>, <R><m>{, <extend> {<amount>}}] */
6191 po_misc_or_fail (parse_address (&str, info));
6192 regoff_addr:
6193 if (info->addr.pcrel || !info->addr.offset.is_reg
6194 || !info->addr.preind || info->addr.postind
6195 || info->addr.writeback)
6196 {
6197 set_syntax_error (_("invalid addressing mode"));
6198 goto failure;
6199 }
6200 if (!info->shifter.operator_present)
6201 {
6202 /* Default to LSL if not present. Libopcodes prefers shifter
6203 kind to be explicit. */
6204 gas_assert (info->shifter.kind == AARCH64_MOD_NONE);
6205 info->shifter.kind = AARCH64_MOD_LSL;
6206 }
6207 /* Qualifier to be deduced by libopcodes. */
6208 break;
6209
6210 case AARCH64_OPND_ADDR_SIMM7:
6211 po_misc_or_fail (parse_address (&str, info));
6212 if (info->addr.pcrel || info->addr.offset.is_reg
6213 || (!info->addr.preind && !info->addr.postind))
6214 {
6215 set_syntax_error (_("invalid addressing mode"));
6216 goto failure;
6217 }
6218 if (inst.reloc.type != BFD_RELOC_UNUSED)
6219 {
6220 set_syntax_error (_("relocation not allowed"));
6221 goto failure;
6222 }
6223 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6224 /* addr_off_p */ 1,
6225 /* need_libopcodes_p */ 1,
6226 /* skip_p */ 0);
6227 break;
6228
6229 case AARCH64_OPND_ADDR_SIMM9:
6230 case AARCH64_OPND_ADDR_SIMM9_2:
6231 case AARCH64_OPND_ADDR_SIMM11:
6232 case AARCH64_OPND_ADDR_SIMM13:
6233 po_misc_or_fail (parse_address (&str, info));
6234 if (info->addr.pcrel || info->addr.offset.is_reg
6235 || (!info->addr.preind && !info->addr.postind)
6236 || (operands[i] == AARCH64_OPND_ADDR_SIMM9_2
6237 && info->addr.writeback))
6238 {
6239 set_syntax_error (_("invalid addressing mode"));
6240 goto failure;
6241 }
6242 if (inst.reloc.type != BFD_RELOC_UNUSED)
6243 {
6244 set_syntax_error (_("relocation not allowed"));
6245 goto failure;
6246 }
6247 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6248 /* addr_off_p */ 1,
6249 /* need_libopcodes_p */ 1,
6250 /* skip_p */ 0);
6251 break;
6252
6253 case AARCH64_OPND_ADDR_SIMM10:
6254 case AARCH64_OPND_ADDR_OFFSET:
6255 po_misc_or_fail (parse_address (&str, info));
6256 if (info->addr.pcrel || info->addr.offset.is_reg
6257 || !info->addr.preind || info->addr.postind)
6258 {
6259 set_syntax_error (_("invalid addressing mode"));
6260 goto failure;
6261 }
6262 if (inst.reloc.type != BFD_RELOC_UNUSED)
6263 {
6264 set_syntax_error (_("relocation not allowed"));
6265 goto failure;
6266 }
6267 assign_imm_if_const_or_fixup_later (&inst.reloc, info,
6268 /* addr_off_p */ 1,
6269 /* need_libopcodes_p */ 1,
6270 /* skip_p */ 0);
6271 break;
6272
6273 case AARCH64_OPND_ADDR_UIMM12:
6274 po_misc_or_fail (parse_address (&str, info));
6275 if (info->addr.pcrel || info->addr.offset.is_reg
6276 || !info->addr.preind || info->addr.writeback)
6277 {
6278 set_syntax_error (_("invalid addressing mode"));
6279 goto failure;
6280 }
6281 if (inst.reloc.type == BFD_RELOC_UNUSED)
6282 aarch64_set_gas_internal_fixup (&inst.reloc, info, 1);
6283 else if (inst.reloc.type == BFD_RELOC_AARCH64_LDST_LO12
6284 || (inst.reloc.type
6285 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12)
6286 || (inst.reloc.type
6287 == BFD_RELOC_AARCH64_TLSLD_LDST_DTPREL_LO12_NC)
6288 || (inst.reloc.type
6289 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12)
6290 || (inst.reloc.type
6291 == BFD_RELOC_AARCH64_TLSLE_LDST_TPREL_LO12_NC))
6292 inst.reloc.type = ldst_lo12_determine_real_reloc_type ();
6293 /* Leave qualifier to be determined by libopcodes. */
6294 break;
6295
6296 case AARCH64_OPND_SIMD_ADDR_POST:
6297 /* [<Xn|SP>], <Xm|#<amount>> */
6298 po_misc_or_fail (parse_address (&str, info));
6299 if (!info->addr.postind || !info->addr.writeback)
6300 {
6301 set_syntax_error (_("invalid addressing mode"));
6302 goto failure;
6303 }
6304 if (!info->addr.offset.is_reg)
6305 {
6306 if (inst.reloc.exp.X_op == O_constant)
6307 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6308 else
6309 {
6310 set_fatal_syntax_error
6311 (_("writeback value must be an immediate constant"));
6312 goto failure;
6313 }
6314 }
6315 /* No qualifier. */
6316 break;
6317
6318 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
6319 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
6320 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
6321 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
6322 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
6323 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
6324 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
6325 case AARCH64_OPND_SVE_ADDR_RI_U6:
6326 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
6327 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
6328 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
6329 /* [X<n>{, #imm, MUL VL}]
6330 [X<n>{, #imm}]
6331 but recognizing SVE registers. */
6332 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6333 &offset_qualifier));
6334 if (base_qualifier != AARCH64_OPND_QLF_X)
6335 {
6336 set_syntax_error (_("invalid addressing mode"));
6337 goto failure;
6338 }
6339 sve_regimm:
6340 if (info->addr.pcrel || info->addr.offset.is_reg
6341 || !info->addr.preind || info->addr.writeback)
6342 {
6343 set_syntax_error (_("invalid addressing mode"));
6344 goto failure;
6345 }
6346 if (inst.reloc.type != BFD_RELOC_UNUSED
6347 || inst.reloc.exp.X_op != O_constant)
6348 {
6349 /* Make sure this has priority over
6350 "invalid addressing mode". */
6351 set_fatal_syntax_error (_("constant offset required"));
6352 goto failure;
6353 }
6354 info->addr.offset.imm = inst.reloc.exp.X_add_number;
6355 break;
6356
6357 case AARCH64_OPND_SVE_ADDR_R:
6358 /* [<Xn|SP>{, <R><m>}]
6359 but recognizing SVE registers. */
6360 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6361 &offset_qualifier));
6362 if (offset_qualifier == AARCH64_OPND_QLF_NIL)
6363 {
6364 offset_qualifier = AARCH64_OPND_QLF_X;
6365 info->addr.offset.is_reg = 1;
6366 info->addr.offset.regno = 31;
6367 }
6368 else if (base_qualifier != AARCH64_OPND_QLF_X
6369 || offset_qualifier != AARCH64_OPND_QLF_X)
6370 {
6371 set_syntax_error (_("invalid addressing mode"));
6372 goto failure;
6373 }
6374 goto regoff_addr;
6375
6376 case AARCH64_OPND_SVE_ADDR_RR:
6377 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
6378 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
6379 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
6380 case AARCH64_OPND_SVE_ADDR_RX:
6381 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
6382 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
6383 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
6384 /* [<Xn|SP>, <R><m>{, lsl #<amount>}]
6385 but recognizing SVE registers. */
6386 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6387 &offset_qualifier));
6388 if (base_qualifier != AARCH64_OPND_QLF_X
6389 || offset_qualifier != AARCH64_OPND_QLF_X)
6390 {
6391 set_syntax_error (_("invalid addressing mode"));
6392 goto failure;
6393 }
6394 goto regoff_addr;
6395
6396 case AARCH64_OPND_SVE_ADDR_RZ:
6397 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
6398 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
6399 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
6400 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
6401 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
6402 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
6403 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
6404 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
6405 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
6406 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
6407 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
6408 /* [<Xn|SP>, Z<m>.D{, LSL #<amount>}]
6409 [<Xn|SP>, Z<m>.<T>, <extend> {#<amount>}] */
6410 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6411 &offset_qualifier));
6412 if (base_qualifier != AARCH64_OPND_QLF_X
6413 || (offset_qualifier != AARCH64_OPND_QLF_S_S
6414 && offset_qualifier != AARCH64_OPND_QLF_S_D))
6415 {
6416 set_syntax_error (_("invalid addressing mode"));
6417 goto failure;
6418 }
6419 info->qualifier = offset_qualifier;
6420 goto regoff_addr;
6421
6422 case AARCH64_OPND_SVE_ADDR_ZI_U5:
6423 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
6424 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
6425 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
6426 /* [Z<n>.<T>{, #imm}] */
6427 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6428 &offset_qualifier));
6429 if (base_qualifier != AARCH64_OPND_QLF_S_S
6430 && base_qualifier != AARCH64_OPND_QLF_S_D)
6431 {
6432 set_syntax_error (_("invalid addressing mode"));
6433 goto failure;
6434 }
6435 info->qualifier = base_qualifier;
6436 goto sve_regimm;
6437
6438 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
6439 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
6440 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
6441 /* [Z<n>.<T>, Z<m>.<T>{, LSL #<amount>}]
6442 [Z<n>.D, Z<m>.D, <extend> {#<amount>}]
6443
6444 We don't reject:
6445
6446 [Z<n>.S, Z<m>.S, <extend> {#<amount>}]
6447
6448 here since we get better error messages by leaving it to
6449 the qualifier checking routines. */
6450 po_misc_or_fail (parse_sve_address (&str, info, &base_qualifier,
6451 &offset_qualifier));
6452 if ((base_qualifier != AARCH64_OPND_QLF_S_S
6453 && base_qualifier != AARCH64_OPND_QLF_S_D)
6454 || offset_qualifier != base_qualifier)
6455 {
6456 set_syntax_error (_("invalid addressing mode"));
6457 goto failure;
6458 }
6459 info->qualifier = base_qualifier;
6460 goto regoff_addr;
6461
6462 case AARCH64_OPND_SYSREG:
6463 {
6464 uint32_t sysreg_flags;
6465 if ((val = parse_sys_reg (&str, aarch64_sys_regs_hsh, 1, 0,
6466 &sysreg_flags)) == PARSE_FAIL)
6467 {
6468 set_syntax_error (_("unknown or missing system register name"));
6469 goto failure;
6470 }
6471 inst.base.operands[i].sysreg.value = val;
6472 inst.base.operands[i].sysreg.flags = sysreg_flags;
6473 break;
6474 }
6475
6476 case AARCH64_OPND_PSTATEFIELD:
6477 if ((val = parse_sys_reg (&str, aarch64_pstatefield_hsh, 0, 1, NULL))
6478 == PARSE_FAIL)
6479 {
6480 set_syntax_error (_("unknown or missing PSTATE field name"));
6481 goto failure;
6482 }
6483 inst.base.operands[i].pstatefield = val;
6484 break;
6485
6486 case AARCH64_OPND_SYSREG_IC:
6487 inst.base.operands[i].sysins_op =
6488 parse_sys_ins_reg (&str, aarch64_sys_regs_ic_hsh);
6489 goto sys_reg_ins;
6490
6491 case AARCH64_OPND_SYSREG_DC:
6492 inst.base.operands[i].sysins_op =
6493 parse_sys_ins_reg (&str, aarch64_sys_regs_dc_hsh);
6494 goto sys_reg_ins;
6495
6496 case AARCH64_OPND_SYSREG_AT:
6497 inst.base.operands[i].sysins_op =
6498 parse_sys_ins_reg (&str, aarch64_sys_regs_at_hsh);
6499 goto sys_reg_ins;
6500
6501 case AARCH64_OPND_SYSREG_SR:
6502 inst.base.operands[i].sysins_op =
6503 parse_sys_ins_reg (&str, aarch64_sys_regs_sr_hsh);
6504 goto sys_reg_ins;
6505
6506 case AARCH64_OPND_SYSREG_TLBI:
6507 inst.base.operands[i].sysins_op =
6508 parse_sys_ins_reg (&str, aarch64_sys_regs_tlbi_hsh);
6509 sys_reg_ins:
6510 if (inst.base.operands[i].sysins_op == NULL)
6511 {
6512 set_fatal_syntax_error ( _("unknown or missing operation name"));
6513 goto failure;
6514 }
6515 break;
6516
6517 case AARCH64_OPND_BARRIER:
6518 case AARCH64_OPND_BARRIER_ISB:
6519 val = parse_barrier (&str);
6520 if (val != PARSE_FAIL
6521 && operands[i] == AARCH64_OPND_BARRIER_ISB && val != 0xf)
6522 {
6523 /* ISB only accepts options name 'sy'. */
6524 set_syntax_error
6525 (_("the specified option is not accepted in ISB"));
6526 /* Turn off backtrack as this optional operand is present. */
6527 backtrack_pos = 0;
6528 goto failure;
6529 }
6530 /* This is an extension to accept a 0..15 immediate. */
6531 if (val == PARSE_FAIL)
6532 po_imm_or_fail (0, 15);
6533 info->barrier = aarch64_barrier_options + val;
6534 break;
6535
6536 case AARCH64_OPND_PRFOP:
6537 val = parse_pldop (&str);
6538 /* This is an extension to accept a 0..31 immediate. */
6539 if (val == PARSE_FAIL)
6540 po_imm_or_fail (0, 31);
6541 inst.base.operands[i].prfop = aarch64_prfops + val;
6542 break;
6543
6544 case AARCH64_OPND_BARRIER_PSB:
6545 val = parse_barrier_psb (&str, &(info->hint_option));
6546 if (val == PARSE_FAIL)
6547 goto failure;
6548 break;
6549
6550 case AARCH64_OPND_BTI_TARGET:
6551 val = parse_bti_operand (&str, &(info->hint_option));
6552 if (val == PARSE_FAIL)
6553 goto failure;
6554 break;
6555
6556 default:
6557 as_fatal (_("unhandled operand code %d"), operands[i]);
6558 }
6559
6560 /* If we get here, this operand was successfully parsed. */
6561 inst.base.operands[i].present = 1;
6562 continue;
6563
6564 failure:
6565 /* The parse routine should already have set the error, but in case
6566 not, set a default one here. */
6567 if (! error_p ())
6568 set_default_error ();
6569
6570 if (! backtrack_pos)
6571 goto parse_operands_return;
6572
6573 {
6574 /* We reach here because this operand is marked as optional, and
6575 either no operand was supplied or the operand was supplied but it
6576 was syntactically incorrect. In the latter case we report an
6577 error. In the former case we perform a few more checks before
6578 dropping through to the code to insert the default operand. */
6579
6580 char *tmp = backtrack_pos;
6581 char endchar = END_OF_INSN;
6582
6583 if (i != (aarch64_num_of_operands (opcode) - 1))
6584 endchar = ',';
6585 skip_past_char (&tmp, ',');
6586
6587 if (*tmp != endchar)
6588 /* The user has supplied an operand in the wrong format. */
6589 goto parse_operands_return;
6590
6591 /* Make sure there is not a comma before the optional operand.
6592 For example the fifth operand of 'sys' is optional:
6593
6594 sys #0,c0,c0,#0, <--- wrong
6595 sys #0,c0,c0,#0 <--- correct. */
6596 if (comma_skipped_p && i && endchar == END_OF_INSN)
6597 {
6598 set_fatal_syntax_error
6599 (_("unexpected comma before the omitted optional operand"));
6600 goto parse_operands_return;
6601 }
6602 }
6603
6604 /* Reaching here means we are dealing with an optional operand that is
6605 omitted from the assembly line. */
6606 gas_assert (optional_operand_p (opcode, i));
6607 info->present = 0;
6608 process_omitted_operand (operands[i], opcode, i, info);
6609
6610 /* Try again, skipping the optional operand at backtrack_pos. */
6611 str = backtrack_pos;
6612 backtrack_pos = 0;
6613
6614 /* Clear any error record after the omitted optional operand has been
6615 successfully handled. */
6616 clear_error ();
6617 }
6618
6619 /* Check if we have parsed all the operands. */
6620 if (*str != '\0' && ! error_p ())
6621 {
6622 /* Set I to the index of the last present operand; this is
6623 for the purpose of diagnostics. */
6624 for (i -= 1; i >= 0 && !inst.base.operands[i].present; --i)
6625 ;
6626 set_fatal_syntax_error
6627 (_("unexpected characters following instruction"));
6628 }
6629
6630 parse_operands_return:
6631
6632 if (error_p ())
6633 {
6634 DEBUG_TRACE ("parsing FAIL: %s - %s",
6635 operand_mismatch_kind_names[get_error_kind ()],
6636 get_error_message ());
6637 /* Record the operand error properly; this is useful when there
6638 are multiple instruction templates for a mnemonic name, so that
6639 later on, we can select the error that most closely describes
6640 the problem. */
6641 record_operand_error (opcode, i, get_error_kind (),
6642 get_error_message ());
6643 return FALSE;
6644 }
6645 else
6646 {
6647 DEBUG_TRACE ("parsing SUCCESS");
6648 return TRUE;
6649 }
6650 }
6651
6652 /* It does some fix-up to provide some programmer friendly feature while
6653 keeping the libopcodes happy, i.e. libopcodes only accepts
6654 the preferred architectural syntax.
6655 Return FALSE if there is any failure; otherwise return TRUE. */
6656
6657 static bfd_boolean
6658 programmer_friendly_fixup (aarch64_instruction *instr)
6659 {
6660 aarch64_inst *base = &instr->base;
6661 const aarch64_opcode *opcode = base->opcode;
6662 enum aarch64_op op = opcode->op;
6663 aarch64_opnd_info *operands = base->operands;
6664
6665 DEBUG_TRACE ("enter");
6666
6667 switch (opcode->iclass)
6668 {
6669 case testbranch:
6670 /* TBNZ Xn|Wn, #uimm6, label
6671 Test and Branch Not Zero: conditionally jumps to label if bit number
6672 uimm6 in register Xn is not zero. The bit number implies the width of
6673 the register, which may be written and should be disassembled as Wn if
6674 uimm is less than 32. */
6675 if (operands[0].qualifier == AARCH64_OPND_QLF_W)
6676 {
6677 if (operands[1].imm.value >= 32)
6678 {
6679 record_operand_out_of_range_error (opcode, 1, _("immediate value"),
6680 0, 31);
6681 return FALSE;
6682 }
6683 operands[0].qualifier = AARCH64_OPND_QLF_X;
6684 }
6685 break;
6686 case loadlit:
6687 /* LDR Wt, label | =value
6688 As a convenience assemblers will typically permit the notation
6689 "=value" in conjunction with the pc-relative literal load instructions
6690 to automatically place an immediate value or symbolic address in a
6691 nearby literal pool and generate a hidden label which references it.
6692 ISREG has been set to 0 in the case of =value. */
6693 if (instr->gen_lit_pool
6694 && (op == OP_LDR_LIT || op == OP_LDRV_LIT || op == OP_LDRSW_LIT))
6695 {
6696 int size = aarch64_get_qualifier_esize (operands[0].qualifier);
6697 if (op == OP_LDRSW_LIT)
6698 size = 4;
6699 if (instr->reloc.exp.X_op != O_constant
6700 && instr->reloc.exp.X_op != O_big
6701 && instr->reloc.exp.X_op != O_symbol)
6702 {
6703 record_operand_error (opcode, 1,
6704 AARCH64_OPDE_FATAL_SYNTAX_ERROR,
6705 _("constant expression expected"));
6706 return FALSE;
6707 }
6708 if (! add_to_lit_pool (&instr->reloc.exp, size))
6709 {
6710 record_operand_error (opcode, 1,
6711 AARCH64_OPDE_OTHER_ERROR,
6712 _("literal pool insertion failed"));
6713 return FALSE;
6714 }
6715 }
6716 break;
6717 case log_shift:
6718 case bitfield:
6719 /* UXT[BHW] Wd, Wn
6720 Unsigned Extend Byte|Halfword|Word: UXT[BH] is architectural alias
6721 for UBFM Wd,Wn,#0,#7|15, while UXTW is pseudo instruction which is
6722 encoded using ORR Wd, WZR, Wn (MOV Wd,Wn).
6723 A programmer-friendly assembler should accept a destination Xd in
6724 place of Wd, however that is not the preferred form for disassembly.
6725 */
6726 if ((op == OP_UXTB || op == OP_UXTH || op == OP_UXTW)
6727 && operands[1].qualifier == AARCH64_OPND_QLF_W
6728 && operands[0].qualifier == AARCH64_OPND_QLF_X)
6729 operands[0].qualifier = AARCH64_OPND_QLF_W;
6730 break;
6731
6732 case addsub_ext:
6733 {
6734 /* In the 64-bit form, the final register operand is written as Wm
6735 for all but the (possibly omitted) UXTX/LSL and SXTX
6736 operators.
6737 As a programmer-friendly assembler, we accept e.g.
6738 ADDS <Xd>, <Xn|SP>, <Xm>{, UXTB {#<amount>}} and change it to
6739 ADDS <Xd>, <Xn|SP>, <Wm>{, UXTB {#<amount>}}. */
6740 int idx = aarch64_operand_index (opcode->operands,
6741 AARCH64_OPND_Rm_EXT);
6742 gas_assert (idx == 1 || idx == 2);
6743 if (operands[0].qualifier == AARCH64_OPND_QLF_X
6744 && operands[idx].qualifier == AARCH64_OPND_QLF_X
6745 && operands[idx].shifter.kind != AARCH64_MOD_LSL
6746 && operands[idx].shifter.kind != AARCH64_MOD_UXTX
6747 && operands[idx].shifter.kind != AARCH64_MOD_SXTX)
6748 operands[idx].qualifier = AARCH64_OPND_QLF_W;
6749 }
6750 break;
6751
6752 default:
6753 break;
6754 }
6755
6756 DEBUG_TRACE ("exit with SUCCESS");
6757 return TRUE;
6758 }
6759
6760 /* Check for loads and stores that will cause unpredictable behavior. */
6761
6762 static void
6763 warn_unpredictable_ldst (aarch64_instruction *instr, char *str)
6764 {
6765 aarch64_inst *base = &instr->base;
6766 const aarch64_opcode *opcode = base->opcode;
6767 const aarch64_opnd_info *opnds = base->operands;
6768 switch (opcode->iclass)
6769 {
6770 case ldst_pos:
6771 case ldst_imm9:
6772 case ldst_imm10:
6773 case ldst_unscaled:
6774 case ldst_unpriv:
6775 /* Loading/storing the base register is unpredictable if writeback. */
6776 if ((aarch64_get_operand_class (opnds[0].type)
6777 == AARCH64_OPND_CLASS_INT_REG)
6778 && opnds[0].reg.regno == opnds[1].addr.base_regno
6779 && opnds[1].addr.base_regno != REG_SP
6780 /* Exempt STG/STZG/ST2G/STZ2G. */
6781 && !(opnds[1].type == AARCH64_OPND_ADDR_SIMM13)
6782 && opnds[1].addr.writeback)
6783 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6784 break;
6785
6786 case ldstpair_off:
6787 case ldstnapair_offs:
6788 case ldstpair_indexed:
6789 /* Loading/storing the base register is unpredictable if writeback. */
6790 if ((aarch64_get_operand_class (opnds[0].type)
6791 == AARCH64_OPND_CLASS_INT_REG)
6792 && (opnds[0].reg.regno == opnds[2].addr.base_regno
6793 || opnds[1].reg.regno == opnds[2].addr.base_regno)
6794 && opnds[2].addr.base_regno != REG_SP
6795 /* Exempt STGP. */
6796 && !(opnds[2].type == AARCH64_OPND_ADDR_SIMM11)
6797 && opnds[2].addr.writeback)
6798 as_warn (_("unpredictable transfer with writeback -- `%s'"), str);
6799 /* Load operations must load different registers. */
6800 if ((opcode->opcode & (1 << 22))
6801 && opnds[0].reg.regno == opnds[1].reg.regno)
6802 as_warn (_("unpredictable load of register pair -- `%s'"), str);
6803 break;
6804
6805 case ldstexcl:
6806 /* It is unpredictable if the destination and status registers are the
6807 same. */
6808 if ((aarch64_get_operand_class (opnds[0].type)
6809 == AARCH64_OPND_CLASS_INT_REG)
6810 && (aarch64_get_operand_class (opnds[1].type)
6811 == AARCH64_OPND_CLASS_INT_REG)
6812 && (opnds[0].reg.regno == opnds[1].reg.regno
6813 || opnds[0].reg.regno == opnds[2].reg.regno))
6814 as_warn (_("unpredictable: identical transfer and status registers"
6815 " --`%s'"),
6816 str);
6817
6818 break;
6819
6820 default:
6821 break;
6822 }
6823 }
6824
6825 static void
6826 force_automatic_sequence_close (void)
6827 {
6828 if (now_instr_sequence.instr)
6829 {
6830 as_warn (_("previous `%s' sequence has not been closed"),
6831 now_instr_sequence.instr->opcode->name);
6832 init_insn_sequence (NULL, &now_instr_sequence);
6833 }
6834 }
6835
6836 /* A wrapper function to interface with libopcodes on encoding and
6837 record the error message if there is any.
6838
6839 Return TRUE on success; otherwise return FALSE. */
6840
6841 static bfd_boolean
6842 do_encode (const aarch64_opcode *opcode, aarch64_inst *instr,
6843 aarch64_insn *code)
6844 {
6845 aarch64_operand_error error_info;
6846 memset (&error_info, '\0', sizeof (error_info));
6847 error_info.kind = AARCH64_OPDE_NIL;
6848 if (aarch64_opcode_encode (opcode, instr, code, NULL, &error_info, insn_sequence)
6849 && !error_info.non_fatal)
6850 return TRUE;
6851
6852 gas_assert (error_info.kind != AARCH64_OPDE_NIL);
6853 record_operand_error_info (opcode, &error_info);
6854 return error_info.non_fatal;
6855 }
6856
6857 #ifdef DEBUG_AARCH64
6858 static inline void
6859 dump_opcode_operands (const aarch64_opcode *opcode)
6860 {
6861 int i = 0;
6862 while (opcode->operands[i] != AARCH64_OPND_NIL)
6863 {
6864 aarch64_verbose ("\t\t opnd%d: %s", i,
6865 aarch64_get_operand_name (opcode->operands[i])[0] != '\0'
6866 ? aarch64_get_operand_name (opcode->operands[i])
6867 : aarch64_get_operand_desc (opcode->operands[i]));
6868 ++i;
6869 }
6870 }
6871 #endif /* DEBUG_AARCH64 */
6872
6873 /* This is the guts of the machine-dependent assembler. STR points to a
6874 machine dependent instruction. This function is supposed to emit
6875 the frags/bytes it assembles to. */
6876
6877 void
6878 md_assemble (char *str)
6879 {
6880 char *p = str;
6881 templates *template;
6882 aarch64_opcode *opcode;
6883 aarch64_inst *inst_base;
6884 unsigned saved_cond;
6885
6886 /* Align the previous label if needed. */
6887 if (last_label_seen != NULL)
6888 {
6889 symbol_set_frag (last_label_seen, frag_now);
6890 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
6891 S_SET_SEGMENT (last_label_seen, now_seg);
6892 }
6893
6894 /* Update the current insn_sequence from the segment. */
6895 insn_sequence = &seg_info (now_seg)->tc_segment_info_data.insn_sequence;
6896
6897 inst.reloc.type = BFD_RELOC_UNUSED;
6898
6899 DEBUG_TRACE ("\n\n");
6900 DEBUG_TRACE ("==============================");
6901 DEBUG_TRACE ("Enter md_assemble with %s", str);
6902
6903 template = opcode_lookup (&p);
6904 if (!template)
6905 {
6906 /* It wasn't an instruction, but it might be a register alias of
6907 the form alias .req reg directive. */
6908 if (!create_register_alias (str, p))
6909 as_bad (_("unknown mnemonic `%s' -- `%s'"), get_mnemonic_name (str),
6910 str);
6911 return;
6912 }
6913
6914 skip_whitespace (p);
6915 if (*p == ',')
6916 {
6917 as_bad (_("unexpected comma after the mnemonic name `%s' -- `%s'"),
6918 get_mnemonic_name (str), str);
6919 return;
6920 }
6921
6922 init_operand_error_report ();
6923
6924 /* Sections are assumed to start aligned. In executable section, there is no
6925 MAP_DATA symbol pending. So we only align the address during
6926 MAP_DATA --> MAP_INSN transition.
6927 For other sections, this is not guaranteed. */
6928 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
6929 if (!need_pass_2 && subseg_text_p (now_seg) && mapstate == MAP_DATA)
6930 frag_align_code (2, 0);
6931
6932 saved_cond = inst.cond;
6933 reset_aarch64_instruction (&inst);
6934 inst.cond = saved_cond;
6935
6936 /* Iterate through all opcode entries with the same mnemonic name. */
6937 do
6938 {
6939 opcode = template->opcode;
6940
6941 DEBUG_TRACE ("opcode %s found", opcode->name);
6942 #ifdef DEBUG_AARCH64
6943 if (debug_dump)
6944 dump_opcode_operands (opcode);
6945 #endif /* DEBUG_AARCH64 */
6946
6947 mapping_state (MAP_INSN);
6948
6949 inst_base = &inst.base;
6950 inst_base->opcode = opcode;
6951
6952 /* Truly conditionally executed instructions, e.g. b.cond. */
6953 if (opcode->flags & F_COND)
6954 {
6955 gas_assert (inst.cond != COND_ALWAYS);
6956 inst_base->cond = get_cond_from_value (inst.cond);
6957 DEBUG_TRACE ("condition found %s", inst_base->cond->names[0]);
6958 }
6959 else if (inst.cond != COND_ALWAYS)
6960 {
6961 /* It shouldn't arrive here, where the assembly looks like a
6962 conditional instruction but the found opcode is unconditional. */
6963 gas_assert (0);
6964 continue;
6965 }
6966
6967 if (parse_operands (p, opcode)
6968 && programmer_friendly_fixup (&inst)
6969 && do_encode (inst_base->opcode, &inst.base, &inst_base->value))
6970 {
6971 /* Check that this instruction is supported for this CPU. */
6972 if (!opcode->avariant
6973 || !AARCH64_CPU_HAS_ALL_FEATURES (cpu_variant, *opcode->avariant))
6974 {
6975 as_bad (_("selected processor does not support `%s'"), str);
6976 return;
6977 }
6978
6979 warn_unpredictable_ldst (&inst, str);
6980
6981 if (inst.reloc.type == BFD_RELOC_UNUSED
6982 || !inst.reloc.need_libopcodes_p)
6983 output_inst (NULL);
6984 else
6985 {
6986 /* If there is relocation generated for the instruction,
6987 store the instruction information for the future fix-up. */
6988 struct aarch64_inst *copy;
6989 gas_assert (inst.reloc.type != BFD_RELOC_UNUSED);
6990 copy = XNEW (struct aarch64_inst);
6991 memcpy (copy, &inst.base, sizeof (struct aarch64_inst));
6992 output_inst (copy);
6993 }
6994
6995 /* Issue non-fatal messages if any. */
6996 output_operand_error_report (str, TRUE);
6997 return;
6998 }
6999
7000 template = template->next;
7001 if (template != NULL)
7002 {
7003 reset_aarch64_instruction (&inst);
7004 inst.cond = saved_cond;
7005 }
7006 }
7007 while (template != NULL);
7008
7009 /* Issue the error messages if any. */
7010 output_operand_error_report (str, FALSE);
7011 }
7012
7013 /* Various frobbings of labels and their addresses. */
7014
7015 void
7016 aarch64_start_line_hook (void)
7017 {
7018 last_label_seen = NULL;
7019 }
7020
7021 void
7022 aarch64_frob_label (symbolS * sym)
7023 {
7024 last_label_seen = sym;
7025
7026 dwarf2_emit_label (sym);
7027 }
7028
7029 void
7030 aarch64_frob_section (asection *sec ATTRIBUTE_UNUSED)
7031 {
7032 /* Check to see if we have a block to close. */
7033 force_automatic_sequence_close ();
7034 }
7035
7036 int
7037 aarch64_data_in_code (void)
7038 {
7039 if (!strncmp (input_line_pointer + 1, "data:", 5))
7040 {
7041 *input_line_pointer = '/';
7042 input_line_pointer += 5;
7043 *input_line_pointer = 0;
7044 return 1;
7045 }
7046
7047 return 0;
7048 }
7049
7050 char *
7051 aarch64_canonicalize_symbol_name (char *name)
7052 {
7053 int len;
7054
7055 if ((len = strlen (name)) > 5 && streq (name + len - 5, "/data"))
7056 *(name + len - 5) = 0;
7057
7058 return name;
7059 }
7060 \f
7061 /* Table of all register names defined by default. The user can
7062 define additional names with .req. Note that all register names
7063 should appear in both upper and lowercase variants. Some registers
7064 also have mixed-case names. */
7065
7066 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE }
7067 #define REGDEF_ALIAS(s, n, t) { #s, n, REG_TYPE_##t, FALSE}
7068 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
7069 #define REGSET16(p,t) \
7070 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
7071 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
7072 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
7073 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
7074 #define REGSET31(p,t) \
7075 REGSET16(p, t), \
7076 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
7077 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
7078 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
7079 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t)
7080 #define REGSET(p,t) \
7081 REGSET31(p,t), REGNUM(p,31,t)
7082
7083 /* These go into aarch64_reg_hsh hash-table. */
7084 static const reg_entry reg_names[] = {
7085 /* Integer registers. */
7086 REGSET31 (x, R_64), REGSET31 (X, R_64),
7087 REGSET31 (w, R_32), REGSET31 (W, R_32),
7088
7089 REGDEF_ALIAS (ip0, 16, R_64), REGDEF_ALIAS (IP0, 16, R_64),
7090 REGDEF_ALIAS (ip1, 17, R_64), REGDEF_ALIAS (IP1, 17, R_64),
7091 REGDEF_ALIAS (fp, 29, R_64), REGDEF_ALIAS (FP, 29, R_64),
7092 REGDEF_ALIAS (lr, 30, R_64), REGDEF_ALIAS (LR, 30, R_64),
7093 REGDEF (wsp, 31, SP_32), REGDEF (WSP, 31, SP_32),
7094 REGDEF (sp, 31, SP_64), REGDEF (SP, 31, SP_64),
7095
7096 REGDEF (wzr, 31, Z_32), REGDEF (WZR, 31, Z_32),
7097 REGDEF (xzr, 31, Z_64), REGDEF (XZR, 31, Z_64),
7098
7099 /* Floating-point single precision registers. */
7100 REGSET (s, FP_S), REGSET (S, FP_S),
7101
7102 /* Floating-point double precision registers. */
7103 REGSET (d, FP_D), REGSET (D, FP_D),
7104
7105 /* Floating-point half precision registers. */
7106 REGSET (h, FP_H), REGSET (H, FP_H),
7107
7108 /* Floating-point byte precision registers. */
7109 REGSET (b, FP_B), REGSET (B, FP_B),
7110
7111 /* Floating-point quad precision registers. */
7112 REGSET (q, FP_Q), REGSET (Q, FP_Q),
7113
7114 /* FP/SIMD registers. */
7115 REGSET (v, VN), REGSET (V, VN),
7116
7117 /* SVE vector registers. */
7118 REGSET (z, ZN), REGSET (Z, ZN),
7119
7120 /* SVE predicate registers. */
7121 REGSET16 (p, PN), REGSET16 (P, PN)
7122 };
7123
7124 #undef REGDEF
7125 #undef REGDEF_ALIAS
7126 #undef REGNUM
7127 #undef REGSET16
7128 #undef REGSET31
7129 #undef REGSET
7130
7131 #define N 1
7132 #define n 0
7133 #define Z 1
7134 #define z 0
7135 #define C 1
7136 #define c 0
7137 #define V 1
7138 #define v 0
7139 #define B(a,b,c,d) (((a) << 3) | ((b) << 2) | ((c) << 1) | (d))
7140 static const asm_nzcv nzcv_names[] = {
7141 {"nzcv", B (n, z, c, v)},
7142 {"nzcV", B (n, z, c, V)},
7143 {"nzCv", B (n, z, C, v)},
7144 {"nzCV", B (n, z, C, V)},
7145 {"nZcv", B (n, Z, c, v)},
7146 {"nZcV", B (n, Z, c, V)},
7147 {"nZCv", B (n, Z, C, v)},
7148 {"nZCV", B (n, Z, C, V)},
7149 {"Nzcv", B (N, z, c, v)},
7150 {"NzcV", B (N, z, c, V)},
7151 {"NzCv", B (N, z, C, v)},
7152 {"NzCV", B (N, z, C, V)},
7153 {"NZcv", B (N, Z, c, v)},
7154 {"NZcV", B (N, Z, c, V)},
7155 {"NZCv", B (N, Z, C, v)},
7156 {"NZCV", B (N, Z, C, V)}
7157 };
7158
7159 #undef N
7160 #undef n
7161 #undef Z
7162 #undef z
7163 #undef C
7164 #undef c
7165 #undef V
7166 #undef v
7167 #undef B
7168 \f
7169 /* MD interface: bits in the object file. */
7170
7171 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
7172 for use in the a.out file, and stores them in the array pointed to by buf.
7173 This knows about the endian-ness of the target machine and does
7174 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
7175 2 (short) and 4 (long) Floating numbers are put out as a series of
7176 LITTLENUMS (shorts, here at least). */
7177
7178 void
7179 md_number_to_chars (char *buf, valueT val, int n)
7180 {
7181 if (target_big_endian)
7182 number_to_chars_bigendian (buf, val, n);
7183 else
7184 number_to_chars_littleendian (buf, val, n);
7185 }
7186
7187 /* MD interface: Sections. */
7188
7189 /* Estimate the size of a frag before relaxing. Assume everything fits in
7190 4 bytes. */
7191
7192 int
7193 md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED)
7194 {
7195 fragp->fr_var = 4;
7196 return 4;
7197 }
7198
7199 /* Round up a section size to the appropriate boundary. */
7200
7201 valueT
7202 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
7203 {
7204 return size;
7205 }
7206
7207 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
7208 of an rs_align_code fragment.
7209
7210 Here we fill the frag with the appropriate info for padding the
7211 output stream. The resulting frag will consist of a fixed (fr_fix)
7212 and of a repeating (fr_var) part.
7213
7214 The fixed content is always emitted before the repeating content and
7215 these two parts are used as follows in constructing the output:
7216 - the fixed part will be used to align to a valid instruction word
7217 boundary, in case that we start at a misaligned address; as no
7218 executable instruction can live at the misaligned location, we
7219 simply fill with zeros;
7220 - the variable part will be used to cover the remaining padding and
7221 we fill using the AArch64 NOP instruction.
7222
7223 Note that the size of a RS_ALIGN_CODE fragment is always 7 to provide
7224 enough storage space for up to 3 bytes for padding the back to a valid
7225 instruction alignment and exactly 4 bytes to store the NOP pattern. */
7226
7227 void
7228 aarch64_handle_align (fragS * fragP)
7229 {
7230 /* NOP = d503201f */
7231 /* AArch64 instructions are always little-endian. */
7232 static unsigned char const aarch64_noop[4] = { 0x1f, 0x20, 0x03, 0xd5 };
7233
7234 int bytes, fix, noop_size;
7235 char *p;
7236
7237 if (fragP->fr_type != rs_align_code)
7238 return;
7239
7240 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
7241 p = fragP->fr_literal + fragP->fr_fix;
7242
7243 #ifdef OBJ_ELF
7244 gas_assert (fragP->tc_frag_data.recorded);
7245 #endif
7246
7247 noop_size = sizeof (aarch64_noop);
7248
7249 fix = bytes & (noop_size - 1);
7250 if (fix)
7251 {
7252 #ifdef OBJ_ELF
7253 insert_data_mapping_symbol (MAP_INSN, fragP->fr_fix, fragP, fix);
7254 #endif
7255 memset (p, 0, fix);
7256 p += fix;
7257 fragP->fr_fix += fix;
7258 }
7259
7260 if (noop_size)
7261 memcpy (p, aarch64_noop, noop_size);
7262 fragP->fr_var = noop_size;
7263 }
7264
7265 /* Perform target specific initialisation of a frag.
7266 Note - despite the name this initialisation is not done when the frag
7267 is created, but only when its type is assigned. A frag can be created
7268 and used a long time before its type is set, so beware of assuming that
7269 this initialisation is performed first. */
7270
7271 #ifndef OBJ_ELF
7272 void
7273 aarch64_init_frag (fragS * fragP ATTRIBUTE_UNUSED,
7274 int max_chars ATTRIBUTE_UNUSED)
7275 {
7276 }
7277
7278 #else /* OBJ_ELF is defined. */
7279 void
7280 aarch64_init_frag (fragS * fragP, int max_chars)
7281 {
7282 /* Record a mapping symbol for alignment frags. We will delete this
7283 later if the alignment ends up empty. */
7284 if (!fragP->tc_frag_data.recorded)
7285 fragP->tc_frag_data.recorded = 1;
7286
7287 /* PR 21809: Do not set a mapping state for debug sections
7288 - it just confuses other tools. */
7289 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
7290 return;
7291
7292 switch (fragP->fr_type)
7293 {
7294 case rs_align_test:
7295 case rs_fill:
7296 mapping_state_2 (MAP_DATA, max_chars);
7297 break;
7298 case rs_align:
7299 /* PR 20364: We can get alignment frags in code sections,
7300 so do not just assume that we should use the MAP_DATA state. */
7301 mapping_state_2 (subseg_text_p (now_seg) ? MAP_INSN : MAP_DATA, max_chars);
7302 break;
7303 case rs_align_code:
7304 mapping_state_2 (MAP_INSN, max_chars);
7305 break;
7306 default:
7307 break;
7308 }
7309 }
7310 \f
7311 /* Initialize the DWARF-2 unwind information for this procedure. */
7312
7313 void
7314 tc_aarch64_frame_initial_instructions (void)
7315 {
7316 cfi_add_CFA_def_cfa (REG_SP, 0);
7317 }
7318 #endif /* OBJ_ELF */
7319
7320 /* Convert REGNAME to a DWARF-2 register number. */
7321
7322 int
7323 tc_aarch64_regname_to_dw2regnum (char *regname)
7324 {
7325 const reg_entry *reg = parse_reg (&regname);
7326 if (reg == NULL)
7327 return -1;
7328
7329 switch (reg->type)
7330 {
7331 case REG_TYPE_SP_32:
7332 case REG_TYPE_SP_64:
7333 case REG_TYPE_R_32:
7334 case REG_TYPE_R_64:
7335 return reg->number;
7336
7337 case REG_TYPE_FP_B:
7338 case REG_TYPE_FP_H:
7339 case REG_TYPE_FP_S:
7340 case REG_TYPE_FP_D:
7341 case REG_TYPE_FP_Q:
7342 return reg->number + 64;
7343
7344 default:
7345 break;
7346 }
7347 return -1;
7348 }
7349
7350 /* Implement DWARF2_ADDR_SIZE. */
7351
7352 int
7353 aarch64_dwarf2_addr_size (void)
7354 {
7355 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7356 if (ilp32_p)
7357 return 4;
7358 #endif
7359 return bfd_arch_bits_per_address (stdoutput) / 8;
7360 }
7361
7362 /* MD interface: Symbol and relocation handling. */
7363
7364 /* Return the address within the segment that a PC-relative fixup is
7365 relative to. For AArch64 PC-relative fixups applied to instructions
7366 are generally relative to the location plus AARCH64_PCREL_OFFSET bytes. */
7367
7368 long
7369 md_pcrel_from_section (fixS * fixP, segT seg)
7370 {
7371 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
7372
7373 /* If this is pc-relative and we are going to emit a relocation
7374 then we just want to put out any pipeline compensation that the linker
7375 will need. Otherwise we want to use the calculated base. */
7376 if (fixP->fx_pcrel
7377 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
7378 || aarch64_force_relocation (fixP)))
7379 base = 0;
7380
7381 /* AArch64 should be consistent for all pc-relative relocations. */
7382 return base + AARCH64_PCREL_OFFSET;
7383 }
7384
7385 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
7386 Otherwise we have no need to default values of symbols. */
7387
7388 symbolS *
7389 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
7390 {
7391 #ifdef OBJ_ELF
7392 if (name[0] == '_' && name[1] == 'G'
7393 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
7394 {
7395 if (!GOT_symbol)
7396 {
7397 if (symbol_find (name))
7398 as_bad (_("GOT already in the symbol table"));
7399
7400 GOT_symbol = symbol_new (name, undefined_section,
7401 (valueT) 0, &zero_address_frag);
7402 }
7403
7404 return GOT_symbol;
7405 }
7406 #endif
7407
7408 return 0;
7409 }
7410
7411 /* Return non-zero if the indicated VALUE has overflowed the maximum
7412 range expressible by a unsigned number with the indicated number of
7413 BITS. */
7414
7415 static bfd_boolean
7416 unsigned_overflow (valueT value, unsigned bits)
7417 {
7418 valueT lim;
7419 if (bits >= sizeof (valueT) * 8)
7420 return FALSE;
7421 lim = (valueT) 1 << bits;
7422 return (value >= lim);
7423 }
7424
7425
7426 /* Return non-zero if the indicated VALUE has overflowed the maximum
7427 range expressible by an signed number with the indicated number of
7428 BITS. */
7429
7430 static bfd_boolean
7431 signed_overflow (offsetT value, unsigned bits)
7432 {
7433 offsetT lim;
7434 if (bits >= sizeof (offsetT) * 8)
7435 return FALSE;
7436 lim = (offsetT) 1 << (bits - 1);
7437 return (value < -lim || value >= lim);
7438 }
7439
7440 /* Given an instruction in *INST, which is expected to be a scaled, 12-bit,
7441 unsigned immediate offset load/store instruction, try to encode it as
7442 an unscaled, 9-bit, signed immediate offset load/store instruction.
7443 Return TRUE if it is successful; otherwise return FALSE.
7444
7445 As a programmer-friendly assembler, LDUR/STUR instructions can be generated
7446 in response to the standard LDR/STR mnemonics when the immediate offset is
7447 unambiguous, i.e. when it is negative or unaligned. */
7448
7449 static bfd_boolean
7450 try_to_encode_as_unscaled_ldst (aarch64_inst *instr)
7451 {
7452 int idx;
7453 enum aarch64_op new_op;
7454 const aarch64_opcode *new_opcode;
7455
7456 gas_assert (instr->opcode->iclass == ldst_pos);
7457
7458 switch (instr->opcode->op)
7459 {
7460 case OP_LDRB_POS:new_op = OP_LDURB; break;
7461 case OP_STRB_POS: new_op = OP_STURB; break;
7462 case OP_LDRSB_POS: new_op = OP_LDURSB; break;
7463 case OP_LDRH_POS: new_op = OP_LDURH; break;
7464 case OP_STRH_POS: new_op = OP_STURH; break;
7465 case OP_LDRSH_POS: new_op = OP_LDURSH; break;
7466 case OP_LDR_POS: new_op = OP_LDUR; break;
7467 case OP_STR_POS: new_op = OP_STUR; break;
7468 case OP_LDRF_POS: new_op = OP_LDURV; break;
7469 case OP_STRF_POS: new_op = OP_STURV; break;
7470 case OP_LDRSW_POS: new_op = OP_LDURSW; break;
7471 case OP_PRFM_POS: new_op = OP_PRFUM; break;
7472 default: new_op = OP_NIL; break;
7473 }
7474
7475 if (new_op == OP_NIL)
7476 return FALSE;
7477
7478 new_opcode = aarch64_get_opcode (new_op);
7479 gas_assert (new_opcode != NULL);
7480
7481 DEBUG_TRACE ("Check programmer-friendly STURB/LDURB -> STRB/LDRB: %d == %d",
7482 instr->opcode->op, new_opcode->op);
7483
7484 aarch64_replace_opcode (instr, new_opcode);
7485
7486 /* Clear up the ADDR_SIMM9's qualifier; otherwise the
7487 qualifier matching may fail because the out-of-date qualifier will
7488 prevent the operand being updated with a new and correct qualifier. */
7489 idx = aarch64_operand_index (instr->opcode->operands,
7490 AARCH64_OPND_ADDR_SIMM9);
7491 gas_assert (idx == 1);
7492 instr->operands[idx].qualifier = AARCH64_OPND_QLF_NIL;
7493
7494 DEBUG_TRACE ("Found LDURB entry to encode programmer-friendly LDRB");
7495
7496 if (!aarch64_opcode_encode (instr->opcode, instr, &instr->value, NULL, NULL,
7497 insn_sequence))
7498 return FALSE;
7499
7500 return TRUE;
7501 }
7502
7503 /* Called by fix_insn to fix a MOV immediate alias instruction.
7504
7505 Operand for a generic move immediate instruction, which is an alias
7506 instruction that generates a single MOVZ, MOVN or ORR instruction to loads
7507 a 32-bit/64-bit immediate value into general register. An assembler error
7508 shall result if the immediate cannot be created by a single one of these
7509 instructions. If there is a choice, then to ensure reversability an
7510 assembler must prefer a MOVZ to MOVN, and MOVZ or MOVN to ORR. */
7511
7512 static void
7513 fix_mov_imm_insn (fixS *fixP, char *buf, aarch64_inst *instr, offsetT value)
7514 {
7515 const aarch64_opcode *opcode;
7516
7517 /* Need to check if the destination is SP/ZR. The check has to be done
7518 before any aarch64_replace_opcode. */
7519 int try_mov_wide_p = !aarch64_stack_pointer_p (&instr->operands[0]);
7520 int try_mov_bitmask_p = !aarch64_zero_register_p (&instr->operands[0]);
7521
7522 instr->operands[1].imm.value = value;
7523 instr->operands[1].skip = 0;
7524
7525 if (try_mov_wide_p)
7526 {
7527 /* Try the MOVZ alias. */
7528 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDE);
7529 aarch64_replace_opcode (instr, opcode);
7530 if (aarch64_opcode_encode (instr->opcode, instr,
7531 &instr->value, NULL, NULL, insn_sequence))
7532 {
7533 put_aarch64_insn (buf, instr->value);
7534 return;
7535 }
7536 /* Try the MOVK alias. */
7537 opcode = aarch64_get_opcode (OP_MOV_IMM_WIDEN);
7538 aarch64_replace_opcode (instr, opcode);
7539 if (aarch64_opcode_encode (instr->opcode, instr,
7540 &instr->value, NULL, NULL, insn_sequence))
7541 {
7542 put_aarch64_insn (buf, instr->value);
7543 return;
7544 }
7545 }
7546
7547 if (try_mov_bitmask_p)
7548 {
7549 /* Try the ORR alias. */
7550 opcode = aarch64_get_opcode (OP_MOV_IMM_LOG);
7551 aarch64_replace_opcode (instr, opcode);
7552 if (aarch64_opcode_encode (instr->opcode, instr,
7553 &instr->value, NULL, NULL, insn_sequence))
7554 {
7555 put_aarch64_insn (buf, instr->value);
7556 return;
7557 }
7558 }
7559
7560 as_bad_where (fixP->fx_file, fixP->fx_line,
7561 _("immediate cannot be moved by a single instruction"));
7562 }
7563
7564 /* An instruction operand which is immediate related may have symbol used
7565 in the assembly, e.g.
7566
7567 mov w0, u32
7568 .set u32, 0x00ffff00
7569
7570 At the time when the assembly instruction is parsed, a referenced symbol,
7571 like 'u32' in the above example may not have been seen; a fixS is created
7572 in such a case and is handled here after symbols have been resolved.
7573 Instruction is fixed up with VALUE using the information in *FIXP plus
7574 extra information in FLAGS.
7575
7576 This function is called by md_apply_fix to fix up instructions that need
7577 a fix-up described above but does not involve any linker-time relocation. */
7578
7579 static void
7580 fix_insn (fixS *fixP, uint32_t flags, offsetT value)
7581 {
7582 int idx;
7583 uint32_t insn;
7584 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7585 enum aarch64_opnd opnd = fixP->tc_fix_data.opnd;
7586 aarch64_inst *new_inst = fixP->tc_fix_data.inst;
7587
7588 if (new_inst)
7589 {
7590 /* Now the instruction is about to be fixed-up, so the operand that
7591 was previously marked as 'ignored' needs to be unmarked in order
7592 to get the encoding done properly. */
7593 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7594 new_inst->operands[idx].skip = 0;
7595 }
7596
7597 gas_assert (opnd != AARCH64_OPND_NIL);
7598
7599 switch (opnd)
7600 {
7601 case AARCH64_OPND_EXCEPTION:
7602 if (unsigned_overflow (value, 16))
7603 as_bad_where (fixP->fx_file, fixP->fx_line,
7604 _("immediate out of range"));
7605 insn = get_aarch64_insn (buf);
7606 insn |= encode_svc_imm (value);
7607 put_aarch64_insn (buf, insn);
7608 break;
7609
7610 case AARCH64_OPND_AIMM:
7611 /* ADD or SUB with immediate.
7612 NOTE this assumes we come here with a add/sub shifted reg encoding
7613 3 322|2222|2 2 2 21111 111111
7614 1 098|7654|3 2 1 09876 543210 98765 43210
7615 0b000000 sf 000|1011|shift 0 Rm imm6 Rn Rd ADD
7616 2b000000 sf 010|1011|shift 0 Rm imm6 Rn Rd ADDS
7617 4b000000 sf 100|1011|shift 0 Rm imm6 Rn Rd SUB
7618 6b000000 sf 110|1011|shift 0 Rm imm6 Rn Rd SUBS
7619 ->
7620 3 322|2222|2 2 221111111111
7621 1 098|7654|3 2 109876543210 98765 43210
7622 11000000 sf 001|0001|shift imm12 Rn Rd ADD
7623 31000000 sf 011|0001|shift imm12 Rn Rd ADDS
7624 51000000 sf 101|0001|shift imm12 Rn Rd SUB
7625 71000000 sf 111|0001|shift imm12 Rn Rd SUBS
7626 Fields sf Rn Rd are already set. */
7627 insn = get_aarch64_insn (buf);
7628 if (value < 0)
7629 {
7630 /* Add <-> sub. */
7631 insn = reencode_addsub_switch_add_sub (insn);
7632 value = -value;
7633 }
7634
7635 if ((flags & FIXUP_F_HAS_EXPLICIT_SHIFT) == 0
7636 && unsigned_overflow (value, 12))
7637 {
7638 /* Try to shift the value by 12 to make it fit. */
7639 if (((value >> 12) << 12) == value
7640 && ! unsigned_overflow (value, 12 + 12))
7641 {
7642 value >>= 12;
7643 insn |= encode_addsub_imm_shift_amount (1);
7644 }
7645 }
7646
7647 if (unsigned_overflow (value, 12))
7648 as_bad_where (fixP->fx_file, fixP->fx_line,
7649 _("immediate out of range"));
7650
7651 insn |= encode_addsub_imm (value);
7652
7653 put_aarch64_insn (buf, insn);
7654 break;
7655
7656 case AARCH64_OPND_SIMD_IMM:
7657 case AARCH64_OPND_SIMD_IMM_SFT:
7658 case AARCH64_OPND_LIMM:
7659 /* Bit mask immediate. */
7660 gas_assert (new_inst != NULL);
7661 idx = aarch64_operand_index (new_inst->opcode->operands, opnd);
7662 new_inst->operands[idx].imm.value = value;
7663 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7664 &new_inst->value, NULL, NULL, insn_sequence))
7665 put_aarch64_insn (buf, new_inst->value);
7666 else
7667 as_bad_where (fixP->fx_file, fixP->fx_line,
7668 _("invalid immediate"));
7669 break;
7670
7671 case AARCH64_OPND_HALF:
7672 /* 16-bit unsigned immediate. */
7673 if (unsigned_overflow (value, 16))
7674 as_bad_where (fixP->fx_file, fixP->fx_line,
7675 _("immediate out of range"));
7676 insn = get_aarch64_insn (buf);
7677 insn |= encode_movw_imm (value & 0xffff);
7678 put_aarch64_insn (buf, insn);
7679 break;
7680
7681 case AARCH64_OPND_IMM_MOV:
7682 /* Operand for a generic move immediate instruction, which is
7683 an alias instruction that generates a single MOVZ, MOVN or ORR
7684 instruction to loads a 32-bit/64-bit immediate value into general
7685 register. An assembler error shall result if the immediate cannot be
7686 created by a single one of these instructions. If there is a choice,
7687 then to ensure reversability an assembler must prefer a MOVZ to MOVN,
7688 and MOVZ or MOVN to ORR. */
7689 gas_assert (new_inst != NULL);
7690 fix_mov_imm_insn (fixP, buf, new_inst, value);
7691 break;
7692
7693 case AARCH64_OPND_ADDR_SIMM7:
7694 case AARCH64_OPND_ADDR_SIMM9:
7695 case AARCH64_OPND_ADDR_SIMM9_2:
7696 case AARCH64_OPND_ADDR_SIMM10:
7697 case AARCH64_OPND_ADDR_UIMM12:
7698 case AARCH64_OPND_ADDR_SIMM11:
7699 case AARCH64_OPND_ADDR_SIMM13:
7700 /* Immediate offset in an address. */
7701 insn = get_aarch64_insn (buf);
7702
7703 gas_assert (new_inst != NULL && new_inst->value == insn);
7704 gas_assert (new_inst->opcode->operands[1] == opnd
7705 || new_inst->opcode->operands[2] == opnd);
7706
7707 /* Get the index of the address operand. */
7708 if (new_inst->opcode->operands[1] == opnd)
7709 /* e.g. STR <Xt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
7710 idx = 1;
7711 else
7712 /* e.g. LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}]. */
7713 idx = 2;
7714
7715 /* Update the resolved offset value. */
7716 new_inst->operands[idx].addr.offset.imm = value;
7717
7718 /* Encode/fix-up. */
7719 if (aarch64_opcode_encode (new_inst->opcode, new_inst,
7720 &new_inst->value, NULL, NULL, insn_sequence))
7721 {
7722 put_aarch64_insn (buf, new_inst->value);
7723 break;
7724 }
7725 else if (new_inst->opcode->iclass == ldst_pos
7726 && try_to_encode_as_unscaled_ldst (new_inst))
7727 {
7728 put_aarch64_insn (buf, new_inst->value);
7729 break;
7730 }
7731
7732 as_bad_where (fixP->fx_file, fixP->fx_line,
7733 _("immediate offset out of range"));
7734 break;
7735
7736 default:
7737 gas_assert (0);
7738 as_fatal (_("unhandled operand code %d"), opnd);
7739 }
7740 }
7741
7742 /* Apply a fixup (fixP) to segment data, once it has been determined
7743 by our caller that we have all the info we need to fix it up.
7744
7745 Parameter valP is the pointer to the value of the bits. */
7746
7747 void
7748 md_apply_fix (fixS * fixP, valueT * valP, segT seg)
7749 {
7750 offsetT value = *valP;
7751 uint32_t insn;
7752 char *buf = fixP->fx_where + fixP->fx_frag->fr_literal;
7753 int scale;
7754 unsigned flags = fixP->fx_addnumber;
7755
7756 DEBUG_TRACE ("\n\n");
7757 DEBUG_TRACE ("~~~~~~~~~~~~~~~~~~~~~~~~~");
7758 DEBUG_TRACE ("Enter md_apply_fix");
7759
7760 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
7761
7762 /* Note whether this will delete the relocation. */
7763
7764 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
7765 fixP->fx_done = 1;
7766
7767 /* Process the relocations. */
7768 switch (fixP->fx_r_type)
7769 {
7770 case BFD_RELOC_NONE:
7771 /* This will need to go in the object file. */
7772 fixP->fx_done = 0;
7773 break;
7774
7775 case BFD_RELOC_8:
7776 case BFD_RELOC_8_PCREL:
7777 if (fixP->fx_done || !seg->use_rela_p)
7778 md_number_to_chars (buf, value, 1);
7779 break;
7780
7781 case BFD_RELOC_16:
7782 case BFD_RELOC_16_PCREL:
7783 if (fixP->fx_done || !seg->use_rela_p)
7784 md_number_to_chars (buf, value, 2);
7785 break;
7786
7787 case BFD_RELOC_32:
7788 case BFD_RELOC_32_PCREL:
7789 if (fixP->fx_done || !seg->use_rela_p)
7790 md_number_to_chars (buf, value, 4);
7791 break;
7792
7793 case BFD_RELOC_64:
7794 case BFD_RELOC_64_PCREL:
7795 if (fixP->fx_done || !seg->use_rela_p)
7796 md_number_to_chars (buf, value, 8);
7797 break;
7798
7799 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
7800 /* We claim that these fixups have been processed here, even if
7801 in fact we generate an error because we do not have a reloc
7802 for them, so tc_gen_reloc() will reject them. */
7803 fixP->fx_done = 1;
7804 if (fixP->fx_addsy && !S_IS_DEFINED (fixP->fx_addsy))
7805 {
7806 as_bad_where (fixP->fx_file, fixP->fx_line,
7807 _("undefined symbol %s used as an immediate value"),
7808 S_GET_NAME (fixP->fx_addsy));
7809 goto apply_fix_return;
7810 }
7811 fix_insn (fixP, flags, value);
7812 break;
7813
7814 case BFD_RELOC_AARCH64_LD_LO19_PCREL:
7815 if (fixP->fx_done || !seg->use_rela_p)
7816 {
7817 if (value & 3)
7818 as_bad_where (fixP->fx_file, fixP->fx_line,
7819 _("pc-relative load offset not word aligned"));
7820 if (signed_overflow (value, 21))
7821 as_bad_where (fixP->fx_file, fixP->fx_line,
7822 _("pc-relative load offset out of range"));
7823 insn = get_aarch64_insn (buf);
7824 insn |= encode_ld_lit_ofs_19 (value >> 2);
7825 put_aarch64_insn (buf, insn);
7826 }
7827 break;
7828
7829 case BFD_RELOC_AARCH64_ADR_LO21_PCREL:
7830 if (fixP->fx_done || !seg->use_rela_p)
7831 {
7832 if (signed_overflow (value, 21))
7833 as_bad_where (fixP->fx_file, fixP->fx_line,
7834 _("pc-relative address offset out of range"));
7835 insn = get_aarch64_insn (buf);
7836 insn |= encode_adr_imm (value);
7837 put_aarch64_insn (buf, insn);
7838 }
7839 break;
7840
7841 case BFD_RELOC_AARCH64_BRANCH19:
7842 if (fixP->fx_done || !seg->use_rela_p)
7843 {
7844 if (value & 3)
7845 as_bad_where (fixP->fx_file, fixP->fx_line,
7846 _("conditional branch target not word aligned"));
7847 if (signed_overflow (value, 21))
7848 as_bad_where (fixP->fx_file, fixP->fx_line,
7849 _("conditional branch out of range"));
7850 insn = get_aarch64_insn (buf);
7851 insn |= encode_cond_branch_ofs_19 (value >> 2);
7852 put_aarch64_insn (buf, insn);
7853 }
7854 break;
7855
7856 case BFD_RELOC_AARCH64_TSTBR14:
7857 if (fixP->fx_done || !seg->use_rela_p)
7858 {
7859 if (value & 3)
7860 as_bad_where (fixP->fx_file, fixP->fx_line,
7861 _("conditional branch target not word aligned"));
7862 if (signed_overflow (value, 16))
7863 as_bad_where (fixP->fx_file, fixP->fx_line,
7864 _("conditional branch out of range"));
7865 insn = get_aarch64_insn (buf);
7866 insn |= encode_tst_branch_ofs_14 (value >> 2);
7867 put_aarch64_insn (buf, insn);
7868 }
7869 break;
7870
7871 case BFD_RELOC_AARCH64_CALL26:
7872 case BFD_RELOC_AARCH64_JUMP26:
7873 if (fixP->fx_done || !seg->use_rela_p)
7874 {
7875 if (value & 3)
7876 as_bad_where (fixP->fx_file, fixP->fx_line,
7877 _("branch target not word aligned"));
7878 if (signed_overflow (value, 28))
7879 as_bad_where (fixP->fx_file, fixP->fx_line,
7880 _("branch out of range"));
7881 insn = get_aarch64_insn (buf);
7882 insn |= encode_branch_ofs_26 (value >> 2);
7883 put_aarch64_insn (buf, insn);
7884 }
7885 break;
7886
7887 case BFD_RELOC_AARCH64_MOVW_G0:
7888 case BFD_RELOC_AARCH64_MOVW_G0_NC:
7889 case BFD_RELOC_AARCH64_MOVW_G0_S:
7890 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G0_NC:
7891 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7892 case BFD_RELOC_AARCH64_MOVW_PREL_G0_NC:
7893 scale = 0;
7894 goto movw_common;
7895 case BFD_RELOC_AARCH64_MOVW_G1:
7896 case BFD_RELOC_AARCH64_MOVW_G1_NC:
7897 case BFD_RELOC_AARCH64_MOVW_G1_S:
7898 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7899 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7900 case BFD_RELOC_AARCH64_MOVW_PREL_G1_NC:
7901 scale = 16;
7902 goto movw_common;
7903 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
7904 scale = 0;
7905 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7906 /* Should always be exported to object file, see
7907 aarch64_force_relocation(). */
7908 gas_assert (!fixP->fx_done);
7909 gas_assert (seg->use_rela_p);
7910 goto movw_common;
7911 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7912 scale = 16;
7913 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7914 /* Should always be exported to object file, see
7915 aarch64_force_relocation(). */
7916 gas_assert (!fixP->fx_done);
7917 gas_assert (seg->use_rela_p);
7918 goto movw_common;
7919 case BFD_RELOC_AARCH64_MOVW_G2:
7920 case BFD_RELOC_AARCH64_MOVW_G2_NC:
7921 case BFD_RELOC_AARCH64_MOVW_G2_S:
7922 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7923 case BFD_RELOC_AARCH64_MOVW_PREL_G2_NC:
7924 scale = 32;
7925 goto movw_common;
7926 case BFD_RELOC_AARCH64_MOVW_G3:
7927 case BFD_RELOC_AARCH64_MOVW_PREL_G3:
7928 scale = 48;
7929 movw_common:
7930 if (fixP->fx_done || !seg->use_rela_p)
7931 {
7932 insn = get_aarch64_insn (buf);
7933
7934 if (!fixP->fx_done)
7935 {
7936 /* REL signed addend must fit in 16 bits */
7937 if (signed_overflow (value, 16))
7938 as_bad_where (fixP->fx_file, fixP->fx_line,
7939 _("offset out of range"));
7940 }
7941 else
7942 {
7943 /* Check for overflow and scale. */
7944 switch (fixP->fx_r_type)
7945 {
7946 case BFD_RELOC_AARCH64_MOVW_G0:
7947 case BFD_RELOC_AARCH64_MOVW_G1:
7948 case BFD_RELOC_AARCH64_MOVW_G2:
7949 case BFD_RELOC_AARCH64_MOVW_G3:
7950 case BFD_RELOC_AARCH64_MOVW_GOTOFF_G1:
7951 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
7952 if (unsigned_overflow (value, scale + 16))
7953 as_bad_where (fixP->fx_file, fixP->fx_line,
7954 _("unsigned value out of range"));
7955 break;
7956 case BFD_RELOC_AARCH64_MOVW_G0_S:
7957 case BFD_RELOC_AARCH64_MOVW_G1_S:
7958 case BFD_RELOC_AARCH64_MOVW_G2_S:
7959 case BFD_RELOC_AARCH64_MOVW_PREL_G0:
7960 case BFD_RELOC_AARCH64_MOVW_PREL_G1:
7961 case BFD_RELOC_AARCH64_MOVW_PREL_G2:
7962 /* NOTE: We can only come here with movz or movn. */
7963 if (signed_overflow (value, scale + 16))
7964 as_bad_where (fixP->fx_file, fixP->fx_line,
7965 _("signed value out of range"));
7966 if (value < 0)
7967 {
7968 /* Force use of MOVN. */
7969 value = ~value;
7970 insn = reencode_movzn_to_movn (insn);
7971 }
7972 else
7973 {
7974 /* Force use of MOVZ. */
7975 insn = reencode_movzn_to_movz (insn);
7976 }
7977 break;
7978 default:
7979 /* Unchecked relocations. */
7980 break;
7981 }
7982 value >>= scale;
7983 }
7984
7985 /* Insert value into MOVN/MOVZ/MOVK instruction. */
7986 insn |= encode_movw_imm (value & 0xffff);
7987
7988 put_aarch64_insn (buf, insn);
7989 }
7990 break;
7991
7992 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
7993 fixP->fx_r_type = (ilp32_p
7994 ? BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC
7995 : BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7996 S_SET_THREAD_LOCAL (fixP->fx_addsy);
7997 /* Should always be exported to object file, see
7998 aarch64_force_relocation(). */
7999 gas_assert (!fixP->fx_done);
8000 gas_assert (seg->use_rela_p);
8001 break;
8002
8003 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8004 fixP->fx_r_type = (ilp32_p
8005 ? BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC
8006 : BFD_RELOC_AARCH64_TLSDESC_LD64_LO12);
8007 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8008 /* Should always be exported to object file, see
8009 aarch64_force_relocation(). */
8010 gas_assert (!fixP->fx_done);
8011 gas_assert (seg->use_rela_p);
8012 break;
8013
8014 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
8015 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
8016 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
8017 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
8018 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
8019 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
8020 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
8021 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
8022 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
8023 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
8024 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
8025 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
8026 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
8027 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8028 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
8029 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8030 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8031 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
8032 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
8033 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8034 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
8035 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
8036 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
8037 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8038 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8039 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8040 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8041 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8042 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8043 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8044 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
8045 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8046 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8047 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8048 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8049 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
8050 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8051 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8052 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8053 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8054 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8055 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8056 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8057 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
8058 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
8059 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
8060 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
8061 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8062 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8063 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8064 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8065 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
8066 S_SET_THREAD_LOCAL (fixP->fx_addsy);
8067 /* Should always be exported to object file, see
8068 aarch64_force_relocation(). */
8069 gas_assert (!fixP->fx_done);
8070 gas_assert (seg->use_rela_p);
8071 break;
8072
8073 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8074 /* Should always be exported to object file, see
8075 aarch64_force_relocation(). */
8076 fixP->fx_r_type = (ilp32_p
8077 ? BFD_RELOC_AARCH64_LD32_GOT_LO12_NC
8078 : BFD_RELOC_AARCH64_LD64_GOT_LO12_NC);
8079 gas_assert (!fixP->fx_done);
8080 gas_assert (seg->use_rela_p);
8081 break;
8082
8083 case BFD_RELOC_AARCH64_ADD_LO12:
8084 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8085 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8086 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8087 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8088 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
8089 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
8090 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
8091 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
8092 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8093 case BFD_RELOC_AARCH64_LDST128_LO12:
8094 case BFD_RELOC_AARCH64_LDST16_LO12:
8095 case BFD_RELOC_AARCH64_LDST32_LO12:
8096 case BFD_RELOC_AARCH64_LDST64_LO12:
8097 case BFD_RELOC_AARCH64_LDST8_LO12:
8098 /* Should always be exported to object file, see
8099 aarch64_force_relocation(). */
8100 gas_assert (!fixP->fx_done);
8101 gas_assert (seg->use_rela_p);
8102 break;
8103
8104 case BFD_RELOC_AARCH64_TLSDESC_ADD:
8105 case BFD_RELOC_AARCH64_TLSDESC_CALL:
8106 case BFD_RELOC_AARCH64_TLSDESC_LDR:
8107 break;
8108
8109 case BFD_RELOC_UNUSED:
8110 /* An error will already have been reported. */
8111 break;
8112
8113 default:
8114 as_bad_where (fixP->fx_file, fixP->fx_line,
8115 _("unexpected %s fixup"),
8116 bfd_get_reloc_code_name (fixP->fx_r_type));
8117 break;
8118 }
8119
8120 apply_fix_return:
8121 /* Free the allocated the struct aarch64_inst.
8122 N.B. currently there are very limited number of fix-up types actually use
8123 this field, so the impact on the performance should be minimal . */
8124 if (fixP->tc_fix_data.inst != NULL)
8125 free (fixP->tc_fix_data.inst);
8126
8127 return;
8128 }
8129
8130 /* Translate internal representation of relocation info to BFD target
8131 format. */
8132
8133 arelent *
8134 tc_gen_reloc (asection * section, fixS * fixp)
8135 {
8136 arelent *reloc;
8137 bfd_reloc_code_real_type code;
8138
8139 reloc = XNEW (arelent);
8140
8141 reloc->sym_ptr_ptr = XNEW (asymbol *);
8142 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
8143 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
8144
8145 if (fixp->fx_pcrel)
8146 {
8147 if (section->use_rela_p)
8148 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
8149 else
8150 fixp->fx_offset = reloc->address;
8151 }
8152 reloc->addend = fixp->fx_offset;
8153
8154 code = fixp->fx_r_type;
8155 switch (code)
8156 {
8157 case BFD_RELOC_16:
8158 if (fixp->fx_pcrel)
8159 code = BFD_RELOC_16_PCREL;
8160 break;
8161
8162 case BFD_RELOC_32:
8163 if (fixp->fx_pcrel)
8164 code = BFD_RELOC_32_PCREL;
8165 break;
8166
8167 case BFD_RELOC_64:
8168 if (fixp->fx_pcrel)
8169 code = BFD_RELOC_64_PCREL;
8170 break;
8171
8172 default:
8173 break;
8174 }
8175
8176 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
8177 if (reloc->howto == NULL)
8178 {
8179 as_bad_where (fixp->fx_file, fixp->fx_line,
8180 _
8181 ("cannot represent %s relocation in this object file format"),
8182 bfd_get_reloc_code_name (code));
8183 return NULL;
8184 }
8185
8186 return reloc;
8187 }
8188
8189 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
8190
8191 void
8192 cons_fix_new_aarch64 (fragS * frag, int where, int size, expressionS * exp)
8193 {
8194 bfd_reloc_code_real_type type;
8195 int pcrel = 0;
8196
8197 /* Pick a reloc.
8198 FIXME: @@ Should look at CPU word size. */
8199 switch (size)
8200 {
8201 case 1:
8202 type = BFD_RELOC_8;
8203 break;
8204 case 2:
8205 type = BFD_RELOC_16;
8206 break;
8207 case 4:
8208 type = BFD_RELOC_32;
8209 break;
8210 case 8:
8211 type = BFD_RELOC_64;
8212 break;
8213 default:
8214 as_bad (_("cannot do %u-byte relocation"), size);
8215 type = BFD_RELOC_UNUSED;
8216 break;
8217 }
8218
8219 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
8220 }
8221
8222 int
8223 aarch64_force_relocation (struct fix *fixp)
8224 {
8225 switch (fixp->fx_r_type)
8226 {
8227 case BFD_RELOC_AARCH64_GAS_INTERNAL_FIXUP:
8228 /* Perform these "immediate" internal relocations
8229 even if the symbol is extern or weak. */
8230 return 0;
8231
8232 case BFD_RELOC_AARCH64_LD_GOT_LO12_NC:
8233 case BFD_RELOC_AARCH64_TLSDESC_LD_LO12_NC:
8234 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_LO12_NC:
8235 /* Pseudo relocs that need to be fixed up according to
8236 ilp32_p. */
8237 return 0;
8238
8239 case BFD_RELOC_AARCH64_ADD_LO12:
8240 case BFD_RELOC_AARCH64_ADR_GOT_PAGE:
8241 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL:
8242 case BFD_RELOC_AARCH64_ADR_HI21_PCREL:
8243 case BFD_RELOC_AARCH64_GOT_LD_PREL19:
8244 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC:
8245 case BFD_RELOC_AARCH64_LD32_GOTPAGE_LO14:
8246 case BFD_RELOC_AARCH64_LD64_GOTOFF_LO15:
8247 case BFD_RELOC_AARCH64_LD64_GOTPAGE_LO15:
8248 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC:
8249 case BFD_RELOC_AARCH64_LDST128_LO12:
8250 case BFD_RELOC_AARCH64_LDST16_LO12:
8251 case BFD_RELOC_AARCH64_LDST32_LO12:
8252 case BFD_RELOC_AARCH64_LDST64_LO12:
8253 case BFD_RELOC_AARCH64_LDST8_LO12:
8254 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12:
8255 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21:
8256 case BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21:
8257 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC:
8258 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12:
8259 case BFD_RELOC_AARCH64_TLSDESC_LD_PREL19:
8260 case BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC:
8261 case BFD_RELOC_AARCH64_TLSDESC_OFF_G1:
8262 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC:
8263 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21:
8264 case BFD_RELOC_AARCH64_TLSGD_ADR_PREL21:
8265 case BFD_RELOC_AARCH64_TLSGD_MOVW_G0_NC:
8266 case BFD_RELOC_AARCH64_TLSGD_MOVW_G1:
8267 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
8268 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC:
8269 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
8270 case BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
8271 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
8272 case BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
8273 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_HI12:
8274 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12:
8275 case BFD_RELOC_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
8276 case BFD_RELOC_AARCH64_TLSLD_ADD_LO12_NC:
8277 case BFD_RELOC_AARCH64_TLSLD_ADR_PAGE21:
8278 case BFD_RELOC_AARCH64_TLSLD_ADR_PREL21:
8279 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12:
8280 case BFD_RELOC_AARCH64_TLSLD_LDST16_DTPREL_LO12_NC:
8281 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12:
8282 case BFD_RELOC_AARCH64_TLSLD_LDST32_DTPREL_LO12_NC:
8283 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12:
8284 case BFD_RELOC_AARCH64_TLSLD_LDST64_DTPREL_LO12_NC:
8285 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12:
8286 case BFD_RELOC_AARCH64_TLSLD_LDST8_DTPREL_LO12_NC:
8287 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0:
8288 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
8289 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1:
8290 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G1_NC:
8291 case BFD_RELOC_AARCH64_TLSLD_MOVW_DTPREL_G2:
8292 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12:
8293 case BFD_RELOC_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
8294 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12:
8295 case BFD_RELOC_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
8296 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12:
8297 case BFD_RELOC_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
8298 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12:
8299 case BFD_RELOC_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
8300 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12:
8301 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12:
8302 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
8303 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0:
8304 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
8305 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1:
8306 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
8307 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2:
8308 /* Always leave these relocations for the linker. */
8309 return 1;
8310
8311 default:
8312 break;
8313 }
8314
8315 return generic_force_reloc (fixp);
8316 }
8317
8318 #ifdef OBJ_ELF
8319
8320 /* Implement md_after_parse_args. This is the earliest time we need to decide
8321 ABI. If no -mabi specified, the ABI will be decided by target triplet. */
8322
8323 void
8324 aarch64_after_parse_args (void)
8325 {
8326 if (aarch64_abi != AARCH64_ABI_NONE)
8327 return;
8328
8329 /* DEFAULT_ARCH will have ":32" extension if it's configured for ILP32. */
8330 if (strlen (default_arch) > 7 && strcmp (default_arch + 7, ":32") == 0)
8331 aarch64_abi = AARCH64_ABI_ILP32;
8332 else
8333 aarch64_abi = AARCH64_ABI_LP64;
8334 }
8335
8336 const char *
8337 elf64_aarch64_target_format (void)
8338 {
8339 #ifdef TE_CLOUDABI
8340 /* FIXME: What to do for ilp32_p ? */
8341 if (target_big_endian)
8342 return "elf64-bigaarch64-cloudabi";
8343 else
8344 return "elf64-littleaarch64-cloudabi";
8345 #else
8346 if (target_big_endian)
8347 return ilp32_p ? "elf32-bigaarch64" : "elf64-bigaarch64";
8348 else
8349 return ilp32_p ? "elf32-littleaarch64" : "elf64-littleaarch64";
8350 #endif
8351 }
8352
8353 void
8354 aarch64elf_frob_symbol (symbolS * symp, int *puntp)
8355 {
8356 elf_frob_symbol (symp, puntp);
8357 }
8358 #endif
8359
8360 /* MD interface: Finalization. */
8361
8362 /* A good place to do this, although this was probably not intended
8363 for this kind of use. We need to dump the literal pool before
8364 references are made to a null symbol pointer. */
8365
8366 void
8367 aarch64_cleanup (void)
8368 {
8369 literal_pool *pool;
8370
8371 for (pool = list_of_pools; pool; pool = pool->next)
8372 {
8373 /* Put it at the end of the relevant section. */
8374 subseg_set (pool->section, pool->sub_section);
8375 s_ltorg (0);
8376 }
8377 }
8378
8379 #ifdef OBJ_ELF
8380 /* Remove any excess mapping symbols generated for alignment frags in
8381 SEC. We may have created a mapping symbol before a zero byte
8382 alignment; remove it if there's a mapping symbol after the
8383 alignment. */
8384 static void
8385 check_mapping_symbols (bfd * abfd ATTRIBUTE_UNUSED, asection * sec,
8386 void *dummy ATTRIBUTE_UNUSED)
8387 {
8388 segment_info_type *seginfo = seg_info (sec);
8389 fragS *fragp;
8390
8391 if (seginfo == NULL || seginfo->frchainP == NULL)
8392 return;
8393
8394 for (fragp = seginfo->frchainP->frch_root;
8395 fragp != NULL; fragp = fragp->fr_next)
8396 {
8397 symbolS *sym = fragp->tc_frag_data.last_map;
8398 fragS *next = fragp->fr_next;
8399
8400 /* Variable-sized frags have been converted to fixed size by
8401 this point. But if this was variable-sized to start with,
8402 there will be a fixed-size frag after it. So don't handle
8403 next == NULL. */
8404 if (sym == NULL || next == NULL)
8405 continue;
8406
8407 if (S_GET_VALUE (sym) < next->fr_address)
8408 /* Not at the end of this frag. */
8409 continue;
8410 know (S_GET_VALUE (sym) == next->fr_address);
8411
8412 do
8413 {
8414 if (next->tc_frag_data.first_map != NULL)
8415 {
8416 /* Next frag starts with a mapping symbol. Discard this
8417 one. */
8418 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8419 break;
8420 }
8421
8422 if (next->fr_next == NULL)
8423 {
8424 /* This mapping symbol is at the end of the section. Discard
8425 it. */
8426 know (next->fr_fix == 0 && next->fr_var == 0);
8427 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
8428 break;
8429 }
8430
8431 /* As long as we have empty frags without any mapping symbols,
8432 keep looking. */
8433 /* If the next frag is non-empty and does not start with a
8434 mapping symbol, then this mapping symbol is required. */
8435 if (next->fr_address != next->fr_next->fr_address)
8436 break;
8437
8438 next = next->fr_next;
8439 }
8440 while (next != NULL);
8441 }
8442 }
8443 #endif
8444
8445 /* Adjust the symbol table. */
8446
8447 void
8448 aarch64_adjust_symtab (void)
8449 {
8450 #ifdef OBJ_ELF
8451 /* Remove any overlapping mapping symbols generated by alignment frags. */
8452 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
8453 /* Now do generic ELF adjustments. */
8454 elf_adjust_symtab ();
8455 #endif
8456 }
8457
8458 static void
8459 checked_hash_insert (struct hash_control *table, const char *key, void *value)
8460 {
8461 const char *hash_err;
8462
8463 hash_err = hash_insert (table, key, value);
8464 if (hash_err)
8465 printf ("Internal Error: Can't hash %s\n", key);
8466 }
8467
8468 static void
8469 fill_instruction_hash_table (void)
8470 {
8471 aarch64_opcode *opcode = aarch64_opcode_table;
8472
8473 while (opcode->name != NULL)
8474 {
8475 templates *templ, *new_templ;
8476 templ = hash_find (aarch64_ops_hsh, opcode->name);
8477
8478 new_templ = XNEW (templates);
8479 new_templ->opcode = opcode;
8480 new_templ->next = NULL;
8481
8482 if (!templ)
8483 checked_hash_insert (aarch64_ops_hsh, opcode->name, (void *) new_templ);
8484 else
8485 {
8486 new_templ->next = templ->next;
8487 templ->next = new_templ;
8488 }
8489 ++opcode;
8490 }
8491 }
8492
8493 static inline void
8494 convert_to_upper (char *dst, const char *src, size_t num)
8495 {
8496 unsigned int i;
8497 for (i = 0; i < num && *src != '\0'; ++i, ++dst, ++src)
8498 *dst = TOUPPER (*src);
8499 *dst = '\0';
8500 }
8501
8502 /* Assume STR point to a lower-case string, allocate, convert and return
8503 the corresponding upper-case string. */
8504 static inline const char*
8505 get_upper_str (const char *str)
8506 {
8507 char *ret;
8508 size_t len = strlen (str);
8509 ret = XNEWVEC (char, len + 1);
8510 convert_to_upper (ret, str, len);
8511 return ret;
8512 }
8513
8514 /* MD interface: Initialization. */
8515
8516 void
8517 md_begin (void)
8518 {
8519 unsigned mach;
8520 unsigned int i;
8521
8522 if ((aarch64_ops_hsh = hash_new ()) == NULL
8523 || (aarch64_cond_hsh = hash_new ()) == NULL
8524 || (aarch64_shift_hsh = hash_new ()) == NULL
8525 || (aarch64_sys_regs_hsh = hash_new ()) == NULL
8526 || (aarch64_pstatefield_hsh = hash_new ()) == NULL
8527 || (aarch64_sys_regs_ic_hsh = hash_new ()) == NULL
8528 || (aarch64_sys_regs_dc_hsh = hash_new ()) == NULL
8529 || (aarch64_sys_regs_at_hsh = hash_new ()) == NULL
8530 || (aarch64_sys_regs_tlbi_hsh = hash_new ()) == NULL
8531 || (aarch64_sys_regs_sr_hsh = hash_new ()) == NULL
8532 || (aarch64_reg_hsh = hash_new ()) == NULL
8533 || (aarch64_barrier_opt_hsh = hash_new ()) == NULL
8534 || (aarch64_nzcv_hsh = hash_new ()) == NULL
8535 || (aarch64_pldop_hsh = hash_new ()) == NULL
8536 || (aarch64_hint_opt_hsh = hash_new ()) == NULL)
8537 as_fatal (_("virtual memory exhausted"));
8538
8539 fill_instruction_hash_table ();
8540
8541 for (i = 0; aarch64_sys_regs[i].name != NULL; ++i)
8542 checked_hash_insert (aarch64_sys_regs_hsh, aarch64_sys_regs[i].name,
8543 (void *) (aarch64_sys_regs + i));
8544
8545 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
8546 checked_hash_insert (aarch64_pstatefield_hsh,
8547 aarch64_pstatefields[i].name,
8548 (void *) (aarch64_pstatefields + i));
8549
8550 for (i = 0; aarch64_sys_regs_ic[i].name != NULL; i++)
8551 checked_hash_insert (aarch64_sys_regs_ic_hsh,
8552 aarch64_sys_regs_ic[i].name,
8553 (void *) (aarch64_sys_regs_ic + i));
8554
8555 for (i = 0; aarch64_sys_regs_dc[i].name != NULL; i++)
8556 checked_hash_insert (aarch64_sys_regs_dc_hsh,
8557 aarch64_sys_regs_dc[i].name,
8558 (void *) (aarch64_sys_regs_dc + i));
8559
8560 for (i = 0; aarch64_sys_regs_at[i].name != NULL; i++)
8561 checked_hash_insert (aarch64_sys_regs_at_hsh,
8562 aarch64_sys_regs_at[i].name,
8563 (void *) (aarch64_sys_regs_at + i));
8564
8565 for (i = 0; aarch64_sys_regs_tlbi[i].name != NULL; i++)
8566 checked_hash_insert (aarch64_sys_regs_tlbi_hsh,
8567 aarch64_sys_regs_tlbi[i].name,
8568 (void *) (aarch64_sys_regs_tlbi + i));
8569
8570 for (i = 0; aarch64_sys_regs_sr[i].name != NULL; i++)
8571 checked_hash_insert (aarch64_sys_regs_sr_hsh,
8572 aarch64_sys_regs_sr[i].name,
8573 (void *) (aarch64_sys_regs_sr + i));
8574
8575 for (i = 0; i < ARRAY_SIZE (reg_names); i++)
8576 checked_hash_insert (aarch64_reg_hsh, reg_names[i].name,
8577 (void *) (reg_names + i));
8578
8579 for (i = 0; i < ARRAY_SIZE (nzcv_names); i++)
8580 checked_hash_insert (aarch64_nzcv_hsh, nzcv_names[i].template,
8581 (void *) (nzcv_names + i));
8582
8583 for (i = 0; aarch64_operand_modifiers[i].name != NULL; i++)
8584 {
8585 const char *name = aarch64_operand_modifiers[i].name;
8586 checked_hash_insert (aarch64_shift_hsh, name,
8587 (void *) (aarch64_operand_modifiers + i));
8588 /* Also hash the name in the upper case. */
8589 checked_hash_insert (aarch64_shift_hsh, get_upper_str (name),
8590 (void *) (aarch64_operand_modifiers + i));
8591 }
8592
8593 for (i = 0; i < ARRAY_SIZE (aarch64_conds); i++)
8594 {
8595 unsigned int j;
8596 /* A condition code may have alias(es), e.g. "cc", "lo" and "ul" are
8597 the same condition code. */
8598 for (j = 0; j < ARRAY_SIZE (aarch64_conds[i].names); ++j)
8599 {
8600 const char *name = aarch64_conds[i].names[j];
8601 if (name == NULL)
8602 break;
8603 checked_hash_insert (aarch64_cond_hsh, name,
8604 (void *) (aarch64_conds + i));
8605 /* Also hash the name in the upper case. */
8606 checked_hash_insert (aarch64_cond_hsh, get_upper_str (name),
8607 (void *) (aarch64_conds + i));
8608 }
8609 }
8610
8611 for (i = 0; i < ARRAY_SIZE (aarch64_barrier_options); i++)
8612 {
8613 const char *name = aarch64_barrier_options[i].name;
8614 /* Skip xx00 - the unallocated values of option. */
8615 if ((i & 0x3) == 0)
8616 continue;
8617 checked_hash_insert (aarch64_barrier_opt_hsh, name,
8618 (void *) (aarch64_barrier_options + i));
8619 /* Also hash the name in the upper case. */
8620 checked_hash_insert (aarch64_barrier_opt_hsh, get_upper_str (name),
8621 (void *) (aarch64_barrier_options + i));
8622 }
8623
8624 for (i = 0; i < ARRAY_SIZE (aarch64_prfops); i++)
8625 {
8626 const char* name = aarch64_prfops[i].name;
8627 /* Skip the unallocated hint encodings. */
8628 if (name == NULL)
8629 continue;
8630 checked_hash_insert (aarch64_pldop_hsh, name,
8631 (void *) (aarch64_prfops + i));
8632 /* Also hash the name in the upper case. */
8633 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8634 (void *) (aarch64_prfops + i));
8635 }
8636
8637 for (i = 0; aarch64_hint_options[i].name != NULL; i++)
8638 {
8639 const char* name = aarch64_hint_options[i].name;
8640
8641 checked_hash_insert (aarch64_hint_opt_hsh, name,
8642 (void *) (aarch64_hint_options + i));
8643 /* Also hash the name in the upper case. */
8644 checked_hash_insert (aarch64_pldop_hsh, get_upper_str (name),
8645 (void *) (aarch64_hint_options + i));
8646 }
8647
8648 /* Set the cpu variant based on the command-line options. */
8649 if (!mcpu_cpu_opt)
8650 mcpu_cpu_opt = march_cpu_opt;
8651
8652 if (!mcpu_cpu_opt)
8653 mcpu_cpu_opt = &cpu_default;
8654
8655 cpu_variant = *mcpu_cpu_opt;
8656
8657 /* Record the CPU type. */
8658 mach = ilp32_p ? bfd_mach_aarch64_ilp32 : bfd_mach_aarch64;
8659
8660 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
8661 }
8662
8663 /* Command line processing. */
8664
8665 const char *md_shortopts = "m:";
8666
8667 #ifdef AARCH64_BI_ENDIAN
8668 #define OPTION_EB (OPTION_MD_BASE + 0)
8669 #define OPTION_EL (OPTION_MD_BASE + 1)
8670 #else
8671 #if TARGET_BYTES_BIG_ENDIAN
8672 #define OPTION_EB (OPTION_MD_BASE + 0)
8673 #else
8674 #define OPTION_EL (OPTION_MD_BASE + 1)
8675 #endif
8676 #endif
8677
8678 struct option md_longopts[] = {
8679 #ifdef OPTION_EB
8680 {"EB", no_argument, NULL, OPTION_EB},
8681 #endif
8682 #ifdef OPTION_EL
8683 {"EL", no_argument, NULL, OPTION_EL},
8684 #endif
8685 {NULL, no_argument, NULL, 0}
8686 };
8687
8688 size_t md_longopts_size = sizeof (md_longopts);
8689
8690 struct aarch64_option_table
8691 {
8692 const char *option; /* Option name to match. */
8693 const char *help; /* Help information. */
8694 int *var; /* Variable to change. */
8695 int value; /* What to change it to. */
8696 char *deprecated; /* If non-null, print this message. */
8697 };
8698
8699 static struct aarch64_option_table aarch64_opts[] = {
8700 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
8701 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
8702 NULL},
8703 #ifdef DEBUG_AARCH64
8704 {"mdebug-dump", N_("temporary switch for dumping"), &debug_dump, 1, NULL},
8705 #endif /* DEBUG_AARCH64 */
8706 {"mverbose-error", N_("output verbose error messages"), &verbose_error_p, 1,
8707 NULL},
8708 {"mno-verbose-error", N_("do not output verbose error messages"),
8709 &verbose_error_p, 0, NULL},
8710 {NULL, NULL, NULL, 0, NULL}
8711 };
8712
8713 struct aarch64_cpu_option_table
8714 {
8715 const char *name;
8716 const aarch64_feature_set value;
8717 /* The canonical name of the CPU, or NULL to use NAME converted to upper
8718 case. */
8719 const char *canonical_name;
8720 };
8721
8722 /* This list should, at a minimum, contain all the cpu names
8723 recognized by GCC. */
8724 static const struct aarch64_cpu_option_table aarch64_cpus[] = {
8725 {"all", AARCH64_ANY, NULL},
8726 {"cortex-a35", AARCH64_FEATURE (AARCH64_ARCH_V8,
8727 AARCH64_FEATURE_CRC), "Cortex-A35"},
8728 {"cortex-a53", AARCH64_FEATURE (AARCH64_ARCH_V8,
8729 AARCH64_FEATURE_CRC), "Cortex-A53"},
8730 {"cortex-a57", AARCH64_FEATURE (AARCH64_ARCH_V8,
8731 AARCH64_FEATURE_CRC), "Cortex-A57"},
8732 {"cortex-a72", AARCH64_FEATURE (AARCH64_ARCH_V8,
8733 AARCH64_FEATURE_CRC), "Cortex-A72"},
8734 {"cortex-a73", AARCH64_FEATURE (AARCH64_ARCH_V8,
8735 AARCH64_FEATURE_CRC), "Cortex-A73"},
8736 {"cortex-a55", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8737 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8738 "Cortex-A55"},
8739 {"cortex-a75", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8740 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8741 "Cortex-A75"},
8742 {"cortex-a76", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8743 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16 | AARCH64_FEATURE_DOTPROD),
8744 "Cortex-A76"},
8745 {"ares", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8746 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8747 | AARCH64_FEATURE_DOTPROD
8748 | AARCH64_FEATURE_PROFILE),
8749 "Ares"},
8750 {"exynos-m1", AARCH64_FEATURE (AARCH64_ARCH_V8,
8751 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8752 "Samsung Exynos M1"},
8753 {"falkor", AARCH64_FEATURE (AARCH64_ARCH_V8,
8754 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8755 | AARCH64_FEATURE_RDMA),
8756 "Qualcomm Falkor"},
8757 {"neoverse-e1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8758 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8759 | AARCH64_FEATURE_DOTPROD
8760 | AARCH64_FEATURE_SSBS),
8761 "Neoverse E1"},
8762 {"neoverse-n1", AARCH64_FEATURE (AARCH64_ARCH_V8_2,
8763 AARCH64_FEATURE_RCPC | AARCH64_FEATURE_F16
8764 | AARCH64_FEATURE_DOTPROD
8765 | AARCH64_FEATURE_PROFILE),
8766 "Neoverse N1"},
8767 {"qdf24xx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8768 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO
8769 | AARCH64_FEATURE_RDMA),
8770 "Qualcomm QDF24XX"},
8771 {"saphira", AARCH64_FEATURE (AARCH64_ARCH_V8_4,
8772 AARCH64_FEATURE_CRYPTO | AARCH64_FEATURE_PROFILE),
8773 "Qualcomm Saphira"},
8774 {"thunderx", AARCH64_FEATURE (AARCH64_ARCH_V8,
8775 AARCH64_FEATURE_CRC | AARCH64_FEATURE_CRYPTO),
8776 "Cavium ThunderX"},
8777 {"vulcan", AARCH64_FEATURE (AARCH64_ARCH_V8_1,
8778 AARCH64_FEATURE_CRYPTO),
8779 "Broadcom Vulcan"},
8780 /* The 'xgene-1' name is an older name for 'xgene1', which was used
8781 in earlier releases and is superseded by 'xgene1' in all
8782 tools. */
8783 {"xgene-1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8784 {"xgene1", AARCH64_ARCH_V8, "APM X-Gene 1"},
8785 {"xgene2", AARCH64_FEATURE (AARCH64_ARCH_V8,
8786 AARCH64_FEATURE_CRC), "APM X-Gene 2"},
8787 {"generic", AARCH64_ARCH_V8, NULL},
8788
8789 {NULL, AARCH64_ARCH_NONE, NULL}
8790 };
8791
8792 struct aarch64_arch_option_table
8793 {
8794 const char *name;
8795 const aarch64_feature_set value;
8796 };
8797
8798 /* This list should, at a minimum, contain all the architecture names
8799 recognized by GCC. */
8800 static const struct aarch64_arch_option_table aarch64_archs[] = {
8801 {"all", AARCH64_ANY},
8802 {"armv8-a", AARCH64_ARCH_V8},
8803 {"armv8.1-a", AARCH64_ARCH_V8_1},
8804 {"armv8.2-a", AARCH64_ARCH_V8_2},
8805 {"armv8.3-a", AARCH64_ARCH_V8_3},
8806 {"armv8.4-a", AARCH64_ARCH_V8_4},
8807 {"armv8.5-a", AARCH64_ARCH_V8_5},
8808 {NULL, AARCH64_ARCH_NONE}
8809 };
8810
8811 /* ISA extensions. */
8812 struct aarch64_option_cpu_value_table
8813 {
8814 const char *name;
8815 const aarch64_feature_set value;
8816 const aarch64_feature_set require; /* Feature dependencies. */
8817 };
8818
8819 static const struct aarch64_option_cpu_value_table aarch64_features[] = {
8820 {"crc", AARCH64_FEATURE (AARCH64_FEATURE_CRC, 0),
8821 AARCH64_ARCH_NONE},
8822 {"crypto", AARCH64_FEATURE (AARCH64_FEATURE_CRYPTO
8823 | AARCH64_FEATURE_AES
8824 | AARCH64_FEATURE_SHA2, 0),
8825 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8826 {"fp", AARCH64_FEATURE (AARCH64_FEATURE_FP, 0),
8827 AARCH64_ARCH_NONE},
8828 {"lse", AARCH64_FEATURE (AARCH64_FEATURE_LSE, 0),
8829 AARCH64_ARCH_NONE},
8830 {"simd", AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0),
8831 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8832 {"pan", AARCH64_FEATURE (AARCH64_FEATURE_PAN, 0),
8833 AARCH64_ARCH_NONE},
8834 {"lor", AARCH64_FEATURE (AARCH64_FEATURE_LOR, 0),
8835 AARCH64_ARCH_NONE},
8836 {"ras", AARCH64_FEATURE (AARCH64_FEATURE_RAS, 0),
8837 AARCH64_ARCH_NONE},
8838 {"rdma", AARCH64_FEATURE (AARCH64_FEATURE_RDMA, 0),
8839 AARCH64_FEATURE (AARCH64_FEATURE_SIMD, 0)},
8840 {"fp16", AARCH64_FEATURE (AARCH64_FEATURE_F16, 0),
8841 AARCH64_FEATURE (AARCH64_FEATURE_FP, 0)},
8842 {"fp16fml", AARCH64_FEATURE (AARCH64_FEATURE_F16_FML, 0),
8843 AARCH64_FEATURE (AARCH64_FEATURE_FP
8844 | AARCH64_FEATURE_F16, 0)},
8845 {"profile", AARCH64_FEATURE (AARCH64_FEATURE_PROFILE, 0),
8846 AARCH64_ARCH_NONE},
8847 {"sve", AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0),
8848 AARCH64_FEATURE (AARCH64_FEATURE_F16
8849 | AARCH64_FEATURE_SIMD
8850 | AARCH64_FEATURE_COMPNUM, 0)},
8851 {"tme", AARCH64_FEATURE (AARCH64_FEATURE_TME, 0),
8852 AARCH64_ARCH_NONE},
8853 {"compnum", AARCH64_FEATURE (AARCH64_FEATURE_COMPNUM, 0),
8854 AARCH64_FEATURE (AARCH64_FEATURE_F16
8855 | AARCH64_FEATURE_SIMD, 0)},
8856 {"rcpc", AARCH64_FEATURE (AARCH64_FEATURE_RCPC, 0),
8857 AARCH64_ARCH_NONE},
8858 {"dotprod", AARCH64_FEATURE (AARCH64_FEATURE_DOTPROD, 0),
8859 AARCH64_ARCH_NONE},
8860 {"sha2", AARCH64_FEATURE (AARCH64_FEATURE_SHA2, 0),
8861 AARCH64_ARCH_NONE},
8862 {"sb", AARCH64_FEATURE (AARCH64_FEATURE_SB, 0),
8863 AARCH64_ARCH_NONE},
8864 {"predres", AARCH64_FEATURE (AARCH64_FEATURE_PREDRES, 0),
8865 AARCH64_ARCH_NONE},
8866 {"aes", AARCH64_FEATURE (AARCH64_FEATURE_AES, 0),
8867 AARCH64_ARCH_NONE},
8868 {"sm4", AARCH64_FEATURE (AARCH64_FEATURE_SM4, 0),
8869 AARCH64_ARCH_NONE},
8870 {"sha3", AARCH64_FEATURE (AARCH64_FEATURE_SHA2
8871 | AARCH64_FEATURE_SHA3, 0),
8872 AARCH64_ARCH_NONE},
8873 {"rng", AARCH64_FEATURE (AARCH64_FEATURE_RNG, 0),
8874 AARCH64_ARCH_NONE},
8875 {"ssbs", AARCH64_FEATURE (AARCH64_FEATURE_SSBS, 0),
8876 AARCH64_ARCH_NONE},
8877 {"memtag", AARCH64_FEATURE (AARCH64_FEATURE_MEMTAG, 0),
8878 AARCH64_ARCH_NONE},
8879 {"sve2", AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0),
8880 AARCH64_FEATURE (AARCH64_FEATURE_SVE, 0)},
8881 {"sve2-sm4", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SM4, 0),
8882 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
8883 | AARCH64_FEATURE_SM4, 0)},
8884 {"sve2-aes", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_AES, 0),
8885 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
8886 | AARCH64_FEATURE_AES, 0)},
8887 {"sve2-sha3", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_SHA3, 0),
8888 AARCH64_FEATURE (AARCH64_FEATURE_SVE2
8889 | AARCH64_FEATURE_SHA3, 0)},
8890 {"bitperm", AARCH64_FEATURE (AARCH64_FEATURE_SVE2_BITPERM, 0),
8891 AARCH64_FEATURE (AARCH64_FEATURE_SVE2, 0)},
8892 {NULL, AARCH64_ARCH_NONE, AARCH64_ARCH_NONE},
8893 };
8894
8895 struct aarch64_long_option_table
8896 {
8897 const char *option; /* Substring to match. */
8898 const char *help; /* Help information. */
8899 int (*func) (const char *subopt); /* Function to decode sub-option. */
8900 char *deprecated; /* If non-null, print this message. */
8901 };
8902
8903 /* Transitive closure of features depending on set. */
8904 static aarch64_feature_set
8905 aarch64_feature_disable_set (aarch64_feature_set set)
8906 {
8907 const struct aarch64_option_cpu_value_table *opt;
8908 aarch64_feature_set prev = 0;
8909
8910 while (prev != set) {
8911 prev = set;
8912 for (opt = aarch64_features; opt->name != NULL; opt++)
8913 if (AARCH64_CPU_HAS_ANY_FEATURES (opt->require, set))
8914 AARCH64_MERGE_FEATURE_SETS (set, set, opt->value);
8915 }
8916 return set;
8917 }
8918
8919 /* Transitive closure of dependencies of set. */
8920 static aarch64_feature_set
8921 aarch64_feature_enable_set (aarch64_feature_set set)
8922 {
8923 const struct aarch64_option_cpu_value_table *opt;
8924 aarch64_feature_set prev = 0;
8925
8926 while (prev != set) {
8927 prev = set;
8928 for (opt = aarch64_features; opt->name != NULL; opt++)
8929 if (AARCH64_CPU_HAS_FEATURE (set, opt->value))
8930 AARCH64_MERGE_FEATURE_SETS (set, set, opt->require);
8931 }
8932 return set;
8933 }
8934
8935 static int
8936 aarch64_parse_features (const char *str, const aarch64_feature_set **opt_p,
8937 bfd_boolean ext_only)
8938 {
8939 /* We insist on extensions being added before being removed. We achieve
8940 this by using the ADDING_VALUE variable to indicate whether we are
8941 adding an extension (1) or removing it (0) and only allowing it to
8942 change in the order -1 -> 1 -> 0. */
8943 int adding_value = -1;
8944 aarch64_feature_set *ext_set = XNEW (aarch64_feature_set);
8945
8946 /* Copy the feature set, so that we can modify it. */
8947 *ext_set = **opt_p;
8948 *opt_p = ext_set;
8949
8950 while (str != NULL && *str != 0)
8951 {
8952 const struct aarch64_option_cpu_value_table *opt;
8953 const char *ext = NULL;
8954 int optlen;
8955
8956 if (!ext_only)
8957 {
8958 if (*str != '+')
8959 {
8960 as_bad (_("invalid architectural extension"));
8961 return 0;
8962 }
8963
8964 ext = strchr (++str, '+');
8965 }
8966
8967 if (ext != NULL)
8968 optlen = ext - str;
8969 else
8970 optlen = strlen (str);
8971
8972 if (optlen >= 2 && strncmp (str, "no", 2) == 0)
8973 {
8974 if (adding_value != 0)
8975 adding_value = 0;
8976 optlen -= 2;
8977 str += 2;
8978 }
8979 else if (optlen > 0)
8980 {
8981 if (adding_value == -1)
8982 adding_value = 1;
8983 else if (adding_value != 1)
8984 {
8985 as_bad (_("must specify extensions to add before specifying "
8986 "those to remove"));
8987 return FALSE;
8988 }
8989 }
8990
8991 if (optlen == 0)
8992 {
8993 as_bad (_("missing architectural extension"));
8994 return 0;
8995 }
8996
8997 gas_assert (adding_value != -1);
8998
8999 for (opt = aarch64_features; opt->name != NULL; opt++)
9000 if (strncmp (opt->name, str, optlen) == 0)
9001 {
9002 aarch64_feature_set set;
9003
9004 /* Add or remove the extension. */
9005 if (adding_value)
9006 {
9007 set = aarch64_feature_enable_set (opt->value);
9008 AARCH64_MERGE_FEATURE_SETS (*ext_set, *ext_set, set);
9009 }
9010 else
9011 {
9012 set = aarch64_feature_disable_set (opt->value);
9013 AARCH64_CLEAR_FEATURE (*ext_set, *ext_set, set);
9014 }
9015 break;
9016 }
9017
9018 if (opt->name == NULL)
9019 {
9020 as_bad (_("unknown architectural extension `%s'"), str);
9021 return 0;
9022 }
9023
9024 str = ext;
9025 };
9026
9027 return 1;
9028 }
9029
9030 static int
9031 aarch64_parse_cpu (const char *str)
9032 {
9033 const struct aarch64_cpu_option_table *opt;
9034 const char *ext = strchr (str, '+');
9035 size_t optlen;
9036
9037 if (ext != NULL)
9038 optlen = ext - str;
9039 else
9040 optlen = strlen (str);
9041
9042 if (optlen == 0)
9043 {
9044 as_bad (_("missing cpu name `%s'"), str);
9045 return 0;
9046 }
9047
9048 for (opt = aarch64_cpus; opt->name != NULL; opt++)
9049 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9050 {
9051 mcpu_cpu_opt = &opt->value;
9052 if (ext != NULL)
9053 return aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE);
9054
9055 return 1;
9056 }
9057
9058 as_bad (_("unknown cpu `%s'"), str);
9059 return 0;
9060 }
9061
9062 static int
9063 aarch64_parse_arch (const char *str)
9064 {
9065 const struct aarch64_arch_option_table *opt;
9066 const char *ext = strchr (str, '+');
9067 size_t optlen;
9068
9069 if (ext != NULL)
9070 optlen = ext - str;
9071 else
9072 optlen = strlen (str);
9073
9074 if (optlen == 0)
9075 {
9076 as_bad (_("missing architecture name `%s'"), str);
9077 return 0;
9078 }
9079
9080 for (opt = aarch64_archs; opt->name != NULL; opt++)
9081 if (strlen (opt->name) == optlen && strncmp (str, opt->name, optlen) == 0)
9082 {
9083 march_cpu_opt = &opt->value;
9084 if (ext != NULL)
9085 return aarch64_parse_features (ext, &march_cpu_opt, FALSE);
9086
9087 return 1;
9088 }
9089
9090 as_bad (_("unknown architecture `%s'\n"), str);
9091 return 0;
9092 }
9093
9094 /* ABIs. */
9095 struct aarch64_option_abi_value_table
9096 {
9097 const char *name;
9098 enum aarch64_abi_type value;
9099 };
9100
9101 static const struct aarch64_option_abi_value_table aarch64_abis[] = {
9102 {"ilp32", AARCH64_ABI_ILP32},
9103 {"lp64", AARCH64_ABI_LP64},
9104 };
9105
9106 static int
9107 aarch64_parse_abi (const char *str)
9108 {
9109 unsigned int i;
9110
9111 if (str[0] == '\0')
9112 {
9113 as_bad (_("missing abi name `%s'"), str);
9114 return 0;
9115 }
9116
9117 for (i = 0; i < ARRAY_SIZE (aarch64_abis); i++)
9118 if (strcmp (str, aarch64_abis[i].name) == 0)
9119 {
9120 aarch64_abi = aarch64_abis[i].value;
9121 return 1;
9122 }
9123
9124 as_bad (_("unknown abi `%s'\n"), str);
9125 return 0;
9126 }
9127
9128 static struct aarch64_long_option_table aarch64_long_opts[] = {
9129 #ifdef OBJ_ELF
9130 {"mabi=", N_("<abi name>\t specify for ABI <abi name>"),
9131 aarch64_parse_abi, NULL},
9132 #endif /* OBJ_ELF */
9133 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
9134 aarch64_parse_cpu, NULL},
9135 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
9136 aarch64_parse_arch, NULL},
9137 {NULL, NULL, 0, NULL}
9138 };
9139
9140 int
9141 md_parse_option (int c, const char *arg)
9142 {
9143 struct aarch64_option_table *opt;
9144 struct aarch64_long_option_table *lopt;
9145
9146 switch (c)
9147 {
9148 #ifdef OPTION_EB
9149 case OPTION_EB:
9150 target_big_endian = 1;
9151 break;
9152 #endif
9153
9154 #ifdef OPTION_EL
9155 case OPTION_EL:
9156 target_big_endian = 0;
9157 break;
9158 #endif
9159
9160 case 'a':
9161 /* Listing option. Just ignore these, we don't support additional
9162 ones. */
9163 return 0;
9164
9165 default:
9166 for (opt = aarch64_opts; opt->option != NULL; opt++)
9167 {
9168 if (c == opt->option[0]
9169 && ((arg == NULL && opt->option[1] == 0)
9170 || streq (arg, opt->option + 1)))
9171 {
9172 /* If the option is deprecated, tell the user. */
9173 if (opt->deprecated != NULL)
9174 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
9175 arg ? arg : "", _(opt->deprecated));
9176
9177 if (opt->var != NULL)
9178 *opt->var = opt->value;
9179
9180 return 1;
9181 }
9182 }
9183
9184 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9185 {
9186 /* These options are expected to have an argument. */
9187 if (c == lopt->option[0]
9188 && arg != NULL
9189 && strncmp (arg, lopt->option + 1,
9190 strlen (lopt->option + 1)) == 0)
9191 {
9192 /* If the option is deprecated, tell the user. */
9193 if (lopt->deprecated != NULL)
9194 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
9195 _(lopt->deprecated));
9196
9197 /* Call the sup-option parser. */
9198 return lopt->func (arg + strlen (lopt->option) - 1);
9199 }
9200 }
9201
9202 return 0;
9203 }
9204
9205 return 1;
9206 }
9207
9208 void
9209 md_show_usage (FILE * fp)
9210 {
9211 struct aarch64_option_table *opt;
9212 struct aarch64_long_option_table *lopt;
9213
9214 fprintf (fp, _(" AArch64-specific assembler options:\n"));
9215
9216 for (opt = aarch64_opts; opt->option != NULL; opt++)
9217 if (opt->help != NULL)
9218 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
9219
9220 for (lopt = aarch64_long_opts; lopt->option != NULL; lopt++)
9221 if (lopt->help != NULL)
9222 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
9223
9224 #ifdef OPTION_EB
9225 fprintf (fp, _("\
9226 -EB assemble code for a big-endian cpu\n"));
9227 #endif
9228
9229 #ifdef OPTION_EL
9230 fprintf (fp, _("\
9231 -EL assemble code for a little-endian cpu\n"));
9232 #endif
9233 }
9234
9235 /* Parse a .cpu directive. */
9236
9237 static void
9238 s_aarch64_cpu (int ignored ATTRIBUTE_UNUSED)
9239 {
9240 const struct aarch64_cpu_option_table *opt;
9241 char saved_char;
9242 char *name;
9243 char *ext;
9244 size_t optlen;
9245
9246 name = input_line_pointer;
9247 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9248 input_line_pointer++;
9249 saved_char = *input_line_pointer;
9250 *input_line_pointer = 0;
9251
9252 ext = strchr (name, '+');
9253
9254 if (ext != NULL)
9255 optlen = ext - name;
9256 else
9257 optlen = strlen (name);
9258
9259 /* Skip the first "all" entry. */
9260 for (opt = aarch64_cpus + 1; opt->name != NULL; opt++)
9261 if (strlen (opt->name) == optlen
9262 && strncmp (name, opt->name, optlen) == 0)
9263 {
9264 mcpu_cpu_opt = &opt->value;
9265 if (ext != NULL)
9266 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9267 return;
9268
9269 cpu_variant = *mcpu_cpu_opt;
9270
9271 *input_line_pointer = saved_char;
9272 demand_empty_rest_of_line ();
9273 return;
9274 }
9275 as_bad (_("unknown cpu `%s'"), name);
9276 *input_line_pointer = saved_char;
9277 ignore_rest_of_line ();
9278 }
9279
9280
9281 /* Parse a .arch directive. */
9282
9283 static void
9284 s_aarch64_arch (int ignored ATTRIBUTE_UNUSED)
9285 {
9286 const struct aarch64_arch_option_table *opt;
9287 char saved_char;
9288 char *name;
9289 char *ext;
9290 size_t optlen;
9291
9292 name = input_line_pointer;
9293 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9294 input_line_pointer++;
9295 saved_char = *input_line_pointer;
9296 *input_line_pointer = 0;
9297
9298 ext = strchr (name, '+');
9299
9300 if (ext != NULL)
9301 optlen = ext - name;
9302 else
9303 optlen = strlen (name);
9304
9305 /* Skip the first "all" entry. */
9306 for (opt = aarch64_archs + 1; opt->name != NULL; opt++)
9307 if (strlen (opt->name) == optlen
9308 && strncmp (name, opt->name, optlen) == 0)
9309 {
9310 mcpu_cpu_opt = &opt->value;
9311 if (ext != NULL)
9312 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, FALSE))
9313 return;
9314
9315 cpu_variant = *mcpu_cpu_opt;
9316
9317 *input_line_pointer = saved_char;
9318 demand_empty_rest_of_line ();
9319 return;
9320 }
9321
9322 as_bad (_("unknown architecture `%s'\n"), name);
9323 *input_line_pointer = saved_char;
9324 ignore_rest_of_line ();
9325 }
9326
9327 /* Parse a .arch_extension directive. */
9328
9329 static void
9330 s_aarch64_arch_extension (int ignored ATTRIBUTE_UNUSED)
9331 {
9332 char saved_char;
9333 char *ext = input_line_pointer;;
9334
9335 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
9336 input_line_pointer++;
9337 saved_char = *input_line_pointer;
9338 *input_line_pointer = 0;
9339
9340 if (!aarch64_parse_features (ext, &mcpu_cpu_opt, TRUE))
9341 return;
9342
9343 cpu_variant = *mcpu_cpu_opt;
9344
9345 *input_line_pointer = saved_char;
9346 demand_empty_rest_of_line ();
9347 }
9348
9349 /* Copy symbol information. */
9350
9351 void
9352 aarch64_copy_symbol_attributes (symbolS * dest, symbolS * src)
9353 {
9354 AARCH64_GET_FLAG (dest) = AARCH64_GET_FLAG (src);
9355 }