2011-05-31 Paul Brook <paul@codesourcery.com>
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
200 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
201 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
202 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
203 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
204 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
205
206 static const arm_feature_set arm_arch_any = ARM_ANY;
207 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
208 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
209 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
210 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
211
212 static const arm_feature_set arm_cext_iwmmxt2 =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
214 static const arm_feature_set arm_cext_iwmmxt =
215 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
216 static const arm_feature_set arm_cext_xscale =
217 ARM_FEATURE (0, ARM_CEXT_XSCALE);
218 static const arm_feature_set arm_cext_maverick =
219 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
220 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
221 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
222 static const arm_feature_set fpu_vfp_ext_v1xd =
223 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
224 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
225 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
226 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
227 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
228 static const arm_feature_set fpu_vfp_ext_d32 =
229 ARM_FEATURE (0, FPU_VFP_EXT_D32);
230 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
231 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
232 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
233 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
234 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
235 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
236
237 static int mfloat_abi_opt = -1;
238 /* Record user cpu selection for object attributes. */
239 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
240 /* Must be long enough to hold any of the names in arm_cpus. */
241 static char selected_cpu_name[16];
242
243 /* Return if no cpu was selected on command-line. */
244 static bfd_boolean
245 no_cpu_selected (void)
246 {
247 return selected_cpu.core == arm_arch_none.core
248 && selected_cpu.coproc == arm_arch_none.coproc;
249 }
250
251 #ifdef OBJ_ELF
252 # ifdef EABI_DEFAULT
253 static int meabi_flags = EABI_DEFAULT;
254 # else
255 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
256 # endif
257
258 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
259
260 bfd_boolean
261 arm_is_eabi (void)
262 {
263 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
264 }
265 #endif
266
267 #ifdef OBJ_ELF
268 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
269 symbolS * GOT_symbol;
270 #endif
271
272 /* 0: assemble for ARM,
273 1: assemble for Thumb,
274 2: assemble for Thumb even though target CPU does not support thumb
275 instructions. */
276 static int thumb_mode = 0;
277 /* A value distinct from the possible values for thumb_mode that we
278 can use to record whether thumb_mode has been copied into the
279 tc_frag_data field of a frag. */
280 #define MODE_RECORDED (1 << 4)
281
282 /* Specifies the intrinsic IT insn behavior mode. */
283 enum implicit_it_mode
284 {
285 IMPLICIT_IT_MODE_NEVER = 0x00,
286 IMPLICIT_IT_MODE_ARM = 0x01,
287 IMPLICIT_IT_MODE_THUMB = 0x02,
288 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
289 };
290 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
291
292 /* If unified_syntax is true, we are processing the new unified
293 ARM/Thumb syntax. Important differences from the old ARM mode:
294
295 - Immediate operands do not require a # prefix.
296 - Conditional affixes always appear at the end of the
297 instruction. (For backward compatibility, those instructions
298 that formerly had them in the middle, continue to accept them
299 there.)
300 - The IT instruction may appear, and if it does is validated
301 against subsequent conditional affixes. It does not generate
302 machine code.
303
304 Important differences from the old Thumb mode:
305
306 - Immediate operands do not require a # prefix.
307 - Most of the V6T2 instructions are only available in unified mode.
308 - The .N and .W suffixes are recognized and honored (it is an error
309 if they cannot be honored).
310 - All instructions set the flags if and only if they have an 's' affix.
311 - Conditional affixes may be used. They are validated against
312 preceding IT instructions. Unlike ARM mode, you cannot use a
313 conditional affix except in the scope of an IT instruction. */
314
315 static bfd_boolean unified_syntax = FALSE;
316
317 enum neon_el_type
318 {
319 NT_invtype,
320 NT_untyped,
321 NT_integer,
322 NT_float,
323 NT_poly,
324 NT_signed,
325 NT_unsigned
326 };
327
328 struct neon_type_el
329 {
330 enum neon_el_type type;
331 unsigned size;
332 };
333
334 #define NEON_MAX_TYPE_ELS 4
335
336 struct neon_type
337 {
338 struct neon_type_el el[NEON_MAX_TYPE_ELS];
339 unsigned elems;
340 };
341
342 enum it_instruction_type
343 {
344 OUTSIDE_IT_INSN,
345 INSIDE_IT_INSN,
346 INSIDE_IT_LAST_INSN,
347 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
348 if inside, should be the last one. */
349 NEUTRAL_IT_INSN, /* This could be either inside or outside,
350 i.e. BKPT and NOP. */
351 IT_INSN /* The IT insn has been parsed. */
352 };
353
354 struct arm_it
355 {
356 const char * error;
357 unsigned long instruction;
358 int size;
359 int size_req;
360 int cond;
361 /* "uncond_value" is set to the value in place of the conditional field in
362 unconditional versions of the instruction, or -1 if nothing is
363 appropriate. */
364 int uncond_value;
365 struct neon_type vectype;
366 /* This does not indicate an actual NEON instruction, only that
367 the mnemonic accepts neon-style type suffixes. */
368 int is_neon;
369 /* Set to the opcode if the instruction needs relaxation.
370 Zero if the instruction is not relaxed. */
371 unsigned long relax;
372 struct
373 {
374 bfd_reloc_code_real_type type;
375 expressionS exp;
376 int pc_rel;
377 } reloc;
378
379 enum it_instruction_type it_insn_type;
380
381 struct
382 {
383 unsigned reg;
384 signed int imm;
385 struct neon_type_el vectype;
386 unsigned present : 1; /* Operand present. */
387 unsigned isreg : 1; /* Operand was a register. */
388 unsigned immisreg : 1; /* .imm field is a second register. */
389 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
390 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
391 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
392 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
393 instructions. This allows us to disambiguate ARM <-> vector insns. */
394 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
395 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
396 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
397 unsigned issingle : 1; /* Operand is VFP single-precision register. */
398 unsigned hasreloc : 1; /* Operand has relocation suffix. */
399 unsigned writeback : 1; /* Operand has trailing ! */
400 unsigned preind : 1; /* Preindexed address. */
401 unsigned postind : 1; /* Postindexed address. */
402 unsigned negative : 1; /* Index register was negated. */
403 unsigned shifted : 1; /* Shift applied to operation. */
404 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
405 } operands[6];
406 };
407
408 static struct arm_it inst;
409
410 #define NUM_FLOAT_VALS 8
411
412 const char * fp_const[] =
413 {
414 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
415 };
416
417 /* Number of littlenums required to hold an extended precision number. */
418 #define MAX_LITTLENUMS 6
419
420 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
421
422 #define FAIL (-1)
423 #define SUCCESS (0)
424
425 #define SUFF_S 1
426 #define SUFF_D 2
427 #define SUFF_E 3
428 #define SUFF_P 4
429
430 #define CP_T_X 0x00008000
431 #define CP_T_Y 0x00400000
432
433 #define CONDS_BIT 0x00100000
434 #define LOAD_BIT 0x00100000
435
436 #define DOUBLE_LOAD_FLAG 0x00000001
437
438 struct asm_cond
439 {
440 const char * template_name;
441 unsigned long value;
442 };
443
444 #define COND_ALWAYS 0xE
445
446 struct asm_psr
447 {
448 const char * template_name;
449 unsigned long field;
450 };
451
452 struct asm_barrier_opt
453 {
454 const char * template_name;
455 unsigned long value;
456 };
457
458 /* The bit that distinguishes CPSR and SPSR. */
459 #define SPSR_BIT (1 << 22)
460
461 /* The individual PSR flag bits. */
462 #define PSR_c (1 << 16)
463 #define PSR_x (1 << 17)
464 #define PSR_s (1 << 18)
465 #define PSR_f (1 << 19)
466
467 struct reloc_entry
468 {
469 char * name;
470 bfd_reloc_code_real_type reloc;
471 };
472
473 enum vfp_reg_pos
474 {
475 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
476 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
477 };
478
479 enum vfp_ldstm_type
480 {
481 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
482 };
483
484 /* Bits for DEFINED field in neon_typed_alias. */
485 #define NTA_HASTYPE 1
486 #define NTA_HASINDEX 2
487
488 struct neon_typed_alias
489 {
490 unsigned char defined;
491 unsigned char index;
492 struct neon_type_el eltype;
493 };
494
495 /* ARM register categories. This includes coprocessor numbers and various
496 architecture extensions' registers. */
497 enum arm_reg_type
498 {
499 REG_TYPE_RN,
500 REG_TYPE_CP,
501 REG_TYPE_CN,
502 REG_TYPE_FN,
503 REG_TYPE_VFS,
504 REG_TYPE_VFD,
505 REG_TYPE_NQ,
506 REG_TYPE_VFSD,
507 REG_TYPE_NDQ,
508 REG_TYPE_NSDQ,
509 REG_TYPE_VFC,
510 REG_TYPE_MVF,
511 REG_TYPE_MVD,
512 REG_TYPE_MVFX,
513 REG_TYPE_MVDX,
514 REG_TYPE_MVAX,
515 REG_TYPE_DSPSC,
516 REG_TYPE_MMXWR,
517 REG_TYPE_MMXWC,
518 REG_TYPE_MMXWCG,
519 REG_TYPE_XSCALE,
520 REG_TYPE_RNB
521 };
522
523 /* Structure for a hash table entry for a register.
524 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
525 information which states whether a vector type or index is specified (for a
526 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
527 struct reg_entry
528 {
529 const char * name;
530 unsigned int number;
531 unsigned char type;
532 unsigned char builtin;
533 struct neon_typed_alias * neon;
534 };
535
536 /* Diagnostics used when we don't get a register of the expected type. */
537 const char * const reg_expected_msgs[] =
538 {
539 N_("ARM register expected"),
540 N_("bad or missing co-processor number"),
541 N_("co-processor register expected"),
542 N_("FPA register expected"),
543 N_("VFP single precision register expected"),
544 N_("VFP/Neon double precision register expected"),
545 N_("Neon quad precision register expected"),
546 N_("VFP single or double precision register expected"),
547 N_("Neon double or quad precision register expected"),
548 N_("VFP single, double or Neon quad precision register expected"),
549 N_("VFP system register expected"),
550 N_("Maverick MVF register expected"),
551 N_("Maverick MVD register expected"),
552 N_("Maverick MVFX register expected"),
553 N_("Maverick MVDX register expected"),
554 N_("Maverick MVAX register expected"),
555 N_("Maverick DSPSC register expected"),
556 N_("iWMMXt data register expected"),
557 N_("iWMMXt control register expected"),
558 N_("iWMMXt scalar register expected"),
559 N_("XScale accumulator register expected"),
560 };
561
562 /* Some well known registers that we refer to directly elsewhere. */
563 #define REG_SP 13
564 #define REG_LR 14
565 #define REG_PC 15
566
567 /* ARM instructions take 4bytes in the object file, Thumb instructions
568 take 2: */
569 #define INSN_SIZE 4
570
571 struct asm_opcode
572 {
573 /* Basic string to match. */
574 const char * template_name;
575
576 /* Parameters to instruction. */
577 unsigned int operands[8];
578
579 /* Conditional tag - see opcode_lookup. */
580 unsigned int tag : 4;
581
582 /* Basic instruction code. */
583 unsigned int avalue : 28;
584
585 /* Thumb-format instruction code. */
586 unsigned int tvalue;
587
588 /* Which architecture variant provides this instruction. */
589 const arm_feature_set * avariant;
590 const arm_feature_set * tvariant;
591
592 /* Function to call to encode instruction in ARM format. */
593 void (* aencode) (void);
594
595 /* Function to call to encode instruction in Thumb format. */
596 void (* tencode) (void);
597 };
598
599 /* Defines for various bits that we will want to toggle. */
600 #define INST_IMMEDIATE 0x02000000
601 #define OFFSET_REG 0x02000000
602 #define HWOFFSET_IMM 0x00400000
603 #define SHIFT_BY_REG 0x00000010
604 #define PRE_INDEX 0x01000000
605 #define INDEX_UP 0x00800000
606 #define WRITE_BACK 0x00200000
607 #define LDM_TYPE_2_OR_3 0x00400000
608 #define CPSI_MMOD 0x00020000
609
610 #define LITERAL_MASK 0xf000f000
611 #define OPCODE_MASK 0xfe1fffff
612 #define V4_STR_BIT 0x00000020
613
614 #define T2_SUBS_PC_LR 0xf3de8f00
615
616 #define DATA_OP_SHIFT 21
617
618 #define T2_OPCODE_MASK 0xfe1fffff
619 #define T2_DATA_OP_SHIFT 21
620
621 /* Codes to distinguish the arithmetic instructions. */
622 #define OPCODE_AND 0
623 #define OPCODE_EOR 1
624 #define OPCODE_SUB 2
625 #define OPCODE_RSB 3
626 #define OPCODE_ADD 4
627 #define OPCODE_ADC 5
628 #define OPCODE_SBC 6
629 #define OPCODE_RSC 7
630 #define OPCODE_TST 8
631 #define OPCODE_TEQ 9
632 #define OPCODE_CMP 10
633 #define OPCODE_CMN 11
634 #define OPCODE_ORR 12
635 #define OPCODE_MOV 13
636 #define OPCODE_BIC 14
637 #define OPCODE_MVN 15
638
639 #define T2_OPCODE_AND 0
640 #define T2_OPCODE_BIC 1
641 #define T2_OPCODE_ORR 2
642 #define T2_OPCODE_ORN 3
643 #define T2_OPCODE_EOR 4
644 #define T2_OPCODE_ADD 8
645 #define T2_OPCODE_ADC 10
646 #define T2_OPCODE_SBC 11
647 #define T2_OPCODE_SUB 13
648 #define T2_OPCODE_RSB 14
649
650 #define T_OPCODE_MUL 0x4340
651 #define T_OPCODE_TST 0x4200
652 #define T_OPCODE_CMN 0x42c0
653 #define T_OPCODE_NEG 0x4240
654 #define T_OPCODE_MVN 0x43c0
655
656 #define T_OPCODE_ADD_R3 0x1800
657 #define T_OPCODE_SUB_R3 0x1a00
658 #define T_OPCODE_ADD_HI 0x4400
659 #define T_OPCODE_ADD_ST 0xb000
660 #define T_OPCODE_SUB_ST 0xb080
661 #define T_OPCODE_ADD_SP 0xa800
662 #define T_OPCODE_ADD_PC 0xa000
663 #define T_OPCODE_ADD_I8 0x3000
664 #define T_OPCODE_SUB_I8 0x3800
665 #define T_OPCODE_ADD_I3 0x1c00
666 #define T_OPCODE_SUB_I3 0x1e00
667
668 #define T_OPCODE_ASR_R 0x4100
669 #define T_OPCODE_LSL_R 0x4080
670 #define T_OPCODE_LSR_R 0x40c0
671 #define T_OPCODE_ROR_R 0x41c0
672 #define T_OPCODE_ASR_I 0x1000
673 #define T_OPCODE_LSL_I 0x0000
674 #define T_OPCODE_LSR_I 0x0800
675
676 #define T_OPCODE_MOV_I8 0x2000
677 #define T_OPCODE_CMP_I8 0x2800
678 #define T_OPCODE_CMP_LR 0x4280
679 #define T_OPCODE_MOV_HR 0x4600
680 #define T_OPCODE_CMP_HR 0x4500
681
682 #define T_OPCODE_LDR_PC 0x4800
683 #define T_OPCODE_LDR_SP 0x9800
684 #define T_OPCODE_STR_SP 0x9000
685 #define T_OPCODE_LDR_IW 0x6800
686 #define T_OPCODE_STR_IW 0x6000
687 #define T_OPCODE_LDR_IH 0x8800
688 #define T_OPCODE_STR_IH 0x8000
689 #define T_OPCODE_LDR_IB 0x7800
690 #define T_OPCODE_STR_IB 0x7000
691 #define T_OPCODE_LDR_RW 0x5800
692 #define T_OPCODE_STR_RW 0x5000
693 #define T_OPCODE_LDR_RH 0x5a00
694 #define T_OPCODE_STR_RH 0x5200
695 #define T_OPCODE_LDR_RB 0x5c00
696 #define T_OPCODE_STR_RB 0x5400
697
698 #define T_OPCODE_PUSH 0xb400
699 #define T_OPCODE_POP 0xbc00
700
701 #define T_OPCODE_BRANCH 0xe000
702
703 #define THUMB_SIZE 2 /* Size of thumb instruction. */
704 #define THUMB_PP_PC_LR 0x0100
705 #define THUMB_LOAD_BIT 0x0800
706 #define THUMB2_LOAD_BIT 0x00100000
707
708 #define BAD_ARGS _("bad arguments to instruction")
709 #define BAD_SP _("r13 not allowed here")
710 #define BAD_PC _("r15 not allowed here")
711 #define BAD_COND _("instruction cannot be conditional")
712 #define BAD_OVERLAP _("registers may not be the same")
713 #define BAD_HIREG _("lo register required")
714 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
715 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
716 #define BAD_BRANCH _("branch must be last instruction in IT block")
717 #define BAD_NOT_IT _("instruction not allowed in IT block")
718 #define BAD_FPU _("selected FPU does not support instruction")
719 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
720 #define BAD_IT_COND _("incorrect condition in IT block")
721 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
722 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
723 #define BAD_PC_ADDRESSING \
724 _("cannot use register index with PC-relative addressing")
725 #define BAD_PC_WRITEBACK \
726 _("cannot use writeback with PC-relative addressing")
727
728 static struct hash_control * arm_ops_hsh;
729 static struct hash_control * arm_cond_hsh;
730 static struct hash_control * arm_shift_hsh;
731 static struct hash_control * arm_psr_hsh;
732 static struct hash_control * arm_v7m_psr_hsh;
733 static struct hash_control * arm_reg_hsh;
734 static struct hash_control * arm_reloc_hsh;
735 static struct hash_control * arm_barrier_opt_hsh;
736
737 /* Stuff needed to resolve the label ambiguity
738 As:
739 ...
740 label: <insn>
741 may differ from:
742 ...
743 label:
744 <insn> */
745
746 symbolS * last_label_seen;
747 static int label_is_thumb_function_name = FALSE;
748
749 /* Literal pool structure. Held on a per-section
750 and per-sub-section basis. */
751
752 #define MAX_LITERAL_POOL_SIZE 1024
753 typedef struct literal_pool
754 {
755 expressionS literals [MAX_LITERAL_POOL_SIZE];
756 unsigned int next_free_entry;
757 unsigned int id;
758 symbolS * symbol;
759 segT section;
760 subsegT sub_section;
761 struct literal_pool * next;
762 } literal_pool;
763
764 /* Pointer to a linked list of literal pools. */
765 literal_pool * list_of_pools = NULL;
766
767 #ifdef OBJ_ELF
768 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
769 #else
770 static struct current_it now_it;
771 #endif
772
773 static inline int
774 now_it_compatible (int cond)
775 {
776 return (cond & ~1) == (now_it.cc & ~1);
777 }
778
779 static inline int
780 conditional_insn (void)
781 {
782 return inst.cond != COND_ALWAYS;
783 }
784
785 static int in_it_block (void);
786
787 static int handle_it_state (void);
788
789 static void force_automatic_it_block_close (void);
790
791 static void it_fsm_post_encode (void);
792
793 #define set_it_insn_type(type) \
794 do \
795 { \
796 inst.it_insn_type = type; \
797 if (handle_it_state () == FAIL) \
798 return; \
799 } \
800 while (0)
801
802 #define set_it_insn_type_nonvoid(type, failret) \
803 do \
804 { \
805 inst.it_insn_type = type; \
806 if (handle_it_state () == FAIL) \
807 return failret; \
808 } \
809 while(0)
810
811 #define set_it_insn_type_last() \
812 do \
813 { \
814 if (inst.cond == COND_ALWAYS) \
815 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
816 else \
817 set_it_insn_type (INSIDE_IT_LAST_INSN); \
818 } \
819 while (0)
820
821 /* Pure syntax. */
822
823 /* This array holds the chars that always start a comment. If the
824 pre-processor is disabled, these aren't very useful. */
825 const char comment_chars[] = "@";
826
827 /* This array holds the chars that only start a comment at the beginning of
828 a line. If the line seems to have the form '# 123 filename'
829 .line and .file directives will appear in the pre-processed output. */
830 /* Note that input_file.c hand checks for '#' at the beginning of the
831 first line of the input file. This is because the compiler outputs
832 #NO_APP at the beginning of its output. */
833 /* Also note that comments like this one will always work. */
834 const char line_comment_chars[] = "#";
835
836 const char line_separator_chars[] = ";";
837
838 /* Chars that can be used to separate mant
839 from exp in floating point numbers. */
840 const char EXP_CHARS[] = "eE";
841
842 /* Chars that mean this number is a floating point constant. */
843 /* As in 0f12.456 */
844 /* or 0d1.2345e12 */
845
846 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
847
848 /* Prefix characters that indicate the start of an immediate
849 value. */
850 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
851
852 /* Separator character handling. */
853
854 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
855
856 static inline int
857 skip_past_char (char ** str, char c)
858 {
859 if (**str == c)
860 {
861 (*str)++;
862 return SUCCESS;
863 }
864 else
865 return FAIL;
866 }
867
868 #define skip_past_comma(str) skip_past_char (str, ',')
869
870 /* Arithmetic expressions (possibly involving symbols). */
871
872 /* Return TRUE if anything in the expression is a bignum. */
873
874 static int
875 walk_no_bignums (symbolS * sp)
876 {
877 if (symbol_get_value_expression (sp)->X_op == O_big)
878 return 1;
879
880 if (symbol_get_value_expression (sp)->X_add_symbol)
881 {
882 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
883 || (symbol_get_value_expression (sp)->X_op_symbol
884 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
885 }
886
887 return 0;
888 }
889
890 static int in_my_get_expression = 0;
891
892 /* Third argument to my_get_expression. */
893 #define GE_NO_PREFIX 0
894 #define GE_IMM_PREFIX 1
895 #define GE_OPT_PREFIX 2
896 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
897 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
898 #define GE_OPT_PREFIX_BIG 3
899
900 static int
901 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
902 {
903 char * save_in;
904 segT seg;
905
906 /* In unified syntax, all prefixes are optional. */
907 if (unified_syntax)
908 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
909 : GE_OPT_PREFIX;
910
911 switch (prefix_mode)
912 {
913 case GE_NO_PREFIX: break;
914 case GE_IMM_PREFIX:
915 if (!is_immediate_prefix (**str))
916 {
917 inst.error = _("immediate expression requires a # prefix");
918 return FAIL;
919 }
920 (*str)++;
921 break;
922 case GE_OPT_PREFIX:
923 case GE_OPT_PREFIX_BIG:
924 if (is_immediate_prefix (**str))
925 (*str)++;
926 break;
927 default: abort ();
928 }
929
930 memset (ep, 0, sizeof (expressionS));
931
932 save_in = input_line_pointer;
933 input_line_pointer = *str;
934 in_my_get_expression = 1;
935 seg = expression (ep);
936 in_my_get_expression = 0;
937
938 if (ep->X_op == O_illegal || ep->X_op == O_absent)
939 {
940 /* We found a bad or missing expression in md_operand(). */
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 if (inst.error == NULL)
944 inst.error = (ep->X_op == O_absent
945 ? _("missing expression") :_("bad expression"));
946 return 1;
947 }
948
949 #ifdef OBJ_AOUT
950 if (seg != absolute_section
951 && seg != text_section
952 && seg != data_section
953 && seg != bss_section
954 && seg != undefined_section)
955 {
956 inst.error = _("bad segment");
957 *str = input_line_pointer;
958 input_line_pointer = save_in;
959 return 1;
960 }
961 #else
962 (void) seg;
963 #endif
964
965 /* Get rid of any bignums now, so that we don't generate an error for which
966 we can't establish a line number later on. Big numbers are never valid
967 in instructions, which is where this routine is always called. */
968 if (prefix_mode != GE_OPT_PREFIX_BIG
969 && (ep->X_op == O_big
970 || (ep->X_add_symbol
971 && (walk_no_bignums (ep->X_add_symbol)
972 || (ep->X_op_symbol
973 && walk_no_bignums (ep->X_op_symbol))))))
974 {
975 inst.error = _("invalid constant");
976 *str = input_line_pointer;
977 input_line_pointer = save_in;
978 return 1;
979 }
980
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 0;
984 }
985
986 /* Turn a string in input_line_pointer into a floating point constant
987 of type TYPE, and store the appropriate bytes in *LITP. The number
988 of LITTLENUMS emitted is stored in *SIZEP. An error message is
989 returned, or NULL on OK.
990
991 Note that fp constants aren't represent in the normal way on the ARM.
992 In big endian mode, things are as expected. However, in little endian
993 mode fp constants are big-endian word-wise, and little-endian byte-wise
994 within the words. For example, (double) 1.1 in big endian mode is
995 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
996 the byte sequence 99 99 f1 3f 9a 99 99 99.
997
998 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
999
1000 char *
1001 md_atof (int type, char * litP, int * sizeP)
1002 {
1003 int prec;
1004 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1005 char *t;
1006 int i;
1007
1008 switch (type)
1009 {
1010 case 'f':
1011 case 'F':
1012 case 's':
1013 case 'S':
1014 prec = 2;
1015 break;
1016
1017 case 'd':
1018 case 'D':
1019 case 'r':
1020 case 'R':
1021 prec = 4;
1022 break;
1023
1024 case 'x':
1025 case 'X':
1026 prec = 5;
1027 break;
1028
1029 case 'p':
1030 case 'P':
1031 prec = 5;
1032 break;
1033
1034 default:
1035 *sizeP = 0;
1036 return _("Unrecognized or unsupported floating point constant");
1037 }
1038
1039 t = atof_ieee (input_line_pointer, type, words);
1040 if (t)
1041 input_line_pointer = t;
1042 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1043
1044 if (target_big_endian)
1045 {
1046 for (i = 0; i < prec; i++)
1047 {
1048 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1049 litP += sizeof (LITTLENUM_TYPE);
1050 }
1051 }
1052 else
1053 {
1054 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1055 for (i = prec - 1; i >= 0; i--)
1056 {
1057 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1058 litP += sizeof (LITTLENUM_TYPE);
1059 }
1060 else
1061 /* For a 4 byte float the order of elements in `words' is 1 0.
1062 For an 8 byte float the order is 1 0 3 2. */
1063 for (i = 0; i < prec; i += 2)
1064 {
1065 md_number_to_chars (litP, (valueT) words[i + 1],
1066 sizeof (LITTLENUM_TYPE));
1067 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1068 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1069 litP += 2 * sizeof (LITTLENUM_TYPE);
1070 }
1071 }
1072
1073 return NULL;
1074 }
1075
1076 /* We handle all bad expressions here, so that we can report the faulty
1077 instruction in the error message. */
1078 void
1079 md_operand (expressionS * exp)
1080 {
1081 if (in_my_get_expression)
1082 exp->X_op = O_illegal;
1083 }
1084
1085 /* Immediate values. */
1086
1087 /* Generic immediate-value read function for use in directives.
1088 Accepts anything that 'expression' can fold to a constant.
1089 *val receives the number. */
1090 #ifdef OBJ_ELF
1091 static int
1092 immediate_for_directive (int *val)
1093 {
1094 expressionS exp;
1095 exp.X_op = O_illegal;
1096
1097 if (is_immediate_prefix (*input_line_pointer))
1098 {
1099 input_line_pointer++;
1100 expression (&exp);
1101 }
1102
1103 if (exp.X_op != O_constant)
1104 {
1105 as_bad (_("expected #constant"));
1106 ignore_rest_of_line ();
1107 return FAIL;
1108 }
1109 *val = exp.X_add_number;
1110 return SUCCESS;
1111 }
1112 #endif
1113
1114 /* Register parsing. */
1115
1116 /* Generic register parser. CCP points to what should be the
1117 beginning of a register name. If it is indeed a valid register
1118 name, advance CCP over it and return the reg_entry structure;
1119 otherwise return NULL. Does not issue diagnostics. */
1120
1121 static struct reg_entry *
1122 arm_reg_parse_multi (char **ccp)
1123 {
1124 char *start = *ccp;
1125 char *p;
1126 struct reg_entry *reg;
1127
1128 #ifdef REGISTER_PREFIX
1129 if (*start != REGISTER_PREFIX)
1130 return NULL;
1131 start++;
1132 #endif
1133 #ifdef OPTIONAL_REGISTER_PREFIX
1134 if (*start == OPTIONAL_REGISTER_PREFIX)
1135 start++;
1136 #endif
1137
1138 p = start;
1139 if (!ISALPHA (*p) || !is_name_beginner (*p))
1140 return NULL;
1141
1142 do
1143 p++;
1144 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1145
1146 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1147
1148 if (!reg)
1149 return NULL;
1150
1151 *ccp = p;
1152 return reg;
1153 }
1154
1155 static int
1156 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1157 enum arm_reg_type type)
1158 {
1159 /* Alternative syntaxes are accepted for a few register classes. */
1160 switch (type)
1161 {
1162 case REG_TYPE_MVF:
1163 case REG_TYPE_MVD:
1164 case REG_TYPE_MVFX:
1165 case REG_TYPE_MVDX:
1166 /* Generic coprocessor register names are allowed for these. */
1167 if (reg && reg->type == REG_TYPE_CN)
1168 return reg->number;
1169 break;
1170
1171 case REG_TYPE_CP:
1172 /* For backward compatibility, a bare number is valid here. */
1173 {
1174 unsigned long processor = strtoul (start, ccp, 10);
1175 if (*ccp != start && processor <= 15)
1176 return processor;
1177 }
1178
1179 case REG_TYPE_MMXWC:
1180 /* WC includes WCG. ??? I'm not sure this is true for all
1181 instructions that take WC registers. */
1182 if (reg && reg->type == REG_TYPE_MMXWCG)
1183 return reg->number;
1184 break;
1185
1186 default:
1187 break;
1188 }
1189
1190 return FAIL;
1191 }
1192
1193 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1194 return value is the register number or FAIL. */
1195
1196 static int
1197 arm_reg_parse (char **ccp, enum arm_reg_type type)
1198 {
1199 char *start = *ccp;
1200 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1201 int ret;
1202
1203 /* Do not allow a scalar (reg+index) to parse as a register. */
1204 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1205 return FAIL;
1206
1207 if (reg && reg->type == type)
1208 return reg->number;
1209
1210 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1211 return ret;
1212
1213 *ccp = start;
1214 return FAIL;
1215 }
1216
1217 /* Parse a Neon type specifier. *STR should point at the leading '.'
1218 character. Does no verification at this stage that the type fits the opcode
1219 properly. E.g.,
1220
1221 .i32.i32.s16
1222 .s32.f32
1223 .u16
1224
1225 Can all be legally parsed by this function.
1226
1227 Fills in neon_type struct pointer with parsed information, and updates STR
1228 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1229 type, FAIL if not. */
1230
1231 static int
1232 parse_neon_type (struct neon_type *type, char **str)
1233 {
1234 char *ptr = *str;
1235
1236 if (type)
1237 type->elems = 0;
1238
1239 while (type->elems < NEON_MAX_TYPE_ELS)
1240 {
1241 enum neon_el_type thistype = NT_untyped;
1242 unsigned thissize = -1u;
1243
1244 if (*ptr != '.')
1245 break;
1246
1247 ptr++;
1248
1249 /* Just a size without an explicit type. */
1250 if (ISDIGIT (*ptr))
1251 goto parsesize;
1252
1253 switch (TOLOWER (*ptr))
1254 {
1255 case 'i': thistype = NT_integer; break;
1256 case 'f': thistype = NT_float; break;
1257 case 'p': thistype = NT_poly; break;
1258 case 's': thistype = NT_signed; break;
1259 case 'u': thistype = NT_unsigned; break;
1260 case 'd':
1261 thistype = NT_float;
1262 thissize = 64;
1263 ptr++;
1264 goto done;
1265 default:
1266 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1267 return FAIL;
1268 }
1269
1270 ptr++;
1271
1272 /* .f is an abbreviation for .f32. */
1273 if (thistype == NT_float && !ISDIGIT (*ptr))
1274 thissize = 32;
1275 else
1276 {
1277 parsesize:
1278 thissize = strtoul (ptr, &ptr, 10);
1279
1280 if (thissize != 8 && thissize != 16 && thissize != 32
1281 && thissize != 64)
1282 {
1283 as_bad (_("bad size %d in type specifier"), thissize);
1284 return FAIL;
1285 }
1286 }
1287
1288 done:
1289 if (type)
1290 {
1291 type->el[type->elems].type = thistype;
1292 type->el[type->elems].size = thissize;
1293 type->elems++;
1294 }
1295 }
1296
1297 /* Empty/missing type is not a successful parse. */
1298 if (type->elems == 0)
1299 return FAIL;
1300
1301 *str = ptr;
1302
1303 return SUCCESS;
1304 }
1305
1306 /* Errors may be set multiple times during parsing or bit encoding
1307 (particularly in the Neon bits), but usually the earliest error which is set
1308 will be the most meaningful. Avoid overwriting it with later (cascading)
1309 errors by calling this function. */
1310
1311 static void
1312 first_error (const char *err)
1313 {
1314 if (!inst.error)
1315 inst.error = err;
1316 }
1317
1318 /* Parse a single type, e.g. ".s32", leading period included. */
1319 static int
1320 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1321 {
1322 char *str = *ccp;
1323 struct neon_type optype;
1324
1325 if (*str == '.')
1326 {
1327 if (parse_neon_type (&optype, &str) == SUCCESS)
1328 {
1329 if (optype.elems == 1)
1330 *vectype = optype.el[0];
1331 else
1332 {
1333 first_error (_("only one type should be specified for operand"));
1334 return FAIL;
1335 }
1336 }
1337 else
1338 {
1339 first_error (_("vector type expected"));
1340 return FAIL;
1341 }
1342 }
1343 else
1344 return FAIL;
1345
1346 *ccp = str;
1347
1348 return SUCCESS;
1349 }
1350
1351 /* Special meanings for indices (which have a range of 0-7), which will fit into
1352 a 4-bit integer. */
1353
1354 #define NEON_ALL_LANES 15
1355 #define NEON_INTERLEAVE_LANES 14
1356
1357 /* Parse either a register or a scalar, with an optional type. Return the
1358 register number, and optionally fill in the actual type of the register
1359 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1360 type/index information in *TYPEINFO. */
1361
1362 static int
1363 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1364 enum arm_reg_type *rtype,
1365 struct neon_typed_alias *typeinfo)
1366 {
1367 char *str = *ccp;
1368 struct reg_entry *reg = arm_reg_parse_multi (&str);
1369 struct neon_typed_alias atype;
1370 struct neon_type_el parsetype;
1371
1372 atype.defined = 0;
1373 atype.index = -1;
1374 atype.eltype.type = NT_invtype;
1375 atype.eltype.size = -1;
1376
1377 /* Try alternate syntax for some types of register. Note these are mutually
1378 exclusive with the Neon syntax extensions. */
1379 if (reg == NULL)
1380 {
1381 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1382 if (altreg != FAIL)
1383 *ccp = str;
1384 if (typeinfo)
1385 *typeinfo = atype;
1386 return altreg;
1387 }
1388
1389 /* Undo polymorphism when a set of register types may be accepted. */
1390 if ((type == REG_TYPE_NDQ
1391 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1392 || (type == REG_TYPE_VFSD
1393 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1394 || (type == REG_TYPE_NSDQ
1395 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1396 || reg->type == REG_TYPE_NQ))
1397 || (type == REG_TYPE_MMXWC
1398 && (reg->type == REG_TYPE_MMXWCG)))
1399 type = (enum arm_reg_type) reg->type;
1400
1401 if (type != reg->type)
1402 return FAIL;
1403
1404 if (reg->neon)
1405 atype = *reg->neon;
1406
1407 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1408 {
1409 if ((atype.defined & NTA_HASTYPE) != 0)
1410 {
1411 first_error (_("can't redefine type for operand"));
1412 return FAIL;
1413 }
1414 atype.defined |= NTA_HASTYPE;
1415 atype.eltype = parsetype;
1416 }
1417
1418 if (skip_past_char (&str, '[') == SUCCESS)
1419 {
1420 if (type != REG_TYPE_VFD)
1421 {
1422 first_error (_("only D registers may be indexed"));
1423 return FAIL;
1424 }
1425
1426 if ((atype.defined & NTA_HASINDEX) != 0)
1427 {
1428 first_error (_("can't change index for operand"));
1429 return FAIL;
1430 }
1431
1432 atype.defined |= NTA_HASINDEX;
1433
1434 if (skip_past_char (&str, ']') == SUCCESS)
1435 atype.index = NEON_ALL_LANES;
1436 else
1437 {
1438 expressionS exp;
1439
1440 my_get_expression (&exp, &str, GE_NO_PREFIX);
1441
1442 if (exp.X_op != O_constant)
1443 {
1444 first_error (_("constant expression required"));
1445 return FAIL;
1446 }
1447
1448 if (skip_past_char (&str, ']') == FAIL)
1449 return FAIL;
1450
1451 atype.index = exp.X_add_number;
1452 }
1453 }
1454
1455 if (typeinfo)
1456 *typeinfo = atype;
1457
1458 if (rtype)
1459 *rtype = type;
1460
1461 *ccp = str;
1462
1463 return reg->number;
1464 }
1465
1466 /* Like arm_reg_parse, but allow allow the following extra features:
1467 - If RTYPE is non-zero, return the (possibly restricted) type of the
1468 register (e.g. Neon double or quad reg when either has been requested).
1469 - If this is a Neon vector type with additional type information, fill
1470 in the struct pointed to by VECTYPE (if non-NULL).
1471 This function will fault on encountering a scalar. */
1472
1473 static int
1474 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1475 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1476 {
1477 struct neon_typed_alias atype;
1478 char *str = *ccp;
1479 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1480
1481 if (reg == FAIL)
1482 return FAIL;
1483
1484 /* Do not allow regname(... to parse as a register. */
1485 if (*str == '(')
1486 return FAIL;
1487
1488 /* Do not allow a scalar (reg+index) to parse as a register. */
1489 if ((atype.defined & NTA_HASINDEX) != 0)
1490 {
1491 first_error (_("register operand expected, but got scalar"));
1492 return FAIL;
1493 }
1494
1495 if (vectype)
1496 *vectype = atype.eltype;
1497
1498 *ccp = str;
1499
1500 return reg;
1501 }
1502
1503 #define NEON_SCALAR_REG(X) ((X) >> 4)
1504 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1505
1506 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1507 have enough information to be able to do a good job bounds-checking. So, we
1508 just do easy checks here, and do further checks later. */
1509
1510 static int
1511 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1512 {
1513 int reg;
1514 char *str = *ccp;
1515 struct neon_typed_alias atype;
1516
1517 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1518
1519 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1520 return FAIL;
1521
1522 if (atype.index == NEON_ALL_LANES)
1523 {
1524 first_error (_("scalar must have an index"));
1525 return FAIL;
1526 }
1527 else if (atype.index >= 64 / elsize)
1528 {
1529 first_error (_("scalar index out of range"));
1530 return FAIL;
1531 }
1532
1533 if (type)
1534 *type = atype.eltype;
1535
1536 *ccp = str;
1537
1538 return reg * 16 + atype.index;
1539 }
1540
1541 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1542
1543 static long
1544 parse_reg_list (char ** strp)
1545 {
1546 char * str = * strp;
1547 long range = 0;
1548 int another_range;
1549
1550 /* We come back here if we get ranges concatenated by '+' or '|'. */
1551 do
1552 {
1553 another_range = 0;
1554
1555 if (*str == '{')
1556 {
1557 int in_range = 0;
1558 int cur_reg = -1;
1559
1560 str++;
1561 do
1562 {
1563 int reg;
1564
1565 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1566 {
1567 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1568 return FAIL;
1569 }
1570
1571 if (in_range)
1572 {
1573 int i;
1574
1575 if (reg <= cur_reg)
1576 {
1577 first_error (_("bad range in register list"));
1578 return FAIL;
1579 }
1580
1581 for (i = cur_reg + 1; i < reg; i++)
1582 {
1583 if (range & (1 << i))
1584 as_tsktsk
1585 (_("Warning: duplicated register (r%d) in register list"),
1586 i);
1587 else
1588 range |= 1 << i;
1589 }
1590 in_range = 0;
1591 }
1592
1593 if (range & (1 << reg))
1594 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1595 reg);
1596 else if (reg <= cur_reg)
1597 as_tsktsk (_("Warning: register range not in ascending order"));
1598
1599 range |= 1 << reg;
1600 cur_reg = reg;
1601 }
1602 while (skip_past_comma (&str) != FAIL
1603 || (in_range = 1, *str++ == '-'));
1604 str--;
1605
1606 if (*str++ != '}')
1607 {
1608 first_error (_("missing `}'"));
1609 return FAIL;
1610 }
1611 }
1612 else
1613 {
1614 expressionS exp;
1615
1616 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1617 return FAIL;
1618
1619 if (exp.X_op == O_constant)
1620 {
1621 if (exp.X_add_number
1622 != (exp.X_add_number & 0x0000ffff))
1623 {
1624 inst.error = _("invalid register mask");
1625 return FAIL;
1626 }
1627
1628 if ((range & exp.X_add_number) != 0)
1629 {
1630 int regno = range & exp.X_add_number;
1631
1632 regno &= -regno;
1633 regno = (1 << regno) - 1;
1634 as_tsktsk
1635 (_("Warning: duplicated register (r%d) in register list"),
1636 regno);
1637 }
1638
1639 range |= exp.X_add_number;
1640 }
1641 else
1642 {
1643 if (inst.reloc.type != 0)
1644 {
1645 inst.error = _("expression too complex");
1646 return FAIL;
1647 }
1648
1649 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1650 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1651 inst.reloc.pc_rel = 0;
1652 }
1653 }
1654
1655 if (*str == '|' || *str == '+')
1656 {
1657 str++;
1658 another_range = 1;
1659 }
1660 }
1661 while (another_range);
1662
1663 *strp = str;
1664 return range;
1665 }
1666
1667 /* Types of registers in a list. */
1668
1669 enum reg_list_els
1670 {
1671 REGLIST_VFP_S,
1672 REGLIST_VFP_D,
1673 REGLIST_NEON_D
1674 };
1675
1676 /* Parse a VFP register list. If the string is invalid return FAIL.
1677 Otherwise return the number of registers, and set PBASE to the first
1678 register. Parses registers of type ETYPE.
1679 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1680 - Q registers can be used to specify pairs of D registers
1681 - { } can be omitted from around a singleton register list
1682 FIXME: This is not implemented, as it would require backtracking in
1683 some cases, e.g.:
1684 vtbl.8 d3,d4,d5
1685 This could be done (the meaning isn't really ambiguous), but doesn't
1686 fit in well with the current parsing framework.
1687 - 32 D registers may be used (also true for VFPv3).
1688 FIXME: Types are ignored in these register lists, which is probably a
1689 bug. */
1690
1691 static int
1692 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1693 {
1694 char *str = *ccp;
1695 int base_reg;
1696 int new_base;
1697 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1698 int max_regs = 0;
1699 int count = 0;
1700 int warned = 0;
1701 unsigned long mask = 0;
1702 int i;
1703
1704 if (*str != '{')
1705 {
1706 inst.error = _("expecting {");
1707 return FAIL;
1708 }
1709
1710 str++;
1711
1712 switch (etype)
1713 {
1714 case REGLIST_VFP_S:
1715 regtype = REG_TYPE_VFS;
1716 max_regs = 32;
1717 break;
1718
1719 case REGLIST_VFP_D:
1720 regtype = REG_TYPE_VFD;
1721 break;
1722
1723 case REGLIST_NEON_D:
1724 regtype = REG_TYPE_NDQ;
1725 break;
1726 }
1727
1728 if (etype != REGLIST_VFP_S)
1729 {
1730 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1731 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1732 {
1733 max_regs = 32;
1734 if (thumb_mode)
1735 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1736 fpu_vfp_ext_d32);
1737 else
1738 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1739 fpu_vfp_ext_d32);
1740 }
1741 else
1742 max_regs = 16;
1743 }
1744
1745 base_reg = max_regs;
1746
1747 do
1748 {
1749 int setmask = 1, addregs = 1;
1750
1751 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1752
1753 if (new_base == FAIL)
1754 {
1755 first_error (_(reg_expected_msgs[regtype]));
1756 return FAIL;
1757 }
1758
1759 if (new_base >= max_regs)
1760 {
1761 first_error (_("register out of range in list"));
1762 return FAIL;
1763 }
1764
1765 /* Note: a value of 2 * n is returned for the register Q<n>. */
1766 if (regtype == REG_TYPE_NQ)
1767 {
1768 setmask = 3;
1769 addregs = 2;
1770 }
1771
1772 if (new_base < base_reg)
1773 base_reg = new_base;
1774
1775 if (mask & (setmask << new_base))
1776 {
1777 first_error (_("invalid register list"));
1778 return FAIL;
1779 }
1780
1781 if ((mask >> new_base) != 0 && ! warned)
1782 {
1783 as_tsktsk (_("register list not in ascending order"));
1784 warned = 1;
1785 }
1786
1787 mask |= setmask << new_base;
1788 count += addregs;
1789
1790 if (*str == '-') /* We have the start of a range expression */
1791 {
1792 int high_range;
1793
1794 str++;
1795
1796 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1797 == FAIL)
1798 {
1799 inst.error = gettext (reg_expected_msgs[regtype]);
1800 return FAIL;
1801 }
1802
1803 if (high_range >= max_regs)
1804 {
1805 first_error (_("register out of range in list"));
1806 return FAIL;
1807 }
1808
1809 if (regtype == REG_TYPE_NQ)
1810 high_range = high_range + 1;
1811
1812 if (high_range <= new_base)
1813 {
1814 inst.error = _("register range not in ascending order");
1815 return FAIL;
1816 }
1817
1818 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1819 {
1820 if (mask & (setmask << new_base))
1821 {
1822 inst.error = _("invalid register list");
1823 return FAIL;
1824 }
1825
1826 mask |= setmask << new_base;
1827 count += addregs;
1828 }
1829 }
1830 }
1831 while (skip_past_comma (&str) != FAIL);
1832
1833 str++;
1834
1835 /* Sanity check -- should have raised a parse error above. */
1836 if (count == 0 || count > max_regs)
1837 abort ();
1838
1839 *pbase = base_reg;
1840
1841 /* Final test -- the registers must be consecutive. */
1842 mask >>= base_reg;
1843 for (i = 0; i < count; i++)
1844 {
1845 if ((mask & (1u << i)) == 0)
1846 {
1847 inst.error = _("non-contiguous register range");
1848 return FAIL;
1849 }
1850 }
1851
1852 *ccp = str;
1853
1854 return count;
1855 }
1856
1857 /* True if two alias types are the same. */
1858
1859 static bfd_boolean
1860 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1861 {
1862 if (!a && !b)
1863 return TRUE;
1864
1865 if (!a || !b)
1866 return FALSE;
1867
1868 if (a->defined != b->defined)
1869 return FALSE;
1870
1871 if ((a->defined & NTA_HASTYPE) != 0
1872 && (a->eltype.type != b->eltype.type
1873 || a->eltype.size != b->eltype.size))
1874 return FALSE;
1875
1876 if ((a->defined & NTA_HASINDEX) != 0
1877 && (a->index != b->index))
1878 return FALSE;
1879
1880 return TRUE;
1881 }
1882
1883 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1884 The base register is put in *PBASE.
1885 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1886 the return value.
1887 The register stride (minus one) is put in bit 4 of the return value.
1888 Bits [6:5] encode the list length (minus one).
1889 The type of the list elements is put in *ELTYPE, if non-NULL. */
1890
1891 #define NEON_LANE(X) ((X) & 0xf)
1892 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1893 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1894
1895 static int
1896 parse_neon_el_struct_list (char **str, unsigned *pbase,
1897 struct neon_type_el *eltype)
1898 {
1899 char *ptr = *str;
1900 int base_reg = -1;
1901 int reg_incr = -1;
1902 int count = 0;
1903 int lane = -1;
1904 int leading_brace = 0;
1905 enum arm_reg_type rtype = REG_TYPE_NDQ;
1906 const char *const incr_error = _("register stride must be 1 or 2");
1907 const char *const type_error = _("mismatched element/structure types in list");
1908 struct neon_typed_alias firsttype;
1909
1910 if (skip_past_char (&ptr, '{') == SUCCESS)
1911 leading_brace = 1;
1912
1913 do
1914 {
1915 struct neon_typed_alias atype;
1916 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1917
1918 if (getreg == FAIL)
1919 {
1920 first_error (_(reg_expected_msgs[rtype]));
1921 return FAIL;
1922 }
1923
1924 if (base_reg == -1)
1925 {
1926 base_reg = getreg;
1927 if (rtype == REG_TYPE_NQ)
1928 {
1929 reg_incr = 1;
1930 }
1931 firsttype = atype;
1932 }
1933 else if (reg_incr == -1)
1934 {
1935 reg_incr = getreg - base_reg;
1936 if (reg_incr < 1 || reg_incr > 2)
1937 {
1938 first_error (_(incr_error));
1939 return FAIL;
1940 }
1941 }
1942 else if (getreg != base_reg + reg_incr * count)
1943 {
1944 first_error (_(incr_error));
1945 return FAIL;
1946 }
1947
1948 if (! neon_alias_types_same (&atype, &firsttype))
1949 {
1950 first_error (_(type_error));
1951 return FAIL;
1952 }
1953
1954 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1955 modes. */
1956 if (ptr[0] == '-')
1957 {
1958 struct neon_typed_alias htype;
1959 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1960 if (lane == -1)
1961 lane = NEON_INTERLEAVE_LANES;
1962 else if (lane != NEON_INTERLEAVE_LANES)
1963 {
1964 first_error (_(type_error));
1965 return FAIL;
1966 }
1967 if (reg_incr == -1)
1968 reg_incr = 1;
1969 else if (reg_incr != 1)
1970 {
1971 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1972 return FAIL;
1973 }
1974 ptr++;
1975 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1976 if (hireg == FAIL)
1977 {
1978 first_error (_(reg_expected_msgs[rtype]));
1979 return FAIL;
1980 }
1981 if (! neon_alias_types_same (&htype, &firsttype))
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 count += hireg + dregs - getreg;
1987 continue;
1988 }
1989
1990 /* If we're using Q registers, we can't use [] or [n] syntax. */
1991 if (rtype == REG_TYPE_NQ)
1992 {
1993 count += 2;
1994 continue;
1995 }
1996
1997 if ((atype.defined & NTA_HASINDEX) != 0)
1998 {
1999 if (lane == -1)
2000 lane = atype.index;
2001 else if (lane != atype.index)
2002 {
2003 first_error (_(type_error));
2004 return FAIL;
2005 }
2006 }
2007 else if (lane == -1)
2008 lane = NEON_INTERLEAVE_LANES;
2009 else if (lane != NEON_INTERLEAVE_LANES)
2010 {
2011 first_error (_(type_error));
2012 return FAIL;
2013 }
2014 count++;
2015 }
2016 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2017
2018 /* No lane set by [x]. We must be interleaving structures. */
2019 if (lane == -1)
2020 lane = NEON_INTERLEAVE_LANES;
2021
2022 /* Sanity check. */
2023 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2024 || (count > 1 && reg_incr == -1))
2025 {
2026 first_error (_("error parsing element/structure list"));
2027 return FAIL;
2028 }
2029
2030 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2031 {
2032 first_error (_("expected }"));
2033 return FAIL;
2034 }
2035
2036 if (reg_incr == -1)
2037 reg_incr = 1;
2038
2039 if (eltype)
2040 *eltype = firsttype.eltype;
2041
2042 *pbase = base_reg;
2043 *str = ptr;
2044
2045 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2046 }
2047
2048 /* Parse an explicit relocation suffix on an expression. This is
2049 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2050 arm_reloc_hsh contains no entries, so this function can only
2051 succeed if there is no () after the word. Returns -1 on error,
2052 BFD_RELOC_UNUSED if there wasn't any suffix. */
2053 static int
2054 parse_reloc (char **str)
2055 {
2056 struct reloc_entry *r;
2057 char *p, *q;
2058
2059 if (**str != '(')
2060 return BFD_RELOC_UNUSED;
2061
2062 p = *str + 1;
2063 q = p;
2064
2065 while (*q && *q != ')' && *q != ',')
2066 q++;
2067 if (*q != ')')
2068 return -1;
2069
2070 if ((r = (struct reloc_entry *)
2071 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2072 return -1;
2073
2074 *str = q + 1;
2075 return r->reloc;
2076 }
2077
2078 /* Directives: register aliases. */
2079
2080 static struct reg_entry *
2081 insert_reg_alias (char *str, unsigned number, int type)
2082 {
2083 struct reg_entry *new_reg;
2084 const char *name;
2085
2086 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2087 {
2088 if (new_reg->builtin)
2089 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2090
2091 /* Only warn about a redefinition if it's not defined as the
2092 same register. */
2093 else if (new_reg->number != number || new_reg->type != type)
2094 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2095
2096 return NULL;
2097 }
2098
2099 name = xstrdup (str);
2100 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2101
2102 new_reg->name = name;
2103 new_reg->number = number;
2104 new_reg->type = type;
2105 new_reg->builtin = FALSE;
2106 new_reg->neon = NULL;
2107
2108 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2109 abort ();
2110
2111 return new_reg;
2112 }
2113
2114 static void
2115 insert_neon_reg_alias (char *str, int number, int type,
2116 struct neon_typed_alias *atype)
2117 {
2118 struct reg_entry *reg = insert_reg_alias (str, number, type);
2119
2120 if (!reg)
2121 {
2122 first_error (_("attempt to redefine typed alias"));
2123 return;
2124 }
2125
2126 if (atype)
2127 {
2128 reg->neon = (struct neon_typed_alias *)
2129 xmalloc (sizeof (struct neon_typed_alias));
2130 *reg->neon = *atype;
2131 }
2132 }
2133
2134 /* Look for the .req directive. This is of the form:
2135
2136 new_register_name .req existing_register_name
2137
2138 If we find one, or if it looks sufficiently like one that we want to
2139 handle any error here, return TRUE. Otherwise return FALSE. */
2140
2141 static bfd_boolean
2142 create_register_alias (char * newname, char *p)
2143 {
2144 struct reg_entry *old;
2145 char *oldname, *nbuf;
2146 size_t nlen;
2147
2148 /* The input scrubber ensures that whitespace after the mnemonic is
2149 collapsed to single spaces. */
2150 oldname = p;
2151 if (strncmp (oldname, " .req ", 6) != 0)
2152 return FALSE;
2153
2154 oldname += 6;
2155 if (*oldname == '\0')
2156 return FALSE;
2157
2158 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2159 if (!old)
2160 {
2161 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2162 return TRUE;
2163 }
2164
2165 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2166 the desired alias name, and p points to its end. If not, then
2167 the desired alias name is in the global original_case_string. */
2168 #ifdef TC_CASE_SENSITIVE
2169 nlen = p - newname;
2170 #else
2171 newname = original_case_string;
2172 nlen = strlen (newname);
2173 #endif
2174
2175 nbuf = (char *) alloca (nlen + 1);
2176 memcpy (nbuf, newname, nlen);
2177 nbuf[nlen] = '\0';
2178
2179 /* Create aliases under the new name as stated; an all-lowercase
2180 version of the new name; and an all-uppercase version of the new
2181 name. */
2182 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2183 {
2184 for (p = nbuf; *p; p++)
2185 *p = TOUPPER (*p);
2186
2187 if (strncmp (nbuf, newname, nlen))
2188 {
2189 /* If this attempt to create an additional alias fails, do not bother
2190 trying to create the all-lower case alias. We will fail and issue
2191 a second, duplicate error message. This situation arises when the
2192 programmer does something like:
2193 foo .req r0
2194 Foo .req r1
2195 The second .req creates the "Foo" alias but then fails to create
2196 the artificial FOO alias because it has already been created by the
2197 first .req. */
2198 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2199 return TRUE;
2200 }
2201
2202 for (p = nbuf; *p; p++)
2203 *p = TOLOWER (*p);
2204
2205 if (strncmp (nbuf, newname, nlen))
2206 insert_reg_alias (nbuf, old->number, old->type);
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* Create a Neon typed/indexed register alias using directives, e.g.:
2213 X .dn d5.s32[1]
2214 Y .qn 6.s16
2215 Z .dn d7
2216 T .dn Z[0]
2217 These typed registers can be used instead of the types specified after the
2218 Neon mnemonic, so long as all operands given have types. Types can also be
2219 specified directly, e.g.:
2220 vadd d0.s32, d1.s32, d2.s32 */
2221
2222 static bfd_boolean
2223 create_neon_reg_alias (char *newname, char *p)
2224 {
2225 enum arm_reg_type basetype;
2226 struct reg_entry *basereg;
2227 struct reg_entry mybasereg;
2228 struct neon_type ntype;
2229 struct neon_typed_alias typeinfo;
2230 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2231 int namelen;
2232
2233 typeinfo.defined = 0;
2234 typeinfo.eltype.type = NT_invtype;
2235 typeinfo.eltype.size = -1;
2236 typeinfo.index = -1;
2237
2238 nameend = p;
2239
2240 if (strncmp (p, " .dn ", 5) == 0)
2241 basetype = REG_TYPE_VFD;
2242 else if (strncmp (p, " .qn ", 5) == 0)
2243 basetype = REG_TYPE_NQ;
2244 else
2245 return FALSE;
2246
2247 p += 5;
2248
2249 if (*p == '\0')
2250 return FALSE;
2251
2252 basereg = arm_reg_parse_multi (&p);
2253
2254 if (basereg && basereg->type != basetype)
2255 {
2256 as_bad (_("bad type for register"));
2257 return FALSE;
2258 }
2259
2260 if (basereg == NULL)
2261 {
2262 expressionS exp;
2263 /* Try parsing as an integer. */
2264 my_get_expression (&exp, &p, GE_NO_PREFIX);
2265 if (exp.X_op != O_constant)
2266 {
2267 as_bad (_("expression must be constant"));
2268 return FALSE;
2269 }
2270 basereg = &mybasereg;
2271 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2272 : exp.X_add_number;
2273 basereg->neon = 0;
2274 }
2275
2276 if (basereg->neon)
2277 typeinfo = *basereg->neon;
2278
2279 if (parse_neon_type (&ntype, &p) == SUCCESS)
2280 {
2281 /* We got a type. */
2282 if (typeinfo.defined & NTA_HASTYPE)
2283 {
2284 as_bad (_("can't redefine the type of a register alias"));
2285 return FALSE;
2286 }
2287
2288 typeinfo.defined |= NTA_HASTYPE;
2289 if (ntype.elems != 1)
2290 {
2291 as_bad (_("you must specify a single type only"));
2292 return FALSE;
2293 }
2294 typeinfo.eltype = ntype.el[0];
2295 }
2296
2297 if (skip_past_char (&p, '[') == SUCCESS)
2298 {
2299 expressionS exp;
2300 /* We got a scalar index. */
2301
2302 if (typeinfo.defined & NTA_HASINDEX)
2303 {
2304 as_bad (_("can't redefine the index of a scalar alias"));
2305 return FALSE;
2306 }
2307
2308 my_get_expression (&exp, &p, GE_NO_PREFIX);
2309
2310 if (exp.X_op != O_constant)
2311 {
2312 as_bad (_("scalar index must be constant"));
2313 return FALSE;
2314 }
2315
2316 typeinfo.defined |= NTA_HASINDEX;
2317 typeinfo.index = exp.X_add_number;
2318
2319 if (skip_past_char (&p, ']') == FAIL)
2320 {
2321 as_bad (_("expecting ]"));
2322 return FALSE;
2323 }
2324 }
2325
2326 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2327 the desired alias name, and p points to its end. If not, then
2328 the desired alias name is in the global original_case_string. */
2329 #ifdef TC_CASE_SENSITIVE
2330 namelen = nameend - newname;
2331 #else
2332 newname = original_case_string;
2333 namelen = strlen (newname);
2334 #endif
2335
2336 namebuf = (char *) alloca (namelen + 1);
2337 strncpy (namebuf, newname, namelen);
2338 namebuf[namelen] = '\0';
2339
2340 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2341 typeinfo.defined != 0 ? &typeinfo : NULL);
2342
2343 /* Insert name in all uppercase. */
2344 for (p = namebuf; *p; p++)
2345 *p = TOUPPER (*p);
2346
2347 if (strncmp (namebuf, newname, namelen))
2348 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2349 typeinfo.defined != 0 ? &typeinfo : NULL);
2350
2351 /* Insert name in all lowercase. */
2352 for (p = namebuf; *p; p++)
2353 *p = TOLOWER (*p);
2354
2355 if (strncmp (namebuf, newname, namelen))
2356 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2357 typeinfo.defined != 0 ? &typeinfo : NULL);
2358
2359 return TRUE;
2360 }
2361
2362 /* Should never be called, as .req goes between the alias and the
2363 register name, not at the beginning of the line. */
2364
2365 static void
2366 s_req (int a ATTRIBUTE_UNUSED)
2367 {
2368 as_bad (_("invalid syntax for .req directive"));
2369 }
2370
2371 static void
2372 s_dn (int a ATTRIBUTE_UNUSED)
2373 {
2374 as_bad (_("invalid syntax for .dn directive"));
2375 }
2376
2377 static void
2378 s_qn (int a ATTRIBUTE_UNUSED)
2379 {
2380 as_bad (_("invalid syntax for .qn directive"));
2381 }
2382
2383 /* The .unreq directive deletes an alias which was previously defined
2384 by .req. For example:
2385
2386 my_alias .req r11
2387 .unreq my_alias */
2388
2389 static void
2390 s_unreq (int a ATTRIBUTE_UNUSED)
2391 {
2392 char * name;
2393 char saved_char;
2394
2395 name = input_line_pointer;
2396
2397 while (*input_line_pointer != 0
2398 && *input_line_pointer != ' '
2399 && *input_line_pointer != '\n')
2400 ++input_line_pointer;
2401
2402 saved_char = *input_line_pointer;
2403 *input_line_pointer = 0;
2404
2405 if (!*name)
2406 as_bad (_("invalid syntax for .unreq directive"));
2407 else
2408 {
2409 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2410 name);
2411
2412 if (!reg)
2413 as_bad (_("unknown register alias '%s'"), name);
2414 else if (reg->builtin)
2415 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2416 name);
2417 else
2418 {
2419 char * p;
2420 char * nbuf;
2421
2422 hash_delete (arm_reg_hsh, name, FALSE);
2423 free ((char *) reg->name);
2424 if (reg->neon)
2425 free (reg->neon);
2426 free (reg);
2427
2428 /* Also locate the all upper case and all lower case versions.
2429 Do not complain if we cannot find one or the other as it
2430 was probably deleted above. */
2431
2432 nbuf = strdup (name);
2433 for (p = nbuf; *p; p++)
2434 *p = TOUPPER (*p);
2435 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2436 if (reg)
2437 {
2438 hash_delete (arm_reg_hsh, nbuf, FALSE);
2439 free ((char *) reg->name);
2440 if (reg->neon)
2441 free (reg->neon);
2442 free (reg);
2443 }
2444
2445 for (p = nbuf; *p; p++)
2446 *p = TOLOWER (*p);
2447 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2448 if (reg)
2449 {
2450 hash_delete (arm_reg_hsh, nbuf, FALSE);
2451 free ((char *) reg->name);
2452 if (reg->neon)
2453 free (reg->neon);
2454 free (reg);
2455 }
2456
2457 free (nbuf);
2458 }
2459 }
2460
2461 *input_line_pointer = saved_char;
2462 demand_empty_rest_of_line ();
2463 }
2464
2465 /* Directives: Instruction set selection. */
2466
2467 #ifdef OBJ_ELF
2468 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2469 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2470 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2471 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2472
2473 /* Create a new mapping symbol for the transition to STATE. */
2474
2475 static void
2476 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2477 {
2478 symbolS * symbolP;
2479 const char * symname;
2480 int type;
2481
2482 switch (state)
2483 {
2484 case MAP_DATA:
2485 symname = "$d";
2486 type = BSF_NO_FLAGS;
2487 break;
2488 case MAP_ARM:
2489 symname = "$a";
2490 type = BSF_NO_FLAGS;
2491 break;
2492 case MAP_THUMB:
2493 symname = "$t";
2494 type = BSF_NO_FLAGS;
2495 break;
2496 default:
2497 abort ();
2498 }
2499
2500 symbolP = symbol_new (symname, now_seg, value, frag);
2501 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2502
2503 switch (state)
2504 {
2505 case MAP_ARM:
2506 THUMB_SET_FUNC (symbolP, 0);
2507 ARM_SET_THUMB (symbolP, 0);
2508 ARM_SET_INTERWORK (symbolP, support_interwork);
2509 break;
2510
2511 case MAP_THUMB:
2512 THUMB_SET_FUNC (symbolP, 1);
2513 ARM_SET_THUMB (symbolP, 1);
2514 ARM_SET_INTERWORK (symbolP, support_interwork);
2515 break;
2516
2517 case MAP_DATA:
2518 default:
2519 break;
2520 }
2521
2522 /* Save the mapping symbols for future reference. Also check that
2523 we do not place two mapping symbols at the same offset within a
2524 frag. We'll handle overlap between frags in
2525 check_mapping_symbols.
2526
2527 If .fill or other data filling directive generates zero sized data,
2528 the mapping symbol for the following code will have the same value
2529 as the one generated for the data filling directive. In this case,
2530 we replace the old symbol with the new one at the same address. */
2531 if (value == 0)
2532 {
2533 if (frag->tc_frag_data.first_map != NULL)
2534 {
2535 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2536 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2537 }
2538 frag->tc_frag_data.first_map = symbolP;
2539 }
2540 if (frag->tc_frag_data.last_map != NULL)
2541 {
2542 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2543 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2544 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2545 }
2546 frag->tc_frag_data.last_map = symbolP;
2547 }
2548
2549 /* We must sometimes convert a region marked as code to data during
2550 code alignment, if an odd number of bytes have to be padded. The
2551 code mapping symbol is pushed to an aligned address. */
2552
2553 static void
2554 insert_data_mapping_symbol (enum mstate state,
2555 valueT value, fragS *frag, offsetT bytes)
2556 {
2557 /* If there was already a mapping symbol, remove it. */
2558 if (frag->tc_frag_data.last_map != NULL
2559 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2560 {
2561 symbolS *symp = frag->tc_frag_data.last_map;
2562
2563 if (value == 0)
2564 {
2565 know (frag->tc_frag_data.first_map == symp);
2566 frag->tc_frag_data.first_map = NULL;
2567 }
2568 frag->tc_frag_data.last_map = NULL;
2569 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2570 }
2571
2572 make_mapping_symbol (MAP_DATA, value, frag);
2573 make_mapping_symbol (state, value + bytes, frag);
2574 }
2575
2576 static void mapping_state_2 (enum mstate state, int max_chars);
2577
2578 /* Set the mapping state to STATE. Only call this when about to
2579 emit some STATE bytes to the file. */
2580
2581 void
2582 mapping_state (enum mstate state)
2583 {
2584 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2585
2586 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2587
2588 if (mapstate == state)
2589 /* The mapping symbol has already been emitted.
2590 There is nothing else to do. */
2591 return;
2592 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2593 /* This case will be evaluated later in the next else. */
2594 return;
2595 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2596 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2597 {
2598 /* Only add the symbol if the offset is > 0:
2599 if we're at the first frag, check it's size > 0;
2600 if we're not at the first frag, then for sure
2601 the offset is > 0. */
2602 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2603 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2604
2605 if (add_symbol)
2606 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2607 }
2608
2609 mapping_state_2 (state, 0);
2610 #undef TRANSITION
2611 }
2612
2613 /* Same as mapping_state, but MAX_CHARS bytes have already been
2614 allocated. Put the mapping symbol that far back. */
2615
2616 static void
2617 mapping_state_2 (enum mstate state, int max_chars)
2618 {
2619 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2620
2621 if (!SEG_NORMAL (now_seg))
2622 return;
2623
2624 if (mapstate == state)
2625 /* The mapping symbol has already been emitted.
2626 There is nothing else to do. */
2627 return;
2628
2629 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2630 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2631 }
2632 #else
2633 #define mapping_state(x) ((void)0)
2634 #define mapping_state_2(x, y) ((void)0)
2635 #endif
2636
2637 /* Find the real, Thumb encoded start of a Thumb function. */
2638
2639 #ifdef OBJ_COFF
2640 static symbolS *
2641 find_real_start (symbolS * symbolP)
2642 {
2643 char * real_start;
2644 const char * name = S_GET_NAME (symbolP);
2645 symbolS * new_target;
2646
2647 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2648 #define STUB_NAME ".real_start_of"
2649
2650 if (name == NULL)
2651 abort ();
2652
2653 /* The compiler may generate BL instructions to local labels because
2654 it needs to perform a branch to a far away location. These labels
2655 do not have a corresponding ".real_start_of" label. We check
2656 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2657 the ".real_start_of" convention for nonlocal branches. */
2658 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2659 return symbolP;
2660
2661 real_start = ACONCAT ((STUB_NAME, name, NULL));
2662 new_target = symbol_find (real_start);
2663
2664 if (new_target == NULL)
2665 {
2666 as_warn (_("Failed to find real start of function: %s\n"), name);
2667 new_target = symbolP;
2668 }
2669
2670 return new_target;
2671 }
2672 #endif
2673
2674 static void
2675 opcode_select (int width)
2676 {
2677 switch (width)
2678 {
2679 case 16:
2680 if (! thumb_mode)
2681 {
2682 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2683 as_bad (_("selected processor does not support THUMB opcodes"));
2684
2685 thumb_mode = 1;
2686 /* No need to force the alignment, since we will have been
2687 coming from ARM mode, which is word-aligned. */
2688 record_alignment (now_seg, 1);
2689 }
2690 break;
2691
2692 case 32:
2693 if (thumb_mode)
2694 {
2695 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2696 as_bad (_("selected processor does not support ARM opcodes"));
2697
2698 thumb_mode = 0;
2699
2700 if (!need_pass_2)
2701 frag_align (2, 0, 0);
2702
2703 record_alignment (now_seg, 1);
2704 }
2705 break;
2706
2707 default:
2708 as_bad (_("invalid instruction size selected (%d)"), width);
2709 }
2710 }
2711
2712 static void
2713 s_arm (int ignore ATTRIBUTE_UNUSED)
2714 {
2715 opcode_select (32);
2716 demand_empty_rest_of_line ();
2717 }
2718
2719 static void
2720 s_thumb (int ignore ATTRIBUTE_UNUSED)
2721 {
2722 opcode_select (16);
2723 demand_empty_rest_of_line ();
2724 }
2725
2726 static void
2727 s_code (int unused ATTRIBUTE_UNUSED)
2728 {
2729 int temp;
2730
2731 temp = get_absolute_expression ();
2732 switch (temp)
2733 {
2734 case 16:
2735 case 32:
2736 opcode_select (temp);
2737 break;
2738
2739 default:
2740 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2741 }
2742 }
2743
2744 static void
2745 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2746 {
2747 /* If we are not already in thumb mode go into it, EVEN if
2748 the target processor does not support thumb instructions.
2749 This is used by gcc/config/arm/lib1funcs.asm for example
2750 to compile interworking support functions even if the
2751 target processor should not support interworking. */
2752 if (! thumb_mode)
2753 {
2754 thumb_mode = 2;
2755 record_alignment (now_seg, 1);
2756 }
2757
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 s_thumb (0);
2765
2766 /* The following label is the name/address of the start of a Thumb function.
2767 We need to know this for the interworking support. */
2768 label_is_thumb_function_name = TRUE;
2769 }
2770
2771 /* Perform a .set directive, but also mark the alias as
2772 being a thumb function. */
2773
2774 static void
2775 s_thumb_set (int equiv)
2776 {
2777 /* XXX the following is a duplicate of the code for s_set() in read.c
2778 We cannot just call that code as we need to get at the symbol that
2779 is created. */
2780 char * name;
2781 char delim;
2782 char * end_name;
2783 symbolS * symbolP;
2784
2785 /* Especial apologies for the random logic:
2786 This just grew, and could be parsed much more simply!
2787 Dean - in haste. */
2788 name = input_line_pointer;
2789 delim = get_symbol_end ();
2790 end_name = input_line_pointer;
2791 *end_name = delim;
2792
2793 if (*input_line_pointer != ',')
2794 {
2795 *end_name = 0;
2796 as_bad (_("expected comma after name \"%s\""), name);
2797 *end_name = delim;
2798 ignore_rest_of_line ();
2799 return;
2800 }
2801
2802 input_line_pointer++;
2803 *end_name = 0;
2804
2805 if (name[0] == '.' && name[1] == '\0')
2806 {
2807 /* XXX - this should not happen to .thumb_set. */
2808 abort ();
2809 }
2810
2811 if ((symbolP = symbol_find (name)) == NULL
2812 && (symbolP = md_undefined_symbol (name)) == NULL)
2813 {
2814 #ifndef NO_LISTING
2815 /* When doing symbol listings, play games with dummy fragments living
2816 outside the normal fragment chain to record the file and line info
2817 for this symbol. */
2818 if (listing & LISTING_SYMBOLS)
2819 {
2820 extern struct list_info_struct * listing_tail;
2821 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2822
2823 memset (dummy_frag, 0, sizeof (fragS));
2824 dummy_frag->fr_type = rs_fill;
2825 dummy_frag->line = listing_tail;
2826 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2827 dummy_frag->fr_symbol = symbolP;
2828 }
2829 else
2830 #endif
2831 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2832
2833 #ifdef OBJ_COFF
2834 /* "set" symbols are local unless otherwise specified. */
2835 SF_SET_LOCAL (symbolP);
2836 #endif /* OBJ_COFF */
2837 } /* Make a new symbol. */
2838
2839 symbol_table_insert (symbolP);
2840
2841 * end_name = delim;
2842
2843 if (equiv
2844 && S_IS_DEFINED (symbolP)
2845 && S_GET_SEGMENT (symbolP) != reg_section)
2846 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2847
2848 pseudo_set (symbolP);
2849
2850 demand_empty_rest_of_line ();
2851
2852 /* XXX Now we come to the Thumb specific bit of code. */
2853
2854 THUMB_SET_FUNC (symbolP, 1);
2855 ARM_SET_THUMB (symbolP, 1);
2856 #if defined OBJ_ELF || defined OBJ_COFF
2857 ARM_SET_INTERWORK (symbolP, support_interwork);
2858 #endif
2859 }
2860
2861 /* Directives: Mode selection. */
2862
2863 /* .syntax [unified|divided] - choose the new unified syntax
2864 (same for Arm and Thumb encoding, modulo slight differences in what
2865 can be represented) or the old divergent syntax for each mode. */
2866 static void
2867 s_syntax (int unused ATTRIBUTE_UNUSED)
2868 {
2869 char *name, delim;
2870
2871 name = input_line_pointer;
2872 delim = get_symbol_end ();
2873
2874 if (!strcasecmp (name, "unified"))
2875 unified_syntax = TRUE;
2876 else if (!strcasecmp (name, "divided"))
2877 unified_syntax = FALSE;
2878 else
2879 {
2880 as_bad (_("unrecognized syntax mode \"%s\""), name);
2881 return;
2882 }
2883 *input_line_pointer = delim;
2884 demand_empty_rest_of_line ();
2885 }
2886
2887 /* Directives: sectioning and alignment. */
2888
2889 /* Same as s_align_ptwo but align 0 => align 2. */
2890
2891 static void
2892 s_align (int unused ATTRIBUTE_UNUSED)
2893 {
2894 int temp;
2895 bfd_boolean fill_p;
2896 long temp_fill;
2897 long max_alignment = 15;
2898
2899 temp = get_absolute_expression ();
2900 if (temp > max_alignment)
2901 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2902 else if (temp < 0)
2903 {
2904 as_bad (_("alignment negative. 0 assumed."));
2905 temp = 0;
2906 }
2907
2908 if (*input_line_pointer == ',')
2909 {
2910 input_line_pointer++;
2911 temp_fill = get_absolute_expression ();
2912 fill_p = TRUE;
2913 }
2914 else
2915 {
2916 fill_p = FALSE;
2917 temp_fill = 0;
2918 }
2919
2920 if (!temp)
2921 temp = 2;
2922
2923 /* Only make a frag if we HAVE to. */
2924 if (temp && !need_pass_2)
2925 {
2926 if (!fill_p && subseg_text_p (now_seg))
2927 frag_align_code (temp, 0);
2928 else
2929 frag_align (temp, (int) temp_fill, 0);
2930 }
2931 demand_empty_rest_of_line ();
2932
2933 record_alignment (now_seg, temp);
2934 }
2935
2936 static void
2937 s_bss (int ignore ATTRIBUTE_UNUSED)
2938 {
2939 /* We don't support putting frags in the BSS segment, we fake it by
2940 marking in_bss, then looking at s_skip for clues. */
2941 subseg_set (bss_section, 0);
2942 demand_empty_rest_of_line ();
2943
2944 #ifdef md_elf_section_change_hook
2945 md_elf_section_change_hook ();
2946 #endif
2947 }
2948
2949 static void
2950 s_even (int ignore ATTRIBUTE_UNUSED)
2951 {
2952 /* Never make frag if expect extra pass. */
2953 if (!need_pass_2)
2954 frag_align (1, 0, 0);
2955
2956 record_alignment (now_seg, 1);
2957
2958 demand_empty_rest_of_line ();
2959 }
2960
2961 /* Directives: Literal pools. */
2962
2963 static literal_pool *
2964 find_literal_pool (void)
2965 {
2966 literal_pool * pool;
2967
2968 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2969 {
2970 if (pool->section == now_seg
2971 && pool->sub_section == now_subseg)
2972 break;
2973 }
2974
2975 return pool;
2976 }
2977
2978 static literal_pool *
2979 find_or_make_literal_pool (void)
2980 {
2981 /* Next literal pool ID number. */
2982 static unsigned int latest_pool_num = 1;
2983 literal_pool * pool;
2984
2985 pool = find_literal_pool ();
2986
2987 if (pool == NULL)
2988 {
2989 /* Create a new pool. */
2990 pool = (literal_pool *) xmalloc (sizeof (* pool));
2991 if (! pool)
2992 return NULL;
2993
2994 pool->next_free_entry = 0;
2995 pool->section = now_seg;
2996 pool->sub_section = now_subseg;
2997 pool->next = list_of_pools;
2998 pool->symbol = NULL;
2999
3000 /* Add it to the list. */
3001 list_of_pools = pool;
3002 }
3003
3004 /* New pools, and emptied pools, will have a NULL symbol. */
3005 if (pool->symbol == NULL)
3006 {
3007 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3008 (valueT) 0, &zero_address_frag);
3009 pool->id = latest_pool_num ++;
3010 }
3011
3012 /* Done. */
3013 return pool;
3014 }
3015
3016 /* Add the literal in the global 'inst'
3017 structure to the relevant literal pool. */
3018
3019 static int
3020 add_to_lit_pool (void)
3021 {
3022 literal_pool * pool;
3023 unsigned int entry;
3024
3025 pool = find_or_make_literal_pool ();
3026
3027 /* Check if this literal value is already in the pool. */
3028 for (entry = 0; entry < pool->next_free_entry; entry ++)
3029 {
3030 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3031 && (inst.reloc.exp.X_op == O_constant)
3032 && (pool->literals[entry].X_add_number
3033 == inst.reloc.exp.X_add_number)
3034 && (pool->literals[entry].X_unsigned
3035 == inst.reloc.exp.X_unsigned))
3036 break;
3037
3038 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3039 && (inst.reloc.exp.X_op == O_symbol)
3040 && (pool->literals[entry].X_add_number
3041 == inst.reloc.exp.X_add_number)
3042 && (pool->literals[entry].X_add_symbol
3043 == inst.reloc.exp.X_add_symbol)
3044 && (pool->literals[entry].X_op_symbol
3045 == inst.reloc.exp.X_op_symbol))
3046 break;
3047 }
3048
3049 /* Do we need to create a new entry? */
3050 if (entry == pool->next_free_entry)
3051 {
3052 if (entry >= MAX_LITERAL_POOL_SIZE)
3053 {
3054 inst.error = _("literal pool overflow");
3055 return FAIL;
3056 }
3057
3058 pool->literals[entry] = inst.reloc.exp;
3059 pool->next_free_entry += 1;
3060 }
3061
3062 inst.reloc.exp.X_op = O_symbol;
3063 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3064 inst.reloc.exp.X_add_symbol = pool->symbol;
3065
3066 return SUCCESS;
3067 }
3068
3069 /* Can't use symbol_new here, so have to create a symbol and then at
3070 a later date assign it a value. Thats what these functions do. */
3071
3072 static void
3073 symbol_locate (symbolS * symbolP,
3074 const char * name, /* It is copied, the caller can modify. */
3075 segT segment, /* Segment identifier (SEG_<something>). */
3076 valueT valu, /* Symbol value. */
3077 fragS * frag) /* Associated fragment. */
3078 {
3079 unsigned int name_length;
3080 char * preserved_copy_of_name;
3081
3082 name_length = strlen (name) + 1; /* +1 for \0. */
3083 obstack_grow (&notes, name, name_length);
3084 preserved_copy_of_name = (char *) obstack_finish (&notes);
3085
3086 #ifdef tc_canonicalize_symbol_name
3087 preserved_copy_of_name =
3088 tc_canonicalize_symbol_name (preserved_copy_of_name);
3089 #endif
3090
3091 S_SET_NAME (symbolP, preserved_copy_of_name);
3092
3093 S_SET_SEGMENT (symbolP, segment);
3094 S_SET_VALUE (symbolP, valu);
3095 symbol_clear_list_pointers (symbolP);
3096
3097 symbol_set_frag (symbolP, frag);
3098
3099 /* Link to end of symbol chain. */
3100 {
3101 extern int symbol_table_frozen;
3102
3103 if (symbol_table_frozen)
3104 abort ();
3105 }
3106
3107 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3108
3109 obj_symbol_new_hook (symbolP);
3110
3111 #ifdef tc_symbol_new_hook
3112 tc_symbol_new_hook (symbolP);
3113 #endif
3114
3115 #ifdef DEBUG_SYMS
3116 verify_symbol_chain (symbol_rootP, symbol_lastP);
3117 #endif /* DEBUG_SYMS */
3118 }
3119
3120
3121 static void
3122 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3123 {
3124 unsigned int entry;
3125 literal_pool * pool;
3126 char sym_name[20];
3127
3128 pool = find_literal_pool ();
3129 if (pool == NULL
3130 || pool->symbol == NULL
3131 || pool->next_free_entry == 0)
3132 return;
3133
3134 mapping_state (MAP_DATA);
3135
3136 /* Align pool as you have word accesses.
3137 Only make a frag if we have to. */
3138 if (!need_pass_2)
3139 frag_align (2, 0, 0);
3140
3141 record_alignment (now_seg, 2);
3142
3143 sprintf (sym_name, "$$lit_\002%x", pool->id);
3144
3145 symbol_locate (pool->symbol, sym_name, now_seg,
3146 (valueT) frag_now_fix (), frag_now);
3147 symbol_table_insert (pool->symbol);
3148
3149 ARM_SET_THUMB (pool->symbol, thumb_mode);
3150
3151 #if defined OBJ_COFF || defined OBJ_ELF
3152 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3153 #endif
3154
3155 for (entry = 0; entry < pool->next_free_entry; entry ++)
3156 /* First output the expression in the instruction to the pool. */
3157 emit_expr (&(pool->literals[entry]), 4); /* .word */
3158
3159 /* Mark the pool as empty. */
3160 pool->next_free_entry = 0;
3161 pool->symbol = NULL;
3162 }
3163
3164 #ifdef OBJ_ELF
3165 /* Forward declarations for functions below, in the MD interface
3166 section. */
3167 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3168 static valueT create_unwind_entry (int);
3169 static void start_unwind_section (const segT, int);
3170 static void add_unwind_opcode (valueT, int);
3171 static void flush_pending_unwind (void);
3172
3173 /* Directives: Data. */
3174
3175 static void
3176 s_arm_elf_cons (int nbytes)
3177 {
3178 expressionS exp;
3179
3180 #ifdef md_flush_pending_output
3181 md_flush_pending_output ();
3182 #endif
3183
3184 if (is_it_end_of_statement ())
3185 {
3186 demand_empty_rest_of_line ();
3187 return;
3188 }
3189
3190 #ifdef md_cons_align
3191 md_cons_align (nbytes);
3192 #endif
3193
3194 mapping_state (MAP_DATA);
3195 do
3196 {
3197 int reloc;
3198 char *base = input_line_pointer;
3199
3200 expression (& exp);
3201
3202 if (exp.X_op != O_symbol)
3203 emit_expr (&exp, (unsigned int) nbytes);
3204 else
3205 {
3206 char *before_reloc = input_line_pointer;
3207 reloc = parse_reloc (&input_line_pointer);
3208 if (reloc == -1)
3209 {
3210 as_bad (_("unrecognized relocation suffix"));
3211 ignore_rest_of_line ();
3212 return;
3213 }
3214 else if (reloc == BFD_RELOC_UNUSED)
3215 emit_expr (&exp, (unsigned int) nbytes);
3216 else
3217 {
3218 reloc_howto_type *howto = (reloc_howto_type *)
3219 bfd_reloc_type_lookup (stdoutput,
3220 (bfd_reloc_code_real_type) reloc);
3221 int size = bfd_get_reloc_size (howto);
3222
3223 if (reloc == BFD_RELOC_ARM_PLT32)
3224 {
3225 as_bad (_("(plt) is only valid on branch targets"));
3226 reloc = BFD_RELOC_UNUSED;
3227 size = 0;
3228 }
3229
3230 if (size > nbytes)
3231 as_bad (_("%s relocations do not fit in %d bytes"),
3232 howto->name, nbytes);
3233 else
3234 {
3235 /* We've parsed an expression stopping at O_symbol.
3236 But there may be more expression left now that we
3237 have parsed the relocation marker. Parse it again.
3238 XXX Surely there is a cleaner way to do this. */
3239 char *p = input_line_pointer;
3240 int offset;
3241 char *save_buf = (char *) alloca (input_line_pointer - base);
3242 memcpy (save_buf, base, input_line_pointer - base);
3243 memmove (base + (input_line_pointer - before_reloc),
3244 base, before_reloc - base);
3245
3246 input_line_pointer = base + (input_line_pointer-before_reloc);
3247 expression (&exp);
3248 memcpy (base, save_buf, p - base);
3249
3250 offset = nbytes - size;
3251 p = frag_more ((int) nbytes);
3252 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3253 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3254 }
3255 }
3256 }
3257 }
3258 while (*input_line_pointer++ == ',');
3259
3260 /* Put terminator back into stream. */
3261 input_line_pointer --;
3262 demand_empty_rest_of_line ();
3263 }
3264
3265 /* Emit an expression containing a 32-bit thumb instruction.
3266 Implementation based on put_thumb32_insn. */
3267
3268 static void
3269 emit_thumb32_expr (expressionS * exp)
3270 {
3271 expressionS exp_high = *exp;
3272
3273 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3274 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3275 exp->X_add_number &= 0xffff;
3276 emit_expr (exp, (unsigned int) THUMB_SIZE);
3277 }
3278
3279 /* Guess the instruction size based on the opcode. */
3280
3281 static int
3282 thumb_insn_size (int opcode)
3283 {
3284 if ((unsigned int) opcode < 0xe800u)
3285 return 2;
3286 else if ((unsigned int) opcode >= 0xe8000000u)
3287 return 4;
3288 else
3289 return 0;
3290 }
3291
3292 static bfd_boolean
3293 emit_insn (expressionS *exp, int nbytes)
3294 {
3295 int size = 0;
3296
3297 if (exp->X_op == O_constant)
3298 {
3299 size = nbytes;
3300
3301 if (size == 0)
3302 size = thumb_insn_size (exp->X_add_number);
3303
3304 if (size != 0)
3305 {
3306 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3307 {
3308 as_bad (_(".inst.n operand too big. "\
3309 "Use .inst.w instead"));
3310 size = 0;
3311 }
3312 else
3313 {
3314 if (now_it.state == AUTOMATIC_IT_BLOCK)
3315 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3316 else
3317 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3318
3319 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3320 emit_thumb32_expr (exp);
3321 else
3322 emit_expr (exp, (unsigned int) size);
3323
3324 it_fsm_post_encode ();
3325 }
3326 }
3327 else
3328 as_bad (_("cannot determine Thumb instruction size. " \
3329 "Use .inst.n/.inst.w instead"));
3330 }
3331 else
3332 as_bad (_("constant expression required"));
3333
3334 return (size != 0);
3335 }
3336
3337 /* Like s_arm_elf_cons but do not use md_cons_align and
3338 set the mapping state to MAP_ARM/MAP_THUMB. */
3339
3340 static void
3341 s_arm_elf_inst (int nbytes)
3342 {
3343 if (is_it_end_of_statement ())
3344 {
3345 demand_empty_rest_of_line ();
3346 return;
3347 }
3348
3349 /* Calling mapping_state () here will not change ARM/THUMB,
3350 but will ensure not to be in DATA state. */
3351
3352 if (thumb_mode)
3353 mapping_state (MAP_THUMB);
3354 else
3355 {
3356 if (nbytes != 0)
3357 {
3358 as_bad (_("width suffixes are invalid in ARM mode"));
3359 ignore_rest_of_line ();
3360 return;
3361 }
3362
3363 nbytes = 4;
3364
3365 mapping_state (MAP_ARM);
3366 }
3367
3368 do
3369 {
3370 expressionS exp;
3371
3372 expression (& exp);
3373
3374 if (! emit_insn (& exp, nbytes))
3375 {
3376 ignore_rest_of_line ();
3377 return;
3378 }
3379 }
3380 while (*input_line_pointer++ == ',');
3381
3382 /* Put terminator back into stream. */
3383 input_line_pointer --;
3384 demand_empty_rest_of_line ();
3385 }
3386
3387 /* Parse a .rel31 directive. */
3388
3389 static void
3390 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3391 {
3392 expressionS exp;
3393 char *p;
3394 valueT highbit;
3395
3396 highbit = 0;
3397 if (*input_line_pointer == '1')
3398 highbit = 0x80000000;
3399 else if (*input_line_pointer != '0')
3400 as_bad (_("expected 0 or 1"));
3401
3402 input_line_pointer++;
3403 if (*input_line_pointer != ',')
3404 as_bad (_("missing comma"));
3405 input_line_pointer++;
3406
3407 #ifdef md_flush_pending_output
3408 md_flush_pending_output ();
3409 #endif
3410
3411 #ifdef md_cons_align
3412 md_cons_align (4);
3413 #endif
3414
3415 mapping_state (MAP_DATA);
3416
3417 expression (&exp);
3418
3419 p = frag_more (4);
3420 md_number_to_chars (p, highbit, 4);
3421 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3422 BFD_RELOC_ARM_PREL31);
3423
3424 demand_empty_rest_of_line ();
3425 }
3426
3427 /* Directives: AEABI stack-unwind tables. */
3428
3429 /* Parse an unwind_fnstart directive. Simply records the current location. */
3430
3431 static void
3432 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3433 {
3434 demand_empty_rest_of_line ();
3435 if (unwind.proc_start)
3436 {
3437 as_bad (_("duplicate .fnstart directive"));
3438 return;
3439 }
3440
3441 /* Mark the start of the function. */
3442 unwind.proc_start = expr_build_dot ();
3443
3444 /* Reset the rest of the unwind info. */
3445 unwind.opcode_count = 0;
3446 unwind.table_entry = NULL;
3447 unwind.personality_routine = NULL;
3448 unwind.personality_index = -1;
3449 unwind.frame_size = 0;
3450 unwind.fp_offset = 0;
3451 unwind.fp_reg = REG_SP;
3452 unwind.fp_used = 0;
3453 unwind.sp_restored = 0;
3454 }
3455
3456
3457 /* Parse a handlerdata directive. Creates the exception handling table entry
3458 for the function. */
3459
3460 static void
3461 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3462 {
3463 demand_empty_rest_of_line ();
3464 if (!unwind.proc_start)
3465 as_bad (MISSING_FNSTART);
3466
3467 if (unwind.table_entry)
3468 as_bad (_("duplicate .handlerdata directive"));
3469
3470 create_unwind_entry (1);
3471 }
3472
3473 /* Parse an unwind_fnend directive. Generates the index table entry. */
3474
3475 static void
3476 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3477 {
3478 long where;
3479 char *ptr;
3480 valueT val;
3481 unsigned int marked_pr_dependency;
3482
3483 demand_empty_rest_of_line ();
3484
3485 if (!unwind.proc_start)
3486 {
3487 as_bad (_(".fnend directive without .fnstart"));
3488 return;
3489 }
3490
3491 /* Add eh table entry. */
3492 if (unwind.table_entry == NULL)
3493 val = create_unwind_entry (0);
3494 else
3495 val = 0;
3496
3497 /* Add index table entry. This is two words. */
3498 start_unwind_section (unwind.saved_seg, 1);
3499 frag_align (2, 0, 0);
3500 record_alignment (now_seg, 2);
3501
3502 ptr = frag_more (8);
3503 where = frag_now_fix () - 8;
3504
3505 /* Self relative offset of the function start. */
3506 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3507 BFD_RELOC_ARM_PREL31);
3508
3509 /* Indicate dependency on EHABI-defined personality routines to the
3510 linker, if it hasn't been done already. */
3511 marked_pr_dependency
3512 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3513 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3514 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3515 {
3516 static const char *const name[] =
3517 {
3518 "__aeabi_unwind_cpp_pr0",
3519 "__aeabi_unwind_cpp_pr1",
3520 "__aeabi_unwind_cpp_pr2"
3521 };
3522 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3523 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3524 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3525 |= 1 << unwind.personality_index;
3526 }
3527
3528 if (val)
3529 /* Inline exception table entry. */
3530 md_number_to_chars (ptr + 4, val, 4);
3531 else
3532 /* Self relative offset of the table entry. */
3533 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3534 BFD_RELOC_ARM_PREL31);
3535
3536 /* Restore the original section. */
3537 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3538
3539 unwind.proc_start = NULL;
3540 }
3541
3542
3543 /* Parse an unwind_cantunwind directive. */
3544
3545 static void
3546 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3547 {
3548 demand_empty_rest_of_line ();
3549 if (!unwind.proc_start)
3550 as_bad (MISSING_FNSTART);
3551
3552 if (unwind.personality_routine || unwind.personality_index != -1)
3553 as_bad (_("personality routine specified for cantunwind frame"));
3554
3555 unwind.personality_index = -2;
3556 }
3557
3558
3559 /* Parse a personalityindex directive. */
3560
3561 static void
3562 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3563 {
3564 expressionS exp;
3565
3566 if (!unwind.proc_start)
3567 as_bad (MISSING_FNSTART);
3568
3569 if (unwind.personality_routine || unwind.personality_index != -1)
3570 as_bad (_("duplicate .personalityindex directive"));
3571
3572 expression (&exp);
3573
3574 if (exp.X_op != O_constant
3575 || exp.X_add_number < 0 || exp.X_add_number > 15)
3576 {
3577 as_bad (_("bad personality routine number"));
3578 ignore_rest_of_line ();
3579 return;
3580 }
3581
3582 unwind.personality_index = exp.X_add_number;
3583
3584 demand_empty_rest_of_line ();
3585 }
3586
3587
3588 /* Parse a personality directive. */
3589
3590 static void
3591 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3592 {
3593 char *name, *p, c;
3594
3595 if (!unwind.proc_start)
3596 as_bad (MISSING_FNSTART);
3597
3598 if (unwind.personality_routine || unwind.personality_index != -1)
3599 as_bad (_("duplicate .personality directive"));
3600
3601 name = input_line_pointer;
3602 c = get_symbol_end ();
3603 p = input_line_pointer;
3604 unwind.personality_routine = symbol_find_or_make (name);
3605 *p = c;
3606 demand_empty_rest_of_line ();
3607 }
3608
3609
3610 /* Parse a directive saving core registers. */
3611
3612 static void
3613 s_arm_unwind_save_core (void)
3614 {
3615 valueT op;
3616 long range;
3617 int n;
3618
3619 range = parse_reg_list (&input_line_pointer);
3620 if (range == FAIL)
3621 {
3622 as_bad (_("expected register list"));
3623 ignore_rest_of_line ();
3624 return;
3625 }
3626
3627 demand_empty_rest_of_line ();
3628
3629 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3630 into .unwind_save {..., sp...}. We aren't bothered about the value of
3631 ip because it is clobbered by calls. */
3632 if (unwind.sp_restored && unwind.fp_reg == 12
3633 && (range & 0x3000) == 0x1000)
3634 {
3635 unwind.opcode_count--;
3636 unwind.sp_restored = 0;
3637 range = (range | 0x2000) & ~0x1000;
3638 unwind.pending_offset = 0;
3639 }
3640
3641 /* Pop r4-r15. */
3642 if (range & 0xfff0)
3643 {
3644 /* See if we can use the short opcodes. These pop a block of up to 8
3645 registers starting with r4, plus maybe r14. */
3646 for (n = 0; n < 8; n++)
3647 {
3648 /* Break at the first non-saved register. */
3649 if ((range & (1 << (n + 4))) == 0)
3650 break;
3651 }
3652 /* See if there are any other bits set. */
3653 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3654 {
3655 /* Use the long form. */
3656 op = 0x8000 | ((range >> 4) & 0xfff);
3657 add_unwind_opcode (op, 2);
3658 }
3659 else
3660 {
3661 /* Use the short form. */
3662 if (range & 0x4000)
3663 op = 0xa8; /* Pop r14. */
3664 else
3665 op = 0xa0; /* Do not pop r14. */
3666 op |= (n - 1);
3667 add_unwind_opcode (op, 1);
3668 }
3669 }
3670
3671 /* Pop r0-r3. */
3672 if (range & 0xf)
3673 {
3674 op = 0xb100 | (range & 0xf);
3675 add_unwind_opcode (op, 2);
3676 }
3677
3678 /* Record the number of bytes pushed. */
3679 for (n = 0; n < 16; n++)
3680 {
3681 if (range & (1 << n))
3682 unwind.frame_size += 4;
3683 }
3684 }
3685
3686
3687 /* Parse a directive saving FPA registers. */
3688
3689 static void
3690 s_arm_unwind_save_fpa (int reg)
3691 {
3692 expressionS exp;
3693 int num_regs;
3694 valueT op;
3695
3696 /* Get Number of registers to transfer. */
3697 if (skip_past_comma (&input_line_pointer) != FAIL)
3698 expression (&exp);
3699 else
3700 exp.X_op = O_illegal;
3701
3702 if (exp.X_op != O_constant)
3703 {
3704 as_bad (_("expected , <constant>"));
3705 ignore_rest_of_line ();
3706 return;
3707 }
3708
3709 num_regs = exp.X_add_number;
3710
3711 if (num_regs < 1 || num_regs > 4)
3712 {
3713 as_bad (_("number of registers must be in the range [1:4]"));
3714 ignore_rest_of_line ();
3715 return;
3716 }
3717
3718 demand_empty_rest_of_line ();
3719
3720 if (reg == 4)
3721 {
3722 /* Short form. */
3723 op = 0xb4 | (num_regs - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 else
3727 {
3728 /* Long form. */
3729 op = 0xc800 | (reg << 4) | (num_regs - 1);
3730 add_unwind_opcode (op, 2);
3731 }
3732 unwind.frame_size += num_regs * 12;
3733 }
3734
3735
3736 /* Parse a directive saving VFP registers for ARMv6 and above. */
3737
3738 static void
3739 s_arm_unwind_save_vfp_armv6 (void)
3740 {
3741 int count;
3742 unsigned int start;
3743 valueT op;
3744 int num_vfpv3_regs = 0;
3745 int num_regs_below_16;
3746
3747 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3748 if (count == FAIL)
3749 {
3750 as_bad (_("expected register list"));
3751 ignore_rest_of_line ();
3752 return;
3753 }
3754
3755 demand_empty_rest_of_line ();
3756
3757 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3758 than FSTMX/FLDMX-style ones). */
3759
3760 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3761 if (start >= 16)
3762 num_vfpv3_regs = count;
3763 else if (start + count > 16)
3764 num_vfpv3_regs = start + count - 16;
3765
3766 if (num_vfpv3_regs > 0)
3767 {
3768 int start_offset = start > 16 ? start - 16 : 0;
3769 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3770 add_unwind_opcode (op, 2);
3771 }
3772
3773 /* Generate opcode for registers numbered in the range 0 .. 15. */
3774 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3775 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3776 if (num_regs_below_16 > 0)
3777 {
3778 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3779 add_unwind_opcode (op, 2);
3780 }
3781
3782 unwind.frame_size += count * 8;
3783 }
3784
3785
3786 /* Parse a directive saving VFP registers for pre-ARMv6. */
3787
3788 static void
3789 s_arm_unwind_save_vfp (void)
3790 {
3791 int count;
3792 unsigned int reg;
3793 valueT op;
3794
3795 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3796 if (count == FAIL)
3797 {
3798 as_bad (_("expected register list"));
3799 ignore_rest_of_line ();
3800 return;
3801 }
3802
3803 demand_empty_rest_of_line ();
3804
3805 if (reg == 8)
3806 {
3807 /* Short form. */
3808 op = 0xb8 | (count - 1);
3809 add_unwind_opcode (op, 1);
3810 }
3811 else
3812 {
3813 /* Long form. */
3814 op = 0xb300 | (reg << 4) | (count - 1);
3815 add_unwind_opcode (op, 2);
3816 }
3817 unwind.frame_size += count * 8 + 4;
3818 }
3819
3820
3821 /* Parse a directive saving iWMMXt data registers. */
3822
3823 static void
3824 s_arm_unwind_save_mmxwr (void)
3825 {
3826 int reg;
3827 int hi_reg;
3828 int i;
3829 unsigned mask = 0;
3830 valueT op;
3831
3832 if (*input_line_pointer == '{')
3833 input_line_pointer++;
3834
3835 do
3836 {
3837 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3838
3839 if (reg == FAIL)
3840 {
3841 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3842 goto error;
3843 }
3844
3845 if (mask >> reg)
3846 as_tsktsk (_("register list not in ascending order"));
3847 mask |= 1 << reg;
3848
3849 if (*input_line_pointer == '-')
3850 {
3851 input_line_pointer++;
3852 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3853 if (hi_reg == FAIL)
3854 {
3855 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3856 goto error;
3857 }
3858 else if (reg >= hi_reg)
3859 {
3860 as_bad (_("bad register range"));
3861 goto error;
3862 }
3863 for (; reg < hi_reg; reg++)
3864 mask |= 1 << reg;
3865 }
3866 }
3867 while (skip_past_comma (&input_line_pointer) != FAIL);
3868
3869 if (*input_line_pointer == '}')
3870 input_line_pointer++;
3871
3872 demand_empty_rest_of_line ();
3873
3874 /* Generate any deferred opcodes because we're going to be looking at
3875 the list. */
3876 flush_pending_unwind ();
3877
3878 for (i = 0; i < 16; i++)
3879 {
3880 if (mask & (1 << i))
3881 unwind.frame_size += 8;
3882 }
3883
3884 /* Attempt to combine with a previous opcode. We do this because gcc
3885 likes to output separate unwind directives for a single block of
3886 registers. */
3887 if (unwind.opcode_count > 0)
3888 {
3889 i = unwind.opcodes[unwind.opcode_count - 1];
3890 if ((i & 0xf8) == 0xc0)
3891 {
3892 i &= 7;
3893 /* Only merge if the blocks are contiguous. */
3894 if (i < 6)
3895 {
3896 if ((mask & 0xfe00) == (1 << 9))
3897 {
3898 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3899 unwind.opcode_count--;
3900 }
3901 }
3902 else if (i == 6 && unwind.opcode_count >= 2)
3903 {
3904 i = unwind.opcodes[unwind.opcode_count - 2];
3905 reg = i >> 4;
3906 i &= 0xf;
3907
3908 op = 0xffff << (reg - 1);
3909 if (reg > 0
3910 && ((mask & op) == (1u << (reg - 1))))
3911 {
3912 op = (1 << (reg + i + 1)) - 1;
3913 op &= ~((1 << reg) - 1);
3914 mask |= op;
3915 unwind.opcode_count -= 2;
3916 }
3917 }
3918 }
3919 }
3920
3921 hi_reg = 15;
3922 /* We want to generate opcodes in the order the registers have been
3923 saved, ie. descending order. */
3924 for (reg = 15; reg >= -1; reg--)
3925 {
3926 /* Save registers in blocks. */
3927 if (reg < 0
3928 || !(mask & (1 << reg)))
3929 {
3930 /* We found an unsaved reg. Generate opcodes to save the
3931 preceding block. */
3932 if (reg != hi_reg)
3933 {
3934 if (reg == 9)
3935 {
3936 /* Short form. */
3937 op = 0xc0 | (hi_reg - 10);
3938 add_unwind_opcode (op, 1);
3939 }
3940 else
3941 {
3942 /* Long form. */
3943 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3944 add_unwind_opcode (op, 2);
3945 }
3946 }
3947 hi_reg = reg - 1;
3948 }
3949 }
3950
3951 return;
3952 error:
3953 ignore_rest_of_line ();
3954 }
3955
3956 static void
3957 s_arm_unwind_save_mmxwcg (void)
3958 {
3959 int reg;
3960 int hi_reg;
3961 unsigned mask = 0;
3962 valueT op;
3963
3964 if (*input_line_pointer == '{')
3965 input_line_pointer++;
3966
3967 do
3968 {
3969 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3970
3971 if (reg == FAIL)
3972 {
3973 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3974 goto error;
3975 }
3976
3977 reg -= 8;
3978 if (mask >> reg)
3979 as_tsktsk (_("register list not in ascending order"));
3980 mask |= 1 << reg;
3981
3982 if (*input_line_pointer == '-')
3983 {
3984 input_line_pointer++;
3985 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3986 if (hi_reg == FAIL)
3987 {
3988 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3989 goto error;
3990 }
3991 else if (reg >= hi_reg)
3992 {
3993 as_bad (_("bad register range"));
3994 goto error;
3995 }
3996 for (; reg < hi_reg; reg++)
3997 mask |= 1 << reg;
3998 }
3999 }
4000 while (skip_past_comma (&input_line_pointer) != FAIL);
4001
4002 if (*input_line_pointer == '}')
4003 input_line_pointer++;
4004
4005 demand_empty_rest_of_line ();
4006
4007 /* Generate any deferred opcodes because we're going to be looking at
4008 the list. */
4009 flush_pending_unwind ();
4010
4011 for (reg = 0; reg < 16; reg++)
4012 {
4013 if (mask & (1 << reg))
4014 unwind.frame_size += 4;
4015 }
4016 op = 0xc700 | mask;
4017 add_unwind_opcode (op, 2);
4018 return;
4019 error:
4020 ignore_rest_of_line ();
4021 }
4022
4023
4024 /* Parse an unwind_save directive.
4025 If the argument is non-zero, this is a .vsave directive. */
4026
4027 static void
4028 s_arm_unwind_save (int arch_v6)
4029 {
4030 char *peek;
4031 struct reg_entry *reg;
4032 bfd_boolean had_brace = FALSE;
4033
4034 if (!unwind.proc_start)
4035 as_bad (MISSING_FNSTART);
4036
4037 /* Figure out what sort of save we have. */
4038 peek = input_line_pointer;
4039
4040 if (*peek == '{')
4041 {
4042 had_brace = TRUE;
4043 peek++;
4044 }
4045
4046 reg = arm_reg_parse_multi (&peek);
4047
4048 if (!reg)
4049 {
4050 as_bad (_("register expected"));
4051 ignore_rest_of_line ();
4052 return;
4053 }
4054
4055 switch (reg->type)
4056 {
4057 case REG_TYPE_FN:
4058 if (had_brace)
4059 {
4060 as_bad (_("FPA .unwind_save does not take a register list"));
4061 ignore_rest_of_line ();
4062 return;
4063 }
4064 input_line_pointer = peek;
4065 s_arm_unwind_save_fpa (reg->number);
4066 return;
4067
4068 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4069 case REG_TYPE_VFD:
4070 if (arch_v6)
4071 s_arm_unwind_save_vfp_armv6 ();
4072 else
4073 s_arm_unwind_save_vfp ();
4074 return;
4075 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4076 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4077
4078 default:
4079 as_bad (_(".unwind_save does not support this kind of register"));
4080 ignore_rest_of_line ();
4081 }
4082 }
4083
4084
4085 /* Parse an unwind_movsp directive. */
4086
4087 static void
4088 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4089 {
4090 int reg;
4091 valueT op;
4092 int offset;
4093
4094 if (!unwind.proc_start)
4095 as_bad (MISSING_FNSTART);
4096
4097 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4098 if (reg == FAIL)
4099 {
4100 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4101 ignore_rest_of_line ();
4102 return;
4103 }
4104
4105 /* Optional constant. */
4106 if (skip_past_comma (&input_line_pointer) != FAIL)
4107 {
4108 if (immediate_for_directive (&offset) == FAIL)
4109 return;
4110 }
4111 else
4112 offset = 0;
4113
4114 demand_empty_rest_of_line ();
4115
4116 if (reg == REG_SP || reg == REG_PC)
4117 {
4118 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4119 return;
4120 }
4121
4122 if (unwind.fp_reg != REG_SP)
4123 as_bad (_("unexpected .unwind_movsp directive"));
4124
4125 /* Generate opcode to restore the value. */
4126 op = 0x90 | reg;
4127 add_unwind_opcode (op, 1);
4128
4129 /* Record the information for later. */
4130 unwind.fp_reg = reg;
4131 unwind.fp_offset = unwind.frame_size - offset;
4132 unwind.sp_restored = 1;
4133 }
4134
4135 /* Parse an unwind_pad directive. */
4136
4137 static void
4138 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4139 {
4140 int offset;
4141
4142 if (!unwind.proc_start)
4143 as_bad (MISSING_FNSTART);
4144
4145 if (immediate_for_directive (&offset) == FAIL)
4146 return;
4147
4148 if (offset & 3)
4149 {
4150 as_bad (_("stack increment must be multiple of 4"));
4151 ignore_rest_of_line ();
4152 return;
4153 }
4154
4155 /* Don't generate any opcodes, just record the details for later. */
4156 unwind.frame_size += offset;
4157 unwind.pending_offset += offset;
4158
4159 demand_empty_rest_of_line ();
4160 }
4161
4162 /* Parse an unwind_setfp directive. */
4163
4164 static void
4165 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4166 {
4167 int sp_reg;
4168 int fp_reg;
4169 int offset;
4170
4171 if (!unwind.proc_start)
4172 as_bad (MISSING_FNSTART);
4173
4174 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4175 if (skip_past_comma (&input_line_pointer) == FAIL)
4176 sp_reg = FAIL;
4177 else
4178 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4179
4180 if (fp_reg == FAIL || sp_reg == FAIL)
4181 {
4182 as_bad (_("expected <reg>, <reg>"));
4183 ignore_rest_of_line ();
4184 return;
4185 }
4186
4187 /* Optional constant. */
4188 if (skip_past_comma (&input_line_pointer) != FAIL)
4189 {
4190 if (immediate_for_directive (&offset) == FAIL)
4191 return;
4192 }
4193 else
4194 offset = 0;
4195
4196 demand_empty_rest_of_line ();
4197
4198 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4199 {
4200 as_bad (_("register must be either sp or set by a previous"
4201 "unwind_movsp directive"));
4202 return;
4203 }
4204
4205 /* Don't generate any opcodes, just record the information for later. */
4206 unwind.fp_reg = fp_reg;
4207 unwind.fp_used = 1;
4208 if (sp_reg == REG_SP)
4209 unwind.fp_offset = unwind.frame_size - offset;
4210 else
4211 unwind.fp_offset -= offset;
4212 }
4213
4214 /* Parse an unwind_raw directive. */
4215
4216 static void
4217 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4218 {
4219 expressionS exp;
4220 /* This is an arbitrary limit. */
4221 unsigned char op[16];
4222 int count;
4223
4224 if (!unwind.proc_start)
4225 as_bad (MISSING_FNSTART);
4226
4227 expression (&exp);
4228 if (exp.X_op == O_constant
4229 && skip_past_comma (&input_line_pointer) != FAIL)
4230 {
4231 unwind.frame_size += exp.X_add_number;
4232 expression (&exp);
4233 }
4234 else
4235 exp.X_op = O_illegal;
4236
4237 if (exp.X_op != O_constant)
4238 {
4239 as_bad (_("expected <offset>, <opcode>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 count = 0;
4245
4246 /* Parse the opcode. */
4247 for (;;)
4248 {
4249 if (count >= 16)
4250 {
4251 as_bad (_("unwind opcode too long"));
4252 ignore_rest_of_line ();
4253 }
4254 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4255 {
4256 as_bad (_("invalid unwind opcode"));
4257 ignore_rest_of_line ();
4258 return;
4259 }
4260 op[count++] = exp.X_add_number;
4261
4262 /* Parse the next byte. */
4263 if (skip_past_comma (&input_line_pointer) == FAIL)
4264 break;
4265
4266 expression (&exp);
4267 }
4268
4269 /* Add the opcode bytes in reverse order. */
4270 while (count--)
4271 add_unwind_opcode (op[count], 1);
4272
4273 demand_empty_rest_of_line ();
4274 }
4275
4276
4277 /* Parse a .eabi_attribute directive. */
4278
4279 static void
4280 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4281 {
4282 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4283
4284 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4285 attributes_set_explicitly[tag] = 1;
4286 }
4287
4288 /* Emit a tls fix for the symbol. */
4289
4290 static void
4291 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4292 {
4293 char *p;
4294 expressionS exp;
4295 #ifdef md_flush_pending_output
4296 md_flush_pending_output ();
4297 #endif
4298
4299 #ifdef md_cons_align
4300 md_cons_align (4);
4301 #endif
4302
4303 /* Since we're just labelling the code, there's no need to define a
4304 mapping symbol. */
4305 expression (&exp);
4306 p = obstack_next_free (&frchain_now->frch_obstack);
4307 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4308 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4309 : BFD_RELOC_ARM_TLS_DESCSEQ);
4310 }
4311 #endif /* OBJ_ELF */
4312
4313 static void s_arm_arch (int);
4314 static void s_arm_object_arch (int);
4315 static void s_arm_cpu (int);
4316 static void s_arm_fpu (int);
4317 static void s_arm_arch_extension (int);
4318
4319 #ifdef TE_PE
4320
4321 static void
4322 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4323 {
4324 expressionS exp;
4325
4326 do
4327 {
4328 expression (&exp);
4329 if (exp.X_op == O_symbol)
4330 exp.X_op = O_secrel;
4331
4332 emit_expr (&exp, 4);
4333 }
4334 while (*input_line_pointer++ == ',');
4335
4336 input_line_pointer--;
4337 demand_empty_rest_of_line ();
4338 }
4339 #endif /* TE_PE */
4340
4341 /* This table describes all the machine specific pseudo-ops the assembler
4342 has to support. The fields are:
4343 pseudo-op name without dot
4344 function to call to execute this pseudo-op
4345 Integer arg to pass to the function. */
4346
4347 const pseudo_typeS md_pseudo_table[] =
4348 {
4349 /* Never called because '.req' does not start a line. */
4350 { "req", s_req, 0 },
4351 /* Following two are likewise never called. */
4352 { "dn", s_dn, 0 },
4353 { "qn", s_qn, 0 },
4354 { "unreq", s_unreq, 0 },
4355 { "bss", s_bss, 0 },
4356 { "align", s_align, 0 },
4357 { "arm", s_arm, 0 },
4358 { "thumb", s_thumb, 0 },
4359 { "code", s_code, 0 },
4360 { "force_thumb", s_force_thumb, 0 },
4361 { "thumb_func", s_thumb_func, 0 },
4362 { "thumb_set", s_thumb_set, 0 },
4363 { "even", s_even, 0 },
4364 { "ltorg", s_ltorg, 0 },
4365 { "pool", s_ltorg, 0 },
4366 { "syntax", s_syntax, 0 },
4367 { "cpu", s_arm_cpu, 0 },
4368 { "arch", s_arm_arch, 0 },
4369 { "object_arch", s_arm_object_arch, 0 },
4370 { "fpu", s_arm_fpu, 0 },
4371 { "arch_extension", s_arm_arch_extension, 0 },
4372 #ifdef OBJ_ELF
4373 { "word", s_arm_elf_cons, 4 },
4374 { "long", s_arm_elf_cons, 4 },
4375 { "inst.n", s_arm_elf_inst, 2 },
4376 { "inst.w", s_arm_elf_inst, 4 },
4377 { "inst", s_arm_elf_inst, 0 },
4378 { "rel31", s_arm_rel31, 0 },
4379 { "fnstart", s_arm_unwind_fnstart, 0 },
4380 { "fnend", s_arm_unwind_fnend, 0 },
4381 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4382 { "personality", s_arm_unwind_personality, 0 },
4383 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4384 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4385 { "save", s_arm_unwind_save, 0 },
4386 { "vsave", s_arm_unwind_save, 1 },
4387 { "movsp", s_arm_unwind_movsp, 0 },
4388 { "pad", s_arm_unwind_pad, 0 },
4389 { "setfp", s_arm_unwind_setfp, 0 },
4390 { "unwind_raw", s_arm_unwind_raw, 0 },
4391 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4392 { "tlsdescseq", s_arm_tls_descseq, 0 },
4393 #else
4394 { "word", cons, 4},
4395
4396 /* These are used for dwarf. */
4397 {"2byte", cons, 2},
4398 {"4byte", cons, 4},
4399 {"8byte", cons, 8},
4400 /* These are used for dwarf2. */
4401 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4402 { "loc", dwarf2_directive_loc, 0 },
4403 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4404 #endif
4405 { "extend", float_cons, 'x' },
4406 { "ldouble", float_cons, 'x' },
4407 { "packed", float_cons, 'p' },
4408 #ifdef TE_PE
4409 {"secrel32", pe_directive_secrel, 0},
4410 #endif
4411 { 0, 0, 0 }
4412 };
4413 \f
4414 /* Parser functions used exclusively in instruction operands. */
4415
4416 /* Generic immediate-value read function for use in insn parsing.
4417 STR points to the beginning of the immediate (the leading #);
4418 VAL receives the value; if the value is outside [MIN, MAX]
4419 issue an error. PREFIX_OPT is true if the immediate prefix is
4420 optional. */
4421
4422 static int
4423 parse_immediate (char **str, int *val, int min, int max,
4424 bfd_boolean prefix_opt)
4425 {
4426 expressionS exp;
4427 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4428 if (exp.X_op != O_constant)
4429 {
4430 inst.error = _("constant expression required");
4431 return FAIL;
4432 }
4433
4434 if (exp.X_add_number < min || exp.X_add_number > max)
4435 {
4436 inst.error = _("immediate value out of range");
4437 return FAIL;
4438 }
4439
4440 *val = exp.X_add_number;
4441 return SUCCESS;
4442 }
4443
4444 /* Less-generic immediate-value read function with the possibility of loading a
4445 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4446 instructions. Puts the result directly in inst.operands[i]. */
4447
4448 static int
4449 parse_big_immediate (char **str, int i)
4450 {
4451 expressionS exp;
4452 char *ptr = *str;
4453
4454 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4455
4456 if (exp.X_op == O_constant)
4457 {
4458 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4459 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4460 O_constant. We have to be careful not to break compilation for
4461 32-bit X_add_number, though. */
4462 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4463 {
4464 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4465 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4466 inst.operands[i].regisimm = 1;
4467 }
4468 }
4469 else if (exp.X_op == O_big
4470 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4471 {
4472 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4473
4474 /* Bignums have their least significant bits in
4475 generic_bignum[0]. Make sure we put 32 bits in imm and
4476 32 bits in reg, in a (hopefully) portable way. */
4477 gas_assert (parts != 0);
4478
4479 /* Make sure that the number is not too big.
4480 PR 11972: Bignums can now be sign-extended to the
4481 size of a .octa so check that the out of range bits
4482 are all zero or all one. */
4483 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4484 {
4485 LITTLENUM_TYPE m = -1;
4486
4487 if (generic_bignum[parts * 2] != 0
4488 && generic_bignum[parts * 2] != m)
4489 return FAIL;
4490
4491 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4492 if (generic_bignum[j] != generic_bignum[j-1])
4493 return FAIL;
4494 }
4495
4496 inst.operands[i].imm = 0;
4497 for (j = 0; j < parts; j++, idx++)
4498 inst.operands[i].imm |= generic_bignum[idx]
4499 << (LITTLENUM_NUMBER_OF_BITS * j);
4500 inst.operands[i].reg = 0;
4501 for (j = 0; j < parts; j++, idx++)
4502 inst.operands[i].reg |= generic_bignum[idx]
4503 << (LITTLENUM_NUMBER_OF_BITS * j);
4504 inst.operands[i].regisimm = 1;
4505 }
4506 else
4507 return FAIL;
4508
4509 *str = ptr;
4510
4511 return SUCCESS;
4512 }
4513
4514 /* Returns the pseudo-register number of an FPA immediate constant,
4515 or FAIL if there isn't a valid constant here. */
4516
4517 static int
4518 parse_fpa_immediate (char ** str)
4519 {
4520 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4521 char * save_in;
4522 expressionS exp;
4523 int i;
4524 int j;
4525
4526 /* First try and match exact strings, this is to guarantee
4527 that some formats will work even for cross assembly. */
4528
4529 for (i = 0; fp_const[i]; i++)
4530 {
4531 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4532 {
4533 char *start = *str;
4534
4535 *str += strlen (fp_const[i]);
4536 if (is_end_of_line[(unsigned char) **str])
4537 return i + 8;
4538 *str = start;
4539 }
4540 }
4541
4542 /* Just because we didn't get a match doesn't mean that the constant
4543 isn't valid, just that it is in a format that we don't
4544 automatically recognize. Try parsing it with the standard
4545 expression routines. */
4546
4547 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4548
4549 /* Look for a raw floating point number. */
4550 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4551 && is_end_of_line[(unsigned char) *save_in])
4552 {
4553 for (i = 0; i < NUM_FLOAT_VALS; i++)
4554 {
4555 for (j = 0; j < MAX_LITTLENUMS; j++)
4556 {
4557 if (words[j] != fp_values[i][j])
4558 break;
4559 }
4560
4561 if (j == MAX_LITTLENUMS)
4562 {
4563 *str = save_in;
4564 return i + 8;
4565 }
4566 }
4567 }
4568
4569 /* Try and parse a more complex expression, this will probably fail
4570 unless the code uses a floating point prefix (eg "0f"). */
4571 save_in = input_line_pointer;
4572 input_line_pointer = *str;
4573 if (expression (&exp) == absolute_section
4574 && exp.X_op == O_big
4575 && exp.X_add_number < 0)
4576 {
4577 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4578 Ditto for 15. */
4579 if (gen_to_words (words, 5, (long) 15) == 0)
4580 {
4581 for (i = 0; i < NUM_FLOAT_VALS; i++)
4582 {
4583 for (j = 0; j < MAX_LITTLENUMS; j++)
4584 {
4585 if (words[j] != fp_values[i][j])
4586 break;
4587 }
4588
4589 if (j == MAX_LITTLENUMS)
4590 {
4591 *str = input_line_pointer;
4592 input_line_pointer = save_in;
4593 return i + 8;
4594 }
4595 }
4596 }
4597 }
4598
4599 *str = input_line_pointer;
4600 input_line_pointer = save_in;
4601 inst.error = _("invalid FPA immediate expression");
4602 return FAIL;
4603 }
4604
4605 /* Returns 1 if a number has "quarter-precision" float format
4606 0baBbbbbbc defgh000 00000000 00000000. */
4607
4608 static int
4609 is_quarter_float (unsigned imm)
4610 {
4611 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4612 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4613 }
4614
4615 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4616 0baBbbbbbc defgh000 00000000 00000000.
4617 The zero and minus-zero cases need special handling, since they can't be
4618 encoded in the "quarter-precision" float format, but can nonetheless be
4619 loaded as integer constants. */
4620
4621 static unsigned
4622 parse_qfloat_immediate (char **ccp, int *immed)
4623 {
4624 char *str = *ccp;
4625 char *fpnum;
4626 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4627 int found_fpchar = 0;
4628
4629 skip_past_char (&str, '#');
4630
4631 /* We must not accidentally parse an integer as a floating-point number. Make
4632 sure that the value we parse is not an integer by checking for special
4633 characters '.' or 'e'.
4634 FIXME: This is a horrible hack, but doing better is tricky because type
4635 information isn't in a very usable state at parse time. */
4636 fpnum = str;
4637 skip_whitespace (fpnum);
4638
4639 if (strncmp (fpnum, "0x", 2) == 0)
4640 return FAIL;
4641 else
4642 {
4643 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4644 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4645 {
4646 found_fpchar = 1;
4647 break;
4648 }
4649
4650 if (!found_fpchar)
4651 return FAIL;
4652 }
4653
4654 if ((str = atof_ieee (str, 's', words)) != NULL)
4655 {
4656 unsigned fpword = 0;
4657 int i;
4658
4659 /* Our FP word must be 32 bits (single-precision FP). */
4660 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4661 {
4662 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4663 fpword |= words[i];
4664 }
4665
4666 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4667 *immed = fpword;
4668 else
4669 return FAIL;
4670
4671 *ccp = str;
4672
4673 return SUCCESS;
4674 }
4675
4676 return FAIL;
4677 }
4678
4679 /* Shift operands. */
4680 enum shift_kind
4681 {
4682 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4683 };
4684
4685 struct asm_shift_name
4686 {
4687 const char *name;
4688 enum shift_kind kind;
4689 };
4690
4691 /* Third argument to parse_shift. */
4692 enum parse_shift_mode
4693 {
4694 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4695 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4696 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4697 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4698 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4699 };
4700
4701 /* Parse a <shift> specifier on an ARM data processing instruction.
4702 This has three forms:
4703
4704 (LSL|LSR|ASL|ASR|ROR) Rs
4705 (LSL|LSR|ASL|ASR|ROR) #imm
4706 RRX
4707
4708 Note that ASL is assimilated to LSL in the instruction encoding, and
4709 RRX to ROR #0 (which cannot be written as such). */
4710
4711 static int
4712 parse_shift (char **str, int i, enum parse_shift_mode mode)
4713 {
4714 const struct asm_shift_name *shift_name;
4715 enum shift_kind shift;
4716 char *s = *str;
4717 char *p = s;
4718 int reg;
4719
4720 for (p = *str; ISALPHA (*p); p++)
4721 ;
4722
4723 if (p == *str)
4724 {
4725 inst.error = _("shift expression expected");
4726 return FAIL;
4727 }
4728
4729 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4730 p - *str);
4731
4732 if (shift_name == NULL)
4733 {
4734 inst.error = _("shift expression expected");
4735 return FAIL;
4736 }
4737
4738 shift = shift_name->kind;
4739
4740 switch (mode)
4741 {
4742 case NO_SHIFT_RESTRICT:
4743 case SHIFT_IMMEDIATE: break;
4744
4745 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4746 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4747 {
4748 inst.error = _("'LSL' or 'ASR' required");
4749 return FAIL;
4750 }
4751 break;
4752
4753 case SHIFT_LSL_IMMEDIATE:
4754 if (shift != SHIFT_LSL)
4755 {
4756 inst.error = _("'LSL' required");
4757 return FAIL;
4758 }
4759 break;
4760
4761 case SHIFT_ASR_IMMEDIATE:
4762 if (shift != SHIFT_ASR)
4763 {
4764 inst.error = _("'ASR' required");
4765 return FAIL;
4766 }
4767 break;
4768
4769 default: abort ();
4770 }
4771
4772 if (shift != SHIFT_RRX)
4773 {
4774 /* Whitespace can appear here if the next thing is a bare digit. */
4775 skip_whitespace (p);
4776
4777 if (mode == NO_SHIFT_RESTRICT
4778 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4779 {
4780 inst.operands[i].imm = reg;
4781 inst.operands[i].immisreg = 1;
4782 }
4783 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4784 return FAIL;
4785 }
4786 inst.operands[i].shift_kind = shift;
4787 inst.operands[i].shifted = 1;
4788 *str = p;
4789 return SUCCESS;
4790 }
4791
4792 /* Parse a <shifter_operand> for an ARM data processing instruction:
4793
4794 #<immediate>
4795 #<immediate>, <rotate>
4796 <Rm>
4797 <Rm>, <shift>
4798
4799 where <shift> is defined by parse_shift above, and <rotate> is a
4800 multiple of 2 between 0 and 30. Validation of immediate operands
4801 is deferred to md_apply_fix. */
4802
4803 static int
4804 parse_shifter_operand (char **str, int i)
4805 {
4806 int value;
4807 expressionS exp;
4808
4809 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4810 {
4811 inst.operands[i].reg = value;
4812 inst.operands[i].isreg = 1;
4813
4814 /* parse_shift will override this if appropriate */
4815 inst.reloc.exp.X_op = O_constant;
4816 inst.reloc.exp.X_add_number = 0;
4817
4818 if (skip_past_comma (str) == FAIL)
4819 return SUCCESS;
4820
4821 /* Shift operation on register. */
4822 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4823 }
4824
4825 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4826 return FAIL;
4827
4828 if (skip_past_comma (str) == SUCCESS)
4829 {
4830 /* #x, y -- ie explicit rotation by Y. */
4831 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4832 return FAIL;
4833
4834 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4835 {
4836 inst.error = _("constant expression expected");
4837 return FAIL;
4838 }
4839
4840 value = exp.X_add_number;
4841 if (value < 0 || value > 30 || value % 2 != 0)
4842 {
4843 inst.error = _("invalid rotation");
4844 return FAIL;
4845 }
4846 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4847 {
4848 inst.error = _("invalid constant");
4849 return FAIL;
4850 }
4851
4852 /* Convert to decoded value. md_apply_fix will put it back. */
4853 inst.reloc.exp.X_add_number
4854 = (((inst.reloc.exp.X_add_number << (32 - value))
4855 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4856 }
4857
4858 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4859 inst.reloc.pc_rel = 0;
4860 return SUCCESS;
4861 }
4862
4863 /* Group relocation information. Each entry in the table contains the
4864 textual name of the relocation as may appear in assembler source
4865 and must end with a colon.
4866 Along with this textual name are the relocation codes to be used if
4867 the corresponding instruction is an ALU instruction (ADD or SUB only),
4868 an LDR, an LDRS, or an LDC. */
4869
4870 struct group_reloc_table_entry
4871 {
4872 const char *name;
4873 int alu_code;
4874 int ldr_code;
4875 int ldrs_code;
4876 int ldc_code;
4877 };
4878
4879 typedef enum
4880 {
4881 /* Varieties of non-ALU group relocation. */
4882
4883 GROUP_LDR,
4884 GROUP_LDRS,
4885 GROUP_LDC
4886 } group_reloc_type;
4887
4888 static struct group_reloc_table_entry group_reloc_table[] =
4889 { /* Program counter relative: */
4890 { "pc_g0_nc",
4891 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4892 0, /* LDR */
4893 0, /* LDRS */
4894 0 }, /* LDC */
4895 { "pc_g0",
4896 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4897 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4898 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4899 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4900 { "pc_g1_nc",
4901 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4902 0, /* LDR */
4903 0, /* LDRS */
4904 0 }, /* LDC */
4905 { "pc_g1",
4906 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4907 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4908 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4909 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4910 { "pc_g2",
4911 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4912 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4913 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4914 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4915 /* Section base relative */
4916 { "sb_g0_nc",
4917 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4918 0, /* LDR */
4919 0, /* LDRS */
4920 0 }, /* LDC */
4921 { "sb_g0",
4922 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4923 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4924 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4925 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4926 { "sb_g1_nc",
4927 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4928 0, /* LDR */
4929 0, /* LDRS */
4930 0 }, /* LDC */
4931 { "sb_g1",
4932 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4933 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4934 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4935 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4936 { "sb_g2",
4937 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4938 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4939 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4940 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4941
4942 /* Given the address of a pointer pointing to the textual name of a group
4943 relocation as may appear in assembler source, attempt to find its details
4944 in group_reloc_table. The pointer will be updated to the character after
4945 the trailing colon. On failure, FAIL will be returned; SUCCESS
4946 otherwise. On success, *entry will be updated to point at the relevant
4947 group_reloc_table entry. */
4948
4949 static int
4950 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4951 {
4952 unsigned int i;
4953 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4954 {
4955 int length = strlen (group_reloc_table[i].name);
4956
4957 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4958 && (*str)[length] == ':')
4959 {
4960 *out = &group_reloc_table[i];
4961 *str += (length + 1);
4962 return SUCCESS;
4963 }
4964 }
4965
4966 return FAIL;
4967 }
4968
4969 /* Parse a <shifter_operand> for an ARM data processing instruction
4970 (as for parse_shifter_operand) where group relocations are allowed:
4971
4972 #<immediate>
4973 #<immediate>, <rotate>
4974 #:<group_reloc>:<expression>
4975 <Rm>
4976 <Rm>, <shift>
4977
4978 where <group_reloc> is one of the strings defined in group_reloc_table.
4979 The hashes are optional.
4980
4981 Everything else is as for parse_shifter_operand. */
4982
4983 static parse_operand_result
4984 parse_shifter_operand_group_reloc (char **str, int i)
4985 {
4986 /* Determine if we have the sequence of characters #: or just :
4987 coming next. If we do, then we check for a group relocation.
4988 If we don't, punt the whole lot to parse_shifter_operand. */
4989
4990 if (((*str)[0] == '#' && (*str)[1] == ':')
4991 || (*str)[0] == ':')
4992 {
4993 struct group_reloc_table_entry *entry;
4994
4995 if ((*str)[0] == '#')
4996 (*str) += 2;
4997 else
4998 (*str)++;
4999
5000 /* Try to parse a group relocation. Anything else is an error. */
5001 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5002 {
5003 inst.error = _("unknown group relocation");
5004 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5005 }
5006
5007 /* We now have the group relocation table entry corresponding to
5008 the name in the assembler source. Next, we parse the expression. */
5009 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5010 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5011
5012 /* Record the relocation type (always the ALU variant here). */
5013 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5014 gas_assert (inst.reloc.type != 0);
5015
5016 return PARSE_OPERAND_SUCCESS;
5017 }
5018 else
5019 return parse_shifter_operand (str, i) == SUCCESS
5020 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5021
5022 /* Never reached. */
5023 }
5024
5025 /* Parse a Neon alignment expression. Information is written to
5026 inst.operands[i]. We assume the initial ':' has been skipped.
5027
5028 align .imm = align << 8, .immisalign=1, .preind=0 */
5029 static parse_operand_result
5030 parse_neon_alignment (char **str, int i)
5031 {
5032 char *p = *str;
5033 expressionS exp;
5034
5035 my_get_expression (&exp, &p, GE_NO_PREFIX);
5036
5037 if (exp.X_op != O_constant)
5038 {
5039 inst.error = _("alignment must be constant");
5040 return PARSE_OPERAND_FAIL;
5041 }
5042
5043 inst.operands[i].imm = exp.X_add_number << 8;
5044 inst.operands[i].immisalign = 1;
5045 /* Alignments are not pre-indexes. */
5046 inst.operands[i].preind = 0;
5047
5048 *str = p;
5049 return PARSE_OPERAND_SUCCESS;
5050 }
5051
5052 /* Parse all forms of an ARM address expression. Information is written
5053 to inst.operands[i] and/or inst.reloc.
5054
5055 Preindexed addressing (.preind=1):
5056
5057 [Rn, #offset] .reg=Rn .reloc.exp=offset
5058 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5059 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5060 .shift_kind=shift .reloc.exp=shift_imm
5061
5062 These three may have a trailing ! which causes .writeback to be set also.
5063
5064 Postindexed addressing (.postind=1, .writeback=1):
5065
5066 [Rn], #offset .reg=Rn .reloc.exp=offset
5067 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5068 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5069 .shift_kind=shift .reloc.exp=shift_imm
5070
5071 Unindexed addressing (.preind=0, .postind=0):
5072
5073 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5074
5075 Other:
5076
5077 [Rn]{!} shorthand for [Rn,#0]{!}
5078 =immediate .isreg=0 .reloc.exp=immediate
5079 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5080
5081 It is the caller's responsibility to check for addressing modes not
5082 supported by the instruction, and to set inst.reloc.type. */
5083
5084 static parse_operand_result
5085 parse_address_main (char **str, int i, int group_relocations,
5086 group_reloc_type group_type)
5087 {
5088 char *p = *str;
5089 int reg;
5090
5091 if (skip_past_char (&p, '[') == FAIL)
5092 {
5093 if (skip_past_char (&p, '=') == FAIL)
5094 {
5095 /* Bare address - translate to PC-relative offset. */
5096 inst.reloc.pc_rel = 1;
5097 inst.operands[i].reg = REG_PC;
5098 inst.operands[i].isreg = 1;
5099 inst.operands[i].preind = 1;
5100 }
5101 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5102
5103 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5104 return PARSE_OPERAND_FAIL;
5105
5106 *str = p;
5107 return PARSE_OPERAND_SUCCESS;
5108 }
5109
5110 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5111 {
5112 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5113 return PARSE_OPERAND_FAIL;
5114 }
5115 inst.operands[i].reg = reg;
5116 inst.operands[i].isreg = 1;
5117
5118 if (skip_past_comma (&p) == SUCCESS)
5119 {
5120 inst.operands[i].preind = 1;
5121
5122 if (*p == '+') p++;
5123 else if (*p == '-') p++, inst.operands[i].negative = 1;
5124
5125 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5126 {
5127 inst.operands[i].imm = reg;
5128 inst.operands[i].immisreg = 1;
5129
5130 if (skip_past_comma (&p) == SUCCESS)
5131 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5132 return PARSE_OPERAND_FAIL;
5133 }
5134 else if (skip_past_char (&p, ':') == SUCCESS)
5135 {
5136 /* FIXME: '@' should be used here, but it's filtered out by generic
5137 code before we get to see it here. This may be subject to
5138 change. */
5139 parse_operand_result result = parse_neon_alignment (&p, i);
5140
5141 if (result != PARSE_OPERAND_SUCCESS)
5142 return result;
5143 }
5144 else
5145 {
5146 if (inst.operands[i].negative)
5147 {
5148 inst.operands[i].negative = 0;
5149 p--;
5150 }
5151
5152 if (group_relocations
5153 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5154 {
5155 struct group_reloc_table_entry *entry;
5156
5157 /* Skip over the #: or : sequence. */
5158 if (*p == '#')
5159 p += 2;
5160 else
5161 p++;
5162
5163 /* Try to parse a group relocation. Anything else is an
5164 error. */
5165 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5166 {
5167 inst.error = _("unknown group relocation");
5168 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5169 }
5170
5171 /* We now have the group relocation table entry corresponding to
5172 the name in the assembler source. Next, we parse the
5173 expression. */
5174 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5175 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5176
5177 /* Record the relocation type. */
5178 switch (group_type)
5179 {
5180 case GROUP_LDR:
5181 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5182 break;
5183
5184 case GROUP_LDRS:
5185 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5186 break;
5187
5188 case GROUP_LDC:
5189 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5190 break;
5191
5192 default:
5193 gas_assert (0);
5194 }
5195
5196 if (inst.reloc.type == 0)
5197 {
5198 inst.error = _("this group relocation is not allowed on this instruction");
5199 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5200 }
5201 }
5202 else
5203 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5204 return PARSE_OPERAND_FAIL;
5205 }
5206 }
5207 else if (skip_past_char (&p, ':') == SUCCESS)
5208 {
5209 /* FIXME: '@' should be used here, but it's filtered out by generic code
5210 before we get to see it here. This may be subject to change. */
5211 parse_operand_result result = parse_neon_alignment (&p, i);
5212
5213 if (result != PARSE_OPERAND_SUCCESS)
5214 return result;
5215 }
5216
5217 if (skip_past_char (&p, ']') == FAIL)
5218 {
5219 inst.error = _("']' expected");
5220 return PARSE_OPERAND_FAIL;
5221 }
5222
5223 if (skip_past_char (&p, '!') == SUCCESS)
5224 inst.operands[i].writeback = 1;
5225
5226 else if (skip_past_comma (&p) == SUCCESS)
5227 {
5228 if (skip_past_char (&p, '{') == SUCCESS)
5229 {
5230 /* [Rn], {expr} - unindexed, with option */
5231 if (parse_immediate (&p, &inst.operands[i].imm,
5232 0, 255, TRUE) == FAIL)
5233 return PARSE_OPERAND_FAIL;
5234
5235 if (skip_past_char (&p, '}') == FAIL)
5236 {
5237 inst.error = _("'}' expected at end of 'option' field");
5238 return PARSE_OPERAND_FAIL;
5239 }
5240 if (inst.operands[i].preind)
5241 {
5242 inst.error = _("cannot combine index with option");
5243 return PARSE_OPERAND_FAIL;
5244 }
5245 *str = p;
5246 return PARSE_OPERAND_SUCCESS;
5247 }
5248 else
5249 {
5250 inst.operands[i].postind = 1;
5251 inst.operands[i].writeback = 1;
5252
5253 if (inst.operands[i].preind)
5254 {
5255 inst.error = _("cannot combine pre- and post-indexing");
5256 return PARSE_OPERAND_FAIL;
5257 }
5258
5259 if (*p == '+') p++;
5260 else if (*p == '-') p++, inst.operands[i].negative = 1;
5261
5262 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5263 {
5264 /* We might be using the immediate for alignment already. If we
5265 are, OR the register number into the low-order bits. */
5266 if (inst.operands[i].immisalign)
5267 inst.operands[i].imm |= reg;
5268 else
5269 inst.operands[i].imm = reg;
5270 inst.operands[i].immisreg = 1;
5271
5272 if (skip_past_comma (&p) == SUCCESS)
5273 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5274 return PARSE_OPERAND_FAIL;
5275 }
5276 else
5277 {
5278 if (inst.operands[i].negative)
5279 {
5280 inst.operands[i].negative = 0;
5281 p--;
5282 }
5283 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5284 return PARSE_OPERAND_FAIL;
5285 }
5286 }
5287 }
5288
5289 /* If at this point neither .preind nor .postind is set, we have a
5290 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5291 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5292 {
5293 inst.operands[i].preind = 1;
5294 inst.reloc.exp.X_op = O_constant;
5295 inst.reloc.exp.X_add_number = 0;
5296 }
5297 *str = p;
5298 return PARSE_OPERAND_SUCCESS;
5299 }
5300
5301 static int
5302 parse_address (char **str, int i)
5303 {
5304 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5305 ? SUCCESS : FAIL;
5306 }
5307
5308 static parse_operand_result
5309 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5310 {
5311 return parse_address_main (str, i, 1, type);
5312 }
5313
5314 /* Parse an operand for a MOVW or MOVT instruction. */
5315 static int
5316 parse_half (char **str)
5317 {
5318 char * p;
5319
5320 p = *str;
5321 skip_past_char (&p, '#');
5322 if (strncasecmp (p, ":lower16:", 9) == 0)
5323 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5324 else if (strncasecmp (p, ":upper16:", 9) == 0)
5325 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5326
5327 if (inst.reloc.type != BFD_RELOC_UNUSED)
5328 {
5329 p += 9;
5330 skip_whitespace (p);
5331 }
5332
5333 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5334 return FAIL;
5335
5336 if (inst.reloc.type == BFD_RELOC_UNUSED)
5337 {
5338 if (inst.reloc.exp.X_op != O_constant)
5339 {
5340 inst.error = _("constant expression expected");
5341 return FAIL;
5342 }
5343 if (inst.reloc.exp.X_add_number < 0
5344 || inst.reloc.exp.X_add_number > 0xffff)
5345 {
5346 inst.error = _("immediate value out of range");
5347 return FAIL;
5348 }
5349 }
5350 *str = p;
5351 return SUCCESS;
5352 }
5353
5354 /* Miscellaneous. */
5355
5356 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5357 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5358 static int
5359 parse_psr (char **str, bfd_boolean lhs)
5360 {
5361 char *p;
5362 unsigned long psr_field;
5363 const struct asm_psr *psr;
5364 char *start;
5365 bfd_boolean is_apsr = FALSE;
5366 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5367
5368 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5369 feature for ease of use and backwards compatibility. */
5370 p = *str;
5371 if (strncasecmp (p, "SPSR", 4) == 0)
5372 {
5373 if (m_profile)
5374 goto unsupported_psr;
5375
5376 psr_field = SPSR_BIT;
5377 }
5378 else if (strncasecmp (p, "CPSR", 4) == 0)
5379 {
5380 if (m_profile)
5381 goto unsupported_psr;
5382
5383 psr_field = 0;
5384 }
5385 else if (strncasecmp (p, "APSR", 4) == 0)
5386 {
5387 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5388 and ARMv7-R architecture CPUs. */
5389 is_apsr = TRUE;
5390 psr_field = 0;
5391 }
5392 else if (m_profile)
5393 {
5394 start = p;
5395 do
5396 p++;
5397 while (ISALNUM (*p) || *p == '_');
5398
5399 if (strncasecmp (start, "iapsr", 5) == 0
5400 || strncasecmp (start, "eapsr", 5) == 0
5401 || strncasecmp (start, "xpsr", 4) == 0
5402 || strncasecmp (start, "psr", 3) == 0)
5403 p = start + strcspn (start, "rR") + 1;
5404
5405 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5406 p - start);
5407
5408 if (!psr)
5409 return FAIL;
5410
5411 /* If APSR is being written, a bitfield may be specified. Note that
5412 APSR itself is handled above. */
5413 if (psr->field <= 3)
5414 {
5415 psr_field = psr->field;
5416 is_apsr = TRUE;
5417 goto check_suffix;
5418 }
5419
5420 *str = p;
5421 /* M-profile MSR instructions have the mask field set to "10", except
5422 *PSR variants which modify APSR, which may use a different mask (and
5423 have been handled already). Do that by setting the PSR_f field
5424 here. */
5425 return psr->field | (lhs ? PSR_f : 0);
5426 }
5427 else
5428 goto unsupported_psr;
5429
5430 p += 4;
5431 check_suffix:
5432 if (*p == '_')
5433 {
5434 /* A suffix follows. */
5435 p++;
5436 start = p;
5437
5438 do
5439 p++;
5440 while (ISALNUM (*p) || *p == '_');
5441
5442 if (is_apsr)
5443 {
5444 /* APSR uses a notation for bits, rather than fields. */
5445 unsigned int nzcvq_bits = 0;
5446 unsigned int g_bit = 0;
5447 char *bit;
5448
5449 for (bit = start; bit != p; bit++)
5450 {
5451 switch (TOLOWER (*bit))
5452 {
5453 case 'n':
5454 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5455 break;
5456
5457 case 'z':
5458 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5459 break;
5460
5461 case 'c':
5462 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5463 break;
5464
5465 case 'v':
5466 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5467 break;
5468
5469 case 'q':
5470 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5471 break;
5472
5473 case 'g':
5474 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5475 break;
5476
5477 default:
5478 inst.error = _("unexpected bit specified after APSR");
5479 return FAIL;
5480 }
5481 }
5482
5483 if (nzcvq_bits == 0x1f)
5484 psr_field |= PSR_f;
5485
5486 if (g_bit == 0x1)
5487 {
5488 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5489 {
5490 inst.error = _("selected processor does not "
5491 "support DSP extension");
5492 return FAIL;
5493 }
5494
5495 psr_field |= PSR_s;
5496 }
5497
5498 if ((nzcvq_bits & 0x20) != 0
5499 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5500 || (g_bit & 0x2) != 0)
5501 {
5502 inst.error = _("bad bitmask specified after APSR");
5503 return FAIL;
5504 }
5505 }
5506 else
5507 {
5508 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5509 p - start);
5510 if (!psr)
5511 goto error;
5512
5513 psr_field |= psr->field;
5514 }
5515 }
5516 else
5517 {
5518 if (ISALNUM (*p))
5519 goto error; /* Garbage after "[CS]PSR". */
5520
5521 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5522 is deprecated, but allow it anyway. */
5523 if (is_apsr && lhs)
5524 {
5525 psr_field |= PSR_f;
5526 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5527 "deprecated"));
5528 }
5529 else if (!m_profile)
5530 /* These bits are never right for M-profile devices: don't set them
5531 (only code paths which read/write APSR reach here). */
5532 psr_field |= (PSR_c | PSR_f);
5533 }
5534 *str = p;
5535 return psr_field;
5536
5537 unsupported_psr:
5538 inst.error = _("selected processor does not support requested special "
5539 "purpose register");
5540 return FAIL;
5541
5542 error:
5543 inst.error = _("flag for {c}psr instruction expected");
5544 return FAIL;
5545 }
5546
5547 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5548 value suitable for splatting into the AIF field of the instruction. */
5549
5550 static int
5551 parse_cps_flags (char **str)
5552 {
5553 int val = 0;
5554 int saw_a_flag = 0;
5555 char *s = *str;
5556
5557 for (;;)
5558 switch (*s++)
5559 {
5560 case '\0': case ',':
5561 goto done;
5562
5563 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5564 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5565 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5566
5567 default:
5568 inst.error = _("unrecognized CPS flag");
5569 return FAIL;
5570 }
5571
5572 done:
5573 if (saw_a_flag == 0)
5574 {
5575 inst.error = _("missing CPS flags");
5576 return FAIL;
5577 }
5578
5579 *str = s - 1;
5580 return val;
5581 }
5582
5583 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5584 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5585
5586 static int
5587 parse_endian_specifier (char **str)
5588 {
5589 int little_endian;
5590 char *s = *str;
5591
5592 if (strncasecmp (s, "BE", 2))
5593 little_endian = 0;
5594 else if (strncasecmp (s, "LE", 2))
5595 little_endian = 1;
5596 else
5597 {
5598 inst.error = _("valid endian specifiers are be or le");
5599 return FAIL;
5600 }
5601
5602 if (ISALNUM (s[2]) || s[2] == '_')
5603 {
5604 inst.error = _("valid endian specifiers are be or le");
5605 return FAIL;
5606 }
5607
5608 *str = s + 2;
5609 return little_endian;
5610 }
5611
5612 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5613 value suitable for poking into the rotate field of an sxt or sxta
5614 instruction, or FAIL on error. */
5615
5616 static int
5617 parse_ror (char **str)
5618 {
5619 int rot;
5620 char *s = *str;
5621
5622 if (strncasecmp (s, "ROR", 3) == 0)
5623 s += 3;
5624 else
5625 {
5626 inst.error = _("missing rotation field after comma");
5627 return FAIL;
5628 }
5629
5630 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5631 return FAIL;
5632
5633 switch (rot)
5634 {
5635 case 0: *str = s; return 0x0;
5636 case 8: *str = s; return 0x1;
5637 case 16: *str = s; return 0x2;
5638 case 24: *str = s; return 0x3;
5639
5640 default:
5641 inst.error = _("rotation can only be 0, 8, 16, or 24");
5642 return FAIL;
5643 }
5644 }
5645
5646 /* Parse a conditional code (from conds[] below). The value returned is in the
5647 range 0 .. 14, or FAIL. */
5648 static int
5649 parse_cond (char **str)
5650 {
5651 char *q;
5652 const struct asm_cond *c;
5653 int n;
5654 /* Condition codes are always 2 characters, so matching up to
5655 3 characters is sufficient. */
5656 char cond[3];
5657
5658 q = *str;
5659 n = 0;
5660 while (ISALPHA (*q) && n < 3)
5661 {
5662 cond[n] = TOLOWER (*q);
5663 q++;
5664 n++;
5665 }
5666
5667 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5668 if (!c)
5669 {
5670 inst.error = _("condition required");
5671 return FAIL;
5672 }
5673
5674 *str = q;
5675 return c->value;
5676 }
5677
5678 /* Parse an option for a barrier instruction. Returns the encoding for the
5679 option, or FAIL. */
5680 static int
5681 parse_barrier (char **str)
5682 {
5683 char *p, *q;
5684 const struct asm_barrier_opt *o;
5685
5686 p = q = *str;
5687 while (ISALPHA (*q))
5688 q++;
5689
5690 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5691 q - p);
5692 if (!o)
5693 return FAIL;
5694
5695 *str = q;
5696 return o->value;
5697 }
5698
5699 /* Parse the operands of a table branch instruction. Similar to a memory
5700 operand. */
5701 static int
5702 parse_tb (char **str)
5703 {
5704 char * p = *str;
5705 int reg;
5706
5707 if (skip_past_char (&p, '[') == FAIL)
5708 {
5709 inst.error = _("'[' expected");
5710 return FAIL;
5711 }
5712
5713 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5714 {
5715 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5716 return FAIL;
5717 }
5718 inst.operands[0].reg = reg;
5719
5720 if (skip_past_comma (&p) == FAIL)
5721 {
5722 inst.error = _("',' expected");
5723 return FAIL;
5724 }
5725
5726 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5727 {
5728 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5729 return FAIL;
5730 }
5731 inst.operands[0].imm = reg;
5732
5733 if (skip_past_comma (&p) == SUCCESS)
5734 {
5735 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5736 return FAIL;
5737 if (inst.reloc.exp.X_add_number != 1)
5738 {
5739 inst.error = _("invalid shift");
5740 return FAIL;
5741 }
5742 inst.operands[0].shifted = 1;
5743 }
5744
5745 if (skip_past_char (&p, ']') == FAIL)
5746 {
5747 inst.error = _("']' expected");
5748 return FAIL;
5749 }
5750 *str = p;
5751 return SUCCESS;
5752 }
5753
5754 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5755 information on the types the operands can take and how they are encoded.
5756 Up to four operands may be read; this function handles setting the
5757 ".present" field for each read operand itself.
5758 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5759 else returns FAIL. */
5760
5761 static int
5762 parse_neon_mov (char **str, int *which_operand)
5763 {
5764 int i = *which_operand, val;
5765 enum arm_reg_type rtype;
5766 char *ptr = *str;
5767 struct neon_type_el optype;
5768
5769 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5770 {
5771 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5772 inst.operands[i].reg = val;
5773 inst.operands[i].isscalar = 1;
5774 inst.operands[i].vectype = optype;
5775 inst.operands[i++].present = 1;
5776
5777 if (skip_past_comma (&ptr) == FAIL)
5778 goto wanted_comma;
5779
5780 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5781 goto wanted_arm;
5782
5783 inst.operands[i].reg = val;
5784 inst.operands[i].isreg = 1;
5785 inst.operands[i].present = 1;
5786 }
5787 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5788 != FAIL)
5789 {
5790 /* Cases 0, 1, 2, 3, 5 (D only). */
5791 if (skip_past_comma (&ptr) == FAIL)
5792 goto wanted_comma;
5793
5794 inst.operands[i].reg = val;
5795 inst.operands[i].isreg = 1;
5796 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5797 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5798 inst.operands[i].isvec = 1;
5799 inst.operands[i].vectype = optype;
5800 inst.operands[i++].present = 1;
5801
5802 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5803 {
5804 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5805 Case 13: VMOV <Sd>, <Rm> */
5806 inst.operands[i].reg = val;
5807 inst.operands[i].isreg = 1;
5808 inst.operands[i].present = 1;
5809
5810 if (rtype == REG_TYPE_NQ)
5811 {
5812 first_error (_("can't use Neon quad register here"));
5813 return FAIL;
5814 }
5815 else if (rtype != REG_TYPE_VFS)
5816 {
5817 i++;
5818 if (skip_past_comma (&ptr) == FAIL)
5819 goto wanted_comma;
5820 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5821 goto wanted_arm;
5822 inst.operands[i].reg = val;
5823 inst.operands[i].isreg = 1;
5824 inst.operands[i].present = 1;
5825 }
5826 }
5827 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5828 &optype)) != FAIL)
5829 {
5830 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5831 Case 1: VMOV<c><q> <Dd>, <Dm>
5832 Case 8: VMOV.F32 <Sd>, <Sm>
5833 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5834
5835 inst.operands[i].reg = val;
5836 inst.operands[i].isreg = 1;
5837 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5838 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5839 inst.operands[i].isvec = 1;
5840 inst.operands[i].vectype = optype;
5841 inst.operands[i].present = 1;
5842
5843 if (skip_past_comma (&ptr) == SUCCESS)
5844 {
5845 /* Case 15. */
5846 i++;
5847
5848 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5849 goto wanted_arm;
5850
5851 inst.operands[i].reg = val;
5852 inst.operands[i].isreg = 1;
5853 inst.operands[i++].present = 1;
5854
5855 if (skip_past_comma (&ptr) == FAIL)
5856 goto wanted_comma;
5857
5858 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5859 goto wanted_arm;
5860
5861 inst.operands[i].reg = val;
5862 inst.operands[i].isreg = 1;
5863 inst.operands[i++].present = 1;
5864 }
5865 }
5866 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5867 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5868 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5869 Case 10: VMOV.F32 <Sd>, #<imm>
5870 Case 11: VMOV.F64 <Dd>, #<imm> */
5871 inst.operands[i].immisfloat = 1;
5872 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5873 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5874 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5875 ;
5876 else
5877 {
5878 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5879 return FAIL;
5880 }
5881 }
5882 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5883 {
5884 /* Cases 6, 7. */
5885 inst.operands[i].reg = val;
5886 inst.operands[i].isreg = 1;
5887 inst.operands[i++].present = 1;
5888
5889 if (skip_past_comma (&ptr) == FAIL)
5890 goto wanted_comma;
5891
5892 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5893 {
5894 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5895 inst.operands[i].reg = val;
5896 inst.operands[i].isscalar = 1;
5897 inst.operands[i].present = 1;
5898 inst.operands[i].vectype = optype;
5899 }
5900 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5901 {
5902 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5903 inst.operands[i].reg = val;
5904 inst.operands[i].isreg = 1;
5905 inst.operands[i++].present = 1;
5906
5907 if (skip_past_comma (&ptr) == FAIL)
5908 goto wanted_comma;
5909
5910 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5911 == FAIL)
5912 {
5913 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5914 return FAIL;
5915 }
5916
5917 inst.operands[i].reg = val;
5918 inst.operands[i].isreg = 1;
5919 inst.operands[i].isvec = 1;
5920 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5921 inst.operands[i].vectype = optype;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_VFS)
5925 {
5926 /* Case 14. */
5927 i++;
5928 if (skip_past_comma (&ptr) == FAIL)
5929 goto wanted_comma;
5930 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5931 &optype)) == FAIL)
5932 {
5933 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5934 return FAIL;
5935 }
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].isvec = 1;
5939 inst.operands[i].issingle = 1;
5940 inst.operands[i].vectype = optype;
5941 inst.operands[i].present = 1;
5942 }
5943 }
5944 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5945 != FAIL)
5946 {
5947 /* Case 13. */
5948 inst.operands[i].reg = val;
5949 inst.operands[i].isreg = 1;
5950 inst.operands[i].isvec = 1;
5951 inst.operands[i].issingle = 1;
5952 inst.operands[i].vectype = optype;
5953 inst.operands[i++].present = 1;
5954 }
5955 }
5956 else
5957 {
5958 first_error (_("parse error"));
5959 return FAIL;
5960 }
5961
5962 /* Successfully parsed the operands. Update args. */
5963 *which_operand = i;
5964 *str = ptr;
5965 return SUCCESS;
5966
5967 wanted_comma:
5968 first_error (_("expected comma"));
5969 return FAIL;
5970
5971 wanted_arm:
5972 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5973 return FAIL;
5974 }
5975
5976 /* Use this macro when the operand constraints are different
5977 for ARM and THUMB (e.g. ldrd). */
5978 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5979 ((arm_operand) | ((thumb_operand) << 16))
5980
5981 /* Matcher codes for parse_operands. */
5982 enum operand_parse_code
5983 {
5984 OP_stop, /* end of line */
5985
5986 OP_RR, /* ARM register */
5987 OP_RRnpc, /* ARM register, not r15 */
5988 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5989 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5990 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
5991 optional trailing ! */
5992 OP_RRw, /* ARM register, not r15, optional trailing ! */
5993 OP_RCP, /* Coprocessor number */
5994 OP_RCN, /* Coprocessor register */
5995 OP_RF, /* FPA register */
5996 OP_RVS, /* VFP single precision register */
5997 OP_RVD, /* VFP double precision register (0..15) */
5998 OP_RND, /* Neon double precision register (0..31) */
5999 OP_RNQ, /* Neon quad precision register */
6000 OP_RVSD, /* VFP single or double precision register */
6001 OP_RNDQ, /* Neon double or quad precision register */
6002 OP_RNSDQ, /* Neon single, double or quad precision register */
6003 OP_RNSC, /* Neon scalar D[X] */
6004 OP_RVC, /* VFP control register */
6005 OP_RMF, /* Maverick F register */
6006 OP_RMD, /* Maverick D register */
6007 OP_RMFX, /* Maverick FX register */
6008 OP_RMDX, /* Maverick DX register */
6009 OP_RMAX, /* Maverick AX register */
6010 OP_RMDS, /* Maverick DSPSC register */
6011 OP_RIWR, /* iWMMXt wR register */
6012 OP_RIWC, /* iWMMXt wC register */
6013 OP_RIWG, /* iWMMXt wCG register */
6014 OP_RXA, /* XScale accumulator register */
6015
6016 OP_REGLST, /* ARM register list */
6017 OP_VRSLST, /* VFP single-precision register list */
6018 OP_VRDLST, /* VFP double-precision register list */
6019 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6020 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6021 OP_NSTRLST, /* Neon element/structure list */
6022
6023 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6024 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6025 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6026 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6027 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6028 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6029 OP_VMOV, /* Neon VMOV operands. */
6030 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6031 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6032 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6033
6034 OP_I0, /* immediate zero */
6035 OP_I7, /* immediate value 0 .. 7 */
6036 OP_I15, /* 0 .. 15 */
6037 OP_I16, /* 1 .. 16 */
6038 OP_I16z, /* 0 .. 16 */
6039 OP_I31, /* 0 .. 31 */
6040 OP_I31w, /* 0 .. 31, optional trailing ! */
6041 OP_I32, /* 1 .. 32 */
6042 OP_I32z, /* 0 .. 32 */
6043 OP_I63, /* 0 .. 63 */
6044 OP_I63s, /* -64 .. 63 */
6045 OP_I64, /* 1 .. 64 */
6046 OP_I64z, /* 0 .. 64 */
6047 OP_I255, /* 0 .. 255 */
6048
6049 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6050 OP_I7b, /* 0 .. 7 */
6051 OP_I15b, /* 0 .. 15 */
6052 OP_I31b, /* 0 .. 31 */
6053
6054 OP_SH, /* shifter operand */
6055 OP_SHG, /* shifter operand with possible group relocation */
6056 OP_ADDR, /* Memory address expression (any mode) */
6057 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6058 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6059 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6060 OP_EXP, /* arbitrary expression */
6061 OP_EXPi, /* same, with optional immediate prefix */
6062 OP_EXPr, /* same, with optional relocation suffix */
6063 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6064
6065 OP_CPSF, /* CPS flags */
6066 OP_ENDI, /* Endianness specifier */
6067 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6068 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6069 OP_COND, /* conditional code */
6070 OP_TB, /* Table branch. */
6071
6072 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6073
6074 OP_RRnpc_I0, /* ARM register or literal 0 */
6075 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6076 OP_RR_EXi, /* ARM register or expression with imm prefix */
6077 OP_RF_IF, /* FPA register or immediate */
6078 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6079 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6080
6081 /* Optional operands. */
6082 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6083 OP_oI31b, /* 0 .. 31 */
6084 OP_oI32b, /* 1 .. 32 */
6085 OP_oIffffb, /* 0 .. 65535 */
6086 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6087
6088 OP_oRR, /* ARM register */
6089 OP_oRRnpc, /* ARM register, not the PC */
6090 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6091 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6092 OP_oRND, /* Optional Neon double precision register */
6093 OP_oRNQ, /* Optional Neon quad precision register */
6094 OP_oRNDQ, /* Optional Neon double or quad precision register */
6095 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6096 OP_oSHll, /* LSL immediate */
6097 OP_oSHar, /* ASR immediate */
6098 OP_oSHllar, /* LSL or ASR immediate */
6099 OP_oROR, /* ROR 0/8/16/24 */
6100 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6101
6102 /* Some pre-defined mixed (ARM/THUMB) operands. */
6103 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6104 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6105 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6106
6107 OP_FIRST_OPTIONAL = OP_oI7b
6108 };
6109
6110 /* Generic instruction operand parser. This does no encoding and no
6111 semantic validation; it merely squirrels values away in the inst
6112 structure. Returns SUCCESS or FAIL depending on whether the
6113 specified grammar matched. */
6114 static int
6115 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6116 {
6117 unsigned const int *upat = pattern;
6118 char *backtrack_pos = 0;
6119 const char *backtrack_error = 0;
6120 int i, val, backtrack_index = 0;
6121 enum arm_reg_type rtype;
6122 parse_operand_result result;
6123 unsigned int op_parse_code;
6124
6125 #define po_char_or_fail(chr) \
6126 do \
6127 { \
6128 if (skip_past_char (&str, chr) == FAIL) \
6129 goto bad_args; \
6130 } \
6131 while (0)
6132
6133 #define po_reg_or_fail(regtype) \
6134 do \
6135 { \
6136 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6137 & inst.operands[i].vectype); \
6138 if (val == FAIL) \
6139 { \
6140 first_error (_(reg_expected_msgs[regtype])); \
6141 goto failure; \
6142 } \
6143 inst.operands[i].reg = val; \
6144 inst.operands[i].isreg = 1; \
6145 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6146 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6147 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6148 || rtype == REG_TYPE_VFD \
6149 || rtype == REG_TYPE_NQ); \
6150 } \
6151 while (0)
6152
6153 #define po_reg_or_goto(regtype, label) \
6154 do \
6155 { \
6156 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6157 & inst.operands[i].vectype); \
6158 if (val == FAIL) \
6159 goto label; \
6160 \
6161 inst.operands[i].reg = val; \
6162 inst.operands[i].isreg = 1; \
6163 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6164 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6165 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6166 || rtype == REG_TYPE_VFD \
6167 || rtype == REG_TYPE_NQ); \
6168 } \
6169 while (0)
6170
6171 #define po_imm_or_fail(min, max, popt) \
6172 do \
6173 { \
6174 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6175 goto failure; \
6176 inst.operands[i].imm = val; \
6177 } \
6178 while (0)
6179
6180 #define po_scalar_or_goto(elsz, label) \
6181 do \
6182 { \
6183 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6184 if (val == FAIL) \
6185 goto label; \
6186 inst.operands[i].reg = val; \
6187 inst.operands[i].isscalar = 1; \
6188 } \
6189 while (0)
6190
6191 #define po_misc_or_fail(expr) \
6192 do \
6193 { \
6194 if (expr) \
6195 goto failure; \
6196 } \
6197 while (0)
6198
6199 #define po_misc_or_fail_no_backtrack(expr) \
6200 do \
6201 { \
6202 result = expr; \
6203 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6204 backtrack_pos = 0; \
6205 if (result != PARSE_OPERAND_SUCCESS) \
6206 goto failure; \
6207 } \
6208 while (0)
6209
6210 #define po_barrier_or_imm(str) \
6211 do \
6212 { \
6213 val = parse_barrier (&str); \
6214 if (val == FAIL) \
6215 { \
6216 if (ISALPHA (*str)) \
6217 goto failure; \
6218 else \
6219 goto immediate; \
6220 } \
6221 else \
6222 { \
6223 if ((inst.instruction & 0xf0) == 0x60 \
6224 && val != 0xf) \
6225 { \
6226 /* ISB can only take SY as an option. */ \
6227 inst.error = _("invalid barrier type"); \
6228 goto failure; \
6229 } \
6230 } \
6231 } \
6232 while (0)
6233
6234 skip_whitespace (str);
6235
6236 for (i = 0; upat[i] != OP_stop; i++)
6237 {
6238 op_parse_code = upat[i];
6239 if (op_parse_code >= 1<<16)
6240 op_parse_code = thumb ? (op_parse_code >> 16)
6241 : (op_parse_code & ((1<<16)-1));
6242
6243 if (op_parse_code >= OP_FIRST_OPTIONAL)
6244 {
6245 /* Remember where we are in case we need to backtrack. */
6246 gas_assert (!backtrack_pos);
6247 backtrack_pos = str;
6248 backtrack_error = inst.error;
6249 backtrack_index = i;
6250 }
6251
6252 if (i > 0 && (i > 1 || inst.operands[0].present))
6253 po_char_or_fail (',');
6254
6255 switch (op_parse_code)
6256 {
6257 /* Registers */
6258 case OP_oRRnpc:
6259 case OP_oRRnpcsp:
6260 case OP_RRnpc:
6261 case OP_RRnpcsp:
6262 case OP_oRR:
6263 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6264 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6265 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6266 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6267 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6268 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6269 case OP_oRND:
6270 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6271 case OP_RVC:
6272 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6273 break;
6274 /* Also accept generic coprocessor regs for unknown registers. */
6275 coproc_reg:
6276 po_reg_or_fail (REG_TYPE_CN);
6277 break;
6278 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6279 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6280 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6281 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6282 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6283 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6284 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6285 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6286 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6287 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6288 case OP_oRNQ:
6289 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6290 case OP_oRNDQ:
6291 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6292 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6293 case OP_oRNSDQ:
6294 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6295
6296 /* Neon scalar. Using an element size of 8 means that some invalid
6297 scalars are accepted here, so deal with those in later code. */
6298 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6299
6300 case OP_RNDQ_I0:
6301 {
6302 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6303 break;
6304 try_imm0:
6305 po_imm_or_fail (0, 0, TRUE);
6306 }
6307 break;
6308
6309 case OP_RVSD_I0:
6310 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6311 break;
6312
6313 case OP_RR_RNSC:
6314 {
6315 po_scalar_or_goto (8, try_rr);
6316 break;
6317 try_rr:
6318 po_reg_or_fail (REG_TYPE_RN);
6319 }
6320 break;
6321
6322 case OP_RNSDQ_RNSC:
6323 {
6324 po_scalar_or_goto (8, try_nsdq);
6325 break;
6326 try_nsdq:
6327 po_reg_or_fail (REG_TYPE_NSDQ);
6328 }
6329 break;
6330
6331 case OP_RNDQ_RNSC:
6332 {
6333 po_scalar_or_goto (8, try_ndq);
6334 break;
6335 try_ndq:
6336 po_reg_or_fail (REG_TYPE_NDQ);
6337 }
6338 break;
6339
6340 case OP_RND_RNSC:
6341 {
6342 po_scalar_or_goto (8, try_vfd);
6343 break;
6344 try_vfd:
6345 po_reg_or_fail (REG_TYPE_VFD);
6346 }
6347 break;
6348
6349 case OP_VMOV:
6350 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6351 not careful then bad things might happen. */
6352 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6353 break;
6354
6355 case OP_RNDQ_Ibig:
6356 {
6357 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6358 break;
6359 try_immbig:
6360 /* There's a possibility of getting a 64-bit immediate here, so
6361 we need special handling. */
6362 if (parse_big_immediate (&str, i) == FAIL)
6363 {
6364 inst.error = _("immediate value is out of range");
6365 goto failure;
6366 }
6367 }
6368 break;
6369
6370 case OP_RNDQ_I63b:
6371 {
6372 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6373 break;
6374 try_shimm:
6375 po_imm_or_fail (0, 63, TRUE);
6376 }
6377 break;
6378
6379 case OP_RRnpcb:
6380 po_char_or_fail ('[');
6381 po_reg_or_fail (REG_TYPE_RN);
6382 po_char_or_fail (']');
6383 break;
6384
6385 case OP_RRnpctw:
6386 case OP_RRw:
6387 case OP_oRRw:
6388 po_reg_or_fail (REG_TYPE_RN);
6389 if (skip_past_char (&str, '!') == SUCCESS)
6390 inst.operands[i].writeback = 1;
6391 break;
6392
6393 /* Immediates */
6394 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6395 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6396 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6397 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6398 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6399 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6400 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6401 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6402 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6403 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6404 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6405 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6406
6407 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6408 case OP_oI7b:
6409 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6410 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6411 case OP_oI31b:
6412 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6413 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6414 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6415
6416 /* Immediate variants */
6417 case OP_oI255c:
6418 po_char_or_fail ('{');
6419 po_imm_or_fail (0, 255, TRUE);
6420 po_char_or_fail ('}');
6421 break;
6422
6423 case OP_I31w:
6424 /* The expression parser chokes on a trailing !, so we have
6425 to find it first and zap it. */
6426 {
6427 char *s = str;
6428 while (*s && *s != ',')
6429 s++;
6430 if (s[-1] == '!')
6431 {
6432 s[-1] = '\0';
6433 inst.operands[i].writeback = 1;
6434 }
6435 po_imm_or_fail (0, 31, TRUE);
6436 if (str == s - 1)
6437 str = s;
6438 }
6439 break;
6440
6441 /* Expressions */
6442 case OP_EXPi: EXPi:
6443 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6444 GE_OPT_PREFIX));
6445 break;
6446
6447 case OP_EXP:
6448 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6449 GE_NO_PREFIX));
6450 break;
6451
6452 case OP_EXPr: EXPr:
6453 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6454 GE_NO_PREFIX));
6455 if (inst.reloc.exp.X_op == O_symbol)
6456 {
6457 val = parse_reloc (&str);
6458 if (val == -1)
6459 {
6460 inst.error = _("unrecognized relocation suffix");
6461 goto failure;
6462 }
6463 else if (val != BFD_RELOC_UNUSED)
6464 {
6465 inst.operands[i].imm = val;
6466 inst.operands[i].hasreloc = 1;
6467 }
6468 }
6469 break;
6470
6471 /* Operand for MOVW or MOVT. */
6472 case OP_HALF:
6473 po_misc_or_fail (parse_half (&str));
6474 break;
6475
6476 /* Register or expression. */
6477 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6478 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6479
6480 /* Register or immediate. */
6481 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6482 I0: po_imm_or_fail (0, 0, FALSE); break;
6483
6484 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6485 IF:
6486 if (!is_immediate_prefix (*str))
6487 goto bad_args;
6488 str++;
6489 val = parse_fpa_immediate (&str);
6490 if (val == FAIL)
6491 goto failure;
6492 /* FPA immediates are encoded as registers 8-15.
6493 parse_fpa_immediate has already applied the offset. */
6494 inst.operands[i].reg = val;
6495 inst.operands[i].isreg = 1;
6496 break;
6497
6498 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6499 I32z: po_imm_or_fail (0, 32, FALSE); break;
6500
6501 /* Two kinds of register. */
6502 case OP_RIWR_RIWC:
6503 {
6504 struct reg_entry *rege = arm_reg_parse_multi (&str);
6505 if (!rege
6506 || (rege->type != REG_TYPE_MMXWR
6507 && rege->type != REG_TYPE_MMXWC
6508 && rege->type != REG_TYPE_MMXWCG))
6509 {
6510 inst.error = _("iWMMXt data or control register expected");
6511 goto failure;
6512 }
6513 inst.operands[i].reg = rege->number;
6514 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6515 }
6516 break;
6517
6518 case OP_RIWC_RIWG:
6519 {
6520 struct reg_entry *rege = arm_reg_parse_multi (&str);
6521 if (!rege
6522 || (rege->type != REG_TYPE_MMXWC
6523 && rege->type != REG_TYPE_MMXWCG))
6524 {
6525 inst.error = _("iWMMXt control register expected");
6526 goto failure;
6527 }
6528 inst.operands[i].reg = rege->number;
6529 inst.operands[i].isreg = 1;
6530 }
6531 break;
6532
6533 /* Misc */
6534 case OP_CPSF: val = parse_cps_flags (&str); break;
6535 case OP_ENDI: val = parse_endian_specifier (&str); break;
6536 case OP_oROR: val = parse_ror (&str); break;
6537 case OP_COND: val = parse_cond (&str); break;
6538 case OP_oBARRIER_I15:
6539 po_barrier_or_imm (str); break;
6540 immediate:
6541 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6542 goto failure;
6543 break;
6544
6545 case OP_wPSR:
6546 case OP_rPSR:
6547 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6548 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6549 {
6550 inst.error = _("Banked registers are not available with this "
6551 "architecture.");
6552 goto failure;
6553 }
6554 break;
6555 try_psr:
6556 val = parse_psr (&str, op_parse_code == OP_wPSR);
6557 break;
6558
6559 case OP_APSR_RR:
6560 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6561 break;
6562 try_apsr:
6563 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6564 instruction). */
6565 if (strncasecmp (str, "APSR_", 5) == 0)
6566 {
6567 unsigned found = 0;
6568 str += 5;
6569 while (found < 15)
6570 switch (*str++)
6571 {
6572 case 'c': found = (found & 1) ? 16 : found | 1; break;
6573 case 'n': found = (found & 2) ? 16 : found | 2; break;
6574 case 'z': found = (found & 4) ? 16 : found | 4; break;
6575 case 'v': found = (found & 8) ? 16 : found | 8; break;
6576 default: found = 16;
6577 }
6578 if (found != 15)
6579 goto failure;
6580 inst.operands[i].isvec = 1;
6581 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6582 inst.operands[i].reg = REG_PC;
6583 }
6584 else
6585 goto failure;
6586 break;
6587
6588 case OP_TB:
6589 po_misc_or_fail (parse_tb (&str));
6590 break;
6591
6592 /* Register lists. */
6593 case OP_REGLST:
6594 val = parse_reg_list (&str);
6595 if (*str == '^')
6596 {
6597 inst.operands[1].writeback = 1;
6598 str++;
6599 }
6600 break;
6601
6602 case OP_VRSLST:
6603 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6604 break;
6605
6606 case OP_VRDLST:
6607 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6608 break;
6609
6610 case OP_VRSDLST:
6611 /* Allow Q registers too. */
6612 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6613 REGLIST_NEON_D);
6614 if (val == FAIL)
6615 {
6616 inst.error = NULL;
6617 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6618 REGLIST_VFP_S);
6619 inst.operands[i].issingle = 1;
6620 }
6621 break;
6622
6623 case OP_NRDLST:
6624 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6625 REGLIST_NEON_D);
6626 break;
6627
6628 case OP_NSTRLST:
6629 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6630 &inst.operands[i].vectype);
6631 break;
6632
6633 /* Addressing modes */
6634 case OP_ADDR:
6635 po_misc_or_fail (parse_address (&str, i));
6636 break;
6637
6638 case OP_ADDRGLDR:
6639 po_misc_or_fail_no_backtrack (
6640 parse_address_group_reloc (&str, i, GROUP_LDR));
6641 break;
6642
6643 case OP_ADDRGLDRS:
6644 po_misc_or_fail_no_backtrack (
6645 parse_address_group_reloc (&str, i, GROUP_LDRS));
6646 break;
6647
6648 case OP_ADDRGLDC:
6649 po_misc_or_fail_no_backtrack (
6650 parse_address_group_reloc (&str, i, GROUP_LDC));
6651 break;
6652
6653 case OP_SH:
6654 po_misc_or_fail (parse_shifter_operand (&str, i));
6655 break;
6656
6657 case OP_SHG:
6658 po_misc_or_fail_no_backtrack (
6659 parse_shifter_operand_group_reloc (&str, i));
6660 break;
6661
6662 case OP_oSHll:
6663 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6664 break;
6665
6666 case OP_oSHar:
6667 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6668 break;
6669
6670 case OP_oSHllar:
6671 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6672 break;
6673
6674 default:
6675 as_fatal (_("unhandled operand code %d"), op_parse_code);
6676 }
6677
6678 /* Various value-based sanity checks and shared operations. We
6679 do not signal immediate failures for the register constraints;
6680 this allows a syntax error to take precedence. */
6681 switch (op_parse_code)
6682 {
6683 case OP_oRRnpc:
6684 case OP_RRnpc:
6685 case OP_RRnpcb:
6686 case OP_RRw:
6687 case OP_oRRw:
6688 case OP_RRnpc_I0:
6689 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6690 inst.error = BAD_PC;
6691 break;
6692
6693 case OP_oRRnpcsp:
6694 case OP_RRnpcsp:
6695 if (inst.operands[i].isreg)
6696 {
6697 if (inst.operands[i].reg == REG_PC)
6698 inst.error = BAD_PC;
6699 else if (inst.operands[i].reg == REG_SP)
6700 inst.error = BAD_SP;
6701 }
6702 break;
6703
6704 case OP_RRnpctw:
6705 if (inst.operands[i].isreg
6706 && inst.operands[i].reg == REG_PC
6707 && (inst.operands[i].writeback || thumb))
6708 inst.error = BAD_PC;
6709 break;
6710
6711 case OP_CPSF:
6712 case OP_ENDI:
6713 case OP_oROR:
6714 case OP_wPSR:
6715 case OP_rPSR:
6716 case OP_COND:
6717 case OP_oBARRIER_I15:
6718 case OP_REGLST:
6719 case OP_VRSLST:
6720 case OP_VRDLST:
6721 case OP_VRSDLST:
6722 case OP_NRDLST:
6723 case OP_NSTRLST:
6724 if (val == FAIL)
6725 goto failure;
6726 inst.operands[i].imm = val;
6727 break;
6728
6729 default:
6730 break;
6731 }
6732
6733 /* If we get here, this operand was successfully parsed. */
6734 inst.operands[i].present = 1;
6735 continue;
6736
6737 bad_args:
6738 inst.error = BAD_ARGS;
6739
6740 failure:
6741 if (!backtrack_pos)
6742 {
6743 /* The parse routine should already have set inst.error, but set a
6744 default here just in case. */
6745 if (!inst.error)
6746 inst.error = _("syntax error");
6747 return FAIL;
6748 }
6749
6750 /* Do not backtrack over a trailing optional argument that
6751 absorbed some text. We will only fail again, with the
6752 'garbage following instruction' error message, which is
6753 probably less helpful than the current one. */
6754 if (backtrack_index == i && backtrack_pos != str
6755 && upat[i+1] == OP_stop)
6756 {
6757 if (!inst.error)
6758 inst.error = _("syntax error");
6759 return FAIL;
6760 }
6761
6762 /* Try again, skipping the optional argument at backtrack_pos. */
6763 str = backtrack_pos;
6764 inst.error = backtrack_error;
6765 inst.operands[backtrack_index].present = 0;
6766 i = backtrack_index;
6767 backtrack_pos = 0;
6768 }
6769
6770 /* Check that we have parsed all the arguments. */
6771 if (*str != '\0' && !inst.error)
6772 inst.error = _("garbage following instruction");
6773
6774 return inst.error ? FAIL : SUCCESS;
6775 }
6776
6777 #undef po_char_or_fail
6778 #undef po_reg_or_fail
6779 #undef po_reg_or_goto
6780 #undef po_imm_or_fail
6781 #undef po_scalar_or_fail
6782 #undef po_barrier_or_imm
6783
6784 /* Shorthand macro for instruction encoding functions issuing errors. */
6785 #define constraint(expr, err) \
6786 do \
6787 { \
6788 if (expr) \
6789 { \
6790 inst.error = err; \
6791 return; \
6792 } \
6793 } \
6794 while (0)
6795
6796 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6797 instructions are unpredictable if these registers are used. This
6798 is the BadReg predicate in ARM's Thumb-2 documentation. */
6799 #define reject_bad_reg(reg) \
6800 do \
6801 if (reg == REG_SP || reg == REG_PC) \
6802 { \
6803 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6804 return; \
6805 } \
6806 while (0)
6807
6808 /* If REG is R13 (the stack pointer), warn that its use is
6809 deprecated. */
6810 #define warn_deprecated_sp(reg) \
6811 do \
6812 if (warn_on_deprecated && reg == REG_SP) \
6813 as_warn (_("use of r13 is deprecated")); \
6814 while (0)
6815
6816 /* Functions for operand encoding. ARM, then Thumb. */
6817
6818 #define rotate_left(v, n) (v << n | v >> (32 - n))
6819
6820 /* If VAL can be encoded in the immediate field of an ARM instruction,
6821 return the encoded form. Otherwise, return FAIL. */
6822
6823 static unsigned int
6824 encode_arm_immediate (unsigned int val)
6825 {
6826 unsigned int a, i;
6827
6828 for (i = 0; i < 32; i += 2)
6829 if ((a = rotate_left (val, i)) <= 0xff)
6830 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6831
6832 return FAIL;
6833 }
6834
6835 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6836 return the encoded form. Otherwise, return FAIL. */
6837 static unsigned int
6838 encode_thumb32_immediate (unsigned int val)
6839 {
6840 unsigned int a, i;
6841
6842 if (val <= 0xff)
6843 return val;
6844
6845 for (i = 1; i <= 24; i++)
6846 {
6847 a = val >> i;
6848 if ((val & ~(0xff << i)) == 0)
6849 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6850 }
6851
6852 a = val & 0xff;
6853 if (val == ((a << 16) | a))
6854 return 0x100 | a;
6855 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6856 return 0x300 | a;
6857
6858 a = val & 0xff00;
6859 if (val == ((a << 16) | a))
6860 return 0x200 | (a >> 8);
6861
6862 return FAIL;
6863 }
6864 /* Encode a VFP SP or DP register number into inst.instruction. */
6865
6866 static void
6867 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6868 {
6869 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6870 && reg > 15)
6871 {
6872 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6873 {
6874 if (thumb_mode)
6875 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6876 fpu_vfp_ext_d32);
6877 else
6878 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6879 fpu_vfp_ext_d32);
6880 }
6881 else
6882 {
6883 first_error (_("D register out of range for selected VFP version"));
6884 return;
6885 }
6886 }
6887
6888 switch (pos)
6889 {
6890 case VFP_REG_Sd:
6891 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6892 break;
6893
6894 case VFP_REG_Sn:
6895 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6896 break;
6897
6898 case VFP_REG_Sm:
6899 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6900 break;
6901
6902 case VFP_REG_Dd:
6903 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6904 break;
6905
6906 case VFP_REG_Dn:
6907 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6908 break;
6909
6910 case VFP_REG_Dm:
6911 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6912 break;
6913
6914 default:
6915 abort ();
6916 }
6917 }
6918
6919 /* Encode a <shift> in an ARM-format instruction. The immediate,
6920 if any, is handled by md_apply_fix. */
6921 static void
6922 encode_arm_shift (int i)
6923 {
6924 if (inst.operands[i].shift_kind == SHIFT_RRX)
6925 inst.instruction |= SHIFT_ROR << 5;
6926 else
6927 {
6928 inst.instruction |= inst.operands[i].shift_kind << 5;
6929 if (inst.operands[i].immisreg)
6930 {
6931 inst.instruction |= SHIFT_BY_REG;
6932 inst.instruction |= inst.operands[i].imm << 8;
6933 }
6934 else
6935 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6936 }
6937 }
6938
6939 static void
6940 encode_arm_shifter_operand (int i)
6941 {
6942 if (inst.operands[i].isreg)
6943 {
6944 inst.instruction |= inst.operands[i].reg;
6945 encode_arm_shift (i);
6946 }
6947 else
6948 inst.instruction |= INST_IMMEDIATE;
6949 }
6950
6951 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6952 static void
6953 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6954 {
6955 gas_assert (inst.operands[i].isreg);
6956 inst.instruction |= inst.operands[i].reg << 16;
6957
6958 if (inst.operands[i].preind)
6959 {
6960 if (is_t)
6961 {
6962 inst.error = _("instruction does not accept preindexed addressing");
6963 return;
6964 }
6965 inst.instruction |= PRE_INDEX;
6966 if (inst.operands[i].writeback)
6967 inst.instruction |= WRITE_BACK;
6968
6969 }
6970 else if (inst.operands[i].postind)
6971 {
6972 gas_assert (inst.operands[i].writeback);
6973 if (is_t)
6974 inst.instruction |= WRITE_BACK;
6975 }
6976 else /* unindexed - only for coprocessor */
6977 {
6978 inst.error = _("instruction does not accept unindexed addressing");
6979 return;
6980 }
6981
6982 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6983 && (((inst.instruction & 0x000f0000) >> 16)
6984 == ((inst.instruction & 0x0000f000) >> 12)))
6985 as_warn ((inst.instruction & LOAD_BIT)
6986 ? _("destination register same as write-back base")
6987 : _("source register same as write-back base"));
6988 }
6989
6990 /* inst.operands[i] was set up by parse_address. Encode it into an
6991 ARM-format mode 2 load or store instruction. If is_t is true,
6992 reject forms that cannot be used with a T instruction (i.e. not
6993 post-indexed). */
6994 static void
6995 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6996 {
6997 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6998
6999 encode_arm_addr_mode_common (i, is_t);
7000
7001 if (inst.operands[i].immisreg)
7002 {
7003 constraint ((inst.operands[i].imm == REG_PC
7004 || (is_pc && inst.operands[i].writeback)),
7005 BAD_PC_ADDRESSING);
7006 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7007 inst.instruction |= inst.operands[i].imm;
7008 if (!inst.operands[i].negative)
7009 inst.instruction |= INDEX_UP;
7010 if (inst.operands[i].shifted)
7011 {
7012 if (inst.operands[i].shift_kind == SHIFT_RRX)
7013 inst.instruction |= SHIFT_ROR << 5;
7014 else
7015 {
7016 inst.instruction |= inst.operands[i].shift_kind << 5;
7017 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7018 }
7019 }
7020 }
7021 else /* immediate offset in inst.reloc */
7022 {
7023 if (is_pc && !inst.reloc.pc_rel)
7024 {
7025 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7026
7027 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7028 cannot use PC in addressing.
7029 PC cannot be used in writeback addressing, either. */
7030 constraint ((is_t || inst.operands[i].writeback),
7031 BAD_PC_ADDRESSING);
7032
7033 /* Use of PC in str is deprecated for ARMv7. */
7034 if (warn_on_deprecated
7035 && !is_load
7036 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7037 as_warn (_("use of PC in this instruction is deprecated"));
7038 }
7039
7040 if (inst.reloc.type == BFD_RELOC_UNUSED)
7041 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7042 }
7043 }
7044
7045 /* inst.operands[i] was set up by parse_address. Encode it into an
7046 ARM-format mode 3 load or store instruction. Reject forms that
7047 cannot be used with such instructions. If is_t is true, reject
7048 forms that cannot be used with a T instruction (i.e. not
7049 post-indexed). */
7050 static void
7051 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7052 {
7053 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7054 {
7055 inst.error = _("instruction does not accept scaled register index");
7056 return;
7057 }
7058
7059 encode_arm_addr_mode_common (i, is_t);
7060
7061 if (inst.operands[i].immisreg)
7062 {
7063 constraint ((inst.operands[i].imm == REG_PC
7064 || inst.operands[i].reg == REG_PC),
7065 BAD_PC_ADDRESSING);
7066 inst.instruction |= inst.operands[i].imm;
7067 if (!inst.operands[i].negative)
7068 inst.instruction |= INDEX_UP;
7069 }
7070 else /* immediate offset in inst.reloc */
7071 {
7072 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7073 && inst.operands[i].writeback),
7074 BAD_PC_WRITEBACK);
7075 inst.instruction |= HWOFFSET_IMM;
7076 if (inst.reloc.type == BFD_RELOC_UNUSED)
7077 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7078 }
7079 }
7080
7081 /* inst.operands[i] was set up by parse_address. Encode it into an
7082 ARM-format instruction. Reject all forms which cannot be encoded
7083 into a coprocessor load/store instruction. If wb_ok is false,
7084 reject use of writeback; if unind_ok is false, reject use of
7085 unindexed addressing. If reloc_override is not 0, use it instead
7086 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7087 (in which case it is preserved). */
7088
7089 static int
7090 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7091 {
7092 inst.instruction |= inst.operands[i].reg << 16;
7093
7094 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7095
7096 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7097 {
7098 gas_assert (!inst.operands[i].writeback);
7099 if (!unind_ok)
7100 {
7101 inst.error = _("instruction does not support unindexed addressing");
7102 return FAIL;
7103 }
7104 inst.instruction |= inst.operands[i].imm;
7105 inst.instruction |= INDEX_UP;
7106 return SUCCESS;
7107 }
7108
7109 if (inst.operands[i].preind)
7110 inst.instruction |= PRE_INDEX;
7111
7112 if (inst.operands[i].writeback)
7113 {
7114 if (inst.operands[i].reg == REG_PC)
7115 {
7116 inst.error = _("pc may not be used with write-back");
7117 return FAIL;
7118 }
7119 if (!wb_ok)
7120 {
7121 inst.error = _("instruction does not support writeback");
7122 return FAIL;
7123 }
7124 inst.instruction |= WRITE_BACK;
7125 }
7126
7127 if (reloc_override)
7128 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7129 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7130 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7131 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7132 {
7133 if (thumb_mode)
7134 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7135 else
7136 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7137 }
7138
7139 return SUCCESS;
7140 }
7141
7142 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7143 Determine whether it can be performed with a move instruction; if
7144 it can, convert inst.instruction to that move instruction and
7145 return TRUE; if it can't, convert inst.instruction to a literal-pool
7146 load and return FALSE. If this is not a valid thing to do in the
7147 current context, set inst.error and return TRUE.
7148
7149 inst.operands[i] describes the destination register. */
7150
7151 static bfd_boolean
7152 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7153 {
7154 unsigned long tbit;
7155
7156 if (thumb_p)
7157 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7158 else
7159 tbit = LOAD_BIT;
7160
7161 if ((inst.instruction & tbit) == 0)
7162 {
7163 inst.error = _("invalid pseudo operation");
7164 return TRUE;
7165 }
7166 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7167 {
7168 inst.error = _("constant expression expected");
7169 return TRUE;
7170 }
7171 if (inst.reloc.exp.X_op == O_constant)
7172 {
7173 if (thumb_p)
7174 {
7175 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7176 {
7177 /* This can be done with a mov(1) instruction. */
7178 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7179 inst.instruction |= inst.reloc.exp.X_add_number;
7180 return TRUE;
7181 }
7182 }
7183 else
7184 {
7185 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7186 if (value != FAIL)
7187 {
7188 /* This can be done with a mov instruction. */
7189 inst.instruction &= LITERAL_MASK;
7190 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7191 inst.instruction |= value & 0xfff;
7192 return TRUE;
7193 }
7194
7195 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7196 if (value != FAIL)
7197 {
7198 /* This can be done with a mvn instruction. */
7199 inst.instruction &= LITERAL_MASK;
7200 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7201 inst.instruction |= value & 0xfff;
7202 return TRUE;
7203 }
7204 }
7205 }
7206
7207 if (add_to_lit_pool () == FAIL)
7208 {
7209 inst.error = _("literal pool insertion failed");
7210 return TRUE;
7211 }
7212 inst.operands[1].reg = REG_PC;
7213 inst.operands[1].isreg = 1;
7214 inst.operands[1].preind = 1;
7215 inst.reloc.pc_rel = 1;
7216 inst.reloc.type = (thumb_p
7217 ? BFD_RELOC_ARM_THUMB_OFFSET
7218 : (mode_3
7219 ? BFD_RELOC_ARM_HWLITERAL
7220 : BFD_RELOC_ARM_LITERAL));
7221 return FALSE;
7222 }
7223
7224 /* Functions for instruction encoding, sorted by sub-architecture.
7225 First some generics; their names are taken from the conventional
7226 bit positions for register arguments in ARM format instructions. */
7227
7228 static void
7229 do_noargs (void)
7230 {
7231 }
7232
7233 static void
7234 do_rd (void)
7235 {
7236 inst.instruction |= inst.operands[0].reg << 12;
7237 }
7238
7239 static void
7240 do_rd_rm (void)
7241 {
7242 inst.instruction |= inst.operands[0].reg << 12;
7243 inst.instruction |= inst.operands[1].reg;
7244 }
7245
7246 static void
7247 do_rd_rn (void)
7248 {
7249 inst.instruction |= inst.operands[0].reg << 12;
7250 inst.instruction |= inst.operands[1].reg << 16;
7251 }
7252
7253 static void
7254 do_rn_rd (void)
7255 {
7256 inst.instruction |= inst.operands[0].reg << 16;
7257 inst.instruction |= inst.operands[1].reg << 12;
7258 }
7259
7260 static void
7261 do_rd_rm_rn (void)
7262 {
7263 unsigned Rn = inst.operands[2].reg;
7264 /* Enforce restrictions on SWP instruction. */
7265 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7266 {
7267 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7268 _("Rn must not overlap other operands"));
7269
7270 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
7271 if (warn_on_deprecated
7272 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7273 as_warn (_("swp{b} use is deprecated for this architecture"));
7274
7275 }
7276 inst.instruction |= inst.operands[0].reg << 12;
7277 inst.instruction |= inst.operands[1].reg;
7278 inst.instruction |= Rn << 16;
7279 }
7280
7281 static void
7282 do_rd_rn_rm (void)
7283 {
7284 inst.instruction |= inst.operands[0].reg << 12;
7285 inst.instruction |= inst.operands[1].reg << 16;
7286 inst.instruction |= inst.operands[2].reg;
7287 }
7288
7289 static void
7290 do_rm_rd_rn (void)
7291 {
7292 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7293 constraint (((inst.reloc.exp.X_op != O_constant
7294 && inst.reloc.exp.X_op != O_illegal)
7295 || inst.reloc.exp.X_add_number != 0),
7296 BAD_ADDR_MODE);
7297 inst.instruction |= inst.operands[0].reg;
7298 inst.instruction |= inst.operands[1].reg << 12;
7299 inst.instruction |= inst.operands[2].reg << 16;
7300 }
7301
7302 static void
7303 do_imm0 (void)
7304 {
7305 inst.instruction |= inst.operands[0].imm;
7306 }
7307
7308 static void
7309 do_rd_cpaddr (void)
7310 {
7311 inst.instruction |= inst.operands[0].reg << 12;
7312 encode_arm_cp_address (1, TRUE, TRUE, 0);
7313 }
7314
7315 /* ARM instructions, in alphabetical order by function name (except
7316 that wrapper functions appear immediately after the function they
7317 wrap). */
7318
7319 /* This is a pseudo-op of the form "adr rd, label" to be converted
7320 into a relative address of the form "add rd, pc, #label-.-8". */
7321
7322 static void
7323 do_adr (void)
7324 {
7325 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7326
7327 /* Frag hacking will turn this into a sub instruction if the offset turns
7328 out to be negative. */
7329 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7330 inst.reloc.pc_rel = 1;
7331 inst.reloc.exp.X_add_number -= 8;
7332 }
7333
7334 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7335 into a relative address of the form:
7336 add rd, pc, #low(label-.-8)"
7337 add rd, rd, #high(label-.-8)" */
7338
7339 static void
7340 do_adrl (void)
7341 {
7342 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7343
7344 /* Frag hacking will turn this into a sub instruction if the offset turns
7345 out to be negative. */
7346 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7347 inst.reloc.pc_rel = 1;
7348 inst.size = INSN_SIZE * 2;
7349 inst.reloc.exp.X_add_number -= 8;
7350 }
7351
7352 static void
7353 do_arit (void)
7354 {
7355 if (!inst.operands[1].present)
7356 inst.operands[1].reg = inst.operands[0].reg;
7357 inst.instruction |= inst.operands[0].reg << 12;
7358 inst.instruction |= inst.operands[1].reg << 16;
7359 encode_arm_shifter_operand (2);
7360 }
7361
7362 static void
7363 do_barrier (void)
7364 {
7365 if (inst.operands[0].present)
7366 {
7367 constraint ((inst.instruction & 0xf0) != 0x40
7368 && inst.operands[0].imm > 0xf
7369 && inst.operands[0].imm < 0x0,
7370 _("bad barrier type"));
7371 inst.instruction |= inst.operands[0].imm;
7372 }
7373 else
7374 inst.instruction |= 0xf;
7375 }
7376
7377 static void
7378 do_bfc (void)
7379 {
7380 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7381 constraint (msb > 32, _("bit-field extends past end of register"));
7382 /* The instruction encoding stores the LSB and MSB,
7383 not the LSB and width. */
7384 inst.instruction |= inst.operands[0].reg << 12;
7385 inst.instruction |= inst.operands[1].imm << 7;
7386 inst.instruction |= (msb - 1) << 16;
7387 }
7388
7389 static void
7390 do_bfi (void)
7391 {
7392 unsigned int msb;
7393
7394 /* #0 in second position is alternative syntax for bfc, which is
7395 the same instruction but with REG_PC in the Rm field. */
7396 if (!inst.operands[1].isreg)
7397 inst.operands[1].reg = REG_PC;
7398
7399 msb = inst.operands[2].imm + inst.operands[3].imm;
7400 constraint (msb > 32, _("bit-field extends past end of register"));
7401 /* The instruction encoding stores the LSB and MSB,
7402 not the LSB and width. */
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 inst.instruction |= inst.operands[1].reg;
7405 inst.instruction |= inst.operands[2].imm << 7;
7406 inst.instruction |= (msb - 1) << 16;
7407 }
7408
7409 static void
7410 do_bfx (void)
7411 {
7412 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7413 _("bit-field extends past end of register"));
7414 inst.instruction |= inst.operands[0].reg << 12;
7415 inst.instruction |= inst.operands[1].reg;
7416 inst.instruction |= inst.operands[2].imm << 7;
7417 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7418 }
7419
7420 /* ARM V5 breakpoint instruction (argument parse)
7421 BKPT <16 bit unsigned immediate>
7422 Instruction is not conditional.
7423 The bit pattern given in insns[] has the COND_ALWAYS condition,
7424 and it is an error if the caller tried to override that. */
7425
7426 static void
7427 do_bkpt (void)
7428 {
7429 /* Top 12 of 16 bits to bits 19:8. */
7430 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7431
7432 /* Bottom 4 of 16 bits to bits 3:0. */
7433 inst.instruction |= inst.operands[0].imm & 0xf;
7434 }
7435
7436 static void
7437 encode_branch (int default_reloc)
7438 {
7439 if (inst.operands[0].hasreloc)
7440 {
7441 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7442 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7443 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7444 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7445 ? BFD_RELOC_ARM_PLT32
7446 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7447 }
7448 else
7449 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7450 inst.reloc.pc_rel = 1;
7451 }
7452
7453 static void
7454 do_branch (void)
7455 {
7456 #ifdef OBJ_ELF
7457 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7458 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7459 else
7460 #endif
7461 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7462 }
7463
7464 static void
7465 do_bl (void)
7466 {
7467 #ifdef OBJ_ELF
7468 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7469 {
7470 if (inst.cond == COND_ALWAYS)
7471 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7472 else
7473 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7474 }
7475 else
7476 #endif
7477 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7478 }
7479
7480 /* ARM V5 branch-link-exchange instruction (argument parse)
7481 BLX <target_addr> ie BLX(1)
7482 BLX{<condition>} <Rm> ie BLX(2)
7483 Unfortunately, there are two different opcodes for this mnemonic.
7484 So, the insns[].value is not used, and the code here zaps values
7485 into inst.instruction.
7486 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7487
7488 static void
7489 do_blx (void)
7490 {
7491 if (inst.operands[0].isreg)
7492 {
7493 /* Arg is a register; the opcode provided by insns[] is correct.
7494 It is not illegal to do "blx pc", just useless. */
7495 if (inst.operands[0].reg == REG_PC)
7496 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7497
7498 inst.instruction |= inst.operands[0].reg;
7499 }
7500 else
7501 {
7502 /* Arg is an address; this instruction cannot be executed
7503 conditionally, and the opcode must be adjusted.
7504 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7505 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7506 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7507 inst.instruction = 0xfa000000;
7508 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7509 }
7510 }
7511
7512 static void
7513 do_bx (void)
7514 {
7515 bfd_boolean want_reloc;
7516
7517 if (inst.operands[0].reg == REG_PC)
7518 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7519
7520 inst.instruction |= inst.operands[0].reg;
7521 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7522 it is for ARMv4t or earlier. */
7523 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7524 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7525 want_reloc = TRUE;
7526
7527 #ifdef OBJ_ELF
7528 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7529 #endif
7530 want_reloc = FALSE;
7531
7532 if (want_reloc)
7533 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7534 }
7535
7536
7537 /* ARM v5TEJ. Jump to Jazelle code. */
7538
7539 static void
7540 do_bxj (void)
7541 {
7542 if (inst.operands[0].reg == REG_PC)
7543 as_tsktsk (_("use of r15 in bxj is not really useful"));
7544
7545 inst.instruction |= inst.operands[0].reg;
7546 }
7547
7548 /* Co-processor data operation:
7549 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7550 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7551 static void
7552 do_cdp (void)
7553 {
7554 inst.instruction |= inst.operands[0].reg << 8;
7555 inst.instruction |= inst.operands[1].imm << 20;
7556 inst.instruction |= inst.operands[2].reg << 12;
7557 inst.instruction |= inst.operands[3].reg << 16;
7558 inst.instruction |= inst.operands[4].reg;
7559 inst.instruction |= inst.operands[5].imm << 5;
7560 }
7561
7562 static void
7563 do_cmp (void)
7564 {
7565 inst.instruction |= inst.operands[0].reg << 16;
7566 encode_arm_shifter_operand (1);
7567 }
7568
7569 /* Transfer between coprocessor and ARM registers.
7570 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7571 MRC2
7572 MCR{cond}
7573 MCR2
7574
7575 No special properties. */
7576
7577 static void
7578 do_co_reg (void)
7579 {
7580 unsigned Rd;
7581
7582 Rd = inst.operands[2].reg;
7583 if (thumb_mode)
7584 {
7585 if (inst.instruction == 0xee000010
7586 || inst.instruction == 0xfe000010)
7587 /* MCR, MCR2 */
7588 reject_bad_reg (Rd);
7589 else
7590 /* MRC, MRC2 */
7591 constraint (Rd == REG_SP, BAD_SP);
7592 }
7593 else
7594 {
7595 /* MCR */
7596 if (inst.instruction == 0xe000010)
7597 constraint (Rd == REG_PC, BAD_PC);
7598 }
7599
7600
7601 inst.instruction |= inst.operands[0].reg << 8;
7602 inst.instruction |= inst.operands[1].imm << 21;
7603 inst.instruction |= Rd << 12;
7604 inst.instruction |= inst.operands[3].reg << 16;
7605 inst.instruction |= inst.operands[4].reg;
7606 inst.instruction |= inst.operands[5].imm << 5;
7607 }
7608
7609 /* Transfer between coprocessor register and pair of ARM registers.
7610 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7611 MCRR2
7612 MRRC{cond}
7613 MRRC2
7614
7615 Two XScale instructions are special cases of these:
7616
7617 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7618 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7619
7620 Result unpredictable if Rd or Rn is R15. */
7621
7622 static void
7623 do_co_reg2c (void)
7624 {
7625 unsigned Rd, Rn;
7626
7627 Rd = inst.operands[2].reg;
7628 Rn = inst.operands[3].reg;
7629
7630 if (thumb_mode)
7631 {
7632 reject_bad_reg (Rd);
7633 reject_bad_reg (Rn);
7634 }
7635 else
7636 {
7637 constraint (Rd == REG_PC, BAD_PC);
7638 constraint (Rn == REG_PC, BAD_PC);
7639 }
7640
7641 inst.instruction |= inst.operands[0].reg << 8;
7642 inst.instruction |= inst.operands[1].imm << 4;
7643 inst.instruction |= Rd << 12;
7644 inst.instruction |= Rn << 16;
7645 inst.instruction |= inst.operands[4].reg;
7646 }
7647
7648 static void
7649 do_cpsi (void)
7650 {
7651 inst.instruction |= inst.operands[0].imm << 6;
7652 if (inst.operands[1].present)
7653 {
7654 inst.instruction |= CPSI_MMOD;
7655 inst.instruction |= inst.operands[1].imm;
7656 }
7657 }
7658
7659 static void
7660 do_dbg (void)
7661 {
7662 inst.instruction |= inst.operands[0].imm;
7663 }
7664
7665 static void
7666 do_div (void)
7667 {
7668 unsigned Rd, Rn, Rm;
7669
7670 Rd = inst.operands[0].reg;
7671 Rn = (inst.operands[1].present
7672 ? inst.operands[1].reg : Rd);
7673 Rm = inst.operands[2].reg;
7674
7675 constraint ((Rd == REG_PC), BAD_PC);
7676 constraint ((Rn == REG_PC), BAD_PC);
7677 constraint ((Rm == REG_PC), BAD_PC);
7678
7679 inst.instruction |= Rd << 16;
7680 inst.instruction |= Rn << 0;
7681 inst.instruction |= Rm << 8;
7682 }
7683
7684 static void
7685 do_it (void)
7686 {
7687 /* There is no IT instruction in ARM mode. We
7688 process it to do the validation as if in
7689 thumb mode, just in case the code gets
7690 assembled for thumb using the unified syntax. */
7691
7692 inst.size = 0;
7693 if (unified_syntax)
7694 {
7695 set_it_insn_type (IT_INSN);
7696 now_it.mask = (inst.instruction & 0xf) | 0x10;
7697 now_it.cc = inst.operands[0].imm;
7698 }
7699 }
7700
7701 static void
7702 do_ldmstm (void)
7703 {
7704 int base_reg = inst.operands[0].reg;
7705 int range = inst.operands[1].imm;
7706
7707 inst.instruction |= base_reg << 16;
7708 inst.instruction |= range;
7709
7710 if (inst.operands[1].writeback)
7711 inst.instruction |= LDM_TYPE_2_OR_3;
7712
7713 if (inst.operands[0].writeback)
7714 {
7715 inst.instruction |= WRITE_BACK;
7716 /* Check for unpredictable uses of writeback. */
7717 if (inst.instruction & LOAD_BIT)
7718 {
7719 /* Not allowed in LDM type 2. */
7720 if ((inst.instruction & LDM_TYPE_2_OR_3)
7721 && ((range & (1 << REG_PC)) == 0))
7722 as_warn (_("writeback of base register is UNPREDICTABLE"));
7723 /* Only allowed if base reg not in list for other types. */
7724 else if (range & (1 << base_reg))
7725 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7726 }
7727 else /* STM. */
7728 {
7729 /* Not allowed for type 2. */
7730 if (inst.instruction & LDM_TYPE_2_OR_3)
7731 as_warn (_("writeback of base register is UNPREDICTABLE"));
7732 /* Only allowed if base reg not in list, or first in list. */
7733 else if ((range & (1 << base_reg))
7734 && (range & ((1 << base_reg) - 1)))
7735 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7736 }
7737 }
7738 }
7739
7740 /* ARMv5TE load-consecutive (argument parse)
7741 Mode is like LDRH.
7742
7743 LDRccD R, mode
7744 STRccD R, mode. */
7745
7746 static void
7747 do_ldrd (void)
7748 {
7749 constraint (inst.operands[0].reg % 2 != 0,
7750 _("first destination register must be even"));
7751 constraint (inst.operands[1].present
7752 && inst.operands[1].reg != inst.operands[0].reg + 1,
7753 _("can only load two consecutive registers"));
7754 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7755 constraint (!inst.operands[2].isreg, _("'[' expected"));
7756
7757 if (!inst.operands[1].present)
7758 inst.operands[1].reg = inst.operands[0].reg + 1;
7759
7760 if (inst.instruction & LOAD_BIT)
7761 {
7762 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7763 register and the first register written; we have to diagnose
7764 overlap between the base and the second register written here. */
7765
7766 if (inst.operands[2].reg == inst.operands[1].reg
7767 && (inst.operands[2].writeback || inst.operands[2].postind))
7768 as_warn (_("base register written back, and overlaps "
7769 "second destination register"));
7770
7771 /* For an index-register load, the index register must not overlap the
7772 destination (even if not write-back). */
7773 else if (inst.operands[2].immisreg
7774 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7775 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7776 as_warn (_("index register overlaps destination register"));
7777 }
7778
7779 inst.instruction |= inst.operands[0].reg << 12;
7780 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7781 }
7782
7783 static void
7784 do_ldrex (void)
7785 {
7786 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7787 || inst.operands[1].postind || inst.operands[1].writeback
7788 || inst.operands[1].immisreg || inst.operands[1].shifted
7789 || inst.operands[1].negative
7790 /* This can arise if the programmer has written
7791 strex rN, rM, foo
7792 or if they have mistakenly used a register name as the last
7793 operand, eg:
7794 strex rN, rM, rX
7795 It is very difficult to distinguish between these two cases
7796 because "rX" might actually be a label. ie the register
7797 name has been occluded by a symbol of the same name. So we
7798 just generate a general 'bad addressing mode' type error
7799 message and leave it up to the programmer to discover the
7800 true cause and fix their mistake. */
7801 || (inst.operands[1].reg == REG_PC),
7802 BAD_ADDR_MODE);
7803
7804 constraint (inst.reloc.exp.X_op != O_constant
7805 || inst.reloc.exp.X_add_number != 0,
7806 _("offset must be zero in ARM encoding"));
7807
7808 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7809
7810 inst.instruction |= inst.operands[0].reg << 12;
7811 inst.instruction |= inst.operands[1].reg << 16;
7812 inst.reloc.type = BFD_RELOC_UNUSED;
7813 }
7814
7815 static void
7816 do_ldrexd (void)
7817 {
7818 constraint (inst.operands[0].reg % 2 != 0,
7819 _("even register required"));
7820 constraint (inst.operands[1].present
7821 && inst.operands[1].reg != inst.operands[0].reg + 1,
7822 _("can only load two consecutive registers"));
7823 /* If op 1 were present and equal to PC, this function wouldn't
7824 have been called in the first place. */
7825 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7826
7827 inst.instruction |= inst.operands[0].reg << 12;
7828 inst.instruction |= inst.operands[2].reg << 16;
7829 }
7830
7831 static void
7832 do_ldst (void)
7833 {
7834 inst.instruction |= inst.operands[0].reg << 12;
7835 if (!inst.operands[1].isreg)
7836 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7837 return;
7838 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7839 }
7840
7841 static void
7842 do_ldstt (void)
7843 {
7844 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7845 reject [Rn,...]. */
7846 if (inst.operands[1].preind)
7847 {
7848 constraint (inst.reloc.exp.X_op != O_constant
7849 || inst.reloc.exp.X_add_number != 0,
7850 _("this instruction requires a post-indexed address"));
7851
7852 inst.operands[1].preind = 0;
7853 inst.operands[1].postind = 1;
7854 inst.operands[1].writeback = 1;
7855 }
7856 inst.instruction |= inst.operands[0].reg << 12;
7857 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7858 }
7859
7860 /* Halfword and signed-byte load/store operations. */
7861
7862 static void
7863 do_ldstv4 (void)
7864 {
7865 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7866 inst.instruction |= inst.operands[0].reg << 12;
7867 if (!inst.operands[1].isreg)
7868 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7869 return;
7870 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7871 }
7872
7873 static void
7874 do_ldsttv4 (void)
7875 {
7876 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7877 reject [Rn,...]. */
7878 if (inst.operands[1].preind)
7879 {
7880 constraint (inst.reloc.exp.X_op != O_constant
7881 || inst.reloc.exp.X_add_number != 0,
7882 _("this instruction requires a post-indexed address"));
7883
7884 inst.operands[1].preind = 0;
7885 inst.operands[1].postind = 1;
7886 inst.operands[1].writeback = 1;
7887 }
7888 inst.instruction |= inst.operands[0].reg << 12;
7889 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7890 }
7891
7892 /* Co-processor register load/store.
7893 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7894 static void
7895 do_lstc (void)
7896 {
7897 inst.instruction |= inst.operands[0].reg << 8;
7898 inst.instruction |= inst.operands[1].reg << 12;
7899 encode_arm_cp_address (2, TRUE, TRUE, 0);
7900 }
7901
7902 static void
7903 do_mlas (void)
7904 {
7905 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7906 if (inst.operands[0].reg == inst.operands[1].reg
7907 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7908 && !(inst.instruction & 0x00400000))
7909 as_tsktsk (_("Rd and Rm should be different in mla"));
7910
7911 inst.instruction |= inst.operands[0].reg << 16;
7912 inst.instruction |= inst.operands[1].reg;
7913 inst.instruction |= inst.operands[2].reg << 8;
7914 inst.instruction |= inst.operands[3].reg << 12;
7915 }
7916
7917 static void
7918 do_mov (void)
7919 {
7920 inst.instruction |= inst.operands[0].reg << 12;
7921 encode_arm_shifter_operand (1);
7922 }
7923
7924 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7925 static void
7926 do_mov16 (void)
7927 {
7928 bfd_vma imm;
7929 bfd_boolean top;
7930
7931 top = (inst.instruction & 0x00400000) != 0;
7932 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7933 _(":lower16: not allowed this instruction"));
7934 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7935 _(":upper16: not allowed instruction"));
7936 inst.instruction |= inst.operands[0].reg << 12;
7937 if (inst.reloc.type == BFD_RELOC_UNUSED)
7938 {
7939 imm = inst.reloc.exp.X_add_number;
7940 /* The value is in two pieces: 0:11, 16:19. */
7941 inst.instruction |= (imm & 0x00000fff);
7942 inst.instruction |= (imm & 0x0000f000) << 4;
7943 }
7944 }
7945
7946 static void do_vfp_nsyn_opcode (const char *);
7947
7948 static int
7949 do_vfp_nsyn_mrs (void)
7950 {
7951 if (inst.operands[0].isvec)
7952 {
7953 if (inst.operands[1].reg != 1)
7954 first_error (_("operand 1 must be FPSCR"));
7955 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7956 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7957 do_vfp_nsyn_opcode ("fmstat");
7958 }
7959 else if (inst.operands[1].isvec)
7960 do_vfp_nsyn_opcode ("fmrx");
7961 else
7962 return FAIL;
7963
7964 return SUCCESS;
7965 }
7966
7967 static int
7968 do_vfp_nsyn_msr (void)
7969 {
7970 if (inst.operands[0].isvec)
7971 do_vfp_nsyn_opcode ("fmxr");
7972 else
7973 return FAIL;
7974
7975 return SUCCESS;
7976 }
7977
7978 static void
7979 do_vmrs (void)
7980 {
7981 unsigned Rt = inst.operands[0].reg;
7982
7983 if (thumb_mode && inst.operands[0].reg == REG_SP)
7984 {
7985 inst.error = BAD_SP;
7986 return;
7987 }
7988
7989 /* APSR_ sets isvec. All other refs to PC are illegal. */
7990 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7991 {
7992 inst.error = BAD_PC;
7993 return;
7994 }
7995
7996 if (inst.operands[1].reg != 1)
7997 first_error (_("operand 1 must be FPSCR"));
7998
7999 inst.instruction |= (Rt << 12);
8000 }
8001
8002 static void
8003 do_vmsr (void)
8004 {
8005 unsigned Rt = inst.operands[1].reg;
8006
8007 if (thumb_mode)
8008 reject_bad_reg (Rt);
8009 else if (Rt == REG_PC)
8010 {
8011 inst.error = BAD_PC;
8012 return;
8013 }
8014
8015 if (inst.operands[0].reg != 1)
8016 first_error (_("operand 0 must be FPSCR"));
8017
8018 inst.instruction |= (Rt << 12);
8019 }
8020
8021 static void
8022 do_mrs (void)
8023 {
8024 unsigned br;
8025
8026 if (do_vfp_nsyn_mrs () == SUCCESS)
8027 return;
8028
8029 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8030 inst.instruction |= inst.operands[0].reg << 12;
8031
8032 if (inst.operands[1].isreg)
8033 {
8034 br = inst.operands[1].reg;
8035 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8036 as_bad (_("bad register for mrs"));
8037 }
8038 else
8039 {
8040 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8041 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8042 != (PSR_c|PSR_f),
8043 _("'APSR', 'CPSR' or 'SPSR' expected"));
8044 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8045 }
8046
8047 inst.instruction |= br;
8048 }
8049
8050 /* Two possible forms:
8051 "{C|S}PSR_<field>, Rm",
8052 "{C|S}PSR_f, #expression". */
8053
8054 static void
8055 do_msr (void)
8056 {
8057 if (do_vfp_nsyn_msr () == SUCCESS)
8058 return;
8059
8060 inst.instruction |= inst.operands[0].imm;
8061 if (inst.operands[1].isreg)
8062 inst.instruction |= inst.operands[1].reg;
8063 else
8064 {
8065 inst.instruction |= INST_IMMEDIATE;
8066 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8067 inst.reloc.pc_rel = 0;
8068 }
8069 }
8070
8071 static void
8072 do_mul (void)
8073 {
8074 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8075
8076 if (!inst.operands[2].present)
8077 inst.operands[2].reg = inst.operands[0].reg;
8078 inst.instruction |= inst.operands[0].reg << 16;
8079 inst.instruction |= inst.operands[1].reg;
8080 inst.instruction |= inst.operands[2].reg << 8;
8081
8082 if (inst.operands[0].reg == inst.operands[1].reg
8083 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8084 as_tsktsk (_("Rd and Rm should be different in mul"));
8085 }
8086
8087 /* Long Multiply Parser
8088 UMULL RdLo, RdHi, Rm, Rs
8089 SMULL RdLo, RdHi, Rm, Rs
8090 UMLAL RdLo, RdHi, Rm, Rs
8091 SMLAL RdLo, RdHi, Rm, Rs. */
8092
8093 static void
8094 do_mull (void)
8095 {
8096 inst.instruction |= inst.operands[0].reg << 12;
8097 inst.instruction |= inst.operands[1].reg << 16;
8098 inst.instruction |= inst.operands[2].reg;
8099 inst.instruction |= inst.operands[3].reg << 8;
8100
8101 /* rdhi and rdlo must be different. */
8102 if (inst.operands[0].reg == inst.operands[1].reg)
8103 as_tsktsk (_("rdhi and rdlo must be different"));
8104
8105 /* rdhi, rdlo and rm must all be different before armv6. */
8106 if ((inst.operands[0].reg == inst.operands[2].reg
8107 || inst.operands[1].reg == inst.operands[2].reg)
8108 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8109 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8110 }
8111
8112 static void
8113 do_nop (void)
8114 {
8115 if (inst.operands[0].present
8116 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8117 {
8118 /* Architectural NOP hints are CPSR sets with no bits selected. */
8119 inst.instruction &= 0xf0000000;
8120 inst.instruction |= 0x0320f000;
8121 if (inst.operands[0].present)
8122 inst.instruction |= inst.operands[0].imm;
8123 }
8124 }
8125
8126 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8127 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8128 Condition defaults to COND_ALWAYS.
8129 Error if Rd, Rn or Rm are R15. */
8130
8131 static void
8132 do_pkhbt (void)
8133 {
8134 inst.instruction |= inst.operands[0].reg << 12;
8135 inst.instruction |= inst.operands[1].reg << 16;
8136 inst.instruction |= inst.operands[2].reg;
8137 if (inst.operands[3].present)
8138 encode_arm_shift (3);
8139 }
8140
8141 /* ARM V6 PKHTB (Argument Parse). */
8142
8143 static void
8144 do_pkhtb (void)
8145 {
8146 if (!inst.operands[3].present)
8147 {
8148 /* If the shift specifier is omitted, turn the instruction
8149 into pkhbt rd, rm, rn. */
8150 inst.instruction &= 0xfff00010;
8151 inst.instruction |= inst.operands[0].reg << 12;
8152 inst.instruction |= inst.operands[1].reg;
8153 inst.instruction |= inst.operands[2].reg << 16;
8154 }
8155 else
8156 {
8157 inst.instruction |= inst.operands[0].reg << 12;
8158 inst.instruction |= inst.operands[1].reg << 16;
8159 inst.instruction |= inst.operands[2].reg;
8160 encode_arm_shift (3);
8161 }
8162 }
8163
8164 /* ARMv5TE: Preload-Cache
8165 MP Extensions: Preload for write
8166
8167 PLD(W) <addr_mode>
8168
8169 Syntactically, like LDR with B=1, W=0, L=1. */
8170
8171 static void
8172 do_pld (void)
8173 {
8174 constraint (!inst.operands[0].isreg,
8175 _("'[' expected after PLD mnemonic"));
8176 constraint (inst.operands[0].postind,
8177 _("post-indexed expression used in preload instruction"));
8178 constraint (inst.operands[0].writeback,
8179 _("writeback used in preload instruction"));
8180 constraint (!inst.operands[0].preind,
8181 _("unindexed addressing used in preload instruction"));
8182 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8183 }
8184
8185 /* ARMv7: PLI <addr_mode> */
8186 static void
8187 do_pli (void)
8188 {
8189 constraint (!inst.operands[0].isreg,
8190 _("'[' expected after PLI mnemonic"));
8191 constraint (inst.operands[0].postind,
8192 _("post-indexed expression used in preload instruction"));
8193 constraint (inst.operands[0].writeback,
8194 _("writeback used in preload instruction"));
8195 constraint (!inst.operands[0].preind,
8196 _("unindexed addressing used in preload instruction"));
8197 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8198 inst.instruction &= ~PRE_INDEX;
8199 }
8200
8201 static void
8202 do_push_pop (void)
8203 {
8204 inst.operands[1] = inst.operands[0];
8205 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8206 inst.operands[0].isreg = 1;
8207 inst.operands[0].writeback = 1;
8208 inst.operands[0].reg = REG_SP;
8209 do_ldmstm ();
8210 }
8211
8212 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8213 word at the specified address and the following word
8214 respectively.
8215 Unconditionally executed.
8216 Error if Rn is R15. */
8217
8218 static void
8219 do_rfe (void)
8220 {
8221 inst.instruction |= inst.operands[0].reg << 16;
8222 if (inst.operands[0].writeback)
8223 inst.instruction |= WRITE_BACK;
8224 }
8225
8226 /* ARM V6 ssat (argument parse). */
8227
8228 static void
8229 do_ssat (void)
8230 {
8231 inst.instruction |= inst.operands[0].reg << 12;
8232 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8233 inst.instruction |= inst.operands[2].reg;
8234
8235 if (inst.operands[3].present)
8236 encode_arm_shift (3);
8237 }
8238
8239 /* ARM V6 usat (argument parse). */
8240
8241 static void
8242 do_usat (void)
8243 {
8244 inst.instruction |= inst.operands[0].reg << 12;
8245 inst.instruction |= inst.operands[1].imm << 16;
8246 inst.instruction |= inst.operands[2].reg;
8247
8248 if (inst.operands[3].present)
8249 encode_arm_shift (3);
8250 }
8251
8252 /* ARM V6 ssat16 (argument parse). */
8253
8254 static void
8255 do_ssat16 (void)
8256 {
8257 inst.instruction |= inst.operands[0].reg << 12;
8258 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8259 inst.instruction |= inst.operands[2].reg;
8260 }
8261
8262 static void
8263 do_usat16 (void)
8264 {
8265 inst.instruction |= inst.operands[0].reg << 12;
8266 inst.instruction |= inst.operands[1].imm << 16;
8267 inst.instruction |= inst.operands[2].reg;
8268 }
8269
8270 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8271 preserving the other bits.
8272
8273 setend <endian_specifier>, where <endian_specifier> is either
8274 BE or LE. */
8275
8276 static void
8277 do_setend (void)
8278 {
8279 if (inst.operands[0].imm)
8280 inst.instruction |= 0x200;
8281 }
8282
8283 static void
8284 do_shift (void)
8285 {
8286 unsigned int Rm = (inst.operands[1].present
8287 ? inst.operands[1].reg
8288 : inst.operands[0].reg);
8289
8290 inst.instruction |= inst.operands[0].reg << 12;
8291 inst.instruction |= Rm;
8292 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8293 {
8294 inst.instruction |= inst.operands[2].reg << 8;
8295 inst.instruction |= SHIFT_BY_REG;
8296 }
8297 else
8298 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8299 }
8300
8301 static void
8302 do_smc (void)
8303 {
8304 inst.reloc.type = BFD_RELOC_ARM_SMC;
8305 inst.reloc.pc_rel = 0;
8306 }
8307
8308 static void
8309 do_hvc (void)
8310 {
8311 inst.reloc.type = BFD_RELOC_ARM_HVC;
8312 inst.reloc.pc_rel = 0;
8313 }
8314
8315 static void
8316 do_swi (void)
8317 {
8318 inst.reloc.type = BFD_RELOC_ARM_SWI;
8319 inst.reloc.pc_rel = 0;
8320 }
8321
8322 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8323 SMLAxy{cond} Rd,Rm,Rs,Rn
8324 SMLAWy{cond} Rd,Rm,Rs,Rn
8325 Error if any register is R15. */
8326
8327 static void
8328 do_smla (void)
8329 {
8330 inst.instruction |= inst.operands[0].reg << 16;
8331 inst.instruction |= inst.operands[1].reg;
8332 inst.instruction |= inst.operands[2].reg << 8;
8333 inst.instruction |= inst.operands[3].reg << 12;
8334 }
8335
8336 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8337 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8338 Error if any register is R15.
8339 Warning if Rdlo == Rdhi. */
8340
8341 static void
8342 do_smlal (void)
8343 {
8344 inst.instruction |= inst.operands[0].reg << 12;
8345 inst.instruction |= inst.operands[1].reg << 16;
8346 inst.instruction |= inst.operands[2].reg;
8347 inst.instruction |= inst.operands[3].reg << 8;
8348
8349 if (inst.operands[0].reg == inst.operands[1].reg)
8350 as_tsktsk (_("rdhi and rdlo must be different"));
8351 }
8352
8353 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8354 SMULxy{cond} Rd,Rm,Rs
8355 Error if any register is R15. */
8356
8357 static void
8358 do_smul (void)
8359 {
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363 }
8364
8365 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8366 the same for both ARM and Thumb-2. */
8367
8368 static void
8369 do_srs (void)
8370 {
8371 int reg;
8372
8373 if (inst.operands[0].present)
8374 {
8375 reg = inst.operands[0].reg;
8376 constraint (reg != REG_SP, _("SRS base register must be r13"));
8377 }
8378 else
8379 reg = REG_SP;
8380
8381 inst.instruction |= reg << 16;
8382 inst.instruction |= inst.operands[1].imm;
8383 if (inst.operands[0].writeback || inst.operands[1].writeback)
8384 inst.instruction |= WRITE_BACK;
8385 }
8386
8387 /* ARM V6 strex (argument parse). */
8388
8389 static void
8390 do_strex (void)
8391 {
8392 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8393 || inst.operands[2].postind || inst.operands[2].writeback
8394 || inst.operands[2].immisreg || inst.operands[2].shifted
8395 || inst.operands[2].negative
8396 /* See comment in do_ldrex(). */
8397 || (inst.operands[2].reg == REG_PC),
8398 BAD_ADDR_MODE);
8399
8400 constraint (inst.operands[0].reg == inst.operands[1].reg
8401 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8402
8403 constraint (inst.reloc.exp.X_op != O_constant
8404 || inst.reloc.exp.X_add_number != 0,
8405 _("offset must be zero in ARM encoding"));
8406
8407 inst.instruction |= inst.operands[0].reg << 12;
8408 inst.instruction |= inst.operands[1].reg;
8409 inst.instruction |= inst.operands[2].reg << 16;
8410 inst.reloc.type = BFD_RELOC_UNUSED;
8411 }
8412
8413 static void
8414 do_strexd (void)
8415 {
8416 constraint (inst.operands[1].reg % 2 != 0,
8417 _("even register required"));
8418 constraint (inst.operands[2].present
8419 && inst.operands[2].reg != inst.operands[1].reg + 1,
8420 _("can only store two consecutive registers"));
8421 /* If op 2 were present and equal to PC, this function wouldn't
8422 have been called in the first place. */
8423 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8424
8425 constraint (inst.operands[0].reg == inst.operands[1].reg
8426 || inst.operands[0].reg == inst.operands[1].reg + 1
8427 || inst.operands[0].reg == inst.operands[3].reg,
8428 BAD_OVERLAP);
8429
8430 inst.instruction |= inst.operands[0].reg << 12;
8431 inst.instruction |= inst.operands[1].reg;
8432 inst.instruction |= inst.operands[3].reg << 16;
8433 }
8434
8435 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8436 extends it to 32-bits, and adds the result to a value in another
8437 register. You can specify a rotation by 0, 8, 16, or 24 bits
8438 before extracting the 16-bit value.
8439 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8440 Condition defaults to COND_ALWAYS.
8441 Error if any register uses R15. */
8442
8443 static void
8444 do_sxtah (void)
8445 {
8446 inst.instruction |= inst.operands[0].reg << 12;
8447 inst.instruction |= inst.operands[1].reg << 16;
8448 inst.instruction |= inst.operands[2].reg;
8449 inst.instruction |= inst.operands[3].imm << 10;
8450 }
8451
8452 /* ARM V6 SXTH.
8453
8454 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8455 Condition defaults to COND_ALWAYS.
8456 Error if any register uses R15. */
8457
8458 static void
8459 do_sxth (void)
8460 {
8461 inst.instruction |= inst.operands[0].reg << 12;
8462 inst.instruction |= inst.operands[1].reg;
8463 inst.instruction |= inst.operands[2].imm << 10;
8464 }
8465 \f
8466 /* VFP instructions. In a logical order: SP variant first, monad
8467 before dyad, arithmetic then move then load/store. */
8468
8469 static void
8470 do_vfp_sp_monadic (void)
8471 {
8472 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8473 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8474 }
8475
8476 static void
8477 do_vfp_sp_dyadic (void)
8478 {
8479 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8480 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8481 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8482 }
8483
8484 static void
8485 do_vfp_sp_compare_z (void)
8486 {
8487 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8488 }
8489
8490 static void
8491 do_vfp_dp_sp_cvt (void)
8492 {
8493 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8494 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8495 }
8496
8497 static void
8498 do_vfp_sp_dp_cvt (void)
8499 {
8500 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8501 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8502 }
8503
8504 static void
8505 do_vfp_reg_from_sp (void)
8506 {
8507 inst.instruction |= inst.operands[0].reg << 12;
8508 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8509 }
8510
8511 static void
8512 do_vfp_reg2_from_sp2 (void)
8513 {
8514 constraint (inst.operands[2].imm != 2,
8515 _("only two consecutive VFP SP registers allowed here"));
8516 inst.instruction |= inst.operands[0].reg << 12;
8517 inst.instruction |= inst.operands[1].reg << 16;
8518 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8519 }
8520
8521 static void
8522 do_vfp_sp_from_reg (void)
8523 {
8524 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8525 inst.instruction |= inst.operands[1].reg << 12;
8526 }
8527
8528 static void
8529 do_vfp_sp2_from_reg2 (void)
8530 {
8531 constraint (inst.operands[0].imm != 2,
8532 _("only two consecutive VFP SP registers allowed here"));
8533 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8534 inst.instruction |= inst.operands[1].reg << 12;
8535 inst.instruction |= inst.operands[2].reg << 16;
8536 }
8537
8538 static void
8539 do_vfp_sp_ldst (void)
8540 {
8541 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8542 encode_arm_cp_address (1, FALSE, TRUE, 0);
8543 }
8544
8545 static void
8546 do_vfp_dp_ldst (void)
8547 {
8548 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8549 encode_arm_cp_address (1, FALSE, TRUE, 0);
8550 }
8551
8552
8553 static void
8554 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8555 {
8556 if (inst.operands[0].writeback)
8557 inst.instruction |= WRITE_BACK;
8558 else
8559 constraint (ldstm_type != VFP_LDSTMIA,
8560 _("this addressing mode requires base-register writeback"));
8561 inst.instruction |= inst.operands[0].reg << 16;
8562 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8563 inst.instruction |= inst.operands[1].imm;
8564 }
8565
8566 static void
8567 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8568 {
8569 int count;
8570
8571 if (inst.operands[0].writeback)
8572 inst.instruction |= WRITE_BACK;
8573 else
8574 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8575 _("this addressing mode requires base-register writeback"));
8576
8577 inst.instruction |= inst.operands[0].reg << 16;
8578 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8579
8580 count = inst.operands[1].imm << 1;
8581 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8582 count += 1;
8583
8584 inst.instruction |= count;
8585 }
8586
8587 static void
8588 do_vfp_sp_ldstmia (void)
8589 {
8590 vfp_sp_ldstm (VFP_LDSTMIA);
8591 }
8592
8593 static void
8594 do_vfp_sp_ldstmdb (void)
8595 {
8596 vfp_sp_ldstm (VFP_LDSTMDB);
8597 }
8598
8599 static void
8600 do_vfp_dp_ldstmia (void)
8601 {
8602 vfp_dp_ldstm (VFP_LDSTMIA);
8603 }
8604
8605 static void
8606 do_vfp_dp_ldstmdb (void)
8607 {
8608 vfp_dp_ldstm (VFP_LDSTMDB);
8609 }
8610
8611 static void
8612 do_vfp_xp_ldstmia (void)
8613 {
8614 vfp_dp_ldstm (VFP_LDSTMIAX);
8615 }
8616
8617 static void
8618 do_vfp_xp_ldstmdb (void)
8619 {
8620 vfp_dp_ldstm (VFP_LDSTMDBX);
8621 }
8622
8623 static void
8624 do_vfp_dp_rd_rm (void)
8625 {
8626 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8627 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8628 }
8629
8630 static void
8631 do_vfp_dp_rn_rd (void)
8632 {
8633 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8634 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8635 }
8636
8637 static void
8638 do_vfp_dp_rd_rn (void)
8639 {
8640 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8641 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8642 }
8643
8644 static void
8645 do_vfp_dp_rd_rn_rm (void)
8646 {
8647 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8648 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8649 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8650 }
8651
8652 static void
8653 do_vfp_dp_rd (void)
8654 {
8655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8656 }
8657
8658 static void
8659 do_vfp_dp_rm_rd_rn (void)
8660 {
8661 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8662 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8663 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8664 }
8665
8666 /* VFPv3 instructions. */
8667 static void
8668 do_vfp_sp_const (void)
8669 {
8670 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8671 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8672 inst.instruction |= (inst.operands[1].imm & 0x0f);
8673 }
8674
8675 static void
8676 do_vfp_dp_const (void)
8677 {
8678 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8679 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8680 inst.instruction |= (inst.operands[1].imm & 0x0f);
8681 }
8682
8683 static void
8684 vfp_conv (int srcsize)
8685 {
8686 unsigned immbits = srcsize - inst.operands[1].imm;
8687 inst.instruction |= (immbits & 1) << 5;
8688 inst.instruction |= (immbits >> 1);
8689 }
8690
8691 static void
8692 do_vfp_sp_conv_16 (void)
8693 {
8694 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8695 vfp_conv (16);
8696 }
8697
8698 static void
8699 do_vfp_dp_conv_16 (void)
8700 {
8701 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8702 vfp_conv (16);
8703 }
8704
8705 static void
8706 do_vfp_sp_conv_32 (void)
8707 {
8708 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8709 vfp_conv (32);
8710 }
8711
8712 static void
8713 do_vfp_dp_conv_32 (void)
8714 {
8715 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8716 vfp_conv (32);
8717 }
8718 \f
8719 /* FPA instructions. Also in a logical order. */
8720
8721 static void
8722 do_fpa_cmp (void)
8723 {
8724 inst.instruction |= inst.operands[0].reg << 16;
8725 inst.instruction |= inst.operands[1].reg;
8726 }
8727
8728 static void
8729 do_fpa_ldmstm (void)
8730 {
8731 inst.instruction |= inst.operands[0].reg << 12;
8732 switch (inst.operands[1].imm)
8733 {
8734 case 1: inst.instruction |= CP_T_X; break;
8735 case 2: inst.instruction |= CP_T_Y; break;
8736 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8737 case 4: break;
8738 default: abort ();
8739 }
8740
8741 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8742 {
8743 /* The instruction specified "ea" or "fd", so we can only accept
8744 [Rn]{!}. The instruction does not really support stacking or
8745 unstacking, so we have to emulate these by setting appropriate
8746 bits and offsets. */
8747 constraint (inst.reloc.exp.X_op != O_constant
8748 || inst.reloc.exp.X_add_number != 0,
8749 _("this instruction does not support indexing"));
8750
8751 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8752 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8753
8754 if (!(inst.instruction & INDEX_UP))
8755 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8756
8757 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8758 {
8759 inst.operands[2].preind = 0;
8760 inst.operands[2].postind = 1;
8761 }
8762 }
8763
8764 encode_arm_cp_address (2, TRUE, TRUE, 0);
8765 }
8766 \f
8767 /* iWMMXt instructions: strictly in alphabetical order. */
8768
8769 static void
8770 do_iwmmxt_tandorc (void)
8771 {
8772 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8773 }
8774
8775 static void
8776 do_iwmmxt_textrc (void)
8777 {
8778 inst.instruction |= inst.operands[0].reg << 12;
8779 inst.instruction |= inst.operands[1].imm;
8780 }
8781
8782 static void
8783 do_iwmmxt_textrm (void)
8784 {
8785 inst.instruction |= inst.operands[0].reg << 12;
8786 inst.instruction |= inst.operands[1].reg << 16;
8787 inst.instruction |= inst.operands[2].imm;
8788 }
8789
8790 static void
8791 do_iwmmxt_tinsr (void)
8792 {
8793 inst.instruction |= inst.operands[0].reg << 16;
8794 inst.instruction |= inst.operands[1].reg << 12;
8795 inst.instruction |= inst.operands[2].imm;
8796 }
8797
8798 static void
8799 do_iwmmxt_tmia (void)
8800 {
8801 inst.instruction |= inst.operands[0].reg << 5;
8802 inst.instruction |= inst.operands[1].reg;
8803 inst.instruction |= inst.operands[2].reg << 12;
8804 }
8805
8806 static void
8807 do_iwmmxt_waligni (void)
8808 {
8809 inst.instruction |= inst.operands[0].reg << 12;
8810 inst.instruction |= inst.operands[1].reg << 16;
8811 inst.instruction |= inst.operands[2].reg;
8812 inst.instruction |= inst.operands[3].imm << 20;
8813 }
8814
8815 static void
8816 do_iwmmxt_wmerge (void)
8817 {
8818 inst.instruction |= inst.operands[0].reg << 12;
8819 inst.instruction |= inst.operands[1].reg << 16;
8820 inst.instruction |= inst.operands[2].reg;
8821 inst.instruction |= inst.operands[3].imm << 21;
8822 }
8823
8824 static void
8825 do_iwmmxt_wmov (void)
8826 {
8827 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8828 inst.instruction |= inst.operands[0].reg << 12;
8829 inst.instruction |= inst.operands[1].reg << 16;
8830 inst.instruction |= inst.operands[1].reg;
8831 }
8832
8833 static void
8834 do_iwmmxt_wldstbh (void)
8835 {
8836 int reloc;
8837 inst.instruction |= inst.operands[0].reg << 12;
8838 if (thumb_mode)
8839 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8840 else
8841 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8842 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8843 }
8844
8845 static void
8846 do_iwmmxt_wldstw (void)
8847 {
8848 /* RIWR_RIWC clears .isreg for a control register. */
8849 if (!inst.operands[0].isreg)
8850 {
8851 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8852 inst.instruction |= 0xf0000000;
8853 }
8854
8855 inst.instruction |= inst.operands[0].reg << 12;
8856 encode_arm_cp_address (1, TRUE, TRUE, 0);
8857 }
8858
8859 static void
8860 do_iwmmxt_wldstd (void)
8861 {
8862 inst.instruction |= inst.operands[0].reg << 12;
8863 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8864 && inst.operands[1].immisreg)
8865 {
8866 inst.instruction &= ~0x1a000ff;
8867 inst.instruction |= (0xf << 28);
8868 if (inst.operands[1].preind)
8869 inst.instruction |= PRE_INDEX;
8870 if (!inst.operands[1].negative)
8871 inst.instruction |= INDEX_UP;
8872 if (inst.operands[1].writeback)
8873 inst.instruction |= WRITE_BACK;
8874 inst.instruction |= inst.operands[1].reg << 16;
8875 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8876 inst.instruction |= inst.operands[1].imm;
8877 }
8878 else
8879 encode_arm_cp_address (1, TRUE, FALSE, 0);
8880 }
8881
8882 static void
8883 do_iwmmxt_wshufh (void)
8884 {
8885 inst.instruction |= inst.operands[0].reg << 12;
8886 inst.instruction |= inst.operands[1].reg << 16;
8887 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8888 inst.instruction |= (inst.operands[2].imm & 0x0f);
8889 }
8890
8891 static void
8892 do_iwmmxt_wzero (void)
8893 {
8894 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8895 inst.instruction |= inst.operands[0].reg;
8896 inst.instruction |= inst.operands[0].reg << 12;
8897 inst.instruction |= inst.operands[0].reg << 16;
8898 }
8899
8900 static void
8901 do_iwmmxt_wrwrwr_or_imm5 (void)
8902 {
8903 if (inst.operands[2].isreg)
8904 do_rd_rn_rm ();
8905 else {
8906 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8907 _("immediate operand requires iWMMXt2"));
8908 do_rd_rn ();
8909 if (inst.operands[2].imm == 0)
8910 {
8911 switch ((inst.instruction >> 20) & 0xf)
8912 {
8913 case 4:
8914 case 5:
8915 case 6:
8916 case 7:
8917 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8918 inst.operands[2].imm = 16;
8919 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8920 break;
8921 case 8:
8922 case 9:
8923 case 10:
8924 case 11:
8925 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8926 inst.operands[2].imm = 32;
8927 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8928 break;
8929 case 12:
8930 case 13:
8931 case 14:
8932 case 15:
8933 {
8934 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8935 unsigned long wrn;
8936 wrn = (inst.instruction >> 16) & 0xf;
8937 inst.instruction &= 0xff0fff0f;
8938 inst.instruction |= wrn;
8939 /* Bail out here; the instruction is now assembled. */
8940 return;
8941 }
8942 }
8943 }
8944 /* Map 32 -> 0, etc. */
8945 inst.operands[2].imm &= 0x1f;
8946 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8947 }
8948 }
8949 \f
8950 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8951 operations first, then control, shift, and load/store. */
8952
8953 /* Insns like "foo X,Y,Z". */
8954
8955 static void
8956 do_mav_triple (void)
8957 {
8958 inst.instruction |= inst.operands[0].reg << 16;
8959 inst.instruction |= inst.operands[1].reg;
8960 inst.instruction |= inst.operands[2].reg << 12;
8961 }
8962
8963 /* Insns like "foo W,X,Y,Z".
8964 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8965
8966 static void
8967 do_mav_quad (void)
8968 {
8969 inst.instruction |= inst.operands[0].reg << 5;
8970 inst.instruction |= inst.operands[1].reg << 12;
8971 inst.instruction |= inst.operands[2].reg << 16;
8972 inst.instruction |= inst.operands[3].reg;
8973 }
8974
8975 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8976 static void
8977 do_mav_dspsc (void)
8978 {
8979 inst.instruction |= inst.operands[1].reg << 12;
8980 }
8981
8982 /* Maverick shift immediate instructions.
8983 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8984 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8985
8986 static void
8987 do_mav_shift (void)
8988 {
8989 int imm = inst.operands[2].imm;
8990
8991 inst.instruction |= inst.operands[0].reg << 12;
8992 inst.instruction |= inst.operands[1].reg << 16;
8993
8994 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8995 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8996 Bit 4 should be 0. */
8997 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8998
8999 inst.instruction |= imm;
9000 }
9001 \f
9002 /* XScale instructions. Also sorted arithmetic before move. */
9003
9004 /* Xscale multiply-accumulate (argument parse)
9005 MIAcc acc0,Rm,Rs
9006 MIAPHcc acc0,Rm,Rs
9007 MIAxycc acc0,Rm,Rs. */
9008
9009 static void
9010 do_xsc_mia (void)
9011 {
9012 inst.instruction |= inst.operands[1].reg;
9013 inst.instruction |= inst.operands[2].reg << 12;
9014 }
9015
9016 /* Xscale move-accumulator-register (argument parse)
9017
9018 MARcc acc0,RdLo,RdHi. */
9019
9020 static void
9021 do_xsc_mar (void)
9022 {
9023 inst.instruction |= inst.operands[1].reg << 12;
9024 inst.instruction |= inst.operands[2].reg << 16;
9025 }
9026
9027 /* Xscale move-register-accumulator (argument parse)
9028
9029 MRAcc RdLo,RdHi,acc0. */
9030
9031 static void
9032 do_xsc_mra (void)
9033 {
9034 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9035 inst.instruction |= inst.operands[0].reg << 12;
9036 inst.instruction |= inst.operands[1].reg << 16;
9037 }
9038 \f
9039 /* Encoding functions relevant only to Thumb. */
9040
9041 /* inst.operands[i] is a shifted-register operand; encode
9042 it into inst.instruction in the format used by Thumb32. */
9043
9044 static void
9045 encode_thumb32_shifted_operand (int i)
9046 {
9047 unsigned int value = inst.reloc.exp.X_add_number;
9048 unsigned int shift = inst.operands[i].shift_kind;
9049
9050 constraint (inst.operands[i].immisreg,
9051 _("shift by register not allowed in thumb mode"));
9052 inst.instruction |= inst.operands[i].reg;
9053 if (shift == SHIFT_RRX)
9054 inst.instruction |= SHIFT_ROR << 4;
9055 else
9056 {
9057 constraint (inst.reloc.exp.X_op != O_constant,
9058 _("expression too complex"));
9059
9060 constraint (value > 32
9061 || (value == 32 && (shift == SHIFT_LSL
9062 || shift == SHIFT_ROR)),
9063 _("shift expression is too large"));
9064
9065 if (value == 0)
9066 shift = SHIFT_LSL;
9067 else if (value == 32)
9068 value = 0;
9069
9070 inst.instruction |= shift << 4;
9071 inst.instruction |= (value & 0x1c) << 10;
9072 inst.instruction |= (value & 0x03) << 6;
9073 }
9074 }
9075
9076
9077 /* inst.operands[i] was set up by parse_address. Encode it into a
9078 Thumb32 format load or store instruction. Reject forms that cannot
9079 be used with such instructions. If is_t is true, reject forms that
9080 cannot be used with a T instruction; if is_d is true, reject forms
9081 that cannot be used with a D instruction. If it is a store insn,
9082 reject PC in Rn. */
9083
9084 static void
9085 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9086 {
9087 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9088
9089 constraint (!inst.operands[i].isreg,
9090 _("Instruction does not support =N addresses"));
9091
9092 inst.instruction |= inst.operands[i].reg << 16;
9093 if (inst.operands[i].immisreg)
9094 {
9095 constraint (is_pc, BAD_PC_ADDRESSING);
9096 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9097 constraint (inst.operands[i].negative,
9098 _("Thumb does not support negative register indexing"));
9099 constraint (inst.operands[i].postind,
9100 _("Thumb does not support register post-indexing"));
9101 constraint (inst.operands[i].writeback,
9102 _("Thumb does not support register indexing with writeback"));
9103 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9104 _("Thumb supports only LSL in shifted register indexing"));
9105
9106 inst.instruction |= inst.operands[i].imm;
9107 if (inst.operands[i].shifted)
9108 {
9109 constraint (inst.reloc.exp.X_op != O_constant,
9110 _("expression too complex"));
9111 constraint (inst.reloc.exp.X_add_number < 0
9112 || inst.reloc.exp.X_add_number > 3,
9113 _("shift out of range"));
9114 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9115 }
9116 inst.reloc.type = BFD_RELOC_UNUSED;
9117 }
9118 else if (inst.operands[i].preind)
9119 {
9120 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9121 constraint (is_t && inst.operands[i].writeback,
9122 _("cannot use writeback with this instruction"));
9123 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9124 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9125
9126 if (is_d)
9127 {
9128 inst.instruction |= 0x01000000;
9129 if (inst.operands[i].writeback)
9130 inst.instruction |= 0x00200000;
9131 }
9132 else
9133 {
9134 inst.instruction |= 0x00000c00;
9135 if (inst.operands[i].writeback)
9136 inst.instruction |= 0x00000100;
9137 }
9138 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9139 }
9140 else if (inst.operands[i].postind)
9141 {
9142 gas_assert (inst.operands[i].writeback);
9143 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9144 constraint (is_t, _("cannot use post-indexing with this instruction"));
9145
9146 if (is_d)
9147 inst.instruction |= 0x00200000;
9148 else
9149 inst.instruction |= 0x00000900;
9150 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9151 }
9152 else /* unindexed - only for coprocessor */
9153 inst.error = _("instruction does not accept unindexed addressing");
9154 }
9155
9156 /* Table of Thumb instructions which exist in both 16- and 32-bit
9157 encodings (the latter only in post-V6T2 cores). The index is the
9158 value used in the insns table below. When there is more than one
9159 possible 16-bit encoding for the instruction, this table always
9160 holds variant (1).
9161 Also contains several pseudo-instructions used during relaxation. */
9162 #define T16_32_TAB \
9163 X(_adc, 4140, eb400000), \
9164 X(_adcs, 4140, eb500000), \
9165 X(_add, 1c00, eb000000), \
9166 X(_adds, 1c00, eb100000), \
9167 X(_addi, 0000, f1000000), \
9168 X(_addis, 0000, f1100000), \
9169 X(_add_pc,000f, f20f0000), \
9170 X(_add_sp,000d, f10d0000), \
9171 X(_adr, 000f, f20f0000), \
9172 X(_and, 4000, ea000000), \
9173 X(_ands, 4000, ea100000), \
9174 X(_asr, 1000, fa40f000), \
9175 X(_asrs, 1000, fa50f000), \
9176 X(_b, e000, f000b000), \
9177 X(_bcond, d000, f0008000), \
9178 X(_bic, 4380, ea200000), \
9179 X(_bics, 4380, ea300000), \
9180 X(_cmn, 42c0, eb100f00), \
9181 X(_cmp, 2800, ebb00f00), \
9182 X(_cpsie, b660, f3af8400), \
9183 X(_cpsid, b670, f3af8600), \
9184 X(_cpy, 4600, ea4f0000), \
9185 X(_dec_sp,80dd, f1ad0d00), \
9186 X(_eor, 4040, ea800000), \
9187 X(_eors, 4040, ea900000), \
9188 X(_inc_sp,00dd, f10d0d00), \
9189 X(_ldmia, c800, e8900000), \
9190 X(_ldr, 6800, f8500000), \
9191 X(_ldrb, 7800, f8100000), \
9192 X(_ldrh, 8800, f8300000), \
9193 X(_ldrsb, 5600, f9100000), \
9194 X(_ldrsh, 5e00, f9300000), \
9195 X(_ldr_pc,4800, f85f0000), \
9196 X(_ldr_pc2,4800, f85f0000), \
9197 X(_ldr_sp,9800, f85d0000), \
9198 X(_lsl, 0000, fa00f000), \
9199 X(_lsls, 0000, fa10f000), \
9200 X(_lsr, 0800, fa20f000), \
9201 X(_lsrs, 0800, fa30f000), \
9202 X(_mov, 2000, ea4f0000), \
9203 X(_movs, 2000, ea5f0000), \
9204 X(_mul, 4340, fb00f000), \
9205 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9206 X(_mvn, 43c0, ea6f0000), \
9207 X(_mvns, 43c0, ea7f0000), \
9208 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9209 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9210 X(_orr, 4300, ea400000), \
9211 X(_orrs, 4300, ea500000), \
9212 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9213 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9214 X(_rev, ba00, fa90f080), \
9215 X(_rev16, ba40, fa90f090), \
9216 X(_revsh, bac0, fa90f0b0), \
9217 X(_ror, 41c0, fa60f000), \
9218 X(_rors, 41c0, fa70f000), \
9219 X(_sbc, 4180, eb600000), \
9220 X(_sbcs, 4180, eb700000), \
9221 X(_stmia, c000, e8800000), \
9222 X(_str, 6000, f8400000), \
9223 X(_strb, 7000, f8000000), \
9224 X(_strh, 8000, f8200000), \
9225 X(_str_sp,9000, f84d0000), \
9226 X(_sub, 1e00, eba00000), \
9227 X(_subs, 1e00, ebb00000), \
9228 X(_subi, 8000, f1a00000), \
9229 X(_subis, 8000, f1b00000), \
9230 X(_sxtb, b240, fa4ff080), \
9231 X(_sxth, b200, fa0ff080), \
9232 X(_tst, 4200, ea100f00), \
9233 X(_uxtb, b2c0, fa5ff080), \
9234 X(_uxth, b280, fa1ff080), \
9235 X(_nop, bf00, f3af8000), \
9236 X(_yield, bf10, f3af8001), \
9237 X(_wfe, bf20, f3af8002), \
9238 X(_wfi, bf30, f3af8003), \
9239 X(_sev, bf40, f3af8004),
9240
9241 /* To catch errors in encoding functions, the codes are all offset by
9242 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9243 as 16-bit instructions. */
9244 #define X(a,b,c) T_MNEM##a
9245 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9246 #undef X
9247
9248 #define X(a,b,c) 0x##b
9249 static const unsigned short thumb_op16[] = { T16_32_TAB };
9250 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9251 #undef X
9252
9253 #define X(a,b,c) 0x##c
9254 static const unsigned int thumb_op32[] = { T16_32_TAB };
9255 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9256 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9257 #undef X
9258 #undef T16_32_TAB
9259
9260 /* Thumb instruction encoders, in alphabetical order. */
9261
9262 /* ADDW or SUBW. */
9263
9264 static void
9265 do_t_add_sub_w (void)
9266 {
9267 int Rd, Rn;
9268
9269 Rd = inst.operands[0].reg;
9270 Rn = inst.operands[1].reg;
9271
9272 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9273 is the SP-{plus,minus}-immediate form of the instruction. */
9274 if (Rn == REG_SP)
9275 constraint (Rd == REG_PC, BAD_PC);
9276 else
9277 reject_bad_reg (Rd);
9278
9279 inst.instruction |= (Rn << 16) | (Rd << 8);
9280 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9281 }
9282
9283 /* Parse an add or subtract instruction. We get here with inst.instruction
9284 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9285
9286 static void
9287 do_t_add_sub (void)
9288 {
9289 int Rd, Rs, Rn;
9290
9291 Rd = inst.operands[0].reg;
9292 Rs = (inst.operands[1].present
9293 ? inst.operands[1].reg /* Rd, Rs, foo */
9294 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9295
9296 if (Rd == REG_PC)
9297 set_it_insn_type_last ();
9298
9299 if (unified_syntax)
9300 {
9301 bfd_boolean flags;
9302 bfd_boolean narrow;
9303 int opcode;
9304
9305 flags = (inst.instruction == T_MNEM_adds
9306 || inst.instruction == T_MNEM_subs);
9307 if (flags)
9308 narrow = !in_it_block ();
9309 else
9310 narrow = in_it_block ();
9311 if (!inst.operands[2].isreg)
9312 {
9313 int add;
9314
9315 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9316
9317 add = (inst.instruction == T_MNEM_add
9318 || inst.instruction == T_MNEM_adds);
9319 opcode = 0;
9320 if (inst.size_req != 4)
9321 {
9322 /* Attempt to use a narrow opcode, with relaxation if
9323 appropriate. */
9324 if (Rd == REG_SP && Rs == REG_SP && !flags)
9325 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9326 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9327 opcode = T_MNEM_add_sp;
9328 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9329 opcode = T_MNEM_add_pc;
9330 else if (Rd <= 7 && Rs <= 7 && narrow)
9331 {
9332 if (flags)
9333 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9334 else
9335 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9336 }
9337 if (opcode)
9338 {
9339 inst.instruction = THUMB_OP16(opcode);
9340 inst.instruction |= (Rd << 4) | Rs;
9341 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9342 if (inst.size_req != 2)
9343 inst.relax = opcode;
9344 }
9345 else
9346 constraint (inst.size_req == 2, BAD_HIREG);
9347 }
9348 if (inst.size_req == 4
9349 || (inst.size_req != 2 && !opcode))
9350 {
9351 if (Rd == REG_PC)
9352 {
9353 constraint (add, BAD_PC);
9354 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9355 _("only SUBS PC, LR, #const allowed"));
9356 constraint (inst.reloc.exp.X_op != O_constant,
9357 _("expression too complex"));
9358 constraint (inst.reloc.exp.X_add_number < 0
9359 || inst.reloc.exp.X_add_number > 0xff,
9360 _("immediate value out of range"));
9361 inst.instruction = T2_SUBS_PC_LR
9362 | inst.reloc.exp.X_add_number;
9363 inst.reloc.type = BFD_RELOC_UNUSED;
9364 return;
9365 }
9366 else if (Rs == REG_PC)
9367 {
9368 /* Always use addw/subw. */
9369 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9370 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9371 }
9372 else
9373 {
9374 inst.instruction = THUMB_OP32 (inst.instruction);
9375 inst.instruction = (inst.instruction & 0xe1ffffff)
9376 | 0x10000000;
9377 if (flags)
9378 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9379 else
9380 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9381 }
9382 inst.instruction |= Rd << 8;
9383 inst.instruction |= Rs << 16;
9384 }
9385 }
9386 else
9387 {
9388 Rn = inst.operands[2].reg;
9389 /* See if we can do this with a 16-bit instruction. */
9390 if (!inst.operands[2].shifted && inst.size_req != 4)
9391 {
9392 if (Rd > 7 || Rs > 7 || Rn > 7)
9393 narrow = FALSE;
9394
9395 if (narrow)
9396 {
9397 inst.instruction = ((inst.instruction == T_MNEM_adds
9398 || inst.instruction == T_MNEM_add)
9399 ? T_OPCODE_ADD_R3
9400 : T_OPCODE_SUB_R3);
9401 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9402 return;
9403 }
9404
9405 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9406 {
9407 /* Thumb-1 cores (except v6-M) require at least one high
9408 register in a narrow non flag setting add. */
9409 if (Rd > 7 || Rn > 7
9410 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9411 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9412 {
9413 if (Rd == Rn)
9414 {
9415 Rn = Rs;
9416 Rs = Rd;
9417 }
9418 inst.instruction = T_OPCODE_ADD_HI;
9419 inst.instruction |= (Rd & 8) << 4;
9420 inst.instruction |= (Rd & 7);
9421 inst.instruction |= Rn << 3;
9422 return;
9423 }
9424 }
9425 }
9426
9427 constraint (Rd == REG_PC, BAD_PC);
9428 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9429 constraint (Rs == REG_PC, BAD_PC);
9430 reject_bad_reg (Rn);
9431
9432 /* If we get here, it can't be done in 16 bits. */
9433 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9434 _("shift must be constant"));
9435 inst.instruction = THUMB_OP32 (inst.instruction);
9436 inst.instruction |= Rd << 8;
9437 inst.instruction |= Rs << 16;
9438 encode_thumb32_shifted_operand (2);
9439 }
9440 }
9441 else
9442 {
9443 constraint (inst.instruction == T_MNEM_adds
9444 || inst.instruction == T_MNEM_subs,
9445 BAD_THUMB32);
9446
9447 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9448 {
9449 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9450 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9451 BAD_HIREG);
9452
9453 inst.instruction = (inst.instruction == T_MNEM_add
9454 ? 0x0000 : 0x8000);
9455 inst.instruction |= (Rd << 4) | Rs;
9456 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9457 return;
9458 }
9459
9460 Rn = inst.operands[2].reg;
9461 constraint (inst.operands[2].shifted, _("unshifted register required"));
9462
9463 /* We now have Rd, Rs, and Rn set to registers. */
9464 if (Rd > 7 || Rs > 7 || Rn > 7)
9465 {
9466 /* Can't do this for SUB. */
9467 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9468 inst.instruction = T_OPCODE_ADD_HI;
9469 inst.instruction |= (Rd & 8) << 4;
9470 inst.instruction |= (Rd & 7);
9471 if (Rs == Rd)
9472 inst.instruction |= Rn << 3;
9473 else if (Rn == Rd)
9474 inst.instruction |= Rs << 3;
9475 else
9476 constraint (1, _("dest must overlap one source register"));
9477 }
9478 else
9479 {
9480 inst.instruction = (inst.instruction == T_MNEM_add
9481 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9482 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9483 }
9484 }
9485 }
9486
9487 static void
9488 do_t_adr (void)
9489 {
9490 unsigned Rd;
9491
9492 Rd = inst.operands[0].reg;
9493 reject_bad_reg (Rd);
9494
9495 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9496 {
9497 /* Defer to section relaxation. */
9498 inst.relax = inst.instruction;
9499 inst.instruction = THUMB_OP16 (inst.instruction);
9500 inst.instruction |= Rd << 4;
9501 }
9502 else if (unified_syntax && inst.size_req != 2)
9503 {
9504 /* Generate a 32-bit opcode. */
9505 inst.instruction = THUMB_OP32 (inst.instruction);
9506 inst.instruction |= Rd << 8;
9507 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9508 inst.reloc.pc_rel = 1;
9509 }
9510 else
9511 {
9512 /* Generate a 16-bit opcode. */
9513 inst.instruction = THUMB_OP16 (inst.instruction);
9514 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9515 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9516 inst.reloc.pc_rel = 1;
9517
9518 inst.instruction |= Rd << 4;
9519 }
9520 }
9521
9522 /* Arithmetic instructions for which there is just one 16-bit
9523 instruction encoding, and it allows only two low registers.
9524 For maximal compatibility with ARM syntax, we allow three register
9525 operands even when Thumb-32 instructions are not available, as long
9526 as the first two are identical. For instance, both "sbc r0,r1" and
9527 "sbc r0,r0,r1" are allowed. */
9528 static void
9529 do_t_arit3 (void)
9530 {
9531 int Rd, Rs, Rn;
9532
9533 Rd = inst.operands[0].reg;
9534 Rs = (inst.operands[1].present
9535 ? inst.operands[1].reg /* Rd, Rs, foo */
9536 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9537 Rn = inst.operands[2].reg;
9538
9539 reject_bad_reg (Rd);
9540 reject_bad_reg (Rs);
9541 if (inst.operands[2].isreg)
9542 reject_bad_reg (Rn);
9543
9544 if (unified_syntax)
9545 {
9546 if (!inst.operands[2].isreg)
9547 {
9548 /* For an immediate, we always generate a 32-bit opcode;
9549 section relaxation will shrink it later if possible. */
9550 inst.instruction = THUMB_OP32 (inst.instruction);
9551 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9552 inst.instruction |= Rd << 8;
9553 inst.instruction |= Rs << 16;
9554 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9555 }
9556 else
9557 {
9558 bfd_boolean narrow;
9559
9560 /* See if we can do this with a 16-bit instruction. */
9561 if (THUMB_SETS_FLAGS (inst.instruction))
9562 narrow = !in_it_block ();
9563 else
9564 narrow = in_it_block ();
9565
9566 if (Rd > 7 || Rn > 7 || Rs > 7)
9567 narrow = FALSE;
9568 if (inst.operands[2].shifted)
9569 narrow = FALSE;
9570 if (inst.size_req == 4)
9571 narrow = FALSE;
9572
9573 if (narrow
9574 && Rd == Rs)
9575 {
9576 inst.instruction = THUMB_OP16 (inst.instruction);
9577 inst.instruction |= Rd;
9578 inst.instruction |= Rn << 3;
9579 return;
9580 }
9581
9582 /* If we get here, it can't be done in 16 bits. */
9583 constraint (inst.operands[2].shifted
9584 && inst.operands[2].immisreg,
9585 _("shift must be constant"));
9586 inst.instruction = THUMB_OP32 (inst.instruction);
9587 inst.instruction |= Rd << 8;
9588 inst.instruction |= Rs << 16;
9589 encode_thumb32_shifted_operand (2);
9590 }
9591 }
9592 else
9593 {
9594 /* On its face this is a lie - the instruction does set the
9595 flags. However, the only supported mnemonic in this mode
9596 says it doesn't. */
9597 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9598
9599 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9600 _("unshifted register required"));
9601 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9602 constraint (Rd != Rs,
9603 _("dest and source1 must be the same register"));
9604
9605 inst.instruction = THUMB_OP16 (inst.instruction);
9606 inst.instruction |= Rd;
9607 inst.instruction |= Rn << 3;
9608 }
9609 }
9610
9611 /* Similarly, but for instructions where the arithmetic operation is
9612 commutative, so we can allow either of them to be different from
9613 the destination operand in a 16-bit instruction. For instance, all
9614 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9615 accepted. */
9616 static void
9617 do_t_arit3c (void)
9618 {
9619 int Rd, Rs, Rn;
9620
9621 Rd = inst.operands[0].reg;
9622 Rs = (inst.operands[1].present
9623 ? inst.operands[1].reg /* Rd, Rs, foo */
9624 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9625 Rn = inst.operands[2].reg;
9626
9627 reject_bad_reg (Rd);
9628 reject_bad_reg (Rs);
9629 if (inst.operands[2].isreg)
9630 reject_bad_reg (Rn);
9631
9632 if (unified_syntax)
9633 {
9634 if (!inst.operands[2].isreg)
9635 {
9636 /* For an immediate, we always generate a 32-bit opcode;
9637 section relaxation will shrink it later if possible. */
9638 inst.instruction = THUMB_OP32 (inst.instruction);
9639 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9640 inst.instruction |= Rd << 8;
9641 inst.instruction |= Rs << 16;
9642 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9643 }
9644 else
9645 {
9646 bfd_boolean narrow;
9647
9648 /* See if we can do this with a 16-bit instruction. */
9649 if (THUMB_SETS_FLAGS (inst.instruction))
9650 narrow = !in_it_block ();
9651 else
9652 narrow = in_it_block ();
9653
9654 if (Rd > 7 || Rn > 7 || Rs > 7)
9655 narrow = FALSE;
9656 if (inst.operands[2].shifted)
9657 narrow = FALSE;
9658 if (inst.size_req == 4)
9659 narrow = FALSE;
9660
9661 if (narrow)
9662 {
9663 if (Rd == Rs)
9664 {
9665 inst.instruction = THUMB_OP16 (inst.instruction);
9666 inst.instruction |= Rd;
9667 inst.instruction |= Rn << 3;
9668 return;
9669 }
9670 if (Rd == Rn)
9671 {
9672 inst.instruction = THUMB_OP16 (inst.instruction);
9673 inst.instruction |= Rd;
9674 inst.instruction |= Rs << 3;
9675 return;
9676 }
9677 }
9678
9679 /* If we get here, it can't be done in 16 bits. */
9680 constraint (inst.operands[2].shifted
9681 && inst.operands[2].immisreg,
9682 _("shift must be constant"));
9683 inst.instruction = THUMB_OP32 (inst.instruction);
9684 inst.instruction |= Rd << 8;
9685 inst.instruction |= Rs << 16;
9686 encode_thumb32_shifted_operand (2);
9687 }
9688 }
9689 else
9690 {
9691 /* On its face this is a lie - the instruction does set the
9692 flags. However, the only supported mnemonic in this mode
9693 says it doesn't. */
9694 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9695
9696 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9697 _("unshifted register required"));
9698 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9699
9700 inst.instruction = THUMB_OP16 (inst.instruction);
9701 inst.instruction |= Rd;
9702
9703 if (Rd == Rs)
9704 inst.instruction |= Rn << 3;
9705 else if (Rd == Rn)
9706 inst.instruction |= Rs << 3;
9707 else
9708 constraint (1, _("dest must overlap one source register"));
9709 }
9710 }
9711
9712 static void
9713 do_t_barrier (void)
9714 {
9715 if (inst.operands[0].present)
9716 {
9717 constraint ((inst.instruction & 0xf0) != 0x40
9718 && inst.operands[0].imm > 0xf
9719 && inst.operands[0].imm < 0x0,
9720 _("bad barrier type"));
9721 inst.instruction |= inst.operands[0].imm;
9722 }
9723 else
9724 inst.instruction |= 0xf;
9725 }
9726
9727 static void
9728 do_t_bfc (void)
9729 {
9730 unsigned Rd;
9731 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9732 constraint (msb > 32, _("bit-field extends past end of register"));
9733 /* The instruction encoding stores the LSB and MSB,
9734 not the LSB and width. */
9735 Rd = inst.operands[0].reg;
9736 reject_bad_reg (Rd);
9737 inst.instruction |= Rd << 8;
9738 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9739 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9740 inst.instruction |= msb - 1;
9741 }
9742
9743 static void
9744 do_t_bfi (void)
9745 {
9746 int Rd, Rn;
9747 unsigned int msb;
9748
9749 Rd = inst.operands[0].reg;
9750 reject_bad_reg (Rd);
9751
9752 /* #0 in second position is alternative syntax for bfc, which is
9753 the same instruction but with REG_PC in the Rm field. */
9754 if (!inst.operands[1].isreg)
9755 Rn = REG_PC;
9756 else
9757 {
9758 Rn = inst.operands[1].reg;
9759 reject_bad_reg (Rn);
9760 }
9761
9762 msb = inst.operands[2].imm + inst.operands[3].imm;
9763 constraint (msb > 32, _("bit-field extends past end of register"));
9764 /* The instruction encoding stores the LSB and MSB,
9765 not the LSB and width. */
9766 inst.instruction |= Rd << 8;
9767 inst.instruction |= Rn << 16;
9768 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9769 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9770 inst.instruction |= msb - 1;
9771 }
9772
9773 static void
9774 do_t_bfx (void)
9775 {
9776 unsigned Rd, Rn;
9777
9778 Rd = inst.operands[0].reg;
9779 Rn = inst.operands[1].reg;
9780
9781 reject_bad_reg (Rd);
9782 reject_bad_reg (Rn);
9783
9784 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9785 _("bit-field extends past end of register"));
9786 inst.instruction |= Rd << 8;
9787 inst.instruction |= Rn << 16;
9788 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9789 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9790 inst.instruction |= inst.operands[3].imm - 1;
9791 }
9792
9793 /* ARM V5 Thumb BLX (argument parse)
9794 BLX <target_addr> which is BLX(1)
9795 BLX <Rm> which is BLX(2)
9796 Unfortunately, there are two different opcodes for this mnemonic.
9797 So, the insns[].value is not used, and the code here zaps values
9798 into inst.instruction.
9799
9800 ??? How to take advantage of the additional two bits of displacement
9801 available in Thumb32 mode? Need new relocation? */
9802
9803 static void
9804 do_t_blx (void)
9805 {
9806 set_it_insn_type_last ();
9807
9808 if (inst.operands[0].isreg)
9809 {
9810 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9811 /* We have a register, so this is BLX(2). */
9812 inst.instruction |= inst.operands[0].reg << 3;
9813 }
9814 else
9815 {
9816 /* No register. This must be BLX(1). */
9817 inst.instruction = 0xf000e800;
9818 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
9819 }
9820 }
9821
9822 static void
9823 do_t_branch (void)
9824 {
9825 int opcode;
9826 int cond;
9827 int reloc;
9828
9829 cond = inst.cond;
9830 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9831
9832 if (in_it_block ())
9833 {
9834 /* Conditional branches inside IT blocks are encoded as unconditional
9835 branches. */
9836 cond = COND_ALWAYS;
9837 }
9838 else
9839 cond = inst.cond;
9840
9841 if (cond != COND_ALWAYS)
9842 opcode = T_MNEM_bcond;
9843 else
9844 opcode = inst.instruction;
9845
9846 if (unified_syntax
9847 && (inst.size_req == 4
9848 || (inst.size_req != 2 && inst.operands[0].hasreloc)))
9849 {
9850 inst.instruction = THUMB_OP32(opcode);
9851 if (cond == COND_ALWAYS)
9852 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
9853 else
9854 {
9855 gas_assert (cond != 0xF);
9856 inst.instruction |= cond << 22;
9857 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
9858 }
9859 }
9860 else
9861 {
9862 inst.instruction = THUMB_OP16(opcode);
9863 if (cond == COND_ALWAYS)
9864 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
9865 else
9866 {
9867 inst.instruction |= cond << 8;
9868 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
9869 }
9870 /* Allow section relaxation. */
9871 if (unified_syntax && inst.size_req != 2)
9872 inst.relax = opcode;
9873 }
9874 inst.reloc.type = reloc;
9875 inst.reloc.pc_rel = 1;
9876 }
9877
9878 static void
9879 do_t_bkpt (void)
9880 {
9881 constraint (inst.cond != COND_ALWAYS,
9882 _("instruction is always unconditional"));
9883 if (inst.operands[0].present)
9884 {
9885 constraint (inst.operands[0].imm > 255,
9886 _("immediate value out of range"));
9887 inst.instruction |= inst.operands[0].imm;
9888 set_it_insn_type (NEUTRAL_IT_INSN);
9889 }
9890 }
9891
9892 static void
9893 do_t_branch23 (void)
9894 {
9895 set_it_insn_type_last ();
9896 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
9897
9898 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
9899 this file. We used to simply ignore the PLT reloc type here --
9900 the branch encoding is now needed to deal with TLSCALL relocs.
9901 So if we see a PLT reloc now, put it back to how it used to be to
9902 keep the preexisting behaviour. */
9903 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
9904 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9905
9906 #if defined(OBJ_COFF)
9907 /* If the destination of the branch is a defined symbol which does not have
9908 the THUMB_FUNC attribute, then we must be calling a function which has
9909 the (interfacearm) attribute. We look for the Thumb entry point to that
9910 function and change the branch to refer to that function instead. */
9911 if ( inst.reloc.exp.X_op == O_symbol
9912 && inst.reloc.exp.X_add_symbol != NULL
9913 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9914 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9915 inst.reloc.exp.X_add_symbol =
9916 find_real_start (inst.reloc.exp.X_add_symbol);
9917 #endif
9918 }
9919
9920 static void
9921 do_t_bx (void)
9922 {
9923 set_it_insn_type_last ();
9924 inst.instruction |= inst.operands[0].reg << 3;
9925 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9926 should cause the alignment to be checked once it is known. This is
9927 because BX PC only works if the instruction is word aligned. */
9928 }
9929
9930 static void
9931 do_t_bxj (void)
9932 {
9933 int Rm;
9934
9935 set_it_insn_type_last ();
9936 Rm = inst.operands[0].reg;
9937 reject_bad_reg (Rm);
9938 inst.instruction |= Rm << 16;
9939 }
9940
9941 static void
9942 do_t_clz (void)
9943 {
9944 unsigned Rd;
9945 unsigned Rm;
9946
9947 Rd = inst.operands[0].reg;
9948 Rm = inst.operands[1].reg;
9949
9950 reject_bad_reg (Rd);
9951 reject_bad_reg (Rm);
9952
9953 inst.instruction |= Rd << 8;
9954 inst.instruction |= Rm << 16;
9955 inst.instruction |= Rm;
9956 }
9957
9958 static void
9959 do_t_cps (void)
9960 {
9961 set_it_insn_type (OUTSIDE_IT_INSN);
9962 inst.instruction |= inst.operands[0].imm;
9963 }
9964
9965 static void
9966 do_t_cpsi (void)
9967 {
9968 set_it_insn_type (OUTSIDE_IT_INSN);
9969 if (unified_syntax
9970 && (inst.operands[1].present || inst.size_req == 4)
9971 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9972 {
9973 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9974 inst.instruction = 0xf3af8000;
9975 inst.instruction |= imod << 9;
9976 inst.instruction |= inst.operands[0].imm << 5;
9977 if (inst.operands[1].present)
9978 inst.instruction |= 0x100 | inst.operands[1].imm;
9979 }
9980 else
9981 {
9982 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9983 && (inst.operands[0].imm & 4),
9984 _("selected processor does not support 'A' form "
9985 "of this instruction"));
9986 constraint (inst.operands[1].present || inst.size_req == 4,
9987 _("Thumb does not support the 2-argument "
9988 "form of this instruction"));
9989 inst.instruction |= inst.operands[0].imm;
9990 }
9991 }
9992
9993 /* THUMB CPY instruction (argument parse). */
9994
9995 static void
9996 do_t_cpy (void)
9997 {
9998 if (inst.size_req == 4)
9999 {
10000 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10001 inst.instruction |= inst.operands[0].reg << 8;
10002 inst.instruction |= inst.operands[1].reg;
10003 }
10004 else
10005 {
10006 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10007 inst.instruction |= (inst.operands[0].reg & 0x7);
10008 inst.instruction |= inst.operands[1].reg << 3;
10009 }
10010 }
10011
10012 static void
10013 do_t_cbz (void)
10014 {
10015 set_it_insn_type (OUTSIDE_IT_INSN);
10016 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10017 inst.instruction |= inst.operands[0].reg;
10018 inst.reloc.pc_rel = 1;
10019 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10020 }
10021
10022 static void
10023 do_t_dbg (void)
10024 {
10025 inst.instruction |= inst.operands[0].imm;
10026 }
10027
10028 static void
10029 do_t_div (void)
10030 {
10031 unsigned Rd, Rn, Rm;
10032
10033 Rd = inst.operands[0].reg;
10034 Rn = (inst.operands[1].present
10035 ? inst.operands[1].reg : Rd);
10036 Rm = inst.operands[2].reg;
10037
10038 reject_bad_reg (Rd);
10039 reject_bad_reg (Rn);
10040 reject_bad_reg (Rm);
10041
10042 inst.instruction |= Rd << 8;
10043 inst.instruction |= Rn << 16;
10044 inst.instruction |= Rm;
10045 }
10046
10047 static void
10048 do_t_hint (void)
10049 {
10050 if (unified_syntax && inst.size_req == 4)
10051 inst.instruction = THUMB_OP32 (inst.instruction);
10052 else
10053 inst.instruction = THUMB_OP16 (inst.instruction);
10054 }
10055
10056 static void
10057 do_t_it (void)
10058 {
10059 unsigned int cond = inst.operands[0].imm;
10060
10061 set_it_insn_type (IT_INSN);
10062 now_it.mask = (inst.instruction & 0xf) | 0x10;
10063 now_it.cc = cond;
10064
10065 /* If the condition is a negative condition, invert the mask. */
10066 if ((cond & 0x1) == 0x0)
10067 {
10068 unsigned int mask = inst.instruction & 0x000f;
10069
10070 if ((mask & 0x7) == 0)
10071 /* no conversion needed */;
10072 else if ((mask & 0x3) == 0)
10073 mask ^= 0x8;
10074 else if ((mask & 0x1) == 0)
10075 mask ^= 0xC;
10076 else
10077 mask ^= 0xE;
10078
10079 inst.instruction &= 0xfff0;
10080 inst.instruction |= mask;
10081 }
10082
10083 inst.instruction |= cond << 4;
10084 }
10085
10086 /* Helper function used for both push/pop and ldm/stm. */
10087 static void
10088 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10089 {
10090 bfd_boolean load;
10091
10092 load = (inst.instruction & (1 << 20)) != 0;
10093
10094 if (mask & (1 << 13))
10095 inst.error = _("SP not allowed in register list");
10096
10097 if ((mask & (1 << base)) != 0
10098 && writeback)
10099 inst.error = _("having the base register in the register list when "
10100 "using write back is UNPREDICTABLE");
10101
10102 if (load)
10103 {
10104 if (mask & (1 << 15))
10105 {
10106 if (mask & (1 << 14))
10107 inst.error = _("LR and PC should not both be in register list");
10108 else
10109 set_it_insn_type_last ();
10110 }
10111 }
10112 else
10113 {
10114 if (mask & (1 << 15))
10115 inst.error = _("PC not allowed in register list");
10116 }
10117
10118 if ((mask & (mask - 1)) == 0)
10119 {
10120 /* Single register transfers implemented as str/ldr. */
10121 if (writeback)
10122 {
10123 if (inst.instruction & (1 << 23))
10124 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10125 else
10126 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10127 }
10128 else
10129 {
10130 if (inst.instruction & (1 << 23))
10131 inst.instruction = 0x00800000; /* ia -> [base] */
10132 else
10133 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10134 }
10135
10136 inst.instruction |= 0xf8400000;
10137 if (load)
10138 inst.instruction |= 0x00100000;
10139
10140 mask = ffs (mask) - 1;
10141 mask <<= 12;
10142 }
10143 else if (writeback)
10144 inst.instruction |= WRITE_BACK;
10145
10146 inst.instruction |= mask;
10147 inst.instruction |= base << 16;
10148 }
10149
10150 static void
10151 do_t_ldmstm (void)
10152 {
10153 /* This really doesn't seem worth it. */
10154 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10155 _("expression too complex"));
10156 constraint (inst.operands[1].writeback,
10157 _("Thumb load/store multiple does not support {reglist}^"));
10158
10159 if (unified_syntax)
10160 {
10161 bfd_boolean narrow;
10162 unsigned mask;
10163
10164 narrow = FALSE;
10165 /* See if we can use a 16-bit instruction. */
10166 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10167 && inst.size_req != 4
10168 && !(inst.operands[1].imm & ~0xff))
10169 {
10170 mask = 1 << inst.operands[0].reg;
10171
10172 if (inst.operands[0].reg <= 7)
10173 {
10174 if (inst.instruction == T_MNEM_stmia
10175 ? inst.operands[0].writeback
10176 : (inst.operands[0].writeback
10177 == !(inst.operands[1].imm & mask)))
10178 {
10179 if (inst.instruction == T_MNEM_stmia
10180 && (inst.operands[1].imm & mask)
10181 && (inst.operands[1].imm & (mask - 1)))
10182 as_warn (_("value stored for r%d is UNKNOWN"),
10183 inst.operands[0].reg);
10184
10185 inst.instruction = THUMB_OP16 (inst.instruction);
10186 inst.instruction |= inst.operands[0].reg << 8;
10187 inst.instruction |= inst.operands[1].imm;
10188 narrow = TRUE;
10189 }
10190 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10191 {
10192 /* This means 1 register in reg list one of 3 situations:
10193 1. Instruction is stmia, but without writeback.
10194 2. lmdia without writeback, but with Rn not in
10195 reglist.
10196 3. ldmia with writeback, but with Rn in reglist.
10197 Case 3 is UNPREDICTABLE behaviour, so we handle
10198 case 1 and 2 which can be converted into a 16-bit
10199 str or ldr. The SP cases are handled below. */
10200 unsigned long opcode;
10201 /* First, record an error for Case 3. */
10202 if (inst.operands[1].imm & mask
10203 && inst.operands[0].writeback)
10204 inst.error =
10205 _("having the base register in the register list when "
10206 "using write back is UNPREDICTABLE");
10207
10208 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10209 : T_MNEM_ldr);
10210 inst.instruction = THUMB_OP16 (opcode);
10211 inst.instruction |= inst.operands[0].reg << 3;
10212 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10213 narrow = TRUE;
10214 }
10215 }
10216 else if (inst.operands[0] .reg == REG_SP)
10217 {
10218 if (inst.operands[0].writeback)
10219 {
10220 inst.instruction =
10221 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10222 ? T_MNEM_push : T_MNEM_pop);
10223 inst.instruction |= inst.operands[1].imm;
10224 narrow = TRUE;
10225 }
10226 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10227 {
10228 inst.instruction =
10229 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10230 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10231 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10232 narrow = TRUE;
10233 }
10234 }
10235 }
10236
10237 if (!narrow)
10238 {
10239 if (inst.instruction < 0xffff)
10240 inst.instruction = THUMB_OP32 (inst.instruction);
10241
10242 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10243 inst.operands[0].writeback);
10244 }
10245 }
10246 else
10247 {
10248 constraint (inst.operands[0].reg > 7
10249 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10250 constraint (inst.instruction != T_MNEM_ldmia
10251 && inst.instruction != T_MNEM_stmia,
10252 _("Thumb-2 instruction only valid in unified syntax"));
10253 if (inst.instruction == T_MNEM_stmia)
10254 {
10255 if (!inst.operands[0].writeback)
10256 as_warn (_("this instruction will write back the base register"));
10257 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10258 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10259 as_warn (_("value stored for r%d is UNKNOWN"),
10260 inst.operands[0].reg);
10261 }
10262 else
10263 {
10264 if (!inst.operands[0].writeback
10265 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10266 as_warn (_("this instruction will write back the base register"));
10267 else if (inst.operands[0].writeback
10268 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10269 as_warn (_("this instruction will not write back the base register"));
10270 }
10271
10272 inst.instruction = THUMB_OP16 (inst.instruction);
10273 inst.instruction |= inst.operands[0].reg << 8;
10274 inst.instruction |= inst.operands[1].imm;
10275 }
10276 }
10277
10278 static void
10279 do_t_ldrex (void)
10280 {
10281 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10282 || inst.operands[1].postind || inst.operands[1].writeback
10283 || inst.operands[1].immisreg || inst.operands[1].shifted
10284 || inst.operands[1].negative,
10285 BAD_ADDR_MODE);
10286
10287 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10288
10289 inst.instruction |= inst.operands[0].reg << 12;
10290 inst.instruction |= inst.operands[1].reg << 16;
10291 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10292 }
10293
10294 static void
10295 do_t_ldrexd (void)
10296 {
10297 if (!inst.operands[1].present)
10298 {
10299 constraint (inst.operands[0].reg == REG_LR,
10300 _("r14 not allowed as first register "
10301 "when second register is omitted"));
10302 inst.operands[1].reg = inst.operands[0].reg + 1;
10303 }
10304 constraint (inst.operands[0].reg == inst.operands[1].reg,
10305 BAD_OVERLAP);
10306
10307 inst.instruction |= inst.operands[0].reg << 12;
10308 inst.instruction |= inst.operands[1].reg << 8;
10309 inst.instruction |= inst.operands[2].reg << 16;
10310 }
10311
10312 static void
10313 do_t_ldst (void)
10314 {
10315 unsigned long opcode;
10316 int Rn;
10317
10318 if (inst.operands[0].isreg
10319 && !inst.operands[0].preind
10320 && inst.operands[0].reg == REG_PC)
10321 set_it_insn_type_last ();
10322
10323 opcode = inst.instruction;
10324 if (unified_syntax)
10325 {
10326 if (!inst.operands[1].isreg)
10327 {
10328 if (opcode <= 0xffff)
10329 inst.instruction = THUMB_OP32 (opcode);
10330 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10331 return;
10332 }
10333 if (inst.operands[1].isreg
10334 && !inst.operands[1].writeback
10335 && !inst.operands[1].shifted && !inst.operands[1].postind
10336 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10337 && opcode <= 0xffff
10338 && inst.size_req != 4)
10339 {
10340 /* Insn may have a 16-bit form. */
10341 Rn = inst.operands[1].reg;
10342 if (inst.operands[1].immisreg)
10343 {
10344 inst.instruction = THUMB_OP16 (opcode);
10345 /* [Rn, Rik] */
10346 if (Rn <= 7 && inst.operands[1].imm <= 7)
10347 goto op16;
10348 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10349 reject_bad_reg (inst.operands[1].imm);
10350 }
10351 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10352 && opcode != T_MNEM_ldrsb)
10353 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10354 || (Rn == REG_SP && opcode == T_MNEM_str))
10355 {
10356 /* [Rn, #const] */
10357 if (Rn > 7)
10358 {
10359 if (Rn == REG_PC)
10360 {
10361 if (inst.reloc.pc_rel)
10362 opcode = T_MNEM_ldr_pc2;
10363 else
10364 opcode = T_MNEM_ldr_pc;
10365 }
10366 else
10367 {
10368 if (opcode == T_MNEM_ldr)
10369 opcode = T_MNEM_ldr_sp;
10370 else
10371 opcode = T_MNEM_str_sp;
10372 }
10373 inst.instruction = inst.operands[0].reg << 8;
10374 }
10375 else
10376 {
10377 inst.instruction = inst.operands[0].reg;
10378 inst.instruction |= inst.operands[1].reg << 3;
10379 }
10380 inst.instruction |= THUMB_OP16 (opcode);
10381 if (inst.size_req == 2)
10382 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10383 else
10384 inst.relax = opcode;
10385 return;
10386 }
10387 }
10388 /* Definitely a 32-bit variant. */
10389
10390 /* Warning for Erratum 752419. */
10391 if (opcode == T_MNEM_ldr
10392 && inst.operands[0].reg == REG_SP
10393 && inst.operands[1].writeback == 1
10394 && !inst.operands[1].immisreg)
10395 {
10396 if (no_cpu_selected ()
10397 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10398 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10399 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10400 as_warn (_("This instruction may be unpredictable "
10401 "if executed on M-profile cores "
10402 "with interrupts enabled."));
10403 }
10404
10405 /* Do some validations regarding addressing modes. */
10406 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10407 && opcode != T_MNEM_str)
10408 reject_bad_reg (inst.operands[1].imm);
10409
10410 inst.instruction = THUMB_OP32 (opcode);
10411 inst.instruction |= inst.operands[0].reg << 12;
10412 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10413 return;
10414 }
10415
10416 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10417
10418 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10419 {
10420 /* Only [Rn,Rm] is acceptable. */
10421 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10422 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10423 || inst.operands[1].postind || inst.operands[1].shifted
10424 || inst.operands[1].negative,
10425 _("Thumb does not support this addressing mode"));
10426 inst.instruction = THUMB_OP16 (inst.instruction);
10427 goto op16;
10428 }
10429
10430 inst.instruction = THUMB_OP16 (inst.instruction);
10431 if (!inst.operands[1].isreg)
10432 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10433 return;
10434
10435 constraint (!inst.operands[1].preind
10436 || inst.operands[1].shifted
10437 || inst.operands[1].writeback,
10438 _("Thumb does not support this addressing mode"));
10439 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10440 {
10441 constraint (inst.instruction & 0x0600,
10442 _("byte or halfword not valid for base register"));
10443 constraint (inst.operands[1].reg == REG_PC
10444 && !(inst.instruction & THUMB_LOAD_BIT),
10445 _("r15 based store not allowed"));
10446 constraint (inst.operands[1].immisreg,
10447 _("invalid base register for register offset"));
10448
10449 if (inst.operands[1].reg == REG_PC)
10450 inst.instruction = T_OPCODE_LDR_PC;
10451 else if (inst.instruction & THUMB_LOAD_BIT)
10452 inst.instruction = T_OPCODE_LDR_SP;
10453 else
10454 inst.instruction = T_OPCODE_STR_SP;
10455
10456 inst.instruction |= inst.operands[0].reg << 8;
10457 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10458 return;
10459 }
10460
10461 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10462 if (!inst.operands[1].immisreg)
10463 {
10464 /* Immediate offset. */
10465 inst.instruction |= inst.operands[0].reg;
10466 inst.instruction |= inst.operands[1].reg << 3;
10467 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10468 return;
10469 }
10470
10471 /* Register offset. */
10472 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10473 constraint (inst.operands[1].negative,
10474 _("Thumb does not support this addressing mode"));
10475
10476 op16:
10477 switch (inst.instruction)
10478 {
10479 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10480 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10481 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10482 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10483 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10484 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10485 case 0x5600 /* ldrsb */:
10486 case 0x5e00 /* ldrsh */: break;
10487 default: abort ();
10488 }
10489
10490 inst.instruction |= inst.operands[0].reg;
10491 inst.instruction |= inst.operands[1].reg << 3;
10492 inst.instruction |= inst.operands[1].imm << 6;
10493 }
10494
10495 static void
10496 do_t_ldstd (void)
10497 {
10498 if (!inst.operands[1].present)
10499 {
10500 inst.operands[1].reg = inst.operands[0].reg + 1;
10501 constraint (inst.operands[0].reg == REG_LR,
10502 _("r14 not allowed here"));
10503 }
10504 inst.instruction |= inst.operands[0].reg << 12;
10505 inst.instruction |= inst.operands[1].reg << 8;
10506 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10507 }
10508
10509 static void
10510 do_t_ldstt (void)
10511 {
10512 inst.instruction |= inst.operands[0].reg << 12;
10513 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10514 }
10515
10516 static void
10517 do_t_mla (void)
10518 {
10519 unsigned Rd, Rn, Rm, Ra;
10520
10521 Rd = inst.operands[0].reg;
10522 Rn = inst.operands[1].reg;
10523 Rm = inst.operands[2].reg;
10524 Ra = inst.operands[3].reg;
10525
10526 reject_bad_reg (Rd);
10527 reject_bad_reg (Rn);
10528 reject_bad_reg (Rm);
10529 reject_bad_reg (Ra);
10530
10531 inst.instruction |= Rd << 8;
10532 inst.instruction |= Rn << 16;
10533 inst.instruction |= Rm;
10534 inst.instruction |= Ra << 12;
10535 }
10536
10537 static void
10538 do_t_mlal (void)
10539 {
10540 unsigned RdLo, RdHi, Rn, Rm;
10541
10542 RdLo = inst.operands[0].reg;
10543 RdHi = inst.operands[1].reg;
10544 Rn = inst.operands[2].reg;
10545 Rm = inst.operands[3].reg;
10546
10547 reject_bad_reg (RdLo);
10548 reject_bad_reg (RdHi);
10549 reject_bad_reg (Rn);
10550 reject_bad_reg (Rm);
10551
10552 inst.instruction |= RdLo << 12;
10553 inst.instruction |= RdHi << 8;
10554 inst.instruction |= Rn << 16;
10555 inst.instruction |= Rm;
10556 }
10557
10558 static void
10559 do_t_mov_cmp (void)
10560 {
10561 unsigned Rn, Rm;
10562
10563 Rn = inst.operands[0].reg;
10564 Rm = inst.operands[1].reg;
10565
10566 if (Rn == REG_PC)
10567 set_it_insn_type_last ();
10568
10569 if (unified_syntax)
10570 {
10571 int r0off = (inst.instruction == T_MNEM_mov
10572 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10573 unsigned long opcode;
10574 bfd_boolean narrow;
10575 bfd_boolean low_regs;
10576
10577 low_regs = (Rn <= 7 && Rm <= 7);
10578 opcode = inst.instruction;
10579 if (in_it_block ())
10580 narrow = opcode != T_MNEM_movs;
10581 else
10582 narrow = opcode != T_MNEM_movs || low_regs;
10583 if (inst.size_req == 4
10584 || inst.operands[1].shifted)
10585 narrow = FALSE;
10586
10587 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10588 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10589 && !inst.operands[1].shifted
10590 && Rn == REG_PC
10591 && Rm == REG_LR)
10592 {
10593 inst.instruction = T2_SUBS_PC_LR;
10594 return;
10595 }
10596
10597 if (opcode == T_MNEM_cmp)
10598 {
10599 constraint (Rn == REG_PC, BAD_PC);
10600 if (narrow)
10601 {
10602 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10603 but valid. */
10604 warn_deprecated_sp (Rm);
10605 /* R15 was documented as a valid choice for Rm in ARMv6,
10606 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10607 tools reject R15, so we do too. */
10608 constraint (Rm == REG_PC, BAD_PC);
10609 }
10610 else
10611 reject_bad_reg (Rm);
10612 }
10613 else if (opcode == T_MNEM_mov
10614 || opcode == T_MNEM_movs)
10615 {
10616 if (inst.operands[1].isreg)
10617 {
10618 if (opcode == T_MNEM_movs)
10619 {
10620 reject_bad_reg (Rn);
10621 reject_bad_reg (Rm);
10622 }
10623 else if (narrow)
10624 {
10625 /* This is mov.n. */
10626 if ((Rn == REG_SP || Rn == REG_PC)
10627 && (Rm == REG_SP || Rm == REG_PC))
10628 {
10629 as_warn (_("Use of r%u as a source register is "
10630 "deprecated when r%u is the destination "
10631 "register."), Rm, Rn);
10632 }
10633 }
10634 else
10635 {
10636 /* This is mov.w. */
10637 constraint (Rn == REG_PC, BAD_PC);
10638 constraint (Rm == REG_PC, BAD_PC);
10639 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10640 }
10641 }
10642 else
10643 reject_bad_reg (Rn);
10644 }
10645
10646 if (!inst.operands[1].isreg)
10647 {
10648 /* Immediate operand. */
10649 if (!in_it_block () && opcode == T_MNEM_mov)
10650 narrow = 0;
10651 if (low_regs && narrow)
10652 {
10653 inst.instruction = THUMB_OP16 (opcode);
10654 inst.instruction |= Rn << 8;
10655 if (inst.size_req == 2)
10656 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10657 else
10658 inst.relax = opcode;
10659 }
10660 else
10661 {
10662 inst.instruction = THUMB_OP32 (inst.instruction);
10663 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10664 inst.instruction |= Rn << r0off;
10665 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10666 }
10667 }
10668 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10669 && (inst.instruction == T_MNEM_mov
10670 || inst.instruction == T_MNEM_movs))
10671 {
10672 /* Register shifts are encoded as separate shift instructions. */
10673 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10674
10675 if (in_it_block ())
10676 narrow = !flags;
10677 else
10678 narrow = flags;
10679
10680 if (inst.size_req == 4)
10681 narrow = FALSE;
10682
10683 if (!low_regs || inst.operands[1].imm > 7)
10684 narrow = FALSE;
10685
10686 if (Rn != Rm)
10687 narrow = FALSE;
10688
10689 switch (inst.operands[1].shift_kind)
10690 {
10691 case SHIFT_LSL:
10692 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10693 break;
10694 case SHIFT_ASR:
10695 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10696 break;
10697 case SHIFT_LSR:
10698 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10699 break;
10700 case SHIFT_ROR:
10701 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10702 break;
10703 default:
10704 abort ();
10705 }
10706
10707 inst.instruction = opcode;
10708 if (narrow)
10709 {
10710 inst.instruction |= Rn;
10711 inst.instruction |= inst.operands[1].imm << 3;
10712 }
10713 else
10714 {
10715 if (flags)
10716 inst.instruction |= CONDS_BIT;
10717
10718 inst.instruction |= Rn << 8;
10719 inst.instruction |= Rm << 16;
10720 inst.instruction |= inst.operands[1].imm;
10721 }
10722 }
10723 else if (!narrow)
10724 {
10725 /* Some mov with immediate shift have narrow variants.
10726 Register shifts are handled above. */
10727 if (low_regs && inst.operands[1].shifted
10728 && (inst.instruction == T_MNEM_mov
10729 || inst.instruction == T_MNEM_movs))
10730 {
10731 if (in_it_block ())
10732 narrow = (inst.instruction == T_MNEM_mov);
10733 else
10734 narrow = (inst.instruction == T_MNEM_movs);
10735 }
10736
10737 if (narrow)
10738 {
10739 switch (inst.operands[1].shift_kind)
10740 {
10741 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10742 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10743 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10744 default: narrow = FALSE; break;
10745 }
10746 }
10747
10748 if (narrow)
10749 {
10750 inst.instruction |= Rn;
10751 inst.instruction |= Rm << 3;
10752 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10753 }
10754 else
10755 {
10756 inst.instruction = THUMB_OP32 (inst.instruction);
10757 inst.instruction |= Rn << r0off;
10758 encode_thumb32_shifted_operand (1);
10759 }
10760 }
10761 else
10762 switch (inst.instruction)
10763 {
10764 case T_MNEM_mov:
10765 inst.instruction = T_OPCODE_MOV_HR;
10766 inst.instruction |= (Rn & 0x8) << 4;
10767 inst.instruction |= (Rn & 0x7);
10768 inst.instruction |= Rm << 3;
10769 break;
10770
10771 case T_MNEM_movs:
10772 /* We know we have low registers at this point.
10773 Generate LSLS Rd, Rs, #0. */
10774 inst.instruction = T_OPCODE_LSL_I;
10775 inst.instruction |= Rn;
10776 inst.instruction |= Rm << 3;
10777 break;
10778
10779 case T_MNEM_cmp:
10780 if (low_regs)
10781 {
10782 inst.instruction = T_OPCODE_CMP_LR;
10783 inst.instruction |= Rn;
10784 inst.instruction |= Rm << 3;
10785 }
10786 else
10787 {
10788 inst.instruction = T_OPCODE_CMP_HR;
10789 inst.instruction |= (Rn & 0x8) << 4;
10790 inst.instruction |= (Rn & 0x7);
10791 inst.instruction |= Rm << 3;
10792 }
10793 break;
10794 }
10795 return;
10796 }
10797
10798 inst.instruction = THUMB_OP16 (inst.instruction);
10799
10800 /* PR 10443: Do not silently ignore shifted operands. */
10801 constraint (inst.operands[1].shifted,
10802 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10803
10804 if (inst.operands[1].isreg)
10805 {
10806 if (Rn < 8 && Rm < 8)
10807 {
10808 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10809 since a MOV instruction produces unpredictable results. */
10810 if (inst.instruction == T_OPCODE_MOV_I8)
10811 inst.instruction = T_OPCODE_ADD_I3;
10812 else
10813 inst.instruction = T_OPCODE_CMP_LR;
10814
10815 inst.instruction |= Rn;
10816 inst.instruction |= Rm << 3;
10817 }
10818 else
10819 {
10820 if (inst.instruction == T_OPCODE_MOV_I8)
10821 inst.instruction = T_OPCODE_MOV_HR;
10822 else
10823 inst.instruction = T_OPCODE_CMP_HR;
10824 do_t_cpy ();
10825 }
10826 }
10827 else
10828 {
10829 constraint (Rn > 7,
10830 _("only lo regs allowed with immediate"));
10831 inst.instruction |= Rn << 8;
10832 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10833 }
10834 }
10835
10836 static void
10837 do_t_mov16 (void)
10838 {
10839 unsigned Rd;
10840 bfd_vma imm;
10841 bfd_boolean top;
10842
10843 top = (inst.instruction & 0x00800000) != 0;
10844 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10845 {
10846 constraint (top, _(":lower16: not allowed this instruction"));
10847 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10848 }
10849 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10850 {
10851 constraint (!top, _(":upper16: not allowed this instruction"));
10852 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10853 }
10854
10855 Rd = inst.operands[0].reg;
10856 reject_bad_reg (Rd);
10857
10858 inst.instruction |= Rd << 8;
10859 if (inst.reloc.type == BFD_RELOC_UNUSED)
10860 {
10861 imm = inst.reloc.exp.X_add_number;
10862 inst.instruction |= (imm & 0xf000) << 4;
10863 inst.instruction |= (imm & 0x0800) << 15;
10864 inst.instruction |= (imm & 0x0700) << 4;
10865 inst.instruction |= (imm & 0x00ff);
10866 }
10867 }
10868
10869 static void
10870 do_t_mvn_tst (void)
10871 {
10872 unsigned Rn, Rm;
10873
10874 Rn = inst.operands[0].reg;
10875 Rm = inst.operands[1].reg;
10876
10877 if (inst.instruction == T_MNEM_cmp
10878 || inst.instruction == T_MNEM_cmn)
10879 constraint (Rn == REG_PC, BAD_PC);
10880 else
10881 reject_bad_reg (Rn);
10882 reject_bad_reg (Rm);
10883
10884 if (unified_syntax)
10885 {
10886 int r0off = (inst.instruction == T_MNEM_mvn
10887 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10888 bfd_boolean narrow;
10889
10890 if (inst.size_req == 4
10891 || inst.instruction > 0xffff
10892 || inst.operands[1].shifted
10893 || Rn > 7 || Rm > 7)
10894 narrow = FALSE;
10895 else if (inst.instruction == T_MNEM_cmn)
10896 narrow = TRUE;
10897 else if (THUMB_SETS_FLAGS (inst.instruction))
10898 narrow = !in_it_block ();
10899 else
10900 narrow = in_it_block ();
10901
10902 if (!inst.operands[1].isreg)
10903 {
10904 /* For an immediate, we always generate a 32-bit opcode;
10905 section relaxation will shrink it later if possible. */
10906 if (inst.instruction < 0xffff)
10907 inst.instruction = THUMB_OP32 (inst.instruction);
10908 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10909 inst.instruction |= Rn << r0off;
10910 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10911 }
10912 else
10913 {
10914 /* See if we can do this with a 16-bit instruction. */
10915 if (narrow)
10916 {
10917 inst.instruction = THUMB_OP16 (inst.instruction);
10918 inst.instruction |= Rn;
10919 inst.instruction |= Rm << 3;
10920 }
10921 else
10922 {
10923 constraint (inst.operands[1].shifted
10924 && inst.operands[1].immisreg,
10925 _("shift must be constant"));
10926 if (inst.instruction < 0xffff)
10927 inst.instruction = THUMB_OP32 (inst.instruction);
10928 inst.instruction |= Rn << r0off;
10929 encode_thumb32_shifted_operand (1);
10930 }
10931 }
10932 }
10933 else
10934 {
10935 constraint (inst.instruction > 0xffff
10936 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10937 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10938 _("unshifted register required"));
10939 constraint (Rn > 7 || Rm > 7,
10940 BAD_HIREG);
10941
10942 inst.instruction = THUMB_OP16 (inst.instruction);
10943 inst.instruction |= Rn;
10944 inst.instruction |= Rm << 3;
10945 }
10946 }
10947
10948 static void
10949 do_t_mrs (void)
10950 {
10951 unsigned Rd;
10952
10953 if (do_vfp_nsyn_mrs () == SUCCESS)
10954 return;
10955
10956 Rd = inst.operands[0].reg;
10957 reject_bad_reg (Rd);
10958 inst.instruction |= Rd << 8;
10959
10960 if (inst.operands[1].isreg)
10961 {
10962 unsigned br = inst.operands[1].reg;
10963 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
10964 as_bad (_("bad register for mrs"));
10965
10966 inst.instruction |= br & (0xf << 16);
10967 inst.instruction |= (br & 0x300) >> 4;
10968 inst.instruction |= (br & SPSR_BIT) >> 2;
10969 }
10970 else
10971 {
10972 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10973
10974 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
10975 constraint (flags != 0, _("selected processor does not support "
10976 "requested special purpose register"));
10977 else
10978 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
10979 devices). */
10980 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10981 _("'APSR', 'CPSR' or 'SPSR' expected"));
10982
10983 inst.instruction |= (flags & SPSR_BIT) >> 2;
10984 inst.instruction |= inst.operands[1].imm & 0xff;
10985 inst.instruction |= 0xf0000;
10986 }
10987 }
10988
10989 static void
10990 do_t_msr (void)
10991 {
10992 int flags;
10993 unsigned Rn;
10994
10995 if (do_vfp_nsyn_msr () == SUCCESS)
10996 return;
10997
10998 constraint (!inst.operands[1].isreg,
10999 _("Thumb encoding does not support an immediate here"));
11000
11001 if (inst.operands[0].isreg)
11002 flags = (int)(inst.operands[0].reg);
11003 else
11004 flags = inst.operands[0].imm;
11005
11006 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11007 {
11008 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11009
11010 constraint ((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11011 && (bits & ~(PSR_s | PSR_f)) != 0)
11012 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11013 && bits != PSR_f),
11014 _("selected processor does not support requested special "
11015 "purpose register"));
11016 }
11017 else
11018 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11019 "requested special purpose register"));
11020
11021 Rn = inst.operands[1].reg;
11022 reject_bad_reg (Rn);
11023
11024 inst.instruction |= (flags & SPSR_BIT) >> 2;
11025 inst.instruction |= (flags & 0xf0000) >> 8;
11026 inst.instruction |= (flags & 0x300) >> 4;
11027 inst.instruction |= (flags & 0xff);
11028 inst.instruction |= Rn << 16;
11029 }
11030
11031 static void
11032 do_t_mul (void)
11033 {
11034 bfd_boolean narrow;
11035 unsigned Rd, Rn, Rm;
11036
11037 if (!inst.operands[2].present)
11038 inst.operands[2].reg = inst.operands[0].reg;
11039
11040 Rd = inst.operands[0].reg;
11041 Rn = inst.operands[1].reg;
11042 Rm = inst.operands[2].reg;
11043
11044 if (unified_syntax)
11045 {
11046 if (inst.size_req == 4
11047 || (Rd != Rn
11048 && Rd != Rm)
11049 || Rn > 7
11050 || Rm > 7)
11051 narrow = FALSE;
11052 else if (inst.instruction == T_MNEM_muls)
11053 narrow = !in_it_block ();
11054 else
11055 narrow = in_it_block ();
11056 }
11057 else
11058 {
11059 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11060 constraint (Rn > 7 || Rm > 7,
11061 BAD_HIREG);
11062 narrow = TRUE;
11063 }
11064
11065 if (narrow)
11066 {
11067 /* 16-bit MULS/Conditional MUL. */
11068 inst.instruction = THUMB_OP16 (inst.instruction);
11069 inst.instruction |= Rd;
11070
11071 if (Rd == Rn)
11072 inst.instruction |= Rm << 3;
11073 else if (Rd == Rm)
11074 inst.instruction |= Rn << 3;
11075 else
11076 constraint (1, _("dest must overlap one source register"));
11077 }
11078 else
11079 {
11080 constraint (inst.instruction != T_MNEM_mul,
11081 _("Thumb-2 MUL must not set flags"));
11082 /* 32-bit MUL. */
11083 inst.instruction = THUMB_OP32 (inst.instruction);
11084 inst.instruction |= Rd << 8;
11085 inst.instruction |= Rn << 16;
11086 inst.instruction |= Rm << 0;
11087
11088 reject_bad_reg (Rd);
11089 reject_bad_reg (Rn);
11090 reject_bad_reg (Rm);
11091 }
11092 }
11093
11094 static void
11095 do_t_mull (void)
11096 {
11097 unsigned RdLo, RdHi, Rn, Rm;
11098
11099 RdLo = inst.operands[0].reg;
11100 RdHi = inst.operands[1].reg;
11101 Rn = inst.operands[2].reg;
11102 Rm = inst.operands[3].reg;
11103
11104 reject_bad_reg (RdLo);
11105 reject_bad_reg (RdHi);
11106 reject_bad_reg (Rn);
11107 reject_bad_reg (Rm);
11108
11109 inst.instruction |= RdLo << 12;
11110 inst.instruction |= RdHi << 8;
11111 inst.instruction |= Rn << 16;
11112 inst.instruction |= Rm;
11113
11114 if (RdLo == RdHi)
11115 as_tsktsk (_("rdhi and rdlo must be different"));
11116 }
11117
11118 static void
11119 do_t_nop (void)
11120 {
11121 set_it_insn_type (NEUTRAL_IT_INSN);
11122
11123 if (unified_syntax)
11124 {
11125 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11126 {
11127 inst.instruction = THUMB_OP32 (inst.instruction);
11128 inst.instruction |= inst.operands[0].imm;
11129 }
11130 else
11131 {
11132 /* PR9722: Check for Thumb2 availability before
11133 generating a thumb2 nop instruction. */
11134 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11135 {
11136 inst.instruction = THUMB_OP16 (inst.instruction);
11137 inst.instruction |= inst.operands[0].imm << 4;
11138 }
11139 else
11140 inst.instruction = 0x46c0;
11141 }
11142 }
11143 else
11144 {
11145 constraint (inst.operands[0].present,
11146 _("Thumb does not support NOP with hints"));
11147 inst.instruction = 0x46c0;
11148 }
11149 }
11150
11151 static void
11152 do_t_neg (void)
11153 {
11154 if (unified_syntax)
11155 {
11156 bfd_boolean narrow;
11157
11158 if (THUMB_SETS_FLAGS (inst.instruction))
11159 narrow = !in_it_block ();
11160 else
11161 narrow = in_it_block ();
11162 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11163 narrow = FALSE;
11164 if (inst.size_req == 4)
11165 narrow = FALSE;
11166
11167 if (!narrow)
11168 {
11169 inst.instruction = THUMB_OP32 (inst.instruction);
11170 inst.instruction |= inst.operands[0].reg << 8;
11171 inst.instruction |= inst.operands[1].reg << 16;
11172 }
11173 else
11174 {
11175 inst.instruction = THUMB_OP16 (inst.instruction);
11176 inst.instruction |= inst.operands[0].reg;
11177 inst.instruction |= inst.operands[1].reg << 3;
11178 }
11179 }
11180 else
11181 {
11182 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11183 BAD_HIREG);
11184 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11185
11186 inst.instruction = THUMB_OP16 (inst.instruction);
11187 inst.instruction |= inst.operands[0].reg;
11188 inst.instruction |= inst.operands[1].reg << 3;
11189 }
11190 }
11191
11192 static void
11193 do_t_orn (void)
11194 {
11195 unsigned Rd, Rn;
11196
11197 Rd = inst.operands[0].reg;
11198 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11199
11200 reject_bad_reg (Rd);
11201 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11202 reject_bad_reg (Rn);
11203
11204 inst.instruction |= Rd << 8;
11205 inst.instruction |= Rn << 16;
11206
11207 if (!inst.operands[2].isreg)
11208 {
11209 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11210 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11211 }
11212 else
11213 {
11214 unsigned Rm;
11215
11216 Rm = inst.operands[2].reg;
11217 reject_bad_reg (Rm);
11218
11219 constraint (inst.operands[2].shifted
11220 && inst.operands[2].immisreg,
11221 _("shift must be constant"));
11222 encode_thumb32_shifted_operand (2);
11223 }
11224 }
11225
11226 static void
11227 do_t_pkhbt (void)
11228 {
11229 unsigned Rd, Rn, Rm;
11230
11231 Rd = inst.operands[0].reg;
11232 Rn = inst.operands[1].reg;
11233 Rm = inst.operands[2].reg;
11234
11235 reject_bad_reg (Rd);
11236 reject_bad_reg (Rn);
11237 reject_bad_reg (Rm);
11238
11239 inst.instruction |= Rd << 8;
11240 inst.instruction |= Rn << 16;
11241 inst.instruction |= Rm;
11242 if (inst.operands[3].present)
11243 {
11244 unsigned int val = inst.reloc.exp.X_add_number;
11245 constraint (inst.reloc.exp.X_op != O_constant,
11246 _("expression too complex"));
11247 inst.instruction |= (val & 0x1c) << 10;
11248 inst.instruction |= (val & 0x03) << 6;
11249 }
11250 }
11251
11252 static void
11253 do_t_pkhtb (void)
11254 {
11255 if (!inst.operands[3].present)
11256 {
11257 unsigned Rtmp;
11258
11259 inst.instruction &= ~0x00000020;
11260
11261 /* PR 10168. Swap the Rm and Rn registers. */
11262 Rtmp = inst.operands[1].reg;
11263 inst.operands[1].reg = inst.operands[2].reg;
11264 inst.operands[2].reg = Rtmp;
11265 }
11266 do_t_pkhbt ();
11267 }
11268
11269 static void
11270 do_t_pld (void)
11271 {
11272 if (inst.operands[0].immisreg)
11273 reject_bad_reg (inst.operands[0].imm);
11274
11275 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11276 }
11277
11278 static void
11279 do_t_push_pop (void)
11280 {
11281 unsigned mask;
11282
11283 constraint (inst.operands[0].writeback,
11284 _("push/pop do not support {reglist}^"));
11285 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11286 _("expression too complex"));
11287
11288 mask = inst.operands[0].imm;
11289 if ((mask & ~0xff) == 0)
11290 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11291 else if ((inst.instruction == T_MNEM_push
11292 && (mask & ~0xff) == 1 << REG_LR)
11293 || (inst.instruction == T_MNEM_pop
11294 && (mask & ~0xff) == 1 << REG_PC))
11295 {
11296 inst.instruction = THUMB_OP16 (inst.instruction);
11297 inst.instruction |= THUMB_PP_PC_LR;
11298 inst.instruction |= mask & 0xff;
11299 }
11300 else if (unified_syntax)
11301 {
11302 inst.instruction = THUMB_OP32 (inst.instruction);
11303 encode_thumb2_ldmstm (13, mask, TRUE);
11304 }
11305 else
11306 {
11307 inst.error = _("invalid register list to push/pop instruction");
11308 return;
11309 }
11310 }
11311
11312 static void
11313 do_t_rbit (void)
11314 {
11315 unsigned Rd, Rm;
11316
11317 Rd = inst.operands[0].reg;
11318 Rm = inst.operands[1].reg;
11319
11320 reject_bad_reg (Rd);
11321 reject_bad_reg (Rm);
11322
11323 inst.instruction |= Rd << 8;
11324 inst.instruction |= Rm << 16;
11325 inst.instruction |= Rm;
11326 }
11327
11328 static void
11329 do_t_rev (void)
11330 {
11331 unsigned Rd, Rm;
11332
11333 Rd = inst.operands[0].reg;
11334 Rm = inst.operands[1].reg;
11335
11336 reject_bad_reg (Rd);
11337 reject_bad_reg (Rm);
11338
11339 if (Rd <= 7 && Rm <= 7
11340 && inst.size_req != 4)
11341 {
11342 inst.instruction = THUMB_OP16 (inst.instruction);
11343 inst.instruction |= Rd;
11344 inst.instruction |= Rm << 3;
11345 }
11346 else if (unified_syntax)
11347 {
11348 inst.instruction = THUMB_OP32 (inst.instruction);
11349 inst.instruction |= Rd << 8;
11350 inst.instruction |= Rm << 16;
11351 inst.instruction |= Rm;
11352 }
11353 else
11354 inst.error = BAD_HIREG;
11355 }
11356
11357 static void
11358 do_t_rrx (void)
11359 {
11360 unsigned Rd, Rm;
11361
11362 Rd = inst.operands[0].reg;
11363 Rm = inst.operands[1].reg;
11364
11365 reject_bad_reg (Rd);
11366 reject_bad_reg (Rm);
11367
11368 inst.instruction |= Rd << 8;
11369 inst.instruction |= Rm;
11370 }
11371
11372 static void
11373 do_t_rsb (void)
11374 {
11375 unsigned Rd, Rs;
11376
11377 Rd = inst.operands[0].reg;
11378 Rs = (inst.operands[1].present
11379 ? inst.operands[1].reg /* Rd, Rs, foo */
11380 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11381
11382 reject_bad_reg (Rd);
11383 reject_bad_reg (Rs);
11384 if (inst.operands[2].isreg)
11385 reject_bad_reg (inst.operands[2].reg);
11386
11387 inst.instruction |= Rd << 8;
11388 inst.instruction |= Rs << 16;
11389 if (!inst.operands[2].isreg)
11390 {
11391 bfd_boolean narrow;
11392
11393 if ((inst.instruction & 0x00100000) != 0)
11394 narrow = !in_it_block ();
11395 else
11396 narrow = in_it_block ();
11397
11398 if (Rd > 7 || Rs > 7)
11399 narrow = FALSE;
11400
11401 if (inst.size_req == 4 || !unified_syntax)
11402 narrow = FALSE;
11403
11404 if (inst.reloc.exp.X_op != O_constant
11405 || inst.reloc.exp.X_add_number != 0)
11406 narrow = FALSE;
11407
11408 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11409 relaxation, but it doesn't seem worth the hassle. */
11410 if (narrow)
11411 {
11412 inst.reloc.type = BFD_RELOC_UNUSED;
11413 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11414 inst.instruction |= Rs << 3;
11415 inst.instruction |= Rd;
11416 }
11417 else
11418 {
11419 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11420 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11421 }
11422 }
11423 else
11424 encode_thumb32_shifted_operand (2);
11425 }
11426
11427 static void
11428 do_t_setend (void)
11429 {
11430 set_it_insn_type (OUTSIDE_IT_INSN);
11431 if (inst.operands[0].imm)
11432 inst.instruction |= 0x8;
11433 }
11434
11435 static void
11436 do_t_shift (void)
11437 {
11438 if (!inst.operands[1].present)
11439 inst.operands[1].reg = inst.operands[0].reg;
11440
11441 if (unified_syntax)
11442 {
11443 bfd_boolean narrow;
11444 int shift_kind;
11445
11446 switch (inst.instruction)
11447 {
11448 case T_MNEM_asr:
11449 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11450 case T_MNEM_lsl:
11451 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11452 case T_MNEM_lsr:
11453 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11454 case T_MNEM_ror:
11455 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11456 default: abort ();
11457 }
11458
11459 if (THUMB_SETS_FLAGS (inst.instruction))
11460 narrow = !in_it_block ();
11461 else
11462 narrow = in_it_block ();
11463 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11464 narrow = FALSE;
11465 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11466 narrow = FALSE;
11467 if (inst.operands[2].isreg
11468 && (inst.operands[1].reg != inst.operands[0].reg
11469 || inst.operands[2].reg > 7))
11470 narrow = FALSE;
11471 if (inst.size_req == 4)
11472 narrow = FALSE;
11473
11474 reject_bad_reg (inst.operands[0].reg);
11475 reject_bad_reg (inst.operands[1].reg);
11476
11477 if (!narrow)
11478 {
11479 if (inst.operands[2].isreg)
11480 {
11481 reject_bad_reg (inst.operands[2].reg);
11482 inst.instruction = THUMB_OP32 (inst.instruction);
11483 inst.instruction |= inst.operands[0].reg << 8;
11484 inst.instruction |= inst.operands[1].reg << 16;
11485 inst.instruction |= inst.operands[2].reg;
11486 }
11487 else
11488 {
11489 inst.operands[1].shifted = 1;
11490 inst.operands[1].shift_kind = shift_kind;
11491 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11492 ? T_MNEM_movs : T_MNEM_mov);
11493 inst.instruction |= inst.operands[0].reg << 8;
11494 encode_thumb32_shifted_operand (1);
11495 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11496 inst.reloc.type = BFD_RELOC_UNUSED;
11497 }
11498 }
11499 else
11500 {
11501 if (inst.operands[2].isreg)
11502 {
11503 switch (shift_kind)
11504 {
11505 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11506 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11507 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11508 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11509 default: abort ();
11510 }
11511
11512 inst.instruction |= inst.operands[0].reg;
11513 inst.instruction |= inst.operands[2].reg << 3;
11514 }
11515 else
11516 {
11517 switch (shift_kind)
11518 {
11519 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11520 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11521 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11522 default: abort ();
11523 }
11524 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11525 inst.instruction |= inst.operands[0].reg;
11526 inst.instruction |= inst.operands[1].reg << 3;
11527 }
11528 }
11529 }
11530 else
11531 {
11532 constraint (inst.operands[0].reg > 7
11533 || inst.operands[1].reg > 7, BAD_HIREG);
11534 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11535
11536 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11537 {
11538 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11539 constraint (inst.operands[0].reg != inst.operands[1].reg,
11540 _("source1 and dest must be same register"));
11541
11542 switch (inst.instruction)
11543 {
11544 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11545 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11546 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11547 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11548 default: abort ();
11549 }
11550
11551 inst.instruction |= inst.operands[0].reg;
11552 inst.instruction |= inst.operands[2].reg << 3;
11553 }
11554 else
11555 {
11556 switch (inst.instruction)
11557 {
11558 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11559 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11560 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11561 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11562 default: abort ();
11563 }
11564 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11565 inst.instruction |= inst.operands[0].reg;
11566 inst.instruction |= inst.operands[1].reg << 3;
11567 }
11568 }
11569 }
11570
11571 static void
11572 do_t_simd (void)
11573 {
11574 unsigned Rd, Rn, Rm;
11575
11576 Rd = inst.operands[0].reg;
11577 Rn = inst.operands[1].reg;
11578 Rm = inst.operands[2].reg;
11579
11580 reject_bad_reg (Rd);
11581 reject_bad_reg (Rn);
11582 reject_bad_reg (Rm);
11583
11584 inst.instruction |= Rd << 8;
11585 inst.instruction |= Rn << 16;
11586 inst.instruction |= Rm;
11587 }
11588
11589 static void
11590 do_t_simd2 (void)
11591 {
11592 unsigned Rd, Rn, Rm;
11593
11594 Rd = inst.operands[0].reg;
11595 Rm = inst.operands[1].reg;
11596 Rn = inst.operands[2].reg;
11597
11598 reject_bad_reg (Rd);
11599 reject_bad_reg (Rn);
11600 reject_bad_reg (Rm);
11601
11602 inst.instruction |= Rd << 8;
11603 inst.instruction |= Rn << 16;
11604 inst.instruction |= Rm;
11605 }
11606
11607 static void
11608 do_t_smc (void)
11609 {
11610 unsigned int value = inst.reloc.exp.X_add_number;
11611 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11612 _("SMC is not permitted on this architecture"));
11613 constraint (inst.reloc.exp.X_op != O_constant,
11614 _("expression too complex"));
11615 inst.reloc.type = BFD_RELOC_UNUSED;
11616 inst.instruction |= (value & 0xf000) >> 12;
11617 inst.instruction |= (value & 0x0ff0);
11618 inst.instruction |= (value & 0x000f) << 16;
11619 }
11620
11621 static void
11622 do_t_hvc (void)
11623 {
11624 unsigned int value = inst.reloc.exp.X_add_number;
11625
11626 inst.reloc.type = BFD_RELOC_UNUSED;
11627 inst.instruction |= (value & 0x0fff);
11628 inst.instruction |= (value & 0xf000) << 4;
11629 }
11630
11631 static void
11632 do_t_ssat_usat (int bias)
11633 {
11634 unsigned Rd, Rn;
11635
11636 Rd = inst.operands[0].reg;
11637 Rn = inst.operands[2].reg;
11638
11639 reject_bad_reg (Rd);
11640 reject_bad_reg (Rn);
11641
11642 inst.instruction |= Rd << 8;
11643 inst.instruction |= inst.operands[1].imm - bias;
11644 inst.instruction |= Rn << 16;
11645
11646 if (inst.operands[3].present)
11647 {
11648 offsetT shift_amount = inst.reloc.exp.X_add_number;
11649
11650 inst.reloc.type = BFD_RELOC_UNUSED;
11651
11652 constraint (inst.reloc.exp.X_op != O_constant,
11653 _("expression too complex"));
11654
11655 if (shift_amount != 0)
11656 {
11657 constraint (shift_amount > 31,
11658 _("shift expression is too large"));
11659
11660 if (inst.operands[3].shift_kind == SHIFT_ASR)
11661 inst.instruction |= 0x00200000; /* sh bit. */
11662
11663 inst.instruction |= (shift_amount & 0x1c) << 10;
11664 inst.instruction |= (shift_amount & 0x03) << 6;
11665 }
11666 }
11667 }
11668
11669 static void
11670 do_t_ssat (void)
11671 {
11672 do_t_ssat_usat (1);
11673 }
11674
11675 static void
11676 do_t_ssat16 (void)
11677 {
11678 unsigned Rd, Rn;
11679
11680 Rd = inst.operands[0].reg;
11681 Rn = inst.operands[2].reg;
11682
11683 reject_bad_reg (Rd);
11684 reject_bad_reg (Rn);
11685
11686 inst.instruction |= Rd << 8;
11687 inst.instruction |= inst.operands[1].imm - 1;
11688 inst.instruction |= Rn << 16;
11689 }
11690
11691 static void
11692 do_t_strex (void)
11693 {
11694 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11695 || inst.operands[2].postind || inst.operands[2].writeback
11696 || inst.operands[2].immisreg || inst.operands[2].shifted
11697 || inst.operands[2].negative,
11698 BAD_ADDR_MODE);
11699
11700 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11701
11702 inst.instruction |= inst.operands[0].reg << 8;
11703 inst.instruction |= inst.operands[1].reg << 12;
11704 inst.instruction |= inst.operands[2].reg << 16;
11705 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11706 }
11707
11708 static void
11709 do_t_strexd (void)
11710 {
11711 if (!inst.operands[2].present)
11712 inst.operands[2].reg = inst.operands[1].reg + 1;
11713
11714 constraint (inst.operands[0].reg == inst.operands[1].reg
11715 || inst.operands[0].reg == inst.operands[2].reg
11716 || inst.operands[0].reg == inst.operands[3].reg,
11717 BAD_OVERLAP);
11718
11719 inst.instruction |= inst.operands[0].reg;
11720 inst.instruction |= inst.operands[1].reg << 12;
11721 inst.instruction |= inst.operands[2].reg << 8;
11722 inst.instruction |= inst.operands[3].reg << 16;
11723 }
11724
11725 static void
11726 do_t_sxtah (void)
11727 {
11728 unsigned Rd, Rn, Rm;
11729
11730 Rd = inst.operands[0].reg;
11731 Rn = inst.operands[1].reg;
11732 Rm = inst.operands[2].reg;
11733
11734 reject_bad_reg (Rd);
11735 reject_bad_reg (Rn);
11736 reject_bad_reg (Rm);
11737
11738 inst.instruction |= Rd << 8;
11739 inst.instruction |= Rn << 16;
11740 inst.instruction |= Rm;
11741 inst.instruction |= inst.operands[3].imm << 4;
11742 }
11743
11744 static void
11745 do_t_sxth (void)
11746 {
11747 unsigned Rd, Rm;
11748
11749 Rd = inst.operands[0].reg;
11750 Rm = inst.operands[1].reg;
11751
11752 reject_bad_reg (Rd);
11753 reject_bad_reg (Rm);
11754
11755 if (inst.instruction <= 0xffff
11756 && inst.size_req != 4
11757 && Rd <= 7 && Rm <= 7
11758 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11759 {
11760 inst.instruction = THUMB_OP16 (inst.instruction);
11761 inst.instruction |= Rd;
11762 inst.instruction |= Rm << 3;
11763 }
11764 else if (unified_syntax)
11765 {
11766 if (inst.instruction <= 0xffff)
11767 inst.instruction = THUMB_OP32 (inst.instruction);
11768 inst.instruction |= Rd << 8;
11769 inst.instruction |= Rm;
11770 inst.instruction |= inst.operands[2].imm << 4;
11771 }
11772 else
11773 {
11774 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11775 _("Thumb encoding does not support rotation"));
11776 constraint (1, BAD_HIREG);
11777 }
11778 }
11779
11780 static void
11781 do_t_swi (void)
11782 {
11783 /* We have to do the following check manually as ARM_EXT_OS only applies
11784 to ARM_EXT_V6M. */
11785 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
11786 {
11787 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
11788 /* This only applies to the v6m howver, not later architectures. */
11789 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
11790 as_bad (_("SVC is not permitted on this architecture"));
11791 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
11792 }
11793
11794 inst.reloc.type = BFD_RELOC_ARM_SWI;
11795 }
11796
11797 static void
11798 do_t_tb (void)
11799 {
11800 unsigned Rn, Rm;
11801 int half;
11802
11803 half = (inst.instruction & 0x10) != 0;
11804 set_it_insn_type_last ();
11805 constraint (inst.operands[0].immisreg,
11806 _("instruction requires register index"));
11807
11808 Rn = inst.operands[0].reg;
11809 Rm = inst.operands[0].imm;
11810
11811 constraint (Rn == REG_SP, BAD_SP);
11812 reject_bad_reg (Rm);
11813
11814 constraint (!half && inst.operands[0].shifted,
11815 _("instruction does not allow shifted index"));
11816 inst.instruction |= (Rn << 16) | Rm;
11817 }
11818
11819 static void
11820 do_t_usat (void)
11821 {
11822 do_t_ssat_usat (0);
11823 }
11824
11825 static void
11826 do_t_usat16 (void)
11827 {
11828 unsigned Rd, Rn;
11829
11830 Rd = inst.operands[0].reg;
11831 Rn = inst.operands[2].reg;
11832
11833 reject_bad_reg (Rd);
11834 reject_bad_reg (Rn);
11835
11836 inst.instruction |= Rd << 8;
11837 inst.instruction |= inst.operands[1].imm;
11838 inst.instruction |= Rn << 16;
11839 }
11840
11841 /* Neon instruction encoder helpers. */
11842
11843 /* Encodings for the different types for various Neon opcodes. */
11844
11845 /* An "invalid" code for the following tables. */
11846 #define N_INV -1u
11847
11848 struct neon_tab_entry
11849 {
11850 unsigned integer;
11851 unsigned float_or_poly;
11852 unsigned scalar_or_imm;
11853 };
11854
11855 /* Map overloaded Neon opcodes to their respective encodings. */
11856 #define NEON_ENC_TAB \
11857 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11858 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11859 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11860 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11861 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11862 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11863 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11864 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11865 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11866 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11867 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11868 /* Register variants of the following two instructions are encoded as
11869 vcge / vcgt with the operands reversed. */ \
11870 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11871 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11872 X(vfma, N_INV, 0x0000c10, N_INV), \
11873 X(vfms, N_INV, 0x0200c10, N_INV), \
11874 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11875 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11876 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11877 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11878 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11879 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11880 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11881 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11882 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11883 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11884 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11885 X(vshl, 0x0000400, N_INV, 0x0800510), \
11886 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11887 X(vand, 0x0000110, N_INV, 0x0800030), \
11888 X(vbic, 0x0100110, N_INV, 0x0800030), \
11889 X(veor, 0x1000110, N_INV, N_INV), \
11890 X(vorn, 0x0300110, N_INV, 0x0800010), \
11891 X(vorr, 0x0200110, N_INV, 0x0800010), \
11892 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11893 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11894 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11895 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11896 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11897 X(vst1, 0x0000000, 0x0800000, N_INV), \
11898 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11899 X(vst2, 0x0000100, 0x0800100, N_INV), \
11900 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11901 X(vst3, 0x0000200, 0x0800200, N_INV), \
11902 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11903 X(vst4, 0x0000300, 0x0800300, N_INV), \
11904 X(vmovn, 0x1b20200, N_INV, N_INV), \
11905 X(vtrn, 0x1b20080, N_INV, N_INV), \
11906 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11907 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11908 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11909 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11910 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11911 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11912 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11913 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11914 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11915 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11916 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11917
11918 enum neon_opc
11919 {
11920 #define X(OPC,I,F,S) N_MNEM_##OPC
11921 NEON_ENC_TAB
11922 #undef X
11923 };
11924
11925 static const struct neon_tab_entry neon_enc_tab[] =
11926 {
11927 #define X(OPC,I,F,S) { (I), (F), (S) }
11928 NEON_ENC_TAB
11929 #undef X
11930 };
11931
11932 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11933 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11934 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11935 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11936 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11937 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11938 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11939 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11940 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11941 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11942 #define NEON_ENC_SINGLE_(X) \
11943 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11944 #define NEON_ENC_DOUBLE_(X) \
11945 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11946
11947 #define NEON_ENCODE(type, inst) \
11948 do \
11949 { \
11950 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11951 inst.is_neon = 1; \
11952 } \
11953 while (0)
11954
11955 #define check_neon_suffixes \
11956 do \
11957 { \
11958 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11959 { \
11960 as_bad (_("invalid neon suffix for non neon instruction")); \
11961 return; \
11962 } \
11963 } \
11964 while (0)
11965
11966 /* Define shapes for instruction operands. The following mnemonic characters
11967 are used in this table:
11968
11969 F - VFP S<n> register
11970 D - Neon D<n> register
11971 Q - Neon Q<n> register
11972 I - Immediate
11973 S - Scalar
11974 R - ARM register
11975 L - D<n> register list
11976
11977 This table is used to generate various data:
11978 - enumerations of the form NS_DDR to be used as arguments to
11979 neon_select_shape.
11980 - a table classifying shapes into single, double, quad, mixed.
11981 - a table used to drive neon_select_shape. */
11982
11983 #define NEON_SHAPE_DEF \
11984 X(3, (D, D, D), DOUBLE), \
11985 X(3, (Q, Q, Q), QUAD), \
11986 X(3, (D, D, I), DOUBLE), \
11987 X(3, (Q, Q, I), QUAD), \
11988 X(3, (D, D, S), DOUBLE), \
11989 X(3, (Q, Q, S), QUAD), \
11990 X(2, (D, D), DOUBLE), \
11991 X(2, (Q, Q), QUAD), \
11992 X(2, (D, S), DOUBLE), \
11993 X(2, (Q, S), QUAD), \
11994 X(2, (D, R), DOUBLE), \
11995 X(2, (Q, R), QUAD), \
11996 X(2, (D, I), DOUBLE), \
11997 X(2, (Q, I), QUAD), \
11998 X(3, (D, L, D), DOUBLE), \
11999 X(2, (D, Q), MIXED), \
12000 X(2, (Q, D), MIXED), \
12001 X(3, (D, Q, I), MIXED), \
12002 X(3, (Q, D, I), MIXED), \
12003 X(3, (Q, D, D), MIXED), \
12004 X(3, (D, Q, Q), MIXED), \
12005 X(3, (Q, Q, D), MIXED), \
12006 X(3, (Q, D, S), MIXED), \
12007 X(3, (D, Q, S), MIXED), \
12008 X(4, (D, D, D, I), DOUBLE), \
12009 X(4, (Q, Q, Q, I), QUAD), \
12010 X(2, (F, F), SINGLE), \
12011 X(3, (F, F, F), SINGLE), \
12012 X(2, (F, I), SINGLE), \
12013 X(2, (F, D), MIXED), \
12014 X(2, (D, F), MIXED), \
12015 X(3, (F, F, I), MIXED), \
12016 X(4, (R, R, F, F), SINGLE), \
12017 X(4, (F, F, R, R), SINGLE), \
12018 X(3, (D, R, R), DOUBLE), \
12019 X(3, (R, R, D), DOUBLE), \
12020 X(2, (S, R), SINGLE), \
12021 X(2, (R, S), SINGLE), \
12022 X(2, (F, R), SINGLE), \
12023 X(2, (R, F), SINGLE)
12024
12025 #define S2(A,B) NS_##A##B
12026 #define S3(A,B,C) NS_##A##B##C
12027 #define S4(A,B,C,D) NS_##A##B##C##D
12028
12029 #define X(N, L, C) S##N L
12030
12031 enum neon_shape
12032 {
12033 NEON_SHAPE_DEF,
12034 NS_NULL
12035 };
12036
12037 #undef X
12038 #undef S2
12039 #undef S3
12040 #undef S4
12041
12042 enum neon_shape_class
12043 {
12044 SC_SINGLE,
12045 SC_DOUBLE,
12046 SC_QUAD,
12047 SC_MIXED
12048 };
12049
12050 #define X(N, L, C) SC_##C
12051
12052 static enum neon_shape_class neon_shape_class[] =
12053 {
12054 NEON_SHAPE_DEF
12055 };
12056
12057 #undef X
12058
12059 enum neon_shape_el
12060 {
12061 SE_F,
12062 SE_D,
12063 SE_Q,
12064 SE_I,
12065 SE_S,
12066 SE_R,
12067 SE_L
12068 };
12069
12070 /* Register widths of above. */
12071 static unsigned neon_shape_el_size[] =
12072 {
12073 32,
12074 64,
12075 128,
12076 0,
12077 32,
12078 32,
12079 0
12080 };
12081
12082 struct neon_shape_info
12083 {
12084 unsigned els;
12085 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12086 };
12087
12088 #define S2(A,B) { SE_##A, SE_##B }
12089 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12090 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12091
12092 #define X(N, L, C) { N, S##N L }
12093
12094 static struct neon_shape_info neon_shape_tab[] =
12095 {
12096 NEON_SHAPE_DEF
12097 };
12098
12099 #undef X
12100 #undef S2
12101 #undef S3
12102 #undef S4
12103
12104 /* Bit masks used in type checking given instructions.
12105 'N_EQK' means the type must be the same as (or based on in some way) the key
12106 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12107 set, various other bits can be set as well in order to modify the meaning of
12108 the type constraint. */
12109
12110 enum neon_type_mask
12111 {
12112 N_S8 = 0x0000001,
12113 N_S16 = 0x0000002,
12114 N_S32 = 0x0000004,
12115 N_S64 = 0x0000008,
12116 N_U8 = 0x0000010,
12117 N_U16 = 0x0000020,
12118 N_U32 = 0x0000040,
12119 N_U64 = 0x0000080,
12120 N_I8 = 0x0000100,
12121 N_I16 = 0x0000200,
12122 N_I32 = 0x0000400,
12123 N_I64 = 0x0000800,
12124 N_8 = 0x0001000,
12125 N_16 = 0x0002000,
12126 N_32 = 0x0004000,
12127 N_64 = 0x0008000,
12128 N_P8 = 0x0010000,
12129 N_P16 = 0x0020000,
12130 N_F16 = 0x0040000,
12131 N_F32 = 0x0080000,
12132 N_F64 = 0x0100000,
12133 N_KEY = 0x1000000, /* Key element (main type specifier). */
12134 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12135 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12136 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12137 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12138 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12139 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12140 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12141 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12142 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12143 N_UTYP = 0,
12144 N_MAX_NONSPECIAL = N_F64
12145 };
12146
12147 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12148
12149 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12150 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12151 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12152 #define N_SUF_32 (N_SU_32 | N_F32)
12153 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12154 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12155
12156 /* Pass this as the first type argument to neon_check_type to ignore types
12157 altogether. */
12158 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12159
12160 /* Select a "shape" for the current instruction (describing register types or
12161 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12162 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12163 function of operand parsing, so this function doesn't need to be called.
12164 Shapes should be listed in order of decreasing length. */
12165
12166 static enum neon_shape
12167 neon_select_shape (enum neon_shape shape, ...)
12168 {
12169 va_list ap;
12170 enum neon_shape first_shape = shape;
12171
12172 /* Fix missing optional operands. FIXME: we don't know at this point how
12173 many arguments we should have, so this makes the assumption that we have
12174 > 1. This is true of all current Neon opcodes, I think, but may not be
12175 true in the future. */
12176 if (!inst.operands[1].present)
12177 inst.operands[1] = inst.operands[0];
12178
12179 va_start (ap, shape);
12180
12181 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12182 {
12183 unsigned j;
12184 int matches = 1;
12185
12186 for (j = 0; j < neon_shape_tab[shape].els; j++)
12187 {
12188 if (!inst.operands[j].present)
12189 {
12190 matches = 0;
12191 break;
12192 }
12193
12194 switch (neon_shape_tab[shape].el[j])
12195 {
12196 case SE_F:
12197 if (!(inst.operands[j].isreg
12198 && inst.operands[j].isvec
12199 && inst.operands[j].issingle
12200 && !inst.operands[j].isquad))
12201 matches = 0;
12202 break;
12203
12204 case SE_D:
12205 if (!(inst.operands[j].isreg
12206 && inst.operands[j].isvec
12207 && !inst.operands[j].isquad
12208 && !inst.operands[j].issingle))
12209 matches = 0;
12210 break;
12211
12212 case SE_R:
12213 if (!(inst.operands[j].isreg
12214 && !inst.operands[j].isvec))
12215 matches = 0;
12216 break;
12217
12218 case SE_Q:
12219 if (!(inst.operands[j].isreg
12220 && inst.operands[j].isvec
12221 && inst.operands[j].isquad
12222 && !inst.operands[j].issingle))
12223 matches = 0;
12224 break;
12225
12226 case SE_I:
12227 if (!(!inst.operands[j].isreg
12228 && !inst.operands[j].isscalar))
12229 matches = 0;
12230 break;
12231
12232 case SE_S:
12233 if (!(!inst.operands[j].isreg
12234 && inst.operands[j].isscalar))
12235 matches = 0;
12236 break;
12237
12238 case SE_L:
12239 break;
12240 }
12241 if (!matches)
12242 break;
12243 }
12244 if (matches)
12245 break;
12246 }
12247
12248 va_end (ap);
12249
12250 if (shape == NS_NULL && first_shape != NS_NULL)
12251 first_error (_("invalid instruction shape"));
12252
12253 return shape;
12254 }
12255
12256 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12257 means the Q bit should be set). */
12258
12259 static int
12260 neon_quad (enum neon_shape shape)
12261 {
12262 return neon_shape_class[shape] == SC_QUAD;
12263 }
12264
12265 static void
12266 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12267 unsigned *g_size)
12268 {
12269 /* Allow modification to be made to types which are constrained to be
12270 based on the key element, based on bits set alongside N_EQK. */
12271 if ((typebits & N_EQK) != 0)
12272 {
12273 if ((typebits & N_HLF) != 0)
12274 *g_size /= 2;
12275 else if ((typebits & N_DBL) != 0)
12276 *g_size *= 2;
12277 if ((typebits & N_SGN) != 0)
12278 *g_type = NT_signed;
12279 else if ((typebits & N_UNS) != 0)
12280 *g_type = NT_unsigned;
12281 else if ((typebits & N_INT) != 0)
12282 *g_type = NT_integer;
12283 else if ((typebits & N_FLT) != 0)
12284 *g_type = NT_float;
12285 else if ((typebits & N_SIZ) != 0)
12286 *g_type = NT_untyped;
12287 }
12288 }
12289
12290 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12291 operand type, i.e. the single type specified in a Neon instruction when it
12292 is the only one given. */
12293
12294 static struct neon_type_el
12295 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12296 {
12297 struct neon_type_el dest = *key;
12298
12299 gas_assert ((thisarg & N_EQK) != 0);
12300
12301 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12302
12303 return dest;
12304 }
12305
12306 /* Convert Neon type and size into compact bitmask representation. */
12307
12308 static enum neon_type_mask
12309 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12310 {
12311 switch (type)
12312 {
12313 case NT_untyped:
12314 switch (size)
12315 {
12316 case 8: return N_8;
12317 case 16: return N_16;
12318 case 32: return N_32;
12319 case 64: return N_64;
12320 default: ;
12321 }
12322 break;
12323
12324 case NT_integer:
12325 switch (size)
12326 {
12327 case 8: return N_I8;
12328 case 16: return N_I16;
12329 case 32: return N_I32;
12330 case 64: return N_I64;
12331 default: ;
12332 }
12333 break;
12334
12335 case NT_float:
12336 switch (size)
12337 {
12338 case 16: return N_F16;
12339 case 32: return N_F32;
12340 case 64: return N_F64;
12341 default: ;
12342 }
12343 break;
12344
12345 case NT_poly:
12346 switch (size)
12347 {
12348 case 8: return N_P8;
12349 case 16: return N_P16;
12350 default: ;
12351 }
12352 break;
12353
12354 case NT_signed:
12355 switch (size)
12356 {
12357 case 8: return N_S8;
12358 case 16: return N_S16;
12359 case 32: return N_S32;
12360 case 64: return N_S64;
12361 default: ;
12362 }
12363 break;
12364
12365 case NT_unsigned:
12366 switch (size)
12367 {
12368 case 8: return N_U8;
12369 case 16: return N_U16;
12370 case 32: return N_U32;
12371 case 64: return N_U64;
12372 default: ;
12373 }
12374 break;
12375
12376 default: ;
12377 }
12378
12379 return N_UTYP;
12380 }
12381
12382 /* Convert compact Neon bitmask type representation to a type and size. Only
12383 handles the case where a single bit is set in the mask. */
12384
12385 static int
12386 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12387 enum neon_type_mask mask)
12388 {
12389 if ((mask & N_EQK) != 0)
12390 return FAIL;
12391
12392 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12393 *size = 8;
12394 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12395 *size = 16;
12396 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12397 *size = 32;
12398 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12399 *size = 64;
12400 else
12401 return FAIL;
12402
12403 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12404 *type = NT_signed;
12405 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12406 *type = NT_unsigned;
12407 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12408 *type = NT_integer;
12409 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12410 *type = NT_untyped;
12411 else if ((mask & (N_P8 | N_P16)) != 0)
12412 *type = NT_poly;
12413 else if ((mask & (N_F32 | N_F64)) != 0)
12414 *type = NT_float;
12415 else
12416 return FAIL;
12417
12418 return SUCCESS;
12419 }
12420
12421 /* Modify a bitmask of allowed types. This is only needed for type
12422 relaxation. */
12423
12424 static unsigned
12425 modify_types_allowed (unsigned allowed, unsigned mods)
12426 {
12427 unsigned size;
12428 enum neon_el_type type;
12429 unsigned destmask;
12430 int i;
12431
12432 destmask = 0;
12433
12434 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12435 {
12436 if (el_type_of_type_chk (&type, &size,
12437 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12438 {
12439 neon_modify_type_size (mods, &type, &size);
12440 destmask |= type_chk_of_el_type (type, size);
12441 }
12442 }
12443
12444 return destmask;
12445 }
12446
12447 /* Check type and return type classification.
12448 The manual states (paraphrase): If one datatype is given, it indicates the
12449 type given in:
12450 - the second operand, if there is one
12451 - the operand, if there is no second operand
12452 - the result, if there are no operands.
12453 This isn't quite good enough though, so we use a concept of a "key" datatype
12454 which is set on a per-instruction basis, which is the one which matters when
12455 only one data type is written.
12456 Note: this function has side-effects (e.g. filling in missing operands). All
12457 Neon instructions should call it before performing bit encoding. */
12458
12459 static struct neon_type_el
12460 neon_check_type (unsigned els, enum neon_shape ns, ...)
12461 {
12462 va_list ap;
12463 unsigned i, pass, key_el = 0;
12464 unsigned types[NEON_MAX_TYPE_ELS];
12465 enum neon_el_type k_type = NT_invtype;
12466 unsigned k_size = -1u;
12467 struct neon_type_el badtype = {NT_invtype, -1};
12468 unsigned key_allowed = 0;
12469
12470 /* Optional registers in Neon instructions are always (not) in operand 1.
12471 Fill in the missing operand here, if it was omitted. */
12472 if (els > 1 && !inst.operands[1].present)
12473 inst.operands[1] = inst.operands[0];
12474
12475 /* Suck up all the varargs. */
12476 va_start (ap, ns);
12477 for (i = 0; i < els; i++)
12478 {
12479 unsigned thisarg = va_arg (ap, unsigned);
12480 if (thisarg == N_IGNORE_TYPE)
12481 {
12482 va_end (ap);
12483 return badtype;
12484 }
12485 types[i] = thisarg;
12486 if ((thisarg & N_KEY) != 0)
12487 key_el = i;
12488 }
12489 va_end (ap);
12490
12491 if (inst.vectype.elems > 0)
12492 for (i = 0; i < els; i++)
12493 if (inst.operands[i].vectype.type != NT_invtype)
12494 {
12495 first_error (_("types specified in both the mnemonic and operands"));
12496 return badtype;
12497 }
12498
12499 /* Duplicate inst.vectype elements here as necessary.
12500 FIXME: No idea if this is exactly the same as the ARM assembler,
12501 particularly when an insn takes one register and one non-register
12502 operand. */
12503 if (inst.vectype.elems == 1 && els > 1)
12504 {
12505 unsigned j;
12506 inst.vectype.elems = els;
12507 inst.vectype.el[key_el] = inst.vectype.el[0];
12508 for (j = 0; j < els; j++)
12509 if (j != key_el)
12510 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12511 types[j]);
12512 }
12513 else if (inst.vectype.elems == 0 && els > 0)
12514 {
12515 unsigned j;
12516 /* No types were given after the mnemonic, so look for types specified
12517 after each operand. We allow some flexibility here; as long as the
12518 "key" operand has a type, we can infer the others. */
12519 for (j = 0; j < els; j++)
12520 if (inst.operands[j].vectype.type != NT_invtype)
12521 inst.vectype.el[j] = inst.operands[j].vectype;
12522
12523 if (inst.operands[key_el].vectype.type != NT_invtype)
12524 {
12525 for (j = 0; j < els; j++)
12526 if (inst.operands[j].vectype.type == NT_invtype)
12527 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12528 types[j]);
12529 }
12530 else
12531 {
12532 first_error (_("operand types can't be inferred"));
12533 return badtype;
12534 }
12535 }
12536 else if (inst.vectype.elems != els)
12537 {
12538 first_error (_("type specifier has the wrong number of parts"));
12539 return badtype;
12540 }
12541
12542 for (pass = 0; pass < 2; pass++)
12543 {
12544 for (i = 0; i < els; i++)
12545 {
12546 unsigned thisarg = types[i];
12547 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12548 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12549 enum neon_el_type g_type = inst.vectype.el[i].type;
12550 unsigned g_size = inst.vectype.el[i].size;
12551
12552 /* Decay more-specific signed & unsigned types to sign-insensitive
12553 integer types if sign-specific variants are unavailable. */
12554 if ((g_type == NT_signed || g_type == NT_unsigned)
12555 && (types_allowed & N_SU_ALL) == 0)
12556 g_type = NT_integer;
12557
12558 /* If only untyped args are allowed, decay any more specific types to
12559 them. Some instructions only care about signs for some element
12560 sizes, so handle that properly. */
12561 if ((g_size == 8 && (types_allowed & N_8) != 0)
12562 || (g_size == 16 && (types_allowed & N_16) != 0)
12563 || (g_size == 32 && (types_allowed & N_32) != 0)
12564 || (g_size == 64 && (types_allowed & N_64) != 0))
12565 g_type = NT_untyped;
12566
12567 if (pass == 0)
12568 {
12569 if ((thisarg & N_KEY) != 0)
12570 {
12571 k_type = g_type;
12572 k_size = g_size;
12573 key_allowed = thisarg & ~N_KEY;
12574 }
12575 }
12576 else
12577 {
12578 if ((thisarg & N_VFP) != 0)
12579 {
12580 enum neon_shape_el regshape;
12581 unsigned regwidth, match;
12582
12583 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12584 if (ns == NS_NULL)
12585 {
12586 first_error (_("invalid instruction shape"));
12587 return badtype;
12588 }
12589 regshape = neon_shape_tab[ns].el[i];
12590 regwidth = neon_shape_el_size[regshape];
12591
12592 /* In VFP mode, operands must match register widths. If we
12593 have a key operand, use its width, else use the width of
12594 the current operand. */
12595 if (k_size != -1u)
12596 match = k_size;
12597 else
12598 match = g_size;
12599
12600 if (regwidth != match)
12601 {
12602 first_error (_("operand size must match register width"));
12603 return badtype;
12604 }
12605 }
12606
12607 if ((thisarg & N_EQK) == 0)
12608 {
12609 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12610
12611 if ((given_type & types_allowed) == 0)
12612 {
12613 first_error (_("bad type in Neon instruction"));
12614 return badtype;
12615 }
12616 }
12617 else
12618 {
12619 enum neon_el_type mod_k_type = k_type;
12620 unsigned mod_k_size = k_size;
12621 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12622 if (g_type != mod_k_type || g_size != mod_k_size)
12623 {
12624 first_error (_("inconsistent types in Neon instruction"));
12625 return badtype;
12626 }
12627 }
12628 }
12629 }
12630 }
12631
12632 return inst.vectype.el[key_el];
12633 }
12634
12635 /* Neon-style VFP instruction forwarding. */
12636
12637 /* Thumb VFP instructions have 0xE in the condition field. */
12638
12639 static void
12640 do_vfp_cond_or_thumb (void)
12641 {
12642 inst.is_neon = 1;
12643
12644 if (thumb_mode)
12645 inst.instruction |= 0xe0000000;
12646 else
12647 inst.instruction |= inst.cond << 28;
12648 }
12649
12650 /* Look up and encode a simple mnemonic, for use as a helper function for the
12651 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12652 etc. It is assumed that operand parsing has already been done, and that the
12653 operands are in the form expected by the given opcode (this isn't necessarily
12654 the same as the form in which they were parsed, hence some massaging must
12655 take place before this function is called).
12656 Checks current arch version against that in the looked-up opcode. */
12657
12658 static void
12659 do_vfp_nsyn_opcode (const char *opname)
12660 {
12661 const struct asm_opcode *opcode;
12662
12663 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12664
12665 if (!opcode)
12666 abort ();
12667
12668 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12669 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12670 _(BAD_FPU));
12671
12672 inst.is_neon = 1;
12673
12674 if (thumb_mode)
12675 {
12676 inst.instruction = opcode->tvalue;
12677 opcode->tencode ();
12678 }
12679 else
12680 {
12681 inst.instruction = (inst.cond << 28) | opcode->avalue;
12682 opcode->aencode ();
12683 }
12684 }
12685
12686 static void
12687 do_vfp_nsyn_add_sub (enum neon_shape rs)
12688 {
12689 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12690
12691 if (rs == NS_FFF)
12692 {
12693 if (is_add)
12694 do_vfp_nsyn_opcode ("fadds");
12695 else
12696 do_vfp_nsyn_opcode ("fsubs");
12697 }
12698 else
12699 {
12700 if (is_add)
12701 do_vfp_nsyn_opcode ("faddd");
12702 else
12703 do_vfp_nsyn_opcode ("fsubd");
12704 }
12705 }
12706
12707 /* Check operand types to see if this is a VFP instruction, and if so call
12708 PFN (). */
12709
12710 static int
12711 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12712 {
12713 enum neon_shape rs;
12714 struct neon_type_el et;
12715
12716 switch (args)
12717 {
12718 case 2:
12719 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12720 et = neon_check_type (2, rs,
12721 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12722 break;
12723
12724 case 3:
12725 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12726 et = neon_check_type (3, rs,
12727 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12728 break;
12729
12730 default:
12731 abort ();
12732 }
12733
12734 if (et.type != NT_invtype)
12735 {
12736 pfn (rs);
12737 return SUCCESS;
12738 }
12739
12740 inst.error = NULL;
12741 return FAIL;
12742 }
12743
12744 static void
12745 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12746 {
12747 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12748
12749 if (rs == NS_FFF)
12750 {
12751 if (is_mla)
12752 do_vfp_nsyn_opcode ("fmacs");
12753 else
12754 do_vfp_nsyn_opcode ("fnmacs");
12755 }
12756 else
12757 {
12758 if (is_mla)
12759 do_vfp_nsyn_opcode ("fmacd");
12760 else
12761 do_vfp_nsyn_opcode ("fnmacd");
12762 }
12763 }
12764
12765 static void
12766 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12767 {
12768 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12769
12770 if (rs == NS_FFF)
12771 {
12772 if (is_fma)
12773 do_vfp_nsyn_opcode ("ffmas");
12774 else
12775 do_vfp_nsyn_opcode ("ffnmas");
12776 }
12777 else
12778 {
12779 if (is_fma)
12780 do_vfp_nsyn_opcode ("ffmad");
12781 else
12782 do_vfp_nsyn_opcode ("ffnmad");
12783 }
12784 }
12785
12786 static void
12787 do_vfp_nsyn_mul (enum neon_shape rs)
12788 {
12789 if (rs == NS_FFF)
12790 do_vfp_nsyn_opcode ("fmuls");
12791 else
12792 do_vfp_nsyn_opcode ("fmuld");
12793 }
12794
12795 static void
12796 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12797 {
12798 int is_neg = (inst.instruction & 0x80) != 0;
12799 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12800
12801 if (rs == NS_FF)
12802 {
12803 if (is_neg)
12804 do_vfp_nsyn_opcode ("fnegs");
12805 else
12806 do_vfp_nsyn_opcode ("fabss");
12807 }
12808 else
12809 {
12810 if (is_neg)
12811 do_vfp_nsyn_opcode ("fnegd");
12812 else
12813 do_vfp_nsyn_opcode ("fabsd");
12814 }
12815 }
12816
12817 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12818 insns belong to Neon, and are handled elsewhere. */
12819
12820 static void
12821 do_vfp_nsyn_ldm_stm (int is_dbmode)
12822 {
12823 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12824 if (is_ldm)
12825 {
12826 if (is_dbmode)
12827 do_vfp_nsyn_opcode ("fldmdbs");
12828 else
12829 do_vfp_nsyn_opcode ("fldmias");
12830 }
12831 else
12832 {
12833 if (is_dbmode)
12834 do_vfp_nsyn_opcode ("fstmdbs");
12835 else
12836 do_vfp_nsyn_opcode ("fstmias");
12837 }
12838 }
12839
12840 static void
12841 do_vfp_nsyn_sqrt (void)
12842 {
12843 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12844 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12845
12846 if (rs == NS_FF)
12847 do_vfp_nsyn_opcode ("fsqrts");
12848 else
12849 do_vfp_nsyn_opcode ("fsqrtd");
12850 }
12851
12852 static void
12853 do_vfp_nsyn_div (void)
12854 {
12855 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12856 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12857 N_F32 | N_F64 | N_KEY | N_VFP);
12858
12859 if (rs == NS_FFF)
12860 do_vfp_nsyn_opcode ("fdivs");
12861 else
12862 do_vfp_nsyn_opcode ("fdivd");
12863 }
12864
12865 static void
12866 do_vfp_nsyn_nmul (void)
12867 {
12868 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12869 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12870 N_F32 | N_F64 | N_KEY | N_VFP);
12871
12872 if (rs == NS_FFF)
12873 {
12874 NEON_ENCODE (SINGLE, inst);
12875 do_vfp_sp_dyadic ();
12876 }
12877 else
12878 {
12879 NEON_ENCODE (DOUBLE, inst);
12880 do_vfp_dp_rd_rn_rm ();
12881 }
12882 do_vfp_cond_or_thumb ();
12883 }
12884
12885 static void
12886 do_vfp_nsyn_cmp (void)
12887 {
12888 if (inst.operands[1].isreg)
12889 {
12890 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12891 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12892
12893 if (rs == NS_FF)
12894 {
12895 NEON_ENCODE (SINGLE, inst);
12896 do_vfp_sp_monadic ();
12897 }
12898 else
12899 {
12900 NEON_ENCODE (DOUBLE, inst);
12901 do_vfp_dp_rd_rm ();
12902 }
12903 }
12904 else
12905 {
12906 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12907 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12908
12909 switch (inst.instruction & 0x0fffffff)
12910 {
12911 case N_MNEM_vcmp:
12912 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12913 break;
12914 case N_MNEM_vcmpe:
12915 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12916 break;
12917 default:
12918 abort ();
12919 }
12920
12921 if (rs == NS_FI)
12922 {
12923 NEON_ENCODE (SINGLE, inst);
12924 do_vfp_sp_compare_z ();
12925 }
12926 else
12927 {
12928 NEON_ENCODE (DOUBLE, inst);
12929 do_vfp_dp_rd ();
12930 }
12931 }
12932 do_vfp_cond_or_thumb ();
12933 }
12934
12935 static void
12936 nsyn_insert_sp (void)
12937 {
12938 inst.operands[1] = inst.operands[0];
12939 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12940 inst.operands[0].reg = REG_SP;
12941 inst.operands[0].isreg = 1;
12942 inst.operands[0].writeback = 1;
12943 inst.operands[0].present = 1;
12944 }
12945
12946 static void
12947 do_vfp_nsyn_push (void)
12948 {
12949 nsyn_insert_sp ();
12950 if (inst.operands[1].issingle)
12951 do_vfp_nsyn_opcode ("fstmdbs");
12952 else
12953 do_vfp_nsyn_opcode ("fstmdbd");
12954 }
12955
12956 static void
12957 do_vfp_nsyn_pop (void)
12958 {
12959 nsyn_insert_sp ();
12960 if (inst.operands[1].issingle)
12961 do_vfp_nsyn_opcode ("fldmias");
12962 else
12963 do_vfp_nsyn_opcode ("fldmiad");
12964 }
12965
12966 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12967 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12968
12969 static void
12970 neon_dp_fixup (struct arm_it* insn)
12971 {
12972 unsigned int i = insn->instruction;
12973 insn->is_neon = 1;
12974
12975 if (thumb_mode)
12976 {
12977 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12978 if (i & (1 << 24))
12979 i |= 1 << 28;
12980
12981 i &= ~(1 << 24);
12982
12983 i |= 0xef000000;
12984 }
12985 else
12986 i |= 0xf2000000;
12987
12988 insn->instruction = i;
12989 }
12990
12991 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12992 (0, 1, 2, 3). */
12993
12994 static unsigned
12995 neon_logbits (unsigned x)
12996 {
12997 return ffs (x) - 4;
12998 }
12999
13000 #define LOW4(R) ((R) & 0xf)
13001 #define HI1(R) (((R) >> 4) & 1)
13002
13003 /* Encode insns with bit pattern:
13004
13005 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13006 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13007
13008 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13009 different meaning for some instruction. */
13010
13011 static void
13012 neon_three_same (int isquad, int ubit, int size)
13013 {
13014 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13015 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13016 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13017 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13018 inst.instruction |= LOW4 (inst.operands[2].reg);
13019 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13020 inst.instruction |= (isquad != 0) << 6;
13021 inst.instruction |= (ubit != 0) << 24;
13022 if (size != -1)
13023 inst.instruction |= neon_logbits (size) << 20;
13024
13025 neon_dp_fixup (&inst);
13026 }
13027
13028 /* Encode instructions of the form:
13029
13030 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13031 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13032
13033 Don't write size if SIZE == -1. */
13034
13035 static void
13036 neon_two_same (int qbit, int ubit, int size)
13037 {
13038 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13039 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13040 inst.instruction |= LOW4 (inst.operands[1].reg);
13041 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13042 inst.instruction |= (qbit != 0) << 6;
13043 inst.instruction |= (ubit != 0) << 24;
13044
13045 if (size != -1)
13046 inst.instruction |= neon_logbits (size) << 18;
13047
13048 neon_dp_fixup (&inst);
13049 }
13050
13051 /* Neon instruction encoders, in approximate order of appearance. */
13052
13053 static void
13054 do_neon_dyadic_i_su (void)
13055 {
13056 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13057 struct neon_type_el et = neon_check_type (3, rs,
13058 N_EQK, N_EQK, N_SU_32 | N_KEY);
13059 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13060 }
13061
13062 static void
13063 do_neon_dyadic_i64_su (void)
13064 {
13065 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13066 struct neon_type_el et = neon_check_type (3, rs,
13067 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13068 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13069 }
13070
13071 static void
13072 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13073 unsigned immbits)
13074 {
13075 unsigned size = et.size >> 3;
13076 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13077 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13078 inst.instruction |= LOW4 (inst.operands[1].reg);
13079 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13080 inst.instruction |= (isquad != 0) << 6;
13081 inst.instruction |= immbits << 16;
13082 inst.instruction |= (size >> 3) << 7;
13083 inst.instruction |= (size & 0x7) << 19;
13084 if (write_ubit)
13085 inst.instruction |= (uval != 0) << 24;
13086
13087 neon_dp_fixup (&inst);
13088 }
13089
13090 static void
13091 do_neon_shl_imm (void)
13092 {
13093 if (!inst.operands[2].isreg)
13094 {
13095 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13096 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13097 NEON_ENCODE (IMMED, inst);
13098 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13099 }
13100 else
13101 {
13102 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13103 struct neon_type_el et = neon_check_type (3, rs,
13104 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13105 unsigned int tmp;
13106
13107 /* VSHL/VQSHL 3-register variants have syntax such as:
13108 vshl.xx Dd, Dm, Dn
13109 whereas other 3-register operations encoded by neon_three_same have
13110 syntax like:
13111 vadd.xx Dd, Dn, Dm
13112 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13113 here. */
13114 tmp = inst.operands[2].reg;
13115 inst.operands[2].reg = inst.operands[1].reg;
13116 inst.operands[1].reg = tmp;
13117 NEON_ENCODE (INTEGER, inst);
13118 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13119 }
13120 }
13121
13122 static void
13123 do_neon_qshl_imm (void)
13124 {
13125 if (!inst.operands[2].isreg)
13126 {
13127 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13128 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13129
13130 NEON_ENCODE (IMMED, inst);
13131 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13132 inst.operands[2].imm);
13133 }
13134 else
13135 {
13136 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13137 struct neon_type_el et = neon_check_type (3, rs,
13138 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13139 unsigned int tmp;
13140
13141 /* See note in do_neon_shl_imm. */
13142 tmp = inst.operands[2].reg;
13143 inst.operands[2].reg = inst.operands[1].reg;
13144 inst.operands[1].reg = tmp;
13145 NEON_ENCODE (INTEGER, inst);
13146 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13147 }
13148 }
13149
13150 static void
13151 do_neon_rshl (void)
13152 {
13153 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13154 struct neon_type_el et = neon_check_type (3, rs,
13155 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13156 unsigned int tmp;
13157
13158 tmp = inst.operands[2].reg;
13159 inst.operands[2].reg = inst.operands[1].reg;
13160 inst.operands[1].reg = tmp;
13161 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13162 }
13163
13164 static int
13165 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13166 {
13167 /* Handle .I8 pseudo-instructions. */
13168 if (size == 8)
13169 {
13170 /* Unfortunately, this will make everything apart from zero out-of-range.
13171 FIXME is this the intended semantics? There doesn't seem much point in
13172 accepting .I8 if so. */
13173 immediate |= immediate << 8;
13174 size = 16;
13175 }
13176
13177 if (size >= 32)
13178 {
13179 if (immediate == (immediate & 0x000000ff))
13180 {
13181 *immbits = immediate;
13182 return 0x1;
13183 }
13184 else if (immediate == (immediate & 0x0000ff00))
13185 {
13186 *immbits = immediate >> 8;
13187 return 0x3;
13188 }
13189 else if (immediate == (immediate & 0x00ff0000))
13190 {
13191 *immbits = immediate >> 16;
13192 return 0x5;
13193 }
13194 else if (immediate == (immediate & 0xff000000))
13195 {
13196 *immbits = immediate >> 24;
13197 return 0x7;
13198 }
13199 if ((immediate & 0xffff) != (immediate >> 16))
13200 goto bad_immediate;
13201 immediate &= 0xffff;
13202 }
13203
13204 if (immediate == (immediate & 0x000000ff))
13205 {
13206 *immbits = immediate;
13207 return 0x9;
13208 }
13209 else if (immediate == (immediate & 0x0000ff00))
13210 {
13211 *immbits = immediate >> 8;
13212 return 0xb;
13213 }
13214
13215 bad_immediate:
13216 first_error (_("immediate value out of range"));
13217 return FAIL;
13218 }
13219
13220 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13221 A, B, C, D. */
13222
13223 static int
13224 neon_bits_same_in_bytes (unsigned imm)
13225 {
13226 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13227 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13228 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13229 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13230 }
13231
13232 /* For immediate of above form, return 0bABCD. */
13233
13234 static unsigned
13235 neon_squash_bits (unsigned imm)
13236 {
13237 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13238 | ((imm & 0x01000000) >> 21);
13239 }
13240
13241 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13242
13243 static unsigned
13244 neon_qfloat_bits (unsigned imm)
13245 {
13246 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13247 }
13248
13249 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13250 the instruction. *OP is passed as the initial value of the op field, and
13251 may be set to a different value depending on the constant (i.e.
13252 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13253 MVN). If the immediate looks like a repeated pattern then also
13254 try smaller element sizes. */
13255
13256 static int
13257 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13258 unsigned *immbits, int *op, int size,
13259 enum neon_el_type type)
13260 {
13261 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13262 float. */
13263 if (type == NT_float && !float_p)
13264 return FAIL;
13265
13266 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13267 {
13268 if (size != 32 || *op == 1)
13269 return FAIL;
13270 *immbits = neon_qfloat_bits (immlo);
13271 return 0xf;
13272 }
13273
13274 if (size == 64)
13275 {
13276 if (neon_bits_same_in_bytes (immhi)
13277 && neon_bits_same_in_bytes (immlo))
13278 {
13279 if (*op == 1)
13280 return FAIL;
13281 *immbits = (neon_squash_bits (immhi) << 4)
13282 | neon_squash_bits (immlo);
13283 *op = 1;
13284 return 0xe;
13285 }
13286
13287 if (immhi != immlo)
13288 return FAIL;
13289 }
13290
13291 if (size >= 32)
13292 {
13293 if (immlo == (immlo & 0x000000ff))
13294 {
13295 *immbits = immlo;
13296 return 0x0;
13297 }
13298 else if (immlo == (immlo & 0x0000ff00))
13299 {
13300 *immbits = immlo >> 8;
13301 return 0x2;
13302 }
13303 else if (immlo == (immlo & 0x00ff0000))
13304 {
13305 *immbits = immlo >> 16;
13306 return 0x4;
13307 }
13308 else if (immlo == (immlo & 0xff000000))
13309 {
13310 *immbits = immlo >> 24;
13311 return 0x6;
13312 }
13313 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13314 {
13315 *immbits = (immlo >> 8) & 0xff;
13316 return 0xc;
13317 }
13318 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13319 {
13320 *immbits = (immlo >> 16) & 0xff;
13321 return 0xd;
13322 }
13323
13324 if ((immlo & 0xffff) != (immlo >> 16))
13325 return FAIL;
13326 immlo &= 0xffff;
13327 }
13328
13329 if (size >= 16)
13330 {
13331 if (immlo == (immlo & 0x000000ff))
13332 {
13333 *immbits = immlo;
13334 return 0x8;
13335 }
13336 else if (immlo == (immlo & 0x0000ff00))
13337 {
13338 *immbits = immlo >> 8;
13339 return 0xa;
13340 }
13341
13342 if ((immlo & 0xff) != (immlo >> 8))
13343 return FAIL;
13344 immlo &= 0xff;
13345 }
13346
13347 if (immlo == (immlo & 0x000000ff))
13348 {
13349 /* Don't allow MVN with 8-bit immediate. */
13350 if (*op == 1)
13351 return FAIL;
13352 *immbits = immlo;
13353 return 0xe;
13354 }
13355
13356 return FAIL;
13357 }
13358
13359 /* Write immediate bits [7:0] to the following locations:
13360
13361 |28/24|23 19|18 16|15 4|3 0|
13362 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13363
13364 This function is used by VMOV/VMVN/VORR/VBIC. */
13365
13366 static void
13367 neon_write_immbits (unsigned immbits)
13368 {
13369 inst.instruction |= immbits & 0xf;
13370 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13371 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13372 }
13373
13374 /* Invert low-order SIZE bits of XHI:XLO. */
13375
13376 static void
13377 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13378 {
13379 unsigned immlo = xlo ? *xlo : 0;
13380 unsigned immhi = xhi ? *xhi : 0;
13381
13382 switch (size)
13383 {
13384 case 8:
13385 immlo = (~immlo) & 0xff;
13386 break;
13387
13388 case 16:
13389 immlo = (~immlo) & 0xffff;
13390 break;
13391
13392 case 64:
13393 immhi = (~immhi) & 0xffffffff;
13394 /* fall through. */
13395
13396 case 32:
13397 immlo = (~immlo) & 0xffffffff;
13398 break;
13399
13400 default:
13401 abort ();
13402 }
13403
13404 if (xlo)
13405 *xlo = immlo;
13406
13407 if (xhi)
13408 *xhi = immhi;
13409 }
13410
13411 static void
13412 do_neon_logic (void)
13413 {
13414 if (inst.operands[2].present && inst.operands[2].isreg)
13415 {
13416 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13417 neon_check_type (3, rs, N_IGNORE_TYPE);
13418 /* U bit and size field were set as part of the bitmask. */
13419 NEON_ENCODE (INTEGER, inst);
13420 neon_three_same (neon_quad (rs), 0, -1);
13421 }
13422 else
13423 {
13424 const int three_ops_form = (inst.operands[2].present
13425 && !inst.operands[2].isreg);
13426 const int immoperand = (three_ops_form ? 2 : 1);
13427 enum neon_shape rs = (three_ops_form
13428 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13429 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13430 struct neon_type_el et = neon_check_type (2, rs,
13431 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13432 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13433 unsigned immbits;
13434 int cmode;
13435
13436 if (et.type == NT_invtype)
13437 return;
13438
13439 if (three_ops_form)
13440 constraint (inst.operands[0].reg != inst.operands[1].reg,
13441 _("first and second operands shall be the same register"));
13442
13443 NEON_ENCODE (IMMED, inst);
13444
13445 immbits = inst.operands[immoperand].imm;
13446 if (et.size == 64)
13447 {
13448 /* .i64 is a pseudo-op, so the immediate must be a repeating
13449 pattern. */
13450 if (immbits != (inst.operands[immoperand].regisimm ?
13451 inst.operands[immoperand].reg : 0))
13452 {
13453 /* Set immbits to an invalid constant. */
13454 immbits = 0xdeadbeef;
13455 }
13456 }
13457
13458 switch (opcode)
13459 {
13460 case N_MNEM_vbic:
13461 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13462 break;
13463
13464 case N_MNEM_vorr:
13465 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13466 break;
13467
13468 case N_MNEM_vand:
13469 /* Pseudo-instruction for VBIC. */
13470 neon_invert_size (&immbits, 0, et.size);
13471 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13472 break;
13473
13474 case N_MNEM_vorn:
13475 /* Pseudo-instruction for VORR. */
13476 neon_invert_size (&immbits, 0, et.size);
13477 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13478 break;
13479
13480 default:
13481 abort ();
13482 }
13483
13484 if (cmode == FAIL)
13485 return;
13486
13487 inst.instruction |= neon_quad (rs) << 6;
13488 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13489 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13490 inst.instruction |= cmode << 8;
13491 neon_write_immbits (immbits);
13492
13493 neon_dp_fixup (&inst);
13494 }
13495 }
13496
13497 static void
13498 do_neon_bitfield (void)
13499 {
13500 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13501 neon_check_type (3, rs, N_IGNORE_TYPE);
13502 neon_three_same (neon_quad (rs), 0, -1);
13503 }
13504
13505 static void
13506 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13507 unsigned destbits)
13508 {
13509 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13510 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13511 types | N_KEY);
13512 if (et.type == NT_float)
13513 {
13514 NEON_ENCODE (FLOAT, inst);
13515 neon_three_same (neon_quad (rs), 0, -1);
13516 }
13517 else
13518 {
13519 NEON_ENCODE (INTEGER, inst);
13520 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13521 }
13522 }
13523
13524 static void
13525 do_neon_dyadic_if_su (void)
13526 {
13527 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13528 }
13529
13530 static void
13531 do_neon_dyadic_if_su_d (void)
13532 {
13533 /* This version only allow D registers, but that constraint is enforced during
13534 operand parsing so we don't need to do anything extra here. */
13535 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13536 }
13537
13538 static void
13539 do_neon_dyadic_if_i_d (void)
13540 {
13541 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13542 affected if we specify unsigned args. */
13543 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13544 }
13545
13546 enum vfp_or_neon_is_neon_bits
13547 {
13548 NEON_CHECK_CC = 1,
13549 NEON_CHECK_ARCH = 2
13550 };
13551
13552 /* Call this function if an instruction which may have belonged to the VFP or
13553 Neon instruction sets, but turned out to be a Neon instruction (due to the
13554 operand types involved, etc.). We have to check and/or fix-up a couple of
13555 things:
13556
13557 - Make sure the user hasn't attempted to make a Neon instruction
13558 conditional.
13559 - Alter the value in the condition code field if necessary.
13560 - Make sure that the arch supports Neon instructions.
13561
13562 Which of these operations take place depends on bits from enum
13563 vfp_or_neon_is_neon_bits.
13564
13565 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13566 current instruction's condition is COND_ALWAYS, the condition field is
13567 changed to inst.uncond_value. This is necessary because instructions shared
13568 between VFP and Neon may be conditional for the VFP variants only, and the
13569 unconditional Neon version must have, e.g., 0xF in the condition field. */
13570
13571 static int
13572 vfp_or_neon_is_neon (unsigned check)
13573 {
13574 /* Conditions are always legal in Thumb mode (IT blocks). */
13575 if (!thumb_mode && (check & NEON_CHECK_CC))
13576 {
13577 if (inst.cond != COND_ALWAYS)
13578 {
13579 first_error (_(BAD_COND));
13580 return FAIL;
13581 }
13582 if (inst.uncond_value != -1)
13583 inst.instruction |= inst.uncond_value << 28;
13584 }
13585
13586 if ((check & NEON_CHECK_ARCH)
13587 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13588 {
13589 first_error (_(BAD_FPU));
13590 return FAIL;
13591 }
13592
13593 return SUCCESS;
13594 }
13595
13596 static void
13597 do_neon_addsub_if_i (void)
13598 {
13599 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13600 return;
13601
13602 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13603 return;
13604
13605 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13606 affected if we specify unsigned args. */
13607 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13608 }
13609
13610 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13611 result to be:
13612 V<op> A,B (A is operand 0, B is operand 2)
13613 to mean:
13614 V<op> A,B,A
13615 not:
13616 V<op> A,B,B
13617 so handle that case specially. */
13618
13619 static void
13620 neon_exchange_operands (void)
13621 {
13622 void *scratch = alloca (sizeof (inst.operands[0]));
13623 if (inst.operands[1].present)
13624 {
13625 /* Swap operands[1] and operands[2]. */
13626 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13627 inst.operands[1] = inst.operands[2];
13628 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13629 }
13630 else
13631 {
13632 inst.operands[1] = inst.operands[2];
13633 inst.operands[2] = inst.operands[0];
13634 }
13635 }
13636
13637 static void
13638 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13639 {
13640 if (inst.operands[2].isreg)
13641 {
13642 if (invert)
13643 neon_exchange_operands ();
13644 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13645 }
13646 else
13647 {
13648 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13649 struct neon_type_el et = neon_check_type (2, rs,
13650 N_EQK | N_SIZ, immtypes | N_KEY);
13651
13652 NEON_ENCODE (IMMED, inst);
13653 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13654 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13655 inst.instruction |= LOW4 (inst.operands[1].reg);
13656 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13657 inst.instruction |= neon_quad (rs) << 6;
13658 inst.instruction |= (et.type == NT_float) << 10;
13659 inst.instruction |= neon_logbits (et.size) << 18;
13660
13661 neon_dp_fixup (&inst);
13662 }
13663 }
13664
13665 static void
13666 do_neon_cmp (void)
13667 {
13668 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13669 }
13670
13671 static void
13672 do_neon_cmp_inv (void)
13673 {
13674 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13675 }
13676
13677 static void
13678 do_neon_ceq (void)
13679 {
13680 neon_compare (N_IF_32, N_IF_32, FALSE);
13681 }
13682
13683 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13684 scalars, which are encoded in 5 bits, M : Rm.
13685 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13686 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13687 index in M. */
13688
13689 static unsigned
13690 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13691 {
13692 unsigned regno = NEON_SCALAR_REG (scalar);
13693 unsigned elno = NEON_SCALAR_INDEX (scalar);
13694
13695 switch (elsize)
13696 {
13697 case 16:
13698 if (regno > 7 || elno > 3)
13699 goto bad_scalar;
13700 return regno | (elno << 3);
13701
13702 case 32:
13703 if (regno > 15 || elno > 1)
13704 goto bad_scalar;
13705 return regno | (elno << 4);
13706
13707 default:
13708 bad_scalar:
13709 first_error (_("scalar out of range for multiply instruction"));
13710 }
13711
13712 return 0;
13713 }
13714
13715 /* Encode multiply / multiply-accumulate scalar instructions. */
13716
13717 static void
13718 neon_mul_mac (struct neon_type_el et, int ubit)
13719 {
13720 unsigned scalar;
13721
13722 /* Give a more helpful error message if we have an invalid type. */
13723 if (et.type == NT_invtype)
13724 return;
13725
13726 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13727 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13728 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13729 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13730 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13731 inst.instruction |= LOW4 (scalar);
13732 inst.instruction |= HI1 (scalar) << 5;
13733 inst.instruction |= (et.type == NT_float) << 8;
13734 inst.instruction |= neon_logbits (et.size) << 20;
13735 inst.instruction |= (ubit != 0) << 24;
13736
13737 neon_dp_fixup (&inst);
13738 }
13739
13740 static void
13741 do_neon_mac_maybe_scalar (void)
13742 {
13743 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13744 return;
13745
13746 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13747 return;
13748
13749 if (inst.operands[2].isscalar)
13750 {
13751 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13752 struct neon_type_el et = neon_check_type (3, rs,
13753 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13754 NEON_ENCODE (SCALAR, inst);
13755 neon_mul_mac (et, neon_quad (rs));
13756 }
13757 else
13758 {
13759 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13760 affected if we specify unsigned args. */
13761 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13762 }
13763 }
13764
13765 static void
13766 do_neon_fmac (void)
13767 {
13768 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13769 return;
13770
13771 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13772 return;
13773
13774 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13775 }
13776
13777 static void
13778 do_neon_tst (void)
13779 {
13780 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13781 struct neon_type_el et = neon_check_type (3, rs,
13782 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13783 neon_three_same (neon_quad (rs), 0, et.size);
13784 }
13785
13786 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13787 same types as the MAC equivalents. The polynomial type for this instruction
13788 is encoded the same as the integer type. */
13789
13790 static void
13791 do_neon_mul (void)
13792 {
13793 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13794 return;
13795
13796 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13797 return;
13798
13799 if (inst.operands[2].isscalar)
13800 do_neon_mac_maybe_scalar ();
13801 else
13802 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13803 }
13804
13805 static void
13806 do_neon_qdmulh (void)
13807 {
13808 if (inst.operands[2].isscalar)
13809 {
13810 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13811 struct neon_type_el et = neon_check_type (3, rs,
13812 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13813 NEON_ENCODE (SCALAR, inst);
13814 neon_mul_mac (et, neon_quad (rs));
13815 }
13816 else
13817 {
13818 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13819 struct neon_type_el et = neon_check_type (3, rs,
13820 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13821 NEON_ENCODE (INTEGER, inst);
13822 /* The U bit (rounding) comes from bit mask. */
13823 neon_three_same (neon_quad (rs), 0, et.size);
13824 }
13825 }
13826
13827 static void
13828 do_neon_fcmp_absolute (void)
13829 {
13830 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13831 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13832 /* Size field comes from bit mask. */
13833 neon_three_same (neon_quad (rs), 1, -1);
13834 }
13835
13836 static void
13837 do_neon_fcmp_absolute_inv (void)
13838 {
13839 neon_exchange_operands ();
13840 do_neon_fcmp_absolute ();
13841 }
13842
13843 static void
13844 do_neon_step (void)
13845 {
13846 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13847 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13848 neon_three_same (neon_quad (rs), 0, -1);
13849 }
13850
13851 static void
13852 do_neon_abs_neg (void)
13853 {
13854 enum neon_shape rs;
13855 struct neon_type_el et;
13856
13857 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13858 return;
13859
13860 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13861 return;
13862
13863 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13864 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13865
13866 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13867 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13868 inst.instruction |= LOW4 (inst.operands[1].reg);
13869 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13870 inst.instruction |= neon_quad (rs) << 6;
13871 inst.instruction |= (et.type == NT_float) << 10;
13872 inst.instruction |= neon_logbits (et.size) << 18;
13873
13874 neon_dp_fixup (&inst);
13875 }
13876
13877 static void
13878 do_neon_sli (void)
13879 {
13880 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13881 struct neon_type_el et = neon_check_type (2, rs,
13882 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13883 int imm = inst.operands[2].imm;
13884 constraint (imm < 0 || (unsigned)imm >= et.size,
13885 _("immediate out of range for insert"));
13886 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13887 }
13888
13889 static void
13890 do_neon_sri (void)
13891 {
13892 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13893 struct neon_type_el et = neon_check_type (2, rs,
13894 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13895 int imm = inst.operands[2].imm;
13896 constraint (imm < 1 || (unsigned)imm > et.size,
13897 _("immediate out of range for insert"));
13898 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13899 }
13900
13901 static void
13902 do_neon_qshlu_imm (void)
13903 {
13904 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13905 struct neon_type_el et = neon_check_type (2, rs,
13906 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13907 int imm = inst.operands[2].imm;
13908 constraint (imm < 0 || (unsigned)imm >= et.size,
13909 _("immediate out of range for shift"));
13910 /* Only encodes the 'U present' variant of the instruction.
13911 In this case, signed types have OP (bit 8) set to 0.
13912 Unsigned types have OP set to 1. */
13913 inst.instruction |= (et.type == NT_unsigned) << 8;
13914 /* The rest of the bits are the same as other immediate shifts. */
13915 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13916 }
13917
13918 static void
13919 do_neon_qmovn (void)
13920 {
13921 struct neon_type_el et = neon_check_type (2, NS_DQ,
13922 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13923 /* Saturating move where operands can be signed or unsigned, and the
13924 destination has the same signedness. */
13925 NEON_ENCODE (INTEGER, inst);
13926 if (et.type == NT_unsigned)
13927 inst.instruction |= 0xc0;
13928 else
13929 inst.instruction |= 0x80;
13930 neon_two_same (0, 1, et.size / 2);
13931 }
13932
13933 static void
13934 do_neon_qmovun (void)
13935 {
13936 struct neon_type_el et = neon_check_type (2, NS_DQ,
13937 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13938 /* Saturating move with unsigned results. Operands must be signed. */
13939 NEON_ENCODE (INTEGER, inst);
13940 neon_two_same (0, 1, et.size / 2);
13941 }
13942
13943 static void
13944 do_neon_rshift_sat_narrow (void)
13945 {
13946 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13947 or unsigned. If operands are unsigned, results must also be unsigned. */
13948 struct neon_type_el et = neon_check_type (2, NS_DQI,
13949 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13950 int imm = inst.operands[2].imm;
13951 /* This gets the bounds check, size encoding and immediate bits calculation
13952 right. */
13953 et.size /= 2;
13954
13955 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13956 VQMOVN.I<size> <Dd>, <Qm>. */
13957 if (imm == 0)
13958 {
13959 inst.operands[2].present = 0;
13960 inst.instruction = N_MNEM_vqmovn;
13961 do_neon_qmovn ();
13962 return;
13963 }
13964
13965 constraint (imm < 1 || (unsigned)imm > et.size,
13966 _("immediate out of range"));
13967 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13968 }
13969
13970 static void
13971 do_neon_rshift_sat_narrow_u (void)
13972 {
13973 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13974 or unsigned. If operands are unsigned, results must also be unsigned. */
13975 struct neon_type_el et = neon_check_type (2, NS_DQI,
13976 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13977 int imm = inst.operands[2].imm;
13978 /* This gets the bounds check, size encoding and immediate bits calculation
13979 right. */
13980 et.size /= 2;
13981
13982 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13983 VQMOVUN.I<size> <Dd>, <Qm>. */
13984 if (imm == 0)
13985 {
13986 inst.operands[2].present = 0;
13987 inst.instruction = N_MNEM_vqmovun;
13988 do_neon_qmovun ();
13989 return;
13990 }
13991
13992 constraint (imm < 1 || (unsigned)imm > et.size,
13993 _("immediate out of range"));
13994 /* FIXME: The manual is kind of unclear about what value U should have in
13995 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13996 must be 1. */
13997 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13998 }
13999
14000 static void
14001 do_neon_movn (void)
14002 {
14003 struct neon_type_el et = neon_check_type (2, NS_DQ,
14004 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14005 NEON_ENCODE (INTEGER, inst);
14006 neon_two_same (0, 1, et.size / 2);
14007 }
14008
14009 static void
14010 do_neon_rshift_narrow (void)
14011 {
14012 struct neon_type_el et = neon_check_type (2, NS_DQI,
14013 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14014 int imm = inst.operands[2].imm;
14015 /* This gets the bounds check, size encoding and immediate bits calculation
14016 right. */
14017 et.size /= 2;
14018
14019 /* If immediate is zero then we are a pseudo-instruction for
14020 VMOVN.I<size> <Dd>, <Qm> */
14021 if (imm == 0)
14022 {
14023 inst.operands[2].present = 0;
14024 inst.instruction = N_MNEM_vmovn;
14025 do_neon_movn ();
14026 return;
14027 }
14028
14029 constraint (imm < 1 || (unsigned)imm > et.size,
14030 _("immediate out of range for narrowing operation"));
14031 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14032 }
14033
14034 static void
14035 do_neon_shll (void)
14036 {
14037 /* FIXME: Type checking when lengthening. */
14038 struct neon_type_el et = neon_check_type (2, NS_QDI,
14039 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14040 unsigned imm = inst.operands[2].imm;
14041
14042 if (imm == et.size)
14043 {
14044 /* Maximum shift variant. */
14045 NEON_ENCODE (INTEGER, inst);
14046 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14047 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14048 inst.instruction |= LOW4 (inst.operands[1].reg);
14049 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14050 inst.instruction |= neon_logbits (et.size) << 18;
14051
14052 neon_dp_fixup (&inst);
14053 }
14054 else
14055 {
14056 /* A more-specific type check for non-max versions. */
14057 et = neon_check_type (2, NS_QDI,
14058 N_EQK | N_DBL, N_SU_32 | N_KEY);
14059 NEON_ENCODE (IMMED, inst);
14060 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14061 }
14062 }
14063
14064 /* Check the various types for the VCVT instruction, and return which version
14065 the current instruction is. */
14066
14067 static int
14068 neon_cvt_flavour (enum neon_shape rs)
14069 {
14070 #define CVT_VAR(C,X,Y) \
14071 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14072 if (et.type != NT_invtype) \
14073 { \
14074 inst.error = NULL; \
14075 return (C); \
14076 }
14077 struct neon_type_el et;
14078 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14079 || rs == NS_FF) ? N_VFP : 0;
14080 /* The instruction versions which take an immediate take one register
14081 argument, which is extended to the width of the full register. Thus the
14082 "source" and "destination" registers must have the same width. Hack that
14083 here by making the size equal to the key (wider, in this case) operand. */
14084 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14085
14086 CVT_VAR (0, N_S32, N_F32);
14087 CVT_VAR (1, N_U32, N_F32);
14088 CVT_VAR (2, N_F32, N_S32);
14089 CVT_VAR (3, N_F32, N_U32);
14090 /* Half-precision conversions. */
14091 CVT_VAR (4, N_F32, N_F16);
14092 CVT_VAR (5, N_F16, N_F32);
14093
14094 whole_reg = N_VFP;
14095
14096 /* VFP instructions. */
14097 CVT_VAR (6, N_F32, N_F64);
14098 CVT_VAR (7, N_F64, N_F32);
14099 CVT_VAR (8, N_S32, N_F64 | key);
14100 CVT_VAR (9, N_U32, N_F64 | key);
14101 CVT_VAR (10, N_F64 | key, N_S32);
14102 CVT_VAR (11, N_F64 | key, N_U32);
14103 /* VFP instructions with bitshift. */
14104 CVT_VAR (12, N_F32 | key, N_S16);
14105 CVT_VAR (13, N_F32 | key, N_U16);
14106 CVT_VAR (14, N_F64 | key, N_S16);
14107 CVT_VAR (15, N_F64 | key, N_U16);
14108 CVT_VAR (16, N_S16, N_F32 | key);
14109 CVT_VAR (17, N_U16, N_F32 | key);
14110 CVT_VAR (18, N_S16, N_F64 | key);
14111 CVT_VAR (19, N_U16, N_F64 | key);
14112
14113 return -1;
14114 #undef CVT_VAR
14115 }
14116
14117 /* Neon-syntax VFP conversions. */
14118
14119 static void
14120 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14121 {
14122 const char *opname = 0;
14123
14124 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14125 {
14126 /* Conversions with immediate bitshift. */
14127 const char *enc[] =
14128 {
14129 "ftosls",
14130 "ftouls",
14131 "fsltos",
14132 "fultos",
14133 NULL,
14134 NULL,
14135 NULL,
14136 NULL,
14137 "ftosld",
14138 "ftould",
14139 "fsltod",
14140 "fultod",
14141 "fshtos",
14142 "fuhtos",
14143 "fshtod",
14144 "fuhtod",
14145 "ftoshs",
14146 "ftouhs",
14147 "ftoshd",
14148 "ftouhd"
14149 };
14150
14151 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14152 {
14153 opname = enc[flavour];
14154 constraint (inst.operands[0].reg != inst.operands[1].reg,
14155 _("operands 0 and 1 must be the same register"));
14156 inst.operands[1] = inst.operands[2];
14157 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14158 }
14159 }
14160 else
14161 {
14162 /* Conversions without bitshift. */
14163 const char *enc[] =
14164 {
14165 "ftosis",
14166 "ftouis",
14167 "fsitos",
14168 "fuitos",
14169 "NULL",
14170 "NULL",
14171 "fcvtsd",
14172 "fcvtds",
14173 "ftosid",
14174 "ftouid",
14175 "fsitod",
14176 "fuitod"
14177 };
14178
14179 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14180 opname = enc[flavour];
14181 }
14182
14183 if (opname)
14184 do_vfp_nsyn_opcode (opname);
14185 }
14186
14187 static void
14188 do_vfp_nsyn_cvtz (void)
14189 {
14190 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14191 int flavour = neon_cvt_flavour (rs);
14192 const char *enc[] =
14193 {
14194 "ftosizs",
14195 "ftouizs",
14196 NULL,
14197 NULL,
14198 NULL,
14199 NULL,
14200 NULL,
14201 NULL,
14202 "ftosizd",
14203 "ftouizd"
14204 };
14205
14206 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14207 do_vfp_nsyn_opcode (enc[flavour]);
14208 }
14209
14210 static void
14211 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14212 {
14213 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14214 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14215 int flavour = neon_cvt_flavour (rs);
14216
14217 /* PR11109: Handle round-to-zero for VCVT conversions. */
14218 if (round_to_zero
14219 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14220 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14221 && (rs == NS_FD || rs == NS_FF))
14222 {
14223 do_vfp_nsyn_cvtz ();
14224 return;
14225 }
14226
14227 /* VFP rather than Neon conversions. */
14228 if (flavour >= 6)
14229 {
14230 do_vfp_nsyn_cvt (rs, flavour);
14231 return;
14232 }
14233
14234 switch (rs)
14235 {
14236 case NS_DDI:
14237 case NS_QQI:
14238 {
14239 unsigned immbits;
14240 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14241
14242 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14243 return;
14244
14245 /* Fixed-point conversion with #0 immediate is encoded as an
14246 integer conversion. */
14247 if (inst.operands[2].present && inst.operands[2].imm == 0)
14248 goto int_encode;
14249 immbits = 32 - inst.operands[2].imm;
14250 NEON_ENCODE (IMMED, inst);
14251 if (flavour != -1)
14252 inst.instruction |= enctab[flavour];
14253 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14254 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14255 inst.instruction |= LOW4 (inst.operands[1].reg);
14256 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14257 inst.instruction |= neon_quad (rs) << 6;
14258 inst.instruction |= 1 << 21;
14259 inst.instruction |= immbits << 16;
14260
14261 neon_dp_fixup (&inst);
14262 }
14263 break;
14264
14265 case NS_DD:
14266 case NS_QQ:
14267 int_encode:
14268 {
14269 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14270
14271 NEON_ENCODE (INTEGER, inst);
14272
14273 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14274 return;
14275
14276 if (flavour != -1)
14277 inst.instruction |= enctab[flavour];
14278
14279 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14280 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14281 inst.instruction |= LOW4 (inst.operands[1].reg);
14282 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14283 inst.instruction |= neon_quad (rs) << 6;
14284 inst.instruction |= 2 << 18;
14285
14286 neon_dp_fixup (&inst);
14287 }
14288 break;
14289
14290 /* Half-precision conversions for Advanced SIMD -- neon. */
14291 case NS_QD:
14292 case NS_DQ:
14293
14294 if ((rs == NS_DQ)
14295 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14296 {
14297 as_bad (_("operand size must match register width"));
14298 break;
14299 }
14300
14301 if ((rs == NS_QD)
14302 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14303 {
14304 as_bad (_("operand size must match register width"));
14305 break;
14306 }
14307
14308 if (rs == NS_DQ)
14309 inst.instruction = 0x3b60600;
14310 else
14311 inst.instruction = 0x3b60700;
14312
14313 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14314 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14315 inst.instruction |= LOW4 (inst.operands[1].reg);
14316 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14317 neon_dp_fixup (&inst);
14318 break;
14319
14320 default:
14321 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14322 do_vfp_nsyn_cvt (rs, flavour);
14323 }
14324 }
14325
14326 static void
14327 do_neon_cvtr (void)
14328 {
14329 do_neon_cvt_1 (FALSE);
14330 }
14331
14332 static void
14333 do_neon_cvt (void)
14334 {
14335 do_neon_cvt_1 (TRUE);
14336 }
14337
14338 static void
14339 do_neon_cvtb (void)
14340 {
14341 inst.instruction = 0xeb20a40;
14342
14343 /* The sizes are attached to the mnemonic. */
14344 if (inst.vectype.el[0].type != NT_invtype
14345 && inst.vectype.el[0].size == 16)
14346 inst.instruction |= 0x00010000;
14347
14348 /* Programmer's syntax: the sizes are attached to the operands. */
14349 else if (inst.operands[0].vectype.type != NT_invtype
14350 && inst.operands[0].vectype.size == 16)
14351 inst.instruction |= 0x00010000;
14352
14353 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14354 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14355 do_vfp_cond_or_thumb ();
14356 }
14357
14358
14359 static void
14360 do_neon_cvtt (void)
14361 {
14362 do_neon_cvtb ();
14363 inst.instruction |= 0x80;
14364 }
14365
14366 static void
14367 neon_move_immediate (void)
14368 {
14369 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14370 struct neon_type_el et = neon_check_type (2, rs,
14371 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14372 unsigned immlo, immhi = 0, immbits;
14373 int op, cmode, float_p;
14374
14375 constraint (et.type == NT_invtype,
14376 _("operand size must be specified for immediate VMOV"));
14377
14378 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14379 op = (inst.instruction & (1 << 5)) != 0;
14380
14381 immlo = inst.operands[1].imm;
14382 if (inst.operands[1].regisimm)
14383 immhi = inst.operands[1].reg;
14384
14385 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14386 _("immediate has bits set outside the operand size"));
14387
14388 float_p = inst.operands[1].immisfloat;
14389
14390 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14391 et.size, et.type)) == FAIL)
14392 {
14393 /* Invert relevant bits only. */
14394 neon_invert_size (&immlo, &immhi, et.size);
14395 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14396 with one or the other; those cases are caught by
14397 neon_cmode_for_move_imm. */
14398 op = !op;
14399 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14400 &op, et.size, et.type)) == FAIL)
14401 {
14402 first_error (_("immediate out of range"));
14403 return;
14404 }
14405 }
14406
14407 inst.instruction &= ~(1 << 5);
14408 inst.instruction |= op << 5;
14409
14410 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14411 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14412 inst.instruction |= neon_quad (rs) << 6;
14413 inst.instruction |= cmode << 8;
14414
14415 neon_write_immbits (immbits);
14416 }
14417
14418 static void
14419 do_neon_mvn (void)
14420 {
14421 if (inst.operands[1].isreg)
14422 {
14423 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14424
14425 NEON_ENCODE (INTEGER, inst);
14426 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14427 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14428 inst.instruction |= LOW4 (inst.operands[1].reg);
14429 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14430 inst.instruction |= neon_quad (rs) << 6;
14431 }
14432 else
14433 {
14434 NEON_ENCODE (IMMED, inst);
14435 neon_move_immediate ();
14436 }
14437
14438 neon_dp_fixup (&inst);
14439 }
14440
14441 /* Encode instructions of form:
14442
14443 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14444 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14445
14446 static void
14447 neon_mixed_length (struct neon_type_el et, unsigned size)
14448 {
14449 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14450 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14451 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14452 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14453 inst.instruction |= LOW4 (inst.operands[2].reg);
14454 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14455 inst.instruction |= (et.type == NT_unsigned) << 24;
14456 inst.instruction |= neon_logbits (size) << 20;
14457
14458 neon_dp_fixup (&inst);
14459 }
14460
14461 static void
14462 do_neon_dyadic_long (void)
14463 {
14464 /* FIXME: Type checking for lengthening op. */
14465 struct neon_type_el et = neon_check_type (3, NS_QDD,
14466 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14467 neon_mixed_length (et, et.size);
14468 }
14469
14470 static void
14471 do_neon_abal (void)
14472 {
14473 struct neon_type_el et = neon_check_type (3, NS_QDD,
14474 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14475 neon_mixed_length (et, et.size);
14476 }
14477
14478 static void
14479 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14480 {
14481 if (inst.operands[2].isscalar)
14482 {
14483 struct neon_type_el et = neon_check_type (3, NS_QDS,
14484 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14485 NEON_ENCODE (SCALAR, inst);
14486 neon_mul_mac (et, et.type == NT_unsigned);
14487 }
14488 else
14489 {
14490 struct neon_type_el et = neon_check_type (3, NS_QDD,
14491 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14492 NEON_ENCODE (INTEGER, inst);
14493 neon_mixed_length (et, et.size);
14494 }
14495 }
14496
14497 static void
14498 do_neon_mac_maybe_scalar_long (void)
14499 {
14500 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14501 }
14502
14503 static void
14504 do_neon_dyadic_wide (void)
14505 {
14506 struct neon_type_el et = neon_check_type (3, NS_QQD,
14507 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14508 neon_mixed_length (et, et.size);
14509 }
14510
14511 static void
14512 do_neon_dyadic_narrow (void)
14513 {
14514 struct neon_type_el et = neon_check_type (3, NS_QDD,
14515 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14516 /* Operand sign is unimportant, and the U bit is part of the opcode,
14517 so force the operand type to integer. */
14518 et.type = NT_integer;
14519 neon_mixed_length (et, et.size / 2);
14520 }
14521
14522 static void
14523 do_neon_mul_sat_scalar_long (void)
14524 {
14525 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14526 }
14527
14528 static void
14529 do_neon_vmull (void)
14530 {
14531 if (inst.operands[2].isscalar)
14532 do_neon_mac_maybe_scalar_long ();
14533 else
14534 {
14535 struct neon_type_el et = neon_check_type (3, NS_QDD,
14536 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14537 if (et.type == NT_poly)
14538 NEON_ENCODE (POLY, inst);
14539 else
14540 NEON_ENCODE (INTEGER, inst);
14541 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14542 zero. Should be OK as-is. */
14543 neon_mixed_length (et, et.size);
14544 }
14545 }
14546
14547 static void
14548 do_neon_ext (void)
14549 {
14550 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14551 struct neon_type_el et = neon_check_type (3, rs,
14552 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14553 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14554
14555 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14556 _("shift out of range"));
14557 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14558 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14559 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14560 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14561 inst.instruction |= LOW4 (inst.operands[2].reg);
14562 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14563 inst.instruction |= neon_quad (rs) << 6;
14564 inst.instruction |= imm << 8;
14565
14566 neon_dp_fixup (&inst);
14567 }
14568
14569 static void
14570 do_neon_rev (void)
14571 {
14572 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14573 struct neon_type_el et = neon_check_type (2, rs,
14574 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14575 unsigned op = (inst.instruction >> 7) & 3;
14576 /* N (width of reversed regions) is encoded as part of the bitmask. We
14577 extract it here to check the elements to be reversed are smaller.
14578 Otherwise we'd get a reserved instruction. */
14579 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14580 gas_assert (elsize != 0);
14581 constraint (et.size >= elsize,
14582 _("elements must be smaller than reversal region"));
14583 neon_two_same (neon_quad (rs), 1, et.size);
14584 }
14585
14586 static void
14587 do_neon_dup (void)
14588 {
14589 if (inst.operands[1].isscalar)
14590 {
14591 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14592 struct neon_type_el et = neon_check_type (2, rs,
14593 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14594 unsigned sizebits = et.size >> 3;
14595 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14596 int logsize = neon_logbits (et.size);
14597 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14598
14599 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14600 return;
14601
14602 NEON_ENCODE (SCALAR, inst);
14603 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14604 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14605 inst.instruction |= LOW4 (dm);
14606 inst.instruction |= HI1 (dm) << 5;
14607 inst.instruction |= neon_quad (rs) << 6;
14608 inst.instruction |= x << 17;
14609 inst.instruction |= sizebits << 16;
14610
14611 neon_dp_fixup (&inst);
14612 }
14613 else
14614 {
14615 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14616 struct neon_type_el et = neon_check_type (2, rs,
14617 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14618 /* Duplicate ARM register to lanes of vector. */
14619 NEON_ENCODE (ARMREG, inst);
14620 switch (et.size)
14621 {
14622 case 8: inst.instruction |= 0x400000; break;
14623 case 16: inst.instruction |= 0x000020; break;
14624 case 32: inst.instruction |= 0x000000; break;
14625 default: break;
14626 }
14627 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14628 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14629 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14630 inst.instruction |= neon_quad (rs) << 21;
14631 /* The encoding for this instruction is identical for the ARM and Thumb
14632 variants, except for the condition field. */
14633 do_vfp_cond_or_thumb ();
14634 }
14635 }
14636
14637 /* VMOV has particularly many variations. It can be one of:
14638 0. VMOV<c><q> <Qd>, <Qm>
14639 1. VMOV<c><q> <Dd>, <Dm>
14640 (Register operations, which are VORR with Rm = Rn.)
14641 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14642 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14643 (Immediate loads.)
14644 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14645 (ARM register to scalar.)
14646 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14647 (Two ARM registers to vector.)
14648 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14649 (Scalar to ARM register.)
14650 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14651 (Vector to two ARM registers.)
14652 8. VMOV.F32 <Sd>, <Sm>
14653 9. VMOV.F64 <Dd>, <Dm>
14654 (VFP register moves.)
14655 10. VMOV.F32 <Sd>, #imm
14656 11. VMOV.F64 <Dd>, #imm
14657 (VFP float immediate load.)
14658 12. VMOV <Rd>, <Sm>
14659 (VFP single to ARM reg.)
14660 13. VMOV <Sd>, <Rm>
14661 (ARM reg to VFP single.)
14662 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14663 (Two ARM regs to two VFP singles.)
14664 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14665 (Two VFP singles to two ARM regs.)
14666
14667 These cases can be disambiguated using neon_select_shape, except cases 1/9
14668 and 3/11 which depend on the operand type too.
14669
14670 All the encoded bits are hardcoded by this function.
14671
14672 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14673 Cases 5, 7 may be used with VFPv2 and above.
14674
14675 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14676 can specify a type where it doesn't make sense to, and is ignored). */
14677
14678 static void
14679 do_neon_mov (void)
14680 {
14681 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14682 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14683 NS_NULL);
14684 struct neon_type_el et;
14685 const char *ldconst = 0;
14686
14687 switch (rs)
14688 {
14689 case NS_DD: /* case 1/9. */
14690 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14691 /* It is not an error here if no type is given. */
14692 inst.error = NULL;
14693 if (et.type == NT_float && et.size == 64)
14694 {
14695 do_vfp_nsyn_opcode ("fcpyd");
14696 break;
14697 }
14698 /* fall through. */
14699
14700 case NS_QQ: /* case 0/1. */
14701 {
14702 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14703 return;
14704 /* The architecture manual I have doesn't explicitly state which
14705 value the U bit should have for register->register moves, but
14706 the equivalent VORR instruction has U = 0, so do that. */
14707 inst.instruction = 0x0200110;
14708 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14709 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14710 inst.instruction |= LOW4 (inst.operands[1].reg);
14711 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14712 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14713 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14714 inst.instruction |= neon_quad (rs) << 6;
14715
14716 neon_dp_fixup (&inst);
14717 }
14718 break;
14719
14720 case NS_DI: /* case 3/11. */
14721 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14722 inst.error = NULL;
14723 if (et.type == NT_float && et.size == 64)
14724 {
14725 /* case 11 (fconstd). */
14726 ldconst = "fconstd";
14727 goto encode_fconstd;
14728 }
14729 /* fall through. */
14730
14731 case NS_QI: /* case 2/3. */
14732 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14733 return;
14734 inst.instruction = 0x0800010;
14735 neon_move_immediate ();
14736 neon_dp_fixup (&inst);
14737 break;
14738
14739 case NS_SR: /* case 4. */
14740 {
14741 unsigned bcdebits = 0;
14742 int logsize;
14743 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14744 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14745
14746 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14747 logsize = neon_logbits (et.size);
14748
14749 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14750 _(BAD_FPU));
14751 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14752 && et.size != 32, _(BAD_FPU));
14753 constraint (et.type == NT_invtype, _("bad type for scalar"));
14754 constraint (x >= 64 / et.size, _("scalar index out of range"));
14755
14756 switch (et.size)
14757 {
14758 case 8: bcdebits = 0x8; break;
14759 case 16: bcdebits = 0x1; break;
14760 case 32: bcdebits = 0x0; break;
14761 default: ;
14762 }
14763
14764 bcdebits |= x << logsize;
14765
14766 inst.instruction = 0xe000b10;
14767 do_vfp_cond_or_thumb ();
14768 inst.instruction |= LOW4 (dn) << 16;
14769 inst.instruction |= HI1 (dn) << 7;
14770 inst.instruction |= inst.operands[1].reg << 12;
14771 inst.instruction |= (bcdebits & 3) << 5;
14772 inst.instruction |= (bcdebits >> 2) << 21;
14773 }
14774 break;
14775
14776 case NS_DRR: /* case 5 (fmdrr). */
14777 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14778 _(BAD_FPU));
14779
14780 inst.instruction = 0xc400b10;
14781 do_vfp_cond_or_thumb ();
14782 inst.instruction |= LOW4 (inst.operands[0].reg);
14783 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14784 inst.instruction |= inst.operands[1].reg << 12;
14785 inst.instruction |= inst.operands[2].reg << 16;
14786 break;
14787
14788 case NS_RS: /* case 6. */
14789 {
14790 unsigned logsize;
14791 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14792 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14793 unsigned abcdebits = 0;
14794
14795 et = neon_check_type (2, NS_NULL,
14796 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14797 logsize = neon_logbits (et.size);
14798
14799 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14800 _(BAD_FPU));
14801 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14802 && et.size != 32, _(BAD_FPU));
14803 constraint (et.type == NT_invtype, _("bad type for scalar"));
14804 constraint (x >= 64 / et.size, _("scalar index out of range"));
14805
14806 switch (et.size)
14807 {
14808 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14809 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14810 case 32: abcdebits = 0x00; break;
14811 default: ;
14812 }
14813
14814 abcdebits |= x << logsize;
14815 inst.instruction = 0xe100b10;
14816 do_vfp_cond_or_thumb ();
14817 inst.instruction |= LOW4 (dn) << 16;
14818 inst.instruction |= HI1 (dn) << 7;
14819 inst.instruction |= inst.operands[0].reg << 12;
14820 inst.instruction |= (abcdebits & 3) << 5;
14821 inst.instruction |= (abcdebits >> 2) << 21;
14822 }
14823 break;
14824
14825 case NS_RRD: /* case 7 (fmrrd). */
14826 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14827 _(BAD_FPU));
14828
14829 inst.instruction = 0xc500b10;
14830 do_vfp_cond_or_thumb ();
14831 inst.instruction |= inst.operands[0].reg << 12;
14832 inst.instruction |= inst.operands[1].reg << 16;
14833 inst.instruction |= LOW4 (inst.operands[2].reg);
14834 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14835 break;
14836
14837 case NS_FF: /* case 8 (fcpys). */
14838 do_vfp_nsyn_opcode ("fcpys");
14839 break;
14840
14841 case NS_FI: /* case 10 (fconsts). */
14842 ldconst = "fconsts";
14843 encode_fconstd:
14844 if (is_quarter_float (inst.operands[1].imm))
14845 {
14846 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14847 do_vfp_nsyn_opcode (ldconst);
14848 }
14849 else
14850 first_error (_("immediate out of range"));
14851 break;
14852
14853 case NS_RF: /* case 12 (fmrs). */
14854 do_vfp_nsyn_opcode ("fmrs");
14855 break;
14856
14857 case NS_FR: /* case 13 (fmsr). */
14858 do_vfp_nsyn_opcode ("fmsr");
14859 break;
14860
14861 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14862 (one of which is a list), but we have parsed four. Do some fiddling to
14863 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14864 expect. */
14865 case NS_RRFF: /* case 14 (fmrrs). */
14866 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14867 _("VFP registers must be adjacent"));
14868 inst.operands[2].imm = 2;
14869 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14870 do_vfp_nsyn_opcode ("fmrrs");
14871 break;
14872
14873 case NS_FFRR: /* case 15 (fmsrr). */
14874 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14875 _("VFP registers must be adjacent"));
14876 inst.operands[1] = inst.operands[2];
14877 inst.operands[2] = inst.operands[3];
14878 inst.operands[0].imm = 2;
14879 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14880 do_vfp_nsyn_opcode ("fmsrr");
14881 break;
14882
14883 default:
14884 abort ();
14885 }
14886 }
14887
14888 static void
14889 do_neon_rshift_round_imm (void)
14890 {
14891 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14892 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14893 int imm = inst.operands[2].imm;
14894
14895 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14896 if (imm == 0)
14897 {
14898 inst.operands[2].present = 0;
14899 do_neon_mov ();
14900 return;
14901 }
14902
14903 constraint (imm < 1 || (unsigned)imm > et.size,
14904 _("immediate out of range for shift"));
14905 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14906 et.size - imm);
14907 }
14908
14909 static void
14910 do_neon_movl (void)
14911 {
14912 struct neon_type_el et = neon_check_type (2, NS_QD,
14913 N_EQK | N_DBL, N_SU_32 | N_KEY);
14914 unsigned sizebits = et.size >> 3;
14915 inst.instruction |= sizebits << 19;
14916 neon_two_same (0, et.type == NT_unsigned, -1);
14917 }
14918
14919 static void
14920 do_neon_trn (void)
14921 {
14922 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14923 struct neon_type_el et = neon_check_type (2, rs,
14924 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14925 NEON_ENCODE (INTEGER, inst);
14926 neon_two_same (neon_quad (rs), 1, et.size);
14927 }
14928
14929 static void
14930 do_neon_zip_uzp (void)
14931 {
14932 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14933 struct neon_type_el et = neon_check_type (2, rs,
14934 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14935 if (rs == NS_DD && et.size == 32)
14936 {
14937 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14938 inst.instruction = N_MNEM_vtrn;
14939 do_neon_trn ();
14940 return;
14941 }
14942 neon_two_same (neon_quad (rs), 1, et.size);
14943 }
14944
14945 static void
14946 do_neon_sat_abs_neg (void)
14947 {
14948 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14949 struct neon_type_el et = neon_check_type (2, rs,
14950 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14951 neon_two_same (neon_quad (rs), 1, et.size);
14952 }
14953
14954 static void
14955 do_neon_pair_long (void)
14956 {
14957 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14958 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14959 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14960 inst.instruction |= (et.type == NT_unsigned) << 7;
14961 neon_two_same (neon_quad (rs), 1, et.size);
14962 }
14963
14964 static void
14965 do_neon_recip_est (void)
14966 {
14967 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14968 struct neon_type_el et = neon_check_type (2, rs,
14969 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14970 inst.instruction |= (et.type == NT_float) << 8;
14971 neon_two_same (neon_quad (rs), 1, et.size);
14972 }
14973
14974 static void
14975 do_neon_cls (void)
14976 {
14977 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14978 struct neon_type_el et = neon_check_type (2, rs,
14979 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14980 neon_two_same (neon_quad (rs), 1, et.size);
14981 }
14982
14983 static void
14984 do_neon_clz (void)
14985 {
14986 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14987 struct neon_type_el et = neon_check_type (2, rs,
14988 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14989 neon_two_same (neon_quad (rs), 1, et.size);
14990 }
14991
14992 static void
14993 do_neon_cnt (void)
14994 {
14995 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14996 struct neon_type_el et = neon_check_type (2, rs,
14997 N_EQK | N_INT, N_8 | N_KEY);
14998 neon_two_same (neon_quad (rs), 1, et.size);
14999 }
15000
15001 static void
15002 do_neon_swp (void)
15003 {
15004 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15005 neon_two_same (neon_quad (rs), 1, -1);
15006 }
15007
15008 static void
15009 do_neon_tbl_tbx (void)
15010 {
15011 unsigned listlenbits;
15012 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15013
15014 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15015 {
15016 first_error (_("bad list length for table lookup"));
15017 return;
15018 }
15019
15020 listlenbits = inst.operands[1].imm - 1;
15021 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15022 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15023 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15024 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15025 inst.instruction |= LOW4 (inst.operands[2].reg);
15026 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15027 inst.instruction |= listlenbits << 8;
15028
15029 neon_dp_fixup (&inst);
15030 }
15031
15032 static void
15033 do_neon_ldm_stm (void)
15034 {
15035 /* P, U and L bits are part of bitmask. */
15036 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15037 unsigned offsetbits = inst.operands[1].imm * 2;
15038
15039 if (inst.operands[1].issingle)
15040 {
15041 do_vfp_nsyn_ldm_stm (is_dbmode);
15042 return;
15043 }
15044
15045 constraint (is_dbmode && !inst.operands[0].writeback,
15046 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15047
15048 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15049 _("register list must contain at least 1 and at most 16 "
15050 "registers"));
15051
15052 inst.instruction |= inst.operands[0].reg << 16;
15053 inst.instruction |= inst.operands[0].writeback << 21;
15054 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15055 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15056
15057 inst.instruction |= offsetbits;
15058
15059 do_vfp_cond_or_thumb ();
15060 }
15061
15062 static void
15063 do_neon_ldr_str (void)
15064 {
15065 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15066
15067 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15068 And is UNPREDICTABLE in thumb mode. */
15069 if (!is_ldr
15070 && inst.operands[1].reg == REG_PC
15071 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15072 {
15073 if (!thumb_mode && warn_on_deprecated)
15074 as_warn (_("Use of PC here is deprecated"));
15075 else
15076 inst.error = _("Use of PC here is UNPREDICTABLE");
15077 }
15078
15079 if (inst.operands[0].issingle)
15080 {
15081 if (is_ldr)
15082 do_vfp_nsyn_opcode ("flds");
15083 else
15084 do_vfp_nsyn_opcode ("fsts");
15085 }
15086 else
15087 {
15088 if (is_ldr)
15089 do_vfp_nsyn_opcode ("fldd");
15090 else
15091 do_vfp_nsyn_opcode ("fstd");
15092 }
15093 }
15094
15095 /* "interleave" version also handles non-interleaving register VLD1/VST1
15096 instructions. */
15097
15098 static void
15099 do_neon_ld_st_interleave (void)
15100 {
15101 struct neon_type_el et = neon_check_type (1, NS_NULL,
15102 N_8 | N_16 | N_32 | N_64);
15103 unsigned alignbits = 0;
15104 unsigned idx;
15105 /* The bits in this table go:
15106 0: register stride of one (0) or two (1)
15107 1,2: register list length, minus one (1, 2, 3, 4).
15108 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15109 We use -1 for invalid entries. */
15110 const int typetable[] =
15111 {
15112 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15113 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15114 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15115 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15116 };
15117 int typebits;
15118
15119 if (et.type == NT_invtype)
15120 return;
15121
15122 if (inst.operands[1].immisalign)
15123 switch (inst.operands[1].imm >> 8)
15124 {
15125 case 64: alignbits = 1; break;
15126 case 128:
15127 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15128 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15129 goto bad_alignment;
15130 alignbits = 2;
15131 break;
15132 case 256:
15133 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15134 goto bad_alignment;
15135 alignbits = 3;
15136 break;
15137 default:
15138 bad_alignment:
15139 first_error (_("bad alignment"));
15140 return;
15141 }
15142
15143 inst.instruction |= alignbits << 4;
15144 inst.instruction |= neon_logbits (et.size) << 6;
15145
15146 /* Bits [4:6] of the immediate in a list specifier encode register stride
15147 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15148 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15149 up the right value for "type" in a table based on this value and the given
15150 list style, then stick it back. */
15151 idx = ((inst.operands[0].imm >> 4) & 7)
15152 | (((inst.instruction >> 8) & 3) << 3);
15153
15154 typebits = typetable[idx];
15155
15156 constraint (typebits == -1, _("bad list type for instruction"));
15157
15158 inst.instruction &= ~0xf00;
15159 inst.instruction |= typebits << 8;
15160 }
15161
15162 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15163 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15164 otherwise. The variable arguments are a list of pairs of legal (size, align)
15165 values, terminated with -1. */
15166
15167 static int
15168 neon_alignment_bit (int size, int align, int *do_align, ...)
15169 {
15170 va_list ap;
15171 int result = FAIL, thissize, thisalign;
15172
15173 if (!inst.operands[1].immisalign)
15174 {
15175 *do_align = 0;
15176 return SUCCESS;
15177 }
15178
15179 va_start (ap, do_align);
15180
15181 do
15182 {
15183 thissize = va_arg (ap, int);
15184 if (thissize == -1)
15185 break;
15186 thisalign = va_arg (ap, int);
15187
15188 if (size == thissize && align == thisalign)
15189 result = SUCCESS;
15190 }
15191 while (result != SUCCESS);
15192
15193 va_end (ap);
15194
15195 if (result == SUCCESS)
15196 *do_align = 1;
15197 else
15198 first_error (_("unsupported alignment for instruction"));
15199
15200 return result;
15201 }
15202
15203 static void
15204 do_neon_ld_st_lane (void)
15205 {
15206 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15207 int align_good, do_align = 0;
15208 int logsize = neon_logbits (et.size);
15209 int align = inst.operands[1].imm >> 8;
15210 int n = (inst.instruction >> 8) & 3;
15211 int max_el = 64 / et.size;
15212
15213 if (et.type == NT_invtype)
15214 return;
15215
15216 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15217 _("bad list length"));
15218 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15219 _("scalar index out of range"));
15220 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15221 && et.size == 8,
15222 _("stride of 2 unavailable when element size is 8"));
15223
15224 switch (n)
15225 {
15226 case 0: /* VLD1 / VST1. */
15227 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15228 32, 32, -1);
15229 if (align_good == FAIL)
15230 return;
15231 if (do_align)
15232 {
15233 unsigned alignbits = 0;
15234 switch (et.size)
15235 {
15236 case 16: alignbits = 0x1; break;
15237 case 32: alignbits = 0x3; break;
15238 default: ;
15239 }
15240 inst.instruction |= alignbits << 4;
15241 }
15242 break;
15243
15244 case 1: /* VLD2 / VST2. */
15245 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15246 32, 64, -1);
15247 if (align_good == FAIL)
15248 return;
15249 if (do_align)
15250 inst.instruction |= 1 << 4;
15251 break;
15252
15253 case 2: /* VLD3 / VST3. */
15254 constraint (inst.operands[1].immisalign,
15255 _("can't use alignment with this instruction"));
15256 break;
15257
15258 case 3: /* VLD4 / VST4. */
15259 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15260 16, 64, 32, 64, 32, 128, -1);
15261 if (align_good == FAIL)
15262 return;
15263 if (do_align)
15264 {
15265 unsigned alignbits = 0;
15266 switch (et.size)
15267 {
15268 case 8: alignbits = 0x1; break;
15269 case 16: alignbits = 0x1; break;
15270 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15271 default: ;
15272 }
15273 inst.instruction |= alignbits << 4;
15274 }
15275 break;
15276
15277 default: ;
15278 }
15279
15280 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15281 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15282 inst.instruction |= 1 << (4 + logsize);
15283
15284 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15285 inst.instruction |= logsize << 10;
15286 }
15287
15288 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15289
15290 static void
15291 do_neon_ld_dup (void)
15292 {
15293 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15294 int align_good, do_align = 0;
15295
15296 if (et.type == NT_invtype)
15297 return;
15298
15299 switch ((inst.instruction >> 8) & 3)
15300 {
15301 case 0: /* VLD1. */
15302 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15303 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15304 &do_align, 16, 16, 32, 32, -1);
15305 if (align_good == FAIL)
15306 return;
15307 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15308 {
15309 case 1: break;
15310 case 2: inst.instruction |= 1 << 5; break;
15311 default: first_error (_("bad list length")); return;
15312 }
15313 inst.instruction |= neon_logbits (et.size) << 6;
15314 break;
15315
15316 case 1: /* VLD2. */
15317 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15318 &do_align, 8, 16, 16, 32, 32, 64, -1);
15319 if (align_good == FAIL)
15320 return;
15321 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15322 _("bad list length"));
15323 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15324 inst.instruction |= 1 << 5;
15325 inst.instruction |= neon_logbits (et.size) << 6;
15326 break;
15327
15328 case 2: /* VLD3. */
15329 constraint (inst.operands[1].immisalign,
15330 _("can't use alignment with this instruction"));
15331 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15332 _("bad list length"));
15333 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15334 inst.instruction |= 1 << 5;
15335 inst.instruction |= neon_logbits (et.size) << 6;
15336 break;
15337
15338 case 3: /* VLD4. */
15339 {
15340 int align = inst.operands[1].imm >> 8;
15341 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15342 16, 64, 32, 64, 32, 128, -1);
15343 if (align_good == FAIL)
15344 return;
15345 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15346 _("bad list length"));
15347 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15348 inst.instruction |= 1 << 5;
15349 if (et.size == 32 && align == 128)
15350 inst.instruction |= 0x3 << 6;
15351 else
15352 inst.instruction |= neon_logbits (et.size) << 6;
15353 }
15354 break;
15355
15356 default: ;
15357 }
15358
15359 inst.instruction |= do_align << 4;
15360 }
15361
15362 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15363 apart from bits [11:4]. */
15364
15365 static void
15366 do_neon_ldx_stx (void)
15367 {
15368 if (inst.operands[1].isreg)
15369 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15370
15371 switch (NEON_LANE (inst.operands[0].imm))
15372 {
15373 case NEON_INTERLEAVE_LANES:
15374 NEON_ENCODE (INTERLV, inst);
15375 do_neon_ld_st_interleave ();
15376 break;
15377
15378 case NEON_ALL_LANES:
15379 NEON_ENCODE (DUP, inst);
15380 do_neon_ld_dup ();
15381 break;
15382
15383 default:
15384 NEON_ENCODE (LANE, inst);
15385 do_neon_ld_st_lane ();
15386 }
15387
15388 /* L bit comes from bit mask. */
15389 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15390 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15391 inst.instruction |= inst.operands[1].reg << 16;
15392
15393 if (inst.operands[1].postind)
15394 {
15395 int postreg = inst.operands[1].imm & 0xf;
15396 constraint (!inst.operands[1].immisreg,
15397 _("post-index must be a register"));
15398 constraint (postreg == 0xd || postreg == 0xf,
15399 _("bad register for post-index"));
15400 inst.instruction |= postreg;
15401 }
15402 else if (inst.operands[1].writeback)
15403 {
15404 inst.instruction |= 0xd;
15405 }
15406 else
15407 inst.instruction |= 0xf;
15408
15409 if (thumb_mode)
15410 inst.instruction |= 0xf9000000;
15411 else
15412 inst.instruction |= 0xf4000000;
15413 }
15414 \f
15415 /* Overall per-instruction processing. */
15416
15417 /* We need to be able to fix up arbitrary expressions in some statements.
15418 This is so that we can handle symbols that are an arbitrary distance from
15419 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15420 which returns part of an address in a form which will be valid for
15421 a data instruction. We do this by pushing the expression into a symbol
15422 in the expr_section, and creating a fix for that. */
15423
15424 static void
15425 fix_new_arm (fragS * frag,
15426 int where,
15427 short int size,
15428 expressionS * exp,
15429 int pc_rel,
15430 int reloc)
15431 {
15432 fixS * new_fix;
15433
15434 switch (exp->X_op)
15435 {
15436 case O_constant:
15437 if (pc_rel)
15438 {
15439 /* Create an absolute valued symbol, so we have something to
15440 refer to in the object file. Unfortunately for us, gas's
15441 generic expression parsing will already have folded out
15442 any use of .set foo/.type foo %function that may have
15443 been used to set type information of the target location,
15444 that's being specified symbolically. We have to presume
15445 the user knows what they are doing. */
15446 char name[16 + 8];
15447 symbolS *symbol;
15448
15449 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15450
15451 symbol = symbol_find_or_make (name);
15452 S_SET_SEGMENT (symbol, absolute_section);
15453 symbol_set_frag (symbol, &zero_address_frag);
15454 S_SET_VALUE (symbol, exp->X_add_number);
15455 exp->X_op = O_symbol;
15456 exp->X_add_symbol = symbol;
15457 exp->X_add_number = 0;
15458 }
15459 /* FALLTHROUGH */
15460 case O_symbol:
15461 case O_add:
15462 case O_subtract:
15463 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15464 (enum bfd_reloc_code_real) reloc);
15465 break;
15466
15467 default:
15468 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15469 pc_rel, (enum bfd_reloc_code_real) reloc);
15470 break;
15471 }
15472
15473 /* Mark whether the fix is to a THUMB instruction, or an ARM
15474 instruction. */
15475 new_fix->tc_fix_data = thumb_mode;
15476 }
15477
15478 /* Create a frg for an instruction requiring relaxation. */
15479 static void
15480 output_relax_insn (void)
15481 {
15482 char * to;
15483 symbolS *sym;
15484 int offset;
15485
15486 /* The size of the instruction is unknown, so tie the debug info to the
15487 start of the instruction. */
15488 dwarf2_emit_insn (0);
15489
15490 switch (inst.reloc.exp.X_op)
15491 {
15492 case O_symbol:
15493 sym = inst.reloc.exp.X_add_symbol;
15494 offset = inst.reloc.exp.X_add_number;
15495 break;
15496 case O_constant:
15497 sym = NULL;
15498 offset = inst.reloc.exp.X_add_number;
15499 break;
15500 default:
15501 sym = make_expr_symbol (&inst.reloc.exp);
15502 offset = 0;
15503 break;
15504 }
15505 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15506 inst.relax, sym, offset, NULL/*offset, opcode*/);
15507 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15508 }
15509
15510 /* Write a 32-bit thumb instruction to buf. */
15511 static void
15512 put_thumb32_insn (char * buf, unsigned long insn)
15513 {
15514 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15515 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15516 }
15517
15518 static void
15519 output_inst (const char * str)
15520 {
15521 char * to = NULL;
15522
15523 if (inst.error)
15524 {
15525 as_bad ("%s -- `%s'", inst.error, str);
15526 return;
15527 }
15528 if (inst.relax)
15529 {
15530 output_relax_insn ();
15531 return;
15532 }
15533 if (inst.size == 0)
15534 return;
15535
15536 to = frag_more (inst.size);
15537 /* PR 9814: Record the thumb mode into the current frag so that we know
15538 what type of NOP padding to use, if necessary. We override any previous
15539 setting so that if the mode has changed then the NOPS that we use will
15540 match the encoding of the last instruction in the frag. */
15541 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15542
15543 if (thumb_mode && (inst.size > THUMB_SIZE))
15544 {
15545 gas_assert (inst.size == (2 * THUMB_SIZE));
15546 put_thumb32_insn (to, inst.instruction);
15547 }
15548 else if (inst.size > INSN_SIZE)
15549 {
15550 gas_assert (inst.size == (2 * INSN_SIZE));
15551 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15552 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15553 }
15554 else
15555 md_number_to_chars (to, inst.instruction, inst.size);
15556
15557 if (inst.reloc.type != BFD_RELOC_UNUSED)
15558 fix_new_arm (frag_now, to - frag_now->fr_literal,
15559 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15560 inst.reloc.type);
15561
15562 dwarf2_emit_insn (inst.size);
15563 }
15564
15565 static char *
15566 output_it_inst (int cond, int mask, char * to)
15567 {
15568 unsigned long instruction = 0xbf00;
15569
15570 mask &= 0xf;
15571 instruction |= mask;
15572 instruction |= cond << 4;
15573
15574 if (to == NULL)
15575 {
15576 to = frag_more (2);
15577 #ifdef OBJ_ELF
15578 dwarf2_emit_insn (2);
15579 #endif
15580 }
15581
15582 md_number_to_chars (to, instruction, 2);
15583
15584 return to;
15585 }
15586
15587 /* Tag values used in struct asm_opcode's tag field. */
15588 enum opcode_tag
15589 {
15590 OT_unconditional, /* Instruction cannot be conditionalized.
15591 The ARM condition field is still 0xE. */
15592 OT_unconditionalF, /* Instruction cannot be conditionalized
15593 and carries 0xF in its ARM condition field. */
15594 OT_csuffix, /* Instruction takes a conditional suffix. */
15595 OT_csuffixF, /* Some forms of the instruction take a conditional
15596 suffix, others place 0xF where the condition field
15597 would be. */
15598 OT_cinfix3, /* Instruction takes a conditional infix,
15599 beginning at character index 3. (In
15600 unified mode, it becomes a suffix.) */
15601 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15602 tsts, cmps, cmns, and teqs. */
15603 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15604 character index 3, even in unified mode. Used for
15605 legacy instructions where suffix and infix forms
15606 may be ambiguous. */
15607 OT_csuf_or_in3, /* Instruction takes either a conditional
15608 suffix or an infix at character index 3. */
15609 OT_odd_infix_unc, /* This is the unconditional variant of an
15610 instruction that takes a conditional infix
15611 at an unusual position. In unified mode,
15612 this variant will accept a suffix. */
15613 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15614 are the conditional variants of instructions that
15615 take conditional infixes in unusual positions.
15616 The infix appears at character index
15617 (tag - OT_odd_infix_0). These are not accepted
15618 in unified mode. */
15619 };
15620
15621 /* Subroutine of md_assemble, responsible for looking up the primary
15622 opcode from the mnemonic the user wrote. STR points to the
15623 beginning of the mnemonic.
15624
15625 This is not simply a hash table lookup, because of conditional
15626 variants. Most instructions have conditional variants, which are
15627 expressed with a _conditional affix_ to the mnemonic. If we were
15628 to encode each conditional variant as a literal string in the opcode
15629 table, it would have approximately 20,000 entries.
15630
15631 Most mnemonics take this affix as a suffix, and in unified syntax,
15632 'most' is upgraded to 'all'. However, in the divided syntax, some
15633 instructions take the affix as an infix, notably the s-variants of
15634 the arithmetic instructions. Of those instructions, all but six
15635 have the infix appear after the third character of the mnemonic.
15636
15637 Accordingly, the algorithm for looking up primary opcodes given
15638 an identifier is:
15639
15640 1. Look up the identifier in the opcode table.
15641 If we find a match, go to step U.
15642
15643 2. Look up the last two characters of the identifier in the
15644 conditions table. If we find a match, look up the first N-2
15645 characters of the identifier in the opcode table. If we
15646 find a match, go to step CE.
15647
15648 3. Look up the fourth and fifth characters of the identifier in
15649 the conditions table. If we find a match, extract those
15650 characters from the identifier, and look up the remaining
15651 characters in the opcode table. If we find a match, go
15652 to step CM.
15653
15654 4. Fail.
15655
15656 U. Examine the tag field of the opcode structure, in case this is
15657 one of the six instructions with its conditional infix in an
15658 unusual place. If it is, the tag tells us where to find the
15659 infix; look it up in the conditions table and set inst.cond
15660 accordingly. Otherwise, this is an unconditional instruction.
15661 Again set inst.cond accordingly. Return the opcode structure.
15662
15663 CE. Examine the tag field to make sure this is an instruction that
15664 should receive a conditional suffix. If it is not, fail.
15665 Otherwise, set inst.cond from the suffix we already looked up,
15666 and return the opcode structure.
15667
15668 CM. Examine the tag field to make sure this is an instruction that
15669 should receive a conditional infix after the third character.
15670 If it is not, fail. Otherwise, undo the edits to the current
15671 line of input and proceed as for case CE. */
15672
15673 static const struct asm_opcode *
15674 opcode_lookup (char **str)
15675 {
15676 char *end, *base;
15677 char *affix;
15678 const struct asm_opcode *opcode;
15679 const struct asm_cond *cond;
15680 char save[2];
15681
15682 /* Scan up to the end of the mnemonic, which must end in white space,
15683 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15684 for (base = end = *str; *end != '\0'; end++)
15685 if (*end == ' ' || *end == '.')
15686 break;
15687
15688 if (end == base)
15689 return NULL;
15690
15691 /* Handle a possible width suffix and/or Neon type suffix. */
15692 if (end[0] == '.')
15693 {
15694 int offset = 2;
15695
15696 /* The .w and .n suffixes are only valid if the unified syntax is in
15697 use. */
15698 if (unified_syntax && end[1] == 'w')
15699 inst.size_req = 4;
15700 else if (unified_syntax && end[1] == 'n')
15701 inst.size_req = 2;
15702 else
15703 offset = 0;
15704
15705 inst.vectype.elems = 0;
15706
15707 *str = end + offset;
15708
15709 if (end[offset] == '.')
15710 {
15711 /* See if we have a Neon type suffix (possible in either unified or
15712 non-unified ARM syntax mode). */
15713 if (parse_neon_type (&inst.vectype, str) == FAIL)
15714 return NULL;
15715 }
15716 else if (end[offset] != '\0' && end[offset] != ' ')
15717 return NULL;
15718 }
15719 else
15720 *str = end;
15721
15722 /* Look for unaffixed or special-case affixed mnemonic. */
15723 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15724 end - base);
15725 if (opcode)
15726 {
15727 /* step U */
15728 if (opcode->tag < OT_odd_infix_0)
15729 {
15730 inst.cond = COND_ALWAYS;
15731 return opcode;
15732 }
15733
15734 if (warn_on_deprecated && unified_syntax)
15735 as_warn (_("conditional infixes are deprecated in unified syntax"));
15736 affix = base + (opcode->tag - OT_odd_infix_0);
15737 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15738 gas_assert (cond);
15739
15740 inst.cond = cond->value;
15741 return opcode;
15742 }
15743
15744 /* Cannot have a conditional suffix on a mnemonic of less than two
15745 characters. */
15746 if (end - base < 3)
15747 return NULL;
15748
15749 /* Look for suffixed mnemonic. */
15750 affix = end - 2;
15751 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15752 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15753 affix - base);
15754 if (opcode && cond)
15755 {
15756 /* step CE */
15757 switch (opcode->tag)
15758 {
15759 case OT_cinfix3_legacy:
15760 /* Ignore conditional suffixes matched on infix only mnemonics. */
15761 break;
15762
15763 case OT_cinfix3:
15764 case OT_cinfix3_deprecated:
15765 case OT_odd_infix_unc:
15766 if (!unified_syntax)
15767 return 0;
15768 /* else fall through */
15769
15770 case OT_csuffix:
15771 case OT_csuffixF:
15772 case OT_csuf_or_in3:
15773 inst.cond = cond->value;
15774 return opcode;
15775
15776 case OT_unconditional:
15777 case OT_unconditionalF:
15778 if (thumb_mode)
15779 inst.cond = cond->value;
15780 else
15781 {
15782 /* Delayed diagnostic. */
15783 inst.error = BAD_COND;
15784 inst.cond = COND_ALWAYS;
15785 }
15786 return opcode;
15787
15788 default:
15789 return NULL;
15790 }
15791 }
15792
15793 /* Cannot have a usual-position infix on a mnemonic of less than
15794 six characters (five would be a suffix). */
15795 if (end - base < 6)
15796 return NULL;
15797
15798 /* Look for infixed mnemonic in the usual position. */
15799 affix = base + 3;
15800 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15801 if (!cond)
15802 return NULL;
15803
15804 memcpy (save, affix, 2);
15805 memmove (affix, affix + 2, (end - affix) - 2);
15806 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15807 (end - base) - 2);
15808 memmove (affix + 2, affix, (end - affix) - 2);
15809 memcpy (affix, save, 2);
15810
15811 if (opcode
15812 && (opcode->tag == OT_cinfix3
15813 || opcode->tag == OT_cinfix3_deprecated
15814 || opcode->tag == OT_csuf_or_in3
15815 || opcode->tag == OT_cinfix3_legacy))
15816 {
15817 /* Step CM. */
15818 if (warn_on_deprecated && unified_syntax
15819 && (opcode->tag == OT_cinfix3
15820 || opcode->tag == OT_cinfix3_deprecated))
15821 as_warn (_("conditional infixes are deprecated in unified syntax"));
15822
15823 inst.cond = cond->value;
15824 return opcode;
15825 }
15826
15827 return NULL;
15828 }
15829
15830 /* This function generates an initial IT instruction, leaving its block
15831 virtually open for the new instructions. Eventually,
15832 the mask will be updated by now_it_add_mask () each time
15833 a new instruction needs to be included in the IT block.
15834 Finally, the block is closed with close_automatic_it_block ().
15835 The block closure can be requested either from md_assemble (),
15836 a tencode (), or due to a label hook. */
15837
15838 static void
15839 new_automatic_it_block (int cond)
15840 {
15841 now_it.state = AUTOMATIC_IT_BLOCK;
15842 now_it.mask = 0x18;
15843 now_it.cc = cond;
15844 now_it.block_length = 1;
15845 mapping_state (MAP_THUMB);
15846 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15847 }
15848
15849 /* Close an automatic IT block.
15850 See comments in new_automatic_it_block (). */
15851
15852 static void
15853 close_automatic_it_block (void)
15854 {
15855 now_it.mask = 0x10;
15856 now_it.block_length = 0;
15857 }
15858
15859 /* Update the mask of the current automatically-generated IT
15860 instruction. See comments in new_automatic_it_block (). */
15861
15862 static void
15863 now_it_add_mask (int cond)
15864 {
15865 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15866 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15867 | ((bitvalue) << (nbit)))
15868 const int resulting_bit = (cond & 1);
15869
15870 now_it.mask &= 0xf;
15871 now_it.mask = SET_BIT_VALUE (now_it.mask,
15872 resulting_bit,
15873 (5 - now_it.block_length));
15874 now_it.mask = SET_BIT_VALUE (now_it.mask,
15875 1,
15876 ((5 - now_it.block_length) - 1) );
15877 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15878
15879 #undef CLEAR_BIT
15880 #undef SET_BIT_VALUE
15881 }
15882
15883 /* The IT blocks handling machinery is accessed through the these functions:
15884 it_fsm_pre_encode () from md_assemble ()
15885 set_it_insn_type () optional, from the tencode functions
15886 set_it_insn_type_last () ditto
15887 in_it_block () ditto
15888 it_fsm_post_encode () from md_assemble ()
15889 force_automatic_it_block_close () from label habdling functions
15890
15891 Rationale:
15892 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15893 initializing the IT insn type with a generic initial value depending
15894 on the inst.condition.
15895 2) During the tencode function, two things may happen:
15896 a) The tencode function overrides the IT insn type by
15897 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15898 b) The tencode function queries the IT block state by
15899 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15900
15901 Both set_it_insn_type and in_it_block run the internal FSM state
15902 handling function (handle_it_state), because: a) setting the IT insn
15903 type may incur in an invalid state (exiting the function),
15904 and b) querying the state requires the FSM to be updated.
15905 Specifically we want to avoid creating an IT block for conditional
15906 branches, so it_fsm_pre_encode is actually a guess and we can't
15907 determine whether an IT block is required until the tencode () routine
15908 has decided what type of instruction this actually it.
15909 Because of this, if set_it_insn_type and in_it_block have to be used,
15910 set_it_insn_type has to be called first.
15911
15912 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15913 determines the insn IT type depending on the inst.cond code.
15914 When a tencode () routine encodes an instruction that can be
15915 either outside an IT block, or, in the case of being inside, has to be
15916 the last one, set_it_insn_type_last () will determine the proper
15917 IT instruction type based on the inst.cond code. Otherwise,
15918 set_it_insn_type can be called for overriding that logic or
15919 for covering other cases.
15920
15921 Calling handle_it_state () may not transition the IT block state to
15922 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15923 still queried. Instead, if the FSM determines that the state should
15924 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15925 after the tencode () function: that's what it_fsm_post_encode () does.
15926
15927 Since in_it_block () calls the state handling function to get an
15928 updated state, an error may occur (due to invalid insns combination).
15929 In that case, inst.error is set.
15930 Therefore, inst.error has to be checked after the execution of
15931 the tencode () routine.
15932
15933 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15934 any pending state change (if any) that didn't take place in
15935 handle_it_state () as explained above. */
15936
15937 static void
15938 it_fsm_pre_encode (void)
15939 {
15940 if (inst.cond != COND_ALWAYS)
15941 inst.it_insn_type = INSIDE_IT_INSN;
15942 else
15943 inst.it_insn_type = OUTSIDE_IT_INSN;
15944
15945 now_it.state_handled = 0;
15946 }
15947
15948 /* IT state FSM handling function. */
15949
15950 static int
15951 handle_it_state (void)
15952 {
15953 now_it.state_handled = 1;
15954
15955 switch (now_it.state)
15956 {
15957 case OUTSIDE_IT_BLOCK:
15958 switch (inst.it_insn_type)
15959 {
15960 case OUTSIDE_IT_INSN:
15961 break;
15962
15963 case INSIDE_IT_INSN:
15964 case INSIDE_IT_LAST_INSN:
15965 if (thumb_mode == 0)
15966 {
15967 if (unified_syntax
15968 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15969 as_tsktsk (_("Warning: conditional outside an IT block"\
15970 " for Thumb."));
15971 }
15972 else
15973 {
15974 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15975 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15976 {
15977 /* Automatically generate the IT instruction. */
15978 new_automatic_it_block (inst.cond);
15979 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15980 close_automatic_it_block ();
15981 }
15982 else
15983 {
15984 inst.error = BAD_OUT_IT;
15985 return FAIL;
15986 }
15987 }
15988 break;
15989
15990 case IF_INSIDE_IT_LAST_INSN:
15991 case NEUTRAL_IT_INSN:
15992 break;
15993
15994 case IT_INSN:
15995 now_it.state = MANUAL_IT_BLOCK;
15996 now_it.block_length = 0;
15997 break;
15998 }
15999 break;
16000
16001 case AUTOMATIC_IT_BLOCK:
16002 /* Three things may happen now:
16003 a) We should increment current it block size;
16004 b) We should close current it block (closing insn or 4 insns);
16005 c) We should close current it block and start a new one (due
16006 to incompatible conditions or
16007 4 insns-length block reached). */
16008
16009 switch (inst.it_insn_type)
16010 {
16011 case OUTSIDE_IT_INSN:
16012 /* The closure of the block shall happen immediatelly,
16013 so any in_it_block () call reports the block as closed. */
16014 force_automatic_it_block_close ();
16015 break;
16016
16017 case INSIDE_IT_INSN:
16018 case INSIDE_IT_LAST_INSN:
16019 case IF_INSIDE_IT_LAST_INSN:
16020 now_it.block_length++;
16021
16022 if (now_it.block_length > 4
16023 || !now_it_compatible (inst.cond))
16024 {
16025 force_automatic_it_block_close ();
16026 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16027 new_automatic_it_block (inst.cond);
16028 }
16029 else
16030 {
16031 now_it_add_mask (inst.cond);
16032 }
16033
16034 if (now_it.state == AUTOMATIC_IT_BLOCK
16035 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16036 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16037 close_automatic_it_block ();
16038 break;
16039
16040 case NEUTRAL_IT_INSN:
16041 now_it.block_length++;
16042
16043 if (now_it.block_length > 4)
16044 force_automatic_it_block_close ();
16045 else
16046 now_it_add_mask (now_it.cc & 1);
16047 break;
16048
16049 case IT_INSN:
16050 close_automatic_it_block ();
16051 now_it.state = MANUAL_IT_BLOCK;
16052 break;
16053 }
16054 break;
16055
16056 case MANUAL_IT_BLOCK:
16057 {
16058 /* Check conditional suffixes. */
16059 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16060 int is_last;
16061 now_it.mask <<= 1;
16062 now_it.mask &= 0x1f;
16063 is_last = (now_it.mask == 0x10);
16064
16065 switch (inst.it_insn_type)
16066 {
16067 case OUTSIDE_IT_INSN:
16068 inst.error = BAD_NOT_IT;
16069 return FAIL;
16070
16071 case INSIDE_IT_INSN:
16072 if (cond != inst.cond)
16073 {
16074 inst.error = BAD_IT_COND;
16075 return FAIL;
16076 }
16077 break;
16078
16079 case INSIDE_IT_LAST_INSN:
16080 case IF_INSIDE_IT_LAST_INSN:
16081 if (cond != inst.cond)
16082 {
16083 inst.error = BAD_IT_COND;
16084 return FAIL;
16085 }
16086 if (!is_last)
16087 {
16088 inst.error = BAD_BRANCH;
16089 return FAIL;
16090 }
16091 break;
16092
16093 case NEUTRAL_IT_INSN:
16094 /* The BKPT instruction is unconditional even in an IT block. */
16095 break;
16096
16097 case IT_INSN:
16098 inst.error = BAD_IT_IT;
16099 return FAIL;
16100 }
16101 }
16102 break;
16103 }
16104
16105 return SUCCESS;
16106 }
16107
16108 static void
16109 it_fsm_post_encode (void)
16110 {
16111 int is_last;
16112
16113 if (!now_it.state_handled)
16114 handle_it_state ();
16115
16116 is_last = (now_it.mask == 0x10);
16117 if (is_last)
16118 {
16119 now_it.state = OUTSIDE_IT_BLOCK;
16120 now_it.mask = 0;
16121 }
16122 }
16123
16124 static void
16125 force_automatic_it_block_close (void)
16126 {
16127 if (now_it.state == AUTOMATIC_IT_BLOCK)
16128 {
16129 close_automatic_it_block ();
16130 now_it.state = OUTSIDE_IT_BLOCK;
16131 now_it.mask = 0;
16132 }
16133 }
16134
16135 static int
16136 in_it_block (void)
16137 {
16138 if (!now_it.state_handled)
16139 handle_it_state ();
16140
16141 return now_it.state != OUTSIDE_IT_BLOCK;
16142 }
16143
16144 void
16145 md_assemble (char *str)
16146 {
16147 char *p = str;
16148 const struct asm_opcode * opcode;
16149
16150 /* Align the previous label if needed. */
16151 if (last_label_seen != NULL)
16152 {
16153 symbol_set_frag (last_label_seen, frag_now);
16154 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16155 S_SET_SEGMENT (last_label_seen, now_seg);
16156 }
16157
16158 memset (&inst, '\0', sizeof (inst));
16159 inst.reloc.type = BFD_RELOC_UNUSED;
16160
16161 opcode = opcode_lookup (&p);
16162 if (!opcode)
16163 {
16164 /* It wasn't an instruction, but it might be a register alias of
16165 the form alias .req reg, or a Neon .dn/.qn directive. */
16166 if (! create_register_alias (str, p)
16167 && ! create_neon_reg_alias (str, p))
16168 as_bad (_("bad instruction `%s'"), str);
16169
16170 return;
16171 }
16172
16173 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16174 as_warn (_("s suffix on comparison instruction is deprecated"));
16175
16176 /* The value which unconditional instructions should have in place of the
16177 condition field. */
16178 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16179
16180 if (thumb_mode)
16181 {
16182 arm_feature_set variant;
16183
16184 variant = cpu_variant;
16185 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16186 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16187 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16188 /* Check that this instruction is supported for this CPU. */
16189 if (!opcode->tvariant
16190 || (thumb_mode == 1
16191 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16192 {
16193 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16194 return;
16195 }
16196 if (inst.cond != COND_ALWAYS && !unified_syntax
16197 && opcode->tencode != do_t_branch)
16198 {
16199 as_bad (_("Thumb does not support conditional execution"));
16200 return;
16201 }
16202
16203 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16204 {
16205 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16206 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16207 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16208 {
16209 /* Two things are addressed here.
16210 1) Implicit require narrow instructions on Thumb-1.
16211 This avoids relaxation accidentally introducing Thumb-2
16212 instructions.
16213 2) Reject wide instructions in non Thumb-2 cores. */
16214 if (inst.size_req == 0)
16215 inst.size_req = 2;
16216 else if (inst.size_req == 4)
16217 {
16218 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16219 return;
16220 }
16221 }
16222 }
16223
16224 inst.instruction = opcode->tvalue;
16225
16226 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16227 {
16228 /* Prepare the it_insn_type for those encodings that don't set
16229 it. */
16230 it_fsm_pre_encode ();
16231
16232 opcode->tencode ();
16233
16234 it_fsm_post_encode ();
16235 }
16236
16237 if (!(inst.error || inst.relax))
16238 {
16239 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16240 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16241 if (inst.size_req && inst.size_req != inst.size)
16242 {
16243 as_bad (_("cannot honor width suffix -- `%s'"), str);
16244 return;
16245 }
16246 }
16247
16248 /* Something has gone badly wrong if we try to relax a fixed size
16249 instruction. */
16250 gas_assert (inst.size_req == 0 || !inst.relax);
16251
16252 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16253 *opcode->tvariant);
16254 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16255 set those bits when Thumb-2 32-bit instructions are seen. ie.
16256 anything other than bl/blx and v6-M instructions.
16257 This is overly pessimistic for relaxable instructions. */
16258 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16259 || inst.relax)
16260 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16261 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16262 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16263 arm_ext_v6t2);
16264
16265 check_neon_suffixes;
16266
16267 if (!inst.error)
16268 {
16269 mapping_state (MAP_THUMB);
16270 }
16271 }
16272 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16273 {
16274 bfd_boolean is_bx;
16275
16276 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16277 is_bx = (opcode->aencode == do_bx);
16278
16279 /* Check that this instruction is supported for this CPU. */
16280 if (!(is_bx && fix_v4bx)
16281 && !(opcode->avariant &&
16282 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16283 {
16284 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16285 return;
16286 }
16287 if (inst.size_req)
16288 {
16289 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16290 return;
16291 }
16292
16293 inst.instruction = opcode->avalue;
16294 if (opcode->tag == OT_unconditionalF)
16295 inst.instruction |= 0xF << 28;
16296 else
16297 inst.instruction |= inst.cond << 28;
16298 inst.size = INSN_SIZE;
16299 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16300 {
16301 it_fsm_pre_encode ();
16302 opcode->aencode ();
16303 it_fsm_post_encode ();
16304 }
16305 /* Arm mode bx is marked as both v4T and v5 because it's still required
16306 on a hypothetical non-thumb v5 core. */
16307 if (is_bx)
16308 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16309 else
16310 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16311 *opcode->avariant);
16312
16313 check_neon_suffixes;
16314
16315 if (!inst.error)
16316 {
16317 mapping_state (MAP_ARM);
16318 }
16319 }
16320 else
16321 {
16322 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16323 "-- `%s'"), str);
16324 return;
16325 }
16326 output_inst (str);
16327 }
16328
16329 static void
16330 check_it_blocks_finished (void)
16331 {
16332 #ifdef OBJ_ELF
16333 asection *sect;
16334
16335 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16336 if (seg_info (sect)->tc_segment_info_data.current_it.state
16337 == MANUAL_IT_BLOCK)
16338 {
16339 as_warn (_("section '%s' finished with an open IT block."),
16340 sect->name);
16341 }
16342 #else
16343 if (now_it.state == MANUAL_IT_BLOCK)
16344 as_warn (_("file finished with an open IT block."));
16345 #endif
16346 }
16347
16348 /* Various frobbings of labels and their addresses. */
16349
16350 void
16351 arm_start_line_hook (void)
16352 {
16353 last_label_seen = NULL;
16354 }
16355
16356 void
16357 arm_frob_label (symbolS * sym)
16358 {
16359 last_label_seen = sym;
16360
16361 ARM_SET_THUMB (sym, thumb_mode);
16362
16363 #if defined OBJ_COFF || defined OBJ_ELF
16364 ARM_SET_INTERWORK (sym, support_interwork);
16365 #endif
16366
16367 force_automatic_it_block_close ();
16368
16369 /* Note - do not allow local symbols (.Lxxx) to be labelled
16370 as Thumb functions. This is because these labels, whilst
16371 they exist inside Thumb code, are not the entry points for
16372 possible ARM->Thumb calls. Also, these labels can be used
16373 as part of a computed goto or switch statement. eg gcc
16374 can generate code that looks like this:
16375
16376 ldr r2, [pc, .Laaa]
16377 lsl r3, r3, #2
16378 ldr r2, [r3, r2]
16379 mov pc, r2
16380
16381 .Lbbb: .word .Lxxx
16382 .Lccc: .word .Lyyy
16383 ..etc...
16384 .Laaa: .word Lbbb
16385
16386 The first instruction loads the address of the jump table.
16387 The second instruction converts a table index into a byte offset.
16388 The third instruction gets the jump address out of the table.
16389 The fourth instruction performs the jump.
16390
16391 If the address stored at .Laaa is that of a symbol which has the
16392 Thumb_Func bit set, then the linker will arrange for this address
16393 to have the bottom bit set, which in turn would mean that the
16394 address computation performed by the third instruction would end
16395 up with the bottom bit set. Since the ARM is capable of unaligned
16396 word loads, the instruction would then load the incorrect address
16397 out of the jump table, and chaos would ensue. */
16398 if (label_is_thumb_function_name
16399 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16400 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16401 {
16402 /* When the address of a Thumb function is taken the bottom
16403 bit of that address should be set. This will allow
16404 interworking between Arm and Thumb functions to work
16405 correctly. */
16406
16407 THUMB_SET_FUNC (sym, 1);
16408
16409 label_is_thumb_function_name = FALSE;
16410 }
16411
16412 dwarf2_emit_label (sym);
16413 }
16414
16415 bfd_boolean
16416 arm_data_in_code (void)
16417 {
16418 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16419 {
16420 *input_line_pointer = '/';
16421 input_line_pointer += 5;
16422 *input_line_pointer = 0;
16423 return TRUE;
16424 }
16425
16426 return FALSE;
16427 }
16428
16429 char *
16430 arm_canonicalize_symbol_name (char * name)
16431 {
16432 int len;
16433
16434 if (thumb_mode && (len = strlen (name)) > 5
16435 && streq (name + len - 5, "/data"))
16436 *(name + len - 5) = 0;
16437
16438 return name;
16439 }
16440 \f
16441 /* Table of all register names defined by default. The user can
16442 define additional names with .req. Note that all register names
16443 should appear in both upper and lowercase variants. Some registers
16444 also have mixed-case names. */
16445
16446 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16447 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16448 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16449 #define REGSET(p,t) \
16450 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16451 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16452 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16453 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16454 #define REGSETH(p,t) \
16455 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16456 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16457 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16458 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16459 #define REGSET2(p,t) \
16460 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16461 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16462 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16463 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16464 #define SPLRBANK(base,bank,t) \
16465 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16466 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16467 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16468 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16469 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16470 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16471
16472 static const struct reg_entry reg_names[] =
16473 {
16474 /* ARM integer registers. */
16475 REGSET(r, RN), REGSET(R, RN),
16476
16477 /* ATPCS synonyms. */
16478 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16479 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16480 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16481
16482 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16483 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16484 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16485
16486 /* Well-known aliases. */
16487 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16488 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16489
16490 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16491 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16492
16493 /* Coprocessor numbers. */
16494 REGSET(p, CP), REGSET(P, CP),
16495
16496 /* Coprocessor register numbers. The "cr" variants are for backward
16497 compatibility. */
16498 REGSET(c, CN), REGSET(C, CN),
16499 REGSET(cr, CN), REGSET(CR, CN),
16500
16501 /* ARM banked registers. */
16502 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16503 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16504 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16505 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16506 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16507 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16508 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16509
16510 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16511 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16512 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16513 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16514 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16515 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16516 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16517 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16518
16519 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16520 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16521 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16522 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16523 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16524 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16525 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16526 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16527 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16528
16529 /* FPA registers. */
16530 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16531 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16532
16533 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16534 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16535
16536 /* VFP SP registers. */
16537 REGSET(s,VFS), REGSET(S,VFS),
16538 REGSETH(s,VFS), REGSETH(S,VFS),
16539
16540 /* VFP DP Registers. */
16541 REGSET(d,VFD), REGSET(D,VFD),
16542 /* Extra Neon DP registers. */
16543 REGSETH(d,VFD), REGSETH(D,VFD),
16544
16545 /* Neon QP registers. */
16546 REGSET2(q,NQ), REGSET2(Q,NQ),
16547
16548 /* VFP control registers. */
16549 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16550 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16551 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16552 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16553 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16554 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16555
16556 /* Maverick DSP coprocessor registers. */
16557 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16558 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16559
16560 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16561 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16562 REGDEF(dspsc,0,DSPSC),
16563
16564 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16565 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16566 REGDEF(DSPSC,0,DSPSC),
16567
16568 /* iWMMXt data registers - p0, c0-15. */
16569 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16570
16571 /* iWMMXt control registers - p1, c0-3. */
16572 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16573 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16574 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16575 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16576
16577 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16578 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16579 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16580 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16581 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16582
16583 /* XScale accumulator registers. */
16584 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16585 };
16586 #undef REGDEF
16587 #undef REGNUM
16588 #undef REGSET
16589
16590 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16591 within psr_required_here. */
16592 static const struct asm_psr psrs[] =
16593 {
16594 /* Backward compatibility notation. Note that "all" is no longer
16595 truly all possible PSR bits. */
16596 {"all", PSR_c | PSR_f},
16597 {"flg", PSR_f},
16598 {"ctl", PSR_c},
16599
16600 /* Individual flags. */
16601 {"f", PSR_f},
16602 {"c", PSR_c},
16603 {"x", PSR_x},
16604 {"s", PSR_s},
16605
16606 /* Combinations of flags. */
16607 {"fs", PSR_f | PSR_s},
16608 {"fx", PSR_f | PSR_x},
16609 {"fc", PSR_f | PSR_c},
16610 {"sf", PSR_s | PSR_f},
16611 {"sx", PSR_s | PSR_x},
16612 {"sc", PSR_s | PSR_c},
16613 {"xf", PSR_x | PSR_f},
16614 {"xs", PSR_x | PSR_s},
16615 {"xc", PSR_x | PSR_c},
16616 {"cf", PSR_c | PSR_f},
16617 {"cs", PSR_c | PSR_s},
16618 {"cx", PSR_c | PSR_x},
16619 {"fsx", PSR_f | PSR_s | PSR_x},
16620 {"fsc", PSR_f | PSR_s | PSR_c},
16621 {"fxs", PSR_f | PSR_x | PSR_s},
16622 {"fxc", PSR_f | PSR_x | PSR_c},
16623 {"fcs", PSR_f | PSR_c | PSR_s},
16624 {"fcx", PSR_f | PSR_c | PSR_x},
16625 {"sfx", PSR_s | PSR_f | PSR_x},
16626 {"sfc", PSR_s | PSR_f | PSR_c},
16627 {"sxf", PSR_s | PSR_x | PSR_f},
16628 {"sxc", PSR_s | PSR_x | PSR_c},
16629 {"scf", PSR_s | PSR_c | PSR_f},
16630 {"scx", PSR_s | PSR_c | PSR_x},
16631 {"xfs", PSR_x | PSR_f | PSR_s},
16632 {"xfc", PSR_x | PSR_f | PSR_c},
16633 {"xsf", PSR_x | PSR_s | PSR_f},
16634 {"xsc", PSR_x | PSR_s | PSR_c},
16635 {"xcf", PSR_x | PSR_c | PSR_f},
16636 {"xcs", PSR_x | PSR_c | PSR_s},
16637 {"cfs", PSR_c | PSR_f | PSR_s},
16638 {"cfx", PSR_c | PSR_f | PSR_x},
16639 {"csf", PSR_c | PSR_s | PSR_f},
16640 {"csx", PSR_c | PSR_s | PSR_x},
16641 {"cxf", PSR_c | PSR_x | PSR_f},
16642 {"cxs", PSR_c | PSR_x | PSR_s},
16643 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16644 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16645 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16646 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16647 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16648 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16649 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16650 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16651 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16652 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16653 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16654 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16655 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16656 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16657 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16658 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16659 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16660 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16661 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16662 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16663 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16664 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16665 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16666 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16667 };
16668
16669 /* Table of V7M psr names. */
16670 static const struct asm_psr v7m_psrs[] =
16671 {
16672 {"apsr", 0 }, {"APSR", 0 },
16673 {"iapsr", 1 }, {"IAPSR", 1 },
16674 {"eapsr", 2 }, {"EAPSR", 2 },
16675 {"psr", 3 }, {"PSR", 3 },
16676 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16677 {"ipsr", 5 }, {"IPSR", 5 },
16678 {"epsr", 6 }, {"EPSR", 6 },
16679 {"iepsr", 7 }, {"IEPSR", 7 },
16680 {"msp", 8 }, {"MSP", 8 },
16681 {"psp", 9 }, {"PSP", 9 },
16682 {"primask", 16}, {"PRIMASK", 16},
16683 {"basepri", 17}, {"BASEPRI", 17},
16684 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16685 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
16686 {"faultmask", 19}, {"FAULTMASK", 19},
16687 {"control", 20}, {"CONTROL", 20}
16688 };
16689
16690 /* Table of all shift-in-operand names. */
16691 static const struct asm_shift_name shift_names [] =
16692 {
16693 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16694 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16695 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16696 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16697 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16698 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16699 };
16700
16701 /* Table of all explicit relocation names. */
16702 #ifdef OBJ_ELF
16703 static struct reloc_entry reloc_names[] =
16704 {
16705 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16706 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16707 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16708 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16709 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16710 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16711 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16712 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16713 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16714 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16715 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
16716 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
16717 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
16718 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
16719 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
16720 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
16721 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
16722 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
16723 };
16724 #endif
16725
16726 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16727 static const struct asm_cond conds[] =
16728 {
16729 {"eq", 0x0},
16730 {"ne", 0x1},
16731 {"cs", 0x2}, {"hs", 0x2},
16732 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16733 {"mi", 0x4},
16734 {"pl", 0x5},
16735 {"vs", 0x6},
16736 {"vc", 0x7},
16737 {"hi", 0x8},
16738 {"ls", 0x9},
16739 {"ge", 0xa},
16740 {"lt", 0xb},
16741 {"gt", 0xc},
16742 {"le", 0xd},
16743 {"al", 0xe}
16744 };
16745
16746 static struct asm_barrier_opt barrier_opt_names[] =
16747 {
16748 { "sy", 0xf }, { "SY", 0xf },
16749 { "un", 0x7 }, { "UN", 0x7 },
16750 { "st", 0xe }, { "ST", 0xe },
16751 { "unst", 0x6 }, { "UNST", 0x6 },
16752 { "ish", 0xb }, { "ISH", 0xb },
16753 { "sh", 0xb }, { "SH", 0xb },
16754 { "ishst", 0xa }, { "ISHST", 0xa },
16755 { "shst", 0xa }, { "SHST", 0xa },
16756 { "nsh", 0x7 }, { "NSH", 0x7 },
16757 { "nshst", 0x6 }, { "NSHST", 0x6 },
16758 { "osh", 0x3 }, { "OSH", 0x3 },
16759 { "oshst", 0x2 }, { "OSHST", 0x2 }
16760 };
16761
16762 /* Table of ARM-format instructions. */
16763
16764 /* Macros for gluing together operand strings. N.B. In all cases
16765 other than OPS0, the trailing OP_stop comes from default
16766 zero-initialization of the unspecified elements of the array. */
16767 #define OPS0() { OP_stop, }
16768 #define OPS1(a) { OP_##a, }
16769 #define OPS2(a,b) { OP_##a,OP_##b, }
16770 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16771 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16772 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16773 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16774
16775 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16776 This is useful when mixing operands for ARM and THUMB, i.e. using the
16777 MIX_ARM_THUMB_OPERANDS macro.
16778 In order to use these macros, prefix the number of operands with _
16779 e.g. _3. */
16780 #define OPS_1(a) { a, }
16781 #define OPS_2(a,b) { a,b, }
16782 #define OPS_3(a,b,c) { a,b,c, }
16783 #define OPS_4(a,b,c,d) { a,b,c,d, }
16784 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16785 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16786
16787 /* These macros abstract out the exact format of the mnemonic table and
16788 save some repeated characters. */
16789
16790 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16791 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16792 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16793 THUMB_VARIANT, do_##ae, do_##te }
16794
16795 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16796 a T_MNEM_xyz enumerator. */
16797 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16798 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16799 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16800 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16801
16802 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16803 infix after the third character. */
16804 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16805 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16806 THUMB_VARIANT, do_##ae, do_##te }
16807 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16808 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16809 THUMB_VARIANT, do_##ae, do_##te }
16810 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16811 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16812 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16813 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16814 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16815 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16816 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16817 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16818
16819 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16820 appear in the condition table. */
16821 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16822 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16823 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16824
16825 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16826 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16827 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16828 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16829 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16830 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16831 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16832 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16833 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16834 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16835 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16836 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16837 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16838 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16839 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16840 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16841 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16842 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16843 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16844 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16845
16846 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16847 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16848 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16849 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16850
16851 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16852 field is still 0xE. Many of the Thumb variants can be executed
16853 conditionally, so this is checked separately. */
16854 #define TUE(mnem, op, top, nops, ops, ae, te) \
16855 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16856 THUMB_VARIANT, do_##ae, do_##te }
16857
16858 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16859 condition code field. */
16860 #define TUF(mnem, op, top, nops, ops, ae, te) \
16861 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16862 THUMB_VARIANT, do_##ae, do_##te }
16863
16864 /* ARM-only variants of all the above. */
16865 #define CE(mnem, op, nops, ops, ae) \
16866 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16867
16868 #define C3(mnem, op, nops, ops, ae) \
16869 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16870
16871 /* Legacy mnemonics that always have conditional infix after the third
16872 character. */
16873 #define CL(mnem, op, nops, ops, ae) \
16874 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16875 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16876
16877 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16878 #define cCE(mnem, op, nops, ops, ae) \
16879 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16880
16881 /* Legacy coprocessor instructions where conditional infix and conditional
16882 suffix are ambiguous. For consistency this includes all FPA instructions,
16883 not just the potentially ambiguous ones. */
16884 #define cCL(mnem, op, nops, ops, ae) \
16885 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16886 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16887
16888 /* Coprocessor, takes either a suffix or a position-3 infix
16889 (for an FPA corner case). */
16890 #define C3E(mnem, op, nops, ops, ae) \
16891 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16892 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16893
16894 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16895 { m1 #m2 m3, OPS##nops ops, \
16896 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16897 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16898
16899 #define CM(m1, m2, op, nops, ops, ae) \
16900 xCM_ (m1, , m2, op, nops, ops, ae), \
16901 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16902 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16903 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16904 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16905 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16906 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16907 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16908 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16909 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16910 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16911 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16912 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16913 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16914 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16915 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16916 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16917 xCM_ (m1, le, m2, op, nops, ops, ae), \
16918 xCM_ (m1, al, m2, op, nops, ops, ae)
16919
16920 #define UE(mnem, op, nops, ops, ae) \
16921 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16922
16923 #define UF(mnem, op, nops, ops, ae) \
16924 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16925
16926 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16927 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16928 use the same encoding function for each. */
16929 #define NUF(mnem, op, nops, ops, enc) \
16930 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16931 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16932
16933 /* Neon data processing, version which indirects through neon_enc_tab for
16934 the various overloaded versions of opcodes. */
16935 #define nUF(mnem, op, nops, ops, enc) \
16936 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16937 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16938
16939 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16940 version. */
16941 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16942 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16943 THUMB_VARIANT, do_##enc, do_##enc }
16944
16945 #define NCE(mnem, op, nops, ops, enc) \
16946 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16947
16948 #define NCEF(mnem, op, nops, ops, enc) \
16949 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16950
16951 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16952 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16953 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16954 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16955
16956 #define nCE(mnem, op, nops, ops, enc) \
16957 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16958
16959 #define nCEF(mnem, op, nops, ops, enc) \
16960 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16961
16962 #define do_0 0
16963
16964 static const struct asm_opcode insns[] =
16965 {
16966 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16967 #define THUMB_VARIANT &arm_ext_v4t
16968 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16969 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16970 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16971 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16972 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16973 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16974 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16975 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16976 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16977 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16978 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16979 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16980 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16981 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16982 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16983 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16984
16985 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16986 for setting PSR flag bits. They are obsolete in V6 and do not
16987 have Thumb equivalents. */
16988 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16989 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16990 CL("tstp", 110f000, 2, (RR, SH), cmp),
16991 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16992 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16993 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16994 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16995 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16996 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16997
16998 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16999 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17000 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17001 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17002
17003 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17004 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17005 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17006 OP_RRnpc),
17007 OP_ADDRGLDR),ldst, t_ldst),
17008 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17009
17010 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17011 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17012 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17013 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17014 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17015 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17016
17017 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17018 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17019 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17020 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17021
17022 /* Pseudo ops. */
17023 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17024 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17025 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17026
17027 /* Thumb-compatibility pseudo ops. */
17028 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17029 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17030 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17031 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17032 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17033 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17034 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17035 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17036 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17037 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17038 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17039 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17040
17041 /* These may simplify to neg. */
17042 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17043 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17044
17045 #undef THUMB_VARIANT
17046 #define THUMB_VARIANT & arm_ext_v6
17047
17048 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17049
17050 /* V1 instructions with no Thumb analogue prior to V6T2. */
17051 #undef THUMB_VARIANT
17052 #define THUMB_VARIANT & arm_ext_v6t2
17053
17054 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17055 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17056 CL("teqp", 130f000, 2, (RR, SH), cmp),
17057
17058 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17059 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17060 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17061 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17062
17063 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17064 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17065
17066 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17067 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17068
17069 /* V1 instructions with no Thumb analogue at all. */
17070 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17071 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17072
17073 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17074 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17075 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17076 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17077 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17078 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17079 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17080 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17081
17082 #undef ARM_VARIANT
17083 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17084 #undef THUMB_VARIANT
17085 #define THUMB_VARIANT & arm_ext_v4t
17086
17087 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17088 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17089
17090 #undef THUMB_VARIANT
17091 #define THUMB_VARIANT & arm_ext_v6t2
17092
17093 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17094 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17095
17096 /* Generic coprocessor instructions. */
17097 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17098 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17099 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17100 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17101 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17102 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17103 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17104
17105 #undef ARM_VARIANT
17106 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17107
17108 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17109 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17110
17111 #undef ARM_VARIANT
17112 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17113 #undef THUMB_VARIANT
17114 #define THUMB_VARIANT & arm_ext_msr
17115
17116 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17117 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17118
17119 #undef ARM_VARIANT
17120 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17121 #undef THUMB_VARIANT
17122 #define THUMB_VARIANT & arm_ext_v6t2
17123
17124 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17125 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17126 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17127 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17128 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17129 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17130 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17131 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17132
17133 #undef ARM_VARIANT
17134 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17135 #undef THUMB_VARIANT
17136 #define THUMB_VARIANT & arm_ext_v4t
17137
17138 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17139 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17140 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17141 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17142 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17143 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17144
17145 #undef ARM_VARIANT
17146 #define ARM_VARIANT & arm_ext_v4t_5
17147
17148 /* ARM Architecture 4T. */
17149 /* Note: bx (and blx) are required on V5, even if the processor does
17150 not support Thumb. */
17151 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17152
17153 #undef ARM_VARIANT
17154 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17155 #undef THUMB_VARIANT
17156 #define THUMB_VARIANT & arm_ext_v5t
17157
17158 /* Note: blx has 2 variants; the .value coded here is for
17159 BLX(2). Only this variant has conditional execution. */
17160 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17161 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17162
17163 #undef THUMB_VARIANT
17164 #define THUMB_VARIANT & arm_ext_v6t2
17165
17166 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17167 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17168 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17169 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17170 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17171 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17172 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17173 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17174
17175 #undef ARM_VARIANT
17176 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17177 #undef THUMB_VARIANT
17178 #define THUMB_VARIANT &arm_ext_v5exp
17179
17180 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17181 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17182 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17183 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17184
17185 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17186 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17187
17188 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17189 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17190 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17191 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17192
17193 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17194 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17195 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17196 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17197
17198 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17199 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17200
17201 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17202 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17203 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17204 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17205
17206 #undef ARM_VARIANT
17207 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17208 #undef THUMB_VARIANT
17209 #define THUMB_VARIANT &arm_ext_v6t2
17210
17211 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17212 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17213 ldrd, t_ldstd),
17214 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17215 ADDRGLDRS), ldrd, t_ldstd),
17216
17217 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17218 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17219
17220 #undef ARM_VARIANT
17221 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17222
17223 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17224
17225 #undef ARM_VARIANT
17226 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17227 #undef THUMB_VARIANT
17228 #define THUMB_VARIANT & arm_ext_v6
17229
17230 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17231 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17232 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17233 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17234 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17235 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17236 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17237 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17238 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17239 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17240
17241 #undef THUMB_VARIANT
17242 #define THUMB_VARIANT & arm_ext_v6t2
17243
17244 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17245 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17246 strex, t_strex),
17247 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17248 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17249
17250 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17251 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17252
17253 /* ARM V6 not included in V7M. */
17254 #undef THUMB_VARIANT
17255 #define THUMB_VARIANT & arm_ext_v6_notm
17256 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17257 UF(rfeib, 9900a00, 1, (RRw), rfe),
17258 UF(rfeda, 8100a00, 1, (RRw), rfe),
17259 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17260 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17261 UF(rfefa, 9900a00, 1, (RRw), rfe),
17262 UF(rfeea, 8100a00, 1, (RRw), rfe),
17263 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17264 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17265 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17266 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17267 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17268
17269 /* ARM V6 not included in V7M (eg. integer SIMD). */
17270 #undef THUMB_VARIANT
17271 #define THUMB_VARIANT & arm_ext_v6_dsp
17272 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17273 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17274 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17275 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17276 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17277 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17278 /* Old name for QASX. */
17279 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17280 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17281 /* Old name for QSAX. */
17282 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17283 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17284 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17285 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17286 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17287 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17288 /* Old name for SASX. */
17289 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17290 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17291 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17292 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17293 /* Old name for SHASX. */
17294 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17295 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17296 /* Old name for SHSAX. */
17297 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17298 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17299 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17300 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17301 /* Old name for SSAX. */
17302 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17303 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17304 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17305 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17306 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17307 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17308 /* Old name for UASX. */
17309 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17310 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17311 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17312 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17313 /* Old name for UHASX. */
17314 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17315 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17316 /* Old name for UHSAX. */
17317 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17318 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17319 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17320 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17321 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17322 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17323 /* Old name for UQASX. */
17324 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17325 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17326 /* Old name for UQSAX. */
17327 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17328 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17329 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17330 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17331 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17332 /* Old name for USAX. */
17333 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17334 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17335 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17336 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17337 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17338 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17339 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17340 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17341 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17342 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17343 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17344 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17345 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17346 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17347 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17348 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17349 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17350 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17351 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17352 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17353 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17354 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17355 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17356 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17357 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17358 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17359 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17360 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17361 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17362 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17363 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17364 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17365 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17366 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17367
17368 #undef ARM_VARIANT
17369 #define ARM_VARIANT & arm_ext_v6k
17370 #undef THUMB_VARIANT
17371 #define THUMB_VARIANT & arm_ext_v6k
17372
17373 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17374 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17375 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17376 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17377
17378 #undef THUMB_VARIANT
17379 #define THUMB_VARIANT & arm_ext_v6_notm
17380 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17381 ldrexd, t_ldrexd),
17382 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17383 RRnpcb), strexd, t_strexd),
17384
17385 #undef THUMB_VARIANT
17386 #define THUMB_VARIANT & arm_ext_v6t2
17387 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17388 rd_rn, rd_rn),
17389 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17390 rd_rn, rd_rn),
17391 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17392 strex, rm_rd_rn),
17393 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17394 strex, rm_rd_rn),
17395 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17396
17397 #undef ARM_VARIANT
17398 #define ARM_VARIANT & arm_ext_sec
17399 #undef THUMB_VARIANT
17400 #define THUMB_VARIANT & arm_ext_sec
17401
17402 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17403
17404 #undef ARM_VARIANT
17405 #define ARM_VARIANT & arm_ext_virt
17406 #undef THUMB_VARIANT
17407 #define THUMB_VARIANT & arm_ext_virt
17408
17409 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17410 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17411
17412 #undef ARM_VARIANT
17413 #define ARM_VARIANT & arm_ext_v6t2
17414 #undef THUMB_VARIANT
17415 #define THUMB_VARIANT & arm_ext_v6t2
17416
17417 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17418 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17419 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17420 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17421
17422 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17423 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17424 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17425 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17426
17427 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17428 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17429 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17430 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17431
17432 /* Thumb-only instructions. */
17433 #undef ARM_VARIANT
17434 #define ARM_VARIANT NULL
17435 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17436 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17437
17438 /* ARM does not really have an IT instruction, so always allow it.
17439 The opcode is copied from Thumb in order to allow warnings in
17440 -mimplicit-it=[never | arm] modes. */
17441 #undef ARM_VARIANT
17442 #define ARM_VARIANT & arm_ext_v1
17443
17444 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17445 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17446 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17447 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17448 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17449 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17450 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17451 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17452 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17453 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17454 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17455 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17456 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17457 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17458 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17459 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17460 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17461 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17462
17463 /* Thumb2 only instructions. */
17464 #undef ARM_VARIANT
17465 #define ARM_VARIANT NULL
17466
17467 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17468 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17469 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17470 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17471 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17472 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17473
17474 /* Hardware division instructions. */
17475 #undef ARM_VARIANT
17476 #define ARM_VARIANT & arm_ext_adiv
17477 #undef THUMB_VARIANT
17478 #define THUMB_VARIANT & arm_ext_div
17479
17480 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17481 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17482
17483 /* ARM V6M/V7 instructions. */
17484 #undef ARM_VARIANT
17485 #define ARM_VARIANT & arm_ext_barrier
17486 #undef THUMB_VARIANT
17487 #define THUMB_VARIANT & arm_ext_barrier
17488
17489 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17490 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17491 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17492
17493 /* ARM V7 instructions. */
17494 #undef ARM_VARIANT
17495 #define ARM_VARIANT & arm_ext_v7
17496 #undef THUMB_VARIANT
17497 #define THUMB_VARIANT & arm_ext_v7
17498
17499 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17500 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17501
17502 #undef ARM_VARIANT
17503 #define ARM_VARIANT & arm_ext_mp
17504 #undef THUMB_VARIANT
17505 #define THUMB_VARIANT & arm_ext_mp
17506
17507 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17508
17509 #undef ARM_VARIANT
17510 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17511
17512 cCE("wfs", e200110, 1, (RR), rd),
17513 cCE("rfs", e300110, 1, (RR), rd),
17514 cCE("wfc", e400110, 1, (RR), rd),
17515 cCE("rfc", e500110, 1, (RR), rd),
17516
17517 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17518 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17519 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17520 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17521
17522 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17523 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17524 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17525 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17526
17527 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17528 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
17529 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
17530 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
17531 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
17532 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
17533 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
17534 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
17535 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
17536 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
17537 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
17538 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
17539
17540 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
17541 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
17542 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
17543 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
17544 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
17545 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
17546 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
17547 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
17548 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
17549 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
17550 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
17551 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
17552
17553 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
17554 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
17555 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17556 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17557 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17558 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17559 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17560 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17561 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17562 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17563 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17564 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17565
17566 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17567 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17568 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17569 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17570 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17571 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17572 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17573 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17574 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17575 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17576 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17577 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17578
17579 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17580 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17581 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17582 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17583 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17584 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17585 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17586 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17587 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17588 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17589 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17590 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17591
17592 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17593 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17594 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17595 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17596 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17597 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17598 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17599 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17600 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17601 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17602 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17603 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17604
17605 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17606 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17607 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17608 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17609 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17610 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17611 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17612 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17613 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17614 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17615 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17616 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17617
17618 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17619 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17620 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17621 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17622 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17623 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17624 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17625 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17626 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17627 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17628 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17629 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17630
17631 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17632 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17633 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17634 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17635 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17636 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17637 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17638 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17639 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17640 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17641 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17642 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17643
17644 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17645 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17646 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17647 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17648 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17649 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17650 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17651 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17652 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17653 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17654 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17655 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17656
17657 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17658 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17659 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17660 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17661 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17662 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17663 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17664 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17665 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17666 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17667 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17668 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17669
17670 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17671 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17672 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17673 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17674 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17675 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17676 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17677 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17678 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17679 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17680 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17681 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17682
17683 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17684 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17685 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17686 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17687 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17688 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17689 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17690 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17691 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17692 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17693 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17694 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17695
17696 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17697 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17698 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17699 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17700 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17701 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17702 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17703 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17704 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17705 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17706 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17707 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17708
17709 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17710 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17711 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17712 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17713 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17714 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17715 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17716 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17717 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17718 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17719 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17720 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17721
17722 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17723 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17724 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17725 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17726 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17727 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17728 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17729 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17730 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17731 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17732 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17733 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17734
17735 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17736 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17737 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17738 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17739 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17740 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17741 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17742 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17743 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17744 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17745 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17746 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17747
17748 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17749 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17750 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17751 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17752 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17753 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17754 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17755 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17756 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17757 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17758 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17759 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17760
17761 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17762 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17763 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17764 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17765 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17766 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17767 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17768 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17769 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17770 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17771 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17772 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17773
17774 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17775 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17776 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17777 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17778 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17779 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17780 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17781 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17782 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17783 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17784 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17785 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17786
17787 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17788 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17789 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17790 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17791 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17792 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17793 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17794 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17795 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17796 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17797 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17798 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17799
17800 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17801 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17802 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17803 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17804 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17805 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17806 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17807 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17808 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17809 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17810 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17811 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17812
17813 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17814 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17815 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17816 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17817 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17818 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17819 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17820 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17821 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17822 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17823 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17824 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17825
17826 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17827 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17828 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17829 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17830 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17831 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17832 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17833 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17834 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17835 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17836 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17837 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17838
17839 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17840 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17841 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17842 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17843 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17844 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17845 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17846 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17847 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17848 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17849 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17850 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17851
17852 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17853 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17854 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17855 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17856 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17857 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17858 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17859 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17860 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17861 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17862 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17863 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17864
17865 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17866 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17867 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17868 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17869 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17870 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17871 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17872 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17873 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17874 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17875 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17876 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17877
17878 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17879 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17880 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17881 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17882 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17883 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17884 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17885 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17886 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17887 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17888 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17889 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17890
17891 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17892 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17893 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17894 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17895 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17896 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17897 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17898 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17899 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17900 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17901 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17902 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17903
17904 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17905 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17906 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17907 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17908
17909 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17910 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17911 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17912 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17913 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17914 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17915 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17916 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17917 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17918 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17919 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17920 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17921
17922 /* The implementation of the FIX instruction is broken on some
17923 assemblers, in that it accepts a precision specifier as well as a
17924 rounding specifier, despite the fact that this is meaningless.
17925 To be more compatible, we accept it as well, though of course it
17926 does not set any bits. */
17927 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17928 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17929 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17930 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17931 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17932 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17933 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17934 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17935 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17936 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17937 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17938 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17939 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17940
17941 /* Instructions that were new with the real FPA, call them V2. */
17942 #undef ARM_VARIANT
17943 #define ARM_VARIANT & fpu_fpa_ext_v2
17944
17945 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17946 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17947 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17948 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17949 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17950 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17951
17952 #undef ARM_VARIANT
17953 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17954
17955 /* Moves and type conversions. */
17956 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17957 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17958 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17959 cCE("fmstat", ef1fa10, 0, (), noargs),
17960 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17961 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17962 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17963 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17964 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17965 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17966 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17967 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17968 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17969 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17970
17971 /* Memory operations. */
17972 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17973 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17974 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17975 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17976 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17977 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17978 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17979 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17980 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17981 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17982 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17983 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
17984 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17985 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
17986 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17987 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
17988 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17989 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
17990
17991 /* Monadic operations. */
17992 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17993 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17994 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17995
17996 /* Dyadic operations. */
17997 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17998 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17999 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18000 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18001 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18002 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18003 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18004 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18005 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18006
18007 /* Comparisons. */
18008 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18009 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18010 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18011 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18012
18013 /* Double precision load/store are still present on single precision
18014 implementations. */
18015 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18016 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18017 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18018 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18019 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18020 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18021 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18022 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18023 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18024 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18025
18026 #undef ARM_VARIANT
18027 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18028
18029 /* Moves and type conversions. */
18030 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18031 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18032 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18033 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18034 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18035 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18036 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18037 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18038 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18039 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18040 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18041 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18042 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18043
18044 /* Monadic operations. */
18045 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18046 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18047 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18048
18049 /* Dyadic operations. */
18050 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18051 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18052 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18053 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18054 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18055 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18056 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18057 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18058 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18059
18060 /* Comparisons. */
18061 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18062 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18063 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18064 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18065
18066 #undef ARM_VARIANT
18067 #define ARM_VARIANT & fpu_vfp_ext_v2
18068
18069 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18070 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18071 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18072 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18073
18074 /* Instructions which may belong to either the Neon or VFP instruction sets.
18075 Individual encoder functions perform additional architecture checks. */
18076 #undef ARM_VARIANT
18077 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18078 #undef THUMB_VARIANT
18079 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18080
18081 /* These mnemonics are unique to VFP. */
18082 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18083 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18084 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18085 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18086 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18087 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18088 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18089 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18090 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18091 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18092
18093 /* Mnemonics shared by Neon and VFP. */
18094 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18095 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18096 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18097
18098 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18099 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18100
18101 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18102 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18103
18104 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18105 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18106 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18107 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18108 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18109 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18110 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18111 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18112
18113 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
18114 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18115 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18116 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18117
18118
18119 /* NOTE: All VMOV encoding is special-cased! */
18120 NCE(vmov, 0, 1, (VMOV), neon_mov),
18121 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18122
18123 #undef THUMB_VARIANT
18124 #define THUMB_VARIANT & fpu_neon_ext_v1
18125 #undef ARM_VARIANT
18126 #define ARM_VARIANT & fpu_neon_ext_v1
18127
18128 /* Data processing with three registers of the same length. */
18129 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18130 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18131 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18132 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18133 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18134 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18135 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18136 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18137 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18138 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18139 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18140 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18141 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18142 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18143 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18144 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18145 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18146 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18147 /* If not immediate, fall back to neon_dyadic_i64_su.
18148 shl_imm should accept I8 I16 I32 I64,
18149 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18150 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18151 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18152 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18153 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18154 /* Logic ops, types optional & ignored. */
18155 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18156 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18157 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18158 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18159 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18160 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18161 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18162 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18163 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18164 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18165 /* Bitfield ops, untyped. */
18166 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18167 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18168 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18169 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18170 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18171 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18172 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18173 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18174 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18175 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18176 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18177 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18178 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18179 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18180 back to neon_dyadic_if_su. */
18181 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18182 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18183 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18184 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18185 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18186 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18187 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18188 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18189 /* Comparison. Type I8 I16 I32 F32. */
18190 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18191 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18192 /* As above, D registers only. */
18193 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18194 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18195 /* Int and float variants, signedness unimportant. */
18196 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18197 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18198 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18199 /* Add/sub take types I8 I16 I32 I64 F32. */
18200 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18201 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18202 /* vtst takes sizes 8, 16, 32. */
18203 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18204 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18205 /* VMUL takes I8 I16 I32 F32 P8. */
18206 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18207 /* VQD{R}MULH takes S16 S32. */
18208 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18209 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18210 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18211 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18212 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18213 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18214 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18215 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18216 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18217 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18218 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18219 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18220 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18221 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18222 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18223 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18224
18225 /* Two address, int/float. Types S8 S16 S32 F32. */
18226 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18227 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18228
18229 /* Data processing with two registers and a shift amount. */
18230 /* Right shifts, and variants with rounding.
18231 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18232 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18233 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18234 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18235 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18236 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18237 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18238 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18239 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18240 /* Shift and insert. Sizes accepted 8 16 32 64. */
18241 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18242 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18243 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18244 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18245 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18246 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18247 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18248 /* Right shift immediate, saturating & narrowing, with rounding variants.
18249 Types accepted S16 S32 S64 U16 U32 U64. */
18250 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18251 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18252 /* As above, unsigned. Types accepted S16 S32 S64. */
18253 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18254 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18255 /* Right shift narrowing. Types accepted I16 I32 I64. */
18256 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18257 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18258 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18259 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18260 /* CVT with optional immediate for fixed-point variant. */
18261 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18262
18263 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18264 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18265
18266 /* Data processing, three registers of different lengths. */
18267 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18268 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18269 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18270 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18271 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18272 /* If not scalar, fall back to neon_dyadic_long.
18273 Vector types as above, scalar types S16 S32 U16 U32. */
18274 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18275 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18276 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18277 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18278 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18279 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18280 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18281 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18282 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18283 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18284 /* Saturating doubling multiplies. Types S16 S32. */
18285 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18286 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18287 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18288 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18289 S16 S32 U16 U32. */
18290 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18291
18292 /* Extract. Size 8. */
18293 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18294 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18295
18296 /* Two registers, miscellaneous. */
18297 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18298 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18299 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18300 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18301 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18302 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18303 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18304 /* Vector replicate. Sizes 8 16 32. */
18305 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18306 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18307 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18308 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18309 /* VMOVN. Types I16 I32 I64. */
18310 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18311 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18312 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18313 /* VQMOVUN. Types S16 S32 S64. */
18314 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18315 /* VZIP / VUZP. Sizes 8 16 32. */
18316 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18317 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18318 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18319 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18320 /* VQABS / VQNEG. Types S8 S16 S32. */
18321 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18322 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18323 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18324 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18325 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18326 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18327 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18328 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18329 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18330 /* Reciprocal estimates. Types U32 F32. */
18331 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18332 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18333 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18334 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18335 /* VCLS. Types S8 S16 S32. */
18336 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18337 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18338 /* VCLZ. Types I8 I16 I32. */
18339 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18340 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18341 /* VCNT. Size 8. */
18342 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18343 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18344 /* Two address, untyped. */
18345 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18346 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18347 /* VTRN. Sizes 8 16 32. */
18348 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18349 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18350
18351 /* Table lookup. Size 8. */
18352 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18353 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18354
18355 #undef THUMB_VARIANT
18356 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18357 #undef ARM_VARIANT
18358 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18359
18360 /* Neon element/structure load/store. */
18361 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18362 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18363 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18364 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18365 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18366 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18367 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18368 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18369
18370 #undef THUMB_VARIANT
18371 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18372 #undef ARM_VARIANT
18373 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18374 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18375 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18376 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18377 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18378 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18379 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18380 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18381 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18382 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18383
18384 #undef THUMB_VARIANT
18385 #define THUMB_VARIANT & fpu_vfp_ext_v3
18386 #undef ARM_VARIANT
18387 #define ARM_VARIANT & fpu_vfp_ext_v3
18388
18389 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18390 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18391 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18392 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18393 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18394 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18395 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18396 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18397 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18398
18399 #undef ARM_VARIANT
18400 #define ARM_VARIANT &fpu_vfp_ext_fma
18401 #undef THUMB_VARIANT
18402 #define THUMB_VARIANT &fpu_vfp_ext_fma
18403 /* Mnemonics shared by Neon and VFP. These are included in the
18404 VFP FMA variant; NEON and VFP FMA always includes the NEON
18405 FMA instructions. */
18406 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18407 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18408 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18409 the v form should always be used. */
18410 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18411 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18412 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18413 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18414 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18415 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18416
18417 #undef THUMB_VARIANT
18418 #undef ARM_VARIANT
18419 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18420
18421 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18422 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18423 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18424 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18425 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18426 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18427 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18428 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18429
18430 #undef ARM_VARIANT
18431 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18432
18433 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18434 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18435 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18436 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18437 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18438 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18439 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18440 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18441 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18442 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18443 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18444 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18445 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18446 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18447 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18448 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18449 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18450 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18451 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18452 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18453 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18454 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18455 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18456 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18457 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18458 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18459 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18460 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18461 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18462 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18463 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18464 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18465 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18466 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18467 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18468 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18469 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18470 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18471 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18472 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18473 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18474 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18475 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18476 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18477 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18478 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18479 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18480 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18481 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18482 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18483 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18484 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18485 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18486 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18487 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18488 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18489 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18490 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18491 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18492 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18493 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18494 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18495 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18496 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18497 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18498 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18499 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18500 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18501 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18502 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18503 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18504 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18505 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18506 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18507 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18508 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18509 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18510 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18511 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18512 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18513 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18514 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18515 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18516 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18517 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18518 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18519 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18520 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18521 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18522 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18523 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18524 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18525 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18526 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18527 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18528 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18529 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18530 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18531 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18532 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18533 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18534 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18535 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18536 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18537 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18538 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18539 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18540 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18541 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18542 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18543 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
18544 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18545 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18546 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18547 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18548 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18549 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18550 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18551 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18552 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18553 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18554 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18555 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18556 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18557 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18558 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18559 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18560 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18561 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18562 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18563 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18564 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18565 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18566 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18567 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18568 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18569 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18570 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18571 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18572 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18573 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18574 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18575 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18576 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18577 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18578 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18579 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18580 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18581 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18582 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18583 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18584 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18585 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18586 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18587 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18588 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18589 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18590 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18591 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18592 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18593 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18594 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18595
18596 #undef ARM_VARIANT
18597 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18598
18599 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18600 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18601 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18602 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18603 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18604 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18605 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18606 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18607 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18608 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18609 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18610 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18611 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18612 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18613 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18614 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18615 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18616 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18617 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18618 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18619 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18620 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18621 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18622 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18623 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18624 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18625 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18626 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18627 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18628 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18629 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18630 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18631 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18632 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18633 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18634 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18635 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18636 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18637 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18638 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18639 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18640 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18641 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18642 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18643 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18644 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18645 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18646 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18647 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18648 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18649 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18650 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18651 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18652 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18653 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18654 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18655 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18656
18657 #undef ARM_VARIANT
18658 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18659
18660 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18661 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18662 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18663 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18664 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18665 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18666 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18667 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18668 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18669 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18670 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18671 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18672 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18673 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18674 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18675 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18676 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18677 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18678 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18679 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18680 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18681 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18682 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18683 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18684 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18685 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18686 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18687 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18688 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18689 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18690 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18691 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18692 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18693 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18694 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18695 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18696 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18697 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18698 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18699 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18700 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18701 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18702 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18703 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18704 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18705 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18706 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18707 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18708 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18709 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18710 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18711 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18712 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18713 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18714 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18715 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18716 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18717 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18718 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18719 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18720 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18721 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18722 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18723 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18724 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18725 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18726 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18727 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18728 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18729 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18730 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18731 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18732 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18733 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18734 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18735 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18736 };
18737 #undef ARM_VARIANT
18738 #undef THUMB_VARIANT
18739 #undef TCE
18740 #undef TCM
18741 #undef TUE
18742 #undef TUF
18743 #undef TCC
18744 #undef cCE
18745 #undef cCL
18746 #undef C3E
18747 #undef CE
18748 #undef CM
18749 #undef UE
18750 #undef UF
18751 #undef UT
18752 #undef NUF
18753 #undef nUF
18754 #undef NCE
18755 #undef nCE
18756 #undef OPS0
18757 #undef OPS1
18758 #undef OPS2
18759 #undef OPS3
18760 #undef OPS4
18761 #undef OPS5
18762 #undef OPS6
18763 #undef do_0
18764 \f
18765 /* MD interface: bits in the object file. */
18766
18767 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18768 for use in the a.out file, and stores them in the array pointed to by buf.
18769 This knows about the endian-ness of the target machine and does
18770 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18771 2 (short) and 4 (long) Floating numbers are put out as a series of
18772 LITTLENUMS (shorts, here at least). */
18773
18774 void
18775 md_number_to_chars (char * buf, valueT val, int n)
18776 {
18777 if (target_big_endian)
18778 number_to_chars_bigendian (buf, val, n);
18779 else
18780 number_to_chars_littleendian (buf, val, n);
18781 }
18782
18783 static valueT
18784 md_chars_to_number (char * buf, int n)
18785 {
18786 valueT result = 0;
18787 unsigned char * where = (unsigned char *) buf;
18788
18789 if (target_big_endian)
18790 {
18791 while (n--)
18792 {
18793 result <<= 8;
18794 result |= (*where++ & 255);
18795 }
18796 }
18797 else
18798 {
18799 while (n--)
18800 {
18801 result <<= 8;
18802 result |= (where[n] & 255);
18803 }
18804 }
18805
18806 return result;
18807 }
18808
18809 /* MD interface: Sections. */
18810
18811 /* Estimate the size of a frag before relaxing. Assume everything fits in
18812 2 bytes. */
18813
18814 int
18815 md_estimate_size_before_relax (fragS * fragp,
18816 segT segtype ATTRIBUTE_UNUSED)
18817 {
18818 fragp->fr_var = 2;
18819 return 2;
18820 }
18821
18822 /* Convert a machine dependent frag. */
18823
18824 void
18825 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18826 {
18827 unsigned long insn;
18828 unsigned long old_op;
18829 char *buf;
18830 expressionS exp;
18831 fixS *fixp;
18832 int reloc_type;
18833 int pc_rel;
18834 int opcode;
18835
18836 buf = fragp->fr_literal + fragp->fr_fix;
18837
18838 old_op = bfd_get_16(abfd, buf);
18839 if (fragp->fr_symbol)
18840 {
18841 exp.X_op = O_symbol;
18842 exp.X_add_symbol = fragp->fr_symbol;
18843 }
18844 else
18845 {
18846 exp.X_op = O_constant;
18847 }
18848 exp.X_add_number = fragp->fr_offset;
18849 opcode = fragp->fr_subtype;
18850 switch (opcode)
18851 {
18852 case T_MNEM_ldr_pc:
18853 case T_MNEM_ldr_pc2:
18854 case T_MNEM_ldr_sp:
18855 case T_MNEM_str_sp:
18856 case T_MNEM_ldr:
18857 case T_MNEM_ldrb:
18858 case T_MNEM_ldrh:
18859 case T_MNEM_str:
18860 case T_MNEM_strb:
18861 case T_MNEM_strh:
18862 if (fragp->fr_var == 4)
18863 {
18864 insn = THUMB_OP32 (opcode);
18865 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18866 {
18867 insn |= (old_op & 0x700) << 4;
18868 }
18869 else
18870 {
18871 insn |= (old_op & 7) << 12;
18872 insn |= (old_op & 0x38) << 13;
18873 }
18874 insn |= 0x00000c00;
18875 put_thumb32_insn (buf, insn);
18876 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18877 }
18878 else
18879 {
18880 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18881 }
18882 pc_rel = (opcode == T_MNEM_ldr_pc2);
18883 break;
18884 case T_MNEM_adr:
18885 if (fragp->fr_var == 4)
18886 {
18887 insn = THUMB_OP32 (opcode);
18888 insn |= (old_op & 0xf0) << 4;
18889 put_thumb32_insn (buf, insn);
18890 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18891 }
18892 else
18893 {
18894 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18895 exp.X_add_number -= 4;
18896 }
18897 pc_rel = 1;
18898 break;
18899 case T_MNEM_mov:
18900 case T_MNEM_movs:
18901 case T_MNEM_cmp:
18902 case T_MNEM_cmn:
18903 if (fragp->fr_var == 4)
18904 {
18905 int r0off = (opcode == T_MNEM_mov
18906 || opcode == T_MNEM_movs) ? 0 : 8;
18907 insn = THUMB_OP32 (opcode);
18908 insn = (insn & 0xe1ffffff) | 0x10000000;
18909 insn |= (old_op & 0x700) << r0off;
18910 put_thumb32_insn (buf, insn);
18911 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18912 }
18913 else
18914 {
18915 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18916 }
18917 pc_rel = 0;
18918 break;
18919 case T_MNEM_b:
18920 if (fragp->fr_var == 4)
18921 {
18922 insn = THUMB_OP32(opcode);
18923 put_thumb32_insn (buf, insn);
18924 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18925 }
18926 else
18927 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18928 pc_rel = 1;
18929 break;
18930 case T_MNEM_bcond:
18931 if (fragp->fr_var == 4)
18932 {
18933 insn = THUMB_OP32(opcode);
18934 insn |= (old_op & 0xf00) << 14;
18935 put_thumb32_insn (buf, insn);
18936 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18937 }
18938 else
18939 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18940 pc_rel = 1;
18941 break;
18942 case T_MNEM_add_sp:
18943 case T_MNEM_add_pc:
18944 case T_MNEM_inc_sp:
18945 case T_MNEM_dec_sp:
18946 if (fragp->fr_var == 4)
18947 {
18948 /* ??? Choose between add and addw. */
18949 insn = THUMB_OP32 (opcode);
18950 insn |= (old_op & 0xf0) << 4;
18951 put_thumb32_insn (buf, insn);
18952 if (opcode == T_MNEM_add_pc)
18953 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18954 else
18955 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18956 }
18957 else
18958 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18959 pc_rel = 0;
18960 break;
18961
18962 case T_MNEM_addi:
18963 case T_MNEM_addis:
18964 case T_MNEM_subi:
18965 case T_MNEM_subis:
18966 if (fragp->fr_var == 4)
18967 {
18968 insn = THUMB_OP32 (opcode);
18969 insn |= (old_op & 0xf0) << 4;
18970 insn |= (old_op & 0xf) << 16;
18971 put_thumb32_insn (buf, insn);
18972 if (insn & (1 << 20))
18973 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18974 else
18975 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18976 }
18977 else
18978 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18979 pc_rel = 0;
18980 break;
18981 default:
18982 abort ();
18983 }
18984 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18985 (enum bfd_reloc_code_real) reloc_type);
18986 fixp->fx_file = fragp->fr_file;
18987 fixp->fx_line = fragp->fr_line;
18988 fragp->fr_fix += fragp->fr_var;
18989 }
18990
18991 /* Return the size of a relaxable immediate operand instruction.
18992 SHIFT and SIZE specify the form of the allowable immediate. */
18993 static int
18994 relax_immediate (fragS *fragp, int size, int shift)
18995 {
18996 offsetT offset;
18997 offsetT mask;
18998 offsetT low;
18999
19000 /* ??? Should be able to do better than this. */
19001 if (fragp->fr_symbol)
19002 return 4;
19003
19004 low = (1 << shift) - 1;
19005 mask = (1 << (shift + size)) - (1 << shift);
19006 offset = fragp->fr_offset;
19007 /* Force misaligned offsets to 32-bit variant. */
19008 if (offset & low)
19009 return 4;
19010 if (offset & ~mask)
19011 return 4;
19012 return 2;
19013 }
19014
19015 /* Get the address of a symbol during relaxation. */
19016 static addressT
19017 relaxed_symbol_addr (fragS *fragp, long stretch)
19018 {
19019 fragS *sym_frag;
19020 addressT addr;
19021 symbolS *sym;
19022
19023 sym = fragp->fr_symbol;
19024 sym_frag = symbol_get_frag (sym);
19025 know (S_GET_SEGMENT (sym) != absolute_section
19026 || sym_frag == &zero_address_frag);
19027 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19028
19029 /* If frag has yet to be reached on this pass, assume it will
19030 move by STRETCH just as we did. If this is not so, it will
19031 be because some frag between grows, and that will force
19032 another pass. */
19033
19034 if (stretch != 0
19035 && sym_frag->relax_marker != fragp->relax_marker)
19036 {
19037 fragS *f;
19038
19039 /* Adjust stretch for any alignment frag. Note that if have
19040 been expanding the earlier code, the symbol may be
19041 defined in what appears to be an earlier frag. FIXME:
19042 This doesn't handle the fr_subtype field, which specifies
19043 a maximum number of bytes to skip when doing an
19044 alignment. */
19045 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19046 {
19047 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19048 {
19049 if (stretch < 0)
19050 stretch = - ((- stretch)
19051 & ~ ((1 << (int) f->fr_offset) - 1));
19052 else
19053 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19054 if (stretch == 0)
19055 break;
19056 }
19057 }
19058 if (f != NULL)
19059 addr += stretch;
19060 }
19061
19062 return addr;
19063 }
19064
19065 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19066 load. */
19067 static int
19068 relax_adr (fragS *fragp, asection *sec, long stretch)
19069 {
19070 addressT addr;
19071 offsetT val;
19072
19073 /* Assume worst case for symbols not known to be in the same section. */
19074 if (fragp->fr_symbol == NULL
19075 || !S_IS_DEFINED (fragp->fr_symbol)
19076 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19077 || S_IS_WEAK (fragp->fr_symbol))
19078 return 4;
19079
19080 val = relaxed_symbol_addr (fragp, stretch);
19081 addr = fragp->fr_address + fragp->fr_fix;
19082 addr = (addr + 4) & ~3;
19083 /* Force misaligned targets to 32-bit variant. */
19084 if (val & 3)
19085 return 4;
19086 val -= addr;
19087 if (val < 0 || val > 1020)
19088 return 4;
19089 return 2;
19090 }
19091
19092 /* Return the size of a relaxable add/sub immediate instruction. */
19093 static int
19094 relax_addsub (fragS *fragp, asection *sec)
19095 {
19096 char *buf;
19097 int op;
19098
19099 buf = fragp->fr_literal + fragp->fr_fix;
19100 op = bfd_get_16(sec->owner, buf);
19101 if ((op & 0xf) == ((op >> 4) & 0xf))
19102 return relax_immediate (fragp, 8, 0);
19103 else
19104 return relax_immediate (fragp, 3, 0);
19105 }
19106
19107
19108 /* Return the size of a relaxable branch instruction. BITS is the
19109 size of the offset field in the narrow instruction. */
19110
19111 static int
19112 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19113 {
19114 addressT addr;
19115 offsetT val;
19116 offsetT limit;
19117
19118 /* Assume worst case for symbols not known to be in the same section. */
19119 if (!S_IS_DEFINED (fragp->fr_symbol)
19120 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19121 || S_IS_WEAK (fragp->fr_symbol))
19122 return 4;
19123
19124 #ifdef OBJ_ELF
19125 if (S_IS_DEFINED (fragp->fr_symbol)
19126 && ARM_IS_FUNC (fragp->fr_symbol))
19127 return 4;
19128
19129 /* PR 12532. Global symbols with default visibility might
19130 be preempted, so do not relax relocations to them. */
19131 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19132 && (! S_IS_LOCAL (fragp->fr_symbol)))
19133 return 4;
19134 #endif
19135
19136 val = relaxed_symbol_addr (fragp, stretch);
19137 addr = fragp->fr_address + fragp->fr_fix + 4;
19138 val -= addr;
19139
19140 /* Offset is a signed value *2 */
19141 limit = 1 << bits;
19142 if (val >= limit || val < -limit)
19143 return 4;
19144 return 2;
19145 }
19146
19147
19148 /* Relax a machine dependent frag. This returns the amount by which
19149 the current size of the frag should change. */
19150
19151 int
19152 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19153 {
19154 int oldsize;
19155 int newsize;
19156
19157 oldsize = fragp->fr_var;
19158 switch (fragp->fr_subtype)
19159 {
19160 case T_MNEM_ldr_pc2:
19161 newsize = relax_adr (fragp, sec, stretch);
19162 break;
19163 case T_MNEM_ldr_pc:
19164 case T_MNEM_ldr_sp:
19165 case T_MNEM_str_sp:
19166 newsize = relax_immediate (fragp, 8, 2);
19167 break;
19168 case T_MNEM_ldr:
19169 case T_MNEM_str:
19170 newsize = relax_immediate (fragp, 5, 2);
19171 break;
19172 case T_MNEM_ldrh:
19173 case T_MNEM_strh:
19174 newsize = relax_immediate (fragp, 5, 1);
19175 break;
19176 case T_MNEM_ldrb:
19177 case T_MNEM_strb:
19178 newsize = relax_immediate (fragp, 5, 0);
19179 break;
19180 case T_MNEM_adr:
19181 newsize = relax_adr (fragp, sec, stretch);
19182 break;
19183 case T_MNEM_mov:
19184 case T_MNEM_movs:
19185 case T_MNEM_cmp:
19186 case T_MNEM_cmn:
19187 newsize = relax_immediate (fragp, 8, 0);
19188 break;
19189 case T_MNEM_b:
19190 newsize = relax_branch (fragp, sec, 11, stretch);
19191 break;
19192 case T_MNEM_bcond:
19193 newsize = relax_branch (fragp, sec, 8, stretch);
19194 break;
19195 case T_MNEM_add_sp:
19196 case T_MNEM_add_pc:
19197 newsize = relax_immediate (fragp, 8, 2);
19198 break;
19199 case T_MNEM_inc_sp:
19200 case T_MNEM_dec_sp:
19201 newsize = relax_immediate (fragp, 7, 2);
19202 break;
19203 case T_MNEM_addi:
19204 case T_MNEM_addis:
19205 case T_MNEM_subi:
19206 case T_MNEM_subis:
19207 newsize = relax_addsub (fragp, sec);
19208 break;
19209 default:
19210 abort ();
19211 }
19212
19213 fragp->fr_var = newsize;
19214 /* Freeze wide instructions that are at or before the same location as
19215 in the previous pass. This avoids infinite loops.
19216 Don't freeze them unconditionally because targets may be artificially
19217 misaligned by the expansion of preceding frags. */
19218 if (stretch <= 0 && newsize > 2)
19219 {
19220 md_convert_frag (sec->owner, sec, fragp);
19221 frag_wane (fragp);
19222 }
19223
19224 return newsize - oldsize;
19225 }
19226
19227 /* Round up a section size to the appropriate boundary. */
19228
19229 valueT
19230 md_section_align (segT segment ATTRIBUTE_UNUSED,
19231 valueT size)
19232 {
19233 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19234 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19235 {
19236 /* For a.out, force the section size to be aligned. If we don't do
19237 this, BFD will align it for us, but it will not write out the
19238 final bytes of the section. This may be a bug in BFD, but it is
19239 easier to fix it here since that is how the other a.out targets
19240 work. */
19241 int align;
19242
19243 align = bfd_get_section_alignment (stdoutput, segment);
19244 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19245 }
19246 #endif
19247
19248 return size;
19249 }
19250
19251 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19252 of an rs_align_code fragment. */
19253
19254 void
19255 arm_handle_align (fragS * fragP)
19256 {
19257 static char const arm_noop[2][2][4] =
19258 {
19259 { /* ARMv1 */
19260 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19261 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19262 },
19263 { /* ARMv6k */
19264 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19265 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19266 },
19267 };
19268 static char const thumb_noop[2][2][2] =
19269 {
19270 { /* Thumb-1 */
19271 {0xc0, 0x46}, /* LE */
19272 {0x46, 0xc0}, /* BE */
19273 },
19274 { /* Thumb-2 */
19275 {0x00, 0xbf}, /* LE */
19276 {0xbf, 0x00} /* BE */
19277 }
19278 };
19279 static char const wide_thumb_noop[2][4] =
19280 { /* Wide Thumb-2 */
19281 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19282 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19283 };
19284
19285 unsigned bytes, fix, noop_size;
19286 char * p;
19287 const char * noop;
19288 const char *narrow_noop = NULL;
19289 #ifdef OBJ_ELF
19290 enum mstate state;
19291 #endif
19292
19293 if (fragP->fr_type != rs_align_code)
19294 return;
19295
19296 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19297 p = fragP->fr_literal + fragP->fr_fix;
19298 fix = 0;
19299
19300 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19301 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19302
19303 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19304
19305 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19306 {
19307 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19308 {
19309 narrow_noop = thumb_noop[1][target_big_endian];
19310 noop = wide_thumb_noop[target_big_endian];
19311 }
19312 else
19313 noop = thumb_noop[0][target_big_endian];
19314 noop_size = 2;
19315 #ifdef OBJ_ELF
19316 state = MAP_THUMB;
19317 #endif
19318 }
19319 else
19320 {
19321 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19322 [target_big_endian];
19323 noop_size = 4;
19324 #ifdef OBJ_ELF
19325 state = MAP_ARM;
19326 #endif
19327 }
19328
19329 fragP->fr_var = noop_size;
19330
19331 if (bytes & (noop_size - 1))
19332 {
19333 fix = bytes & (noop_size - 1);
19334 #ifdef OBJ_ELF
19335 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19336 #endif
19337 memset (p, 0, fix);
19338 p += fix;
19339 bytes -= fix;
19340 }
19341
19342 if (narrow_noop)
19343 {
19344 if (bytes & noop_size)
19345 {
19346 /* Insert a narrow noop. */
19347 memcpy (p, narrow_noop, noop_size);
19348 p += noop_size;
19349 bytes -= noop_size;
19350 fix += noop_size;
19351 }
19352
19353 /* Use wide noops for the remainder */
19354 noop_size = 4;
19355 }
19356
19357 while (bytes >= noop_size)
19358 {
19359 memcpy (p, noop, noop_size);
19360 p += noop_size;
19361 bytes -= noop_size;
19362 fix += noop_size;
19363 }
19364
19365 fragP->fr_fix += fix;
19366 }
19367
19368 /* Called from md_do_align. Used to create an alignment
19369 frag in a code section. */
19370
19371 void
19372 arm_frag_align_code (int n, int max)
19373 {
19374 char * p;
19375
19376 /* We assume that there will never be a requirement
19377 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19378 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19379 {
19380 char err_msg[128];
19381
19382 sprintf (err_msg,
19383 _("alignments greater than %d bytes not supported in .text sections."),
19384 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19385 as_fatal ("%s", err_msg);
19386 }
19387
19388 p = frag_var (rs_align_code,
19389 MAX_MEM_FOR_RS_ALIGN_CODE,
19390 1,
19391 (relax_substateT) max,
19392 (symbolS *) NULL,
19393 (offsetT) n,
19394 (char *) NULL);
19395 *p = 0;
19396 }
19397
19398 /* Perform target specific initialisation of a frag.
19399 Note - despite the name this initialisation is not done when the frag
19400 is created, but only when its type is assigned. A frag can be created
19401 and used a long time before its type is set, so beware of assuming that
19402 this initialisationis performed first. */
19403
19404 #ifndef OBJ_ELF
19405 void
19406 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19407 {
19408 /* Record whether this frag is in an ARM or a THUMB area. */
19409 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19410 }
19411
19412 #else /* OBJ_ELF is defined. */
19413 void
19414 arm_init_frag (fragS * fragP, int max_chars)
19415 {
19416 /* If the current ARM vs THUMB mode has not already
19417 been recorded into this frag then do so now. */
19418 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19419 {
19420 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19421
19422 /* Record a mapping symbol for alignment frags. We will delete this
19423 later if the alignment ends up empty. */
19424 switch (fragP->fr_type)
19425 {
19426 case rs_align:
19427 case rs_align_test:
19428 case rs_fill:
19429 mapping_state_2 (MAP_DATA, max_chars);
19430 break;
19431 case rs_align_code:
19432 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19433 break;
19434 default:
19435 break;
19436 }
19437 }
19438 }
19439
19440 /* When we change sections we need to issue a new mapping symbol. */
19441
19442 void
19443 arm_elf_change_section (void)
19444 {
19445 /* Link an unlinked unwind index table section to the .text section. */
19446 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19447 && elf_linked_to_section (now_seg) == NULL)
19448 elf_linked_to_section (now_seg) = text_section;
19449 }
19450
19451 int
19452 arm_elf_section_type (const char * str, size_t len)
19453 {
19454 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19455 return SHT_ARM_EXIDX;
19456
19457 return -1;
19458 }
19459 \f
19460 /* Code to deal with unwinding tables. */
19461
19462 static void add_unwind_adjustsp (offsetT);
19463
19464 /* Generate any deferred unwind frame offset. */
19465
19466 static void
19467 flush_pending_unwind (void)
19468 {
19469 offsetT offset;
19470
19471 offset = unwind.pending_offset;
19472 unwind.pending_offset = 0;
19473 if (offset != 0)
19474 add_unwind_adjustsp (offset);
19475 }
19476
19477 /* Add an opcode to this list for this function. Two-byte opcodes should
19478 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19479 order. */
19480
19481 static void
19482 add_unwind_opcode (valueT op, int length)
19483 {
19484 /* Add any deferred stack adjustment. */
19485 if (unwind.pending_offset)
19486 flush_pending_unwind ();
19487
19488 unwind.sp_restored = 0;
19489
19490 if (unwind.opcode_count + length > unwind.opcode_alloc)
19491 {
19492 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19493 if (unwind.opcodes)
19494 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19495 unwind.opcode_alloc);
19496 else
19497 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19498 }
19499 while (length > 0)
19500 {
19501 length--;
19502 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19503 op >>= 8;
19504 unwind.opcode_count++;
19505 }
19506 }
19507
19508 /* Add unwind opcodes to adjust the stack pointer. */
19509
19510 static void
19511 add_unwind_adjustsp (offsetT offset)
19512 {
19513 valueT op;
19514
19515 if (offset > 0x200)
19516 {
19517 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
19518 char bytes[5];
19519 int n;
19520 valueT o;
19521
19522 /* Long form: 0xb2, uleb128. */
19523 /* This might not fit in a word so add the individual bytes,
19524 remembering the list is built in reverse order. */
19525 o = (valueT) ((offset - 0x204) >> 2);
19526 if (o == 0)
19527 add_unwind_opcode (0, 1);
19528
19529 /* Calculate the uleb128 encoding of the offset. */
19530 n = 0;
19531 while (o)
19532 {
19533 bytes[n] = o & 0x7f;
19534 o >>= 7;
19535 if (o)
19536 bytes[n] |= 0x80;
19537 n++;
19538 }
19539 /* Add the insn. */
19540 for (; n; n--)
19541 add_unwind_opcode (bytes[n - 1], 1);
19542 add_unwind_opcode (0xb2, 1);
19543 }
19544 else if (offset > 0x100)
19545 {
19546 /* Two short opcodes. */
19547 add_unwind_opcode (0x3f, 1);
19548 op = (offset - 0x104) >> 2;
19549 add_unwind_opcode (op, 1);
19550 }
19551 else if (offset > 0)
19552 {
19553 /* Short opcode. */
19554 op = (offset - 4) >> 2;
19555 add_unwind_opcode (op, 1);
19556 }
19557 else if (offset < 0)
19558 {
19559 offset = -offset;
19560 while (offset > 0x100)
19561 {
19562 add_unwind_opcode (0x7f, 1);
19563 offset -= 0x100;
19564 }
19565 op = ((offset - 4) >> 2) | 0x40;
19566 add_unwind_opcode (op, 1);
19567 }
19568 }
19569
19570 /* Finish the list of unwind opcodes for this function. */
19571 static void
19572 finish_unwind_opcodes (void)
19573 {
19574 valueT op;
19575
19576 if (unwind.fp_used)
19577 {
19578 /* Adjust sp as necessary. */
19579 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19580 flush_pending_unwind ();
19581
19582 /* After restoring sp from the frame pointer. */
19583 op = 0x90 | unwind.fp_reg;
19584 add_unwind_opcode (op, 1);
19585 }
19586 else
19587 flush_pending_unwind ();
19588 }
19589
19590
19591 /* Start an exception table entry. If idx is nonzero this is an index table
19592 entry. */
19593
19594 static void
19595 start_unwind_section (const segT text_seg, int idx)
19596 {
19597 const char * text_name;
19598 const char * prefix;
19599 const char * prefix_once;
19600 const char * group_name;
19601 size_t prefix_len;
19602 size_t text_len;
19603 char * sec_name;
19604 size_t sec_name_len;
19605 int type;
19606 int flags;
19607 int linkonce;
19608
19609 if (idx)
19610 {
19611 prefix = ELF_STRING_ARM_unwind;
19612 prefix_once = ELF_STRING_ARM_unwind_once;
19613 type = SHT_ARM_EXIDX;
19614 }
19615 else
19616 {
19617 prefix = ELF_STRING_ARM_unwind_info;
19618 prefix_once = ELF_STRING_ARM_unwind_info_once;
19619 type = SHT_PROGBITS;
19620 }
19621
19622 text_name = segment_name (text_seg);
19623 if (streq (text_name, ".text"))
19624 text_name = "";
19625
19626 if (strncmp (text_name, ".gnu.linkonce.t.",
19627 strlen (".gnu.linkonce.t.")) == 0)
19628 {
19629 prefix = prefix_once;
19630 text_name += strlen (".gnu.linkonce.t.");
19631 }
19632
19633 prefix_len = strlen (prefix);
19634 text_len = strlen (text_name);
19635 sec_name_len = prefix_len + text_len;
19636 sec_name = (char *) xmalloc (sec_name_len + 1);
19637 memcpy (sec_name, prefix, prefix_len);
19638 memcpy (sec_name + prefix_len, text_name, text_len);
19639 sec_name[prefix_len + text_len] = '\0';
19640
19641 flags = SHF_ALLOC;
19642 linkonce = 0;
19643 group_name = 0;
19644
19645 /* Handle COMDAT group. */
19646 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19647 {
19648 group_name = elf_group_name (text_seg);
19649 if (group_name == NULL)
19650 {
19651 as_bad (_("Group section `%s' has no group signature"),
19652 segment_name (text_seg));
19653 ignore_rest_of_line ();
19654 return;
19655 }
19656 flags |= SHF_GROUP;
19657 linkonce = 1;
19658 }
19659
19660 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19661
19662 /* Set the section link for index tables. */
19663 if (idx)
19664 elf_linked_to_section (now_seg) = text_seg;
19665 }
19666
19667
19668 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19669 personality routine data. Returns zero, or the index table value for
19670 and inline entry. */
19671
19672 static valueT
19673 create_unwind_entry (int have_data)
19674 {
19675 int size;
19676 addressT where;
19677 char *ptr;
19678 /* The current word of data. */
19679 valueT data;
19680 /* The number of bytes left in this word. */
19681 int n;
19682
19683 finish_unwind_opcodes ();
19684
19685 /* Remember the current text section. */
19686 unwind.saved_seg = now_seg;
19687 unwind.saved_subseg = now_subseg;
19688
19689 start_unwind_section (now_seg, 0);
19690
19691 if (unwind.personality_routine == NULL)
19692 {
19693 if (unwind.personality_index == -2)
19694 {
19695 if (have_data)
19696 as_bad (_("handlerdata in cantunwind frame"));
19697 return 1; /* EXIDX_CANTUNWIND. */
19698 }
19699
19700 /* Use a default personality routine if none is specified. */
19701 if (unwind.personality_index == -1)
19702 {
19703 if (unwind.opcode_count > 3)
19704 unwind.personality_index = 1;
19705 else
19706 unwind.personality_index = 0;
19707 }
19708
19709 /* Space for the personality routine entry. */
19710 if (unwind.personality_index == 0)
19711 {
19712 if (unwind.opcode_count > 3)
19713 as_bad (_("too many unwind opcodes for personality routine 0"));
19714
19715 if (!have_data)
19716 {
19717 /* All the data is inline in the index table. */
19718 data = 0x80;
19719 n = 3;
19720 while (unwind.opcode_count > 0)
19721 {
19722 unwind.opcode_count--;
19723 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19724 n--;
19725 }
19726
19727 /* Pad with "finish" opcodes. */
19728 while (n--)
19729 data = (data << 8) | 0xb0;
19730
19731 return data;
19732 }
19733 size = 0;
19734 }
19735 else
19736 /* We get two opcodes "free" in the first word. */
19737 size = unwind.opcode_count - 2;
19738 }
19739 else
19740 /* An extra byte is required for the opcode count. */
19741 size = unwind.opcode_count + 1;
19742
19743 size = (size + 3) >> 2;
19744 if (size > 0xff)
19745 as_bad (_("too many unwind opcodes"));
19746
19747 frag_align (2, 0, 0);
19748 record_alignment (now_seg, 2);
19749 unwind.table_entry = expr_build_dot ();
19750
19751 /* Allocate the table entry. */
19752 ptr = frag_more ((size << 2) + 4);
19753 where = frag_now_fix () - ((size << 2) + 4);
19754
19755 switch (unwind.personality_index)
19756 {
19757 case -1:
19758 /* ??? Should this be a PLT generating relocation? */
19759 /* Custom personality routine. */
19760 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19761 BFD_RELOC_ARM_PREL31);
19762
19763 where += 4;
19764 ptr += 4;
19765
19766 /* Set the first byte to the number of additional words. */
19767 data = size - 1;
19768 n = 3;
19769 break;
19770
19771 /* ABI defined personality routines. */
19772 case 0:
19773 /* Three opcodes bytes are packed into the first word. */
19774 data = 0x80;
19775 n = 3;
19776 break;
19777
19778 case 1:
19779 case 2:
19780 /* The size and first two opcode bytes go in the first word. */
19781 data = ((0x80 + unwind.personality_index) << 8) | size;
19782 n = 2;
19783 break;
19784
19785 default:
19786 /* Should never happen. */
19787 abort ();
19788 }
19789
19790 /* Pack the opcodes into words (MSB first), reversing the list at the same
19791 time. */
19792 while (unwind.opcode_count > 0)
19793 {
19794 if (n == 0)
19795 {
19796 md_number_to_chars (ptr, data, 4);
19797 ptr += 4;
19798 n = 4;
19799 data = 0;
19800 }
19801 unwind.opcode_count--;
19802 n--;
19803 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19804 }
19805
19806 /* Finish off the last word. */
19807 if (n < 4)
19808 {
19809 /* Pad with "finish" opcodes. */
19810 while (n--)
19811 data = (data << 8) | 0xb0;
19812
19813 md_number_to_chars (ptr, data, 4);
19814 }
19815
19816 if (!have_data)
19817 {
19818 /* Add an empty descriptor if there is no user-specified data. */
19819 ptr = frag_more (4);
19820 md_number_to_chars (ptr, 0, 4);
19821 }
19822
19823 return 0;
19824 }
19825
19826
19827 /* Initialize the DWARF-2 unwind information for this procedure. */
19828
19829 void
19830 tc_arm_frame_initial_instructions (void)
19831 {
19832 cfi_add_CFA_def_cfa (REG_SP, 0);
19833 }
19834 #endif /* OBJ_ELF */
19835
19836 /* Convert REGNAME to a DWARF-2 register number. */
19837
19838 int
19839 tc_arm_regname_to_dw2regnum (char *regname)
19840 {
19841 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19842
19843 if (reg == FAIL)
19844 return -1;
19845
19846 return reg;
19847 }
19848
19849 #ifdef TE_PE
19850 void
19851 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19852 {
19853 expressionS exp;
19854
19855 exp.X_op = O_secrel;
19856 exp.X_add_symbol = symbol;
19857 exp.X_add_number = 0;
19858 emit_expr (&exp, size);
19859 }
19860 #endif
19861
19862 /* MD interface: Symbol and relocation handling. */
19863
19864 /* Return the address within the segment that a PC-relative fixup is
19865 relative to. For ARM, PC-relative fixups applied to instructions
19866 are generally relative to the location of the fixup plus 8 bytes.
19867 Thumb branches are offset by 4, and Thumb loads relative to PC
19868 require special handling. */
19869
19870 long
19871 md_pcrel_from_section (fixS * fixP, segT seg)
19872 {
19873 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19874
19875 /* If this is pc-relative and we are going to emit a relocation
19876 then we just want to put out any pipeline compensation that the linker
19877 will need. Otherwise we want to use the calculated base.
19878 For WinCE we skip the bias for externals as well, since this
19879 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19880 if (fixP->fx_pcrel
19881 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19882 || (arm_force_relocation (fixP)
19883 #ifdef TE_WINCE
19884 && !S_IS_EXTERNAL (fixP->fx_addsy)
19885 #endif
19886 )))
19887 base = 0;
19888
19889
19890 switch (fixP->fx_r_type)
19891 {
19892 /* PC relative addressing on the Thumb is slightly odd as the
19893 bottom two bits of the PC are forced to zero for the
19894 calculation. This happens *after* application of the
19895 pipeline offset. However, Thumb adrl already adjusts for
19896 this, so we need not do it again. */
19897 case BFD_RELOC_ARM_THUMB_ADD:
19898 return base & ~3;
19899
19900 case BFD_RELOC_ARM_THUMB_OFFSET:
19901 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19902 case BFD_RELOC_ARM_T32_ADD_PC12:
19903 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19904 return (base + 4) & ~3;
19905
19906 /* Thumb branches are simply offset by +4. */
19907 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19908 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19909 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19910 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19911 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19912 return base + 4;
19913
19914 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19915 if (fixP->fx_addsy
19916 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19917 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19918 && ARM_IS_FUNC (fixP->fx_addsy)
19919 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19920 base = fixP->fx_where + fixP->fx_frag->fr_address;
19921 return base + 4;
19922
19923 /* BLX is like branches above, but forces the low two bits of PC to
19924 zero. */
19925 case BFD_RELOC_THUMB_PCREL_BLX:
19926 if (fixP->fx_addsy
19927 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19928 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19929 && THUMB_IS_FUNC (fixP->fx_addsy)
19930 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19931 base = fixP->fx_where + fixP->fx_frag->fr_address;
19932 return (base + 4) & ~3;
19933
19934 /* ARM mode branches are offset by +8. However, the Windows CE
19935 loader expects the relocation not to take this into account. */
19936 case BFD_RELOC_ARM_PCREL_BLX:
19937 if (fixP->fx_addsy
19938 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19939 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19940 && ARM_IS_FUNC (fixP->fx_addsy)
19941 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19942 base = fixP->fx_where + fixP->fx_frag->fr_address;
19943 return base + 8;
19944
19945 case BFD_RELOC_ARM_PCREL_CALL:
19946 if (fixP->fx_addsy
19947 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19948 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
19949 && THUMB_IS_FUNC (fixP->fx_addsy)
19950 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19951 base = fixP->fx_where + fixP->fx_frag->fr_address;
19952 return base + 8;
19953
19954 case BFD_RELOC_ARM_PCREL_BRANCH:
19955 case BFD_RELOC_ARM_PCREL_JUMP:
19956 case BFD_RELOC_ARM_PLT32:
19957 #ifdef TE_WINCE
19958 /* When handling fixups immediately, because we have already
19959 discovered the value of a symbol, or the address of the frag involved
19960 we must account for the offset by +8, as the OS loader will never see the reloc.
19961 see fixup_segment() in write.c
19962 The S_IS_EXTERNAL test handles the case of global symbols.
19963 Those need the calculated base, not just the pipe compensation the linker will need. */
19964 if (fixP->fx_pcrel
19965 && fixP->fx_addsy != NULL
19966 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19967 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19968 return base + 8;
19969 return base;
19970 #else
19971 return base + 8;
19972 #endif
19973
19974
19975 /* ARM mode loads relative to PC are also offset by +8. Unlike
19976 branches, the Windows CE loader *does* expect the relocation
19977 to take this into account. */
19978 case BFD_RELOC_ARM_OFFSET_IMM:
19979 case BFD_RELOC_ARM_OFFSET_IMM8:
19980 case BFD_RELOC_ARM_HWLITERAL:
19981 case BFD_RELOC_ARM_LITERAL:
19982 case BFD_RELOC_ARM_CP_OFF_IMM:
19983 return base + 8;
19984
19985
19986 /* Other PC-relative relocations are un-offset. */
19987 default:
19988 return base;
19989 }
19990 }
19991
19992 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19993 Otherwise we have no need to default values of symbols. */
19994
19995 symbolS *
19996 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19997 {
19998 #ifdef OBJ_ELF
19999 if (name[0] == '_' && name[1] == 'G'
20000 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20001 {
20002 if (!GOT_symbol)
20003 {
20004 if (symbol_find (name))
20005 as_bad (_("GOT already in the symbol table"));
20006
20007 GOT_symbol = symbol_new (name, undefined_section,
20008 (valueT) 0, & zero_address_frag);
20009 }
20010
20011 return GOT_symbol;
20012 }
20013 #endif
20014
20015 return NULL;
20016 }
20017
20018 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20019 computed as two separate immediate values, added together. We
20020 already know that this value cannot be computed by just one ARM
20021 instruction. */
20022
20023 static unsigned int
20024 validate_immediate_twopart (unsigned int val,
20025 unsigned int * highpart)
20026 {
20027 unsigned int a;
20028 unsigned int i;
20029
20030 for (i = 0; i < 32; i += 2)
20031 if (((a = rotate_left (val, i)) & 0xff) != 0)
20032 {
20033 if (a & 0xff00)
20034 {
20035 if (a & ~ 0xffff)
20036 continue;
20037 * highpart = (a >> 8) | ((i + 24) << 7);
20038 }
20039 else if (a & 0xff0000)
20040 {
20041 if (a & 0xff000000)
20042 continue;
20043 * highpart = (a >> 16) | ((i + 16) << 7);
20044 }
20045 else
20046 {
20047 gas_assert (a & 0xff000000);
20048 * highpart = (a >> 24) | ((i + 8) << 7);
20049 }
20050
20051 return (a & 0xff) | (i << 7);
20052 }
20053
20054 return FAIL;
20055 }
20056
20057 static int
20058 validate_offset_imm (unsigned int val, int hwse)
20059 {
20060 if ((hwse && val > 255) || val > 4095)
20061 return FAIL;
20062 return val;
20063 }
20064
20065 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20066 negative immediate constant by altering the instruction. A bit of
20067 a hack really.
20068 MOV <-> MVN
20069 AND <-> BIC
20070 ADC <-> SBC
20071 by inverting the second operand, and
20072 ADD <-> SUB
20073 CMP <-> CMN
20074 by negating the second operand. */
20075
20076 static int
20077 negate_data_op (unsigned long * instruction,
20078 unsigned long value)
20079 {
20080 int op, new_inst;
20081 unsigned long negated, inverted;
20082
20083 negated = encode_arm_immediate (-value);
20084 inverted = encode_arm_immediate (~value);
20085
20086 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20087 switch (op)
20088 {
20089 /* First negates. */
20090 case OPCODE_SUB: /* ADD <-> SUB */
20091 new_inst = OPCODE_ADD;
20092 value = negated;
20093 break;
20094
20095 case OPCODE_ADD:
20096 new_inst = OPCODE_SUB;
20097 value = negated;
20098 break;
20099
20100 case OPCODE_CMP: /* CMP <-> CMN */
20101 new_inst = OPCODE_CMN;
20102 value = negated;
20103 break;
20104
20105 case OPCODE_CMN:
20106 new_inst = OPCODE_CMP;
20107 value = negated;
20108 break;
20109
20110 /* Now Inverted ops. */
20111 case OPCODE_MOV: /* MOV <-> MVN */
20112 new_inst = OPCODE_MVN;
20113 value = inverted;
20114 break;
20115
20116 case OPCODE_MVN:
20117 new_inst = OPCODE_MOV;
20118 value = inverted;
20119 break;
20120
20121 case OPCODE_AND: /* AND <-> BIC */
20122 new_inst = OPCODE_BIC;
20123 value = inverted;
20124 break;
20125
20126 case OPCODE_BIC:
20127 new_inst = OPCODE_AND;
20128 value = inverted;
20129 break;
20130
20131 case OPCODE_ADC: /* ADC <-> SBC */
20132 new_inst = OPCODE_SBC;
20133 value = inverted;
20134 break;
20135
20136 case OPCODE_SBC:
20137 new_inst = OPCODE_ADC;
20138 value = inverted;
20139 break;
20140
20141 /* We cannot do anything. */
20142 default:
20143 return FAIL;
20144 }
20145
20146 if (value == (unsigned) FAIL)
20147 return FAIL;
20148
20149 *instruction &= OPCODE_MASK;
20150 *instruction |= new_inst << DATA_OP_SHIFT;
20151 return value;
20152 }
20153
20154 /* Like negate_data_op, but for Thumb-2. */
20155
20156 static unsigned int
20157 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20158 {
20159 int op, new_inst;
20160 int rd;
20161 unsigned int negated, inverted;
20162
20163 negated = encode_thumb32_immediate (-value);
20164 inverted = encode_thumb32_immediate (~value);
20165
20166 rd = (*instruction >> 8) & 0xf;
20167 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20168 switch (op)
20169 {
20170 /* ADD <-> SUB. Includes CMP <-> CMN. */
20171 case T2_OPCODE_SUB:
20172 new_inst = T2_OPCODE_ADD;
20173 value = negated;
20174 break;
20175
20176 case T2_OPCODE_ADD:
20177 new_inst = T2_OPCODE_SUB;
20178 value = negated;
20179 break;
20180
20181 /* ORR <-> ORN. Includes MOV <-> MVN. */
20182 case T2_OPCODE_ORR:
20183 new_inst = T2_OPCODE_ORN;
20184 value = inverted;
20185 break;
20186
20187 case T2_OPCODE_ORN:
20188 new_inst = T2_OPCODE_ORR;
20189 value = inverted;
20190 break;
20191
20192 /* AND <-> BIC. TST has no inverted equivalent. */
20193 case T2_OPCODE_AND:
20194 new_inst = T2_OPCODE_BIC;
20195 if (rd == 15)
20196 value = FAIL;
20197 else
20198 value = inverted;
20199 break;
20200
20201 case T2_OPCODE_BIC:
20202 new_inst = T2_OPCODE_AND;
20203 value = inverted;
20204 break;
20205
20206 /* ADC <-> SBC */
20207 case T2_OPCODE_ADC:
20208 new_inst = T2_OPCODE_SBC;
20209 value = inverted;
20210 break;
20211
20212 case T2_OPCODE_SBC:
20213 new_inst = T2_OPCODE_ADC;
20214 value = inverted;
20215 break;
20216
20217 /* We cannot do anything. */
20218 default:
20219 return FAIL;
20220 }
20221
20222 if (value == (unsigned int)FAIL)
20223 return FAIL;
20224
20225 *instruction &= T2_OPCODE_MASK;
20226 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20227 return value;
20228 }
20229
20230 /* Read a 32-bit thumb instruction from buf. */
20231 static unsigned long
20232 get_thumb32_insn (char * buf)
20233 {
20234 unsigned long insn;
20235 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20236 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20237
20238 return insn;
20239 }
20240
20241
20242 /* We usually want to set the low bit on the address of thumb function
20243 symbols. In particular .word foo - . should have the low bit set.
20244 Generic code tries to fold the difference of two symbols to
20245 a constant. Prevent this and force a relocation when the first symbols
20246 is a thumb function. */
20247
20248 bfd_boolean
20249 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20250 {
20251 if (op == O_subtract
20252 && l->X_op == O_symbol
20253 && r->X_op == O_symbol
20254 && THUMB_IS_FUNC (l->X_add_symbol))
20255 {
20256 l->X_op = O_subtract;
20257 l->X_op_symbol = r->X_add_symbol;
20258 l->X_add_number -= r->X_add_number;
20259 return TRUE;
20260 }
20261
20262 /* Process as normal. */
20263 return FALSE;
20264 }
20265
20266 /* Encode Thumb2 unconditional branches and calls. The encoding
20267 for the 2 are identical for the immediate values. */
20268
20269 static void
20270 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20271 {
20272 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20273 offsetT newval;
20274 offsetT newval2;
20275 addressT S, I1, I2, lo, hi;
20276
20277 S = (value >> 24) & 0x01;
20278 I1 = (value >> 23) & 0x01;
20279 I2 = (value >> 22) & 0x01;
20280 hi = (value >> 12) & 0x3ff;
20281 lo = (value >> 1) & 0x7ff;
20282 newval = md_chars_to_number (buf, THUMB_SIZE);
20283 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20284 newval |= (S << 10) | hi;
20285 newval2 &= ~T2I1I2MASK;
20286 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20287 md_number_to_chars (buf, newval, THUMB_SIZE);
20288 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20289 }
20290
20291 void
20292 md_apply_fix (fixS * fixP,
20293 valueT * valP,
20294 segT seg)
20295 {
20296 offsetT value = * valP;
20297 offsetT newval;
20298 unsigned int newimm;
20299 unsigned long temp;
20300 int sign;
20301 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20302
20303 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20304
20305 /* Note whether this will delete the relocation. */
20306
20307 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20308 fixP->fx_done = 1;
20309
20310 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20311 consistency with the behaviour on 32-bit hosts. Remember value
20312 for emit_reloc. */
20313 value &= 0xffffffff;
20314 value ^= 0x80000000;
20315 value -= 0x80000000;
20316
20317 *valP = value;
20318 fixP->fx_addnumber = value;
20319
20320 /* Same treatment for fixP->fx_offset. */
20321 fixP->fx_offset &= 0xffffffff;
20322 fixP->fx_offset ^= 0x80000000;
20323 fixP->fx_offset -= 0x80000000;
20324
20325 switch (fixP->fx_r_type)
20326 {
20327 case BFD_RELOC_NONE:
20328 /* This will need to go in the object file. */
20329 fixP->fx_done = 0;
20330 break;
20331
20332 case BFD_RELOC_ARM_IMMEDIATE:
20333 /* We claim that this fixup has been processed here,
20334 even if in fact we generate an error because we do
20335 not have a reloc for it, so tc_gen_reloc will reject it. */
20336 fixP->fx_done = 1;
20337
20338 if (fixP->fx_addsy)
20339 {
20340 const char *msg = 0;
20341
20342 if (! S_IS_DEFINED (fixP->fx_addsy))
20343 msg = _("undefined symbol %s used as an immediate value");
20344 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20345 msg = _("symbol %s is in a different section");
20346 else if (S_IS_WEAK (fixP->fx_addsy))
20347 msg = _("symbol %s is weak and may be overridden later");
20348
20349 if (msg)
20350 {
20351 as_bad_where (fixP->fx_file, fixP->fx_line,
20352 msg, S_GET_NAME (fixP->fx_addsy));
20353 break;
20354 }
20355 }
20356
20357 newimm = encode_arm_immediate (value);
20358 temp = md_chars_to_number (buf, INSN_SIZE);
20359
20360 /* If the instruction will fail, see if we can fix things up by
20361 changing the opcode. */
20362 if (newimm == (unsigned int) FAIL
20363 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
20364 {
20365 as_bad_where (fixP->fx_file, fixP->fx_line,
20366 _("invalid constant (%lx) after fixup"),
20367 (unsigned long) value);
20368 break;
20369 }
20370
20371 newimm |= (temp & 0xfffff000);
20372 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20373 break;
20374
20375 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20376 {
20377 unsigned int highpart = 0;
20378 unsigned int newinsn = 0xe1a00000; /* nop. */
20379
20380 if (fixP->fx_addsy)
20381 {
20382 const char *msg = 0;
20383
20384 if (! S_IS_DEFINED (fixP->fx_addsy))
20385 msg = _("undefined symbol %s used as an immediate value");
20386 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20387 msg = _("symbol %s is in a different section");
20388 else if (S_IS_WEAK (fixP->fx_addsy))
20389 msg = _("symbol %s is weak and may be overridden later");
20390
20391 if (msg)
20392 {
20393 as_bad_where (fixP->fx_file, fixP->fx_line,
20394 msg, S_GET_NAME (fixP->fx_addsy));
20395 break;
20396 }
20397 }
20398
20399 newimm = encode_arm_immediate (value);
20400 temp = md_chars_to_number (buf, INSN_SIZE);
20401
20402 /* If the instruction will fail, see if we can fix things up by
20403 changing the opcode. */
20404 if (newimm == (unsigned int) FAIL
20405 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20406 {
20407 /* No ? OK - try using two ADD instructions to generate
20408 the value. */
20409 newimm = validate_immediate_twopart (value, & highpart);
20410
20411 /* Yes - then make sure that the second instruction is
20412 also an add. */
20413 if (newimm != (unsigned int) FAIL)
20414 newinsn = temp;
20415 /* Still No ? Try using a negated value. */
20416 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20417 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20418 /* Otherwise - give up. */
20419 else
20420 {
20421 as_bad_where (fixP->fx_file, fixP->fx_line,
20422 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20423 (long) value);
20424 break;
20425 }
20426
20427 /* Replace the first operand in the 2nd instruction (which
20428 is the PC) with the destination register. We have
20429 already added in the PC in the first instruction and we
20430 do not want to do it again. */
20431 newinsn &= ~ 0xf0000;
20432 newinsn |= ((newinsn & 0x0f000) << 4);
20433 }
20434
20435 newimm |= (temp & 0xfffff000);
20436 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20437
20438 highpart |= (newinsn & 0xfffff000);
20439 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20440 }
20441 break;
20442
20443 case BFD_RELOC_ARM_OFFSET_IMM:
20444 if (!fixP->fx_done && seg->use_rela_p)
20445 value = 0;
20446
20447 case BFD_RELOC_ARM_LITERAL:
20448 sign = value >= 0;
20449
20450 if (value < 0)
20451 value = - value;
20452
20453 if (validate_offset_imm (value, 0) == FAIL)
20454 {
20455 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20456 as_bad_where (fixP->fx_file, fixP->fx_line,
20457 _("invalid literal constant: pool needs to be closer"));
20458 else
20459 as_bad_where (fixP->fx_file, fixP->fx_line,
20460 _("bad immediate value for offset (%ld)"),
20461 (long) value);
20462 break;
20463 }
20464
20465 newval = md_chars_to_number (buf, INSN_SIZE);
20466 newval &= 0xff7ff000;
20467 newval |= value | (sign ? INDEX_UP : 0);
20468 md_number_to_chars (buf, newval, INSN_SIZE);
20469 break;
20470
20471 case BFD_RELOC_ARM_OFFSET_IMM8:
20472 case BFD_RELOC_ARM_HWLITERAL:
20473 sign = value >= 0;
20474
20475 if (value < 0)
20476 value = - value;
20477
20478 if (validate_offset_imm (value, 1) == FAIL)
20479 {
20480 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20481 as_bad_where (fixP->fx_file, fixP->fx_line,
20482 _("invalid literal constant: pool needs to be closer"));
20483 else
20484 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20485 (long) value);
20486 break;
20487 }
20488
20489 newval = md_chars_to_number (buf, INSN_SIZE);
20490 newval &= 0xff7ff0f0;
20491 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
20492 md_number_to_chars (buf, newval, INSN_SIZE);
20493 break;
20494
20495 case BFD_RELOC_ARM_T32_OFFSET_U8:
20496 if (value < 0 || value > 1020 || value % 4 != 0)
20497 as_bad_where (fixP->fx_file, fixP->fx_line,
20498 _("bad immediate value for offset (%ld)"), (long) value);
20499 value /= 4;
20500
20501 newval = md_chars_to_number (buf+2, THUMB_SIZE);
20502 newval |= value;
20503 md_number_to_chars (buf+2, newval, THUMB_SIZE);
20504 break;
20505
20506 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20507 /* This is a complicated relocation used for all varieties of Thumb32
20508 load/store instruction with immediate offset:
20509
20510 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
20511 *4, optional writeback(W)
20512 (doubleword load/store)
20513
20514 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
20515 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
20516 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
20517 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
20518 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
20519
20520 Uppercase letters indicate bits that are already encoded at
20521 this point. Lowercase letters are our problem. For the
20522 second block of instructions, the secondary opcode nybble
20523 (bits 8..11) is present, and bit 23 is zero, even if this is
20524 a PC-relative operation. */
20525 newval = md_chars_to_number (buf, THUMB_SIZE);
20526 newval <<= 16;
20527 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
20528
20529 if ((newval & 0xf0000000) == 0xe0000000)
20530 {
20531 /* Doubleword load/store: 8-bit offset, scaled by 4. */
20532 if (value >= 0)
20533 newval |= (1 << 23);
20534 else
20535 value = -value;
20536 if (value % 4 != 0)
20537 {
20538 as_bad_where (fixP->fx_file, fixP->fx_line,
20539 _("offset not a multiple of 4"));
20540 break;
20541 }
20542 value /= 4;
20543 if (value > 0xff)
20544 {
20545 as_bad_where (fixP->fx_file, fixP->fx_line,
20546 _("offset out of range"));
20547 break;
20548 }
20549 newval &= ~0xff;
20550 }
20551 else if ((newval & 0x000f0000) == 0x000f0000)
20552 {
20553 /* PC-relative, 12-bit offset. */
20554 if (value >= 0)
20555 newval |= (1 << 23);
20556 else
20557 value = -value;
20558 if (value > 0xfff)
20559 {
20560 as_bad_where (fixP->fx_file, fixP->fx_line,
20561 _("offset out of range"));
20562 break;
20563 }
20564 newval &= ~0xfff;
20565 }
20566 else if ((newval & 0x00000100) == 0x00000100)
20567 {
20568 /* Writeback: 8-bit, +/- offset. */
20569 if (value >= 0)
20570 newval |= (1 << 9);
20571 else
20572 value = -value;
20573 if (value > 0xff)
20574 {
20575 as_bad_where (fixP->fx_file, fixP->fx_line,
20576 _("offset out of range"));
20577 break;
20578 }
20579 newval &= ~0xff;
20580 }
20581 else if ((newval & 0x00000f00) == 0x00000e00)
20582 {
20583 /* T-instruction: positive 8-bit offset. */
20584 if (value < 0 || value > 0xff)
20585 {
20586 as_bad_where (fixP->fx_file, fixP->fx_line,
20587 _("offset out of range"));
20588 break;
20589 }
20590 newval &= ~0xff;
20591 newval |= value;
20592 }
20593 else
20594 {
20595 /* Positive 12-bit or negative 8-bit offset. */
20596 int limit;
20597 if (value >= 0)
20598 {
20599 newval |= (1 << 23);
20600 limit = 0xfff;
20601 }
20602 else
20603 {
20604 value = -value;
20605 limit = 0xff;
20606 }
20607 if (value > limit)
20608 {
20609 as_bad_where (fixP->fx_file, fixP->fx_line,
20610 _("offset out of range"));
20611 break;
20612 }
20613 newval &= ~limit;
20614 }
20615
20616 newval |= value;
20617 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20618 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20619 break;
20620
20621 case BFD_RELOC_ARM_SHIFT_IMM:
20622 newval = md_chars_to_number (buf, INSN_SIZE);
20623 if (((unsigned long) value) > 32
20624 || (value == 32
20625 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20626 {
20627 as_bad_where (fixP->fx_file, fixP->fx_line,
20628 _("shift expression is too large"));
20629 break;
20630 }
20631
20632 if (value == 0)
20633 /* Shifts of zero must be done as lsl. */
20634 newval &= ~0x60;
20635 else if (value == 32)
20636 value = 0;
20637 newval &= 0xfffff07f;
20638 newval |= (value & 0x1f) << 7;
20639 md_number_to_chars (buf, newval, INSN_SIZE);
20640 break;
20641
20642 case BFD_RELOC_ARM_T32_IMMEDIATE:
20643 case BFD_RELOC_ARM_T32_ADD_IMM:
20644 case BFD_RELOC_ARM_T32_IMM12:
20645 case BFD_RELOC_ARM_T32_ADD_PC12:
20646 /* We claim that this fixup has been processed here,
20647 even if in fact we generate an error because we do
20648 not have a reloc for it, so tc_gen_reloc will reject it. */
20649 fixP->fx_done = 1;
20650
20651 if (fixP->fx_addsy
20652 && ! S_IS_DEFINED (fixP->fx_addsy))
20653 {
20654 as_bad_where (fixP->fx_file, fixP->fx_line,
20655 _("undefined symbol %s used as an immediate value"),
20656 S_GET_NAME (fixP->fx_addsy));
20657 break;
20658 }
20659
20660 newval = md_chars_to_number (buf, THUMB_SIZE);
20661 newval <<= 16;
20662 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20663
20664 newimm = FAIL;
20665 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20666 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20667 {
20668 newimm = encode_thumb32_immediate (value);
20669 if (newimm == (unsigned int) FAIL)
20670 newimm = thumb32_negate_data_op (&newval, value);
20671 }
20672 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20673 && newimm == (unsigned int) FAIL)
20674 {
20675 /* Turn add/sum into addw/subw. */
20676 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20677 newval = (newval & 0xfeffffff) | 0x02000000;
20678 /* No flat 12-bit imm encoding for addsw/subsw. */
20679 if ((newval & 0x00100000) == 0)
20680 {
20681 /* 12 bit immediate for addw/subw. */
20682 if (value < 0)
20683 {
20684 value = -value;
20685 newval ^= 0x00a00000;
20686 }
20687 if (value > 0xfff)
20688 newimm = (unsigned int) FAIL;
20689 else
20690 newimm = value;
20691 }
20692 }
20693
20694 if (newimm == (unsigned int)FAIL)
20695 {
20696 as_bad_where (fixP->fx_file, fixP->fx_line,
20697 _("invalid constant (%lx) after fixup"),
20698 (unsigned long) value);
20699 break;
20700 }
20701
20702 newval |= (newimm & 0x800) << 15;
20703 newval |= (newimm & 0x700) << 4;
20704 newval |= (newimm & 0x0ff);
20705
20706 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20707 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20708 break;
20709
20710 case BFD_RELOC_ARM_SMC:
20711 if (((unsigned long) value) > 0xffff)
20712 as_bad_where (fixP->fx_file, fixP->fx_line,
20713 _("invalid smc expression"));
20714 newval = md_chars_to_number (buf, INSN_SIZE);
20715 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20716 md_number_to_chars (buf, newval, INSN_SIZE);
20717 break;
20718
20719 case BFD_RELOC_ARM_HVC:
20720 if (((unsigned long) value) > 0xffff)
20721 as_bad_where (fixP->fx_file, fixP->fx_line,
20722 _("invalid hvc expression"));
20723 newval = md_chars_to_number (buf, INSN_SIZE);
20724 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20725 md_number_to_chars (buf, newval, INSN_SIZE);
20726 break;
20727
20728 case BFD_RELOC_ARM_SWI:
20729 if (fixP->tc_fix_data != 0)
20730 {
20731 if (((unsigned long) value) > 0xff)
20732 as_bad_where (fixP->fx_file, fixP->fx_line,
20733 _("invalid swi expression"));
20734 newval = md_chars_to_number (buf, THUMB_SIZE);
20735 newval |= value;
20736 md_number_to_chars (buf, newval, THUMB_SIZE);
20737 }
20738 else
20739 {
20740 if (((unsigned long) value) > 0x00ffffff)
20741 as_bad_where (fixP->fx_file, fixP->fx_line,
20742 _("invalid swi expression"));
20743 newval = md_chars_to_number (buf, INSN_SIZE);
20744 newval |= value;
20745 md_number_to_chars (buf, newval, INSN_SIZE);
20746 }
20747 break;
20748
20749 case BFD_RELOC_ARM_MULTI:
20750 if (((unsigned long) value) > 0xffff)
20751 as_bad_where (fixP->fx_file, fixP->fx_line,
20752 _("invalid expression in load/store multiple"));
20753 newval = value | md_chars_to_number (buf, INSN_SIZE);
20754 md_number_to_chars (buf, newval, INSN_SIZE);
20755 break;
20756
20757 #ifdef OBJ_ELF
20758 case BFD_RELOC_ARM_PCREL_CALL:
20759
20760 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20761 && fixP->fx_addsy
20762 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20763 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20764 && THUMB_IS_FUNC (fixP->fx_addsy))
20765 /* Flip the bl to blx. This is a simple flip
20766 bit here because we generate PCREL_CALL for
20767 unconditional bls. */
20768 {
20769 newval = md_chars_to_number (buf, INSN_SIZE);
20770 newval = newval | 0x10000000;
20771 md_number_to_chars (buf, newval, INSN_SIZE);
20772 temp = 1;
20773 fixP->fx_done = 1;
20774 }
20775 else
20776 temp = 3;
20777 goto arm_branch_common;
20778
20779 case BFD_RELOC_ARM_PCREL_JUMP:
20780 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20781 && fixP->fx_addsy
20782 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20783 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20784 && THUMB_IS_FUNC (fixP->fx_addsy))
20785 {
20786 /* This would map to a bl<cond>, b<cond>,
20787 b<always> to a Thumb function. We
20788 need to force a relocation for this particular
20789 case. */
20790 newval = md_chars_to_number (buf, INSN_SIZE);
20791 fixP->fx_done = 0;
20792 }
20793
20794 case BFD_RELOC_ARM_PLT32:
20795 #endif
20796 case BFD_RELOC_ARM_PCREL_BRANCH:
20797 temp = 3;
20798 goto arm_branch_common;
20799
20800 case BFD_RELOC_ARM_PCREL_BLX:
20801
20802 temp = 1;
20803 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20804 && fixP->fx_addsy
20805 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20806 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20807 && ARM_IS_FUNC (fixP->fx_addsy))
20808 {
20809 /* Flip the blx to a bl and warn. */
20810 const char *name = S_GET_NAME (fixP->fx_addsy);
20811 newval = 0xeb000000;
20812 as_warn_where (fixP->fx_file, fixP->fx_line,
20813 _("blx to '%s' an ARM ISA state function changed to bl"),
20814 name);
20815 md_number_to_chars (buf, newval, INSN_SIZE);
20816 temp = 3;
20817 fixP->fx_done = 1;
20818 }
20819
20820 #ifdef OBJ_ELF
20821 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20822 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20823 #endif
20824
20825 arm_branch_common:
20826 /* We are going to store value (shifted right by two) in the
20827 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20828 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20829 also be be clear. */
20830 if (value & temp)
20831 as_bad_where (fixP->fx_file, fixP->fx_line,
20832 _("misaligned branch destination"));
20833 if ((value & (offsetT)0xfe000000) != (offsetT)0
20834 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20835 as_bad_where (fixP->fx_file, fixP->fx_line,
20836 _("branch out of range"));
20837
20838 if (fixP->fx_done || !seg->use_rela_p)
20839 {
20840 newval = md_chars_to_number (buf, INSN_SIZE);
20841 newval |= (value >> 2) & 0x00ffffff;
20842 /* Set the H bit on BLX instructions. */
20843 if (temp == 1)
20844 {
20845 if (value & 2)
20846 newval |= 0x01000000;
20847 else
20848 newval &= ~0x01000000;
20849 }
20850 md_number_to_chars (buf, newval, INSN_SIZE);
20851 }
20852 break;
20853
20854 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20855 /* CBZ can only branch forward. */
20856
20857 /* Attempts to use CBZ to branch to the next instruction
20858 (which, strictly speaking, are prohibited) will be turned into
20859 no-ops.
20860
20861 FIXME: It may be better to remove the instruction completely and
20862 perform relaxation. */
20863 if (value == -2)
20864 {
20865 newval = md_chars_to_number (buf, THUMB_SIZE);
20866 newval = 0xbf00; /* NOP encoding T1 */
20867 md_number_to_chars (buf, newval, THUMB_SIZE);
20868 }
20869 else
20870 {
20871 if (value & ~0x7e)
20872 as_bad_where (fixP->fx_file, fixP->fx_line,
20873 _("branch out of range"));
20874
20875 if (fixP->fx_done || !seg->use_rela_p)
20876 {
20877 newval = md_chars_to_number (buf, THUMB_SIZE);
20878 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20879 md_number_to_chars (buf, newval, THUMB_SIZE);
20880 }
20881 }
20882 break;
20883
20884 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20885 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20886 as_bad_where (fixP->fx_file, fixP->fx_line,
20887 _("branch out of range"));
20888
20889 if (fixP->fx_done || !seg->use_rela_p)
20890 {
20891 newval = md_chars_to_number (buf, THUMB_SIZE);
20892 newval |= (value & 0x1ff) >> 1;
20893 md_number_to_chars (buf, newval, THUMB_SIZE);
20894 }
20895 break;
20896
20897 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20898 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20899 as_bad_where (fixP->fx_file, fixP->fx_line,
20900 _("branch out of range"));
20901
20902 if (fixP->fx_done || !seg->use_rela_p)
20903 {
20904 newval = md_chars_to_number (buf, THUMB_SIZE);
20905 newval |= (value & 0xfff) >> 1;
20906 md_number_to_chars (buf, newval, THUMB_SIZE);
20907 }
20908 break;
20909
20910 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20911 if (fixP->fx_addsy
20912 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20913 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20914 && ARM_IS_FUNC (fixP->fx_addsy)
20915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20916 {
20917 /* Force a relocation for a branch 20 bits wide. */
20918 fixP->fx_done = 0;
20919 }
20920 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20921 as_bad_where (fixP->fx_file, fixP->fx_line,
20922 _("conditional branch out of range"));
20923
20924 if (fixP->fx_done || !seg->use_rela_p)
20925 {
20926 offsetT newval2;
20927 addressT S, J1, J2, lo, hi;
20928
20929 S = (value & 0x00100000) >> 20;
20930 J2 = (value & 0x00080000) >> 19;
20931 J1 = (value & 0x00040000) >> 18;
20932 hi = (value & 0x0003f000) >> 12;
20933 lo = (value & 0x00000ffe) >> 1;
20934
20935 newval = md_chars_to_number (buf, THUMB_SIZE);
20936 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20937 newval |= (S << 10) | hi;
20938 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20939 md_number_to_chars (buf, newval, THUMB_SIZE);
20940 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20941 }
20942 break;
20943
20944 case BFD_RELOC_THUMB_PCREL_BLX:
20945
20946 /* If there is a blx from a thumb state function to
20947 another thumb function flip this to a bl and warn
20948 about it. */
20949
20950 if (fixP->fx_addsy
20951 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20952 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20953 && THUMB_IS_FUNC (fixP->fx_addsy))
20954 {
20955 const char *name = S_GET_NAME (fixP->fx_addsy);
20956 as_warn_where (fixP->fx_file, fixP->fx_line,
20957 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20958 name);
20959 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20960 newval = newval | 0x1000;
20961 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20962 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20963 fixP->fx_done = 1;
20964 }
20965
20966
20967 goto thumb_bl_common;
20968
20969 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20970
20971 /* A bl from Thumb state ISA to an internal ARM state function
20972 is converted to a blx. */
20973 if (fixP->fx_addsy
20974 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20976 && ARM_IS_FUNC (fixP->fx_addsy)
20977 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20978 {
20979 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20980 newval = newval & ~0x1000;
20981 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20982 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20983 fixP->fx_done = 1;
20984 }
20985
20986 thumb_bl_common:
20987
20988 #ifdef OBJ_ELF
20989 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20990 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20991 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20992 #endif
20993
20994 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20995 /* For a BLX instruction, make sure that the relocation is rounded up
20996 to a word boundary. This follows the semantics of the instruction
20997 which specifies that bit 1 of the target address will come from bit
20998 1 of the base address. */
20999 value = (value + 1) & ~ 1;
21000
21001
21002 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21003 {
21004 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21005 {
21006 as_bad_where (fixP->fx_file, fixP->fx_line,
21007 _("branch out of range"));
21008 }
21009 else if ((value & ~0x1ffffff)
21010 && ((value & ~0x1ffffff) != ~0x1ffffff))
21011 {
21012 as_bad_where (fixP->fx_file, fixP->fx_line,
21013 _("Thumb2 branch out of range"));
21014 }
21015 }
21016
21017 if (fixP->fx_done || !seg->use_rela_p)
21018 encode_thumb2_b_bl_offset (buf, value);
21019
21020 break;
21021
21022 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21023 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
21024 as_bad_where (fixP->fx_file, fixP->fx_line,
21025 _("branch out of range"));
21026
21027 if (fixP->fx_done || !seg->use_rela_p)
21028 encode_thumb2_b_bl_offset (buf, value);
21029
21030 break;
21031
21032 case BFD_RELOC_8:
21033 if (fixP->fx_done || !seg->use_rela_p)
21034 md_number_to_chars (buf, value, 1);
21035 break;
21036
21037 case BFD_RELOC_16:
21038 if (fixP->fx_done || !seg->use_rela_p)
21039 md_number_to_chars (buf, value, 2);
21040 break;
21041
21042 #ifdef OBJ_ELF
21043 case BFD_RELOC_ARM_TLS_CALL:
21044 case BFD_RELOC_ARM_THM_TLS_CALL:
21045 case BFD_RELOC_ARM_TLS_DESCSEQ:
21046 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21047 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21048 break;
21049
21050 case BFD_RELOC_ARM_TLS_GOTDESC:
21051 case BFD_RELOC_ARM_TLS_GD32:
21052 case BFD_RELOC_ARM_TLS_LE32:
21053 case BFD_RELOC_ARM_TLS_IE32:
21054 case BFD_RELOC_ARM_TLS_LDM32:
21055 case BFD_RELOC_ARM_TLS_LDO32:
21056 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21057 /* fall through */
21058
21059 case BFD_RELOC_ARM_GOT32:
21060 case BFD_RELOC_ARM_GOTOFF:
21061 if (fixP->fx_done || !seg->use_rela_p)
21062 md_number_to_chars (buf, 0, 4);
21063 break;
21064
21065 case BFD_RELOC_ARM_GOT_PREL:
21066 if (fixP->fx_done || !seg->use_rela_p)
21067 md_number_to_chars (buf, value, 4);
21068 break;
21069
21070 case BFD_RELOC_ARM_TARGET2:
21071 /* TARGET2 is not partial-inplace, so we need to write the
21072 addend here for REL targets, because it won't be written out
21073 during reloc processing later. */
21074 if (fixP->fx_done || !seg->use_rela_p)
21075 md_number_to_chars (buf, fixP->fx_offset, 4);
21076 break;
21077 #endif
21078
21079 case BFD_RELOC_RVA:
21080 case BFD_RELOC_32:
21081 case BFD_RELOC_ARM_TARGET1:
21082 case BFD_RELOC_ARM_ROSEGREL32:
21083 case BFD_RELOC_ARM_SBREL32:
21084 case BFD_RELOC_32_PCREL:
21085 #ifdef TE_PE
21086 case BFD_RELOC_32_SECREL:
21087 #endif
21088 if (fixP->fx_done || !seg->use_rela_p)
21089 #ifdef TE_WINCE
21090 /* For WinCE we only do this for pcrel fixups. */
21091 if (fixP->fx_done || fixP->fx_pcrel)
21092 #endif
21093 md_number_to_chars (buf, value, 4);
21094 break;
21095
21096 #ifdef OBJ_ELF
21097 case BFD_RELOC_ARM_PREL31:
21098 if (fixP->fx_done || !seg->use_rela_p)
21099 {
21100 newval = md_chars_to_number (buf, 4) & 0x80000000;
21101 if ((value ^ (value >> 1)) & 0x40000000)
21102 {
21103 as_bad_where (fixP->fx_file, fixP->fx_line,
21104 _("rel31 relocation overflow"));
21105 }
21106 newval |= value & 0x7fffffff;
21107 md_number_to_chars (buf, newval, 4);
21108 }
21109 break;
21110 #endif
21111
21112 case BFD_RELOC_ARM_CP_OFF_IMM:
21113 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21114 if (value < -1023 || value > 1023 || (value & 3))
21115 as_bad_where (fixP->fx_file, fixP->fx_line,
21116 _("co-processor offset out of range"));
21117 cp_off_common:
21118 sign = value >= 0;
21119 if (value < 0)
21120 value = -value;
21121 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21122 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21123 newval = md_chars_to_number (buf, INSN_SIZE);
21124 else
21125 newval = get_thumb32_insn (buf);
21126 newval &= 0xff7fff00;
21127 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21128 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21129 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21130 md_number_to_chars (buf, newval, INSN_SIZE);
21131 else
21132 put_thumb32_insn (buf, newval);
21133 break;
21134
21135 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21136 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21137 if (value < -255 || value > 255)
21138 as_bad_where (fixP->fx_file, fixP->fx_line,
21139 _("co-processor offset out of range"));
21140 value *= 4;
21141 goto cp_off_common;
21142
21143 case BFD_RELOC_ARM_THUMB_OFFSET:
21144 newval = md_chars_to_number (buf, THUMB_SIZE);
21145 /* Exactly what ranges, and where the offset is inserted depends
21146 on the type of instruction, we can establish this from the
21147 top 4 bits. */
21148 switch (newval >> 12)
21149 {
21150 case 4: /* PC load. */
21151 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21152 forced to zero for these loads; md_pcrel_from has already
21153 compensated for this. */
21154 if (value & 3)
21155 as_bad_where (fixP->fx_file, fixP->fx_line,
21156 _("invalid offset, target not word aligned (0x%08lX)"),
21157 (((unsigned long) fixP->fx_frag->fr_address
21158 + (unsigned long) fixP->fx_where) & ~3)
21159 + (unsigned long) value);
21160
21161 if (value & ~0x3fc)
21162 as_bad_where (fixP->fx_file, fixP->fx_line,
21163 _("invalid offset, value too big (0x%08lX)"),
21164 (long) value);
21165
21166 newval |= value >> 2;
21167 break;
21168
21169 case 9: /* SP load/store. */
21170 if (value & ~0x3fc)
21171 as_bad_where (fixP->fx_file, fixP->fx_line,
21172 _("invalid offset, value too big (0x%08lX)"),
21173 (long) value);
21174 newval |= value >> 2;
21175 break;
21176
21177 case 6: /* Word load/store. */
21178 if (value & ~0x7c)
21179 as_bad_where (fixP->fx_file, fixP->fx_line,
21180 _("invalid offset, value too big (0x%08lX)"),
21181 (long) value);
21182 newval |= value << 4; /* 6 - 2. */
21183 break;
21184
21185 case 7: /* Byte load/store. */
21186 if (value & ~0x1f)
21187 as_bad_where (fixP->fx_file, fixP->fx_line,
21188 _("invalid offset, value too big (0x%08lX)"),
21189 (long) value);
21190 newval |= value << 6;
21191 break;
21192
21193 case 8: /* Halfword load/store. */
21194 if (value & ~0x3e)
21195 as_bad_where (fixP->fx_file, fixP->fx_line,
21196 _("invalid offset, value too big (0x%08lX)"),
21197 (long) value);
21198 newval |= value << 5; /* 6 - 1. */
21199 break;
21200
21201 default:
21202 as_bad_where (fixP->fx_file, fixP->fx_line,
21203 "Unable to process relocation for thumb opcode: %lx",
21204 (unsigned long) newval);
21205 break;
21206 }
21207 md_number_to_chars (buf, newval, THUMB_SIZE);
21208 break;
21209
21210 case BFD_RELOC_ARM_THUMB_ADD:
21211 /* This is a complicated relocation, since we use it for all of
21212 the following immediate relocations:
21213
21214 3bit ADD/SUB
21215 8bit ADD/SUB
21216 9bit ADD/SUB SP word-aligned
21217 10bit ADD PC/SP word-aligned
21218
21219 The type of instruction being processed is encoded in the
21220 instruction field:
21221
21222 0x8000 SUB
21223 0x00F0 Rd
21224 0x000F Rs
21225 */
21226 newval = md_chars_to_number (buf, THUMB_SIZE);
21227 {
21228 int rd = (newval >> 4) & 0xf;
21229 int rs = newval & 0xf;
21230 int subtract = !!(newval & 0x8000);
21231
21232 /* Check for HI regs, only very restricted cases allowed:
21233 Adjusting SP, and using PC or SP to get an address. */
21234 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21235 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21236 as_bad_where (fixP->fx_file, fixP->fx_line,
21237 _("invalid Hi register with immediate"));
21238
21239 /* If value is negative, choose the opposite instruction. */
21240 if (value < 0)
21241 {
21242 value = -value;
21243 subtract = !subtract;
21244 if (value < 0)
21245 as_bad_where (fixP->fx_file, fixP->fx_line,
21246 _("immediate value out of range"));
21247 }
21248
21249 if (rd == REG_SP)
21250 {
21251 if (value & ~0x1fc)
21252 as_bad_where (fixP->fx_file, fixP->fx_line,
21253 _("invalid immediate for stack address calculation"));
21254 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21255 newval |= value >> 2;
21256 }
21257 else if (rs == REG_PC || rs == REG_SP)
21258 {
21259 if (subtract || value & ~0x3fc)
21260 as_bad_where (fixP->fx_file, fixP->fx_line,
21261 _("invalid immediate for address calculation (value = 0x%08lX)"),
21262 (unsigned long) value);
21263 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21264 newval |= rd << 8;
21265 newval |= value >> 2;
21266 }
21267 else if (rs == rd)
21268 {
21269 if (value & ~0xff)
21270 as_bad_where (fixP->fx_file, fixP->fx_line,
21271 _("immediate value out of range"));
21272 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21273 newval |= (rd << 8) | value;
21274 }
21275 else
21276 {
21277 if (value & ~0x7)
21278 as_bad_where (fixP->fx_file, fixP->fx_line,
21279 _("immediate value out of range"));
21280 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21281 newval |= rd | (rs << 3) | (value << 6);
21282 }
21283 }
21284 md_number_to_chars (buf, newval, THUMB_SIZE);
21285 break;
21286
21287 case BFD_RELOC_ARM_THUMB_IMM:
21288 newval = md_chars_to_number (buf, THUMB_SIZE);
21289 if (value < 0 || value > 255)
21290 as_bad_where (fixP->fx_file, fixP->fx_line,
21291 _("invalid immediate: %ld is out of range"),
21292 (long) value);
21293 newval |= value;
21294 md_number_to_chars (buf, newval, THUMB_SIZE);
21295 break;
21296
21297 case BFD_RELOC_ARM_THUMB_SHIFT:
21298 /* 5bit shift value (0..32). LSL cannot take 32. */
21299 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21300 temp = newval & 0xf800;
21301 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21302 as_bad_where (fixP->fx_file, fixP->fx_line,
21303 _("invalid shift value: %ld"), (long) value);
21304 /* Shifts of zero must be encoded as LSL. */
21305 if (value == 0)
21306 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21307 /* Shifts of 32 are encoded as zero. */
21308 else if (value == 32)
21309 value = 0;
21310 newval |= value << 6;
21311 md_number_to_chars (buf, newval, THUMB_SIZE);
21312 break;
21313
21314 case BFD_RELOC_VTABLE_INHERIT:
21315 case BFD_RELOC_VTABLE_ENTRY:
21316 fixP->fx_done = 0;
21317 return;
21318
21319 case BFD_RELOC_ARM_MOVW:
21320 case BFD_RELOC_ARM_MOVT:
21321 case BFD_RELOC_ARM_THUMB_MOVW:
21322 case BFD_RELOC_ARM_THUMB_MOVT:
21323 if (fixP->fx_done || !seg->use_rela_p)
21324 {
21325 /* REL format relocations are limited to a 16-bit addend. */
21326 if (!fixP->fx_done)
21327 {
21328 if (value < -0x8000 || value > 0x7fff)
21329 as_bad_where (fixP->fx_file, fixP->fx_line,
21330 _("offset out of range"));
21331 }
21332 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21333 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21334 {
21335 value >>= 16;
21336 }
21337
21338 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21339 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21340 {
21341 newval = get_thumb32_insn (buf);
21342 newval &= 0xfbf08f00;
21343 newval |= (value & 0xf000) << 4;
21344 newval |= (value & 0x0800) << 15;
21345 newval |= (value & 0x0700) << 4;
21346 newval |= (value & 0x00ff);
21347 put_thumb32_insn (buf, newval);
21348 }
21349 else
21350 {
21351 newval = md_chars_to_number (buf, 4);
21352 newval &= 0xfff0f000;
21353 newval |= value & 0x0fff;
21354 newval |= (value & 0xf000) << 4;
21355 md_number_to_chars (buf, newval, 4);
21356 }
21357 }
21358 return;
21359
21360 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21361 case BFD_RELOC_ARM_ALU_PC_G0:
21362 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21363 case BFD_RELOC_ARM_ALU_PC_G1:
21364 case BFD_RELOC_ARM_ALU_PC_G2:
21365 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21366 case BFD_RELOC_ARM_ALU_SB_G0:
21367 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21368 case BFD_RELOC_ARM_ALU_SB_G1:
21369 case BFD_RELOC_ARM_ALU_SB_G2:
21370 gas_assert (!fixP->fx_done);
21371 if (!seg->use_rela_p)
21372 {
21373 bfd_vma insn;
21374 bfd_vma encoded_addend;
21375 bfd_vma addend_abs = abs (value);
21376
21377 /* Check that the absolute value of the addend can be
21378 expressed as an 8-bit constant plus a rotation. */
21379 encoded_addend = encode_arm_immediate (addend_abs);
21380 if (encoded_addend == (unsigned int) FAIL)
21381 as_bad_where (fixP->fx_file, fixP->fx_line,
21382 _("the offset 0x%08lX is not representable"),
21383 (unsigned long) addend_abs);
21384
21385 /* Extract the instruction. */
21386 insn = md_chars_to_number (buf, INSN_SIZE);
21387
21388 /* If the addend is positive, use an ADD instruction.
21389 Otherwise use a SUB. Take care not to destroy the S bit. */
21390 insn &= 0xff1fffff;
21391 if (value < 0)
21392 insn |= 1 << 22;
21393 else
21394 insn |= 1 << 23;
21395
21396 /* Place the encoded addend into the first 12 bits of the
21397 instruction. */
21398 insn &= 0xfffff000;
21399 insn |= encoded_addend;
21400
21401 /* Update the instruction. */
21402 md_number_to_chars (buf, insn, INSN_SIZE);
21403 }
21404 break;
21405
21406 case BFD_RELOC_ARM_LDR_PC_G0:
21407 case BFD_RELOC_ARM_LDR_PC_G1:
21408 case BFD_RELOC_ARM_LDR_PC_G2:
21409 case BFD_RELOC_ARM_LDR_SB_G0:
21410 case BFD_RELOC_ARM_LDR_SB_G1:
21411 case BFD_RELOC_ARM_LDR_SB_G2:
21412 gas_assert (!fixP->fx_done);
21413 if (!seg->use_rela_p)
21414 {
21415 bfd_vma insn;
21416 bfd_vma addend_abs = abs (value);
21417
21418 /* Check that the absolute value of the addend can be
21419 encoded in 12 bits. */
21420 if (addend_abs >= 0x1000)
21421 as_bad_where (fixP->fx_file, fixP->fx_line,
21422 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21423 (unsigned long) addend_abs);
21424
21425 /* Extract the instruction. */
21426 insn = md_chars_to_number (buf, INSN_SIZE);
21427
21428 /* If the addend is negative, clear bit 23 of the instruction.
21429 Otherwise set it. */
21430 if (value < 0)
21431 insn &= ~(1 << 23);
21432 else
21433 insn |= 1 << 23;
21434
21435 /* Place the absolute value of the addend into the first 12 bits
21436 of the instruction. */
21437 insn &= 0xfffff000;
21438 insn |= addend_abs;
21439
21440 /* Update the instruction. */
21441 md_number_to_chars (buf, insn, INSN_SIZE);
21442 }
21443 break;
21444
21445 case BFD_RELOC_ARM_LDRS_PC_G0:
21446 case BFD_RELOC_ARM_LDRS_PC_G1:
21447 case BFD_RELOC_ARM_LDRS_PC_G2:
21448 case BFD_RELOC_ARM_LDRS_SB_G0:
21449 case BFD_RELOC_ARM_LDRS_SB_G1:
21450 case BFD_RELOC_ARM_LDRS_SB_G2:
21451 gas_assert (!fixP->fx_done);
21452 if (!seg->use_rela_p)
21453 {
21454 bfd_vma insn;
21455 bfd_vma addend_abs = abs (value);
21456
21457 /* Check that the absolute value of the addend can be
21458 encoded in 8 bits. */
21459 if (addend_abs >= 0x100)
21460 as_bad_where (fixP->fx_file, fixP->fx_line,
21461 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21462 (unsigned long) addend_abs);
21463
21464 /* Extract the instruction. */
21465 insn = md_chars_to_number (buf, INSN_SIZE);
21466
21467 /* If the addend is negative, clear bit 23 of the instruction.
21468 Otherwise set it. */
21469 if (value < 0)
21470 insn &= ~(1 << 23);
21471 else
21472 insn |= 1 << 23;
21473
21474 /* Place the first four bits of the absolute value of the addend
21475 into the first 4 bits of the instruction, and the remaining
21476 four into bits 8 .. 11. */
21477 insn &= 0xfffff0f0;
21478 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21479
21480 /* Update the instruction. */
21481 md_number_to_chars (buf, insn, INSN_SIZE);
21482 }
21483 break;
21484
21485 case BFD_RELOC_ARM_LDC_PC_G0:
21486 case BFD_RELOC_ARM_LDC_PC_G1:
21487 case BFD_RELOC_ARM_LDC_PC_G2:
21488 case BFD_RELOC_ARM_LDC_SB_G0:
21489 case BFD_RELOC_ARM_LDC_SB_G1:
21490 case BFD_RELOC_ARM_LDC_SB_G2:
21491 gas_assert (!fixP->fx_done);
21492 if (!seg->use_rela_p)
21493 {
21494 bfd_vma insn;
21495 bfd_vma addend_abs = abs (value);
21496
21497 /* Check that the absolute value of the addend is a multiple of
21498 four and, when divided by four, fits in 8 bits. */
21499 if (addend_abs & 0x3)
21500 as_bad_where (fixP->fx_file, fixP->fx_line,
21501 _("bad offset 0x%08lX (must be word-aligned)"),
21502 (unsigned long) addend_abs);
21503
21504 if ((addend_abs >> 2) > 0xff)
21505 as_bad_where (fixP->fx_file, fixP->fx_line,
21506 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
21507 (unsigned long) addend_abs);
21508
21509 /* Extract the instruction. */
21510 insn = md_chars_to_number (buf, INSN_SIZE);
21511
21512 /* If the addend is negative, clear bit 23 of the instruction.
21513 Otherwise set it. */
21514 if (value < 0)
21515 insn &= ~(1 << 23);
21516 else
21517 insn |= 1 << 23;
21518
21519 /* Place the addend (divided by four) into the first eight
21520 bits of the instruction. */
21521 insn &= 0xfffffff0;
21522 insn |= addend_abs >> 2;
21523
21524 /* Update the instruction. */
21525 md_number_to_chars (buf, insn, INSN_SIZE);
21526 }
21527 break;
21528
21529 case BFD_RELOC_ARM_V4BX:
21530 /* This will need to go in the object file. */
21531 fixP->fx_done = 0;
21532 break;
21533
21534 case BFD_RELOC_UNUSED:
21535 default:
21536 as_bad_where (fixP->fx_file, fixP->fx_line,
21537 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
21538 }
21539 }
21540
21541 /* Translate internal representation of relocation info to BFD target
21542 format. */
21543
21544 arelent *
21545 tc_gen_reloc (asection *section, fixS *fixp)
21546 {
21547 arelent * reloc;
21548 bfd_reloc_code_real_type code;
21549
21550 reloc = (arelent *) xmalloc (sizeof (arelent));
21551
21552 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
21553 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
21554 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
21555
21556 if (fixp->fx_pcrel)
21557 {
21558 if (section->use_rela_p)
21559 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
21560 else
21561 fixp->fx_offset = reloc->address;
21562 }
21563 reloc->addend = fixp->fx_offset;
21564
21565 switch (fixp->fx_r_type)
21566 {
21567 case BFD_RELOC_8:
21568 if (fixp->fx_pcrel)
21569 {
21570 code = BFD_RELOC_8_PCREL;
21571 break;
21572 }
21573
21574 case BFD_RELOC_16:
21575 if (fixp->fx_pcrel)
21576 {
21577 code = BFD_RELOC_16_PCREL;
21578 break;
21579 }
21580
21581 case BFD_RELOC_32:
21582 if (fixp->fx_pcrel)
21583 {
21584 code = BFD_RELOC_32_PCREL;
21585 break;
21586 }
21587
21588 case BFD_RELOC_ARM_MOVW:
21589 if (fixp->fx_pcrel)
21590 {
21591 code = BFD_RELOC_ARM_MOVW_PCREL;
21592 break;
21593 }
21594
21595 case BFD_RELOC_ARM_MOVT:
21596 if (fixp->fx_pcrel)
21597 {
21598 code = BFD_RELOC_ARM_MOVT_PCREL;
21599 break;
21600 }
21601
21602 case BFD_RELOC_ARM_THUMB_MOVW:
21603 if (fixp->fx_pcrel)
21604 {
21605 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21606 break;
21607 }
21608
21609 case BFD_RELOC_ARM_THUMB_MOVT:
21610 if (fixp->fx_pcrel)
21611 {
21612 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21613 break;
21614 }
21615
21616 case BFD_RELOC_NONE:
21617 case BFD_RELOC_ARM_PCREL_BRANCH:
21618 case BFD_RELOC_ARM_PCREL_BLX:
21619 case BFD_RELOC_RVA:
21620 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21621 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21622 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21623 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21624 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21625 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21626 case BFD_RELOC_VTABLE_ENTRY:
21627 case BFD_RELOC_VTABLE_INHERIT:
21628 #ifdef TE_PE
21629 case BFD_RELOC_32_SECREL:
21630 #endif
21631 code = fixp->fx_r_type;
21632 break;
21633
21634 case BFD_RELOC_THUMB_PCREL_BLX:
21635 #ifdef OBJ_ELF
21636 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21637 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21638 else
21639 #endif
21640 code = BFD_RELOC_THUMB_PCREL_BLX;
21641 break;
21642
21643 case BFD_RELOC_ARM_LITERAL:
21644 case BFD_RELOC_ARM_HWLITERAL:
21645 /* If this is called then the a literal has
21646 been referenced across a section boundary. */
21647 as_bad_where (fixp->fx_file, fixp->fx_line,
21648 _("literal referenced across section boundary"));
21649 return NULL;
21650
21651 #ifdef OBJ_ELF
21652 case BFD_RELOC_ARM_TLS_CALL:
21653 case BFD_RELOC_ARM_THM_TLS_CALL:
21654 case BFD_RELOC_ARM_TLS_DESCSEQ:
21655 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21656 case BFD_RELOC_ARM_GOT32:
21657 case BFD_RELOC_ARM_GOTOFF:
21658 case BFD_RELOC_ARM_GOT_PREL:
21659 case BFD_RELOC_ARM_PLT32:
21660 case BFD_RELOC_ARM_TARGET1:
21661 case BFD_RELOC_ARM_ROSEGREL32:
21662 case BFD_RELOC_ARM_SBREL32:
21663 case BFD_RELOC_ARM_PREL31:
21664 case BFD_RELOC_ARM_TARGET2:
21665 case BFD_RELOC_ARM_TLS_LE32:
21666 case BFD_RELOC_ARM_TLS_LDO32:
21667 case BFD_RELOC_ARM_PCREL_CALL:
21668 case BFD_RELOC_ARM_PCREL_JUMP:
21669 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21670 case BFD_RELOC_ARM_ALU_PC_G0:
21671 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21672 case BFD_RELOC_ARM_ALU_PC_G1:
21673 case BFD_RELOC_ARM_ALU_PC_G2:
21674 case BFD_RELOC_ARM_LDR_PC_G0:
21675 case BFD_RELOC_ARM_LDR_PC_G1:
21676 case BFD_RELOC_ARM_LDR_PC_G2:
21677 case BFD_RELOC_ARM_LDRS_PC_G0:
21678 case BFD_RELOC_ARM_LDRS_PC_G1:
21679 case BFD_RELOC_ARM_LDRS_PC_G2:
21680 case BFD_RELOC_ARM_LDC_PC_G0:
21681 case BFD_RELOC_ARM_LDC_PC_G1:
21682 case BFD_RELOC_ARM_LDC_PC_G2:
21683 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21684 case BFD_RELOC_ARM_ALU_SB_G0:
21685 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21686 case BFD_RELOC_ARM_ALU_SB_G1:
21687 case BFD_RELOC_ARM_ALU_SB_G2:
21688 case BFD_RELOC_ARM_LDR_SB_G0:
21689 case BFD_RELOC_ARM_LDR_SB_G1:
21690 case BFD_RELOC_ARM_LDR_SB_G2:
21691 case BFD_RELOC_ARM_LDRS_SB_G0:
21692 case BFD_RELOC_ARM_LDRS_SB_G1:
21693 case BFD_RELOC_ARM_LDRS_SB_G2:
21694 case BFD_RELOC_ARM_LDC_SB_G0:
21695 case BFD_RELOC_ARM_LDC_SB_G1:
21696 case BFD_RELOC_ARM_LDC_SB_G2:
21697 case BFD_RELOC_ARM_V4BX:
21698 code = fixp->fx_r_type;
21699 break;
21700
21701 case BFD_RELOC_ARM_TLS_GOTDESC:
21702 case BFD_RELOC_ARM_TLS_GD32:
21703 case BFD_RELOC_ARM_TLS_IE32:
21704 case BFD_RELOC_ARM_TLS_LDM32:
21705 /* BFD will include the symbol's address in the addend.
21706 But we don't want that, so subtract it out again here. */
21707 if (!S_IS_COMMON (fixp->fx_addsy))
21708 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21709 code = fixp->fx_r_type;
21710 break;
21711 #endif
21712
21713 case BFD_RELOC_ARM_IMMEDIATE:
21714 as_bad_where (fixp->fx_file, fixp->fx_line,
21715 _("internal relocation (type: IMMEDIATE) not fixed up"));
21716 return NULL;
21717
21718 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21719 as_bad_where (fixp->fx_file, fixp->fx_line,
21720 _("ADRL used for a symbol not defined in the same file"));
21721 return NULL;
21722
21723 case BFD_RELOC_ARM_OFFSET_IMM:
21724 if (section->use_rela_p)
21725 {
21726 code = fixp->fx_r_type;
21727 break;
21728 }
21729
21730 if (fixp->fx_addsy != NULL
21731 && !S_IS_DEFINED (fixp->fx_addsy)
21732 && S_IS_LOCAL (fixp->fx_addsy))
21733 {
21734 as_bad_where (fixp->fx_file, fixp->fx_line,
21735 _("undefined local label `%s'"),
21736 S_GET_NAME (fixp->fx_addsy));
21737 return NULL;
21738 }
21739
21740 as_bad_where (fixp->fx_file, fixp->fx_line,
21741 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21742 return NULL;
21743
21744 default:
21745 {
21746 char * type;
21747
21748 switch (fixp->fx_r_type)
21749 {
21750 case BFD_RELOC_NONE: type = "NONE"; break;
21751 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21752 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21753 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21754 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21755 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21756 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21757 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
21758 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21759 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21760 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21761 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21762 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21763 default: type = _("<unknown>"); break;
21764 }
21765 as_bad_where (fixp->fx_file, fixp->fx_line,
21766 _("cannot represent %s relocation in this object file format"),
21767 type);
21768 return NULL;
21769 }
21770 }
21771
21772 #ifdef OBJ_ELF
21773 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21774 && GOT_symbol
21775 && fixp->fx_addsy == GOT_symbol)
21776 {
21777 code = BFD_RELOC_ARM_GOTPC;
21778 reloc->addend = fixp->fx_offset = reloc->address;
21779 }
21780 #endif
21781
21782 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21783
21784 if (reloc->howto == NULL)
21785 {
21786 as_bad_where (fixp->fx_file, fixp->fx_line,
21787 _("cannot represent %s relocation in this object file format"),
21788 bfd_get_reloc_code_name (code));
21789 return NULL;
21790 }
21791
21792 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21793 vtable entry to be used in the relocation's section offset. */
21794 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21795 reloc->address = fixp->fx_offset;
21796
21797 return reloc;
21798 }
21799
21800 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21801
21802 void
21803 cons_fix_new_arm (fragS * frag,
21804 int where,
21805 int size,
21806 expressionS * exp)
21807 {
21808 bfd_reloc_code_real_type type;
21809 int pcrel = 0;
21810
21811 /* Pick a reloc.
21812 FIXME: @@ Should look at CPU word size. */
21813 switch (size)
21814 {
21815 case 1:
21816 type = BFD_RELOC_8;
21817 break;
21818 case 2:
21819 type = BFD_RELOC_16;
21820 break;
21821 case 4:
21822 default:
21823 type = BFD_RELOC_32;
21824 break;
21825 case 8:
21826 type = BFD_RELOC_64;
21827 break;
21828 }
21829
21830 #ifdef TE_PE
21831 if (exp->X_op == O_secrel)
21832 {
21833 exp->X_op = O_symbol;
21834 type = BFD_RELOC_32_SECREL;
21835 }
21836 #endif
21837
21838 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21839 }
21840
21841 #if defined (OBJ_COFF)
21842 void
21843 arm_validate_fix (fixS * fixP)
21844 {
21845 /* If the destination of the branch is a defined symbol which does not have
21846 the THUMB_FUNC attribute, then we must be calling a function which has
21847 the (interfacearm) attribute. We look for the Thumb entry point to that
21848 function and change the branch to refer to that function instead. */
21849 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21850 && fixP->fx_addsy != NULL
21851 && S_IS_DEFINED (fixP->fx_addsy)
21852 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21853 {
21854 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21855 }
21856 }
21857 #endif
21858
21859
21860 int
21861 arm_force_relocation (struct fix * fixp)
21862 {
21863 #if defined (OBJ_COFF) && defined (TE_PE)
21864 if (fixp->fx_r_type == BFD_RELOC_RVA)
21865 return 1;
21866 #endif
21867
21868 /* In case we have a call or a branch to a function in ARM ISA mode from
21869 a thumb function or vice-versa force the relocation. These relocations
21870 are cleared off for some cores that might have blx and simple transformations
21871 are possible. */
21872
21873 #ifdef OBJ_ELF
21874 switch (fixp->fx_r_type)
21875 {
21876 case BFD_RELOC_ARM_PCREL_JUMP:
21877 case BFD_RELOC_ARM_PCREL_CALL:
21878 case BFD_RELOC_THUMB_PCREL_BLX:
21879 if (THUMB_IS_FUNC (fixp->fx_addsy))
21880 return 1;
21881 break;
21882
21883 case BFD_RELOC_ARM_PCREL_BLX:
21884 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21885 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21886 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21887 if (ARM_IS_FUNC (fixp->fx_addsy))
21888 return 1;
21889 break;
21890
21891 default:
21892 break;
21893 }
21894 #endif
21895
21896 /* Resolve these relocations even if the symbol is extern or weak. */
21897 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21898 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21899 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21900 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21901 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21902 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21903 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21904 return 0;
21905
21906 /* Always leave these relocations for the linker. */
21907 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21908 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21909 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21910 return 1;
21911
21912 /* Always generate relocations against function symbols. */
21913 if (fixp->fx_r_type == BFD_RELOC_32
21914 && fixp->fx_addsy
21915 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21916 return 1;
21917
21918 return generic_force_reloc (fixp);
21919 }
21920
21921 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21922 /* Relocations against function names must be left unadjusted,
21923 so that the linker can use this information to generate interworking
21924 stubs. The MIPS version of this function
21925 also prevents relocations that are mips-16 specific, but I do not
21926 know why it does this.
21927
21928 FIXME:
21929 There is one other problem that ought to be addressed here, but
21930 which currently is not: Taking the address of a label (rather
21931 than a function) and then later jumping to that address. Such
21932 addresses also ought to have their bottom bit set (assuming that
21933 they reside in Thumb code), but at the moment they will not. */
21934
21935 bfd_boolean
21936 arm_fix_adjustable (fixS * fixP)
21937 {
21938 if (fixP->fx_addsy == NULL)
21939 return 1;
21940
21941 /* Preserve relocations against symbols with function type. */
21942 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21943 return FALSE;
21944
21945 if (THUMB_IS_FUNC (fixP->fx_addsy)
21946 && fixP->fx_subsy == NULL)
21947 return FALSE;
21948
21949 /* We need the symbol name for the VTABLE entries. */
21950 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21951 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21952 return FALSE;
21953
21954 /* Don't allow symbols to be discarded on GOT related relocs. */
21955 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21956 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21957 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21958 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21959 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21960 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21961 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21962 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21963 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
21964 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
21965 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
21966 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
21967 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
21968 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21969 return FALSE;
21970
21971 /* Similarly for group relocations. */
21972 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21973 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21974 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21975 return FALSE;
21976
21977 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21978 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21979 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21980 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21981 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21982 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21983 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21984 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21985 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21986 return FALSE;
21987
21988 return TRUE;
21989 }
21990 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21991
21992 #ifdef OBJ_ELF
21993
21994 const char *
21995 elf32_arm_target_format (void)
21996 {
21997 #ifdef TE_SYMBIAN
21998 return (target_big_endian
21999 ? "elf32-bigarm-symbian"
22000 : "elf32-littlearm-symbian");
22001 #elif defined (TE_VXWORKS)
22002 return (target_big_endian
22003 ? "elf32-bigarm-vxworks"
22004 : "elf32-littlearm-vxworks");
22005 #else
22006 if (target_big_endian)
22007 return "elf32-bigarm";
22008 else
22009 return "elf32-littlearm";
22010 #endif
22011 }
22012
22013 void
22014 armelf_frob_symbol (symbolS * symp,
22015 int * puntp)
22016 {
22017 elf_frob_symbol (symp, puntp);
22018 }
22019 #endif
22020
22021 /* MD interface: Finalization. */
22022
22023 void
22024 arm_cleanup (void)
22025 {
22026 literal_pool * pool;
22027
22028 /* Ensure that all the IT blocks are properly closed. */
22029 check_it_blocks_finished ();
22030
22031 for (pool = list_of_pools; pool; pool = pool->next)
22032 {
22033 /* Put it at the end of the relevant section. */
22034 subseg_set (pool->section, pool->sub_section);
22035 #ifdef OBJ_ELF
22036 arm_elf_change_section ();
22037 #endif
22038 s_ltorg (0);
22039 }
22040 }
22041
22042 #ifdef OBJ_ELF
22043 /* Remove any excess mapping symbols generated for alignment frags in
22044 SEC. We may have created a mapping symbol before a zero byte
22045 alignment; remove it if there's a mapping symbol after the
22046 alignment. */
22047 static void
22048 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22049 void *dummy ATTRIBUTE_UNUSED)
22050 {
22051 segment_info_type *seginfo = seg_info (sec);
22052 fragS *fragp;
22053
22054 if (seginfo == NULL || seginfo->frchainP == NULL)
22055 return;
22056
22057 for (fragp = seginfo->frchainP->frch_root;
22058 fragp != NULL;
22059 fragp = fragp->fr_next)
22060 {
22061 symbolS *sym = fragp->tc_frag_data.last_map;
22062 fragS *next = fragp->fr_next;
22063
22064 /* Variable-sized frags have been converted to fixed size by
22065 this point. But if this was variable-sized to start with,
22066 there will be a fixed-size frag after it. So don't handle
22067 next == NULL. */
22068 if (sym == NULL || next == NULL)
22069 continue;
22070
22071 if (S_GET_VALUE (sym) < next->fr_address)
22072 /* Not at the end of this frag. */
22073 continue;
22074 know (S_GET_VALUE (sym) == next->fr_address);
22075
22076 do
22077 {
22078 if (next->tc_frag_data.first_map != NULL)
22079 {
22080 /* Next frag starts with a mapping symbol. Discard this
22081 one. */
22082 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22083 break;
22084 }
22085
22086 if (next->fr_next == NULL)
22087 {
22088 /* This mapping symbol is at the end of the section. Discard
22089 it. */
22090 know (next->fr_fix == 0 && next->fr_var == 0);
22091 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22092 break;
22093 }
22094
22095 /* As long as we have empty frags without any mapping symbols,
22096 keep looking. */
22097 /* If the next frag is non-empty and does not start with a
22098 mapping symbol, then this mapping symbol is required. */
22099 if (next->fr_address != next->fr_next->fr_address)
22100 break;
22101
22102 next = next->fr_next;
22103 }
22104 while (next != NULL);
22105 }
22106 }
22107 #endif
22108
22109 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22110 ARM ones. */
22111
22112 void
22113 arm_adjust_symtab (void)
22114 {
22115 #ifdef OBJ_COFF
22116 symbolS * sym;
22117
22118 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22119 {
22120 if (ARM_IS_THUMB (sym))
22121 {
22122 if (THUMB_IS_FUNC (sym))
22123 {
22124 /* Mark the symbol as a Thumb function. */
22125 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22126 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22127 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22128
22129 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22130 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22131 else
22132 as_bad (_("%s: unexpected function type: %d"),
22133 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22134 }
22135 else switch (S_GET_STORAGE_CLASS (sym))
22136 {
22137 case C_EXT:
22138 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22139 break;
22140 case C_STAT:
22141 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22142 break;
22143 case C_LABEL:
22144 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22145 break;
22146 default:
22147 /* Do nothing. */
22148 break;
22149 }
22150 }
22151
22152 if (ARM_IS_INTERWORK (sym))
22153 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22154 }
22155 #endif
22156 #ifdef OBJ_ELF
22157 symbolS * sym;
22158 char bind;
22159
22160 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22161 {
22162 if (ARM_IS_THUMB (sym))
22163 {
22164 elf_symbol_type * elf_sym;
22165
22166 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22167 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22168
22169 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22170 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22171 {
22172 /* If it's a .thumb_func, declare it as so,
22173 otherwise tag label as .code 16. */
22174 if (THUMB_IS_FUNC (sym))
22175 elf_sym->internal_elf_sym.st_target_internal
22176 = ST_BRANCH_TO_THUMB;
22177 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22178 elf_sym->internal_elf_sym.st_info =
22179 ELF_ST_INFO (bind, STT_ARM_16BIT);
22180 }
22181 }
22182 }
22183
22184 /* Remove any overlapping mapping symbols generated by alignment frags. */
22185 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22186 /* Now do generic ELF adjustments. */
22187 elf_adjust_symtab ();
22188 #endif
22189 }
22190
22191 /* MD interface: Initialization. */
22192
22193 static void
22194 set_constant_flonums (void)
22195 {
22196 int i;
22197
22198 for (i = 0; i < NUM_FLOAT_VALS; i++)
22199 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22200 abort ();
22201 }
22202
22203 /* Auto-select Thumb mode if it's the only available instruction set for the
22204 given architecture. */
22205
22206 static void
22207 autoselect_thumb_from_cpu_variant (void)
22208 {
22209 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22210 opcode_select (16);
22211 }
22212
22213 void
22214 md_begin (void)
22215 {
22216 unsigned mach;
22217 unsigned int i;
22218
22219 if ( (arm_ops_hsh = hash_new ()) == NULL
22220 || (arm_cond_hsh = hash_new ()) == NULL
22221 || (arm_shift_hsh = hash_new ()) == NULL
22222 || (arm_psr_hsh = hash_new ()) == NULL
22223 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22224 || (arm_reg_hsh = hash_new ()) == NULL
22225 || (arm_reloc_hsh = hash_new ()) == NULL
22226 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22227 as_fatal (_("virtual memory exhausted"));
22228
22229 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22230 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22231 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22232 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22233 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22234 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22235 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22236 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22237 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22238 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22239 (void *) (v7m_psrs + i));
22240 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22241 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22242 for (i = 0;
22243 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22244 i++)
22245 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22246 (void *) (barrier_opt_names + i));
22247 #ifdef OBJ_ELF
22248 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
22249 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
22250 #endif
22251
22252 set_constant_flonums ();
22253
22254 /* Set the cpu variant based on the command-line options. We prefer
22255 -mcpu= over -march= if both are set (as for GCC); and we prefer
22256 -mfpu= over any other way of setting the floating point unit.
22257 Use of legacy options with new options are faulted. */
22258 if (legacy_cpu)
22259 {
22260 if (mcpu_cpu_opt || march_cpu_opt)
22261 as_bad (_("use of old and new-style options to set CPU type"));
22262
22263 mcpu_cpu_opt = legacy_cpu;
22264 }
22265 else if (!mcpu_cpu_opt)
22266 mcpu_cpu_opt = march_cpu_opt;
22267
22268 if (legacy_fpu)
22269 {
22270 if (mfpu_opt)
22271 as_bad (_("use of old and new-style options to set FPU type"));
22272
22273 mfpu_opt = legacy_fpu;
22274 }
22275 else if (!mfpu_opt)
22276 {
22277 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22278 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22279 /* Some environments specify a default FPU. If they don't, infer it
22280 from the processor. */
22281 if (mcpu_fpu_opt)
22282 mfpu_opt = mcpu_fpu_opt;
22283 else
22284 mfpu_opt = march_fpu_opt;
22285 #else
22286 mfpu_opt = &fpu_default;
22287 #endif
22288 }
22289
22290 if (!mfpu_opt)
22291 {
22292 if (mcpu_cpu_opt != NULL)
22293 mfpu_opt = &fpu_default;
22294 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22295 mfpu_opt = &fpu_arch_vfp_v2;
22296 else
22297 mfpu_opt = &fpu_arch_fpa;
22298 }
22299
22300 #ifdef CPU_DEFAULT
22301 if (!mcpu_cpu_opt)
22302 {
22303 mcpu_cpu_opt = &cpu_default;
22304 selected_cpu = cpu_default;
22305 }
22306 #else
22307 if (mcpu_cpu_opt)
22308 selected_cpu = *mcpu_cpu_opt;
22309 else
22310 mcpu_cpu_opt = &arm_arch_any;
22311 #endif
22312
22313 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22314
22315 autoselect_thumb_from_cpu_variant ();
22316
22317 arm_arch_used = thumb_arch_used = arm_arch_none;
22318
22319 #if defined OBJ_COFF || defined OBJ_ELF
22320 {
22321 unsigned int flags = 0;
22322
22323 #if defined OBJ_ELF
22324 flags = meabi_flags;
22325
22326 switch (meabi_flags)
22327 {
22328 case EF_ARM_EABI_UNKNOWN:
22329 #endif
22330 /* Set the flags in the private structure. */
22331 if (uses_apcs_26) flags |= F_APCS26;
22332 if (support_interwork) flags |= F_INTERWORK;
22333 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22334 if (pic_code) flags |= F_PIC;
22335 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22336 flags |= F_SOFT_FLOAT;
22337
22338 switch (mfloat_abi_opt)
22339 {
22340 case ARM_FLOAT_ABI_SOFT:
22341 case ARM_FLOAT_ABI_SOFTFP:
22342 flags |= F_SOFT_FLOAT;
22343 break;
22344
22345 case ARM_FLOAT_ABI_HARD:
22346 if (flags & F_SOFT_FLOAT)
22347 as_bad (_("hard-float conflicts with specified fpu"));
22348 break;
22349 }
22350
22351 /* Using pure-endian doubles (even if soft-float). */
22352 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22353 flags |= F_VFP_FLOAT;
22354
22355 #if defined OBJ_ELF
22356 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22357 flags |= EF_ARM_MAVERICK_FLOAT;
22358 break;
22359
22360 case EF_ARM_EABI_VER4:
22361 case EF_ARM_EABI_VER5:
22362 /* No additional flags to set. */
22363 break;
22364
22365 default:
22366 abort ();
22367 }
22368 #endif
22369 bfd_set_private_flags (stdoutput, flags);
22370
22371 /* We have run out flags in the COFF header to encode the
22372 status of ATPCS support, so instead we create a dummy,
22373 empty, debug section called .arm.atpcs. */
22374 if (atpcs)
22375 {
22376 asection * sec;
22377
22378 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22379
22380 if (sec != NULL)
22381 {
22382 bfd_set_section_flags
22383 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22384 bfd_set_section_size (stdoutput, sec, 0);
22385 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22386 }
22387 }
22388 }
22389 #endif
22390
22391 /* Record the CPU type as well. */
22392 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22393 mach = bfd_mach_arm_iWMMXt2;
22394 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22395 mach = bfd_mach_arm_iWMMXt;
22396 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22397 mach = bfd_mach_arm_XScale;
22398 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22399 mach = bfd_mach_arm_ep9312;
22400 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22401 mach = bfd_mach_arm_5TE;
22402 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22403 {
22404 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22405 mach = bfd_mach_arm_5T;
22406 else
22407 mach = bfd_mach_arm_5;
22408 }
22409 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22410 {
22411 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22412 mach = bfd_mach_arm_4T;
22413 else
22414 mach = bfd_mach_arm_4;
22415 }
22416 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22417 mach = bfd_mach_arm_3M;
22418 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22419 mach = bfd_mach_arm_3;
22420 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22421 mach = bfd_mach_arm_2a;
22422 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22423 mach = bfd_mach_arm_2;
22424 else
22425 mach = bfd_mach_arm_unknown;
22426
22427 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22428 }
22429
22430 /* Command line processing. */
22431
22432 /* md_parse_option
22433 Invocation line includes a switch not recognized by the base assembler.
22434 See if it's a processor-specific option.
22435
22436 This routine is somewhat complicated by the need for backwards
22437 compatibility (since older releases of gcc can't be changed).
22438 The new options try to make the interface as compatible as
22439 possible with GCC.
22440
22441 New options (supported) are:
22442
22443 -mcpu=<cpu name> Assemble for selected processor
22444 -march=<architecture name> Assemble for selected architecture
22445 -mfpu=<fpu architecture> Assemble for selected FPU.
22446 -EB/-mbig-endian Big-endian
22447 -EL/-mlittle-endian Little-endian
22448 -k Generate PIC code
22449 -mthumb Start in Thumb mode
22450 -mthumb-interwork Code supports ARM/Thumb interworking
22451
22452 -m[no-]warn-deprecated Warn about deprecated features
22453
22454 For now we will also provide support for:
22455
22456 -mapcs-32 32-bit Program counter
22457 -mapcs-26 26-bit Program counter
22458 -macps-float Floats passed in FP registers
22459 -mapcs-reentrant Reentrant code
22460 -matpcs
22461 (sometime these will probably be replaced with -mapcs=<list of options>
22462 and -matpcs=<list of options>)
22463
22464 The remaining options are only supported for back-wards compatibility.
22465 Cpu variants, the arm part is optional:
22466 -m[arm]1 Currently not supported.
22467 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22468 -m[arm]3 Arm 3 processor
22469 -m[arm]6[xx], Arm 6 processors
22470 -m[arm]7[xx][t][[d]m] Arm 7 processors
22471 -m[arm]8[10] Arm 8 processors
22472 -m[arm]9[20][tdmi] Arm 9 processors
22473 -mstrongarm[110[0]] StrongARM processors
22474 -mxscale XScale processors
22475 -m[arm]v[2345[t[e]]] Arm architectures
22476 -mall All (except the ARM1)
22477 FP variants:
22478 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
22479 -mfpe-old (No float load/store multiples)
22480 -mvfpxd VFP Single precision
22481 -mvfp All VFP
22482 -mno-fpu Disable all floating point instructions
22483
22484 The following CPU names are recognized:
22485 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
22486 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
22487 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
22488 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
22489 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
22490 arm10t arm10e, arm1020t, arm1020e, arm10200e,
22491 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
22492
22493 */
22494
22495 const char * md_shortopts = "m:k";
22496
22497 #ifdef ARM_BI_ENDIAN
22498 #define OPTION_EB (OPTION_MD_BASE + 0)
22499 #define OPTION_EL (OPTION_MD_BASE + 1)
22500 #else
22501 #if TARGET_BYTES_BIG_ENDIAN
22502 #define OPTION_EB (OPTION_MD_BASE + 0)
22503 #else
22504 #define OPTION_EL (OPTION_MD_BASE + 1)
22505 #endif
22506 #endif
22507 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
22508
22509 struct option md_longopts[] =
22510 {
22511 #ifdef OPTION_EB
22512 {"EB", no_argument, NULL, OPTION_EB},
22513 #endif
22514 #ifdef OPTION_EL
22515 {"EL", no_argument, NULL, OPTION_EL},
22516 #endif
22517 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
22518 {NULL, no_argument, NULL, 0}
22519 };
22520
22521 size_t md_longopts_size = sizeof (md_longopts);
22522
22523 struct arm_option_table
22524 {
22525 char *option; /* Option name to match. */
22526 char *help; /* Help information. */
22527 int *var; /* Variable to change. */
22528 int value; /* What to change it to. */
22529 char *deprecated; /* If non-null, print this message. */
22530 };
22531
22532 struct arm_option_table arm_opts[] =
22533 {
22534 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
22535 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
22536 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
22537 &support_interwork, 1, NULL},
22538 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
22539 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
22540 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
22541 1, NULL},
22542 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
22543 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
22544 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
22545 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
22546 NULL},
22547
22548 /* These are recognized by the assembler, but have no affect on code. */
22549 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
22550 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
22551
22552 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
22553 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
22554 &warn_on_deprecated, 0, NULL},
22555 {NULL, NULL, NULL, 0, NULL}
22556 };
22557
22558 struct arm_legacy_option_table
22559 {
22560 char *option; /* Option name to match. */
22561 const arm_feature_set **var; /* Variable to change. */
22562 const arm_feature_set value; /* What to change it to. */
22563 char *deprecated; /* If non-null, print this message. */
22564 };
22565
22566 const struct arm_legacy_option_table arm_legacy_opts[] =
22567 {
22568 /* DON'T add any new processors to this list -- we want the whole list
22569 to go away... Add them to the processors table instead. */
22570 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22571 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
22572 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22573 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
22574 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22575 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
22576 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22577 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
22578 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22579 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
22580 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22581 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
22582 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22583 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
22584 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22585 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
22586 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22587 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
22588 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22589 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
22590 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22591 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
22592 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22593 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
22594 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22595 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
22596 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22597 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
22598 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22599 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
22600 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22601 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22602 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22603 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22604 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22605 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22606 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22607 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22608 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22609 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22610 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22611 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22612 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22613 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22614 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22615 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22616 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22617 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22618 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22619 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22620 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22621 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22622 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22623 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22624 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22625 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22626 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22627 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22628 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22629 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22630 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22631 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22632 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22633 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22634 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22635 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22636 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22637 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22638 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22639 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22640 N_("use -mcpu=strongarm110")},
22641 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22642 N_("use -mcpu=strongarm1100")},
22643 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22644 N_("use -mcpu=strongarm1110")},
22645 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22646 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22647 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22648
22649 /* Architecture variants -- don't add any more to this list either. */
22650 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22651 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22652 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22653 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22654 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22655 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22656 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22657 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22658 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22659 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22660 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22661 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22662 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22663 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22664 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22665 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22666 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22667 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22668
22669 /* Floating point variants -- don't add any more to this list either. */
22670 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22671 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22672 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22673 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22674 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22675
22676 {NULL, NULL, ARM_ARCH_NONE, NULL}
22677 };
22678
22679 struct arm_cpu_option_table
22680 {
22681 char *name;
22682 const arm_feature_set value;
22683 /* For some CPUs we assume an FPU unless the user explicitly sets
22684 -mfpu=... */
22685 const arm_feature_set default_fpu;
22686 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22687 case. */
22688 const char *canonical_name;
22689 };
22690
22691 /* This list should, at a minimum, contain all the cpu names
22692 recognized by GCC. */
22693 static const struct arm_cpu_option_table arm_cpus[] =
22694 {
22695 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22696 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22697 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22698 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22699 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22700 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22701 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22702 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22703 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22704 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22705 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22706 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22707 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22708 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22709 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22710 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22711 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22712 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22713 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22714 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22715 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22716 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22717 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22718 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22719 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22720 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22721 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22722 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22723 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22724 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22725 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22726 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22727 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22728 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22729 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22730 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22731 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22732 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22733 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22734 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22735 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22736 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22737 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22738 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22739 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22740 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22741 /* For V5 or later processors we default to using VFP; but the user
22742 should really set the FPU type explicitly. */
22743 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22744 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22745 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22746 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22747 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22748 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22749 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22750 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22751 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22752 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22753 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22754 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22755 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22756 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22757 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22758 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22759 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22760 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22761 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22762 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22763 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22764 {"fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22765 {"fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22766 {"fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22767 {"fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22768 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22769 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22770 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22771 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22772 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22773 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"},
22774 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"},
22775 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22776 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22777 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22778 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22779 {"cortex-a5", ARM_ARCH_V7A_MP_SEC,
22780 FPU_NONE, "Cortex-A5"},
22781 {"cortex-a8", ARM_ARCH_V7A_SEC,
22782 ARM_FEATURE (0, FPU_VFP_V3
22783 | FPU_NEON_EXT_V1),
22784 "Cortex-A8"},
22785 {"cortex-a9", ARM_ARCH_V7A_MP_SEC,
22786 ARM_FEATURE (0, FPU_VFP_V3
22787 | FPU_NEON_EXT_V1),
22788 "Cortex-A9"},
22789 {"cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
22790 FPU_ARCH_NEON_VFP_V4,
22791 "Cortex-A15"},
22792 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"},
22793 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
22794 "Cortex-R4F"},
22795 {"cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"},
22796 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"},
22797 {"cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"},
22798 {"cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"},
22799 /* ??? XSCALE is really an architecture. */
22800 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22801 /* ??? iwmmxt is not a processor. */
22802 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22803 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22804 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22805 /* Maverick */
22806 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22807 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22808 };
22809
22810 struct arm_arch_option_table
22811 {
22812 char *name;
22813 const arm_feature_set value;
22814 const arm_feature_set default_fpu;
22815 };
22816
22817 /* This list should, at a minimum, contain all the architecture names
22818 recognized by GCC. */
22819 static const struct arm_arch_option_table arm_archs[] =
22820 {
22821 {"all", ARM_ANY, FPU_ARCH_FPA},
22822 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22823 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22824 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22825 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22826 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22827 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22828 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22829 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22830 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22831 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22832 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22833 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22834 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22835 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22836 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22837 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22838 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22839 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22840 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22841 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22842 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22843 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22844 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22845 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22846 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22847 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22848 {"armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP},
22849 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22850 /* The official spelling of the ARMv7 profile variants is the dashed form.
22851 Accept the non-dashed form for compatibility with old toolchains. */
22852 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22853 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22854 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22855 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22856 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22857 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22858 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22859 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22860 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22861 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22862 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22863 };
22864
22865 /* ISA extensions in the co-processor and main instruction set space. */
22866 struct arm_option_extension_value_table
22867 {
22868 char *name;
22869 const arm_feature_set value;
22870 const arm_feature_set allowed_archs;
22871 };
22872
22873 /* The following table must be in alphabetical order with a NULL last entry.
22874 */
22875 static const struct arm_option_extension_value_table arm_extensions[] =
22876 {
22877 {"idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22878 ARM_FEATURE (ARM_EXT_V7A, 0)},
22879 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY},
22880 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY},
22881 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY},
22882 {"mp", ARM_FEATURE (ARM_EXT_MP, 0),
22883 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)},
22884 {"os", ARM_FEATURE (ARM_EXT_OS, 0),
22885 ARM_FEATURE (ARM_EXT_V6M, 0)},
22886 {"sec", ARM_FEATURE (ARM_EXT_SEC, 0),
22887 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)},
22888 {"virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV | ARM_EXT_DIV, 0),
22889 ARM_FEATURE (ARM_EXT_V7A, 0)},
22890 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY},
22891 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22892 };
22893
22894 /* ISA floating-point and Advanced SIMD extensions. */
22895 struct arm_option_fpu_value_table
22896 {
22897 char *name;
22898 const arm_feature_set value;
22899 };
22900
22901 /* This list should, at a minimum, contain all the fpu names
22902 recognized by GCC. */
22903 static const struct arm_option_fpu_value_table arm_fpus[] =
22904 {
22905 {"softfpa", FPU_NONE},
22906 {"fpe", FPU_ARCH_FPE},
22907 {"fpe2", FPU_ARCH_FPE},
22908 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22909 {"fpa", FPU_ARCH_FPA},
22910 {"fpa10", FPU_ARCH_FPA},
22911 {"fpa11", FPU_ARCH_FPA},
22912 {"arm7500fe", FPU_ARCH_FPA},
22913 {"softvfp", FPU_ARCH_VFP},
22914 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22915 {"vfp", FPU_ARCH_VFP_V2},
22916 {"vfp9", FPU_ARCH_VFP_V2},
22917 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22918 {"vfp10", FPU_ARCH_VFP_V2},
22919 {"vfp10-r0", FPU_ARCH_VFP_V1},
22920 {"vfpxd", FPU_ARCH_VFP_V1xD},
22921 {"vfpv2", FPU_ARCH_VFP_V2},
22922 {"vfpv3", FPU_ARCH_VFP_V3},
22923 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22924 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22925 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22926 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22927 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22928 {"arm1020t", FPU_ARCH_VFP_V1},
22929 {"arm1020e", FPU_ARCH_VFP_V2},
22930 {"arm1136jfs", FPU_ARCH_VFP_V2},
22931 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22932 {"maverick", FPU_ARCH_MAVERICK},
22933 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22934 {"neon-fp16", FPU_ARCH_NEON_FP16},
22935 {"vfpv4", FPU_ARCH_VFP_V4},
22936 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22937 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22938 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22939 {NULL, ARM_ARCH_NONE}
22940 };
22941
22942 struct arm_option_value_table
22943 {
22944 char *name;
22945 long value;
22946 };
22947
22948 static const struct arm_option_value_table arm_float_abis[] =
22949 {
22950 {"hard", ARM_FLOAT_ABI_HARD},
22951 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22952 {"soft", ARM_FLOAT_ABI_SOFT},
22953 {NULL, 0}
22954 };
22955
22956 #ifdef OBJ_ELF
22957 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22958 static const struct arm_option_value_table arm_eabis[] =
22959 {
22960 {"gnu", EF_ARM_EABI_UNKNOWN},
22961 {"4", EF_ARM_EABI_VER4},
22962 {"5", EF_ARM_EABI_VER5},
22963 {NULL, 0}
22964 };
22965 #endif
22966
22967 struct arm_long_option_table
22968 {
22969 char * option; /* Substring to match. */
22970 char * help; /* Help information. */
22971 int (* func) (char * subopt); /* Function to decode sub-option. */
22972 char * deprecated; /* If non-null, print this message. */
22973 };
22974
22975 static bfd_boolean
22976 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22977 {
22978 arm_feature_set *ext_set = (arm_feature_set *)
22979 xmalloc (sizeof (arm_feature_set));
22980
22981 /* We insist on extensions being specified in alphabetical order, and with
22982 extensions being added before being removed. We achieve this by having
22983 the global ARM_EXTENSIONS table in alphabetical order, and using the
22984 ADDING_VALUE variable to indicate whether we are adding an extension (1)
22985 or removing it (0) and only allowing it to change in the order
22986 -1 -> 1 -> 0. */
22987 const struct arm_option_extension_value_table * opt = NULL;
22988 int adding_value = -1;
22989
22990 /* Copy the feature set, so that we can modify it. */
22991 *ext_set = **opt_p;
22992 *opt_p = ext_set;
22993
22994 while (str != NULL && *str != 0)
22995 {
22996 char * ext;
22997 size_t optlen;
22998
22999 if (*str != '+')
23000 {
23001 as_bad (_("invalid architectural extension"));
23002 return FALSE;
23003 }
23004
23005 str++;
23006 ext = strchr (str, '+');
23007
23008 if (ext != NULL)
23009 optlen = ext - str;
23010 else
23011 optlen = strlen (str);
23012
23013 if (optlen >= 2
23014 && strncmp (str, "no", 2) == 0)
23015 {
23016 if (adding_value != 0)
23017 {
23018 adding_value = 0;
23019 opt = arm_extensions;
23020 }
23021
23022 optlen -= 2;
23023 str += 2;
23024 }
23025 else if (optlen > 0)
23026 {
23027 if (adding_value == -1)
23028 {
23029 adding_value = 1;
23030 opt = arm_extensions;
23031 }
23032 else if (adding_value != 1)
23033 {
23034 as_bad (_("must specify extensions to add before specifying "
23035 "those to remove"));
23036 return FALSE;
23037 }
23038 }
23039
23040 if (optlen == 0)
23041 {
23042 as_bad (_("missing architectural extension"));
23043 return FALSE;
23044 }
23045
23046 gas_assert (adding_value != -1);
23047 gas_assert (opt != NULL);
23048
23049 /* Scan over the options table trying to find an exact match. */
23050 for (; opt->name != NULL; opt++)
23051 if (strncmp (opt->name, str, optlen) == 0
23052 && strlen (opt->name) == optlen)
23053 {
23054 /* Check we can apply the extension to this architecture. */
23055 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23056 {
23057 as_bad (_("extension does not apply to the base architecture"));
23058 return FALSE;
23059 }
23060
23061 /* Add or remove the extension. */
23062 if (adding_value)
23063 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23064 else
23065 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23066
23067 break;
23068 }
23069
23070 if (opt->name == NULL)
23071 {
23072 /* Did we fail to find an extension because it wasn't specified in
23073 alphabetical order, or because it does not exist? */
23074
23075 for (opt = arm_extensions; opt->name != NULL; opt++)
23076 if (strncmp (opt->name, str, optlen) == 0)
23077 break;
23078
23079 if (opt->name == NULL)
23080 as_bad (_("unknown architectural extension `%s'"), str);
23081 else
23082 as_bad (_("architectural extensions must be specified in "
23083 "alphabetical order"));
23084
23085 return FALSE;
23086 }
23087 else
23088 {
23089 /* We should skip the extension we've just matched the next time
23090 round. */
23091 opt++;
23092 }
23093
23094 str = ext;
23095 };
23096
23097 return TRUE;
23098 }
23099
23100 static bfd_boolean
23101 arm_parse_cpu (char * str)
23102 {
23103 const struct arm_cpu_option_table * opt;
23104 char * ext = strchr (str, '+');
23105 int optlen;
23106
23107 if (ext != NULL)
23108 optlen = ext - str;
23109 else
23110 optlen = strlen (str);
23111
23112 if (optlen == 0)
23113 {
23114 as_bad (_("missing cpu name `%s'"), str);
23115 return FALSE;
23116 }
23117
23118 for (opt = arm_cpus; opt->name != NULL; opt++)
23119 if (strncmp (opt->name, str, optlen) == 0)
23120 {
23121 mcpu_cpu_opt = &opt->value;
23122 mcpu_fpu_opt = &opt->default_fpu;
23123 if (opt->canonical_name)
23124 strcpy (selected_cpu_name, opt->canonical_name);
23125 else
23126 {
23127 int i;
23128
23129 for (i = 0; i < optlen; i++)
23130 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23131 selected_cpu_name[i] = 0;
23132 }
23133
23134 if (ext != NULL)
23135 return arm_parse_extension (ext, &mcpu_cpu_opt);
23136
23137 return TRUE;
23138 }
23139
23140 as_bad (_("unknown cpu `%s'"), str);
23141 return FALSE;
23142 }
23143
23144 static bfd_boolean
23145 arm_parse_arch (char * str)
23146 {
23147 const struct arm_arch_option_table *opt;
23148 char *ext = strchr (str, '+');
23149 int optlen;
23150
23151 if (ext != NULL)
23152 optlen = ext - str;
23153 else
23154 optlen = strlen (str);
23155
23156 if (optlen == 0)
23157 {
23158 as_bad (_("missing architecture name `%s'"), str);
23159 return FALSE;
23160 }
23161
23162 for (opt = arm_archs; opt->name != NULL; opt++)
23163 if (strncmp (opt->name, str, optlen) == 0)
23164 {
23165 march_cpu_opt = &opt->value;
23166 march_fpu_opt = &opt->default_fpu;
23167 strcpy (selected_cpu_name, opt->name);
23168
23169 if (ext != NULL)
23170 return arm_parse_extension (ext, &march_cpu_opt);
23171
23172 return TRUE;
23173 }
23174
23175 as_bad (_("unknown architecture `%s'\n"), str);
23176 return FALSE;
23177 }
23178
23179 static bfd_boolean
23180 arm_parse_fpu (char * str)
23181 {
23182 const struct arm_option_fpu_value_table * opt;
23183
23184 for (opt = arm_fpus; opt->name != NULL; opt++)
23185 if (streq (opt->name, str))
23186 {
23187 mfpu_opt = &opt->value;
23188 return TRUE;
23189 }
23190
23191 as_bad (_("unknown floating point format `%s'\n"), str);
23192 return FALSE;
23193 }
23194
23195 static bfd_boolean
23196 arm_parse_float_abi (char * str)
23197 {
23198 const struct arm_option_value_table * opt;
23199
23200 for (opt = arm_float_abis; opt->name != NULL; opt++)
23201 if (streq (opt->name, str))
23202 {
23203 mfloat_abi_opt = opt->value;
23204 return TRUE;
23205 }
23206
23207 as_bad (_("unknown floating point abi `%s'\n"), str);
23208 return FALSE;
23209 }
23210
23211 #ifdef OBJ_ELF
23212 static bfd_boolean
23213 arm_parse_eabi (char * str)
23214 {
23215 const struct arm_option_value_table *opt;
23216
23217 for (opt = arm_eabis; opt->name != NULL; opt++)
23218 if (streq (opt->name, str))
23219 {
23220 meabi_flags = opt->value;
23221 return TRUE;
23222 }
23223 as_bad (_("unknown EABI `%s'\n"), str);
23224 return FALSE;
23225 }
23226 #endif
23227
23228 static bfd_boolean
23229 arm_parse_it_mode (char * str)
23230 {
23231 bfd_boolean ret = TRUE;
23232
23233 if (streq ("arm", str))
23234 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23235 else if (streq ("thumb", str))
23236 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23237 else if (streq ("always", str))
23238 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23239 else if (streq ("never", str))
23240 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23241 else
23242 {
23243 as_bad (_("unknown implicit IT mode `%s', should be "\
23244 "arm, thumb, always, or never."), str);
23245 ret = FALSE;
23246 }
23247
23248 return ret;
23249 }
23250
23251 struct arm_long_option_table arm_long_opts[] =
23252 {
23253 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23254 arm_parse_cpu, NULL},
23255 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23256 arm_parse_arch, NULL},
23257 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23258 arm_parse_fpu, NULL},
23259 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23260 arm_parse_float_abi, NULL},
23261 #ifdef OBJ_ELF
23262 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23263 arm_parse_eabi, NULL},
23264 #endif
23265 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23266 arm_parse_it_mode, NULL},
23267 {NULL, NULL, 0, NULL}
23268 };
23269
23270 int
23271 md_parse_option (int c, char * arg)
23272 {
23273 struct arm_option_table *opt;
23274 const struct arm_legacy_option_table *fopt;
23275 struct arm_long_option_table *lopt;
23276
23277 switch (c)
23278 {
23279 #ifdef OPTION_EB
23280 case OPTION_EB:
23281 target_big_endian = 1;
23282 break;
23283 #endif
23284
23285 #ifdef OPTION_EL
23286 case OPTION_EL:
23287 target_big_endian = 0;
23288 break;
23289 #endif
23290
23291 case OPTION_FIX_V4BX:
23292 fix_v4bx = TRUE;
23293 break;
23294
23295 case 'a':
23296 /* Listing option. Just ignore these, we don't support additional
23297 ones. */
23298 return 0;
23299
23300 default:
23301 for (opt = arm_opts; opt->option != NULL; opt++)
23302 {
23303 if (c == opt->option[0]
23304 && ((arg == NULL && opt->option[1] == 0)
23305 || streq (arg, opt->option + 1)))
23306 {
23307 /* If the option is deprecated, tell the user. */
23308 if (warn_on_deprecated && opt->deprecated != NULL)
23309 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23310 arg ? arg : "", _(opt->deprecated));
23311
23312 if (opt->var != NULL)
23313 *opt->var = opt->value;
23314
23315 return 1;
23316 }
23317 }
23318
23319 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23320 {
23321 if (c == fopt->option[0]
23322 && ((arg == NULL && fopt->option[1] == 0)
23323 || streq (arg, fopt->option + 1)))
23324 {
23325 /* If the option is deprecated, tell the user. */
23326 if (warn_on_deprecated && fopt->deprecated != NULL)
23327 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23328 arg ? arg : "", _(fopt->deprecated));
23329
23330 if (fopt->var != NULL)
23331 *fopt->var = &fopt->value;
23332
23333 return 1;
23334 }
23335 }
23336
23337 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23338 {
23339 /* These options are expected to have an argument. */
23340 if (c == lopt->option[0]
23341 && arg != NULL
23342 && strncmp (arg, lopt->option + 1,
23343 strlen (lopt->option + 1)) == 0)
23344 {
23345 /* If the option is deprecated, tell the user. */
23346 if (warn_on_deprecated && lopt->deprecated != NULL)
23347 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23348 _(lopt->deprecated));
23349
23350 /* Call the sup-option parser. */
23351 return lopt->func (arg + strlen (lopt->option) - 1);
23352 }
23353 }
23354
23355 return 0;
23356 }
23357
23358 return 1;
23359 }
23360
23361 void
23362 md_show_usage (FILE * fp)
23363 {
23364 struct arm_option_table *opt;
23365 struct arm_long_option_table *lopt;
23366
23367 fprintf (fp, _(" ARM-specific assembler options:\n"));
23368
23369 for (opt = arm_opts; opt->option != NULL; opt++)
23370 if (opt->help != NULL)
23371 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23372
23373 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23374 if (lopt->help != NULL)
23375 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23376
23377 #ifdef OPTION_EB
23378 fprintf (fp, _("\
23379 -EB assemble code for a big-endian cpu\n"));
23380 #endif
23381
23382 #ifdef OPTION_EL
23383 fprintf (fp, _("\
23384 -EL assemble code for a little-endian cpu\n"));
23385 #endif
23386
23387 fprintf (fp, _("\
23388 --fix-v4bx Allow BX in ARMv4 code\n"));
23389 }
23390
23391
23392 #ifdef OBJ_ELF
23393 typedef struct
23394 {
23395 int val;
23396 arm_feature_set flags;
23397 } cpu_arch_ver_table;
23398
23399 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23400 least features first. */
23401 static const cpu_arch_ver_table cpu_arch_ver[] =
23402 {
23403 {1, ARM_ARCH_V4},
23404 {2, ARM_ARCH_V4T},
23405 {3, ARM_ARCH_V5},
23406 {3, ARM_ARCH_V5T},
23407 {4, ARM_ARCH_V5TE},
23408 {5, ARM_ARCH_V5TEJ},
23409 {6, ARM_ARCH_V6},
23410 {9, ARM_ARCH_V6K},
23411 {7, ARM_ARCH_V6Z},
23412 {11, ARM_ARCH_V6M},
23413 {12, ARM_ARCH_V6SM},
23414 {8, ARM_ARCH_V6T2},
23415 {10, ARM_ARCH_V7A},
23416 {10, ARM_ARCH_V7R},
23417 {10, ARM_ARCH_V7M},
23418 {0, ARM_ARCH_NONE}
23419 };
23420
23421 /* Set an attribute if it has not already been set by the user. */
23422 static void
23423 aeabi_set_attribute_int (int tag, int value)
23424 {
23425 if (tag < 1
23426 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23427 || !attributes_set_explicitly[tag])
23428 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23429 }
23430
23431 static void
23432 aeabi_set_attribute_string (int tag, const char *value)
23433 {
23434 if (tag < 1
23435 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23436 || !attributes_set_explicitly[tag])
23437 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
23438 }
23439
23440 /* Set the public EABI object attributes. */
23441 static void
23442 aeabi_set_public_attributes (void)
23443 {
23444 int arch;
23445 int virt_sec = 0;
23446 arm_feature_set flags;
23447 arm_feature_set tmp;
23448 const cpu_arch_ver_table *p;
23449
23450 /* Choose the architecture based on the capabilities of the requested cpu
23451 (if any) and/or the instructions actually used. */
23452 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
23453 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
23454 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
23455 /*Allow the user to override the reported architecture. */
23456 if (object_arch)
23457 {
23458 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
23459 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
23460 }
23461
23462 /* We need to make sure that the attributes do not identify us as v6S-M
23463 when the only v6S-M feature in use is the Operating System Extensions. */
23464 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
23465 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
23466 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
23467
23468 tmp = flags;
23469 arch = 0;
23470 for (p = cpu_arch_ver; p->val; p++)
23471 {
23472 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
23473 {
23474 arch = p->val;
23475 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
23476 }
23477 }
23478
23479 /* The table lookup above finds the last architecture to contribute
23480 a new feature. Unfortunately, Tag13 is a subset of the union of
23481 v6T2 and v7-M, so it is never seen as contributing a new feature.
23482 We can not search for the last entry which is entirely used,
23483 because if no CPU is specified we build up only those flags
23484 actually used. Perhaps we should separate out the specified
23485 and implicit cases. Avoid taking this path for -march=all by
23486 checking for contradictory v7-A / v7-M features. */
23487 if (arch == 10
23488 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
23489 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
23490 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
23491 arch = 13;
23492
23493 /* Tag_CPU_name. */
23494 if (selected_cpu_name[0])
23495 {
23496 char *q;
23497
23498 q = selected_cpu_name;
23499 if (strncmp (q, "armv", 4) == 0)
23500 {
23501 int i;
23502
23503 q += 4;
23504 for (i = 0; q[i]; i++)
23505 q[i] = TOUPPER (q[i]);
23506 }
23507 aeabi_set_attribute_string (Tag_CPU_name, q);
23508 }
23509
23510 /* Tag_CPU_arch. */
23511 aeabi_set_attribute_int (Tag_CPU_arch, arch);
23512
23513 /* Tag_CPU_arch_profile. */
23514 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
23515 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
23516 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
23517 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
23518 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
23519 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
23520
23521 /* Tag_ARM_ISA_use. */
23522 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
23523 || arch == 0)
23524 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
23525
23526 /* Tag_THUMB_ISA_use. */
23527 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
23528 || arch == 0)
23529 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
23530 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
23531
23532 /* Tag_VFP_arch. */
23533 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
23534 aeabi_set_attribute_int (Tag_VFP_arch,
23535 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
23536 ? 5 : 6);
23537 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
23538 aeabi_set_attribute_int (Tag_VFP_arch, 3);
23539 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
23540 aeabi_set_attribute_int (Tag_VFP_arch, 4);
23541 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
23542 aeabi_set_attribute_int (Tag_VFP_arch, 2);
23543 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
23544 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
23545 aeabi_set_attribute_int (Tag_VFP_arch, 1);
23546
23547 /* Tag_ABI_HardFP_use. */
23548 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
23549 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
23550 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
23551
23552 /* Tag_WMMX_arch. */
23553 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
23554 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
23555 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
23556 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
23557
23558 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
23559 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
23560 aeabi_set_attribute_int
23561 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
23562 ? 2 : 1));
23563
23564 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
23565 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
23566 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
23567
23568 /* Tag_DIV_use. */
23569 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv))
23570 aeabi_set_attribute_int (Tag_DIV_use, 2);
23571 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_div))
23572 aeabi_set_attribute_int (Tag_DIV_use, 0);
23573 else
23574 aeabi_set_attribute_int (Tag_DIV_use, 1);
23575
23576 /* Tag_MP_extension_use. */
23577 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
23578 aeabi_set_attribute_int (Tag_MPextension_use, 1);
23579
23580 /* Tag Virtualization_use. */
23581 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
23582 virt_sec |= 1;
23583 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
23584 virt_sec |= 2;
23585 if (virt_sec != 0)
23586 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
23587 }
23588
23589 /* Add the default contents for the .ARM.attributes section. */
23590 void
23591 arm_md_end (void)
23592 {
23593 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23594 return;
23595
23596 aeabi_set_public_attributes ();
23597 }
23598 #endif /* OBJ_ELF */
23599
23600
23601 /* Parse a .cpu directive. */
23602
23603 static void
23604 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
23605 {
23606 const struct arm_cpu_option_table *opt;
23607 char *name;
23608 char saved_char;
23609
23610 name = input_line_pointer;
23611 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23612 input_line_pointer++;
23613 saved_char = *input_line_pointer;
23614 *input_line_pointer = 0;
23615
23616 /* Skip the first "all" entry. */
23617 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
23618 if (streq (opt->name, name))
23619 {
23620 mcpu_cpu_opt = &opt->value;
23621 selected_cpu = opt->value;
23622 if (opt->canonical_name)
23623 strcpy (selected_cpu_name, opt->canonical_name);
23624 else
23625 {
23626 int i;
23627 for (i = 0; opt->name[i]; i++)
23628 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23629 selected_cpu_name[i] = 0;
23630 }
23631 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23632 *input_line_pointer = saved_char;
23633 demand_empty_rest_of_line ();
23634 return;
23635 }
23636 as_bad (_("unknown cpu `%s'"), name);
23637 *input_line_pointer = saved_char;
23638 ignore_rest_of_line ();
23639 }
23640
23641
23642 /* Parse a .arch directive. */
23643
23644 static void
23645 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
23646 {
23647 const struct arm_arch_option_table *opt;
23648 char saved_char;
23649 char *name;
23650
23651 name = input_line_pointer;
23652 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23653 input_line_pointer++;
23654 saved_char = *input_line_pointer;
23655 *input_line_pointer = 0;
23656
23657 /* Skip the first "all" entry. */
23658 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23659 if (streq (opt->name, name))
23660 {
23661 mcpu_cpu_opt = &opt->value;
23662 selected_cpu = opt->value;
23663 strcpy (selected_cpu_name, opt->name);
23664 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23665 *input_line_pointer = saved_char;
23666 demand_empty_rest_of_line ();
23667 return;
23668 }
23669
23670 as_bad (_("unknown architecture `%s'\n"), name);
23671 *input_line_pointer = saved_char;
23672 ignore_rest_of_line ();
23673 }
23674
23675
23676 /* Parse a .object_arch directive. */
23677
23678 static void
23679 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
23680 {
23681 const struct arm_arch_option_table *opt;
23682 char saved_char;
23683 char *name;
23684
23685 name = input_line_pointer;
23686 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23687 input_line_pointer++;
23688 saved_char = *input_line_pointer;
23689 *input_line_pointer = 0;
23690
23691 /* Skip the first "all" entry. */
23692 for (opt = arm_archs + 1; opt->name != NULL; opt++)
23693 if (streq (opt->name, name))
23694 {
23695 object_arch = &opt->value;
23696 *input_line_pointer = saved_char;
23697 demand_empty_rest_of_line ();
23698 return;
23699 }
23700
23701 as_bad (_("unknown architecture `%s'\n"), name);
23702 *input_line_pointer = saved_char;
23703 ignore_rest_of_line ();
23704 }
23705
23706 /* Parse a .arch_extension directive. */
23707
23708 static void
23709 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
23710 {
23711 const struct arm_option_extension_value_table *opt;
23712 char saved_char;
23713 char *name;
23714 int adding_value = 1;
23715
23716 name = input_line_pointer;
23717 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23718 input_line_pointer++;
23719 saved_char = *input_line_pointer;
23720 *input_line_pointer = 0;
23721
23722 if (strlen (name) >= 2
23723 && strncmp (name, "no", 2) == 0)
23724 {
23725 adding_value = 0;
23726 name += 2;
23727 }
23728
23729 for (opt = arm_extensions; opt->name != NULL; opt++)
23730 if (streq (opt->name, name))
23731 {
23732 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
23733 {
23734 as_bad (_("architectural extension `%s' is not allowed for the "
23735 "current base architecture"), name);
23736 break;
23737 }
23738
23739 if (adding_value)
23740 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
23741 else
23742 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
23743
23744 mcpu_cpu_opt = &selected_cpu;
23745 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23746 *input_line_pointer = saved_char;
23747 demand_empty_rest_of_line ();
23748 return;
23749 }
23750
23751 if (opt->name == NULL)
23752 as_bad (_("unknown architecture `%s'\n"), name);
23753
23754 *input_line_pointer = saved_char;
23755 ignore_rest_of_line ();
23756 }
23757
23758 /* Parse a .fpu directive. */
23759
23760 static void
23761 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
23762 {
23763 const struct arm_option_fpu_value_table *opt;
23764 char saved_char;
23765 char *name;
23766
23767 name = input_line_pointer;
23768 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
23769 input_line_pointer++;
23770 saved_char = *input_line_pointer;
23771 *input_line_pointer = 0;
23772
23773 for (opt = arm_fpus; opt->name != NULL; opt++)
23774 if (streq (opt->name, name))
23775 {
23776 mfpu_opt = &opt->value;
23777 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23778 *input_line_pointer = saved_char;
23779 demand_empty_rest_of_line ();
23780 return;
23781 }
23782
23783 as_bad (_("unknown floating point format `%s'\n"), name);
23784 *input_line_pointer = saved_char;
23785 ignore_rest_of_line ();
23786 }
23787
23788 /* Copy symbol information. */
23789
23790 void
23791 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23792 {
23793 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23794 }
23795
23796 #ifdef OBJ_ELF
23797 /* Given a symbolic attribute NAME, return the proper integer value.
23798 Returns -1 if the attribute is not known. */
23799
23800 int
23801 arm_convert_symbolic_attribute (const char *name)
23802 {
23803 static const struct
23804 {
23805 const char * name;
23806 const int tag;
23807 }
23808 attribute_table[] =
23809 {
23810 /* When you modify this table you should
23811 also modify the list in doc/c-arm.texi. */
23812 #define T(tag) {#tag, tag}
23813 T (Tag_CPU_raw_name),
23814 T (Tag_CPU_name),
23815 T (Tag_CPU_arch),
23816 T (Tag_CPU_arch_profile),
23817 T (Tag_ARM_ISA_use),
23818 T (Tag_THUMB_ISA_use),
23819 T (Tag_FP_arch),
23820 T (Tag_VFP_arch),
23821 T (Tag_WMMX_arch),
23822 T (Tag_Advanced_SIMD_arch),
23823 T (Tag_PCS_config),
23824 T (Tag_ABI_PCS_R9_use),
23825 T (Tag_ABI_PCS_RW_data),
23826 T (Tag_ABI_PCS_RO_data),
23827 T (Tag_ABI_PCS_GOT_use),
23828 T (Tag_ABI_PCS_wchar_t),
23829 T (Tag_ABI_FP_rounding),
23830 T (Tag_ABI_FP_denormal),
23831 T (Tag_ABI_FP_exceptions),
23832 T (Tag_ABI_FP_user_exceptions),
23833 T (Tag_ABI_FP_number_model),
23834 T (Tag_ABI_align_needed),
23835 T (Tag_ABI_align8_needed),
23836 T (Tag_ABI_align_preserved),
23837 T (Tag_ABI_align8_preserved),
23838 T (Tag_ABI_enum_size),
23839 T (Tag_ABI_HardFP_use),
23840 T (Tag_ABI_VFP_args),
23841 T (Tag_ABI_WMMX_args),
23842 T (Tag_ABI_optimization_goals),
23843 T (Tag_ABI_FP_optimization_goals),
23844 T (Tag_compatibility),
23845 T (Tag_CPU_unaligned_access),
23846 T (Tag_FP_HP_extension),
23847 T (Tag_VFP_HP_extension),
23848 T (Tag_ABI_FP_16bit_format),
23849 T (Tag_MPextension_use),
23850 T (Tag_DIV_use),
23851 T (Tag_nodefaults),
23852 T (Tag_also_compatible_with),
23853 T (Tag_conformance),
23854 T (Tag_T2EE_use),
23855 T (Tag_Virtualization_use),
23856 /* We deliberately do not include Tag_MPextension_use_legacy. */
23857 #undef T
23858 };
23859 unsigned int i;
23860
23861 if (name == NULL)
23862 return -1;
23863
23864 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23865 if (streq (name, attribute_table[i].name))
23866 return attribute_table[i].tag;
23867
23868 return -1;
23869 }
23870
23871
23872 /* Apply sym value for relocations only in the case that
23873 they are for local symbols and you have the respective
23874 architectural feature for blx and simple switches. */
23875 int
23876 arm_apply_sym_value (struct fix * fixP)
23877 {
23878 if (fixP->fx_addsy
23879 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23880 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
23881 {
23882 switch (fixP->fx_r_type)
23883 {
23884 case BFD_RELOC_ARM_PCREL_BLX:
23885 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23886 if (ARM_IS_FUNC (fixP->fx_addsy))
23887 return 1;
23888 break;
23889
23890 case BFD_RELOC_ARM_PCREL_CALL:
23891 case BFD_RELOC_THUMB_PCREL_BLX:
23892 if (THUMB_IS_FUNC (fixP->fx_addsy))
23893 return 1;
23894 break;
23895
23896 default:
23897 break;
23898 }
23899
23900 }
23901 return 0;
23902 }
23903 #endif /* OBJ_ELF */