[PATCH 30/57][Arm][GAS] Add support for MVE instructions: vqmovnt, vqmovnb, vqmovunt...
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNDQMQR, /* Neon double, quad, MVE vector or ARM register. */
6906 OP_RNSDQ, /* Neon single, double or quad precision register */
6907 OP_RNSC, /* Neon scalar D[X] */
6908 OP_RVC, /* VFP control register */
6909 OP_RMF, /* Maverick F register */
6910 OP_RMD, /* Maverick D register */
6911 OP_RMFX, /* Maverick FX register */
6912 OP_RMDX, /* Maverick DX register */
6913 OP_RMAX, /* Maverick AX register */
6914 OP_RMDS, /* Maverick DSPSC register */
6915 OP_RIWR, /* iWMMXt wR register */
6916 OP_RIWC, /* iWMMXt wC register */
6917 OP_RIWG, /* iWMMXt wCG register */
6918 OP_RXA, /* XScale accumulator register */
6919
6920 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6921 */
6922 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6923 GPR (no SP/SP) */
6924 OP_RMQ, /* MVE vector register. */
6925 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6926 OP_RMQRR, /* MVE vector or ARM register. */
6927
6928 /* New operands for Armv8.1-M Mainline. */
6929 OP_LR, /* ARM LR register */
6930 OP_RRe, /* ARM register, only even numbered. */
6931 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6932 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6933
6934 OP_REGLST, /* ARM register list */
6935 OP_CLRMLST, /* CLRM register list */
6936 OP_VRSLST, /* VFP single-precision register list */
6937 OP_VRDLST, /* VFP double-precision register list */
6938 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6939 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6940 OP_NSTRLST, /* Neon element/structure list */
6941 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6942 OP_MSTRLST2, /* MVE vector list with two elements. */
6943 OP_MSTRLST4, /* MVE vector list with four elements. */
6944
6945 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6946 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6947 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6948 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6949 zero. */
6950 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6951 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6952 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6953 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6954 */
6955 OP_RNSDQ_RNSC_MQ_RR, /* Vector S, D or Q reg, or MVE vector reg , or Neon
6956 scalar, or ARM register. */
6957 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6958 OP_RNDQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, or ARM register. */
6959 OP_RNDQMQ_RNSC_RR, /* Neon D or Q reg, Neon scalar, MVE vector or ARM
6960 register. */
6961 OP_RNDQMQ_RNSC, /* Neon D, Q or MVE vector reg, or Neon scalar. */
6962 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6963 OP_VMOV, /* Neon VMOV operands. */
6964 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6965 /* Neon D, Q or MVE vector register, or big immediate for logic and VMVN. */
6966 OP_RNDQMQ_Ibig,
6967 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6968 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6969 OP_VLDR, /* VLDR operand. */
6970
6971 OP_I0, /* immediate zero */
6972 OP_I7, /* immediate value 0 .. 7 */
6973 OP_I15, /* 0 .. 15 */
6974 OP_I16, /* 1 .. 16 */
6975 OP_I16z, /* 0 .. 16 */
6976 OP_I31, /* 0 .. 31 */
6977 OP_I31w, /* 0 .. 31, optional trailing ! */
6978 OP_I32, /* 1 .. 32 */
6979 OP_I32z, /* 0 .. 32 */
6980 OP_I63, /* 0 .. 63 */
6981 OP_I63s, /* -64 .. 63 */
6982 OP_I64, /* 1 .. 64 */
6983 OP_I64z, /* 0 .. 64 */
6984 OP_I255, /* 0 .. 255 */
6985
6986 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6987 OP_I7b, /* 0 .. 7 */
6988 OP_I15b, /* 0 .. 15 */
6989 OP_I31b, /* 0 .. 31 */
6990
6991 OP_SH, /* shifter operand */
6992 OP_SHG, /* shifter operand with possible group relocation */
6993 OP_ADDR, /* Memory address expression (any mode) */
6994 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6995 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6996 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6997 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6998 OP_EXP, /* arbitrary expression */
6999 OP_EXPi, /* same, with optional immediate prefix */
7000 OP_EXPr, /* same, with optional relocation suffix */
7001 OP_EXPs, /* same, with optional non-first operand relocation suffix */
7002 OP_HALF, /* 0 .. 65535 or low/high reloc. */
7003 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
7004 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
7005
7006 OP_CPSF, /* CPS flags */
7007 OP_ENDI, /* Endianness specifier */
7008 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
7009 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7010 OP_COND, /* conditional code */
7011 OP_TB, /* Table branch. */
7012
7013 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7014
7015 OP_RRnpc_I0, /* ARM register or literal 0 */
7016 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7017 OP_RR_EXi, /* ARM register or expression with imm prefix */
7018 OP_RF_IF, /* FPA register or immediate */
7019 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7020 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7021
7022 /* Optional operands. */
7023 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7024 OP_oI31b, /* 0 .. 31 */
7025 OP_oI32b, /* 1 .. 32 */
7026 OP_oI32z, /* 0 .. 32 */
7027 OP_oIffffb, /* 0 .. 65535 */
7028 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7029
7030 OP_oRR, /* ARM register */
7031 OP_oLR, /* ARM LR register */
7032 OP_oRRnpc, /* ARM register, not the PC */
7033 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7034 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7035 OP_oRND, /* Optional Neon double precision register */
7036 OP_oRNQ, /* Optional Neon quad precision register */
7037 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7038 OP_oRNDQ, /* Optional Neon double or quad precision register */
7039 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7040 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7041 register. */
7042 OP_oSHll, /* LSL immediate */
7043 OP_oSHar, /* ASR immediate */
7044 OP_oSHllar, /* LSL or ASR immediate */
7045 OP_oROR, /* ROR 0/8/16/24 */
7046 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7047
7048 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7049
7050 /* Some pre-defined mixed (ARM/THUMB) operands. */
7051 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7052 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7053 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7054
7055 OP_FIRST_OPTIONAL = OP_oI7b
7056 };
7057
7058 /* Generic instruction operand parser. This does no encoding and no
7059 semantic validation; it merely squirrels values away in the inst
7060 structure. Returns SUCCESS or FAIL depending on whether the
7061 specified grammar matched. */
7062 static int
7063 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7064 {
7065 unsigned const int *upat = pattern;
7066 char *backtrack_pos = 0;
7067 const char *backtrack_error = 0;
7068 int i, val = 0, backtrack_index = 0;
7069 enum arm_reg_type rtype;
7070 parse_operand_result result;
7071 unsigned int op_parse_code;
7072 bfd_boolean partial_match;
7073
7074 #define po_char_or_fail(chr) \
7075 do \
7076 { \
7077 if (skip_past_char (&str, chr) == FAIL) \
7078 goto bad_args; \
7079 } \
7080 while (0)
7081
7082 #define po_reg_or_fail(regtype) \
7083 do \
7084 { \
7085 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7086 & inst.operands[i].vectype); \
7087 if (val == FAIL) \
7088 { \
7089 first_error (_(reg_expected_msgs[regtype])); \
7090 goto failure; \
7091 } \
7092 inst.operands[i].reg = val; \
7093 inst.operands[i].isreg = 1; \
7094 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7095 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7096 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7097 || rtype == REG_TYPE_VFD \
7098 || rtype == REG_TYPE_NQ); \
7099 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7100 } \
7101 while (0)
7102
7103 #define po_reg_or_goto(regtype, label) \
7104 do \
7105 { \
7106 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7107 & inst.operands[i].vectype); \
7108 if (val == FAIL) \
7109 goto label; \
7110 \
7111 inst.operands[i].reg = val; \
7112 inst.operands[i].isreg = 1; \
7113 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7114 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7115 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7116 || rtype == REG_TYPE_VFD \
7117 || rtype == REG_TYPE_NQ); \
7118 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7119 } \
7120 while (0)
7121
7122 #define po_imm_or_fail(min, max, popt) \
7123 do \
7124 { \
7125 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7126 goto failure; \
7127 inst.operands[i].imm = val; \
7128 } \
7129 while (0)
7130
7131 #define po_scalar_or_goto(elsz, label, reg_type) \
7132 do \
7133 { \
7134 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7135 reg_type); \
7136 if (val == FAIL) \
7137 goto label; \
7138 inst.operands[i].reg = val; \
7139 inst.operands[i].isscalar = 1; \
7140 } \
7141 while (0)
7142
7143 #define po_misc_or_fail(expr) \
7144 do \
7145 { \
7146 if (expr) \
7147 goto failure; \
7148 } \
7149 while (0)
7150
7151 #define po_misc_or_fail_no_backtrack(expr) \
7152 do \
7153 { \
7154 result = expr; \
7155 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7156 backtrack_pos = 0; \
7157 if (result != PARSE_OPERAND_SUCCESS) \
7158 goto failure; \
7159 } \
7160 while (0)
7161
7162 #define po_barrier_or_imm(str) \
7163 do \
7164 { \
7165 val = parse_barrier (&str); \
7166 if (val == FAIL && ! ISALPHA (*str)) \
7167 goto immediate; \
7168 if (val == FAIL \
7169 /* ISB can only take SY as an option. */ \
7170 || ((inst.instruction & 0xf0) == 0x60 \
7171 && val != 0xf)) \
7172 { \
7173 inst.error = _("invalid barrier type"); \
7174 backtrack_pos = 0; \
7175 goto failure; \
7176 } \
7177 } \
7178 while (0)
7179
7180 skip_whitespace (str);
7181
7182 for (i = 0; upat[i] != OP_stop; i++)
7183 {
7184 op_parse_code = upat[i];
7185 if (op_parse_code >= 1<<16)
7186 op_parse_code = thumb ? (op_parse_code >> 16)
7187 : (op_parse_code & ((1<<16)-1));
7188
7189 if (op_parse_code >= OP_FIRST_OPTIONAL)
7190 {
7191 /* Remember where we are in case we need to backtrack. */
7192 backtrack_pos = str;
7193 backtrack_error = inst.error;
7194 backtrack_index = i;
7195 }
7196
7197 if (i > 0 && (i > 1 || inst.operands[0].present))
7198 po_char_or_fail (',');
7199
7200 switch (op_parse_code)
7201 {
7202 /* Registers */
7203 case OP_oRRnpc:
7204 case OP_oRRnpcsp:
7205 case OP_RRnpc:
7206 case OP_RRnpcsp:
7207 case OP_oRR:
7208 case OP_RRe:
7209 case OP_RRo:
7210 case OP_LR:
7211 case OP_oLR:
7212 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7213 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7214 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7215 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7216 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7217 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7218 case OP_oRND:
7219 case OP_RNDMQR:
7220 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7221 break;
7222 try_rndmq:
7223 case OP_RNDMQ:
7224 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7225 break;
7226 try_rnd:
7227 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7228 case OP_RVC:
7229 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7230 break;
7231 /* Also accept generic coprocessor regs for unknown registers. */
7232 coproc_reg:
7233 po_reg_or_fail (REG_TYPE_CN);
7234 break;
7235 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7236 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7237 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7238 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7239 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7240 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7241 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7242 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7243 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7244 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7245 case OP_oRNQ:
7246 case OP_RNQMQ:
7247 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7248 break;
7249 try_nq:
7250 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7251 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7252 case OP_RNDQMQR:
7253 po_reg_or_goto (REG_TYPE_RN, try_rndqmq);
7254 break;
7255 try_rndqmq:
7256 case OP_oRNDQMQ:
7257 case OP_RNDQMQ:
7258 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7259 break;
7260 try_rndq:
7261 case OP_oRNDQ:
7262 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7263 case OP_RVSDMQ:
7264 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7265 break;
7266 try_rvsd:
7267 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7268 case OP_RVSD_COND:
7269 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7270 break;
7271 case OP_oRNSDQ:
7272 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7273 case OP_RNSDQMQR:
7274 po_reg_or_goto (REG_TYPE_RN, try_mq);
7275 break;
7276 try_mq:
7277 case OP_oRNSDQMQ:
7278 case OP_RNSDQMQ:
7279 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7280 break;
7281 try_nsdq2:
7282 po_reg_or_fail (REG_TYPE_NSDQ);
7283 inst.error = 0;
7284 break;
7285 case OP_RMQRR:
7286 po_reg_or_goto (REG_TYPE_RN, try_rmq);
7287 break;
7288 try_rmq:
7289 case OP_RMQ:
7290 po_reg_or_fail (REG_TYPE_MQ);
7291 break;
7292 /* Neon scalar. Using an element size of 8 means that some invalid
7293 scalars are accepted here, so deal with those in later code. */
7294 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7295
7296 case OP_RNDQ_I0:
7297 {
7298 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7299 break;
7300 try_imm0:
7301 po_imm_or_fail (0, 0, TRUE);
7302 }
7303 break;
7304
7305 case OP_RVSD_I0:
7306 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7307 break;
7308
7309 case OP_RSVDMQ_FI0:
7310 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7311 break;
7312 try_rsvd_fi0:
7313 case OP_RSVD_FI0:
7314 {
7315 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7316 break;
7317 try_ifimm0:
7318 if (parse_ifimm_zero (&str))
7319 inst.operands[i].imm = 0;
7320 else
7321 {
7322 inst.error
7323 = _("only floating point zero is allowed as immediate value");
7324 goto failure;
7325 }
7326 }
7327 break;
7328
7329 case OP_RR_RNSC:
7330 {
7331 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7332 break;
7333 try_rr:
7334 po_reg_or_fail (REG_TYPE_RN);
7335 }
7336 break;
7337
7338 case OP_RNSDQ_RNSC_MQ_RR:
7339 po_reg_or_goto (REG_TYPE_RN, try_rnsdq_rnsc_mq);
7340 break;
7341 try_rnsdq_rnsc_mq:
7342 case OP_RNSDQ_RNSC_MQ:
7343 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7344 break;
7345 try_rnsdq_rnsc:
7346 case OP_RNSDQ_RNSC:
7347 {
7348 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7349 inst.error = 0;
7350 break;
7351 try_nsdq:
7352 po_reg_or_fail (REG_TYPE_NSDQ);
7353 inst.error = 0;
7354 }
7355 break;
7356
7357 case OP_RNSD_RNSC:
7358 {
7359 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7360 break;
7361 try_s_scalar:
7362 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7363 break;
7364 try_nsd:
7365 po_reg_or_fail (REG_TYPE_NSD);
7366 }
7367 break;
7368
7369 case OP_RNDQMQ_RNSC_RR:
7370 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc_rr);
7371 break;
7372 try_rndq_rnsc_rr:
7373 case OP_RNDQ_RNSC_RR:
7374 po_reg_or_goto (REG_TYPE_RN, try_rndq_rnsc);
7375 break;
7376 case OP_RNDQMQ_RNSC:
7377 po_reg_or_goto (REG_TYPE_MQ, try_rndq_rnsc);
7378 break;
7379 try_rndq_rnsc:
7380 case OP_RNDQ_RNSC:
7381 {
7382 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7383 break;
7384 try_ndq:
7385 po_reg_or_fail (REG_TYPE_NDQ);
7386 }
7387 break;
7388
7389 case OP_RND_RNSC:
7390 {
7391 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7392 break;
7393 try_vfd:
7394 po_reg_or_fail (REG_TYPE_VFD);
7395 }
7396 break;
7397
7398 case OP_VMOV:
7399 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7400 not careful then bad things might happen. */
7401 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7402 break;
7403
7404 case OP_RNDQMQ_Ibig:
7405 po_reg_or_goto (REG_TYPE_MQ, try_rndq_ibig);
7406 break;
7407 try_rndq_ibig:
7408 case OP_RNDQ_Ibig:
7409 {
7410 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7411 break;
7412 try_immbig:
7413 /* There's a possibility of getting a 64-bit immediate here, so
7414 we need special handling. */
7415 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7416 == FAIL)
7417 {
7418 inst.error = _("immediate value is out of range");
7419 goto failure;
7420 }
7421 }
7422 break;
7423
7424 case OP_RNDQ_I63b:
7425 {
7426 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7427 break;
7428 try_shimm:
7429 po_imm_or_fail (0, 63, TRUE);
7430 }
7431 break;
7432
7433 case OP_RRnpcb:
7434 po_char_or_fail ('[');
7435 po_reg_or_fail (REG_TYPE_RN);
7436 po_char_or_fail (']');
7437 break;
7438
7439 case OP_RRnpctw:
7440 case OP_RRw:
7441 case OP_oRRw:
7442 po_reg_or_fail (REG_TYPE_RN);
7443 if (skip_past_char (&str, '!') == SUCCESS)
7444 inst.operands[i].writeback = 1;
7445 break;
7446
7447 /* Immediates */
7448 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7449 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7450 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7451 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7452 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7453 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7454 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7455 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7456 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7457 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7458 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7459 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7460
7461 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7462 case OP_oI7b:
7463 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7464 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7465 case OP_oI31b:
7466 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7467 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7468 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7469 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7470
7471 /* Immediate variants */
7472 case OP_oI255c:
7473 po_char_or_fail ('{');
7474 po_imm_or_fail (0, 255, TRUE);
7475 po_char_or_fail ('}');
7476 break;
7477
7478 case OP_I31w:
7479 /* The expression parser chokes on a trailing !, so we have
7480 to find it first and zap it. */
7481 {
7482 char *s = str;
7483 while (*s && *s != ',')
7484 s++;
7485 if (s[-1] == '!')
7486 {
7487 s[-1] = '\0';
7488 inst.operands[i].writeback = 1;
7489 }
7490 po_imm_or_fail (0, 31, TRUE);
7491 if (str == s - 1)
7492 str = s;
7493 }
7494 break;
7495
7496 /* Expressions */
7497 case OP_EXPi: EXPi:
7498 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7499 GE_OPT_PREFIX));
7500 break;
7501
7502 case OP_EXP:
7503 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7504 GE_NO_PREFIX));
7505 break;
7506
7507 case OP_EXPr: EXPr:
7508 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7509 GE_NO_PREFIX));
7510 if (inst.relocs[0].exp.X_op == O_symbol)
7511 {
7512 val = parse_reloc (&str);
7513 if (val == -1)
7514 {
7515 inst.error = _("unrecognized relocation suffix");
7516 goto failure;
7517 }
7518 else if (val != BFD_RELOC_UNUSED)
7519 {
7520 inst.operands[i].imm = val;
7521 inst.operands[i].hasreloc = 1;
7522 }
7523 }
7524 break;
7525
7526 case OP_EXPs:
7527 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7528 GE_NO_PREFIX));
7529 if (inst.relocs[i].exp.X_op == O_symbol)
7530 {
7531 inst.operands[i].hasreloc = 1;
7532 }
7533 else if (inst.relocs[i].exp.X_op == O_constant)
7534 {
7535 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7536 inst.operands[i].hasreloc = 0;
7537 }
7538 break;
7539
7540 /* Operand for MOVW or MOVT. */
7541 case OP_HALF:
7542 po_misc_or_fail (parse_half (&str));
7543 break;
7544
7545 /* Register or expression. */
7546 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7547 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7548
7549 /* Register or immediate. */
7550 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7551 I0: po_imm_or_fail (0, 0, FALSE); break;
7552
7553 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7554 IF:
7555 if (!is_immediate_prefix (*str))
7556 goto bad_args;
7557 str++;
7558 val = parse_fpa_immediate (&str);
7559 if (val == FAIL)
7560 goto failure;
7561 /* FPA immediates are encoded as registers 8-15.
7562 parse_fpa_immediate has already applied the offset. */
7563 inst.operands[i].reg = val;
7564 inst.operands[i].isreg = 1;
7565 break;
7566
7567 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7568 I32z: po_imm_or_fail (0, 32, FALSE); break;
7569
7570 /* Two kinds of register. */
7571 case OP_RIWR_RIWC:
7572 {
7573 struct reg_entry *rege = arm_reg_parse_multi (&str);
7574 if (!rege
7575 || (rege->type != REG_TYPE_MMXWR
7576 && rege->type != REG_TYPE_MMXWC
7577 && rege->type != REG_TYPE_MMXWCG))
7578 {
7579 inst.error = _("iWMMXt data or control register expected");
7580 goto failure;
7581 }
7582 inst.operands[i].reg = rege->number;
7583 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7584 }
7585 break;
7586
7587 case OP_RIWC_RIWG:
7588 {
7589 struct reg_entry *rege = arm_reg_parse_multi (&str);
7590 if (!rege
7591 || (rege->type != REG_TYPE_MMXWC
7592 && rege->type != REG_TYPE_MMXWCG))
7593 {
7594 inst.error = _("iWMMXt control register expected");
7595 goto failure;
7596 }
7597 inst.operands[i].reg = rege->number;
7598 inst.operands[i].isreg = 1;
7599 }
7600 break;
7601
7602 /* Misc */
7603 case OP_CPSF: val = parse_cps_flags (&str); break;
7604 case OP_ENDI: val = parse_endian_specifier (&str); break;
7605 case OP_oROR: val = parse_ror (&str); break;
7606 try_cond:
7607 case OP_COND: val = parse_cond (&str); break;
7608 case OP_oBARRIER_I15:
7609 po_barrier_or_imm (str); break;
7610 immediate:
7611 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7612 goto failure;
7613 break;
7614
7615 case OP_wPSR:
7616 case OP_rPSR:
7617 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7619 {
7620 inst.error = _("Banked registers are not available with this "
7621 "architecture.");
7622 goto failure;
7623 }
7624 break;
7625 try_psr:
7626 val = parse_psr (&str, op_parse_code == OP_wPSR);
7627 break;
7628
7629 case OP_VLDR:
7630 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7631 break;
7632 try_sysreg:
7633 val = parse_sys_vldr_vstr (&str);
7634 break;
7635
7636 case OP_APSR_RR:
7637 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7638 break;
7639 try_apsr:
7640 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7641 instruction). */
7642 if (strncasecmp (str, "APSR_", 5) == 0)
7643 {
7644 unsigned found = 0;
7645 str += 5;
7646 while (found < 15)
7647 switch (*str++)
7648 {
7649 case 'c': found = (found & 1) ? 16 : found | 1; break;
7650 case 'n': found = (found & 2) ? 16 : found | 2; break;
7651 case 'z': found = (found & 4) ? 16 : found | 4; break;
7652 case 'v': found = (found & 8) ? 16 : found | 8; break;
7653 default: found = 16;
7654 }
7655 if (found != 15)
7656 goto failure;
7657 inst.operands[i].isvec = 1;
7658 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7659 inst.operands[i].reg = REG_PC;
7660 }
7661 else
7662 goto failure;
7663 break;
7664
7665 case OP_TB:
7666 po_misc_or_fail (parse_tb (&str));
7667 break;
7668
7669 /* Register lists. */
7670 case OP_REGLST:
7671 val = parse_reg_list (&str, REGLIST_RN);
7672 if (*str == '^')
7673 {
7674 inst.operands[i].writeback = 1;
7675 str++;
7676 }
7677 break;
7678
7679 case OP_CLRMLST:
7680 val = parse_reg_list (&str, REGLIST_CLRM);
7681 break;
7682
7683 case OP_VRSLST:
7684 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7685 &partial_match);
7686 break;
7687
7688 case OP_VRDLST:
7689 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7690 &partial_match);
7691 break;
7692
7693 case OP_VRSDLST:
7694 /* Allow Q registers too. */
7695 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7696 REGLIST_NEON_D, &partial_match);
7697 if (val == FAIL)
7698 {
7699 inst.error = NULL;
7700 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7701 REGLIST_VFP_S, &partial_match);
7702 inst.operands[i].issingle = 1;
7703 }
7704 break;
7705
7706 case OP_VRSDVLST:
7707 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7708 REGLIST_VFP_D_VPR, &partial_match);
7709 if (val == FAIL && !partial_match)
7710 {
7711 inst.error = NULL;
7712 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7713 REGLIST_VFP_S_VPR, &partial_match);
7714 inst.operands[i].issingle = 1;
7715 }
7716 break;
7717
7718 case OP_NRDLST:
7719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7720 REGLIST_NEON_D, &partial_match);
7721 break;
7722
7723 case OP_MSTRLST4:
7724 case OP_MSTRLST2:
7725 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7726 1, &inst.operands[i].vectype);
7727 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7728 goto failure;
7729 break;
7730 case OP_NSTRLST:
7731 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7732 0, &inst.operands[i].vectype);
7733 break;
7734
7735 /* Addressing modes */
7736 case OP_ADDRMVE:
7737 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7738 break;
7739
7740 case OP_ADDR:
7741 po_misc_or_fail (parse_address (&str, i));
7742 break;
7743
7744 case OP_ADDRGLDR:
7745 po_misc_or_fail_no_backtrack (
7746 parse_address_group_reloc (&str, i, GROUP_LDR));
7747 break;
7748
7749 case OP_ADDRGLDRS:
7750 po_misc_or_fail_no_backtrack (
7751 parse_address_group_reloc (&str, i, GROUP_LDRS));
7752 break;
7753
7754 case OP_ADDRGLDC:
7755 po_misc_or_fail_no_backtrack (
7756 parse_address_group_reloc (&str, i, GROUP_LDC));
7757 break;
7758
7759 case OP_SH:
7760 po_misc_or_fail (parse_shifter_operand (&str, i));
7761 break;
7762
7763 case OP_SHG:
7764 po_misc_or_fail_no_backtrack (
7765 parse_shifter_operand_group_reloc (&str, i));
7766 break;
7767
7768 case OP_oSHll:
7769 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7770 break;
7771
7772 case OP_oSHar:
7773 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7774 break;
7775
7776 case OP_oSHllar:
7777 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7778 break;
7779
7780 case OP_RMQRZ:
7781 case OP_oRMQRZ:
7782 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7783 break;
7784 try_rr_zr:
7785 po_reg_or_goto (REG_TYPE_RN, ZR);
7786 break;
7787 ZR:
7788 po_reg_or_fail (REG_TYPE_ZR);
7789 break;
7790
7791 default:
7792 as_fatal (_("unhandled operand code %d"), op_parse_code);
7793 }
7794
7795 /* Various value-based sanity checks and shared operations. We
7796 do not signal immediate failures for the register constraints;
7797 this allows a syntax error to take precedence. */
7798 switch (op_parse_code)
7799 {
7800 case OP_oRRnpc:
7801 case OP_RRnpc:
7802 case OP_RRnpcb:
7803 case OP_RRw:
7804 case OP_oRRw:
7805 case OP_RRnpc_I0:
7806 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7807 inst.error = BAD_PC;
7808 break;
7809
7810 case OP_oRRnpcsp:
7811 case OP_RRnpcsp:
7812 if (inst.operands[i].isreg)
7813 {
7814 if (inst.operands[i].reg == REG_PC)
7815 inst.error = BAD_PC;
7816 else if (inst.operands[i].reg == REG_SP
7817 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7818 relaxed since ARMv8-A. */
7819 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7820 {
7821 gas_assert (thumb);
7822 inst.error = BAD_SP;
7823 }
7824 }
7825 break;
7826
7827 case OP_RRnpctw:
7828 if (inst.operands[i].isreg
7829 && inst.operands[i].reg == REG_PC
7830 && (inst.operands[i].writeback || thumb))
7831 inst.error = BAD_PC;
7832 break;
7833
7834 case OP_RVSD_COND:
7835 case OP_VLDR:
7836 if (inst.operands[i].isreg)
7837 break;
7838 /* fall through. */
7839
7840 case OP_CPSF:
7841 case OP_ENDI:
7842 case OP_oROR:
7843 case OP_wPSR:
7844 case OP_rPSR:
7845 case OP_COND:
7846 case OP_oBARRIER_I15:
7847 case OP_REGLST:
7848 case OP_CLRMLST:
7849 case OP_VRSLST:
7850 case OP_VRDLST:
7851 case OP_VRSDLST:
7852 case OP_VRSDVLST:
7853 case OP_NRDLST:
7854 case OP_NSTRLST:
7855 case OP_MSTRLST2:
7856 case OP_MSTRLST4:
7857 if (val == FAIL)
7858 goto failure;
7859 inst.operands[i].imm = val;
7860 break;
7861
7862 case OP_LR:
7863 case OP_oLR:
7864 if (inst.operands[i].reg != REG_LR)
7865 inst.error = _("operand must be LR register");
7866 break;
7867
7868 case OP_RMQRZ:
7869 case OP_oRMQRZ:
7870 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7871 inst.error = BAD_PC;
7872 break;
7873
7874 case OP_RRe:
7875 if (inst.operands[i].isreg
7876 && (inst.operands[i].reg & 0x00000001) != 0)
7877 inst.error = BAD_ODD;
7878 break;
7879
7880 case OP_RRo:
7881 if (inst.operands[i].isreg)
7882 {
7883 if ((inst.operands[i].reg & 0x00000001) != 1)
7884 inst.error = BAD_EVEN;
7885 else if (inst.operands[i].reg == REG_SP)
7886 as_tsktsk (MVE_BAD_SP);
7887 else if (inst.operands[i].reg == REG_PC)
7888 inst.error = BAD_PC;
7889 }
7890 break;
7891
7892 default:
7893 break;
7894 }
7895
7896 /* If we get here, this operand was successfully parsed. */
7897 inst.operands[i].present = 1;
7898 continue;
7899
7900 bad_args:
7901 inst.error = BAD_ARGS;
7902
7903 failure:
7904 if (!backtrack_pos)
7905 {
7906 /* The parse routine should already have set inst.error, but set a
7907 default here just in case. */
7908 if (!inst.error)
7909 inst.error = BAD_SYNTAX;
7910 return FAIL;
7911 }
7912
7913 /* Do not backtrack over a trailing optional argument that
7914 absorbed some text. We will only fail again, with the
7915 'garbage following instruction' error message, which is
7916 probably less helpful than the current one. */
7917 if (backtrack_index == i && backtrack_pos != str
7918 && upat[i+1] == OP_stop)
7919 {
7920 if (!inst.error)
7921 inst.error = BAD_SYNTAX;
7922 return FAIL;
7923 }
7924
7925 /* Try again, skipping the optional argument at backtrack_pos. */
7926 str = backtrack_pos;
7927 inst.error = backtrack_error;
7928 inst.operands[backtrack_index].present = 0;
7929 i = backtrack_index;
7930 backtrack_pos = 0;
7931 }
7932
7933 /* Check that we have parsed all the arguments. */
7934 if (*str != '\0' && !inst.error)
7935 inst.error = _("garbage following instruction");
7936
7937 return inst.error ? FAIL : SUCCESS;
7938 }
7939
7940 #undef po_char_or_fail
7941 #undef po_reg_or_fail
7942 #undef po_reg_or_goto
7943 #undef po_imm_or_fail
7944 #undef po_scalar_or_fail
7945 #undef po_barrier_or_imm
7946
7947 /* Shorthand macro for instruction encoding functions issuing errors. */
7948 #define constraint(expr, err) \
7949 do \
7950 { \
7951 if (expr) \
7952 { \
7953 inst.error = err; \
7954 return; \
7955 } \
7956 } \
7957 while (0)
7958
7959 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7960 instructions are unpredictable if these registers are used. This
7961 is the BadReg predicate in ARM's Thumb-2 documentation.
7962
7963 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7964 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7965 #define reject_bad_reg(reg) \
7966 do \
7967 if (reg == REG_PC) \
7968 { \
7969 inst.error = BAD_PC; \
7970 return; \
7971 } \
7972 else if (reg == REG_SP \
7973 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7974 { \
7975 inst.error = BAD_SP; \
7976 return; \
7977 } \
7978 while (0)
7979
7980 /* If REG is R13 (the stack pointer), warn that its use is
7981 deprecated. */
7982 #define warn_deprecated_sp(reg) \
7983 do \
7984 if (warn_on_deprecated && reg == REG_SP) \
7985 as_tsktsk (_("use of r13 is deprecated")); \
7986 while (0)
7987
7988 /* Functions for operand encoding. ARM, then Thumb. */
7989
7990 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7991
7992 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7993
7994 The only binary encoding difference is the Coprocessor number. Coprocessor
7995 9 is used for half-precision calculations or conversions. The format of the
7996 instruction is the same as the equivalent Coprocessor 10 instruction that
7997 exists for Single-Precision operation. */
7998
7999 static void
8000 do_scalar_fp16_v82_encode (void)
8001 {
8002 if (inst.cond < COND_ALWAYS)
8003 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
8004 " the behaviour is UNPREDICTABLE"));
8005 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
8006 _(BAD_FP16));
8007
8008 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
8009 mark_feature_used (&arm_ext_fp16);
8010 }
8011
8012 /* If VAL can be encoded in the immediate field of an ARM instruction,
8013 return the encoded form. Otherwise, return FAIL. */
8014
8015 static unsigned int
8016 encode_arm_immediate (unsigned int val)
8017 {
8018 unsigned int a, i;
8019
8020 if (val <= 0xff)
8021 return val;
8022
8023 for (i = 2; i < 32; i += 2)
8024 if ((a = rotate_left (val, i)) <= 0xff)
8025 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
8026
8027 return FAIL;
8028 }
8029
8030 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
8031 return the encoded form. Otherwise, return FAIL. */
8032 static unsigned int
8033 encode_thumb32_immediate (unsigned int val)
8034 {
8035 unsigned int a, i;
8036
8037 if (val <= 0xff)
8038 return val;
8039
8040 for (i = 1; i <= 24; i++)
8041 {
8042 a = val >> i;
8043 if ((val & ~(0xff << i)) == 0)
8044 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8045 }
8046
8047 a = val & 0xff;
8048 if (val == ((a << 16) | a))
8049 return 0x100 | a;
8050 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8051 return 0x300 | a;
8052
8053 a = val & 0xff00;
8054 if (val == ((a << 16) | a))
8055 return 0x200 | (a >> 8);
8056
8057 return FAIL;
8058 }
8059 /* Encode a VFP SP or DP register number into inst.instruction. */
8060
8061 static void
8062 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8063 {
8064 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8065 && reg > 15)
8066 {
8067 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8068 {
8069 if (thumb_mode)
8070 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8071 fpu_vfp_ext_d32);
8072 else
8073 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8074 fpu_vfp_ext_d32);
8075 }
8076 else
8077 {
8078 first_error (_("D register out of range for selected VFP version"));
8079 return;
8080 }
8081 }
8082
8083 switch (pos)
8084 {
8085 case VFP_REG_Sd:
8086 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8087 break;
8088
8089 case VFP_REG_Sn:
8090 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8091 break;
8092
8093 case VFP_REG_Sm:
8094 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8095 break;
8096
8097 case VFP_REG_Dd:
8098 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8099 break;
8100
8101 case VFP_REG_Dn:
8102 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8103 break;
8104
8105 case VFP_REG_Dm:
8106 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8107 break;
8108
8109 default:
8110 abort ();
8111 }
8112 }
8113
8114 /* Encode a <shift> in an ARM-format instruction. The immediate,
8115 if any, is handled by md_apply_fix. */
8116 static void
8117 encode_arm_shift (int i)
8118 {
8119 /* register-shifted register. */
8120 if (inst.operands[i].immisreg)
8121 {
8122 int op_index;
8123 for (op_index = 0; op_index <= i; ++op_index)
8124 {
8125 /* Check the operand only when it's presented. In pre-UAL syntax,
8126 if the destination register is the same as the first operand, two
8127 register form of the instruction can be used. */
8128 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8129 && inst.operands[op_index].reg == REG_PC)
8130 as_warn (UNPRED_REG ("r15"));
8131 }
8132
8133 if (inst.operands[i].imm == REG_PC)
8134 as_warn (UNPRED_REG ("r15"));
8135 }
8136
8137 if (inst.operands[i].shift_kind == SHIFT_RRX)
8138 inst.instruction |= SHIFT_ROR << 5;
8139 else
8140 {
8141 inst.instruction |= inst.operands[i].shift_kind << 5;
8142 if (inst.operands[i].immisreg)
8143 {
8144 inst.instruction |= SHIFT_BY_REG;
8145 inst.instruction |= inst.operands[i].imm << 8;
8146 }
8147 else
8148 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8149 }
8150 }
8151
8152 static void
8153 encode_arm_shifter_operand (int i)
8154 {
8155 if (inst.operands[i].isreg)
8156 {
8157 inst.instruction |= inst.operands[i].reg;
8158 encode_arm_shift (i);
8159 }
8160 else
8161 {
8162 inst.instruction |= INST_IMMEDIATE;
8163 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8164 inst.instruction |= inst.operands[i].imm;
8165 }
8166 }
8167
8168 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8169 static void
8170 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8171 {
8172 /* PR 14260:
8173 Generate an error if the operand is not a register. */
8174 constraint (!inst.operands[i].isreg,
8175 _("Instruction does not support =N addresses"));
8176
8177 inst.instruction |= inst.operands[i].reg << 16;
8178
8179 if (inst.operands[i].preind)
8180 {
8181 if (is_t)
8182 {
8183 inst.error = _("instruction does not accept preindexed addressing");
8184 return;
8185 }
8186 inst.instruction |= PRE_INDEX;
8187 if (inst.operands[i].writeback)
8188 inst.instruction |= WRITE_BACK;
8189
8190 }
8191 else if (inst.operands[i].postind)
8192 {
8193 gas_assert (inst.operands[i].writeback);
8194 if (is_t)
8195 inst.instruction |= WRITE_BACK;
8196 }
8197 else /* unindexed - only for coprocessor */
8198 {
8199 inst.error = _("instruction does not accept unindexed addressing");
8200 return;
8201 }
8202
8203 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8204 && (((inst.instruction & 0x000f0000) >> 16)
8205 == ((inst.instruction & 0x0000f000) >> 12)))
8206 as_warn ((inst.instruction & LOAD_BIT)
8207 ? _("destination register same as write-back base")
8208 : _("source register same as write-back base"));
8209 }
8210
8211 /* inst.operands[i] was set up by parse_address. Encode it into an
8212 ARM-format mode 2 load or store instruction. If is_t is true,
8213 reject forms that cannot be used with a T instruction (i.e. not
8214 post-indexed). */
8215 static void
8216 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8217 {
8218 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8219
8220 encode_arm_addr_mode_common (i, is_t);
8221
8222 if (inst.operands[i].immisreg)
8223 {
8224 constraint ((inst.operands[i].imm == REG_PC
8225 || (is_pc && inst.operands[i].writeback)),
8226 BAD_PC_ADDRESSING);
8227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8228 inst.instruction |= inst.operands[i].imm;
8229 if (!inst.operands[i].negative)
8230 inst.instruction |= INDEX_UP;
8231 if (inst.operands[i].shifted)
8232 {
8233 if (inst.operands[i].shift_kind == SHIFT_RRX)
8234 inst.instruction |= SHIFT_ROR << 5;
8235 else
8236 {
8237 inst.instruction |= inst.operands[i].shift_kind << 5;
8238 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8239 }
8240 }
8241 }
8242 else /* immediate offset in inst.relocs[0] */
8243 {
8244 if (is_pc && !inst.relocs[0].pc_rel)
8245 {
8246 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8247
8248 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8249 cannot use PC in addressing.
8250 PC cannot be used in writeback addressing, either. */
8251 constraint ((is_t || inst.operands[i].writeback),
8252 BAD_PC_ADDRESSING);
8253
8254 /* Use of PC in str is deprecated for ARMv7. */
8255 if (warn_on_deprecated
8256 && !is_load
8257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8258 as_tsktsk (_("use of PC in this instruction is deprecated"));
8259 }
8260
8261 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8262 {
8263 /* Prefer + for zero encoded value. */
8264 if (!inst.operands[i].negative)
8265 inst.instruction |= INDEX_UP;
8266 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8267 }
8268 }
8269 }
8270
8271 /* inst.operands[i] was set up by parse_address. Encode it into an
8272 ARM-format mode 3 load or store instruction. Reject forms that
8273 cannot be used with such instructions. If is_t is true, reject
8274 forms that cannot be used with a T instruction (i.e. not
8275 post-indexed). */
8276 static void
8277 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8278 {
8279 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8280 {
8281 inst.error = _("instruction does not accept scaled register index");
8282 return;
8283 }
8284
8285 encode_arm_addr_mode_common (i, is_t);
8286
8287 if (inst.operands[i].immisreg)
8288 {
8289 constraint ((inst.operands[i].imm == REG_PC
8290 || (is_t && inst.operands[i].reg == REG_PC)),
8291 BAD_PC_ADDRESSING);
8292 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8293 BAD_PC_WRITEBACK);
8294 inst.instruction |= inst.operands[i].imm;
8295 if (!inst.operands[i].negative)
8296 inst.instruction |= INDEX_UP;
8297 }
8298 else /* immediate offset in inst.relocs[0] */
8299 {
8300 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8301 && inst.operands[i].writeback),
8302 BAD_PC_WRITEBACK);
8303 inst.instruction |= HWOFFSET_IMM;
8304 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8305 {
8306 /* Prefer + for zero encoded value. */
8307 if (!inst.operands[i].negative)
8308 inst.instruction |= INDEX_UP;
8309
8310 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8311 }
8312 }
8313 }
8314
8315 /* Write immediate bits [7:0] to the following locations:
8316
8317 |28/24|23 19|18 16|15 4|3 0|
8318 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8319
8320 This function is used by VMOV/VMVN/VORR/VBIC. */
8321
8322 static void
8323 neon_write_immbits (unsigned immbits)
8324 {
8325 inst.instruction |= immbits & 0xf;
8326 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8327 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8328 }
8329
8330 /* Invert low-order SIZE bits of XHI:XLO. */
8331
8332 static void
8333 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8334 {
8335 unsigned immlo = xlo ? *xlo : 0;
8336 unsigned immhi = xhi ? *xhi : 0;
8337
8338 switch (size)
8339 {
8340 case 8:
8341 immlo = (~immlo) & 0xff;
8342 break;
8343
8344 case 16:
8345 immlo = (~immlo) & 0xffff;
8346 break;
8347
8348 case 64:
8349 immhi = (~immhi) & 0xffffffff;
8350 /* fall through. */
8351
8352 case 32:
8353 immlo = (~immlo) & 0xffffffff;
8354 break;
8355
8356 default:
8357 abort ();
8358 }
8359
8360 if (xlo)
8361 *xlo = immlo;
8362
8363 if (xhi)
8364 *xhi = immhi;
8365 }
8366
8367 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8368 A, B, C, D. */
8369
8370 static int
8371 neon_bits_same_in_bytes (unsigned imm)
8372 {
8373 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8374 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8375 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8376 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8377 }
8378
8379 /* For immediate of above form, return 0bABCD. */
8380
8381 static unsigned
8382 neon_squash_bits (unsigned imm)
8383 {
8384 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8385 | ((imm & 0x01000000) >> 21);
8386 }
8387
8388 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8389
8390 static unsigned
8391 neon_qfloat_bits (unsigned imm)
8392 {
8393 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8394 }
8395
8396 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8397 the instruction. *OP is passed as the initial value of the op field, and
8398 may be set to a different value depending on the constant (i.e.
8399 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8400 MVN). If the immediate looks like a repeated pattern then also
8401 try smaller element sizes. */
8402
8403 static int
8404 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8405 unsigned *immbits, int *op, int size,
8406 enum neon_el_type type)
8407 {
8408 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8409 float. */
8410 if (type == NT_float && !float_p)
8411 return FAIL;
8412
8413 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8414 {
8415 if (size != 32 || *op == 1)
8416 return FAIL;
8417 *immbits = neon_qfloat_bits (immlo);
8418 return 0xf;
8419 }
8420
8421 if (size == 64)
8422 {
8423 if (neon_bits_same_in_bytes (immhi)
8424 && neon_bits_same_in_bytes (immlo))
8425 {
8426 if (*op == 1)
8427 return FAIL;
8428 *immbits = (neon_squash_bits (immhi) << 4)
8429 | neon_squash_bits (immlo);
8430 *op = 1;
8431 return 0xe;
8432 }
8433
8434 if (immhi != immlo)
8435 return FAIL;
8436 }
8437
8438 if (size >= 32)
8439 {
8440 if (immlo == (immlo & 0x000000ff))
8441 {
8442 *immbits = immlo;
8443 return 0x0;
8444 }
8445 else if (immlo == (immlo & 0x0000ff00))
8446 {
8447 *immbits = immlo >> 8;
8448 return 0x2;
8449 }
8450 else if (immlo == (immlo & 0x00ff0000))
8451 {
8452 *immbits = immlo >> 16;
8453 return 0x4;
8454 }
8455 else if (immlo == (immlo & 0xff000000))
8456 {
8457 *immbits = immlo >> 24;
8458 return 0x6;
8459 }
8460 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8461 {
8462 *immbits = (immlo >> 8) & 0xff;
8463 return 0xc;
8464 }
8465 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8466 {
8467 *immbits = (immlo >> 16) & 0xff;
8468 return 0xd;
8469 }
8470
8471 if ((immlo & 0xffff) != (immlo >> 16))
8472 return FAIL;
8473 immlo &= 0xffff;
8474 }
8475
8476 if (size >= 16)
8477 {
8478 if (immlo == (immlo & 0x000000ff))
8479 {
8480 *immbits = immlo;
8481 return 0x8;
8482 }
8483 else if (immlo == (immlo & 0x0000ff00))
8484 {
8485 *immbits = immlo >> 8;
8486 return 0xa;
8487 }
8488
8489 if ((immlo & 0xff) != (immlo >> 8))
8490 return FAIL;
8491 immlo &= 0xff;
8492 }
8493
8494 if (immlo == (immlo & 0x000000ff))
8495 {
8496 /* Don't allow MVN with 8-bit immediate. */
8497 if (*op == 1)
8498 return FAIL;
8499 *immbits = immlo;
8500 return 0xe;
8501 }
8502
8503 return FAIL;
8504 }
8505
8506 #if defined BFD_HOST_64_BIT
8507 /* Returns TRUE if double precision value V may be cast
8508 to single precision without loss of accuracy. */
8509
8510 static bfd_boolean
8511 is_double_a_single (bfd_int64_t v)
8512 {
8513 int exp = (int)((v >> 52) & 0x7FF);
8514 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8515
8516 return (exp == 0 || exp == 0x7FF
8517 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8518 && (mantissa & 0x1FFFFFFFl) == 0;
8519 }
8520
8521 /* Returns a double precision value casted to single precision
8522 (ignoring the least significant bits in exponent and mantissa). */
8523
8524 static int
8525 double_to_single (bfd_int64_t v)
8526 {
8527 int sign = (int) ((v >> 63) & 1l);
8528 int exp = (int) ((v >> 52) & 0x7FF);
8529 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8530
8531 if (exp == 0x7FF)
8532 exp = 0xFF;
8533 else
8534 {
8535 exp = exp - 1023 + 127;
8536 if (exp >= 0xFF)
8537 {
8538 /* Infinity. */
8539 exp = 0x7F;
8540 mantissa = 0;
8541 }
8542 else if (exp < 0)
8543 {
8544 /* No denormalized numbers. */
8545 exp = 0;
8546 mantissa = 0;
8547 }
8548 }
8549 mantissa >>= 29;
8550 return (sign << 31) | (exp << 23) | mantissa;
8551 }
8552 #endif /* BFD_HOST_64_BIT */
8553
8554 enum lit_type
8555 {
8556 CONST_THUMB,
8557 CONST_ARM,
8558 CONST_VEC
8559 };
8560
8561 static void do_vfp_nsyn_opcode (const char *);
8562
8563 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8564 Determine whether it can be performed with a move instruction; if
8565 it can, convert inst.instruction to that move instruction and
8566 return TRUE; if it can't, convert inst.instruction to a literal-pool
8567 load and return FALSE. If this is not a valid thing to do in the
8568 current context, set inst.error and return TRUE.
8569
8570 inst.operands[i] describes the destination register. */
8571
8572 static bfd_boolean
8573 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8574 {
8575 unsigned long tbit;
8576 bfd_boolean thumb_p = (t == CONST_THUMB);
8577 bfd_boolean arm_p = (t == CONST_ARM);
8578
8579 if (thumb_p)
8580 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8581 else
8582 tbit = LOAD_BIT;
8583
8584 if ((inst.instruction & tbit) == 0)
8585 {
8586 inst.error = _("invalid pseudo operation");
8587 return TRUE;
8588 }
8589
8590 if (inst.relocs[0].exp.X_op != O_constant
8591 && inst.relocs[0].exp.X_op != O_symbol
8592 && inst.relocs[0].exp.X_op != O_big)
8593 {
8594 inst.error = _("constant expression expected");
8595 return TRUE;
8596 }
8597
8598 if (inst.relocs[0].exp.X_op == O_constant
8599 || inst.relocs[0].exp.X_op == O_big)
8600 {
8601 #if defined BFD_HOST_64_BIT
8602 bfd_int64_t v;
8603 #else
8604 offsetT v;
8605 #endif
8606 if (inst.relocs[0].exp.X_op == O_big)
8607 {
8608 LITTLENUM_TYPE w[X_PRECISION];
8609 LITTLENUM_TYPE * l;
8610
8611 if (inst.relocs[0].exp.X_add_number == -1)
8612 {
8613 gen_to_words (w, X_PRECISION, E_PRECISION);
8614 l = w;
8615 /* FIXME: Should we check words w[2..5] ? */
8616 }
8617 else
8618 l = generic_bignum;
8619
8620 #if defined BFD_HOST_64_BIT
8621 v =
8622 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8623 << LITTLENUM_NUMBER_OF_BITS)
8624 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8625 << LITTLENUM_NUMBER_OF_BITS)
8626 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8627 << LITTLENUM_NUMBER_OF_BITS)
8628 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8629 #else
8630 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8631 | (l[0] & LITTLENUM_MASK);
8632 #endif
8633 }
8634 else
8635 v = inst.relocs[0].exp.X_add_number;
8636
8637 if (!inst.operands[i].issingle)
8638 {
8639 if (thumb_p)
8640 {
8641 /* LDR should not use lead in a flag-setting instruction being
8642 chosen so we do not check whether movs can be used. */
8643
8644 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8645 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8646 && inst.operands[i].reg != 13
8647 && inst.operands[i].reg != 15)
8648 {
8649 /* Check if on thumb2 it can be done with a mov.w, mvn or
8650 movw instruction. */
8651 unsigned int newimm;
8652 bfd_boolean isNegated;
8653
8654 newimm = encode_thumb32_immediate (v);
8655 if (newimm != (unsigned int) FAIL)
8656 isNegated = FALSE;
8657 else
8658 {
8659 newimm = encode_thumb32_immediate (~v);
8660 if (newimm != (unsigned int) FAIL)
8661 isNegated = TRUE;
8662 }
8663
8664 /* The number can be loaded with a mov.w or mvn
8665 instruction. */
8666 if (newimm != (unsigned int) FAIL
8667 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8668 {
8669 inst.instruction = (0xf04f0000 /* MOV.W. */
8670 | (inst.operands[i].reg << 8));
8671 /* Change to MOVN. */
8672 inst.instruction |= (isNegated ? 0x200000 : 0);
8673 inst.instruction |= (newimm & 0x800) << 15;
8674 inst.instruction |= (newimm & 0x700) << 4;
8675 inst.instruction |= (newimm & 0x0ff);
8676 return TRUE;
8677 }
8678 /* The number can be loaded with a movw instruction. */
8679 else if ((v & ~0xFFFF) == 0
8680 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8681 {
8682 int imm = v & 0xFFFF;
8683
8684 inst.instruction = 0xf2400000; /* MOVW. */
8685 inst.instruction |= (inst.operands[i].reg << 8);
8686 inst.instruction |= (imm & 0xf000) << 4;
8687 inst.instruction |= (imm & 0x0800) << 15;
8688 inst.instruction |= (imm & 0x0700) << 4;
8689 inst.instruction |= (imm & 0x00ff);
8690 return TRUE;
8691 }
8692 }
8693 }
8694 else if (arm_p)
8695 {
8696 int value = encode_arm_immediate (v);
8697
8698 if (value != FAIL)
8699 {
8700 /* This can be done with a mov instruction. */
8701 inst.instruction &= LITERAL_MASK;
8702 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8703 inst.instruction |= value & 0xfff;
8704 return TRUE;
8705 }
8706
8707 value = encode_arm_immediate (~ v);
8708 if (value != FAIL)
8709 {
8710 /* This can be done with a mvn instruction. */
8711 inst.instruction &= LITERAL_MASK;
8712 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8713 inst.instruction |= value & 0xfff;
8714 return TRUE;
8715 }
8716 }
8717 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8718 {
8719 int op = 0;
8720 unsigned immbits = 0;
8721 unsigned immlo = inst.operands[1].imm;
8722 unsigned immhi = inst.operands[1].regisimm
8723 ? inst.operands[1].reg
8724 : inst.relocs[0].exp.X_unsigned
8725 ? 0
8726 : ((bfd_int64_t)((int) immlo)) >> 32;
8727 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8728 &op, 64, NT_invtype);
8729
8730 if (cmode == FAIL)
8731 {
8732 neon_invert_size (&immlo, &immhi, 64);
8733 op = !op;
8734 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8735 &op, 64, NT_invtype);
8736 }
8737
8738 if (cmode != FAIL)
8739 {
8740 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8741 | (1 << 23)
8742 | (cmode << 8)
8743 | (op << 5)
8744 | (1 << 4);
8745
8746 /* Fill other bits in vmov encoding for both thumb and arm. */
8747 if (thumb_mode)
8748 inst.instruction |= (0x7U << 29) | (0xF << 24);
8749 else
8750 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8751 neon_write_immbits (immbits);
8752 return TRUE;
8753 }
8754 }
8755 }
8756
8757 if (t == CONST_VEC)
8758 {
8759 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8760 if (inst.operands[i].issingle
8761 && is_quarter_float (inst.operands[1].imm)
8762 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8763 {
8764 inst.operands[1].imm =
8765 neon_qfloat_bits (v);
8766 do_vfp_nsyn_opcode ("fconsts");
8767 return TRUE;
8768 }
8769
8770 /* If our host does not support a 64-bit type then we cannot perform
8771 the following optimization. This mean that there will be a
8772 discrepancy between the output produced by an assembler built for
8773 a 32-bit-only host and the output produced from a 64-bit host, but
8774 this cannot be helped. */
8775 #if defined BFD_HOST_64_BIT
8776 else if (!inst.operands[1].issingle
8777 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8778 {
8779 if (is_double_a_single (v)
8780 && is_quarter_float (double_to_single (v)))
8781 {
8782 inst.operands[1].imm =
8783 neon_qfloat_bits (double_to_single (v));
8784 do_vfp_nsyn_opcode ("fconstd");
8785 return TRUE;
8786 }
8787 }
8788 #endif
8789 }
8790 }
8791
8792 if (add_to_lit_pool ((!inst.operands[i].isvec
8793 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8794 return TRUE;
8795
8796 inst.operands[1].reg = REG_PC;
8797 inst.operands[1].isreg = 1;
8798 inst.operands[1].preind = 1;
8799 inst.relocs[0].pc_rel = 1;
8800 inst.relocs[0].type = (thumb_p
8801 ? BFD_RELOC_ARM_THUMB_OFFSET
8802 : (mode_3
8803 ? BFD_RELOC_ARM_HWLITERAL
8804 : BFD_RELOC_ARM_LITERAL));
8805 return FALSE;
8806 }
8807
8808 /* inst.operands[i] was set up by parse_address. Encode it into an
8809 ARM-format instruction. Reject all forms which cannot be encoded
8810 into a coprocessor load/store instruction. If wb_ok is false,
8811 reject use of writeback; if unind_ok is false, reject use of
8812 unindexed addressing. If reloc_override is not 0, use it instead
8813 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8814 (in which case it is preserved). */
8815
8816 static int
8817 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8818 {
8819 if (!inst.operands[i].isreg)
8820 {
8821 /* PR 18256 */
8822 if (! inst.operands[0].isvec)
8823 {
8824 inst.error = _("invalid co-processor operand");
8825 return FAIL;
8826 }
8827 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8828 return SUCCESS;
8829 }
8830
8831 inst.instruction |= inst.operands[i].reg << 16;
8832
8833 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8834
8835 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8836 {
8837 gas_assert (!inst.operands[i].writeback);
8838 if (!unind_ok)
8839 {
8840 inst.error = _("instruction does not support unindexed addressing");
8841 return FAIL;
8842 }
8843 inst.instruction |= inst.operands[i].imm;
8844 inst.instruction |= INDEX_UP;
8845 return SUCCESS;
8846 }
8847
8848 if (inst.operands[i].preind)
8849 inst.instruction |= PRE_INDEX;
8850
8851 if (inst.operands[i].writeback)
8852 {
8853 if (inst.operands[i].reg == REG_PC)
8854 {
8855 inst.error = _("pc may not be used with write-back");
8856 return FAIL;
8857 }
8858 if (!wb_ok)
8859 {
8860 inst.error = _("instruction does not support writeback");
8861 return FAIL;
8862 }
8863 inst.instruction |= WRITE_BACK;
8864 }
8865
8866 if (reloc_override)
8867 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8868 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8869 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8870 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8871 {
8872 if (thumb_mode)
8873 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8874 else
8875 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8876 }
8877
8878 /* Prefer + for zero encoded value. */
8879 if (!inst.operands[i].negative)
8880 inst.instruction |= INDEX_UP;
8881
8882 return SUCCESS;
8883 }
8884
8885 /* Functions for instruction encoding, sorted by sub-architecture.
8886 First some generics; their names are taken from the conventional
8887 bit positions for register arguments in ARM format instructions. */
8888
8889 static void
8890 do_noargs (void)
8891 {
8892 }
8893
8894 static void
8895 do_rd (void)
8896 {
8897 inst.instruction |= inst.operands[0].reg << 12;
8898 }
8899
8900 static void
8901 do_rn (void)
8902 {
8903 inst.instruction |= inst.operands[0].reg << 16;
8904 }
8905
8906 static void
8907 do_rd_rm (void)
8908 {
8909 inst.instruction |= inst.operands[0].reg << 12;
8910 inst.instruction |= inst.operands[1].reg;
8911 }
8912
8913 static void
8914 do_rm_rn (void)
8915 {
8916 inst.instruction |= inst.operands[0].reg;
8917 inst.instruction |= inst.operands[1].reg << 16;
8918 }
8919
8920 static void
8921 do_rd_rn (void)
8922 {
8923 inst.instruction |= inst.operands[0].reg << 12;
8924 inst.instruction |= inst.operands[1].reg << 16;
8925 }
8926
8927 static void
8928 do_rn_rd (void)
8929 {
8930 inst.instruction |= inst.operands[0].reg << 16;
8931 inst.instruction |= inst.operands[1].reg << 12;
8932 }
8933
8934 static void
8935 do_tt (void)
8936 {
8937 inst.instruction |= inst.operands[0].reg << 8;
8938 inst.instruction |= inst.operands[1].reg << 16;
8939 }
8940
8941 static bfd_boolean
8942 check_obsolete (const arm_feature_set *feature, const char *msg)
8943 {
8944 if (ARM_CPU_IS_ANY (cpu_variant))
8945 {
8946 as_tsktsk ("%s", msg);
8947 return TRUE;
8948 }
8949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8950 {
8951 as_bad ("%s", msg);
8952 return TRUE;
8953 }
8954
8955 return FALSE;
8956 }
8957
8958 static void
8959 do_rd_rm_rn (void)
8960 {
8961 unsigned Rn = inst.operands[2].reg;
8962 /* Enforce restrictions on SWP instruction. */
8963 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8964 {
8965 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8966 _("Rn must not overlap other operands"));
8967
8968 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8969 */
8970 if (!check_obsolete (&arm_ext_v8,
8971 _("swp{b} use is obsoleted for ARMv8 and later"))
8972 && warn_on_deprecated
8973 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8974 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8975 }
8976
8977 inst.instruction |= inst.operands[0].reg << 12;
8978 inst.instruction |= inst.operands[1].reg;
8979 inst.instruction |= Rn << 16;
8980 }
8981
8982 static void
8983 do_rd_rn_rm (void)
8984 {
8985 inst.instruction |= inst.operands[0].reg << 12;
8986 inst.instruction |= inst.operands[1].reg << 16;
8987 inst.instruction |= inst.operands[2].reg;
8988 }
8989
8990 static void
8991 do_rm_rd_rn (void)
8992 {
8993 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8994 constraint (((inst.relocs[0].exp.X_op != O_constant
8995 && inst.relocs[0].exp.X_op != O_illegal)
8996 || inst.relocs[0].exp.X_add_number != 0),
8997 BAD_ADDR_MODE);
8998 inst.instruction |= inst.operands[0].reg;
8999 inst.instruction |= inst.operands[1].reg << 12;
9000 inst.instruction |= inst.operands[2].reg << 16;
9001 }
9002
9003 static void
9004 do_imm0 (void)
9005 {
9006 inst.instruction |= inst.operands[0].imm;
9007 }
9008
9009 static void
9010 do_rd_cpaddr (void)
9011 {
9012 inst.instruction |= inst.operands[0].reg << 12;
9013 encode_arm_cp_address (1, TRUE, TRUE, 0);
9014 }
9015
9016 /* ARM instructions, in alphabetical order by function name (except
9017 that wrapper functions appear immediately after the function they
9018 wrap). */
9019
9020 /* This is a pseudo-op of the form "adr rd, label" to be converted
9021 into a relative address of the form "add rd, pc, #label-.-8". */
9022
9023 static void
9024 do_adr (void)
9025 {
9026 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9027
9028 /* Frag hacking will turn this into a sub instruction if the offset turns
9029 out to be negative. */
9030 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9031 inst.relocs[0].pc_rel = 1;
9032 inst.relocs[0].exp.X_add_number -= 8;
9033
9034 if (support_interwork
9035 && inst.relocs[0].exp.X_op == O_symbol
9036 && inst.relocs[0].exp.X_add_symbol != NULL
9037 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9038 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9039 inst.relocs[0].exp.X_add_number |= 1;
9040 }
9041
9042 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9043 into a relative address of the form:
9044 add rd, pc, #low(label-.-8)"
9045 add rd, rd, #high(label-.-8)" */
9046
9047 static void
9048 do_adrl (void)
9049 {
9050 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9051
9052 /* Frag hacking will turn this into a sub instruction if the offset turns
9053 out to be negative. */
9054 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9055 inst.relocs[0].pc_rel = 1;
9056 inst.size = INSN_SIZE * 2;
9057 inst.relocs[0].exp.X_add_number -= 8;
9058
9059 if (support_interwork
9060 && inst.relocs[0].exp.X_op == O_symbol
9061 && inst.relocs[0].exp.X_add_symbol != NULL
9062 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9063 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9064 inst.relocs[0].exp.X_add_number |= 1;
9065 }
9066
9067 static void
9068 do_arit (void)
9069 {
9070 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9071 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9072 THUMB1_RELOC_ONLY);
9073 if (!inst.operands[1].present)
9074 inst.operands[1].reg = inst.operands[0].reg;
9075 inst.instruction |= inst.operands[0].reg << 12;
9076 inst.instruction |= inst.operands[1].reg << 16;
9077 encode_arm_shifter_operand (2);
9078 }
9079
9080 static void
9081 do_barrier (void)
9082 {
9083 if (inst.operands[0].present)
9084 inst.instruction |= inst.operands[0].imm;
9085 else
9086 inst.instruction |= 0xf;
9087 }
9088
9089 static void
9090 do_bfc (void)
9091 {
9092 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9093 constraint (msb > 32, _("bit-field extends past end of register"));
9094 /* The instruction encoding stores the LSB and MSB,
9095 not the LSB and width. */
9096 inst.instruction |= inst.operands[0].reg << 12;
9097 inst.instruction |= inst.operands[1].imm << 7;
9098 inst.instruction |= (msb - 1) << 16;
9099 }
9100
9101 static void
9102 do_bfi (void)
9103 {
9104 unsigned int msb;
9105
9106 /* #0 in second position is alternative syntax for bfc, which is
9107 the same instruction but with REG_PC in the Rm field. */
9108 if (!inst.operands[1].isreg)
9109 inst.operands[1].reg = REG_PC;
9110
9111 msb = inst.operands[2].imm + inst.operands[3].imm;
9112 constraint (msb > 32, _("bit-field extends past end of register"));
9113 /* The instruction encoding stores the LSB and MSB,
9114 not the LSB and width. */
9115 inst.instruction |= inst.operands[0].reg << 12;
9116 inst.instruction |= inst.operands[1].reg;
9117 inst.instruction |= inst.operands[2].imm << 7;
9118 inst.instruction |= (msb - 1) << 16;
9119 }
9120
9121 static void
9122 do_bfx (void)
9123 {
9124 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9125 _("bit-field extends past end of register"));
9126 inst.instruction |= inst.operands[0].reg << 12;
9127 inst.instruction |= inst.operands[1].reg;
9128 inst.instruction |= inst.operands[2].imm << 7;
9129 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9130 }
9131
9132 /* ARM V5 breakpoint instruction (argument parse)
9133 BKPT <16 bit unsigned immediate>
9134 Instruction is not conditional.
9135 The bit pattern given in insns[] has the COND_ALWAYS condition,
9136 and it is an error if the caller tried to override that. */
9137
9138 static void
9139 do_bkpt (void)
9140 {
9141 /* Top 12 of 16 bits to bits 19:8. */
9142 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9143
9144 /* Bottom 4 of 16 bits to bits 3:0. */
9145 inst.instruction |= inst.operands[0].imm & 0xf;
9146 }
9147
9148 static void
9149 encode_branch (int default_reloc)
9150 {
9151 if (inst.operands[0].hasreloc)
9152 {
9153 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9154 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9155 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9156 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9157 ? BFD_RELOC_ARM_PLT32
9158 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9159 }
9160 else
9161 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9162 inst.relocs[0].pc_rel = 1;
9163 }
9164
9165 static void
9166 do_branch (void)
9167 {
9168 #ifdef OBJ_ELF
9169 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9170 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9171 else
9172 #endif
9173 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9174 }
9175
9176 static void
9177 do_bl (void)
9178 {
9179 #ifdef OBJ_ELF
9180 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9181 {
9182 if (inst.cond == COND_ALWAYS)
9183 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9184 else
9185 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9186 }
9187 else
9188 #endif
9189 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9190 }
9191
9192 /* ARM V5 branch-link-exchange instruction (argument parse)
9193 BLX <target_addr> ie BLX(1)
9194 BLX{<condition>} <Rm> ie BLX(2)
9195 Unfortunately, there are two different opcodes for this mnemonic.
9196 So, the insns[].value is not used, and the code here zaps values
9197 into inst.instruction.
9198 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9199
9200 static void
9201 do_blx (void)
9202 {
9203 if (inst.operands[0].isreg)
9204 {
9205 /* Arg is a register; the opcode provided by insns[] is correct.
9206 It is not illegal to do "blx pc", just useless. */
9207 if (inst.operands[0].reg == REG_PC)
9208 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9209
9210 inst.instruction |= inst.operands[0].reg;
9211 }
9212 else
9213 {
9214 /* Arg is an address; this instruction cannot be executed
9215 conditionally, and the opcode must be adjusted.
9216 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9217 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9218 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9219 inst.instruction = 0xfa000000;
9220 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9221 }
9222 }
9223
9224 static void
9225 do_bx (void)
9226 {
9227 bfd_boolean want_reloc;
9228
9229 if (inst.operands[0].reg == REG_PC)
9230 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9231
9232 inst.instruction |= inst.operands[0].reg;
9233 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9234 it is for ARMv4t or earlier. */
9235 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9236 if (!ARM_FEATURE_ZERO (selected_object_arch)
9237 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9238 want_reloc = TRUE;
9239
9240 #ifdef OBJ_ELF
9241 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9242 #endif
9243 want_reloc = FALSE;
9244
9245 if (want_reloc)
9246 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9247 }
9248
9249
9250 /* ARM v5TEJ. Jump to Jazelle code. */
9251
9252 static void
9253 do_bxj (void)
9254 {
9255 if (inst.operands[0].reg == REG_PC)
9256 as_tsktsk (_("use of r15 in bxj is not really useful"));
9257
9258 inst.instruction |= inst.operands[0].reg;
9259 }
9260
9261 /* Co-processor data operation:
9262 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9263 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9264 static void
9265 do_cdp (void)
9266 {
9267 inst.instruction |= inst.operands[0].reg << 8;
9268 inst.instruction |= inst.operands[1].imm << 20;
9269 inst.instruction |= inst.operands[2].reg << 12;
9270 inst.instruction |= inst.operands[3].reg << 16;
9271 inst.instruction |= inst.operands[4].reg;
9272 inst.instruction |= inst.operands[5].imm << 5;
9273 }
9274
9275 static void
9276 do_cmp (void)
9277 {
9278 inst.instruction |= inst.operands[0].reg << 16;
9279 encode_arm_shifter_operand (1);
9280 }
9281
9282 /* Transfer between coprocessor and ARM registers.
9283 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9284 MRC2
9285 MCR{cond}
9286 MCR2
9287
9288 No special properties. */
9289
9290 struct deprecated_coproc_regs_s
9291 {
9292 unsigned cp;
9293 int opc1;
9294 unsigned crn;
9295 unsigned crm;
9296 int opc2;
9297 arm_feature_set deprecated;
9298 arm_feature_set obsoleted;
9299 const char *dep_msg;
9300 const char *obs_msg;
9301 };
9302
9303 #define DEPR_ACCESS_V8 \
9304 N_("This coprocessor register access is deprecated in ARMv8")
9305
9306 /* Table of all deprecated coprocessor registers. */
9307 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9308 {
9309 {15, 0, 7, 10, 5, /* CP15DMB. */
9310 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9311 DEPR_ACCESS_V8, NULL},
9312 {15, 0, 7, 10, 4, /* CP15DSB. */
9313 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9314 DEPR_ACCESS_V8, NULL},
9315 {15, 0, 7, 5, 4, /* CP15ISB. */
9316 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9317 DEPR_ACCESS_V8, NULL},
9318 {14, 6, 1, 0, 0, /* TEEHBR. */
9319 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9320 DEPR_ACCESS_V8, NULL},
9321 {14, 6, 0, 0, 0, /* TEECR. */
9322 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9323 DEPR_ACCESS_V8, NULL},
9324 };
9325
9326 #undef DEPR_ACCESS_V8
9327
9328 static const size_t deprecated_coproc_reg_count =
9329 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9330
9331 static void
9332 do_co_reg (void)
9333 {
9334 unsigned Rd;
9335 size_t i;
9336
9337 Rd = inst.operands[2].reg;
9338 if (thumb_mode)
9339 {
9340 if (inst.instruction == 0xee000010
9341 || inst.instruction == 0xfe000010)
9342 /* MCR, MCR2 */
9343 reject_bad_reg (Rd);
9344 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9345 /* MRC, MRC2 */
9346 constraint (Rd == REG_SP, BAD_SP);
9347 }
9348 else
9349 {
9350 /* MCR */
9351 if (inst.instruction == 0xe000010)
9352 constraint (Rd == REG_PC, BAD_PC);
9353 }
9354
9355 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9356 {
9357 const struct deprecated_coproc_regs_s *r =
9358 deprecated_coproc_regs + i;
9359
9360 if (inst.operands[0].reg == r->cp
9361 && inst.operands[1].imm == r->opc1
9362 && inst.operands[3].reg == r->crn
9363 && inst.operands[4].reg == r->crm
9364 && inst.operands[5].imm == r->opc2)
9365 {
9366 if (! ARM_CPU_IS_ANY (cpu_variant)
9367 && warn_on_deprecated
9368 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9369 as_tsktsk ("%s", r->dep_msg);
9370 }
9371 }
9372
9373 inst.instruction |= inst.operands[0].reg << 8;
9374 inst.instruction |= inst.operands[1].imm << 21;
9375 inst.instruction |= Rd << 12;
9376 inst.instruction |= inst.operands[3].reg << 16;
9377 inst.instruction |= inst.operands[4].reg;
9378 inst.instruction |= inst.operands[5].imm << 5;
9379 }
9380
9381 /* Transfer between coprocessor register and pair of ARM registers.
9382 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9383 MCRR2
9384 MRRC{cond}
9385 MRRC2
9386
9387 Two XScale instructions are special cases of these:
9388
9389 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9390 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9391
9392 Result unpredictable if Rd or Rn is R15. */
9393
9394 static void
9395 do_co_reg2c (void)
9396 {
9397 unsigned Rd, Rn;
9398
9399 Rd = inst.operands[2].reg;
9400 Rn = inst.operands[3].reg;
9401
9402 if (thumb_mode)
9403 {
9404 reject_bad_reg (Rd);
9405 reject_bad_reg (Rn);
9406 }
9407 else
9408 {
9409 constraint (Rd == REG_PC, BAD_PC);
9410 constraint (Rn == REG_PC, BAD_PC);
9411 }
9412
9413 /* Only check the MRRC{2} variants. */
9414 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9415 {
9416 /* If Rd == Rn, error that the operation is
9417 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9418 constraint (Rd == Rn, BAD_OVERLAP);
9419 }
9420
9421 inst.instruction |= inst.operands[0].reg << 8;
9422 inst.instruction |= inst.operands[1].imm << 4;
9423 inst.instruction |= Rd << 12;
9424 inst.instruction |= Rn << 16;
9425 inst.instruction |= inst.operands[4].reg;
9426 }
9427
9428 static void
9429 do_cpsi (void)
9430 {
9431 inst.instruction |= inst.operands[0].imm << 6;
9432 if (inst.operands[1].present)
9433 {
9434 inst.instruction |= CPSI_MMOD;
9435 inst.instruction |= inst.operands[1].imm;
9436 }
9437 }
9438
9439 static void
9440 do_dbg (void)
9441 {
9442 inst.instruction |= inst.operands[0].imm;
9443 }
9444
9445 static void
9446 do_div (void)
9447 {
9448 unsigned Rd, Rn, Rm;
9449
9450 Rd = inst.operands[0].reg;
9451 Rn = (inst.operands[1].present
9452 ? inst.operands[1].reg : Rd);
9453 Rm = inst.operands[2].reg;
9454
9455 constraint ((Rd == REG_PC), BAD_PC);
9456 constraint ((Rn == REG_PC), BAD_PC);
9457 constraint ((Rm == REG_PC), BAD_PC);
9458
9459 inst.instruction |= Rd << 16;
9460 inst.instruction |= Rn << 0;
9461 inst.instruction |= Rm << 8;
9462 }
9463
9464 static void
9465 do_it (void)
9466 {
9467 /* There is no IT instruction in ARM mode. We
9468 process it to do the validation as if in
9469 thumb mode, just in case the code gets
9470 assembled for thumb using the unified syntax. */
9471
9472 inst.size = 0;
9473 if (unified_syntax)
9474 {
9475 set_pred_insn_type (IT_INSN);
9476 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9477 now_pred.cc = inst.operands[0].imm;
9478 }
9479 }
9480
9481 /* If there is only one register in the register list,
9482 then return its register number. Otherwise return -1. */
9483 static int
9484 only_one_reg_in_list (int range)
9485 {
9486 int i = ffs (range) - 1;
9487 return (i > 15 || range != (1 << i)) ? -1 : i;
9488 }
9489
9490 static void
9491 encode_ldmstm(int from_push_pop_mnem)
9492 {
9493 int base_reg = inst.operands[0].reg;
9494 int range = inst.operands[1].imm;
9495 int one_reg;
9496
9497 inst.instruction |= base_reg << 16;
9498 inst.instruction |= range;
9499
9500 if (inst.operands[1].writeback)
9501 inst.instruction |= LDM_TYPE_2_OR_3;
9502
9503 if (inst.operands[0].writeback)
9504 {
9505 inst.instruction |= WRITE_BACK;
9506 /* Check for unpredictable uses of writeback. */
9507 if (inst.instruction & LOAD_BIT)
9508 {
9509 /* Not allowed in LDM type 2. */
9510 if ((inst.instruction & LDM_TYPE_2_OR_3)
9511 && ((range & (1 << REG_PC)) == 0))
9512 as_warn (_("writeback of base register is UNPREDICTABLE"));
9513 /* Only allowed if base reg not in list for other types. */
9514 else if (range & (1 << base_reg))
9515 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9516 }
9517 else /* STM. */
9518 {
9519 /* Not allowed for type 2. */
9520 if (inst.instruction & LDM_TYPE_2_OR_3)
9521 as_warn (_("writeback of base register is UNPREDICTABLE"));
9522 /* Only allowed if base reg not in list, or first in list. */
9523 else if ((range & (1 << base_reg))
9524 && (range & ((1 << base_reg) - 1)))
9525 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9526 }
9527 }
9528
9529 /* If PUSH/POP has only one register, then use the A2 encoding. */
9530 one_reg = only_one_reg_in_list (range);
9531 if (from_push_pop_mnem && one_reg >= 0)
9532 {
9533 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9534
9535 if (is_push && one_reg == 13 /* SP */)
9536 /* PR 22483: The A2 encoding cannot be used when
9537 pushing the stack pointer as this is UNPREDICTABLE. */
9538 return;
9539
9540 inst.instruction &= A_COND_MASK;
9541 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9542 inst.instruction |= one_reg << 12;
9543 }
9544 }
9545
9546 static void
9547 do_ldmstm (void)
9548 {
9549 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9550 }
9551
9552 /* ARMv5TE load-consecutive (argument parse)
9553 Mode is like LDRH.
9554
9555 LDRccD R, mode
9556 STRccD R, mode. */
9557
9558 static void
9559 do_ldrd (void)
9560 {
9561 constraint (inst.operands[0].reg % 2 != 0,
9562 _("first transfer register must be even"));
9563 constraint (inst.operands[1].present
9564 && inst.operands[1].reg != inst.operands[0].reg + 1,
9565 _("can only transfer two consecutive registers"));
9566 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9567 constraint (!inst.operands[2].isreg, _("'[' expected"));
9568
9569 if (!inst.operands[1].present)
9570 inst.operands[1].reg = inst.operands[0].reg + 1;
9571
9572 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9573 register and the first register written; we have to diagnose
9574 overlap between the base and the second register written here. */
9575
9576 if (inst.operands[2].reg == inst.operands[1].reg
9577 && (inst.operands[2].writeback || inst.operands[2].postind))
9578 as_warn (_("base register written back, and overlaps "
9579 "second transfer register"));
9580
9581 if (!(inst.instruction & V4_STR_BIT))
9582 {
9583 /* For an index-register load, the index register must not overlap the
9584 destination (even if not write-back). */
9585 if (inst.operands[2].immisreg
9586 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9587 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9588 as_warn (_("index register overlaps transfer register"));
9589 }
9590 inst.instruction |= inst.operands[0].reg << 12;
9591 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9592 }
9593
9594 static void
9595 do_ldrex (void)
9596 {
9597 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9598 || inst.operands[1].postind || inst.operands[1].writeback
9599 || inst.operands[1].immisreg || inst.operands[1].shifted
9600 || inst.operands[1].negative
9601 /* This can arise if the programmer has written
9602 strex rN, rM, foo
9603 or if they have mistakenly used a register name as the last
9604 operand, eg:
9605 strex rN, rM, rX
9606 It is very difficult to distinguish between these two cases
9607 because "rX" might actually be a label. ie the register
9608 name has been occluded by a symbol of the same name. So we
9609 just generate a general 'bad addressing mode' type error
9610 message and leave it up to the programmer to discover the
9611 true cause and fix their mistake. */
9612 || (inst.operands[1].reg == REG_PC),
9613 BAD_ADDR_MODE);
9614
9615 constraint (inst.relocs[0].exp.X_op != O_constant
9616 || inst.relocs[0].exp.X_add_number != 0,
9617 _("offset must be zero in ARM encoding"));
9618
9619 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9620
9621 inst.instruction |= inst.operands[0].reg << 12;
9622 inst.instruction |= inst.operands[1].reg << 16;
9623 inst.relocs[0].type = BFD_RELOC_UNUSED;
9624 }
9625
9626 static void
9627 do_ldrexd (void)
9628 {
9629 constraint (inst.operands[0].reg % 2 != 0,
9630 _("even register required"));
9631 constraint (inst.operands[1].present
9632 && inst.operands[1].reg != inst.operands[0].reg + 1,
9633 _("can only load two consecutive registers"));
9634 /* If op 1 were present and equal to PC, this function wouldn't
9635 have been called in the first place. */
9636 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9637
9638 inst.instruction |= inst.operands[0].reg << 12;
9639 inst.instruction |= inst.operands[2].reg << 16;
9640 }
9641
9642 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9643 which is not a multiple of four is UNPREDICTABLE. */
9644 static void
9645 check_ldr_r15_aligned (void)
9646 {
9647 constraint (!(inst.operands[1].immisreg)
9648 && (inst.operands[0].reg == REG_PC
9649 && inst.operands[1].reg == REG_PC
9650 && (inst.relocs[0].exp.X_add_number & 0x3)),
9651 _("ldr to register 15 must be 4-byte aligned"));
9652 }
9653
9654 static void
9655 do_ldst (void)
9656 {
9657 inst.instruction |= inst.operands[0].reg << 12;
9658 if (!inst.operands[1].isreg)
9659 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9660 return;
9661 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9662 check_ldr_r15_aligned ();
9663 }
9664
9665 static void
9666 do_ldstt (void)
9667 {
9668 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9669 reject [Rn,...]. */
9670 if (inst.operands[1].preind)
9671 {
9672 constraint (inst.relocs[0].exp.X_op != O_constant
9673 || inst.relocs[0].exp.X_add_number != 0,
9674 _("this instruction requires a post-indexed address"));
9675
9676 inst.operands[1].preind = 0;
9677 inst.operands[1].postind = 1;
9678 inst.operands[1].writeback = 1;
9679 }
9680 inst.instruction |= inst.operands[0].reg << 12;
9681 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9682 }
9683
9684 /* Halfword and signed-byte load/store operations. */
9685
9686 static void
9687 do_ldstv4 (void)
9688 {
9689 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9690 inst.instruction |= inst.operands[0].reg << 12;
9691 if (!inst.operands[1].isreg)
9692 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9693 return;
9694 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9695 }
9696
9697 static void
9698 do_ldsttv4 (void)
9699 {
9700 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9701 reject [Rn,...]. */
9702 if (inst.operands[1].preind)
9703 {
9704 constraint (inst.relocs[0].exp.X_op != O_constant
9705 || inst.relocs[0].exp.X_add_number != 0,
9706 _("this instruction requires a post-indexed address"));
9707
9708 inst.operands[1].preind = 0;
9709 inst.operands[1].postind = 1;
9710 inst.operands[1].writeback = 1;
9711 }
9712 inst.instruction |= inst.operands[0].reg << 12;
9713 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9714 }
9715
9716 /* Co-processor register load/store.
9717 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9718 static void
9719 do_lstc (void)
9720 {
9721 inst.instruction |= inst.operands[0].reg << 8;
9722 inst.instruction |= inst.operands[1].reg << 12;
9723 encode_arm_cp_address (2, TRUE, TRUE, 0);
9724 }
9725
9726 static void
9727 do_mlas (void)
9728 {
9729 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9730 if (inst.operands[0].reg == inst.operands[1].reg
9731 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9732 && !(inst.instruction & 0x00400000))
9733 as_tsktsk (_("Rd and Rm should be different in mla"));
9734
9735 inst.instruction |= inst.operands[0].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 inst.instruction |= inst.operands[2].reg << 8;
9738 inst.instruction |= inst.operands[3].reg << 12;
9739 }
9740
9741 static void
9742 do_mov (void)
9743 {
9744 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9745 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9746 THUMB1_RELOC_ONLY);
9747 inst.instruction |= inst.operands[0].reg << 12;
9748 encode_arm_shifter_operand (1);
9749 }
9750
9751 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9752 static void
9753 do_mov16 (void)
9754 {
9755 bfd_vma imm;
9756 bfd_boolean top;
9757
9758 top = (inst.instruction & 0x00400000) != 0;
9759 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9760 _(":lower16: not allowed in this instruction"));
9761 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9762 _(":upper16: not allowed in this instruction"));
9763 inst.instruction |= inst.operands[0].reg << 12;
9764 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9765 {
9766 imm = inst.relocs[0].exp.X_add_number;
9767 /* The value is in two pieces: 0:11, 16:19. */
9768 inst.instruction |= (imm & 0x00000fff);
9769 inst.instruction |= (imm & 0x0000f000) << 4;
9770 }
9771 }
9772
9773 static int
9774 do_vfp_nsyn_mrs (void)
9775 {
9776 if (inst.operands[0].isvec)
9777 {
9778 if (inst.operands[1].reg != 1)
9779 first_error (_("operand 1 must be FPSCR"));
9780 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9781 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9782 do_vfp_nsyn_opcode ("fmstat");
9783 }
9784 else if (inst.operands[1].isvec)
9785 do_vfp_nsyn_opcode ("fmrx");
9786 else
9787 return FAIL;
9788
9789 return SUCCESS;
9790 }
9791
9792 static int
9793 do_vfp_nsyn_msr (void)
9794 {
9795 if (inst.operands[0].isvec)
9796 do_vfp_nsyn_opcode ("fmxr");
9797 else
9798 return FAIL;
9799
9800 return SUCCESS;
9801 }
9802
9803 static void
9804 do_vmrs (void)
9805 {
9806 unsigned Rt = inst.operands[0].reg;
9807
9808 if (thumb_mode && Rt == REG_SP)
9809 {
9810 inst.error = BAD_SP;
9811 return;
9812 }
9813
9814 /* MVFR2 is only valid at ARMv8-A. */
9815 if (inst.operands[1].reg == 5)
9816 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9817 _(BAD_FPU));
9818
9819 /* APSR_ sets isvec. All other refs to PC are illegal. */
9820 if (!inst.operands[0].isvec && Rt == REG_PC)
9821 {
9822 inst.error = BAD_PC;
9823 return;
9824 }
9825
9826 /* If we get through parsing the register name, we just insert the number
9827 generated into the instruction without further validation. */
9828 inst.instruction |= (inst.operands[1].reg << 16);
9829 inst.instruction |= (Rt << 12);
9830 }
9831
9832 static void
9833 do_vmsr (void)
9834 {
9835 unsigned Rt = inst.operands[1].reg;
9836
9837 if (thumb_mode)
9838 reject_bad_reg (Rt);
9839 else if (Rt == REG_PC)
9840 {
9841 inst.error = BAD_PC;
9842 return;
9843 }
9844
9845 /* MVFR2 is only valid for ARMv8-A. */
9846 if (inst.operands[0].reg == 5)
9847 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9848 _(BAD_FPU));
9849
9850 /* If we get through parsing the register name, we just insert the number
9851 generated into the instruction without further validation. */
9852 inst.instruction |= (inst.operands[0].reg << 16);
9853 inst.instruction |= (Rt << 12);
9854 }
9855
9856 static void
9857 do_mrs (void)
9858 {
9859 unsigned br;
9860
9861 if (do_vfp_nsyn_mrs () == SUCCESS)
9862 return;
9863
9864 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9865 inst.instruction |= inst.operands[0].reg << 12;
9866
9867 if (inst.operands[1].isreg)
9868 {
9869 br = inst.operands[1].reg;
9870 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9871 as_bad (_("bad register for mrs"));
9872 }
9873 else
9874 {
9875 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9876 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9877 != (PSR_c|PSR_f),
9878 _("'APSR', 'CPSR' or 'SPSR' expected"));
9879 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9880 }
9881
9882 inst.instruction |= br;
9883 }
9884
9885 /* Two possible forms:
9886 "{C|S}PSR_<field>, Rm",
9887 "{C|S}PSR_f, #expression". */
9888
9889 static void
9890 do_msr (void)
9891 {
9892 if (do_vfp_nsyn_msr () == SUCCESS)
9893 return;
9894
9895 inst.instruction |= inst.operands[0].imm;
9896 if (inst.operands[1].isreg)
9897 inst.instruction |= inst.operands[1].reg;
9898 else
9899 {
9900 inst.instruction |= INST_IMMEDIATE;
9901 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9902 inst.relocs[0].pc_rel = 0;
9903 }
9904 }
9905
9906 static void
9907 do_mul (void)
9908 {
9909 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9910
9911 if (!inst.operands[2].present)
9912 inst.operands[2].reg = inst.operands[0].reg;
9913 inst.instruction |= inst.operands[0].reg << 16;
9914 inst.instruction |= inst.operands[1].reg;
9915 inst.instruction |= inst.operands[2].reg << 8;
9916
9917 if (inst.operands[0].reg == inst.operands[1].reg
9918 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9919 as_tsktsk (_("Rd and Rm should be different in mul"));
9920 }
9921
9922 /* Long Multiply Parser
9923 UMULL RdLo, RdHi, Rm, Rs
9924 SMULL RdLo, RdHi, Rm, Rs
9925 UMLAL RdLo, RdHi, Rm, Rs
9926 SMLAL RdLo, RdHi, Rm, Rs. */
9927
9928 static void
9929 do_mull (void)
9930 {
9931 inst.instruction |= inst.operands[0].reg << 12;
9932 inst.instruction |= inst.operands[1].reg << 16;
9933 inst.instruction |= inst.operands[2].reg;
9934 inst.instruction |= inst.operands[3].reg << 8;
9935
9936 /* rdhi and rdlo must be different. */
9937 if (inst.operands[0].reg == inst.operands[1].reg)
9938 as_tsktsk (_("rdhi and rdlo must be different"));
9939
9940 /* rdhi, rdlo and rm must all be different before armv6. */
9941 if ((inst.operands[0].reg == inst.operands[2].reg
9942 || inst.operands[1].reg == inst.operands[2].reg)
9943 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9944 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9945 }
9946
9947 static void
9948 do_nop (void)
9949 {
9950 if (inst.operands[0].present
9951 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9952 {
9953 /* Architectural NOP hints are CPSR sets with no bits selected. */
9954 inst.instruction &= 0xf0000000;
9955 inst.instruction |= 0x0320f000;
9956 if (inst.operands[0].present)
9957 inst.instruction |= inst.operands[0].imm;
9958 }
9959 }
9960
9961 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9962 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9963 Condition defaults to COND_ALWAYS.
9964 Error if Rd, Rn or Rm are R15. */
9965
9966 static void
9967 do_pkhbt (void)
9968 {
9969 inst.instruction |= inst.operands[0].reg << 12;
9970 inst.instruction |= inst.operands[1].reg << 16;
9971 inst.instruction |= inst.operands[2].reg;
9972 if (inst.operands[3].present)
9973 encode_arm_shift (3);
9974 }
9975
9976 /* ARM V6 PKHTB (Argument Parse). */
9977
9978 static void
9979 do_pkhtb (void)
9980 {
9981 if (!inst.operands[3].present)
9982 {
9983 /* If the shift specifier is omitted, turn the instruction
9984 into pkhbt rd, rm, rn. */
9985 inst.instruction &= 0xfff00010;
9986 inst.instruction |= inst.operands[0].reg << 12;
9987 inst.instruction |= inst.operands[1].reg;
9988 inst.instruction |= inst.operands[2].reg << 16;
9989 }
9990 else
9991 {
9992 inst.instruction |= inst.operands[0].reg << 12;
9993 inst.instruction |= inst.operands[1].reg << 16;
9994 inst.instruction |= inst.operands[2].reg;
9995 encode_arm_shift (3);
9996 }
9997 }
9998
9999 /* ARMv5TE: Preload-Cache
10000 MP Extensions: Preload for write
10001
10002 PLD(W) <addr_mode>
10003
10004 Syntactically, like LDR with B=1, W=0, L=1. */
10005
10006 static void
10007 do_pld (void)
10008 {
10009 constraint (!inst.operands[0].isreg,
10010 _("'[' expected after PLD mnemonic"));
10011 constraint (inst.operands[0].postind,
10012 _("post-indexed expression used in preload instruction"));
10013 constraint (inst.operands[0].writeback,
10014 _("writeback used in preload instruction"));
10015 constraint (!inst.operands[0].preind,
10016 _("unindexed addressing used in preload instruction"));
10017 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10018 }
10019
10020 /* ARMv7: PLI <addr_mode> */
10021 static void
10022 do_pli (void)
10023 {
10024 constraint (!inst.operands[0].isreg,
10025 _("'[' expected after PLI mnemonic"));
10026 constraint (inst.operands[0].postind,
10027 _("post-indexed expression used in preload instruction"));
10028 constraint (inst.operands[0].writeback,
10029 _("writeback used in preload instruction"));
10030 constraint (!inst.operands[0].preind,
10031 _("unindexed addressing used in preload instruction"));
10032 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
10033 inst.instruction &= ~PRE_INDEX;
10034 }
10035
10036 static void
10037 do_push_pop (void)
10038 {
10039 constraint (inst.operands[0].writeback,
10040 _("push/pop do not support {reglist}^"));
10041 inst.operands[1] = inst.operands[0];
10042 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10043 inst.operands[0].isreg = 1;
10044 inst.operands[0].writeback = 1;
10045 inst.operands[0].reg = REG_SP;
10046 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10047 }
10048
10049 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10050 word at the specified address and the following word
10051 respectively.
10052 Unconditionally executed.
10053 Error if Rn is R15. */
10054
10055 static void
10056 do_rfe (void)
10057 {
10058 inst.instruction |= inst.operands[0].reg << 16;
10059 if (inst.operands[0].writeback)
10060 inst.instruction |= WRITE_BACK;
10061 }
10062
10063 /* ARM V6 ssat (argument parse). */
10064
10065 static void
10066 do_ssat (void)
10067 {
10068 inst.instruction |= inst.operands[0].reg << 12;
10069 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10070 inst.instruction |= inst.operands[2].reg;
10071
10072 if (inst.operands[3].present)
10073 encode_arm_shift (3);
10074 }
10075
10076 /* ARM V6 usat (argument parse). */
10077
10078 static void
10079 do_usat (void)
10080 {
10081 inst.instruction |= inst.operands[0].reg << 12;
10082 inst.instruction |= inst.operands[1].imm << 16;
10083 inst.instruction |= inst.operands[2].reg;
10084
10085 if (inst.operands[3].present)
10086 encode_arm_shift (3);
10087 }
10088
10089 /* ARM V6 ssat16 (argument parse). */
10090
10091 static void
10092 do_ssat16 (void)
10093 {
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10096 inst.instruction |= inst.operands[2].reg;
10097 }
10098
10099 static void
10100 do_usat16 (void)
10101 {
10102 inst.instruction |= inst.operands[0].reg << 12;
10103 inst.instruction |= inst.operands[1].imm << 16;
10104 inst.instruction |= inst.operands[2].reg;
10105 }
10106
10107 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10108 preserving the other bits.
10109
10110 setend <endian_specifier>, where <endian_specifier> is either
10111 BE or LE. */
10112
10113 static void
10114 do_setend (void)
10115 {
10116 if (warn_on_deprecated
10117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10118 as_tsktsk (_("setend use is deprecated for ARMv8"));
10119
10120 if (inst.operands[0].imm)
10121 inst.instruction |= 0x200;
10122 }
10123
10124 static void
10125 do_shift (void)
10126 {
10127 unsigned int Rm = (inst.operands[1].present
10128 ? inst.operands[1].reg
10129 : inst.operands[0].reg);
10130
10131 inst.instruction |= inst.operands[0].reg << 12;
10132 inst.instruction |= Rm;
10133 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10134 {
10135 inst.instruction |= inst.operands[2].reg << 8;
10136 inst.instruction |= SHIFT_BY_REG;
10137 /* PR 12854: Error on extraneous shifts. */
10138 constraint (inst.operands[2].shifted,
10139 _("extraneous shift as part of operand to shift insn"));
10140 }
10141 else
10142 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10143 }
10144
10145 static void
10146 do_smc (void)
10147 {
10148 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10149 inst.relocs[0].pc_rel = 0;
10150 }
10151
10152 static void
10153 do_hvc (void)
10154 {
10155 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10156 inst.relocs[0].pc_rel = 0;
10157 }
10158
10159 static void
10160 do_swi (void)
10161 {
10162 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10163 inst.relocs[0].pc_rel = 0;
10164 }
10165
10166 static void
10167 do_setpan (void)
10168 {
10169 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10170 _("selected processor does not support SETPAN instruction"));
10171
10172 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10173 }
10174
10175 static void
10176 do_t_setpan (void)
10177 {
10178 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10179 _("selected processor does not support SETPAN instruction"));
10180
10181 inst.instruction |= (inst.operands[0].imm << 3);
10182 }
10183
10184 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10185 SMLAxy{cond} Rd,Rm,Rs,Rn
10186 SMLAWy{cond} Rd,Rm,Rs,Rn
10187 Error if any register is R15. */
10188
10189 static void
10190 do_smla (void)
10191 {
10192 inst.instruction |= inst.operands[0].reg << 16;
10193 inst.instruction |= inst.operands[1].reg;
10194 inst.instruction |= inst.operands[2].reg << 8;
10195 inst.instruction |= inst.operands[3].reg << 12;
10196 }
10197
10198 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10199 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10200 Error if any register is R15.
10201 Warning if Rdlo == Rdhi. */
10202
10203 static void
10204 do_smlal (void)
10205 {
10206 inst.instruction |= inst.operands[0].reg << 12;
10207 inst.instruction |= inst.operands[1].reg << 16;
10208 inst.instruction |= inst.operands[2].reg;
10209 inst.instruction |= inst.operands[3].reg << 8;
10210
10211 if (inst.operands[0].reg == inst.operands[1].reg)
10212 as_tsktsk (_("rdhi and rdlo must be different"));
10213 }
10214
10215 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10216 SMULxy{cond} Rd,Rm,Rs
10217 Error if any register is R15. */
10218
10219 static void
10220 do_smul (void)
10221 {
10222 inst.instruction |= inst.operands[0].reg << 16;
10223 inst.instruction |= inst.operands[1].reg;
10224 inst.instruction |= inst.operands[2].reg << 8;
10225 }
10226
10227 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10228 the same for both ARM and Thumb-2. */
10229
10230 static void
10231 do_srs (void)
10232 {
10233 int reg;
10234
10235 if (inst.operands[0].present)
10236 {
10237 reg = inst.operands[0].reg;
10238 constraint (reg != REG_SP, _("SRS base register must be r13"));
10239 }
10240 else
10241 reg = REG_SP;
10242
10243 inst.instruction |= reg << 16;
10244 inst.instruction |= inst.operands[1].imm;
10245 if (inst.operands[0].writeback || inst.operands[1].writeback)
10246 inst.instruction |= WRITE_BACK;
10247 }
10248
10249 /* ARM V6 strex (argument parse). */
10250
10251 static void
10252 do_strex (void)
10253 {
10254 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10255 || inst.operands[2].postind || inst.operands[2].writeback
10256 || inst.operands[2].immisreg || inst.operands[2].shifted
10257 || inst.operands[2].negative
10258 /* See comment in do_ldrex(). */
10259 || (inst.operands[2].reg == REG_PC),
10260 BAD_ADDR_MODE);
10261
10262 constraint (inst.operands[0].reg == inst.operands[1].reg
10263 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10264
10265 constraint (inst.relocs[0].exp.X_op != O_constant
10266 || inst.relocs[0].exp.X_add_number != 0,
10267 _("offset must be zero in ARM encoding"));
10268
10269 inst.instruction |= inst.operands[0].reg << 12;
10270 inst.instruction |= inst.operands[1].reg;
10271 inst.instruction |= inst.operands[2].reg << 16;
10272 inst.relocs[0].type = BFD_RELOC_UNUSED;
10273 }
10274
10275 static void
10276 do_t_strexbh (void)
10277 {
10278 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10279 || inst.operands[2].postind || inst.operands[2].writeback
10280 || inst.operands[2].immisreg || inst.operands[2].shifted
10281 || inst.operands[2].negative,
10282 BAD_ADDR_MODE);
10283
10284 constraint (inst.operands[0].reg == inst.operands[1].reg
10285 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10286
10287 do_rm_rd_rn ();
10288 }
10289
10290 static void
10291 do_strexd (void)
10292 {
10293 constraint (inst.operands[1].reg % 2 != 0,
10294 _("even register required"));
10295 constraint (inst.operands[2].present
10296 && inst.operands[2].reg != inst.operands[1].reg + 1,
10297 _("can only store two consecutive registers"));
10298 /* If op 2 were present and equal to PC, this function wouldn't
10299 have been called in the first place. */
10300 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10301
10302 constraint (inst.operands[0].reg == inst.operands[1].reg
10303 || inst.operands[0].reg == inst.operands[1].reg + 1
10304 || inst.operands[0].reg == inst.operands[3].reg,
10305 BAD_OVERLAP);
10306
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg;
10309 inst.instruction |= inst.operands[3].reg << 16;
10310 }
10311
10312 /* ARM V8 STRL. */
10313 static void
10314 do_stlex (void)
10315 {
10316 constraint (inst.operands[0].reg == inst.operands[1].reg
10317 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10318
10319 do_rd_rm_rn ();
10320 }
10321
10322 static void
10323 do_t_stlex (void)
10324 {
10325 constraint (inst.operands[0].reg == inst.operands[1].reg
10326 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10327
10328 do_rm_rd_rn ();
10329 }
10330
10331 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10332 extends it to 32-bits, and adds the result to a value in another
10333 register. You can specify a rotation by 0, 8, 16, or 24 bits
10334 before extracting the 16-bit value.
10335 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10336 Condition defaults to COND_ALWAYS.
10337 Error if any register uses R15. */
10338
10339 static void
10340 do_sxtah (void)
10341 {
10342 inst.instruction |= inst.operands[0].reg << 12;
10343 inst.instruction |= inst.operands[1].reg << 16;
10344 inst.instruction |= inst.operands[2].reg;
10345 inst.instruction |= inst.operands[3].imm << 10;
10346 }
10347
10348 /* ARM V6 SXTH.
10349
10350 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10351 Condition defaults to COND_ALWAYS.
10352 Error if any register uses R15. */
10353
10354 static void
10355 do_sxth (void)
10356 {
10357 inst.instruction |= inst.operands[0].reg << 12;
10358 inst.instruction |= inst.operands[1].reg;
10359 inst.instruction |= inst.operands[2].imm << 10;
10360 }
10361 \f
10362 /* VFP instructions. In a logical order: SP variant first, monad
10363 before dyad, arithmetic then move then load/store. */
10364
10365 static void
10366 do_vfp_sp_monadic (void)
10367 {
10368 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10369 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10370 _(BAD_FPU));
10371
10372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10373 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10374 }
10375
10376 static void
10377 do_vfp_sp_dyadic (void)
10378 {
10379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10380 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10381 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10382 }
10383
10384 static void
10385 do_vfp_sp_compare_z (void)
10386 {
10387 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10388 }
10389
10390 static void
10391 do_vfp_dp_sp_cvt (void)
10392 {
10393 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10394 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10395 }
10396
10397 static void
10398 do_vfp_sp_dp_cvt (void)
10399 {
10400 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10401 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10402 }
10403
10404 static void
10405 do_vfp_reg_from_sp (void)
10406 {
10407 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10408 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10409 _(BAD_FPU));
10410
10411 inst.instruction |= inst.operands[0].reg << 12;
10412 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10413 }
10414
10415 static void
10416 do_vfp_reg2_from_sp2 (void)
10417 {
10418 constraint (inst.operands[2].imm != 2,
10419 _("only two consecutive VFP SP registers allowed here"));
10420 inst.instruction |= inst.operands[0].reg << 12;
10421 inst.instruction |= inst.operands[1].reg << 16;
10422 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10423 }
10424
10425 static void
10426 do_vfp_sp_from_reg (void)
10427 {
10428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10429 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10430 _(BAD_FPU));
10431
10432 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10433 inst.instruction |= inst.operands[1].reg << 12;
10434 }
10435
10436 static void
10437 do_vfp_sp2_from_reg2 (void)
10438 {
10439 constraint (inst.operands[0].imm != 2,
10440 _("only two consecutive VFP SP registers allowed here"));
10441 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10442 inst.instruction |= inst.operands[1].reg << 12;
10443 inst.instruction |= inst.operands[2].reg << 16;
10444 }
10445
10446 static void
10447 do_vfp_sp_ldst (void)
10448 {
10449 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10450 encode_arm_cp_address (1, FALSE, TRUE, 0);
10451 }
10452
10453 static void
10454 do_vfp_dp_ldst (void)
10455 {
10456 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10457 encode_arm_cp_address (1, FALSE, TRUE, 0);
10458 }
10459
10460
10461 static void
10462 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10463 {
10464 if (inst.operands[0].writeback)
10465 inst.instruction |= WRITE_BACK;
10466 else
10467 constraint (ldstm_type != VFP_LDSTMIA,
10468 _("this addressing mode requires base-register writeback"));
10469 inst.instruction |= inst.operands[0].reg << 16;
10470 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10471 inst.instruction |= inst.operands[1].imm;
10472 }
10473
10474 static void
10475 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10476 {
10477 int count;
10478
10479 if (inst.operands[0].writeback)
10480 inst.instruction |= WRITE_BACK;
10481 else
10482 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10483 _("this addressing mode requires base-register writeback"));
10484
10485 inst.instruction |= inst.operands[0].reg << 16;
10486 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10487
10488 count = inst.operands[1].imm << 1;
10489 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10490 count += 1;
10491
10492 inst.instruction |= count;
10493 }
10494
10495 static void
10496 do_vfp_sp_ldstmia (void)
10497 {
10498 vfp_sp_ldstm (VFP_LDSTMIA);
10499 }
10500
10501 static void
10502 do_vfp_sp_ldstmdb (void)
10503 {
10504 vfp_sp_ldstm (VFP_LDSTMDB);
10505 }
10506
10507 static void
10508 do_vfp_dp_ldstmia (void)
10509 {
10510 vfp_dp_ldstm (VFP_LDSTMIA);
10511 }
10512
10513 static void
10514 do_vfp_dp_ldstmdb (void)
10515 {
10516 vfp_dp_ldstm (VFP_LDSTMDB);
10517 }
10518
10519 static void
10520 do_vfp_xp_ldstmia (void)
10521 {
10522 vfp_dp_ldstm (VFP_LDSTMIAX);
10523 }
10524
10525 static void
10526 do_vfp_xp_ldstmdb (void)
10527 {
10528 vfp_dp_ldstm (VFP_LDSTMDBX);
10529 }
10530
10531 static void
10532 do_vfp_dp_rd_rm (void)
10533 {
10534 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10535 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10536 _(BAD_FPU));
10537
10538 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10539 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10540 }
10541
10542 static void
10543 do_vfp_dp_rn_rd (void)
10544 {
10545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10546 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10547 }
10548
10549 static void
10550 do_vfp_dp_rd_rn (void)
10551 {
10552 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10553 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10554 }
10555
10556 static void
10557 do_vfp_dp_rd_rn_rm (void)
10558 {
10559 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10560 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10561 _(BAD_FPU));
10562
10563 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10564 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10565 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10566 }
10567
10568 static void
10569 do_vfp_dp_rd (void)
10570 {
10571 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10572 }
10573
10574 static void
10575 do_vfp_dp_rm_rd_rn (void)
10576 {
10577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10578 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10579 _(BAD_FPU));
10580
10581 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10582 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10583 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10584 }
10585
10586 /* VFPv3 instructions. */
10587 static void
10588 do_vfp_sp_const (void)
10589 {
10590 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10591 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10592 inst.instruction |= (inst.operands[1].imm & 0x0f);
10593 }
10594
10595 static void
10596 do_vfp_dp_const (void)
10597 {
10598 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10599 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10600 inst.instruction |= (inst.operands[1].imm & 0x0f);
10601 }
10602
10603 static void
10604 vfp_conv (int srcsize)
10605 {
10606 int immbits = srcsize - inst.operands[1].imm;
10607
10608 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10609 {
10610 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10611 i.e. immbits must be in range 0 - 16. */
10612 inst.error = _("immediate value out of range, expected range [0, 16]");
10613 return;
10614 }
10615 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10616 {
10617 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10618 i.e. immbits must be in range 0 - 31. */
10619 inst.error = _("immediate value out of range, expected range [1, 32]");
10620 return;
10621 }
10622
10623 inst.instruction |= (immbits & 1) << 5;
10624 inst.instruction |= (immbits >> 1);
10625 }
10626
10627 static void
10628 do_vfp_sp_conv_16 (void)
10629 {
10630 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10631 vfp_conv (16);
10632 }
10633
10634 static void
10635 do_vfp_dp_conv_16 (void)
10636 {
10637 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10638 vfp_conv (16);
10639 }
10640
10641 static void
10642 do_vfp_sp_conv_32 (void)
10643 {
10644 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10645 vfp_conv (32);
10646 }
10647
10648 static void
10649 do_vfp_dp_conv_32 (void)
10650 {
10651 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10652 vfp_conv (32);
10653 }
10654 \f
10655 /* FPA instructions. Also in a logical order. */
10656
10657 static void
10658 do_fpa_cmp (void)
10659 {
10660 inst.instruction |= inst.operands[0].reg << 16;
10661 inst.instruction |= inst.operands[1].reg;
10662 }
10663
10664 static void
10665 do_fpa_ldmstm (void)
10666 {
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 switch (inst.operands[1].imm)
10669 {
10670 case 1: inst.instruction |= CP_T_X; break;
10671 case 2: inst.instruction |= CP_T_Y; break;
10672 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10673 case 4: break;
10674 default: abort ();
10675 }
10676
10677 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10678 {
10679 /* The instruction specified "ea" or "fd", so we can only accept
10680 [Rn]{!}. The instruction does not really support stacking or
10681 unstacking, so we have to emulate these by setting appropriate
10682 bits and offsets. */
10683 constraint (inst.relocs[0].exp.X_op != O_constant
10684 || inst.relocs[0].exp.X_add_number != 0,
10685 _("this instruction does not support indexing"));
10686
10687 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10688 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10689
10690 if (!(inst.instruction & INDEX_UP))
10691 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10692
10693 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10694 {
10695 inst.operands[2].preind = 0;
10696 inst.operands[2].postind = 1;
10697 }
10698 }
10699
10700 encode_arm_cp_address (2, TRUE, TRUE, 0);
10701 }
10702 \f
10703 /* iWMMXt instructions: strictly in alphabetical order. */
10704
10705 static void
10706 do_iwmmxt_tandorc (void)
10707 {
10708 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10709 }
10710
10711 static void
10712 do_iwmmxt_textrc (void)
10713 {
10714 inst.instruction |= inst.operands[0].reg << 12;
10715 inst.instruction |= inst.operands[1].imm;
10716 }
10717
10718 static void
10719 do_iwmmxt_textrm (void)
10720 {
10721 inst.instruction |= inst.operands[0].reg << 12;
10722 inst.instruction |= inst.operands[1].reg << 16;
10723 inst.instruction |= inst.operands[2].imm;
10724 }
10725
10726 static void
10727 do_iwmmxt_tinsr (void)
10728 {
10729 inst.instruction |= inst.operands[0].reg << 16;
10730 inst.instruction |= inst.operands[1].reg << 12;
10731 inst.instruction |= inst.operands[2].imm;
10732 }
10733
10734 static void
10735 do_iwmmxt_tmia (void)
10736 {
10737 inst.instruction |= inst.operands[0].reg << 5;
10738 inst.instruction |= inst.operands[1].reg;
10739 inst.instruction |= inst.operands[2].reg << 12;
10740 }
10741
10742 static void
10743 do_iwmmxt_waligni (void)
10744 {
10745 inst.instruction |= inst.operands[0].reg << 12;
10746 inst.instruction |= inst.operands[1].reg << 16;
10747 inst.instruction |= inst.operands[2].reg;
10748 inst.instruction |= inst.operands[3].imm << 20;
10749 }
10750
10751 static void
10752 do_iwmmxt_wmerge (void)
10753 {
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 inst.instruction |= inst.operands[1].reg << 16;
10756 inst.instruction |= inst.operands[2].reg;
10757 inst.instruction |= inst.operands[3].imm << 21;
10758 }
10759
10760 static void
10761 do_iwmmxt_wmov (void)
10762 {
10763 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10764 inst.instruction |= inst.operands[0].reg << 12;
10765 inst.instruction |= inst.operands[1].reg << 16;
10766 inst.instruction |= inst.operands[1].reg;
10767 }
10768
10769 static void
10770 do_iwmmxt_wldstbh (void)
10771 {
10772 int reloc;
10773 inst.instruction |= inst.operands[0].reg << 12;
10774 if (thumb_mode)
10775 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10776 else
10777 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10778 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10779 }
10780
10781 static void
10782 do_iwmmxt_wldstw (void)
10783 {
10784 /* RIWR_RIWC clears .isreg for a control register. */
10785 if (!inst.operands[0].isreg)
10786 {
10787 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10788 inst.instruction |= 0xf0000000;
10789 }
10790
10791 inst.instruction |= inst.operands[0].reg << 12;
10792 encode_arm_cp_address (1, TRUE, TRUE, 0);
10793 }
10794
10795 static void
10796 do_iwmmxt_wldstd (void)
10797 {
10798 inst.instruction |= inst.operands[0].reg << 12;
10799 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10800 && inst.operands[1].immisreg)
10801 {
10802 inst.instruction &= ~0x1a000ff;
10803 inst.instruction |= (0xfU << 28);
10804 if (inst.operands[1].preind)
10805 inst.instruction |= PRE_INDEX;
10806 if (!inst.operands[1].negative)
10807 inst.instruction |= INDEX_UP;
10808 if (inst.operands[1].writeback)
10809 inst.instruction |= WRITE_BACK;
10810 inst.instruction |= inst.operands[1].reg << 16;
10811 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10812 inst.instruction |= inst.operands[1].imm;
10813 }
10814 else
10815 encode_arm_cp_address (1, TRUE, FALSE, 0);
10816 }
10817
10818 static void
10819 do_iwmmxt_wshufh (void)
10820 {
10821 inst.instruction |= inst.operands[0].reg << 12;
10822 inst.instruction |= inst.operands[1].reg << 16;
10823 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10824 inst.instruction |= (inst.operands[2].imm & 0x0f);
10825 }
10826
10827 static void
10828 do_iwmmxt_wzero (void)
10829 {
10830 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10831 inst.instruction |= inst.operands[0].reg;
10832 inst.instruction |= inst.operands[0].reg << 12;
10833 inst.instruction |= inst.operands[0].reg << 16;
10834 }
10835
10836 static void
10837 do_iwmmxt_wrwrwr_or_imm5 (void)
10838 {
10839 if (inst.operands[2].isreg)
10840 do_rd_rn_rm ();
10841 else {
10842 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10843 _("immediate operand requires iWMMXt2"));
10844 do_rd_rn ();
10845 if (inst.operands[2].imm == 0)
10846 {
10847 switch ((inst.instruction >> 20) & 0xf)
10848 {
10849 case 4:
10850 case 5:
10851 case 6:
10852 case 7:
10853 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10854 inst.operands[2].imm = 16;
10855 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10856 break;
10857 case 8:
10858 case 9:
10859 case 10:
10860 case 11:
10861 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10862 inst.operands[2].imm = 32;
10863 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10864 break;
10865 case 12:
10866 case 13:
10867 case 14:
10868 case 15:
10869 {
10870 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10871 unsigned long wrn;
10872 wrn = (inst.instruction >> 16) & 0xf;
10873 inst.instruction &= 0xff0fff0f;
10874 inst.instruction |= wrn;
10875 /* Bail out here; the instruction is now assembled. */
10876 return;
10877 }
10878 }
10879 }
10880 /* Map 32 -> 0, etc. */
10881 inst.operands[2].imm &= 0x1f;
10882 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10883 }
10884 }
10885 \f
10886 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10887 operations first, then control, shift, and load/store. */
10888
10889 /* Insns like "foo X,Y,Z". */
10890
10891 static void
10892 do_mav_triple (void)
10893 {
10894 inst.instruction |= inst.operands[0].reg << 16;
10895 inst.instruction |= inst.operands[1].reg;
10896 inst.instruction |= inst.operands[2].reg << 12;
10897 }
10898
10899 /* Insns like "foo W,X,Y,Z".
10900 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10901
10902 static void
10903 do_mav_quad (void)
10904 {
10905 inst.instruction |= inst.operands[0].reg << 5;
10906 inst.instruction |= inst.operands[1].reg << 12;
10907 inst.instruction |= inst.operands[2].reg << 16;
10908 inst.instruction |= inst.operands[3].reg;
10909 }
10910
10911 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10912 static void
10913 do_mav_dspsc (void)
10914 {
10915 inst.instruction |= inst.operands[1].reg << 12;
10916 }
10917
10918 /* Maverick shift immediate instructions.
10919 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10920 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10921
10922 static void
10923 do_mav_shift (void)
10924 {
10925 int imm = inst.operands[2].imm;
10926
10927 inst.instruction |= inst.operands[0].reg << 12;
10928 inst.instruction |= inst.operands[1].reg << 16;
10929
10930 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10931 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10932 Bit 4 should be 0. */
10933 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10934
10935 inst.instruction |= imm;
10936 }
10937 \f
10938 /* XScale instructions. Also sorted arithmetic before move. */
10939
10940 /* Xscale multiply-accumulate (argument parse)
10941 MIAcc acc0,Rm,Rs
10942 MIAPHcc acc0,Rm,Rs
10943 MIAxycc acc0,Rm,Rs. */
10944
10945 static void
10946 do_xsc_mia (void)
10947 {
10948 inst.instruction |= inst.operands[1].reg;
10949 inst.instruction |= inst.operands[2].reg << 12;
10950 }
10951
10952 /* Xscale move-accumulator-register (argument parse)
10953
10954 MARcc acc0,RdLo,RdHi. */
10955
10956 static void
10957 do_xsc_mar (void)
10958 {
10959 inst.instruction |= inst.operands[1].reg << 12;
10960 inst.instruction |= inst.operands[2].reg << 16;
10961 }
10962
10963 /* Xscale move-register-accumulator (argument parse)
10964
10965 MRAcc RdLo,RdHi,acc0. */
10966
10967 static void
10968 do_xsc_mra (void)
10969 {
10970 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10971 inst.instruction |= inst.operands[0].reg << 12;
10972 inst.instruction |= inst.operands[1].reg << 16;
10973 }
10974 \f
10975 /* Encoding functions relevant only to Thumb. */
10976
10977 /* inst.operands[i] is a shifted-register operand; encode
10978 it into inst.instruction in the format used by Thumb32. */
10979
10980 static void
10981 encode_thumb32_shifted_operand (int i)
10982 {
10983 unsigned int value = inst.relocs[0].exp.X_add_number;
10984 unsigned int shift = inst.operands[i].shift_kind;
10985
10986 constraint (inst.operands[i].immisreg,
10987 _("shift by register not allowed in thumb mode"));
10988 inst.instruction |= inst.operands[i].reg;
10989 if (shift == SHIFT_RRX)
10990 inst.instruction |= SHIFT_ROR << 4;
10991 else
10992 {
10993 constraint (inst.relocs[0].exp.X_op != O_constant,
10994 _("expression too complex"));
10995
10996 constraint (value > 32
10997 || (value == 32 && (shift == SHIFT_LSL
10998 || shift == SHIFT_ROR)),
10999 _("shift expression is too large"));
11000
11001 if (value == 0)
11002 shift = SHIFT_LSL;
11003 else if (value == 32)
11004 value = 0;
11005
11006 inst.instruction |= shift << 4;
11007 inst.instruction |= (value & 0x1c) << 10;
11008 inst.instruction |= (value & 0x03) << 6;
11009 }
11010 }
11011
11012
11013 /* inst.operands[i] was set up by parse_address. Encode it into a
11014 Thumb32 format load or store instruction. Reject forms that cannot
11015 be used with such instructions. If is_t is true, reject forms that
11016 cannot be used with a T instruction; if is_d is true, reject forms
11017 that cannot be used with a D instruction. If it is a store insn,
11018 reject PC in Rn. */
11019
11020 static void
11021 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
11022 {
11023 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
11024
11025 constraint (!inst.operands[i].isreg,
11026 _("Instruction does not support =N addresses"));
11027
11028 inst.instruction |= inst.operands[i].reg << 16;
11029 if (inst.operands[i].immisreg)
11030 {
11031 constraint (is_pc, BAD_PC_ADDRESSING);
11032 constraint (is_t || is_d, _("cannot use register index with this instruction"));
11033 constraint (inst.operands[i].negative,
11034 _("Thumb does not support negative register indexing"));
11035 constraint (inst.operands[i].postind,
11036 _("Thumb does not support register post-indexing"));
11037 constraint (inst.operands[i].writeback,
11038 _("Thumb does not support register indexing with writeback"));
11039 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11040 _("Thumb supports only LSL in shifted register indexing"));
11041
11042 inst.instruction |= inst.operands[i].imm;
11043 if (inst.operands[i].shifted)
11044 {
11045 constraint (inst.relocs[0].exp.X_op != O_constant,
11046 _("expression too complex"));
11047 constraint (inst.relocs[0].exp.X_add_number < 0
11048 || inst.relocs[0].exp.X_add_number > 3,
11049 _("shift out of range"));
11050 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11051 }
11052 inst.relocs[0].type = BFD_RELOC_UNUSED;
11053 }
11054 else if (inst.operands[i].preind)
11055 {
11056 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11057 constraint (is_t && inst.operands[i].writeback,
11058 _("cannot use writeback with this instruction"));
11059 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11060 BAD_PC_ADDRESSING);
11061
11062 if (is_d)
11063 {
11064 inst.instruction |= 0x01000000;
11065 if (inst.operands[i].writeback)
11066 inst.instruction |= 0x00200000;
11067 }
11068 else
11069 {
11070 inst.instruction |= 0x00000c00;
11071 if (inst.operands[i].writeback)
11072 inst.instruction |= 0x00000100;
11073 }
11074 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11075 }
11076 else if (inst.operands[i].postind)
11077 {
11078 gas_assert (inst.operands[i].writeback);
11079 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11080 constraint (is_t, _("cannot use post-indexing with this instruction"));
11081
11082 if (is_d)
11083 inst.instruction |= 0x00200000;
11084 else
11085 inst.instruction |= 0x00000900;
11086 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11087 }
11088 else /* unindexed - only for coprocessor */
11089 inst.error = _("instruction does not accept unindexed addressing");
11090 }
11091
11092 /* Table of Thumb instructions which exist in both 16- and 32-bit
11093 encodings (the latter only in post-V6T2 cores). The index is the
11094 value used in the insns table below. When there is more than one
11095 possible 16-bit encoding for the instruction, this table always
11096 holds variant (1).
11097 Also contains several pseudo-instructions used during relaxation. */
11098 #define T16_32_TAB \
11099 X(_adc, 4140, eb400000), \
11100 X(_adcs, 4140, eb500000), \
11101 X(_add, 1c00, eb000000), \
11102 X(_adds, 1c00, eb100000), \
11103 X(_addi, 0000, f1000000), \
11104 X(_addis, 0000, f1100000), \
11105 X(_add_pc,000f, f20f0000), \
11106 X(_add_sp,000d, f10d0000), \
11107 X(_adr, 000f, f20f0000), \
11108 X(_and, 4000, ea000000), \
11109 X(_ands, 4000, ea100000), \
11110 X(_asr, 1000, fa40f000), \
11111 X(_asrs, 1000, fa50f000), \
11112 X(_b, e000, f000b000), \
11113 X(_bcond, d000, f0008000), \
11114 X(_bf, 0000, f040e001), \
11115 X(_bfcsel,0000, f000e001), \
11116 X(_bfx, 0000, f060e001), \
11117 X(_bfl, 0000, f000c001), \
11118 X(_bflx, 0000, f070e001), \
11119 X(_bic, 4380, ea200000), \
11120 X(_bics, 4380, ea300000), \
11121 X(_cmn, 42c0, eb100f00), \
11122 X(_cmp, 2800, ebb00f00), \
11123 X(_cpsie, b660, f3af8400), \
11124 X(_cpsid, b670, f3af8600), \
11125 X(_cpy, 4600, ea4f0000), \
11126 X(_dec_sp,80dd, f1ad0d00), \
11127 X(_dls, 0000, f040e001), \
11128 X(_eor, 4040, ea800000), \
11129 X(_eors, 4040, ea900000), \
11130 X(_inc_sp,00dd, f10d0d00), \
11131 X(_ldmia, c800, e8900000), \
11132 X(_ldr, 6800, f8500000), \
11133 X(_ldrb, 7800, f8100000), \
11134 X(_ldrh, 8800, f8300000), \
11135 X(_ldrsb, 5600, f9100000), \
11136 X(_ldrsh, 5e00, f9300000), \
11137 X(_ldr_pc,4800, f85f0000), \
11138 X(_ldr_pc2,4800, f85f0000), \
11139 X(_ldr_sp,9800, f85d0000), \
11140 X(_le, 0000, f00fc001), \
11141 X(_lsl, 0000, fa00f000), \
11142 X(_lsls, 0000, fa10f000), \
11143 X(_lsr, 0800, fa20f000), \
11144 X(_lsrs, 0800, fa30f000), \
11145 X(_mov, 2000, ea4f0000), \
11146 X(_movs, 2000, ea5f0000), \
11147 X(_mul, 4340, fb00f000), \
11148 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11149 X(_mvn, 43c0, ea6f0000), \
11150 X(_mvns, 43c0, ea7f0000), \
11151 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11152 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11153 X(_orr, 4300, ea400000), \
11154 X(_orrs, 4300, ea500000), \
11155 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11156 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11157 X(_rev, ba00, fa90f080), \
11158 X(_rev16, ba40, fa90f090), \
11159 X(_revsh, bac0, fa90f0b0), \
11160 X(_ror, 41c0, fa60f000), \
11161 X(_rors, 41c0, fa70f000), \
11162 X(_sbc, 4180, eb600000), \
11163 X(_sbcs, 4180, eb700000), \
11164 X(_stmia, c000, e8800000), \
11165 X(_str, 6000, f8400000), \
11166 X(_strb, 7000, f8000000), \
11167 X(_strh, 8000, f8200000), \
11168 X(_str_sp,9000, f84d0000), \
11169 X(_sub, 1e00, eba00000), \
11170 X(_subs, 1e00, ebb00000), \
11171 X(_subi, 8000, f1a00000), \
11172 X(_subis, 8000, f1b00000), \
11173 X(_sxtb, b240, fa4ff080), \
11174 X(_sxth, b200, fa0ff080), \
11175 X(_tst, 4200, ea100f00), \
11176 X(_uxtb, b2c0, fa5ff080), \
11177 X(_uxth, b280, fa1ff080), \
11178 X(_nop, bf00, f3af8000), \
11179 X(_yield, bf10, f3af8001), \
11180 X(_wfe, bf20, f3af8002), \
11181 X(_wfi, bf30, f3af8003), \
11182 X(_wls, 0000, f040c001), \
11183 X(_sev, bf40, f3af8004), \
11184 X(_sevl, bf50, f3af8005), \
11185 X(_udf, de00, f7f0a000)
11186
11187 /* To catch errors in encoding functions, the codes are all offset by
11188 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11189 as 16-bit instructions. */
11190 #define X(a,b,c) T_MNEM##a
11191 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11192 #undef X
11193
11194 #define X(a,b,c) 0x##b
11195 static const unsigned short thumb_op16[] = { T16_32_TAB };
11196 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11197 #undef X
11198
11199 #define X(a,b,c) 0x##c
11200 static const unsigned int thumb_op32[] = { T16_32_TAB };
11201 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11202 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11203 #undef X
11204 #undef T16_32_TAB
11205
11206 /* Thumb instruction encoders, in alphabetical order. */
11207
11208 /* ADDW or SUBW. */
11209
11210 static void
11211 do_t_add_sub_w (void)
11212 {
11213 int Rd, Rn;
11214
11215 Rd = inst.operands[0].reg;
11216 Rn = inst.operands[1].reg;
11217
11218 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11219 is the SP-{plus,minus}-immediate form of the instruction. */
11220 if (Rn == REG_SP)
11221 constraint (Rd == REG_PC, BAD_PC);
11222 else
11223 reject_bad_reg (Rd);
11224
11225 inst.instruction |= (Rn << 16) | (Rd << 8);
11226 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11227 }
11228
11229 /* Parse an add or subtract instruction. We get here with inst.instruction
11230 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11231
11232 static void
11233 do_t_add_sub (void)
11234 {
11235 int Rd, Rs, Rn;
11236
11237 Rd = inst.operands[0].reg;
11238 Rs = (inst.operands[1].present
11239 ? inst.operands[1].reg /* Rd, Rs, foo */
11240 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11241
11242 if (Rd == REG_PC)
11243 set_pred_insn_type_last ();
11244
11245 if (unified_syntax)
11246 {
11247 bfd_boolean flags;
11248 bfd_boolean narrow;
11249 int opcode;
11250
11251 flags = (inst.instruction == T_MNEM_adds
11252 || inst.instruction == T_MNEM_subs);
11253 if (flags)
11254 narrow = !in_pred_block ();
11255 else
11256 narrow = in_pred_block ();
11257 if (!inst.operands[2].isreg)
11258 {
11259 int add;
11260
11261 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11262 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11263
11264 add = (inst.instruction == T_MNEM_add
11265 || inst.instruction == T_MNEM_adds);
11266 opcode = 0;
11267 if (inst.size_req != 4)
11268 {
11269 /* Attempt to use a narrow opcode, with relaxation if
11270 appropriate. */
11271 if (Rd == REG_SP && Rs == REG_SP && !flags)
11272 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11273 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11274 opcode = T_MNEM_add_sp;
11275 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11276 opcode = T_MNEM_add_pc;
11277 else if (Rd <= 7 && Rs <= 7 && narrow)
11278 {
11279 if (flags)
11280 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11281 else
11282 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11283 }
11284 if (opcode)
11285 {
11286 inst.instruction = THUMB_OP16(opcode);
11287 inst.instruction |= (Rd << 4) | Rs;
11288 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11289 || (inst.relocs[0].type
11290 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11291 {
11292 if (inst.size_req == 2)
11293 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11294 else
11295 inst.relax = opcode;
11296 }
11297 }
11298 else
11299 constraint (inst.size_req == 2, BAD_HIREG);
11300 }
11301 if (inst.size_req == 4
11302 || (inst.size_req != 2 && !opcode))
11303 {
11304 constraint ((inst.relocs[0].type
11305 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11306 && (inst.relocs[0].type
11307 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11308 THUMB1_RELOC_ONLY);
11309 if (Rd == REG_PC)
11310 {
11311 constraint (add, BAD_PC);
11312 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11313 _("only SUBS PC, LR, #const allowed"));
11314 constraint (inst.relocs[0].exp.X_op != O_constant,
11315 _("expression too complex"));
11316 constraint (inst.relocs[0].exp.X_add_number < 0
11317 || inst.relocs[0].exp.X_add_number > 0xff,
11318 _("immediate value out of range"));
11319 inst.instruction = T2_SUBS_PC_LR
11320 | inst.relocs[0].exp.X_add_number;
11321 inst.relocs[0].type = BFD_RELOC_UNUSED;
11322 return;
11323 }
11324 else if (Rs == REG_PC)
11325 {
11326 /* Always use addw/subw. */
11327 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11328 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11329 }
11330 else
11331 {
11332 inst.instruction = THUMB_OP32 (inst.instruction);
11333 inst.instruction = (inst.instruction & 0xe1ffffff)
11334 | 0x10000000;
11335 if (flags)
11336 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11337 else
11338 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11339 }
11340 inst.instruction |= Rd << 8;
11341 inst.instruction |= Rs << 16;
11342 }
11343 }
11344 else
11345 {
11346 unsigned int value = inst.relocs[0].exp.X_add_number;
11347 unsigned int shift = inst.operands[2].shift_kind;
11348
11349 Rn = inst.operands[2].reg;
11350 /* See if we can do this with a 16-bit instruction. */
11351 if (!inst.operands[2].shifted && inst.size_req != 4)
11352 {
11353 if (Rd > 7 || Rs > 7 || Rn > 7)
11354 narrow = FALSE;
11355
11356 if (narrow)
11357 {
11358 inst.instruction = ((inst.instruction == T_MNEM_adds
11359 || inst.instruction == T_MNEM_add)
11360 ? T_OPCODE_ADD_R3
11361 : T_OPCODE_SUB_R3);
11362 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11363 return;
11364 }
11365
11366 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11367 {
11368 /* Thumb-1 cores (except v6-M) require at least one high
11369 register in a narrow non flag setting add. */
11370 if (Rd > 7 || Rn > 7
11371 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11372 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11373 {
11374 if (Rd == Rn)
11375 {
11376 Rn = Rs;
11377 Rs = Rd;
11378 }
11379 inst.instruction = T_OPCODE_ADD_HI;
11380 inst.instruction |= (Rd & 8) << 4;
11381 inst.instruction |= (Rd & 7);
11382 inst.instruction |= Rn << 3;
11383 return;
11384 }
11385 }
11386 }
11387
11388 constraint (Rd == REG_PC, BAD_PC);
11389 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11390 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11391 constraint (Rs == REG_PC, BAD_PC);
11392 reject_bad_reg (Rn);
11393
11394 /* If we get here, it can't be done in 16 bits. */
11395 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11396 _("shift must be constant"));
11397 inst.instruction = THUMB_OP32 (inst.instruction);
11398 inst.instruction |= Rd << 8;
11399 inst.instruction |= Rs << 16;
11400 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11401 _("shift value over 3 not allowed in thumb mode"));
11402 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11403 _("only LSL shift allowed in thumb mode"));
11404 encode_thumb32_shifted_operand (2);
11405 }
11406 }
11407 else
11408 {
11409 constraint (inst.instruction == T_MNEM_adds
11410 || inst.instruction == T_MNEM_subs,
11411 BAD_THUMB32);
11412
11413 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11414 {
11415 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11416 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11417 BAD_HIREG);
11418
11419 inst.instruction = (inst.instruction == T_MNEM_add
11420 ? 0x0000 : 0x8000);
11421 inst.instruction |= (Rd << 4) | Rs;
11422 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11423 return;
11424 }
11425
11426 Rn = inst.operands[2].reg;
11427 constraint (inst.operands[2].shifted, _("unshifted register required"));
11428
11429 /* We now have Rd, Rs, and Rn set to registers. */
11430 if (Rd > 7 || Rs > 7 || Rn > 7)
11431 {
11432 /* Can't do this for SUB. */
11433 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11434 inst.instruction = T_OPCODE_ADD_HI;
11435 inst.instruction |= (Rd & 8) << 4;
11436 inst.instruction |= (Rd & 7);
11437 if (Rs == Rd)
11438 inst.instruction |= Rn << 3;
11439 else if (Rn == Rd)
11440 inst.instruction |= Rs << 3;
11441 else
11442 constraint (1, _("dest must overlap one source register"));
11443 }
11444 else
11445 {
11446 inst.instruction = (inst.instruction == T_MNEM_add
11447 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11448 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11449 }
11450 }
11451 }
11452
11453 static void
11454 do_t_adr (void)
11455 {
11456 unsigned Rd;
11457
11458 Rd = inst.operands[0].reg;
11459 reject_bad_reg (Rd);
11460
11461 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11462 {
11463 /* Defer to section relaxation. */
11464 inst.relax = inst.instruction;
11465 inst.instruction = THUMB_OP16 (inst.instruction);
11466 inst.instruction |= Rd << 4;
11467 }
11468 else if (unified_syntax && inst.size_req != 2)
11469 {
11470 /* Generate a 32-bit opcode. */
11471 inst.instruction = THUMB_OP32 (inst.instruction);
11472 inst.instruction |= Rd << 8;
11473 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11474 inst.relocs[0].pc_rel = 1;
11475 }
11476 else
11477 {
11478 /* Generate a 16-bit opcode. */
11479 inst.instruction = THUMB_OP16 (inst.instruction);
11480 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11481 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11482 inst.relocs[0].pc_rel = 1;
11483 inst.instruction |= Rd << 4;
11484 }
11485
11486 if (inst.relocs[0].exp.X_op == O_symbol
11487 && inst.relocs[0].exp.X_add_symbol != NULL
11488 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11489 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11490 inst.relocs[0].exp.X_add_number += 1;
11491 }
11492
11493 /* Arithmetic instructions for which there is just one 16-bit
11494 instruction encoding, and it allows only two low registers.
11495 For maximal compatibility with ARM syntax, we allow three register
11496 operands even when Thumb-32 instructions are not available, as long
11497 as the first two are identical. For instance, both "sbc r0,r1" and
11498 "sbc r0,r0,r1" are allowed. */
11499 static void
11500 do_t_arit3 (void)
11501 {
11502 int Rd, Rs, Rn;
11503
11504 Rd = inst.operands[0].reg;
11505 Rs = (inst.operands[1].present
11506 ? inst.operands[1].reg /* Rd, Rs, foo */
11507 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11508 Rn = inst.operands[2].reg;
11509
11510 reject_bad_reg (Rd);
11511 reject_bad_reg (Rs);
11512 if (inst.operands[2].isreg)
11513 reject_bad_reg (Rn);
11514
11515 if (unified_syntax)
11516 {
11517 if (!inst.operands[2].isreg)
11518 {
11519 /* For an immediate, we always generate a 32-bit opcode;
11520 section relaxation will shrink it later if possible. */
11521 inst.instruction = THUMB_OP32 (inst.instruction);
11522 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11523 inst.instruction |= Rd << 8;
11524 inst.instruction |= Rs << 16;
11525 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11526 }
11527 else
11528 {
11529 bfd_boolean narrow;
11530
11531 /* See if we can do this with a 16-bit instruction. */
11532 if (THUMB_SETS_FLAGS (inst.instruction))
11533 narrow = !in_pred_block ();
11534 else
11535 narrow = in_pred_block ();
11536
11537 if (Rd > 7 || Rn > 7 || Rs > 7)
11538 narrow = FALSE;
11539 if (inst.operands[2].shifted)
11540 narrow = FALSE;
11541 if (inst.size_req == 4)
11542 narrow = FALSE;
11543
11544 if (narrow
11545 && Rd == Rs)
11546 {
11547 inst.instruction = THUMB_OP16 (inst.instruction);
11548 inst.instruction |= Rd;
11549 inst.instruction |= Rn << 3;
11550 return;
11551 }
11552
11553 /* If we get here, it can't be done in 16 bits. */
11554 constraint (inst.operands[2].shifted
11555 && inst.operands[2].immisreg,
11556 _("shift must be constant"));
11557 inst.instruction = THUMB_OP32 (inst.instruction);
11558 inst.instruction |= Rd << 8;
11559 inst.instruction |= Rs << 16;
11560 encode_thumb32_shifted_operand (2);
11561 }
11562 }
11563 else
11564 {
11565 /* On its face this is a lie - the instruction does set the
11566 flags. However, the only supported mnemonic in this mode
11567 says it doesn't. */
11568 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11569
11570 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11571 _("unshifted register required"));
11572 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11573 constraint (Rd != Rs,
11574 _("dest and source1 must be the same register"));
11575
11576 inst.instruction = THUMB_OP16 (inst.instruction);
11577 inst.instruction |= Rd;
11578 inst.instruction |= Rn << 3;
11579 }
11580 }
11581
11582 /* Similarly, but for instructions where the arithmetic operation is
11583 commutative, so we can allow either of them to be different from
11584 the destination operand in a 16-bit instruction. For instance, all
11585 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11586 accepted. */
11587 static void
11588 do_t_arit3c (void)
11589 {
11590 int Rd, Rs, Rn;
11591
11592 Rd = inst.operands[0].reg;
11593 Rs = (inst.operands[1].present
11594 ? inst.operands[1].reg /* Rd, Rs, foo */
11595 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11596 Rn = inst.operands[2].reg;
11597
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rs);
11600 if (inst.operands[2].isreg)
11601 reject_bad_reg (Rn);
11602
11603 if (unified_syntax)
11604 {
11605 if (!inst.operands[2].isreg)
11606 {
11607 /* For an immediate, we always generate a 32-bit opcode;
11608 section relaxation will shrink it later if possible. */
11609 inst.instruction = THUMB_OP32 (inst.instruction);
11610 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11611 inst.instruction |= Rd << 8;
11612 inst.instruction |= Rs << 16;
11613 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11614 }
11615 else
11616 {
11617 bfd_boolean narrow;
11618
11619 /* See if we can do this with a 16-bit instruction. */
11620 if (THUMB_SETS_FLAGS (inst.instruction))
11621 narrow = !in_pred_block ();
11622 else
11623 narrow = in_pred_block ();
11624
11625 if (Rd > 7 || Rn > 7 || Rs > 7)
11626 narrow = FALSE;
11627 if (inst.operands[2].shifted)
11628 narrow = FALSE;
11629 if (inst.size_req == 4)
11630 narrow = FALSE;
11631
11632 if (narrow)
11633 {
11634 if (Rd == Rs)
11635 {
11636 inst.instruction = THUMB_OP16 (inst.instruction);
11637 inst.instruction |= Rd;
11638 inst.instruction |= Rn << 3;
11639 return;
11640 }
11641 if (Rd == Rn)
11642 {
11643 inst.instruction = THUMB_OP16 (inst.instruction);
11644 inst.instruction |= Rd;
11645 inst.instruction |= Rs << 3;
11646 return;
11647 }
11648 }
11649
11650 /* If we get here, it can't be done in 16 bits. */
11651 constraint (inst.operands[2].shifted
11652 && inst.operands[2].immisreg,
11653 _("shift must be constant"));
11654 inst.instruction = THUMB_OP32 (inst.instruction);
11655 inst.instruction |= Rd << 8;
11656 inst.instruction |= Rs << 16;
11657 encode_thumb32_shifted_operand (2);
11658 }
11659 }
11660 else
11661 {
11662 /* On its face this is a lie - the instruction does set the
11663 flags. However, the only supported mnemonic in this mode
11664 says it doesn't. */
11665 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11666
11667 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11668 _("unshifted register required"));
11669 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11670
11671 inst.instruction = THUMB_OP16 (inst.instruction);
11672 inst.instruction |= Rd;
11673
11674 if (Rd == Rs)
11675 inst.instruction |= Rn << 3;
11676 else if (Rd == Rn)
11677 inst.instruction |= Rs << 3;
11678 else
11679 constraint (1, _("dest must overlap one source register"));
11680 }
11681 }
11682
11683 static void
11684 do_t_bfc (void)
11685 {
11686 unsigned Rd;
11687 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11688 constraint (msb > 32, _("bit-field extends past end of register"));
11689 /* The instruction encoding stores the LSB and MSB,
11690 not the LSB and width. */
11691 Rd = inst.operands[0].reg;
11692 reject_bad_reg (Rd);
11693 inst.instruction |= Rd << 8;
11694 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11695 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11696 inst.instruction |= msb - 1;
11697 }
11698
11699 static void
11700 do_t_bfi (void)
11701 {
11702 int Rd, Rn;
11703 unsigned int msb;
11704
11705 Rd = inst.operands[0].reg;
11706 reject_bad_reg (Rd);
11707
11708 /* #0 in second position is alternative syntax for bfc, which is
11709 the same instruction but with REG_PC in the Rm field. */
11710 if (!inst.operands[1].isreg)
11711 Rn = REG_PC;
11712 else
11713 {
11714 Rn = inst.operands[1].reg;
11715 reject_bad_reg (Rn);
11716 }
11717
11718 msb = inst.operands[2].imm + inst.operands[3].imm;
11719 constraint (msb > 32, _("bit-field extends past end of register"));
11720 /* The instruction encoding stores the LSB and MSB,
11721 not the LSB and width. */
11722 inst.instruction |= Rd << 8;
11723 inst.instruction |= Rn << 16;
11724 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11725 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11726 inst.instruction |= msb - 1;
11727 }
11728
11729 static void
11730 do_t_bfx (void)
11731 {
11732 unsigned Rd, Rn;
11733
11734 Rd = inst.operands[0].reg;
11735 Rn = inst.operands[1].reg;
11736
11737 reject_bad_reg (Rd);
11738 reject_bad_reg (Rn);
11739
11740 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11741 _("bit-field extends past end of register"));
11742 inst.instruction |= Rd << 8;
11743 inst.instruction |= Rn << 16;
11744 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11745 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11746 inst.instruction |= inst.operands[3].imm - 1;
11747 }
11748
11749 /* ARM V5 Thumb BLX (argument parse)
11750 BLX <target_addr> which is BLX(1)
11751 BLX <Rm> which is BLX(2)
11752 Unfortunately, there are two different opcodes for this mnemonic.
11753 So, the insns[].value is not used, and the code here zaps values
11754 into inst.instruction.
11755
11756 ??? How to take advantage of the additional two bits of displacement
11757 available in Thumb32 mode? Need new relocation? */
11758
11759 static void
11760 do_t_blx (void)
11761 {
11762 set_pred_insn_type_last ();
11763
11764 if (inst.operands[0].isreg)
11765 {
11766 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11767 /* We have a register, so this is BLX(2). */
11768 inst.instruction |= inst.operands[0].reg << 3;
11769 }
11770 else
11771 {
11772 /* No register. This must be BLX(1). */
11773 inst.instruction = 0xf000e800;
11774 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11775 }
11776 }
11777
11778 static void
11779 do_t_branch (void)
11780 {
11781 int opcode;
11782 int cond;
11783 bfd_reloc_code_real_type reloc;
11784
11785 cond = inst.cond;
11786 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11787
11788 if (in_pred_block ())
11789 {
11790 /* Conditional branches inside IT blocks are encoded as unconditional
11791 branches. */
11792 cond = COND_ALWAYS;
11793 }
11794 else
11795 cond = inst.cond;
11796
11797 if (cond != COND_ALWAYS)
11798 opcode = T_MNEM_bcond;
11799 else
11800 opcode = inst.instruction;
11801
11802 if (unified_syntax
11803 && (inst.size_req == 4
11804 || (inst.size_req != 2
11805 && (inst.operands[0].hasreloc
11806 || inst.relocs[0].exp.X_op == O_constant))))
11807 {
11808 inst.instruction = THUMB_OP32(opcode);
11809 if (cond == COND_ALWAYS)
11810 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11811 else
11812 {
11813 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11814 _("selected architecture does not support "
11815 "wide conditional branch instruction"));
11816
11817 gas_assert (cond != 0xF);
11818 inst.instruction |= cond << 22;
11819 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11820 }
11821 }
11822 else
11823 {
11824 inst.instruction = THUMB_OP16(opcode);
11825 if (cond == COND_ALWAYS)
11826 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11827 else
11828 {
11829 inst.instruction |= cond << 8;
11830 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11831 }
11832 /* Allow section relaxation. */
11833 if (unified_syntax && inst.size_req != 2)
11834 inst.relax = opcode;
11835 }
11836 inst.relocs[0].type = reloc;
11837 inst.relocs[0].pc_rel = 1;
11838 }
11839
11840 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11841 between the two is the maximum immediate allowed - which is passed in
11842 RANGE. */
11843 static void
11844 do_t_bkpt_hlt1 (int range)
11845 {
11846 constraint (inst.cond != COND_ALWAYS,
11847 _("instruction is always unconditional"));
11848 if (inst.operands[0].present)
11849 {
11850 constraint (inst.operands[0].imm > range,
11851 _("immediate value out of range"));
11852 inst.instruction |= inst.operands[0].imm;
11853 }
11854
11855 set_pred_insn_type (NEUTRAL_IT_INSN);
11856 }
11857
11858 static void
11859 do_t_hlt (void)
11860 {
11861 do_t_bkpt_hlt1 (63);
11862 }
11863
11864 static void
11865 do_t_bkpt (void)
11866 {
11867 do_t_bkpt_hlt1 (255);
11868 }
11869
11870 static void
11871 do_t_branch23 (void)
11872 {
11873 set_pred_insn_type_last ();
11874 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11875
11876 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11877 this file. We used to simply ignore the PLT reloc type here --
11878 the branch encoding is now needed to deal with TLSCALL relocs.
11879 So if we see a PLT reloc now, put it back to how it used to be to
11880 keep the preexisting behaviour. */
11881 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11882 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11883
11884 #if defined(OBJ_COFF)
11885 /* If the destination of the branch is a defined symbol which does not have
11886 the THUMB_FUNC attribute, then we must be calling a function which has
11887 the (interfacearm) attribute. We look for the Thumb entry point to that
11888 function and change the branch to refer to that function instead. */
11889 if ( inst.relocs[0].exp.X_op == O_symbol
11890 && inst.relocs[0].exp.X_add_symbol != NULL
11891 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11892 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11893 inst.relocs[0].exp.X_add_symbol
11894 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11895 #endif
11896 }
11897
11898 static void
11899 do_t_bx (void)
11900 {
11901 set_pred_insn_type_last ();
11902 inst.instruction |= inst.operands[0].reg << 3;
11903 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11904 should cause the alignment to be checked once it is known. This is
11905 because BX PC only works if the instruction is word aligned. */
11906 }
11907
11908 static void
11909 do_t_bxj (void)
11910 {
11911 int Rm;
11912
11913 set_pred_insn_type_last ();
11914 Rm = inst.operands[0].reg;
11915 reject_bad_reg (Rm);
11916 inst.instruction |= Rm << 16;
11917 }
11918
11919 static void
11920 do_t_clz (void)
11921 {
11922 unsigned Rd;
11923 unsigned Rm;
11924
11925 Rd = inst.operands[0].reg;
11926 Rm = inst.operands[1].reg;
11927
11928 reject_bad_reg (Rd);
11929 reject_bad_reg (Rm);
11930
11931 inst.instruction |= Rd << 8;
11932 inst.instruction |= Rm << 16;
11933 inst.instruction |= Rm;
11934 }
11935
11936 static void
11937 do_t_csdb (void)
11938 {
11939 set_pred_insn_type (OUTSIDE_PRED_INSN);
11940 }
11941
11942 static void
11943 do_t_cps (void)
11944 {
11945 set_pred_insn_type (OUTSIDE_PRED_INSN);
11946 inst.instruction |= inst.operands[0].imm;
11947 }
11948
11949 static void
11950 do_t_cpsi (void)
11951 {
11952 set_pred_insn_type (OUTSIDE_PRED_INSN);
11953 if (unified_syntax
11954 && (inst.operands[1].present || inst.size_req == 4)
11955 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11956 {
11957 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11958 inst.instruction = 0xf3af8000;
11959 inst.instruction |= imod << 9;
11960 inst.instruction |= inst.operands[0].imm << 5;
11961 if (inst.operands[1].present)
11962 inst.instruction |= 0x100 | inst.operands[1].imm;
11963 }
11964 else
11965 {
11966 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11967 && (inst.operands[0].imm & 4),
11968 _("selected processor does not support 'A' form "
11969 "of this instruction"));
11970 constraint (inst.operands[1].present || inst.size_req == 4,
11971 _("Thumb does not support the 2-argument "
11972 "form of this instruction"));
11973 inst.instruction |= inst.operands[0].imm;
11974 }
11975 }
11976
11977 /* THUMB CPY instruction (argument parse). */
11978
11979 static void
11980 do_t_cpy (void)
11981 {
11982 if (inst.size_req == 4)
11983 {
11984 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11985 inst.instruction |= inst.operands[0].reg << 8;
11986 inst.instruction |= inst.operands[1].reg;
11987 }
11988 else
11989 {
11990 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11991 inst.instruction |= (inst.operands[0].reg & 0x7);
11992 inst.instruction |= inst.operands[1].reg << 3;
11993 }
11994 }
11995
11996 static void
11997 do_t_cbz (void)
11998 {
11999 set_pred_insn_type (OUTSIDE_PRED_INSN);
12000 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12001 inst.instruction |= inst.operands[0].reg;
12002 inst.relocs[0].pc_rel = 1;
12003 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
12004 }
12005
12006 static void
12007 do_t_dbg (void)
12008 {
12009 inst.instruction |= inst.operands[0].imm;
12010 }
12011
12012 static void
12013 do_t_div (void)
12014 {
12015 unsigned Rd, Rn, Rm;
12016
12017 Rd = inst.operands[0].reg;
12018 Rn = (inst.operands[1].present
12019 ? inst.operands[1].reg : Rd);
12020 Rm = inst.operands[2].reg;
12021
12022 reject_bad_reg (Rd);
12023 reject_bad_reg (Rn);
12024 reject_bad_reg (Rm);
12025
12026 inst.instruction |= Rd << 8;
12027 inst.instruction |= Rn << 16;
12028 inst.instruction |= Rm;
12029 }
12030
12031 static void
12032 do_t_hint (void)
12033 {
12034 if (unified_syntax && inst.size_req == 4)
12035 inst.instruction = THUMB_OP32 (inst.instruction);
12036 else
12037 inst.instruction = THUMB_OP16 (inst.instruction);
12038 }
12039
12040 static void
12041 do_t_it (void)
12042 {
12043 unsigned int cond = inst.operands[0].imm;
12044
12045 set_pred_insn_type (IT_INSN);
12046 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12047 now_pred.cc = cond;
12048 now_pred.warn_deprecated = FALSE;
12049 now_pred.type = SCALAR_PRED;
12050
12051 /* If the condition is a negative condition, invert the mask. */
12052 if ((cond & 0x1) == 0x0)
12053 {
12054 unsigned int mask = inst.instruction & 0x000f;
12055
12056 if ((mask & 0x7) == 0)
12057 {
12058 /* No conversion needed. */
12059 now_pred.block_length = 1;
12060 }
12061 else if ((mask & 0x3) == 0)
12062 {
12063 mask ^= 0x8;
12064 now_pred.block_length = 2;
12065 }
12066 else if ((mask & 0x1) == 0)
12067 {
12068 mask ^= 0xC;
12069 now_pred.block_length = 3;
12070 }
12071 else
12072 {
12073 mask ^= 0xE;
12074 now_pred.block_length = 4;
12075 }
12076
12077 inst.instruction &= 0xfff0;
12078 inst.instruction |= mask;
12079 }
12080
12081 inst.instruction |= cond << 4;
12082 }
12083
12084 /* Helper function used for both push/pop and ldm/stm. */
12085 static void
12086 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12087 bfd_boolean writeback)
12088 {
12089 bfd_boolean load, store;
12090
12091 gas_assert (base != -1 || !do_io);
12092 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12093 store = do_io && !load;
12094
12095 if (mask & (1 << 13))
12096 inst.error = _("SP not allowed in register list");
12097
12098 if (do_io && (mask & (1 << base)) != 0
12099 && writeback)
12100 inst.error = _("having the base register in the register list when "
12101 "using write back is UNPREDICTABLE");
12102
12103 if (load)
12104 {
12105 if (mask & (1 << 15))
12106 {
12107 if (mask & (1 << 14))
12108 inst.error = _("LR and PC should not both be in register list");
12109 else
12110 set_pred_insn_type_last ();
12111 }
12112 }
12113 else if (store)
12114 {
12115 if (mask & (1 << 15))
12116 inst.error = _("PC not allowed in register list");
12117 }
12118
12119 if (do_io && ((mask & (mask - 1)) == 0))
12120 {
12121 /* Single register transfers implemented as str/ldr. */
12122 if (writeback)
12123 {
12124 if (inst.instruction & (1 << 23))
12125 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12126 else
12127 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12128 }
12129 else
12130 {
12131 if (inst.instruction & (1 << 23))
12132 inst.instruction = 0x00800000; /* ia -> [base] */
12133 else
12134 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12135 }
12136
12137 inst.instruction |= 0xf8400000;
12138 if (load)
12139 inst.instruction |= 0x00100000;
12140
12141 mask = ffs (mask) - 1;
12142 mask <<= 12;
12143 }
12144 else if (writeback)
12145 inst.instruction |= WRITE_BACK;
12146
12147 inst.instruction |= mask;
12148 if (do_io)
12149 inst.instruction |= base << 16;
12150 }
12151
12152 static void
12153 do_t_ldmstm (void)
12154 {
12155 /* This really doesn't seem worth it. */
12156 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12157 _("expression too complex"));
12158 constraint (inst.operands[1].writeback,
12159 _("Thumb load/store multiple does not support {reglist}^"));
12160
12161 if (unified_syntax)
12162 {
12163 bfd_boolean narrow;
12164 unsigned mask;
12165
12166 narrow = FALSE;
12167 /* See if we can use a 16-bit instruction. */
12168 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12169 && inst.size_req != 4
12170 && !(inst.operands[1].imm & ~0xff))
12171 {
12172 mask = 1 << inst.operands[0].reg;
12173
12174 if (inst.operands[0].reg <= 7)
12175 {
12176 if (inst.instruction == T_MNEM_stmia
12177 ? inst.operands[0].writeback
12178 : (inst.operands[0].writeback
12179 == !(inst.operands[1].imm & mask)))
12180 {
12181 if (inst.instruction == T_MNEM_stmia
12182 && (inst.operands[1].imm & mask)
12183 && (inst.operands[1].imm & (mask - 1)))
12184 as_warn (_("value stored for r%d is UNKNOWN"),
12185 inst.operands[0].reg);
12186
12187 inst.instruction = THUMB_OP16 (inst.instruction);
12188 inst.instruction |= inst.operands[0].reg << 8;
12189 inst.instruction |= inst.operands[1].imm;
12190 narrow = TRUE;
12191 }
12192 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12193 {
12194 /* This means 1 register in reg list one of 3 situations:
12195 1. Instruction is stmia, but without writeback.
12196 2. lmdia without writeback, but with Rn not in
12197 reglist.
12198 3. ldmia with writeback, but with Rn in reglist.
12199 Case 3 is UNPREDICTABLE behaviour, so we handle
12200 case 1 and 2 which can be converted into a 16-bit
12201 str or ldr. The SP cases are handled below. */
12202 unsigned long opcode;
12203 /* First, record an error for Case 3. */
12204 if (inst.operands[1].imm & mask
12205 && inst.operands[0].writeback)
12206 inst.error =
12207 _("having the base register in the register list when "
12208 "using write back is UNPREDICTABLE");
12209
12210 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12211 : T_MNEM_ldr);
12212 inst.instruction = THUMB_OP16 (opcode);
12213 inst.instruction |= inst.operands[0].reg << 3;
12214 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12215 narrow = TRUE;
12216 }
12217 }
12218 else if (inst.operands[0] .reg == REG_SP)
12219 {
12220 if (inst.operands[0].writeback)
12221 {
12222 inst.instruction =
12223 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12224 ? T_MNEM_push : T_MNEM_pop);
12225 inst.instruction |= inst.operands[1].imm;
12226 narrow = TRUE;
12227 }
12228 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12229 {
12230 inst.instruction =
12231 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12232 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12233 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12234 narrow = TRUE;
12235 }
12236 }
12237 }
12238
12239 if (!narrow)
12240 {
12241 if (inst.instruction < 0xffff)
12242 inst.instruction = THUMB_OP32 (inst.instruction);
12243
12244 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12245 inst.operands[1].imm,
12246 inst.operands[0].writeback);
12247 }
12248 }
12249 else
12250 {
12251 constraint (inst.operands[0].reg > 7
12252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12253 constraint (inst.instruction != T_MNEM_ldmia
12254 && inst.instruction != T_MNEM_stmia,
12255 _("Thumb-2 instruction only valid in unified syntax"));
12256 if (inst.instruction == T_MNEM_stmia)
12257 {
12258 if (!inst.operands[0].writeback)
12259 as_warn (_("this instruction will write back the base register"));
12260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12262 as_warn (_("value stored for r%d is UNKNOWN"),
12263 inst.operands[0].reg);
12264 }
12265 else
12266 {
12267 if (!inst.operands[0].writeback
12268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12269 as_warn (_("this instruction will write back the base register"));
12270 else if (inst.operands[0].writeback
12271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12272 as_warn (_("this instruction will not write back the base register"));
12273 }
12274
12275 inst.instruction = THUMB_OP16 (inst.instruction);
12276 inst.instruction |= inst.operands[0].reg << 8;
12277 inst.instruction |= inst.operands[1].imm;
12278 }
12279 }
12280
12281 static void
12282 do_t_ldrex (void)
12283 {
12284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12285 || inst.operands[1].postind || inst.operands[1].writeback
12286 || inst.operands[1].immisreg || inst.operands[1].shifted
12287 || inst.operands[1].negative,
12288 BAD_ADDR_MODE);
12289
12290 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12291
12292 inst.instruction |= inst.operands[0].reg << 12;
12293 inst.instruction |= inst.operands[1].reg << 16;
12294 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12295 }
12296
12297 static void
12298 do_t_ldrexd (void)
12299 {
12300 if (!inst.operands[1].present)
12301 {
12302 constraint (inst.operands[0].reg == REG_LR,
12303 _("r14 not allowed as first register "
12304 "when second register is omitted"));
12305 inst.operands[1].reg = inst.operands[0].reg + 1;
12306 }
12307 constraint (inst.operands[0].reg == inst.operands[1].reg,
12308 BAD_OVERLAP);
12309
12310 inst.instruction |= inst.operands[0].reg << 12;
12311 inst.instruction |= inst.operands[1].reg << 8;
12312 inst.instruction |= inst.operands[2].reg << 16;
12313 }
12314
12315 static void
12316 do_t_ldst (void)
12317 {
12318 unsigned long opcode;
12319 int Rn;
12320
12321 if (inst.operands[0].isreg
12322 && !inst.operands[0].preind
12323 && inst.operands[0].reg == REG_PC)
12324 set_pred_insn_type_last ();
12325
12326 opcode = inst.instruction;
12327 if (unified_syntax)
12328 {
12329 if (!inst.operands[1].isreg)
12330 {
12331 if (opcode <= 0xffff)
12332 inst.instruction = THUMB_OP32 (opcode);
12333 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12334 return;
12335 }
12336 if (inst.operands[1].isreg
12337 && !inst.operands[1].writeback
12338 && !inst.operands[1].shifted && !inst.operands[1].postind
12339 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12340 && opcode <= 0xffff
12341 && inst.size_req != 4)
12342 {
12343 /* Insn may have a 16-bit form. */
12344 Rn = inst.operands[1].reg;
12345 if (inst.operands[1].immisreg)
12346 {
12347 inst.instruction = THUMB_OP16 (opcode);
12348 /* [Rn, Rik] */
12349 if (Rn <= 7 && inst.operands[1].imm <= 7)
12350 goto op16;
12351 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12352 reject_bad_reg (inst.operands[1].imm);
12353 }
12354 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12355 && opcode != T_MNEM_ldrsb)
12356 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12357 || (Rn == REG_SP && opcode == T_MNEM_str))
12358 {
12359 /* [Rn, #const] */
12360 if (Rn > 7)
12361 {
12362 if (Rn == REG_PC)
12363 {
12364 if (inst.relocs[0].pc_rel)
12365 opcode = T_MNEM_ldr_pc2;
12366 else
12367 opcode = T_MNEM_ldr_pc;
12368 }
12369 else
12370 {
12371 if (opcode == T_MNEM_ldr)
12372 opcode = T_MNEM_ldr_sp;
12373 else
12374 opcode = T_MNEM_str_sp;
12375 }
12376 inst.instruction = inst.operands[0].reg << 8;
12377 }
12378 else
12379 {
12380 inst.instruction = inst.operands[0].reg;
12381 inst.instruction |= inst.operands[1].reg << 3;
12382 }
12383 inst.instruction |= THUMB_OP16 (opcode);
12384 if (inst.size_req == 2)
12385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12386 else
12387 inst.relax = opcode;
12388 return;
12389 }
12390 }
12391 /* Definitely a 32-bit variant. */
12392
12393 /* Warning for Erratum 752419. */
12394 if (opcode == T_MNEM_ldr
12395 && inst.operands[0].reg == REG_SP
12396 && inst.operands[1].writeback == 1
12397 && !inst.operands[1].immisreg)
12398 {
12399 if (no_cpu_selected ()
12400 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12401 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12402 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12403 as_warn (_("This instruction may be unpredictable "
12404 "if executed on M-profile cores "
12405 "with interrupts enabled."));
12406 }
12407
12408 /* Do some validations regarding addressing modes. */
12409 if (inst.operands[1].immisreg)
12410 reject_bad_reg (inst.operands[1].imm);
12411
12412 constraint (inst.operands[1].writeback == 1
12413 && inst.operands[0].reg == inst.operands[1].reg,
12414 BAD_OVERLAP);
12415
12416 inst.instruction = THUMB_OP32 (opcode);
12417 inst.instruction |= inst.operands[0].reg << 12;
12418 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12419 check_ldr_r15_aligned ();
12420 return;
12421 }
12422
12423 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12424
12425 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12426 {
12427 /* Only [Rn,Rm] is acceptable. */
12428 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12429 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12430 || inst.operands[1].postind || inst.operands[1].shifted
12431 || inst.operands[1].negative,
12432 _("Thumb does not support this addressing mode"));
12433 inst.instruction = THUMB_OP16 (inst.instruction);
12434 goto op16;
12435 }
12436
12437 inst.instruction = THUMB_OP16 (inst.instruction);
12438 if (!inst.operands[1].isreg)
12439 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12440 return;
12441
12442 constraint (!inst.operands[1].preind
12443 || inst.operands[1].shifted
12444 || inst.operands[1].writeback,
12445 _("Thumb does not support this addressing mode"));
12446 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12447 {
12448 constraint (inst.instruction & 0x0600,
12449 _("byte or halfword not valid for base register"));
12450 constraint (inst.operands[1].reg == REG_PC
12451 && !(inst.instruction & THUMB_LOAD_BIT),
12452 _("r15 based store not allowed"));
12453 constraint (inst.operands[1].immisreg,
12454 _("invalid base register for register offset"));
12455
12456 if (inst.operands[1].reg == REG_PC)
12457 inst.instruction = T_OPCODE_LDR_PC;
12458 else if (inst.instruction & THUMB_LOAD_BIT)
12459 inst.instruction = T_OPCODE_LDR_SP;
12460 else
12461 inst.instruction = T_OPCODE_STR_SP;
12462
12463 inst.instruction |= inst.operands[0].reg << 8;
12464 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12465 return;
12466 }
12467
12468 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12469 if (!inst.operands[1].immisreg)
12470 {
12471 /* Immediate offset. */
12472 inst.instruction |= inst.operands[0].reg;
12473 inst.instruction |= inst.operands[1].reg << 3;
12474 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12475 return;
12476 }
12477
12478 /* Register offset. */
12479 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12480 constraint (inst.operands[1].negative,
12481 _("Thumb does not support this addressing mode"));
12482
12483 op16:
12484 switch (inst.instruction)
12485 {
12486 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12487 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12488 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12489 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12490 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12491 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12492 case 0x5600 /* ldrsb */:
12493 case 0x5e00 /* ldrsh */: break;
12494 default: abort ();
12495 }
12496
12497 inst.instruction |= inst.operands[0].reg;
12498 inst.instruction |= inst.operands[1].reg << 3;
12499 inst.instruction |= inst.operands[1].imm << 6;
12500 }
12501
12502 static void
12503 do_t_ldstd (void)
12504 {
12505 if (!inst.operands[1].present)
12506 {
12507 inst.operands[1].reg = inst.operands[0].reg + 1;
12508 constraint (inst.operands[0].reg == REG_LR,
12509 _("r14 not allowed here"));
12510 constraint (inst.operands[0].reg == REG_R12,
12511 _("r12 not allowed here"));
12512 }
12513
12514 if (inst.operands[2].writeback
12515 && (inst.operands[0].reg == inst.operands[2].reg
12516 || inst.operands[1].reg == inst.operands[2].reg))
12517 as_warn (_("base register written back, and overlaps "
12518 "one of transfer registers"));
12519
12520 inst.instruction |= inst.operands[0].reg << 12;
12521 inst.instruction |= inst.operands[1].reg << 8;
12522 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12523 }
12524
12525 static void
12526 do_t_ldstt (void)
12527 {
12528 inst.instruction |= inst.operands[0].reg << 12;
12529 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12530 }
12531
12532 static void
12533 do_t_mla (void)
12534 {
12535 unsigned Rd, Rn, Rm, Ra;
12536
12537 Rd = inst.operands[0].reg;
12538 Rn = inst.operands[1].reg;
12539 Rm = inst.operands[2].reg;
12540 Ra = inst.operands[3].reg;
12541
12542 reject_bad_reg (Rd);
12543 reject_bad_reg (Rn);
12544 reject_bad_reg (Rm);
12545 reject_bad_reg (Ra);
12546
12547 inst.instruction |= Rd << 8;
12548 inst.instruction |= Rn << 16;
12549 inst.instruction |= Rm;
12550 inst.instruction |= Ra << 12;
12551 }
12552
12553 static void
12554 do_t_mlal (void)
12555 {
12556 unsigned RdLo, RdHi, Rn, Rm;
12557
12558 RdLo = inst.operands[0].reg;
12559 RdHi = inst.operands[1].reg;
12560 Rn = inst.operands[2].reg;
12561 Rm = inst.operands[3].reg;
12562
12563 reject_bad_reg (RdLo);
12564 reject_bad_reg (RdHi);
12565 reject_bad_reg (Rn);
12566 reject_bad_reg (Rm);
12567
12568 inst.instruction |= RdLo << 12;
12569 inst.instruction |= RdHi << 8;
12570 inst.instruction |= Rn << 16;
12571 inst.instruction |= Rm;
12572 }
12573
12574 static void
12575 do_t_mov_cmp (void)
12576 {
12577 unsigned Rn, Rm;
12578
12579 Rn = inst.operands[0].reg;
12580 Rm = inst.operands[1].reg;
12581
12582 if (Rn == REG_PC)
12583 set_pred_insn_type_last ();
12584
12585 if (unified_syntax)
12586 {
12587 int r0off = (inst.instruction == T_MNEM_mov
12588 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12589 unsigned long opcode;
12590 bfd_boolean narrow;
12591 bfd_boolean low_regs;
12592
12593 low_regs = (Rn <= 7 && Rm <= 7);
12594 opcode = inst.instruction;
12595 if (in_pred_block ())
12596 narrow = opcode != T_MNEM_movs;
12597 else
12598 narrow = opcode != T_MNEM_movs || low_regs;
12599 if (inst.size_req == 4
12600 || inst.operands[1].shifted)
12601 narrow = FALSE;
12602
12603 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12604 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12605 && !inst.operands[1].shifted
12606 && Rn == REG_PC
12607 && Rm == REG_LR)
12608 {
12609 inst.instruction = T2_SUBS_PC_LR;
12610 return;
12611 }
12612
12613 if (opcode == T_MNEM_cmp)
12614 {
12615 constraint (Rn == REG_PC, BAD_PC);
12616 if (narrow)
12617 {
12618 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12619 but valid. */
12620 warn_deprecated_sp (Rm);
12621 /* R15 was documented as a valid choice for Rm in ARMv6,
12622 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12623 tools reject R15, so we do too. */
12624 constraint (Rm == REG_PC, BAD_PC);
12625 }
12626 else
12627 reject_bad_reg (Rm);
12628 }
12629 else if (opcode == T_MNEM_mov
12630 || opcode == T_MNEM_movs)
12631 {
12632 if (inst.operands[1].isreg)
12633 {
12634 if (opcode == T_MNEM_movs)
12635 {
12636 reject_bad_reg (Rn);
12637 reject_bad_reg (Rm);
12638 }
12639 else if (narrow)
12640 {
12641 /* This is mov.n. */
12642 if ((Rn == REG_SP || Rn == REG_PC)
12643 && (Rm == REG_SP || Rm == REG_PC))
12644 {
12645 as_tsktsk (_("Use of r%u as a source register is "
12646 "deprecated when r%u is the destination "
12647 "register."), Rm, Rn);
12648 }
12649 }
12650 else
12651 {
12652 /* This is mov.w. */
12653 constraint (Rn == REG_PC, BAD_PC);
12654 constraint (Rm == REG_PC, BAD_PC);
12655 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12656 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12657 }
12658 }
12659 else
12660 reject_bad_reg (Rn);
12661 }
12662
12663 if (!inst.operands[1].isreg)
12664 {
12665 /* Immediate operand. */
12666 if (!in_pred_block () && opcode == T_MNEM_mov)
12667 narrow = 0;
12668 if (low_regs && narrow)
12669 {
12670 inst.instruction = THUMB_OP16 (opcode);
12671 inst.instruction |= Rn << 8;
12672 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12673 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12674 {
12675 if (inst.size_req == 2)
12676 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12677 else
12678 inst.relax = opcode;
12679 }
12680 }
12681 else
12682 {
12683 constraint ((inst.relocs[0].type
12684 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12685 && (inst.relocs[0].type
12686 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12687 THUMB1_RELOC_ONLY);
12688
12689 inst.instruction = THUMB_OP32 (inst.instruction);
12690 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12691 inst.instruction |= Rn << r0off;
12692 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12693 }
12694 }
12695 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12696 && (inst.instruction == T_MNEM_mov
12697 || inst.instruction == T_MNEM_movs))
12698 {
12699 /* Register shifts are encoded as separate shift instructions. */
12700 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12701
12702 if (in_pred_block ())
12703 narrow = !flags;
12704 else
12705 narrow = flags;
12706
12707 if (inst.size_req == 4)
12708 narrow = FALSE;
12709
12710 if (!low_regs || inst.operands[1].imm > 7)
12711 narrow = FALSE;
12712
12713 if (Rn != Rm)
12714 narrow = FALSE;
12715
12716 switch (inst.operands[1].shift_kind)
12717 {
12718 case SHIFT_LSL:
12719 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12720 break;
12721 case SHIFT_ASR:
12722 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12723 break;
12724 case SHIFT_LSR:
12725 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12726 break;
12727 case SHIFT_ROR:
12728 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12729 break;
12730 default:
12731 abort ();
12732 }
12733
12734 inst.instruction = opcode;
12735 if (narrow)
12736 {
12737 inst.instruction |= Rn;
12738 inst.instruction |= inst.operands[1].imm << 3;
12739 }
12740 else
12741 {
12742 if (flags)
12743 inst.instruction |= CONDS_BIT;
12744
12745 inst.instruction |= Rn << 8;
12746 inst.instruction |= Rm << 16;
12747 inst.instruction |= inst.operands[1].imm;
12748 }
12749 }
12750 else if (!narrow)
12751 {
12752 /* Some mov with immediate shift have narrow variants.
12753 Register shifts are handled above. */
12754 if (low_regs && inst.operands[1].shifted
12755 && (inst.instruction == T_MNEM_mov
12756 || inst.instruction == T_MNEM_movs))
12757 {
12758 if (in_pred_block ())
12759 narrow = (inst.instruction == T_MNEM_mov);
12760 else
12761 narrow = (inst.instruction == T_MNEM_movs);
12762 }
12763
12764 if (narrow)
12765 {
12766 switch (inst.operands[1].shift_kind)
12767 {
12768 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12769 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12770 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12771 default: narrow = FALSE; break;
12772 }
12773 }
12774
12775 if (narrow)
12776 {
12777 inst.instruction |= Rn;
12778 inst.instruction |= Rm << 3;
12779 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12780 }
12781 else
12782 {
12783 inst.instruction = THUMB_OP32 (inst.instruction);
12784 inst.instruction |= Rn << r0off;
12785 encode_thumb32_shifted_operand (1);
12786 }
12787 }
12788 else
12789 switch (inst.instruction)
12790 {
12791 case T_MNEM_mov:
12792 /* In v4t or v5t a move of two lowregs produces unpredictable
12793 results. Don't allow this. */
12794 if (low_regs)
12795 {
12796 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12797 "MOV Rd, Rs with two low registers is not "
12798 "permitted on this architecture");
12799 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12800 arm_ext_v6);
12801 }
12802
12803 inst.instruction = T_OPCODE_MOV_HR;
12804 inst.instruction |= (Rn & 0x8) << 4;
12805 inst.instruction |= (Rn & 0x7);
12806 inst.instruction |= Rm << 3;
12807 break;
12808
12809 case T_MNEM_movs:
12810 /* We know we have low registers at this point.
12811 Generate LSLS Rd, Rs, #0. */
12812 inst.instruction = T_OPCODE_LSL_I;
12813 inst.instruction |= Rn;
12814 inst.instruction |= Rm << 3;
12815 break;
12816
12817 case T_MNEM_cmp:
12818 if (low_regs)
12819 {
12820 inst.instruction = T_OPCODE_CMP_LR;
12821 inst.instruction |= Rn;
12822 inst.instruction |= Rm << 3;
12823 }
12824 else
12825 {
12826 inst.instruction = T_OPCODE_CMP_HR;
12827 inst.instruction |= (Rn & 0x8) << 4;
12828 inst.instruction |= (Rn & 0x7);
12829 inst.instruction |= Rm << 3;
12830 }
12831 break;
12832 }
12833 return;
12834 }
12835
12836 inst.instruction = THUMB_OP16 (inst.instruction);
12837
12838 /* PR 10443: Do not silently ignore shifted operands. */
12839 constraint (inst.operands[1].shifted,
12840 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12841
12842 if (inst.operands[1].isreg)
12843 {
12844 if (Rn < 8 && Rm < 8)
12845 {
12846 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12847 since a MOV instruction produces unpredictable results. */
12848 if (inst.instruction == T_OPCODE_MOV_I8)
12849 inst.instruction = T_OPCODE_ADD_I3;
12850 else
12851 inst.instruction = T_OPCODE_CMP_LR;
12852
12853 inst.instruction |= Rn;
12854 inst.instruction |= Rm << 3;
12855 }
12856 else
12857 {
12858 if (inst.instruction == T_OPCODE_MOV_I8)
12859 inst.instruction = T_OPCODE_MOV_HR;
12860 else
12861 inst.instruction = T_OPCODE_CMP_HR;
12862 do_t_cpy ();
12863 }
12864 }
12865 else
12866 {
12867 constraint (Rn > 7,
12868 _("only lo regs allowed with immediate"));
12869 inst.instruction |= Rn << 8;
12870 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12871 }
12872 }
12873
12874 static void
12875 do_t_mov16 (void)
12876 {
12877 unsigned Rd;
12878 bfd_vma imm;
12879 bfd_boolean top;
12880
12881 top = (inst.instruction & 0x00800000) != 0;
12882 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12883 {
12884 constraint (top, _(":lower16: not allowed in this instruction"));
12885 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12886 }
12887 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12888 {
12889 constraint (!top, _(":upper16: not allowed in this instruction"));
12890 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12891 }
12892
12893 Rd = inst.operands[0].reg;
12894 reject_bad_reg (Rd);
12895
12896 inst.instruction |= Rd << 8;
12897 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12898 {
12899 imm = inst.relocs[0].exp.X_add_number;
12900 inst.instruction |= (imm & 0xf000) << 4;
12901 inst.instruction |= (imm & 0x0800) << 15;
12902 inst.instruction |= (imm & 0x0700) << 4;
12903 inst.instruction |= (imm & 0x00ff);
12904 }
12905 }
12906
12907 static void
12908 do_t_mvn_tst (void)
12909 {
12910 unsigned Rn, Rm;
12911
12912 Rn = inst.operands[0].reg;
12913 Rm = inst.operands[1].reg;
12914
12915 if (inst.instruction == T_MNEM_cmp
12916 || inst.instruction == T_MNEM_cmn)
12917 constraint (Rn == REG_PC, BAD_PC);
12918 else
12919 reject_bad_reg (Rn);
12920 reject_bad_reg (Rm);
12921
12922 if (unified_syntax)
12923 {
12924 int r0off = (inst.instruction == T_MNEM_mvn
12925 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12926 bfd_boolean narrow;
12927
12928 if (inst.size_req == 4
12929 || inst.instruction > 0xffff
12930 || inst.operands[1].shifted
12931 || Rn > 7 || Rm > 7)
12932 narrow = FALSE;
12933 else if (inst.instruction == T_MNEM_cmn
12934 || inst.instruction == T_MNEM_tst)
12935 narrow = TRUE;
12936 else if (THUMB_SETS_FLAGS (inst.instruction))
12937 narrow = !in_pred_block ();
12938 else
12939 narrow = in_pred_block ();
12940
12941 if (!inst.operands[1].isreg)
12942 {
12943 /* For an immediate, we always generate a 32-bit opcode;
12944 section relaxation will shrink it later if possible. */
12945 if (inst.instruction < 0xffff)
12946 inst.instruction = THUMB_OP32 (inst.instruction);
12947 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12948 inst.instruction |= Rn << r0off;
12949 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12950 }
12951 else
12952 {
12953 /* See if we can do this with a 16-bit instruction. */
12954 if (narrow)
12955 {
12956 inst.instruction = THUMB_OP16 (inst.instruction);
12957 inst.instruction |= Rn;
12958 inst.instruction |= Rm << 3;
12959 }
12960 else
12961 {
12962 constraint (inst.operands[1].shifted
12963 && inst.operands[1].immisreg,
12964 _("shift must be constant"));
12965 if (inst.instruction < 0xffff)
12966 inst.instruction = THUMB_OP32 (inst.instruction);
12967 inst.instruction |= Rn << r0off;
12968 encode_thumb32_shifted_operand (1);
12969 }
12970 }
12971 }
12972 else
12973 {
12974 constraint (inst.instruction > 0xffff
12975 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12976 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12977 _("unshifted register required"));
12978 constraint (Rn > 7 || Rm > 7,
12979 BAD_HIREG);
12980
12981 inst.instruction = THUMB_OP16 (inst.instruction);
12982 inst.instruction |= Rn;
12983 inst.instruction |= Rm << 3;
12984 }
12985 }
12986
12987 static void
12988 do_t_mrs (void)
12989 {
12990 unsigned Rd;
12991
12992 if (do_vfp_nsyn_mrs () == SUCCESS)
12993 return;
12994
12995 Rd = inst.operands[0].reg;
12996 reject_bad_reg (Rd);
12997 inst.instruction |= Rd << 8;
12998
12999 if (inst.operands[1].isreg)
13000 {
13001 unsigned br = inst.operands[1].reg;
13002 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
13003 as_bad (_("bad register for mrs"));
13004
13005 inst.instruction |= br & (0xf << 16);
13006 inst.instruction |= (br & 0x300) >> 4;
13007 inst.instruction |= (br & SPSR_BIT) >> 2;
13008 }
13009 else
13010 {
13011 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13012
13013 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13014 {
13015 /* PR gas/12698: The constraint is only applied for m_profile.
13016 If the user has specified -march=all, we want to ignore it as
13017 we are building for any CPU type, including non-m variants. */
13018 bfd_boolean m_profile =
13019 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13020 constraint ((flags != 0) && m_profile, _("selected processor does "
13021 "not support requested special purpose register"));
13022 }
13023 else
13024 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
13025 devices). */
13026 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
13027 _("'APSR', 'CPSR' or 'SPSR' expected"));
13028
13029 inst.instruction |= (flags & SPSR_BIT) >> 2;
13030 inst.instruction |= inst.operands[1].imm & 0xff;
13031 inst.instruction |= 0xf0000;
13032 }
13033 }
13034
13035 static void
13036 do_t_msr (void)
13037 {
13038 int flags;
13039 unsigned Rn;
13040
13041 if (do_vfp_nsyn_msr () == SUCCESS)
13042 return;
13043
13044 constraint (!inst.operands[1].isreg,
13045 _("Thumb encoding does not support an immediate here"));
13046
13047 if (inst.operands[0].isreg)
13048 flags = (int)(inst.operands[0].reg);
13049 else
13050 flags = inst.operands[0].imm;
13051
13052 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13053 {
13054 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13055
13056 /* PR gas/12698: The constraint is only applied for m_profile.
13057 If the user has specified -march=all, we want to ignore it as
13058 we are building for any CPU type, including non-m variants. */
13059 bfd_boolean m_profile =
13060 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13061 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13062 && (bits & ~(PSR_s | PSR_f)) != 0)
13063 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13064 && bits != PSR_f)) && m_profile,
13065 _("selected processor does not support requested special "
13066 "purpose register"));
13067 }
13068 else
13069 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13070 "requested special purpose register"));
13071
13072 Rn = inst.operands[1].reg;
13073 reject_bad_reg (Rn);
13074
13075 inst.instruction |= (flags & SPSR_BIT) >> 2;
13076 inst.instruction |= (flags & 0xf0000) >> 8;
13077 inst.instruction |= (flags & 0x300) >> 4;
13078 inst.instruction |= (flags & 0xff);
13079 inst.instruction |= Rn << 16;
13080 }
13081
13082 static void
13083 do_t_mul (void)
13084 {
13085 bfd_boolean narrow;
13086 unsigned Rd, Rn, Rm;
13087
13088 if (!inst.operands[2].present)
13089 inst.operands[2].reg = inst.operands[0].reg;
13090
13091 Rd = inst.operands[0].reg;
13092 Rn = inst.operands[1].reg;
13093 Rm = inst.operands[2].reg;
13094
13095 if (unified_syntax)
13096 {
13097 if (inst.size_req == 4
13098 || (Rd != Rn
13099 && Rd != Rm)
13100 || Rn > 7
13101 || Rm > 7)
13102 narrow = FALSE;
13103 else if (inst.instruction == T_MNEM_muls)
13104 narrow = !in_pred_block ();
13105 else
13106 narrow = in_pred_block ();
13107 }
13108 else
13109 {
13110 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13111 constraint (Rn > 7 || Rm > 7,
13112 BAD_HIREG);
13113 narrow = TRUE;
13114 }
13115
13116 if (narrow)
13117 {
13118 /* 16-bit MULS/Conditional MUL. */
13119 inst.instruction = THUMB_OP16 (inst.instruction);
13120 inst.instruction |= Rd;
13121
13122 if (Rd == Rn)
13123 inst.instruction |= Rm << 3;
13124 else if (Rd == Rm)
13125 inst.instruction |= Rn << 3;
13126 else
13127 constraint (1, _("dest must overlap one source register"));
13128 }
13129 else
13130 {
13131 constraint (inst.instruction != T_MNEM_mul,
13132 _("Thumb-2 MUL must not set flags"));
13133 /* 32-bit MUL. */
13134 inst.instruction = THUMB_OP32 (inst.instruction);
13135 inst.instruction |= Rd << 8;
13136 inst.instruction |= Rn << 16;
13137 inst.instruction |= Rm << 0;
13138
13139 reject_bad_reg (Rd);
13140 reject_bad_reg (Rn);
13141 reject_bad_reg (Rm);
13142 }
13143 }
13144
13145 static void
13146 do_t_mull (void)
13147 {
13148 unsigned RdLo, RdHi, Rn, Rm;
13149
13150 RdLo = inst.operands[0].reg;
13151 RdHi = inst.operands[1].reg;
13152 Rn = inst.operands[2].reg;
13153 Rm = inst.operands[3].reg;
13154
13155 reject_bad_reg (RdLo);
13156 reject_bad_reg (RdHi);
13157 reject_bad_reg (Rn);
13158 reject_bad_reg (Rm);
13159
13160 inst.instruction |= RdLo << 12;
13161 inst.instruction |= RdHi << 8;
13162 inst.instruction |= Rn << 16;
13163 inst.instruction |= Rm;
13164
13165 if (RdLo == RdHi)
13166 as_tsktsk (_("rdhi and rdlo must be different"));
13167 }
13168
13169 static void
13170 do_t_nop (void)
13171 {
13172 set_pred_insn_type (NEUTRAL_IT_INSN);
13173
13174 if (unified_syntax)
13175 {
13176 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13177 {
13178 inst.instruction = THUMB_OP32 (inst.instruction);
13179 inst.instruction |= inst.operands[0].imm;
13180 }
13181 else
13182 {
13183 /* PR9722: Check for Thumb2 availability before
13184 generating a thumb2 nop instruction. */
13185 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13186 {
13187 inst.instruction = THUMB_OP16 (inst.instruction);
13188 inst.instruction |= inst.operands[0].imm << 4;
13189 }
13190 else
13191 inst.instruction = 0x46c0;
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].present,
13197 _("Thumb does not support NOP with hints"));
13198 inst.instruction = 0x46c0;
13199 }
13200 }
13201
13202 static void
13203 do_t_neg (void)
13204 {
13205 if (unified_syntax)
13206 {
13207 bfd_boolean narrow;
13208
13209 if (THUMB_SETS_FLAGS (inst.instruction))
13210 narrow = !in_pred_block ();
13211 else
13212 narrow = in_pred_block ();
13213 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13214 narrow = FALSE;
13215 if (inst.size_req == 4)
13216 narrow = FALSE;
13217
13218 if (!narrow)
13219 {
13220 inst.instruction = THUMB_OP32 (inst.instruction);
13221 inst.instruction |= inst.operands[0].reg << 8;
13222 inst.instruction |= inst.operands[1].reg << 16;
13223 }
13224 else
13225 {
13226 inst.instruction = THUMB_OP16 (inst.instruction);
13227 inst.instruction |= inst.operands[0].reg;
13228 inst.instruction |= inst.operands[1].reg << 3;
13229 }
13230 }
13231 else
13232 {
13233 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13234 BAD_HIREG);
13235 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13236
13237 inst.instruction = THUMB_OP16 (inst.instruction);
13238 inst.instruction |= inst.operands[0].reg;
13239 inst.instruction |= inst.operands[1].reg << 3;
13240 }
13241 }
13242
13243 static void
13244 do_t_orn (void)
13245 {
13246 unsigned Rd, Rn;
13247
13248 Rd = inst.operands[0].reg;
13249 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13250
13251 reject_bad_reg (Rd);
13252 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13253 reject_bad_reg (Rn);
13254
13255 inst.instruction |= Rd << 8;
13256 inst.instruction |= Rn << 16;
13257
13258 if (!inst.operands[2].isreg)
13259 {
13260 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13261 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13262 }
13263 else
13264 {
13265 unsigned Rm;
13266
13267 Rm = inst.operands[2].reg;
13268 reject_bad_reg (Rm);
13269
13270 constraint (inst.operands[2].shifted
13271 && inst.operands[2].immisreg,
13272 _("shift must be constant"));
13273 encode_thumb32_shifted_operand (2);
13274 }
13275 }
13276
13277 static void
13278 do_t_pkhbt (void)
13279 {
13280 unsigned Rd, Rn, Rm;
13281
13282 Rd = inst.operands[0].reg;
13283 Rn = inst.operands[1].reg;
13284 Rm = inst.operands[2].reg;
13285
13286 reject_bad_reg (Rd);
13287 reject_bad_reg (Rn);
13288 reject_bad_reg (Rm);
13289
13290 inst.instruction |= Rd << 8;
13291 inst.instruction |= Rn << 16;
13292 inst.instruction |= Rm;
13293 if (inst.operands[3].present)
13294 {
13295 unsigned int val = inst.relocs[0].exp.X_add_number;
13296 constraint (inst.relocs[0].exp.X_op != O_constant,
13297 _("expression too complex"));
13298 inst.instruction |= (val & 0x1c) << 10;
13299 inst.instruction |= (val & 0x03) << 6;
13300 }
13301 }
13302
13303 static void
13304 do_t_pkhtb (void)
13305 {
13306 if (!inst.operands[3].present)
13307 {
13308 unsigned Rtmp;
13309
13310 inst.instruction &= ~0x00000020;
13311
13312 /* PR 10168. Swap the Rm and Rn registers. */
13313 Rtmp = inst.operands[1].reg;
13314 inst.operands[1].reg = inst.operands[2].reg;
13315 inst.operands[2].reg = Rtmp;
13316 }
13317 do_t_pkhbt ();
13318 }
13319
13320 static void
13321 do_t_pld (void)
13322 {
13323 if (inst.operands[0].immisreg)
13324 reject_bad_reg (inst.operands[0].imm);
13325
13326 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13327 }
13328
13329 static void
13330 do_t_push_pop (void)
13331 {
13332 unsigned mask;
13333
13334 constraint (inst.operands[0].writeback,
13335 _("push/pop do not support {reglist}^"));
13336 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13337 _("expression too complex"));
13338
13339 mask = inst.operands[0].imm;
13340 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13341 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13342 else if (inst.size_req != 4
13343 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13344 ? REG_LR : REG_PC)))
13345 {
13346 inst.instruction = THUMB_OP16 (inst.instruction);
13347 inst.instruction |= THUMB_PP_PC_LR;
13348 inst.instruction |= mask & 0xff;
13349 }
13350 else if (unified_syntax)
13351 {
13352 inst.instruction = THUMB_OP32 (inst.instruction);
13353 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13354 }
13355 else
13356 {
13357 inst.error = _("invalid register list to push/pop instruction");
13358 return;
13359 }
13360 }
13361
13362 static void
13363 do_t_clrm (void)
13364 {
13365 if (unified_syntax)
13366 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13367 else
13368 {
13369 inst.error = _("invalid register list to push/pop instruction");
13370 return;
13371 }
13372 }
13373
13374 static void
13375 do_t_vscclrm (void)
13376 {
13377 if (inst.operands[0].issingle)
13378 {
13379 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13380 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13381 inst.instruction |= inst.operands[0].imm;
13382 }
13383 else
13384 {
13385 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13386 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13387 inst.instruction |= 1 << 8;
13388 inst.instruction |= inst.operands[0].imm << 1;
13389 }
13390 }
13391
13392 static void
13393 do_t_rbit (void)
13394 {
13395 unsigned Rd, Rm;
13396
13397 Rd = inst.operands[0].reg;
13398 Rm = inst.operands[1].reg;
13399
13400 reject_bad_reg (Rd);
13401 reject_bad_reg (Rm);
13402
13403 inst.instruction |= Rd << 8;
13404 inst.instruction |= Rm << 16;
13405 inst.instruction |= Rm;
13406 }
13407
13408 static void
13409 do_t_rev (void)
13410 {
13411 unsigned Rd, Rm;
13412
13413 Rd = inst.operands[0].reg;
13414 Rm = inst.operands[1].reg;
13415
13416 reject_bad_reg (Rd);
13417 reject_bad_reg (Rm);
13418
13419 if (Rd <= 7 && Rm <= 7
13420 && inst.size_req != 4)
13421 {
13422 inst.instruction = THUMB_OP16 (inst.instruction);
13423 inst.instruction |= Rd;
13424 inst.instruction |= Rm << 3;
13425 }
13426 else if (unified_syntax)
13427 {
13428 inst.instruction = THUMB_OP32 (inst.instruction);
13429 inst.instruction |= Rd << 8;
13430 inst.instruction |= Rm << 16;
13431 inst.instruction |= Rm;
13432 }
13433 else
13434 inst.error = BAD_HIREG;
13435 }
13436
13437 static void
13438 do_t_rrx (void)
13439 {
13440 unsigned Rd, Rm;
13441
13442 Rd = inst.operands[0].reg;
13443 Rm = inst.operands[1].reg;
13444
13445 reject_bad_reg (Rd);
13446 reject_bad_reg (Rm);
13447
13448 inst.instruction |= Rd << 8;
13449 inst.instruction |= Rm;
13450 }
13451
13452 static void
13453 do_t_rsb (void)
13454 {
13455 unsigned Rd, Rs;
13456
13457 Rd = inst.operands[0].reg;
13458 Rs = (inst.operands[1].present
13459 ? inst.operands[1].reg /* Rd, Rs, foo */
13460 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13461
13462 reject_bad_reg (Rd);
13463 reject_bad_reg (Rs);
13464 if (inst.operands[2].isreg)
13465 reject_bad_reg (inst.operands[2].reg);
13466
13467 inst.instruction |= Rd << 8;
13468 inst.instruction |= Rs << 16;
13469 if (!inst.operands[2].isreg)
13470 {
13471 bfd_boolean narrow;
13472
13473 if ((inst.instruction & 0x00100000) != 0)
13474 narrow = !in_pred_block ();
13475 else
13476 narrow = in_pred_block ();
13477
13478 if (Rd > 7 || Rs > 7)
13479 narrow = FALSE;
13480
13481 if (inst.size_req == 4 || !unified_syntax)
13482 narrow = FALSE;
13483
13484 if (inst.relocs[0].exp.X_op != O_constant
13485 || inst.relocs[0].exp.X_add_number != 0)
13486 narrow = FALSE;
13487
13488 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13489 relaxation, but it doesn't seem worth the hassle. */
13490 if (narrow)
13491 {
13492 inst.relocs[0].type = BFD_RELOC_UNUSED;
13493 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13494 inst.instruction |= Rs << 3;
13495 inst.instruction |= Rd;
13496 }
13497 else
13498 {
13499 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13500 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13501 }
13502 }
13503 else
13504 encode_thumb32_shifted_operand (2);
13505 }
13506
13507 static void
13508 do_t_setend (void)
13509 {
13510 if (warn_on_deprecated
13511 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13512 as_tsktsk (_("setend use is deprecated for ARMv8"));
13513
13514 set_pred_insn_type (OUTSIDE_PRED_INSN);
13515 if (inst.operands[0].imm)
13516 inst.instruction |= 0x8;
13517 }
13518
13519 static void
13520 do_t_shift (void)
13521 {
13522 if (!inst.operands[1].present)
13523 inst.operands[1].reg = inst.operands[0].reg;
13524
13525 if (unified_syntax)
13526 {
13527 bfd_boolean narrow;
13528 int shift_kind;
13529
13530 switch (inst.instruction)
13531 {
13532 case T_MNEM_asr:
13533 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13534 case T_MNEM_lsl:
13535 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13536 case T_MNEM_lsr:
13537 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13538 case T_MNEM_ror:
13539 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13540 default: abort ();
13541 }
13542
13543 if (THUMB_SETS_FLAGS (inst.instruction))
13544 narrow = !in_pred_block ();
13545 else
13546 narrow = in_pred_block ();
13547 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13548 narrow = FALSE;
13549 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13550 narrow = FALSE;
13551 if (inst.operands[2].isreg
13552 && (inst.operands[1].reg != inst.operands[0].reg
13553 || inst.operands[2].reg > 7))
13554 narrow = FALSE;
13555 if (inst.size_req == 4)
13556 narrow = FALSE;
13557
13558 reject_bad_reg (inst.operands[0].reg);
13559 reject_bad_reg (inst.operands[1].reg);
13560
13561 if (!narrow)
13562 {
13563 if (inst.operands[2].isreg)
13564 {
13565 reject_bad_reg (inst.operands[2].reg);
13566 inst.instruction = THUMB_OP32 (inst.instruction);
13567 inst.instruction |= inst.operands[0].reg << 8;
13568 inst.instruction |= inst.operands[1].reg << 16;
13569 inst.instruction |= inst.operands[2].reg;
13570
13571 /* PR 12854: Error on extraneous shifts. */
13572 constraint (inst.operands[2].shifted,
13573 _("extraneous shift as part of operand to shift insn"));
13574 }
13575 else
13576 {
13577 inst.operands[1].shifted = 1;
13578 inst.operands[1].shift_kind = shift_kind;
13579 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13580 ? T_MNEM_movs : T_MNEM_mov);
13581 inst.instruction |= inst.operands[0].reg << 8;
13582 encode_thumb32_shifted_operand (1);
13583 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13584 inst.relocs[0].type = BFD_RELOC_UNUSED;
13585 }
13586 }
13587 else
13588 {
13589 if (inst.operands[2].isreg)
13590 {
13591 switch (shift_kind)
13592 {
13593 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13594 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13595 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13596 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13597 default: abort ();
13598 }
13599
13600 inst.instruction |= inst.operands[0].reg;
13601 inst.instruction |= inst.operands[2].reg << 3;
13602
13603 /* PR 12854: Error on extraneous shifts. */
13604 constraint (inst.operands[2].shifted,
13605 _("extraneous shift as part of operand to shift insn"));
13606 }
13607 else
13608 {
13609 switch (shift_kind)
13610 {
13611 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13612 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13613 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13614 default: abort ();
13615 }
13616 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13617 inst.instruction |= inst.operands[0].reg;
13618 inst.instruction |= inst.operands[1].reg << 3;
13619 }
13620 }
13621 }
13622 else
13623 {
13624 constraint (inst.operands[0].reg > 7
13625 || inst.operands[1].reg > 7, BAD_HIREG);
13626 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13627
13628 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13629 {
13630 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13631 constraint (inst.operands[0].reg != inst.operands[1].reg,
13632 _("source1 and dest must be same register"));
13633
13634 switch (inst.instruction)
13635 {
13636 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13637 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13638 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13639 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13640 default: abort ();
13641 }
13642
13643 inst.instruction |= inst.operands[0].reg;
13644 inst.instruction |= inst.operands[2].reg << 3;
13645
13646 /* PR 12854: Error on extraneous shifts. */
13647 constraint (inst.operands[2].shifted,
13648 _("extraneous shift as part of operand to shift insn"));
13649 }
13650 else
13651 {
13652 switch (inst.instruction)
13653 {
13654 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13655 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13656 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13657 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13658 default: abort ();
13659 }
13660 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13661 inst.instruction |= inst.operands[0].reg;
13662 inst.instruction |= inst.operands[1].reg << 3;
13663 }
13664 }
13665 }
13666
13667 static void
13668 do_t_simd (void)
13669 {
13670 unsigned Rd, Rn, Rm;
13671
13672 Rd = inst.operands[0].reg;
13673 Rn = inst.operands[1].reg;
13674 Rm = inst.operands[2].reg;
13675
13676 reject_bad_reg (Rd);
13677 reject_bad_reg (Rn);
13678 reject_bad_reg (Rm);
13679
13680 inst.instruction |= Rd << 8;
13681 inst.instruction |= Rn << 16;
13682 inst.instruction |= Rm;
13683 }
13684
13685 static void
13686 do_t_simd2 (void)
13687 {
13688 unsigned Rd, Rn, Rm;
13689
13690 Rd = inst.operands[0].reg;
13691 Rm = inst.operands[1].reg;
13692 Rn = inst.operands[2].reg;
13693
13694 reject_bad_reg (Rd);
13695 reject_bad_reg (Rn);
13696 reject_bad_reg (Rm);
13697
13698 inst.instruction |= Rd << 8;
13699 inst.instruction |= Rn << 16;
13700 inst.instruction |= Rm;
13701 }
13702
13703 static void
13704 do_t_smc (void)
13705 {
13706 unsigned int value = inst.relocs[0].exp.X_add_number;
13707 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13708 _("SMC is not permitted on this architecture"));
13709 constraint (inst.relocs[0].exp.X_op != O_constant,
13710 _("expression too complex"));
13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
13712 inst.instruction |= (value & 0xf000) >> 12;
13713 inst.instruction |= (value & 0x0ff0);
13714 inst.instruction |= (value & 0x000f) << 16;
13715 /* PR gas/15623: SMC instructions must be last in an IT block. */
13716 set_pred_insn_type_last ();
13717 }
13718
13719 static void
13720 do_t_hvc (void)
13721 {
13722 unsigned int value = inst.relocs[0].exp.X_add_number;
13723
13724 inst.relocs[0].type = BFD_RELOC_UNUSED;
13725 inst.instruction |= (value & 0x0fff);
13726 inst.instruction |= (value & 0xf000) << 4;
13727 }
13728
13729 static void
13730 do_t_ssat_usat (int bias)
13731 {
13732 unsigned Rd, Rn;
13733
13734 Rd = inst.operands[0].reg;
13735 Rn = inst.operands[2].reg;
13736
13737 reject_bad_reg (Rd);
13738 reject_bad_reg (Rn);
13739
13740 inst.instruction |= Rd << 8;
13741 inst.instruction |= inst.operands[1].imm - bias;
13742 inst.instruction |= Rn << 16;
13743
13744 if (inst.operands[3].present)
13745 {
13746 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13747
13748 inst.relocs[0].type = BFD_RELOC_UNUSED;
13749
13750 constraint (inst.relocs[0].exp.X_op != O_constant,
13751 _("expression too complex"));
13752
13753 if (shift_amount != 0)
13754 {
13755 constraint (shift_amount > 31,
13756 _("shift expression is too large"));
13757
13758 if (inst.operands[3].shift_kind == SHIFT_ASR)
13759 inst.instruction |= 0x00200000; /* sh bit. */
13760
13761 inst.instruction |= (shift_amount & 0x1c) << 10;
13762 inst.instruction |= (shift_amount & 0x03) << 6;
13763 }
13764 }
13765 }
13766
13767 static void
13768 do_t_ssat (void)
13769 {
13770 do_t_ssat_usat (1);
13771 }
13772
13773 static void
13774 do_t_ssat16 (void)
13775 {
13776 unsigned Rd, Rn;
13777
13778 Rd = inst.operands[0].reg;
13779 Rn = inst.operands[2].reg;
13780
13781 reject_bad_reg (Rd);
13782 reject_bad_reg (Rn);
13783
13784 inst.instruction |= Rd << 8;
13785 inst.instruction |= inst.operands[1].imm - 1;
13786 inst.instruction |= Rn << 16;
13787 }
13788
13789 static void
13790 do_t_strex (void)
13791 {
13792 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13793 || inst.operands[2].postind || inst.operands[2].writeback
13794 || inst.operands[2].immisreg || inst.operands[2].shifted
13795 || inst.operands[2].negative,
13796 BAD_ADDR_MODE);
13797
13798 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13799
13800 inst.instruction |= inst.operands[0].reg << 8;
13801 inst.instruction |= inst.operands[1].reg << 12;
13802 inst.instruction |= inst.operands[2].reg << 16;
13803 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13804 }
13805
13806 static void
13807 do_t_strexd (void)
13808 {
13809 if (!inst.operands[2].present)
13810 inst.operands[2].reg = inst.operands[1].reg + 1;
13811
13812 constraint (inst.operands[0].reg == inst.operands[1].reg
13813 || inst.operands[0].reg == inst.operands[2].reg
13814 || inst.operands[0].reg == inst.operands[3].reg,
13815 BAD_OVERLAP);
13816
13817 inst.instruction |= inst.operands[0].reg;
13818 inst.instruction |= inst.operands[1].reg << 12;
13819 inst.instruction |= inst.operands[2].reg << 8;
13820 inst.instruction |= inst.operands[3].reg << 16;
13821 }
13822
13823 static void
13824 do_t_sxtah (void)
13825 {
13826 unsigned Rd, Rn, Rm;
13827
13828 Rd = inst.operands[0].reg;
13829 Rn = inst.operands[1].reg;
13830 Rm = inst.operands[2].reg;
13831
13832 reject_bad_reg (Rd);
13833 reject_bad_reg (Rn);
13834 reject_bad_reg (Rm);
13835
13836 inst.instruction |= Rd << 8;
13837 inst.instruction |= Rn << 16;
13838 inst.instruction |= Rm;
13839 inst.instruction |= inst.operands[3].imm << 4;
13840 }
13841
13842 static void
13843 do_t_sxth (void)
13844 {
13845 unsigned Rd, Rm;
13846
13847 Rd = inst.operands[0].reg;
13848 Rm = inst.operands[1].reg;
13849
13850 reject_bad_reg (Rd);
13851 reject_bad_reg (Rm);
13852
13853 if (inst.instruction <= 0xffff
13854 && inst.size_req != 4
13855 && Rd <= 7 && Rm <= 7
13856 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13857 {
13858 inst.instruction = THUMB_OP16 (inst.instruction);
13859 inst.instruction |= Rd;
13860 inst.instruction |= Rm << 3;
13861 }
13862 else if (unified_syntax)
13863 {
13864 if (inst.instruction <= 0xffff)
13865 inst.instruction = THUMB_OP32 (inst.instruction);
13866 inst.instruction |= Rd << 8;
13867 inst.instruction |= Rm;
13868 inst.instruction |= inst.operands[2].imm << 4;
13869 }
13870 else
13871 {
13872 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13873 _("Thumb encoding does not support rotation"));
13874 constraint (1, BAD_HIREG);
13875 }
13876 }
13877
13878 static void
13879 do_t_swi (void)
13880 {
13881 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13882 }
13883
13884 static void
13885 do_t_tb (void)
13886 {
13887 unsigned Rn, Rm;
13888 int half;
13889
13890 half = (inst.instruction & 0x10) != 0;
13891 set_pred_insn_type_last ();
13892 constraint (inst.operands[0].immisreg,
13893 _("instruction requires register index"));
13894
13895 Rn = inst.operands[0].reg;
13896 Rm = inst.operands[0].imm;
13897
13898 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13899 constraint (Rn == REG_SP, BAD_SP);
13900 reject_bad_reg (Rm);
13901
13902 constraint (!half && inst.operands[0].shifted,
13903 _("instruction does not allow shifted index"));
13904 inst.instruction |= (Rn << 16) | Rm;
13905 }
13906
13907 static void
13908 do_t_udf (void)
13909 {
13910 if (!inst.operands[0].present)
13911 inst.operands[0].imm = 0;
13912
13913 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13914 {
13915 constraint (inst.size_req == 2,
13916 _("immediate value out of range"));
13917 inst.instruction = THUMB_OP32 (inst.instruction);
13918 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13919 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13920 }
13921 else
13922 {
13923 inst.instruction = THUMB_OP16 (inst.instruction);
13924 inst.instruction |= inst.operands[0].imm;
13925 }
13926
13927 set_pred_insn_type (NEUTRAL_IT_INSN);
13928 }
13929
13930
13931 static void
13932 do_t_usat (void)
13933 {
13934 do_t_ssat_usat (0);
13935 }
13936
13937 static void
13938 do_t_usat16 (void)
13939 {
13940 unsigned Rd, Rn;
13941
13942 Rd = inst.operands[0].reg;
13943 Rn = inst.operands[2].reg;
13944
13945 reject_bad_reg (Rd);
13946 reject_bad_reg (Rn);
13947
13948 inst.instruction |= Rd << 8;
13949 inst.instruction |= inst.operands[1].imm;
13950 inst.instruction |= Rn << 16;
13951 }
13952
13953 /* Checking the range of the branch offset (VAL) with NBITS bits
13954 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13955 static int
13956 v8_1_branch_value_check (int val, int nbits, int is_signed)
13957 {
13958 gas_assert (nbits > 0 && nbits <= 32);
13959 if (is_signed)
13960 {
13961 int cmp = (1 << (nbits - 1));
13962 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13963 return FAIL;
13964 }
13965 else
13966 {
13967 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13968 return FAIL;
13969 }
13970 return SUCCESS;
13971 }
13972
13973 /* For branches in Armv8.1-M Mainline. */
13974 static void
13975 do_t_branch_future (void)
13976 {
13977 unsigned long insn = inst.instruction;
13978
13979 inst.instruction = THUMB_OP32 (inst.instruction);
13980 if (inst.operands[0].hasreloc == 0)
13981 {
13982 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13983 as_bad (BAD_BRANCH_OFF);
13984
13985 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13986 }
13987 else
13988 {
13989 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13990 inst.relocs[0].pc_rel = 1;
13991 }
13992
13993 switch (insn)
13994 {
13995 case T_MNEM_bf:
13996 if (inst.operands[1].hasreloc == 0)
13997 {
13998 int val = inst.operands[1].imm;
13999 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
14000 as_bad (BAD_BRANCH_OFF);
14001
14002 int immA = (val & 0x0001f000) >> 12;
14003 int immB = (val & 0x00000ffc) >> 2;
14004 int immC = (val & 0x00000002) >> 1;
14005 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14006 }
14007 else
14008 {
14009 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
14010 inst.relocs[1].pc_rel = 1;
14011 }
14012 break;
14013
14014 case T_MNEM_bfl:
14015 if (inst.operands[1].hasreloc == 0)
14016 {
14017 int val = inst.operands[1].imm;
14018 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
14019 as_bad (BAD_BRANCH_OFF);
14020
14021 int immA = (val & 0x0007f000) >> 12;
14022 int immB = (val & 0x00000ffc) >> 2;
14023 int immC = (val & 0x00000002) >> 1;
14024 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14025 }
14026 else
14027 {
14028 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
14029 inst.relocs[1].pc_rel = 1;
14030 }
14031 break;
14032
14033 case T_MNEM_bfcsel:
14034 /* Operand 1. */
14035 if (inst.operands[1].hasreloc == 0)
14036 {
14037 int val = inst.operands[1].imm;
14038 int immA = (val & 0x00001000) >> 12;
14039 int immB = (val & 0x00000ffc) >> 2;
14040 int immC = (val & 0x00000002) >> 1;
14041 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14042 }
14043 else
14044 {
14045 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14046 inst.relocs[1].pc_rel = 1;
14047 }
14048
14049 /* Operand 2. */
14050 if (inst.operands[2].hasreloc == 0)
14051 {
14052 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14053 int val2 = inst.operands[2].imm;
14054 int val0 = inst.operands[0].imm & 0x1f;
14055 int diff = val2 - val0;
14056 if (diff == 4)
14057 inst.instruction |= 1 << 17; /* T bit. */
14058 else if (diff != 2)
14059 as_bad (_("out of range label-relative fixup value"));
14060 }
14061 else
14062 {
14063 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14064 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14065 inst.relocs[2].pc_rel = 1;
14066 }
14067
14068 /* Operand 3. */
14069 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14070 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14071 break;
14072
14073 case T_MNEM_bfx:
14074 case T_MNEM_bflx:
14075 inst.instruction |= inst.operands[1].reg << 16;
14076 break;
14077
14078 default: abort ();
14079 }
14080 }
14081
14082 /* Helper function for do_t_loloop to handle relocations. */
14083 static void
14084 v8_1_loop_reloc (int is_le)
14085 {
14086 if (inst.relocs[0].exp.X_op == O_constant)
14087 {
14088 int value = inst.relocs[0].exp.X_add_number;
14089 value = (is_le) ? -value : value;
14090
14091 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14092 as_bad (BAD_BRANCH_OFF);
14093
14094 int imml, immh;
14095
14096 immh = (value & 0x00000ffc) >> 2;
14097 imml = (value & 0x00000002) >> 1;
14098
14099 inst.instruction |= (imml << 11) | (immh << 1);
14100 }
14101 else
14102 {
14103 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14104 inst.relocs[0].pc_rel = 1;
14105 }
14106 }
14107
14108 /* To handle the Scalar Low Overhead Loop instructions
14109 in Armv8.1-M Mainline. */
14110 static void
14111 do_t_loloop (void)
14112 {
14113 unsigned long insn = inst.instruction;
14114
14115 set_pred_insn_type (OUTSIDE_PRED_INSN);
14116 inst.instruction = THUMB_OP32 (inst.instruction);
14117
14118 switch (insn)
14119 {
14120 case T_MNEM_le:
14121 /* le <label>. */
14122 if (!inst.operands[0].present)
14123 inst.instruction |= 1 << 21;
14124
14125 v8_1_loop_reloc (TRUE);
14126 break;
14127
14128 case T_MNEM_wls:
14129 v8_1_loop_reloc (FALSE);
14130 /* Fall through. */
14131 case T_MNEM_dls:
14132 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14133 inst.instruction |= (inst.operands[1].reg << 16);
14134 break;
14135
14136 default: abort();
14137 }
14138 }
14139
14140 /* MVE instruction encoder helpers. */
14141 #define M_MNEM_vabav 0xee800f01
14142 #define M_MNEM_vmladav 0xeef00e00
14143 #define M_MNEM_vmladava 0xeef00e20
14144 #define M_MNEM_vmladavx 0xeef01e00
14145 #define M_MNEM_vmladavax 0xeef01e20
14146 #define M_MNEM_vmlsdav 0xeef00e01
14147 #define M_MNEM_vmlsdava 0xeef00e21
14148 #define M_MNEM_vmlsdavx 0xeef01e01
14149 #define M_MNEM_vmlsdavax 0xeef01e21
14150 #define M_MNEM_vmullt 0xee011e00
14151 #define M_MNEM_vmullb 0xee010e00
14152 #define M_MNEM_vst20 0xfc801e00
14153 #define M_MNEM_vst21 0xfc801e20
14154 #define M_MNEM_vst40 0xfc801e01
14155 #define M_MNEM_vst41 0xfc801e21
14156 #define M_MNEM_vst42 0xfc801e41
14157 #define M_MNEM_vst43 0xfc801e61
14158 #define M_MNEM_vld20 0xfc901e00
14159 #define M_MNEM_vld21 0xfc901e20
14160 #define M_MNEM_vld40 0xfc901e01
14161 #define M_MNEM_vld41 0xfc901e21
14162 #define M_MNEM_vld42 0xfc901e41
14163 #define M_MNEM_vld43 0xfc901e61
14164 #define M_MNEM_vstrb 0xec000e00
14165 #define M_MNEM_vstrh 0xec000e10
14166 #define M_MNEM_vstrw 0xec000e40
14167 #define M_MNEM_vstrd 0xec000e50
14168 #define M_MNEM_vldrb 0xec100e00
14169 #define M_MNEM_vldrh 0xec100e10
14170 #define M_MNEM_vldrw 0xec100e40
14171 #define M_MNEM_vldrd 0xec100e50
14172 #define M_MNEM_vmovlt 0xeea01f40
14173 #define M_MNEM_vmovlb 0xeea00f40
14174 #define M_MNEM_vmovnt 0xfe311e81
14175 #define M_MNEM_vmovnb 0xfe310e81
14176 #define M_MNEM_vadc 0xee300f00
14177 #define M_MNEM_vadci 0xee301f00
14178 #define M_MNEM_vbrsr 0xfe011e60
14179 #define M_MNEM_vaddlv 0xee890f00
14180 #define M_MNEM_vaddlva 0xee890f20
14181 #define M_MNEM_vaddv 0xeef10f00
14182 #define M_MNEM_vaddva 0xeef10f20
14183 #define M_MNEM_vddup 0xee011f6e
14184 #define M_MNEM_vdwdup 0xee011f60
14185 #define M_MNEM_vidup 0xee010f6e
14186 #define M_MNEM_viwdup 0xee010f60
14187 #define M_MNEM_vmaxv 0xeee20f00
14188 #define M_MNEM_vmaxav 0xeee00f00
14189 #define M_MNEM_vminv 0xeee20f80
14190 #define M_MNEM_vminav 0xeee00f80
14191 #define M_MNEM_vmlaldav 0xee800e00
14192 #define M_MNEM_vmlaldava 0xee800e20
14193 #define M_MNEM_vmlaldavx 0xee801e00
14194 #define M_MNEM_vmlaldavax 0xee801e20
14195 #define M_MNEM_vmlsldav 0xee800e01
14196 #define M_MNEM_vmlsldava 0xee800e21
14197 #define M_MNEM_vmlsldavx 0xee801e01
14198 #define M_MNEM_vmlsldavax 0xee801e21
14199 #define M_MNEM_vrmlaldavhx 0xee801f00
14200 #define M_MNEM_vrmlaldavhax 0xee801f20
14201 #define M_MNEM_vrmlsldavh 0xfe800e01
14202 #define M_MNEM_vrmlsldavha 0xfe800e21
14203 #define M_MNEM_vrmlsldavhx 0xfe801e01
14204 #define M_MNEM_vrmlsldavhax 0xfe801e21
14205 #define M_MNEM_vqmovnt 0xee331e01
14206 #define M_MNEM_vqmovnb 0xee330e01
14207 #define M_MNEM_vqmovunt 0xee311e81
14208 #define M_MNEM_vqmovunb 0xee310e81
14209
14210 /* Neon instruction encoder helpers. */
14211
14212 /* Encodings for the different types for various Neon opcodes. */
14213
14214 /* An "invalid" code for the following tables. */
14215 #define N_INV -1u
14216
14217 struct neon_tab_entry
14218 {
14219 unsigned integer;
14220 unsigned float_or_poly;
14221 unsigned scalar_or_imm;
14222 };
14223
14224 /* Map overloaded Neon opcodes to their respective encodings. */
14225 #define NEON_ENC_TAB \
14226 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14227 X(vabdl, 0x0800700, N_INV, N_INV), \
14228 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14229 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14230 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14231 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14232 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14233 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14234 X(vaddl, 0x0800000, N_INV, N_INV), \
14235 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14236 X(vsubl, 0x0800200, N_INV, N_INV), \
14237 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14238 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14239 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14240 /* Register variants of the following two instructions are encoded as
14241 vcge / vcgt with the operands reversed. */ \
14242 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14243 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14244 X(vfma, N_INV, 0x0000c10, N_INV), \
14245 X(vfms, N_INV, 0x0200c10, N_INV), \
14246 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14247 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14248 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14249 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14250 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14251 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14252 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14253 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14254 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14255 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14256 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14257 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14258 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14259 X(vshl, 0x0000400, N_INV, 0x0800510), \
14260 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14261 X(vand, 0x0000110, N_INV, 0x0800030), \
14262 X(vbic, 0x0100110, N_INV, 0x0800030), \
14263 X(veor, 0x1000110, N_INV, N_INV), \
14264 X(vorn, 0x0300110, N_INV, 0x0800010), \
14265 X(vorr, 0x0200110, N_INV, 0x0800010), \
14266 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14267 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14268 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14269 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14270 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14271 X(vst1, 0x0000000, 0x0800000, N_INV), \
14272 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14273 X(vst2, 0x0000100, 0x0800100, N_INV), \
14274 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14275 X(vst3, 0x0000200, 0x0800200, N_INV), \
14276 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14277 X(vst4, 0x0000300, 0x0800300, N_INV), \
14278 X(vmovn, 0x1b20200, N_INV, N_INV), \
14279 X(vtrn, 0x1b20080, N_INV, N_INV), \
14280 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14281 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14282 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14283 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14284 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14285 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14286 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14287 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14288 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14289 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14290 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14291 X(vseleq, 0xe000a00, N_INV, N_INV), \
14292 X(vselvs, 0xe100a00, N_INV, N_INV), \
14293 X(vselge, 0xe200a00, N_INV, N_INV), \
14294 X(vselgt, 0xe300a00, N_INV, N_INV), \
14295 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14296 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14297 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14298 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14299 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14300 X(aes, 0x3b00300, N_INV, N_INV), \
14301 X(sha3op, 0x2000c00, N_INV, N_INV), \
14302 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14303 X(sha2op, 0x3ba0380, N_INV, N_INV)
14304
14305 enum neon_opc
14306 {
14307 #define X(OPC,I,F,S) N_MNEM_##OPC
14308 NEON_ENC_TAB
14309 #undef X
14310 };
14311
14312 static const struct neon_tab_entry neon_enc_tab[] =
14313 {
14314 #define X(OPC,I,F,S) { (I), (F), (S) }
14315 NEON_ENC_TAB
14316 #undef X
14317 };
14318
14319 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14320 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14321 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14322 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14323 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14324 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14325 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14326 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14327 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14328 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14329 #define NEON_ENC_SINGLE_(X) \
14330 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14331 #define NEON_ENC_DOUBLE_(X) \
14332 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14333 #define NEON_ENC_FPV8_(X) \
14334 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14335
14336 #define NEON_ENCODE(type, inst) \
14337 do \
14338 { \
14339 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14340 inst.is_neon = 1; \
14341 } \
14342 while (0)
14343
14344 #define check_neon_suffixes \
14345 do \
14346 { \
14347 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14348 { \
14349 as_bad (_("invalid neon suffix for non neon instruction")); \
14350 return; \
14351 } \
14352 } \
14353 while (0)
14354
14355 /* Define shapes for instruction operands. The following mnemonic characters
14356 are used in this table:
14357
14358 F - VFP S<n> register
14359 D - Neon D<n> register
14360 Q - Neon Q<n> register
14361 I - Immediate
14362 S - Scalar
14363 R - ARM register
14364 L - D<n> register list
14365
14366 This table is used to generate various data:
14367 - enumerations of the form NS_DDR to be used as arguments to
14368 neon_select_shape.
14369 - a table classifying shapes into single, double, quad, mixed.
14370 - a table used to drive neon_select_shape. */
14371
14372 #define NEON_SHAPE_DEF \
14373 X(4, (R, R, Q, Q), QUAD), \
14374 X(4, (Q, R, R, I), QUAD), \
14375 X(4, (R, R, S, S), QUAD), \
14376 X(4, (S, S, R, R), QUAD), \
14377 X(3, (Q, R, I), QUAD), \
14378 X(3, (I, Q, Q), QUAD), \
14379 X(3, (I, Q, R), QUAD), \
14380 X(3, (R, Q, Q), QUAD), \
14381 X(3, (D, D, D), DOUBLE), \
14382 X(3, (Q, Q, Q), QUAD), \
14383 X(3, (D, D, I), DOUBLE), \
14384 X(3, (Q, Q, I), QUAD), \
14385 X(3, (D, D, S), DOUBLE), \
14386 X(3, (Q, Q, S), QUAD), \
14387 X(3, (Q, Q, R), QUAD), \
14388 X(3, (R, R, Q), QUAD), \
14389 X(2, (R, Q), QUAD), \
14390 X(2, (D, D), DOUBLE), \
14391 X(2, (Q, Q), QUAD), \
14392 X(2, (D, S), DOUBLE), \
14393 X(2, (Q, S), QUAD), \
14394 X(2, (D, R), DOUBLE), \
14395 X(2, (Q, R), QUAD), \
14396 X(2, (D, I), DOUBLE), \
14397 X(2, (Q, I), QUAD), \
14398 X(3, (D, L, D), DOUBLE), \
14399 X(2, (D, Q), MIXED), \
14400 X(2, (Q, D), MIXED), \
14401 X(3, (D, Q, I), MIXED), \
14402 X(3, (Q, D, I), MIXED), \
14403 X(3, (Q, D, D), MIXED), \
14404 X(3, (D, Q, Q), MIXED), \
14405 X(3, (Q, Q, D), MIXED), \
14406 X(3, (Q, D, S), MIXED), \
14407 X(3, (D, Q, S), MIXED), \
14408 X(4, (D, D, D, I), DOUBLE), \
14409 X(4, (Q, Q, Q, I), QUAD), \
14410 X(4, (D, D, S, I), DOUBLE), \
14411 X(4, (Q, Q, S, I), QUAD), \
14412 X(2, (F, F), SINGLE), \
14413 X(3, (F, F, F), SINGLE), \
14414 X(2, (F, I), SINGLE), \
14415 X(2, (F, D), MIXED), \
14416 X(2, (D, F), MIXED), \
14417 X(3, (F, F, I), MIXED), \
14418 X(4, (R, R, F, F), SINGLE), \
14419 X(4, (F, F, R, R), SINGLE), \
14420 X(3, (D, R, R), DOUBLE), \
14421 X(3, (R, R, D), DOUBLE), \
14422 X(2, (S, R), SINGLE), \
14423 X(2, (R, S), SINGLE), \
14424 X(2, (F, R), SINGLE), \
14425 X(2, (R, F), SINGLE), \
14426 /* Half float shape supported so far. */\
14427 X (2, (H, D), MIXED), \
14428 X (2, (D, H), MIXED), \
14429 X (2, (H, F), MIXED), \
14430 X (2, (F, H), MIXED), \
14431 X (2, (H, H), HALF), \
14432 X (2, (H, R), HALF), \
14433 X (2, (R, H), HALF), \
14434 X (2, (H, I), HALF), \
14435 X (3, (H, H, H), HALF), \
14436 X (3, (H, F, I), MIXED), \
14437 X (3, (F, H, I), MIXED), \
14438 X (3, (D, H, H), MIXED), \
14439 X (3, (D, H, S), MIXED)
14440
14441 #define S2(A,B) NS_##A##B
14442 #define S3(A,B,C) NS_##A##B##C
14443 #define S4(A,B,C,D) NS_##A##B##C##D
14444
14445 #define X(N, L, C) S##N L
14446
14447 enum neon_shape
14448 {
14449 NEON_SHAPE_DEF,
14450 NS_NULL
14451 };
14452
14453 #undef X
14454 #undef S2
14455 #undef S3
14456 #undef S4
14457
14458 enum neon_shape_class
14459 {
14460 SC_HALF,
14461 SC_SINGLE,
14462 SC_DOUBLE,
14463 SC_QUAD,
14464 SC_MIXED
14465 };
14466
14467 #define X(N, L, C) SC_##C
14468
14469 static enum neon_shape_class neon_shape_class[] =
14470 {
14471 NEON_SHAPE_DEF
14472 };
14473
14474 #undef X
14475
14476 enum neon_shape_el
14477 {
14478 SE_H,
14479 SE_F,
14480 SE_D,
14481 SE_Q,
14482 SE_I,
14483 SE_S,
14484 SE_R,
14485 SE_L
14486 };
14487
14488 /* Register widths of above. */
14489 static unsigned neon_shape_el_size[] =
14490 {
14491 16,
14492 32,
14493 64,
14494 128,
14495 0,
14496 32,
14497 32,
14498 0
14499 };
14500
14501 struct neon_shape_info
14502 {
14503 unsigned els;
14504 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14505 };
14506
14507 #define S2(A,B) { SE_##A, SE_##B }
14508 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14509 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14510
14511 #define X(N, L, C) { N, S##N L }
14512
14513 static struct neon_shape_info neon_shape_tab[] =
14514 {
14515 NEON_SHAPE_DEF
14516 };
14517
14518 #undef X
14519 #undef S2
14520 #undef S3
14521 #undef S4
14522
14523 /* Bit masks used in type checking given instructions.
14524 'N_EQK' means the type must be the same as (or based on in some way) the key
14525 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14526 set, various other bits can be set as well in order to modify the meaning of
14527 the type constraint. */
14528
14529 enum neon_type_mask
14530 {
14531 N_S8 = 0x0000001,
14532 N_S16 = 0x0000002,
14533 N_S32 = 0x0000004,
14534 N_S64 = 0x0000008,
14535 N_U8 = 0x0000010,
14536 N_U16 = 0x0000020,
14537 N_U32 = 0x0000040,
14538 N_U64 = 0x0000080,
14539 N_I8 = 0x0000100,
14540 N_I16 = 0x0000200,
14541 N_I32 = 0x0000400,
14542 N_I64 = 0x0000800,
14543 N_8 = 0x0001000,
14544 N_16 = 0x0002000,
14545 N_32 = 0x0004000,
14546 N_64 = 0x0008000,
14547 N_P8 = 0x0010000,
14548 N_P16 = 0x0020000,
14549 N_F16 = 0x0040000,
14550 N_F32 = 0x0080000,
14551 N_F64 = 0x0100000,
14552 N_P64 = 0x0200000,
14553 N_KEY = 0x1000000, /* Key element (main type specifier). */
14554 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14555 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14556 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14557 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14558 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14559 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14560 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14561 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14562 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14563 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14564 N_UTYP = 0,
14565 N_MAX_NONSPECIAL = N_P64
14566 };
14567
14568 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14569
14570 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14571 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14572 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14573 #define N_S_32 (N_S8 | N_S16 | N_S32)
14574 #define N_F_16_32 (N_F16 | N_F32)
14575 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14576 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14577 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14578 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14579 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14580 #define N_F_MVE (N_F16 | N_F32)
14581 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14582
14583 /* Pass this as the first type argument to neon_check_type to ignore types
14584 altogether. */
14585 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14586
14587 /* Select a "shape" for the current instruction (describing register types or
14588 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14589 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14590 function of operand parsing, so this function doesn't need to be called.
14591 Shapes should be listed in order of decreasing length. */
14592
14593 static enum neon_shape
14594 neon_select_shape (enum neon_shape shape, ...)
14595 {
14596 va_list ap;
14597 enum neon_shape first_shape = shape;
14598
14599 /* Fix missing optional operands. FIXME: we don't know at this point how
14600 many arguments we should have, so this makes the assumption that we have
14601 > 1. This is true of all current Neon opcodes, I think, but may not be
14602 true in the future. */
14603 if (!inst.operands[1].present)
14604 inst.operands[1] = inst.operands[0];
14605
14606 va_start (ap, shape);
14607
14608 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14609 {
14610 unsigned j;
14611 int matches = 1;
14612
14613 for (j = 0; j < neon_shape_tab[shape].els; j++)
14614 {
14615 if (!inst.operands[j].present)
14616 {
14617 matches = 0;
14618 break;
14619 }
14620
14621 switch (neon_shape_tab[shape].el[j])
14622 {
14623 /* If a .f16, .16, .u16, .s16 type specifier is given over
14624 a VFP single precision register operand, it's essentially
14625 means only half of the register is used.
14626
14627 If the type specifier is given after the mnemonics, the
14628 information is stored in inst.vectype. If the type specifier
14629 is given after register operand, the information is stored
14630 in inst.operands[].vectype.
14631
14632 When there is only one type specifier, and all the register
14633 operands are the same type of hardware register, the type
14634 specifier applies to all register operands.
14635
14636 If no type specifier is given, the shape is inferred from
14637 operand information.
14638
14639 for example:
14640 vadd.f16 s0, s1, s2: NS_HHH
14641 vabs.f16 s0, s1: NS_HH
14642 vmov.f16 s0, r1: NS_HR
14643 vmov.f16 r0, s1: NS_RH
14644 vcvt.f16 r0, s1: NS_RH
14645 vcvt.f16.s32 s2, s2, #29: NS_HFI
14646 vcvt.f16.s32 s2, s2: NS_HF
14647 */
14648 case SE_H:
14649 if (!(inst.operands[j].isreg
14650 && inst.operands[j].isvec
14651 && inst.operands[j].issingle
14652 && !inst.operands[j].isquad
14653 && ((inst.vectype.elems == 1
14654 && inst.vectype.el[0].size == 16)
14655 || (inst.vectype.elems > 1
14656 && inst.vectype.el[j].size == 16)
14657 || (inst.vectype.elems == 0
14658 && inst.operands[j].vectype.type != NT_invtype
14659 && inst.operands[j].vectype.size == 16))))
14660 matches = 0;
14661 break;
14662
14663 case SE_F:
14664 if (!(inst.operands[j].isreg
14665 && inst.operands[j].isvec
14666 && inst.operands[j].issingle
14667 && !inst.operands[j].isquad
14668 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14669 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14670 || (inst.vectype.elems == 0
14671 && (inst.operands[j].vectype.size == 32
14672 || inst.operands[j].vectype.type == NT_invtype)))))
14673 matches = 0;
14674 break;
14675
14676 case SE_D:
14677 if (!(inst.operands[j].isreg
14678 && inst.operands[j].isvec
14679 && !inst.operands[j].isquad
14680 && !inst.operands[j].issingle))
14681 matches = 0;
14682 break;
14683
14684 case SE_R:
14685 if (!(inst.operands[j].isreg
14686 && !inst.operands[j].isvec))
14687 matches = 0;
14688 break;
14689
14690 case SE_Q:
14691 if (!(inst.operands[j].isreg
14692 && inst.operands[j].isvec
14693 && inst.operands[j].isquad
14694 && !inst.operands[j].issingle))
14695 matches = 0;
14696 break;
14697
14698 case SE_I:
14699 if (!(!inst.operands[j].isreg
14700 && !inst.operands[j].isscalar))
14701 matches = 0;
14702 break;
14703
14704 case SE_S:
14705 if (!(!inst.operands[j].isreg
14706 && inst.operands[j].isscalar))
14707 matches = 0;
14708 break;
14709
14710 case SE_L:
14711 break;
14712 }
14713 if (!matches)
14714 break;
14715 }
14716 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14717 /* We've matched all the entries in the shape table, and we don't
14718 have any left over operands which have not been matched. */
14719 break;
14720 }
14721
14722 va_end (ap);
14723
14724 if (shape == NS_NULL && first_shape != NS_NULL)
14725 first_error (_("invalid instruction shape"));
14726
14727 return shape;
14728 }
14729
14730 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14731 means the Q bit should be set). */
14732
14733 static int
14734 neon_quad (enum neon_shape shape)
14735 {
14736 return neon_shape_class[shape] == SC_QUAD;
14737 }
14738
14739 static void
14740 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14741 unsigned *g_size)
14742 {
14743 /* Allow modification to be made to types which are constrained to be
14744 based on the key element, based on bits set alongside N_EQK. */
14745 if ((typebits & N_EQK) != 0)
14746 {
14747 if ((typebits & N_HLF) != 0)
14748 *g_size /= 2;
14749 else if ((typebits & N_DBL) != 0)
14750 *g_size *= 2;
14751 if ((typebits & N_SGN) != 0)
14752 *g_type = NT_signed;
14753 else if ((typebits & N_UNS) != 0)
14754 *g_type = NT_unsigned;
14755 else if ((typebits & N_INT) != 0)
14756 *g_type = NT_integer;
14757 else if ((typebits & N_FLT) != 0)
14758 *g_type = NT_float;
14759 else if ((typebits & N_SIZ) != 0)
14760 *g_type = NT_untyped;
14761 }
14762 }
14763
14764 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14765 operand type, i.e. the single type specified in a Neon instruction when it
14766 is the only one given. */
14767
14768 static struct neon_type_el
14769 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14770 {
14771 struct neon_type_el dest = *key;
14772
14773 gas_assert ((thisarg & N_EQK) != 0);
14774
14775 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14776
14777 return dest;
14778 }
14779
14780 /* Convert Neon type and size into compact bitmask representation. */
14781
14782 static enum neon_type_mask
14783 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14784 {
14785 switch (type)
14786 {
14787 case NT_untyped:
14788 switch (size)
14789 {
14790 case 8: return N_8;
14791 case 16: return N_16;
14792 case 32: return N_32;
14793 case 64: return N_64;
14794 default: ;
14795 }
14796 break;
14797
14798 case NT_integer:
14799 switch (size)
14800 {
14801 case 8: return N_I8;
14802 case 16: return N_I16;
14803 case 32: return N_I32;
14804 case 64: return N_I64;
14805 default: ;
14806 }
14807 break;
14808
14809 case NT_float:
14810 switch (size)
14811 {
14812 case 16: return N_F16;
14813 case 32: return N_F32;
14814 case 64: return N_F64;
14815 default: ;
14816 }
14817 break;
14818
14819 case NT_poly:
14820 switch (size)
14821 {
14822 case 8: return N_P8;
14823 case 16: return N_P16;
14824 case 64: return N_P64;
14825 default: ;
14826 }
14827 break;
14828
14829 case NT_signed:
14830 switch (size)
14831 {
14832 case 8: return N_S8;
14833 case 16: return N_S16;
14834 case 32: return N_S32;
14835 case 64: return N_S64;
14836 default: ;
14837 }
14838 break;
14839
14840 case NT_unsigned:
14841 switch (size)
14842 {
14843 case 8: return N_U8;
14844 case 16: return N_U16;
14845 case 32: return N_U32;
14846 case 64: return N_U64;
14847 default: ;
14848 }
14849 break;
14850
14851 default: ;
14852 }
14853
14854 return N_UTYP;
14855 }
14856
14857 /* Convert compact Neon bitmask type representation to a type and size. Only
14858 handles the case where a single bit is set in the mask. */
14859
14860 static int
14861 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14862 enum neon_type_mask mask)
14863 {
14864 if ((mask & N_EQK) != 0)
14865 return FAIL;
14866
14867 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14868 *size = 8;
14869 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14870 *size = 16;
14871 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14872 *size = 32;
14873 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14874 *size = 64;
14875 else
14876 return FAIL;
14877
14878 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14879 *type = NT_signed;
14880 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14881 *type = NT_unsigned;
14882 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14883 *type = NT_integer;
14884 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14885 *type = NT_untyped;
14886 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14887 *type = NT_poly;
14888 else if ((mask & (N_F_ALL)) != 0)
14889 *type = NT_float;
14890 else
14891 return FAIL;
14892
14893 return SUCCESS;
14894 }
14895
14896 /* Modify a bitmask of allowed types. This is only needed for type
14897 relaxation. */
14898
14899 static unsigned
14900 modify_types_allowed (unsigned allowed, unsigned mods)
14901 {
14902 unsigned size;
14903 enum neon_el_type type;
14904 unsigned destmask;
14905 int i;
14906
14907 destmask = 0;
14908
14909 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14910 {
14911 if (el_type_of_type_chk (&type, &size,
14912 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14913 {
14914 neon_modify_type_size (mods, &type, &size);
14915 destmask |= type_chk_of_el_type (type, size);
14916 }
14917 }
14918
14919 return destmask;
14920 }
14921
14922 /* Check type and return type classification.
14923 The manual states (paraphrase): If one datatype is given, it indicates the
14924 type given in:
14925 - the second operand, if there is one
14926 - the operand, if there is no second operand
14927 - the result, if there are no operands.
14928 This isn't quite good enough though, so we use a concept of a "key" datatype
14929 which is set on a per-instruction basis, which is the one which matters when
14930 only one data type is written.
14931 Note: this function has side-effects (e.g. filling in missing operands). All
14932 Neon instructions should call it before performing bit encoding. */
14933
14934 static struct neon_type_el
14935 neon_check_type (unsigned els, enum neon_shape ns, ...)
14936 {
14937 va_list ap;
14938 unsigned i, pass, key_el = 0;
14939 unsigned types[NEON_MAX_TYPE_ELS];
14940 enum neon_el_type k_type = NT_invtype;
14941 unsigned k_size = -1u;
14942 struct neon_type_el badtype = {NT_invtype, -1};
14943 unsigned key_allowed = 0;
14944
14945 /* Optional registers in Neon instructions are always (not) in operand 1.
14946 Fill in the missing operand here, if it was omitted. */
14947 if (els > 1 && !inst.operands[1].present)
14948 inst.operands[1] = inst.operands[0];
14949
14950 /* Suck up all the varargs. */
14951 va_start (ap, ns);
14952 for (i = 0; i < els; i++)
14953 {
14954 unsigned thisarg = va_arg (ap, unsigned);
14955 if (thisarg == N_IGNORE_TYPE)
14956 {
14957 va_end (ap);
14958 return badtype;
14959 }
14960 types[i] = thisarg;
14961 if ((thisarg & N_KEY) != 0)
14962 key_el = i;
14963 }
14964 va_end (ap);
14965
14966 if (inst.vectype.elems > 0)
14967 for (i = 0; i < els; i++)
14968 if (inst.operands[i].vectype.type != NT_invtype)
14969 {
14970 first_error (_("types specified in both the mnemonic and operands"));
14971 return badtype;
14972 }
14973
14974 /* Duplicate inst.vectype elements here as necessary.
14975 FIXME: No idea if this is exactly the same as the ARM assembler,
14976 particularly when an insn takes one register and one non-register
14977 operand. */
14978 if (inst.vectype.elems == 1 && els > 1)
14979 {
14980 unsigned j;
14981 inst.vectype.elems = els;
14982 inst.vectype.el[key_el] = inst.vectype.el[0];
14983 for (j = 0; j < els; j++)
14984 if (j != key_el)
14985 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14986 types[j]);
14987 }
14988 else if (inst.vectype.elems == 0 && els > 0)
14989 {
14990 unsigned j;
14991 /* No types were given after the mnemonic, so look for types specified
14992 after each operand. We allow some flexibility here; as long as the
14993 "key" operand has a type, we can infer the others. */
14994 for (j = 0; j < els; j++)
14995 if (inst.operands[j].vectype.type != NT_invtype)
14996 inst.vectype.el[j] = inst.operands[j].vectype;
14997
14998 if (inst.operands[key_el].vectype.type != NT_invtype)
14999 {
15000 for (j = 0; j < els; j++)
15001 if (inst.operands[j].vectype.type == NT_invtype)
15002 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
15003 types[j]);
15004 }
15005 else
15006 {
15007 first_error (_("operand types can't be inferred"));
15008 return badtype;
15009 }
15010 }
15011 else if (inst.vectype.elems != els)
15012 {
15013 first_error (_("type specifier has the wrong number of parts"));
15014 return badtype;
15015 }
15016
15017 for (pass = 0; pass < 2; pass++)
15018 {
15019 for (i = 0; i < els; i++)
15020 {
15021 unsigned thisarg = types[i];
15022 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
15023 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
15024 enum neon_el_type g_type = inst.vectype.el[i].type;
15025 unsigned g_size = inst.vectype.el[i].size;
15026
15027 /* Decay more-specific signed & unsigned types to sign-insensitive
15028 integer types if sign-specific variants are unavailable. */
15029 if ((g_type == NT_signed || g_type == NT_unsigned)
15030 && (types_allowed & N_SU_ALL) == 0)
15031 g_type = NT_integer;
15032
15033 /* If only untyped args are allowed, decay any more specific types to
15034 them. Some instructions only care about signs for some element
15035 sizes, so handle that properly. */
15036 if (((types_allowed & N_UNT) == 0)
15037 && ((g_size == 8 && (types_allowed & N_8) != 0)
15038 || (g_size == 16 && (types_allowed & N_16) != 0)
15039 || (g_size == 32 && (types_allowed & N_32) != 0)
15040 || (g_size == 64 && (types_allowed & N_64) != 0)))
15041 g_type = NT_untyped;
15042
15043 if (pass == 0)
15044 {
15045 if ((thisarg & N_KEY) != 0)
15046 {
15047 k_type = g_type;
15048 k_size = g_size;
15049 key_allowed = thisarg & ~N_KEY;
15050
15051 /* Check architecture constraint on FP16 extension. */
15052 if (k_size == 16
15053 && k_type == NT_float
15054 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15055 {
15056 inst.error = _(BAD_FP16);
15057 return badtype;
15058 }
15059 }
15060 }
15061 else
15062 {
15063 if ((thisarg & N_VFP) != 0)
15064 {
15065 enum neon_shape_el regshape;
15066 unsigned regwidth, match;
15067
15068 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
15069 if (ns == NS_NULL)
15070 {
15071 first_error (_("invalid instruction shape"));
15072 return badtype;
15073 }
15074 regshape = neon_shape_tab[ns].el[i];
15075 regwidth = neon_shape_el_size[regshape];
15076
15077 /* In VFP mode, operands must match register widths. If we
15078 have a key operand, use its width, else use the width of
15079 the current operand. */
15080 if (k_size != -1u)
15081 match = k_size;
15082 else
15083 match = g_size;
15084
15085 /* FP16 will use a single precision register. */
15086 if (regwidth == 32 && match == 16)
15087 {
15088 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15089 match = regwidth;
15090 else
15091 {
15092 inst.error = _(BAD_FP16);
15093 return badtype;
15094 }
15095 }
15096
15097 if (regwidth != match)
15098 {
15099 first_error (_("operand size must match register width"));
15100 return badtype;
15101 }
15102 }
15103
15104 if ((thisarg & N_EQK) == 0)
15105 {
15106 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15107
15108 if ((given_type & types_allowed) == 0)
15109 {
15110 first_error (BAD_SIMD_TYPE);
15111 return badtype;
15112 }
15113 }
15114 else
15115 {
15116 enum neon_el_type mod_k_type = k_type;
15117 unsigned mod_k_size = k_size;
15118 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15119 if (g_type != mod_k_type || g_size != mod_k_size)
15120 {
15121 first_error (_("inconsistent types in Neon instruction"));
15122 return badtype;
15123 }
15124 }
15125 }
15126 }
15127 }
15128
15129 return inst.vectype.el[key_el];
15130 }
15131
15132 /* Neon-style VFP instruction forwarding. */
15133
15134 /* Thumb VFP instructions have 0xE in the condition field. */
15135
15136 static void
15137 do_vfp_cond_or_thumb (void)
15138 {
15139 inst.is_neon = 1;
15140
15141 if (thumb_mode)
15142 inst.instruction |= 0xe0000000;
15143 else
15144 inst.instruction |= inst.cond << 28;
15145 }
15146
15147 /* Look up and encode a simple mnemonic, for use as a helper function for the
15148 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15149 etc. It is assumed that operand parsing has already been done, and that the
15150 operands are in the form expected by the given opcode (this isn't necessarily
15151 the same as the form in which they were parsed, hence some massaging must
15152 take place before this function is called).
15153 Checks current arch version against that in the looked-up opcode. */
15154
15155 static void
15156 do_vfp_nsyn_opcode (const char *opname)
15157 {
15158 const struct asm_opcode *opcode;
15159
15160 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15161
15162 if (!opcode)
15163 abort ();
15164
15165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15166 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15167 _(BAD_FPU));
15168
15169 inst.is_neon = 1;
15170
15171 if (thumb_mode)
15172 {
15173 inst.instruction = opcode->tvalue;
15174 opcode->tencode ();
15175 }
15176 else
15177 {
15178 inst.instruction = (inst.cond << 28) | opcode->avalue;
15179 opcode->aencode ();
15180 }
15181 }
15182
15183 static void
15184 do_vfp_nsyn_add_sub (enum neon_shape rs)
15185 {
15186 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15187
15188 if (rs == NS_FFF || rs == NS_HHH)
15189 {
15190 if (is_add)
15191 do_vfp_nsyn_opcode ("fadds");
15192 else
15193 do_vfp_nsyn_opcode ("fsubs");
15194
15195 /* ARMv8.2 fp16 instruction. */
15196 if (rs == NS_HHH)
15197 do_scalar_fp16_v82_encode ();
15198 }
15199 else
15200 {
15201 if (is_add)
15202 do_vfp_nsyn_opcode ("faddd");
15203 else
15204 do_vfp_nsyn_opcode ("fsubd");
15205 }
15206 }
15207
15208 /* Check operand types to see if this is a VFP instruction, and if so call
15209 PFN (). */
15210
15211 static int
15212 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15213 {
15214 enum neon_shape rs;
15215 struct neon_type_el et;
15216
15217 switch (args)
15218 {
15219 case 2:
15220 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15221 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15222 break;
15223
15224 case 3:
15225 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15226 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15227 N_F_ALL | N_KEY | N_VFP);
15228 break;
15229
15230 default:
15231 abort ();
15232 }
15233
15234 if (et.type != NT_invtype)
15235 {
15236 pfn (rs);
15237 return SUCCESS;
15238 }
15239
15240 inst.error = NULL;
15241 return FAIL;
15242 }
15243
15244 static void
15245 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15246 {
15247 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15248
15249 if (rs == NS_FFF || rs == NS_HHH)
15250 {
15251 if (is_mla)
15252 do_vfp_nsyn_opcode ("fmacs");
15253 else
15254 do_vfp_nsyn_opcode ("fnmacs");
15255
15256 /* ARMv8.2 fp16 instruction. */
15257 if (rs == NS_HHH)
15258 do_scalar_fp16_v82_encode ();
15259 }
15260 else
15261 {
15262 if (is_mla)
15263 do_vfp_nsyn_opcode ("fmacd");
15264 else
15265 do_vfp_nsyn_opcode ("fnmacd");
15266 }
15267 }
15268
15269 static void
15270 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15271 {
15272 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15273
15274 if (rs == NS_FFF || rs == NS_HHH)
15275 {
15276 if (is_fma)
15277 do_vfp_nsyn_opcode ("ffmas");
15278 else
15279 do_vfp_nsyn_opcode ("ffnmas");
15280
15281 /* ARMv8.2 fp16 instruction. */
15282 if (rs == NS_HHH)
15283 do_scalar_fp16_v82_encode ();
15284 }
15285 else
15286 {
15287 if (is_fma)
15288 do_vfp_nsyn_opcode ("ffmad");
15289 else
15290 do_vfp_nsyn_opcode ("ffnmad");
15291 }
15292 }
15293
15294 static void
15295 do_vfp_nsyn_mul (enum neon_shape rs)
15296 {
15297 if (rs == NS_FFF || rs == NS_HHH)
15298 {
15299 do_vfp_nsyn_opcode ("fmuls");
15300
15301 /* ARMv8.2 fp16 instruction. */
15302 if (rs == NS_HHH)
15303 do_scalar_fp16_v82_encode ();
15304 }
15305 else
15306 do_vfp_nsyn_opcode ("fmuld");
15307 }
15308
15309 static void
15310 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15311 {
15312 int is_neg = (inst.instruction & 0x80) != 0;
15313 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15314
15315 if (rs == NS_FF || rs == NS_HH)
15316 {
15317 if (is_neg)
15318 do_vfp_nsyn_opcode ("fnegs");
15319 else
15320 do_vfp_nsyn_opcode ("fabss");
15321
15322 /* ARMv8.2 fp16 instruction. */
15323 if (rs == NS_HH)
15324 do_scalar_fp16_v82_encode ();
15325 }
15326 else
15327 {
15328 if (is_neg)
15329 do_vfp_nsyn_opcode ("fnegd");
15330 else
15331 do_vfp_nsyn_opcode ("fabsd");
15332 }
15333 }
15334
15335 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15336 insns belong to Neon, and are handled elsewhere. */
15337
15338 static void
15339 do_vfp_nsyn_ldm_stm (int is_dbmode)
15340 {
15341 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15342 if (is_ldm)
15343 {
15344 if (is_dbmode)
15345 do_vfp_nsyn_opcode ("fldmdbs");
15346 else
15347 do_vfp_nsyn_opcode ("fldmias");
15348 }
15349 else
15350 {
15351 if (is_dbmode)
15352 do_vfp_nsyn_opcode ("fstmdbs");
15353 else
15354 do_vfp_nsyn_opcode ("fstmias");
15355 }
15356 }
15357
15358 static void
15359 do_vfp_nsyn_sqrt (void)
15360 {
15361 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15362 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15363
15364 if (rs == NS_FF || rs == NS_HH)
15365 {
15366 do_vfp_nsyn_opcode ("fsqrts");
15367
15368 /* ARMv8.2 fp16 instruction. */
15369 if (rs == NS_HH)
15370 do_scalar_fp16_v82_encode ();
15371 }
15372 else
15373 do_vfp_nsyn_opcode ("fsqrtd");
15374 }
15375
15376 static void
15377 do_vfp_nsyn_div (void)
15378 {
15379 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15380 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15381 N_F_ALL | N_KEY | N_VFP);
15382
15383 if (rs == NS_FFF || rs == NS_HHH)
15384 {
15385 do_vfp_nsyn_opcode ("fdivs");
15386
15387 /* ARMv8.2 fp16 instruction. */
15388 if (rs == NS_HHH)
15389 do_scalar_fp16_v82_encode ();
15390 }
15391 else
15392 do_vfp_nsyn_opcode ("fdivd");
15393 }
15394
15395 static void
15396 do_vfp_nsyn_nmul (void)
15397 {
15398 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15399 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15400 N_F_ALL | N_KEY | N_VFP);
15401
15402 if (rs == NS_FFF || rs == NS_HHH)
15403 {
15404 NEON_ENCODE (SINGLE, inst);
15405 do_vfp_sp_dyadic ();
15406
15407 /* ARMv8.2 fp16 instruction. */
15408 if (rs == NS_HHH)
15409 do_scalar_fp16_v82_encode ();
15410 }
15411 else
15412 {
15413 NEON_ENCODE (DOUBLE, inst);
15414 do_vfp_dp_rd_rn_rm ();
15415 }
15416 do_vfp_cond_or_thumb ();
15417
15418 }
15419
15420 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15421 (0, 1, 2, 3). */
15422
15423 static unsigned
15424 neon_logbits (unsigned x)
15425 {
15426 return ffs (x) - 4;
15427 }
15428
15429 #define LOW4(R) ((R) & 0xf)
15430 #define HI1(R) (((R) >> 4) & 1)
15431
15432 static unsigned
15433 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15434 {
15435 switch (et.type)
15436 {
15437 default:
15438 first_error (BAD_EL_TYPE);
15439 return 0;
15440 case NT_float:
15441 switch (inst.operands[0].imm)
15442 {
15443 default:
15444 first_error (_("invalid condition"));
15445 return 0;
15446 case 0x0:
15447 /* eq. */
15448 return 0;
15449 case 0x1:
15450 /* ne. */
15451 return 1;
15452 case 0xa:
15453 /* ge/ */
15454 return 4;
15455 case 0xb:
15456 /* lt. */
15457 return 5;
15458 case 0xc:
15459 /* gt. */
15460 return 6;
15461 case 0xd:
15462 /* le. */
15463 return 7;
15464 }
15465 case NT_integer:
15466 /* only accept eq and ne. */
15467 if (inst.operands[0].imm > 1)
15468 {
15469 first_error (_("invalid condition"));
15470 return 0;
15471 }
15472 return inst.operands[0].imm;
15473 case NT_unsigned:
15474 if (inst.operands[0].imm == 0x2)
15475 return 2;
15476 else if (inst.operands[0].imm == 0x8)
15477 return 3;
15478 else
15479 {
15480 first_error (_("invalid condition"));
15481 return 0;
15482 }
15483 case NT_signed:
15484 switch (inst.operands[0].imm)
15485 {
15486 default:
15487 first_error (_("invalid condition"));
15488 return 0;
15489 case 0xa:
15490 /* ge. */
15491 return 4;
15492 case 0xb:
15493 /* lt. */
15494 return 5;
15495 case 0xc:
15496 /* gt. */
15497 return 6;
15498 case 0xd:
15499 /* le. */
15500 return 7;
15501 }
15502 }
15503 /* Should be unreachable. */
15504 abort ();
15505 }
15506
15507 static void
15508 do_mve_vpt (void)
15509 {
15510 /* We are dealing with a vector predicated block. */
15511 if (inst.operands[0].present)
15512 {
15513 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15514 struct neon_type_el et
15515 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15516 N_EQK);
15517
15518 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15519
15520 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15521
15522 if (et.type == NT_invtype)
15523 return;
15524
15525 if (et.type == NT_float)
15526 {
15527 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15528 BAD_FPU);
15529 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15530 inst.instruction |= (et.size == 16) << 28;
15531 inst.instruction |= 0x3 << 20;
15532 }
15533 else
15534 {
15535 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15536 BAD_EL_TYPE);
15537 inst.instruction |= 1 << 28;
15538 inst.instruction |= neon_logbits (et.size) << 20;
15539 }
15540
15541 if (inst.operands[2].isquad)
15542 {
15543 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15544 inst.instruction |= LOW4 (inst.operands[2].reg);
15545 inst.instruction |= (fcond & 0x2) >> 1;
15546 }
15547 else
15548 {
15549 if (inst.operands[2].reg == REG_SP)
15550 as_tsktsk (MVE_BAD_SP);
15551 inst.instruction |= 1 << 6;
15552 inst.instruction |= (fcond & 0x2) << 4;
15553 inst.instruction |= inst.operands[2].reg;
15554 }
15555 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15556 inst.instruction |= (fcond & 0x4) << 10;
15557 inst.instruction |= (fcond & 0x1) << 7;
15558
15559 }
15560 set_pred_insn_type (VPT_INSN);
15561 now_pred.cc = 0;
15562 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15563 | ((inst.instruction & 0xe000) >> 13);
15564 now_pred.warn_deprecated = FALSE;
15565 now_pred.type = VECTOR_PRED;
15566 inst.is_neon = 1;
15567 }
15568
15569 static void
15570 do_mve_vcmp (void)
15571 {
15572 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15573 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15574 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15575 if (!inst.operands[2].present)
15576 first_error (_("MVE vector or ARM register expected"));
15577 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15578
15579 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15580 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15581 && inst.operands[1].isquad)
15582 {
15583 inst.instruction = N_MNEM_vcmp;
15584 inst.cond = 0x10;
15585 }
15586
15587 if (inst.cond > COND_ALWAYS)
15588 inst.pred_insn_type = INSIDE_VPT_INSN;
15589 else
15590 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15591
15592 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15593 struct neon_type_el et
15594 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15595 N_EQK);
15596
15597 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15598 && !inst.operands[2].iszr, BAD_PC);
15599
15600 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15601
15602 inst.instruction = 0xee010f00;
15603 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15604 inst.instruction |= (fcond & 0x4) << 10;
15605 inst.instruction |= (fcond & 0x1) << 7;
15606 if (et.type == NT_float)
15607 {
15608 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15609 BAD_FPU);
15610 inst.instruction |= (et.size == 16) << 28;
15611 inst.instruction |= 0x3 << 20;
15612 }
15613 else
15614 {
15615 inst.instruction |= 1 << 28;
15616 inst.instruction |= neon_logbits (et.size) << 20;
15617 }
15618 if (inst.operands[2].isquad)
15619 {
15620 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15621 inst.instruction |= (fcond & 0x2) >> 1;
15622 inst.instruction |= LOW4 (inst.operands[2].reg);
15623 }
15624 else
15625 {
15626 if (inst.operands[2].reg == REG_SP)
15627 as_tsktsk (MVE_BAD_SP);
15628 inst.instruction |= 1 << 6;
15629 inst.instruction |= (fcond & 0x2) << 4;
15630 inst.instruction |= inst.operands[2].reg;
15631 }
15632
15633 inst.is_neon = 1;
15634 return;
15635 }
15636
15637 static void
15638 do_mve_vmaxa_vmina (void)
15639 {
15640 if (inst.cond > COND_ALWAYS)
15641 inst.pred_insn_type = INSIDE_VPT_INSN;
15642 else
15643 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15644
15645 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15646 struct neon_type_el et
15647 = neon_check_type (2, rs, N_EQK, N_KEY | N_S8 | N_S16 | N_S32);
15648
15649 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15650 inst.instruction |= neon_logbits (et.size) << 18;
15651 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15652 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15653 inst.instruction |= LOW4 (inst.operands[1].reg);
15654 inst.is_neon = 1;
15655 }
15656
15657 static void
15658 do_mve_vfmas (void)
15659 {
15660 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15661 struct neon_type_el et
15662 = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK, N_EQK);
15663
15664 if (inst.cond > COND_ALWAYS)
15665 inst.pred_insn_type = INSIDE_VPT_INSN;
15666 else
15667 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15668
15669 if (inst.operands[2].reg == REG_SP)
15670 as_tsktsk (MVE_BAD_SP);
15671 else if (inst.operands[2].reg == REG_PC)
15672 as_tsktsk (MVE_BAD_PC);
15673
15674 inst.instruction |= (et.size == 16) << 28;
15675 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15676 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15677 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15678 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15679 inst.instruction |= inst.operands[2].reg;
15680 inst.is_neon = 1;
15681 }
15682
15683 static void
15684 do_mve_viddup (void)
15685 {
15686 if (inst.cond > COND_ALWAYS)
15687 inst.pred_insn_type = INSIDE_VPT_INSN;
15688 else
15689 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15690
15691 unsigned imm = inst.relocs[0].exp.X_add_number;
15692 constraint (imm != 1 && imm != 2 && imm != 4 && imm != 8,
15693 _("immediate must be either 1, 2, 4 or 8"));
15694
15695 enum neon_shape rs;
15696 struct neon_type_el et;
15697 unsigned Rm;
15698 if (inst.instruction == M_MNEM_vddup || inst.instruction == M_MNEM_vidup)
15699 {
15700 rs = neon_select_shape (NS_QRI, NS_NULL);
15701 et = neon_check_type (2, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK);
15702 Rm = 7;
15703 }
15704 else
15705 {
15706 constraint ((inst.operands[2].reg % 2) != 1, BAD_EVEN);
15707 if (inst.operands[2].reg == REG_SP)
15708 as_tsktsk (MVE_BAD_SP);
15709 else if (inst.operands[2].reg == REG_PC)
15710 first_error (BAD_PC);
15711
15712 rs = neon_select_shape (NS_QRRI, NS_NULL);
15713 et = neon_check_type (3, rs, N_KEY | N_U8 | N_U16 | N_U32, N_EQK, N_EQK);
15714 Rm = inst.operands[2].reg >> 1;
15715 }
15716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15717 inst.instruction |= neon_logbits (et.size) << 20;
15718 inst.instruction |= inst.operands[1].reg << 16;
15719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15720 inst.instruction |= (imm > 2) << 7;
15721 inst.instruction |= Rm << 1;
15722 inst.instruction |= (imm == 2 || imm == 8);
15723 inst.is_neon = 1;
15724 }
15725
15726 static void
15727 do_mve_vmlas (void)
15728 {
15729 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
15730 struct neon_type_el et
15731 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
15732
15733 if (inst.operands[2].reg == REG_PC)
15734 as_tsktsk (MVE_BAD_PC);
15735 else if (inst.operands[2].reg == REG_SP)
15736 as_tsktsk (MVE_BAD_SP);
15737
15738 if (inst.cond > COND_ALWAYS)
15739 inst.pred_insn_type = INSIDE_VPT_INSN;
15740 else
15741 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15742
15743 inst.instruction |= (et.type == NT_unsigned) << 28;
15744 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15745 inst.instruction |= neon_logbits (et.size) << 20;
15746 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15747 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15748 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15749 inst.instruction |= inst.operands[2].reg;
15750 inst.is_neon = 1;
15751 }
15752
15753 static void
15754 do_mve_vqmovn (void)
15755 {
15756 struct neon_type_el et;
15757 if (inst.instruction == M_MNEM_vqmovnt
15758 || inst.instruction == M_MNEM_vqmovnb)
15759 et = neon_check_type (2, NS_QQ, N_EQK,
15760 N_U16 | N_U32 | N_S16 | N_S32 | N_KEY);
15761 else
15762 et = neon_check_type (2, NS_QQ, N_EQK, N_S16 | N_S32 | N_KEY);
15763
15764 if (inst.cond > COND_ALWAYS)
15765 inst.pred_insn_type = INSIDE_VPT_INSN;
15766 else
15767 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15768
15769 inst.instruction |= (et.type == NT_unsigned) << 28;
15770 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15771 inst.instruction |= (et.size == 32) << 18;
15772 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15773 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15774 inst.instruction |= LOW4 (inst.operands[1].reg);
15775 inst.is_neon = 1;
15776 }
15777
15778 static void
15779 do_mve_vpsel (void)
15780 {
15781 neon_select_shape (NS_QQQ, NS_NULL);
15782
15783 if (inst.cond > COND_ALWAYS)
15784 inst.pred_insn_type = INSIDE_VPT_INSN;
15785 else
15786 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15787
15788 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15789 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15790 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15791 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15792 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15793 inst.instruction |= LOW4 (inst.operands[2].reg);
15794 inst.is_neon = 1;
15795 }
15796
15797 static void
15798 do_mve_vpnot (void)
15799 {
15800 if (inst.cond > COND_ALWAYS)
15801 inst.pred_insn_type = INSIDE_VPT_INSN;
15802 else
15803 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15804 }
15805
15806 static void
15807 do_mve_vmaxnma_vminnma (void)
15808 {
15809 enum neon_shape rs = neon_select_shape (NS_QQ, NS_NULL);
15810 struct neon_type_el et
15811 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
15812
15813 if (inst.cond > COND_ALWAYS)
15814 inst.pred_insn_type = INSIDE_VPT_INSN;
15815 else
15816 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15817
15818 inst.instruction |= (et.size == 16) << 28;
15819 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15820 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15821 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15822 inst.instruction |= LOW4 (inst.operands[1].reg);
15823 inst.is_neon = 1;
15824 }
15825
15826 static void
15827 do_mve_vcmul (void)
15828 {
15829 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
15830 struct neon_type_el et
15831 = neon_check_type (3, rs, N_EQK, N_EQK, N_F_MVE | N_KEY);
15832
15833 if (inst.cond > COND_ALWAYS)
15834 inst.pred_insn_type = INSIDE_VPT_INSN;
15835 else
15836 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15837
15838 unsigned rot = inst.relocs[0].exp.X_add_number;
15839 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
15840 _("immediate out of range"));
15841
15842 if (et.size == 32 && (inst.operands[0].reg == inst.operands[1].reg
15843 || inst.operands[0].reg == inst.operands[2].reg))
15844 as_tsktsk (BAD_MVE_SRCDEST);
15845
15846 inst.instruction |= (et.size == 32) << 28;
15847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15848 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15849 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15850 inst.instruction |= (rot > 90) << 12;
15851 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15852 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15853 inst.instruction |= LOW4 (inst.operands[2].reg);
15854 inst.instruction |= (rot == 90 || rot == 270);
15855 inst.is_neon = 1;
15856 }
15857
15858 static void
15859 do_vfp_nsyn_cmp (void)
15860 {
15861 enum neon_shape rs;
15862 if (!inst.operands[0].isreg)
15863 {
15864 do_mve_vcmp ();
15865 return;
15866 }
15867 else
15868 {
15869 constraint (inst.operands[2].present, BAD_SYNTAX);
15870 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15871 BAD_FPU);
15872 }
15873
15874 if (inst.operands[1].isreg)
15875 {
15876 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15877 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15878
15879 if (rs == NS_FF || rs == NS_HH)
15880 {
15881 NEON_ENCODE (SINGLE, inst);
15882 do_vfp_sp_monadic ();
15883 }
15884 else
15885 {
15886 NEON_ENCODE (DOUBLE, inst);
15887 do_vfp_dp_rd_rm ();
15888 }
15889 }
15890 else
15891 {
15892 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15893 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15894
15895 switch (inst.instruction & 0x0fffffff)
15896 {
15897 case N_MNEM_vcmp:
15898 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15899 break;
15900 case N_MNEM_vcmpe:
15901 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15902 break;
15903 default:
15904 abort ();
15905 }
15906
15907 if (rs == NS_FI || rs == NS_HI)
15908 {
15909 NEON_ENCODE (SINGLE, inst);
15910 do_vfp_sp_compare_z ();
15911 }
15912 else
15913 {
15914 NEON_ENCODE (DOUBLE, inst);
15915 do_vfp_dp_rd ();
15916 }
15917 }
15918 do_vfp_cond_or_thumb ();
15919
15920 /* ARMv8.2 fp16 instruction. */
15921 if (rs == NS_HI || rs == NS_HH)
15922 do_scalar_fp16_v82_encode ();
15923 }
15924
15925 static void
15926 nsyn_insert_sp (void)
15927 {
15928 inst.operands[1] = inst.operands[0];
15929 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15930 inst.operands[0].reg = REG_SP;
15931 inst.operands[0].isreg = 1;
15932 inst.operands[0].writeback = 1;
15933 inst.operands[0].present = 1;
15934 }
15935
15936 static void
15937 do_vfp_nsyn_push (void)
15938 {
15939 nsyn_insert_sp ();
15940
15941 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15942 _("register list must contain at least 1 and at most 16 "
15943 "registers"));
15944
15945 if (inst.operands[1].issingle)
15946 do_vfp_nsyn_opcode ("fstmdbs");
15947 else
15948 do_vfp_nsyn_opcode ("fstmdbd");
15949 }
15950
15951 static void
15952 do_vfp_nsyn_pop (void)
15953 {
15954 nsyn_insert_sp ();
15955
15956 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15957 _("register list must contain at least 1 and at most 16 "
15958 "registers"));
15959
15960 if (inst.operands[1].issingle)
15961 do_vfp_nsyn_opcode ("fldmias");
15962 else
15963 do_vfp_nsyn_opcode ("fldmiad");
15964 }
15965
15966 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15967 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15968
15969 static void
15970 neon_dp_fixup (struct arm_it* insn)
15971 {
15972 unsigned int i = insn->instruction;
15973 insn->is_neon = 1;
15974
15975 if (thumb_mode)
15976 {
15977 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15978 if (i & (1 << 24))
15979 i |= 1 << 28;
15980
15981 i &= ~(1 << 24);
15982
15983 i |= 0xef000000;
15984 }
15985 else
15986 i |= 0xf2000000;
15987
15988 insn->instruction = i;
15989 }
15990
15991 static void
15992 mve_encode_qqr (int size, int U, int fp)
15993 {
15994 if (inst.operands[2].reg == REG_SP)
15995 as_tsktsk (MVE_BAD_SP);
15996 else if (inst.operands[2].reg == REG_PC)
15997 as_tsktsk (MVE_BAD_PC);
15998
15999 if (fp)
16000 {
16001 /* vadd. */
16002 if (((unsigned)inst.instruction) == 0xd00)
16003 inst.instruction = 0xee300f40;
16004 /* vsub. */
16005 else if (((unsigned)inst.instruction) == 0x200d00)
16006 inst.instruction = 0xee301f40;
16007 /* vmul. */
16008 else if (((unsigned)inst.instruction) == 0x1000d10)
16009 inst.instruction = 0xee310e60;
16010
16011 /* Setting size which is 1 for F16 and 0 for F32. */
16012 inst.instruction |= (size == 16) << 28;
16013 }
16014 else
16015 {
16016 /* vadd. */
16017 if (((unsigned)inst.instruction) == 0x800)
16018 inst.instruction = 0xee010f40;
16019 /* vsub. */
16020 else if (((unsigned)inst.instruction) == 0x1000800)
16021 inst.instruction = 0xee011f40;
16022 /* vhadd. */
16023 else if (((unsigned)inst.instruction) == 0)
16024 inst.instruction = 0xee000f40;
16025 /* vhsub. */
16026 else if (((unsigned)inst.instruction) == 0x200)
16027 inst.instruction = 0xee001f40;
16028 /* vmla. */
16029 else if (((unsigned)inst.instruction) == 0x900)
16030 inst.instruction = 0xee010e40;
16031 /* vmul. */
16032 else if (((unsigned)inst.instruction) == 0x910)
16033 inst.instruction = 0xee011e60;
16034 /* vqadd. */
16035 else if (((unsigned)inst.instruction) == 0x10)
16036 inst.instruction = 0xee000f60;
16037 /* vqsub. */
16038 else if (((unsigned)inst.instruction) == 0x210)
16039 inst.instruction = 0xee001f60;
16040 /* vqrdmlah. */
16041 else if (((unsigned)inst.instruction) == 0x3000b10)
16042 inst.instruction = 0xee000e40;
16043 /* vqdmulh. */
16044 else if (((unsigned)inst.instruction) == 0x0000b00)
16045 inst.instruction = 0xee010e60;
16046 /* vqrdmulh. */
16047 else if (((unsigned)inst.instruction) == 0x1000b00)
16048 inst.instruction = 0xfe010e60;
16049
16050 /* Set U-bit. */
16051 inst.instruction |= U << 28;
16052
16053 /* Setting bits for size. */
16054 inst.instruction |= neon_logbits (size) << 20;
16055 }
16056 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16057 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16058 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16059 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16060 inst.instruction |= inst.operands[2].reg;
16061 inst.is_neon = 1;
16062 }
16063
16064 static void
16065 mve_encode_rqq (unsigned bit28, unsigned size)
16066 {
16067 inst.instruction |= bit28 << 28;
16068 inst.instruction |= neon_logbits (size) << 20;
16069 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16070 inst.instruction |= inst.operands[0].reg << 12;
16071 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16072 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16073 inst.instruction |= LOW4 (inst.operands[2].reg);
16074 inst.is_neon = 1;
16075 }
16076
16077 static void
16078 mve_encode_qqq (int ubit, int size)
16079 {
16080
16081 inst.instruction |= (ubit != 0) << 28;
16082 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16083 inst.instruction |= neon_logbits (size) << 20;
16084 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16085 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16086 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16087 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16088 inst.instruction |= LOW4 (inst.operands[2].reg);
16089
16090 inst.is_neon = 1;
16091 }
16092
16093 static void
16094 mve_encode_rq (unsigned bit28, unsigned size)
16095 {
16096 inst.instruction |= bit28 << 28;
16097 inst.instruction |= neon_logbits (size) << 18;
16098 inst.instruction |= inst.operands[0].reg << 12;
16099 inst.instruction |= LOW4 (inst.operands[1].reg);
16100 inst.is_neon = 1;
16101 }
16102
16103 static void
16104 mve_encode_rrqq (unsigned U, unsigned size)
16105 {
16106 constraint (inst.operands[3].reg > 14, MVE_BAD_QREG);
16107
16108 inst.instruction |= U << 28;
16109 inst.instruction |= (inst.operands[1].reg >> 1) << 20;
16110 inst.instruction |= LOW4 (inst.operands[2].reg) << 16;
16111 inst.instruction |= (size == 32) << 16;
16112 inst.instruction |= inst.operands[0].reg << 12;
16113 inst.instruction |= HI1 (inst.operands[2].reg) << 7;
16114 inst.instruction |= inst.operands[3].reg;
16115 inst.is_neon = 1;
16116 }
16117
16118 /* Encode insns with bit pattern:
16119
16120 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
16121 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
16122
16123 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
16124 different meaning for some instruction. */
16125
16126 static void
16127 neon_three_same (int isquad, int ubit, int size)
16128 {
16129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16131 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16132 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16133 inst.instruction |= LOW4 (inst.operands[2].reg);
16134 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
16135 inst.instruction |= (isquad != 0) << 6;
16136 inst.instruction |= (ubit != 0) << 24;
16137 if (size != -1)
16138 inst.instruction |= neon_logbits (size) << 20;
16139
16140 neon_dp_fixup (&inst);
16141 }
16142
16143 /* Encode instructions of the form:
16144
16145 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
16146 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
16147
16148 Don't write size if SIZE == -1. */
16149
16150 static void
16151 neon_two_same (int qbit, int ubit, int size)
16152 {
16153 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16154 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16155 inst.instruction |= LOW4 (inst.operands[1].reg);
16156 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16157 inst.instruction |= (qbit != 0) << 6;
16158 inst.instruction |= (ubit != 0) << 24;
16159
16160 if (size != -1)
16161 inst.instruction |= neon_logbits (size) << 18;
16162
16163 neon_dp_fixup (&inst);
16164 }
16165
16166 enum vfp_or_neon_is_neon_bits
16167 {
16168 NEON_CHECK_CC = 1,
16169 NEON_CHECK_ARCH = 2,
16170 NEON_CHECK_ARCH8 = 4
16171 };
16172
16173 /* Call this function if an instruction which may have belonged to the VFP or
16174 Neon instruction sets, but turned out to be a Neon instruction (due to the
16175 operand types involved, etc.). We have to check and/or fix-up a couple of
16176 things:
16177
16178 - Make sure the user hasn't attempted to make a Neon instruction
16179 conditional.
16180 - Alter the value in the condition code field if necessary.
16181 - Make sure that the arch supports Neon instructions.
16182
16183 Which of these operations take place depends on bits from enum
16184 vfp_or_neon_is_neon_bits.
16185
16186 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16187 current instruction's condition is COND_ALWAYS, the condition field is
16188 changed to inst.uncond_value. This is necessary because instructions shared
16189 between VFP and Neon may be conditional for the VFP variants only, and the
16190 unconditional Neon version must have, e.g., 0xF in the condition field. */
16191
16192 static int
16193 vfp_or_neon_is_neon (unsigned check)
16194 {
16195 /* Conditions are always legal in Thumb mode (IT blocks). */
16196 if (!thumb_mode && (check & NEON_CHECK_CC))
16197 {
16198 if (inst.cond != COND_ALWAYS)
16199 {
16200 first_error (_(BAD_COND));
16201 return FAIL;
16202 }
16203 if (inst.uncond_value != -1)
16204 inst.instruction |= inst.uncond_value << 28;
16205 }
16206
16207
16208 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16209 || ((check & NEON_CHECK_ARCH8)
16210 && !mark_feature_used (&fpu_neon_ext_armv8)))
16211 {
16212 first_error (_(BAD_FPU));
16213 return FAIL;
16214 }
16215
16216 return SUCCESS;
16217 }
16218
16219 static int
16220 check_simd_pred_availability (int fp, unsigned check)
16221 {
16222 if (inst.cond > COND_ALWAYS)
16223 {
16224 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16225 {
16226 inst.error = BAD_FPU;
16227 return 1;
16228 }
16229 inst.pred_insn_type = INSIDE_VPT_INSN;
16230 }
16231 else if (inst.cond < COND_ALWAYS)
16232 {
16233 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16234 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16235 else if (vfp_or_neon_is_neon (check) == FAIL)
16236 return 2;
16237 }
16238 else
16239 {
16240 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16241 && vfp_or_neon_is_neon (check) == FAIL)
16242 return 3;
16243
16244 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16245 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16246 }
16247 return 0;
16248 }
16249
16250 /* Neon instruction encoders, in approximate order of appearance. */
16251
16252 static void
16253 do_neon_dyadic_i_su (void)
16254 {
16255 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16256 return;
16257
16258 enum neon_shape rs;
16259 struct neon_type_el et;
16260 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16261 rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
16262 else
16263 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16264
16265 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY);
16266
16267
16268 if (rs != NS_QQR)
16269 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16270 else
16271 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16272 }
16273
16274 static void
16275 do_neon_dyadic_i64_su (void)
16276 {
16277 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
16278 return;
16279 enum neon_shape rs;
16280 struct neon_type_el et;
16281 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16282 {
16283 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16284 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16285 }
16286 else
16287 {
16288 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16289 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16290 }
16291 if (rs == NS_QQR)
16292 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
16293 else
16294 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16295 }
16296
16297 static void
16298 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
16299 unsigned immbits)
16300 {
16301 unsigned size = et.size >> 3;
16302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16304 inst.instruction |= LOW4 (inst.operands[1].reg);
16305 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16306 inst.instruction |= (isquad != 0) << 6;
16307 inst.instruction |= immbits << 16;
16308 inst.instruction |= (size >> 3) << 7;
16309 inst.instruction |= (size & 0x7) << 19;
16310 if (write_ubit)
16311 inst.instruction |= (uval != 0) << 24;
16312
16313 neon_dp_fixup (&inst);
16314 }
16315
16316 static void
16317 do_neon_shl_imm (void)
16318 {
16319 if (!inst.operands[2].isreg)
16320 {
16321 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16322 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
16323 int imm = inst.operands[2].imm;
16324
16325 constraint (imm < 0 || (unsigned)imm >= et.size,
16326 _("immediate out of range for shift"));
16327 NEON_ENCODE (IMMED, inst);
16328 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16329 }
16330 else
16331 {
16332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16333 struct neon_type_el et = neon_check_type (3, rs,
16334 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16335 unsigned int tmp;
16336
16337 /* VSHL/VQSHL 3-register variants have syntax such as:
16338 vshl.xx Dd, Dm, Dn
16339 whereas other 3-register operations encoded by neon_three_same have
16340 syntax like:
16341 vadd.xx Dd, Dn, Dm
16342 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
16343 here. */
16344 tmp = inst.operands[2].reg;
16345 inst.operands[2].reg = inst.operands[1].reg;
16346 inst.operands[1].reg = tmp;
16347 NEON_ENCODE (INTEGER, inst);
16348 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16349 }
16350 }
16351
16352 static void
16353 do_neon_qshl_imm (void)
16354 {
16355 if (!inst.operands[2].isreg)
16356 {
16357 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16358 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
16359 int imm = inst.operands[2].imm;
16360
16361 constraint (imm < 0 || (unsigned)imm >= et.size,
16362 _("immediate out of range for shift"));
16363 NEON_ENCODE (IMMED, inst);
16364 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
16365 }
16366 else
16367 {
16368 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16369 struct neon_type_el et = neon_check_type (3, rs,
16370 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
16371 unsigned int tmp;
16372
16373 /* See note in do_neon_shl_imm. */
16374 tmp = inst.operands[2].reg;
16375 inst.operands[2].reg = inst.operands[1].reg;
16376 inst.operands[1].reg = tmp;
16377 NEON_ENCODE (INTEGER, inst);
16378 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16379 }
16380 }
16381
16382 static void
16383 do_neon_rshl (void)
16384 {
16385 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
16386 return;
16387
16388 enum neon_shape rs;
16389 struct neon_type_el et;
16390 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16391 {
16392 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
16393 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
16394 }
16395 else
16396 {
16397 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16398 et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY);
16399 }
16400
16401 unsigned int tmp;
16402
16403 if (rs == NS_QQR)
16404 {
16405 if (inst.operands[2].reg == REG_PC)
16406 as_tsktsk (MVE_BAD_PC);
16407 else if (inst.operands[2].reg == REG_SP)
16408 as_tsktsk (MVE_BAD_SP);
16409
16410 constraint (inst.operands[0].reg != inst.operands[1].reg,
16411 _("invalid instruction shape"));
16412
16413 if (inst.instruction == 0x0000510)
16414 /* We are dealing with vqrshl. */
16415 inst.instruction = 0xee331ee0;
16416 else
16417 /* We are dealing with vrshl. */
16418 inst.instruction = 0xee331e60;
16419
16420 inst.instruction |= (et.type == NT_unsigned) << 28;
16421 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16422 inst.instruction |= neon_logbits (et.size) << 18;
16423 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16424 inst.instruction |= inst.operands[2].reg;
16425 inst.is_neon = 1;
16426 }
16427 else
16428 {
16429 tmp = inst.operands[2].reg;
16430 inst.operands[2].reg = inst.operands[1].reg;
16431 inst.operands[1].reg = tmp;
16432 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
16433 }
16434 }
16435
16436 static int
16437 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
16438 {
16439 /* Handle .I8 pseudo-instructions. */
16440 if (size == 8)
16441 {
16442 /* Unfortunately, this will make everything apart from zero out-of-range.
16443 FIXME is this the intended semantics? There doesn't seem much point in
16444 accepting .I8 if so. */
16445 immediate |= immediate << 8;
16446 size = 16;
16447 }
16448
16449 if (size >= 32)
16450 {
16451 if (immediate == (immediate & 0x000000ff))
16452 {
16453 *immbits = immediate;
16454 return 0x1;
16455 }
16456 else if (immediate == (immediate & 0x0000ff00))
16457 {
16458 *immbits = immediate >> 8;
16459 return 0x3;
16460 }
16461 else if (immediate == (immediate & 0x00ff0000))
16462 {
16463 *immbits = immediate >> 16;
16464 return 0x5;
16465 }
16466 else if (immediate == (immediate & 0xff000000))
16467 {
16468 *immbits = immediate >> 24;
16469 return 0x7;
16470 }
16471 if ((immediate & 0xffff) != (immediate >> 16))
16472 goto bad_immediate;
16473 immediate &= 0xffff;
16474 }
16475
16476 if (immediate == (immediate & 0x000000ff))
16477 {
16478 *immbits = immediate;
16479 return 0x9;
16480 }
16481 else if (immediate == (immediate & 0x0000ff00))
16482 {
16483 *immbits = immediate >> 8;
16484 return 0xb;
16485 }
16486
16487 bad_immediate:
16488 first_error (_("immediate value out of range"));
16489 return FAIL;
16490 }
16491
16492 static void
16493 do_neon_logic (void)
16494 {
16495 if (inst.operands[2].present && inst.operands[2].isreg)
16496 {
16497 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16498 if (rs == NS_QQQ
16499 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16500 == FAIL)
16501 return;
16502 else if (rs != NS_QQQ
16503 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16504 first_error (BAD_FPU);
16505
16506 neon_check_type (3, rs, N_IGNORE_TYPE);
16507 /* U bit and size field were set as part of the bitmask. */
16508 NEON_ENCODE (INTEGER, inst);
16509 neon_three_same (neon_quad (rs), 0, -1);
16510 }
16511 else
16512 {
16513 const int three_ops_form = (inst.operands[2].present
16514 && !inst.operands[2].isreg);
16515 const int immoperand = (three_ops_form ? 2 : 1);
16516 enum neon_shape rs = (three_ops_form
16517 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16518 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16519 /* Because neon_select_shape makes the second operand a copy of the first
16520 if the second operand is not present. */
16521 if (rs == NS_QQI
16522 && check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC)
16523 == FAIL)
16524 return;
16525 else if (rs != NS_QQI
16526 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
16527 first_error (BAD_FPU);
16528
16529 struct neon_type_el et;
16530 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16531 et = neon_check_type (2, rs, N_I32 | N_I16 | N_KEY, N_EQK);
16532 else
16533 et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32
16534 | N_KEY, N_EQK);
16535
16536 if (et.type == NT_invtype)
16537 return;
16538 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16539 unsigned immbits;
16540 int cmode;
16541
16542
16543 if (three_ops_form)
16544 constraint (inst.operands[0].reg != inst.operands[1].reg,
16545 _("first and second operands shall be the same register"));
16546
16547 NEON_ENCODE (IMMED, inst);
16548
16549 immbits = inst.operands[immoperand].imm;
16550 if (et.size == 64)
16551 {
16552 /* .i64 is a pseudo-op, so the immediate must be a repeating
16553 pattern. */
16554 if (immbits != (inst.operands[immoperand].regisimm ?
16555 inst.operands[immoperand].reg : 0))
16556 {
16557 /* Set immbits to an invalid constant. */
16558 immbits = 0xdeadbeef;
16559 }
16560 }
16561
16562 switch (opcode)
16563 {
16564 case N_MNEM_vbic:
16565 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16566 break;
16567
16568 case N_MNEM_vorr:
16569 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16570 break;
16571
16572 case N_MNEM_vand:
16573 /* Pseudo-instruction for VBIC. */
16574 neon_invert_size (&immbits, 0, et.size);
16575 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16576 break;
16577
16578 case N_MNEM_vorn:
16579 /* Pseudo-instruction for VORR. */
16580 neon_invert_size (&immbits, 0, et.size);
16581 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16582 break;
16583
16584 default:
16585 abort ();
16586 }
16587
16588 if (cmode == FAIL)
16589 return;
16590
16591 inst.instruction |= neon_quad (rs) << 6;
16592 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16593 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16594 inst.instruction |= cmode << 8;
16595 neon_write_immbits (immbits);
16596
16597 neon_dp_fixup (&inst);
16598 }
16599 }
16600
16601 static void
16602 do_neon_bitfield (void)
16603 {
16604 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16605 neon_check_type (3, rs, N_IGNORE_TYPE);
16606 neon_three_same (neon_quad (rs), 0, -1);
16607 }
16608
16609 static void
16610 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16611 unsigned destbits)
16612 {
16613 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16614 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16615 types | N_KEY);
16616 if (et.type == NT_float)
16617 {
16618 NEON_ENCODE (FLOAT, inst);
16619 if (rs == NS_QQR)
16620 mve_encode_qqr (et.size, 0, 1);
16621 else
16622 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16623 }
16624 else
16625 {
16626 NEON_ENCODE (INTEGER, inst);
16627 if (rs == NS_QQR)
16628 mve_encode_qqr (et.size, et.type == ubit_meaning, 0);
16629 else
16630 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16631 }
16632 }
16633
16634
16635 static void
16636 do_neon_dyadic_if_su_d (void)
16637 {
16638 /* This version only allow D registers, but that constraint is enforced during
16639 operand parsing so we don't need to do anything extra here. */
16640 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16641 }
16642
16643 static void
16644 do_neon_dyadic_if_i_d (void)
16645 {
16646 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16647 affected if we specify unsigned args. */
16648 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16649 }
16650
16651 static void
16652 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16653 {
16654 constraint (size < 32, BAD_ADDR_MODE);
16655 constraint (size != elsize, BAD_EL_TYPE);
16656 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16657 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16658 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16659 _("destination register and offset register may not be the"
16660 " same"));
16661
16662 int imm = inst.relocs[0].exp.X_add_number;
16663 int add = 1;
16664 if (imm < 0)
16665 {
16666 add = 0;
16667 imm = -imm;
16668 }
16669 constraint ((imm % (size / 8) != 0)
16670 || imm > (0x7f << neon_logbits (size)),
16671 (size == 32) ? _("immediate must be a multiple of 4 in the"
16672 " range of +/-[0,508]")
16673 : _("immediate must be a multiple of 8 in the"
16674 " range of +/-[0,1016]"));
16675 inst.instruction |= 0x11 << 24;
16676 inst.instruction |= add << 23;
16677 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16678 inst.instruction |= inst.operands[1].writeback << 21;
16679 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16680 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16681 inst.instruction |= 1 << 12;
16682 inst.instruction |= (size == 64) << 8;
16683 inst.instruction &= 0xffffff00;
16684 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16685 inst.instruction |= imm >> neon_logbits (size);
16686 }
16687
16688 static void
16689 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16690 {
16691 unsigned os = inst.operands[1].imm >> 5;
16692 constraint (os != 0 && size == 8,
16693 _("can not shift offsets when accessing less than half-word"));
16694 constraint (os && os != neon_logbits (size),
16695 _("shift immediate must be 1, 2 or 3 for half-word, word"
16696 " or double-word accesses respectively"));
16697 if (inst.operands[1].reg == REG_PC)
16698 as_tsktsk (MVE_BAD_PC);
16699
16700 switch (size)
16701 {
16702 case 8:
16703 constraint (elsize >= 64, BAD_EL_TYPE);
16704 break;
16705 case 16:
16706 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16707 break;
16708 case 32:
16709 case 64:
16710 constraint (elsize != size, BAD_EL_TYPE);
16711 break;
16712 default:
16713 break;
16714 }
16715 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16716 BAD_ADDR_MODE);
16717 if (load)
16718 {
16719 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16720 _("destination register and offset register may not be"
16721 " the same"));
16722 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16723 BAD_EL_TYPE);
16724 constraint (inst.vectype.el[0].type != NT_unsigned
16725 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16726 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16727 }
16728 else
16729 {
16730 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16731 }
16732
16733 inst.instruction |= 1 << 23;
16734 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16735 inst.instruction |= inst.operands[1].reg << 16;
16736 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16737 inst.instruction |= neon_logbits (elsize) << 7;
16738 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16739 inst.instruction |= LOW4 (inst.operands[1].imm);
16740 inst.instruction |= !!os;
16741 }
16742
16743 static void
16744 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16745 {
16746 enum neon_el_type type = inst.vectype.el[0].type;
16747
16748 constraint (size >= 64, BAD_ADDR_MODE);
16749 switch (size)
16750 {
16751 case 16:
16752 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16753 break;
16754 case 32:
16755 constraint (elsize != size, BAD_EL_TYPE);
16756 break;
16757 default:
16758 break;
16759 }
16760 if (load)
16761 {
16762 constraint (elsize != size && type != NT_unsigned
16763 && type != NT_signed, BAD_EL_TYPE);
16764 }
16765 else
16766 {
16767 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16768 }
16769
16770 int imm = inst.relocs[0].exp.X_add_number;
16771 int add = 1;
16772 if (imm < 0)
16773 {
16774 add = 0;
16775 imm = -imm;
16776 }
16777
16778 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16779 {
16780 switch (size)
16781 {
16782 case 8:
16783 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16784 break;
16785 case 16:
16786 constraint (1, _("immediate must be a multiple of 2 in the"
16787 " range of +/-[0,254]"));
16788 break;
16789 case 32:
16790 constraint (1, _("immediate must be a multiple of 4 in the"
16791 " range of +/-[0,508]"));
16792 break;
16793 }
16794 }
16795
16796 if (size != elsize)
16797 {
16798 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16799 constraint (inst.operands[0].reg > 14,
16800 _("MVE vector register in the range [Q0..Q7] expected"));
16801 inst.instruction |= (load && type == NT_unsigned) << 28;
16802 inst.instruction |= (size == 16) << 19;
16803 inst.instruction |= neon_logbits (elsize) << 7;
16804 }
16805 else
16806 {
16807 if (inst.operands[1].reg == REG_PC)
16808 as_tsktsk (MVE_BAD_PC);
16809 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16810 as_tsktsk (MVE_BAD_SP);
16811 inst.instruction |= 1 << 12;
16812 inst.instruction |= neon_logbits (size) << 7;
16813 }
16814 inst.instruction |= inst.operands[1].preind << 24;
16815 inst.instruction |= add << 23;
16816 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16817 inst.instruction |= inst.operands[1].writeback << 21;
16818 inst.instruction |= inst.operands[1].reg << 16;
16819 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16820 inst.instruction &= 0xffffff80;
16821 inst.instruction |= imm >> neon_logbits (size);
16822
16823 }
16824
16825 static void
16826 do_mve_vstr_vldr (void)
16827 {
16828 unsigned size;
16829 int load = 0;
16830
16831 if (inst.cond > COND_ALWAYS)
16832 inst.pred_insn_type = INSIDE_VPT_INSN;
16833 else
16834 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16835
16836 switch (inst.instruction)
16837 {
16838 default:
16839 gas_assert (0);
16840 break;
16841 case M_MNEM_vldrb:
16842 load = 1;
16843 /* fall through. */
16844 case M_MNEM_vstrb:
16845 size = 8;
16846 break;
16847 case M_MNEM_vldrh:
16848 load = 1;
16849 /* fall through. */
16850 case M_MNEM_vstrh:
16851 size = 16;
16852 break;
16853 case M_MNEM_vldrw:
16854 load = 1;
16855 /* fall through. */
16856 case M_MNEM_vstrw:
16857 size = 32;
16858 break;
16859 case M_MNEM_vldrd:
16860 load = 1;
16861 /* fall through. */
16862 case M_MNEM_vstrd:
16863 size = 64;
16864 break;
16865 }
16866 unsigned elsize = inst.vectype.el[0].size;
16867
16868 if (inst.operands[1].isquad)
16869 {
16870 /* We are dealing with [Q, imm]{!} cases. */
16871 do_mve_vstr_vldr_QI (size, elsize, load);
16872 }
16873 else
16874 {
16875 if (inst.operands[1].immisreg == 2)
16876 {
16877 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16878 do_mve_vstr_vldr_RQ (size, elsize, load);
16879 }
16880 else if (!inst.operands[1].immisreg)
16881 {
16882 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16883 do_mve_vstr_vldr_RI (size, elsize, load);
16884 }
16885 else
16886 constraint (1, BAD_ADDR_MODE);
16887 }
16888
16889 inst.is_neon = 1;
16890 }
16891
16892 static void
16893 do_mve_vst_vld (void)
16894 {
16895 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16896 return;
16897
16898 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16899 || inst.relocs[0].exp.X_add_number != 0
16900 || inst.operands[1].immisreg != 0,
16901 BAD_ADDR_MODE);
16902 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16903 if (inst.operands[1].reg == REG_PC)
16904 as_tsktsk (MVE_BAD_PC);
16905 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16906 as_tsktsk (MVE_BAD_SP);
16907
16908
16909 /* These instructions are one of the "exceptions" mentioned in
16910 handle_pred_state. They are MVE instructions that are not VPT compatible
16911 and do not accept a VPT code, thus appending such a code is a syntax
16912 error. */
16913 if (inst.cond > COND_ALWAYS)
16914 first_error (BAD_SYNTAX);
16915 /* If we append a scalar condition code we can set this to
16916 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16917 else if (inst.cond < COND_ALWAYS)
16918 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16919 else
16920 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16921
16922 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16923 inst.instruction |= inst.operands[1].writeback << 21;
16924 inst.instruction |= inst.operands[1].reg << 16;
16925 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16926 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16927 inst.is_neon = 1;
16928 }
16929
16930 static void
16931 do_mve_vaddlv (void)
16932 {
16933 enum neon_shape rs = neon_select_shape (NS_RRQ, NS_NULL);
16934 struct neon_type_el et
16935 = neon_check_type (3, rs, N_EQK, N_EQK, N_S32 | N_U32 | N_KEY);
16936
16937 if (et.type == NT_invtype)
16938 first_error (BAD_EL_TYPE);
16939
16940 if (inst.cond > COND_ALWAYS)
16941 inst.pred_insn_type = INSIDE_VPT_INSN;
16942 else
16943 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16944
16945 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
16946
16947 inst.instruction |= (et.type == NT_unsigned) << 28;
16948 inst.instruction |= inst.operands[1].reg << 19;
16949 inst.instruction |= inst.operands[0].reg << 12;
16950 inst.instruction |= inst.operands[2].reg;
16951 inst.is_neon = 1;
16952 }
16953
16954 static void
16955 do_neon_dyadic_if_su (void)
16956 {
16957 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16958 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16959 N_SUF_32 | N_KEY);
16960
16961 constraint ((inst.instruction == ((unsigned) N_MNEM_vmax)
16962 || inst.instruction == ((unsigned) N_MNEM_vmin))
16963 && et.type == NT_float
16964 && !ARM_CPU_HAS_FEATURE (cpu_variant,fpu_neon_ext_v1), BAD_FPU);
16965
16966 if (check_simd_pred_availability (et.type == NT_float,
16967 NEON_CHECK_ARCH | NEON_CHECK_CC))
16968 return;
16969
16970 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16971 }
16972
16973 static void
16974 do_neon_addsub_if_i (void)
16975 {
16976 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16977 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16978 return;
16979
16980 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16981 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16982 N_EQK, N_IF_32 | N_I64 | N_KEY);
16983
16984 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16985 /* If we are parsing Q registers and the element types match MVE, which NEON
16986 also supports, then we must check whether this is an instruction that can
16987 be used by both MVE/NEON. This distinction can be made based on whether
16988 they are predicated or not. */
16989 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16990 {
16991 if (check_simd_pred_availability (et.type == NT_float,
16992 NEON_CHECK_ARCH | NEON_CHECK_CC))
16993 return;
16994 }
16995 else
16996 {
16997 /* If they are either in a D register or are using an unsupported. */
16998 if (rs != NS_QQR
16999 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17000 return;
17001 }
17002
17003 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17004 affected if we specify unsigned args. */
17005 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
17006 }
17007
17008 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
17009 result to be:
17010 V<op> A,B (A is operand 0, B is operand 2)
17011 to mean:
17012 V<op> A,B,A
17013 not:
17014 V<op> A,B,B
17015 so handle that case specially. */
17016
17017 static void
17018 neon_exchange_operands (void)
17019 {
17020 if (inst.operands[1].present)
17021 {
17022 void *scratch = xmalloc (sizeof (inst.operands[0]));
17023
17024 /* Swap operands[1] and operands[2]. */
17025 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
17026 inst.operands[1] = inst.operands[2];
17027 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
17028 free (scratch);
17029 }
17030 else
17031 {
17032 inst.operands[1] = inst.operands[2];
17033 inst.operands[2] = inst.operands[0];
17034 }
17035 }
17036
17037 static void
17038 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
17039 {
17040 if (inst.operands[2].isreg)
17041 {
17042 if (invert)
17043 neon_exchange_operands ();
17044 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
17045 }
17046 else
17047 {
17048 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17049 struct neon_type_el et = neon_check_type (2, rs,
17050 N_EQK | N_SIZ, immtypes | N_KEY);
17051
17052 NEON_ENCODE (IMMED, inst);
17053 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17054 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17055 inst.instruction |= LOW4 (inst.operands[1].reg);
17056 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17057 inst.instruction |= neon_quad (rs) << 6;
17058 inst.instruction |= (et.type == NT_float) << 10;
17059 inst.instruction |= neon_logbits (et.size) << 18;
17060
17061 neon_dp_fixup (&inst);
17062 }
17063 }
17064
17065 static void
17066 do_neon_cmp (void)
17067 {
17068 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
17069 }
17070
17071 static void
17072 do_neon_cmp_inv (void)
17073 {
17074 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
17075 }
17076
17077 static void
17078 do_neon_ceq (void)
17079 {
17080 neon_compare (N_IF_32, N_IF_32, FALSE);
17081 }
17082
17083 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
17084 scalars, which are encoded in 5 bits, M : Rm.
17085 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
17086 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
17087 index in M.
17088
17089 Dot Product instructions are similar to multiply instructions except elsize
17090 should always be 32.
17091
17092 This function translates SCALAR, which is GAS's internal encoding of indexed
17093 scalar register, to raw encoding. There is also register and index range
17094 check based on ELSIZE. */
17095
17096 static unsigned
17097 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
17098 {
17099 unsigned regno = NEON_SCALAR_REG (scalar);
17100 unsigned elno = NEON_SCALAR_INDEX (scalar);
17101
17102 switch (elsize)
17103 {
17104 case 16:
17105 if (regno > 7 || elno > 3)
17106 goto bad_scalar;
17107 return regno | (elno << 3);
17108
17109 case 32:
17110 if (regno > 15 || elno > 1)
17111 goto bad_scalar;
17112 return regno | (elno << 4);
17113
17114 default:
17115 bad_scalar:
17116 first_error (_("scalar out of range for multiply instruction"));
17117 }
17118
17119 return 0;
17120 }
17121
17122 /* Encode multiply / multiply-accumulate scalar instructions. */
17123
17124 static void
17125 neon_mul_mac (struct neon_type_el et, int ubit)
17126 {
17127 unsigned scalar;
17128
17129 /* Give a more helpful error message if we have an invalid type. */
17130 if (et.type == NT_invtype)
17131 return;
17132
17133 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
17134 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17135 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17136 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17137 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17138 inst.instruction |= LOW4 (scalar);
17139 inst.instruction |= HI1 (scalar) << 5;
17140 inst.instruction |= (et.type == NT_float) << 8;
17141 inst.instruction |= neon_logbits (et.size) << 20;
17142 inst.instruction |= (ubit != 0) << 24;
17143
17144 neon_dp_fixup (&inst);
17145 }
17146
17147 static void
17148 do_neon_mac_maybe_scalar (void)
17149 {
17150 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
17151 return;
17152
17153 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17154 return;
17155
17156 if (inst.operands[2].isscalar)
17157 {
17158 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17159 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17160 struct neon_type_el et = neon_check_type (3, rs,
17161 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
17162 NEON_ENCODE (SCALAR, inst);
17163 neon_mul_mac (et, neon_quad (rs));
17164 }
17165 else if (!inst.operands[2].isvec)
17166 {
17167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17168
17169 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17170 neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17171
17172 neon_dyadic_misc (NT_unsigned, N_SU_MVE, 0);
17173 }
17174 else
17175 {
17176 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17177 /* The "untyped" case can't happen. Do this to stop the "U" bit being
17178 affected if we specify unsigned args. */
17179 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17180 }
17181 }
17182
17183 static void
17184 do_neon_fmac (void)
17185 {
17186 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_fma)
17187 && try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
17188 return;
17189
17190 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17191 return;
17192
17193 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17194 {
17195 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17196 struct neon_type_el et = neon_check_type (3, rs, N_F_MVE | N_KEY, N_EQK,
17197 N_EQK);
17198
17199 if (rs == NS_QQR)
17200 {
17201 if (inst.operands[2].reg == REG_SP)
17202 as_tsktsk (MVE_BAD_SP);
17203 else if (inst.operands[2].reg == REG_PC)
17204 as_tsktsk (MVE_BAD_PC);
17205
17206 inst.instruction = 0xee310e40;
17207 inst.instruction |= (et.size == 16) << 28;
17208 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17209 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17211 inst.instruction |= HI1 (inst.operands[1].reg) << 6;
17212 inst.instruction |= inst.operands[2].reg;
17213 inst.is_neon = 1;
17214 return;
17215 }
17216 }
17217 else
17218 {
17219 constraint (!inst.operands[2].isvec, BAD_FPU);
17220 }
17221
17222 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
17223 }
17224
17225 static void
17226 do_neon_tst (void)
17227 {
17228 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17229 struct neon_type_el et = neon_check_type (3, rs,
17230 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17231 neon_three_same (neon_quad (rs), 0, et.size);
17232 }
17233
17234 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
17235 same types as the MAC equivalents. The polynomial type for this instruction
17236 is encoded the same as the integer type. */
17237
17238 static void
17239 do_neon_mul (void)
17240 {
17241 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
17242 return;
17243
17244 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
17245 return;
17246
17247 if (inst.operands[2].isscalar)
17248 {
17249 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17250 do_neon_mac_maybe_scalar ();
17251 }
17252 else
17253 {
17254 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17255 {
17256 enum neon_shape rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17257 struct neon_type_el et
17258 = neon_check_type (3, rs, N_EQK, N_EQK, N_I_MVE | N_F_MVE | N_KEY);
17259 if (et.type == NT_float)
17260 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
17261 BAD_FPU);
17262
17263 neon_dyadic_misc (NT_float, N_I_MVE | N_F_MVE, 0);
17264 }
17265 else
17266 {
17267 constraint (!inst.operands[2].isvec, BAD_FPU);
17268 neon_dyadic_misc (NT_poly,
17269 N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
17270 }
17271 }
17272 }
17273
17274 static void
17275 do_neon_qdmulh (void)
17276 {
17277 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17278 return;
17279
17280 if (inst.operands[2].isscalar)
17281 {
17282 constraint (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
17283 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17284 struct neon_type_el et = neon_check_type (3, rs,
17285 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17286 NEON_ENCODE (SCALAR, inst);
17287 neon_mul_mac (et, neon_quad (rs));
17288 }
17289 else
17290 {
17291 enum neon_shape rs;
17292 struct neon_type_el et;
17293 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17294 {
17295 rs = neon_select_shape (NS_QQR, NS_QQQ, NS_NULL);
17296 et = neon_check_type (3, rs,
17297 N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17298 }
17299 else
17300 {
17301 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17302 et = neon_check_type (3, rs,
17303 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17304 }
17305
17306 NEON_ENCODE (INTEGER, inst);
17307 if (rs == NS_QQR)
17308 mve_encode_qqr (et.size, 0, 0);
17309 else
17310 /* The U bit (rounding) comes from bit mask. */
17311 neon_three_same (neon_quad (rs), 0, et.size);
17312 }
17313 }
17314
17315 static void
17316 do_mve_vaddv (void)
17317 {
17318 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17319 struct neon_type_el et
17320 = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
17321
17322 if (et.type == NT_invtype)
17323 first_error (BAD_EL_TYPE);
17324
17325 if (inst.cond > COND_ALWAYS)
17326 inst.pred_insn_type = INSIDE_VPT_INSN;
17327 else
17328 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17329
17330 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
17331
17332 mve_encode_rq (et.type == NT_unsigned, et.size);
17333 }
17334
17335 static void
17336 do_mve_vhcadd (void)
17337 {
17338 enum neon_shape rs = neon_select_shape (NS_QQQI, NS_NULL);
17339 struct neon_type_el et
17340 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17341
17342 if (inst.cond > COND_ALWAYS)
17343 inst.pred_insn_type = INSIDE_VPT_INSN;
17344 else
17345 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17346
17347 unsigned rot = inst.relocs[0].exp.X_add_number;
17348 constraint (rot != 90 && rot != 270, _("immediate out of range"));
17349
17350 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
17351 as_tsktsk (_("Warning: 32-bit element size and same first and third "
17352 "operand makes instruction UNPREDICTABLE"));
17353
17354 mve_encode_qqq (0, et.size);
17355 inst.instruction |= (rot == 270) << 12;
17356 inst.is_neon = 1;
17357 }
17358
17359 static void
17360 do_mve_vqdmull (void)
17361 {
17362 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_QQR, NS_NULL);
17363 struct neon_type_el et
17364 = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17365
17366 if (et.size == 32
17367 && (inst.operands[0].reg == inst.operands[1].reg
17368 || (rs == NS_QQQ && inst.operands[0].reg == inst.operands[2].reg)))
17369 as_tsktsk (BAD_MVE_SRCDEST);
17370
17371 if (inst.cond > COND_ALWAYS)
17372 inst.pred_insn_type = INSIDE_VPT_INSN;
17373 else
17374 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17375
17376 if (rs == NS_QQQ)
17377 {
17378 mve_encode_qqq (et.size == 32, 64);
17379 inst.instruction |= 1;
17380 }
17381 else
17382 {
17383 mve_encode_qqr (64, et.size == 32, 0);
17384 inst.instruction |= 0x3 << 5;
17385 }
17386 }
17387
17388 static void
17389 do_mve_vadc (void)
17390 {
17391 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17392 struct neon_type_el et
17393 = neon_check_type (3, rs, N_KEY | N_I32, N_EQK, N_EQK);
17394
17395 if (et.type == NT_invtype)
17396 first_error (BAD_EL_TYPE);
17397
17398 if (inst.cond > COND_ALWAYS)
17399 inst.pred_insn_type = INSIDE_VPT_INSN;
17400 else
17401 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17402
17403 mve_encode_qqq (0, 64);
17404 }
17405
17406 static void
17407 do_mve_vbrsr (void)
17408 {
17409 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17410 struct neon_type_el et
17411 = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
17412
17413 if (inst.cond > COND_ALWAYS)
17414 inst.pred_insn_type = INSIDE_VPT_INSN;
17415 else
17416 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17417
17418 mve_encode_qqr (et.size, 0, 0);
17419 }
17420
17421 static void
17422 do_mve_vsbc (void)
17423 {
17424 neon_check_type (3, NS_QQQ, N_EQK, N_EQK, N_I32 | N_KEY);
17425
17426 if (inst.cond > COND_ALWAYS)
17427 inst.pred_insn_type = INSIDE_VPT_INSN;
17428 else
17429 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17430
17431 mve_encode_qqq (1, 64);
17432 }
17433
17434 static void
17435 do_mve_vmulh (void)
17436 {
17437 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17438 struct neon_type_el et
17439 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17440
17441 if (inst.cond > COND_ALWAYS)
17442 inst.pred_insn_type = INSIDE_VPT_INSN;
17443 else
17444 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17445
17446 mve_encode_qqq (et.type == NT_unsigned, et.size);
17447 }
17448
17449 static void
17450 do_mve_vqdmlah (void)
17451 {
17452 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17453 struct neon_type_el et
17454 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17455
17456 if (inst.cond > COND_ALWAYS)
17457 inst.pred_insn_type = INSIDE_VPT_INSN;
17458 else
17459 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17460
17461 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17462 }
17463
17464 static void
17465 do_mve_vqdmladh (void)
17466 {
17467 enum neon_shape rs = neon_select_shape (NS_QQQ, NS_NULL);
17468 struct neon_type_el et
17469 = neon_check_type (3, rs, N_EQK, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17470
17471 if (inst.cond > COND_ALWAYS)
17472 inst.pred_insn_type = INSIDE_VPT_INSN;
17473 else
17474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17475
17476 if (et.size == 32
17477 && (inst.operands[0].reg == inst.operands[1].reg
17478 || inst.operands[0].reg == inst.operands[2].reg))
17479 as_tsktsk (BAD_MVE_SRCDEST);
17480
17481 mve_encode_qqq (0, et.size);
17482 }
17483
17484
17485 static void
17486 do_mve_vmull (void)
17487 {
17488
17489 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
17490 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
17491 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17492 && inst.cond == COND_ALWAYS
17493 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
17494 {
17495 if (rs == NS_QQQ)
17496 {
17497
17498 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17499 N_SUF_32 | N_F64 | N_P8
17500 | N_P16 | N_I_MVE | N_KEY);
17501 if (((et.type == NT_poly) && et.size == 8
17502 && ARM_CPU_IS_ANY (cpu_variant))
17503 || (et.type == NT_integer) || (et.type == NT_float))
17504 goto neon_vmul;
17505 }
17506 else
17507 goto neon_vmul;
17508 }
17509
17510 constraint (rs != NS_QQQ, BAD_FPU);
17511 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
17512 N_SU_32 | N_P8 | N_P16 | N_KEY);
17513
17514 /* We are dealing with MVE's vmullt. */
17515 if (et.size == 32
17516 && (inst.operands[0].reg == inst.operands[1].reg
17517 || inst.operands[0].reg == inst.operands[2].reg))
17518 as_tsktsk (BAD_MVE_SRCDEST);
17519
17520 if (inst.cond > COND_ALWAYS)
17521 inst.pred_insn_type = INSIDE_VPT_INSN;
17522 else
17523 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17524
17525 if (et.type == NT_poly)
17526 mve_encode_qqq (neon_logbits (et.size), 64);
17527 else
17528 mve_encode_qqq (et.type == NT_unsigned, et.size);
17529
17530 return;
17531
17532 neon_vmul:
17533 inst.instruction = N_MNEM_vmul;
17534 inst.cond = 0xb;
17535 if (thumb_mode)
17536 inst.pred_insn_type = INSIDE_IT_INSN;
17537 do_neon_mul ();
17538 }
17539
17540 static void
17541 do_mve_vabav (void)
17542 {
17543 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17544
17545 if (rs == NS_NULL)
17546 return;
17547
17548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17549 return;
17550
17551 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
17552 | N_S16 | N_S32 | N_U8 | N_U16
17553 | N_U32);
17554
17555 if (inst.cond > COND_ALWAYS)
17556 inst.pred_insn_type = INSIDE_VPT_INSN;
17557 else
17558 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17559
17560 mve_encode_rqq (et.type == NT_unsigned, et.size);
17561 }
17562
17563 static void
17564 do_mve_vmladav (void)
17565 {
17566 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
17567 struct neon_type_el et = neon_check_type (3, rs,
17568 N_EQK, N_EQK, N_SU_MVE | N_KEY);
17569
17570 if (et.type == NT_unsigned
17571 && (inst.instruction == M_MNEM_vmladavx
17572 || inst.instruction == M_MNEM_vmladavax
17573 || inst.instruction == M_MNEM_vmlsdav
17574 || inst.instruction == M_MNEM_vmlsdava
17575 || inst.instruction == M_MNEM_vmlsdavx
17576 || inst.instruction == M_MNEM_vmlsdavax))
17577 first_error (BAD_SIMD_TYPE);
17578
17579 constraint (inst.operands[2].reg > 14,
17580 _("MVE vector register in the range [Q0..Q7] expected"));
17581
17582 if (inst.cond > COND_ALWAYS)
17583 inst.pred_insn_type = INSIDE_VPT_INSN;
17584 else
17585 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17586
17587 if (inst.instruction == M_MNEM_vmlsdav
17588 || inst.instruction == M_MNEM_vmlsdava
17589 || inst.instruction == M_MNEM_vmlsdavx
17590 || inst.instruction == M_MNEM_vmlsdavax)
17591 inst.instruction |= (et.size == 8) << 28;
17592 else
17593 inst.instruction |= (et.size == 8) << 8;
17594
17595 mve_encode_rqq (et.type == NT_unsigned, 64);
17596 inst.instruction |= (et.size == 32) << 16;
17597 }
17598
17599 static void
17600 do_mve_vmlaldav (void)
17601 {
17602 enum neon_shape rs = neon_select_shape (NS_RRQQ, NS_NULL);
17603 struct neon_type_el et
17604 = neon_check_type (4, rs, N_EQK, N_EQK, N_EQK,
17605 N_S16 | N_S32 | N_U16 | N_U32 | N_KEY);
17606
17607 if (et.type == NT_unsigned
17608 && (inst.instruction == M_MNEM_vmlsldav
17609 || inst.instruction == M_MNEM_vmlsldava
17610 || inst.instruction == M_MNEM_vmlsldavx
17611 || inst.instruction == M_MNEM_vmlsldavax))
17612 first_error (BAD_SIMD_TYPE);
17613
17614 if (inst.cond > COND_ALWAYS)
17615 inst.pred_insn_type = INSIDE_VPT_INSN;
17616 else
17617 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17618
17619 mve_encode_rrqq (et.type == NT_unsigned, et.size);
17620 }
17621
17622 static void
17623 do_mve_vrmlaldavh (void)
17624 {
17625 struct neon_type_el et;
17626 if (inst.instruction == M_MNEM_vrmlsldavh
17627 || inst.instruction == M_MNEM_vrmlsldavha
17628 || inst.instruction == M_MNEM_vrmlsldavhx
17629 || inst.instruction == M_MNEM_vrmlsldavhax)
17630 {
17631 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17632 if (inst.operands[1].reg == REG_SP)
17633 as_tsktsk (MVE_BAD_SP);
17634 }
17635 else
17636 {
17637 if (inst.instruction == M_MNEM_vrmlaldavhx
17638 || inst.instruction == M_MNEM_vrmlaldavhax)
17639 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK, N_S32 | N_KEY);
17640 else
17641 et = neon_check_type (4, NS_RRQQ, N_EQK, N_EQK, N_EQK,
17642 N_U32 | N_S32 | N_KEY);
17643 /* vrmlaldavh's encoding with SP as the second, odd, GPR operand may alias
17644 with vmax/min instructions, making the use of SP in assembly really
17645 nonsensical, so instead of issuing a warning like we do for other uses
17646 of SP for the odd register operand we error out. */
17647 constraint (inst.operands[1].reg == REG_SP, BAD_SP);
17648 }
17649
17650 /* Make sure we still check the second operand is an odd one and that PC is
17651 disallowed. This because we are parsing for any GPR operand, to be able
17652 to distinguish between giving a warning or an error for SP as described
17653 above. */
17654 constraint ((inst.operands[1].reg % 2) != 1, BAD_EVEN);
17655 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
17656
17657 if (inst.cond > COND_ALWAYS)
17658 inst.pred_insn_type = INSIDE_VPT_INSN;
17659 else
17660 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17661
17662 mve_encode_rrqq (et.type == NT_unsigned, 0);
17663 }
17664
17665
17666 static void
17667 do_mve_vmaxnmv (void)
17668 {
17669 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17670 struct neon_type_el et
17671 = neon_check_type (2, rs, N_EQK, N_F_MVE | N_KEY);
17672
17673 if (inst.cond > COND_ALWAYS)
17674 inst.pred_insn_type = INSIDE_VPT_INSN;
17675 else
17676 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17677
17678 if (inst.operands[0].reg == REG_SP)
17679 as_tsktsk (MVE_BAD_SP);
17680 else if (inst.operands[0].reg == REG_PC)
17681 as_tsktsk (MVE_BAD_PC);
17682
17683 mve_encode_rq (et.size == 16, 64);
17684 }
17685
17686 static void
17687 do_mve_vmaxv (void)
17688 {
17689 enum neon_shape rs = neon_select_shape (NS_RQ, NS_NULL);
17690 struct neon_type_el et;
17691
17692 if (inst.instruction == M_MNEM_vmaxv || inst.instruction == M_MNEM_vminv)
17693 et = neon_check_type (2, rs, N_EQK, N_SU_MVE | N_KEY);
17694 else
17695 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
17696
17697 if (inst.cond > COND_ALWAYS)
17698 inst.pred_insn_type = INSIDE_VPT_INSN;
17699 else
17700 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
17701
17702 if (inst.operands[0].reg == REG_SP)
17703 as_tsktsk (MVE_BAD_SP);
17704 else if (inst.operands[0].reg == REG_PC)
17705 as_tsktsk (MVE_BAD_PC);
17706
17707 mve_encode_rq (et.type == NT_unsigned, et.size);
17708 }
17709
17710
17711 static void
17712 do_neon_qrdmlah (void)
17713 {
17714 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
17715 return;
17716 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
17717 {
17718 /* Check we're on the correct architecture. */
17719 if (!mark_feature_used (&fpu_neon_ext_armv8))
17720 inst.error
17721 = _("instruction form not available on this architecture.");
17722 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
17723 {
17724 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
17725 record_feature_use (&fpu_neon_ext_v8_1);
17726 }
17727 if (inst.operands[2].isscalar)
17728 {
17729 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
17730 struct neon_type_el et = neon_check_type (3, rs,
17731 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17732 NEON_ENCODE (SCALAR, inst);
17733 neon_mul_mac (et, neon_quad (rs));
17734 }
17735 else
17736 {
17737 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17738 struct neon_type_el et = neon_check_type (3, rs,
17739 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
17740 NEON_ENCODE (INTEGER, inst);
17741 /* The U bit (rounding) comes from bit mask. */
17742 neon_three_same (neon_quad (rs), 0, et.size);
17743 }
17744 }
17745 else
17746 {
17747 enum neon_shape rs = neon_select_shape (NS_QQR, NS_NULL);
17748 struct neon_type_el et
17749 = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_MVE | N_KEY);
17750
17751 NEON_ENCODE (INTEGER, inst);
17752 mve_encode_qqr (et.size, et.type == NT_unsigned, 0);
17753 }
17754 }
17755
17756 static void
17757 do_neon_fcmp_absolute (void)
17758 {
17759 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17760 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17761 N_F_16_32 | N_KEY);
17762 /* Size field comes from bit mask. */
17763 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
17764 }
17765
17766 static void
17767 do_neon_fcmp_absolute_inv (void)
17768 {
17769 neon_exchange_operands ();
17770 do_neon_fcmp_absolute ();
17771 }
17772
17773 static void
17774 do_neon_step (void)
17775 {
17776 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
17777 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
17778 N_F_16_32 | N_KEY);
17779 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
17780 }
17781
17782 static void
17783 do_neon_abs_neg (void)
17784 {
17785 enum neon_shape rs;
17786 struct neon_type_el et;
17787
17788 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
17789 return;
17790
17791 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17792 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
17793
17794 if (check_simd_pred_availability (et.type == NT_float,
17795 NEON_CHECK_ARCH | NEON_CHECK_CC))
17796 return;
17797
17798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17800 inst.instruction |= LOW4 (inst.operands[1].reg);
17801 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17802 inst.instruction |= neon_quad (rs) << 6;
17803 inst.instruction |= (et.type == NT_float) << 10;
17804 inst.instruction |= neon_logbits (et.size) << 18;
17805
17806 neon_dp_fixup (&inst);
17807 }
17808
17809 static void
17810 do_neon_sli (void)
17811 {
17812 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17813 struct neon_type_el et = neon_check_type (2, rs,
17814 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17815 int imm = inst.operands[2].imm;
17816 constraint (imm < 0 || (unsigned)imm >= et.size,
17817 _("immediate out of range for insert"));
17818 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17819 }
17820
17821 static void
17822 do_neon_sri (void)
17823 {
17824 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17825 struct neon_type_el et = neon_check_type (2, rs,
17826 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
17827 int imm = inst.operands[2].imm;
17828 constraint (imm < 1 || (unsigned)imm > et.size,
17829 _("immediate out of range for insert"));
17830 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
17831 }
17832
17833 static void
17834 do_neon_qshlu_imm (void)
17835 {
17836 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
17837 struct neon_type_el et = neon_check_type (2, rs,
17838 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
17839 int imm = inst.operands[2].imm;
17840 constraint (imm < 0 || (unsigned)imm >= et.size,
17841 _("immediate out of range for shift"));
17842 /* Only encodes the 'U present' variant of the instruction.
17843 In this case, signed types have OP (bit 8) set to 0.
17844 Unsigned types have OP set to 1. */
17845 inst.instruction |= (et.type == NT_unsigned) << 8;
17846 /* The rest of the bits are the same as other immediate shifts. */
17847 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
17848 }
17849
17850 static void
17851 do_neon_qmovn (void)
17852 {
17853 struct neon_type_el et = neon_check_type (2, NS_DQ,
17854 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17855 /* Saturating move where operands can be signed or unsigned, and the
17856 destination has the same signedness. */
17857 NEON_ENCODE (INTEGER, inst);
17858 if (et.type == NT_unsigned)
17859 inst.instruction |= 0xc0;
17860 else
17861 inst.instruction |= 0x80;
17862 neon_two_same (0, 1, et.size / 2);
17863 }
17864
17865 static void
17866 do_neon_qmovun (void)
17867 {
17868 struct neon_type_el et = neon_check_type (2, NS_DQ,
17869 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17870 /* Saturating move with unsigned results. Operands must be signed. */
17871 NEON_ENCODE (INTEGER, inst);
17872 neon_two_same (0, 1, et.size / 2);
17873 }
17874
17875 static void
17876 do_neon_rshift_sat_narrow (void)
17877 {
17878 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17879 or unsigned. If operands are unsigned, results must also be unsigned. */
17880 struct neon_type_el et = neon_check_type (2, NS_DQI,
17881 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17882 int imm = inst.operands[2].imm;
17883 /* This gets the bounds check, size encoding and immediate bits calculation
17884 right. */
17885 et.size /= 2;
17886
17887 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17888 VQMOVN.I<size> <Dd>, <Qm>. */
17889 if (imm == 0)
17890 {
17891 inst.operands[2].present = 0;
17892 inst.instruction = N_MNEM_vqmovn;
17893 do_neon_qmovn ();
17894 return;
17895 }
17896
17897 constraint (imm < 1 || (unsigned)imm > et.size,
17898 _("immediate out of range"));
17899 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17900 }
17901
17902 static void
17903 do_neon_rshift_sat_narrow_u (void)
17904 {
17905 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17906 or unsigned. If operands are unsigned, results must also be unsigned. */
17907 struct neon_type_el et = neon_check_type (2, NS_DQI,
17908 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17909 int imm = inst.operands[2].imm;
17910 /* This gets the bounds check, size encoding and immediate bits calculation
17911 right. */
17912 et.size /= 2;
17913
17914 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17915 VQMOVUN.I<size> <Dd>, <Qm>. */
17916 if (imm == 0)
17917 {
17918 inst.operands[2].present = 0;
17919 inst.instruction = N_MNEM_vqmovun;
17920 do_neon_qmovun ();
17921 return;
17922 }
17923
17924 constraint (imm < 1 || (unsigned)imm > et.size,
17925 _("immediate out of range"));
17926 /* FIXME: The manual is kind of unclear about what value U should have in
17927 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17928 must be 1. */
17929 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17930 }
17931
17932 static void
17933 do_neon_movn (void)
17934 {
17935 struct neon_type_el et = neon_check_type (2, NS_DQ,
17936 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17937 NEON_ENCODE (INTEGER, inst);
17938 neon_two_same (0, 1, et.size / 2);
17939 }
17940
17941 static void
17942 do_neon_rshift_narrow (void)
17943 {
17944 struct neon_type_el et = neon_check_type (2, NS_DQI,
17945 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17946 int imm = inst.operands[2].imm;
17947 /* This gets the bounds check, size encoding and immediate bits calculation
17948 right. */
17949 et.size /= 2;
17950
17951 /* If immediate is zero then we are a pseudo-instruction for
17952 VMOVN.I<size> <Dd>, <Qm> */
17953 if (imm == 0)
17954 {
17955 inst.operands[2].present = 0;
17956 inst.instruction = N_MNEM_vmovn;
17957 do_neon_movn ();
17958 return;
17959 }
17960
17961 constraint (imm < 1 || (unsigned)imm > et.size,
17962 _("immediate out of range for narrowing operation"));
17963 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17964 }
17965
17966 static void
17967 do_neon_shll (void)
17968 {
17969 /* FIXME: Type checking when lengthening. */
17970 struct neon_type_el et = neon_check_type (2, NS_QDI,
17971 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17972 unsigned imm = inst.operands[2].imm;
17973
17974 if (imm == et.size)
17975 {
17976 /* Maximum shift variant. */
17977 NEON_ENCODE (INTEGER, inst);
17978 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17979 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17980 inst.instruction |= LOW4 (inst.operands[1].reg);
17981 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17982 inst.instruction |= neon_logbits (et.size) << 18;
17983
17984 neon_dp_fixup (&inst);
17985 }
17986 else
17987 {
17988 /* A more-specific type check for non-max versions. */
17989 et = neon_check_type (2, NS_QDI,
17990 N_EQK | N_DBL, N_SU_32 | N_KEY);
17991 NEON_ENCODE (IMMED, inst);
17992 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17993 }
17994 }
17995
17996 /* Check the various types for the VCVT instruction, and return which version
17997 the current instruction is. */
17998
17999 #define CVT_FLAVOUR_VAR \
18000 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
18001 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
18002 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
18003 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
18004 /* Half-precision conversions. */ \
18005 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18006 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
18007 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
18008 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
18009 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
18010 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
18011 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
18012 Compared with single/double precision variants, only the co-processor \
18013 field is different, so the encoding flow is reused here. */ \
18014 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
18015 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
18016 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
18017 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
18018 /* VFP instructions. */ \
18019 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
18020 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
18021 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
18022 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
18023 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
18024 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
18025 /* VFP instructions with bitshift. */ \
18026 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
18027 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
18028 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
18029 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
18030 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
18031 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
18032 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
18033 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
18034
18035 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
18036 neon_cvt_flavour_##C,
18037
18038 /* The different types of conversions we can do. */
18039 enum neon_cvt_flavour
18040 {
18041 CVT_FLAVOUR_VAR
18042 neon_cvt_flavour_invalid,
18043 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
18044 };
18045
18046 #undef CVT_VAR
18047
18048 static enum neon_cvt_flavour
18049 get_neon_cvt_flavour (enum neon_shape rs)
18050 {
18051 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
18052 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
18053 if (et.type != NT_invtype) \
18054 { \
18055 inst.error = NULL; \
18056 return (neon_cvt_flavour_##C); \
18057 }
18058
18059 struct neon_type_el et;
18060 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
18061 || rs == NS_FF) ? N_VFP : 0;
18062 /* The instruction versions which take an immediate take one register
18063 argument, which is extended to the width of the full register. Thus the
18064 "source" and "destination" registers must have the same width. Hack that
18065 here by making the size equal to the key (wider, in this case) operand. */
18066 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
18067
18068 CVT_FLAVOUR_VAR;
18069
18070 return neon_cvt_flavour_invalid;
18071 #undef CVT_VAR
18072 }
18073
18074 enum neon_cvt_mode
18075 {
18076 neon_cvt_mode_a,
18077 neon_cvt_mode_n,
18078 neon_cvt_mode_p,
18079 neon_cvt_mode_m,
18080 neon_cvt_mode_z,
18081 neon_cvt_mode_x,
18082 neon_cvt_mode_r
18083 };
18084
18085 /* Neon-syntax VFP conversions. */
18086
18087 static void
18088 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
18089 {
18090 const char *opname = 0;
18091
18092 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
18093 || rs == NS_FHI || rs == NS_HFI)
18094 {
18095 /* Conversions with immediate bitshift. */
18096 const char *enc[] =
18097 {
18098 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
18099 CVT_FLAVOUR_VAR
18100 NULL
18101 #undef CVT_VAR
18102 };
18103
18104 if (flavour < (int) ARRAY_SIZE (enc))
18105 {
18106 opname = enc[flavour];
18107 constraint (inst.operands[0].reg != inst.operands[1].reg,
18108 _("operands 0 and 1 must be the same register"));
18109 inst.operands[1] = inst.operands[2];
18110 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
18111 }
18112 }
18113 else
18114 {
18115 /* Conversions without bitshift. */
18116 const char *enc[] =
18117 {
18118 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
18119 CVT_FLAVOUR_VAR
18120 NULL
18121 #undef CVT_VAR
18122 };
18123
18124 if (flavour < (int) ARRAY_SIZE (enc))
18125 opname = enc[flavour];
18126 }
18127
18128 if (opname)
18129 do_vfp_nsyn_opcode (opname);
18130
18131 /* ARMv8.2 fp16 VCVT instruction. */
18132 if (flavour == neon_cvt_flavour_s32_f16
18133 || flavour == neon_cvt_flavour_u32_f16
18134 || flavour == neon_cvt_flavour_f16_u32
18135 || flavour == neon_cvt_flavour_f16_s32)
18136 do_scalar_fp16_v82_encode ();
18137 }
18138
18139 static void
18140 do_vfp_nsyn_cvtz (void)
18141 {
18142 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
18143 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18144 const char *enc[] =
18145 {
18146 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
18147 CVT_FLAVOUR_VAR
18148 NULL
18149 #undef CVT_VAR
18150 };
18151
18152 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
18153 do_vfp_nsyn_opcode (enc[flavour]);
18154 }
18155
18156 static void
18157 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
18158 enum neon_cvt_mode mode)
18159 {
18160 int sz, op;
18161 int rm;
18162
18163 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
18164 D register operands. */
18165 if (flavour == neon_cvt_flavour_s32_f64
18166 || flavour == neon_cvt_flavour_u32_f64)
18167 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18168 _(BAD_FPU));
18169
18170 if (flavour == neon_cvt_flavour_s32_f16
18171 || flavour == neon_cvt_flavour_u32_f16)
18172 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
18173 _(BAD_FP16));
18174
18175 set_pred_insn_type (OUTSIDE_PRED_INSN);
18176
18177 switch (flavour)
18178 {
18179 case neon_cvt_flavour_s32_f64:
18180 sz = 1;
18181 op = 1;
18182 break;
18183 case neon_cvt_flavour_s32_f32:
18184 sz = 0;
18185 op = 1;
18186 break;
18187 case neon_cvt_flavour_s32_f16:
18188 sz = 0;
18189 op = 1;
18190 break;
18191 case neon_cvt_flavour_u32_f64:
18192 sz = 1;
18193 op = 0;
18194 break;
18195 case neon_cvt_flavour_u32_f32:
18196 sz = 0;
18197 op = 0;
18198 break;
18199 case neon_cvt_flavour_u32_f16:
18200 sz = 0;
18201 op = 0;
18202 break;
18203 default:
18204 first_error (_("invalid instruction shape"));
18205 return;
18206 }
18207
18208 switch (mode)
18209 {
18210 case neon_cvt_mode_a: rm = 0; break;
18211 case neon_cvt_mode_n: rm = 1; break;
18212 case neon_cvt_mode_p: rm = 2; break;
18213 case neon_cvt_mode_m: rm = 3; break;
18214 default: first_error (_("invalid rounding mode")); return;
18215 }
18216
18217 NEON_ENCODE (FPV8, inst);
18218 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
18219 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
18220 inst.instruction |= sz << 8;
18221
18222 /* ARMv8.2 fp16 VCVT instruction. */
18223 if (flavour == neon_cvt_flavour_s32_f16
18224 ||flavour == neon_cvt_flavour_u32_f16)
18225 do_scalar_fp16_v82_encode ();
18226 inst.instruction |= op << 7;
18227 inst.instruction |= rm << 16;
18228 inst.instruction |= 0xf0000000;
18229 inst.is_neon = TRUE;
18230 }
18231
18232 static void
18233 do_neon_cvt_1 (enum neon_cvt_mode mode)
18234 {
18235 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
18236 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
18237 NS_FH, NS_HF, NS_FHI, NS_HFI,
18238 NS_NULL);
18239 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18240
18241 if (flavour == neon_cvt_flavour_invalid)
18242 return;
18243
18244 /* PR11109: Handle round-to-zero for VCVT conversions. */
18245 if (mode == neon_cvt_mode_z
18246 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
18247 && (flavour == neon_cvt_flavour_s16_f16
18248 || flavour == neon_cvt_flavour_u16_f16
18249 || flavour == neon_cvt_flavour_s32_f32
18250 || flavour == neon_cvt_flavour_u32_f32
18251 || flavour == neon_cvt_flavour_s32_f64
18252 || flavour == neon_cvt_flavour_u32_f64)
18253 && (rs == NS_FD || rs == NS_FF))
18254 {
18255 do_vfp_nsyn_cvtz ();
18256 return;
18257 }
18258
18259 /* ARMv8.2 fp16 VCVT conversions. */
18260 if (mode == neon_cvt_mode_z
18261 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
18262 && (flavour == neon_cvt_flavour_s32_f16
18263 || flavour == neon_cvt_flavour_u32_f16)
18264 && (rs == NS_FH))
18265 {
18266 do_vfp_nsyn_cvtz ();
18267 do_scalar_fp16_v82_encode ();
18268 return;
18269 }
18270
18271 /* VFP rather than Neon conversions. */
18272 if (flavour >= neon_cvt_flavour_first_fp)
18273 {
18274 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18275 do_vfp_nsyn_cvt (rs, flavour);
18276 else
18277 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18278
18279 return;
18280 }
18281
18282 switch (rs)
18283 {
18284 case NS_QQI:
18285 if (mode == neon_cvt_mode_z
18286 && (flavour == neon_cvt_flavour_f16_s16
18287 || flavour == neon_cvt_flavour_f16_u16
18288 || flavour == neon_cvt_flavour_s16_f16
18289 || flavour == neon_cvt_flavour_u16_f16
18290 || flavour == neon_cvt_flavour_f32_u32
18291 || flavour == neon_cvt_flavour_f32_s32
18292 || flavour == neon_cvt_flavour_s32_f32
18293 || flavour == neon_cvt_flavour_u32_f32))
18294 {
18295 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
18296 return;
18297 }
18298 else if (mode == neon_cvt_mode_n)
18299 {
18300 /* We are dealing with vcvt with the 'ne' condition. */
18301 inst.cond = 0x1;
18302 inst.instruction = N_MNEM_vcvt;
18303 do_neon_cvt_1 (neon_cvt_mode_z);
18304 return;
18305 }
18306 /* fall through. */
18307 case NS_DDI:
18308 {
18309 unsigned immbits;
18310 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
18311 0x0000100, 0x1000100, 0x0, 0x1000000};
18312
18313 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18314 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18315 return;
18316
18317 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18318 {
18319 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
18320 _("immediate value out of range"));
18321 switch (flavour)
18322 {
18323 case neon_cvt_flavour_f16_s16:
18324 case neon_cvt_flavour_f16_u16:
18325 case neon_cvt_flavour_s16_f16:
18326 case neon_cvt_flavour_u16_f16:
18327 constraint (inst.operands[2].imm > 16,
18328 _("immediate value out of range"));
18329 break;
18330 case neon_cvt_flavour_f32_u32:
18331 case neon_cvt_flavour_f32_s32:
18332 case neon_cvt_flavour_s32_f32:
18333 case neon_cvt_flavour_u32_f32:
18334 constraint (inst.operands[2].imm > 32,
18335 _("immediate value out of range"));
18336 break;
18337 default:
18338 inst.error = BAD_FPU;
18339 return;
18340 }
18341 }
18342
18343 /* Fixed-point conversion with #0 immediate is encoded as an
18344 integer conversion. */
18345 if (inst.operands[2].present && inst.operands[2].imm == 0)
18346 goto int_encode;
18347 NEON_ENCODE (IMMED, inst);
18348 if (flavour != neon_cvt_flavour_invalid)
18349 inst.instruction |= enctab[flavour];
18350 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18351 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18352 inst.instruction |= LOW4 (inst.operands[1].reg);
18353 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18354 inst.instruction |= neon_quad (rs) << 6;
18355 inst.instruction |= 1 << 21;
18356 if (flavour < neon_cvt_flavour_s16_f16)
18357 {
18358 inst.instruction |= 1 << 21;
18359 immbits = 32 - inst.operands[2].imm;
18360 inst.instruction |= immbits << 16;
18361 }
18362 else
18363 {
18364 inst.instruction |= 3 << 20;
18365 immbits = 16 - inst.operands[2].imm;
18366 inst.instruction |= immbits << 16;
18367 inst.instruction &= ~(1 << 9);
18368 }
18369
18370 neon_dp_fixup (&inst);
18371 }
18372 break;
18373
18374 case NS_QQ:
18375 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
18376 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
18377 && (flavour == neon_cvt_flavour_s16_f16
18378 || flavour == neon_cvt_flavour_u16_f16
18379 || flavour == neon_cvt_flavour_s32_f32
18380 || flavour == neon_cvt_flavour_u32_f32))
18381 {
18382 if (check_simd_pred_availability (1,
18383 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18384 return;
18385 }
18386 else if (mode == neon_cvt_mode_z
18387 && (flavour == neon_cvt_flavour_f16_s16
18388 || flavour == neon_cvt_flavour_f16_u16
18389 || flavour == neon_cvt_flavour_s16_f16
18390 || flavour == neon_cvt_flavour_u16_f16
18391 || flavour == neon_cvt_flavour_f32_u32
18392 || flavour == neon_cvt_flavour_f32_s32
18393 || flavour == neon_cvt_flavour_s32_f32
18394 || flavour == neon_cvt_flavour_u32_f32))
18395 {
18396 if (check_simd_pred_availability (1,
18397 NEON_CHECK_CC | NEON_CHECK_ARCH))
18398 return;
18399 }
18400 /* fall through. */
18401 case NS_DD:
18402 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
18403 {
18404
18405 NEON_ENCODE (FLOAT, inst);
18406 if (check_simd_pred_availability (1,
18407 NEON_CHECK_CC | NEON_CHECK_ARCH8))
18408 return;
18409
18410 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18411 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18412 inst.instruction |= LOW4 (inst.operands[1].reg);
18413 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18414 inst.instruction |= neon_quad (rs) << 6;
18415 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
18416 || flavour == neon_cvt_flavour_u32_f32) << 7;
18417 inst.instruction |= mode << 8;
18418 if (flavour == neon_cvt_flavour_u16_f16
18419 || flavour == neon_cvt_flavour_s16_f16)
18420 /* Mask off the original size bits and reencode them. */
18421 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
18422
18423 if (thumb_mode)
18424 inst.instruction |= 0xfc000000;
18425 else
18426 inst.instruction |= 0xf0000000;
18427 }
18428 else
18429 {
18430 int_encode:
18431 {
18432 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
18433 0x100, 0x180, 0x0, 0x080};
18434
18435 NEON_ENCODE (INTEGER, inst);
18436
18437 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
18438 {
18439 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18440 return;
18441 }
18442
18443 if (flavour != neon_cvt_flavour_invalid)
18444 inst.instruction |= enctab[flavour];
18445
18446 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18447 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18448 inst.instruction |= LOW4 (inst.operands[1].reg);
18449 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18450 inst.instruction |= neon_quad (rs) << 6;
18451 if (flavour >= neon_cvt_flavour_s16_f16
18452 && flavour <= neon_cvt_flavour_f16_u16)
18453 /* Half precision. */
18454 inst.instruction |= 1 << 18;
18455 else
18456 inst.instruction |= 2 << 18;
18457
18458 neon_dp_fixup (&inst);
18459 }
18460 }
18461 break;
18462
18463 /* Half-precision conversions for Advanced SIMD -- neon. */
18464 case NS_QD:
18465 case NS_DQ:
18466 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
18467 return;
18468
18469 if ((rs == NS_DQ)
18470 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
18471 {
18472 as_bad (_("operand size must match register width"));
18473 break;
18474 }
18475
18476 if ((rs == NS_QD)
18477 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
18478 {
18479 as_bad (_("operand size must match register width"));
18480 break;
18481 }
18482
18483 if (rs == NS_DQ)
18484 inst.instruction = 0x3b60600;
18485 else
18486 inst.instruction = 0x3b60700;
18487
18488 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18489 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18490 inst.instruction |= LOW4 (inst.operands[1].reg);
18491 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18492 neon_dp_fixup (&inst);
18493 break;
18494
18495 default:
18496 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
18497 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
18498 do_vfp_nsyn_cvt (rs, flavour);
18499 else
18500 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
18501 }
18502 }
18503
18504 static void
18505 do_neon_cvtr (void)
18506 {
18507 do_neon_cvt_1 (neon_cvt_mode_x);
18508 }
18509
18510 static void
18511 do_neon_cvt (void)
18512 {
18513 do_neon_cvt_1 (neon_cvt_mode_z);
18514 }
18515
18516 static void
18517 do_neon_cvta (void)
18518 {
18519 do_neon_cvt_1 (neon_cvt_mode_a);
18520 }
18521
18522 static void
18523 do_neon_cvtn (void)
18524 {
18525 do_neon_cvt_1 (neon_cvt_mode_n);
18526 }
18527
18528 static void
18529 do_neon_cvtp (void)
18530 {
18531 do_neon_cvt_1 (neon_cvt_mode_p);
18532 }
18533
18534 static void
18535 do_neon_cvtm (void)
18536 {
18537 do_neon_cvt_1 (neon_cvt_mode_m);
18538 }
18539
18540 static void
18541 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
18542 {
18543 if (is_double)
18544 mark_feature_used (&fpu_vfp_ext_armv8);
18545
18546 encode_arm_vfp_reg (inst.operands[0].reg,
18547 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
18548 encode_arm_vfp_reg (inst.operands[1].reg,
18549 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
18550 inst.instruction |= to ? 0x10000 : 0;
18551 inst.instruction |= t ? 0x80 : 0;
18552 inst.instruction |= is_double ? 0x100 : 0;
18553 do_vfp_cond_or_thumb ();
18554 }
18555
18556 static void
18557 do_neon_cvttb_1 (bfd_boolean t)
18558 {
18559 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
18560 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
18561
18562 if (rs == NS_NULL)
18563 return;
18564 else if (rs == NS_QQ || rs == NS_QQI)
18565 {
18566 int single_to_half = 0;
18567 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
18568 return;
18569
18570 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
18571
18572 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18573 && (flavour == neon_cvt_flavour_u16_f16
18574 || flavour == neon_cvt_flavour_s16_f16
18575 || flavour == neon_cvt_flavour_f16_s16
18576 || flavour == neon_cvt_flavour_f16_u16
18577 || flavour == neon_cvt_flavour_u32_f32
18578 || flavour == neon_cvt_flavour_s32_f32
18579 || flavour == neon_cvt_flavour_f32_s32
18580 || flavour == neon_cvt_flavour_f32_u32))
18581 {
18582 inst.cond = 0xf;
18583 inst.instruction = N_MNEM_vcvt;
18584 set_pred_insn_type (INSIDE_VPT_INSN);
18585 do_neon_cvt_1 (neon_cvt_mode_z);
18586 return;
18587 }
18588 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
18589 single_to_half = 1;
18590 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
18591 {
18592 first_error (BAD_FPU);
18593 return;
18594 }
18595
18596 inst.instruction = 0xee3f0e01;
18597 inst.instruction |= single_to_half << 28;
18598 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18599 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
18600 inst.instruction |= t << 12;
18601 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18602 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
18603 inst.is_neon = 1;
18604 }
18605 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
18606 {
18607 inst.error = NULL;
18608 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
18609 }
18610 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
18611 {
18612 inst.error = NULL;
18613 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
18614 }
18615 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
18616 {
18617 /* The VCVTB and VCVTT instructions with D-register operands
18618 don't work for SP only targets. */
18619 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18620 _(BAD_FPU));
18621
18622 inst.error = NULL;
18623 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
18624 }
18625 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
18626 {
18627 /* The VCVTB and VCVTT instructions with D-register operands
18628 don't work for SP only targets. */
18629 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
18630 _(BAD_FPU));
18631
18632 inst.error = NULL;
18633 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
18634 }
18635 else
18636 return;
18637 }
18638
18639 static void
18640 do_neon_cvtb (void)
18641 {
18642 do_neon_cvttb_1 (FALSE);
18643 }
18644
18645
18646 static void
18647 do_neon_cvtt (void)
18648 {
18649 do_neon_cvttb_1 (TRUE);
18650 }
18651
18652 static void
18653 neon_move_immediate (void)
18654 {
18655 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
18656 struct neon_type_el et = neon_check_type (2, rs,
18657 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
18658 unsigned immlo, immhi = 0, immbits;
18659 int op, cmode, float_p;
18660
18661 constraint (et.type == NT_invtype,
18662 _("operand size must be specified for immediate VMOV"));
18663
18664 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
18665 op = (inst.instruction & (1 << 5)) != 0;
18666
18667 immlo = inst.operands[1].imm;
18668 if (inst.operands[1].regisimm)
18669 immhi = inst.operands[1].reg;
18670
18671 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
18672 _("immediate has bits set outside the operand size"));
18673
18674 float_p = inst.operands[1].immisfloat;
18675
18676 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
18677 et.size, et.type)) == FAIL)
18678 {
18679 /* Invert relevant bits only. */
18680 neon_invert_size (&immlo, &immhi, et.size);
18681 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
18682 with one or the other; those cases are caught by
18683 neon_cmode_for_move_imm. */
18684 op = !op;
18685 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
18686 &op, et.size, et.type)) == FAIL)
18687 {
18688 first_error (_("immediate out of range"));
18689 return;
18690 }
18691 }
18692
18693 inst.instruction &= ~(1 << 5);
18694 inst.instruction |= op << 5;
18695
18696 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18697 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18698 inst.instruction |= neon_quad (rs) << 6;
18699 inst.instruction |= cmode << 8;
18700
18701 neon_write_immbits (immbits);
18702 }
18703
18704 static void
18705 do_neon_mvn (void)
18706 {
18707 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18708 return;
18709
18710 if (inst.operands[1].isreg)
18711 {
18712 enum neon_shape rs;
18713 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18714 rs = neon_select_shape (NS_QQ, NS_NULL);
18715 else
18716 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18717
18718 NEON_ENCODE (INTEGER, inst);
18719 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18720 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18721 inst.instruction |= LOW4 (inst.operands[1].reg);
18722 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18723 inst.instruction |= neon_quad (rs) << 6;
18724 }
18725 else
18726 {
18727 NEON_ENCODE (IMMED, inst);
18728 neon_move_immediate ();
18729 }
18730
18731 neon_dp_fixup (&inst);
18732
18733 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18734 {
18735 constraint (!inst.operands[1].isreg && !inst.operands[0].isquad, BAD_FPU);
18736 constraint ((inst.instruction & 0xd00) == 0xd00,
18737 _("immediate value out of range"));
18738 }
18739 }
18740
18741 /* Encode instructions of form:
18742
18743 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
18744 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
18745
18746 static void
18747 neon_mixed_length (struct neon_type_el et, unsigned size)
18748 {
18749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18751 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18752 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18753 inst.instruction |= LOW4 (inst.operands[2].reg);
18754 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18755 inst.instruction |= (et.type == NT_unsigned) << 24;
18756 inst.instruction |= neon_logbits (size) << 20;
18757
18758 neon_dp_fixup (&inst);
18759 }
18760
18761 static void
18762 do_neon_dyadic_long (void)
18763 {
18764 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
18765 if (rs == NS_QDD)
18766 {
18767 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
18768 return;
18769
18770 NEON_ENCODE (INTEGER, inst);
18771 /* FIXME: Type checking for lengthening op. */
18772 struct neon_type_el et = neon_check_type (3, NS_QDD,
18773 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
18774 neon_mixed_length (et, et.size);
18775 }
18776 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18777 && (inst.cond == 0xf || inst.cond == 0x10))
18778 {
18779 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
18780 in an IT block with le/lt conditions. */
18781
18782 if (inst.cond == 0xf)
18783 inst.cond = 0xb;
18784 else if (inst.cond == 0x10)
18785 inst.cond = 0xd;
18786
18787 inst.pred_insn_type = INSIDE_IT_INSN;
18788
18789 if (inst.instruction == N_MNEM_vaddl)
18790 {
18791 inst.instruction = N_MNEM_vadd;
18792 do_neon_addsub_if_i ();
18793 }
18794 else if (inst.instruction == N_MNEM_vsubl)
18795 {
18796 inst.instruction = N_MNEM_vsub;
18797 do_neon_addsub_if_i ();
18798 }
18799 else if (inst.instruction == N_MNEM_vabdl)
18800 {
18801 inst.instruction = N_MNEM_vabd;
18802 do_neon_dyadic_if_su ();
18803 }
18804 }
18805 else
18806 first_error (BAD_FPU);
18807 }
18808
18809 static void
18810 do_neon_abal (void)
18811 {
18812 struct neon_type_el et = neon_check_type (3, NS_QDD,
18813 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
18814 neon_mixed_length (et, et.size);
18815 }
18816
18817 static void
18818 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
18819 {
18820 if (inst.operands[2].isscalar)
18821 {
18822 struct neon_type_el et = neon_check_type (3, NS_QDS,
18823 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
18824 NEON_ENCODE (SCALAR, inst);
18825 neon_mul_mac (et, et.type == NT_unsigned);
18826 }
18827 else
18828 {
18829 struct neon_type_el et = neon_check_type (3, NS_QDD,
18830 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
18831 NEON_ENCODE (INTEGER, inst);
18832 neon_mixed_length (et, et.size);
18833 }
18834 }
18835
18836 static void
18837 do_neon_mac_maybe_scalar_long (void)
18838 {
18839 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
18840 }
18841
18842 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
18843 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
18844
18845 static unsigned
18846 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
18847 {
18848 unsigned regno = NEON_SCALAR_REG (scalar);
18849 unsigned elno = NEON_SCALAR_INDEX (scalar);
18850
18851 if (quad_p)
18852 {
18853 if (regno > 7 || elno > 3)
18854 goto bad_scalar;
18855
18856 return ((regno & 0x7)
18857 | ((elno & 0x1) << 3)
18858 | (((elno >> 1) & 0x1) << 5));
18859 }
18860 else
18861 {
18862 if (regno > 15 || elno > 1)
18863 goto bad_scalar;
18864
18865 return (((regno & 0x1) << 5)
18866 | ((regno >> 1) & 0x7)
18867 | ((elno & 0x1) << 3));
18868 }
18869
18870 bad_scalar:
18871 first_error (_("scalar out of range for multiply instruction"));
18872 return 0;
18873 }
18874
18875 static void
18876 do_neon_fmac_maybe_scalar_long (int subtype)
18877 {
18878 enum neon_shape rs;
18879 int high8;
18880 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18881 field (bits[21:20]) has different meaning. For scalar index variant, it's
18882 used to differentiate add and subtract, otherwise it's with fixed value
18883 0x2. */
18884 int size = -1;
18885
18886 if (inst.cond != COND_ALWAYS)
18887 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18888 "behaviour is UNPREDICTABLE"));
18889
18890 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18891 _(BAD_FP16));
18892
18893 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18894 _(BAD_FPU));
18895
18896 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18897 be a scalar index register. */
18898 if (inst.operands[2].isscalar)
18899 {
18900 high8 = 0xfe000000;
18901 if (subtype)
18902 size = 16;
18903 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18904 }
18905 else
18906 {
18907 high8 = 0xfc000000;
18908 size = 32;
18909 if (subtype)
18910 inst.instruction |= (0x1 << 23);
18911 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18912 }
18913
18914 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18915
18916 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18917 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18918 so we simply pass -1 as size. */
18919 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18920 neon_three_same (quad_p, 0, size);
18921
18922 /* Undo neon_dp_fixup. Redo the high eight bits. */
18923 inst.instruction &= 0x00ffffff;
18924 inst.instruction |= high8;
18925
18926 #define LOW1(R) ((R) & 0x1)
18927 #define HI4(R) (((R) >> 1) & 0xf)
18928 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18929 whether the instruction is in Q form and whether Vm is a scalar indexed
18930 operand. */
18931 if (inst.operands[2].isscalar)
18932 {
18933 unsigned rm
18934 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18935 inst.instruction &= 0xffffffd0;
18936 inst.instruction |= rm;
18937
18938 if (!quad_p)
18939 {
18940 /* Redo Rn as well. */
18941 inst.instruction &= 0xfff0ff7f;
18942 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18943 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18944 }
18945 }
18946 else if (!quad_p)
18947 {
18948 /* Redo Rn and Rm. */
18949 inst.instruction &= 0xfff0ff50;
18950 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18951 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18952 inst.instruction |= HI4 (inst.operands[2].reg);
18953 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18954 }
18955 }
18956
18957 static void
18958 do_neon_vfmal (void)
18959 {
18960 return do_neon_fmac_maybe_scalar_long (0);
18961 }
18962
18963 static void
18964 do_neon_vfmsl (void)
18965 {
18966 return do_neon_fmac_maybe_scalar_long (1);
18967 }
18968
18969 static void
18970 do_neon_dyadic_wide (void)
18971 {
18972 struct neon_type_el et = neon_check_type (3, NS_QQD,
18973 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18974 neon_mixed_length (et, et.size);
18975 }
18976
18977 static void
18978 do_neon_dyadic_narrow (void)
18979 {
18980 struct neon_type_el et = neon_check_type (3, NS_QDD,
18981 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18982 /* Operand sign is unimportant, and the U bit is part of the opcode,
18983 so force the operand type to integer. */
18984 et.type = NT_integer;
18985 neon_mixed_length (et, et.size / 2);
18986 }
18987
18988 static void
18989 do_neon_mul_sat_scalar_long (void)
18990 {
18991 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18992 }
18993
18994 static void
18995 do_neon_vmull (void)
18996 {
18997 if (inst.operands[2].isscalar)
18998 do_neon_mac_maybe_scalar_long ();
18999 else
19000 {
19001 struct neon_type_el et = neon_check_type (3, NS_QDD,
19002 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
19003
19004 if (et.type == NT_poly)
19005 NEON_ENCODE (POLY, inst);
19006 else
19007 NEON_ENCODE (INTEGER, inst);
19008
19009 /* For polynomial encoding the U bit must be zero, and the size must
19010 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
19011 obviously, as 0b10). */
19012 if (et.size == 64)
19013 {
19014 /* Check we're on the correct architecture. */
19015 if (!mark_feature_used (&fpu_crypto_ext_armv8))
19016 inst.error =
19017 _("Instruction form not available on this architecture.");
19018
19019 et.size = 32;
19020 }
19021
19022 neon_mixed_length (et, et.size);
19023 }
19024 }
19025
19026 static void
19027 do_neon_ext (void)
19028 {
19029 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19030 struct neon_type_el et = neon_check_type (3, rs,
19031 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
19032 unsigned imm = (inst.operands[3].imm * et.size) / 8;
19033
19034 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
19035 _("shift out of range"));
19036 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19037 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19038 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19039 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19040 inst.instruction |= LOW4 (inst.operands[2].reg);
19041 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19042 inst.instruction |= neon_quad (rs) << 6;
19043 inst.instruction |= imm << 8;
19044
19045 neon_dp_fixup (&inst);
19046 }
19047
19048 static void
19049 do_neon_rev (void)
19050 {
19051 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19052 struct neon_type_el et = neon_check_type (2, rs,
19053 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19054 unsigned op = (inst.instruction >> 7) & 3;
19055 /* N (width of reversed regions) is encoded as part of the bitmask. We
19056 extract it here to check the elements to be reversed are smaller.
19057 Otherwise we'd get a reserved instruction. */
19058 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
19059 gas_assert (elsize != 0);
19060 constraint (et.size >= elsize,
19061 _("elements must be smaller than reversal region"));
19062 neon_two_same (neon_quad (rs), 1, et.size);
19063 }
19064
19065 static void
19066 do_neon_dup (void)
19067 {
19068 if (inst.operands[1].isscalar)
19069 {
19070 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19071 BAD_FPU);
19072 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
19073 struct neon_type_el et = neon_check_type (2, rs,
19074 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19075 unsigned sizebits = et.size >> 3;
19076 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
19077 int logsize = neon_logbits (et.size);
19078 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
19079
19080 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
19081 return;
19082
19083 NEON_ENCODE (SCALAR, inst);
19084 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19085 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19086 inst.instruction |= LOW4 (dm);
19087 inst.instruction |= HI1 (dm) << 5;
19088 inst.instruction |= neon_quad (rs) << 6;
19089 inst.instruction |= x << 17;
19090 inst.instruction |= sizebits << 16;
19091
19092 neon_dp_fixup (&inst);
19093 }
19094 else
19095 {
19096 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
19097 struct neon_type_el et = neon_check_type (2, rs,
19098 N_8 | N_16 | N_32 | N_KEY, N_EQK);
19099 if (rs == NS_QR)
19100 {
19101 if (check_simd_pred_availability (0, NEON_CHECK_ARCH))
19102 return;
19103 }
19104 else
19105 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1),
19106 BAD_FPU);
19107
19108 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19109 {
19110 if (inst.operands[1].reg == REG_SP)
19111 as_tsktsk (MVE_BAD_SP);
19112 else if (inst.operands[1].reg == REG_PC)
19113 as_tsktsk (MVE_BAD_PC);
19114 }
19115
19116 /* Duplicate ARM register to lanes of vector. */
19117 NEON_ENCODE (ARMREG, inst);
19118 switch (et.size)
19119 {
19120 case 8: inst.instruction |= 0x400000; break;
19121 case 16: inst.instruction |= 0x000020; break;
19122 case 32: inst.instruction |= 0x000000; break;
19123 default: break;
19124 }
19125 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19126 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
19127 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
19128 inst.instruction |= neon_quad (rs) << 21;
19129 /* The encoding for this instruction is identical for the ARM and Thumb
19130 variants, except for the condition field. */
19131 do_vfp_cond_or_thumb ();
19132 }
19133 }
19134
19135 static void
19136 do_mve_mov (int toQ)
19137 {
19138 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19139 return;
19140 if (inst.cond > COND_ALWAYS)
19141 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
19142
19143 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
19144 if (toQ)
19145 {
19146 Q0 = 0;
19147 Q1 = 1;
19148 Rt = 2;
19149 Rt2 = 3;
19150 }
19151
19152 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
19153 _("Index one must be [2,3] and index two must be two less than"
19154 " index one."));
19155 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
19156 _("General purpose registers may not be the same"));
19157 constraint (inst.operands[Rt].reg == REG_SP
19158 || inst.operands[Rt2].reg == REG_SP,
19159 BAD_SP);
19160 constraint (inst.operands[Rt].reg == REG_PC
19161 || inst.operands[Rt2].reg == REG_PC,
19162 BAD_PC);
19163
19164 inst.instruction = 0xec000f00;
19165 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
19166 inst.instruction |= !!toQ << 20;
19167 inst.instruction |= inst.operands[Rt2].reg << 16;
19168 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
19169 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
19170 inst.instruction |= inst.operands[Rt].reg;
19171 }
19172
19173 static void
19174 do_mve_movn (void)
19175 {
19176 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19177 return;
19178
19179 if (inst.cond > COND_ALWAYS)
19180 inst.pred_insn_type = INSIDE_VPT_INSN;
19181 else
19182 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
19183
19184 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
19185 | N_KEY);
19186
19187 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19188 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
19189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19190 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19191 inst.instruction |= LOW4 (inst.operands[1].reg);
19192 inst.is_neon = 1;
19193
19194 }
19195
19196 /* VMOV has particularly many variations. It can be one of:
19197 0. VMOV<c><q> <Qd>, <Qm>
19198 1. VMOV<c><q> <Dd>, <Dm>
19199 (Register operations, which are VORR with Rm = Rn.)
19200 2. VMOV<c><q>.<dt> <Qd>, #<imm>
19201 3. VMOV<c><q>.<dt> <Dd>, #<imm>
19202 (Immediate loads.)
19203 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
19204 (ARM register to scalar.)
19205 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
19206 (Two ARM registers to vector.)
19207 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
19208 (Scalar to ARM register.)
19209 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
19210 (Vector to two ARM registers.)
19211 8. VMOV.F32 <Sd>, <Sm>
19212 9. VMOV.F64 <Dd>, <Dm>
19213 (VFP register moves.)
19214 10. VMOV.F32 <Sd>, #imm
19215 11. VMOV.F64 <Dd>, #imm
19216 (VFP float immediate load.)
19217 12. VMOV <Rd>, <Sm>
19218 (VFP single to ARM reg.)
19219 13. VMOV <Sd>, <Rm>
19220 (ARM reg to VFP single.)
19221 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
19222 (Two ARM regs to two VFP singles.)
19223 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
19224 (Two VFP singles to two ARM regs.)
19225 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
19226 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
19227 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
19228 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
19229
19230 These cases can be disambiguated using neon_select_shape, except cases 1/9
19231 and 3/11 which depend on the operand type too.
19232
19233 All the encoded bits are hardcoded by this function.
19234
19235 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
19236 Cases 5, 7 may be used with VFPv2 and above.
19237
19238 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
19239 can specify a type where it doesn't make sense to, and is ignored). */
19240
19241 static void
19242 do_neon_mov (void)
19243 {
19244 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
19245 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
19246 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
19247 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
19248 NS_NULL);
19249 struct neon_type_el et;
19250 const char *ldconst = 0;
19251
19252 switch (rs)
19253 {
19254 case NS_DD: /* case 1/9. */
19255 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19256 /* It is not an error here if no type is given. */
19257 inst.error = NULL;
19258 if (et.type == NT_float && et.size == 64)
19259 {
19260 do_vfp_nsyn_opcode ("fcpyd");
19261 break;
19262 }
19263 /* fall through. */
19264
19265 case NS_QQ: /* case 0/1. */
19266 {
19267 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19268 return;
19269 /* The architecture manual I have doesn't explicitly state which
19270 value the U bit should have for register->register moves, but
19271 the equivalent VORR instruction has U = 0, so do that. */
19272 inst.instruction = 0x0200110;
19273 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19274 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19275 inst.instruction |= LOW4 (inst.operands[1].reg);
19276 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19277 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19278 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19279 inst.instruction |= neon_quad (rs) << 6;
19280
19281 neon_dp_fixup (&inst);
19282 }
19283 break;
19284
19285 case NS_DI: /* case 3/11. */
19286 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
19287 inst.error = NULL;
19288 if (et.type == NT_float && et.size == 64)
19289 {
19290 /* case 11 (fconstd). */
19291 ldconst = "fconstd";
19292 goto encode_fconstd;
19293 }
19294 /* fall through. */
19295
19296 case NS_QI: /* case 2/3. */
19297 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19298 return;
19299 inst.instruction = 0x0800010;
19300 neon_move_immediate ();
19301 neon_dp_fixup (&inst);
19302 break;
19303
19304 case NS_SR: /* case 4. */
19305 {
19306 unsigned bcdebits = 0;
19307 int logsize;
19308 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
19309 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
19310
19311 /* .<size> is optional here, defaulting to .32. */
19312 if (inst.vectype.elems == 0
19313 && inst.operands[0].vectype.type == NT_invtype
19314 && inst.operands[1].vectype.type == NT_invtype)
19315 {
19316 inst.vectype.el[0].type = NT_untyped;
19317 inst.vectype.el[0].size = 32;
19318 inst.vectype.elems = 1;
19319 }
19320
19321 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
19322 logsize = neon_logbits (et.size);
19323
19324 if (et.size != 32)
19325 {
19326 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19327 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
19328 return;
19329 }
19330 else
19331 {
19332 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19333 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19334 _(BAD_FPU));
19335 }
19336
19337 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19338 {
19339 if (inst.operands[1].reg == REG_SP)
19340 as_tsktsk (MVE_BAD_SP);
19341 else if (inst.operands[1].reg == REG_PC)
19342 as_tsktsk (MVE_BAD_PC);
19343 }
19344 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
19345
19346 constraint (et.type == NT_invtype, _("bad type for scalar"));
19347 constraint (x >= size / et.size, _("scalar index out of range"));
19348
19349
19350 switch (et.size)
19351 {
19352 case 8: bcdebits = 0x8; break;
19353 case 16: bcdebits = 0x1; break;
19354 case 32: bcdebits = 0x0; break;
19355 default: ;
19356 }
19357
19358 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19359
19360 inst.instruction = 0xe000b10;
19361 do_vfp_cond_or_thumb ();
19362 inst.instruction |= LOW4 (dn) << 16;
19363 inst.instruction |= HI1 (dn) << 7;
19364 inst.instruction |= inst.operands[1].reg << 12;
19365 inst.instruction |= (bcdebits & 3) << 5;
19366 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
19367 inst.instruction |= (x >> (3-logsize)) << 16;
19368 }
19369 break;
19370
19371 case NS_DRR: /* case 5 (fmdrr). */
19372 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19373 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19374 _(BAD_FPU));
19375
19376 inst.instruction = 0xc400b10;
19377 do_vfp_cond_or_thumb ();
19378 inst.instruction |= LOW4 (inst.operands[0].reg);
19379 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
19380 inst.instruction |= inst.operands[1].reg << 12;
19381 inst.instruction |= inst.operands[2].reg << 16;
19382 break;
19383
19384 case NS_RS: /* case 6. */
19385 {
19386 unsigned logsize;
19387 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
19388 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
19389 unsigned abcdebits = 0;
19390
19391 /* .<dt> is optional here, defaulting to .32. */
19392 if (inst.vectype.elems == 0
19393 && inst.operands[0].vectype.type == NT_invtype
19394 && inst.operands[1].vectype.type == NT_invtype)
19395 {
19396 inst.vectype.el[0].type = NT_untyped;
19397 inst.vectype.el[0].size = 32;
19398 inst.vectype.elems = 1;
19399 }
19400
19401 et = neon_check_type (2, NS_NULL,
19402 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
19403 logsize = neon_logbits (et.size);
19404
19405 if (et.size != 32)
19406 {
19407 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
19408 && vfp_or_neon_is_neon (NEON_CHECK_CC
19409 | NEON_CHECK_ARCH) == FAIL)
19410 return;
19411 }
19412 else
19413 {
19414 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
19415 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19416 _(BAD_FPU));
19417 }
19418
19419 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19420 {
19421 if (inst.operands[0].reg == REG_SP)
19422 as_tsktsk (MVE_BAD_SP);
19423 else if (inst.operands[0].reg == REG_PC)
19424 as_tsktsk (MVE_BAD_PC);
19425 }
19426
19427 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
19428
19429 constraint (et.type == NT_invtype, _("bad type for scalar"));
19430 constraint (x >= size / et.size, _("scalar index out of range"));
19431
19432 switch (et.size)
19433 {
19434 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
19435 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
19436 case 32: abcdebits = 0x00; break;
19437 default: ;
19438 }
19439
19440 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
19441 inst.instruction = 0xe100b10;
19442 do_vfp_cond_or_thumb ();
19443 inst.instruction |= LOW4 (dn) << 16;
19444 inst.instruction |= HI1 (dn) << 7;
19445 inst.instruction |= inst.operands[0].reg << 12;
19446 inst.instruction |= (abcdebits & 3) << 5;
19447 inst.instruction |= (abcdebits >> 2) << 21;
19448 inst.instruction |= (x >> (3-logsize)) << 16;
19449 }
19450 break;
19451
19452 case NS_RRD: /* case 7 (fmrrd). */
19453 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19454 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19455 _(BAD_FPU));
19456
19457 inst.instruction = 0xc500b10;
19458 do_vfp_cond_or_thumb ();
19459 inst.instruction |= inst.operands[0].reg << 12;
19460 inst.instruction |= inst.operands[1].reg << 16;
19461 inst.instruction |= LOW4 (inst.operands[2].reg);
19462 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19463 break;
19464
19465 case NS_FF: /* case 8 (fcpys). */
19466 do_vfp_nsyn_opcode ("fcpys");
19467 break;
19468
19469 case NS_HI:
19470 case NS_FI: /* case 10 (fconsts). */
19471 ldconst = "fconsts";
19472 encode_fconstd:
19473 if (!inst.operands[1].immisfloat)
19474 {
19475 unsigned new_imm;
19476 /* Immediate has to fit in 8 bits so float is enough. */
19477 float imm = (float) inst.operands[1].imm;
19478 memcpy (&new_imm, &imm, sizeof (float));
19479 /* But the assembly may have been written to provide an integer
19480 bit pattern that equates to a float, so check that the
19481 conversion has worked. */
19482 if (is_quarter_float (new_imm))
19483 {
19484 if (is_quarter_float (inst.operands[1].imm))
19485 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
19486
19487 inst.operands[1].imm = new_imm;
19488 inst.operands[1].immisfloat = 1;
19489 }
19490 }
19491
19492 if (is_quarter_float (inst.operands[1].imm))
19493 {
19494 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
19495 do_vfp_nsyn_opcode (ldconst);
19496
19497 /* ARMv8.2 fp16 vmov.f16 instruction. */
19498 if (rs == NS_HI)
19499 do_scalar_fp16_v82_encode ();
19500 }
19501 else
19502 first_error (_("immediate out of range"));
19503 break;
19504
19505 case NS_RH:
19506 case NS_RF: /* case 12 (fmrs). */
19507 do_vfp_nsyn_opcode ("fmrs");
19508 /* ARMv8.2 fp16 vmov.f16 instruction. */
19509 if (rs == NS_RH)
19510 do_scalar_fp16_v82_encode ();
19511 break;
19512
19513 case NS_HR:
19514 case NS_FR: /* case 13 (fmsr). */
19515 do_vfp_nsyn_opcode ("fmsr");
19516 /* ARMv8.2 fp16 vmov.f16 instruction. */
19517 if (rs == NS_HR)
19518 do_scalar_fp16_v82_encode ();
19519 break;
19520
19521 case NS_RRSS:
19522 do_mve_mov (0);
19523 break;
19524 case NS_SSRR:
19525 do_mve_mov (1);
19526 break;
19527
19528 /* The encoders for the fmrrs and fmsrr instructions expect three operands
19529 (one of which is a list), but we have parsed four. Do some fiddling to
19530 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
19531 expect. */
19532 case NS_RRFF: /* case 14 (fmrrs). */
19533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19534 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19535 _(BAD_FPU));
19536 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
19537 _("VFP registers must be adjacent"));
19538 inst.operands[2].imm = 2;
19539 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19540 do_vfp_nsyn_opcode ("fmrrs");
19541 break;
19542
19543 case NS_FFRR: /* case 15 (fmsrr). */
19544 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
19545 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
19546 _(BAD_FPU));
19547 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
19548 _("VFP registers must be adjacent"));
19549 inst.operands[1] = inst.operands[2];
19550 inst.operands[2] = inst.operands[3];
19551 inst.operands[0].imm = 2;
19552 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
19553 do_vfp_nsyn_opcode ("fmsrr");
19554 break;
19555
19556 case NS_NULL:
19557 /* neon_select_shape has determined that the instruction
19558 shape is wrong and has already set the error message. */
19559 break;
19560
19561 default:
19562 abort ();
19563 }
19564 }
19565
19566 static void
19567 do_mve_movl (void)
19568 {
19569 if (!(inst.operands[0].present && inst.operands[0].isquad
19570 && inst.operands[1].present && inst.operands[1].isquad
19571 && !inst.operands[2].present))
19572 {
19573 inst.instruction = 0;
19574 inst.cond = 0xb;
19575 if (thumb_mode)
19576 set_pred_insn_type (INSIDE_IT_INSN);
19577 do_neon_mov ();
19578 return;
19579 }
19580
19581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19582 return;
19583
19584 if (inst.cond != COND_ALWAYS)
19585 inst.pred_insn_type = INSIDE_VPT_INSN;
19586
19587 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
19588 | N_S16 | N_U16 | N_KEY);
19589
19590 inst.instruction |= (et.type == NT_unsigned) << 28;
19591 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19592 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
19593 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19594 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19595 inst.instruction |= LOW4 (inst.operands[1].reg);
19596 inst.is_neon = 1;
19597 }
19598
19599 static void
19600 do_neon_rshift_round_imm (void)
19601 {
19602 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
19603 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
19604 int imm = inst.operands[2].imm;
19605
19606 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
19607 if (imm == 0)
19608 {
19609 inst.operands[2].present = 0;
19610 do_neon_mov ();
19611 return;
19612 }
19613
19614 constraint (imm < 1 || (unsigned)imm > et.size,
19615 _("immediate out of range for shift"));
19616 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
19617 et.size - imm);
19618 }
19619
19620 static void
19621 do_neon_movhf (void)
19622 {
19623 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
19624 constraint (rs != NS_HH, _("invalid suffix"));
19625
19626 if (inst.cond != COND_ALWAYS)
19627 {
19628 if (thumb_mode)
19629 {
19630 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
19631 " the behaviour is UNPREDICTABLE"));
19632 }
19633 else
19634 {
19635 inst.error = BAD_COND;
19636 return;
19637 }
19638 }
19639
19640 do_vfp_sp_monadic ();
19641
19642 inst.is_neon = 1;
19643 inst.instruction |= 0xf0000000;
19644 }
19645
19646 static void
19647 do_neon_movl (void)
19648 {
19649 struct neon_type_el et = neon_check_type (2, NS_QD,
19650 N_EQK | N_DBL, N_SU_32 | N_KEY);
19651 unsigned sizebits = et.size >> 3;
19652 inst.instruction |= sizebits << 19;
19653 neon_two_same (0, et.type == NT_unsigned, -1);
19654 }
19655
19656 static void
19657 do_neon_trn (void)
19658 {
19659 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19660 struct neon_type_el et = neon_check_type (2, rs,
19661 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19662 NEON_ENCODE (INTEGER, inst);
19663 neon_two_same (neon_quad (rs), 1, et.size);
19664 }
19665
19666 static void
19667 do_neon_zip_uzp (void)
19668 {
19669 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19670 struct neon_type_el et = neon_check_type (2, rs,
19671 N_EQK, N_8 | N_16 | N_32 | N_KEY);
19672 if (rs == NS_DD && et.size == 32)
19673 {
19674 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
19675 inst.instruction = N_MNEM_vtrn;
19676 do_neon_trn ();
19677 return;
19678 }
19679 neon_two_same (neon_quad (rs), 1, et.size);
19680 }
19681
19682 static void
19683 do_neon_sat_abs_neg (void)
19684 {
19685 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
19686 return;
19687
19688 enum neon_shape rs;
19689 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19690 rs = neon_select_shape (NS_QQ, NS_NULL);
19691 else
19692 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19693 struct neon_type_el et = neon_check_type (2, rs,
19694 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19695 neon_two_same (neon_quad (rs), 1, et.size);
19696 }
19697
19698 static void
19699 do_neon_pair_long (void)
19700 {
19701 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19702 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
19703 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
19704 inst.instruction |= (et.type == NT_unsigned) << 7;
19705 neon_two_same (neon_quad (rs), 1, et.size);
19706 }
19707
19708 static void
19709 do_neon_recip_est (void)
19710 {
19711 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19712 struct neon_type_el et = neon_check_type (2, rs,
19713 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
19714 inst.instruction |= (et.type == NT_float) << 8;
19715 neon_two_same (neon_quad (rs), 1, et.size);
19716 }
19717
19718 static void
19719 do_neon_cls (void)
19720 {
19721 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19722 return;
19723
19724 enum neon_shape rs;
19725 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19726 rs = neon_select_shape (NS_QQ, NS_NULL);
19727 else
19728 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19729
19730 struct neon_type_el et = neon_check_type (2, rs,
19731 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
19732 neon_two_same (neon_quad (rs), 1, et.size);
19733 }
19734
19735 static void
19736 do_neon_clz (void)
19737 {
19738 if (check_simd_pred_availability (0, NEON_CHECK_ARCH | NEON_CHECK_CC))
19739 return;
19740
19741 enum neon_shape rs;
19742 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
19743 rs = neon_select_shape (NS_QQ, NS_NULL);
19744 else
19745 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19746
19747 struct neon_type_el et = neon_check_type (2, rs,
19748 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
19749 neon_two_same (neon_quad (rs), 1, et.size);
19750 }
19751
19752 static void
19753 do_neon_cnt (void)
19754 {
19755 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19756 struct neon_type_el et = neon_check_type (2, rs,
19757 N_EQK | N_INT, N_8 | N_KEY);
19758 neon_two_same (neon_quad (rs), 1, et.size);
19759 }
19760
19761 static void
19762 do_neon_swp (void)
19763 {
19764 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
19765 neon_two_same (neon_quad (rs), 1, -1);
19766 }
19767
19768 static void
19769 do_neon_tbl_tbx (void)
19770 {
19771 unsigned listlenbits;
19772 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
19773
19774 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
19775 {
19776 first_error (_("bad list length for table lookup"));
19777 return;
19778 }
19779
19780 listlenbits = inst.operands[1].imm - 1;
19781 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19782 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19783 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19784 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19785 inst.instruction |= LOW4 (inst.operands[2].reg);
19786 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
19787 inst.instruction |= listlenbits << 8;
19788
19789 neon_dp_fixup (&inst);
19790 }
19791
19792 static void
19793 do_neon_ldm_stm (void)
19794 {
19795 /* P, U and L bits are part of bitmask. */
19796 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
19797 unsigned offsetbits = inst.operands[1].imm * 2;
19798
19799 if (inst.operands[1].issingle)
19800 {
19801 do_vfp_nsyn_ldm_stm (is_dbmode);
19802 return;
19803 }
19804
19805 constraint (is_dbmode && !inst.operands[0].writeback,
19806 _("writeback (!) must be used for VLDMDB and VSTMDB"));
19807
19808 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
19809 _("register list must contain at least 1 and at most 16 "
19810 "registers"));
19811
19812 inst.instruction |= inst.operands[0].reg << 16;
19813 inst.instruction |= inst.operands[0].writeback << 21;
19814 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
19815 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
19816
19817 inst.instruction |= offsetbits;
19818
19819 do_vfp_cond_or_thumb ();
19820 }
19821
19822 static void
19823 do_neon_ldr_str (void)
19824 {
19825 int is_ldr = (inst.instruction & (1 << 20)) != 0;
19826
19827 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
19828 And is UNPREDICTABLE in thumb mode. */
19829 if (!is_ldr
19830 && inst.operands[1].reg == REG_PC
19831 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
19832 {
19833 if (thumb_mode)
19834 inst.error = _("Use of PC here is UNPREDICTABLE");
19835 else if (warn_on_deprecated)
19836 as_tsktsk (_("Use of PC here is deprecated"));
19837 }
19838
19839 if (inst.operands[0].issingle)
19840 {
19841 if (is_ldr)
19842 do_vfp_nsyn_opcode ("flds");
19843 else
19844 do_vfp_nsyn_opcode ("fsts");
19845
19846 /* ARMv8.2 vldr.16/vstr.16 instruction. */
19847 if (inst.vectype.el[0].size == 16)
19848 do_scalar_fp16_v82_encode ();
19849 }
19850 else
19851 {
19852 if (is_ldr)
19853 do_vfp_nsyn_opcode ("fldd");
19854 else
19855 do_vfp_nsyn_opcode ("fstd");
19856 }
19857 }
19858
19859 static void
19860 do_t_vldr_vstr_sysreg (void)
19861 {
19862 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
19863 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
19864
19865 /* Use of PC is UNPREDICTABLE. */
19866 if (inst.operands[1].reg == REG_PC)
19867 inst.error = _("Use of PC here is UNPREDICTABLE");
19868
19869 if (inst.operands[1].immisreg)
19870 inst.error = _("instruction does not accept register index");
19871
19872 if (!inst.operands[1].isreg)
19873 inst.error = _("instruction does not accept PC-relative addressing");
19874
19875 if (abs (inst.operands[1].imm) >= (1 << 7))
19876 inst.error = _("immediate value out of range");
19877
19878 inst.instruction = 0xec000f80;
19879 if (is_vldr)
19880 inst.instruction |= 1 << sysreg_vldr_bitno;
19881 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
19882 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
19883 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
19884 }
19885
19886 static void
19887 do_vldr_vstr (void)
19888 {
19889 bfd_boolean sysreg_op = !inst.operands[0].isreg;
19890
19891 /* VLDR/VSTR (System Register). */
19892 if (sysreg_op)
19893 {
19894 if (!mark_feature_used (&arm_ext_v8_1m_main))
19895 as_bad (_("Instruction not permitted on this architecture"));
19896
19897 do_t_vldr_vstr_sysreg ();
19898 }
19899 /* VLDR/VSTR. */
19900 else
19901 {
19902 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
19903 as_bad (_("Instruction not permitted on this architecture"));
19904 do_neon_ldr_str ();
19905 }
19906 }
19907
19908 /* "interleave" version also handles non-interleaving register VLD1/VST1
19909 instructions. */
19910
19911 static void
19912 do_neon_ld_st_interleave (void)
19913 {
19914 struct neon_type_el et = neon_check_type (1, NS_NULL,
19915 N_8 | N_16 | N_32 | N_64);
19916 unsigned alignbits = 0;
19917 unsigned idx;
19918 /* The bits in this table go:
19919 0: register stride of one (0) or two (1)
19920 1,2: register list length, minus one (1, 2, 3, 4).
19921 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19922 We use -1 for invalid entries. */
19923 const int typetable[] =
19924 {
19925 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19926 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19927 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19928 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19929 };
19930 int typebits;
19931
19932 if (et.type == NT_invtype)
19933 return;
19934
19935 if (inst.operands[1].immisalign)
19936 switch (inst.operands[1].imm >> 8)
19937 {
19938 case 64: alignbits = 1; break;
19939 case 128:
19940 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19941 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19942 goto bad_alignment;
19943 alignbits = 2;
19944 break;
19945 case 256:
19946 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19947 goto bad_alignment;
19948 alignbits = 3;
19949 break;
19950 default:
19951 bad_alignment:
19952 first_error (_("bad alignment"));
19953 return;
19954 }
19955
19956 inst.instruction |= alignbits << 4;
19957 inst.instruction |= neon_logbits (et.size) << 6;
19958
19959 /* Bits [4:6] of the immediate in a list specifier encode register stride
19960 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19961 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19962 up the right value for "type" in a table based on this value and the given
19963 list style, then stick it back. */
19964 idx = ((inst.operands[0].imm >> 4) & 7)
19965 | (((inst.instruction >> 8) & 3) << 3);
19966
19967 typebits = typetable[idx];
19968
19969 constraint (typebits == -1, _("bad list type for instruction"));
19970 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19971 BAD_EL_TYPE);
19972
19973 inst.instruction &= ~0xf00;
19974 inst.instruction |= typebits << 8;
19975 }
19976
19977 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19978 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19979 otherwise. The variable arguments are a list of pairs of legal (size, align)
19980 values, terminated with -1. */
19981
19982 static int
19983 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19984 {
19985 va_list ap;
19986 int result = FAIL, thissize, thisalign;
19987
19988 if (!inst.operands[1].immisalign)
19989 {
19990 *do_alignment = 0;
19991 return SUCCESS;
19992 }
19993
19994 va_start (ap, do_alignment);
19995
19996 do
19997 {
19998 thissize = va_arg (ap, int);
19999 if (thissize == -1)
20000 break;
20001 thisalign = va_arg (ap, int);
20002
20003 if (size == thissize && align == thisalign)
20004 result = SUCCESS;
20005 }
20006 while (result != SUCCESS);
20007
20008 va_end (ap);
20009
20010 if (result == SUCCESS)
20011 *do_alignment = 1;
20012 else
20013 first_error (_("unsupported alignment for instruction"));
20014
20015 return result;
20016 }
20017
20018 static void
20019 do_neon_ld_st_lane (void)
20020 {
20021 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20022 int align_good, do_alignment = 0;
20023 int logsize = neon_logbits (et.size);
20024 int align = inst.operands[1].imm >> 8;
20025 int n = (inst.instruction >> 8) & 3;
20026 int max_el = 64 / et.size;
20027
20028 if (et.type == NT_invtype)
20029 return;
20030
20031 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
20032 _("bad list length"));
20033 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
20034 _("scalar index out of range"));
20035 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
20036 && et.size == 8,
20037 _("stride of 2 unavailable when element size is 8"));
20038
20039 switch (n)
20040 {
20041 case 0: /* VLD1 / VST1. */
20042 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
20043 32, 32, -1);
20044 if (align_good == FAIL)
20045 return;
20046 if (do_alignment)
20047 {
20048 unsigned alignbits = 0;
20049 switch (et.size)
20050 {
20051 case 16: alignbits = 0x1; break;
20052 case 32: alignbits = 0x3; break;
20053 default: ;
20054 }
20055 inst.instruction |= alignbits << 4;
20056 }
20057 break;
20058
20059 case 1: /* VLD2 / VST2. */
20060 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
20061 16, 32, 32, 64, -1);
20062 if (align_good == FAIL)
20063 return;
20064 if (do_alignment)
20065 inst.instruction |= 1 << 4;
20066 break;
20067
20068 case 2: /* VLD3 / VST3. */
20069 constraint (inst.operands[1].immisalign,
20070 _("can't use alignment with this instruction"));
20071 break;
20072
20073 case 3: /* VLD4 / VST4. */
20074 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20075 16, 64, 32, 64, 32, 128, -1);
20076 if (align_good == FAIL)
20077 return;
20078 if (do_alignment)
20079 {
20080 unsigned alignbits = 0;
20081 switch (et.size)
20082 {
20083 case 8: alignbits = 0x1; break;
20084 case 16: alignbits = 0x1; break;
20085 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
20086 default: ;
20087 }
20088 inst.instruction |= alignbits << 4;
20089 }
20090 break;
20091
20092 default: ;
20093 }
20094
20095 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
20096 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20097 inst.instruction |= 1 << (4 + logsize);
20098
20099 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
20100 inst.instruction |= logsize << 10;
20101 }
20102
20103 /* Encode single n-element structure to all lanes VLD<n> instructions. */
20104
20105 static void
20106 do_neon_ld_dup (void)
20107 {
20108 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
20109 int align_good, do_alignment = 0;
20110
20111 if (et.type == NT_invtype)
20112 return;
20113
20114 switch ((inst.instruction >> 8) & 3)
20115 {
20116 case 0: /* VLD1. */
20117 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
20118 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20119 &do_alignment, 16, 16, 32, 32, -1);
20120 if (align_good == FAIL)
20121 return;
20122 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
20123 {
20124 case 1: break;
20125 case 2: inst.instruction |= 1 << 5; break;
20126 default: first_error (_("bad list length")); return;
20127 }
20128 inst.instruction |= neon_logbits (et.size) << 6;
20129 break;
20130
20131 case 1: /* VLD2. */
20132 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
20133 &do_alignment, 8, 16, 16, 32, 32, 64,
20134 -1);
20135 if (align_good == FAIL)
20136 return;
20137 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
20138 _("bad list length"));
20139 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20140 inst.instruction |= 1 << 5;
20141 inst.instruction |= neon_logbits (et.size) << 6;
20142 break;
20143
20144 case 2: /* VLD3. */
20145 constraint (inst.operands[1].immisalign,
20146 _("can't use alignment with this instruction"));
20147 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
20148 _("bad list length"));
20149 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20150 inst.instruction |= 1 << 5;
20151 inst.instruction |= neon_logbits (et.size) << 6;
20152 break;
20153
20154 case 3: /* VLD4. */
20155 {
20156 int align = inst.operands[1].imm >> 8;
20157 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
20158 16, 64, 32, 64, 32, 128, -1);
20159 if (align_good == FAIL)
20160 return;
20161 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
20162 _("bad list length"));
20163 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
20164 inst.instruction |= 1 << 5;
20165 if (et.size == 32 && align == 128)
20166 inst.instruction |= 0x3 << 6;
20167 else
20168 inst.instruction |= neon_logbits (et.size) << 6;
20169 }
20170 break;
20171
20172 default: ;
20173 }
20174
20175 inst.instruction |= do_alignment << 4;
20176 }
20177
20178 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
20179 apart from bits [11:4]. */
20180
20181 static void
20182 do_neon_ldx_stx (void)
20183 {
20184 if (inst.operands[1].isreg)
20185 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
20186
20187 switch (NEON_LANE (inst.operands[0].imm))
20188 {
20189 case NEON_INTERLEAVE_LANES:
20190 NEON_ENCODE (INTERLV, inst);
20191 do_neon_ld_st_interleave ();
20192 break;
20193
20194 case NEON_ALL_LANES:
20195 NEON_ENCODE (DUP, inst);
20196 if (inst.instruction == N_INV)
20197 {
20198 first_error ("only loads support such operands");
20199 break;
20200 }
20201 do_neon_ld_dup ();
20202 break;
20203
20204 default:
20205 NEON_ENCODE (LANE, inst);
20206 do_neon_ld_st_lane ();
20207 }
20208
20209 /* L bit comes from bit mask. */
20210 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20211 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20212 inst.instruction |= inst.operands[1].reg << 16;
20213
20214 if (inst.operands[1].postind)
20215 {
20216 int postreg = inst.operands[1].imm & 0xf;
20217 constraint (!inst.operands[1].immisreg,
20218 _("post-index must be a register"));
20219 constraint (postreg == 0xd || postreg == 0xf,
20220 _("bad register for post-index"));
20221 inst.instruction |= postreg;
20222 }
20223 else
20224 {
20225 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
20226 constraint (inst.relocs[0].exp.X_op != O_constant
20227 || inst.relocs[0].exp.X_add_number != 0,
20228 BAD_ADDR_MODE);
20229
20230 if (inst.operands[1].writeback)
20231 {
20232 inst.instruction |= 0xd;
20233 }
20234 else
20235 inst.instruction |= 0xf;
20236 }
20237
20238 if (thumb_mode)
20239 inst.instruction |= 0xf9000000;
20240 else
20241 inst.instruction |= 0xf4000000;
20242 }
20243
20244 /* FP v8. */
20245 static void
20246 do_vfp_nsyn_fpv8 (enum neon_shape rs)
20247 {
20248 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20249 D register operands. */
20250 if (neon_shape_class[rs] == SC_DOUBLE)
20251 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20252 _(BAD_FPU));
20253
20254 NEON_ENCODE (FPV8, inst);
20255
20256 if (rs == NS_FFF || rs == NS_HHH)
20257 {
20258 do_vfp_sp_dyadic ();
20259
20260 /* ARMv8.2 fp16 instruction. */
20261 if (rs == NS_HHH)
20262 do_scalar_fp16_v82_encode ();
20263 }
20264 else
20265 do_vfp_dp_rd_rn_rm ();
20266
20267 if (rs == NS_DDD)
20268 inst.instruction |= 0x100;
20269
20270 inst.instruction |= 0xf0000000;
20271 }
20272
20273 static void
20274 do_vsel (void)
20275 {
20276 set_pred_insn_type (OUTSIDE_PRED_INSN);
20277
20278 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
20279 first_error (_("invalid instruction shape"));
20280 }
20281
20282 static void
20283 do_vmaxnm (void)
20284 {
20285 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20286 set_pred_insn_type (OUTSIDE_PRED_INSN);
20287
20288 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
20289 return;
20290
20291 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH8))
20292 return;
20293
20294 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
20295 }
20296
20297 static void
20298 do_vrint_1 (enum neon_cvt_mode mode)
20299 {
20300 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
20301 struct neon_type_el et;
20302
20303 if (rs == NS_NULL)
20304 return;
20305
20306 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
20307 D register operands. */
20308 if (neon_shape_class[rs] == SC_DOUBLE)
20309 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20310 _(BAD_FPU));
20311
20312 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
20313 | N_VFP);
20314 if (et.type != NT_invtype)
20315 {
20316 /* VFP encodings. */
20317 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
20318 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
20319 set_pred_insn_type (OUTSIDE_PRED_INSN);
20320
20321 NEON_ENCODE (FPV8, inst);
20322 if (rs == NS_FF || rs == NS_HH)
20323 do_vfp_sp_monadic ();
20324 else
20325 do_vfp_dp_rd_rm ();
20326
20327 switch (mode)
20328 {
20329 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
20330 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
20331 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
20332 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
20333 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
20334 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
20335 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
20336 default: abort ();
20337 }
20338
20339 inst.instruction |= (rs == NS_DD) << 8;
20340 do_vfp_cond_or_thumb ();
20341
20342 /* ARMv8.2 fp16 vrint instruction. */
20343 if (rs == NS_HH)
20344 do_scalar_fp16_v82_encode ();
20345 }
20346 else
20347 {
20348 /* Neon encodings (or something broken...). */
20349 inst.error = NULL;
20350 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
20351
20352 if (et.type == NT_invtype)
20353 return;
20354
20355 set_pred_insn_type (OUTSIDE_PRED_INSN);
20356 NEON_ENCODE (FLOAT, inst);
20357
20358 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
20359 return;
20360
20361 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20362 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20363 inst.instruction |= LOW4 (inst.operands[1].reg);
20364 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20365 inst.instruction |= neon_quad (rs) << 6;
20366 /* Mask off the original size bits and reencode them. */
20367 inst.instruction = ((inst.instruction & 0xfff3ffff)
20368 | neon_logbits (et.size) << 18);
20369
20370 switch (mode)
20371 {
20372 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
20373 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
20374 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
20375 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
20376 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
20377 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
20378 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
20379 default: abort ();
20380 }
20381
20382 if (thumb_mode)
20383 inst.instruction |= 0xfc000000;
20384 else
20385 inst.instruction |= 0xf0000000;
20386 }
20387 }
20388
20389 static void
20390 do_vrintx (void)
20391 {
20392 do_vrint_1 (neon_cvt_mode_x);
20393 }
20394
20395 static void
20396 do_vrintz (void)
20397 {
20398 do_vrint_1 (neon_cvt_mode_z);
20399 }
20400
20401 static void
20402 do_vrintr (void)
20403 {
20404 do_vrint_1 (neon_cvt_mode_r);
20405 }
20406
20407 static void
20408 do_vrinta (void)
20409 {
20410 do_vrint_1 (neon_cvt_mode_a);
20411 }
20412
20413 static void
20414 do_vrintn (void)
20415 {
20416 do_vrint_1 (neon_cvt_mode_n);
20417 }
20418
20419 static void
20420 do_vrintp (void)
20421 {
20422 do_vrint_1 (neon_cvt_mode_p);
20423 }
20424
20425 static void
20426 do_vrintm (void)
20427 {
20428 do_vrint_1 (neon_cvt_mode_m);
20429 }
20430
20431 static unsigned
20432 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
20433 {
20434 unsigned regno = NEON_SCALAR_REG (opnd);
20435 unsigned elno = NEON_SCALAR_INDEX (opnd);
20436
20437 if (elsize == 16 && elno < 2 && regno < 16)
20438 return regno | (elno << 4);
20439 else if (elsize == 32 && elno == 0)
20440 return regno;
20441
20442 first_error (_("scalar out of range"));
20443 return 0;
20444 }
20445
20446 static void
20447 do_vcmla (void)
20448 {
20449 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext)
20450 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20451 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20452 constraint (inst.relocs[0].exp.X_op != O_constant,
20453 _("expression too complex"));
20454 unsigned rot = inst.relocs[0].exp.X_add_number;
20455 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
20456 _("immediate out of range"));
20457 rot /= 90;
20458
20459 if (check_simd_pred_availability (1, NEON_CHECK_ARCH8 | NEON_CHECK_CC))
20460 return;
20461
20462 if (inst.operands[2].isscalar)
20463 {
20464 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20465 first_error (_("invalid instruction shape"));
20466 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
20467 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20468 N_KEY | N_F16 | N_F32).size;
20469 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
20470 inst.is_neon = 1;
20471 inst.instruction = 0xfe000800;
20472 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20473 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20474 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20475 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20476 inst.instruction |= LOW4 (m);
20477 inst.instruction |= HI1 (m) << 5;
20478 inst.instruction |= neon_quad (rs) << 6;
20479 inst.instruction |= rot << 20;
20480 inst.instruction |= (size == 32) << 23;
20481 }
20482 else
20483 {
20484 enum neon_shape rs;
20485 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
20486 rs = neon_select_shape (NS_QQQI, NS_NULL);
20487 else
20488 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20489
20490 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
20491 N_KEY | N_F16 | N_F32).size;
20492 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext) && size == 32
20493 && (inst.operands[0].reg == inst.operands[1].reg
20494 || inst.operands[0].reg == inst.operands[2].reg))
20495 as_tsktsk (BAD_MVE_SRCDEST);
20496
20497 neon_three_same (neon_quad (rs), 0, -1);
20498 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20499 inst.instruction |= 0xfc200800;
20500 inst.instruction |= rot << 23;
20501 inst.instruction |= (size == 32) << 20;
20502 }
20503 }
20504
20505 static void
20506 do_vcadd (void)
20507 {
20508 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
20509 && (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8)
20510 || !mark_feature_used (&arm_ext_v8_3)), (BAD_FPU));
20511 constraint (inst.relocs[0].exp.X_op != O_constant,
20512 _("expression too complex"));
20513
20514 unsigned rot = inst.relocs[0].exp.X_add_number;
20515 constraint (rot != 90 && rot != 270, _("immediate out of range"));
20516 enum neon_shape rs;
20517 struct neon_type_el et;
20518 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20519 {
20520 rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
20521 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32);
20522 }
20523 else
20524 {
20525 rs = neon_select_shape (NS_QQQI, NS_NULL);
20526 et = neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16 | N_F32 | N_I8
20527 | N_I16 | N_I32);
20528 if (et.size == 32 && inst.operands[0].reg == inst.operands[2].reg)
20529 as_tsktsk (_("Warning: 32-bit element size and same first and third "
20530 "operand makes instruction UNPREDICTABLE"));
20531 }
20532
20533 if (et.type == NT_invtype)
20534 return;
20535
20536 if (check_simd_pred_availability (et.type == NT_float, NEON_CHECK_ARCH8
20537 | NEON_CHECK_CC))
20538 return;
20539
20540 if (et.type == NT_float)
20541 {
20542 neon_three_same (neon_quad (rs), 0, -1);
20543 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
20544 inst.instruction |= 0xfc800800;
20545 inst.instruction |= (rot == 270) << 24;
20546 inst.instruction |= (et.size == 32) << 20;
20547 }
20548 else
20549 {
20550 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
20551 inst.instruction = 0xfe000f00;
20552 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20553 inst.instruction |= neon_logbits (et.size) << 20;
20554 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
20555 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20556 inst.instruction |= (rot == 270) << 12;
20557 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
20558 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
20559 inst.instruction |= LOW4 (inst.operands[2].reg);
20560 inst.is_neon = 1;
20561 }
20562 }
20563
20564 /* Dot Product instructions encoding support. */
20565
20566 static void
20567 do_neon_dotproduct (int unsigned_p)
20568 {
20569 enum neon_shape rs;
20570 unsigned scalar_oprd2 = 0;
20571 int high8;
20572
20573 if (inst.cond != COND_ALWAYS)
20574 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
20575 "is UNPREDICTABLE"));
20576
20577 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
20578 _(BAD_FPU));
20579
20580 /* Dot Product instructions are in three-same D/Q register format or the third
20581 operand can be a scalar index register. */
20582 if (inst.operands[2].isscalar)
20583 {
20584 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
20585 high8 = 0xfe000000;
20586 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
20587 }
20588 else
20589 {
20590 high8 = 0xfc000000;
20591 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
20592 }
20593
20594 if (unsigned_p)
20595 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
20596 else
20597 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
20598
20599 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
20600 Product instruction, so we pass 0 as the "ubit" parameter. And the
20601 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
20602 neon_three_same (neon_quad (rs), 0, 32);
20603
20604 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
20605 different NEON three-same encoding. */
20606 inst.instruction &= 0x00ffffff;
20607 inst.instruction |= high8;
20608 /* Encode 'U' bit which indicates signedness. */
20609 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
20610 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
20611 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
20612 the instruction encoding. */
20613 if (inst.operands[2].isscalar)
20614 {
20615 inst.instruction &= 0xffffffd0;
20616 inst.instruction |= LOW4 (scalar_oprd2);
20617 inst.instruction |= HI1 (scalar_oprd2) << 5;
20618 }
20619 }
20620
20621 /* Dot Product instructions for signed integer. */
20622
20623 static void
20624 do_neon_dotproduct_s (void)
20625 {
20626 return do_neon_dotproduct (0);
20627 }
20628
20629 /* Dot Product instructions for unsigned integer. */
20630
20631 static void
20632 do_neon_dotproduct_u (void)
20633 {
20634 return do_neon_dotproduct (1);
20635 }
20636
20637 /* Crypto v1 instructions. */
20638 static void
20639 do_crypto_2op_1 (unsigned elttype, int op)
20640 {
20641 set_pred_insn_type (OUTSIDE_PRED_INSN);
20642
20643 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
20644 == NT_invtype)
20645 return;
20646
20647 inst.error = NULL;
20648
20649 NEON_ENCODE (INTEGER, inst);
20650 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
20651 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
20652 inst.instruction |= LOW4 (inst.operands[1].reg);
20653 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
20654 if (op != -1)
20655 inst.instruction |= op << 6;
20656
20657 if (thumb_mode)
20658 inst.instruction |= 0xfc000000;
20659 else
20660 inst.instruction |= 0xf0000000;
20661 }
20662
20663 static void
20664 do_crypto_3op_1 (int u, int op)
20665 {
20666 set_pred_insn_type (OUTSIDE_PRED_INSN);
20667
20668 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
20669 N_32 | N_UNT | N_KEY).type == NT_invtype)
20670 return;
20671
20672 inst.error = NULL;
20673
20674 NEON_ENCODE (INTEGER, inst);
20675 neon_three_same (1, u, 8 << op);
20676 }
20677
20678 static void
20679 do_aese (void)
20680 {
20681 do_crypto_2op_1 (N_8, 0);
20682 }
20683
20684 static void
20685 do_aesd (void)
20686 {
20687 do_crypto_2op_1 (N_8, 1);
20688 }
20689
20690 static void
20691 do_aesmc (void)
20692 {
20693 do_crypto_2op_1 (N_8, 2);
20694 }
20695
20696 static void
20697 do_aesimc (void)
20698 {
20699 do_crypto_2op_1 (N_8, 3);
20700 }
20701
20702 static void
20703 do_sha1c (void)
20704 {
20705 do_crypto_3op_1 (0, 0);
20706 }
20707
20708 static void
20709 do_sha1p (void)
20710 {
20711 do_crypto_3op_1 (0, 1);
20712 }
20713
20714 static void
20715 do_sha1m (void)
20716 {
20717 do_crypto_3op_1 (0, 2);
20718 }
20719
20720 static void
20721 do_sha1su0 (void)
20722 {
20723 do_crypto_3op_1 (0, 3);
20724 }
20725
20726 static void
20727 do_sha256h (void)
20728 {
20729 do_crypto_3op_1 (1, 0);
20730 }
20731
20732 static void
20733 do_sha256h2 (void)
20734 {
20735 do_crypto_3op_1 (1, 1);
20736 }
20737
20738 static void
20739 do_sha256su1 (void)
20740 {
20741 do_crypto_3op_1 (1, 2);
20742 }
20743
20744 static void
20745 do_sha1h (void)
20746 {
20747 do_crypto_2op_1 (N_32, -1);
20748 }
20749
20750 static void
20751 do_sha1su1 (void)
20752 {
20753 do_crypto_2op_1 (N_32, 0);
20754 }
20755
20756 static void
20757 do_sha256su0 (void)
20758 {
20759 do_crypto_2op_1 (N_32, 1);
20760 }
20761
20762 static void
20763 do_crc32_1 (unsigned int poly, unsigned int sz)
20764 {
20765 unsigned int Rd = inst.operands[0].reg;
20766 unsigned int Rn = inst.operands[1].reg;
20767 unsigned int Rm = inst.operands[2].reg;
20768
20769 set_pred_insn_type (OUTSIDE_PRED_INSN);
20770 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
20771 inst.instruction |= LOW4 (Rn) << 16;
20772 inst.instruction |= LOW4 (Rm);
20773 inst.instruction |= sz << (thumb_mode ? 4 : 21);
20774 inst.instruction |= poly << (thumb_mode ? 20 : 9);
20775
20776 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
20777 as_warn (UNPRED_REG ("r15"));
20778 }
20779
20780 static void
20781 do_crc32b (void)
20782 {
20783 do_crc32_1 (0, 0);
20784 }
20785
20786 static void
20787 do_crc32h (void)
20788 {
20789 do_crc32_1 (0, 1);
20790 }
20791
20792 static void
20793 do_crc32w (void)
20794 {
20795 do_crc32_1 (0, 2);
20796 }
20797
20798 static void
20799 do_crc32cb (void)
20800 {
20801 do_crc32_1 (1, 0);
20802 }
20803
20804 static void
20805 do_crc32ch (void)
20806 {
20807 do_crc32_1 (1, 1);
20808 }
20809
20810 static void
20811 do_crc32cw (void)
20812 {
20813 do_crc32_1 (1, 2);
20814 }
20815
20816 static void
20817 do_vjcvt (void)
20818 {
20819 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
20820 _(BAD_FPU));
20821 neon_check_type (2, NS_FD, N_S32, N_F64);
20822 do_vfp_sp_dp_cvt ();
20823 do_vfp_cond_or_thumb ();
20824 }
20825
20826 \f
20827 /* Overall per-instruction processing. */
20828
20829 /* We need to be able to fix up arbitrary expressions in some statements.
20830 This is so that we can handle symbols that are an arbitrary distance from
20831 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
20832 which returns part of an address in a form which will be valid for
20833 a data instruction. We do this by pushing the expression into a symbol
20834 in the expr_section, and creating a fix for that. */
20835
20836 static void
20837 fix_new_arm (fragS * frag,
20838 int where,
20839 short int size,
20840 expressionS * exp,
20841 int pc_rel,
20842 int reloc)
20843 {
20844 fixS * new_fix;
20845
20846 switch (exp->X_op)
20847 {
20848 case O_constant:
20849 if (pc_rel)
20850 {
20851 /* Create an absolute valued symbol, so we have something to
20852 refer to in the object file. Unfortunately for us, gas's
20853 generic expression parsing will already have folded out
20854 any use of .set foo/.type foo %function that may have
20855 been used to set type information of the target location,
20856 that's being specified symbolically. We have to presume
20857 the user knows what they are doing. */
20858 char name[16 + 8];
20859 symbolS *symbol;
20860
20861 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
20862
20863 symbol = symbol_find_or_make (name);
20864 S_SET_SEGMENT (symbol, absolute_section);
20865 symbol_set_frag (symbol, &zero_address_frag);
20866 S_SET_VALUE (symbol, exp->X_add_number);
20867 exp->X_op = O_symbol;
20868 exp->X_add_symbol = symbol;
20869 exp->X_add_number = 0;
20870 }
20871 /* FALLTHROUGH */
20872 case O_symbol:
20873 case O_add:
20874 case O_subtract:
20875 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
20876 (enum bfd_reloc_code_real) reloc);
20877 break;
20878
20879 default:
20880 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
20881 pc_rel, (enum bfd_reloc_code_real) reloc);
20882 break;
20883 }
20884
20885 /* Mark whether the fix is to a THUMB instruction, or an ARM
20886 instruction. */
20887 new_fix->tc_fix_data = thumb_mode;
20888 }
20889
20890 /* Create a frg for an instruction requiring relaxation. */
20891 static void
20892 output_relax_insn (void)
20893 {
20894 char * to;
20895 symbolS *sym;
20896 int offset;
20897
20898 /* The size of the instruction is unknown, so tie the debug info to the
20899 start of the instruction. */
20900 dwarf2_emit_insn (0);
20901
20902 switch (inst.relocs[0].exp.X_op)
20903 {
20904 case O_symbol:
20905 sym = inst.relocs[0].exp.X_add_symbol;
20906 offset = inst.relocs[0].exp.X_add_number;
20907 break;
20908 case O_constant:
20909 sym = NULL;
20910 offset = inst.relocs[0].exp.X_add_number;
20911 break;
20912 default:
20913 sym = make_expr_symbol (&inst.relocs[0].exp);
20914 offset = 0;
20915 break;
20916 }
20917 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
20918 inst.relax, sym, offset, NULL/*offset, opcode*/);
20919 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
20920 }
20921
20922 /* Write a 32-bit thumb instruction to buf. */
20923 static void
20924 put_thumb32_insn (char * buf, unsigned long insn)
20925 {
20926 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
20927 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
20928 }
20929
20930 static void
20931 output_inst (const char * str)
20932 {
20933 char * to = NULL;
20934
20935 if (inst.error)
20936 {
20937 as_bad ("%s -- `%s'", inst.error, str);
20938 return;
20939 }
20940 if (inst.relax)
20941 {
20942 output_relax_insn ();
20943 return;
20944 }
20945 if (inst.size == 0)
20946 return;
20947
20948 to = frag_more (inst.size);
20949 /* PR 9814: Record the thumb mode into the current frag so that we know
20950 what type of NOP padding to use, if necessary. We override any previous
20951 setting so that if the mode has changed then the NOPS that we use will
20952 match the encoding of the last instruction in the frag. */
20953 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20954
20955 if (thumb_mode && (inst.size > THUMB_SIZE))
20956 {
20957 gas_assert (inst.size == (2 * THUMB_SIZE));
20958 put_thumb32_insn (to, inst.instruction);
20959 }
20960 else if (inst.size > INSN_SIZE)
20961 {
20962 gas_assert (inst.size == (2 * INSN_SIZE));
20963 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20964 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20965 }
20966 else
20967 md_number_to_chars (to, inst.instruction, inst.size);
20968
20969 int r;
20970 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20971 {
20972 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20973 fix_new_arm (frag_now, to - frag_now->fr_literal,
20974 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20975 inst.relocs[r].type);
20976 }
20977
20978 dwarf2_emit_insn (inst.size);
20979 }
20980
20981 static char *
20982 output_it_inst (int cond, int mask, char * to)
20983 {
20984 unsigned long instruction = 0xbf00;
20985
20986 mask &= 0xf;
20987 instruction |= mask;
20988 instruction |= cond << 4;
20989
20990 if (to == NULL)
20991 {
20992 to = frag_more (2);
20993 #ifdef OBJ_ELF
20994 dwarf2_emit_insn (2);
20995 #endif
20996 }
20997
20998 md_number_to_chars (to, instruction, 2);
20999
21000 return to;
21001 }
21002
21003 /* Tag values used in struct asm_opcode's tag field. */
21004 enum opcode_tag
21005 {
21006 OT_unconditional, /* Instruction cannot be conditionalized.
21007 The ARM condition field is still 0xE. */
21008 OT_unconditionalF, /* Instruction cannot be conditionalized
21009 and carries 0xF in its ARM condition field. */
21010 OT_csuffix, /* Instruction takes a conditional suffix. */
21011 OT_csuffixF, /* Some forms of the instruction take a scalar
21012 conditional suffix, others place 0xF where the
21013 condition field would be, others take a vector
21014 conditional suffix. */
21015 OT_cinfix3, /* Instruction takes a conditional infix,
21016 beginning at character index 3. (In
21017 unified mode, it becomes a suffix.) */
21018 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
21019 tsts, cmps, cmns, and teqs. */
21020 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
21021 character index 3, even in unified mode. Used for
21022 legacy instructions where suffix and infix forms
21023 may be ambiguous. */
21024 OT_csuf_or_in3, /* Instruction takes either a conditional
21025 suffix or an infix at character index 3. */
21026 OT_odd_infix_unc, /* This is the unconditional variant of an
21027 instruction that takes a conditional infix
21028 at an unusual position. In unified mode,
21029 this variant will accept a suffix. */
21030 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
21031 are the conditional variants of instructions that
21032 take conditional infixes in unusual positions.
21033 The infix appears at character index
21034 (tag - OT_odd_infix_0). These are not accepted
21035 in unified mode. */
21036 };
21037
21038 /* Subroutine of md_assemble, responsible for looking up the primary
21039 opcode from the mnemonic the user wrote. STR points to the
21040 beginning of the mnemonic.
21041
21042 This is not simply a hash table lookup, because of conditional
21043 variants. Most instructions have conditional variants, which are
21044 expressed with a _conditional affix_ to the mnemonic. If we were
21045 to encode each conditional variant as a literal string in the opcode
21046 table, it would have approximately 20,000 entries.
21047
21048 Most mnemonics take this affix as a suffix, and in unified syntax,
21049 'most' is upgraded to 'all'. However, in the divided syntax, some
21050 instructions take the affix as an infix, notably the s-variants of
21051 the arithmetic instructions. Of those instructions, all but six
21052 have the infix appear after the third character of the mnemonic.
21053
21054 Accordingly, the algorithm for looking up primary opcodes given
21055 an identifier is:
21056
21057 1. Look up the identifier in the opcode table.
21058 If we find a match, go to step U.
21059
21060 2. Look up the last two characters of the identifier in the
21061 conditions table. If we find a match, look up the first N-2
21062 characters of the identifier in the opcode table. If we
21063 find a match, go to step CE.
21064
21065 3. Look up the fourth and fifth characters of the identifier in
21066 the conditions table. If we find a match, extract those
21067 characters from the identifier, and look up the remaining
21068 characters in the opcode table. If we find a match, go
21069 to step CM.
21070
21071 4. Fail.
21072
21073 U. Examine the tag field of the opcode structure, in case this is
21074 one of the six instructions with its conditional infix in an
21075 unusual place. If it is, the tag tells us where to find the
21076 infix; look it up in the conditions table and set inst.cond
21077 accordingly. Otherwise, this is an unconditional instruction.
21078 Again set inst.cond accordingly. Return the opcode structure.
21079
21080 CE. Examine the tag field to make sure this is an instruction that
21081 should receive a conditional suffix. If it is not, fail.
21082 Otherwise, set inst.cond from the suffix we already looked up,
21083 and return the opcode structure.
21084
21085 CM. Examine the tag field to make sure this is an instruction that
21086 should receive a conditional infix after the third character.
21087 If it is not, fail. Otherwise, undo the edits to the current
21088 line of input and proceed as for case CE. */
21089
21090 static const struct asm_opcode *
21091 opcode_lookup (char **str)
21092 {
21093 char *end, *base;
21094 char *affix;
21095 const struct asm_opcode *opcode;
21096 const struct asm_cond *cond;
21097 char save[2];
21098
21099 /* Scan up to the end of the mnemonic, which must end in white space,
21100 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
21101 for (base = end = *str; *end != '\0'; end++)
21102 if (*end == ' ' || *end == '.')
21103 break;
21104
21105 if (end == base)
21106 return NULL;
21107
21108 /* Handle a possible width suffix and/or Neon type suffix. */
21109 if (end[0] == '.')
21110 {
21111 int offset = 2;
21112
21113 /* The .w and .n suffixes are only valid if the unified syntax is in
21114 use. */
21115 if (unified_syntax && end[1] == 'w')
21116 inst.size_req = 4;
21117 else if (unified_syntax && end[1] == 'n')
21118 inst.size_req = 2;
21119 else
21120 offset = 0;
21121
21122 inst.vectype.elems = 0;
21123
21124 *str = end + offset;
21125
21126 if (end[offset] == '.')
21127 {
21128 /* See if we have a Neon type suffix (possible in either unified or
21129 non-unified ARM syntax mode). */
21130 if (parse_neon_type (&inst.vectype, str) == FAIL)
21131 return NULL;
21132 }
21133 else if (end[offset] != '\0' && end[offset] != ' ')
21134 return NULL;
21135 }
21136 else
21137 *str = end;
21138
21139 /* Look for unaffixed or special-case affixed mnemonic. */
21140 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21141 end - base);
21142 if (opcode)
21143 {
21144 /* step U */
21145 if (opcode->tag < OT_odd_infix_0)
21146 {
21147 inst.cond = COND_ALWAYS;
21148 return opcode;
21149 }
21150
21151 if (warn_on_deprecated && unified_syntax)
21152 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21153 affix = base + (opcode->tag - OT_odd_infix_0);
21154 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21155 gas_assert (cond);
21156
21157 inst.cond = cond->value;
21158 return opcode;
21159 }
21160 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
21161 {
21162 /* Cannot have a conditional suffix on a mnemonic of less than a character.
21163 */
21164 if (end - base < 2)
21165 return NULL;
21166 affix = end - 1;
21167 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
21168 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21169 affix - base);
21170 /* If this opcode can not be vector predicated then don't accept it with a
21171 vector predication code. */
21172 if (opcode && !opcode->mayBeVecPred)
21173 opcode = NULL;
21174 }
21175 if (!opcode || !cond)
21176 {
21177 /* Cannot have a conditional suffix on a mnemonic of less than two
21178 characters. */
21179 if (end - base < 3)
21180 return NULL;
21181
21182 /* Look for suffixed mnemonic. */
21183 affix = end - 2;
21184 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21185 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21186 affix - base);
21187 }
21188
21189 if (opcode && cond)
21190 {
21191 /* step CE */
21192 switch (opcode->tag)
21193 {
21194 case OT_cinfix3_legacy:
21195 /* Ignore conditional suffixes matched on infix only mnemonics. */
21196 break;
21197
21198 case OT_cinfix3:
21199 case OT_cinfix3_deprecated:
21200 case OT_odd_infix_unc:
21201 if (!unified_syntax)
21202 return NULL;
21203 /* Fall through. */
21204
21205 case OT_csuffix:
21206 case OT_csuffixF:
21207 case OT_csuf_or_in3:
21208 inst.cond = cond->value;
21209 return opcode;
21210
21211 case OT_unconditional:
21212 case OT_unconditionalF:
21213 if (thumb_mode)
21214 inst.cond = cond->value;
21215 else
21216 {
21217 /* Delayed diagnostic. */
21218 inst.error = BAD_COND;
21219 inst.cond = COND_ALWAYS;
21220 }
21221 return opcode;
21222
21223 default:
21224 return NULL;
21225 }
21226 }
21227
21228 /* Cannot have a usual-position infix on a mnemonic of less than
21229 six characters (five would be a suffix). */
21230 if (end - base < 6)
21231 return NULL;
21232
21233 /* Look for infixed mnemonic in the usual position. */
21234 affix = base + 3;
21235 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
21236 if (!cond)
21237 return NULL;
21238
21239 memcpy (save, affix, 2);
21240 memmove (affix, affix + 2, (end - affix) - 2);
21241 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
21242 (end - base) - 2);
21243 memmove (affix + 2, affix, (end - affix) - 2);
21244 memcpy (affix, save, 2);
21245
21246 if (opcode
21247 && (opcode->tag == OT_cinfix3
21248 || opcode->tag == OT_cinfix3_deprecated
21249 || opcode->tag == OT_csuf_or_in3
21250 || opcode->tag == OT_cinfix3_legacy))
21251 {
21252 /* Step CM. */
21253 if (warn_on_deprecated && unified_syntax
21254 && (opcode->tag == OT_cinfix3
21255 || opcode->tag == OT_cinfix3_deprecated))
21256 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
21257
21258 inst.cond = cond->value;
21259 return opcode;
21260 }
21261
21262 return NULL;
21263 }
21264
21265 /* This function generates an initial IT instruction, leaving its block
21266 virtually open for the new instructions. Eventually,
21267 the mask will be updated by now_pred_add_mask () each time
21268 a new instruction needs to be included in the IT block.
21269 Finally, the block is closed with close_automatic_it_block ().
21270 The block closure can be requested either from md_assemble (),
21271 a tencode (), or due to a label hook. */
21272
21273 static void
21274 new_automatic_it_block (int cond)
21275 {
21276 now_pred.state = AUTOMATIC_PRED_BLOCK;
21277 now_pred.mask = 0x18;
21278 now_pred.cc = cond;
21279 now_pred.block_length = 1;
21280 mapping_state (MAP_THUMB);
21281 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
21282 now_pred.warn_deprecated = FALSE;
21283 now_pred.insn_cond = TRUE;
21284 }
21285
21286 /* Close an automatic IT block.
21287 See comments in new_automatic_it_block (). */
21288
21289 static void
21290 close_automatic_it_block (void)
21291 {
21292 now_pred.mask = 0x10;
21293 now_pred.block_length = 0;
21294 }
21295
21296 /* Update the mask of the current automatically-generated IT
21297 instruction. See comments in new_automatic_it_block (). */
21298
21299 static void
21300 now_pred_add_mask (int cond)
21301 {
21302 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
21303 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
21304 | ((bitvalue) << (nbit)))
21305 const int resulting_bit = (cond & 1);
21306
21307 now_pred.mask &= 0xf;
21308 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21309 resulting_bit,
21310 (5 - now_pred.block_length));
21311 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
21312 1,
21313 ((5 - now_pred.block_length) - 1));
21314 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
21315
21316 #undef CLEAR_BIT
21317 #undef SET_BIT_VALUE
21318 }
21319
21320 /* The IT blocks handling machinery is accessed through the these functions:
21321 it_fsm_pre_encode () from md_assemble ()
21322 set_pred_insn_type () optional, from the tencode functions
21323 set_pred_insn_type_last () ditto
21324 in_pred_block () ditto
21325 it_fsm_post_encode () from md_assemble ()
21326 force_automatic_it_block_close () from label handling functions
21327
21328 Rationale:
21329 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
21330 initializing the IT insn type with a generic initial value depending
21331 on the inst.condition.
21332 2) During the tencode function, two things may happen:
21333 a) The tencode function overrides the IT insn type by
21334 calling either set_pred_insn_type (type) or
21335 set_pred_insn_type_last ().
21336 b) The tencode function queries the IT block state by
21337 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
21338
21339 Both set_pred_insn_type and in_pred_block run the internal FSM state
21340 handling function (handle_pred_state), because: a) setting the IT insn
21341 type may incur in an invalid state (exiting the function),
21342 and b) querying the state requires the FSM to be updated.
21343 Specifically we want to avoid creating an IT block for conditional
21344 branches, so it_fsm_pre_encode is actually a guess and we can't
21345 determine whether an IT block is required until the tencode () routine
21346 has decided what type of instruction this actually it.
21347 Because of this, if set_pred_insn_type and in_pred_block have to be
21348 used, set_pred_insn_type has to be called first.
21349
21350 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
21351 that determines the insn IT type depending on the inst.cond code.
21352 When a tencode () routine encodes an instruction that can be
21353 either outside an IT block, or, in the case of being inside, has to be
21354 the last one, set_pred_insn_type_last () will determine the proper
21355 IT instruction type based on the inst.cond code. Otherwise,
21356 set_pred_insn_type can be called for overriding that logic or
21357 for covering other cases.
21358
21359 Calling handle_pred_state () may not transition the IT block state to
21360 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
21361 still queried. Instead, if the FSM determines that the state should
21362 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
21363 after the tencode () function: that's what it_fsm_post_encode () does.
21364
21365 Since in_pred_block () calls the state handling function to get an
21366 updated state, an error may occur (due to invalid insns combination).
21367 In that case, inst.error is set.
21368 Therefore, inst.error has to be checked after the execution of
21369 the tencode () routine.
21370
21371 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
21372 any pending state change (if any) that didn't take place in
21373 handle_pred_state () as explained above. */
21374
21375 static void
21376 it_fsm_pre_encode (void)
21377 {
21378 if (inst.cond != COND_ALWAYS)
21379 inst.pred_insn_type = INSIDE_IT_INSN;
21380 else
21381 inst.pred_insn_type = OUTSIDE_PRED_INSN;
21382
21383 now_pred.state_handled = 0;
21384 }
21385
21386 /* IT state FSM handling function. */
21387 /* MVE instructions and non-MVE instructions are handled differently because of
21388 the introduction of VPT blocks.
21389 Specifications say that any non-MVE instruction inside a VPT block is
21390 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
21391 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
21392 few exceptions we have MVE_UNPREDICABLE_INSN.
21393 The error messages provided depending on the different combinations possible
21394 are described in the cases below:
21395 For 'most' MVE instructions:
21396 1) In an IT block, with an IT code: syntax error
21397 2) In an IT block, with a VPT code: error: must be in a VPT block
21398 3) In an IT block, with no code: warning: UNPREDICTABLE
21399 4) In a VPT block, with an IT code: syntax error
21400 5) In a VPT block, with a VPT code: OK!
21401 6) In a VPT block, with no code: error: missing code
21402 7) Outside a pred block, with an IT code: error: syntax error
21403 8) Outside a pred block, with a VPT code: error: should be in a VPT block
21404 9) Outside a pred block, with no code: OK!
21405 For non-MVE instructions:
21406 10) In an IT block, with an IT code: OK!
21407 11) In an IT block, with a VPT code: syntax error
21408 12) In an IT block, with no code: error: missing code
21409 13) In a VPT block, with an IT code: error: should be in an IT block
21410 14) In a VPT block, with a VPT code: syntax error
21411 15) In a VPT block, with no code: UNPREDICTABLE
21412 16) Outside a pred block, with an IT code: error: should be in an IT block
21413 17) Outside a pred block, with a VPT code: syntax error
21414 18) Outside a pred block, with no code: OK!
21415 */
21416
21417
21418 static int
21419 handle_pred_state (void)
21420 {
21421 now_pred.state_handled = 1;
21422 now_pred.insn_cond = FALSE;
21423
21424 switch (now_pred.state)
21425 {
21426 case OUTSIDE_PRED_BLOCK:
21427 switch (inst.pred_insn_type)
21428 {
21429 case MVE_UNPREDICABLE_INSN:
21430 case MVE_OUTSIDE_PRED_INSN:
21431 if (inst.cond < COND_ALWAYS)
21432 {
21433 /* Case 7: Outside a pred block, with an IT code: error: syntax
21434 error. */
21435 inst.error = BAD_SYNTAX;
21436 return FAIL;
21437 }
21438 /* Case 9: Outside a pred block, with no code: OK! */
21439 break;
21440 case OUTSIDE_PRED_INSN:
21441 if (inst.cond > COND_ALWAYS)
21442 {
21443 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21444 */
21445 inst.error = BAD_SYNTAX;
21446 return FAIL;
21447 }
21448 /* Case 18: Outside a pred block, with no code: OK! */
21449 break;
21450
21451 case INSIDE_VPT_INSN:
21452 /* Case 8: Outside a pred block, with a VPT code: error: should be in
21453 a VPT block. */
21454 inst.error = BAD_OUT_VPT;
21455 return FAIL;
21456
21457 case INSIDE_IT_INSN:
21458 case INSIDE_IT_LAST_INSN:
21459 if (inst.cond < COND_ALWAYS)
21460 {
21461 /* Case 16: Outside a pred block, with an IT code: error: should
21462 be in an IT block. */
21463 if (thumb_mode == 0)
21464 {
21465 if (unified_syntax
21466 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
21467 as_tsktsk (_("Warning: conditional outside an IT block"\
21468 " for Thumb."));
21469 }
21470 else
21471 {
21472 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
21473 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
21474 {
21475 /* Automatically generate the IT instruction. */
21476 new_automatic_it_block (inst.cond);
21477 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
21478 close_automatic_it_block ();
21479 }
21480 else
21481 {
21482 inst.error = BAD_OUT_IT;
21483 return FAIL;
21484 }
21485 }
21486 break;
21487 }
21488 else if (inst.cond > COND_ALWAYS)
21489 {
21490 /* Case 17: Outside a pred block, with a VPT code: syntax error.
21491 */
21492 inst.error = BAD_SYNTAX;
21493 return FAIL;
21494 }
21495 else
21496 gas_assert (0);
21497 case IF_INSIDE_IT_LAST_INSN:
21498 case NEUTRAL_IT_INSN:
21499 break;
21500
21501 case VPT_INSN:
21502 if (inst.cond != COND_ALWAYS)
21503 first_error (BAD_SYNTAX);
21504 now_pred.state = MANUAL_PRED_BLOCK;
21505 now_pred.block_length = 0;
21506 now_pred.type = VECTOR_PRED;
21507 now_pred.cc = 0;
21508 break;
21509 case IT_INSN:
21510 now_pred.state = MANUAL_PRED_BLOCK;
21511 now_pred.block_length = 0;
21512 now_pred.type = SCALAR_PRED;
21513 break;
21514 }
21515 break;
21516
21517 case AUTOMATIC_PRED_BLOCK:
21518 /* Three things may happen now:
21519 a) We should increment current it block size;
21520 b) We should close current it block (closing insn or 4 insns);
21521 c) We should close current it block and start a new one (due
21522 to incompatible conditions or
21523 4 insns-length block reached). */
21524
21525 switch (inst.pred_insn_type)
21526 {
21527 case INSIDE_VPT_INSN:
21528 case VPT_INSN:
21529 case MVE_UNPREDICABLE_INSN:
21530 case MVE_OUTSIDE_PRED_INSN:
21531 gas_assert (0);
21532 case OUTSIDE_PRED_INSN:
21533 /* The closure of the block shall happen immediately,
21534 so any in_pred_block () call reports the block as closed. */
21535 force_automatic_it_block_close ();
21536 break;
21537
21538 case INSIDE_IT_INSN:
21539 case INSIDE_IT_LAST_INSN:
21540 case IF_INSIDE_IT_LAST_INSN:
21541 now_pred.block_length++;
21542
21543 if (now_pred.block_length > 4
21544 || !now_pred_compatible (inst.cond))
21545 {
21546 force_automatic_it_block_close ();
21547 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
21548 new_automatic_it_block (inst.cond);
21549 }
21550 else
21551 {
21552 now_pred.insn_cond = TRUE;
21553 now_pred_add_mask (inst.cond);
21554 }
21555
21556 if (now_pred.state == AUTOMATIC_PRED_BLOCK
21557 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
21558 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
21559 close_automatic_it_block ();
21560 break;
21561
21562 case NEUTRAL_IT_INSN:
21563 now_pred.block_length++;
21564 now_pred.insn_cond = TRUE;
21565
21566 if (now_pred.block_length > 4)
21567 force_automatic_it_block_close ();
21568 else
21569 now_pred_add_mask (now_pred.cc & 1);
21570 break;
21571
21572 case IT_INSN:
21573 close_automatic_it_block ();
21574 now_pred.state = MANUAL_PRED_BLOCK;
21575 break;
21576 }
21577 break;
21578
21579 case MANUAL_PRED_BLOCK:
21580 {
21581 int cond, is_last;
21582 if (now_pred.type == SCALAR_PRED)
21583 {
21584 /* Check conditional suffixes. */
21585 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
21586 now_pred.mask <<= 1;
21587 now_pred.mask &= 0x1f;
21588 is_last = (now_pred.mask == 0x10);
21589 }
21590 else
21591 {
21592 now_pred.cc ^= (now_pred.mask >> 4);
21593 cond = now_pred.cc + 0xf;
21594 now_pred.mask <<= 1;
21595 now_pred.mask &= 0x1f;
21596 is_last = now_pred.mask == 0x10;
21597 }
21598 now_pred.insn_cond = TRUE;
21599
21600 switch (inst.pred_insn_type)
21601 {
21602 case OUTSIDE_PRED_INSN:
21603 if (now_pred.type == SCALAR_PRED)
21604 {
21605 if (inst.cond == COND_ALWAYS)
21606 {
21607 /* Case 12: In an IT block, with no code: error: missing
21608 code. */
21609 inst.error = BAD_NOT_IT;
21610 return FAIL;
21611 }
21612 else if (inst.cond > COND_ALWAYS)
21613 {
21614 /* Case 11: In an IT block, with a VPT code: syntax error.
21615 */
21616 inst.error = BAD_SYNTAX;
21617 return FAIL;
21618 }
21619 else if (thumb_mode)
21620 {
21621 /* This is for some special cases where a non-MVE
21622 instruction is not allowed in an IT block, such as cbz,
21623 but are put into one with a condition code.
21624 You could argue this should be a syntax error, but we
21625 gave the 'not allowed in IT block' diagnostic in the
21626 past so we will keep doing so. */
21627 inst.error = BAD_NOT_IT;
21628 return FAIL;
21629 }
21630 break;
21631 }
21632 else
21633 {
21634 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
21635 as_tsktsk (MVE_NOT_VPT);
21636 return SUCCESS;
21637 }
21638 case MVE_OUTSIDE_PRED_INSN:
21639 if (now_pred.type == SCALAR_PRED)
21640 {
21641 if (inst.cond == COND_ALWAYS)
21642 {
21643 /* Case 3: In an IT block, with no code: warning:
21644 UNPREDICTABLE. */
21645 as_tsktsk (MVE_NOT_IT);
21646 return SUCCESS;
21647 }
21648 else if (inst.cond < COND_ALWAYS)
21649 {
21650 /* Case 1: In an IT block, with an IT code: syntax error.
21651 */
21652 inst.error = BAD_SYNTAX;
21653 return FAIL;
21654 }
21655 else
21656 gas_assert (0);
21657 }
21658 else
21659 {
21660 if (inst.cond < COND_ALWAYS)
21661 {
21662 /* Case 4: In a VPT block, with an IT code: syntax error.
21663 */
21664 inst.error = BAD_SYNTAX;
21665 return FAIL;
21666 }
21667 else if (inst.cond == COND_ALWAYS)
21668 {
21669 /* Case 6: In a VPT block, with no code: error: missing
21670 code. */
21671 inst.error = BAD_NOT_VPT;
21672 return FAIL;
21673 }
21674 else
21675 {
21676 gas_assert (0);
21677 }
21678 }
21679 case MVE_UNPREDICABLE_INSN:
21680 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
21681 return SUCCESS;
21682 case INSIDE_IT_INSN:
21683 if (inst.cond > COND_ALWAYS)
21684 {
21685 /* Case 11: In an IT block, with a VPT code: syntax error. */
21686 /* Case 14: In a VPT block, with a VPT code: syntax error. */
21687 inst.error = BAD_SYNTAX;
21688 return FAIL;
21689 }
21690 else if (now_pred.type == SCALAR_PRED)
21691 {
21692 /* Case 10: In an IT block, with an IT code: OK! */
21693 if (cond != inst.cond)
21694 {
21695 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
21696 BAD_VPT_COND;
21697 return FAIL;
21698 }
21699 }
21700 else
21701 {
21702 /* Case 13: In a VPT block, with an IT code: error: should be
21703 in an IT block. */
21704 inst.error = BAD_OUT_IT;
21705 return FAIL;
21706 }
21707 break;
21708
21709 case INSIDE_VPT_INSN:
21710 if (now_pred.type == SCALAR_PRED)
21711 {
21712 /* Case 2: In an IT block, with a VPT code: error: must be in a
21713 VPT block. */
21714 inst.error = BAD_OUT_VPT;
21715 return FAIL;
21716 }
21717 /* Case 5: In a VPT block, with a VPT code: OK! */
21718 else if (cond != inst.cond)
21719 {
21720 inst.error = BAD_VPT_COND;
21721 return FAIL;
21722 }
21723 break;
21724 case INSIDE_IT_LAST_INSN:
21725 case IF_INSIDE_IT_LAST_INSN:
21726 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
21727 {
21728 /* Case 4: In a VPT block, with an IT code: syntax error. */
21729 /* Case 11: In an IT block, with a VPT code: syntax error. */
21730 inst.error = BAD_SYNTAX;
21731 return FAIL;
21732 }
21733 else if (cond != inst.cond)
21734 {
21735 inst.error = BAD_IT_COND;
21736 return FAIL;
21737 }
21738 if (!is_last)
21739 {
21740 inst.error = BAD_BRANCH;
21741 return FAIL;
21742 }
21743 break;
21744
21745 case NEUTRAL_IT_INSN:
21746 /* The BKPT instruction is unconditional even in a IT or VPT
21747 block. */
21748 break;
21749
21750 case IT_INSN:
21751 if (now_pred.type == SCALAR_PRED)
21752 {
21753 inst.error = BAD_IT_IT;
21754 return FAIL;
21755 }
21756 /* fall through. */
21757 case VPT_INSN:
21758 if (inst.cond == COND_ALWAYS)
21759 {
21760 /* Executing a VPT/VPST instruction inside an IT block or a
21761 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
21762 */
21763 if (now_pred.type == SCALAR_PRED)
21764 as_tsktsk (MVE_NOT_IT);
21765 else
21766 as_tsktsk (MVE_NOT_VPT);
21767 return SUCCESS;
21768 }
21769 else
21770 {
21771 /* VPT/VPST do not accept condition codes. */
21772 inst.error = BAD_SYNTAX;
21773 return FAIL;
21774 }
21775 }
21776 }
21777 break;
21778 }
21779
21780 return SUCCESS;
21781 }
21782
21783 struct depr_insn_mask
21784 {
21785 unsigned long pattern;
21786 unsigned long mask;
21787 const char* description;
21788 };
21789
21790 /* List of 16-bit instruction patterns deprecated in an IT block in
21791 ARMv8. */
21792 static const struct depr_insn_mask depr_it_insns[] = {
21793 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
21794 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
21795 { 0xa000, 0xb800, N_("ADR") },
21796 { 0x4800, 0xf800, N_("Literal loads") },
21797 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
21798 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
21799 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
21800 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
21801 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
21802 { 0, 0, NULL }
21803 };
21804
21805 static void
21806 it_fsm_post_encode (void)
21807 {
21808 int is_last;
21809
21810 if (!now_pred.state_handled)
21811 handle_pred_state ();
21812
21813 if (now_pred.insn_cond
21814 && !now_pred.warn_deprecated
21815 && warn_on_deprecated
21816 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
21817 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
21818 {
21819 if (inst.instruction >= 0x10000)
21820 {
21821 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
21822 "performance deprecated in ARMv8-A and ARMv8-R"));
21823 now_pred.warn_deprecated = TRUE;
21824 }
21825 else
21826 {
21827 const struct depr_insn_mask *p = depr_it_insns;
21828
21829 while (p->mask != 0)
21830 {
21831 if ((inst.instruction & p->mask) == p->pattern)
21832 {
21833 as_tsktsk (_("IT blocks containing 16-bit Thumb "
21834 "instructions of the following class are "
21835 "performance deprecated in ARMv8-A and "
21836 "ARMv8-R: %s"), p->description);
21837 now_pred.warn_deprecated = TRUE;
21838 break;
21839 }
21840
21841 ++p;
21842 }
21843 }
21844
21845 if (now_pred.block_length > 1)
21846 {
21847 as_tsktsk (_("IT blocks containing more than one conditional "
21848 "instruction are performance deprecated in ARMv8-A and "
21849 "ARMv8-R"));
21850 now_pred.warn_deprecated = TRUE;
21851 }
21852 }
21853
21854 is_last = (now_pred.mask == 0x10);
21855 if (is_last)
21856 {
21857 now_pred.state = OUTSIDE_PRED_BLOCK;
21858 now_pred.mask = 0;
21859 }
21860 }
21861
21862 static void
21863 force_automatic_it_block_close (void)
21864 {
21865 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
21866 {
21867 close_automatic_it_block ();
21868 now_pred.state = OUTSIDE_PRED_BLOCK;
21869 now_pred.mask = 0;
21870 }
21871 }
21872
21873 static int
21874 in_pred_block (void)
21875 {
21876 if (!now_pred.state_handled)
21877 handle_pred_state ();
21878
21879 return now_pred.state != OUTSIDE_PRED_BLOCK;
21880 }
21881
21882 /* Whether OPCODE only has T32 encoding. Since this function is only used by
21883 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
21884 here, hence the "known" in the function name. */
21885
21886 static bfd_boolean
21887 known_t32_only_insn (const struct asm_opcode *opcode)
21888 {
21889 /* Original Thumb-1 wide instruction. */
21890 if (opcode->tencode == do_t_blx
21891 || opcode->tencode == do_t_branch23
21892 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
21893 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
21894 return TRUE;
21895
21896 /* Wide-only instruction added to ARMv8-M Baseline. */
21897 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
21898 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
21899 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
21900 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
21901 return TRUE;
21902
21903 return FALSE;
21904 }
21905
21906 /* Whether wide instruction variant can be used if available for a valid OPCODE
21907 in ARCH. */
21908
21909 static bfd_boolean
21910 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
21911 {
21912 if (known_t32_only_insn (opcode))
21913 return TRUE;
21914
21915 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
21916 of variant T3 of B.W is checked in do_t_branch. */
21917 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21918 && opcode->tencode == do_t_branch)
21919 return TRUE;
21920
21921 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
21922 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
21923 && opcode->tencode == do_t_mov_cmp
21924 /* Make sure CMP instruction is not affected. */
21925 && opcode->aencode == do_mov)
21926 return TRUE;
21927
21928 /* Wide instruction variants of all instructions with narrow *and* wide
21929 variants become available with ARMv6t2. Other opcodes are either
21930 narrow-only or wide-only and are thus available if OPCODE is valid. */
21931 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
21932 return TRUE;
21933
21934 /* OPCODE with narrow only instruction variant or wide variant not
21935 available. */
21936 return FALSE;
21937 }
21938
21939 void
21940 md_assemble (char *str)
21941 {
21942 char *p = str;
21943 const struct asm_opcode * opcode;
21944
21945 /* Align the previous label if needed. */
21946 if (last_label_seen != NULL)
21947 {
21948 symbol_set_frag (last_label_seen, frag_now);
21949 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
21950 S_SET_SEGMENT (last_label_seen, now_seg);
21951 }
21952
21953 memset (&inst, '\0', sizeof (inst));
21954 int r;
21955 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
21956 inst.relocs[r].type = BFD_RELOC_UNUSED;
21957
21958 opcode = opcode_lookup (&p);
21959 if (!opcode)
21960 {
21961 /* It wasn't an instruction, but it might be a register alias of
21962 the form alias .req reg, or a Neon .dn/.qn directive. */
21963 if (! create_register_alias (str, p)
21964 && ! create_neon_reg_alias (str, p))
21965 as_bad (_("bad instruction `%s'"), str);
21966
21967 return;
21968 }
21969
21970 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21971 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21972
21973 /* The value which unconditional instructions should have in place of the
21974 condition field. */
21975 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21976
21977 if (thumb_mode)
21978 {
21979 arm_feature_set variant;
21980
21981 variant = cpu_variant;
21982 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21983 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21984 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21985 /* Check that this instruction is supported for this CPU. */
21986 if (!opcode->tvariant
21987 || (thumb_mode == 1
21988 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21989 {
21990 if (opcode->tencode == do_t_swi)
21991 as_bad (_("SVC is not permitted on this architecture"));
21992 else
21993 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21994 return;
21995 }
21996 if (inst.cond != COND_ALWAYS && !unified_syntax
21997 && opcode->tencode != do_t_branch)
21998 {
21999 as_bad (_("Thumb does not support conditional execution"));
22000 return;
22001 }
22002
22003 /* Two things are addressed here:
22004 1) Implicit require narrow instructions on Thumb-1.
22005 This avoids relaxation accidentally introducing Thumb-2
22006 instructions.
22007 2) Reject wide instructions in non Thumb-2 cores.
22008
22009 Only instructions with narrow and wide variants need to be handled
22010 but selecting all non wide-only instructions is easier. */
22011 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
22012 && !t32_insn_ok (variant, opcode))
22013 {
22014 if (inst.size_req == 0)
22015 inst.size_req = 2;
22016 else if (inst.size_req == 4)
22017 {
22018 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
22019 as_bad (_("selected processor does not support 32bit wide "
22020 "variant of instruction `%s'"), str);
22021 else
22022 as_bad (_("selected processor does not support `%s' in "
22023 "Thumb-2 mode"), str);
22024 return;
22025 }
22026 }
22027
22028 inst.instruction = opcode->tvalue;
22029
22030 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
22031 {
22032 /* Prepare the pred_insn_type for those encodings that don't set
22033 it. */
22034 it_fsm_pre_encode ();
22035
22036 opcode->tencode ();
22037
22038 it_fsm_post_encode ();
22039 }
22040
22041 if (!(inst.error || inst.relax))
22042 {
22043 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
22044 inst.size = (inst.instruction > 0xffff ? 4 : 2);
22045 if (inst.size_req && inst.size_req != inst.size)
22046 {
22047 as_bad (_("cannot honor width suffix -- `%s'"), str);
22048 return;
22049 }
22050 }
22051
22052 /* Something has gone badly wrong if we try to relax a fixed size
22053 instruction. */
22054 gas_assert (inst.size_req == 0 || !inst.relax);
22055
22056 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22057 *opcode->tvariant);
22058 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
22059 set those bits when Thumb-2 32-bit instructions are seen. The impact
22060 of relaxable instructions will be considered later after we finish all
22061 relaxation. */
22062 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
22063 variant = arm_arch_none;
22064 else
22065 variant = cpu_variant;
22066 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
22067 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
22068 arm_ext_v6t2);
22069
22070 check_neon_suffixes;
22071
22072 if (!inst.error)
22073 {
22074 mapping_state (MAP_THUMB);
22075 }
22076 }
22077 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22078 {
22079 bfd_boolean is_bx;
22080
22081 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
22082 is_bx = (opcode->aencode == do_bx);
22083
22084 /* Check that this instruction is supported for this CPU. */
22085 if (!(is_bx && fix_v4bx)
22086 && !(opcode->avariant &&
22087 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
22088 {
22089 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
22090 return;
22091 }
22092 if (inst.size_req)
22093 {
22094 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
22095 return;
22096 }
22097
22098 inst.instruction = opcode->avalue;
22099 if (opcode->tag == OT_unconditionalF)
22100 inst.instruction |= 0xFU << 28;
22101 else
22102 inst.instruction |= inst.cond << 28;
22103 inst.size = INSN_SIZE;
22104 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
22105 {
22106 it_fsm_pre_encode ();
22107 opcode->aencode ();
22108 it_fsm_post_encode ();
22109 }
22110 /* Arm mode bx is marked as both v4T and v5 because it's still required
22111 on a hypothetical non-thumb v5 core. */
22112 if (is_bx)
22113 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
22114 else
22115 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
22116 *opcode->avariant);
22117
22118 check_neon_suffixes;
22119
22120 if (!inst.error)
22121 {
22122 mapping_state (MAP_ARM);
22123 }
22124 }
22125 else
22126 {
22127 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
22128 "-- `%s'"), str);
22129 return;
22130 }
22131 output_inst (str);
22132 }
22133
22134 static void
22135 check_pred_blocks_finished (void)
22136 {
22137 #ifdef OBJ_ELF
22138 asection *sect;
22139
22140 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
22141 if (seg_info (sect)->tc_segment_info_data.current_pred.state
22142 == MANUAL_PRED_BLOCK)
22143 {
22144 if (now_pred.type == SCALAR_PRED)
22145 as_warn (_("section '%s' finished with an open IT block."),
22146 sect->name);
22147 else
22148 as_warn (_("section '%s' finished with an open VPT/VPST block."),
22149 sect->name);
22150 }
22151 #else
22152 if (now_pred.state == MANUAL_PRED_BLOCK)
22153 {
22154 if (now_pred.type == SCALAR_PRED)
22155 as_warn (_("file finished with an open IT block."));
22156 else
22157 as_warn (_("file finished with an open VPT/VPST block."));
22158 }
22159 #endif
22160 }
22161
22162 /* Various frobbings of labels and their addresses. */
22163
22164 void
22165 arm_start_line_hook (void)
22166 {
22167 last_label_seen = NULL;
22168 }
22169
22170 void
22171 arm_frob_label (symbolS * sym)
22172 {
22173 last_label_seen = sym;
22174
22175 ARM_SET_THUMB (sym, thumb_mode);
22176
22177 #if defined OBJ_COFF || defined OBJ_ELF
22178 ARM_SET_INTERWORK (sym, support_interwork);
22179 #endif
22180
22181 force_automatic_it_block_close ();
22182
22183 /* Note - do not allow local symbols (.Lxxx) to be labelled
22184 as Thumb functions. This is because these labels, whilst
22185 they exist inside Thumb code, are not the entry points for
22186 possible ARM->Thumb calls. Also, these labels can be used
22187 as part of a computed goto or switch statement. eg gcc
22188 can generate code that looks like this:
22189
22190 ldr r2, [pc, .Laaa]
22191 lsl r3, r3, #2
22192 ldr r2, [r3, r2]
22193 mov pc, r2
22194
22195 .Lbbb: .word .Lxxx
22196 .Lccc: .word .Lyyy
22197 ..etc...
22198 .Laaa: .word Lbbb
22199
22200 The first instruction loads the address of the jump table.
22201 The second instruction converts a table index into a byte offset.
22202 The third instruction gets the jump address out of the table.
22203 The fourth instruction performs the jump.
22204
22205 If the address stored at .Laaa is that of a symbol which has the
22206 Thumb_Func bit set, then the linker will arrange for this address
22207 to have the bottom bit set, which in turn would mean that the
22208 address computation performed by the third instruction would end
22209 up with the bottom bit set. Since the ARM is capable of unaligned
22210 word loads, the instruction would then load the incorrect address
22211 out of the jump table, and chaos would ensue. */
22212 if (label_is_thumb_function_name
22213 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
22214 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
22215 {
22216 /* When the address of a Thumb function is taken the bottom
22217 bit of that address should be set. This will allow
22218 interworking between Arm and Thumb functions to work
22219 correctly. */
22220
22221 THUMB_SET_FUNC (sym, 1);
22222
22223 label_is_thumb_function_name = FALSE;
22224 }
22225
22226 dwarf2_emit_label (sym);
22227 }
22228
22229 bfd_boolean
22230 arm_data_in_code (void)
22231 {
22232 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
22233 {
22234 *input_line_pointer = '/';
22235 input_line_pointer += 5;
22236 *input_line_pointer = 0;
22237 return TRUE;
22238 }
22239
22240 return FALSE;
22241 }
22242
22243 char *
22244 arm_canonicalize_symbol_name (char * name)
22245 {
22246 int len;
22247
22248 if (thumb_mode && (len = strlen (name)) > 5
22249 && streq (name + len - 5, "/data"))
22250 *(name + len - 5) = 0;
22251
22252 return name;
22253 }
22254 \f
22255 /* Table of all register names defined by default. The user can
22256 define additional names with .req. Note that all register names
22257 should appear in both upper and lowercase variants. Some registers
22258 also have mixed-case names. */
22259
22260 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
22261 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
22262 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
22263 #define REGSET(p,t) \
22264 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
22265 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
22266 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
22267 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
22268 #define REGSETH(p,t) \
22269 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
22270 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
22271 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
22272 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
22273 #define REGSET2(p,t) \
22274 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
22275 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
22276 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
22277 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
22278 #define SPLRBANK(base,bank,t) \
22279 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
22280 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
22281 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
22282 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
22283 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
22284 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
22285
22286 static const struct reg_entry reg_names[] =
22287 {
22288 /* ARM integer registers. */
22289 REGSET(r, RN), REGSET(R, RN),
22290
22291 /* ATPCS synonyms. */
22292 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
22293 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
22294 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
22295
22296 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
22297 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
22298 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
22299
22300 /* Well-known aliases. */
22301 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
22302 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
22303
22304 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
22305 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
22306
22307 /* Defining the new Zero register from ARMv8.1-M. */
22308 REGDEF(zr,15,ZR),
22309 REGDEF(ZR,15,ZR),
22310
22311 /* Coprocessor numbers. */
22312 REGSET(p, CP), REGSET(P, CP),
22313
22314 /* Coprocessor register numbers. The "cr" variants are for backward
22315 compatibility. */
22316 REGSET(c, CN), REGSET(C, CN),
22317 REGSET(cr, CN), REGSET(CR, CN),
22318
22319 /* ARM banked registers. */
22320 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
22321 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
22322 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
22323 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
22324 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
22325 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
22326 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
22327
22328 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
22329 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
22330 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
22331 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
22332 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
22333 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
22334 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
22335 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
22336
22337 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
22338 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
22339 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
22340 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
22341 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
22342 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
22343 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
22344 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
22345 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
22346
22347 /* FPA registers. */
22348 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
22349 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
22350
22351 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
22352 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
22353
22354 /* VFP SP registers. */
22355 REGSET(s,VFS), REGSET(S,VFS),
22356 REGSETH(s,VFS), REGSETH(S,VFS),
22357
22358 /* VFP DP Registers. */
22359 REGSET(d,VFD), REGSET(D,VFD),
22360 /* Extra Neon DP registers. */
22361 REGSETH(d,VFD), REGSETH(D,VFD),
22362
22363 /* Neon QP registers. */
22364 REGSET2(q,NQ), REGSET2(Q,NQ),
22365
22366 /* VFP control registers. */
22367 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
22368 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
22369 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
22370 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
22371 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
22372 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
22373 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
22374
22375 /* Maverick DSP coprocessor registers. */
22376 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
22377 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
22378
22379 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
22380 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
22381 REGDEF(dspsc,0,DSPSC),
22382
22383 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
22384 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
22385 REGDEF(DSPSC,0,DSPSC),
22386
22387 /* iWMMXt data registers - p0, c0-15. */
22388 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
22389
22390 /* iWMMXt control registers - p1, c0-3. */
22391 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
22392 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
22393 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
22394 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
22395
22396 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
22397 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
22398 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
22399 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
22400 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
22401
22402 /* XScale accumulator registers. */
22403 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
22404 };
22405 #undef REGDEF
22406 #undef REGNUM
22407 #undef REGSET
22408
22409 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
22410 within psr_required_here. */
22411 static const struct asm_psr psrs[] =
22412 {
22413 /* Backward compatibility notation. Note that "all" is no longer
22414 truly all possible PSR bits. */
22415 {"all", PSR_c | PSR_f},
22416 {"flg", PSR_f},
22417 {"ctl", PSR_c},
22418
22419 /* Individual flags. */
22420 {"f", PSR_f},
22421 {"c", PSR_c},
22422 {"x", PSR_x},
22423 {"s", PSR_s},
22424
22425 /* Combinations of flags. */
22426 {"fs", PSR_f | PSR_s},
22427 {"fx", PSR_f | PSR_x},
22428 {"fc", PSR_f | PSR_c},
22429 {"sf", PSR_s | PSR_f},
22430 {"sx", PSR_s | PSR_x},
22431 {"sc", PSR_s | PSR_c},
22432 {"xf", PSR_x | PSR_f},
22433 {"xs", PSR_x | PSR_s},
22434 {"xc", PSR_x | PSR_c},
22435 {"cf", PSR_c | PSR_f},
22436 {"cs", PSR_c | PSR_s},
22437 {"cx", PSR_c | PSR_x},
22438 {"fsx", PSR_f | PSR_s | PSR_x},
22439 {"fsc", PSR_f | PSR_s | PSR_c},
22440 {"fxs", PSR_f | PSR_x | PSR_s},
22441 {"fxc", PSR_f | PSR_x | PSR_c},
22442 {"fcs", PSR_f | PSR_c | PSR_s},
22443 {"fcx", PSR_f | PSR_c | PSR_x},
22444 {"sfx", PSR_s | PSR_f | PSR_x},
22445 {"sfc", PSR_s | PSR_f | PSR_c},
22446 {"sxf", PSR_s | PSR_x | PSR_f},
22447 {"sxc", PSR_s | PSR_x | PSR_c},
22448 {"scf", PSR_s | PSR_c | PSR_f},
22449 {"scx", PSR_s | PSR_c | PSR_x},
22450 {"xfs", PSR_x | PSR_f | PSR_s},
22451 {"xfc", PSR_x | PSR_f | PSR_c},
22452 {"xsf", PSR_x | PSR_s | PSR_f},
22453 {"xsc", PSR_x | PSR_s | PSR_c},
22454 {"xcf", PSR_x | PSR_c | PSR_f},
22455 {"xcs", PSR_x | PSR_c | PSR_s},
22456 {"cfs", PSR_c | PSR_f | PSR_s},
22457 {"cfx", PSR_c | PSR_f | PSR_x},
22458 {"csf", PSR_c | PSR_s | PSR_f},
22459 {"csx", PSR_c | PSR_s | PSR_x},
22460 {"cxf", PSR_c | PSR_x | PSR_f},
22461 {"cxs", PSR_c | PSR_x | PSR_s},
22462 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
22463 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
22464 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
22465 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
22466 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
22467 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
22468 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
22469 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
22470 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
22471 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
22472 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
22473 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
22474 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
22475 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
22476 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
22477 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
22478 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
22479 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
22480 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
22481 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
22482 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
22483 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
22484 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
22485 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
22486 };
22487
22488 /* Table of V7M psr names. */
22489 static const struct asm_psr v7m_psrs[] =
22490 {
22491 {"apsr", 0x0 }, {"APSR", 0x0 },
22492 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
22493 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
22494 {"psr", 0x3 }, {"PSR", 0x3 },
22495 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
22496 {"ipsr", 0x5 }, {"IPSR", 0x5 },
22497 {"epsr", 0x6 }, {"EPSR", 0x6 },
22498 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
22499 {"msp", 0x8 }, {"MSP", 0x8 },
22500 {"psp", 0x9 }, {"PSP", 0x9 },
22501 {"msplim", 0xa }, {"MSPLIM", 0xa },
22502 {"psplim", 0xb }, {"PSPLIM", 0xb },
22503 {"primask", 0x10}, {"PRIMASK", 0x10},
22504 {"basepri", 0x11}, {"BASEPRI", 0x11},
22505 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
22506 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
22507 {"control", 0x14}, {"CONTROL", 0x14},
22508 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
22509 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
22510 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
22511 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
22512 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
22513 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
22514 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
22515 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
22516 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
22517 };
22518
22519 /* Table of all shift-in-operand names. */
22520 static const struct asm_shift_name shift_names [] =
22521 {
22522 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
22523 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
22524 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
22525 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
22526 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
22527 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
22528 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
22529 };
22530
22531 /* Table of all explicit relocation names. */
22532 #ifdef OBJ_ELF
22533 static struct reloc_entry reloc_names[] =
22534 {
22535 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
22536 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
22537 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
22538 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
22539 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
22540 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
22541 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
22542 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
22543 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
22544 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
22545 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
22546 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
22547 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
22548 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
22549 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
22550 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
22551 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
22552 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
22553 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
22554 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
22555 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22556 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
22557 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
22558 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
22559 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
22560 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
22561 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
22562 };
22563 #endif
22564
22565 /* Table of all conditional affixes. */
22566 static const struct asm_cond conds[] =
22567 {
22568 {"eq", 0x0},
22569 {"ne", 0x1},
22570 {"cs", 0x2}, {"hs", 0x2},
22571 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
22572 {"mi", 0x4},
22573 {"pl", 0x5},
22574 {"vs", 0x6},
22575 {"vc", 0x7},
22576 {"hi", 0x8},
22577 {"ls", 0x9},
22578 {"ge", 0xa},
22579 {"lt", 0xb},
22580 {"gt", 0xc},
22581 {"le", 0xd},
22582 {"al", 0xe}
22583 };
22584 static const struct asm_cond vconds[] =
22585 {
22586 {"t", 0xf},
22587 {"e", 0x10}
22588 };
22589
22590 #define UL_BARRIER(L,U,CODE,FEAT) \
22591 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
22592 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
22593
22594 static struct asm_barrier_opt barrier_opt_names[] =
22595 {
22596 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
22597 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
22598 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
22599 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
22600 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
22601 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
22602 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
22603 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
22604 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
22605 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
22606 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
22607 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
22608 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
22609 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
22610 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
22611 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
22612 };
22613
22614 #undef UL_BARRIER
22615
22616 /* Table of ARM-format instructions. */
22617
22618 /* Macros for gluing together operand strings. N.B. In all cases
22619 other than OPS0, the trailing OP_stop comes from default
22620 zero-initialization of the unspecified elements of the array. */
22621 #define OPS0() { OP_stop, }
22622 #define OPS1(a) { OP_##a, }
22623 #define OPS2(a,b) { OP_##a,OP_##b, }
22624 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
22625 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
22626 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
22627 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
22628
22629 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
22630 This is useful when mixing operands for ARM and THUMB, i.e. using the
22631 MIX_ARM_THUMB_OPERANDS macro.
22632 In order to use these macros, prefix the number of operands with _
22633 e.g. _3. */
22634 #define OPS_1(a) { a, }
22635 #define OPS_2(a,b) { a,b, }
22636 #define OPS_3(a,b,c) { a,b,c, }
22637 #define OPS_4(a,b,c,d) { a,b,c,d, }
22638 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
22639 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
22640
22641 /* These macros abstract out the exact format of the mnemonic table and
22642 save some repeated characters. */
22643
22644 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
22645 #define TxCE(mnem, op, top, nops, ops, ae, te) \
22646 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
22647 THUMB_VARIANT, do_##ae, do_##te, 0 }
22648
22649 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
22650 a T_MNEM_xyz enumerator. */
22651 #define TCE(mnem, aop, top, nops, ops, ae, te) \
22652 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
22653 #define tCE(mnem, aop, top, nops, ops, ae, te) \
22654 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22655
22656 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
22657 infix after the third character. */
22658 #define TxC3(mnem, op, top, nops, ops, ae, te) \
22659 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
22660 THUMB_VARIANT, do_##ae, do_##te, 0 }
22661 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
22662 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
22663 THUMB_VARIANT, do_##ae, do_##te, 0 }
22664 #define TC3(mnem, aop, top, nops, ops, ae, te) \
22665 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
22666 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
22667 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
22668 #define tC3(mnem, aop, top, nops, ops, ae, te) \
22669 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22670 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
22671 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
22672
22673 /* Mnemonic that cannot be conditionalized. The ARM condition-code
22674 field is still 0xE. Many of the Thumb variants can be executed
22675 conditionally, so this is checked separately. */
22676 #define TUE(mnem, op, top, nops, ops, ae, te) \
22677 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22678 THUMB_VARIANT, do_##ae, do_##te, 0 }
22679
22680 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
22681 Used by mnemonics that have very minimal differences in the encoding for
22682 ARM and Thumb variants and can be handled in a common function. */
22683 #define TUEc(mnem, op, top, nops, ops, en) \
22684 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
22685 THUMB_VARIANT, do_##en, do_##en, 0 }
22686
22687 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
22688 condition code field. */
22689 #define TUF(mnem, op, top, nops, ops, ae, te) \
22690 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
22691 THUMB_VARIANT, do_##ae, do_##te, 0 }
22692
22693 /* ARM-only variants of all the above. */
22694 #define CE(mnem, op, nops, ops, ae) \
22695 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22696
22697 #define C3(mnem, op, nops, ops, ae) \
22698 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22699
22700 /* Thumb-only variants of TCE and TUE. */
22701 #define ToC(mnem, top, nops, ops, te) \
22702 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22703 do_##te, 0 }
22704
22705 #define ToU(mnem, top, nops, ops, te) \
22706 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
22707 NULL, do_##te, 0 }
22708
22709 /* T_MNEM_xyz enumerator variants of ToC. */
22710 #define toC(mnem, top, nops, ops, te) \
22711 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
22712 do_##te, 0 }
22713
22714 /* T_MNEM_xyz enumerator variants of ToU. */
22715 #define toU(mnem, top, nops, ops, te) \
22716 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
22717 NULL, do_##te, 0 }
22718
22719 /* Legacy mnemonics that always have conditional infix after the third
22720 character. */
22721 #define CL(mnem, op, nops, ops, ae) \
22722 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22723 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22724
22725 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
22726 #define cCE(mnem, op, nops, ops, ae) \
22727 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22728
22729 /* mov instructions that are shared between coprocessor and MVE. */
22730 #define mcCE(mnem, op, nops, ops, ae) \
22731 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
22732
22733 /* Legacy coprocessor instructions where conditional infix and conditional
22734 suffix are ambiguous. For consistency this includes all FPA instructions,
22735 not just the potentially ambiguous ones. */
22736 #define cCL(mnem, op, nops, ops, ae) \
22737 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
22738 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22739
22740 /* Coprocessor, takes either a suffix or a position-3 infix
22741 (for an FPA corner case). */
22742 #define C3E(mnem, op, nops, ops, ae) \
22743 { mnem, OPS##nops ops, OT_csuf_or_in3, \
22744 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
22745
22746 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
22747 { m1 #m2 m3, OPS##nops ops, \
22748 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
22749 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22750
22751 #define CM(m1, m2, op, nops, ops, ae) \
22752 xCM_ (m1, , m2, op, nops, ops, ae), \
22753 xCM_ (m1, eq, m2, op, nops, ops, ae), \
22754 xCM_ (m1, ne, m2, op, nops, ops, ae), \
22755 xCM_ (m1, cs, m2, op, nops, ops, ae), \
22756 xCM_ (m1, hs, m2, op, nops, ops, ae), \
22757 xCM_ (m1, cc, m2, op, nops, ops, ae), \
22758 xCM_ (m1, ul, m2, op, nops, ops, ae), \
22759 xCM_ (m1, lo, m2, op, nops, ops, ae), \
22760 xCM_ (m1, mi, m2, op, nops, ops, ae), \
22761 xCM_ (m1, pl, m2, op, nops, ops, ae), \
22762 xCM_ (m1, vs, m2, op, nops, ops, ae), \
22763 xCM_ (m1, vc, m2, op, nops, ops, ae), \
22764 xCM_ (m1, hi, m2, op, nops, ops, ae), \
22765 xCM_ (m1, ls, m2, op, nops, ops, ae), \
22766 xCM_ (m1, ge, m2, op, nops, ops, ae), \
22767 xCM_ (m1, lt, m2, op, nops, ops, ae), \
22768 xCM_ (m1, gt, m2, op, nops, ops, ae), \
22769 xCM_ (m1, le, m2, op, nops, ops, ae), \
22770 xCM_ (m1, al, m2, op, nops, ops, ae)
22771
22772 #define UE(mnem, op, nops, ops, ae) \
22773 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22774
22775 #define UF(mnem, op, nops, ops, ae) \
22776 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
22777
22778 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
22779 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
22780 use the same encoding function for each. */
22781 #define NUF(mnem, op, nops, ops, enc) \
22782 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22783 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22784
22785 /* Neon data processing, version which indirects through neon_enc_tab for
22786 the various overloaded versions of opcodes. */
22787 #define nUF(mnem, op, nops, ops, enc) \
22788 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22789 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
22790
22791 /* Neon insn with conditional suffix for the ARM version, non-overloaded
22792 version. */
22793 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22794 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
22795 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22796
22797 #define NCE(mnem, op, nops, ops, enc) \
22798 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22799
22800 #define NCEF(mnem, op, nops, ops, enc) \
22801 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22802
22803 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
22804 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
22805 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
22806 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
22807
22808 #define nCE(mnem, op, nops, ops, enc) \
22809 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
22810
22811 #define nCEF(mnem, op, nops, ops, enc) \
22812 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
22813
22814 /* */
22815 #define mCEF(mnem, op, nops, ops, enc) \
22816 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
22817 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22818
22819
22820 /* nCEF but for MVE predicated instructions. */
22821 #define mnCEF(mnem, op, nops, ops, enc) \
22822 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22823
22824 /* nCE but for MVE predicated instructions. */
22825 #define mnCE(mnem, op, nops, ops, enc) \
22826 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22827
22828 /* NUF but for potentially MVE predicated instructions. */
22829 #define MNUF(mnem, op, nops, ops, enc) \
22830 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
22831 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22832
22833 /* nUF but for potentially MVE predicated instructions. */
22834 #define mnUF(mnem, op, nops, ops, enc) \
22835 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
22836 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
22837
22838 /* ToC but for potentially MVE predicated instructions. */
22839 #define mToC(mnem, top, nops, ops, te) \
22840 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
22841 do_##te, 1 }
22842
22843 /* NCE but for MVE predicated instructions. */
22844 #define MNCE(mnem, op, nops, ops, enc) \
22845 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
22846
22847 /* NCEF but for MVE predicated instructions. */
22848 #define MNCEF(mnem, op, nops, ops, enc) \
22849 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
22850 #define do_0 0
22851
22852 static const struct asm_opcode insns[] =
22853 {
22854 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
22855 #define THUMB_VARIANT & arm_ext_v4t
22856 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
22857 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
22858 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
22859 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
22860 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
22861 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
22862 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
22863 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
22864 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
22865 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
22866 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
22867 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
22868 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
22869 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
22870 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
22871 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
22872
22873 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
22874 for setting PSR flag bits. They are obsolete in V6 and do not
22875 have Thumb equivalents. */
22876 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22877 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
22878 CL("tstp", 110f000, 2, (RR, SH), cmp),
22879 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22880 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
22881 CL("cmpp", 150f000, 2, (RR, SH), cmp),
22882 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22883 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
22884 CL("cmnp", 170f000, 2, (RR, SH), cmp),
22885
22886 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
22887 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
22888 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
22889 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
22890
22891 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
22892 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22893 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
22894 OP_RRnpc),
22895 OP_ADDRGLDR),ldst, t_ldst),
22896 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
22897
22898 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22899 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22900 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22901 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22902 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22903 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22904
22905 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
22906 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
22907
22908 /* Pseudo ops. */
22909 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
22910 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
22911 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
22912 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
22913
22914 /* Thumb-compatibility pseudo ops. */
22915 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
22916 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
22917 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
22918 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
22919 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
22920 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
22921 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
22922 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
22923 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
22924 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
22925 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
22926 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
22927
22928 /* These may simplify to neg. */
22929 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
22930 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
22931
22932 #undef THUMB_VARIANT
22933 #define THUMB_VARIANT & arm_ext_os
22934
22935 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
22936 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
22937
22938 #undef THUMB_VARIANT
22939 #define THUMB_VARIANT & arm_ext_v6
22940
22941 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
22942
22943 /* V1 instructions with no Thumb analogue prior to V6T2. */
22944 #undef THUMB_VARIANT
22945 #define THUMB_VARIANT & arm_ext_v6t2
22946
22947 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22948 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
22949 CL("teqp", 130f000, 2, (RR, SH), cmp),
22950
22951 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22952 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22953 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
22954 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
22955
22956 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22957 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22958
22959 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22960 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
22961
22962 /* V1 instructions with no Thumb analogue at all. */
22963 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22964 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22965
22966 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22967 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22968 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22969 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22970 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22971 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22972 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22973 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22974
22975 #undef ARM_VARIANT
22976 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22977 #undef THUMB_VARIANT
22978 #define THUMB_VARIANT & arm_ext_v4t
22979
22980 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22981 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22982
22983 #undef THUMB_VARIANT
22984 #define THUMB_VARIANT & arm_ext_v6t2
22985
22986 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22987 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22988
22989 /* Generic coprocessor instructions. */
22990 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22991 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22992 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22993 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22994 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22995 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22996 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22997
22998 #undef ARM_VARIANT
22999 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
23000
23001 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23002 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
23003
23004 #undef ARM_VARIANT
23005 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
23006 #undef THUMB_VARIANT
23007 #define THUMB_VARIANT & arm_ext_msr
23008
23009 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
23010 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
23011
23012 #undef ARM_VARIANT
23013 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
23014 #undef THUMB_VARIANT
23015 #define THUMB_VARIANT & arm_ext_v6t2
23016
23017 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23018 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23019 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23020 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23021 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23022 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23023 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
23024 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
23025
23026 #undef ARM_VARIANT
23027 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
23028 #undef THUMB_VARIANT
23029 #define THUMB_VARIANT & arm_ext_v4t
23030
23031 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23032 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23033 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23034 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23035 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23036 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
23037
23038 #undef ARM_VARIANT
23039 #define ARM_VARIANT & arm_ext_v4t_5
23040
23041 /* ARM Architecture 4T. */
23042 /* Note: bx (and blx) are required on V5, even if the processor does
23043 not support Thumb. */
23044 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
23045
23046 #undef ARM_VARIANT
23047 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
23048 #undef THUMB_VARIANT
23049 #define THUMB_VARIANT & arm_ext_v5t
23050
23051 /* Note: blx has 2 variants; the .value coded here is for
23052 BLX(2). Only this variant has conditional execution. */
23053 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
23054 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
23055
23056 #undef THUMB_VARIANT
23057 #define THUMB_VARIANT & arm_ext_v6t2
23058
23059 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
23060 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23061 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23062 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23063 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
23064 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
23065 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23066 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
23067
23068 #undef ARM_VARIANT
23069 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
23070 #undef THUMB_VARIANT
23071 #define THUMB_VARIANT & arm_ext_v5exp
23072
23073 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23074 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23075 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23076 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23077
23078 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23079 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
23080
23081 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23082 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23083 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23084 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
23085
23086 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23087 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23088 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23089 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23090
23091 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23092 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23093
23094 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23095 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23096 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23097 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
23098
23099 #undef ARM_VARIANT
23100 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
23101 #undef THUMB_VARIANT
23102 #define THUMB_VARIANT & arm_ext_v6t2
23103
23104 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
23105 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
23106 ldrd, t_ldstd),
23107 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
23108 ADDRGLDRS), ldrd, t_ldstd),
23109
23110 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23111 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23112
23113 #undef ARM_VARIANT
23114 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
23115
23116 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
23117
23118 #undef ARM_VARIANT
23119 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
23120 #undef THUMB_VARIANT
23121 #define THUMB_VARIANT & arm_ext_v6
23122
23123 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
23124 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
23125 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23126 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23127 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
23128 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23129 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23130 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23131 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23132 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
23133
23134 #undef THUMB_VARIANT
23135 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23136
23137 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
23138 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23139 strex, t_strex),
23140 #undef THUMB_VARIANT
23141 #define THUMB_VARIANT & arm_ext_v6t2
23142
23143 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23144 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
23145
23146 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
23147 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
23148
23149 /* ARM V6 not included in V7M. */
23150 #undef THUMB_VARIANT
23151 #define THUMB_VARIANT & arm_ext_v6_notm
23152 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23153 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23154 UF(rfeib, 9900a00, 1, (RRw), rfe),
23155 UF(rfeda, 8100a00, 1, (RRw), rfe),
23156 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23157 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
23158 UF(rfefa, 8100a00, 1, (RRw), rfe),
23159 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
23160 UF(rfeed, 9900a00, 1, (RRw), rfe),
23161 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23162 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23163 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
23164 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
23165 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
23166 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
23167 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
23168 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23169 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
23170 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
23171
23172 /* ARM V6 not included in V7M (eg. integer SIMD). */
23173 #undef THUMB_VARIANT
23174 #define THUMB_VARIANT & arm_ext_v6_dsp
23175 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
23176 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
23177 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23178 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23179 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23180 /* Old name for QASX. */
23181 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23182 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23183 /* Old name for QSAX. */
23184 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23185 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23186 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23187 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23188 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23189 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23190 /* Old name for SASX. */
23191 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23192 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23193 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23194 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23195 /* Old name for SHASX. */
23196 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23197 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23198 /* Old name for SHSAX. */
23199 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23200 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23201 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23202 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23203 /* Old name for SSAX. */
23204 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23205 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23206 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23207 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23208 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23209 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23210 /* Old name for UASX. */
23211 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23212 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23213 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23214 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23215 /* Old name for UHASX. */
23216 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23217 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23218 /* Old name for UHSAX. */
23219 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23220 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23221 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23222 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23223 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23224 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23225 /* Old name for UQASX. */
23226 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23227 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23228 /* Old name for UQSAX. */
23229 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23230 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23231 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23232 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23233 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23234 /* Old name for USAX. */
23235 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23236 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23237 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23238 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23239 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23240 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23241 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23242 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23243 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
23244 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
23245 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
23246 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23247 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23248 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23249 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23250 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23251 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23252 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23253 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
23254 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23255 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23256 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23257 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23258 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23259 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23260 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23261 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23262 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23263 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23264 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
23265 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
23266 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
23267 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
23268 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
23269
23270 #undef ARM_VARIANT
23271 #define ARM_VARIANT & arm_ext_v6k_v6t2
23272 #undef THUMB_VARIANT
23273 #define THUMB_VARIANT & arm_ext_v6k_v6t2
23274
23275 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
23276 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
23277 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
23278 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
23279
23280 #undef THUMB_VARIANT
23281 #define THUMB_VARIANT & arm_ext_v6_notm
23282 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
23283 ldrexd, t_ldrexd),
23284 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
23285 RRnpcb), strexd, t_strexd),
23286
23287 #undef THUMB_VARIANT
23288 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23289 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
23290 rd_rn, rd_rn),
23291 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
23292 rd_rn, rd_rn),
23293 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23294 strex, t_strexbh),
23295 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
23296 strex, t_strexbh),
23297 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
23298
23299 #undef ARM_VARIANT
23300 #define ARM_VARIANT & arm_ext_sec
23301 #undef THUMB_VARIANT
23302 #define THUMB_VARIANT & arm_ext_sec
23303
23304 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
23305
23306 #undef ARM_VARIANT
23307 #define ARM_VARIANT & arm_ext_virt
23308 #undef THUMB_VARIANT
23309 #define THUMB_VARIANT & arm_ext_virt
23310
23311 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
23312 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
23313
23314 #undef ARM_VARIANT
23315 #define ARM_VARIANT & arm_ext_pan
23316 #undef THUMB_VARIANT
23317 #define THUMB_VARIANT & arm_ext_pan
23318
23319 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
23320
23321 #undef ARM_VARIANT
23322 #define ARM_VARIANT & arm_ext_v6t2
23323 #undef THUMB_VARIANT
23324 #define THUMB_VARIANT & arm_ext_v6t2
23325
23326 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
23327 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
23328 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23329 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
23330
23331 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
23332 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
23333
23334 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23335 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23336 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23337 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
23338
23339 #undef ARM_VARIANT
23340 #define ARM_VARIANT & arm_ext_v3
23341 #undef THUMB_VARIANT
23342 #define THUMB_VARIANT & arm_ext_v6t2
23343
23344 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
23345 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
23346 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
23347
23348 #undef ARM_VARIANT
23349 #define ARM_VARIANT & arm_ext_v6t2
23350 #undef THUMB_VARIANT
23351 #define THUMB_VARIANT & arm_ext_v6t2_v8m
23352 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
23353 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
23354
23355 /* Thumb-only instructions. */
23356 #undef ARM_VARIANT
23357 #define ARM_VARIANT NULL
23358 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
23359 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
23360
23361 /* ARM does not really have an IT instruction, so always allow it.
23362 The opcode is copied from Thumb in order to allow warnings in
23363 -mimplicit-it=[never | arm] modes. */
23364 #undef ARM_VARIANT
23365 #define ARM_VARIANT & arm_ext_v1
23366 #undef THUMB_VARIANT
23367 #define THUMB_VARIANT & arm_ext_v6t2
23368
23369 TUE("it", bf08, bf08, 1, (COND), it, t_it),
23370 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
23371 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
23372 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
23373 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
23374 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
23375 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
23376 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
23377 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
23378 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
23379 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
23380 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
23381 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
23382 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
23383 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
23384 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
23385 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
23386 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
23387
23388 /* Thumb2 only instructions. */
23389 #undef ARM_VARIANT
23390 #define ARM_VARIANT NULL
23391
23392 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23393 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
23394 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
23395 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
23396 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
23397 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
23398
23399 /* Hardware division instructions. */
23400 #undef ARM_VARIANT
23401 #define ARM_VARIANT & arm_ext_adiv
23402 #undef THUMB_VARIANT
23403 #define THUMB_VARIANT & arm_ext_div
23404
23405 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
23406 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
23407
23408 /* ARM V6M/V7 instructions. */
23409 #undef ARM_VARIANT
23410 #define ARM_VARIANT & arm_ext_barrier
23411 #undef THUMB_VARIANT
23412 #define THUMB_VARIANT & arm_ext_barrier
23413
23414 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
23415 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
23416 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
23417
23418 /* ARM V7 instructions. */
23419 #undef ARM_VARIANT
23420 #define ARM_VARIANT & arm_ext_v7
23421 #undef THUMB_VARIANT
23422 #define THUMB_VARIANT & arm_ext_v7
23423
23424 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
23425 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
23426
23427 #undef ARM_VARIANT
23428 #define ARM_VARIANT & arm_ext_mp
23429 #undef THUMB_VARIANT
23430 #define THUMB_VARIANT & arm_ext_mp
23431
23432 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
23433
23434 /* AArchv8 instructions. */
23435 #undef ARM_VARIANT
23436 #define ARM_VARIANT & arm_ext_v8
23437
23438 /* Instructions shared between armv8-a and armv8-m. */
23439 #undef THUMB_VARIANT
23440 #define THUMB_VARIANT & arm_ext_atomics
23441
23442 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23443 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23444 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23445 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23446 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23447 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
23448 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23449 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
23450 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
23451 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
23452 stlex, t_stlex),
23453 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
23454 stlex, t_stlex),
23455 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
23456 stlex, t_stlex),
23457 #undef THUMB_VARIANT
23458 #define THUMB_VARIANT & arm_ext_v8
23459
23460 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
23461 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
23462 ldrexd, t_ldrexd),
23463 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
23464 strexd, t_strexd),
23465
23466 /* Defined in V8 but is in undefined encoding space for earlier
23467 architectures. However earlier architectures are required to treat
23468 this instuction as a semihosting trap as well. Hence while not explicitly
23469 defined as such, it is in fact correct to define the instruction for all
23470 architectures. */
23471 #undef THUMB_VARIANT
23472 #define THUMB_VARIANT & arm_ext_v1
23473 #undef ARM_VARIANT
23474 #define ARM_VARIANT & arm_ext_v1
23475 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
23476
23477 /* ARMv8 T32 only. */
23478 #undef ARM_VARIANT
23479 #define ARM_VARIANT NULL
23480 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
23481 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
23482 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
23483
23484 /* FP for ARMv8. */
23485 #undef ARM_VARIANT
23486 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23487 #undef THUMB_VARIANT
23488 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
23489
23490 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
23491 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
23492 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
23493 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
23494 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
23495 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
23496 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
23497 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
23498 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
23499 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
23500 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
23501
23502 /* Crypto v1 extensions. */
23503 #undef ARM_VARIANT
23504 #define ARM_VARIANT & fpu_crypto_ext_armv8
23505 #undef THUMB_VARIANT
23506 #define THUMB_VARIANT & fpu_crypto_ext_armv8
23507
23508 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
23509 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
23510 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
23511 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
23512 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
23513 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
23514 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
23515 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
23516 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
23517 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
23518 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
23519 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
23520 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
23521 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
23522
23523 #undef ARM_VARIANT
23524 #define ARM_VARIANT & crc_ext_armv8
23525 #undef THUMB_VARIANT
23526 #define THUMB_VARIANT & crc_ext_armv8
23527 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
23528 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
23529 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
23530 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
23531 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
23532 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
23533
23534 /* ARMv8.2 RAS extension. */
23535 #undef ARM_VARIANT
23536 #define ARM_VARIANT & arm_ext_ras
23537 #undef THUMB_VARIANT
23538 #define THUMB_VARIANT & arm_ext_ras
23539 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
23540
23541 #undef ARM_VARIANT
23542 #define ARM_VARIANT & arm_ext_v8_3
23543 #undef THUMB_VARIANT
23544 #define THUMB_VARIANT & arm_ext_v8_3
23545 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
23546
23547 #undef ARM_VARIANT
23548 #define ARM_VARIANT & fpu_neon_ext_dotprod
23549 #undef THUMB_VARIANT
23550 #define THUMB_VARIANT & fpu_neon_ext_dotprod
23551 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
23552 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
23553
23554 #undef ARM_VARIANT
23555 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
23556 #undef THUMB_VARIANT
23557 #define THUMB_VARIANT NULL
23558
23559 cCE("wfs", e200110, 1, (RR), rd),
23560 cCE("rfs", e300110, 1, (RR), rd),
23561 cCE("wfc", e400110, 1, (RR), rd),
23562 cCE("rfc", e500110, 1, (RR), rd),
23563
23564 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
23565 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
23566 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
23567 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
23568
23569 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
23570 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
23571 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
23572 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
23573
23574 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
23575 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
23576 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
23577 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
23578 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
23579 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
23580 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
23581 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
23582 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
23583 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
23584 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
23585 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
23586
23587 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
23588 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
23589 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
23590 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
23591 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
23592 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
23593 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
23594 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
23595 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
23596 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
23597 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
23598 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
23599
23600 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
23601 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
23602 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
23603 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
23604 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
23605 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
23606 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
23607 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
23608 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
23609 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
23610 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
23611 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
23612
23613 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
23614 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
23615 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
23616 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
23617 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
23618 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
23619 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
23620 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
23621 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
23622 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
23623 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
23624 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
23625
23626 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
23627 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
23628 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
23629 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
23630 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
23631 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
23632 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
23633 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
23634 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
23635 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
23636 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
23637 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
23638
23639 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
23640 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
23641 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
23642 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
23643 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
23644 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
23645 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
23646 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
23647 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
23648 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
23649 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
23650 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
23651
23652 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
23653 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
23654 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
23655 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
23656 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
23657 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
23658 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
23659 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
23660 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
23661 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
23662 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
23663 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
23664
23665 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
23666 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
23667 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
23668 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
23669 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
23670 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
23671 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
23672 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
23673 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
23674 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
23675 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
23676 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
23677
23678 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
23679 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
23680 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
23681 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
23682 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
23683 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
23684 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
23685 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
23686 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
23687 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
23688 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
23689 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
23690
23691 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
23692 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
23693 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
23694 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
23695 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
23696 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
23697 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
23698 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
23699 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
23700 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
23701 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
23702 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
23703
23704 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
23705 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
23706 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
23707 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
23708 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
23709 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
23710 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
23711 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
23712 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
23713 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
23714 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
23715 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
23716
23717 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
23718 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
23719 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
23720 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
23721 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
23722 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
23723 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
23724 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
23725 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
23726 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
23727 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
23728 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
23729
23730 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
23731 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
23732 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
23733 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
23734 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
23735 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
23736 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
23737 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
23738 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
23739 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
23740 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
23741 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
23742
23743 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
23744 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
23745 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
23746 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
23747 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
23748 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
23749 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
23750 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
23751 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
23752 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
23753 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
23754 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
23755
23756 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
23757 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
23758 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
23759 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
23760 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
23761 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
23762 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
23763 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
23764 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
23765 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
23766 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
23767 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
23768
23769 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
23770 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
23771 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
23772 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
23773 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
23774 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
23775 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
23776 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
23777 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
23778 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
23779 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
23780 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
23781
23782 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
23783 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
23784 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
23785 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
23786 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
23787 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23788 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23789 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23790 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
23791 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
23792 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
23793 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
23794
23795 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
23796 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
23797 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
23798 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
23799 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
23800 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23801 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23802 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23803 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
23804 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
23805 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
23806 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
23807
23808 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
23809 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
23810 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
23811 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
23812 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
23813 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23814 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23815 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23816 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
23817 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
23818 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
23819 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
23820
23821 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
23822 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
23823 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
23824 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
23825 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
23826 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23827 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23828 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23829 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
23830 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
23831 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
23832 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
23833
23834 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
23835 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
23836 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
23837 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
23838 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
23839 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23840 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23841 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23842 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
23843 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
23844 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
23845 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
23846
23847 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
23848 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
23849 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
23850 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
23851 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
23852 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23853 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23854 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23855 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
23856 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
23857 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
23858 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
23859
23860 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
23861 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
23862 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
23863 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
23864 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
23865 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23866 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23867 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23868 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
23869 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
23870 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
23871 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
23872
23873 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
23874 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
23875 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
23876 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
23877 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
23878 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23879 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23880 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23881 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
23882 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
23883 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
23884 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
23885
23886 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
23887 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
23888 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
23889 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
23890 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
23891 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23892 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23893 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23894 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
23895 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
23896 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
23897 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
23898
23899 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
23900 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
23901 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
23902 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
23903 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
23904 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23905 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23906 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23907 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
23908 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
23909 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
23910 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
23911
23912 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23913 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23914 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23915 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23916 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23917 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23918 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23919 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23920 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23921 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23922 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23923 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23924
23925 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23926 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23927 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23928 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23929 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23930 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23931 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23932 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23933 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23934 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23935 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23936 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23937
23938 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
23939 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
23940 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
23941 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
23942 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
23943 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
23944 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
23945 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
23946 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
23947 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
23948 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
23949 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
23950
23951 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
23952 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
23953 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
23954 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
23955
23956 cCL("flts", e000110, 2, (RF, RR), rn_rd),
23957 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
23958 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23959 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23960 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23961 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23962 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23963 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23964 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23965 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23966 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23967 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23968
23969 /* The implementation of the FIX instruction is broken on some
23970 assemblers, in that it accepts a precision specifier as well as a
23971 rounding specifier, despite the fact that this is meaningless.
23972 To be more compatible, we accept it as well, though of course it
23973 does not set any bits. */
23974 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23975 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23976 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23977 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23978 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23979 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23980 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23981 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23982 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23983 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23984 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23985 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23986 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23987
23988 /* Instructions that were new with the real FPA, call them V2. */
23989 #undef ARM_VARIANT
23990 #define ARM_VARIANT & fpu_fpa_ext_v2
23991
23992 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23993 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23994 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23995 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23996 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23997 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23998
23999 #undef ARM_VARIANT
24000 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
24001
24002 /* Moves and type conversions. */
24003 cCE("fmstat", ef1fa10, 0, (), noargs),
24004 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
24005 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
24006 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
24007 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
24008 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
24009 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24010 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
24011 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
24012 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
24013 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
24014
24015 /* Memory operations. */
24016 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24017 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
24018 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24019 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24020 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24021 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24022 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24023 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24024 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24025 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24026 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24027 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
24028 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24029 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
24030 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24031 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
24032 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24033 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
24034
24035 /* Monadic operations. */
24036 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
24037 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
24038 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
24039
24040 /* Dyadic operations. */
24041 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24042 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24043 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24044 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24045 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24046 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24047 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24048 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24049 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24050
24051 /* Comparisons. */
24052 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
24053 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
24054 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
24055 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
24056
24057 /* Double precision load/store are still present on single precision
24058 implementations. */
24059 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24060 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
24061 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24062 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24063 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24064 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24065 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24066 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
24067 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24068 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
24069
24070 #undef ARM_VARIANT
24071 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
24072
24073 /* Moves and type conversions. */
24074 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24075 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24076 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
24077 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
24078 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
24079 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
24080 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
24081 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
24082 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24083 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24084 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
24085 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
24086
24087 /* Monadic operations. */
24088 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24089 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24090 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24091
24092 /* Dyadic operations. */
24093 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24094 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24095 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24096 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24097 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24098 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24099 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24100 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24101 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24102
24103 /* Comparisons. */
24104 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24105 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
24106 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
24107 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
24108
24109 /* Instructions which may belong to either the Neon or VFP instruction sets.
24110 Individual encoder functions perform additional architecture checks. */
24111 #undef ARM_VARIANT
24112 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24113 #undef THUMB_VARIANT
24114 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
24115
24116 /* These mnemonics are unique to VFP. */
24117 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
24118 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
24119 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24120 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24121 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24122 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
24123 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
24124 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
24125
24126 /* Mnemonics shared by Neon and VFP. */
24127 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
24128
24129 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24130 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24131 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24132 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24133 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24134 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
24135
24136 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
24137 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
24138 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
24139 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
24140
24141
24142 /* NOTE: All VMOV encoding is special-cased! */
24143 NCE(vmovq, 0, 1, (VMOV), neon_mov),
24144
24145 #undef THUMB_VARIANT
24146 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
24147 by different feature bits. Since we are setting the Thumb guard, we can
24148 require Thumb-1 which makes it a nop guard and set the right feature bit in
24149 do_vldr_vstr (). */
24150 #define THUMB_VARIANT & arm_ext_v4t
24151 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24152 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
24153
24154 #undef ARM_VARIANT
24155 #define ARM_VARIANT & arm_ext_fp16
24156 #undef THUMB_VARIANT
24157 #define THUMB_VARIANT & arm_ext_fp16
24158 /* New instructions added from v8.2, allowing the extraction and insertion of
24159 the upper 16 bits of a 32-bit vector register. */
24160 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
24161 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
24162
24163 /* New backported fma/fms instructions optional in v8.2. */
24164 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
24165 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
24166
24167 #undef THUMB_VARIANT
24168 #define THUMB_VARIANT & fpu_neon_ext_v1
24169 #undef ARM_VARIANT
24170 #define ARM_VARIANT & fpu_neon_ext_v1
24171
24172 /* Data processing with three registers of the same length. */
24173 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
24174 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
24175 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
24176 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24177 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24178 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
24179 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
24180 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24181 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
24182 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24183 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
24184 /* If not immediate, fall back to neon_dyadic_i64_su.
24185 shl_imm should accept I8 I16 I32 I64,
24186 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
24187 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
24188 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
24189 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
24190 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
24191 /* Logic ops, types optional & ignored. */
24192 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24193 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24194 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24195 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
24196 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
24197 /* Bitfield ops, untyped. */
24198 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24199 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24200 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24201 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24202 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
24203 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
24204 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
24205 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24206 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24207 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
24208 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
24209 back to neon_dyadic_if_su. */
24210 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24211 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24212 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
24213 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
24214 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24215 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24216 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
24217 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
24218 /* Comparison. Type I8 I16 I32 F32. */
24219 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
24220 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
24221 /* As above, D registers only. */
24222 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24223 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
24224 /* Int and float variants, signedness unimportant. */
24225 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24226 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
24227 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
24228 /* Add/sub take types I8 I16 I32 I64 F32. */
24229 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24230 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
24231 /* vtst takes sizes 8, 16, 32. */
24232 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
24233 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
24234 /* VMUL takes I8 I16 I32 F32 P8. */
24235 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
24236 /* VQD{R}MULH takes S16 S32. */
24237 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24238 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
24239 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24240 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24241 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
24242 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
24243 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24244 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24245 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
24246 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
24247 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24248 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24249 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
24250 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
24251 /* ARM v8.1 extension. */
24252 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24253 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
24254 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
24255
24256 /* Two address, int/float. Types S8 S16 S32 F32. */
24257 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
24258 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
24259
24260 /* Data processing with two registers and a shift amount. */
24261 /* Right shifts, and variants with rounding.
24262 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
24263 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24264 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24265 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
24266 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
24267 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24268 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24269 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
24270 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
24271 /* Shift and insert. Sizes accepted 8 16 32 64. */
24272 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
24273 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
24274 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
24275 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
24276 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
24277 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
24278 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
24279 /* Right shift immediate, saturating & narrowing, with rounding variants.
24280 Types accepted S16 S32 S64 U16 U32 U64. */
24281 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24282 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
24283 /* As above, unsigned. Types accepted S16 S32 S64. */
24284 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24285 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
24286 /* Right shift narrowing. Types accepted I16 I32 I64. */
24287 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24288 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
24289 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
24290 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
24291 /* CVT with optional immediate for fixed-point variant. */
24292 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
24293
24294 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
24295
24296 /* Data processing, three registers of different lengths. */
24297 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
24298 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
24299 /* If not scalar, fall back to neon_dyadic_long.
24300 Vector types as above, scalar types S16 S32 U16 U32. */
24301 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24302 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
24303 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
24304 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24305 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
24306 /* Dyadic, narrowing insns. Types I16 I32 I64. */
24307 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24308 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24309 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24310 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
24311 /* Saturating doubling multiplies. Types S16 S32. */
24312 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24313 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24314 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
24315 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
24316 S16 S32 U16 U32. */
24317 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
24318
24319 /* Extract. Size 8. */
24320 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
24321 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
24322
24323 /* Two registers, miscellaneous. */
24324 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
24325 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
24326 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
24327 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
24328 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
24329 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
24330 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
24331 /* Vector replicate. Sizes 8 16 32. */
24332 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
24333 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
24334 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
24335 /* VMOVN. Types I16 I32 I64. */
24336 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
24337 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
24338 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
24339 /* VQMOVUN. Types S16 S32 S64. */
24340 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
24341 /* VZIP / VUZP. Sizes 8 16 32. */
24342 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
24343 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
24344 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
24345 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
24346 /* VQABS / VQNEG. Types S8 S16 S32. */
24347 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
24348 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
24349 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
24350 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
24351 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
24352 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
24353 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
24354 /* Reciprocal estimates. Types U32 F16 F32. */
24355 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
24356 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
24357 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
24358 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
24359 /* VCLS. Types S8 S16 S32. */
24360 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
24361 /* VCLZ. Types I8 I16 I32. */
24362 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
24363 /* VCNT. Size 8. */
24364 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
24365 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
24366 /* Two address, untyped. */
24367 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
24368 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
24369 /* VTRN. Sizes 8 16 32. */
24370 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
24371 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
24372
24373 /* Table lookup. Size 8. */
24374 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24375 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
24376
24377 #undef THUMB_VARIANT
24378 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
24379 #undef ARM_VARIANT
24380 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
24381
24382 /* Neon element/structure load/store. */
24383 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24384 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
24385 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24386 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
24387 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24388 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
24389 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24390 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
24391
24392 #undef THUMB_VARIANT
24393 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
24394 #undef ARM_VARIANT
24395 #define ARM_VARIANT & fpu_vfp_ext_v3xd
24396 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
24397 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24398 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24399 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24400 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24401 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24402 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24403 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
24404 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
24405
24406 #undef THUMB_VARIANT
24407 #define THUMB_VARIANT & fpu_vfp_ext_v3
24408 #undef ARM_VARIANT
24409 #define ARM_VARIANT & fpu_vfp_ext_v3
24410
24411 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
24412 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24413 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24414 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24415 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24416 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24417 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24418 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
24419 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
24420
24421 #undef ARM_VARIANT
24422 #define ARM_VARIANT & fpu_vfp_ext_fma
24423 #undef THUMB_VARIANT
24424 #define THUMB_VARIANT & fpu_vfp_ext_fma
24425 /* Mnemonics shared by Neon, VFP and MVE. These are included in the
24426 VFP FMA variant; NEON and VFP FMA always includes the NEON
24427 FMA instructions. */
24428 mnCEF(vfma, _vfma, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_fmac),
24429 mnCEF(vfms, _vfms, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), neon_fmac),
24430
24431 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
24432 the v form should always be used. */
24433 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24434 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
24435 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24436 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
24437 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24438 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
24439
24440 #undef THUMB_VARIANT
24441 #undef ARM_VARIANT
24442 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
24443
24444 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24445 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24446 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24447 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24448 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24449 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
24450 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
24451 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
24452
24453 #undef ARM_VARIANT
24454 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
24455
24456 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
24457 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
24458 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
24459 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
24460 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
24461 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
24462 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
24463 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
24464 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
24465 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24466 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24467 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
24468 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24469 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24470 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
24471 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24472 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24473 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
24474 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
24475 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
24476 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24477 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24478 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24479 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24480 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24481 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
24482 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
24483 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
24484 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
24485 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
24486 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
24487 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
24488 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
24489 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
24490 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
24491 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
24492 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
24493 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24494 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24495 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24496 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24497 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24498 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24499 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24500 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24501 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24502 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
24503 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24504 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24505 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24506 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24507 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24508 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24509 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24510 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24511 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24512 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24513 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24514 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24515 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24516 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24517 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24518 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24519 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24520 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24521 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24522 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24523 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24524 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24525 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24526 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24527 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24528 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24529 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24530 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24531 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24532 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24533 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24534 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24535 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24536 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24537 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24538 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24539 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24540 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24541 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24542 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24543 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24544 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
24545 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24546 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24547 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24548 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24549 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24550 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24551 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24552 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24553 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24554 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24555 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24556 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24557 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24558 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24559 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24560 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24561 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24562 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24563 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24564 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24565 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24566 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
24567 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24568 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24569 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24570 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24571 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24572 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24573 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24574 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24575 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24576 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24577 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24578 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24579 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24580 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24581 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24582 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24583 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
24584 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
24585 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24586 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
24587 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
24588 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
24589 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24590 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24591 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24592 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24593 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24594 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24595 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24596 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24597 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24598 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
24599 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
24600 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
24601 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
24602 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
24603 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
24604 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24605 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24606 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24607 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
24608 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
24609 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
24610 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
24611 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
24612 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
24613 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24614 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24615 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24616 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24617 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
24618
24619 #undef ARM_VARIANT
24620 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
24621
24622 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
24623 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
24624 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
24625 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
24626 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
24627 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
24628 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24629 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24630 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24631 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24632 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24633 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24634 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24635 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24636 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24637 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24638 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24639 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24640 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24641 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24642 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
24643 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24644 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24645 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24646 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24647 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24648 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24649 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24650 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24651 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24652 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24653 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24654 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24655 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24656 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24657 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24658 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24659 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24660 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24661 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24662 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24663 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24664 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24665 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24666 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24667 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24668 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24669 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24670 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24671 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24672 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24673 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24674 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24675 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24676 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24677 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24678 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
24679
24680 #undef ARM_VARIANT
24681 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
24682
24683 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24684 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24685 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24686 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24687 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
24688 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
24689 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
24690 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
24691 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
24692 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
24693 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
24694 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
24695 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
24696 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
24697 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
24698 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
24699 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
24700 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
24701 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
24702 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
24703 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
24704 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
24705 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
24706 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
24707 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
24708 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
24709 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
24710 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
24711 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
24712 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
24713 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
24714 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
24715 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
24716 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
24717 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
24718 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
24719 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
24720 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
24721 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
24722 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
24723 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
24724 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
24725 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
24726 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
24727 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
24728 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
24729 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
24730 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
24731 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
24732 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
24733 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
24734 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
24735 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
24736 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
24737 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
24738 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
24739 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
24740 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
24741 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
24742 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
24743 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
24744 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
24745 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
24746 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
24747 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24748 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24749 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24750 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24751 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24752 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
24753 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24754 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
24755 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24756 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
24757 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24758 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
24759
24760 /* ARMv8.5-A instructions. */
24761 #undef ARM_VARIANT
24762 #define ARM_VARIANT & arm_ext_sb
24763 #undef THUMB_VARIANT
24764 #define THUMB_VARIANT & arm_ext_sb
24765 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
24766
24767 #undef ARM_VARIANT
24768 #define ARM_VARIANT & arm_ext_predres
24769 #undef THUMB_VARIANT
24770 #define THUMB_VARIANT & arm_ext_predres
24771 CE("cfprctx", e070f93, 1, (RRnpc), rd),
24772 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
24773 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
24774
24775 /* ARMv8-M instructions. */
24776 #undef ARM_VARIANT
24777 #define ARM_VARIANT NULL
24778 #undef THUMB_VARIANT
24779 #define THUMB_VARIANT & arm_ext_v8m
24780 ToU("sg", e97fe97f, 0, (), noargs),
24781 ToC("blxns", 4784, 1, (RRnpc), t_blx),
24782 ToC("bxns", 4704, 1, (RRnpc), t_bx),
24783 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
24784 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
24785 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
24786 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
24787
24788 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
24789 instructions behave as nop if no VFP is present. */
24790 #undef THUMB_VARIANT
24791 #define THUMB_VARIANT & arm_ext_v8m_main
24792 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
24793 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
24794
24795 /* Armv8.1-M Mainline instructions. */
24796 #undef THUMB_VARIANT
24797 #define THUMB_VARIANT & arm_ext_v8_1m_main
24798 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
24799 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
24800 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
24801 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
24802 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
24803
24804 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
24805 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
24806 toU("le", _le, 2, (oLR, EXP), t_loloop),
24807
24808 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
24809 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
24810
24811 #undef THUMB_VARIANT
24812 #define THUMB_VARIANT & mve_ext
24813
24814 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24815 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24816 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24817 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24818 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24819 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24820 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24821 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24822 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24823 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24824 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24825 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24826 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24827 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24828 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
24829
24830 ToC("vpst", fe710f4d, 0, (), mve_vpt),
24831 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
24832 ToC("vpste", fe718f4d, 0, (), mve_vpt),
24833 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
24834 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
24835 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
24836 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
24837 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
24838 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
24839 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
24840 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
24841 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
24842 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
24843 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
24844 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
24845
24846 /* MVE and MVE FP only. */
24847 mToC("vhcadd", ee000f00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vhcadd),
24848 mCEF(vadc, _vadc, 3, (RMQ, RMQ, RMQ), mve_vadc),
24849 mCEF(vadci, _vadci, 3, (RMQ, RMQ, RMQ), mve_vadc),
24850 mToC("vsbc", fe300f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24851 mToC("vsbci", fe301f00, 3, (RMQ, RMQ, RMQ), mve_vsbc),
24852 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
24853 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
24854 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24855 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24856 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24857 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24858 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24859 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24860 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
24861 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
24862 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
24863 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
24864
24865 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24866 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24867 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24868 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24869 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24870 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24871 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24872 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
24873 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24874 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24875 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24876 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
24877 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24878 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24879 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24880 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24881 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24882 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24883 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24884 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
24885
24886 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
24887 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
24888 mCEF(vbrsr, _vbrsr, 3, (RMQ, RMQ, RR), mve_vbrsr),
24889 mCEF(vaddlv, _vaddlv, 3, (RRe, RRo, RMQ), mve_vaddlv),
24890 mCEF(vaddlva, _vaddlva, 3, (RRe, RRo, RMQ), mve_vaddlv),
24891 mCEF(vaddv, _vaddv, 2, (RRe, RMQ), mve_vaddv),
24892 mCEF(vaddva, _vaddva, 2, (RRe, RMQ), mve_vaddv),
24893 mCEF(vddup, _vddup, 3, (RMQ, RRe, EXPi), mve_viddup),
24894 mCEF(vdwdup, _vdwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24895 mCEF(vidup, _vidup, 3, (RMQ, RRe, EXPi), mve_viddup),
24896 mCEF(viwdup, _viwdup, 4, (RMQ, RRe, RR, EXPi), mve_viddup),
24897 mToC("vmaxa", ee330e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24898 mToC("vmina", ee331e81, 2, (RMQ, RMQ), mve_vmaxa_vmina),
24899 mCEF(vmaxv, _vmaxv, 2, (RR, RMQ), mve_vmaxv),
24900 mCEF(vmaxav, _vmaxav, 2, (RR, RMQ), mve_vmaxv),
24901 mCEF(vminv, _vminv, 2, (RR, RMQ), mve_vmaxv),
24902 mCEF(vminav, _vminav, 2, (RR, RMQ), mve_vmaxv),
24903
24904 mCEF(vmlaldav, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24905 mCEF(vmlaldava, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24906 mCEF(vmlaldavx, _vmlaldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24907 mCEF(vmlaldavax, _vmlaldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24908 mCEF(vmlalv, _vmlaldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24909 mCEF(vmlalva, _vmlaldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24910 mCEF(vmlsldav, _vmlsldav, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24911 mCEF(vmlsldava, _vmlsldava, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24912 mCEF(vmlsldavx, _vmlsldavx, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24913 mCEF(vmlsldavax, _vmlsldavax, 4, (RRe, RRo, RMQ, RMQ), mve_vmlaldav),
24914 mToC("vrmlaldavh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24915 mToC("vrmlaldavha",ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24916 mCEF(vrmlaldavhx, _vrmlaldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24917 mCEF(vrmlaldavhax, _vrmlaldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24918 mToC("vrmlalvh", ee800f00, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24919 mToC("vrmlalvha", ee800f20, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24920 mCEF(vrmlsldavh, _vrmlsldavh, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24921 mCEF(vrmlsldavha, _vrmlsldavha, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24922 mCEF(vrmlsldavhx, _vrmlsldavhx, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24923 mCEF(vrmlsldavhax, _vrmlsldavhax, 4, (RRe, RR, RMQ, RMQ), mve_vrmlaldavh),
24924
24925 mToC("vmlas", ee011e40, 3, (RMQ, RMQ, RR), mve_vmlas),
24926 mToC("vmulh", ee010e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24927 mToC("vrmulh", ee011e01, 3, (RMQ, RMQ, RMQ), mve_vmulh),
24928 mToC("vpnot", fe310f4d, 0, (), mve_vpnot),
24929 mToC("vpsel", fe310f01, 3, (RMQ, RMQ, RMQ), mve_vpsel),
24930
24931 mToC("vqdmladh", ee000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24932 mToC("vqdmladhx", ee001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24933 mToC("vqrdmladh", ee000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24934 mToC("vqrdmladhx",ee001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24935 mToC("vqdmlsdh", fe000e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24936 mToC("vqdmlsdhx", fe001e00, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24937 mToC("vqrdmlsdh", fe000e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24938 mToC("vqrdmlsdhx",fe001e01, 3, (RMQ, RMQ, RMQ), mve_vqdmladh),
24939 mToC("vqdmlah", ee000e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24940 mToC("vqdmlash", ee001e60, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24941 mToC("vqrdmlash", ee001e40, 3, (RMQ, RMQ, RR), mve_vqdmlah),
24942 mToC("vqdmullt", ee301f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24943 mToC("vqdmullb", ee300f00, 3, (RMQ, RMQ, RMQRR), mve_vqdmull),
24944 mCEF(vqmovnt, _vqmovnt, 2, (RMQ, RMQ), mve_vqmovn),
24945 mCEF(vqmovnb, _vqmovnb, 2, (RMQ, RMQ), mve_vqmovn),
24946 mCEF(vqmovunt, _vqmovunt, 2, (RMQ, RMQ), mve_vqmovn),
24947 mCEF(vqmovunb, _vqmovunb, 2, (RMQ, RMQ), mve_vqmovn),
24948
24949 #undef THUMB_VARIANT
24950 #define THUMB_VARIANT & mve_fp_ext
24951 mToC("vcmul", ee300e00, 4, (RMQ, RMQ, RMQ, EXPi), mve_vcmul),
24952 mToC("vfmas", ee311e40, 3, (RMQ, RMQ, RR), mve_vfmas),
24953 mToC("vmaxnma", ee3f0e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24954 mToC("vminnma", ee3f1e81, 2, (RMQ, RMQ), mve_vmaxnma_vminnma),
24955 mToC("vmaxnmv", eeee0f00, 2, (RR, RMQ), mve_vmaxnmv),
24956 mToC("vmaxnmav",eeec0f00, 2, (RR, RMQ), mve_vmaxnmv),
24957 mToC("vminnmv", eeee0f80, 2, (RR, RMQ), mve_vmaxnmv),
24958 mToC("vminnmav",eeec0f80, 2, (RR, RMQ), mve_vmaxnmv),
24959
24960 #undef ARM_VARIANT
24961 #define ARM_VARIANT & fpu_vfp_ext_v1
24962 #undef THUMB_VARIANT
24963 #define THUMB_VARIANT & arm_ext_v6t2
24964 mnCEF(vmla, _vmla, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mac_maybe_scalar),
24965 mnCEF(vmul, _vmul, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ_RR), neon_mul),
24966
24967 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
24968
24969 #undef ARM_VARIANT
24970 #define ARM_VARIANT & fpu_vfp_ext_v1xd
24971
24972 MNCE(vmov, 0, 1, (VMOV), neon_mov),
24973 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
24974 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
24975 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
24976
24977 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
24978 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24979 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
24980
24981 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24982 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
24983
24984 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
24985 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
24986
24987 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24988 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
24989
24990 #undef ARM_VARIANT
24991 #define ARM_VARIANT & fpu_vfp_ext_v2
24992
24993 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
24994 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
24995 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
24996 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
24997
24998 #undef ARM_VARIANT
24999 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
25000 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
25001 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
25002 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
25003 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
25004 mnUF(vmaxnm, _vmaxnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25005 mnUF(vminnm, _vminnm, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQ), vmaxnm),
25006
25007 #undef ARM_VARIANT
25008 #define ARM_VARIANT & fpu_neon_ext_v1
25009 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25010 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
25011 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25012 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
25013 mnUF(vand, _vand, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25014 mnUF(vbic, _vbic, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25015 mnUF(vorr, _vorr, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25016 mnUF(vorn, _vorn, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_Ibig), neon_logic),
25017 mnUF(veor, _veor, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_logic),
25018 MNUF(vcls, 1b00400, 2, (RNDQMQ, RNDQMQ), neon_cls),
25019 MNUF(vclz, 1b00480, 2, (RNDQMQ, RNDQMQ), neon_clz),
25020 mnCE(vdup, _vdup, 2, (RNDQMQ, RR_RNSC), neon_dup),
25021 MNUF(vhadd, 00000000, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25022 MNUF(vrhadd, 00000100, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_i_su),
25023 MNUF(vhsub, 00000200, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i_su),
25024 mnUF(vmin, _vmin, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25025 mnUF(vmax, _vmax, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
25026 MNUF(vqadd, 0000010, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25027 MNUF(vqsub, 0000210, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_dyadic_i64_su),
25028 mnUF(vmvn, _vmvn, 2, (RNDQMQ, RNDQMQ_Ibig), neon_mvn),
25029 MNUF(vqabs, 1b00700, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25030 MNUF(vqneg, 1b00780, 2, (RNDQMQ, RNDQMQ), neon_sat_abs_neg),
25031 mnUF(vqrdmlah, _vqrdmlah,3, (RNDQMQ, oRNDQMQ, RNDQ_RNSC_RR), neon_qrdmlah),
25032 mnUF(vqdmulh, _vqdmulh, 3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25033 mnUF(vqrdmulh, _vqrdmulh,3, (RNDQMQ, oRNDQMQ, RNDQMQ_RNSC_RR), neon_qdmulh),
25034 MNUF(vqrshl, 0000510, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25035 MNUF(vrshl, 0000500, 3, (RNDQMQ, oRNDQMQ, RNDQMQR), neon_rshl),
25036
25037 #undef ARM_VARIANT
25038 #define ARM_VARIANT & arm_ext_v8_3
25039 #undef THUMB_VARIANT
25040 #define THUMB_VARIANT & arm_ext_v6t2_v8m
25041 MNUF (vcadd, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ, EXPi), vcadd),
25042 MNUF (vcmla, 0, 4, (RNDQMQ, RNDQMQ, RNDQMQ_RNSC, EXPi), vcmla),
25043 };
25044 #undef ARM_VARIANT
25045 #undef THUMB_VARIANT
25046 #undef TCE
25047 #undef TUE
25048 #undef TUF
25049 #undef TCC
25050 #undef cCE
25051 #undef cCL
25052 #undef C3E
25053 #undef C3
25054 #undef CE
25055 #undef CM
25056 #undef CL
25057 #undef UE
25058 #undef UF
25059 #undef UT
25060 #undef NUF
25061 #undef nUF
25062 #undef NCE
25063 #undef nCE
25064 #undef OPS0
25065 #undef OPS1
25066 #undef OPS2
25067 #undef OPS3
25068 #undef OPS4
25069 #undef OPS5
25070 #undef OPS6
25071 #undef do_0
25072 #undef ToC
25073 #undef toC
25074 #undef ToU
25075 #undef toU
25076 \f
25077 /* MD interface: bits in the object file. */
25078
25079 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
25080 for use in the a.out file, and stores them in the array pointed to by buf.
25081 This knows about the endian-ness of the target machine and does
25082 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
25083 2 (short) and 4 (long) Floating numbers are put out as a series of
25084 LITTLENUMS (shorts, here at least). */
25085
25086 void
25087 md_number_to_chars (char * buf, valueT val, int n)
25088 {
25089 if (target_big_endian)
25090 number_to_chars_bigendian (buf, val, n);
25091 else
25092 number_to_chars_littleendian (buf, val, n);
25093 }
25094
25095 static valueT
25096 md_chars_to_number (char * buf, int n)
25097 {
25098 valueT result = 0;
25099 unsigned char * where = (unsigned char *) buf;
25100
25101 if (target_big_endian)
25102 {
25103 while (n--)
25104 {
25105 result <<= 8;
25106 result |= (*where++ & 255);
25107 }
25108 }
25109 else
25110 {
25111 while (n--)
25112 {
25113 result <<= 8;
25114 result |= (where[n] & 255);
25115 }
25116 }
25117
25118 return result;
25119 }
25120
25121 /* MD interface: Sections. */
25122
25123 /* Calculate the maximum variable size (i.e., excluding fr_fix)
25124 that an rs_machine_dependent frag may reach. */
25125
25126 unsigned int
25127 arm_frag_max_var (fragS *fragp)
25128 {
25129 /* We only use rs_machine_dependent for variable-size Thumb instructions,
25130 which are either THUMB_SIZE (2) or INSN_SIZE (4).
25131
25132 Note that we generate relaxable instructions even for cases that don't
25133 really need it, like an immediate that's a trivial constant. So we're
25134 overestimating the instruction size for some of those cases. Rather
25135 than putting more intelligence here, it would probably be better to
25136 avoid generating a relaxation frag in the first place when it can be
25137 determined up front that a short instruction will suffice. */
25138
25139 gas_assert (fragp->fr_type == rs_machine_dependent);
25140 return INSN_SIZE;
25141 }
25142
25143 /* Estimate the size of a frag before relaxing. Assume everything fits in
25144 2 bytes. */
25145
25146 int
25147 md_estimate_size_before_relax (fragS * fragp,
25148 segT segtype ATTRIBUTE_UNUSED)
25149 {
25150 fragp->fr_var = 2;
25151 return 2;
25152 }
25153
25154 /* Convert a machine dependent frag. */
25155
25156 void
25157 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
25158 {
25159 unsigned long insn;
25160 unsigned long old_op;
25161 char *buf;
25162 expressionS exp;
25163 fixS *fixp;
25164 int reloc_type;
25165 int pc_rel;
25166 int opcode;
25167
25168 buf = fragp->fr_literal + fragp->fr_fix;
25169
25170 old_op = bfd_get_16(abfd, buf);
25171 if (fragp->fr_symbol)
25172 {
25173 exp.X_op = O_symbol;
25174 exp.X_add_symbol = fragp->fr_symbol;
25175 }
25176 else
25177 {
25178 exp.X_op = O_constant;
25179 }
25180 exp.X_add_number = fragp->fr_offset;
25181 opcode = fragp->fr_subtype;
25182 switch (opcode)
25183 {
25184 case T_MNEM_ldr_pc:
25185 case T_MNEM_ldr_pc2:
25186 case T_MNEM_ldr_sp:
25187 case T_MNEM_str_sp:
25188 case T_MNEM_ldr:
25189 case T_MNEM_ldrb:
25190 case T_MNEM_ldrh:
25191 case T_MNEM_str:
25192 case T_MNEM_strb:
25193 case T_MNEM_strh:
25194 if (fragp->fr_var == 4)
25195 {
25196 insn = THUMB_OP32 (opcode);
25197 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
25198 {
25199 insn |= (old_op & 0x700) << 4;
25200 }
25201 else
25202 {
25203 insn |= (old_op & 7) << 12;
25204 insn |= (old_op & 0x38) << 13;
25205 }
25206 insn |= 0x00000c00;
25207 put_thumb32_insn (buf, insn);
25208 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
25209 }
25210 else
25211 {
25212 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
25213 }
25214 pc_rel = (opcode == T_MNEM_ldr_pc2);
25215 break;
25216 case T_MNEM_adr:
25217 if (fragp->fr_var == 4)
25218 {
25219 insn = THUMB_OP32 (opcode);
25220 insn |= (old_op & 0xf0) << 4;
25221 put_thumb32_insn (buf, insn);
25222 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
25223 }
25224 else
25225 {
25226 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25227 exp.X_add_number -= 4;
25228 }
25229 pc_rel = 1;
25230 break;
25231 case T_MNEM_mov:
25232 case T_MNEM_movs:
25233 case T_MNEM_cmp:
25234 case T_MNEM_cmn:
25235 if (fragp->fr_var == 4)
25236 {
25237 int r0off = (opcode == T_MNEM_mov
25238 || opcode == T_MNEM_movs) ? 0 : 8;
25239 insn = THUMB_OP32 (opcode);
25240 insn = (insn & 0xe1ffffff) | 0x10000000;
25241 insn |= (old_op & 0x700) << r0off;
25242 put_thumb32_insn (buf, insn);
25243 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25244 }
25245 else
25246 {
25247 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
25248 }
25249 pc_rel = 0;
25250 break;
25251 case T_MNEM_b:
25252 if (fragp->fr_var == 4)
25253 {
25254 insn = THUMB_OP32(opcode);
25255 put_thumb32_insn (buf, insn);
25256 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
25257 }
25258 else
25259 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
25260 pc_rel = 1;
25261 break;
25262 case T_MNEM_bcond:
25263 if (fragp->fr_var == 4)
25264 {
25265 insn = THUMB_OP32(opcode);
25266 insn |= (old_op & 0xf00) << 14;
25267 put_thumb32_insn (buf, insn);
25268 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
25269 }
25270 else
25271 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
25272 pc_rel = 1;
25273 break;
25274 case T_MNEM_add_sp:
25275 case T_MNEM_add_pc:
25276 case T_MNEM_inc_sp:
25277 case T_MNEM_dec_sp:
25278 if (fragp->fr_var == 4)
25279 {
25280 /* ??? Choose between add and addw. */
25281 insn = THUMB_OP32 (opcode);
25282 insn |= (old_op & 0xf0) << 4;
25283 put_thumb32_insn (buf, insn);
25284 if (opcode == T_MNEM_add_pc)
25285 reloc_type = BFD_RELOC_ARM_T32_IMM12;
25286 else
25287 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25288 }
25289 else
25290 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25291 pc_rel = 0;
25292 break;
25293
25294 case T_MNEM_addi:
25295 case T_MNEM_addis:
25296 case T_MNEM_subi:
25297 case T_MNEM_subis:
25298 if (fragp->fr_var == 4)
25299 {
25300 insn = THUMB_OP32 (opcode);
25301 insn |= (old_op & 0xf0) << 4;
25302 insn |= (old_op & 0xf) << 16;
25303 put_thumb32_insn (buf, insn);
25304 if (insn & (1 << 20))
25305 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
25306 else
25307 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
25308 }
25309 else
25310 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
25311 pc_rel = 0;
25312 break;
25313 default:
25314 abort ();
25315 }
25316 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
25317 (enum bfd_reloc_code_real) reloc_type);
25318 fixp->fx_file = fragp->fr_file;
25319 fixp->fx_line = fragp->fr_line;
25320 fragp->fr_fix += fragp->fr_var;
25321
25322 /* Set whether we use thumb-2 ISA based on final relaxation results. */
25323 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
25324 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
25325 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
25326 }
25327
25328 /* Return the size of a relaxable immediate operand instruction.
25329 SHIFT and SIZE specify the form of the allowable immediate. */
25330 static int
25331 relax_immediate (fragS *fragp, int size, int shift)
25332 {
25333 offsetT offset;
25334 offsetT mask;
25335 offsetT low;
25336
25337 /* ??? Should be able to do better than this. */
25338 if (fragp->fr_symbol)
25339 return 4;
25340
25341 low = (1 << shift) - 1;
25342 mask = (1 << (shift + size)) - (1 << shift);
25343 offset = fragp->fr_offset;
25344 /* Force misaligned offsets to 32-bit variant. */
25345 if (offset & low)
25346 return 4;
25347 if (offset & ~mask)
25348 return 4;
25349 return 2;
25350 }
25351
25352 /* Get the address of a symbol during relaxation. */
25353 static addressT
25354 relaxed_symbol_addr (fragS *fragp, long stretch)
25355 {
25356 fragS *sym_frag;
25357 addressT addr;
25358 symbolS *sym;
25359
25360 sym = fragp->fr_symbol;
25361 sym_frag = symbol_get_frag (sym);
25362 know (S_GET_SEGMENT (sym) != absolute_section
25363 || sym_frag == &zero_address_frag);
25364 addr = S_GET_VALUE (sym) + fragp->fr_offset;
25365
25366 /* If frag has yet to be reached on this pass, assume it will
25367 move by STRETCH just as we did. If this is not so, it will
25368 be because some frag between grows, and that will force
25369 another pass. */
25370
25371 if (stretch != 0
25372 && sym_frag->relax_marker != fragp->relax_marker)
25373 {
25374 fragS *f;
25375
25376 /* Adjust stretch for any alignment frag. Note that if have
25377 been expanding the earlier code, the symbol may be
25378 defined in what appears to be an earlier frag. FIXME:
25379 This doesn't handle the fr_subtype field, which specifies
25380 a maximum number of bytes to skip when doing an
25381 alignment. */
25382 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
25383 {
25384 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
25385 {
25386 if (stretch < 0)
25387 stretch = - ((- stretch)
25388 & ~ ((1 << (int) f->fr_offset) - 1));
25389 else
25390 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
25391 if (stretch == 0)
25392 break;
25393 }
25394 }
25395 if (f != NULL)
25396 addr += stretch;
25397 }
25398
25399 return addr;
25400 }
25401
25402 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
25403 load. */
25404 static int
25405 relax_adr (fragS *fragp, asection *sec, long stretch)
25406 {
25407 addressT addr;
25408 offsetT val;
25409
25410 /* Assume worst case for symbols not known to be in the same section. */
25411 if (fragp->fr_symbol == NULL
25412 || !S_IS_DEFINED (fragp->fr_symbol)
25413 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25414 || S_IS_WEAK (fragp->fr_symbol))
25415 return 4;
25416
25417 val = relaxed_symbol_addr (fragp, stretch);
25418 addr = fragp->fr_address + fragp->fr_fix;
25419 addr = (addr + 4) & ~3;
25420 /* Force misaligned targets to 32-bit variant. */
25421 if (val & 3)
25422 return 4;
25423 val -= addr;
25424 if (val < 0 || val > 1020)
25425 return 4;
25426 return 2;
25427 }
25428
25429 /* Return the size of a relaxable add/sub immediate instruction. */
25430 static int
25431 relax_addsub (fragS *fragp, asection *sec)
25432 {
25433 char *buf;
25434 int op;
25435
25436 buf = fragp->fr_literal + fragp->fr_fix;
25437 op = bfd_get_16(sec->owner, buf);
25438 if ((op & 0xf) == ((op >> 4) & 0xf))
25439 return relax_immediate (fragp, 8, 0);
25440 else
25441 return relax_immediate (fragp, 3, 0);
25442 }
25443
25444 /* Return TRUE iff the definition of symbol S could be pre-empted
25445 (overridden) at link or load time. */
25446 static bfd_boolean
25447 symbol_preemptible (symbolS *s)
25448 {
25449 /* Weak symbols can always be pre-empted. */
25450 if (S_IS_WEAK (s))
25451 return TRUE;
25452
25453 /* Non-global symbols cannot be pre-empted. */
25454 if (! S_IS_EXTERNAL (s))
25455 return FALSE;
25456
25457 #ifdef OBJ_ELF
25458 /* In ELF, a global symbol can be marked protected, or private. In that
25459 case it can't be pre-empted (other definitions in the same link unit
25460 would violate the ODR). */
25461 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
25462 return FALSE;
25463 #endif
25464
25465 /* Other global symbols might be pre-empted. */
25466 return TRUE;
25467 }
25468
25469 /* Return the size of a relaxable branch instruction. BITS is the
25470 size of the offset field in the narrow instruction. */
25471
25472 static int
25473 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
25474 {
25475 addressT addr;
25476 offsetT val;
25477 offsetT limit;
25478
25479 /* Assume worst case for symbols not known to be in the same section. */
25480 if (!S_IS_DEFINED (fragp->fr_symbol)
25481 || sec != S_GET_SEGMENT (fragp->fr_symbol)
25482 || S_IS_WEAK (fragp->fr_symbol))
25483 return 4;
25484
25485 #ifdef OBJ_ELF
25486 /* A branch to a function in ARM state will require interworking. */
25487 if (S_IS_DEFINED (fragp->fr_symbol)
25488 && ARM_IS_FUNC (fragp->fr_symbol))
25489 return 4;
25490 #endif
25491
25492 if (symbol_preemptible (fragp->fr_symbol))
25493 return 4;
25494
25495 val = relaxed_symbol_addr (fragp, stretch);
25496 addr = fragp->fr_address + fragp->fr_fix + 4;
25497 val -= addr;
25498
25499 /* Offset is a signed value *2 */
25500 limit = 1 << bits;
25501 if (val >= limit || val < -limit)
25502 return 4;
25503 return 2;
25504 }
25505
25506
25507 /* Relax a machine dependent frag. This returns the amount by which
25508 the current size of the frag should change. */
25509
25510 int
25511 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
25512 {
25513 int oldsize;
25514 int newsize;
25515
25516 oldsize = fragp->fr_var;
25517 switch (fragp->fr_subtype)
25518 {
25519 case T_MNEM_ldr_pc2:
25520 newsize = relax_adr (fragp, sec, stretch);
25521 break;
25522 case T_MNEM_ldr_pc:
25523 case T_MNEM_ldr_sp:
25524 case T_MNEM_str_sp:
25525 newsize = relax_immediate (fragp, 8, 2);
25526 break;
25527 case T_MNEM_ldr:
25528 case T_MNEM_str:
25529 newsize = relax_immediate (fragp, 5, 2);
25530 break;
25531 case T_MNEM_ldrh:
25532 case T_MNEM_strh:
25533 newsize = relax_immediate (fragp, 5, 1);
25534 break;
25535 case T_MNEM_ldrb:
25536 case T_MNEM_strb:
25537 newsize = relax_immediate (fragp, 5, 0);
25538 break;
25539 case T_MNEM_adr:
25540 newsize = relax_adr (fragp, sec, stretch);
25541 break;
25542 case T_MNEM_mov:
25543 case T_MNEM_movs:
25544 case T_MNEM_cmp:
25545 case T_MNEM_cmn:
25546 newsize = relax_immediate (fragp, 8, 0);
25547 break;
25548 case T_MNEM_b:
25549 newsize = relax_branch (fragp, sec, 11, stretch);
25550 break;
25551 case T_MNEM_bcond:
25552 newsize = relax_branch (fragp, sec, 8, stretch);
25553 break;
25554 case T_MNEM_add_sp:
25555 case T_MNEM_add_pc:
25556 newsize = relax_immediate (fragp, 8, 2);
25557 break;
25558 case T_MNEM_inc_sp:
25559 case T_MNEM_dec_sp:
25560 newsize = relax_immediate (fragp, 7, 2);
25561 break;
25562 case T_MNEM_addi:
25563 case T_MNEM_addis:
25564 case T_MNEM_subi:
25565 case T_MNEM_subis:
25566 newsize = relax_addsub (fragp, sec);
25567 break;
25568 default:
25569 abort ();
25570 }
25571
25572 fragp->fr_var = newsize;
25573 /* Freeze wide instructions that are at or before the same location as
25574 in the previous pass. This avoids infinite loops.
25575 Don't freeze them unconditionally because targets may be artificially
25576 misaligned by the expansion of preceding frags. */
25577 if (stretch <= 0 && newsize > 2)
25578 {
25579 md_convert_frag (sec->owner, sec, fragp);
25580 frag_wane (fragp);
25581 }
25582
25583 return newsize - oldsize;
25584 }
25585
25586 /* Round up a section size to the appropriate boundary. */
25587
25588 valueT
25589 md_section_align (segT segment ATTRIBUTE_UNUSED,
25590 valueT size)
25591 {
25592 return size;
25593 }
25594
25595 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
25596 of an rs_align_code fragment. */
25597
25598 void
25599 arm_handle_align (fragS * fragP)
25600 {
25601 static unsigned char const arm_noop[2][2][4] =
25602 {
25603 { /* ARMv1 */
25604 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
25605 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
25606 },
25607 { /* ARMv6k */
25608 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
25609 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
25610 },
25611 };
25612 static unsigned char const thumb_noop[2][2][2] =
25613 {
25614 { /* Thumb-1 */
25615 {0xc0, 0x46}, /* LE */
25616 {0x46, 0xc0}, /* BE */
25617 },
25618 { /* Thumb-2 */
25619 {0x00, 0xbf}, /* LE */
25620 {0xbf, 0x00} /* BE */
25621 }
25622 };
25623 static unsigned char const wide_thumb_noop[2][4] =
25624 { /* Wide Thumb-2 */
25625 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
25626 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
25627 };
25628
25629 unsigned bytes, fix, noop_size;
25630 char * p;
25631 const unsigned char * noop;
25632 const unsigned char *narrow_noop = NULL;
25633 #ifdef OBJ_ELF
25634 enum mstate state;
25635 #endif
25636
25637 if (fragP->fr_type != rs_align_code)
25638 return;
25639
25640 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
25641 p = fragP->fr_literal + fragP->fr_fix;
25642 fix = 0;
25643
25644 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
25645 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
25646
25647 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
25648
25649 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
25650 {
25651 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25652 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
25653 {
25654 narrow_noop = thumb_noop[1][target_big_endian];
25655 noop = wide_thumb_noop[target_big_endian];
25656 }
25657 else
25658 noop = thumb_noop[0][target_big_endian];
25659 noop_size = 2;
25660 #ifdef OBJ_ELF
25661 state = MAP_THUMB;
25662 #endif
25663 }
25664 else
25665 {
25666 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
25667 ? selected_cpu : arm_arch_none,
25668 arm_ext_v6k) != 0]
25669 [target_big_endian];
25670 noop_size = 4;
25671 #ifdef OBJ_ELF
25672 state = MAP_ARM;
25673 #endif
25674 }
25675
25676 fragP->fr_var = noop_size;
25677
25678 if (bytes & (noop_size - 1))
25679 {
25680 fix = bytes & (noop_size - 1);
25681 #ifdef OBJ_ELF
25682 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
25683 #endif
25684 memset (p, 0, fix);
25685 p += fix;
25686 bytes -= fix;
25687 }
25688
25689 if (narrow_noop)
25690 {
25691 if (bytes & noop_size)
25692 {
25693 /* Insert a narrow noop. */
25694 memcpy (p, narrow_noop, noop_size);
25695 p += noop_size;
25696 bytes -= noop_size;
25697 fix += noop_size;
25698 }
25699
25700 /* Use wide noops for the remainder */
25701 noop_size = 4;
25702 }
25703
25704 while (bytes >= noop_size)
25705 {
25706 memcpy (p, noop, noop_size);
25707 p += noop_size;
25708 bytes -= noop_size;
25709 fix += noop_size;
25710 }
25711
25712 fragP->fr_fix += fix;
25713 }
25714
25715 /* Called from md_do_align. Used to create an alignment
25716 frag in a code section. */
25717
25718 void
25719 arm_frag_align_code (int n, int max)
25720 {
25721 char * p;
25722
25723 /* We assume that there will never be a requirement
25724 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
25725 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
25726 {
25727 char err_msg[128];
25728
25729 sprintf (err_msg,
25730 _("alignments greater than %d bytes not supported in .text sections."),
25731 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
25732 as_fatal ("%s", err_msg);
25733 }
25734
25735 p = frag_var (rs_align_code,
25736 MAX_MEM_FOR_RS_ALIGN_CODE,
25737 1,
25738 (relax_substateT) max,
25739 (symbolS *) NULL,
25740 (offsetT) n,
25741 (char *) NULL);
25742 *p = 0;
25743 }
25744
25745 /* Perform target specific initialisation of a frag.
25746 Note - despite the name this initialisation is not done when the frag
25747 is created, but only when its type is assigned. A frag can be created
25748 and used a long time before its type is set, so beware of assuming that
25749 this initialisation is performed first. */
25750
25751 #ifndef OBJ_ELF
25752 void
25753 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
25754 {
25755 /* Record whether this frag is in an ARM or a THUMB area. */
25756 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25757 }
25758
25759 #else /* OBJ_ELF is defined. */
25760 void
25761 arm_init_frag (fragS * fragP, int max_chars)
25762 {
25763 bfd_boolean frag_thumb_mode;
25764
25765 /* If the current ARM vs THUMB mode has not already
25766 been recorded into this frag then do so now. */
25767 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
25768 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
25769
25770 /* PR 21809: Do not set a mapping state for debug sections
25771 - it just confuses other tools. */
25772 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
25773 return;
25774
25775 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
25776
25777 /* Record a mapping symbol for alignment frags. We will delete this
25778 later if the alignment ends up empty. */
25779 switch (fragP->fr_type)
25780 {
25781 case rs_align:
25782 case rs_align_test:
25783 case rs_fill:
25784 mapping_state_2 (MAP_DATA, max_chars);
25785 break;
25786 case rs_align_code:
25787 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
25788 break;
25789 default:
25790 break;
25791 }
25792 }
25793
25794 /* When we change sections we need to issue a new mapping symbol. */
25795
25796 void
25797 arm_elf_change_section (void)
25798 {
25799 /* Link an unlinked unwind index table section to the .text section. */
25800 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
25801 && elf_linked_to_section (now_seg) == NULL)
25802 elf_linked_to_section (now_seg) = text_section;
25803 }
25804
25805 int
25806 arm_elf_section_type (const char * str, size_t len)
25807 {
25808 if (len == 5 && strncmp (str, "exidx", 5) == 0)
25809 return SHT_ARM_EXIDX;
25810
25811 return -1;
25812 }
25813 \f
25814 /* Code to deal with unwinding tables. */
25815
25816 static void add_unwind_adjustsp (offsetT);
25817
25818 /* Generate any deferred unwind frame offset. */
25819
25820 static void
25821 flush_pending_unwind (void)
25822 {
25823 offsetT offset;
25824
25825 offset = unwind.pending_offset;
25826 unwind.pending_offset = 0;
25827 if (offset != 0)
25828 add_unwind_adjustsp (offset);
25829 }
25830
25831 /* Add an opcode to this list for this function. Two-byte opcodes should
25832 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
25833 order. */
25834
25835 static void
25836 add_unwind_opcode (valueT op, int length)
25837 {
25838 /* Add any deferred stack adjustment. */
25839 if (unwind.pending_offset)
25840 flush_pending_unwind ();
25841
25842 unwind.sp_restored = 0;
25843
25844 if (unwind.opcode_count + length > unwind.opcode_alloc)
25845 {
25846 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
25847 if (unwind.opcodes)
25848 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
25849 unwind.opcode_alloc);
25850 else
25851 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
25852 }
25853 while (length > 0)
25854 {
25855 length--;
25856 unwind.opcodes[unwind.opcode_count] = op & 0xff;
25857 op >>= 8;
25858 unwind.opcode_count++;
25859 }
25860 }
25861
25862 /* Add unwind opcodes to adjust the stack pointer. */
25863
25864 static void
25865 add_unwind_adjustsp (offsetT offset)
25866 {
25867 valueT op;
25868
25869 if (offset > 0x200)
25870 {
25871 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
25872 char bytes[5];
25873 int n;
25874 valueT o;
25875
25876 /* Long form: 0xb2, uleb128. */
25877 /* This might not fit in a word so add the individual bytes,
25878 remembering the list is built in reverse order. */
25879 o = (valueT) ((offset - 0x204) >> 2);
25880 if (o == 0)
25881 add_unwind_opcode (0, 1);
25882
25883 /* Calculate the uleb128 encoding of the offset. */
25884 n = 0;
25885 while (o)
25886 {
25887 bytes[n] = o & 0x7f;
25888 o >>= 7;
25889 if (o)
25890 bytes[n] |= 0x80;
25891 n++;
25892 }
25893 /* Add the insn. */
25894 for (; n; n--)
25895 add_unwind_opcode (bytes[n - 1], 1);
25896 add_unwind_opcode (0xb2, 1);
25897 }
25898 else if (offset > 0x100)
25899 {
25900 /* Two short opcodes. */
25901 add_unwind_opcode (0x3f, 1);
25902 op = (offset - 0x104) >> 2;
25903 add_unwind_opcode (op, 1);
25904 }
25905 else if (offset > 0)
25906 {
25907 /* Short opcode. */
25908 op = (offset - 4) >> 2;
25909 add_unwind_opcode (op, 1);
25910 }
25911 else if (offset < 0)
25912 {
25913 offset = -offset;
25914 while (offset > 0x100)
25915 {
25916 add_unwind_opcode (0x7f, 1);
25917 offset -= 0x100;
25918 }
25919 op = ((offset - 4) >> 2) | 0x40;
25920 add_unwind_opcode (op, 1);
25921 }
25922 }
25923
25924 /* Finish the list of unwind opcodes for this function. */
25925
25926 static void
25927 finish_unwind_opcodes (void)
25928 {
25929 valueT op;
25930
25931 if (unwind.fp_used)
25932 {
25933 /* Adjust sp as necessary. */
25934 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
25935 flush_pending_unwind ();
25936
25937 /* After restoring sp from the frame pointer. */
25938 op = 0x90 | unwind.fp_reg;
25939 add_unwind_opcode (op, 1);
25940 }
25941 else
25942 flush_pending_unwind ();
25943 }
25944
25945
25946 /* Start an exception table entry. If idx is nonzero this is an index table
25947 entry. */
25948
25949 static void
25950 start_unwind_section (const segT text_seg, int idx)
25951 {
25952 const char * text_name;
25953 const char * prefix;
25954 const char * prefix_once;
25955 const char * group_name;
25956 char * sec_name;
25957 int type;
25958 int flags;
25959 int linkonce;
25960
25961 if (idx)
25962 {
25963 prefix = ELF_STRING_ARM_unwind;
25964 prefix_once = ELF_STRING_ARM_unwind_once;
25965 type = SHT_ARM_EXIDX;
25966 }
25967 else
25968 {
25969 prefix = ELF_STRING_ARM_unwind_info;
25970 prefix_once = ELF_STRING_ARM_unwind_info_once;
25971 type = SHT_PROGBITS;
25972 }
25973
25974 text_name = segment_name (text_seg);
25975 if (streq (text_name, ".text"))
25976 text_name = "";
25977
25978 if (strncmp (text_name, ".gnu.linkonce.t.",
25979 strlen (".gnu.linkonce.t.")) == 0)
25980 {
25981 prefix = prefix_once;
25982 text_name += strlen (".gnu.linkonce.t.");
25983 }
25984
25985 sec_name = concat (prefix, text_name, (char *) NULL);
25986
25987 flags = SHF_ALLOC;
25988 linkonce = 0;
25989 group_name = 0;
25990
25991 /* Handle COMDAT group. */
25992 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
25993 {
25994 group_name = elf_group_name (text_seg);
25995 if (group_name == NULL)
25996 {
25997 as_bad (_("Group section `%s' has no group signature"),
25998 segment_name (text_seg));
25999 ignore_rest_of_line ();
26000 return;
26001 }
26002 flags |= SHF_GROUP;
26003 linkonce = 1;
26004 }
26005
26006 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
26007 linkonce, 0);
26008
26009 /* Set the section link for index tables. */
26010 if (idx)
26011 elf_linked_to_section (now_seg) = text_seg;
26012 }
26013
26014
26015 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
26016 personality routine data. Returns zero, or the index table value for
26017 an inline entry. */
26018
26019 static valueT
26020 create_unwind_entry (int have_data)
26021 {
26022 int size;
26023 addressT where;
26024 char *ptr;
26025 /* The current word of data. */
26026 valueT data;
26027 /* The number of bytes left in this word. */
26028 int n;
26029
26030 finish_unwind_opcodes ();
26031
26032 /* Remember the current text section. */
26033 unwind.saved_seg = now_seg;
26034 unwind.saved_subseg = now_subseg;
26035
26036 start_unwind_section (now_seg, 0);
26037
26038 if (unwind.personality_routine == NULL)
26039 {
26040 if (unwind.personality_index == -2)
26041 {
26042 if (have_data)
26043 as_bad (_("handlerdata in cantunwind frame"));
26044 return 1; /* EXIDX_CANTUNWIND. */
26045 }
26046
26047 /* Use a default personality routine if none is specified. */
26048 if (unwind.personality_index == -1)
26049 {
26050 if (unwind.opcode_count > 3)
26051 unwind.personality_index = 1;
26052 else
26053 unwind.personality_index = 0;
26054 }
26055
26056 /* Space for the personality routine entry. */
26057 if (unwind.personality_index == 0)
26058 {
26059 if (unwind.opcode_count > 3)
26060 as_bad (_("too many unwind opcodes for personality routine 0"));
26061
26062 if (!have_data)
26063 {
26064 /* All the data is inline in the index table. */
26065 data = 0x80;
26066 n = 3;
26067 while (unwind.opcode_count > 0)
26068 {
26069 unwind.opcode_count--;
26070 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26071 n--;
26072 }
26073
26074 /* Pad with "finish" opcodes. */
26075 while (n--)
26076 data = (data << 8) | 0xb0;
26077
26078 return data;
26079 }
26080 size = 0;
26081 }
26082 else
26083 /* We get two opcodes "free" in the first word. */
26084 size = unwind.opcode_count - 2;
26085 }
26086 else
26087 {
26088 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
26089 if (unwind.personality_index != -1)
26090 {
26091 as_bad (_("attempt to recreate an unwind entry"));
26092 return 1;
26093 }
26094
26095 /* An extra byte is required for the opcode count. */
26096 size = unwind.opcode_count + 1;
26097 }
26098
26099 size = (size + 3) >> 2;
26100 if (size > 0xff)
26101 as_bad (_("too many unwind opcodes"));
26102
26103 frag_align (2, 0, 0);
26104 record_alignment (now_seg, 2);
26105 unwind.table_entry = expr_build_dot ();
26106
26107 /* Allocate the table entry. */
26108 ptr = frag_more ((size << 2) + 4);
26109 /* PR 13449: Zero the table entries in case some of them are not used. */
26110 memset (ptr, 0, (size << 2) + 4);
26111 where = frag_now_fix () - ((size << 2) + 4);
26112
26113 switch (unwind.personality_index)
26114 {
26115 case -1:
26116 /* ??? Should this be a PLT generating relocation? */
26117 /* Custom personality routine. */
26118 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
26119 BFD_RELOC_ARM_PREL31);
26120
26121 where += 4;
26122 ptr += 4;
26123
26124 /* Set the first byte to the number of additional words. */
26125 data = size > 0 ? size - 1 : 0;
26126 n = 3;
26127 break;
26128
26129 /* ABI defined personality routines. */
26130 case 0:
26131 /* Three opcodes bytes are packed into the first word. */
26132 data = 0x80;
26133 n = 3;
26134 break;
26135
26136 case 1:
26137 case 2:
26138 /* The size and first two opcode bytes go in the first word. */
26139 data = ((0x80 + unwind.personality_index) << 8) | size;
26140 n = 2;
26141 break;
26142
26143 default:
26144 /* Should never happen. */
26145 abort ();
26146 }
26147
26148 /* Pack the opcodes into words (MSB first), reversing the list at the same
26149 time. */
26150 while (unwind.opcode_count > 0)
26151 {
26152 if (n == 0)
26153 {
26154 md_number_to_chars (ptr, data, 4);
26155 ptr += 4;
26156 n = 4;
26157 data = 0;
26158 }
26159 unwind.opcode_count--;
26160 n--;
26161 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
26162 }
26163
26164 /* Finish off the last word. */
26165 if (n < 4)
26166 {
26167 /* Pad with "finish" opcodes. */
26168 while (n--)
26169 data = (data << 8) | 0xb0;
26170
26171 md_number_to_chars (ptr, data, 4);
26172 }
26173
26174 if (!have_data)
26175 {
26176 /* Add an empty descriptor if there is no user-specified data. */
26177 ptr = frag_more (4);
26178 md_number_to_chars (ptr, 0, 4);
26179 }
26180
26181 return 0;
26182 }
26183
26184
26185 /* Initialize the DWARF-2 unwind information for this procedure. */
26186
26187 void
26188 tc_arm_frame_initial_instructions (void)
26189 {
26190 cfi_add_CFA_def_cfa (REG_SP, 0);
26191 }
26192 #endif /* OBJ_ELF */
26193
26194 /* Convert REGNAME to a DWARF-2 register number. */
26195
26196 int
26197 tc_arm_regname_to_dw2regnum (char *regname)
26198 {
26199 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
26200 if (reg != FAIL)
26201 return reg;
26202
26203 /* PR 16694: Allow VFP registers as well. */
26204 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
26205 if (reg != FAIL)
26206 return 64 + reg;
26207
26208 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
26209 if (reg != FAIL)
26210 return reg + 256;
26211
26212 return FAIL;
26213 }
26214
26215 #ifdef TE_PE
26216 void
26217 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
26218 {
26219 expressionS exp;
26220
26221 exp.X_op = O_secrel;
26222 exp.X_add_symbol = symbol;
26223 exp.X_add_number = 0;
26224 emit_expr (&exp, size);
26225 }
26226 #endif
26227
26228 /* MD interface: Symbol and relocation handling. */
26229
26230 /* Return the address within the segment that a PC-relative fixup is
26231 relative to. For ARM, PC-relative fixups applied to instructions
26232 are generally relative to the location of the fixup plus 8 bytes.
26233 Thumb branches are offset by 4, and Thumb loads relative to PC
26234 require special handling. */
26235
26236 long
26237 md_pcrel_from_section (fixS * fixP, segT seg)
26238 {
26239 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
26240
26241 /* If this is pc-relative and we are going to emit a relocation
26242 then we just want to put out any pipeline compensation that the linker
26243 will need. Otherwise we want to use the calculated base.
26244 For WinCE we skip the bias for externals as well, since this
26245 is how the MS ARM-CE assembler behaves and we want to be compatible. */
26246 if (fixP->fx_pcrel
26247 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
26248 || (arm_force_relocation (fixP)
26249 #ifdef TE_WINCE
26250 && !S_IS_EXTERNAL (fixP->fx_addsy)
26251 #endif
26252 )))
26253 base = 0;
26254
26255
26256 switch (fixP->fx_r_type)
26257 {
26258 /* PC relative addressing on the Thumb is slightly odd as the
26259 bottom two bits of the PC are forced to zero for the
26260 calculation. This happens *after* application of the
26261 pipeline offset. However, Thumb adrl already adjusts for
26262 this, so we need not do it again. */
26263 case BFD_RELOC_ARM_THUMB_ADD:
26264 return base & ~3;
26265
26266 case BFD_RELOC_ARM_THUMB_OFFSET:
26267 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26268 case BFD_RELOC_ARM_T32_ADD_PC12:
26269 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26270 return (base + 4) & ~3;
26271
26272 /* Thumb branches are simply offset by +4. */
26273 case BFD_RELOC_THUMB_PCREL_BRANCH5:
26274 case BFD_RELOC_THUMB_PCREL_BRANCH7:
26275 case BFD_RELOC_THUMB_PCREL_BRANCH9:
26276 case BFD_RELOC_THUMB_PCREL_BRANCH12:
26277 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26278 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26279 case BFD_RELOC_THUMB_PCREL_BFCSEL:
26280 case BFD_RELOC_ARM_THUMB_BF17:
26281 case BFD_RELOC_ARM_THUMB_BF19:
26282 case BFD_RELOC_ARM_THUMB_BF13:
26283 case BFD_RELOC_ARM_THUMB_LOOP12:
26284 return base + 4;
26285
26286 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26287 if (fixP->fx_addsy
26288 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26289 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26290 && ARM_IS_FUNC (fixP->fx_addsy)
26291 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26292 base = fixP->fx_where + fixP->fx_frag->fr_address;
26293 return base + 4;
26294
26295 /* BLX is like branches above, but forces the low two bits of PC to
26296 zero. */
26297 case BFD_RELOC_THUMB_PCREL_BLX:
26298 if (fixP->fx_addsy
26299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26300 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26301 && THUMB_IS_FUNC (fixP->fx_addsy)
26302 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26303 base = fixP->fx_where + fixP->fx_frag->fr_address;
26304 return (base + 4) & ~3;
26305
26306 /* ARM mode branches are offset by +8. However, the Windows CE
26307 loader expects the relocation not to take this into account. */
26308 case BFD_RELOC_ARM_PCREL_BLX:
26309 if (fixP->fx_addsy
26310 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26311 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26312 && ARM_IS_FUNC (fixP->fx_addsy)
26313 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26314 base = fixP->fx_where + fixP->fx_frag->fr_address;
26315 return base + 8;
26316
26317 case BFD_RELOC_ARM_PCREL_CALL:
26318 if (fixP->fx_addsy
26319 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26320 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26321 && THUMB_IS_FUNC (fixP->fx_addsy)
26322 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26323 base = fixP->fx_where + fixP->fx_frag->fr_address;
26324 return base + 8;
26325
26326 case BFD_RELOC_ARM_PCREL_BRANCH:
26327 case BFD_RELOC_ARM_PCREL_JUMP:
26328 case BFD_RELOC_ARM_PLT32:
26329 #ifdef TE_WINCE
26330 /* When handling fixups immediately, because we have already
26331 discovered the value of a symbol, or the address of the frag involved
26332 we must account for the offset by +8, as the OS loader will never see the reloc.
26333 see fixup_segment() in write.c
26334 The S_IS_EXTERNAL test handles the case of global symbols.
26335 Those need the calculated base, not just the pipe compensation the linker will need. */
26336 if (fixP->fx_pcrel
26337 && fixP->fx_addsy != NULL
26338 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26339 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
26340 return base + 8;
26341 return base;
26342 #else
26343 return base + 8;
26344 #endif
26345
26346
26347 /* ARM mode loads relative to PC are also offset by +8. Unlike
26348 branches, the Windows CE loader *does* expect the relocation
26349 to take this into account. */
26350 case BFD_RELOC_ARM_OFFSET_IMM:
26351 case BFD_RELOC_ARM_OFFSET_IMM8:
26352 case BFD_RELOC_ARM_HWLITERAL:
26353 case BFD_RELOC_ARM_LITERAL:
26354 case BFD_RELOC_ARM_CP_OFF_IMM:
26355 return base + 8;
26356
26357
26358 /* Other PC-relative relocations are un-offset. */
26359 default:
26360 return base;
26361 }
26362 }
26363
26364 static bfd_boolean flag_warn_syms = TRUE;
26365
26366 bfd_boolean
26367 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
26368 {
26369 /* PR 18347 - Warn if the user attempts to create a symbol with the same
26370 name as an ARM instruction. Whilst strictly speaking it is allowed, it
26371 does mean that the resulting code might be very confusing to the reader.
26372 Also this warning can be triggered if the user omits an operand before
26373 an immediate address, eg:
26374
26375 LDR =foo
26376
26377 GAS treats this as an assignment of the value of the symbol foo to a
26378 symbol LDR, and so (without this code) it will not issue any kind of
26379 warning or error message.
26380
26381 Note - ARM instructions are case-insensitive but the strings in the hash
26382 table are all stored in lower case, so we must first ensure that name is
26383 lower case too. */
26384 if (flag_warn_syms && arm_ops_hsh)
26385 {
26386 char * nbuf = strdup (name);
26387 char * p;
26388
26389 for (p = nbuf; *p; p++)
26390 *p = TOLOWER (*p);
26391 if (hash_find (arm_ops_hsh, nbuf) != NULL)
26392 {
26393 static struct hash_control * already_warned = NULL;
26394
26395 if (already_warned == NULL)
26396 already_warned = hash_new ();
26397 /* Only warn about the symbol once. To keep the code
26398 simple we let hash_insert do the lookup for us. */
26399 if (hash_insert (already_warned, nbuf, NULL) == NULL)
26400 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
26401 }
26402 else
26403 free (nbuf);
26404 }
26405
26406 return FALSE;
26407 }
26408
26409 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
26410 Otherwise we have no need to default values of symbols. */
26411
26412 symbolS *
26413 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
26414 {
26415 #ifdef OBJ_ELF
26416 if (name[0] == '_' && name[1] == 'G'
26417 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
26418 {
26419 if (!GOT_symbol)
26420 {
26421 if (symbol_find (name))
26422 as_bad (_("GOT already in the symbol table"));
26423
26424 GOT_symbol = symbol_new (name, undefined_section,
26425 (valueT) 0, & zero_address_frag);
26426 }
26427
26428 return GOT_symbol;
26429 }
26430 #endif
26431
26432 return NULL;
26433 }
26434
26435 /* Subroutine of md_apply_fix. Check to see if an immediate can be
26436 computed as two separate immediate values, added together. We
26437 already know that this value cannot be computed by just one ARM
26438 instruction. */
26439
26440 static unsigned int
26441 validate_immediate_twopart (unsigned int val,
26442 unsigned int * highpart)
26443 {
26444 unsigned int a;
26445 unsigned int i;
26446
26447 for (i = 0; i < 32; i += 2)
26448 if (((a = rotate_left (val, i)) & 0xff) != 0)
26449 {
26450 if (a & 0xff00)
26451 {
26452 if (a & ~ 0xffff)
26453 continue;
26454 * highpart = (a >> 8) | ((i + 24) << 7);
26455 }
26456 else if (a & 0xff0000)
26457 {
26458 if (a & 0xff000000)
26459 continue;
26460 * highpart = (a >> 16) | ((i + 16) << 7);
26461 }
26462 else
26463 {
26464 gas_assert (a & 0xff000000);
26465 * highpart = (a >> 24) | ((i + 8) << 7);
26466 }
26467
26468 return (a & 0xff) | (i << 7);
26469 }
26470
26471 return FAIL;
26472 }
26473
26474 static int
26475 validate_offset_imm (unsigned int val, int hwse)
26476 {
26477 if ((hwse && val > 255) || val > 4095)
26478 return FAIL;
26479 return val;
26480 }
26481
26482 /* Subroutine of md_apply_fix. Do those data_ops which can take a
26483 negative immediate constant by altering the instruction. A bit of
26484 a hack really.
26485 MOV <-> MVN
26486 AND <-> BIC
26487 ADC <-> SBC
26488 by inverting the second operand, and
26489 ADD <-> SUB
26490 CMP <-> CMN
26491 by negating the second operand. */
26492
26493 static int
26494 negate_data_op (unsigned long * instruction,
26495 unsigned long value)
26496 {
26497 int op, new_inst;
26498 unsigned long negated, inverted;
26499
26500 negated = encode_arm_immediate (-value);
26501 inverted = encode_arm_immediate (~value);
26502
26503 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
26504 switch (op)
26505 {
26506 /* First negates. */
26507 case OPCODE_SUB: /* ADD <-> SUB */
26508 new_inst = OPCODE_ADD;
26509 value = negated;
26510 break;
26511
26512 case OPCODE_ADD:
26513 new_inst = OPCODE_SUB;
26514 value = negated;
26515 break;
26516
26517 case OPCODE_CMP: /* CMP <-> CMN */
26518 new_inst = OPCODE_CMN;
26519 value = negated;
26520 break;
26521
26522 case OPCODE_CMN:
26523 new_inst = OPCODE_CMP;
26524 value = negated;
26525 break;
26526
26527 /* Now Inverted ops. */
26528 case OPCODE_MOV: /* MOV <-> MVN */
26529 new_inst = OPCODE_MVN;
26530 value = inverted;
26531 break;
26532
26533 case OPCODE_MVN:
26534 new_inst = OPCODE_MOV;
26535 value = inverted;
26536 break;
26537
26538 case OPCODE_AND: /* AND <-> BIC */
26539 new_inst = OPCODE_BIC;
26540 value = inverted;
26541 break;
26542
26543 case OPCODE_BIC:
26544 new_inst = OPCODE_AND;
26545 value = inverted;
26546 break;
26547
26548 case OPCODE_ADC: /* ADC <-> SBC */
26549 new_inst = OPCODE_SBC;
26550 value = inverted;
26551 break;
26552
26553 case OPCODE_SBC:
26554 new_inst = OPCODE_ADC;
26555 value = inverted;
26556 break;
26557
26558 /* We cannot do anything. */
26559 default:
26560 return FAIL;
26561 }
26562
26563 if (value == (unsigned) FAIL)
26564 return FAIL;
26565
26566 *instruction &= OPCODE_MASK;
26567 *instruction |= new_inst << DATA_OP_SHIFT;
26568 return value;
26569 }
26570
26571 /* Like negate_data_op, but for Thumb-2. */
26572
26573 static unsigned int
26574 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
26575 {
26576 int op, new_inst;
26577 int rd;
26578 unsigned int negated, inverted;
26579
26580 negated = encode_thumb32_immediate (-value);
26581 inverted = encode_thumb32_immediate (~value);
26582
26583 rd = (*instruction >> 8) & 0xf;
26584 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
26585 switch (op)
26586 {
26587 /* ADD <-> SUB. Includes CMP <-> CMN. */
26588 case T2_OPCODE_SUB:
26589 new_inst = T2_OPCODE_ADD;
26590 value = negated;
26591 break;
26592
26593 case T2_OPCODE_ADD:
26594 new_inst = T2_OPCODE_SUB;
26595 value = negated;
26596 break;
26597
26598 /* ORR <-> ORN. Includes MOV <-> MVN. */
26599 case T2_OPCODE_ORR:
26600 new_inst = T2_OPCODE_ORN;
26601 value = inverted;
26602 break;
26603
26604 case T2_OPCODE_ORN:
26605 new_inst = T2_OPCODE_ORR;
26606 value = inverted;
26607 break;
26608
26609 /* AND <-> BIC. TST has no inverted equivalent. */
26610 case T2_OPCODE_AND:
26611 new_inst = T2_OPCODE_BIC;
26612 if (rd == 15)
26613 value = FAIL;
26614 else
26615 value = inverted;
26616 break;
26617
26618 case T2_OPCODE_BIC:
26619 new_inst = T2_OPCODE_AND;
26620 value = inverted;
26621 break;
26622
26623 /* ADC <-> SBC */
26624 case T2_OPCODE_ADC:
26625 new_inst = T2_OPCODE_SBC;
26626 value = inverted;
26627 break;
26628
26629 case T2_OPCODE_SBC:
26630 new_inst = T2_OPCODE_ADC;
26631 value = inverted;
26632 break;
26633
26634 /* We cannot do anything. */
26635 default:
26636 return FAIL;
26637 }
26638
26639 if (value == (unsigned int)FAIL)
26640 return FAIL;
26641
26642 *instruction &= T2_OPCODE_MASK;
26643 *instruction |= new_inst << T2_DATA_OP_SHIFT;
26644 return value;
26645 }
26646
26647 /* Read a 32-bit thumb instruction from buf. */
26648
26649 static unsigned long
26650 get_thumb32_insn (char * buf)
26651 {
26652 unsigned long insn;
26653 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
26654 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26655
26656 return insn;
26657 }
26658
26659 /* We usually want to set the low bit on the address of thumb function
26660 symbols. In particular .word foo - . should have the low bit set.
26661 Generic code tries to fold the difference of two symbols to
26662 a constant. Prevent this and force a relocation when the first symbols
26663 is a thumb function. */
26664
26665 bfd_boolean
26666 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
26667 {
26668 if (op == O_subtract
26669 && l->X_op == O_symbol
26670 && r->X_op == O_symbol
26671 && THUMB_IS_FUNC (l->X_add_symbol))
26672 {
26673 l->X_op = O_subtract;
26674 l->X_op_symbol = r->X_add_symbol;
26675 l->X_add_number -= r->X_add_number;
26676 return TRUE;
26677 }
26678
26679 /* Process as normal. */
26680 return FALSE;
26681 }
26682
26683 /* Encode Thumb2 unconditional branches and calls. The encoding
26684 for the 2 are identical for the immediate values. */
26685
26686 static void
26687 encode_thumb2_b_bl_offset (char * buf, offsetT value)
26688 {
26689 #define T2I1I2MASK ((1 << 13) | (1 << 11))
26690 offsetT newval;
26691 offsetT newval2;
26692 addressT S, I1, I2, lo, hi;
26693
26694 S = (value >> 24) & 0x01;
26695 I1 = (value >> 23) & 0x01;
26696 I2 = (value >> 22) & 0x01;
26697 hi = (value >> 12) & 0x3ff;
26698 lo = (value >> 1) & 0x7ff;
26699 newval = md_chars_to_number (buf, THUMB_SIZE);
26700 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26701 newval |= (S << 10) | hi;
26702 newval2 &= ~T2I1I2MASK;
26703 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
26704 md_number_to_chars (buf, newval, THUMB_SIZE);
26705 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26706 }
26707
26708 void
26709 md_apply_fix (fixS * fixP,
26710 valueT * valP,
26711 segT seg)
26712 {
26713 offsetT value = * valP;
26714 offsetT newval;
26715 unsigned int newimm;
26716 unsigned long temp;
26717 int sign;
26718 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
26719
26720 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
26721
26722 /* Note whether this will delete the relocation. */
26723
26724 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
26725 fixP->fx_done = 1;
26726
26727 /* On a 64-bit host, silently truncate 'value' to 32 bits for
26728 consistency with the behaviour on 32-bit hosts. Remember value
26729 for emit_reloc. */
26730 value &= 0xffffffff;
26731 value ^= 0x80000000;
26732 value -= 0x80000000;
26733
26734 *valP = value;
26735 fixP->fx_addnumber = value;
26736
26737 /* Same treatment for fixP->fx_offset. */
26738 fixP->fx_offset &= 0xffffffff;
26739 fixP->fx_offset ^= 0x80000000;
26740 fixP->fx_offset -= 0x80000000;
26741
26742 switch (fixP->fx_r_type)
26743 {
26744 case BFD_RELOC_NONE:
26745 /* This will need to go in the object file. */
26746 fixP->fx_done = 0;
26747 break;
26748
26749 case BFD_RELOC_ARM_IMMEDIATE:
26750 /* We claim that this fixup has been processed here,
26751 even if in fact we generate an error because we do
26752 not have a reloc for it, so tc_gen_reloc will reject it. */
26753 fixP->fx_done = 1;
26754
26755 if (fixP->fx_addsy)
26756 {
26757 const char *msg = 0;
26758
26759 if (! S_IS_DEFINED (fixP->fx_addsy))
26760 msg = _("undefined symbol %s used as an immediate value");
26761 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26762 msg = _("symbol %s is in a different section");
26763 else if (S_IS_WEAK (fixP->fx_addsy))
26764 msg = _("symbol %s is weak and may be overridden later");
26765
26766 if (msg)
26767 {
26768 as_bad_where (fixP->fx_file, fixP->fx_line,
26769 msg, S_GET_NAME (fixP->fx_addsy));
26770 break;
26771 }
26772 }
26773
26774 temp = md_chars_to_number (buf, INSN_SIZE);
26775
26776 /* If the offset is negative, we should use encoding A2 for ADR. */
26777 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
26778 newimm = negate_data_op (&temp, value);
26779 else
26780 {
26781 newimm = encode_arm_immediate (value);
26782
26783 /* If the instruction will fail, see if we can fix things up by
26784 changing the opcode. */
26785 if (newimm == (unsigned int) FAIL)
26786 newimm = negate_data_op (&temp, value);
26787 /* MOV accepts both ARM modified immediate (A1 encoding) and
26788 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
26789 When disassembling, MOV is preferred when there is no encoding
26790 overlap. */
26791 if (newimm == (unsigned int) FAIL
26792 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
26793 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
26794 && !((temp >> SBIT_SHIFT) & 0x1)
26795 && value >= 0 && value <= 0xffff)
26796 {
26797 /* Clear bits[23:20] to change encoding from A1 to A2. */
26798 temp &= 0xff0fffff;
26799 /* Encoding high 4bits imm. Code below will encode the remaining
26800 low 12bits. */
26801 temp |= (value & 0x0000f000) << 4;
26802 newimm = value & 0x00000fff;
26803 }
26804 }
26805
26806 if (newimm == (unsigned int) FAIL)
26807 {
26808 as_bad_where (fixP->fx_file, fixP->fx_line,
26809 _("invalid constant (%lx) after fixup"),
26810 (unsigned long) value);
26811 break;
26812 }
26813
26814 newimm |= (temp & 0xfffff000);
26815 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26816 break;
26817
26818 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
26819 {
26820 unsigned int highpart = 0;
26821 unsigned int newinsn = 0xe1a00000; /* nop. */
26822
26823 if (fixP->fx_addsy)
26824 {
26825 const char *msg = 0;
26826
26827 if (! S_IS_DEFINED (fixP->fx_addsy))
26828 msg = _("undefined symbol %s used as an immediate value");
26829 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
26830 msg = _("symbol %s is in a different section");
26831 else if (S_IS_WEAK (fixP->fx_addsy))
26832 msg = _("symbol %s is weak and may be overridden later");
26833
26834 if (msg)
26835 {
26836 as_bad_where (fixP->fx_file, fixP->fx_line,
26837 msg, S_GET_NAME (fixP->fx_addsy));
26838 break;
26839 }
26840 }
26841
26842 newimm = encode_arm_immediate (value);
26843 temp = md_chars_to_number (buf, INSN_SIZE);
26844
26845 /* If the instruction will fail, see if we can fix things up by
26846 changing the opcode. */
26847 if (newimm == (unsigned int) FAIL
26848 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
26849 {
26850 /* No ? OK - try using two ADD instructions to generate
26851 the value. */
26852 newimm = validate_immediate_twopart (value, & highpart);
26853
26854 /* Yes - then make sure that the second instruction is
26855 also an add. */
26856 if (newimm != (unsigned int) FAIL)
26857 newinsn = temp;
26858 /* Still No ? Try using a negated value. */
26859 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
26860 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
26861 /* Otherwise - give up. */
26862 else
26863 {
26864 as_bad_where (fixP->fx_file, fixP->fx_line,
26865 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
26866 (long) value);
26867 break;
26868 }
26869
26870 /* Replace the first operand in the 2nd instruction (which
26871 is the PC) with the destination register. We have
26872 already added in the PC in the first instruction and we
26873 do not want to do it again. */
26874 newinsn &= ~ 0xf0000;
26875 newinsn |= ((newinsn & 0x0f000) << 4);
26876 }
26877
26878 newimm |= (temp & 0xfffff000);
26879 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
26880
26881 highpart |= (newinsn & 0xfffff000);
26882 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
26883 }
26884 break;
26885
26886 case BFD_RELOC_ARM_OFFSET_IMM:
26887 if (!fixP->fx_done && seg->use_rela_p)
26888 value = 0;
26889 /* Fall through. */
26890
26891 case BFD_RELOC_ARM_LITERAL:
26892 sign = value > 0;
26893
26894 if (value < 0)
26895 value = - value;
26896
26897 if (validate_offset_imm (value, 0) == FAIL)
26898 {
26899 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
26900 as_bad_where (fixP->fx_file, fixP->fx_line,
26901 _("invalid literal constant: pool needs to be closer"));
26902 else
26903 as_bad_where (fixP->fx_file, fixP->fx_line,
26904 _("bad immediate value for offset (%ld)"),
26905 (long) value);
26906 break;
26907 }
26908
26909 newval = md_chars_to_number (buf, INSN_SIZE);
26910 if (value == 0)
26911 newval &= 0xfffff000;
26912 else
26913 {
26914 newval &= 0xff7ff000;
26915 newval |= value | (sign ? INDEX_UP : 0);
26916 }
26917 md_number_to_chars (buf, newval, INSN_SIZE);
26918 break;
26919
26920 case BFD_RELOC_ARM_OFFSET_IMM8:
26921 case BFD_RELOC_ARM_HWLITERAL:
26922 sign = value > 0;
26923
26924 if (value < 0)
26925 value = - value;
26926
26927 if (validate_offset_imm (value, 1) == FAIL)
26928 {
26929 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
26930 as_bad_where (fixP->fx_file, fixP->fx_line,
26931 _("invalid literal constant: pool needs to be closer"));
26932 else
26933 as_bad_where (fixP->fx_file, fixP->fx_line,
26934 _("bad immediate value for 8-bit offset (%ld)"),
26935 (long) value);
26936 break;
26937 }
26938
26939 newval = md_chars_to_number (buf, INSN_SIZE);
26940 if (value == 0)
26941 newval &= 0xfffff0f0;
26942 else
26943 {
26944 newval &= 0xff7ff0f0;
26945 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
26946 }
26947 md_number_to_chars (buf, newval, INSN_SIZE);
26948 break;
26949
26950 case BFD_RELOC_ARM_T32_OFFSET_U8:
26951 if (value < 0 || value > 1020 || value % 4 != 0)
26952 as_bad_where (fixP->fx_file, fixP->fx_line,
26953 _("bad immediate value for offset (%ld)"), (long) value);
26954 value /= 4;
26955
26956 newval = md_chars_to_number (buf+2, THUMB_SIZE);
26957 newval |= value;
26958 md_number_to_chars (buf+2, newval, THUMB_SIZE);
26959 break;
26960
26961 case BFD_RELOC_ARM_T32_OFFSET_IMM:
26962 /* This is a complicated relocation used for all varieties of Thumb32
26963 load/store instruction with immediate offset:
26964
26965 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
26966 *4, optional writeback(W)
26967 (doubleword load/store)
26968
26969 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
26970 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
26971 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
26972 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
26973 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
26974
26975 Uppercase letters indicate bits that are already encoded at
26976 this point. Lowercase letters are our problem. For the
26977 second block of instructions, the secondary opcode nybble
26978 (bits 8..11) is present, and bit 23 is zero, even if this is
26979 a PC-relative operation. */
26980 newval = md_chars_to_number (buf, THUMB_SIZE);
26981 newval <<= 16;
26982 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
26983
26984 if ((newval & 0xf0000000) == 0xe0000000)
26985 {
26986 /* Doubleword load/store: 8-bit offset, scaled by 4. */
26987 if (value >= 0)
26988 newval |= (1 << 23);
26989 else
26990 value = -value;
26991 if (value % 4 != 0)
26992 {
26993 as_bad_where (fixP->fx_file, fixP->fx_line,
26994 _("offset not a multiple of 4"));
26995 break;
26996 }
26997 value /= 4;
26998 if (value > 0xff)
26999 {
27000 as_bad_where (fixP->fx_file, fixP->fx_line,
27001 _("offset out of range"));
27002 break;
27003 }
27004 newval &= ~0xff;
27005 }
27006 else if ((newval & 0x000f0000) == 0x000f0000)
27007 {
27008 /* PC-relative, 12-bit offset. */
27009 if (value >= 0)
27010 newval |= (1 << 23);
27011 else
27012 value = -value;
27013 if (value > 0xfff)
27014 {
27015 as_bad_where (fixP->fx_file, fixP->fx_line,
27016 _("offset out of range"));
27017 break;
27018 }
27019 newval &= ~0xfff;
27020 }
27021 else if ((newval & 0x00000100) == 0x00000100)
27022 {
27023 /* Writeback: 8-bit, +/- offset. */
27024 if (value >= 0)
27025 newval |= (1 << 9);
27026 else
27027 value = -value;
27028 if (value > 0xff)
27029 {
27030 as_bad_where (fixP->fx_file, fixP->fx_line,
27031 _("offset out of range"));
27032 break;
27033 }
27034 newval &= ~0xff;
27035 }
27036 else if ((newval & 0x00000f00) == 0x00000e00)
27037 {
27038 /* T-instruction: positive 8-bit offset. */
27039 if (value < 0 || value > 0xff)
27040 {
27041 as_bad_where (fixP->fx_file, fixP->fx_line,
27042 _("offset out of range"));
27043 break;
27044 }
27045 newval &= ~0xff;
27046 newval |= value;
27047 }
27048 else
27049 {
27050 /* Positive 12-bit or negative 8-bit offset. */
27051 int limit;
27052 if (value >= 0)
27053 {
27054 newval |= (1 << 23);
27055 limit = 0xfff;
27056 }
27057 else
27058 {
27059 value = -value;
27060 limit = 0xff;
27061 }
27062 if (value > limit)
27063 {
27064 as_bad_where (fixP->fx_file, fixP->fx_line,
27065 _("offset out of range"));
27066 break;
27067 }
27068 newval &= ~limit;
27069 }
27070
27071 newval |= value;
27072 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
27073 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
27074 break;
27075
27076 case BFD_RELOC_ARM_SHIFT_IMM:
27077 newval = md_chars_to_number (buf, INSN_SIZE);
27078 if (((unsigned long) value) > 32
27079 || (value == 32
27080 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
27081 {
27082 as_bad_where (fixP->fx_file, fixP->fx_line,
27083 _("shift expression is too large"));
27084 break;
27085 }
27086
27087 if (value == 0)
27088 /* Shifts of zero must be done as lsl. */
27089 newval &= ~0x60;
27090 else if (value == 32)
27091 value = 0;
27092 newval &= 0xfffff07f;
27093 newval |= (value & 0x1f) << 7;
27094 md_number_to_chars (buf, newval, INSN_SIZE);
27095 break;
27096
27097 case BFD_RELOC_ARM_T32_IMMEDIATE:
27098 case BFD_RELOC_ARM_T32_ADD_IMM:
27099 case BFD_RELOC_ARM_T32_IMM12:
27100 case BFD_RELOC_ARM_T32_ADD_PC12:
27101 /* We claim that this fixup has been processed here,
27102 even if in fact we generate an error because we do
27103 not have a reloc for it, so tc_gen_reloc will reject it. */
27104 fixP->fx_done = 1;
27105
27106 if (fixP->fx_addsy
27107 && ! S_IS_DEFINED (fixP->fx_addsy))
27108 {
27109 as_bad_where (fixP->fx_file, fixP->fx_line,
27110 _("undefined symbol %s used as an immediate value"),
27111 S_GET_NAME (fixP->fx_addsy));
27112 break;
27113 }
27114
27115 newval = md_chars_to_number (buf, THUMB_SIZE);
27116 newval <<= 16;
27117 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
27118
27119 newimm = FAIL;
27120 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27121 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
27122 Thumb2 modified immediate encoding (T2). */
27123 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
27124 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27125 {
27126 newimm = encode_thumb32_immediate (value);
27127 if (newimm == (unsigned int) FAIL)
27128 newimm = thumb32_negate_data_op (&newval, value);
27129 }
27130 if (newimm == (unsigned int) FAIL)
27131 {
27132 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
27133 {
27134 /* Turn add/sum into addw/subw. */
27135 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
27136 newval = (newval & 0xfeffffff) | 0x02000000;
27137 /* No flat 12-bit imm encoding for addsw/subsw. */
27138 if ((newval & 0x00100000) == 0)
27139 {
27140 /* 12 bit immediate for addw/subw. */
27141 if (value < 0)
27142 {
27143 value = -value;
27144 newval ^= 0x00a00000;
27145 }
27146 if (value > 0xfff)
27147 newimm = (unsigned int) FAIL;
27148 else
27149 newimm = value;
27150 }
27151 }
27152 else
27153 {
27154 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
27155 UINT16 (T3 encoding), MOVW only accepts UINT16. When
27156 disassembling, MOV is preferred when there is no encoding
27157 overlap. */
27158 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
27159 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
27160 but with the Rn field [19:16] set to 1111. */
27161 && (((newval >> 16) & 0xf) == 0xf)
27162 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
27163 && !((newval >> T2_SBIT_SHIFT) & 0x1)
27164 && value >= 0 && value <= 0xffff)
27165 {
27166 /* Toggle bit[25] to change encoding from T2 to T3. */
27167 newval ^= 1 << 25;
27168 /* Clear bits[19:16]. */
27169 newval &= 0xfff0ffff;
27170 /* Encoding high 4bits imm. Code below will encode the
27171 remaining low 12bits. */
27172 newval |= (value & 0x0000f000) << 4;
27173 newimm = value & 0x00000fff;
27174 }
27175 }
27176 }
27177
27178 if (newimm == (unsigned int)FAIL)
27179 {
27180 as_bad_where (fixP->fx_file, fixP->fx_line,
27181 _("invalid constant (%lx) after fixup"),
27182 (unsigned long) value);
27183 break;
27184 }
27185
27186 newval |= (newimm & 0x800) << 15;
27187 newval |= (newimm & 0x700) << 4;
27188 newval |= (newimm & 0x0ff);
27189
27190 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
27191 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
27192 break;
27193
27194 case BFD_RELOC_ARM_SMC:
27195 if (((unsigned long) value) > 0xffff)
27196 as_bad_where (fixP->fx_file, fixP->fx_line,
27197 _("invalid smc expression"));
27198 newval = md_chars_to_number (buf, INSN_SIZE);
27199 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27200 md_number_to_chars (buf, newval, INSN_SIZE);
27201 break;
27202
27203 case BFD_RELOC_ARM_HVC:
27204 if (((unsigned long) value) > 0xffff)
27205 as_bad_where (fixP->fx_file, fixP->fx_line,
27206 _("invalid hvc expression"));
27207 newval = md_chars_to_number (buf, INSN_SIZE);
27208 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
27209 md_number_to_chars (buf, newval, INSN_SIZE);
27210 break;
27211
27212 case BFD_RELOC_ARM_SWI:
27213 if (fixP->tc_fix_data != 0)
27214 {
27215 if (((unsigned long) value) > 0xff)
27216 as_bad_where (fixP->fx_file, fixP->fx_line,
27217 _("invalid swi expression"));
27218 newval = md_chars_to_number (buf, THUMB_SIZE);
27219 newval |= value;
27220 md_number_to_chars (buf, newval, THUMB_SIZE);
27221 }
27222 else
27223 {
27224 if (((unsigned long) value) > 0x00ffffff)
27225 as_bad_where (fixP->fx_file, fixP->fx_line,
27226 _("invalid swi expression"));
27227 newval = md_chars_to_number (buf, INSN_SIZE);
27228 newval |= value;
27229 md_number_to_chars (buf, newval, INSN_SIZE);
27230 }
27231 break;
27232
27233 case BFD_RELOC_ARM_MULTI:
27234 if (((unsigned long) value) > 0xffff)
27235 as_bad_where (fixP->fx_file, fixP->fx_line,
27236 _("invalid expression in load/store multiple"));
27237 newval = value | md_chars_to_number (buf, INSN_SIZE);
27238 md_number_to_chars (buf, newval, INSN_SIZE);
27239 break;
27240
27241 #ifdef OBJ_ELF
27242 case BFD_RELOC_ARM_PCREL_CALL:
27243
27244 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27245 && fixP->fx_addsy
27246 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27247 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27248 && THUMB_IS_FUNC (fixP->fx_addsy))
27249 /* Flip the bl to blx. This is a simple flip
27250 bit here because we generate PCREL_CALL for
27251 unconditional bls. */
27252 {
27253 newval = md_chars_to_number (buf, INSN_SIZE);
27254 newval = newval | 0x10000000;
27255 md_number_to_chars (buf, newval, INSN_SIZE);
27256 temp = 1;
27257 fixP->fx_done = 1;
27258 }
27259 else
27260 temp = 3;
27261 goto arm_branch_common;
27262
27263 case BFD_RELOC_ARM_PCREL_JUMP:
27264 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27265 && fixP->fx_addsy
27266 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27267 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27268 && THUMB_IS_FUNC (fixP->fx_addsy))
27269 {
27270 /* This would map to a bl<cond>, b<cond>,
27271 b<always> to a Thumb function. We
27272 need to force a relocation for this particular
27273 case. */
27274 newval = md_chars_to_number (buf, INSN_SIZE);
27275 fixP->fx_done = 0;
27276 }
27277 /* Fall through. */
27278
27279 case BFD_RELOC_ARM_PLT32:
27280 #endif
27281 case BFD_RELOC_ARM_PCREL_BRANCH:
27282 temp = 3;
27283 goto arm_branch_common;
27284
27285 case BFD_RELOC_ARM_PCREL_BLX:
27286
27287 temp = 1;
27288 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
27289 && fixP->fx_addsy
27290 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27291 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27292 && ARM_IS_FUNC (fixP->fx_addsy))
27293 {
27294 /* Flip the blx to a bl and warn. */
27295 const char *name = S_GET_NAME (fixP->fx_addsy);
27296 newval = 0xeb000000;
27297 as_warn_where (fixP->fx_file, fixP->fx_line,
27298 _("blx to '%s' an ARM ISA state function changed to bl"),
27299 name);
27300 md_number_to_chars (buf, newval, INSN_SIZE);
27301 temp = 3;
27302 fixP->fx_done = 1;
27303 }
27304
27305 #ifdef OBJ_ELF
27306 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27307 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
27308 #endif
27309
27310 arm_branch_common:
27311 /* We are going to store value (shifted right by two) in the
27312 instruction, in a 24 bit, signed field. Bits 26 through 32 either
27313 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
27314 also be clear. */
27315 if (value & temp)
27316 as_bad_where (fixP->fx_file, fixP->fx_line,
27317 _("misaligned branch destination"));
27318 if ((value & (offsetT)0xfe000000) != (offsetT)0
27319 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
27320 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27321
27322 if (fixP->fx_done || !seg->use_rela_p)
27323 {
27324 newval = md_chars_to_number (buf, INSN_SIZE);
27325 newval |= (value >> 2) & 0x00ffffff;
27326 /* Set the H bit on BLX instructions. */
27327 if (temp == 1)
27328 {
27329 if (value & 2)
27330 newval |= 0x01000000;
27331 else
27332 newval &= ~0x01000000;
27333 }
27334 md_number_to_chars (buf, newval, INSN_SIZE);
27335 }
27336 break;
27337
27338 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
27339 /* CBZ can only branch forward. */
27340
27341 /* Attempts to use CBZ to branch to the next instruction
27342 (which, strictly speaking, are prohibited) will be turned into
27343 no-ops.
27344
27345 FIXME: It may be better to remove the instruction completely and
27346 perform relaxation. */
27347 if (value == -2)
27348 {
27349 newval = md_chars_to_number (buf, THUMB_SIZE);
27350 newval = 0xbf00; /* NOP encoding T1 */
27351 md_number_to_chars (buf, newval, THUMB_SIZE);
27352 }
27353 else
27354 {
27355 if (value & ~0x7e)
27356 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27357
27358 if (fixP->fx_done || !seg->use_rela_p)
27359 {
27360 newval = md_chars_to_number (buf, THUMB_SIZE);
27361 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
27362 md_number_to_chars (buf, newval, THUMB_SIZE);
27363 }
27364 }
27365 break;
27366
27367 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
27368 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
27369 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27370
27371 if (fixP->fx_done || !seg->use_rela_p)
27372 {
27373 newval = md_chars_to_number (buf, THUMB_SIZE);
27374 newval |= (value & 0x1ff) >> 1;
27375 md_number_to_chars (buf, newval, THUMB_SIZE);
27376 }
27377 break;
27378
27379 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
27380 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
27381 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27382
27383 if (fixP->fx_done || !seg->use_rela_p)
27384 {
27385 newval = md_chars_to_number (buf, THUMB_SIZE);
27386 newval |= (value & 0xfff) >> 1;
27387 md_number_to_chars (buf, newval, THUMB_SIZE);
27388 }
27389 break;
27390
27391 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27392 if (fixP->fx_addsy
27393 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27394 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27395 && ARM_IS_FUNC (fixP->fx_addsy)
27396 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27397 {
27398 /* Force a relocation for a branch 20 bits wide. */
27399 fixP->fx_done = 0;
27400 }
27401 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
27402 as_bad_where (fixP->fx_file, fixP->fx_line,
27403 _("conditional branch out of range"));
27404
27405 if (fixP->fx_done || !seg->use_rela_p)
27406 {
27407 offsetT newval2;
27408 addressT S, J1, J2, lo, hi;
27409
27410 S = (value & 0x00100000) >> 20;
27411 J2 = (value & 0x00080000) >> 19;
27412 J1 = (value & 0x00040000) >> 18;
27413 hi = (value & 0x0003f000) >> 12;
27414 lo = (value & 0x00000ffe) >> 1;
27415
27416 newval = md_chars_to_number (buf, THUMB_SIZE);
27417 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27418 newval |= (S << 10) | hi;
27419 newval2 |= (J1 << 13) | (J2 << 11) | lo;
27420 md_number_to_chars (buf, newval, THUMB_SIZE);
27421 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27422 }
27423 break;
27424
27425 case BFD_RELOC_THUMB_PCREL_BLX:
27426 /* If there is a blx from a thumb state function to
27427 another thumb function flip this to a bl and warn
27428 about it. */
27429
27430 if (fixP->fx_addsy
27431 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27432 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27433 && THUMB_IS_FUNC (fixP->fx_addsy))
27434 {
27435 const char *name = S_GET_NAME (fixP->fx_addsy);
27436 as_warn_where (fixP->fx_file, fixP->fx_line,
27437 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
27438 name);
27439 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27440 newval = newval | 0x1000;
27441 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27442 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27443 fixP->fx_done = 1;
27444 }
27445
27446
27447 goto thumb_bl_common;
27448
27449 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27450 /* A bl from Thumb state ISA to an internal ARM state function
27451 is converted to a blx. */
27452 if (fixP->fx_addsy
27453 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27454 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27455 && ARM_IS_FUNC (fixP->fx_addsy)
27456 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
27457 {
27458 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27459 newval = newval & ~0x1000;
27460 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
27461 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
27462 fixP->fx_done = 1;
27463 }
27464
27465 thumb_bl_common:
27466
27467 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27468 /* For a BLX instruction, make sure that the relocation is rounded up
27469 to a word boundary. This follows the semantics of the instruction
27470 which specifies that bit 1 of the target address will come from bit
27471 1 of the base address. */
27472 value = (value + 3) & ~ 3;
27473
27474 #ifdef OBJ_ELF
27475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
27476 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
27477 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
27478 #endif
27479
27480 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
27481 {
27482 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
27483 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27484 else if ((value & ~0x1ffffff)
27485 && ((value & ~0x1ffffff) != ~0x1ffffff))
27486 as_bad_where (fixP->fx_file, fixP->fx_line,
27487 _("Thumb2 branch out of range"));
27488 }
27489
27490 if (fixP->fx_done || !seg->use_rela_p)
27491 encode_thumb2_b_bl_offset (buf, value);
27492
27493 break;
27494
27495 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27496 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
27497 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
27498
27499 if (fixP->fx_done || !seg->use_rela_p)
27500 encode_thumb2_b_bl_offset (buf, value);
27501
27502 break;
27503
27504 case BFD_RELOC_8:
27505 if (fixP->fx_done || !seg->use_rela_p)
27506 *buf = value;
27507 break;
27508
27509 case BFD_RELOC_16:
27510 if (fixP->fx_done || !seg->use_rela_p)
27511 md_number_to_chars (buf, value, 2);
27512 break;
27513
27514 #ifdef OBJ_ELF
27515 case BFD_RELOC_ARM_TLS_CALL:
27516 case BFD_RELOC_ARM_THM_TLS_CALL:
27517 case BFD_RELOC_ARM_TLS_DESCSEQ:
27518 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27519 case BFD_RELOC_ARM_TLS_GOTDESC:
27520 case BFD_RELOC_ARM_TLS_GD32:
27521 case BFD_RELOC_ARM_TLS_LE32:
27522 case BFD_RELOC_ARM_TLS_IE32:
27523 case BFD_RELOC_ARM_TLS_LDM32:
27524 case BFD_RELOC_ARM_TLS_LDO32:
27525 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27526 break;
27527
27528 /* Same handling as above, but with the arm_fdpic guard. */
27529 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27530 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27531 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27532 if (arm_fdpic)
27533 {
27534 S_SET_THREAD_LOCAL (fixP->fx_addsy);
27535 }
27536 else
27537 {
27538 as_bad_where (fixP->fx_file, fixP->fx_line,
27539 _("Relocation supported only in FDPIC mode"));
27540 }
27541 break;
27542
27543 case BFD_RELOC_ARM_GOT32:
27544 case BFD_RELOC_ARM_GOTOFF:
27545 break;
27546
27547 case BFD_RELOC_ARM_GOT_PREL:
27548 if (fixP->fx_done || !seg->use_rela_p)
27549 md_number_to_chars (buf, value, 4);
27550 break;
27551
27552 case BFD_RELOC_ARM_TARGET2:
27553 /* TARGET2 is not partial-inplace, so we need to write the
27554 addend here for REL targets, because it won't be written out
27555 during reloc processing later. */
27556 if (fixP->fx_done || !seg->use_rela_p)
27557 md_number_to_chars (buf, fixP->fx_offset, 4);
27558 break;
27559
27560 /* Relocations for FDPIC. */
27561 case BFD_RELOC_ARM_GOTFUNCDESC:
27562 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27563 case BFD_RELOC_ARM_FUNCDESC:
27564 if (arm_fdpic)
27565 {
27566 if (fixP->fx_done || !seg->use_rela_p)
27567 md_number_to_chars (buf, 0, 4);
27568 }
27569 else
27570 {
27571 as_bad_where (fixP->fx_file, fixP->fx_line,
27572 _("Relocation supported only in FDPIC mode"));
27573 }
27574 break;
27575 #endif
27576
27577 case BFD_RELOC_RVA:
27578 case BFD_RELOC_32:
27579 case BFD_RELOC_ARM_TARGET1:
27580 case BFD_RELOC_ARM_ROSEGREL32:
27581 case BFD_RELOC_ARM_SBREL32:
27582 case BFD_RELOC_32_PCREL:
27583 #ifdef TE_PE
27584 case BFD_RELOC_32_SECREL:
27585 #endif
27586 if (fixP->fx_done || !seg->use_rela_p)
27587 #ifdef TE_WINCE
27588 /* For WinCE we only do this for pcrel fixups. */
27589 if (fixP->fx_done || fixP->fx_pcrel)
27590 #endif
27591 md_number_to_chars (buf, value, 4);
27592 break;
27593
27594 #ifdef OBJ_ELF
27595 case BFD_RELOC_ARM_PREL31:
27596 if (fixP->fx_done || !seg->use_rela_p)
27597 {
27598 newval = md_chars_to_number (buf, 4) & 0x80000000;
27599 if ((value ^ (value >> 1)) & 0x40000000)
27600 {
27601 as_bad_where (fixP->fx_file, fixP->fx_line,
27602 _("rel31 relocation overflow"));
27603 }
27604 newval |= value & 0x7fffffff;
27605 md_number_to_chars (buf, newval, 4);
27606 }
27607 break;
27608 #endif
27609
27610 case BFD_RELOC_ARM_CP_OFF_IMM:
27611 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
27612 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
27613 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
27614 newval = md_chars_to_number (buf, INSN_SIZE);
27615 else
27616 newval = get_thumb32_insn (buf);
27617 if ((newval & 0x0f200f00) == 0x0d000900)
27618 {
27619 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
27620 has permitted values that are multiples of 2, in the range 0
27621 to 510. */
27622 if (value < -510 || value > 510 || (value & 1))
27623 as_bad_where (fixP->fx_file, fixP->fx_line,
27624 _("co-processor offset out of range"));
27625 }
27626 else if ((newval & 0xfe001f80) == 0xec000f80)
27627 {
27628 if (value < -511 || value > 512 || (value & 3))
27629 as_bad_where (fixP->fx_file, fixP->fx_line,
27630 _("co-processor offset out of range"));
27631 }
27632 else if (value < -1023 || value > 1023 || (value & 3))
27633 as_bad_where (fixP->fx_file, fixP->fx_line,
27634 _("co-processor offset out of range"));
27635 cp_off_common:
27636 sign = value > 0;
27637 if (value < 0)
27638 value = -value;
27639 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27640 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27641 newval = md_chars_to_number (buf, INSN_SIZE);
27642 else
27643 newval = get_thumb32_insn (buf);
27644 if (value == 0)
27645 {
27646 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27647 newval &= 0xffffff80;
27648 else
27649 newval &= 0xffffff00;
27650 }
27651 else
27652 {
27653 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
27654 newval &= 0xff7fff80;
27655 else
27656 newval &= 0xff7fff00;
27657 if ((newval & 0x0f200f00) == 0x0d000900)
27658 {
27659 /* This is a fp16 vstr/vldr.
27660
27661 It requires the immediate offset in the instruction is shifted
27662 left by 1 to be a half-word offset.
27663
27664 Here, left shift by 1 first, and later right shift by 2
27665 should get the right offset. */
27666 value <<= 1;
27667 }
27668 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
27669 }
27670 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27671 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
27672 md_number_to_chars (buf, newval, INSN_SIZE);
27673 else
27674 put_thumb32_insn (buf, newval);
27675 break;
27676
27677 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
27678 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
27679 if (value < -255 || value > 255)
27680 as_bad_where (fixP->fx_file, fixP->fx_line,
27681 _("co-processor offset out of range"));
27682 value *= 4;
27683 goto cp_off_common;
27684
27685 case BFD_RELOC_ARM_THUMB_OFFSET:
27686 newval = md_chars_to_number (buf, THUMB_SIZE);
27687 /* Exactly what ranges, and where the offset is inserted depends
27688 on the type of instruction, we can establish this from the
27689 top 4 bits. */
27690 switch (newval >> 12)
27691 {
27692 case 4: /* PC load. */
27693 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
27694 forced to zero for these loads; md_pcrel_from has already
27695 compensated for this. */
27696 if (value & 3)
27697 as_bad_where (fixP->fx_file, fixP->fx_line,
27698 _("invalid offset, target not word aligned (0x%08lX)"),
27699 (((unsigned long) fixP->fx_frag->fr_address
27700 + (unsigned long) fixP->fx_where) & ~3)
27701 + (unsigned long) value);
27702
27703 if (value & ~0x3fc)
27704 as_bad_where (fixP->fx_file, fixP->fx_line,
27705 _("invalid offset, value too big (0x%08lX)"),
27706 (long) value);
27707
27708 newval |= value >> 2;
27709 break;
27710
27711 case 9: /* SP load/store. */
27712 if (value & ~0x3fc)
27713 as_bad_where (fixP->fx_file, fixP->fx_line,
27714 _("invalid offset, value too big (0x%08lX)"),
27715 (long) value);
27716 newval |= value >> 2;
27717 break;
27718
27719 case 6: /* Word load/store. */
27720 if (value & ~0x7c)
27721 as_bad_where (fixP->fx_file, fixP->fx_line,
27722 _("invalid offset, value too big (0x%08lX)"),
27723 (long) value);
27724 newval |= value << 4; /* 6 - 2. */
27725 break;
27726
27727 case 7: /* Byte load/store. */
27728 if (value & ~0x1f)
27729 as_bad_where (fixP->fx_file, fixP->fx_line,
27730 _("invalid offset, value too big (0x%08lX)"),
27731 (long) value);
27732 newval |= value << 6;
27733 break;
27734
27735 case 8: /* Halfword load/store. */
27736 if (value & ~0x3e)
27737 as_bad_where (fixP->fx_file, fixP->fx_line,
27738 _("invalid offset, value too big (0x%08lX)"),
27739 (long) value);
27740 newval |= value << 5; /* 6 - 1. */
27741 break;
27742
27743 default:
27744 as_bad_where (fixP->fx_file, fixP->fx_line,
27745 "Unable to process relocation for thumb opcode: %lx",
27746 (unsigned long) newval);
27747 break;
27748 }
27749 md_number_to_chars (buf, newval, THUMB_SIZE);
27750 break;
27751
27752 case BFD_RELOC_ARM_THUMB_ADD:
27753 /* This is a complicated relocation, since we use it for all of
27754 the following immediate relocations:
27755
27756 3bit ADD/SUB
27757 8bit ADD/SUB
27758 9bit ADD/SUB SP word-aligned
27759 10bit ADD PC/SP word-aligned
27760
27761 The type of instruction being processed is encoded in the
27762 instruction field:
27763
27764 0x8000 SUB
27765 0x00F0 Rd
27766 0x000F Rs
27767 */
27768 newval = md_chars_to_number (buf, THUMB_SIZE);
27769 {
27770 int rd = (newval >> 4) & 0xf;
27771 int rs = newval & 0xf;
27772 int subtract = !!(newval & 0x8000);
27773
27774 /* Check for HI regs, only very restricted cases allowed:
27775 Adjusting SP, and using PC or SP to get an address. */
27776 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
27777 || (rs > 7 && rs != REG_SP && rs != REG_PC))
27778 as_bad_where (fixP->fx_file, fixP->fx_line,
27779 _("invalid Hi register with immediate"));
27780
27781 /* If value is negative, choose the opposite instruction. */
27782 if (value < 0)
27783 {
27784 value = -value;
27785 subtract = !subtract;
27786 if (value < 0)
27787 as_bad_where (fixP->fx_file, fixP->fx_line,
27788 _("immediate value out of range"));
27789 }
27790
27791 if (rd == REG_SP)
27792 {
27793 if (value & ~0x1fc)
27794 as_bad_where (fixP->fx_file, fixP->fx_line,
27795 _("invalid immediate for stack address calculation"));
27796 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
27797 newval |= value >> 2;
27798 }
27799 else if (rs == REG_PC || rs == REG_SP)
27800 {
27801 /* PR gas/18541. If the addition is for a defined symbol
27802 within range of an ADR instruction then accept it. */
27803 if (subtract
27804 && value == 4
27805 && fixP->fx_addsy != NULL)
27806 {
27807 subtract = 0;
27808
27809 if (! S_IS_DEFINED (fixP->fx_addsy)
27810 || S_GET_SEGMENT (fixP->fx_addsy) != seg
27811 || S_IS_WEAK (fixP->fx_addsy))
27812 {
27813 as_bad_where (fixP->fx_file, fixP->fx_line,
27814 _("address calculation needs a strongly defined nearby symbol"));
27815 }
27816 else
27817 {
27818 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
27819
27820 /* Round up to the next 4-byte boundary. */
27821 if (v & 3)
27822 v = (v + 3) & ~ 3;
27823 else
27824 v += 4;
27825 v = S_GET_VALUE (fixP->fx_addsy) - v;
27826
27827 if (v & ~0x3fc)
27828 {
27829 as_bad_where (fixP->fx_file, fixP->fx_line,
27830 _("symbol too far away"));
27831 }
27832 else
27833 {
27834 fixP->fx_done = 1;
27835 value = v;
27836 }
27837 }
27838 }
27839
27840 if (subtract || value & ~0x3fc)
27841 as_bad_where (fixP->fx_file, fixP->fx_line,
27842 _("invalid immediate for address calculation (value = 0x%08lX)"),
27843 (unsigned long) (subtract ? - value : value));
27844 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
27845 newval |= rd << 8;
27846 newval |= value >> 2;
27847 }
27848 else if (rs == rd)
27849 {
27850 if (value & ~0xff)
27851 as_bad_where (fixP->fx_file, fixP->fx_line,
27852 _("immediate value out of range"));
27853 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
27854 newval |= (rd << 8) | value;
27855 }
27856 else
27857 {
27858 if (value & ~0x7)
27859 as_bad_where (fixP->fx_file, fixP->fx_line,
27860 _("immediate value out of range"));
27861 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
27862 newval |= rd | (rs << 3) | (value << 6);
27863 }
27864 }
27865 md_number_to_chars (buf, newval, THUMB_SIZE);
27866 break;
27867
27868 case BFD_RELOC_ARM_THUMB_IMM:
27869 newval = md_chars_to_number (buf, THUMB_SIZE);
27870 if (value < 0 || value > 255)
27871 as_bad_where (fixP->fx_file, fixP->fx_line,
27872 _("invalid immediate: %ld is out of range"),
27873 (long) value);
27874 newval |= value;
27875 md_number_to_chars (buf, newval, THUMB_SIZE);
27876 break;
27877
27878 case BFD_RELOC_ARM_THUMB_SHIFT:
27879 /* 5bit shift value (0..32). LSL cannot take 32. */
27880 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
27881 temp = newval & 0xf800;
27882 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
27883 as_bad_where (fixP->fx_file, fixP->fx_line,
27884 _("invalid shift value: %ld"), (long) value);
27885 /* Shifts of zero must be encoded as LSL. */
27886 if (value == 0)
27887 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
27888 /* Shifts of 32 are encoded as zero. */
27889 else if (value == 32)
27890 value = 0;
27891 newval |= value << 6;
27892 md_number_to_chars (buf, newval, THUMB_SIZE);
27893 break;
27894
27895 case BFD_RELOC_VTABLE_INHERIT:
27896 case BFD_RELOC_VTABLE_ENTRY:
27897 fixP->fx_done = 0;
27898 return;
27899
27900 case BFD_RELOC_ARM_MOVW:
27901 case BFD_RELOC_ARM_MOVT:
27902 case BFD_RELOC_ARM_THUMB_MOVW:
27903 case BFD_RELOC_ARM_THUMB_MOVT:
27904 if (fixP->fx_done || !seg->use_rela_p)
27905 {
27906 /* REL format relocations are limited to a 16-bit addend. */
27907 if (!fixP->fx_done)
27908 {
27909 if (value < -0x8000 || value > 0x7fff)
27910 as_bad_where (fixP->fx_file, fixP->fx_line,
27911 _("offset out of range"));
27912 }
27913 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27914 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27915 {
27916 value >>= 16;
27917 }
27918
27919 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27920 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
27921 {
27922 newval = get_thumb32_insn (buf);
27923 newval &= 0xfbf08f00;
27924 newval |= (value & 0xf000) << 4;
27925 newval |= (value & 0x0800) << 15;
27926 newval |= (value & 0x0700) << 4;
27927 newval |= (value & 0x00ff);
27928 put_thumb32_insn (buf, newval);
27929 }
27930 else
27931 {
27932 newval = md_chars_to_number (buf, 4);
27933 newval &= 0xfff0f000;
27934 newval |= value & 0x0fff;
27935 newval |= (value & 0xf000) << 4;
27936 md_number_to_chars (buf, newval, 4);
27937 }
27938 }
27939 return;
27940
27941 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27942 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27943 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27944 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27945 gas_assert (!fixP->fx_done);
27946 {
27947 bfd_vma insn;
27948 bfd_boolean is_mov;
27949 bfd_vma encoded_addend = value;
27950
27951 /* Check that addend can be encoded in instruction. */
27952 if (!seg->use_rela_p && (value < 0 || value > 255))
27953 as_bad_where (fixP->fx_file, fixP->fx_line,
27954 _("the offset 0x%08lX is not representable"),
27955 (unsigned long) encoded_addend);
27956
27957 /* Extract the instruction. */
27958 insn = md_chars_to_number (buf, THUMB_SIZE);
27959 is_mov = (insn & 0xf800) == 0x2000;
27960
27961 /* Encode insn. */
27962 if (is_mov)
27963 {
27964 if (!seg->use_rela_p)
27965 insn |= encoded_addend;
27966 }
27967 else
27968 {
27969 int rd, rs;
27970
27971 /* Extract the instruction. */
27972 /* Encoding is the following
27973 0x8000 SUB
27974 0x00F0 Rd
27975 0x000F Rs
27976 */
27977 /* The following conditions must be true :
27978 - ADD
27979 - Rd == Rs
27980 - Rd <= 7
27981 */
27982 rd = (insn >> 4) & 0xf;
27983 rs = insn & 0xf;
27984 if ((insn & 0x8000) || (rd != rs) || rd > 7)
27985 as_bad_where (fixP->fx_file, fixP->fx_line,
27986 _("Unable to process relocation for thumb opcode: %lx"),
27987 (unsigned long) insn);
27988
27989 /* Encode as ADD immediate8 thumb 1 code. */
27990 insn = 0x3000 | (rd << 8);
27991
27992 /* Place the encoded addend into the first 8 bits of the
27993 instruction. */
27994 if (!seg->use_rela_p)
27995 insn |= encoded_addend;
27996 }
27997
27998 /* Update the instruction. */
27999 md_number_to_chars (buf, insn, THUMB_SIZE);
28000 }
28001 break;
28002
28003 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28004 case BFD_RELOC_ARM_ALU_PC_G0:
28005 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28006 case BFD_RELOC_ARM_ALU_PC_G1:
28007 case BFD_RELOC_ARM_ALU_PC_G2:
28008 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28009 case BFD_RELOC_ARM_ALU_SB_G0:
28010 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28011 case BFD_RELOC_ARM_ALU_SB_G1:
28012 case BFD_RELOC_ARM_ALU_SB_G2:
28013 gas_assert (!fixP->fx_done);
28014 if (!seg->use_rela_p)
28015 {
28016 bfd_vma insn;
28017 bfd_vma encoded_addend;
28018 bfd_vma addend_abs = llabs (value);
28019
28020 /* Check that the absolute value of the addend can be
28021 expressed as an 8-bit constant plus a rotation. */
28022 encoded_addend = encode_arm_immediate (addend_abs);
28023 if (encoded_addend == (unsigned int) FAIL)
28024 as_bad_where (fixP->fx_file, fixP->fx_line,
28025 _("the offset 0x%08lX is not representable"),
28026 (unsigned long) addend_abs);
28027
28028 /* Extract the instruction. */
28029 insn = md_chars_to_number (buf, INSN_SIZE);
28030
28031 /* If the addend is positive, use an ADD instruction.
28032 Otherwise use a SUB. Take care not to destroy the S bit. */
28033 insn &= 0xff1fffff;
28034 if (value < 0)
28035 insn |= 1 << 22;
28036 else
28037 insn |= 1 << 23;
28038
28039 /* Place the encoded addend into the first 12 bits of the
28040 instruction. */
28041 insn &= 0xfffff000;
28042 insn |= encoded_addend;
28043
28044 /* Update the instruction. */
28045 md_number_to_chars (buf, insn, INSN_SIZE);
28046 }
28047 break;
28048
28049 case BFD_RELOC_ARM_LDR_PC_G0:
28050 case BFD_RELOC_ARM_LDR_PC_G1:
28051 case BFD_RELOC_ARM_LDR_PC_G2:
28052 case BFD_RELOC_ARM_LDR_SB_G0:
28053 case BFD_RELOC_ARM_LDR_SB_G1:
28054 case BFD_RELOC_ARM_LDR_SB_G2:
28055 gas_assert (!fixP->fx_done);
28056 if (!seg->use_rela_p)
28057 {
28058 bfd_vma insn;
28059 bfd_vma addend_abs = llabs (value);
28060
28061 /* Check that the absolute value of the addend can be
28062 encoded in 12 bits. */
28063 if (addend_abs >= 0x1000)
28064 as_bad_where (fixP->fx_file, fixP->fx_line,
28065 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
28066 (unsigned long) addend_abs);
28067
28068 /* Extract the instruction. */
28069 insn = md_chars_to_number (buf, INSN_SIZE);
28070
28071 /* If the addend is negative, clear bit 23 of the instruction.
28072 Otherwise set it. */
28073 if (value < 0)
28074 insn &= ~(1 << 23);
28075 else
28076 insn |= 1 << 23;
28077
28078 /* Place the absolute value of the addend into the first 12 bits
28079 of the instruction. */
28080 insn &= 0xfffff000;
28081 insn |= addend_abs;
28082
28083 /* Update the instruction. */
28084 md_number_to_chars (buf, insn, INSN_SIZE);
28085 }
28086 break;
28087
28088 case BFD_RELOC_ARM_LDRS_PC_G0:
28089 case BFD_RELOC_ARM_LDRS_PC_G1:
28090 case BFD_RELOC_ARM_LDRS_PC_G2:
28091 case BFD_RELOC_ARM_LDRS_SB_G0:
28092 case BFD_RELOC_ARM_LDRS_SB_G1:
28093 case BFD_RELOC_ARM_LDRS_SB_G2:
28094 gas_assert (!fixP->fx_done);
28095 if (!seg->use_rela_p)
28096 {
28097 bfd_vma insn;
28098 bfd_vma addend_abs = llabs (value);
28099
28100 /* Check that the absolute value of the addend can be
28101 encoded in 8 bits. */
28102 if (addend_abs >= 0x100)
28103 as_bad_where (fixP->fx_file, fixP->fx_line,
28104 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
28105 (unsigned long) addend_abs);
28106
28107 /* Extract the instruction. */
28108 insn = md_chars_to_number (buf, INSN_SIZE);
28109
28110 /* If the addend is negative, clear bit 23 of the instruction.
28111 Otherwise set it. */
28112 if (value < 0)
28113 insn &= ~(1 << 23);
28114 else
28115 insn |= 1 << 23;
28116
28117 /* Place the first four bits of the absolute value of the addend
28118 into the first 4 bits of the instruction, and the remaining
28119 four into bits 8 .. 11. */
28120 insn &= 0xfffff0f0;
28121 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
28122
28123 /* Update the instruction. */
28124 md_number_to_chars (buf, insn, INSN_SIZE);
28125 }
28126 break;
28127
28128 case BFD_RELOC_ARM_LDC_PC_G0:
28129 case BFD_RELOC_ARM_LDC_PC_G1:
28130 case BFD_RELOC_ARM_LDC_PC_G2:
28131 case BFD_RELOC_ARM_LDC_SB_G0:
28132 case BFD_RELOC_ARM_LDC_SB_G1:
28133 case BFD_RELOC_ARM_LDC_SB_G2:
28134 gas_assert (!fixP->fx_done);
28135 if (!seg->use_rela_p)
28136 {
28137 bfd_vma insn;
28138 bfd_vma addend_abs = llabs (value);
28139
28140 /* Check that the absolute value of the addend is a multiple of
28141 four and, when divided by four, fits in 8 bits. */
28142 if (addend_abs & 0x3)
28143 as_bad_where (fixP->fx_file, fixP->fx_line,
28144 _("bad offset 0x%08lX (must be word-aligned)"),
28145 (unsigned long) addend_abs);
28146
28147 if ((addend_abs >> 2) > 0xff)
28148 as_bad_where (fixP->fx_file, fixP->fx_line,
28149 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
28150 (unsigned long) addend_abs);
28151
28152 /* Extract the instruction. */
28153 insn = md_chars_to_number (buf, INSN_SIZE);
28154
28155 /* If the addend is negative, clear bit 23 of the instruction.
28156 Otherwise set it. */
28157 if (value < 0)
28158 insn &= ~(1 << 23);
28159 else
28160 insn |= 1 << 23;
28161
28162 /* Place the addend (divided by four) into the first eight
28163 bits of the instruction. */
28164 insn &= 0xfffffff0;
28165 insn |= addend_abs >> 2;
28166
28167 /* Update the instruction. */
28168 md_number_to_chars (buf, insn, INSN_SIZE);
28169 }
28170 break;
28171
28172 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28173 if (fixP->fx_addsy
28174 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28175 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28176 && ARM_IS_FUNC (fixP->fx_addsy)
28177 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28178 {
28179 /* Force a relocation for a branch 5 bits wide. */
28180 fixP->fx_done = 0;
28181 }
28182 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
28183 as_bad_where (fixP->fx_file, fixP->fx_line,
28184 BAD_BRANCH_OFF);
28185
28186 if (fixP->fx_done || !seg->use_rela_p)
28187 {
28188 addressT boff = value >> 1;
28189
28190 newval = md_chars_to_number (buf, THUMB_SIZE);
28191 newval |= (boff << 7);
28192 md_number_to_chars (buf, newval, THUMB_SIZE);
28193 }
28194 break;
28195
28196 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28197 if (fixP->fx_addsy
28198 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28199 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28200 && ARM_IS_FUNC (fixP->fx_addsy)
28201 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28202 {
28203 fixP->fx_done = 0;
28204 }
28205 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
28206 as_bad_where (fixP->fx_file, fixP->fx_line,
28207 _("branch out of range"));
28208
28209 if (fixP->fx_done || !seg->use_rela_p)
28210 {
28211 newval = md_chars_to_number (buf, THUMB_SIZE);
28212
28213 addressT boff = ((newval & 0x0780) >> 7) << 1;
28214 addressT diff = value - boff;
28215
28216 if (diff == 4)
28217 {
28218 newval |= 1 << 1; /* T bit. */
28219 }
28220 else if (diff != 2)
28221 {
28222 as_bad_where (fixP->fx_file, fixP->fx_line,
28223 _("out of range label-relative fixup value"));
28224 }
28225 md_number_to_chars (buf, newval, THUMB_SIZE);
28226 }
28227 break;
28228
28229 case BFD_RELOC_ARM_THUMB_BF17:
28230 if (fixP->fx_addsy
28231 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28232 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28233 && ARM_IS_FUNC (fixP->fx_addsy)
28234 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28235 {
28236 /* Force a relocation for a branch 17 bits wide. */
28237 fixP->fx_done = 0;
28238 }
28239
28240 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
28241 as_bad_where (fixP->fx_file, fixP->fx_line,
28242 BAD_BRANCH_OFF);
28243
28244 if (fixP->fx_done || !seg->use_rela_p)
28245 {
28246 offsetT newval2;
28247 addressT immA, immB, immC;
28248
28249 immA = (value & 0x0001f000) >> 12;
28250 immB = (value & 0x00000ffc) >> 2;
28251 immC = (value & 0x00000002) >> 1;
28252
28253 newval = md_chars_to_number (buf, THUMB_SIZE);
28254 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28255 newval |= immA;
28256 newval2 |= (immC << 11) | (immB << 1);
28257 md_number_to_chars (buf, newval, THUMB_SIZE);
28258 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28259 }
28260 break;
28261
28262 case BFD_RELOC_ARM_THUMB_BF19:
28263 if (fixP->fx_addsy
28264 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28265 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28266 && ARM_IS_FUNC (fixP->fx_addsy)
28267 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28268 {
28269 /* Force a relocation for a branch 19 bits wide. */
28270 fixP->fx_done = 0;
28271 }
28272
28273 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
28274 as_bad_where (fixP->fx_file, fixP->fx_line,
28275 BAD_BRANCH_OFF);
28276
28277 if (fixP->fx_done || !seg->use_rela_p)
28278 {
28279 offsetT newval2;
28280 addressT immA, immB, immC;
28281
28282 immA = (value & 0x0007f000) >> 12;
28283 immB = (value & 0x00000ffc) >> 2;
28284 immC = (value & 0x00000002) >> 1;
28285
28286 newval = md_chars_to_number (buf, THUMB_SIZE);
28287 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28288 newval |= immA;
28289 newval2 |= (immC << 11) | (immB << 1);
28290 md_number_to_chars (buf, newval, THUMB_SIZE);
28291 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28292 }
28293 break;
28294
28295 case BFD_RELOC_ARM_THUMB_BF13:
28296 if (fixP->fx_addsy
28297 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28298 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28299 && ARM_IS_FUNC (fixP->fx_addsy)
28300 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28301 {
28302 /* Force a relocation for a branch 13 bits wide. */
28303 fixP->fx_done = 0;
28304 }
28305
28306 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
28307 as_bad_where (fixP->fx_file, fixP->fx_line,
28308 BAD_BRANCH_OFF);
28309
28310 if (fixP->fx_done || !seg->use_rela_p)
28311 {
28312 offsetT newval2;
28313 addressT immA, immB, immC;
28314
28315 immA = (value & 0x00001000) >> 12;
28316 immB = (value & 0x00000ffc) >> 2;
28317 immC = (value & 0x00000002) >> 1;
28318
28319 newval = md_chars_to_number (buf, THUMB_SIZE);
28320 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28321 newval |= immA;
28322 newval2 |= (immC << 11) | (immB << 1);
28323 md_number_to_chars (buf, newval, THUMB_SIZE);
28324 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
28325 }
28326 break;
28327
28328 case BFD_RELOC_ARM_THUMB_LOOP12:
28329 if (fixP->fx_addsy
28330 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
28331 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
28332 && ARM_IS_FUNC (fixP->fx_addsy)
28333 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
28334 {
28335 /* Force a relocation for a branch 12 bits wide. */
28336 fixP->fx_done = 0;
28337 }
28338
28339 bfd_vma insn = get_thumb32_insn (buf);
28340 /* le lr, <label> or le <label> */
28341 if (((insn & 0xffffffff) == 0xf00fc001)
28342 || ((insn & 0xffffffff) == 0xf02fc001))
28343 value = -value;
28344
28345 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
28346 as_bad_where (fixP->fx_file, fixP->fx_line,
28347 BAD_BRANCH_OFF);
28348 if (fixP->fx_done || !seg->use_rela_p)
28349 {
28350 addressT imml, immh;
28351
28352 immh = (value & 0x00000ffc) >> 2;
28353 imml = (value & 0x00000002) >> 1;
28354
28355 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
28356 newval |= (imml << 11) | (immh << 1);
28357 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
28358 }
28359 break;
28360
28361 case BFD_RELOC_ARM_V4BX:
28362 /* This will need to go in the object file. */
28363 fixP->fx_done = 0;
28364 break;
28365
28366 case BFD_RELOC_UNUSED:
28367 default:
28368 as_bad_where (fixP->fx_file, fixP->fx_line,
28369 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
28370 }
28371 }
28372
28373 /* Translate internal representation of relocation info to BFD target
28374 format. */
28375
28376 arelent *
28377 tc_gen_reloc (asection *section, fixS *fixp)
28378 {
28379 arelent * reloc;
28380 bfd_reloc_code_real_type code;
28381
28382 reloc = XNEW (arelent);
28383
28384 reloc->sym_ptr_ptr = XNEW (asymbol *);
28385 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
28386 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
28387
28388 if (fixp->fx_pcrel)
28389 {
28390 if (section->use_rela_p)
28391 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
28392 else
28393 fixp->fx_offset = reloc->address;
28394 }
28395 reloc->addend = fixp->fx_offset;
28396
28397 switch (fixp->fx_r_type)
28398 {
28399 case BFD_RELOC_8:
28400 if (fixp->fx_pcrel)
28401 {
28402 code = BFD_RELOC_8_PCREL;
28403 break;
28404 }
28405 /* Fall through. */
28406
28407 case BFD_RELOC_16:
28408 if (fixp->fx_pcrel)
28409 {
28410 code = BFD_RELOC_16_PCREL;
28411 break;
28412 }
28413 /* Fall through. */
28414
28415 case BFD_RELOC_32:
28416 if (fixp->fx_pcrel)
28417 {
28418 code = BFD_RELOC_32_PCREL;
28419 break;
28420 }
28421 /* Fall through. */
28422
28423 case BFD_RELOC_ARM_MOVW:
28424 if (fixp->fx_pcrel)
28425 {
28426 code = BFD_RELOC_ARM_MOVW_PCREL;
28427 break;
28428 }
28429 /* Fall through. */
28430
28431 case BFD_RELOC_ARM_MOVT:
28432 if (fixp->fx_pcrel)
28433 {
28434 code = BFD_RELOC_ARM_MOVT_PCREL;
28435 break;
28436 }
28437 /* Fall through. */
28438
28439 case BFD_RELOC_ARM_THUMB_MOVW:
28440 if (fixp->fx_pcrel)
28441 {
28442 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
28443 break;
28444 }
28445 /* Fall through. */
28446
28447 case BFD_RELOC_ARM_THUMB_MOVT:
28448 if (fixp->fx_pcrel)
28449 {
28450 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
28451 break;
28452 }
28453 /* Fall through. */
28454
28455 case BFD_RELOC_NONE:
28456 case BFD_RELOC_ARM_PCREL_BRANCH:
28457 case BFD_RELOC_ARM_PCREL_BLX:
28458 case BFD_RELOC_RVA:
28459 case BFD_RELOC_THUMB_PCREL_BRANCH7:
28460 case BFD_RELOC_THUMB_PCREL_BRANCH9:
28461 case BFD_RELOC_THUMB_PCREL_BRANCH12:
28462 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28463 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28464 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28465 case BFD_RELOC_VTABLE_ENTRY:
28466 case BFD_RELOC_VTABLE_INHERIT:
28467 #ifdef TE_PE
28468 case BFD_RELOC_32_SECREL:
28469 #endif
28470 code = fixp->fx_r_type;
28471 break;
28472
28473 case BFD_RELOC_THUMB_PCREL_BLX:
28474 #ifdef OBJ_ELF
28475 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
28476 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
28477 else
28478 #endif
28479 code = BFD_RELOC_THUMB_PCREL_BLX;
28480 break;
28481
28482 case BFD_RELOC_ARM_LITERAL:
28483 case BFD_RELOC_ARM_HWLITERAL:
28484 /* If this is called then the a literal has
28485 been referenced across a section boundary. */
28486 as_bad_where (fixp->fx_file, fixp->fx_line,
28487 _("literal referenced across section boundary"));
28488 return NULL;
28489
28490 #ifdef OBJ_ELF
28491 case BFD_RELOC_ARM_TLS_CALL:
28492 case BFD_RELOC_ARM_THM_TLS_CALL:
28493 case BFD_RELOC_ARM_TLS_DESCSEQ:
28494 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
28495 case BFD_RELOC_ARM_GOT32:
28496 case BFD_RELOC_ARM_GOTOFF:
28497 case BFD_RELOC_ARM_GOT_PREL:
28498 case BFD_RELOC_ARM_PLT32:
28499 case BFD_RELOC_ARM_TARGET1:
28500 case BFD_RELOC_ARM_ROSEGREL32:
28501 case BFD_RELOC_ARM_SBREL32:
28502 case BFD_RELOC_ARM_PREL31:
28503 case BFD_RELOC_ARM_TARGET2:
28504 case BFD_RELOC_ARM_TLS_LDO32:
28505 case BFD_RELOC_ARM_PCREL_CALL:
28506 case BFD_RELOC_ARM_PCREL_JUMP:
28507 case BFD_RELOC_ARM_ALU_PC_G0_NC:
28508 case BFD_RELOC_ARM_ALU_PC_G0:
28509 case BFD_RELOC_ARM_ALU_PC_G1_NC:
28510 case BFD_RELOC_ARM_ALU_PC_G1:
28511 case BFD_RELOC_ARM_ALU_PC_G2:
28512 case BFD_RELOC_ARM_LDR_PC_G0:
28513 case BFD_RELOC_ARM_LDR_PC_G1:
28514 case BFD_RELOC_ARM_LDR_PC_G2:
28515 case BFD_RELOC_ARM_LDRS_PC_G0:
28516 case BFD_RELOC_ARM_LDRS_PC_G1:
28517 case BFD_RELOC_ARM_LDRS_PC_G2:
28518 case BFD_RELOC_ARM_LDC_PC_G0:
28519 case BFD_RELOC_ARM_LDC_PC_G1:
28520 case BFD_RELOC_ARM_LDC_PC_G2:
28521 case BFD_RELOC_ARM_ALU_SB_G0_NC:
28522 case BFD_RELOC_ARM_ALU_SB_G0:
28523 case BFD_RELOC_ARM_ALU_SB_G1_NC:
28524 case BFD_RELOC_ARM_ALU_SB_G1:
28525 case BFD_RELOC_ARM_ALU_SB_G2:
28526 case BFD_RELOC_ARM_LDR_SB_G0:
28527 case BFD_RELOC_ARM_LDR_SB_G1:
28528 case BFD_RELOC_ARM_LDR_SB_G2:
28529 case BFD_RELOC_ARM_LDRS_SB_G0:
28530 case BFD_RELOC_ARM_LDRS_SB_G1:
28531 case BFD_RELOC_ARM_LDRS_SB_G2:
28532 case BFD_RELOC_ARM_LDC_SB_G0:
28533 case BFD_RELOC_ARM_LDC_SB_G1:
28534 case BFD_RELOC_ARM_LDC_SB_G2:
28535 case BFD_RELOC_ARM_V4BX:
28536 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
28537 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
28538 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
28539 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
28540 case BFD_RELOC_ARM_GOTFUNCDESC:
28541 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
28542 case BFD_RELOC_ARM_FUNCDESC:
28543 case BFD_RELOC_ARM_THUMB_BF17:
28544 case BFD_RELOC_ARM_THUMB_BF19:
28545 case BFD_RELOC_ARM_THUMB_BF13:
28546 code = fixp->fx_r_type;
28547 break;
28548
28549 case BFD_RELOC_ARM_TLS_GOTDESC:
28550 case BFD_RELOC_ARM_TLS_GD32:
28551 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
28552 case BFD_RELOC_ARM_TLS_LE32:
28553 case BFD_RELOC_ARM_TLS_IE32:
28554 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
28555 case BFD_RELOC_ARM_TLS_LDM32:
28556 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
28557 /* BFD will include the symbol's address in the addend.
28558 But we don't want that, so subtract it out again here. */
28559 if (!S_IS_COMMON (fixp->fx_addsy))
28560 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
28561 code = fixp->fx_r_type;
28562 break;
28563 #endif
28564
28565 case BFD_RELOC_ARM_IMMEDIATE:
28566 as_bad_where (fixp->fx_file, fixp->fx_line,
28567 _("internal relocation (type: IMMEDIATE) not fixed up"));
28568 return NULL;
28569
28570 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
28571 as_bad_where (fixp->fx_file, fixp->fx_line,
28572 _("ADRL used for a symbol not defined in the same file"));
28573 return NULL;
28574
28575 case BFD_RELOC_THUMB_PCREL_BRANCH5:
28576 case BFD_RELOC_THUMB_PCREL_BFCSEL:
28577 case BFD_RELOC_ARM_THUMB_LOOP12:
28578 as_bad_where (fixp->fx_file, fixp->fx_line,
28579 _("%s used for a symbol not defined in the same file"),
28580 bfd_get_reloc_code_name (fixp->fx_r_type));
28581 return NULL;
28582
28583 case BFD_RELOC_ARM_OFFSET_IMM:
28584 if (section->use_rela_p)
28585 {
28586 code = fixp->fx_r_type;
28587 break;
28588 }
28589
28590 if (fixp->fx_addsy != NULL
28591 && !S_IS_DEFINED (fixp->fx_addsy)
28592 && S_IS_LOCAL (fixp->fx_addsy))
28593 {
28594 as_bad_where (fixp->fx_file, fixp->fx_line,
28595 _("undefined local label `%s'"),
28596 S_GET_NAME (fixp->fx_addsy));
28597 return NULL;
28598 }
28599
28600 as_bad_where (fixp->fx_file, fixp->fx_line,
28601 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
28602 return NULL;
28603
28604 default:
28605 {
28606 const char * type;
28607
28608 switch (fixp->fx_r_type)
28609 {
28610 case BFD_RELOC_NONE: type = "NONE"; break;
28611 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
28612 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
28613 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
28614 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
28615 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
28616 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
28617 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
28618 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
28619 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
28620 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
28621 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
28622 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
28623 default: type = _("<unknown>"); break;
28624 }
28625 as_bad_where (fixp->fx_file, fixp->fx_line,
28626 _("cannot represent %s relocation in this object file format"),
28627 type);
28628 return NULL;
28629 }
28630 }
28631
28632 #ifdef OBJ_ELF
28633 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
28634 && GOT_symbol
28635 && fixp->fx_addsy == GOT_symbol)
28636 {
28637 code = BFD_RELOC_ARM_GOTPC;
28638 reloc->addend = fixp->fx_offset = reloc->address;
28639 }
28640 #endif
28641
28642 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
28643
28644 if (reloc->howto == NULL)
28645 {
28646 as_bad_where (fixp->fx_file, fixp->fx_line,
28647 _("cannot represent %s relocation in this object file format"),
28648 bfd_get_reloc_code_name (code));
28649 return NULL;
28650 }
28651
28652 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
28653 vtable entry to be used in the relocation's section offset. */
28654 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28655 reloc->address = fixp->fx_offset;
28656
28657 return reloc;
28658 }
28659
28660 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
28661
28662 void
28663 cons_fix_new_arm (fragS * frag,
28664 int where,
28665 int size,
28666 expressionS * exp,
28667 bfd_reloc_code_real_type reloc)
28668 {
28669 int pcrel = 0;
28670
28671 /* Pick a reloc.
28672 FIXME: @@ Should look at CPU word size. */
28673 switch (size)
28674 {
28675 case 1:
28676 reloc = BFD_RELOC_8;
28677 break;
28678 case 2:
28679 reloc = BFD_RELOC_16;
28680 break;
28681 case 4:
28682 default:
28683 reloc = BFD_RELOC_32;
28684 break;
28685 case 8:
28686 reloc = BFD_RELOC_64;
28687 break;
28688 }
28689
28690 #ifdef TE_PE
28691 if (exp->X_op == O_secrel)
28692 {
28693 exp->X_op = O_symbol;
28694 reloc = BFD_RELOC_32_SECREL;
28695 }
28696 #endif
28697
28698 fix_new_exp (frag, where, size, exp, pcrel, reloc);
28699 }
28700
28701 #if defined (OBJ_COFF)
28702 void
28703 arm_validate_fix (fixS * fixP)
28704 {
28705 /* If the destination of the branch is a defined symbol which does not have
28706 the THUMB_FUNC attribute, then we must be calling a function which has
28707 the (interfacearm) attribute. We look for the Thumb entry point to that
28708 function and change the branch to refer to that function instead. */
28709 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
28710 && fixP->fx_addsy != NULL
28711 && S_IS_DEFINED (fixP->fx_addsy)
28712 && ! THUMB_IS_FUNC (fixP->fx_addsy))
28713 {
28714 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
28715 }
28716 }
28717 #endif
28718
28719
28720 int
28721 arm_force_relocation (struct fix * fixp)
28722 {
28723 #if defined (OBJ_COFF) && defined (TE_PE)
28724 if (fixp->fx_r_type == BFD_RELOC_RVA)
28725 return 1;
28726 #endif
28727
28728 /* In case we have a call or a branch to a function in ARM ISA mode from
28729 a thumb function or vice-versa force the relocation. These relocations
28730 are cleared off for some cores that might have blx and simple transformations
28731 are possible. */
28732
28733 #ifdef OBJ_ELF
28734 switch (fixp->fx_r_type)
28735 {
28736 case BFD_RELOC_ARM_PCREL_JUMP:
28737 case BFD_RELOC_ARM_PCREL_CALL:
28738 case BFD_RELOC_THUMB_PCREL_BLX:
28739 if (THUMB_IS_FUNC (fixp->fx_addsy))
28740 return 1;
28741 break;
28742
28743 case BFD_RELOC_ARM_PCREL_BLX:
28744 case BFD_RELOC_THUMB_PCREL_BRANCH25:
28745 case BFD_RELOC_THUMB_PCREL_BRANCH20:
28746 case BFD_RELOC_THUMB_PCREL_BRANCH23:
28747 if (ARM_IS_FUNC (fixp->fx_addsy))
28748 return 1;
28749 break;
28750
28751 default:
28752 break;
28753 }
28754 #endif
28755
28756 /* Resolve these relocations even if the symbol is extern or weak.
28757 Technically this is probably wrong due to symbol preemption.
28758 In practice these relocations do not have enough range to be useful
28759 at dynamic link time, and some code (e.g. in the Linux kernel)
28760 expects these references to be resolved. */
28761 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
28762 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
28763 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
28764 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
28765 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
28766 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
28767 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
28768 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
28769 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
28770 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
28771 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
28772 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
28773 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
28774 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
28775 return 0;
28776
28777 /* Always leave these relocations for the linker. */
28778 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28779 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28780 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28781 return 1;
28782
28783 /* Always generate relocations against function symbols. */
28784 if (fixp->fx_r_type == BFD_RELOC_32
28785 && fixp->fx_addsy
28786 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
28787 return 1;
28788
28789 return generic_force_reloc (fixp);
28790 }
28791
28792 #if defined (OBJ_ELF) || defined (OBJ_COFF)
28793 /* Relocations against function names must be left unadjusted,
28794 so that the linker can use this information to generate interworking
28795 stubs. The MIPS version of this function
28796 also prevents relocations that are mips-16 specific, but I do not
28797 know why it does this.
28798
28799 FIXME:
28800 There is one other problem that ought to be addressed here, but
28801 which currently is not: Taking the address of a label (rather
28802 than a function) and then later jumping to that address. Such
28803 addresses also ought to have their bottom bit set (assuming that
28804 they reside in Thumb code), but at the moment they will not. */
28805
28806 bfd_boolean
28807 arm_fix_adjustable (fixS * fixP)
28808 {
28809 if (fixP->fx_addsy == NULL)
28810 return 1;
28811
28812 /* Preserve relocations against symbols with function type. */
28813 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
28814 return FALSE;
28815
28816 if (THUMB_IS_FUNC (fixP->fx_addsy)
28817 && fixP->fx_subsy == NULL)
28818 return FALSE;
28819
28820 /* We need the symbol name for the VTABLE entries. */
28821 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
28822 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
28823 return FALSE;
28824
28825 /* Don't allow symbols to be discarded on GOT related relocs. */
28826 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
28827 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
28828 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
28829 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
28830 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
28831 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
28832 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
28833 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
28834 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
28835 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
28836 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
28837 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
28838 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
28839 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
28840 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
28841 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
28842 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
28843 return FALSE;
28844
28845 /* Similarly for group relocations. */
28846 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
28847 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
28848 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
28849 return FALSE;
28850
28851 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
28852 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
28853 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
28854 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
28855 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
28856 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
28857 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
28858 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
28859 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
28860 return FALSE;
28861
28862 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
28863 offsets, so keep these symbols. */
28864 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
28865 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
28866 return FALSE;
28867
28868 return TRUE;
28869 }
28870 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
28871
28872 #ifdef OBJ_ELF
28873 const char *
28874 elf32_arm_target_format (void)
28875 {
28876 #ifdef TE_SYMBIAN
28877 return (target_big_endian
28878 ? "elf32-bigarm-symbian"
28879 : "elf32-littlearm-symbian");
28880 #elif defined (TE_VXWORKS)
28881 return (target_big_endian
28882 ? "elf32-bigarm-vxworks"
28883 : "elf32-littlearm-vxworks");
28884 #elif defined (TE_NACL)
28885 return (target_big_endian
28886 ? "elf32-bigarm-nacl"
28887 : "elf32-littlearm-nacl");
28888 #else
28889 if (arm_fdpic)
28890 {
28891 if (target_big_endian)
28892 return "elf32-bigarm-fdpic";
28893 else
28894 return "elf32-littlearm-fdpic";
28895 }
28896 else
28897 {
28898 if (target_big_endian)
28899 return "elf32-bigarm";
28900 else
28901 return "elf32-littlearm";
28902 }
28903 #endif
28904 }
28905
28906 void
28907 armelf_frob_symbol (symbolS * symp,
28908 int * puntp)
28909 {
28910 elf_frob_symbol (symp, puntp);
28911 }
28912 #endif
28913
28914 /* MD interface: Finalization. */
28915
28916 void
28917 arm_cleanup (void)
28918 {
28919 literal_pool * pool;
28920
28921 /* Ensure that all the predication blocks are properly closed. */
28922 check_pred_blocks_finished ();
28923
28924 for (pool = list_of_pools; pool; pool = pool->next)
28925 {
28926 /* Put it at the end of the relevant section. */
28927 subseg_set (pool->section, pool->sub_section);
28928 #ifdef OBJ_ELF
28929 arm_elf_change_section ();
28930 #endif
28931 s_ltorg (0);
28932 }
28933 }
28934
28935 #ifdef OBJ_ELF
28936 /* Remove any excess mapping symbols generated for alignment frags in
28937 SEC. We may have created a mapping symbol before a zero byte
28938 alignment; remove it if there's a mapping symbol after the
28939 alignment. */
28940 static void
28941 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
28942 void *dummy ATTRIBUTE_UNUSED)
28943 {
28944 segment_info_type *seginfo = seg_info (sec);
28945 fragS *fragp;
28946
28947 if (seginfo == NULL || seginfo->frchainP == NULL)
28948 return;
28949
28950 for (fragp = seginfo->frchainP->frch_root;
28951 fragp != NULL;
28952 fragp = fragp->fr_next)
28953 {
28954 symbolS *sym = fragp->tc_frag_data.last_map;
28955 fragS *next = fragp->fr_next;
28956
28957 /* Variable-sized frags have been converted to fixed size by
28958 this point. But if this was variable-sized to start with,
28959 there will be a fixed-size frag after it. So don't handle
28960 next == NULL. */
28961 if (sym == NULL || next == NULL)
28962 continue;
28963
28964 if (S_GET_VALUE (sym) < next->fr_address)
28965 /* Not at the end of this frag. */
28966 continue;
28967 know (S_GET_VALUE (sym) == next->fr_address);
28968
28969 do
28970 {
28971 if (next->tc_frag_data.first_map != NULL)
28972 {
28973 /* Next frag starts with a mapping symbol. Discard this
28974 one. */
28975 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28976 break;
28977 }
28978
28979 if (next->fr_next == NULL)
28980 {
28981 /* This mapping symbol is at the end of the section. Discard
28982 it. */
28983 know (next->fr_fix == 0 && next->fr_var == 0);
28984 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
28985 break;
28986 }
28987
28988 /* As long as we have empty frags without any mapping symbols,
28989 keep looking. */
28990 /* If the next frag is non-empty and does not start with a
28991 mapping symbol, then this mapping symbol is required. */
28992 if (next->fr_address != next->fr_next->fr_address)
28993 break;
28994
28995 next = next->fr_next;
28996 }
28997 while (next != NULL);
28998 }
28999 }
29000 #endif
29001
29002 /* Adjust the symbol table. This marks Thumb symbols as distinct from
29003 ARM ones. */
29004
29005 void
29006 arm_adjust_symtab (void)
29007 {
29008 #ifdef OBJ_COFF
29009 symbolS * sym;
29010
29011 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29012 {
29013 if (ARM_IS_THUMB (sym))
29014 {
29015 if (THUMB_IS_FUNC (sym))
29016 {
29017 /* Mark the symbol as a Thumb function. */
29018 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
29019 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
29020 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
29021
29022 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
29023 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
29024 else
29025 as_bad (_("%s: unexpected function type: %d"),
29026 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
29027 }
29028 else switch (S_GET_STORAGE_CLASS (sym))
29029 {
29030 case C_EXT:
29031 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
29032 break;
29033 case C_STAT:
29034 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
29035 break;
29036 case C_LABEL:
29037 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
29038 break;
29039 default:
29040 /* Do nothing. */
29041 break;
29042 }
29043 }
29044
29045 if (ARM_IS_INTERWORK (sym))
29046 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
29047 }
29048 #endif
29049 #ifdef OBJ_ELF
29050 symbolS * sym;
29051 char bind;
29052
29053 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
29054 {
29055 if (ARM_IS_THUMB (sym))
29056 {
29057 elf_symbol_type * elf_sym;
29058
29059 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
29060 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
29061
29062 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
29063 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
29064 {
29065 /* If it's a .thumb_func, declare it as so,
29066 otherwise tag label as .code 16. */
29067 if (THUMB_IS_FUNC (sym))
29068 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
29069 ST_BRANCH_TO_THUMB);
29070 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
29071 elf_sym->internal_elf_sym.st_info =
29072 ELF_ST_INFO (bind, STT_ARM_16BIT);
29073 }
29074 }
29075 }
29076
29077 /* Remove any overlapping mapping symbols generated by alignment frags. */
29078 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
29079 /* Now do generic ELF adjustments. */
29080 elf_adjust_symtab ();
29081 #endif
29082 }
29083
29084 /* MD interface: Initialization. */
29085
29086 static void
29087 set_constant_flonums (void)
29088 {
29089 int i;
29090
29091 for (i = 0; i < NUM_FLOAT_VALS; i++)
29092 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
29093 abort ();
29094 }
29095
29096 /* Auto-select Thumb mode if it's the only available instruction set for the
29097 given architecture. */
29098
29099 static void
29100 autoselect_thumb_from_cpu_variant (void)
29101 {
29102 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
29103 opcode_select (16);
29104 }
29105
29106 void
29107 md_begin (void)
29108 {
29109 unsigned mach;
29110 unsigned int i;
29111
29112 if ( (arm_ops_hsh = hash_new ()) == NULL
29113 || (arm_cond_hsh = hash_new ()) == NULL
29114 || (arm_vcond_hsh = hash_new ()) == NULL
29115 || (arm_shift_hsh = hash_new ()) == NULL
29116 || (arm_psr_hsh = hash_new ()) == NULL
29117 || (arm_v7m_psr_hsh = hash_new ()) == NULL
29118 || (arm_reg_hsh = hash_new ()) == NULL
29119 || (arm_reloc_hsh = hash_new ()) == NULL
29120 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
29121 as_fatal (_("virtual memory exhausted"));
29122
29123 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
29124 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
29125 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
29126 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
29127 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
29128 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
29129 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
29130 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
29131 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
29132 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
29133 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
29134 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
29135 (void *) (v7m_psrs + i));
29136 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
29137 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
29138 for (i = 0;
29139 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
29140 i++)
29141 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
29142 (void *) (barrier_opt_names + i));
29143 #ifdef OBJ_ELF
29144 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
29145 {
29146 struct reloc_entry * entry = reloc_names + i;
29147
29148 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
29149 /* This makes encode_branch() use the EABI versions of this relocation. */
29150 entry->reloc = BFD_RELOC_UNUSED;
29151
29152 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
29153 }
29154 #endif
29155
29156 set_constant_flonums ();
29157
29158 /* Set the cpu variant based on the command-line options. We prefer
29159 -mcpu= over -march= if both are set (as for GCC); and we prefer
29160 -mfpu= over any other way of setting the floating point unit.
29161 Use of legacy options with new options are faulted. */
29162 if (legacy_cpu)
29163 {
29164 if (mcpu_cpu_opt || march_cpu_opt)
29165 as_bad (_("use of old and new-style options to set CPU type"));
29166
29167 selected_arch = *legacy_cpu;
29168 }
29169 else if (mcpu_cpu_opt)
29170 {
29171 selected_arch = *mcpu_cpu_opt;
29172 selected_ext = *mcpu_ext_opt;
29173 }
29174 else if (march_cpu_opt)
29175 {
29176 selected_arch = *march_cpu_opt;
29177 selected_ext = *march_ext_opt;
29178 }
29179 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
29180
29181 if (legacy_fpu)
29182 {
29183 if (mfpu_opt)
29184 as_bad (_("use of old and new-style options to set FPU type"));
29185
29186 selected_fpu = *legacy_fpu;
29187 }
29188 else if (mfpu_opt)
29189 selected_fpu = *mfpu_opt;
29190 else
29191 {
29192 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
29193 || defined (TE_NetBSD) || defined (TE_VXWORKS))
29194 /* Some environments specify a default FPU. If they don't, infer it
29195 from the processor. */
29196 if (mcpu_fpu_opt)
29197 selected_fpu = *mcpu_fpu_opt;
29198 else if (march_fpu_opt)
29199 selected_fpu = *march_fpu_opt;
29200 #else
29201 selected_fpu = fpu_default;
29202 #endif
29203 }
29204
29205 if (ARM_FEATURE_ZERO (selected_fpu))
29206 {
29207 if (!no_cpu_selected ())
29208 selected_fpu = fpu_default;
29209 else
29210 selected_fpu = fpu_arch_fpa;
29211 }
29212
29213 #ifdef CPU_DEFAULT
29214 if (ARM_FEATURE_ZERO (selected_arch))
29215 {
29216 selected_arch = cpu_default;
29217 selected_cpu = selected_arch;
29218 }
29219 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29220 #else
29221 /* Autodection of feature mode: allow all features in cpu_variant but leave
29222 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
29223 after all instruction have been processed and we can decide what CPU
29224 should be selected. */
29225 if (ARM_FEATURE_ZERO (selected_arch))
29226 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
29227 else
29228 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
29229 #endif
29230
29231 autoselect_thumb_from_cpu_variant ();
29232
29233 arm_arch_used = thumb_arch_used = arm_arch_none;
29234
29235 #if defined OBJ_COFF || defined OBJ_ELF
29236 {
29237 unsigned int flags = 0;
29238
29239 #if defined OBJ_ELF
29240 flags = meabi_flags;
29241
29242 switch (meabi_flags)
29243 {
29244 case EF_ARM_EABI_UNKNOWN:
29245 #endif
29246 /* Set the flags in the private structure. */
29247 if (uses_apcs_26) flags |= F_APCS26;
29248 if (support_interwork) flags |= F_INTERWORK;
29249 if (uses_apcs_float) flags |= F_APCS_FLOAT;
29250 if (pic_code) flags |= F_PIC;
29251 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
29252 flags |= F_SOFT_FLOAT;
29253
29254 switch (mfloat_abi_opt)
29255 {
29256 case ARM_FLOAT_ABI_SOFT:
29257 case ARM_FLOAT_ABI_SOFTFP:
29258 flags |= F_SOFT_FLOAT;
29259 break;
29260
29261 case ARM_FLOAT_ABI_HARD:
29262 if (flags & F_SOFT_FLOAT)
29263 as_bad (_("hard-float conflicts with specified fpu"));
29264 break;
29265 }
29266
29267 /* Using pure-endian doubles (even if soft-float). */
29268 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
29269 flags |= F_VFP_FLOAT;
29270
29271 #if defined OBJ_ELF
29272 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
29273 flags |= EF_ARM_MAVERICK_FLOAT;
29274 break;
29275
29276 case EF_ARM_EABI_VER4:
29277 case EF_ARM_EABI_VER5:
29278 /* No additional flags to set. */
29279 break;
29280
29281 default:
29282 abort ();
29283 }
29284 #endif
29285 bfd_set_private_flags (stdoutput, flags);
29286
29287 /* We have run out flags in the COFF header to encode the
29288 status of ATPCS support, so instead we create a dummy,
29289 empty, debug section called .arm.atpcs. */
29290 if (atpcs)
29291 {
29292 asection * sec;
29293
29294 sec = bfd_make_section (stdoutput, ".arm.atpcs");
29295
29296 if (sec != NULL)
29297 {
29298 bfd_set_section_flags
29299 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
29300 bfd_set_section_size (stdoutput, sec, 0);
29301 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
29302 }
29303 }
29304 }
29305 #endif
29306
29307 /* Record the CPU type as well. */
29308 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
29309 mach = bfd_mach_arm_iWMMXt2;
29310 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
29311 mach = bfd_mach_arm_iWMMXt;
29312 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
29313 mach = bfd_mach_arm_XScale;
29314 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
29315 mach = bfd_mach_arm_ep9312;
29316 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
29317 mach = bfd_mach_arm_5TE;
29318 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
29319 {
29320 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29321 mach = bfd_mach_arm_5T;
29322 else
29323 mach = bfd_mach_arm_5;
29324 }
29325 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
29326 {
29327 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
29328 mach = bfd_mach_arm_4T;
29329 else
29330 mach = bfd_mach_arm_4;
29331 }
29332 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
29333 mach = bfd_mach_arm_3M;
29334 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
29335 mach = bfd_mach_arm_3;
29336 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
29337 mach = bfd_mach_arm_2a;
29338 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
29339 mach = bfd_mach_arm_2;
29340 else
29341 mach = bfd_mach_arm_unknown;
29342
29343 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
29344 }
29345
29346 /* Command line processing. */
29347
29348 /* md_parse_option
29349 Invocation line includes a switch not recognized by the base assembler.
29350 See if it's a processor-specific option.
29351
29352 This routine is somewhat complicated by the need for backwards
29353 compatibility (since older releases of gcc can't be changed).
29354 The new options try to make the interface as compatible as
29355 possible with GCC.
29356
29357 New options (supported) are:
29358
29359 -mcpu=<cpu name> Assemble for selected processor
29360 -march=<architecture name> Assemble for selected architecture
29361 -mfpu=<fpu architecture> Assemble for selected FPU.
29362 -EB/-mbig-endian Big-endian
29363 -EL/-mlittle-endian Little-endian
29364 -k Generate PIC code
29365 -mthumb Start in Thumb mode
29366 -mthumb-interwork Code supports ARM/Thumb interworking
29367
29368 -m[no-]warn-deprecated Warn about deprecated features
29369 -m[no-]warn-syms Warn when symbols match instructions
29370
29371 For now we will also provide support for:
29372
29373 -mapcs-32 32-bit Program counter
29374 -mapcs-26 26-bit Program counter
29375 -macps-float Floats passed in FP registers
29376 -mapcs-reentrant Reentrant code
29377 -matpcs
29378 (sometime these will probably be replaced with -mapcs=<list of options>
29379 and -matpcs=<list of options>)
29380
29381 The remaining options are only supported for back-wards compatibility.
29382 Cpu variants, the arm part is optional:
29383 -m[arm]1 Currently not supported.
29384 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
29385 -m[arm]3 Arm 3 processor
29386 -m[arm]6[xx], Arm 6 processors
29387 -m[arm]7[xx][t][[d]m] Arm 7 processors
29388 -m[arm]8[10] Arm 8 processors
29389 -m[arm]9[20][tdmi] Arm 9 processors
29390 -mstrongarm[110[0]] StrongARM processors
29391 -mxscale XScale processors
29392 -m[arm]v[2345[t[e]]] Arm architectures
29393 -mall All (except the ARM1)
29394 FP variants:
29395 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
29396 -mfpe-old (No float load/store multiples)
29397 -mvfpxd VFP Single precision
29398 -mvfp All VFP
29399 -mno-fpu Disable all floating point instructions
29400
29401 The following CPU names are recognized:
29402 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
29403 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
29404 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
29405 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
29406 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
29407 arm10t arm10e, arm1020t, arm1020e, arm10200e,
29408 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
29409
29410 */
29411
29412 const char * md_shortopts = "m:k";
29413
29414 #ifdef ARM_BI_ENDIAN
29415 #define OPTION_EB (OPTION_MD_BASE + 0)
29416 #define OPTION_EL (OPTION_MD_BASE + 1)
29417 #else
29418 #if TARGET_BYTES_BIG_ENDIAN
29419 #define OPTION_EB (OPTION_MD_BASE + 0)
29420 #else
29421 #define OPTION_EL (OPTION_MD_BASE + 1)
29422 #endif
29423 #endif
29424 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
29425 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
29426
29427 struct option md_longopts[] =
29428 {
29429 #ifdef OPTION_EB
29430 {"EB", no_argument, NULL, OPTION_EB},
29431 #endif
29432 #ifdef OPTION_EL
29433 {"EL", no_argument, NULL, OPTION_EL},
29434 #endif
29435 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
29436 #ifdef OBJ_ELF
29437 {"fdpic", no_argument, NULL, OPTION_FDPIC},
29438 #endif
29439 {NULL, no_argument, NULL, 0}
29440 };
29441
29442 size_t md_longopts_size = sizeof (md_longopts);
29443
29444 struct arm_option_table
29445 {
29446 const char * option; /* Option name to match. */
29447 const char * help; /* Help information. */
29448 int * var; /* Variable to change. */
29449 int value; /* What to change it to. */
29450 const char * deprecated; /* If non-null, print this message. */
29451 };
29452
29453 struct arm_option_table arm_opts[] =
29454 {
29455 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
29456 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
29457 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
29458 &support_interwork, 1, NULL},
29459 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
29460 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
29461 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
29462 1, NULL},
29463 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
29464 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
29465 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
29466 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
29467 NULL},
29468
29469 /* These are recognized by the assembler, but have no affect on code. */
29470 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
29471 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
29472
29473 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
29474 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
29475 &warn_on_deprecated, 0, NULL},
29476 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
29477 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
29478 {NULL, NULL, NULL, 0, NULL}
29479 };
29480
29481 struct arm_legacy_option_table
29482 {
29483 const char * option; /* Option name to match. */
29484 const arm_feature_set ** var; /* Variable to change. */
29485 const arm_feature_set value; /* What to change it to. */
29486 const char * deprecated; /* If non-null, print this message. */
29487 };
29488
29489 const struct arm_legacy_option_table arm_legacy_opts[] =
29490 {
29491 /* DON'T add any new processors to this list -- we want the whole list
29492 to go away... Add them to the processors table instead. */
29493 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29494 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
29495 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29496 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
29497 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29498 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
29499 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29500 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
29501 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29502 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
29503 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29504 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
29505 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29506 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
29507 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29508 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
29509 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29510 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
29511 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29512 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
29513 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29514 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
29515 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29516 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
29517 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29518 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
29519 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29520 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
29521 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29522 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
29523 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29524 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
29525 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29526 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
29527 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29528 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
29529 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29530 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
29531 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29532 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
29533 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29534 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
29535 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29536 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
29537 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29538 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
29539 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29540 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29541 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29542 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
29543 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29544 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
29545 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29546 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
29547 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29548 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
29549 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29550 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
29551 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29552 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
29553 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29554 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
29555 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29556 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
29557 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29558 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
29559 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29560 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
29561 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
29562 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
29563 N_("use -mcpu=strongarm110")},
29564 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
29565 N_("use -mcpu=strongarm1100")},
29566 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
29567 N_("use -mcpu=strongarm1110")},
29568 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
29569 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
29570 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
29571
29572 /* Architecture variants -- don't add any more to this list either. */
29573 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29574 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
29575 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29576 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
29577 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29578 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
29579 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29580 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
29581 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29582 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
29583 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29584 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
29585 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29586 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
29587 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29588 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
29589 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29590 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
29591
29592 /* Floating point variants -- don't add any more to this list either. */
29593 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
29594 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
29595 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
29596 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
29597 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
29598
29599 {NULL, NULL, ARM_ARCH_NONE, NULL}
29600 };
29601
29602 struct arm_cpu_option_table
29603 {
29604 const char * name;
29605 size_t name_len;
29606 const arm_feature_set value;
29607 const arm_feature_set ext;
29608 /* For some CPUs we assume an FPU unless the user explicitly sets
29609 -mfpu=... */
29610 const arm_feature_set default_fpu;
29611 /* The canonical name of the CPU, or NULL to use NAME converted to upper
29612 case. */
29613 const char * canonical_name;
29614 };
29615
29616 /* This list should, at a minimum, contain all the cpu names
29617 recognized by GCC. */
29618 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
29619
29620 static const struct arm_cpu_option_table arm_cpus[] =
29621 {
29622 ARM_CPU_OPT ("all", NULL, ARM_ANY,
29623 ARM_ARCH_NONE,
29624 FPU_ARCH_FPA),
29625 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
29626 ARM_ARCH_NONE,
29627 FPU_ARCH_FPA),
29628 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
29629 ARM_ARCH_NONE,
29630 FPU_ARCH_FPA),
29631 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
29632 ARM_ARCH_NONE,
29633 FPU_ARCH_FPA),
29634 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
29635 ARM_ARCH_NONE,
29636 FPU_ARCH_FPA),
29637 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
29638 ARM_ARCH_NONE,
29639 FPU_ARCH_FPA),
29640 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
29641 ARM_ARCH_NONE,
29642 FPU_ARCH_FPA),
29643 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
29644 ARM_ARCH_NONE,
29645 FPU_ARCH_FPA),
29646 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
29647 ARM_ARCH_NONE,
29648 FPU_ARCH_FPA),
29649 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
29650 ARM_ARCH_NONE,
29651 FPU_ARCH_FPA),
29652 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
29653 ARM_ARCH_NONE,
29654 FPU_ARCH_FPA),
29655 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
29656 ARM_ARCH_NONE,
29657 FPU_ARCH_FPA),
29658 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
29659 ARM_ARCH_NONE,
29660 FPU_ARCH_FPA),
29661 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
29662 ARM_ARCH_NONE,
29663 FPU_ARCH_FPA),
29664 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
29665 ARM_ARCH_NONE,
29666 FPU_ARCH_FPA),
29667 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
29668 ARM_ARCH_NONE,
29669 FPU_ARCH_FPA),
29670 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
29671 ARM_ARCH_NONE,
29672 FPU_ARCH_FPA),
29673 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
29674 ARM_ARCH_NONE,
29675 FPU_ARCH_FPA),
29676 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
29677 ARM_ARCH_NONE,
29678 FPU_ARCH_FPA),
29679 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
29680 ARM_ARCH_NONE,
29681 FPU_ARCH_FPA),
29682 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
29683 ARM_ARCH_NONE,
29684 FPU_ARCH_FPA),
29685 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
29686 ARM_ARCH_NONE,
29687 FPU_ARCH_FPA),
29688 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
29689 ARM_ARCH_NONE,
29690 FPU_ARCH_FPA),
29691 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
29692 ARM_ARCH_NONE,
29693 FPU_ARCH_FPA),
29694 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
29695 ARM_ARCH_NONE,
29696 FPU_ARCH_FPA),
29697 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
29698 ARM_ARCH_NONE,
29699 FPU_ARCH_FPA),
29700 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
29701 ARM_ARCH_NONE,
29702 FPU_ARCH_FPA),
29703 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
29704 ARM_ARCH_NONE,
29705 FPU_ARCH_FPA),
29706 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
29707 ARM_ARCH_NONE,
29708 FPU_ARCH_FPA),
29709 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
29710 ARM_ARCH_NONE,
29711 FPU_ARCH_FPA),
29712 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
29713 ARM_ARCH_NONE,
29714 FPU_ARCH_FPA),
29715 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
29716 ARM_ARCH_NONE,
29717 FPU_ARCH_FPA),
29718 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
29719 ARM_ARCH_NONE,
29720 FPU_ARCH_FPA),
29721 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
29722 ARM_ARCH_NONE,
29723 FPU_ARCH_FPA),
29724 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
29725 ARM_ARCH_NONE,
29726 FPU_ARCH_FPA),
29727 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
29728 ARM_ARCH_NONE,
29729 FPU_ARCH_FPA),
29730 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
29731 ARM_ARCH_NONE,
29732 FPU_ARCH_FPA),
29733 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
29734 ARM_ARCH_NONE,
29735 FPU_ARCH_FPA),
29736 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
29737 ARM_ARCH_NONE,
29738 FPU_ARCH_FPA),
29739 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
29740 ARM_ARCH_NONE,
29741 FPU_ARCH_FPA),
29742 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
29743 ARM_ARCH_NONE,
29744 FPU_ARCH_FPA),
29745 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
29746 ARM_ARCH_NONE,
29747 FPU_ARCH_FPA),
29748 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
29749 ARM_ARCH_NONE,
29750 FPU_ARCH_FPA),
29751 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
29752 ARM_ARCH_NONE,
29753 FPU_ARCH_FPA),
29754 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
29755 ARM_ARCH_NONE,
29756 FPU_ARCH_FPA),
29757 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
29758 ARM_ARCH_NONE,
29759 FPU_ARCH_FPA),
29760
29761 /* For V5 or later processors we default to using VFP; but the user
29762 should really set the FPU type explicitly. */
29763 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
29764 ARM_ARCH_NONE,
29765 FPU_ARCH_VFP_V2),
29766 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
29767 ARM_ARCH_NONE,
29768 FPU_ARCH_VFP_V2),
29769 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29770 ARM_ARCH_NONE,
29771 FPU_ARCH_VFP_V2),
29772 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
29773 ARM_ARCH_NONE,
29774 FPU_ARCH_VFP_V2),
29775 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
29776 ARM_ARCH_NONE,
29777 FPU_ARCH_VFP_V2),
29778 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
29779 ARM_ARCH_NONE,
29780 FPU_ARCH_VFP_V2),
29781 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
29782 ARM_ARCH_NONE,
29783 FPU_ARCH_VFP_V2),
29784 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
29785 ARM_ARCH_NONE,
29786 FPU_ARCH_VFP_V2),
29787 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
29788 ARM_ARCH_NONE,
29789 FPU_ARCH_VFP_V2),
29790 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
29791 ARM_ARCH_NONE,
29792 FPU_ARCH_VFP_V2),
29793 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
29794 ARM_ARCH_NONE,
29795 FPU_ARCH_VFP_V2),
29796 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
29797 ARM_ARCH_NONE,
29798 FPU_ARCH_VFP_V2),
29799 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
29800 ARM_ARCH_NONE,
29801 FPU_ARCH_VFP_V1),
29802 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
29803 ARM_ARCH_NONE,
29804 FPU_ARCH_VFP_V1),
29805 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
29806 ARM_ARCH_NONE,
29807 FPU_ARCH_VFP_V2),
29808 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
29809 ARM_ARCH_NONE,
29810 FPU_ARCH_VFP_V2),
29811 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
29812 ARM_ARCH_NONE,
29813 FPU_ARCH_VFP_V1),
29814 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
29815 ARM_ARCH_NONE,
29816 FPU_ARCH_VFP_V2),
29817 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
29818 ARM_ARCH_NONE,
29819 FPU_ARCH_VFP_V2),
29820 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
29821 ARM_ARCH_NONE,
29822 FPU_ARCH_VFP_V2),
29823 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
29824 ARM_ARCH_NONE,
29825 FPU_ARCH_VFP_V2),
29826 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
29827 ARM_ARCH_NONE,
29828 FPU_ARCH_VFP_V2),
29829 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
29830 ARM_ARCH_NONE,
29831 FPU_ARCH_VFP_V2),
29832 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
29833 ARM_ARCH_NONE,
29834 FPU_ARCH_VFP_V2),
29835 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
29836 ARM_ARCH_NONE,
29837 FPU_ARCH_VFP_V2),
29838 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
29839 ARM_ARCH_NONE,
29840 FPU_ARCH_VFP_V2),
29841 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
29842 ARM_ARCH_NONE,
29843 FPU_NONE),
29844 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
29845 ARM_ARCH_NONE,
29846 FPU_NONE),
29847 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
29848 ARM_ARCH_NONE,
29849 FPU_ARCH_VFP_V2),
29850 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
29851 ARM_ARCH_NONE,
29852 FPU_ARCH_VFP_V2),
29853 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
29854 ARM_ARCH_NONE,
29855 FPU_ARCH_VFP_V2),
29856 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
29857 ARM_ARCH_NONE,
29858 FPU_NONE),
29859 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
29860 ARM_ARCH_NONE,
29861 FPU_NONE),
29862 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
29863 ARM_ARCH_NONE,
29864 FPU_ARCH_VFP_V2),
29865 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
29866 ARM_ARCH_NONE,
29867 FPU_NONE),
29868 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
29869 ARM_ARCH_NONE,
29870 FPU_ARCH_VFP_V2),
29871 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
29872 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29873 FPU_NONE),
29874 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
29875 ARM_ARCH_NONE,
29876 FPU_ARCH_NEON_VFP_V4),
29877 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
29878 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29879 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29880 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
29881 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29882 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
29883 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
29884 ARM_ARCH_NONE,
29885 FPU_ARCH_NEON_VFP_V4),
29886 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
29887 ARM_ARCH_NONE,
29888 FPU_ARCH_NEON_VFP_V4),
29889 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
29890 ARM_ARCH_NONE,
29891 FPU_ARCH_NEON_VFP_V4),
29892 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
29893 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29894 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29895 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
29896 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29897 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29898 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
29899 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29900 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29901 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
29902 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29903 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29904 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
29905 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29906 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29907 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
29908 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29909 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29910 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
29911 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29912 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29913 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
29914 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29915 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29916 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
29917 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29918 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29919 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
29920 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29921 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29922 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
29923 ARM_ARCH_NONE,
29924 FPU_NONE),
29925 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
29926 ARM_ARCH_NONE,
29927 FPU_ARCH_VFP_V3D16),
29928 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
29929 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29930 FPU_NONE),
29931 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
29932 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29933 FPU_ARCH_VFP_V3D16),
29934 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
29935 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
29936 FPU_ARCH_VFP_V3D16),
29937 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
29938 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29939 FPU_ARCH_NEON_VFP_ARMV8),
29940 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
29941 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29942 FPU_NONE),
29943 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
29944 ARM_ARCH_NONE,
29945 FPU_NONE),
29946 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
29947 ARM_ARCH_NONE,
29948 FPU_NONE),
29949 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
29950 ARM_ARCH_NONE,
29951 FPU_NONE),
29952 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
29953 ARM_ARCH_NONE,
29954 FPU_NONE),
29955 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
29956 ARM_ARCH_NONE,
29957 FPU_NONE),
29958 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
29959 ARM_ARCH_NONE,
29960 FPU_NONE),
29961 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
29962 ARM_ARCH_NONE,
29963 FPU_NONE),
29964 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
29965 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29966 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
29967 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
29968 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29969 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
29970 /* ??? XSCALE is really an architecture. */
29971 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
29972 ARM_ARCH_NONE,
29973 FPU_ARCH_VFP_V2),
29974
29975 /* ??? iwmmxt is not a processor. */
29976 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
29977 ARM_ARCH_NONE,
29978 FPU_ARCH_VFP_V2),
29979 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
29980 ARM_ARCH_NONE,
29981 FPU_ARCH_VFP_V2),
29982 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
29983 ARM_ARCH_NONE,
29984 FPU_ARCH_VFP_V2),
29985
29986 /* Maverick. */
29987 ARM_CPU_OPT ("ep9312", "ARM920T",
29988 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
29989 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
29990
29991 /* Marvell processors. */
29992 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
29993 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29994 FPU_ARCH_VFP_V3D16),
29995 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
29996 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
29997 FPU_ARCH_NEON_VFP_V4),
29998
29999 /* APM X-Gene family. */
30000 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
30001 ARM_ARCH_NONE,
30002 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30003 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
30004 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30005 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
30006
30007 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30008 };
30009 #undef ARM_CPU_OPT
30010
30011 struct arm_ext_table
30012 {
30013 const char * name;
30014 size_t name_len;
30015 const arm_feature_set merge;
30016 const arm_feature_set clear;
30017 };
30018
30019 struct arm_arch_option_table
30020 {
30021 const char * name;
30022 size_t name_len;
30023 const arm_feature_set value;
30024 const arm_feature_set default_fpu;
30025 const struct arm_ext_table * ext_table;
30026 };
30027
30028 /* Used to add support for +E and +noE extension. */
30029 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
30030 /* Used to add support for a +E extension. */
30031 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
30032 /* Used to add support for a +noE extension. */
30033 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
30034
30035 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
30036 ~0 & ~FPU_ENDIAN_PURE)
30037
30038 static const struct arm_ext_table armv5te_ext_table[] =
30039 {
30040 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
30041 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30042 };
30043
30044 static const struct arm_ext_table armv7_ext_table[] =
30045 {
30046 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30047 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30048 };
30049
30050 static const struct arm_ext_table armv7ve_ext_table[] =
30051 {
30052 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
30053 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
30054 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30055 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30056 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30057 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
30058 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30059
30060 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
30061 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30062
30063 /* Aliases for +simd. */
30064 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30065
30066 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30067 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30068 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30069
30070 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30071 };
30072
30073 static const struct arm_ext_table armv7a_ext_table[] =
30074 {
30075 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30076 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30077 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
30078 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30079 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
30080 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
30081 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
30082
30083 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
30084 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
30085
30086 /* Aliases for +simd. */
30087 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30088 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
30089
30090 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
30091 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
30092
30093 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
30094 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
30095 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30096 };
30097
30098 static const struct arm_ext_table armv7r_ext_table[] =
30099 {
30100 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
30101 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
30102 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
30103 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
30104 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
30105 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
30106 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30107 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
30108 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30109 };
30110
30111 static const struct arm_ext_table armv7em_ext_table[] =
30112 {
30113 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
30114 /* Alias for +fp, used to be known as fpv4-sp-d16. */
30115 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
30116 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
30117 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30118 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
30119 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30120 };
30121
30122 static const struct arm_ext_table armv8a_ext_table[] =
30123 {
30124 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30125 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30126 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30127 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30128
30129 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30130 should use the +simd option to turn on FP. */
30131 ARM_REMOVE ("fp", ALL_FP),
30132 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30133 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30134 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30135 };
30136
30137
30138 static const struct arm_ext_table armv81a_ext_table[] =
30139 {
30140 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30141 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30142 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30143
30144 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30145 should use the +simd option to turn on FP. */
30146 ARM_REMOVE ("fp", ALL_FP),
30147 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30148 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30149 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30150 };
30151
30152 static const struct arm_ext_table armv82a_ext_table[] =
30153 {
30154 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
30155 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
30156 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
30157 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
30158 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30159 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30160
30161 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30162 should use the +simd option to turn on FP. */
30163 ARM_REMOVE ("fp", ALL_FP),
30164 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30165 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30166 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30167 };
30168
30169 static const struct arm_ext_table armv84a_ext_table[] =
30170 {
30171 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30172 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30173 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30174 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30175
30176 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30177 should use the +simd option to turn on FP. */
30178 ARM_REMOVE ("fp", ALL_FP),
30179 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
30180 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
30181 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30182 };
30183
30184 static const struct arm_ext_table armv85a_ext_table[] =
30185 {
30186 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
30187 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
30188 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
30189 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30190
30191 /* Armv8-a does not allow an FP implementation without SIMD, so the user
30192 should use the +simd option to turn on FP. */
30193 ARM_REMOVE ("fp", ALL_FP),
30194 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30195 };
30196
30197 static const struct arm_ext_table armv8m_main_ext_table[] =
30198 {
30199 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30200 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30201 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
30202 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
30203 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30204 };
30205
30206 static const struct arm_ext_table armv8_1m_main_ext_table[] =
30207 {
30208 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30209 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
30210 ARM_EXT ("fp",
30211 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30212 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
30213 ALL_FP),
30214 ARM_ADD ("fp.dp",
30215 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30216 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30217 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
30218 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
30219 ARM_ADD ("mve.fp",
30220 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
30221 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
30222 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
30223 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30224 };
30225
30226 static const struct arm_ext_table armv8r_ext_table[] =
30227 {
30228 ARM_ADD ("crc", ARCH_CRC_ARMV8),
30229 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
30230 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30231 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
30232 ARM_REMOVE ("fp", ALL_FP),
30233 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
30234 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
30235 };
30236
30237 /* This list should, at a minimum, contain all the architecture names
30238 recognized by GCC. */
30239 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
30240 #define ARM_ARCH_OPT2(N, V, DF, ext) \
30241 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
30242
30243 static const struct arm_arch_option_table arm_archs[] =
30244 {
30245 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
30246 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
30247 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
30248 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
30249 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
30250 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
30251 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
30252 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
30253 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
30254 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
30255 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
30256 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
30257 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
30258 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
30259 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
30260 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
30261 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
30262 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30263 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
30264 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
30265 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
30266 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
30267 kept to preserve existing behaviour. */
30268 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30269 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
30270 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
30271 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
30272 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
30273 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
30274 kept to preserve existing behaviour. */
30275 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30276 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
30277 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
30278 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
30279 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
30280 /* The official spelling of the ARMv7 profile variants is the dashed form.
30281 Accept the non-dashed form for compatibility with old toolchains. */
30282 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30283 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
30284 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30285 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30286 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
30287 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
30288 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
30289 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
30290 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
30291 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
30292 armv8m_main),
30293 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
30294 armv8_1m_main),
30295 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
30296 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
30297 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
30298 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
30299 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
30300 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
30301 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
30302 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
30303 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
30304 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
30305 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
30306 };
30307 #undef ARM_ARCH_OPT
30308
30309 /* ISA extensions in the co-processor and main instruction set space. */
30310
30311 struct arm_option_extension_value_table
30312 {
30313 const char * name;
30314 size_t name_len;
30315 const arm_feature_set merge_value;
30316 const arm_feature_set clear_value;
30317 /* List of architectures for which an extension is available. ARM_ARCH_NONE
30318 indicates that an extension is available for all architectures while
30319 ARM_ANY marks an empty entry. */
30320 const arm_feature_set allowed_archs[2];
30321 };
30322
30323 /* The following table must be in alphabetical order with a NULL last entry. */
30324
30325 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
30326 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
30327
30328 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
30329 use the context sensitive approach using arm_ext_table's. */
30330 static const struct arm_option_extension_value_table arm_extensions[] =
30331 {
30332 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
30333 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30334 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
30335 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
30336 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30337 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
30338 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
30339 ARM_ARCH_V8_2A),
30340 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30341 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
30342 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
30343 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
30344 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30345 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30346 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
30347 ARM_ARCH_V8_2A),
30348 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30349 | ARM_EXT2_FP16_FML),
30350 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
30351 | ARM_EXT2_FP16_FML),
30352 ARM_ARCH_V8_2A),
30353 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30354 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
30355 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30356 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30357 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
30358 Thumb divide instruction. Due to this having the same name as the
30359 previous entry, this will be ignored when doing command-line parsing and
30360 only considered by build attribute selection code. */
30361 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30362 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
30363 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
30364 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
30365 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
30366 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
30367 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
30368 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
30369 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
30370 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30371 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
30372 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
30373 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
30374 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30375 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
30376 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
30377 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
30378 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
30379 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30380 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30381 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
30382 ARM_ARCH_V8A),
30383 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
30384 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
30385 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30386 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
30387 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
30388 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
30389 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30390 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
30391 ARM_ARCH_V8A),
30392 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30393 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
30394 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
30395 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30396 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
30397 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
30398 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
30399 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
30400 | ARM_EXT_DIV),
30401 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
30402 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
30403 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
30404 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
30405 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
30406 };
30407 #undef ARM_EXT_OPT
30408
30409 /* ISA floating-point and Advanced SIMD extensions. */
30410 struct arm_option_fpu_value_table
30411 {
30412 const char * name;
30413 const arm_feature_set value;
30414 };
30415
30416 /* This list should, at a minimum, contain all the fpu names
30417 recognized by GCC. */
30418 static const struct arm_option_fpu_value_table arm_fpus[] =
30419 {
30420 {"softfpa", FPU_NONE},
30421 {"fpe", FPU_ARCH_FPE},
30422 {"fpe2", FPU_ARCH_FPE},
30423 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
30424 {"fpa", FPU_ARCH_FPA},
30425 {"fpa10", FPU_ARCH_FPA},
30426 {"fpa11", FPU_ARCH_FPA},
30427 {"arm7500fe", FPU_ARCH_FPA},
30428 {"softvfp", FPU_ARCH_VFP},
30429 {"softvfp+vfp", FPU_ARCH_VFP_V2},
30430 {"vfp", FPU_ARCH_VFP_V2},
30431 {"vfp9", FPU_ARCH_VFP_V2},
30432 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
30433 {"vfp10", FPU_ARCH_VFP_V2},
30434 {"vfp10-r0", FPU_ARCH_VFP_V1},
30435 {"vfpxd", FPU_ARCH_VFP_V1xD},
30436 {"vfpv2", FPU_ARCH_VFP_V2},
30437 {"vfpv3", FPU_ARCH_VFP_V3},
30438 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
30439 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
30440 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
30441 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
30442 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
30443 {"arm1020t", FPU_ARCH_VFP_V1},
30444 {"arm1020e", FPU_ARCH_VFP_V2},
30445 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
30446 {"arm1136jf-s", FPU_ARCH_VFP_V2},
30447 {"maverick", FPU_ARCH_MAVERICK},
30448 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30449 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
30450 {"neon-fp16", FPU_ARCH_NEON_FP16},
30451 {"vfpv4", FPU_ARCH_VFP_V4},
30452 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
30453 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
30454 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
30455 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
30456 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
30457 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
30458 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
30459 {"crypto-neon-fp-armv8",
30460 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
30461 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
30462 {"crypto-neon-fp-armv8.1",
30463 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
30464 {NULL, ARM_ARCH_NONE}
30465 };
30466
30467 struct arm_option_value_table
30468 {
30469 const char *name;
30470 long value;
30471 };
30472
30473 static const struct arm_option_value_table arm_float_abis[] =
30474 {
30475 {"hard", ARM_FLOAT_ABI_HARD},
30476 {"softfp", ARM_FLOAT_ABI_SOFTFP},
30477 {"soft", ARM_FLOAT_ABI_SOFT},
30478 {NULL, 0}
30479 };
30480
30481 #ifdef OBJ_ELF
30482 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
30483 static const struct arm_option_value_table arm_eabis[] =
30484 {
30485 {"gnu", EF_ARM_EABI_UNKNOWN},
30486 {"4", EF_ARM_EABI_VER4},
30487 {"5", EF_ARM_EABI_VER5},
30488 {NULL, 0}
30489 };
30490 #endif
30491
30492 struct arm_long_option_table
30493 {
30494 const char * option; /* Substring to match. */
30495 const char * help; /* Help information. */
30496 int (* func) (const char * subopt); /* Function to decode sub-option. */
30497 const char * deprecated; /* If non-null, print this message. */
30498 };
30499
30500 static bfd_boolean
30501 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
30502 arm_feature_set *ext_set,
30503 const struct arm_ext_table *ext_table)
30504 {
30505 /* We insist on extensions being specified in alphabetical order, and with
30506 extensions being added before being removed. We achieve this by having
30507 the global ARM_EXTENSIONS table in alphabetical order, and using the
30508 ADDING_VALUE variable to indicate whether we are adding an extension (1)
30509 or removing it (0) and only allowing it to change in the order
30510 -1 -> 1 -> 0. */
30511 const struct arm_option_extension_value_table * opt = NULL;
30512 const arm_feature_set arm_any = ARM_ANY;
30513 int adding_value = -1;
30514
30515 while (str != NULL && *str != 0)
30516 {
30517 const char *ext;
30518 size_t len;
30519
30520 if (*str != '+')
30521 {
30522 as_bad (_("invalid architectural extension"));
30523 return FALSE;
30524 }
30525
30526 str++;
30527 ext = strchr (str, '+');
30528
30529 if (ext != NULL)
30530 len = ext - str;
30531 else
30532 len = strlen (str);
30533
30534 if (len >= 2 && strncmp (str, "no", 2) == 0)
30535 {
30536 if (adding_value != 0)
30537 {
30538 adding_value = 0;
30539 opt = arm_extensions;
30540 }
30541
30542 len -= 2;
30543 str += 2;
30544 }
30545 else if (len > 0)
30546 {
30547 if (adding_value == -1)
30548 {
30549 adding_value = 1;
30550 opt = arm_extensions;
30551 }
30552 else if (adding_value != 1)
30553 {
30554 as_bad (_("must specify extensions to add before specifying "
30555 "those to remove"));
30556 return FALSE;
30557 }
30558 }
30559
30560 if (len == 0)
30561 {
30562 as_bad (_("missing architectural extension"));
30563 return FALSE;
30564 }
30565
30566 gas_assert (adding_value != -1);
30567 gas_assert (opt != NULL);
30568
30569 if (ext_table != NULL)
30570 {
30571 const struct arm_ext_table * ext_opt = ext_table;
30572 bfd_boolean found = FALSE;
30573 for (; ext_opt->name != NULL; ext_opt++)
30574 if (ext_opt->name_len == len
30575 && strncmp (ext_opt->name, str, len) == 0)
30576 {
30577 if (adding_value)
30578 {
30579 if (ARM_FEATURE_ZERO (ext_opt->merge))
30580 /* TODO: Option not supported. When we remove the
30581 legacy table this case should error out. */
30582 continue;
30583
30584 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
30585 }
30586 else
30587 {
30588 if (ARM_FEATURE_ZERO (ext_opt->clear))
30589 /* TODO: Option not supported. When we remove the
30590 legacy table this case should error out. */
30591 continue;
30592 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
30593 }
30594 found = TRUE;
30595 break;
30596 }
30597 if (found)
30598 {
30599 str = ext;
30600 continue;
30601 }
30602 }
30603
30604 /* Scan over the options table trying to find an exact match. */
30605 for (; opt->name != NULL; opt++)
30606 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30607 {
30608 int i, nb_allowed_archs =
30609 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30610 /* Check we can apply the extension to this architecture. */
30611 for (i = 0; i < nb_allowed_archs; i++)
30612 {
30613 /* Empty entry. */
30614 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
30615 continue;
30616 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
30617 break;
30618 }
30619 if (i == nb_allowed_archs)
30620 {
30621 as_bad (_("extension does not apply to the base architecture"));
30622 return FALSE;
30623 }
30624
30625 /* Add or remove the extension. */
30626 if (adding_value)
30627 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
30628 else
30629 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
30630
30631 /* Allowing Thumb division instructions for ARMv7 in autodetection
30632 rely on this break so that duplicate extensions (extensions
30633 with the same name as a previous extension in the list) are not
30634 considered for command-line parsing. */
30635 break;
30636 }
30637
30638 if (opt->name == NULL)
30639 {
30640 /* Did we fail to find an extension because it wasn't specified in
30641 alphabetical order, or because it does not exist? */
30642
30643 for (opt = arm_extensions; opt->name != NULL; opt++)
30644 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30645 break;
30646
30647 if (opt->name == NULL)
30648 as_bad (_("unknown architectural extension `%s'"), str);
30649 else
30650 as_bad (_("architectural extensions must be specified in "
30651 "alphabetical order"));
30652
30653 return FALSE;
30654 }
30655 else
30656 {
30657 /* We should skip the extension we've just matched the next time
30658 round. */
30659 opt++;
30660 }
30661
30662 str = ext;
30663 };
30664
30665 return TRUE;
30666 }
30667
30668 static bfd_boolean
30669 arm_parse_cpu (const char *str)
30670 {
30671 const struct arm_cpu_option_table *opt;
30672 const char *ext = strchr (str, '+');
30673 size_t len;
30674
30675 if (ext != NULL)
30676 len = ext - str;
30677 else
30678 len = strlen (str);
30679
30680 if (len == 0)
30681 {
30682 as_bad (_("missing cpu name `%s'"), str);
30683 return FALSE;
30684 }
30685
30686 for (opt = arm_cpus; opt->name != NULL; opt++)
30687 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30688 {
30689 mcpu_cpu_opt = &opt->value;
30690 if (mcpu_ext_opt == NULL)
30691 mcpu_ext_opt = XNEW (arm_feature_set);
30692 *mcpu_ext_opt = opt->ext;
30693 mcpu_fpu_opt = &opt->default_fpu;
30694 if (opt->canonical_name)
30695 {
30696 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
30697 strcpy (selected_cpu_name, opt->canonical_name);
30698 }
30699 else
30700 {
30701 size_t i;
30702
30703 if (len >= sizeof selected_cpu_name)
30704 len = (sizeof selected_cpu_name) - 1;
30705
30706 for (i = 0; i < len; i++)
30707 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30708 selected_cpu_name[i] = 0;
30709 }
30710
30711 if (ext != NULL)
30712 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
30713
30714 return TRUE;
30715 }
30716
30717 as_bad (_("unknown cpu `%s'"), str);
30718 return FALSE;
30719 }
30720
30721 static bfd_boolean
30722 arm_parse_arch (const char *str)
30723 {
30724 const struct arm_arch_option_table *opt;
30725 const char *ext = strchr (str, '+');
30726 size_t len;
30727
30728 if (ext != NULL)
30729 len = ext - str;
30730 else
30731 len = strlen (str);
30732
30733 if (len == 0)
30734 {
30735 as_bad (_("missing architecture name `%s'"), str);
30736 return FALSE;
30737 }
30738
30739 for (opt = arm_archs; opt->name != NULL; opt++)
30740 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
30741 {
30742 march_cpu_opt = &opt->value;
30743 if (march_ext_opt == NULL)
30744 march_ext_opt = XNEW (arm_feature_set);
30745 *march_ext_opt = arm_arch_none;
30746 march_fpu_opt = &opt->default_fpu;
30747 strcpy (selected_cpu_name, opt->name);
30748
30749 if (ext != NULL)
30750 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
30751 opt->ext_table);
30752
30753 return TRUE;
30754 }
30755
30756 as_bad (_("unknown architecture `%s'\n"), str);
30757 return FALSE;
30758 }
30759
30760 static bfd_boolean
30761 arm_parse_fpu (const char * str)
30762 {
30763 const struct arm_option_fpu_value_table * opt;
30764
30765 for (opt = arm_fpus; opt->name != NULL; opt++)
30766 if (streq (opt->name, str))
30767 {
30768 mfpu_opt = &opt->value;
30769 return TRUE;
30770 }
30771
30772 as_bad (_("unknown floating point format `%s'\n"), str);
30773 return FALSE;
30774 }
30775
30776 static bfd_boolean
30777 arm_parse_float_abi (const char * str)
30778 {
30779 const struct arm_option_value_table * opt;
30780
30781 for (opt = arm_float_abis; opt->name != NULL; opt++)
30782 if (streq (opt->name, str))
30783 {
30784 mfloat_abi_opt = opt->value;
30785 return TRUE;
30786 }
30787
30788 as_bad (_("unknown floating point abi `%s'\n"), str);
30789 return FALSE;
30790 }
30791
30792 #ifdef OBJ_ELF
30793 static bfd_boolean
30794 arm_parse_eabi (const char * str)
30795 {
30796 const struct arm_option_value_table *opt;
30797
30798 for (opt = arm_eabis; opt->name != NULL; opt++)
30799 if (streq (opt->name, str))
30800 {
30801 meabi_flags = opt->value;
30802 return TRUE;
30803 }
30804 as_bad (_("unknown EABI `%s'\n"), str);
30805 return FALSE;
30806 }
30807 #endif
30808
30809 static bfd_boolean
30810 arm_parse_it_mode (const char * str)
30811 {
30812 bfd_boolean ret = TRUE;
30813
30814 if (streq ("arm", str))
30815 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
30816 else if (streq ("thumb", str))
30817 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
30818 else if (streq ("always", str))
30819 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
30820 else if (streq ("never", str))
30821 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
30822 else
30823 {
30824 as_bad (_("unknown implicit IT mode `%s', should be "\
30825 "arm, thumb, always, or never."), str);
30826 ret = FALSE;
30827 }
30828
30829 return ret;
30830 }
30831
30832 static bfd_boolean
30833 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
30834 {
30835 codecomposer_syntax = TRUE;
30836 arm_comment_chars[0] = ';';
30837 arm_line_separator_chars[0] = 0;
30838 return TRUE;
30839 }
30840
30841 struct arm_long_option_table arm_long_opts[] =
30842 {
30843 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
30844 arm_parse_cpu, NULL},
30845 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
30846 arm_parse_arch, NULL},
30847 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
30848 arm_parse_fpu, NULL},
30849 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
30850 arm_parse_float_abi, NULL},
30851 #ifdef OBJ_ELF
30852 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
30853 arm_parse_eabi, NULL},
30854 #endif
30855 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
30856 arm_parse_it_mode, NULL},
30857 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
30858 arm_ccs_mode, NULL},
30859 {NULL, NULL, 0, NULL}
30860 };
30861
30862 int
30863 md_parse_option (int c, const char * arg)
30864 {
30865 struct arm_option_table *opt;
30866 const struct arm_legacy_option_table *fopt;
30867 struct arm_long_option_table *lopt;
30868
30869 switch (c)
30870 {
30871 #ifdef OPTION_EB
30872 case OPTION_EB:
30873 target_big_endian = 1;
30874 break;
30875 #endif
30876
30877 #ifdef OPTION_EL
30878 case OPTION_EL:
30879 target_big_endian = 0;
30880 break;
30881 #endif
30882
30883 case OPTION_FIX_V4BX:
30884 fix_v4bx = TRUE;
30885 break;
30886
30887 #ifdef OBJ_ELF
30888 case OPTION_FDPIC:
30889 arm_fdpic = TRUE;
30890 break;
30891 #endif /* OBJ_ELF */
30892
30893 case 'a':
30894 /* Listing option. Just ignore these, we don't support additional
30895 ones. */
30896 return 0;
30897
30898 default:
30899 for (opt = arm_opts; opt->option != NULL; opt++)
30900 {
30901 if (c == opt->option[0]
30902 && ((arg == NULL && opt->option[1] == 0)
30903 || streq (arg, opt->option + 1)))
30904 {
30905 /* If the option is deprecated, tell the user. */
30906 if (warn_on_deprecated && opt->deprecated != NULL)
30907 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30908 arg ? arg : "", _(opt->deprecated));
30909
30910 if (opt->var != NULL)
30911 *opt->var = opt->value;
30912
30913 return 1;
30914 }
30915 }
30916
30917 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
30918 {
30919 if (c == fopt->option[0]
30920 && ((arg == NULL && fopt->option[1] == 0)
30921 || streq (arg, fopt->option + 1)))
30922 {
30923 /* If the option is deprecated, tell the user. */
30924 if (warn_on_deprecated && fopt->deprecated != NULL)
30925 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
30926 arg ? arg : "", _(fopt->deprecated));
30927
30928 if (fopt->var != NULL)
30929 *fopt->var = &fopt->value;
30930
30931 return 1;
30932 }
30933 }
30934
30935 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30936 {
30937 /* These options are expected to have an argument. */
30938 if (c == lopt->option[0]
30939 && arg != NULL
30940 && strncmp (arg, lopt->option + 1,
30941 strlen (lopt->option + 1)) == 0)
30942 {
30943 /* If the option is deprecated, tell the user. */
30944 if (warn_on_deprecated && lopt->deprecated != NULL)
30945 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
30946 _(lopt->deprecated));
30947
30948 /* Call the sup-option parser. */
30949 return lopt->func (arg + strlen (lopt->option) - 1);
30950 }
30951 }
30952
30953 return 0;
30954 }
30955
30956 return 1;
30957 }
30958
30959 void
30960 md_show_usage (FILE * fp)
30961 {
30962 struct arm_option_table *opt;
30963 struct arm_long_option_table *lopt;
30964
30965 fprintf (fp, _(" ARM-specific assembler options:\n"));
30966
30967 for (opt = arm_opts; opt->option != NULL; opt++)
30968 if (opt->help != NULL)
30969 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
30970
30971 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
30972 if (lopt->help != NULL)
30973 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
30974
30975 #ifdef OPTION_EB
30976 fprintf (fp, _("\
30977 -EB assemble code for a big-endian cpu\n"));
30978 #endif
30979
30980 #ifdef OPTION_EL
30981 fprintf (fp, _("\
30982 -EL assemble code for a little-endian cpu\n"));
30983 #endif
30984
30985 fprintf (fp, _("\
30986 --fix-v4bx Allow BX in ARMv4 code\n"));
30987
30988 #ifdef OBJ_ELF
30989 fprintf (fp, _("\
30990 --fdpic generate an FDPIC object file\n"));
30991 #endif /* OBJ_ELF */
30992 }
30993
30994 #ifdef OBJ_ELF
30995
30996 typedef struct
30997 {
30998 int val;
30999 arm_feature_set flags;
31000 } cpu_arch_ver_table;
31001
31002 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
31003 chronologically for architectures, with an exception for ARMv6-M and
31004 ARMv6S-M due to legacy reasons. No new architecture should have a
31005 special case. This allows for build attribute selection results to be
31006 stable when new architectures are added. */
31007 static const cpu_arch_ver_table cpu_arch_ver[] =
31008 {
31009 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
31010 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
31011 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
31012 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
31013 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
31014 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
31015 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
31016 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
31017 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
31018 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
31019 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
31020 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
31021 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
31022 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
31023 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
31024 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
31025 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
31026 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
31027 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
31028 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
31029 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
31030 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
31031 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
31032 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
31033
31034 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
31035 always selected build attributes to match those of ARMv6-M
31036 (resp. ARMv6S-M). However, due to these architectures being a strict
31037 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
31038 would be selected when fully respecting chronology of architectures.
31039 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
31040 move them before ARMv7 architectures. */
31041 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
31042 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
31043
31044 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
31045 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
31046 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
31047 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
31048 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
31049 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
31050 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
31051 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
31052 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
31053 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
31054 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
31055 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
31056 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
31057 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
31058 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
31059 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
31060 {-1, ARM_ARCH_NONE}
31061 };
31062
31063 /* Set an attribute if it has not already been set by the user. */
31064
31065 static void
31066 aeabi_set_attribute_int (int tag, int value)
31067 {
31068 if (tag < 1
31069 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31070 || !attributes_set_explicitly[tag])
31071 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
31072 }
31073
31074 static void
31075 aeabi_set_attribute_string (int tag, const char *value)
31076 {
31077 if (tag < 1
31078 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
31079 || !attributes_set_explicitly[tag])
31080 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
31081 }
31082
31083 /* Return whether features in the *NEEDED feature set are available via
31084 extensions for the architecture whose feature set is *ARCH_FSET. */
31085
31086 static bfd_boolean
31087 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
31088 const arm_feature_set *needed)
31089 {
31090 int i, nb_allowed_archs;
31091 arm_feature_set ext_fset;
31092 const struct arm_option_extension_value_table *opt;
31093
31094 ext_fset = arm_arch_none;
31095 for (opt = arm_extensions; opt->name != NULL; opt++)
31096 {
31097 /* Extension does not provide any feature we need. */
31098 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
31099 continue;
31100
31101 nb_allowed_archs =
31102 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
31103 for (i = 0; i < nb_allowed_archs; i++)
31104 {
31105 /* Empty entry. */
31106 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
31107 break;
31108
31109 /* Extension is available, add it. */
31110 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
31111 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
31112 }
31113 }
31114
31115 /* Can we enable all features in *needed? */
31116 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
31117 }
31118
31119 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
31120 a given architecture feature set *ARCH_EXT_FSET including extension feature
31121 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
31122 - if true, check for an exact match of the architecture modulo extensions;
31123 - otherwise, select build attribute value of the first superset
31124 architecture released so that results remains stable when new architectures
31125 are added.
31126 For -march/-mcpu=all the build attribute value of the most featureful
31127 architecture is returned. Tag_CPU_arch_profile result is returned in
31128 PROFILE. */
31129
31130 static int
31131 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
31132 const arm_feature_set *ext_fset,
31133 char *profile, int exact_match)
31134 {
31135 arm_feature_set arch_fset;
31136 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
31137
31138 /* Select most featureful architecture with all its extensions if building
31139 for -march=all as the feature sets used to set build attributes. */
31140 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
31141 {
31142 /* Force revisiting of decision for each new architecture. */
31143 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
31144 *profile = 'A';
31145 return TAG_CPU_ARCH_V8;
31146 }
31147
31148 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
31149
31150 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
31151 {
31152 arm_feature_set known_arch_fset;
31153
31154 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
31155 if (exact_match)
31156 {
31157 /* Base architecture match user-specified architecture and
31158 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
31159 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
31160 {
31161 p_ver_ret = p_ver;
31162 goto found;
31163 }
31164 /* Base architecture match user-specified architecture only
31165 (eg. ARMv6-M in the same case as above). Record it in case we
31166 find a match with above condition. */
31167 else if (p_ver_ret == NULL
31168 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
31169 p_ver_ret = p_ver;
31170 }
31171 else
31172 {
31173
31174 /* Architecture has all features wanted. */
31175 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
31176 {
31177 arm_feature_set added_fset;
31178
31179 /* Compute features added by this architecture over the one
31180 recorded in p_ver_ret. */
31181 if (p_ver_ret != NULL)
31182 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
31183 p_ver_ret->flags);
31184 /* First architecture that match incl. with extensions, or the
31185 only difference in features over the recorded match is
31186 features that were optional and are now mandatory. */
31187 if (p_ver_ret == NULL
31188 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
31189 {
31190 p_ver_ret = p_ver;
31191 goto found;
31192 }
31193 }
31194 else if (p_ver_ret == NULL)
31195 {
31196 arm_feature_set needed_ext_fset;
31197
31198 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
31199
31200 /* Architecture has all features needed when using some
31201 extensions. Record it and continue searching in case there
31202 exist an architecture providing all needed features without
31203 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
31204 OS extension). */
31205 if (have_ext_for_needed_feat_p (&known_arch_fset,
31206 &needed_ext_fset))
31207 p_ver_ret = p_ver;
31208 }
31209 }
31210 }
31211
31212 if (p_ver_ret == NULL)
31213 return -1;
31214
31215 found:
31216 /* Tag_CPU_arch_profile. */
31217 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
31218 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
31219 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
31220 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
31221 *profile = 'A';
31222 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
31223 *profile = 'R';
31224 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
31225 *profile = 'M';
31226 else
31227 *profile = '\0';
31228 return p_ver_ret->val;
31229 }
31230
31231 /* Set the public EABI object attributes. */
31232
31233 static void
31234 aeabi_set_public_attributes (void)
31235 {
31236 char profile = '\0';
31237 int arch = -1;
31238 int virt_sec = 0;
31239 int fp16_optional = 0;
31240 int skip_exact_match = 0;
31241 arm_feature_set flags, flags_arch, flags_ext;
31242
31243 /* Autodetection mode, choose the architecture based the instructions
31244 actually used. */
31245 if (no_cpu_selected ())
31246 {
31247 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
31248
31249 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
31250 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
31251
31252 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
31253 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
31254
31255 /* Code run during relaxation relies on selected_cpu being set. */
31256 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31257 flags_ext = arm_arch_none;
31258 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
31259 selected_ext = flags_ext;
31260 selected_cpu = flags;
31261 }
31262 /* Otherwise, choose the architecture based on the capabilities of the
31263 requested cpu. */
31264 else
31265 {
31266 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
31267 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
31268 flags_ext = selected_ext;
31269 flags = selected_cpu;
31270 }
31271 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
31272
31273 /* Allow the user to override the reported architecture. */
31274 if (!ARM_FEATURE_ZERO (selected_object_arch))
31275 {
31276 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
31277 flags_ext = arm_arch_none;
31278 }
31279 else
31280 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
31281
31282 /* When this function is run again after relaxation has happened there is no
31283 way to determine whether an architecture or CPU was specified by the user:
31284 - selected_cpu is set above for relaxation to work;
31285 - march_cpu_opt is not set if only -mcpu or .cpu is used;
31286 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
31287 Therefore, if not in -march=all case we first try an exact match and fall
31288 back to autodetection. */
31289 if (!skip_exact_match)
31290 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
31291 if (arch == -1)
31292 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
31293 if (arch == -1)
31294 as_bad (_("no architecture contains all the instructions used\n"));
31295
31296 /* Tag_CPU_name. */
31297 if (selected_cpu_name[0])
31298 {
31299 char *q;
31300
31301 q = selected_cpu_name;
31302 if (strncmp (q, "armv", 4) == 0)
31303 {
31304 int i;
31305
31306 q += 4;
31307 for (i = 0; q[i]; i++)
31308 q[i] = TOUPPER (q[i]);
31309 }
31310 aeabi_set_attribute_string (Tag_CPU_name, q);
31311 }
31312
31313 /* Tag_CPU_arch. */
31314 aeabi_set_attribute_int (Tag_CPU_arch, arch);
31315
31316 /* Tag_CPU_arch_profile. */
31317 if (profile != '\0')
31318 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
31319
31320 /* Tag_DSP_extension. */
31321 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
31322 aeabi_set_attribute_int (Tag_DSP_extension, 1);
31323
31324 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
31325 /* Tag_ARM_ISA_use. */
31326 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
31327 || ARM_FEATURE_ZERO (flags_arch))
31328 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
31329
31330 /* Tag_THUMB_ISA_use. */
31331 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
31332 || ARM_FEATURE_ZERO (flags_arch))
31333 {
31334 int thumb_isa_use;
31335
31336 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31337 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
31338 thumb_isa_use = 3;
31339 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
31340 thumb_isa_use = 2;
31341 else
31342 thumb_isa_use = 1;
31343 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
31344 }
31345
31346 /* Tag_VFP_arch. */
31347 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
31348 aeabi_set_attribute_int (Tag_VFP_arch,
31349 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31350 ? 7 : 8);
31351 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
31352 aeabi_set_attribute_int (Tag_VFP_arch,
31353 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
31354 ? 5 : 6);
31355 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
31356 {
31357 fp16_optional = 1;
31358 aeabi_set_attribute_int (Tag_VFP_arch, 3);
31359 }
31360 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
31361 {
31362 aeabi_set_attribute_int (Tag_VFP_arch, 4);
31363 fp16_optional = 1;
31364 }
31365 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
31366 aeabi_set_attribute_int (Tag_VFP_arch, 2);
31367 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
31368 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
31369 aeabi_set_attribute_int (Tag_VFP_arch, 1);
31370
31371 /* Tag_ABI_HardFP_use. */
31372 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
31373 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
31374 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
31375
31376 /* Tag_WMMX_arch. */
31377 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
31378 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
31379 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
31380 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
31381
31382 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
31383 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
31384 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
31385 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
31386 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
31387 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
31388 {
31389 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
31390 {
31391 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
31392 }
31393 else
31394 {
31395 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
31396 fp16_optional = 1;
31397 }
31398 }
31399
31400 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
31401 aeabi_set_attribute_int (Tag_MVE_arch, 2);
31402 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
31403 aeabi_set_attribute_int (Tag_MVE_arch, 1);
31404
31405 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
31406 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
31407 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
31408
31409 /* Tag_DIV_use.
31410
31411 We set Tag_DIV_use to two when integer divide instructions have been used
31412 in ARM state, or when Thumb integer divide instructions have been used,
31413 but we have no architecture profile set, nor have we any ARM instructions.
31414
31415 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
31416 by the base architecture.
31417
31418 For new architectures we will have to check these tests. */
31419 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
31420 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
31421 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
31422 aeabi_set_attribute_int (Tag_DIV_use, 0);
31423 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
31424 || (profile == '\0'
31425 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
31426 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
31427 aeabi_set_attribute_int (Tag_DIV_use, 2);
31428
31429 /* Tag_MP_extension_use. */
31430 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
31431 aeabi_set_attribute_int (Tag_MPextension_use, 1);
31432
31433 /* Tag Virtualization_use. */
31434 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
31435 virt_sec |= 1;
31436 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
31437 virt_sec |= 2;
31438 if (virt_sec != 0)
31439 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
31440 }
31441
31442 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
31443 finished and free extension feature bits which will not be used anymore. */
31444
31445 void
31446 arm_md_post_relax (void)
31447 {
31448 aeabi_set_public_attributes ();
31449 XDELETE (mcpu_ext_opt);
31450 mcpu_ext_opt = NULL;
31451 XDELETE (march_ext_opt);
31452 march_ext_opt = NULL;
31453 }
31454
31455 /* Add the default contents for the .ARM.attributes section. */
31456
31457 void
31458 arm_md_end (void)
31459 {
31460 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
31461 return;
31462
31463 aeabi_set_public_attributes ();
31464 }
31465 #endif /* OBJ_ELF */
31466
31467 /* Parse a .cpu directive. */
31468
31469 static void
31470 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
31471 {
31472 const struct arm_cpu_option_table *opt;
31473 char *name;
31474 char saved_char;
31475
31476 name = input_line_pointer;
31477 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31478 input_line_pointer++;
31479 saved_char = *input_line_pointer;
31480 *input_line_pointer = 0;
31481
31482 /* Skip the first "all" entry. */
31483 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
31484 if (streq (opt->name, name))
31485 {
31486 selected_arch = opt->value;
31487 selected_ext = opt->ext;
31488 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31489 if (opt->canonical_name)
31490 strcpy (selected_cpu_name, opt->canonical_name);
31491 else
31492 {
31493 int i;
31494 for (i = 0; opt->name[i]; i++)
31495 selected_cpu_name[i] = TOUPPER (opt->name[i]);
31496
31497 selected_cpu_name[i] = 0;
31498 }
31499 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31500
31501 *input_line_pointer = saved_char;
31502 demand_empty_rest_of_line ();
31503 return;
31504 }
31505 as_bad (_("unknown cpu `%s'"), name);
31506 *input_line_pointer = saved_char;
31507 ignore_rest_of_line ();
31508 }
31509
31510 /* Parse a .arch directive. */
31511
31512 static void
31513 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
31514 {
31515 const struct arm_arch_option_table *opt;
31516 char saved_char;
31517 char *name;
31518
31519 name = input_line_pointer;
31520 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31521 input_line_pointer++;
31522 saved_char = *input_line_pointer;
31523 *input_line_pointer = 0;
31524
31525 /* Skip the first "all" entry. */
31526 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31527 if (streq (opt->name, name))
31528 {
31529 selected_arch = opt->value;
31530 selected_ext = arm_arch_none;
31531 selected_cpu = selected_arch;
31532 strcpy (selected_cpu_name, opt->name);
31533 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31534 *input_line_pointer = saved_char;
31535 demand_empty_rest_of_line ();
31536 return;
31537 }
31538
31539 as_bad (_("unknown architecture `%s'\n"), name);
31540 *input_line_pointer = saved_char;
31541 ignore_rest_of_line ();
31542 }
31543
31544 /* Parse a .object_arch directive. */
31545
31546 static void
31547 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
31548 {
31549 const struct arm_arch_option_table *opt;
31550 char saved_char;
31551 char *name;
31552
31553 name = input_line_pointer;
31554 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31555 input_line_pointer++;
31556 saved_char = *input_line_pointer;
31557 *input_line_pointer = 0;
31558
31559 /* Skip the first "all" entry. */
31560 for (opt = arm_archs + 1; opt->name != NULL; opt++)
31561 if (streq (opt->name, name))
31562 {
31563 selected_object_arch = opt->value;
31564 *input_line_pointer = saved_char;
31565 demand_empty_rest_of_line ();
31566 return;
31567 }
31568
31569 as_bad (_("unknown architecture `%s'\n"), name);
31570 *input_line_pointer = saved_char;
31571 ignore_rest_of_line ();
31572 }
31573
31574 /* Parse a .arch_extension directive. */
31575
31576 static void
31577 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
31578 {
31579 const struct arm_option_extension_value_table *opt;
31580 char saved_char;
31581 char *name;
31582 int adding_value = 1;
31583
31584 name = input_line_pointer;
31585 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31586 input_line_pointer++;
31587 saved_char = *input_line_pointer;
31588 *input_line_pointer = 0;
31589
31590 if (strlen (name) >= 2
31591 && strncmp (name, "no", 2) == 0)
31592 {
31593 adding_value = 0;
31594 name += 2;
31595 }
31596
31597 for (opt = arm_extensions; opt->name != NULL; opt++)
31598 if (streq (opt->name, name))
31599 {
31600 int i, nb_allowed_archs =
31601 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
31602 for (i = 0; i < nb_allowed_archs; i++)
31603 {
31604 /* Empty entry. */
31605 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
31606 continue;
31607 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
31608 break;
31609 }
31610
31611 if (i == nb_allowed_archs)
31612 {
31613 as_bad (_("architectural extension `%s' is not allowed for the "
31614 "current base architecture"), name);
31615 break;
31616 }
31617
31618 if (adding_value)
31619 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
31620 opt->merge_value);
31621 else
31622 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
31623
31624 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
31625 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31626 *input_line_pointer = saved_char;
31627 demand_empty_rest_of_line ();
31628 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
31629 on this return so that duplicate extensions (extensions with the
31630 same name as a previous extension in the list) are not considered
31631 for command-line parsing. */
31632 return;
31633 }
31634
31635 if (opt->name == NULL)
31636 as_bad (_("unknown architecture extension `%s'\n"), name);
31637
31638 *input_line_pointer = saved_char;
31639 ignore_rest_of_line ();
31640 }
31641
31642 /* Parse a .fpu directive. */
31643
31644 static void
31645 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
31646 {
31647 const struct arm_option_fpu_value_table *opt;
31648 char saved_char;
31649 char *name;
31650
31651 name = input_line_pointer;
31652 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
31653 input_line_pointer++;
31654 saved_char = *input_line_pointer;
31655 *input_line_pointer = 0;
31656
31657 for (opt = arm_fpus; opt->name != NULL; opt++)
31658 if (streq (opt->name, name))
31659 {
31660 selected_fpu = opt->value;
31661 #ifndef CPU_DEFAULT
31662 if (no_cpu_selected ())
31663 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
31664 else
31665 #endif
31666 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
31667 *input_line_pointer = saved_char;
31668 demand_empty_rest_of_line ();
31669 return;
31670 }
31671
31672 as_bad (_("unknown floating point format `%s'\n"), name);
31673 *input_line_pointer = saved_char;
31674 ignore_rest_of_line ();
31675 }
31676
31677 /* Copy symbol information. */
31678
31679 void
31680 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
31681 {
31682 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
31683 }
31684
31685 #ifdef OBJ_ELF
31686 /* Given a symbolic attribute NAME, return the proper integer value.
31687 Returns -1 if the attribute is not known. */
31688
31689 int
31690 arm_convert_symbolic_attribute (const char *name)
31691 {
31692 static const struct
31693 {
31694 const char * name;
31695 const int tag;
31696 }
31697 attribute_table[] =
31698 {
31699 /* When you modify this table you should
31700 also modify the list in doc/c-arm.texi. */
31701 #define T(tag) {#tag, tag}
31702 T (Tag_CPU_raw_name),
31703 T (Tag_CPU_name),
31704 T (Tag_CPU_arch),
31705 T (Tag_CPU_arch_profile),
31706 T (Tag_ARM_ISA_use),
31707 T (Tag_THUMB_ISA_use),
31708 T (Tag_FP_arch),
31709 T (Tag_VFP_arch),
31710 T (Tag_WMMX_arch),
31711 T (Tag_Advanced_SIMD_arch),
31712 T (Tag_PCS_config),
31713 T (Tag_ABI_PCS_R9_use),
31714 T (Tag_ABI_PCS_RW_data),
31715 T (Tag_ABI_PCS_RO_data),
31716 T (Tag_ABI_PCS_GOT_use),
31717 T (Tag_ABI_PCS_wchar_t),
31718 T (Tag_ABI_FP_rounding),
31719 T (Tag_ABI_FP_denormal),
31720 T (Tag_ABI_FP_exceptions),
31721 T (Tag_ABI_FP_user_exceptions),
31722 T (Tag_ABI_FP_number_model),
31723 T (Tag_ABI_align_needed),
31724 T (Tag_ABI_align8_needed),
31725 T (Tag_ABI_align_preserved),
31726 T (Tag_ABI_align8_preserved),
31727 T (Tag_ABI_enum_size),
31728 T (Tag_ABI_HardFP_use),
31729 T (Tag_ABI_VFP_args),
31730 T (Tag_ABI_WMMX_args),
31731 T (Tag_ABI_optimization_goals),
31732 T (Tag_ABI_FP_optimization_goals),
31733 T (Tag_compatibility),
31734 T (Tag_CPU_unaligned_access),
31735 T (Tag_FP_HP_extension),
31736 T (Tag_VFP_HP_extension),
31737 T (Tag_ABI_FP_16bit_format),
31738 T (Tag_MPextension_use),
31739 T (Tag_DIV_use),
31740 T (Tag_nodefaults),
31741 T (Tag_also_compatible_with),
31742 T (Tag_conformance),
31743 T (Tag_T2EE_use),
31744 T (Tag_Virtualization_use),
31745 T (Tag_DSP_extension),
31746 T (Tag_MVE_arch),
31747 /* We deliberately do not include Tag_MPextension_use_legacy. */
31748 #undef T
31749 };
31750 unsigned int i;
31751
31752 if (name == NULL)
31753 return -1;
31754
31755 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
31756 if (streq (name, attribute_table[i].name))
31757 return attribute_table[i].tag;
31758
31759 return -1;
31760 }
31761
31762 /* Apply sym value for relocations only in the case that they are for
31763 local symbols in the same segment as the fixup and you have the
31764 respective architectural feature for blx and simple switches. */
31765
31766 int
31767 arm_apply_sym_value (struct fix * fixP, segT this_seg)
31768 {
31769 if (fixP->fx_addsy
31770 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
31771 /* PR 17444: If the local symbol is in a different section then a reloc
31772 will always be generated for it, so applying the symbol value now
31773 will result in a double offset being stored in the relocation. */
31774 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
31775 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
31776 {
31777 switch (fixP->fx_r_type)
31778 {
31779 case BFD_RELOC_ARM_PCREL_BLX:
31780 case BFD_RELOC_THUMB_PCREL_BRANCH23:
31781 if (ARM_IS_FUNC (fixP->fx_addsy))
31782 return 1;
31783 break;
31784
31785 case BFD_RELOC_ARM_PCREL_CALL:
31786 case BFD_RELOC_THUMB_PCREL_BLX:
31787 if (THUMB_IS_FUNC (fixP->fx_addsy))
31788 return 1;
31789 break;
31790
31791 default:
31792 break;
31793 }
31794
31795 }
31796 return 0;
31797 }
31798 #endif /* OBJ_ELF */