69057b7202570ef3a9669ddafd86abf3d028288b
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
188 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_m =
199 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
200
201 static const arm_feature_set arm_arch_any = ARM_ANY;
202 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
203 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
204 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
205
206 static const arm_feature_set arm_cext_iwmmxt2 =
207 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
208 static const arm_feature_set arm_cext_iwmmxt =
209 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
210 static const arm_feature_set arm_cext_xscale =
211 ARM_FEATURE (0, ARM_CEXT_XSCALE);
212 static const arm_feature_set arm_cext_maverick =
213 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
214 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
215 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v1xd =
217 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
218 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
219 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
221 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
222 static const arm_feature_set fpu_vfp_ext_d32 =
223 ARM_FEATURE (0, FPU_VFP_EXT_D32);
224 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
225 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
226 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
227 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
228 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
229 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
230
231 static int mfloat_abi_opt = -1;
232 /* Record user cpu selection for object attributes. */
233 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
234 /* Must be long enough to hold any of the names in arm_cpus. */
235 static char selected_cpu_name[16];
236 #ifdef OBJ_ELF
237 # ifdef EABI_DEFAULT
238 static int meabi_flags = EABI_DEFAULT;
239 # else
240 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
241 # endif
242
243 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
244
245 bfd_boolean
246 arm_is_eabi (void)
247 {
248 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
249 }
250 #endif
251
252 #ifdef OBJ_ELF
253 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
254 symbolS * GOT_symbol;
255 #endif
256
257 /* 0: assemble for ARM,
258 1: assemble for Thumb,
259 2: assemble for Thumb even though target CPU does not support thumb
260 instructions. */
261 static int thumb_mode = 0;
262 /* A value distinct from the possible values for thumb_mode that we
263 can use to record whether thumb_mode has been copied into the
264 tc_frag_data field of a frag. */
265 #define MODE_RECORDED (1 << 4)
266
267 /* Specifies the intrinsic IT insn behavior mode. */
268 enum implicit_it_mode
269 {
270 IMPLICIT_IT_MODE_NEVER = 0x00,
271 IMPLICIT_IT_MODE_ARM = 0x01,
272 IMPLICIT_IT_MODE_THUMB = 0x02,
273 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
274 };
275 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
276
277 /* If unified_syntax is true, we are processing the new unified
278 ARM/Thumb syntax. Important differences from the old ARM mode:
279
280 - Immediate operands do not require a # prefix.
281 - Conditional affixes always appear at the end of the
282 instruction. (For backward compatibility, those instructions
283 that formerly had them in the middle, continue to accept them
284 there.)
285 - The IT instruction may appear, and if it does is validated
286 against subsequent conditional affixes. It does not generate
287 machine code.
288
289 Important differences from the old Thumb mode:
290
291 - Immediate operands do not require a # prefix.
292 - Most of the V6T2 instructions are only available in unified mode.
293 - The .N and .W suffixes are recognized and honored (it is an error
294 if they cannot be honored).
295 - All instructions set the flags if and only if they have an 's' affix.
296 - Conditional affixes may be used. They are validated against
297 preceding IT instructions. Unlike ARM mode, you cannot use a
298 conditional affix except in the scope of an IT instruction. */
299
300 static bfd_boolean unified_syntax = FALSE;
301
302 enum neon_el_type
303 {
304 NT_invtype,
305 NT_untyped,
306 NT_integer,
307 NT_float,
308 NT_poly,
309 NT_signed,
310 NT_unsigned
311 };
312
313 struct neon_type_el
314 {
315 enum neon_el_type type;
316 unsigned size;
317 };
318
319 #define NEON_MAX_TYPE_ELS 4
320
321 struct neon_type
322 {
323 struct neon_type_el el[NEON_MAX_TYPE_ELS];
324 unsigned elems;
325 };
326
327 enum it_instruction_type
328 {
329 OUTSIDE_IT_INSN,
330 INSIDE_IT_INSN,
331 INSIDE_IT_LAST_INSN,
332 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
333 if inside, should be the last one. */
334 NEUTRAL_IT_INSN, /* This could be either inside or outside,
335 i.e. BKPT and NOP. */
336 IT_INSN /* The IT insn has been parsed. */
337 };
338
339 struct arm_it
340 {
341 const char * error;
342 unsigned long instruction;
343 int size;
344 int size_req;
345 int cond;
346 /* "uncond_value" is set to the value in place of the conditional field in
347 unconditional versions of the instruction, or -1 if nothing is
348 appropriate. */
349 int uncond_value;
350 struct neon_type vectype;
351 /* This does not indicate an actual NEON instruction, only that
352 the mnemonic accepts neon-style type suffixes. */
353 int is_neon;
354 /* Set to the opcode if the instruction needs relaxation.
355 Zero if the instruction is not relaxed. */
356 unsigned long relax;
357 struct
358 {
359 bfd_reloc_code_real_type type;
360 expressionS exp;
361 int pc_rel;
362 } reloc;
363
364 enum it_instruction_type it_insn_type;
365
366 struct
367 {
368 unsigned reg;
369 signed int imm;
370 struct neon_type_el vectype;
371 unsigned present : 1; /* Operand present. */
372 unsigned isreg : 1; /* Operand was a register. */
373 unsigned immisreg : 1; /* .imm field is a second register. */
374 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
375 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
376 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
377 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
378 instructions. This allows us to disambiguate ARM <-> vector insns. */
379 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
380 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
381 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
382 unsigned issingle : 1; /* Operand is VFP single-precision register. */
383 unsigned hasreloc : 1; /* Operand has relocation suffix. */
384 unsigned writeback : 1; /* Operand has trailing ! */
385 unsigned preind : 1; /* Preindexed address. */
386 unsigned postind : 1; /* Postindexed address. */
387 unsigned negative : 1; /* Index register was negated. */
388 unsigned shifted : 1; /* Shift applied to operation. */
389 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
390 } operands[6];
391 };
392
393 static struct arm_it inst;
394
395 #define NUM_FLOAT_VALS 8
396
397 const char * fp_const[] =
398 {
399 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
400 };
401
402 /* Number of littlenums required to hold an extended precision number. */
403 #define MAX_LITTLENUMS 6
404
405 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
406
407 #define FAIL (-1)
408 #define SUCCESS (0)
409
410 #define SUFF_S 1
411 #define SUFF_D 2
412 #define SUFF_E 3
413 #define SUFF_P 4
414
415 #define CP_T_X 0x00008000
416 #define CP_T_Y 0x00400000
417
418 #define CONDS_BIT 0x00100000
419 #define LOAD_BIT 0x00100000
420
421 #define DOUBLE_LOAD_FLAG 0x00000001
422
423 struct asm_cond
424 {
425 const char * template_name;
426 unsigned long value;
427 };
428
429 #define COND_ALWAYS 0xE
430
431 struct asm_psr
432 {
433 const char * template_name;
434 unsigned long field;
435 };
436
437 struct asm_barrier_opt
438 {
439 const char * template_name;
440 unsigned long value;
441 };
442
443 /* The bit that distinguishes CPSR and SPSR. */
444 #define SPSR_BIT (1 << 22)
445
446 /* The individual PSR flag bits. */
447 #define PSR_c (1 << 16)
448 #define PSR_x (1 << 17)
449 #define PSR_s (1 << 18)
450 #define PSR_f (1 << 19)
451
452 struct reloc_entry
453 {
454 char * name;
455 bfd_reloc_code_real_type reloc;
456 };
457
458 enum vfp_reg_pos
459 {
460 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
461 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
462 };
463
464 enum vfp_ldstm_type
465 {
466 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
467 };
468
469 /* Bits for DEFINED field in neon_typed_alias. */
470 #define NTA_HASTYPE 1
471 #define NTA_HASINDEX 2
472
473 struct neon_typed_alias
474 {
475 unsigned char defined;
476 unsigned char index;
477 struct neon_type_el eltype;
478 };
479
480 /* ARM register categories. This includes coprocessor numbers and various
481 architecture extensions' registers. */
482 enum arm_reg_type
483 {
484 REG_TYPE_RN,
485 REG_TYPE_CP,
486 REG_TYPE_CN,
487 REG_TYPE_FN,
488 REG_TYPE_VFS,
489 REG_TYPE_VFD,
490 REG_TYPE_NQ,
491 REG_TYPE_VFSD,
492 REG_TYPE_NDQ,
493 REG_TYPE_NSDQ,
494 REG_TYPE_VFC,
495 REG_TYPE_MVF,
496 REG_TYPE_MVD,
497 REG_TYPE_MVFX,
498 REG_TYPE_MVDX,
499 REG_TYPE_MVAX,
500 REG_TYPE_DSPSC,
501 REG_TYPE_MMXWR,
502 REG_TYPE_MMXWC,
503 REG_TYPE_MMXWCG,
504 REG_TYPE_XSCALE,
505 };
506
507 /* Structure for a hash table entry for a register.
508 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
509 information which states whether a vector type or index is specified (for a
510 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
511 struct reg_entry
512 {
513 const char * name;
514 unsigned char number;
515 unsigned char type;
516 unsigned char builtin;
517 struct neon_typed_alias * neon;
518 };
519
520 /* Diagnostics used when we don't get a register of the expected type. */
521 const char * const reg_expected_msgs[] =
522 {
523 N_("ARM register expected"),
524 N_("bad or missing co-processor number"),
525 N_("co-processor register expected"),
526 N_("FPA register expected"),
527 N_("VFP single precision register expected"),
528 N_("VFP/Neon double precision register expected"),
529 N_("Neon quad precision register expected"),
530 N_("VFP single or double precision register expected"),
531 N_("Neon double or quad precision register expected"),
532 N_("VFP single, double or Neon quad precision register expected"),
533 N_("VFP system register expected"),
534 N_("Maverick MVF register expected"),
535 N_("Maverick MVD register expected"),
536 N_("Maverick MVFX register expected"),
537 N_("Maverick MVDX register expected"),
538 N_("Maverick MVAX register expected"),
539 N_("Maverick DSPSC register expected"),
540 N_("iWMMXt data register expected"),
541 N_("iWMMXt control register expected"),
542 N_("iWMMXt scalar register expected"),
543 N_("XScale accumulator register expected"),
544 };
545
546 /* Some well known registers that we refer to directly elsewhere. */
547 #define REG_SP 13
548 #define REG_LR 14
549 #define REG_PC 15
550
551 /* ARM instructions take 4bytes in the object file, Thumb instructions
552 take 2: */
553 #define INSN_SIZE 4
554
555 struct asm_opcode
556 {
557 /* Basic string to match. */
558 const char * template_name;
559
560 /* Parameters to instruction. */
561 unsigned int operands[8];
562
563 /* Conditional tag - see opcode_lookup. */
564 unsigned int tag : 4;
565
566 /* Basic instruction code. */
567 unsigned int avalue : 28;
568
569 /* Thumb-format instruction code. */
570 unsigned int tvalue;
571
572 /* Which architecture variant provides this instruction. */
573 const arm_feature_set * avariant;
574 const arm_feature_set * tvariant;
575
576 /* Function to call to encode instruction in ARM format. */
577 void (* aencode) (void);
578
579 /* Function to call to encode instruction in Thumb format. */
580 void (* tencode) (void);
581 };
582
583 /* Defines for various bits that we will want to toggle. */
584 #define INST_IMMEDIATE 0x02000000
585 #define OFFSET_REG 0x02000000
586 #define HWOFFSET_IMM 0x00400000
587 #define SHIFT_BY_REG 0x00000010
588 #define PRE_INDEX 0x01000000
589 #define INDEX_UP 0x00800000
590 #define WRITE_BACK 0x00200000
591 #define LDM_TYPE_2_OR_3 0x00400000
592 #define CPSI_MMOD 0x00020000
593
594 #define LITERAL_MASK 0xf000f000
595 #define OPCODE_MASK 0xfe1fffff
596 #define V4_STR_BIT 0x00000020
597
598 #define T2_SUBS_PC_LR 0xf3de8f00
599
600 #define DATA_OP_SHIFT 21
601
602 #define T2_OPCODE_MASK 0xfe1fffff
603 #define T2_DATA_OP_SHIFT 21
604
605 /* Codes to distinguish the arithmetic instructions. */
606 #define OPCODE_AND 0
607 #define OPCODE_EOR 1
608 #define OPCODE_SUB 2
609 #define OPCODE_RSB 3
610 #define OPCODE_ADD 4
611 #define OPCODE_ADC 5
612 #define OPCODE_SBC 6
613 #define OPCODE_RSC 7
614 #define OPCODE_TST 8
615 #define OPCODE_TEQ 9
616 #define OPCODE_CMP 10
617 #define OPCODE_CMN 11
618 #define OPCODE_ORR 12
619 #define OPCODE_MOV 13
620 #define OPCODE_BIC 14
621 #define OPCODE_MVN 15
622
623 #define T2_OPCODE_AND 0
624 #define T2_OPCODE_BIC 1
625 #define T2_OPCODE_ORR 2
626 #define T2_OPCODE_ORN 3
627 #define T2_OPCODE_EOR 4
628 #define T2_OPCODE_ADD 8
629 #define T2_OPCODE_ADC 10
630 #define T2_OPCODE_SBC 11
631 #define T2_OPCODE_SUB 13
632 #define T2_OPCODE_RSB 14
633
634 #define T_OPCODE_MUL 0x4340
635 #define T_OPCODE_TST 0x4200
636 #define T_OPCODE_CMN 0x42c0
637 #define T_OPCODE_NEG 0x4240
638 #define T_OPCODE_MVN 0x43c0
639
640 #define T_OPCODE_ADD_R3 0x1800
641 #define T_OPCODE_SUB_R3 0x1a00
642 #define T_OPCODE_ADD_HI 0x4400
643 #define T_OPCODE_ADD_ST 0xb000
644 #define T_OPCODE_SUB_ST 0xb080
645 #define T_OPCODE_ADD_SP 0xa800
646 #define T_OPCODE_ADD_PC 0xa000
647 #define T_OPCODE_ADD_I8 0x3000
648 #define T_OPCODE_SUB_I8 0x3800
649 #define T_OPCODE_ADD_I3 0x1c00
650 #define T_OPCODE_SUB_I3 0x1e00
651
652 #define T_OPCODE_ASR_R 0x4100
653 #define T_OPCODE_LSL_R 0x4080
654 #define T_OPCODE_LSR_R 0x40c0
655 #define T_OPCODE_ROR_R 0x41c0
656 #define T_OPCODE_ASR_I 0x1000
657 #define T_OPCODE_LSL_I 0x0000
658 #define T_OPCODE_LSR_I 0x0800
659
660 #define T_OPCODE_MOV_I8 0x2000
661 #define T_OPCODE_CMP_I8 0x2800
662 #define T_OPCODE_CMP_LR 0x4280
663 #define T_OPCODE_MOV_HR 0x4600
664 #define T_OPCODE_CMP_HR 0x4500
665
666 #define T_OPCODE_LDR_PC 0x4800
667 #define T_OPCODE_LDR_SP 0x9800
668 #define T_OPCODE_STR_SP 0x9000
669 #define T_OPCODE_LDR_IW 0x6800
670 #define T_OPCODE_STR_IW 0x6000
671 #define T_OPCODE_LDR_IH 0x8800
672 #define T_OPCODE_STR_IH 0x8000
673 #define T_OPCODE_LDR_IB 0x7800
674 #define T_OPCODE_STR_IB 0x7000
675 #define T_OPCODE_LDR_RW 0x5800
676 #define T_OPCODE_STR_RW 0x5000
677 #define T_OPCODE_LDR_RH 0x5a00
678 #define T_OPCODE_STR_RH 0x5200
679 #define T_OPCODE_LDR_RB 0x5c00
680 #define T_OPCODE_STR_RB 0x5400
681
682 #define T_OPCODE_PUSH 0xb400
683 #define T_OPCODE_POP 0xbc00
684
685 #define T_OPCODE_BRANCH 0xe000
686
687 #define THUMB_SIZE 2 /* Size of thumb instruction. */
688 #define THUMB_PP_PC_LR 0x0100
689 #define THUMB_LOAD_BIT 0x0800
690 #define THUMB2_LOAD_BIT 0x00100000
691
692 #define BAD_ARGS _("bad arguments to instruction")
693 #define BAD_SP _("r13 not allowed here")
694 #define BAD_PC _("r15 not allowed here")
695 #define BAD_COND _("instruction cannot be conditional")
696 #define BAD_OVERLAP _("registers may not be the same")
697 #define BAD_HIREG _("lo register required")
698 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
699 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
700 #define BAD_BRANCH _("branch must be last instruction in IT block")
701 #define BAD_NOT_IT _("instruction not allowed in IT block")
702 #define BAD_FPU _("selected FPU does not support instruction")
703 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
704 #define BAD_IT_COND _("incorrect condition in IT block")
705 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
706 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
707 #define BAD_PC_ADDRESSING \
708 _("cannot use register index with PC-relative addressing")
709 #define BAD_PC_WRITEBACK \
710 _("cannot use writeback with PC-relative addressing")
711
712 static struct hash_control * arm_ops_hsh;
713 static struct hash_control * arm_cond_hsh;
714 static struct hash_control * arm_shift_hsh;
715 static struct hash_control * arm_psr_hsh;
716 static struct hash_control * arm_v7m_psr_hsh;
717 static struct hash_control * arm_reg_hsh;
718 static struct hash_control * arm_reloc_hsh;
719 static struct hash_control * arm_barrier_opt_hsh;
720
721 /* Stuff needed to resolve the label ambiguity
722 As:
723 ...
724 label: <insn>
725 may differ from:
726 ...
727 label:
728 <insn> */
729
730 symbolS * last_label_seen;
731 static int label_is_thumb_function_name = FALSE;
732
733 /* Literal pool structure. Held on a per-section
734 and per-sub-section basis. */
735
736 #define MAX_LITERAL_POOL_SIZE 1024
737 typedef struct literal_pool
738 {
739 expressionS literals [MAX_LITERAL_POOL_SIZE];
740 unsigned int next_free_entry;
741 unsigned int id;
742 symbolS * symbol;
743 segT section;
744 subsegT sub_section;
745 struct literal_pool * next;
746 } literal_pool;
747
748 /* Pointer to a linked list of literal pools. */
749 literal_pool * list_of_pools = NULL;
750
751 #ifdef OBJ_ELF
752 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
753 #else
754 static struct current_it now_it;
755 #endif
756
757 static inline int
758 now_it_compatible (int cond)
759 {
760 return (cond & ~1) == (now_it.cc & ~1);
761 }
762
763 static inline int
764 conditional_insn (void)
765 {
766 return inst.cond != COND_ALWAYS;
767 }
768
769 static int in_it_block (void);
770
771 static int handle_it_state (void);
772
773 static void force_automatic_it_block_close (void);
774
775 static void it_fsm_post_encode (void);
776
777 #define set_it_insn_type(type) \
778 do \
779 { \
780 inst.it_insn_type = type; \
781 if (handle_it_state () == FAIL) \
782 return; \
783 } \
784 while (0)
785
786 #define set_it_insn_type_nonvoid(type, failret) \
787 do \
788 { \
789 inst.it_insn_type = type; \
790 if (handle_it_state () == FAIL) \
791 return failret; \
792 } \
793 while(0)
794
795 #define set_it_insn_type_last() \
796 do \
797 { \
798 if (inst.cond == COND_ALWAYS) \
799 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
800 else \
801 set_it_insn_type (INSIDE_IT_LAST_INSN); \
802 } \
803 while (0)
804
805 /* Pure syntax. */
806
807 /* This array holds the chars that always start a comment. If the
808 pre-processor is disabled, these aren't very useful. */
809 const char comment_chars[] = "@";
810
811 /* This array holds the chars that only start a comment at the beginning of
812 a line. If the line seems to have the form '# 123 filename'
813 .line and .file directives will appear in the pre-processed output. */
814 /* Note that input_file.c hand checks for '#' at the beginning of the
815 first line of the input file. This is because the compiler outputs
816 #NO_APP at the beginning of its output. */
817 /* Also note that comments like this one will always work. */
818 const char line_comment_chars[] = "#";
819
820 const char line_separator_chars[] = ";";
821
822 /* Chars that can be used to separate mant
823 from exp in floating point numbers. */
824 const char EXP_CHARS[] = "eE";
825
826 /* Chars that mean this number is a floating point constant. */
827 /* As in 0f12.456 */
828 /* or 0d1.2345e12 */
829
830 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
831
832 /* Prefix characters that indicate the start of an immediate
833 value. */
834 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
835
836 /* Separator character handling. */
837
838 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
839
840 static inline int
841 skip_past_char (char ** str, char c)
842 {
843 if (**str == c)
844 {
845 (*str)++;
846 return SUCCESS;
847 }
848 else
849 return FAIL;
850 }
851
852 #define skip_past_comma(str) skip_past_char (str, ',')
853
854 /* Arithmetic expressions (possibly involving symbols). */
855
856 /* Return TRUE if anything in the expression is a bignum. */
857
858 static int
859 walk_no_bignums (symbolS * sp)
860 {
861 if (symbol_get_value_expression (sp)->X_op == O_big)
862 return 1;
863
864 if (symbol_get_value_expression (sp)->X_add_symbol)
865 {
866 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
867 || (symbol_get_value_expression (sp)->X_op_symbol
868 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
869 }
870
871 return 0;
872 }
873
874 static int in_my_get_expression = 0;
875
876 /* Third argument to my_get_expression. */
877 #define GE_NO_PREFIX 0
878 #define GE_IMM_PREFIX 1
879 #define GE_OPT_PREFIX 2
880 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
881 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
882 #define GE_OPT_PREFIX_BIG 3
883
884 static int
885 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
886 {
887 char * save_in;
888 segT seg;
889
890 /* In unified syntax, all prefixes are optional. */
891 if (unified_syntax)
892 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
893 : GE_OPT_PREFIX;
894
895 switch (prefix_mode)
896 {
897 case GE_NO_PREFIX: break;
898 case GE_IMM_PREFIX:
899 if (!is_immediate_prefix (**str))
900 {
901 inst.error = _("immediate expression requires a # prefix");
902 return FAIL;
903 }
904 (*str)++;
905 break;
906 case GE_OPT_PREFIX:
907 case GE_OPT_PREFIX_BIG:
908 if (is_immediate_prefix (**str))
909 (*str)++;
910 break;
911 default: abort ();
912 }
913
914 memset (ep, 0, sizeof (expressionS));
915
916 save_in = input_line_pointer;
917 input_line_pointer = *str;
918 in_my_get_expression = 1;
919 seg = expression (ep);
920 in_my_get_expression = 0;
921
922 if (ep->X_op == O_illegal || ep->X_op == O_absent)
923 {
924 /* We found a bad or missing expression in md_operand(). */
925 *str = input_line_pointer;
926 input_line_pointer = save_in;
927 if (inst.error == NULL)
928 inst.error = (ep->X_op == O_absent
929 ? _("missing expression") :_("bad expression"));
930 return 1;
931 }
932
933 #ifdef OBJ_AOUT
934 if (seg != absolute_section
935 && seg != text_section
936 && seg != data_section
937 && seg != bss_section
938 && seg != undefined_section)
939 {
940 inst.error = _("bad segment");
941 *str = input_line_pointer;
942 input_line_pointer = save_in;
943 return 1;
944 }
945 #endif
946
947 /* Get rid of any bignums now, so that we don't generate an error for which
948 we can't establish a line number later on. Big numbers are never valid
949 in instructions, which is where this routine is always called. */
950 if (prefix_mode != GE_OPT_PREFIX_BIG
951 && (ep->X_op == O_big
952 || (ep->X_add_symbol
953 && (walk_no_bignums (ep->X_add_symbol)
954 || (ep->X_op_symbol
955 && walk_no_bignums (ep->X_op_symbol))))))
956 {
957 inst.error = _("invalid constant");
958 *str = input_line_pointer;
959 input_line_pointer = save_in;
960 return 1;
961 }
962
963 *str = input_line_pointer;
964 input_line_pointer = save_in;
965 return 0;
966 }
967
968 /* Turn a string in input_line_pointer into a floating point constant
969 of type TYPE, and store the appropriate bytes in *LITP. The number
970 of LITTLENUMS emitted is stored in *SIZEP. An error message is
971 returned, or NULL on OK.
972
973 Note that fp constants aren't represent in the normal way on the ARM.
974 In big endian mode, things are as expected. However, in little endian
975 mode fp constants are big-endian word-wise, and little-endian byte-wise
976 within the words. For example, (double) 1.1 in big endian mode is
977 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
978 the byte sequence 99 99 f1 3f 9a 99 99 99.
979
980 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
981
982 char *
983 md_atof (int type, char * litP, int * sizeP)
984 {
985 int prec;
986 LITTLENUM_TYPE words[MAX_LITTLENUMS];
987 char *t;
988 int i;
989
990 switch (type)
991 {
992 case 'f':
993 case 'F':
994 case 's':
995 case 'S':
996 prec = 2;
997 break;
998
999 case 'd':
1000 case 'D':
1001 case 'r':
1002 case 'R':
1003 prec = 4;
1004 break;
1005
1006 case 'x':
1007 case 'X':
1008 prec = 5;
1009 break;
1010
1011 case 'p':
1012 case 'P':
1013 prec = 5;
1014 break;
1015
1016 default:
1017 *sizeP = 0;
1018 return _("Unrecognized or unsupported floating point constant");
1019 }
1020
1021 t = atof_ieee (input_line_pointer, type, words);
1022 if (t)
1023 input_line_pointer = t;
1024 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1025
1026 if (target_big_endian)
1027 {
1028 for (i = 0; i < prec; i++)
1029 {
1030 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1031 litP += sizeof (LITTLENUM_TYPE);
1032 }
1033 }
1034 else
1035 {
1036 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1037 for (i = prec - 1; i >= 0; i--)
1038 {
1039 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1040 litP += sizeof (LITTLENUM_TYPE);
1041 }
1042 else
1043 /* For a 4 byte float the order of elements in `words' is 1 0.
1044 For an 8 byte float the order is 1 0 3 2. */
1045 for (i = 0; i < prec; i += 2)
1046 {
1047 md_number_to_chars (litP, (valueT) words[i + 1],
1048 sizeof (LITTLENUM_TYPE));
1049 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1050 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1051 litP += 2 * sizeof (LITTLENUM_TYPE);
1052 }
1053 }
1054
1055 return NULL;
1056 }
1057
1058 /* We handle all bad expressions here, so that we can report the faulty
1059 instruction in the error message. */
1060 void
1061 md_operand (expressionS * exp)
1062 {
1063 if (in_my_get_expression)
1064 exp->X_op = O_illegal;
1065 }
1066
1067 /* Immediate values. */
1068
1069 /* Generic immediate-value read function for use in directives.
1070 Accepts anything that 'expression' can fold to a constant.
1071 *val receives the number. */
1072 #ifdef OBJ_ELF
1073 static int
1074 immediate_for_directive (int *val)
1075 {
1076 expressionS exp;
1077 exp.X_op = O_illegal;
1078
1079 if (is_immediate_prefix (*input_line_pointer))
1080 {
1081 input_line_pointer++;
1082 expression (&exp);
1083 }
1084
1085 if (exp.X_op != O_constant)
1086 {
1087 as_bad (_("expected #constant"));
1088 ignore_rest_of_line ();
1089 return FAIL;
1090 }
1091 *val = exp.X_add_number;
1092 return SUCCESS;
1093 }
1094 #endif
1095
1096 /* Register parsing. */
1097
1098 /* Generic register parser. CCP points to what should be the
1099 beginning of a register name. If it is indeed a valid register
1100 name, advance CCP over it and return the reg_entry structure;
1101 otherwise return NULL. Does not issue diagnostics. */
1102
1103 static struct reg_entry *
1104 arm_reg_parse_multi (char **ccp)
1105 {
1106 char *start = *ccp;
1107 char *p;
1108 struct reg_entry *reg;
1109
1110 #ifdef REGISTER_PREFIX
1111 if (*start != REGISTER_PREFIX)
1112 return NULL;
1113 start++;
1114 #endif
1115 #ifdef OPTIONAL_REGISTER_PREFIX
1116 if (*start == OPTIONAL_REGISTER_PREFIX)
1117 start++;
1118 #endif
1119
1120 p = start;
1121 if (!ISALPHA (*p) || !is_name_beginner (*p))
1122 return NULL;
1123
1124 do
1125 p++;
1126 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1127
1128 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1129
1130 if (!reg)
1131 return NULL;
1132
1133 *ccp = p;
1134 return reg;
1135 }
1136
1137 static int
1138 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1139 enum arm_reg_type type)
1140 {
1141 /* Alternative syntaxes are accepted for a few register classes. */
1142 switch (type)
1143 {
1144 case REG_TYPE_MVF:
1145 case REG_TYPE_MVD:
1146 case REG_TYPE_MVFX:
1147 case REG_TYPE_MVDX:
1148 /* Generic coprocessor register names are allowed for these. */
1149 if (reg && reg->type == REG_TYPE_CN)
1150 return reg->number;
1151 break;
1152
1153 case REG_TYPE_CP:
1154 /* For backward compatibility, a bare number is valid here. */
1155 {
1156 unsigned long processor = strtoul (start, ccp, 10);
1157 if (*ccp != start && processor <= 15)
1158 return processor;
1159 }
1160
1161 case REG_TYPE_MMXWC:
1162 /* WC includes WCG. ??? I'm not sure this is true for all
1163 instructions that take WC registers. */
1164 if (reg && reg->type == REG_TYPE_MMXWCG)
1165 return reg->number;
1166 break;
1167
1168 default:
1169 break;
1170 }
1171
1172 return FAIL;
1173 }
1174
1175 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1176 return value is the register number or FAIL. */
1177
1178 static int
1179 arm_reg_parse (char **ccp, enum arm_reg_type type)
1180 {
1181 char *start = *ccp;
1182 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1183 int ret;
1184
1185 /* Do not allow a scalar (reg+index) to parse as a register. */
1186 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1187 return FAIL;
1188
1189 if (reg && reg->type == type)
1190 return reg->number;
1191
1192 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1193 return ret;
1194
1195 *ccp = start;
1196 return FAIL;
1197 }
1198
1199 /* Parse a Neon type specifier. *STR should point at the leading '.'
1200 character. Does no verification at this stage that the type fits the opcode
1201 properly. E.g.,
1202
1203 .i32.i32.s16
1204 .s32.f32
1205 .u16
1206
1207 Can all be legally parsed by this function.
1208
1209 Fills in neon_type struct pointer with parsed information, and updates STR
1210 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1211 type, FAIL if not. */
1212
1213 static int
1214 parse_neon_type (struct neon_type *type, char **str)
1215 {
1216 char *ptr = *str;
1217
1218 if (type)
1219 type->elems = 0;
1220
1221 while (type->elems < NEON_MAX_TYPE_ELS)
1222 {
1223 enum neon_el_type thistype = NT_untyped;
1224 unsigned thissize = -1u;
1225
1226 if (*ptr != '.')
1227 break;
1228
1229 ptr++;
1230
1231 /* Just a size without an explicit type. */
1232 if (ISDIGIT (*ptr))
1233 goto parsesize;
1234
1235 switch (TOLOWER (*ptr))
1236 {
1237 case 'i': thistype = NT_integer; break;
1238 case 'f': thistype = NT_float; break;
1239 case 'p': thistype = NT_poly; break;
1240 case 's': thistype = NT_signed; break;
1241 case 'u': thistype = NT_unsigned; break;
1242 case 'd':
1243 thistype = NT_float;
1244 thissize = 64;
1245 ptr++;
1246 goto done;
1247 default:
1248 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1249 return FAIL;
1250 }
1251
1252 ptr++;
1253
1254 /* .f is an abbreviation for .f32. */
1255 if (thistype == NT_float && !ISDIGIT (*ptr))
1256 thissize = 32;
1257 else
1258 {
1259 parsesize:
1260 thissize = strtoul (ptr, &ptr, 10);
1261
1262 if (thissize != 8 && thissize != 16 && thissize != 32
1263 && thissize != 64)
1264 {
1265 as_bad (_("bad size %d in type specifier"), thissize);
1266 return FAIL;
1267 }
1268 }
1269
1270 done:
1271 if (type)
1272 {
1273 type->el[type->elems].type = thistype;
1274 type->el[type->elems].size = thissize;
1275 type->elems++;
1276 }
1277 }
1278
1279 /* Empty/missing type is not a successful parse. */
1280 if (type->elems == 0)
1281 return FAIL;
1282
1283 *str = ptr;
1284
1285 return SUCCESS;
1286 }
1287
1288 /* Errors may be set multiple times during parsing or bit encoding
1289 (particularly in the Neon bits), but usually the earliest error which is set
1290 will be the most meaningful. Avoid overwriting it with later (cascading)
1291 errors by calling this function. */
1292
1293 static void
1294 first_error (const char *err)
1295 {
1296 if (!inst.error)
1297 inst.error = err;
1298 }
1299
1300 /* Parse a single type, e.g. ".s32", leading period included. */
1301 static int
1302 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1303 {
1304 char *str = *ccp;
1305 struct neon_type optype;
1306
1307 if (*str == '.')
1308 {
1309 if (parse_neon_type (&optype, &str) == SUCCESS)
1310 {
1311 if (optype.elems == 1)
1312 *vectype = optype.el[0];
1313 else
1314 {
1315 first_error (_("only one type should be specified for operand"));
1316 return FAIL;
1317 }
1318 }
1319 else
1320 {
1321 first_error (_("vector type expected"));
1322 return FAIL;
1323 }
1324 }
1325 else
1326 return FAIL;
1327
1328 *ccp = str;
1329
1330 return SUCCESS;
1331 }
1332
1333 /* Special meanings for indices (which have a range of 0-7), which will fit into
1334 a 4-bit integer. */
1335
1336 #define NEON_ALL_LANES 15
1337 #define NEON_INTERLEAVE_LANES 14
1338
1339 /* Parse either a register or a scalar, with an optional type. Return the
1340 register number, and optionally fill in the actual type of the register
1341 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1342 type/index information in *TYPEINFO. */
1343
1344 static int
1345 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1346 enum arm_reg_type *rtype,
1347 struct neon_typed_alias *typeinfo)
1348 {
1349 char *str = *ccp;
1350 struct reg_entry *reg = arm_reg_parse_multi (&str);
1351 struct neon_typed_alias atype;
1352 struct neon_type_el parsetype;
1353
1354 atype.defined = 0;
1355 atype.index = -1;
1356 atype.eltype.type = NT_invtype;
1357 atype.eltype.size = -1;
1358
1359 /* Try alternate syntax for some types of register. Note these are mutually
1360 exclusive with the Neon syntax extensions. */
1361 if (reg == NULL)
1362 {
1363 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1364 if (altreg != FAIL)
1365 *ccp = str;
1366 if (typeinfo)
1367 *typeinfo = atype;
1368 return altreg;
1369 }
1370
1371 /* Undo polymorphism when a set of register types may be accepted. */
1372 if ((type == REG_TYPE_NDQ
1373 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1374 || (type == REG_TYPE_VFSD
1375 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1376 || (type == REG_TYPE_NSDQ
1377 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1378 || reg->type == REG_TYPE_NQ))
1379 || (type == REG_TYPE_MMXWC
1380 && (reg->type == REG_TYPE_MMXWCG)))
1381 type = (enum arm_reg_type) reg->type;
1382
1383 if (type != reg->type)
1384 return FAIL;
1385
1386 if (reg->neon)
1387 atype = *reg->neon;
1388
1389 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1390 {
1391 if ((atype.defined & NTA_HASTYPE) != 0)
1392 {
1393 first_error (_("can't redefine type for operand"));
1394 return FAIL;
1395 }
1396 atype.defined |= NTA_HASTYPE;
1397 atype.eltype = parsetype;
1398 }
1399
1400 if (skip_past_char (&str, '[') == SUCCESS)
1401 {
1402 if (type != REG_TYPE_VFD)
1403 {
1404 first_error (_("only D registers may be indexed"));
1405 return FAIL;
1406 }
1407
1408 if ((atype.defined & NTA_HASINDEX) != 0)
1409 {
1410 first_error (_("can't change index for operand"));
1411 return FAIL;
1412 }
1413
1414 atype.defined |= NTA_HASINDEX;
1415
1416 if (skip_past_char (&str, ']') == SUCCESS)
1417 atype.index = NEON_ALL_LANES;
1418 else
1419 {
1420 expressionS exp;
1421
1422 my_get_expression (&exp, &str, GE_NO_PREFIX);
1423
1424 if (exp.X_op != O_constant)
1425 {
1426 first_error (_("constant expression required"));
1427 return FAIL;
1428 }
1429
1430 if (skip_past_char (&str, ']') == FAIL)
1431 return FAIL;
1432
1433 atype.index = exp.X_add_number;
1434 }
1435 }
1436
1437 if (typeinfo)
1438 *typeinfo = atype;
1439
1440 if (rtype)
1441 *rtype = type;
1442
1443 *ccp = str;
1444
1445 return reg->number;
1446 }
1447
1448 /* Like arm_reg_parse, but allow allow the following extra features:
1449 - If RTYPE is non-zero, return the (possibly restricted) type of the
1450 register (e.g. Neon double or quad reg when either has been requested).
1451 - If this is a Neon vector type with additional type information, fill
1452 in the struct pointed to by VECTYPE (if non-NULL).
1453 This function will fault on encountering a scalar. */
1454
1455 static int
1456 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1457 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1458 {
1459 struct neon_typed_alias atype;
1460 char *str = *ccp;
1461 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1462
1463 if (reg == FAIL)
1464 return FAIL;
1465
1466 /* Do not allow a scalar (reg+index) to parse as a register. */
1467 if ((atype.defined & NTA_HASINDEX) != 0)
1468 {
1469 first_error (_("register operand expected, but got scalar"));
1470 return FAIL;
1471 }
1472
1473 if (vectype)
1474 *vectype = atype.eltype;
1475
1476 *ccp = str;
1477
1478 return reg;
1479 }
1480
1481 #define NEON_SCALAR_REG(X) ((X) >> 4)
1482 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1483
1484 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1485 have enough information to be able to do a good job bounds-checking. So, we
1486 just do easy checks here, and do further checks later. */
1487
1488 static int
1489 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1490 {
1491 int reg;
1492 char *str = *ccp;
1493 struct neon_typed_alias atype;
1494
1495 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1496
1497 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1498 return FAIL;
1499
1500 if (atype.index == NEON_ALL_LANES)
1501 {
1502 first_error (_("scalar must have an index"));
1503 return FAIL;
1504 }
1505 else if (atype.index >= 64 / elsize)
1506 {
1507 first_error (_("scalar index out of range"));
1508 return FAIL;
1509 }
1510
1511 if (type)
1512 *type = atype.eltype;
1513
1514 *ccp = str;
1515
1516 return reg * 16 + atype.index;
1517 }
1518
1519 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1520
1521 static long
1522 parse_reg_list (char ** strp)
1523 {
1524 char * str = * strp;
1525 long range = 0;
1526 int another_range;
1527
1528 /* We come back here if we get ranges concatenated by '+' or '|'. */
1529 do
1530 {
1531 another_range = 0;
1532
1533 if (*str == '{')
1534 {
1535 int in_range = 0;
1536 int cur_reg = -1;
1537
1538 str++;
1539 do
1540 {
1541 int reg;
1542
1543 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1544 {
1545 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1546 return FAIL;
1547 }
1548
1549 if (in_range)
1550 {
1551 int i;
1552
1553 if (reg <= cur_reg)
1554 {
1555 first_error (_("bad range in register list"));
1556 return FAIL;
1557 }
1558
1559 for (i = cur_reg + 1; i < reg; i++)
1560 {
1561 if (range & (1 << i))
1562 as_tsktsk
1563 (_("Warning: duplicated register (r%d) in register list"),
1564 i);
1565 else
1566 range |= 1 << i;
1567 }
1568 in_range = 0;
1569 }
1570
1571 if (range & (1 << reg))
1572 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1573 reg);
1574 else if (reg <= cur_reg)
1575 as_tsktsk (_("Warning: register range not in ascending order"));
1576
1577 range |= 1 << reg;
1578 cur_reg = reg;
1579 }
1580 while (skip_past_comma (&str) != FAIL
1581 || (in_range = 1, *str++ == '-'));
1582 str--;
1583
1584 if (*str++ != '}')
1585 {
1586 first_error (_("missing `}'"));
1587 return FAIL;
1588 }
1589 }
1590 else
1591 {
1592 expressionS exp;
1593
1594 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1595 return FAIL;
1596
1597 if (exp.X_op == O_constant)
1598 {
1599 if (exp.X_add_number
1600 != (exp.X_add_number & 0x0000ffff))
1601 {
1602 inst.error = _("invalid register mask");
1603 return FAIL;
1604 }
1605
1606 if ((range & exp.X_add_number) != 0)
1607 {
1608 int regno = range & exp.X_add_number;
1609
1610 regno &= -regno;
1611 regno = (1 << regno) - 1;
1612 as_tsktsk
1613 (_("Warning: duplicated register (r%d) in register list"),
1614 regno);
1615 }
1616
1617 range |= exp.X_add_number;
1618 }
1619 else
1620 {
1621 if (inst.reloc.type != 0)
1622 {
1623 inst.error = _("expression too complex");
1624 return FAIL;
1625 }
1626
1627 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1628 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1629 inst.reloc.pc_rel = 0;
1630 }
1631 }
1632
1633 if (*str == '|' || *str == '+')
1634 {
1635 str++;
1636 another_range = 1;
1637 }
1638 }
1639 while (another_range);
1640
1641 *strp = str;
1642 return range;
1643 }
1644
1645 /* Types of registers in a list. */
1646
1647 enum reg_list_els
1648 {
1649 REGLIST_VFP_S,
1650 REGLIST_VFP_D,
1651 REGLIST_NEON_D
1652 };
1653
1654 /* Parse a VFP register list. If the string is invalid return FAIL.
1655 Otherwise return the number of registers, and set PBASE to the first
1656 register. Parses registers of type ETYPE.
1657 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1658 - Q registers can be used to specify pairs of D registers
1659 - { } can be omitted from around a singleton register list
1660 FIXME: This is not implemented, as it would require backtracking in
1661 some cases, e.g.:
1662 vtbl.8 d3,d4,d5
1663 This could be done (the meaning isn't really ambiguous), but doesn't
1664 fit in well with the current parsing framework.
1665 - 32 D registers may be used (also true for VFPv3).
1666 FIXME: Types are ignored in these register lists, which is probably a
1667 bug. */
1668
1669 static int
1670 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1671 {
1672 char *str = *ccp;
1673 int base_reg;
1674 int new_base;
1675 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1676 int max_regs = 0;
1677 int count = 0;
1678 int warned = 0;
1679 unsigned long mask = 0;
1680 int i;
1681
1682 if (*str != '{')
1683 {
1684 inst.error = _("expecting {");
1685 return FAIL;
1686 }
1687
1688 str++;
1689
1690 switch (etype)
1691 {
1692 case REGLIST_VFP_S:
1693 regtype = REG_TYPE_VFS;
1694 max_regs = 32;
1695 break;
1696
1697 case REGLIST_VFP_D:
1698 regtype = REG_TYPE_VFD;
1699 break;
1700
1701 case REGLIST_NEON_D:
1702 regtype = REG_TYPE_NDQ;
1703 break;
1704 }
1705
1706 if (etype != REGLIST_VFP_S)
1707 {
1708 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1709 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1710 {
1711 max_regs = 32;
1712 if (thumb_mode)
1713 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1714 fpu_vfp_ext_d32);
1715 else
1716 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1717 fpu_vfp_ext_d32);
1718 }
1719 else
1720 max_regs = 16;
1721 }
1722
1723 base_reg = max_regs;
1724
1725 do
1726 {
1727 int setmask = 1, addregs = 1;
1728
1729 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1730
1731 if (new_base == FAIL)
1732 {
1733 first_error (_(reg_expected_msgs[regtype]));
1734 return FAIL;
1735 }
1736
1737 if (new_base >= max_regs)
1738 {
1739 first_error (_("register out of range in list"));
1740 return FAIL;
1741 }
1742
1743 /* Note: a value of 2 * n is returned for the register Q<n>. */
1744 if (regtype == REG_TYPE_NQ)
1745 {
1746 setmask = 3;
1747 addregs = 2;
1748 }
1749
1750 if (new_base < base_reg)
1751 base_reg = new_base;
1752
1753 if (mask & (setmask << new_base))
1754 {
1755 first_error (_("invalid register list"));
1756 return FAIL;
1757 }
1758
1759 if ((mask >> new_base) != 0 && ! warned)
1760 {
1761 as_tsktsk (_("register list not in ascending order"));
1762 warned = 1;
1763 }
1764
1765 mask |= setmask << new_base;
1766 count += addregs;
1767
1768 if (*str == '-') /* We have the start of a range expression */
1769 {
1770 int high_range;
1771
1772 str++;
1773
1774 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1775 == FAIL)
1776 {
1777 inst.error = gettext (reg_expected_msgs[regtype]);
1778 return FAIL;
1779 }
1780
1781 if (high_range >= max_regs)
1782 {
1783 first_error (_("register out of range in list"));
1784 return FAIL;
1785 }
1786
1787 if (regtype == REG_TYPE_NQ)
1788 high_range = high_range + 1;
1789
1790 if (high_range <= new_base)
1791 {
1792 inst.error = _("register range not in ascending order");
1793 return FAIL;
1794 }
1795
1796 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1797 {
1798 if (mask & (setmask << new_base))
1799 {
1800 inst.error = _("invalid register list");
1801 return FAIL;
1802 }
1803
1804 mask |= setmask << new_base;
1805 count += addregs;
1806 }
1807 }
1808 }
1809 while (skip_past_comma (&str) != FAIL);
1810
1811 str++;
1812
1813 /* Sanity check -- should have raised a parse error above. */
1814 if (count == 0 || count > max_regs)
1815 abort ();
1816
1817 *pbase = base_reg;
1818
1819 /* Final test -- the registers must be consecutive. */
1820 mask >>= base_reg;
1821 for (i = 0; i < count; i++)
1822 {
1823 if ((mask & (1u << i)) == 0)
1824 {
1825 inst.error = _("non-contiguous register range");
1826 return FAIL;
1827 }
1828 }
1829
1830 *ccp = str;
1831
1832 return count;
1833 }
1834
1835 /* True if two alias types are the same. */
1836
1837 static bfd_boolean
1838 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1839 {
1840 if (!a && !b)
1841 return TRUE;
1842
1843 if (!a || !b)
1844 return FALSE;
1845
1846 if (a->defined != b->defined)
1847 return FALSE;
1848
1849 if ((a->defined & NTA_HASTYPE) != 0
1850 && (a->eltype.type != b->eltype.type
1851 || a->eltype.size != b->eltype.size))
1852 return FALSE;
1853
1854 if ((a->defined & NTA_HASINDEX) != 0
1855 && (a->index != b->index))
1856 return FALSE;
1857
1858 return TRUE;
1859 }
1860
1861 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1862 The base register is put in *PBASE.
1863 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1864 the return value.
1865 The register stride (minus one) is put in bit 4 of the return value.
1866 Bits [6:5] encode the list length (minus one).
1867 The type of the list elements is put in *ELTYPE, if non-NULL. */
1868
1869 #define NEON_LANE(X) ((X) & 0xf)
1870 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1871 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1872
1873 static int
1874 parse_neon_el_struct_list (char **str, unsigned *pbase,
1875 struct neon_type_el *eltype)
1876 {
1877 char *ptr = *str;
1878 int base_reg = -1;
1879 int reg_incr = -1;
1880 int count = 0;
1881 int lane = -1;
1882 int leading_brace = 0;
1883 enum arm_reg_type rtype = REG_TYPE_NDQ;
1884 int addregs = 1;
1885 const char *const incr_error = _("register stride must be 1 or 2");
1886 const char *const type_error = _("mismatched element/structure types in list");
1887 struct neon_typed_alias firsttype;
1888
1889 if (skip_past_char (&ptr, '{') == SUCCESS)
1890 leading_brace = 1;
1891
1892 do
1893 {
1894 struct neon_typed_alias atype;
1895 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1896
1897 if (getreg == FAIL)
1898 {
1899 first_error (_(reg_expected_msgs[rtype]));
1900 return FAIL;
1901 }
1902
1903 if (base_reg == -1)
1904 {
1905 base_reg = getreg;
1906 if (rtype == REG_TYPE_NQ)
1907 {
1908 reg_incr = 1;
1909 addregs = 2;
1910 }
1911 firsttype = atype;
1912 }
1913 else if (reg_incr == -1)
1914 {
1915 reg_incr = getreg - base_reg;
1916 if (reg_incr < 1 || reg_incr > 2)
1917 {
1918 first_error (_(incr_error));
1919 return FAIL;
1920 }
1921 }
1922 else if (getreg != base_reg + reg_incr * count)
1923 {
1924 first_error (_(incr_error));
1925 return FAIL;
1926 }
1927
1928 if (! neon_alias_types_same (&atype, &firsttype))
1929 {
1930 first_error (_(type_error));
1931 return FAIL;
1932 }
1933
1934 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1935 modes. */
1936 if (ptr[0] == '-')
1937 {
1938 struct neon_typed_alias htype;
1939 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1940 if (lane == -1)
1941 lane = NEON_INTERLEAVE_LANES;
1942 else if (lane != NEON_INTERLEAVE_LANES)
1943 {
1944 first_error (_(type_error));
1945 return FAIL;
1946 }
1947 if (reg_incr == -1)
1948 reg_incr = 1;
1949 else if (reg_incr != 1)
1950 {
1951 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1952 return FAIL;
1953 }
1954 ptr++;
1955 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1956 if (hireg == FAIL)
1957 {
1958 first_error (_(reg_expected_msgs[rtype]));
1959 return FAIL;
1960 }
1961 if (! neon_alias_types_same (&htype, &firsttype))
1962 {
1963 first_error (_(type_error));
1964 return FAIL;
1965 }
1966 count += hireg + dregs - getreg;
1967 continue;
1968 }
1969
1970 /* If we're using Q registers, we can't use [] or [n] syntax. */
1971 if (rtype == REG_TYPE_NQ)
1972 {
1973 count += 2;
1974 continue;
1975 }
1976
1977 if ((atype.defined & NTA_HASINDEX) != 0)
1978 {
1979 if (lane == -1)
1980 lane = atype.index;
1981 else if (lane != atype.index)
1982 {
1983 first_error (_(type_error));
1984 return FAIL;
1985 }
1986 }
1987 else if (lane == -1)
1988 lane = NEON_INTERLEAVE_LANES;
1989 else if (lane != NEON_INTERLEAVE_LANES)
1990 {
1991 first_error (_(type_error));
1992 return FAIL;
1993 }
1994 count++;
1995 }
1996 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1997
1998 /* No lane set by [x]. We must be interleaving structures. */
1999 if (lane == -1)
2000 lane = NEON_INTERLEAVE_LANES;
2001
2002 /* Sanity check. */
2003 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2004 || (count > 1 && reg_incr == -1))
2005 {
2006 first_error (_("error parsing element/structure list"));
2007 return FAIL;
2008 }
2009
2010 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2011 {
2012 first_error (_("expected }"));
2013 return FAIL;
2014 }
2015
2016 if (reg_incr == -1)
2017 reg_incr = 1;
2018
2019 if (eltype)
2020 *eltype = firsttype.eltype;
2021
2022 *pbase = base_reg;
2023 *str = ptr;
2024
2025 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2026 }
2027
2028 /* Parse an explicit relocation suffix on an expression. This is
2029 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2030 arm_reloc_hsh contains no entries, so this function can only
2031 succeed if there is no () after the word. Returns -1 on error,
2032 BFD_RELOC_UNUSED if there wasn't any suffix. */
2033 static int
2034 parse_reloc (char **str)
2035 {
2036 struct reloc_entry *r;
2037 char *p, *q;
2038
2039 if (**str != '(')
2040 return BFD_RELOC_UNUSED;
2041
2042 p = *str + 1;
2043 q = p;
2044
2045 while (*q && *q != ')' && *q != ',')
2046 q++;
2047 if (*q != ')')
2048 return -1;
2049
2050 if ((r = (struct reloc_entry *)
2051 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2052 return -1;
2053
2054 *str = q + 1;
2055 return r->reloc;
2056 }
2057
2058 /* Directives: register aliases. */
2059
2060 static struct reg_entry *
2061 insert_reg_alias (char *str, int number, int type)
2062 {
2063 struct reg_entry *new_reg;
2064 const char *name;
2065
2066 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2067 {
2068 if (new_reg->builtin)
2069 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2070
2071 /* Only warn about a redefinition if it's not defined as the
2072 same register. */
2073 else if (new_reg->number != number || new_reg->type != type)
2074 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2075
2076 return NULL;
2077 }
2078
2079 name = xstrdup (str);
2080 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2081
2082 new_reg->name = name;
2083 new_reg->number = number;
2084 new_reg->type = type;
2085 new_reg->builtin = FALSE;
2086 new_reg->neon = NULL;
2087
2088 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2089 abort ();
2090
2091 return new_reg;
2092 }
2093
2094 static void
2095 insert_neon_reg_alias (char *str, int number, int type,
2096 struct neon_typed_alias *atype)
2097 {
2098 struct reg_entry *reg = insert_reg_alias (str, number, type);
2099
2100 if (!reg)
2101 {
2102 first_error (_("attempt to redefine typed alias"));
2103 return;
2104 }
2105
2106 if (atype)
2107 {
2108 reg->neon = (struct neon_typed_alias *)
2109 xmalloc (sizeof (struct neon_typed_alias));
2110 *reg->neon = *atype;
2111 }
2112 }
2113
2114 /* Look for the .req directive. This is of the form:
2115
2116 new_register_name .req existing_register_name
2117
2118 If we find one, or if it looks sufficiently like one that we want to
2119 handle any error here, return TRUE. Otherwise return FALSE. */
2120
2121 static bfd_boolean
2122 create_register_alias (char * newname, char *p)
2123 {
2124 struct reg_entry *old;
2125 char *oldname, *nbuf;
2126 size_t nlen;
2127
2128 /* The input scrubber ensures that whitespace after the mnemonic is
2129 collapsed to single spaces. */
2130 oldname = p;
2131 if (strncmp (oldname, " .req ", 6) != 0)
2132 return FALSE;
2133
2134 oldname += 6;
2135 if (*oldname == '\0')
2136 return FALSE;
2137
2138 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2139 if (!old)
2140 {
2141 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2142 return TRUE;
2143 }
2144
2145 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2146 the desired alias name, and p points to its end. If not, then
2147 the desired alias name is in the global original_case_string. */
2148 #ifdef TC_CASE_SENSITIVE
2149 nlen = p - newname;
2150 #else
2151 newname = original_case_string;
2152 nlen = strlen (newname);
2153 #endif
2154
2155 nbuf = (char *) alloca (nlen + 1);
2156 memcpy (nbuf, newname, nlen);
2157 nbuf[nlen] = '\0';
2158
2159 /* Create aliases under the new name as stated; an all-lowercase
2160 version of the new name; and an all-uppercase version of the new
2161 name. */
2162 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2163 {
2164 for (p = nbuf; *p; p++)
2165 *p = TOUPPER (*p);
2166
2167 if (strncmp (nbuf, newname, nlen))
2168 {
2169 /* If this attempt to create an additional alias fails, do not bother
2170 trying to create the all-lower case alias. We will fail and issue
2171 a second, duplicate error message. This situation arises when the
2172 programmer does something like:
2173 foo .req r0
2174 Foo .req r1
2175 The second .req creates the "Foo" alias but then fails to create
2176 the artificial FOO alias because it has already been created by the
2177 first .req. */
2178 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2179 return TRUE;
2180 }
2181
2182 for (p = nbuf; *p; p++)
2183 *p = TOLOWER (*p);
2184
2185 if (strncmp (nbuf, newname, nlen))
2186 insert_reg_alias (nbuf, old->number, old->type);
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Create a Neon typed/indexed register alias using directives, e.g.:
2193 X .dn d5.s32[1]
2194 Y .qn 6.s16
2195 Z .dn d7
2196 T .dn Z[0]
2197 These typed registers can be used instead of the types specified after the
2198 Neon mnemonic, so long as all operands given have types. Types can also be
2199 specified directly, e.g.:
2200 vadd d0.s32, d1.s32, d2.s32 */
2201
2202 static bfd_boolean
2203 create_neon_reg_alias (char *newname, char *p)
2204 {
2205 enum arm_reg_type basetype;
2206 struct reg_entry *basereg;
2207 struct reg_entry mybasereg;
2208 struct neon_type ntype;
2209 struct neon_typed_alias typeinfo;
2210 char *namebuf, *nameend;
2211 int namelen;
2212
2213 typeinfo.defined = 0;
2214 typeinfo.eltype.type = NT_invtype;
2215 typeinfo.eltype.size = -1;
2216 typeinfo.index = -1;
2217
2218 nameend = p;
2219
2220 if (strncmp (p, " .dn ", 5) == 0)
2221 basetype = REG_TYPE_VFD;
2222 else if (strncmp (p, " .qn ", 5) == 0)
2223 basetype = REG_TYPE_NQ;
2224 else
2225 return FALSE;
2226
2227 p += 5;
2228
2229 if (*p == '\0')
2230 return FALSE;
2231
2232 basereg = arm_reg_parse_multi (&p);
2233
2234 if (basereg && basereg->type != basetype)
2235 {
2236 as_bad (_("bad type for register"));
2237 return FALSE;
2238 }
2239
2240 if (basereg == NULL)
2241 {
2242 expressionS exp;
2243 /* Try parsing as an integer. */
2244 my_get_expression (&exp, &p, GE_NO_PREFIX);
2245 if (exp.X_op != O_constant)
2246 {
2247 as_bad (_("expression must be constant"));
2248 return FALSE;
2249 }
2250 basereg = &mybasereg;
2251 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2252 : exp.X_add_number;
2253 basereg->neon = 0;
2254 }
2255
2256 if (basereg->neon)
2257 typeinfo = *basereg->neon;
2258
2259 if (parse_neon_type (&ntype, &p) == SUCCESS)
2260 {
2261 /* We got a type. */
2262 if (typeinfo.defined & NTA_HASTYPE)
2263 {
2264 as_bad (_("can't redefine the type of a register alias"));
2265 return FALSE;
2266 }
2267
2268 typeinfo.defined |= NTA_HASTYPE;
2269 if (ntype.elems != 1)
2270 {
2271 as_bad (_("you must specify a single type only"));
2272 return FALSE;
2273 }
2274 typeinfo.eltype = ntype.el[0];
2275 }
2276
2277 if (skip_past_char (&p, '[') == SUCCESS)
2278 {
2279 expressionS exp;
2280 /* We got a scalar index. */
2281
2282 if (typeinfo.defined & NTA_HASINDEX)
2283 {
2284 as_bad (_("can't redefine the index of a scalar alias"));
2285 return FALSE;
2286 }
2287
2288 my_get_expression (&exp, &p, GE_NO_PREFIX);
2289
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("scalar index must be constant"));
2293 return FALSE;
2294 }
2295
2296 typeinfo.defined |= NTA_HASINDEX;
2297 typeinfo.index = exp.X_add_number;
2298
2299 if (skip_past_char (&p, ']') == FAIL)
2300 {
2301 as_bad (_("expecting ]"));
2302 return FALSE;
2303 }
2304 }
2305
2306 namelen = nameend - newname;
2307 namebuf = (char *) alloca (namelen + 1);
2308 strncpy (namebuf, newname, namelen);
2309 namebuf[namelen] = '\0';
2310
2311 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2312 typeinfo.defined != 0 ? &typeinfo : NULL);
2313
2314 /* Insert name in all uppercase. */
2315 for (p = namebuf; *p; p++)
2316 *p = TOUPPER (*p);
2317
2318 if (strncmp (namebuf, newname, namelen))
2319 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2320 typeinfo.defined != 0 ? &typeinfo : NULL);
2321
2322 /* Insert name in all lowercase. */
2323 for (p = namebuf; *p; p++)
2324 *p = TOLOWER (*p);
2325
2326 if (strncmp (namebuf, newname, namelen))
2327 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2328 typeinfo.defined != 0 ? &typeinfo : NULL);
2329
2330 return TRUE;
2331 }
2332
2333 /* Should never be called, as .req goes between the alias and the
2334 register name, not at the beginning of the line. */
2335
2336 static void
2337 s_req (int a ATTRIBUTE_UNUSED)
2338 {
2339 as_bad (_("invalid syntax for .req directive"));
2340 }
2341
2342 static void
2343 s_dn (int a ATTRIBUTE_UNUSED)
2344 {
2345 as_bad (_("invalid syntax for .dn directive"));
2346 }
2347
2348 static void
2349 s_qn (int a ATTRIBUTE_UNUSED)
2350 {
2351 as_bad (_("invalid syntax for .qn directive"));
2352 }
2353
2354 /* The .unreq directive deletes an alias which was previously defined
2355 by .req. For example:
2356
2357 my_alias .req r11
2358 .unreq my_alias */
2359
2360 static void
2361 s_unreq (int a ATTRIBUTE_UNUSED)
2362 {
2363 char * name;
2364 char saved_char;
2365
2366 name = input_line_pointer;
2367
2368 while (*input_line_pointer != 0
2369 && *input_line_pointer != ' '
2370 && *input_line_pointer != '\n')
2371 ++input_line_pointer;
2372
2373 saved_char = *input_line_pointer;
2374 *input_line_pointer = 0;
2375
2376 if (!*name)
2377 as_bad (_("invalid syntax for .unreq directive"));
2378 else
2379 {
2380 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2381 name);
2382
2383 if (!reg)
2384 as_bad (_("unknown register alias '%s'"), name);
2385 else if (reg->builtin)
2386 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2387 name);
2388 else
2389 {
2390 char * p;
2391 char * nbuf;
2392
2393 hash_delete (arm_reg_hsh, name, FALSE);
2394 free ((char *) reg->name);
2395 if (reg->neon)
2396 free (reg->neon);
2397 free (reg);
2398
2399 /* Also locate the all upper case and all lower case versions.
2400 Do not complain if we cannot find one or the other as it
2401 was probably deleted above. */
2402
2403 nbuf = strdup (name);
2404 for (p = nbuf; *p; p++)
2405 *p = TOUPPER (*p);
2406 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2407 if (reg)
2408 {
2409 hash_delete (arm_reg_hsh, nbuf, FALSE);
2410 free ((char *) reg->name);
2411 if (reg->neon)
2412 free (reg->neon);
2413 free (reg);
2414 }
2415
2416 for (p = nbuf; *p; p++)
2417 *p = TOLOWER (*p);
2418 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2419 if (reg)
2420 {
2421 hash_delete (arm_reg_hsh, nbuf, FALSE);
2422 free ((char *) reg->name);
2423 if (reg->neon)
2424 free (reg->neon);
2425 free (reg);
2426 }
2427
2428 free (nbuf);
2429 }
2430 }
2431
2432 *input_line_pointer = saved_char;
2433 demand_empty_rest_of_line ();
2434 }
2435
2436 /* Directives: Instruction set selection. */
2437
2438 #ifdef OBJ_ELF
2439 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2440 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2441 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2442 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2443
2444 /* Create a new mapping symbol for the transition to STATE. */
2445
2446 static void
2447 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2448 {
2449 symbolS * symbolP;
2450 const char * symname;
2451 int type;
2452
2453 switch (state)
2454 {
2455 case MAP_DATA:
2456 symname = "$d";
2457 type = BSF_NO_FLAGS;
2458 break;
2459 case MAP_ARM:
2460 symname = "$a";
2461 type = BSF_NO_FLAGS;
2462 break;
2463 case MAP_THUMB:
2464 symname = "$t";
2465 type = BSF_NO_FLAGS;
2466 break;
2467 default:
2468 abort ();
2469 }
2470
2471 symbolP = symbol_new (symname, now_seg, value, frag);
2472 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2473
2474 switch (state)
2475 {
2476 case MAP_ARM:
2477 THUMB_SET_FUNC (symbolP, 0);
2478 ARM_SET_THUMB (symbolP, 0);
2479 ARM_SET_INTERWORK (symbolP, support_interwork);
2480 break;
2481
2482 case MAP_THUMB:
2483 THUMB_SET_FUNC (symbolP, 1);
2484 ARM_SET_THUMB (symbolP, 1);
2485 ARM_SET_INTERWORK (symbolP, support_interwork);
2486 break;
2487
2488 case MAP_DATA:
2489 default:
2490 break;
2491 }
2492
2493 /* Save the mapping symbols for future reference. Also check that
2494 we do not place two mapping symbols at the same offset within a
2495 frag. We'll handle overlap between frags in
2496 check_mapping_symbols. */
2497 if (value == 0)
2498 {
2499 know (frag->tc_frag_data.first_map == NULL);
2500 frag->tc_frag_data.first_map = symbolP;
2501 }
2502 if (frag->tc_frag_data.last_map != NULL)
2503 know (S_GET_VALUE (frag->tc_frag_data.last_map) < S_GET_VALUE (symbolP));
2504 frag->tc_frag_data.last_map = symbolP;
2505 }
2506
2507 /* We must sometimes convert a region marked as code to data during
2508 code alignment, if an odd number of bytes have to be padded. The
2509 code mapping symbol is pushed to an aligned address. */
2510
2511 static void
2512 insert_data_mapping_symbol (enum mstate state,
2513 valueT value, fragS *frag, offsetT bytes)
2514 {
2515 /* If there was already a mapping symbol, remove it. */
2516 if (frag->tc_frag_data.last_map != NULL
2517 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2518 {
2519 symbolS *symp = frag->tc_frag_data.last_map;
2520
2521 if (value == 0)
2522 {
2523 know (frag->tc_frag_data.first_map == symp);
2524 frag->tc_frag_data.first_map = NULL;
2525 }
2526 frag->tc_frag_data.last_map = NULL;
2527 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2528 }
2529
2530 make_mapping_symbol (MAP_DATA, value, frag);
2531 make_mapping_symbol (state, value + bytes, frag);
2532 }
2533
2534 static void mapping_state_2 (enum mstate state, int max_chars);
2535
2536 /* Set the mapping state to STATE. Only call this when about to
2537 emit some STATE bytes to the file. */
2538
2539 void
2540 mapping_state (enum mstate state)
2541 {
2542 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2543
2544 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2545
2546 if (mapstate == state)
2547 /* The mapping symbol has already been emitted.
2548 There is nothing else to do. */
2549 return;
2550 else if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2551 /* This case will be evaluated later in the next else. */
2552 return;
2553 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2554 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2555 {
2556 /* Only add the symbol if the offset is > 0:
2557 if we're at the first frag, check it's size > 0;
2558 if we're not at the first frag, then for sure
2559 the offset is > 0. */
2560 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2561 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2562
2563 if (add_symbol)
2564 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2565 }
2566
2567 mapping_state_2 (state, 0);
2568 #undef TRANSITION
2569 }
2570
2571 /* Same as mapping_state, but MAX_CHARS bytes have already been
2572 allocated. Put the mapping symbol that far back. */
2573
2574 static void
2575 mapping_state_2 (enum mstate state, int max_chars)
2576 {
2577 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2578
2579 if (!SEG_NORMAL (now_seg))
2580 return;
2581
2582 if (mapstate == state)
2583 /* The mapping symbol has already been emitted.
2584 There is nothing else to do. */
2585 return;
2586
2587 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2588 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2589 }
2590 #else
2591 #define mapping_state(x) ((void)0)
2592 #define mapping_state_2(x, y) ((void)0)
2593 #endif
2594
2595 /* Find the real, Thumb encoded start of a Thumb function. */
2596
2597 #ifdef OBJ_COFF
2598 static symbolS *
2599 find_real_start (symbolS * symbolP)
2600 {
2601 char * real_start;
2602 const char * name = S_GET_NAME (symbolP);
2603 symbolS * new_target;
2604
2605 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2606 #define STUB_NAME ".real_start_of"
2607
2608 if (name == NULL)
2609 abort ();
2610
2611 /* The compiler may generate BL instructions to local labels because
2612 it needs to perform a branch to a far away location. These labels
2613 do not have a corresponding ".real_start_of" label. We check
2614 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2615 the ".real_start_of" convention for nonlocal branches. */
2616 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2617 return symbolP;
2618
2619 real_start = ACONCAT ((STUB_NAME, name, NULL));
2620 new_target = symbol_find (real_start);
2621
2622 if (new_target == NULL)
2623 {
2624 as_warn (_("Failed to find real start of function: %s\n"), name);
2625 new_target = symbolP;
2626 }
2627
2628 return new_target;
2629 }
2630 #endif
2631
2632 static void
2633 opcode_select (int width)
2634 {
2635 switch (width)
2636 {
2637 case 16:
2638 if (! thumb_mode)
2639 {
2640 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2641 as_bad (_("selected processor does not support THUMB opcodes"));
2642
2643 thumb_mode = 1;
2644 /* No need to force the alignment, since we will have been
2645 coming from ARM mode, which is word-aligned. */
2646 record_alignment (now_seg, 1);
2647 }
2648 break;
2649
2650 case 32:
2651 if (thumb_mode)
2652 {
2653 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2654 as_bad (_("selected processor does not support ARM opcodes"));
2655
2656 thumb_mode = 0;
2657
2658 if (!need_pass_2)
2659 frag_align (2, 0, 0);
2660
2661 record_alignment (now_seg, 1);
2662 }
2663 break;
2664
2665 default:
2666 as_bad (_("invalid instruction size selected (%d)"), width);
2667 }
2668 }
2669
2670 static void
2671 s_arm (int ignore ATTRIBUTE_UNUSED)
2672 {
2673 opcode_select (32);
2674 demand_empty_rest_of_line ();
2675 }
2676
2677 static void
2678 s_thumb (int ignore ATTRIBUTE_UNUSED)
2679 {
2680 opcode_select (16);
2681 demand_empty_rest_of_line ();
2682 }
2683
2684 static void
2685 s_code (int unused ATTRIBUTE_UNUSED)
2686 {
2687 int temp;
2688
2689 temp = get_absolute_expression ();
2690 switch (temp)
2691 {
2692 case 16:
2693 case 32:
2694 opcode_select (temp);
2695 break;
2696
2697 default:
2698 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2699 }
2700 }
2701
2702 static void
2703 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2704 {
2705 /* If we are not already in thumb mode go into it, EVEN if
2706 the target processor does not support thumb instructions.
2707 This is used by gcc/config/arm/lib1funcs.asm for example
2708 to compile interworking support functions even if the
2709 target processor should not support interworking. */
2710 if (! thumb_mode)
2711 {
2712 thumb_mode = 2;
2713 record_alignment (now_seg, 1);
2714 }
2715
2716 demand_empty_rest_of_line ();
2717 }
2718
2719 static void
2720 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2721 {
2722 s_thumb (0);
2723
2724 /* The following label is the name/address of the start of a Thumb function.
2725 We need to know this for the interworking support. */
2726 label_is_thumb_function_name = TRUE;
2727 }
2728
2729 /* Perform a .set directive, but also mark the alias as
2730 being a thumb function. */
2731
2732 static void
2733 s_thumb_set (int equiv)
2734 {
2735 /* XXX the following is a duplicate of the code for s_set() in read.c
2736 We cannot just call that code as we need to get at the symbol that
2737 is created. */
2738 char * name;
2739 char delim;
2740 char * end_name;
2741 symbolS * symbolP;
2742
2743 /* Especial apologies for the random logic:
2744 This just grew, and could be parsed much more simply!
2745 Dean - in haste. */
2746 name = input_line_pointer;
2747 delim = get_symbol_end ();
2748 end_name = input_line_pointer;
2749 *end_name = delim;
2750
2751 if (*input_line_pointer != ',')
2752 {
2753 *end_name = 0;
2754 as_bad (_("expected comma after name \"%s\""), name);
2755 *end_name = delim;
2756 ignore_rest_of_line ();
2757 return;
2758 }
2759
2760 input_line_pointer++;
2761 *end_name = 0;
2762
2763 if (name[0] == '.' && name[1] == '\0')
2764 {
2765 /* XXX - this should not happen to .thumb_set. */
2766 abort ();
2767 }
2768
2769 if ((symbolP = symbol_find (name)) == NULL
2770 && (symbolP = md_undefined_symbol (name)) == NULL)
2771 {
2772 #ifndef NO_LISTING
2773 /* When doing symbol listings, play games with dummy fragments living
2774 outside the normal fragment chain to record the file and line info
2775 for this symbol. */
2776 if (listing & LISTING_SYMBOLS)
2777 {
2778 extern struct list_info_struct * listing_tail;
2779 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2780
2781 memset (dummy_frag, 0, sizeof (fragS));
2782 dummy_frag->fr_type = rs_fill;
2783 dummy_frag->line = listing_tail;
2784 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2785 dummy_frag->fr_symbol = symbolP;
2786 }
2787 else
2788 #endif
2789 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2790
2791 #ifdef OBJ_COFF
2792 /* "set" symbols are local unless otherwise specified. */
2793 SF_SET_LOCAL (symbolP);
2794 #endif /* OBJ_COFF */
2795 } /* Make a new symbol. */
2796
2797 symbol_table_insert (symbolP);
2798
2799 * end_name = delim;
2800
2801 if (equiv
2802 && S_IS_DEFINED (symbolP)
2803 && S_GET_SEGMENT (symbolP) != reg_section)
2804 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2805
2806 pseudo_set (symbolP);
2807
2808 demand_empty_rest_of_line ();
2809
2810 /* XXX Now we come to the Thumb specific bit of code. */
2811
2812 THUMB_SET_FUNC (symbolP, 1);
2813 ARM_SET_THUMB (symbolP, 1);
2814 #if defined OBJ_ELF || defined OBJ_COFF
2815 ARM_SET_INTERWORK (symbolP, support_interwork);
2816 #endif
2817 }
2818
2819 /* Directives: Mode selection. */
2820
2821 /* .syntax [unified|divided] - choose the new unified syntax
2822 (same for Arm and Thumb encoding, modulo slight differences in what
2823 can be represented) or the old divergent syntax for each mode. */
2824 static void
2825 s_syntax (int unused ATTRIBUTE_UNUSED)
2826 {
2827 char *name, delim;
2828
2829 name = input_line_pointer;
2830 delim = get_symbol_end ();
2831
2832 if (!strcasecmp (name, "unified"))
2833 unified_syntax = TRUE;
2834 else if (!strcasecmp (name, "divided"))
2835 unified_syntax = FALSE;
2836 else
2837 {
2838 as_bad (_("unrecognized syntax mode \"%s\""), name);
2839 return;
2840 }
2841 *input_line_pointer = delim;
2842 demand_empty_rest_of_line ();
2843 }
2844
2845 /* Directives: sectioning and alignment. */
2846
2847 /* Same as s_align_ptwo but align 0 => align 2. */
2848
2849 static void
2850 s_align (int unused ATTRIBUTE_UNUSED)
2851 {
2852 int temp;
2853 bfd_boolean fill_p;
2854 long temp_fill;
2855 long max_alignment = 15;
2856
2857 temp = get_absolute_expression ();
2858 if (temp > max_alignment)
2859 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2860 else if (temp < 0)
2861 {
2862 as_bad (_("alignment negative. 0 assumed."));
2863 temp = 0;
2864 }
2865
2866 if (*input_line_pointer == ',')
2867 {
2868 input_line_pointer++;
2869 temp_fill = get_absolute_expression ();
2870 fill_p = TRUE;
2871 }
2872 else
2873 {
2874 fill_p = FALSE;
2875 temp_fill = 0;
2876 }
2877
2878 if (!temp)
2879 temp = 2;
2880
2881 /* Only make a frag if we HAVE to. */
2882 if (temp && !need_pass_2)
2883 {
2884 if (!fill_p && subseg_text_p (now_seg))
2885 frag_align_code (temp, 0);
2886 else
2887 frag_align (temp, (int) temp_fill, 0);
2888 }
2889 demand_empty_rest_of_line ();
2890
2891 record_alignment (now_seg, temp);
2892 }
2893
2894 static void
2895 s_bss (int ignore ATTRIBUTE_UNUSED)
2896 {
2897 /* We don't support putting frags in the BSS segment, we fake it by
2898 marking in_bss, then looking at s_skip for clues. */
2899 subseg_set (bss_section, 0);
2900 demand_empty_rest_of_line ();
2901
2902 #ifdef md_elf_section_change_hook
2903 md_elf_section_change_hook ();
2904 #endif
2905 }
2906
2907 static void
2908 s_even (int ignore ATTRIBUTE_UNUSED)
2909 {
2910 /* Never make frag if expect extra pass. */
2911 if (!need_pass_2)
2912 frag_align (1, 0, 0);
2913
2914 record_alignment (now_seg, 1);
2915
2916 demand_empty_rest_of_line ();
2917 }
2918
2919 /* Directives: Literal pools. */
2920
2921 static literal_pool *
2922 find_literal_pool (void)
2923 {
2924 literal_pool * pool;
2925
2926 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2927 {
2928 if (pool->section == now_seg
2929 && pool->sub_section == now_subseg)
2930 break;
2931 }
2932
2933 return pool;
2934 }
2935
2936 static literal_pool *
2937 find_or_make_literal_pool (void)
2938 {
2939 /* Next literal pool ID number. */
2940 static unsigned int latest_pool_num = 1;
2941 literal_pool * pool;
2942
2943 pool = find_literal_pool ();
2944
2945 if (pool == NULL)
2946 {
2947 /* Create a new pool. */
2948 pool = (literal_pool *) xmalloc (sizeof (* pool));
2949 if (! pool)
2950 return NULL;
2951
2952 pool->next_free_entry = 0;
2953 pool->section = now_seg;
2954 pool->sub_section = now_subseg;
2955 pool->next = list_of_pools;
2956 pool->symbol = NULL;
2957
2958 /* Add it to the list. */
2959 list_of_pools = pool;
2960 }
2961
2962 /* New pools, and emptied pools, will have a NULL symbol. */
2963 if (pool->symbol == NULL)
2964 {
2965 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2966 (valueT) 0, &zero_address_frag);
2967 pool->id = latest_pool_num ++;
2968 }
2969
2970 /* Done. */
2971 return pool;
2972 }
2973
2974 /* Add the literal in the global 'inst'
2975 structure to the relevant literal pool. */
2976
2977 static int
2978 add_to_lit_pool (void)
2979 {
2980 literal_pool * pool;
2981 unsigned int entry;
2982
2983 pool = find_or_make_literal_pool ();
2984
2985 /* Check if this literal value is already in the pool. */
2986 for (entry = 0; entry < pool->next_free_entry; entry ++)
2987 {
2988 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2989 && (inst.reloc.exp.X_op == O_constant)
2990 && (pool->literals[entry].X_add_number
2991 == inst.reloc.exp.X_add_number)
2992 && (pool->literals[entry].X_unsigned
2993 == inst.reloc.exp.X_unsigned))
2994 break;
2995
2996 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2997 && (inst.reloc.exp.X_op == O_symbol)
2998 && (pool->literals[entry].X_add_number
2999 == inst.reloc.exp.X_add_number)
3000 && (pool->literals[entry].X_add_symbol
3001 == inst.reloc.exp.X_add_symbol)
3002 && (pool->literals[entry].X_op_symbol
3003 == inst.reloc.exp.X_op_symbol))
3004 break;
3005 }
3006
3007 /* Do we need to create a new entry? */
3008 if (entry == pool->next_free_entry)
3009 {
3010 if (entry >= MAX_LITERAL_POOL_SIZE)
3011 {
3012 inst.error = _("literal pool overflow");
3013 return FAIL;
3014 }
3015
3016 pool->literals[entry] = inst.reloc.exp;
3017 pool->next_free_entry += 1;
3018 }
3019
3020 inst.reloc.exp.X_op = O_symbol;
3021 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3022 inst.reloc.exp.X_add_symbol = pool->symbol;
3023
3024 return SUCCESS;
3025 }
3026
3027 /* Can't use symbol_new here, so have to create a symbol and then at
3028 a later date assign it a value. Thats what these functions do. */
3029
3030 static void
3031 symbol_locate (symbolS * symbolP,
3032 const char * name, /* It is copied, the caller can modify. */
3033 segT segment, /* Segment identifier (SEG_<something>). */
3034 valueT valu, /* Symbol value. */
3035 fragS * frag) /* Associated fragment. */
3036 {
3037 unsigned int name_length;
3038 char * preserved_copy_of_name;
3039
3040 name_length = strlen (name) + 1; /* +1 for \0. */
3041 obstack_grow (&notes, name, name_length);
3042 preserved_copy_of_name = (char *) obstack_finish (&notes);
3043
3044 #ifdef tc_canonicalize_symbol_name
3045 preserved_copy_of_name =
3046 tc_canonicalize_symbol_name (preserved_copy_of_name);
3047 #endif
3048
3049 S_SET_NAME (symbolP, preserved_copy_of_name);
3050
3051 S_SET_SEGMENT (symbolP, segment);
3052 S_SET_VALUE (symbolP, valu);
3053 symbol_clear_list_pointers (symbolP);
3054
3055 symbol_set_frag (symbolP, frag);
3056
3057 /* Link to end of symbol chain. */
3058 {
3059 extern int symbol_table_frozen;
3060
3061 if (symbol_table_frozen)
3062 abort ();
3063 }
3064
3065 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3066
3067 obj_symbol_new_hook (symbolP);
3068
3069 #ifdef tc_symbol_new_hook
3070 tc_symbol_new_hook (symbolP);
3071 #endif
3072
3073 #ifdef DEBUG_SYMS
3074 verify_symbol_chain (symbol_rootP, symbol_lastP);
3075 #endif /* DEBUG_SYMS */
3076 }
3077
3078
3079 static void
3080 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3081 {
3082 unsigned int entry;
3083 literal_pool * pool;
3084 char sym_name[20];
3085
3086 pool = find_literal_pool ();
3087 if (pool == NULL
3088 || pool->symbol == NULL
3089 || pool->next_free_entry == 0)
3090 return;
3091
3092 mapping_state (MAP_DATA);
3093
3094 /* Align pool as you have word accesses.
3095 Only make a frag if we have to. */
3096 if (!need_pass_2)
3097 frag_align (2, 0, 0);
3098
3099 record_alignment (now_seg, 2);
3100
3101 sprintf (sym_name, "$$lit_\002%x", pool->id);
3102
3103 symbol_locate (pool->symbol, sym_name, now_seg,
3104 (valueT) frag_now_fix (), frag_now);
3105 symbol_table_insert (pool->symbol);
3106
3107 ARM_SET_THUMB (pool->symbol, thumb_mode);
3108
3109 #if defined OBJ_COFF || defined OBJ_ELF
3110 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3111 #endif
3112
3113 for (entry = 0; entry < pool->next_free_entry; entry ++)
3114 /* First output the expression in the instruction to the pool. */
3115 emit_expr (&(pool->literals[entry]), 4); /* .word */
3116
3117 /* Mark the pool as empty. */
3118 pool->next_free_entry = 0;
3119 pool->symbol = NULL;
3120 }
3121
3122 #ifdef OBJ_ELF
3123 /* Forward declarations for functions below, in the MD interface
3124 section. */
3125 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3126 static valueT create_unwind_entry (int);
3127 static void start_unwind_section (const segT, int);
3128 static void add_unwind_opcode (valueT, int);
3129 static void flush_pending_unwind (void);
3130
3131 /* Directives: Data. */
3132
3133 static void
3134 s_arm_elf_cons (int nbytes)
3135 {
3136 expressionS exp;
3137
3138 #ifdef md_flush_pending_output
3139 md_flush_pending_output ();
3140 #endif
3141
3142 if (is_it_end_of_statement ())
3143 {
3144 demand_empty_rest_of_line ();
3145 return;
3146 }
3147
3148 #ifdef md_cons_align
3149 md_cons_align (nbytes);
3150 #endif
3151
3152 mapping_state (MAP_DATA);
3153 do
3154 {
3155 int reloc;
3156 char *base = input_line_pointer;
3157
3158 expression (& exp);
3159
3160 if (exp.X_op != O_symbol)
3161 emit_expr (&exp, (unsigned int) nbytes);
3162 else
3163 {
3164 char *before_reloc = input_line_pointer;
3165 reloc = parse_reloc (&input_line_pointer);
3166 if (reloc == -1)
3167 {
3168 as_bad (_("unrecognized relocation suffix"));
3169 ignore_rest_of_line ();
3170 return;
3171 }
3172 else if (reloc == BFD_RELOC_UNUSED)
3173 emit_expr (&exp, (unsigned int) nbytes);
3174 else
3175 {
3176 reloc_howto_type *howto = (reloc_howto_type *)
3177 bfd_reloc_type_lookup (stdoutput,
3178 (bfd_reloc_code_real_type) reloc);
3179 int size = bfd_get_reloc_size (howto);
3180
3181 if (reloc == BFD_RELOC_ARM_PLT32)
3182 {
3183 as_bad (_("(plt) is only valid on branch targets"));
3184 reloc = BFD_RELOC_UNUSED;
3185 size = 0;
3186 }
3187
3188 if (size > nbytes)
3189 as_bad (_("%s relocations do not fit in %d bytes"),
3190 howto->name, nbytes);
3191 else
3192 {
3193 /* We've parsed an expression stopping at O_symbol.
3194 But there may be more expression left now that we
3195 have parsed the relocation marker. Parse it again.
3196 XXX Surely there is a cleaner way to do this. */
3197 char *p = input_line_pointer;
3198 int offset;
3199 char *save_buf = (char *) alloca (input_line_pointer - base);
3200 memcpy (save_buf, base, input_line_pointer - base);
3201 memmove (base + (input_line_pointer - before_reloc),
3202 base, before_reloc - base);
3203
3204 input_line_pointer = base + (input_line_pointer-before_reloc);
3205 expression (&exp);
3206 memcpy (base, save_buf, p - base);
3207
3208 offset = nbytes - size;
3209 p = frag_more ((int) nbytes);
3210 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3211 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3212 }
3213 }
3214 }
3215 }
3216 while (*input_line_pointer++ == ',');
3217
3218 /* Put terminator back into stream. */
3219 input_line_pointer --;
3220 demand_empty_rest_of_line ();
3221 }
3222
3223 /* Emit an expression containing a 32-bit thumb instruction.
3224 Implementation based on put_thumb32_insn. */
3225
3226 static void
3227 emit_thumb32_expr (expressionS * exp)
3228 {
3229 expressionS exp_high = *exp;
3230
3231 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3232 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3233 exp->X_add_number &= 0xffff;
3234 emit_expr (exp, (unsigned int) THUMB_SIZE);
3235 }
3236
3237 /* Guess the instruction size based on the opcode. */
3238
3239 static int
3240 thumb_insn_size (int opcode)
3241 {
3242 if ((unsigned int) opcode < 0xe800u)
3243 return 2;
3244 else if ((unsigned int) opcode >= 0xe8000000u)
3245 return 4;
3246 else
3247 return 0;
3248 }
3249
3250 static bfd_boolean
3251 emit_insn (expressionS *exp, int nbytes)
3252 {
3253 int size = 0;
3254
3255 if (exp->X_op == O_constant)
3256 {
3257 size = nbytes;
3258
3259 if (size == 0)
3260 size = thumb_insn_size (exp->X_add_number);
3261
3262 if (size != 0)
3263 {
3264 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3265 {
3266 as_bad (_(".inst.n operand too big. "\
3267 "Use .inst.w instead"));
3268 size = 0;
3269 }
3270 else
3271 {
3272 if (now_it.state == AUTOMATIC_IT_BLOCK)
3273 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3274 else
3275 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3276
3277 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3278 emit_thumb32_expr (exp);
3279 else
3280 emit_expr (exp, (unsigned int) size);
3281
3282 it_fsm_post_encode ();
3283 }
3284 }
3285 else
3286 as_bad (_("cannot determine Thumb instruction size. " \
3287 "Use .inst.n/.inst.w instead"));
3288 }
3289 else
3290 as_bad (_("constant expression required"));
3291
3292 return (size != 0);
3293 }
3294
3295 /* Like s_arm_elf_cons but do not use md_cons_align and
3296 set the mapping state to MAP_ARM/MAP_THUMB. */
3297
3298 static void
3299 s_arm_elf_inst (int nbytes)
3300 {
3301 if (is_it_end_of_statement ())
3302 {
3303 demand_empty_rest_of_line ();
3304 return;
3305 }
3306
3307 /* Calling mapping_state () here will not change ARM/THUMB,
3308 but will ensure not to be in DATA state. */
3309
3310 if (thumb_mode)
3311 mapping_state (MAP_THUMB);
3312 else
3313 {
3314 if (nbytes != 0)
3315 {
3316 as_bad (_("width suffixes are invalid in ARM mode"));
3317 ignore_rest_of_line ();
3318 return;
3319 }
3320
3321 nbytes = 4;
3322
3323 mapping_state (MAP_ARM);
3324 }
3325
3326 do
3327 {
3328 expressionS exp;
3329
3330 expression (& exp);
3331
3332 if (! emit_insn (& exp, nbytes))
3333 {
3334 ignore_rest_of_line ();
3335 return;
3336 }
3337 }
3338 while (*input_line_pointer++ == ',');
3339
3340 /* Put terminator back into stream. */
3341 input_line_pointer --;
3342 demand_empty_rest_of_line ();
3343 }
3344
3345 /* Parse a .rel31 directive. */
3346
3347 static void
3348 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3349 {
3350 expressionS exp;
3351 char *p;
3352 valueT highbit;
3353
3354 highbit = 0;
3355 if (*input_line_pointer == '1')
3356 highbit = 0x80000000;
3357 else if (*input_line_pointer != '0')
3358 as_bad (_("expected 0 or 1"));
3359
3360 input_line_pointer++;
3361 if (*input_line_pointer != ',')
3362 as_bad (_("missing comma"));
3363 input_line_pointer++;
3364
3365 #ifdef md_flush_pending_output
3366 md_flush_pending_output ();
3367 #endif
3368
3369 #ifdef md_cons_align
3370 md_cons_align (4);
3371 #endif
3372
3373 mapping_state (MAP_DATA);
3374
3375 expression (&exp);
3376
3377 p = frag_more (4);
3378 md_number_to_chars (p, highbit, 4);
3379 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3380 BFD_RELOC_ARM_PREL31);
3381
3382 demand_empty_rest_of_line ();
3383 }
3384
3385 /* Directives: AEABI stack-unwind tables. */
3386
3387 /* Parse an unwind_fnstart directive. Simply records the current location. */
3388
3389 static void
3390 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3391 {
3392 demand_empty_rest_of_line ();
3393 if (unwind.proc_start)
3394 {
3395 as_bad (_("duplicate .fnstart directive"));
3396 return;
3397 }
3398
3399 /* Mark the start of the function. */
3400 unwind.proc_start = expr_build_dot ();
3401
3402 /* Reset the rest of the unwind info. */
3403 unwind.opcode_count = 0;
3404 unwind.table_entry = NULL;
3405 unwind.personality_routine = NULL;
3406 unwind.personality_index = -1;
3407 unwind.frame_size = 0;
3408 unwind.fp_offset = 0;
3409 unwind.fp_reg = REG_SP;
3410 unwind.fp_used = 0;
3411 unwind.sp_restored = 0;
3412 }
3413
3414
3415 /* Parse a handlerdata directive. Creates the exception handling table entry
3416 for the function. */
3417
3418 static void
3419 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3420 {
3421 demand_empty_rest_of_line ();
3422 if (!unwind.proc_start)
3423 as_bad (MISSING_FNSTART);
3424
3425 if (unwind.table_entry)
3426 as_bad (_("duplicate .handlerdata directive"));
3427
3428 create_unwind_entry (1);
3429 }
3430
3431 /* Parse an unwind_fnend directive. Generates the index table entry. */
3432
3433 static void
3434 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3435 {
3436 long where;
3437 char *ptr;
3438 valueT val;
3439 unsigned int marked_pr_dependency;
3440
3441 demand_empty_rest_of_line ();
3442
3443 if (!unwind.proc_start)
3444 {
3445 as_bad (_(".fnend directive without .fnstart"));
3446 return;
3447 }
3448
3449 /* Add eh table entry. */
3450 if (unwind.table_entry == NULL)
3451 val = create_unwind_entry (0);
3452 else
3453 val = 0;
3454
3455 /* Add index table entry. This is two words. */
3456 start_unwind_section (unwind.saved_seg, 1);
3457 frag_align (2, 0, 0);
3458 record_alignment (now_seg, 2);
3459
3460 ptr = frag_more (8);
3461 where = frag_now_fix () - 8;
3462
3463 /* Self relative offset of the function start. */
3464 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3465 BFD_RELOC_ARM_PREL31);
3466
3467 /* Indicate dependency on EHABI-defined personality routines to the
3468 linker, if it hasn't been done already. */
3469 marked_pr_dependency
3470 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3471 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3472 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3473 {
3474 static const char *const name[] =
3475 {
3476 "__aeabi_unwind_cpp_pr0",
3477 "__aeabi_unwind_cpp_pr1",
3478 "__aeabi_unwind_cpp_pr2"
3479 };
3480 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3481 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3482 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3483 |= 1 << unwind.personality_index;
3484 }
3485
3486 if (val)
3487 /* Inline exception table entry. */
3488 md_number_to_chars (ptr + 4, val, 4);
3489 else
3490 /* Self relative offset of the table entry. */
3491 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3492 BFD_RELOC_ARM_PREL31);
3493
3494 /* Restore the original section. */
3495 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3496
3497 unwind.proc_start = NULL;
3498 }
3499
3500
3501 /* Parse an unwind_cantunwind directive. */
3502
3503 static void
3504 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3505 {
3506 demand_empty_rest_of_line ();
3507 if (!unwind.proc_start)
3508 as_bad (MISSING_FNSTART);
3509
3510 if (unwind.personality_routine || unwind.personality_index != -1)
3511 as_bad (_("personality routine specified for cantunwind frame"));
3512
3513 unwind.personality_index = -2;
3514 }
3515
3516
3517 /* Parse a personalityindex directive. */
3518
3519 static void
3520 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3521 {
3522 expressionS exp;
3523
3524 if (!unwind.proc_start)
3525 as_bad (MISSING_FNSTART);
3526
3527 if (unwind.personality_routine || unwind.personality_index != -1)
3528 as_bad (_("duplicate .personalityindex directive"));
3529
3530 expression (&exp);
3531
3532 if (exp.X_op != O_constant
3533 || exp.X_add_number < 0 || exp.X_add_number > 15)
3534 {
3535 as_bad (_("bad personality routine number"));
3536 ignore_rest_of_line ();
3537 return;
3538 }
3539
3540 unwind.personality_index = exp.X_add_number;
3541
3542 demand_empty_rest_of_line ();
3543 }
3544
3545
3546 /* Parse a personality directive. */
3547
3548 static void
3549 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3550 {
3551 char *name, *p, c;
3552
3553 if (!unwind.proc_start)
3554 as_bad (MISSING_FNSTART);
3555
3556 if (unwind.personality_routine || unwind.personality_index != -1)
3557 as_bad (_("duplicate .personality directive"));
3558
3559 name = input_line_pointer;
3560 c = get_symbol_end ();
3561 p = input_line_pointer;
3562 unwind.personality_routine = symbol_find_or_make (name);
3563 *p = c;
3564 demand_empty_rest_of_line ();
3565 }
3566
3567
3568 /* Parse a directive saving core registers. */
3569
3570 static void
3571 s_arm_unwind_save_core (void)
3572 {
3573 valueT op;
3574 long range;
3575 int n;
3576
3577 range = parse_reg_list (&input_line_pointer);
3578 if (range == FAIL)
3579 {
3580 as_bad (_("expected register list"));
3581 ignore_rest_of_line ();
3582 return;
3583 }
3584
3585 demand_empty_rest_of_line ();
3586
3587 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3588 into .unwind_save {..., sp...}. We aren't bothered about the value of
3589 ip because it is clobbered by calls. */
3590 if (unwind.sp_restored && unwind.fp_reg == 12
3591 && (range & 0x3000) == 0x1000)
3592 {
3593 unwind.opcode_count--;
3594 unwind.sp_restored = 0;
3595 range = (range | 0x2000) & ~0x1000;
3596 unwind.pending_offset = 0;
3597 }
3598
3599 /* Pop r4-r15. */
3600 if (range & 0xfff0)
3601 {
3602 /* See if we can use the short opcodes. These pop a block of up to 8
3603 registers starting with r4, plus maybe r14. */
3604 for (n = 0; n < 8; n++)
3605 {
3606 /* Break at the first non-saved register. */
3607 if ((range & (1 << (n + 4))) == 0)
3608 break;
3609 }
3610 /* See if there are any other bits set. */
3611 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3612 {
3613 /* Use the long form. */
3614 op = 0x8000 | ((range >> 4) & 0xfff);
3615 add_unwind_opcode (op, 2);
3616 }
3617 else
3618 {
3619 /* Use the short form. */
3620 if (range & 0x4000)
3621 op = 0xa8; /* Pop r14. */
3622 else
3623 op = 0xa0; /* Do not pop r14. */
3624 op |= (n - 1);
3625 add_unwind_opcode (op, 1);
3626 }
3627 }
3628
3629 /* Pop r0-r3. */
3630 if (range & 0xf)
3631 {
3632 op = 0xb100 | (range & 0xf);
3633 add_unwind_opcode (op, 2);
3634 }
3635
3636 /* Record the number of bytes pushed. */
3637 for (n = 0; n < 16; n++)
3638 {
3639 if (range & (1 << n))
3640 unwind.frame_size += 4;
3641 }
3642 }
3643
3644
3645 /* Parse a directive saving FPA registers. */
3646
3647 static void
3648 s_arm_unwind_save_fpa (int reg)
3649 {
3650 expressionS exp;
3651 int num_regs;
3652 valueT op;
3653
3654 /* Get Number of registers to transfer. */
3655 if (skip_past_comma (&input_line_pointer) != FAIL)
3656 expression (&exp);
3657 else
3658 exp.X_op = O_illegal;
3659
3660 if (exp.X_op != O_constant)
3661 {
3662 as_bad (_("expected , <constant>"));
3663 ignore_rest_of_line ();
3664 return;
3665 }
3666
3667 num_regs = exp.X_add_number;
3668
3669 if (num_regs < 1 || num_regs > 4)
3670 {
3671 as_bad (_("number of registers must be in the range [1:4]"));
3672 ignore_rest_of_line ();
3673 return;
3674 }
3675
3676 demand_empty_rest_of_line ();
3677
3678 if (reg == 4)
3679 {
3680 /* Short form. */
3681 op = 0xb4 | (num_regs - 1);
3682 add_unwind_opcode (op, 1);
3683 }
3684 else
3685 {
3686 /* Long form. */
3687 op = 0xc800 | (reg << 4) | (num_regs - 1);
3688 add_unwind_opcode (op, 2);
3689 }
3690 unwind.frame_size += num_regs * 12;
3691 }
3692
3693
3694 /* Parse a directive saving VFP registers for ARMv6 and above. */
3695
3696 static void
3697 s_arm_unwind_save_vfp_armv6 (void)
3698 {
3699 int count;
3700 unsigned int start;
3701 valueT op;
3702 int num_vfpv3_regs = 0;
3703 int num_regs_below_16;
3704
3705 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3706 if (count == FAIL)
3707 {
3708 as_bad (_("expected register list"));
3709 ignore_rest_of_line ();
3710 return;
3711 }
3712
3713 demand_empty_rest_of_line ();
3714
3715 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3716 than FSTMX/FLDMX-style ones). */
3717
3718 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3719 if (start >= 16)
3720 num_vfpv3_regs = count;
3721 else if (start + count > 16)
3722 num_vfpv3_regs = start + count - 16;
3723
3724 if (num_vfpv3_regs > 0)
3725 {
3726 int start_offset = start > 16 ? start - 16 : 0;
3727 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3728 add_unwind_opcode (op, 2);
3729 }
3730
3731 /* Generate opcode for registers numbered in the range 0 .. 15. */
3732 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3733 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3734 if (num_regs_below_16 > 0)
3735 {
3736 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3737 add_unwind_opcode (op, 2);
3738 }
3739
3740 unwind.frame_size += count * 8;
3741 }
3742
3743
3744 /* Parse a directive saving VFP registers for pre-ARMv6. */
3745
3746 static void
3747 s_arm_unwind_save_vfp (void)
3748 {
3749 int count;
3750 unsigned int reg;
3751 valueT op;
3752
3753 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3754 if (count == FAIL)
3755 {
3756 as_bad (_("expected register list"));
3757 ignore_rest_of_line ();
3758 return;
3759 }
3760
3761 demand_empty_rest_of_line ();
3762
3763 if (reg == 8)
3764 {
3765 /* Short form. */
3766 op = 0xb8 | (count - 1);
3767 add_unwind_opcode (op, 1);
3768 }
3769 else
3770 {
3771 /* Long form. */
3772 op = 0xb300 | (reg << 4) | (count - 1);
3773 add_unwind_opcode (op, 2);
3774 }
3775 unwind.frame_size += count * 8 + 4;
3776 }
3777
3778
3779 /* Parse a directive saving iWMMXt data registers. */
3780
3781 static void
3782 s_arm_unwind_save_mmxwr (void)
3783 {
3784 int reg;
3785 int hi_reg;
3786 int i;
3787 unsigned mask = 0;
3788 valueT op;
3789
3790 if (*input_line_pointer == '{')
3791 input_line_pointer++;
3792
3793 do
3794 {
3795 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3796
3797 if (reg == FAIL)
3798 {
3799 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3800 goto error;
3801 }
3802
3803 if (mask >> reg)
3804 as_tsktsk (_("register list not in ascending order"));
3805 mask |= 1 << reg;
3806
3807 if (*input_line_pointer == '-')
3808 {
3809 input_line_pointer++;
3810 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3811 if (hi_reg == FAIL)
3812 {
3813 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3814 goto error;
3815 }
3816 else if (reg >= hi_reg)
3817 {
3818 as_bad (_("bad register range"));
3819 goto error;
3820 }
3821 for (; reg < hi_reg; reg++)
3822 mask |= 1 << reg;
3823 }
3824 }
3825 while (skip_past_comma (&input_line_pointer) != FAIL);
3826
3827 if (*input_line_pointer == '}')
3828 input_line_pointer++;
3829
3830 demand_empty_rest_of_line ();
3831
3832 /* Generate any deferred opcodes because we're going to be looking at
3833 the list. */
3834 flush_pending_unwind ();
3835
3836 for (i = 0; i < 16; i++)
3837 {
3838 if (mask & (1 << i))
3839 unwind.frame_size += 8;
3840 }
3841
3842 /* Attempt to combine with a previous opcode. We do this because gcc
3843 likes to output separate unwind directives for a single block of
3844 registers. */
3845 if (unwind.opcode_count > 0)
3846 {
3847 i = unwind.opcodes[unwind.opcode_count - 1];
3848 if ((i & 0xf8) == 0xc0)
3849 {
3850 i &= 7;
3851 /* Only merge if the blocks are contiguous. */
3852 if (i < 6)
3853 {
3854 if ((mask & 0xfe00) == (1 << 9))
3855 {
3856 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3857 unwind.opcode_count--;
3858 }
3859 }
3860 else if (i == 6 && unwind.opcode_count >= 2)
3861 {
3862 i = unwind.opcodes[unwind.opcode_count - 2];
3863 reg = i >> 4;
3864 i &= 0xf;
3865
3866 op = 0xffff << (reg - 1);
3867 if (reg > 0
3868 && ((mask & op) == (1u << (reg - 1))))
3869 {
3870 op = (1 << (reg + i + 1)) - 1;
3871 op &= ~((1 << reg) - 1);
3872 mask |= op;
3873 unwind.opcode_count -= 2;
3874 }
3875 }
3876 }
3877 }
3878
3879 hi_reg = 15;
3880 /* We want to generate opcodes in the order the registers have been
3881 saved, ie. descending order. */
3882 for (reg = 15; reg >= -1; reg--)
3883 {
3884 /* Save registers in blocks. */
3885 if (reg < 0
3886 || !(mask & (1 << reg)))
3887 {
3888 /* We found an unsaved reg. Generate opcodes to save the
3889 preceding block. */
3890 if (reg != hi_reg)
3891 {
3892 if (reg == 9)
3893 {
3894 /* Short form. */
3895 op = 0xc0 | (hi_reg - 10);
3896 add_unwind_opcode (op, 1);
3897 }
3898 else
3899 {
3900 /* Long form. */
3901 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3902 add_unwind_opcode (op, 2);
3903 }
3904 }
3905 hi_reg = reg - 1;
3906 }
3907 }
3908
3909 return;
3910 error:
3911 ignore_rest_of_line ();
3912 }
3913
3914 static void
3915 s_arm_unwind_save_mmxwcg (void)
3916 {
3917 int reg;
3918 int hi_reg;
3919 unsigned mask = 0;
3920 valueT op;
3921
3922 if (*input_line_pointer == '{')
3923 input_line_pointer++;
3924
3925 do
3926 {
3927 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3928
3929 if (reg == FAIL)
3930 {
3931 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3932 goto error;
3933 }
3934
3935 reg -= 8;
3936 if (mask >> reg)
3937 as_tsktsk (_("register list not in ascending order"));
3938 mask |= 1 << reg;
3939
3940 if (*input_line_pointer == '-')
3941 {
3942 input_line_pointer++;
3943 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3944 if (hi_reg == FAIL)
3945 {
3946 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3947 goto error;
3948 }
3949 else if (reg >= hi_reg)
3950 {
3951 as_bad (_("bad register range"));
3952 goto error;
3953 }
3954 for (; reg < hi_reg; reg++)
3955 mask |= 1 << reg;
3956 }
3957 }
3958 while (skip_past_comma (&input_line_pointer) != FAIL);
3959
3960 if (*input_line_pointer == '}')
3961 input_line_pointer++;
3962
3963 demand_empty_rest_of_line ();
3964
3965 /* Generate any deferred opcodes because we're going to be looking at
3966 the list. */
3967 flush_pending_unwind ();
3968
3969 for (reg = 0; reg < 16; reg++)
3970 {
3971 if (mask & (1 << reg))
3972 unwind.frame_size += 4;
3973 }
3974 op = 0xc700 | mask;
3975 add_unwind_opcode (op, 2);
3976 return;
3977 error:
3978 ignore_rest_of_line ();
3979 }
3980
3981
3982 /* Parse an unwind_save directive.
3983 If the argument is non-zero, this is a .vsave directive. */
3984
3985 static void
3986 s_arm_unwind_save (int arch_v6)
3987 {
3988 char *peek;
3989 struct reg_entry *reg;
3990 bfd_boolean had_brace = FALSE;
3991
3992 if (!unwind.proc_start)
3993 as_bad (MISSING_FNSTART);
3994
3995 /* Figure out what sort of save we have. */
3996 peek = input_line_pointer;
3997
3998 if (*peek == '{')
3999 {
4000 had_brace = TRUE;
4001 peek++;
4002 }
4003
4004 reg = arm_reg_parse_multi (&peek);
4005
4006 if (!reg)
4007 {
4008 as_bad (_("register expected"));
4009 ignore_rest_of_line ();
4010 return;
4011 }
4012
4013 switch (reg->type)
4014 {
4015 case REG_TYPE_FN:
4016 if (had_brace)
4017 {
4018 as_bad (_("FPA .unwind_save does not take a register list"));
4019 ignore_rest_of_line ();
4020 return;
4021 }
4022 input_line_pointer = peek;
4023 s_arm_unwind_save_fpa (reg->number);
4024 return;
4025
4026 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4027 case REG_TYPE_VFD:
4028 if (arch_v6)
4029 s_arm_unwind_save_vfp_armv6 ();
4030 else
4031 s_arm_unwind_save_vfp ();
4032 return;
4033 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4034 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4035
4036 default:
4037 as_bad (_(".unwind_save does not support this kind of register"));
4038 ignore_rest_of_line ();
4039 }
4040 }
4041
4042
4043 /* Parse an unwind_movsp directive. */
4044
4045 static void
4046 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4047 {
4048 int reg;
4049 valueT op;
4050 int offset;
4051
4052 if (!unwind.proc_start)
4053 as_bad (MISSING_FNSTART);
4054
4055 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4056 if (reg == FAIL)
4057 {
4058 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4059 ignore_rest_of_line ();
4060 return;
4061 }
4062
4063 /* Optional constant. */
4064 if (skip_past_comma (&input_line_pointer) != FAIL)
4065 {
4066 if (immediate_for_directive (&offset) == FAIL)
4067 return;
4068 }
4069 else
4070 offset = 0;
4071
4072 demand_empty_rest_of_line ();
4073
4074 if (reg == REG_SP || reg == REG_PC)
4075 {
4076 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4077 return;
4078 }
4079
4080 if (unwind.fp_reg != REG_SP)
4081 as_bad (_("unexpected .unwind_movsp directive"));
4082
4083 /* Generate opcode to restore the value. */
4084 op = 0x90 | reg;
4085 add_unwind_opcode (op, 1);
4086
4087 /* Record the information for later. */
4088 unwind.fp_reg = reg;
4089 unwind.fp_offset = unwind.frame_size - offset;
4090 unwind.sp_restored = 1;
4091 }
4092
4093 /* Parse an unwind_pad directive. */
4094
4095 static void
4096 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4097 {
4098 int offset;
4099
4100 if (!unwind.proc_start)
4101 as_bad (MISSING_FNSTART);
4102
4103 if (immediate_for_directive (&offset) == FAIL)
4104 return;
4105
4106 if (offset & 3)
4107 {
4108 as_bad (_("stack increment must be multiple of 4"));
4109 ignore_rest_of_line ();
4110 return;
4111 }
4112
4113 /* Don't generate any opcodes, just record the details for later. */
4114 unwind.frame_size += offset;
4115 unwind.pending_offset += offset;
4116
4117 demand_empty_rest_of_line ();
4118 }
4119
4120 /* Parse an unwind_setfp directive. */
4121
4122 static void
4123 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4124 {
4125 int sp_reg;
4126 int fp_reg;
4127 int offset;
4128
4129 if (!unwind.proc_start)
4130 as_bad (MISSING_FNSTART);
4131
4132 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4133 if (skip_past_comma (&input_line_pointer) == FAIL)
4134 sp_reg = FAIL;
4135 else
4136 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4137
4138 if (fp_reg == FAIL || sp_reg == FAIL)
4139 {
4140 as_bad (_("expected <reg>, <reg>"));
4141 ignore_rest_of_line ();
4142 return;
4143 }
4144
4145 /* Optional constant. */
4146 if (skip_past_comma (&input_line_pointer) != FAIL)
4147 {
4148 if (immediate_for_directive (&offset) == FAIL)
4149 return;
4150 }
4151 else
4152 offset = 0;
4153
4154 demand_empty_rest_of_line ();
4155
4156 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4157 {
4158 as_bad (_("register must be either sp or set by a previous"
4159 "unwind_movsp directive"));
4160 return;
4161 }
4162
4163 /* Don't generate any opcodes, just record the information for later. */
4164 unwind.fp_reg = fp_reg;
4165 unwind.fp_used = 1;
4166 if (sp_reg == REG_SP)
4167 unwind.fp_offset = unwind.frame_size - offset;
4168 else
4169 unwind.fp_offset -= offset;
4170 }
4171
4172 /* Parse an unwind_raw directive. */
4173
4174 static void
4175 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4176 {
4177 expressionS exp;
4178 /* This is an arbitrary limit. */
4179 unsigned char op[16];
4180 int count;
4181
4182 if (!unwind.proc_start)
4183 as_bad (MISSING_FNSTART);
4184
4185 expression (&exp);
4186 if (exp.X_op == O_constant
4187 && skip_past_comma (&input_line_pointer) != FAIL)
4188 {
4189 unwind.frame_size += exp.X_add_number;
4190 expression (&exp);
4191 }
4192 else
4193 exp.X_op = O_illegal;
4194
4195 if (exp.X_op != O_constant)
4196 {
4197 as_bad (_("expected <offset>, <opcode>"));
4198 ignore_rest_of_line ();
4199 return;
4200 }
4201
4202 count = 0;
4203
4204 /* Parse the opcode. */
4205 for (;;)
4206 {
4207 if (count >= 16)
4208 {
4209 as_bad (_("unwind opcode too long"));
4210 ignore_rest_of_line ();
4211 }
4212 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4213 {
4214 as_bad (_("invalid unwind opcode"));
4215 ignore_rest_of_line ();
4216 return;
4217 }
4218 op[count++] = exp.X_add_number;
4219
4220 /* Parse the next byte. */
4221 if (skip_past_comma (&input_line_pointer) == FAIL)
4222 break;
4223
4224 expression (&exp);
4225 }
4226
4227 /* Add the opcode bytes in reverse order. */
4228 while (count--)
4229 add_unwind_opcode (op[count], 1);
4230
4231 demand_empty_rest_of_line ();
4232 }
4233
4234
4235 /* Parse a .eabi_attribute directive. */
4236
4237 static void
4238 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4239 {
4240 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4241
4242 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4243 attributes_set_explicitly[tag] = 1;
4244 }
4245 #endif /* OBJ_ELF */
4246
4247 static void s_arm_arch (int);
4248 static void s_arm_object_arch (int);
4249 static void s_arm_cpu (int);
4250 static void s_arm_fpu (int);
4251
4252 #ifdef TE_PE
4253
4254 static void
4255 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4256 {
4257 expressionS exp;
4258
4259 do
4260 {
4261 expression (&exp);
4262 if (exp.X_op == O_symbol)
4263 exp.X_op = O_secrel;
4264
4265 emit_expr (&exp, 4);
4266 }
4267 while (*input_line_pointer++ == ',');
4268
4269 input_line_pointer--;
4270 demand_empty_rest_of_line ();
4271 }
4272 #endif /* TE_PE */
4273
4274 /* This table describes all the machine specific pseudo-ops the assembler
4275 has to support. The fields are:
4276 pseudo-op name without dot
4277 function to call to execute this pseudo-op
4278 Integer arg to pass to the function. */
4279
4280 const pseudo_typeS md_pseudo_table[] =
4281 {
4282 /* Never called because '.req' does not start a line. */
4283 { "req", s_req, 0 },
4284 /* Following two are likewise never called. */
4285 { "dn", s_dn, 0 },
4286 { "qn", s_qn, 0 },
4287 { "unreq", s_unreq, 0 },
4288 { "bss", s_bss, 0 },
4289 { "align", s_align, 0 },
4290 { "arm", s_arm, 0 },
4291 { "thumb", s_thumb, 0 },
4292 { "code", s_code, 0 },
4293 { "force_thumb", s_force_thumb, 0 },
4294 { "thumb_func", s_thumb_func, 0 },
4295 { "thumb_set", s_thumb_set, 0 },
4296 { "even", s_even, 0 },
4297 { "ltorg", s_ltorg, 0 },
4298 { "pool", s_ltorg, 0 },
4299 { "syntax", s_syntax, 0 },
4300 { "cpu", s_arm_cpu, 0 },
4301 { "arch", s_arm_arch, 0 },
4302 { "object_arch", s_arm_object_arch, 0 },
4303 { "fpu", s_arm_fpu, 0 },
4304 #ifdef OBJ_ELF
4305 { "word", s_arm_elf_cons, 4 },
4306 { "long", s_arm_elf_cons, 4 },
4307 { "inst.n", s_arm_elf_inst, 2 },
4308 { "inst.w", s_arm_elf_inst, 4 },
4309 { "inst", s_arm_elf_inst, 0 },
4310 { "rel31", s_arm_rel31, 0 },
4311 { "fnstart", s_arm_unwind_fnstart, 0 },
4312 { "fnend", s_arm_unwind_fnend, 0 },
4313 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4314 { "personality", s_arm_unwind_personality, 0 },
4315 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4316 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4317 { "save", s_arm_unwind_save, 0 },
4318 { "vsave", s_arm_unwind_save, 1 },
4319 { "movsp", s_arm_unwind_movsp, 0 },
4320 { "pad", s_arm_unwind_pad, 0 },
4321 { "setfp", s_arm_unwind_setfp, 0 },
4322 { "unwind_raw", s_arm_unwind_raw, 0 },
4323 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4324 #else
4325 { "word", cons, 4},
4326
4327 /* These are used for dwarf. */
4328 {"2byte", cons, 2},
4329 {"4byte", cons, 4},
4330 {"8byte", cons, 8},
4331 /* These are used for dwarf2. */
4332 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4333 { "loc", dwarf2_directive_loc, 0 },
4334 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4335 #endif
4336 { "extend", float_cons, 'x' },
4337 { "ldouble", float_cons, 'x' },
4338 { "packed", float_cons, 'p' },
4339 #ifdef TE_PE
4340 {"secrel32", pe_directive_secrel, 0},
4341 #endif
4342 { 0, 0, 0 }
4343 };
4344 \f
4345 /* Parser functions used exclusively in instruction operands. */
4346
4347 /* Generic immediate-value read function for use in insn parsing.
4348 STR points to the beginning of the immediate (the leading #);
4349 VAL receives the value; if the value is outside [MIN, MAX]
4350 issue an error. PREFIX_OPT is true if the immediate prefix is
4351 optional. */
4352
4353 static int
4354 parse_immediate (char **str, int *val, int min, int max,
4355 bfd_boolean prefix_opt)
4356 {
4357 expressionS exp;
4358 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4359 if (exp.X_op != O_constant)
4360 {
4361 inst.error = _("constant expression required");
4362 return FAIL;
4363 }
4364
4365 if (exp.X_add_number < min || exp.X_add_number > max)
4366 {
4367 inst.error = _("immediate value out of range");
4368 return FAIL;
4369 }
4370
4371 *val = exp.X_add_number;
4372 return SUCCESS;
4373 }
4374
4375 /* Less-generic immediate-value read function with the possibility of loading a
4376 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4377 instructions. Puts the result directly in inst.operands[i]. */
4378
4379 static int
4380 parse_big_immediate (char **str, int i)
4381 {
4382 expressionS exp;
4383 char *ptr = *str;
4384
4385 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4386
4387 if (exp.X_op == O_constant)
4388 {
4389 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4390 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4391 O_constant. We have to be careful not to break compilation for
4392 32-bit X_add_number, though. */
4393 if ((exp.X_add_number & ~0xffffffffl) != 0)
4394 {
4395 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4396 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4397 inst.operands[i].regisimm = 1;
4398 }
4399 }
4400 else if (exp.X_op == O_big
4401 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4402 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4403 {
4404 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4405 /* Bignums have their least significant bits in
4406 generic_bignum[0]. Make sure we put 32 bits in imm and
4407 32 bits in reg, in a (hopefully) portable way. */
4408 gas_assert (parts != 0);
4409 inst.operands[i].imm = 0;
4410 for (j = 0; j < parts; j++, idx++)
4411 inst.operands[i].imm |= generic_bignum[idx]
4412 << (LITTLENUM_NUMBER_OF_BITS * j);
4413 inst.operands[i].reg = 0;
4414 for (j = 0; j < parts; j++, idx++)
4415 inst.operands[i].reg |= generic_bignum[idx]
4416 << (LITTLENUM_NUMBER_OF_BITS * j);
4417 inst.operands[i].regisimm = 1;
4418 }
4419 else
4420 return FAIL;
4421
4422 *str = ptr;
4423
4424 return SUCCESS;
4425 }
4426
4427 /* Returns the pseudo-register number of an FPA immediate constant,
4428 or FAIL if there isn't a valid constant here. */
4429
4430 static int
4431 parse_fpa_immediate (char ** str)
4432 {
4433 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4434 char * save_in;
4435 expressionS exp;
4436 int i;
4437 int j;
4438
4439 /* First try and match exact strings, this is to guarantee
4440 that some formats will work even for cross assembly. */
4441
4442 for (i = 0; fp_const[i]; i++)
4443 {
4444 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4445 {
4446 char *start = *str;
4447
4448 *str += strlen (fp_const[i]);
4449 if (is_end_of_line[(unsigned char) **str])
4450 return i + 8;
4451 *str = start;
4452 }
4453 }
4454
4455 /* Just because we didn't get a match doesn't mean that the constant
4456 isn't valid, just that it is in a format that we don't
4457 automatically recognize. Try parsing it with the standard
4458 expression routines. */
4459
4460 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4461
4462 /* Look for a raw floating point number. */
4463 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4464 && is_end_of_line[(unsigned char) *save_in])
4465 {
4466 for (i = 0; i < NUM_FLOAT_VALS; i++)
4467 {
4468 for (j = 0; j < MAX_LITTLENUMS; j++)
4469 {
4470 if (words[j] != fp_values[i][j])
4471 break;
4472 }
4473
4474 if (j == MAX_LITTLENUMS)
4475 {
4476 *str = save_in;
4477 return i + 8;
4478 }
4479 }
4480 }
4481
4482 /* Try and parse a more complex expression, this will probably fail
4483 unless the code uses a floating point prefix (eg "0f"). */
4484 save_in = input_line_pointer;
4485 input_line_pointer = *str;
4486 if (expression (&exp) == absolute_section
4487 && exp.X_op == O_big
4488 && exp.X_add_number < 0)
4489 {
4490 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4491 Ditto for 15. */
4492 if (gen_to_words (words, 5, (long) 15) == 0)
4493 {
4494 for (i = 0; i < NUM_FLOAT_VALS; i++)
4495 {
4496 for (j = 0; j < MAX_LITTLENUMS; j++)
4497 {
4498 if (words[j] != fp_values[i][j])
4499 break;
4500 }
4501
4502 if (j == MAX_LITTLENUMS)
4503 {
4504 *str = input_line_pointer;
4505 input_line_pointer = save_in;
4506 return i + 8;
4507 }
4508 }
4509 }
4510 }
4511
4512 *str = input_line_pointer;
4513 input_line_pointer = save_in;
4514 inst.error = _("invalid FPA immediate expression");
4515 return FAIL;
4516 }
4517
4518 /* Returns 1 if a number has "quarter-precision" float format
4519 0baBbbbbbc defgh000 00000000 00000000. */
4520
4521 static int
4522 is_quarter_float (unsigned imm)
4523 {
4524 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4525 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4526 }
4527
4528 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4529 0baBbbbbbc defgh000 00000000 00000000.
4530 The zero and minus-zero cases need special handling, since they can't be
4531 encoded in the "quarter-precision" float format, but can nonetheless be
4532 loaded as integer constants. */
4533
4534 static unsigned
4535 parse_qfloat_immediate (char **ccp, int *immed)
4536 {
4537 char *str = *ccp;
4538 char *fpnum;
4539 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4540 int found_fpchar = 0;
4541
4542 skip_past_char (&str, '#');
4543
4544 /* We must not accidentally parse an integer as a floating-point number. Make
4545 sure that the value we parse is not an integer by checking for special
4546 characters '.' or 'e'.
4547 FIXME: This is a horrible hack, but doing better is tricky because type
4548 information isn't in a very usable state at parse time. */
4549 fpnum = str;
4550 skip_whitespace (fpnum);
4551
4552 if (strncmp (fpnum, "0x", 2) == 0)
4553 return FAIL;
4554 else
4555 {
4556 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4557 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4558 {
4559 found_fpchar = 1;
4560 break;
4561 }
4562
4563 if (!found_fpchar)
4564 return FAIL;
4565 }
4566
4567 if ((str = atof_ieee (str, 's', words)) != NULL)
4568 {
4569 unsigned fpword = 0;
4570 int i;
4571
4572 /* Our FP word must be 32 bits (single-precision FP). */
4573 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4574 {
4575 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4576 fpword |= words[i];
4577 }
4578
4579 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4580 *immed = fpword;
4581 else
4582 return FAIL;
4583
4584 *ccp = str;
4585
4586 return SUCCESS;
4587 }
4588
4589 return FAIL;
4590 }
4591
4592 /* Shift operands. */
4593 enum shift_kind
4594 {
4595 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4596 };
4597
4598 struct asm_shift_name
4599 {
4600 const char *name;
4601 enum shift_kind kind;
4602 };
4603
4604 /* Third argument to parse_shift. */
4605 enum parse_shift_mode
4606 {
4607 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4608 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4609 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4610 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4611 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4612 };
4613
4614 /* Parse a <shift> specifier on an ARM data processing instruction.
4615 This has three forms:
4616
4617 (LSL|LSR|ASL|ASR|ROR) Rs
4618 (LSL|LSR|ASL|ASR|ROR) #imm
4619 RRX
4620
4621 Note that ASL is assimilated to LSL in the instruction encoding, and
4622 RRX to ROR #0 (which cannot be written as such). */
4623
4624 static int
4625 parse_shift (char **str, int i, enum parse_shift_mode mode)
4626 {
4627 const struct asm_shift_name *shift_name;
4628 enum shift_kind shift;
4629 char *s = *str;
4630 char *p = s;
4631 int reg;
4632
4633 for (p = *str; ISALPHA (*p); p++)
4634 ;
4635
4636 if (p == *str)
4637 {
4638 inst.error = _("shift expression expected");
4639 return FAIL;
4640 }
4641
4642 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4643 p - *str);
4644
4645 if (shift_name == NULL)
4646 {
4647 inst.error = _("shift expression expected");
4648 return FAIL;
4649 }
4650
4651 shift = shift_name->kind;
4652
4653 switch (mode)
4654 {
4655 case NO_SHIFT_RESTRICT:
4656 case SHIFT_IMMEDIATE: break;
4657
4658 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4659 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4660 {
4661 inst.error = _("'LSL' or 'ASR' required");
4662 return FAIL;
4663 }
4664 break;
4665
4666 case SHIFT_LSL_IMMEDIATE:
4667 if (shift != SHIFT_LSL)
4668 {
4669 inst.error = _("'LSL' required");
4670 return FAIL;
4671 }
4672 break;
4673
4674 case SHIFT_ASR_IMMEDIATE:
4675 if (shift != SHIFT_ASR)
4676 {
4677 inst.error = _("'ASR' required");
4678 return FAIL;
4679 }
4680 break;
4681
4682 default: abort ();
4683 }
4684
4685 if (shift != SHIFT_RRX)
4686 {
4687 /* Whitespace can appear here if the next thing is a bare digit. */
4688 skip_whitespace (p);
4689
4690 if (mode == NO_SHIFT_RESTRICT
4691 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4692 {
4693 inst.operands[i].imm = reg;
4694 inst.operands[i].immisreg = 1;
4695 }
4696 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4697 return FAIL;
4698 }
4699 inst.operands[i].shift_kind = shift;
4700 inst.operands[i].shifted = 1;
4701 *str = p;
4702 return SUCCESS;
4703 }
4704
4705 /* Parse a <shifter_operand> for an ARM data processing instruction:
4706
4707 #<immediate>
4708 #<immediate>, <rotate>
4709 <Rm>
4710 <Rm>, <shift>
4711
4712 where <shift> is defined by parse_shift above, and <rotate> is a
4713 multiple of 2 between 0 and 30. Validation of immediate operands
4714 is deferred to md_apply_fix. */
4715
4716 static int
4717 parse_shifter_operand (char **str, int i)
4718 {
4719 int value;
4720 expressionS exp;
4721
4722 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4723 {
4724 inst.operands[i].reg = value;
4725 inst.operands[i].isreg = 1;
4726
4727 /* parse_shift will override this if appropriate */
4728 inst.reloc.exp.X_op = O_constant;
4729 inst.reloc.exp.X_add_number = 0;
4730
4731 if (skip_past_comma (str) == FAIL)
4732 return SUCCESS;
4733
4734 /* Shift operation on register. */
4735 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4736 }
4737
4738 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4739 return FAIL;
4740
4741 if (skip_past_comma (str) == SUCCESS)
4742 {
4743 /* #x, y -- ie explicit rotation by Y. */
4744 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4745 return FAIL;
4746
4747 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4748 {
4749 inst.error = _("constant expression expected");
4750 return FAIL;
4751 }
4752
4753 value = exp.X_add_number;
4754 if (value < 0 || value > 30 || value % 2 != 0)
4755 {
4756 inst.error = _("invalid rotation");
4757 return FAIL;
4758 }
4759 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4760 {
4761 inst.error = _("invalid constant");
4762 return FAIL;
4763 }
4764
4765 /* Convert to decoded value. md_apply_fix will put it back. */
4766 inst.reloc.exp.X_add_number
4767 = (((inst.reloc.exp.X_add_number << (32 - value))
4768 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4769 }
4770
4771 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4772 inst.reloc.pc_rel = 0;
4773 return SUCCESS;
4774 }
4775
4776 /* Group relocation information. Each entry in the table contains the
4777 textual name of the relocation as may appear in assembler source
4778 and must end with a colon.
4779 Along with this textual name are the relocation codes to be used if
4780 the corresponding instruction is an ALU instruction (ADD or SUB only),
4781 an LDR, an LDRS, or an LDC. */
4782
4783 struct group_reloc_table_entry
4784 {
4785 const char *name;
4786 int alu_code;
4787 int ldr_code;
4788 int ldrs_code;
4789 int ldc_code;
4790 };
4791
4792 typedef enum
4793 {
4794 /* Varieties of non-ALU group relocation. */
4795
4796 GROUP_LDR,
4797 GROUP_LDRS,
4798 GROUP_LDC
4799 } group_reloc_type;
4800
4801 static struct group_reloc_table_entry group_reloc_table[] =
4802 { /* Program counter relative: */
4803 { "pc_g0_nc",
4804 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4805 0, /* LDR */
4806 0, /* LDRS */
4807 0 }, /* LDC */
4808 { "pc_g0",
4809 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4810 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4811 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4812 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4813 { "pc_g1_nc",
4814 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4815 0, /* LDR */
4816 0, /* LDRS */
4817 0 }, /* LDC */
4818 { "pc_g1",
4819 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4820 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4821 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4822 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4823 { "pc_g2",
4824 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4825 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4826 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4827 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4828 /* Section base relative */
4829 { "sb_g0_nc",
4830 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4831 0, /* LDR */
4832 0, /* LDRS */
4833 0 }, /* LDC */
4834 { "sb_g0",
4835 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4836 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4837 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4838 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4839 { "sb_g1_nc",
4840 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4841 0, /* LDR */
4842 0, /* LDRS */
4843 0 }, /* LDC */
4844 { "sb_g1",
4845 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4846 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4847 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4848 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4849 { "sb_g2",
4850 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4851 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4852 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4853 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4854
4855 /* Given the address of a pointer pointing to the textual name of a group
4856 relocation as may appear in assembler source, attempt to find its details
4857 in group_reloc_table. The pointer will be updated to the character after
4858 the trailing colon. On failure, FAIL will be returned; SUCCESS
4859 otherwise. On success, *entry will be updated to point at the relevant
4860 group_reloc_table entry. */
4861
4862 static int
4863 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4864 {
4865 unsigned int i;
4866 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4867 {
4868 int length = strlen (group_reloc_table[i].name);
4869
4870 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4871 && (*str)[length] == ':')
4872 {
4873 *out = &group_reloc_table[i];
4874 *str += (length + 1);
4875 return SUCCESS;
4876 }
4877 }
4878
4879 return FAIL;
4880 }
4881
4882 /* Parse a <shifter_operand> for an ARM data processing instruction
4883 (as for parse_shifter_operand) where group relocations are allowed:
4884
4885 #<immediate>
4886 #<immediate>, <rotate>
4887 #:<group_reloc>:<expression>
4888 <Rm>
4889 <Rm>, <shift>
4890
4891 where <group_reloc> is one of the strings defined in group_reloc_table.
4892 The hashes are optional.
4893
4894 Everything else is as for parse_shifter_operand. */
4895
4896 static parse_operand_result
4897 parse_shifter_operand_group_reloc (char **str, int i)
4898 {
4899 /* Determine if we have the sequence of characters #: or just :
4900 coming next. If we do, then we check for a group relocation.
4901 If we don't, punt the whole lot to parse_shifter_operand. */
4902
4903 if (((*str)[0] == '#' && (*str)[1] == ':')
4904 || (*str)[0] == ':')
4905 {
4906 struct group_reloc_table_entry *entry;
4907
4908 if ((*str)[0] == '#')
4909 (*str) += 2;
4910 else
4911 (*str)++;
4912
4913 /* Try to parse a group relocation. Anything else is an error. */
4914 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4915 {
4916 inst.error = _("unknown group relocation");
4917 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4918 }
4919
4920 /* We now have the group relocation table entry corresponding to
4921 the name in the assembler source. Next, we parse the expression. */
4922 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4923 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4924
4925 /* Record the relocation type (always the ALU variant here). */
4926 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
4927 gas_assert (inst.reloc.type != 0);
4928
4929 return PARSE_OPERAND_SUCCESS;
4930 }
4931 else
4932 return parse_shifter_operand (str, i) == SUCCESS
4933 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4934
4935 /* Never reached. */
4936 }
4937
4938 /* Parse all forms of an ARM address expression. Information is written
4939 to inst.operands[i] and/or inst.reloc.
4940
4941 Preindexed addressing (.preind=1):
4942
4943 [Rn, #offset] .reg=Rn .reloc.exp=offset
4944 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4945 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4946 .shift_kind=shift .reloc.exp=shift_imm
4947
4948 These three may have a trailing ! which causes .writeback to be set also.
4949
4950 Postindexed addressing (.postind=1, .writeback=1):
4951
4952 [Rn], #offset .reg=Rn .reloc.exp=offset
4953 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4954 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4955 .shift_kind=shift .reloc.exp=shift_imm
4956
4957 Unindexed addressing (.preind=0, .postind=0):
4958
4959 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4960
4961 Other:
4962
4963 [Rn]{!} shorthand for [Rn,#0]{!}
4964 =immediate .isreg=0 .reloc.exp=immediate
4965 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4966
4967 It is the caller's responsibility to check for addressing modes not
4968 supported by the instruction, and to set inst.reloc.type. */
4969
4970 static parse_operand_result
4971 parse_address_main (char **str, int i, int group_relocations,
4972 group_reloc_type group_type)
4973 {
4974 char *p = *str;
4975 int reg;
4976
4977 if (skip_past_char (&p, '[') == FAIL)
4978 {
4979 if (skip_past_char (&p, '=') == FAIL)
4980 {
4981 /* Bare address - translate to PC-relative offset. */
4982 inst.reloc.pc_rel = 1;
4983 inst.operands[i].reg = REG_PC;
4984 inst.operands[i].isreg = 1;
4985 inst.operands[i].preind = 1;
4986 }
4987 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
4988
4989 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4990 return PARSE_OPERAND_FAIL;
4991
4992 *str = p;
4993 return PARSE_OPERAND_SUCCESS;
4994 }
4995
4996 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4997 {
4998 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4999 return PARSE_OPERAND_FAIL;
5000 }
5001 inst.operands[i].reg = reg;
5002 inst.operands[i].isreg = 1;
5003
5004 if (skip_past_comma (&p) == SUCCESS)
5005 {
5006 inst.operands[i].preind = 1;
5007
5008 if (*p == '+') p++;
5009 else if (*p == '-') p++, inst.operands[i].negative = 1;
5010
5011 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5012 {
5013 inst.operands[i].imm = reg;
5014 inst.operands[i].immisreg = 1;
5015
5016 if (skip_past_comma (&p) == SUCCESS)
5017 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5018 return PARSE_OPERAND_FAIL;
5019 }
5020 else if (skip_past_char (&p, ':') == SUCCESS)
5021 {
5022 /* FIXME: '@' should be used here, but it's filtered out by generic
5023 code before we get to see it here. This may be subject to
5024 change. */
5025 expressionS exp;
5026 my_get_expression (&exp, &p, GE_NO_PREFIX);
5027 if (exp.X_op != O_constant)
5028 {
5029 inst.error = _("alignment must be constant");
5030 return PARSE_OPERAND_FAIL;
5031 }
5032 inst.operands[i].imm = exp.X_add_number << 8;
5033 inst.operands[i].immisalign = 1;
5034 /* Alignments are not pre-indexes. */
5035 inst.operands[i].preind = 0;
5036 }
5037 else
5038 {
5039 if (inst.operands[i].negative)
5040 {
5041 inst.operands[i].negative = 0;
5042 p--;
5043 }
5044
5045 if (group_relocations
5046 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5047 {
5048 struct group_reloc_table_entry *entry;
5049
5050 /* Skip over the #: or : sequence. */
5051 if (*p == '#')
5052 p += 2;
5053 else
5054 p++;
5055
5056 /* Try to parse a group relocation. Anything else is an
5057 error. */
5058 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5059 {
5060 inst.error = _("unknown group relocation");
5061 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5062 }
5063
5064 /* We now have the group relocation table entry corresponding to
5065 the name in the assembler source. Next, we parse the
5066 expression. */
5067 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5068 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5069
5070 /* Record the relocation type. */
5071 switch (group_type)
5072 {
5073 case GROUP_LDR:
5074 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5075 break;
5076
5077 case GROUP_LDRS:
5078 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5079 break;
5080
5081 case GROUP_LDC:
5082 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5083 break;
5084
5085 default:
5086 gas_assert (0);
5087 }
5088
5089 if (inst.reloc.type == 0)
5090 {
5091 inst.error = _("this group relocation is not allowed on this instruction");
5092 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5093 }
5094 }
5095 else
5096 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5097 return PARSE_OPERAND_FAIL;
5098 }
5099 }
5100
5101 if (skip_past_char (&p, ']') == FAIL)
5102 {
5103 inst.error = _("']' expected");
5104 return PARSE_OPERAND_FAIL;
5105 }
5106
5107 if (skip_past_char (&p, '!') == SUCCESS)
5108 inst.operands[i].writeback = 1;
5109
5110 else if (skip_past_comma (&p) == SUCCESS)
5111 {
5112 if (skip_past_char (&p, '{') == SUCCESS)
5113 {
5114 /* [Rn], {expr} - unindexed, with option */
5115 if (parse_immediate (&p, &inst.operands[i].imm,
5116 0, 255, TRUE) == FAIL)
5117 return PARSE_OPERAND_FAIL;
5118
5119 if (skip_past_char (&p, '}') == FAIL)
5120 {
5121 inst.error = _("'}' expected at end of 'option' field");
5122 return PARSE_OPERAND_FAIL;
5123 }
5124 if (inst.operands[i].preind)
5125 {
5126 inst.error = _("cannot combine index with option");
5127 return PARSE_OPERAND_FAIL;
5128 }
5129 *str = p;
5130 return PARSE_OPERAND_SUCCESS;
5131 }
5132 else
5133 {
5134 inst.operands[i].postind = 1;
5135 inst.operands[i].writeback = 1;
5136
5137 if (inst.operands[i].preind)
5138 {
5139 inst.error = _("cannot combine pre- and post-indexing");
5140 return PARSE_OPERAND_FAIL;
5141 }
5142
5143 if (*p == '+') p++;
5144 else if (*p == '-') p++, inst.operands[i].negative = 1;
5145
5146 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5147 {
5148 /* We might be using the immediate for alignment already. If we
5149 are, OR the register number into the low-order bits. */
5150 if (inst.operands[i].immisalign)
5151 inst.operands[i].imm |= reg;
5152 else
5153 inst.operands[i].imm = reg;
5154 inst.operands[i].immisreg = 1;
5155
5156 if (skip_past_comma (&p) == SUCCESS)
5157 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5158 return PARSE_OPERAND_FAIL;
5159 }
5160 else
5161 {
5162 if (inst.operands[i].negative)
5163 {
5164 inst.operands[i].negative = 0;
5165 p--;
5166 }
5167 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5168 return PARSE_OPERAND_FAIL;
5169 }
5170 }
5171 }
5172
5173 /* If at this point neither .preind nor .postind is set, we have a
5174 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5175 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5176 {
5177 inst.operands[i].preind = 1;
5178 inst.reloc.exp.X_op = O_constant;
5179 inst.reloc.exp.X_add_number = 0;
5180 }
5181 *str = p;
5182 return PARSE_OPERAND_SUCCESS;
5183 }
5184
5185 static int
5186 parse_address (char **str, int i)
5187 {
5188 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5189 ? SUCCESS : FAIL;
5190 }
5191
5192 static parse_operand_result
5193 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5194 {
5195 return parse_address_main (str, i, 1, type);
5196 }
5197
5198 /* Parse an operand for a MOVW or MOVT instruction. */
5199 static int
5200 parse_half (char **str)
5201 {
5202 char * p;
5203
5204 p = *str;
5205 skip_past_char (&p, '#');
5206 if (strncasecmp (p, ":lower16:", 9) == 0)
5207 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5208 else if (strncasecmp (p, ":upper16:", 9) == 0)
5209 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5210
5211 if (inst.reloc.type != BFD_RELOC_UNUSED)
5212 {
5213 p += 9;
5214 skip_whitespace (p);
5215 }
5216
5217 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5218 return FAIL;
5219
5220 if (inst.reloc.type == BFD_RELOC_UNUSED)
5221 {
5222 if (inst.reloc.exp.X_op != O_constant)
5223 {
5224 inst.error = _("constant expression expected");
5225 return FAIL;
5226 }
5227 if (inst.reloc.exp.X_add_number < 0
5228 || inst.reloc.exp.X_add_number > 0xffff)
5229 {
5230 inst.error = _("immediate value out of range");
5231 return FAIL;
5232 }
5233 }
5234 *str = p;
5235 return SUCCESS;
5236 }
5237
5238 /* Miscellaneous. */
5239
5240 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5241 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5242 static int
5243 parse_psr (char **str)
5244 {
5245 char *p;
5246 unsigned long psr_field;
5247 const struct asm_psr *psr;
5248 char *start;
5249
5250 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5251 feature for ease of use and backwards compatibility. */
5252 p = *str;
5253 if (strncasecmp (p, "SPSR", 4) == 0)
5254 psr_field = SPSR_BIT;
5255 else if (strncasecmp (p, "CPSR", 4) == 0)
5256 psr_field = 0;
5257 else
5258 {
5259 start = p;
5260 do
5261 p++;
5262 while (ISALNUM (*p) || *p == '_');
5263
5264 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5265 p - start);
5266 if (!psr)
5267 return FAIL;
5268
5269 *str = p;
5270 return psr->field;
5271 }
5272
5273 p += 4;
5274 if (*p == '_')
5275 {
5276 /* A suffix follows. */
5277 p++;
5278 start = p;
5279
5280 do
5281 p++;
5282 while (ISALNUM (*p) || *p == '_');
5283
5284 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5285 p - start);
5286 if (!psr)
5287 goto error;
5288
5289 psr_field |= psr->field;
5290 }
5291 else
5292 {
5293 if (ISALNUM (*p))
5294 goto error; /* Garbage after "[CS]PSR". */
5295
5296 psr_field |= (PSR_c | PSR_f);
5297 }
5298 *str = p;
5299 return psr_field;
5300
5301 error:
5302 inst.error = _("flag for {c}psr instruction expected");
5303 return FAIL;
5304 }
5305
5306 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5307 value suitable for splatting into the AIF field of the instruction. */
5308
5309 static int
5310 parse_cps_flags (char **str)
5311 {
5312 int val = 0;
5313 int saw_a_flag = 0;
5314 char *s = *str;
5315
5316 for (;;)
5317 switch (*s++)
5318 {
5319 case '\0': case ',':
5320 goto done;
5321
5322 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5323 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5324 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5325
5326 default:
5327 inst.error = _("unrecognized CPS flag");
5328 return FAIL;
5329 }
5330
5331 done:
5332 if (saw_a_flag == 0)
5333 {
5334 inst.error = _("missing CPS flags");
5335 return FAIL;
5336 }
5337
5338 *str = s - 1;
5339 return val;
5340 }
5341
5342 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5343 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5344
5345 static int
5346 parse_endian_specifier (char **str)
5347 {
5348 int little_endian;
5349 char *s = *str;
5350
5351 if (strncasecmp (s, "BE", 2))
5352 little_endian = 0;
5353 else if (strncasecmp (s, "LE", 2))
5354 little_endian = 1;
5355 else
5356 {
5357 inst.error = _("valid endian specifiers are be or le");
5358 return FAIL;
5359 }
5360
5361 if (ISALNUM (s[2]) || s[2] == '_')
5362 {
5363 inst.error = _("valid endian specifiers are be or le");
5364 return FAIL;
5365 }
5366
5367 *str = s + 2;
5368 return little_endian;
5369 }
5370
5371 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5372 value suitable for poking into the rotate field of an sxt or sxta
5373 instruction, or FAIL on error. */
5374
5375 static int
5376 parse_ror (char **str)
5377 {
5378 int rot;
5379 char *s = *str;
5380
5381 if (strncasecmp (s, "ROR", 3) == 0)
5382 s += 3;
5383 else
5384 {
5385 inst.error = _("missing rotation field after comma");
5386 return FAIL;
5387 }
5388
5389 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5390 return FAIL;
5391
5392 switch (rot)
5393 {
5394 case 0: *str = s; return 0x0;
5395 case 8: *str = s; return 0x1;
5396 case 16: *str = s; return 0x2;
5397 case 24: *str = s; return 0x3;
5398
5399 default:
5400 inst.error = _("rotation can only be 0, 8, 16, or 24");
5401 return FAIL;
5402 }
5403 }
5404
5405 /* Parse a conditional code (from conds[] below). The value returned is in the
5406 range 0 .. 14, or FAIL. */
5407 static int
5408 parse_cond (char **str)
5409 {
5410 char *q;
5411 const struct asm_cond *c;
5412 int n;
5413 /* Condition codes are always 2 characters, so matching up to
5414 3 characters is sufficient. */
5415 char cond[3];
5416
5417 q = *str;
5418 n = 0;
5419 while (ISALPHA (*q) && n < 3)
5420 {
5421 cond[n] = TOLOWER (*q);
5422 q++;
5423 n++;
5424 }
5425
5426 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5427 if (!c)
5428 {
5429 inst.error = _("condition required");
5430 return FAIL;
5431 }
5432
5433 *str = q;
5434 return c->value;
5435 }
5436
5437 /* Parse an option for a barrier instruction. Returns the encoding for the
5438 option, or FAIL. */
5439 static int
5440 parse_barrier (char **str)
5441 {
5442 char *p, *q;
5443 const struct asm_barrier_opt *o;
5444
5445 p = q = *str;
5446 while (ISALPHA (*q))
5447 q++;
5448
5449 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5450 q - p);
5451 if (!o)
5452 return FAIL;
5453
5454 *str = q;
5455 return o->value;
5456 }
5457
5458 /* Parse the operands of a table branch instruction. Similar to a memory
5459 operand. */
5460 static int
5461 parse_tb (char **str)
5462 {
5463 char * p = *str;
5464 int reg;
5465
5466 if (skip_past_char (&p, '[') == FAIL)
5467 {
5468 inst.error = _("'[' expected");
5469 return FAIL;
5470 }
5471
5472 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5473 {
5474 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5475 return FAIL;
5476 }
5477 inst.operands[0].reg = reg;
5478
5479 if (skip_past_comma (&p) == FAIL)
5480 {
5481 inst.error = _("',' expected");
5482 return FAIL;
5483 }
5484
5485 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5486 {
5487 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5488 return FAIL;
5489 }
5490 inst.operands[0].imm = reg;
5491
5492 if (skip_past_comma (&p) == SUCCESS)
5493 {
5494 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5495 return FAIL;
5496 if (inst.reloc.exp.X_add_number != 1)
5497 {
5498 inst.error = _("invalid shift");
5499 return FAIL;
5500 }
5501 inst.operands[0].shifted = 1;
5502 }
5503
5504 if (skip_past_char (&p, ']') == FAIL)
5505 {
5506 inst.error = _("']' expected");
5507 return FAIL;
5508 }
5509 *str = p;
5510 return SUCCESS;
5511 }
5512
5513 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5514 information on the types the operands can take and how they are encoded.
5515 Up to four operands may be read; this function handles setting the
5516 ".present" field for each read operand itself.
5517 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5518 else returns FAIL. */
5519
5520 static int
5521 parse_neon_mov (char **str, int *which_operand)
5522 {
5523 int i = *which_operand, val;
5524 enum arm_reg_type rtype;
5525 char *ptr = *str;
5526 struct neon_type_el optype;
5527
5528 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5529 {
5530 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5531 inst.operands[i].reg = val;
5532 inst.operands[i].isscalar = 1;
5533 inst.operands[i].vectype = optype;
5534 inst.operands[i++].present = 1;
5535
5536 if (skip_past_comma (&ptr) == FAIL)
5537 goto wanted_comma;
5538
5539 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5540 goto wanted_arm;
5541
5542 inst.operands[i].reg = val;
5543 inst.operands[i].isreg = 1;
5544 inst.operands[i].present = 1;
5545 }
5546 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5547 != FAIL)
5548 {
5549 /* Cases 0, 1, 2, 3, 5 (D only). */
5550 if (skip_past_comma (&ptr) == FAIL)
5551 goto wanted_comma;
5552
5553 inst.operands[i].reg = val;
5554 inst.operands[i].isreg = 1;
5555 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5556 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5557 inst.operands[i].isvec = 1;
5558 inst.operands[i].vectype = optype;
5559 inst.operands[i++].present = 1;
5560
5561 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5562 {
5563 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5564 Case 13: VMOV <Sd>, <Rm> */
5565 inst.operands[i].reg = val;
5566 inst.operands[i].isreg = 1;
5567 inst.operands[i].present = 1;
5568
5569 if (rtype == REG_TYPE_NQ)
5570 {
5571 first_error (_("can't use Neon quad register here"));
5572 return FAIL;
5573 }
5574 else if (rtype != REG_TYPE_VFS)
5575 {
5576 i++;
5577 if (skip_past_comma (&ptr) == FAIL)
5578 goto wanted_comma;
5579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5580 goto wanted_arm;
5581 inst.operands[i].reg = val;
5582 inst.operands[i].isreg = 1;
5583 inst.operands[i].present = 1;
5584 }
5585 }
5586 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5587 &optype)) != FAIL)
5588 {
5589 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5590 Case 1: VMOV<c><q> <Dd>, <Dm>
5591 Case 8: VMOV.F32 <Sd>, <Sm>
5592 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5593
5594 inst.operands[i].reg = val;
5595 inst.operands[i].isreg = 1;
5596 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5597 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5598 inst.operands[i].isvec = 1;
5599 inst.operands[i].vectype = optype;
5600 inst.operands[i].present = 1;
5601
5602 if (skip_past_comma (&ptr) == SUCCESS)
5603 {
5604 /* Case 15. */
5605 i++;
5606
5607 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5608 goto wanted_arm;
5609
5610 inst.operands[i].reg = val;
5611 inst.operands[i].isreg = 1;
5612 inst.operands[i++].present = 1;
5613
5614 if (skip_past_comma (&ptr) == FAIL)
5615 goto wanted_comma;
5616
5617 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5618 goto wanted_arm;
5619
5620 inst.operands[i].reg = val;
5621 inst.operands[i].isreg = 1;
5622 inst.operands[i++].present = 1;
5623 }
5624 }
5625 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5626 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5627 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5628 Case 10: VMOV.F32 <Sd>, #<imm>
5629 Case 11: VMOV.F64 <Dd>, #<imm> */
5630 inst.operands[i].immisfloat = 1;
5631 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5632 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5633 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5634 ;
5635 else
5636 {
5637 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5638 return FAIL;
5639 }
5640 }
5641 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5642 {
5643 /* Cases 6, 7. */
5644 inst.operands[i].reg = val;
5645 inst.operands[i].isreg = 1;
5646 inst.operands[i++].present = 1;
5647
5648 if (skip_past_comma (&ptr) == FAIL)
5649 goto wanted_comma;
5650
5651 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5652 {
5653 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5654 inst.operands[i].reg = val;
5655 inst.operands[i].isscalar = 1;
5656 inst.operands[i].present = 1;
5657 inst.operands[i].vectype = optype;
5658 }
5659 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5660 {
5661 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5662 inst.operands[i].reg = val;
5663 inst.operands[i].isreg = 1;
5664 inst.operands[i++].present = 1;
5665
5666 if (skip_past_comma (&ptr) == FAIL)
5667 goto wanted_comma;
5668
5669 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5670 == FAIL)
5671 {
5672 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5673 return FAIL;
5674 }
5675
5676 inst.operands[i].reg = val;
5677 inst.operands[i].isreg = 1;
5678 inst.operands[i].isvec = 1;
5679 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5680 inst.operands[i].vectype = optype;
5681 inst.operands[i].present = 1;
5682
5683 if (rtype == REG_TYPE_VFS)
5684 {
5685 /* Case 14. */
5686 i++;
5687 if (skip_past_comma (&ptr) == FAIL)
5688 goto wanted_comma;
5689 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5690 &optype)) == FAIL)
5691 {
5692 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5693 return FAIL;
5694 }
5695 inst.operands[i].reg = val;
5696 inst.operands[i].isreg = 1;
5697 inst.operands[i].isvec = 1;
5698 inst.operands[i].issingle = 1;
5699 inst.operands[i].vectype = optype;
5700 inst.operands[i].present = 1;
5701 }
5702 }
5703 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5704 != FAIL)
5705 {
5706 /* Case 13. */
5707 inst.operands[i].reg = val;
5708 inst.operands[i].isreg = 1;
5709 inst.operands[i].isvec = 1;
5710 inst.operands[i].issingle = 1;
5711 inst.operands[i].vectype = optype;
5712 inst.operands[i++].present = 1;
5713 }
5714 }
5715 else
5716 {
5717 first_error (_("parse error"));
5718 return FAIL;
5719 }
5720
5721 /* Successfully parsed the operands. Update args. */
5722 *which_operand = i;
5723 *str = ptr;
5724 return SUCCESS;
5725
5726 wanted_comma:
5727 first_error (_("expected comma"));
5728 return FAIL;
5729
5730 wanted_arm:
5731 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5732 return FAIL;
5733 }
5734
5735 /* Use this macro when the operand constraints are different
5736 for ARM and THUMB (e.g. ldrd). */
5737 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
5738 ((arm_operand) | ((thumb_operand) << 16))
5739
5740 /* Matcher codes for parse_operands. */
5741 enum operand_parse_code
5742 {
5743 OP_stop, /* end of line */
5744
5745 OP_RR, /* ARM register */
5746 OP_RRnpc, /* ARM register, not r15 */
5747 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
5748 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5749 OP_RRw, /* ARM register, not r15, optional trailing ! */
5750 OP_RCP, /* Coprocessor number */
5751 OP_RCN, /* Coprocessor register */
5752 OP_RF, /* FPA register */
5753 OP_RVS, /* VFP single precision register */
5754 OP_RVD, /* VFP double precision register (0..15) */
5755 OP_RND, /* Neon double precision register (0..31) */
5756 OP_RNQ, /* Neon quad precision register */
5757 OP_RVSD, /* VFP single or double precision register */
5758 OP_RNDQ, /* Neon double or quad precision register */
5759 OP_RNSDQ, /* Neon single, double or quad precision register */
5760 OP_RNSC, /* Neon scalar D[X] */
5761 OP_RVC, /* VFP control register */
5762 OP_RMF, /* Maverick F register */
5763 OP_RMD, /* Maverick D register */
5764 OP_RMFX, /* Maverick FX register */
5765 OP_RMDX, /* Maverick DX register */
5766 OP_RMAX, /* Maverick AX register */
5767 OP_RMDS, /* Maverick DSPSC register */
5768 OP_RIWR, /* iWMMXt wR register */
5769 OP_RIWC, /* iWMMXt wC register */
5770 OP_RIWG, /* iWMMXt wCG register */
5771 OP_RXA, /* XScale accumulator register */
5772
5773 OP_REGLST, /* ARM register list */
5774 OP_VRSLST, /* VFP single-precision register list */
5775 OP_VRDLST, /* VFP double-precision register list */
5776 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5777 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5778 OP_NSTRLST, /* Neon element/structure list */
5779
5780 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5781 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5782 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5783 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5784 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5785 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5786 OP_VMOV, /* Neon VMOV operands. */
5787 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
5788 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5789 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5790
5791 OP_I0, /* immediate zero */
5792 OP_I7, /* immediate value 0 .. 7 */
5793 OP_I15, /* 0 .. 15 */
5794 OP_I16, /* 1 .. 16 */
5795 OP_I16z, /* 0 .. 16 */
5796 OP_I31, /* 0 .. 31 */
5797 OP_I31w, /* 0 .. 31, optional trailing ! */
5798 OP_I32, /* 1 .. 32 */
5799 OP_I32z, /* 0 .. 32 */
5800 OP_I63, /* 0 .. 63 */
5801 OP_I63s, /* -64 .. 63 */
5802 OP_I64, /* 1 .. 64 */
5803 OP_I64z, /* 0 .. 64 */
5804 OP_I255, /* 0 .. 255 */
5805
5806 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5807 OP_I7b, /* 0 .. 7 */
5808 OP_I15b, /* 0 .. 15 */
5809 OP_I31b, /* 0 .. 31 */
5810
5811 OP_SH, /* shifter operand */
5812 OP_SHG, /* shifter operand with possible group relocation */
5813 OP_ADDR, /* Memory address expression (any mode) */
5814 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5815 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5816 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5817 OP_EXP, /* arbitrary expression */
5818 OP_EXPi, /* same, with optional immediate prefix */
5819 OP_EXPr, /* same, with optional relocation suffix */
5820 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5821
5822 OP_CPSF, /* CPS flags */
5823 OP_ENDI, /* Endianness specifier */
5824 OP_PSR, /* CPSR/SPSR mask for msr */
5825 OP_COND, /* conditional code */
5826 OP_TB, /* Table branch. */
5827
5828 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5829 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5830
5831 OP_RRnpc_I0, /* ARM register or literal 0 */
5832 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5833 OP_RR_EXi, /* ARM register or expression with imm prefix */
5834 OP_RF_IF, /* FPA register or immediate */
5835 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5836 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5837
5838 /* Optional operands. */
5839 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5840 OP_oI31b, /* 0 .. 31 */
5841 OP_oI32b, /* 1 .. 32 */
5842 OP_oIffffb, /* 0 .. 65535 */
5843 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5844
5845 OP_oRR, /* ARM register */
5846 OP_oRRnpc, /* ARM register, not the PC */
5847 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
5848 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5849 OP_oRND, /* Optional Neon double precision register */
5850 OP_oRNQ, /* Optional Neon quad precision register */
5851 OP_oRNDQ, /* Optional Neon double or quad precision register */
5852 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5853 OP_oSHll, /* LSL immediate */
5854 OP_oSHar, /* ASR immediate */
5855 OP_oSHllar, /* LSL or ASR immediate */
5856 OP_oROR, /* ROR 0/8/16/24 */
5857 OP_oBARRIER, /* Option argument for a barrier instruction. */
5858
5859 /* Some pre-defined mixed (ARM/THUMB) operands. */
5860 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
5861 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
5862 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
5863
5864 OP_FIRST_OPTIONAL = OP_oI7b
5865 };
5866
5867 /* Generic instruction operand parser. This does no encoding and no
5868 semantic validation; it merely squirrels values away in the inst
5869 structure. Returns SUCCESS or FAIL depending on whether the
5870 specified grammar matched. */
5871 static int
5872 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
5873 {
5874 unsigned const int *upat = pattern;
5875 char *backtrack_pos = 0;
5876 const char *backtrack_error = 0;
5877 int i, val, backtrack_index = 0;
5878 enum arm_reg_type rtype;
5879 parse_operand_result result;
5880 unsigned int op_parse_code;
5881
5882 #define po_char_or_fail(chr) \
5883 do \
5884 { \
5885 if (skip_past_char (&str, chr) == FAIL) \
5886 goto bad_args; \
5887 } \
5888 while (0)
5889
5890 #define po_reg_or_fail(regtype) \
5891 do \
5892 { \
5893 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5894 & inst.operands[i].vectype); \
5895 if (val == FAIL) \
5896 { \
5897 first_error (_(reg_expected_msgs[regtype])); \
5898 goto failure; \
5899 } \
5900 inst.operands[i].reg = val; \
5901 inst.operands[i].isreg = 1; \
5902 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5903 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5904 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5905 || rtype == REG_TYPE_VFD \
5906 || rtype == REG_TYPE_NQ); \
5907 } \
5908 while (0)
5909
5910 #define po_reg_or_goto(regtype, label) \
5911 do \
5912 { \
5913 val = arm_typed_reg_parse (& str, regtype, & rtype, \
5914 & inst.operands[i].vectype); \
5915 if (val == FAIL) \
5916 goto label; \
5917 \
5918 inst.operands[i].reg = val; \
5919 inst.operands[i].isreg = 1; \
5920 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5921 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5922 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5923 || rtype == REG_TYPE_VFD \
5924 || rtype == REG_TYPE_NQ); \
5925 } \
5926 while (0)
5927
5928 #define po_imm_or_fail(min, max, popt) \
5929 do \
5930 { \
5931 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5932 goto failure; \
5933 inst.operands[i].imm = val; \
5934 } \
5935 while (0)
5936
5937 #define po_scalar_or_goto(elsz, label) \
5938 do \
5939 { \
5940 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
5941 if (val == FAIL) \
5942 goto label; \
5943 inst.operands[i].reg = val; \
5944 inst.operands[i].isscalar = 1; \
5945 } \
5946 while (0)
5947
5948 #define po_misc_or_fail(expr) \
5949 do \
5950 { \
5951 if (expr) \
5952 goto failure; \
5953 } \
5954 while (0)
5955
5956 #define po_misc_or_fail_no_backtrack(expr) \
5957 do \
5958 { \
5959 result = expr; \
5960 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
5961 backtrack_pos = 0; \
5962 if (result != PARSE_OPERAND_SUCCESS) \
5963 goto failure; \
5964 } \
5965 while (0)
5966
5967 skip_whitespace (str);
5968
5969 for (i = 0; upat[i] != OP_stop; i++)
5970 {
5971 op_parse_code = upat[i];
5972 if (op_parse_code >= 1<<16)
5973 op_parse_code = thumb ? (op_parse_code >> 16)
5974 : (op_parse_code & ((1<<16)-1));
5975
5976 if (op_parse_code >= OP_FIRST_OPTIONAL)
5977 {
5978 /* Remember where we are in case we need to backtrack. */
5979 gas_assert (!backtrack_pos);
5980 backtrack_pos = str;
5981 backtrack_error = inst.error;
5982 backtrack_index = i;
5983 }
5984
5985 if (i > 0 && (i > 1 || inst.operands[0].present))
5986 po_char_or_fail (',');
5987
5988 switch (op_parse_code)
5989 {
5990 /* Registers */
5991 case OP_oRRnpc:
5992 case OP_oRRnpcsp:
5993 case OP_RRnpc:
5994 case OP_RRnpcsp:
5995 case OP_oRR:
5996 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5997 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5998 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5999 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6000 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6001 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6002 case OP_oRND:
6003 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6004 case OP_RVC:
6005 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6006 break;
6007 /* Also accept generic coprocessor regs for unknown registers. */
6008 coproc_reg:
6009 po_reg_or_fail (REG_TYPE_CN);
6010 break;
6011 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6012 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6013 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6014 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6015 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6016 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6017 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6018 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6019 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6020 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6021 case OP_oRNQ:
6022 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6023 case OP_oRNDQ:
6024 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6025 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6026 case OP_oRNSDQ:
6027 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6028
6029 /* Neon scalar. Using an element size of 8 means that some invalid
6030 scalars are accepted here, so deal with those in later code. */
6031 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6032
6033 case OP_RNDQ_I0:
6034 {
6035 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6036 break;
6037 try_imm0:
6038 po_imm_or_fail (0, 0, TRUE);
6039 }
6040 break;
6041
6042 case OP_RVSD_I0:
6043 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6044 break;
6045
6046 case OP_RR_RNSC:
6047 {
6048 po_scalar_or_goto (8, try_rr);
6049 break;
6050 try_rr:
6051 po_reg_or_fail (REG_TYPE_RN);
6052 }
6053 break;
6054
6055 case OP_RNSDQ_RNSC:
6056 {
6057 po_scalar_or_goto (8, try_nsdq);
6058 break;
6059 try_nsdq:
6060 po_reg_or_fail (REG_TYPE_NSDQ);
6061 }
6062 break;
6063
6064 case OP_RNDQ_RNSC:
6065 {
6066 po_scalar_or_goto (8, try_ndq);
6067 break;
6068 try_ndq:
6069 po_reg_or_fail (REG_TYPE_NDQ);
6070 }
6071 break;
6072
6073 case OP_RND_RNSC:
6074 {
6075 po_scalar_or_goto (8, try_vfd);
6076 break;
6077 try_vfd:
6078 po_reg_or_fail (REG_TYPE_VFD);
6079 }
6080 break;
6081
6082 case OP_VMOV:
6083 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6084 not careful then bad things might happen. */
6085 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6086 break;
6087
6088 case OP_RNDQ_Ibig:
6089 {
6090 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6091 break;
6092 try_immbig:
6093 /* There's a possibility of getting a 64-bit immediate here, so
6094 we need special handling. */
6095 if (parse_big_immediate (&str, i) == FAIL)
6096 {
6097 inst.error = _("immediate value is out of range");
6098 goto failure;
6099 }
6100 }
6101 break;
6102
6103 case OP_RNDQ_I63b:
6104 {
6105 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6106 break;
6107 try_shimm:
6108 po_imm_or_fail (0, 63, TRUE);
6109 }
6110 break;
6111
6112 case OP_RRnpcb:
6113 po_char_or_fail ('[');
6114 po_reg_or_fail (REG_TYPE_RN);
6115 po_char_or_fail (']');
6116 break;
6117
6118 case OP_RRw:
6119 case OP_oRRw:
6120 po_reg_or_fail (REG_TYPE_RN);
6121 if (skip_past_char (&str, '!') == SUCCESS)
6122 inst.operands[i].writeback = 1;
6123 break;
6124
6125 /* Immediates */
6126 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6127 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6128 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6129 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6130 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6131 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6132 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6133 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6134 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6135 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6136 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6137 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6138
6139 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6140 case OP_oI7b:
6141 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6142 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6143 case OP_oI31b:
6144 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6145 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6146 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6147
6148 /* Immediate variants */
6149 case OP_oI255c:
6150 po_char_or_fail ('{');
6151 po_imm_or_fail (0, 255, TRUE);
6152 po_char_or_fail ('}');
6153 break;
6154
6155 case OP_I31w:
6156 /* The expression parser chokes on a trailing !, so we have
6157 to find it first and zap it. */
6158 {
6159 char *s = str;
6160 while (*s && *s != ',')
6161 s++;
6162 if (s[-1] == '!')
6163 {
6164 s[-1] = '\0';
6165 inst.operands[i].writeback = 1;
6166 }
6167 po_imm_or_fail (0, 31, TRUE);
6168 if (str == s - 1)
6169 str = s;
6170 }
6171 break;
6172
6173 /* Expressions */
6174 case OP_EXPi: EXPi:
6175 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6176 GE_OPT_PREFIX));
6177 break;
6178
6179 case OP_EXP:
6180 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6181 GE_NO_PREFIX));
6182 break;
6183
6184 case OP_EXPr: EXPr:
6185 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6186 GE_NO_PREFIX));
6187 if (inst.reloc.exp.X_op == O_symbol)
6188 {
6189 val = parse_reloc (&str);
6190 if (val == -1)
6191 {
6192 inst.error = _("unrecognized relocation suffix");
6193 goto failure;
6194 }
6195 else if (val != BFD_RELOC_UNUSED)
6196 {
6197 inst.operands[i].imm = val;
6198 inst.operands[i].hasreloc = 1;
6199 }
6200 }
6201 break;
6202
6203 /* Operand for MOVW or MOVT. */
6204 case OP_HALF:
6205 po_misc_or_fail (parse_half (&str));
6206 break;
6207
6208 /* Register or expression. */
6209 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6210 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6211
6212 /* Register or immediate. */
6213 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6214 I0: po_imm_or_fail (0, 0, FALSE); break;
6215
6216 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6217 IF:
6218 if (!is_immediate_prefix (*str))
6219 goto bad_args;
6220 str++;
6221 val = parse_fpa_immediate (&str);
6222 if (val == FAIL)
6223 goto failure;
6224 /* FPA immediates are encoded as registers 8-15.
6225 parse_fpa_immediate has already applied the offset. */
6226 inst.operands[i].reg = val;
6227 inst.operands[i].isreg = 1;
6228 break;
6229
6230 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6231 I32z: po_imm_or_fail (0, 32, FALSE); break;
6232
6233 /* Two kinds of register. */
6234 case OP_RIWR_RIWC:
6235 {
6236 struct reg_entry *rege = arm_reg_parse_multi (&str);
6237 if (!rege
6238 || (rege->type != REG_TYPE_MMXWR
6239 && rege->type != REG_TYPE_MMXWC
6240 && rege->type != REG_TYPE_MMXWCG))
6241 {
6242 inst.error = _("iWMMXt data or control register expected");
6243 goto failure;
6244 }
6245 inst.operands[i].reg = rege->number;
6246 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6247 }
6248 break;
6249
6250 case OP_RIWC_RIWG:
6251 {
6252 struct reg_entry *rege = arm_reg_parse_multi (&str);
6253 if (!rege
6254 || (rege->type != REG_TYPE_MMXWC
6255 && rege->type != REG_TYPE_MMXWCG))
6256 {
6257 inst.error = _("iWMMXt control register expected");
6258 goto failure;
6259 }
6260 inst.operands[i].reg = rege->number;
6261 inst.operands[i].isreg = 1;
6262 }
6263 break;
6264
6265 /* Misc */
6266 case OP_CPSF: val = parse_cps_flags (&str); break;
6267 case OP_ENDI: val = parse_endian_specifier (&str); break;
6268 case OP_oROR: val = parse_ror (&str); break;
6269 case OP_PSR: val = parse_psr (&str); break;
6270 case OP_COND: val = parse_cond (&str); break;
6271 case OP_oBARRIER:val = parse_barrier (&str); break;
6272
6273 case OP_RVC_PSR:
6274 po_reg_or_goto (REG_TYPE_VFC, try_psr);
6275 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
6276 break;
6277 try_psr:
6278 val = parse_psr (&str);
6279 break;
6280
6281 case OP_APSR_RR:
6282 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6283 break;
6284 try_apsr:
6285 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6286 instruction). */
6287 if (strncasecmp (str, "APSR_", 5) == 0)
6288 {
6289 unsigned found = 0;
6290 str += 5;
6291 while (found < 15)
6292 switch (*str++)
6293 {
6294 case 'c': found = (found & 1) ? 16 : found | 1; break;
6295 case 'n': found = (found & 2) ? 16 : found | 2; break;
6296 case 'z': found = (found & 4) ? 16 : found | 4; break;
6297 case 'v': found = (found & 8) ? 16 : found | 8; break;
6298 default: found = 16;
6299 }
6300 if (found != 15)
6301 goto failure;
6302 inst.operands[i].isvec = 1;
6303 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6304 inst.operands[i].reg = REG_PC;
6305 }
6306 else
6307 goto failure;
6308 break;
6309
6310 case OP_TB:
6311 po_misc_or_fail (parse_tb (&str));
6312 break;
6313
6314 /* Register lists. */
6315 case OP_REGLST:
6316 val = parse_reg_list (&str);
6317 if (*str == '^')
6318 {
6319 inst.operands[1].writeback = 1;
6320 str++;
6321 }
6322 break;
6323
6324 case OP_VRSLST:
6325 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6326 break;
6327
6328 case OP_VRDLST:
6329 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6330 break;
6331
6332 case OP_VRSDLST:
6333 /* Allow Q registers too. */
6334 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6335 REGLIST_NEON_D);
6336 if (val == FAIL)
6337 {
6338 inst.error = NULL;
6339 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6340 REGLIST_VFP_S);
6341 inst.operands[i].issingle = 1;
6342 }
6343 break;
6344
6345 case OP_NRDLST:
6346 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6347 REGLIST_NEON_D);
6348 break;
6349
6350 case OP_NSTRLST:
6351 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6352 &inst.operands[i].vectype);
6353 break;
6354
6355 /* Addressing modes */
6356 case OP_ADDR:
6357 po_misc_or_fail (parse_address (&str, i));
6358 break;
6359
6360 case OP_ADDRGLDR:
6361 po_misc_or_fail_no_backtrack (
6362 parse_address_group_reloc (&str, i, GROUP_LDR));
6363 break;
6364
6365 case OP_ADDRGLDRS:
6366 po_misc_or_fail_no_backtrack (
6367 parse_address_group_reloc (&str, i, GROUP_LDRS));
6368 break;
6369
6370 case OP_ADDRGLDC:
6371 po_misc_or_fail_no_backtrack (
6372 parse_address_group_reloc (&str, i, GROUP_LDC));
6373 break;
6374
6375 case OP_SH:
6376 po_misc_or_fail (parse_shifter_operand (&str, i));
6377 break;
6378
6379 case OP_SHG:
6380 po_misc_or_fail_no_backtrack (
6381 parse_shifter_operand_group_reloc (&str, i));
6382 break;
6383
6384 case OP_oSHll:
6385 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6386 break;
6387
6388 case OP_oSHar:
6389 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6390 break;
6391
6392 case OP_oSHllar:
6393 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6394 break;
6395
6396 default:
6397 as_fatal (_("unhandled operand code %d"), op_parse_code);
6398 }
6399
6400 /* Various value-based sanity checks and shared operations. We
6401 do not signal immediate failures for the register constraints;
6402 this allows a syntax error to take precedence. */
6403 switch (op_parse_code)
6404 {
6405 case OP_oRRnpc:
6406 case OP_RRnpc:
6407 case OP_RRnpcb:
6408 case OP_RRw:
6409 case OP_oRRw:
6410 case OP_RRnpc_I0:
6411 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6412 inst.error = BAD_PC;
6413 break;
6414
6415 case OP_oRRnpcsp:
6416 case OP_RRnpcsp:
6417 if (inst.operands[i].isreg)
6418 {
6419 if (inst.operands[i].reg == REG_PC)
6420 inst.error = BAD_PC;
6421 else if (inst.operands[i].reg == REG_SP)
6422 inst.error = BAD_SP;
6423 }
6424 break;
6425
6426 case OP_CPSF:
6427 case OP_ENDI:
6428 case OP_oROR:
6429 case OP_PSR:
6430 case OP_RVC_PSR:
6431 case OP_COND:
6432 case OP_oBARRIER:
6433 case OP_REGLST:
6434 case OP_VRSLST:
6435 case OP_VRDLST:
6436 case OP_VRSDLST:
6437 case OP_NRDLST:
6438 case OP_NSTRLST:
6439 if (val == FAIL)
6440 goto failure;
6441 inst.operands[i].imm = val;
6442 break;
6443
6444 default:
6445 break;
6446 }
6447
6448 /* If we get here, this operand was successfully parsed. */
6449 inst.operands[i].present = 1;
6450 continue;
6451
6452 bad_args:
6453 inst.error = BAD_ARGS;
6454
6455 failure:
6456 if (!backtrack_pos)
6457 {
6458 /* The parse routine should already have set inst.error, but set a
6459 default here just in case. */
6460 if (!inst.error)
6461 inst.error = _("syntax error");
6462 return FAIL;
6463 }
6464
6465 /* Do not backtrack over a trailing optional argument that
6466 absorbed some text. We will only fail again, with the
6467 'garbage following instruction' error message, which is
6468 probably less helpful than the current one. */
6469 if (backtrack_index == i && backtrack_pos != str
6470 && upat[i+1] == OP_stop)
6471 {
6472 if (!inst.error)
6473 inst.error = _("syntax error");
6474 return FAIL;
6475 }
6476
6477 /* Try again, skipping the optional argument at backtrack_pos. */
6478 str = backtrack_pos;
6479 inst.error = backtrack_error;
6480 inst.operands[backtrack_index].present = 0;
6481 i = backtrack_index;
6482 backtrack_pos = 0;
6483 }
6484
6485 /* Check that we have parsed all the arguments. */
6486 if (*str != '\0' && !inst.error)
6487 inst.error = _("garbage following instruction");
6488
6489 return inst.error ? FAIL : SUCCESS;
6490 }
6491
6492 #undef po_char_or_fail
6493 #undef po_reg_or_fail
6494 #undef po_reg_or_goto
6495 #undef po_imm_or_fail
6496 #undef po_scalar_or_fail
6497
6498 /* Shorthand macro for instruction encoding functions issuing errors. */
6499 #define constraint(expr, err) \
6500 do \
6501 { \
6502 if (expr) \
6503 { \
6504 inst.error = err; \
6505 return; \
6506 } \
6507 } \
6508 while (0)
6509
6510 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6511 instructions are unpredictable if these registers are used. This
6512 is the BadReg predicate in ARM's Thumb-2 documentation. */
6513 #define reject_bad_reg(reg) \
6514 do \
6515 if (reg == REG_SP || reg == REG_PC) \
6516 { \
6517 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6518 return; \
6519 } \
6520 while (0)
6521
6522 /* If REG is R13 (the stack pointer), warn that its use is
6523 deprecated. */
6524 #define warn_deprecated_sp(reg) \
6525 do \
6526 if (warn_on_deprecated && reg == REG_SP) \
6527 as_warn (_("use of r13 is deprecated")); \
6528 while (0)
6529
6530 /* Functions for operand encoding. ARM, then Thumb. */
6531
6532 #define rotate_left(v, n) (v << n | v >> (32 - n))
6533
6534 /* If VAL can be encoded in the immediate field of an ARM instruction,
6535 return the encoded form. Otherwise, return FAIL. */
6536
6537 static unsigned int
6538 encode_arm_immediate (unsigned int val)
6539 {
6540 unsigned int a, i;
6541
6542 for (i = 0; i < 32; i += 2)
6543 if ((a = rotate_left (val, i)) <= 0xff)
6544 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6545
6546 return FAIL;
6547 }
6548
6549 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6550 return the encoded form. Otherwise, return FAIL. */
6551 static unsigned int
6552 encode_thumb32_immediate (unsigned int val)
6553 {
6554 unsigned int a, i;
6555
6556 if (val <= 0xff)
6557 return val;
6558
6559 for (i = 1; i <= 24; i++)
6560 {
6561 a = val >> i;
6562 if ((val & ~(0xff << i)) == 0)
6563 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6564 }
6565
6566 a = val & 0xff;
6567 if (val == ((a << 16) | a))
6568 return 0x100 | a;
6569 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6570 return 0x300 | a;
6571
6572 a = val & 0xff00;
6573 if (val == ((a << 16) | a))
6574 return 0x200 | (a >> 8);
6575
6576 return FAIL;
6577 }
6578 /* Encode a VFP SP or DP register number into inst.instruction. */
6579
6580 static void
6581 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6582 {
6583 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6584 && reg > 15)
6585 {
6586 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6587 {
6588 if (thumb_mode)
6589 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6590 fpu_vfp_ext_d32);
6591 else
6592 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6593 fpu_vfp_ext_d32);
6594 }
6595 else
6596 {
6597 first_error (_("D register out of range for selected VFP version"));
6598 return;
6599 }
6600 }
6601
6602 switch (pos)
6603 {
6604 case VFP_REG_Sd:
6605 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6606 break;
6607
6608 case VFP_REG_Sn:
6609 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6610 break;
6611
6612 case VFP_REG_Sm:
6613 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6614 break;
6615
6616 case VFP_REG_Dd:
6617 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6618 break;
6619
6620 case VFP_REG_Dn:
6621 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6622 break;
6623
6624 case VFP_REG_Dm:
6625 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6626 break;
6627
6628 default:
6629 abort ();
6630 }
6631 }
6632
6633 /* Encode a <shift> in an ARM-format instruction. The immediate,
6634 if any, is handled by md_apply_fix. */
6635 static void
6636 encode_arm_shift (int i)
6637 {
6638 if (inst.operands[i].shift_kind == SHIFT_RRX)
6639 inst.instruction |= SHIFT_ROR << 5;
6640 else
6641 {
6642 inst.instruction |= inst.operands[i].shift_kind << 5;
6643 if (inst.operands[i].immisreg)
6644 {
6645 inst.instruction |= SHIFT_BY_REG;
6646 inst.instruction |= inst.operands[i].imm << 8;
6647 }
6648 else
6649 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6650 }
6651 }
6652
6653 static void
6654 encode_arm_shifter_operand (int i)
6655 {
6656 if (inst.operands[i].isreg)
6657 {
6658 inst.instruction |= inst.operands[i].reg;
6659 encode_arm_shift (i);
6660 }
6661 else
6662 inst.instruction |= INST_IMMEDIATE;
6663 }
6664
6665 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6666 static void
6667 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6668 {
6669 gas_assert (inst.operands[i].isreg);
6670 inst.instruction |= inst.operands[i].reg << 16;
6671
6672 if (inst.operands[i].preind)
6673 {
6674 if (is_t)
6675 {
6676 inst.error = _("instruction does not accept preindexed addressing");
6677 return;
6678 }
6679 inst.instruction |= PRE_INDEX;
6680 if (inst.operands[i].writeback)
6681 inst.instruction |= WRITE_BACK;
6682
6683 }
6684 else if (inst.operands[i].postind)
6685 {
6686 gas_assert (inst.operands[i].writeback);
6687 if (is_t)
6688 inst.instruction |= WRITE_BACK;
6689 }
6690 else /* unindexed - only for coprocessor */
6691 {
6692 inst.error = _("instruction does not accept unindexed addressing");
6693 return;
6694 }
6695
6696 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6697 && (((inst.instruction & 0x000f0000) >> 16)
6698 == ((inst.instruction & 0x0000f000) >> 12)))
6699 as_warn ((inst.instruction & LOAD_BIT)
6700 ? _("destination register same as write-back base")
6701 : _("source register same as write-back base"));
6702 }
6703
6704 /* inst.operands[i] was set up by parse_address. Encode it into an
6705 ARM-format mode 2 load or store instruction. If is_t is true,
6706 reject forms that cannot be used with a T instruction (i.e. not
6707 post-indexed). */
6708 static void
6709 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6710 {
6711 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
6712
6713 encode_arm_addr_mode_common (i, is_t);
6714
6715 if (inst.operands[i].immisreg)
6716 {
6717 constraint ((inst.operands[i].imm == REG_PC
6718 || (is_pc && inst.operands[i].writeback)),
6719 BAD_PC_ADDRESSING);
6720 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6721 inst.instruction |= inst.operands[i].imm;
6722 if (!inst.operands[i].negative)
6723 inst.instruction |= INDEX_UP;
6724 if (inst.operands[i].shifted)
6725 {
6726 if (inst.operands[i].shift_kind == SHIFT_RRX)
6727 inst.instruction |= SHIFT_ROR << 5;
6728 else
6729 {
6730 inst.instruction |= inst.operands[i].shift_kind << 5;
6731 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6732 }
6733 }
6734 }
6735 else /* immediate offset in inst.reloc */
6736 {
6737 if (is_pc && !inst.reloc.pc_rel)
6738 {
6739 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
6740 /* BAD_PC_ADDRESSING Condition =
6741 is_load => is_t
6742 which becomes !is_load || is_t. */
6743 constraint ((!is_load || is_t),
6744 BAD_PC_ADDRESSING);
6745 }
6746
6747 if (inst.reloc.type == BFD_RELOC_UNUSED)
6748 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6749 }
6750 }
6751
6752 /* inst.operands[i] was set up by parse_address. Encode it into an
6753 ARM-format mode 3 load or store instruction. Reject forms that
6754 cannot be used with such instructions. If is_t is true, reject
6755 forms that cannot be used with a T instruction (i.e. not
6756 post-indexed). */
6757 static void
6758 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6759 {
6760 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6761 {
6762 inst.error = _("instruction does not accept scaled register index");
6763 return;
6764 }
6765
6766 encode_arm_addr_mode_common (i, is_t);
6767
6768 if (inst.operands[i].immisreg)
6769 {
6770 constraint ((inst.operands[i].imm == REG_PC
6771 || inst.operands[i].reg == REG_PC),
6772 BAD_PC_ADDRESSING);
6773 inst.instruction |= inst.operands[i].imm;
6774 if (!inst.operands[i].negative)
6775 inst.instruction |= INDEX_UP;
6776 }
6777 else /* immediate offset in inst.reloc */
6778 {
6779 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
6780 && inst.operands[i].writeback),
6781 BAD_PC_WRITEBACK);
6782 inst.instruction |= HWOFFSET_IMM;
6783 if (inst.reloc.type == BFD_RELOC_UNUSED)
6784 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6785 }
6786 }
6787
6788 /* inst.operands[i] was set up by parse_address. Encode it into an
6789 ARM-format instruction. Reject all forms which cannot be encoded
6790 into a coprocessor load/store instruction. If wb_ok is false,
6791 reject use of writeback; if unind_ok is false, reject use of
6792 unindexed addressing. If reloc_override is not 0, use it instead
6793 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6794 (in which case it is preserved). */
6795
6796 static int
6797 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6798 {
6799 inst.instruction |= inst.operands[i].reg << 16;
6800
6801 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
6802
6803 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6804 {
6805 gas_assert (!inst.operands[i].writeback);
6806 if (!unind_ok)
6807 {
6808 inst.error = _("instruction does not support unindexed addressing");
6809 return FAIL;
6810 }
6811 inst.instruction |= inst.operands[i].imm;
6812 inst.instruction |= INDEX_UP;
6813 return SUCCESS;
6814 }
6815
6816 if (inst.operands[i].preind)
6817 inst.instruction |= PRE_INDEX;
6818
6819 if (inst.operands[i].writeback)
6820 {
6821 if (inst.operands[i].reg == REG_PC)
6822 {
6823 inst.error = _("pc may not be used with write-back");
6824 return FAIL;
6825 }
6826 if (!wb_ok)
6827 {
6828 inst.error = _("instruction does not support writeback");
6829 return FAIL;
6830 }
6831 inst.instruction |= WRITE_BACK;
6832 }
6833
6834 if (reloc_override)
6835 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
6836 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6837 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6838 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6839 {
6840 if (thumb_mode)
6841 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6842 else
6843 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6844 }
6845
6846 return SUCCESS;
6847 }
6848
6849 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6850 Determine whether it can be performed with a move instruction; if
6851 it can, convert inst.instruction to that move instruction and
6852 return TRUE; if it can't, convert inst.instruction to a literal-pool
6853 load and return FALSE. If this is not a valid thing to do in the
6854 current context, set inst.error and return TRUE.
6855
6856 inst.operands[i] describes the destination register. */
6857
6858 static bfd_boolean
6859 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6860 {
6861 unsigned long tbit;
6862
6863 if (thumb_p)
6864 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6865 else
6866 tbit = LOAD_BIT;
6867
6868 if ((inst.instruction & tbit) == 0)
6869 {
6870 inst.error = _("invalid pseudo operation");
6871 return TRUE;
6872 }
6873 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6874 {
6875 inst.error = _("constant expression expected");
6876 return TRUE;
6877 }
6878 if (inst.reloc.exp.X_op == O_constant)
6879 {
6880 if (thumb_p)
6881 {
6882 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6883 {
6884 /* This can be done with a mov(1) instruction. */
6885 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6886 inst.instruction |= inst.reloc.exp.X_add_number;
6887 return TRUE;
6888 }
6889 }
6890 else
6891 {
6892 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6893 if (value != FAIL)
6894 {
6895 /* This can be done with a mov instruction. */
6896 inst.instruction &= LITERAL_MASK;
6897 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6898 inst.instruction |= value & 0xfff;
6899 return TRUE;
6900 }
6901
6902 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6903 if (value != FAIL)
6904 {
6905 /* This can be done with a mvn instruction. */
6906 inst.instruction &= LITERAL_MASK;
6907 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6908 inst.instruction |= value & 0xfff;
6909 return TRUE;
6910 }
6911 }
6912 }
6913
6914 if (add_to_lit_pool () == FAIL)
6915 {
6916 inst.error = _("literal pool insertion failed");
6917 return TRUE;
6918 }
6919 inst.operands[1].reg = REG_PC;
6920 inst.operands[1].isreg = 1;
6921 inst.operands[1].preind = 1;
6922 inst.reloc.pc_rel = 1;
6923 inst.reloc.type = (thumb_p
6924 ? BFD_RELOC_ARM_THUMB_OFFSET
6925 : (mode_3
6926 ? BFD_RELOC_ARM_HWLITERAL
6927 : BFD_RELOC_ARM_LITERAL));
6928 return FALSE;
6929 }
6930
6931 /* Functions for instruction encoding, sorted by sub-architecture.
6932 First some generics; their names are taken from the conventional
6933 bit positions for register arguments in ARM format instructions. */
6934
6935 static void
6936 do_noargs (void)
6937 {
6938 }
6939
6940 static void
6941 do_rd (void)
6942 {
6943 inst.instruction |= inst.operands[0].reg << 12;
6944 }
6945
6946 static void
6947 do_rd_rm (void)
6948 {
6949 inst.instruction |= inst.operands[0].reg << 12;
6950 inst.instruction |= inst.operands[1].reg;
6951 }
6952
6953 static void
6954 do_rd_rn (void)
6955 {
6956 inst.instruction |= inst.operands[0].reg << 12;
6957 inst.instruction |= inst.operands[1].reg << 16;
6958 }
6959
6960 static void
6961 do_rn_rd (void)
6962 {
6963 inst.instruction |= inst.operands[0].reg << 16;
6964 inst.instruction |= inst.operands[1].reg << 12;
6965 }
6966
6967 static void
6968 do_rd_rm_rn (void)
6969 {
6970 unsigned Rn = inst.operands[2].reg;
6971 /* Enforce restrictions on SWP instruction. */
6972 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6973 {
6974 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6975 _("Rn must not overlap other operands"));
6976
6977 /* SWP{b} is deprecated for ARMv6* and ARMv7. */
6978 if (warn_on_deprecated
6979 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
6980 as_warn (_("swp{b} use is deprecated for this architecture"));
6981
6982 }
6983 inst.instruction |= inst.operands[0].reg << 12;
6984 inst.instruction |= inst.operands[1].reg;
6985 inst.instruction |= Rn << 16;
6986 }
6987
6988 static void
6989 do_rd_rn_rm (void)
6990 {
6991 inst.instruction |= inst.operands[0].reg << 12;
6992 inst.instruction |= inst.operands[1].reg << 16;
6993 inst.instruction |= inst.operands[2].reg;
6994 }
6995
6996 static void
6997 do_rm_rd_rn (void)
6998 {
6999 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7000 constraint (((inst.reloc.exp.X_op != O_constant
7001 && inst.reloc.exp.X_op != O_illegal)
7002 || inst.reloc.exp.X_add_number != 0),
7003 BAD_ADDR_MODE);
7004 inst.instruction |= inst.operands[0].reg;
7005 inst.instruction |= inst.operands[1].reg << 12;
7006 inst.instruction |= inst.operands[2].reg << 16;
7007 }
7008
7009 static void
7010 do_imm0 (void)
7011 {
7012 inst.instruction |= inst.operands[0].imm;
7013 }
7014
7015 static void
7016 do_rd_cpaddr (void)
7017 {
7018 inst.instruction |= inst.operands[0].reg << 12;
7019 encode_arm_cp_address (1, TRUE, TRUE, 0);
7020 }
7021
7022 /* ARM instructions, in alphabetical order by function name (except
7023 that wrapper functions appear immediately after the function they
7024 wrap). */
7025
7026 /* This is a pseudo-op of the form "adr rd, label" to be converted
7027 into a relative address of the form "add rd, pc, #label-.-8". */
7028
7029 static void
7030 do_adr (void)
7031 {
7032 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7033
7034 /* Frag hacking will turn this into a sub instruction if the offset turns
7035 out to be negative. */
7036 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7037 inst.reloc.pc_rel = 1;
7038 inst.reloc.exp.X_add_number -= 8;
7039 }
7040
7041 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7042 into a relative address of the form:
7043 add rd, pc, #low(label-.-8)"
7044 add rd, rd, #high(label-.-8)" */
7045
7046 static void
7047 do_adrl (void)
7048 {
7049 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7050
7051 /* Frag hacking will turn this into a sub instruction if the offset turns
7052 out to be negative. */
7053 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7054 inst.reloc.pc_rel = 1;
7055 inst.size = INSN_SIZE * 2;
7056 inst.reloc.exp.X_add_number -= 8;
7057 }
7058
7059 static void
7060 do_arit (void)
7061 {
7062 if (!inst.operands[1].present)
7063 inst.operands[1].reg = inst.operands[0].reg;
7064 inst.instruction |= inst.operands[0].reg << 12;
7065 inst.instruction |= inst.operands[1].reg << 16;
7066 encode_arm_shifter_operand (2);
7067 }
7068
7069 static void
7070 do_barrier (void)
7071 {
7072 if (inst.operands[0].present)
7073 {
7074 constraint ((inst.instruction & 0xf0) != 0x40
7075 && inst.operands[0].imm != 0xf,
7076 _("bad barrier type"));
7077 inst.instruction |= inst.operands[0].imm;
7078 }
7079 else
7080 inst.instruction |= 0xf;
7081 }
7082
7083 static void
7084 do_bfc (void)
7085 {
7086 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7087 constraint (msb > 32, _("bit-field extends past end of register"));
7088 /* The instruction encoding stores the LSB and MSB,
7089 not the LSB and width. */
7090 inst.instruction |= inst.operands[0].reg << 12;
7091 inst.instruction |= inst.operands[1].imm << 7;
7092 inst.instruction |= (msb - 1) << 16;
7093 }
7094
7095 static void
7096 do_bfi (void)
7097 {
7098 unsigned int msb;
7099
7100 /* #0 in second position is alternative syntax for bfc, which is
7101 the same instruction but with REG_PC in the Rm field. */
7102 if (!inst.operands[1].isreg)
7103 inst.operands[1].reg = REG_PC;
7104
7105 msb = inst.operands[2].imm + inst.operands[3].imm;
7106 constraint (msb > 32, _("bit-field extends past end of register"));
7107 /* The instruction encoding stores the LSB and MSB,
7108 not the LSB and width. */
7109 inst.instruction |= inst.operands[0].reg << 12;
7110 inst.instruction |= inst.operands[1].reg;
7111 inst.instruction |= inst.operands[2].imm << 7;
7112 inst.instruction |= (msb - 1) << 16;
7113 }
7114
7115 static void
7116 do_bfx (void)
7117 {
7118 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7119 _("bit-field extends past end of register"));
7120 inst.instruction |= inst.operands[0].reg << 12;
7121 inst.instruction |= inst.operands[1].reg;
7122 inst.instruction |= inst.operands[2].imm << 7;
7123 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7124 }
7125
7126 /* ARM V5 breakpoint instruction (argument parse)
7127 BKPT <16 bit unsigned immediate>
7128 Instruction is not conditional.
7129 The bit pattern given in insns[] has the COND_ALWAYS condition,
7130 and it is an error if the caller tried to override that. */
7131
7132 static void
7133 do_bkpt (void)
7134 {
7135 /* Top 12 of 16 bits to bits 19:8. */
7136 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7137
7138 /* Bottom 4 of 16 bits to bits 3:0. */
7139 inst.instruction |= inst.operands[0].imm & 0xf;
7140 }
7141
7142 static void
7143 encode_branch (int default_reloc)
7144 {
7145 if (inst.operands[0].hasreloc)
7146 {
7147 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
7148 _("the only suffix valid here is '(plt)'"));
7149 inst.reloc.type = BFD_RELOC_ARM_PLT32;
7150 }
7151 else
7152 {
7153 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7154 }
7155 inst.reloc.pc_rel = 1;
7156 }
7157
7158 static void
7159 do_branch (void)
7160 {
7161 #ifdef OBJ_ELF
7162 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7163 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7164 else
7165 #endif
7166 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7167 }
7168
7169 static void
7170 do_bl (void)
7171 {
7172 #ifdef OBJ_ELF
7173 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7174 {
7175 if (inst.cond == COND_ALWAYS)
7176 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7177 else
7178 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7179 }
7180 else
7181 #endif
7182 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7183 }
7184
7185 /* ARM V5 branch-link-exchange instruction (argument parse)
7186 BLX <target_addr> ie BLX(1)
7187 BLX{<condition>} <Rm> ie BLX(2)
7188 Unfortunately, there are two different opcodes for this mnemonic.
7189 So, the insns[].value is not used, and the code here zaps values
7190 into inst.instruction.
7191 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7192
7193 static void
7194 do_blx (void)
7195 {
7196 if (inst.operands[0].isreg)
7197 {
7198 /* Arg is a register; the opcode provided by insns[] is correct.
7199 It is not illegal to do "blx pc", just useless. */
7200 if (inst.operands[0].reg == REG_PC)
7201 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7202
7203 inst.instruction |= inst.operands[0].reg;
7204 }
7205 else
7206 {
7207 /* Arg is an address; this instruction cannot be executed
7208 conditionally, and the opcode must be adjusted.
7209 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7210 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7211 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7212 inst.instruction = 0xfa000000;
7213 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7214 }
7215 }
7216
7217 static void
7218 do_bx (void)
7219 {
7220 bfd_boolean want_reloc;
7221
7222 if (inst.operands[0].reg == REG_PC)
7223 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7224
7225 inst.instruction |= inst.operands[0].reg;
7226 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7227 it is for ARMv4t or earlier. */
7228 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7229 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7230 want_reloc = TRUE;
7231
7232 #ifdef OBJ_ELF
7233 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7234 #endif
7235 want_reloc = FALSE;
7236
7237 if (want_reloc)
7238 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7239 }
7240
7241
7242 /* ARM v5TEJ. Jump to Jazelle code. */
7243
7244 static void
7245 do_bxj (void)
7246 {
7247 if (inst.operands[0].reg == REG_PC)
7248 as_tsktsk (_("use of r15 in bxj is not really useful"));
7249
7250 inst.instruction |= inst.operands[0].reg;
7251 }
7252
7253 /* Co-processor data operation:
7254 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7255 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7256 static void
7257 do_cdp (void)
7258 {
7259 inst.instruction |= inst.operands[0].reg << 8;
7260 inst.instruction |= inst.operands[1].imm << 20;
7261 inst.instruction |= inst.operands[2].reg << 12;
7262 inst.instruction |= inst.operands[3].reg << 16;
7263 inst.instruction |= inst.operands[4].reg;
7264 inst.instruction |= inst.operands[5].imm << 5;
7265 }
7266
7267 static void
7268 do_cmp (void)
7269 {
7270 inst.instruction |= inst.operands[0].reg << 16;
7271 encode_arm_shifter_operand (1);
7272 }
7273
7274 /* Transfer between coprocessor and ARM registers.
7275 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7276 MRC2
7277 MCR{cond}
7278 MCR2
7279
7280 No special properties. */
7281
7282 static void
7283 do_co_reg (void)
7284 {
7285 unsigned Rd;
7286
7287 Rd = inst.operands[2].reg;
7288 if (thumb_mode)
7289 {
7290 if (inst.instruction == 0xee000010
7291 || inst.instruction == 0xfe000010)
7292 /* MCR, MCR2 */
7293 reject_bad_reg (Rd);
7294 else
7295 /* MRC, MRC2 */
7296 constraint (Rd == REG_SP, BAD_SP);
7297 }
7298 else
7299 {
7300 /* MCR */
7301 if (inst.instruction == 0xe000010)
7302 constraint (Rd == REG_PC, BAD_PC);
7303 }
7304
7305
7306 inst.instruction |= inst.operands[0].reg << 8;
7307 inst.instruction |= inst.operands[1].imm << 21;
7308 inst.instruction |= Rd << 12;
7309 inst.instruction |= inst.operands[3].reg << 16;
7310 inst.instruction |= inst.operands[4].reg;
7311 inst.instruction |= inst.operands[5].imm << 5;
7312 }
7313
7314 /* Transfer between coprocessor register and pair of ARM registers.
7315 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7316 MCRR2
7317 MRRC{cond}
7318 MRRC2
7319
7320 Two XScale instructions are special cases of these:
7321
7322 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7323 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7324
7325 Result unpredictable if Rd or Rn is R15. */
7326
7327 static void
7328 do_co_reg2c (void)
7329 {
7330 unsigned Rd, Rn;
7331
7332 Rd = inst.operands[2].reg;
7333 Rn = inst.operands[3].reg;
7334
7335 if (thumb_mode)
7336 {
7337 reject_bad_reg (Rd);
7338 reject_bad_reg (Rn);
7339 }
7340 else
7341 {
7342 constraint (Rd == REG_PC, BAD_PC);
7343 constraint (Rn == REG_PC, BAD_PC);
7344 }
7345
7346 inst.instruction |= inst.operands[0].reg << 8;
7347 inst.instruction |= inst.operands[1].imm << 4;
7348 inst.instruction |= Rd << 12;
7349 inst.instruction |= Rn << 16;
7350 inst.instruction |= inst.operands[4].reg;
7351 }
7352
7353 static void
7354 do_cpsi (void)
7355 {
7356 inst.instruction |= inst.operands[0].imm << 6;
7357 if (inst.operands[1].present)
7358 {
7359 inst.instruction |= CPSI_MMOD;
7360 inst.instruction |= inst.operands[1].imm;
7361 }
7362 }
7363
7364 static void
7365 do_dbg (void)
7366 {
7367 inst.instruction |= inst.operands[0].imm;
7368 }
7369
7370 static void
7371 do_it (void)
7372 {
7373 /* There is no IT instruction in ARM mode. We
7374 process it to do the validation as if in
7375 thumb mode, just in case the code gets
7376 assembled for thumb using the unified syntax. */
7377
7378 inst.size = 0;
7379 if (unified_syntax)
7380 {
7381 set_it_insn_type (IT_INSN);
7382 now_it.mask = (inst.instruction & 0xf) | 0x10;
7383 now_it.cc = inst.operands[0].imm;
7384 }
7385 }
7386
7387 static void
7388 do_ldmstm (void)
7389 {
7390 int base_reg = inst.operands[0].reg;
7391 int range = inst.operands[1].imm;
7392
7393 inst.instruction |= base_reg << 16;
7394 inst.instruction |= range;
7395
7396 if (inst.operands[1].writeback)
7397 inst.instruction |= LDM_TYPE_2_OR_3;
7398
7399 if (inst.operands[0].writeback)
7400 {
7401 inst.instruction |= WRITE_BACK;
7402 /* Check for unpredictable uses of writeback. */
7403 if (inst.instruction & LOAD_BIT)
7404 {
7405 /* Not allowed in LDM type 2. */
7406 if ((inst.instruction & LDM_TYPE_2_OR_3)
7407 && ((range & (1 << REG_PC)) == 0))
7408 as_warn (_("writeback of base register is UNPREDICTABLE"));
7409 /* Only allowed if base reg not in list for other types. */
7410 else if (range & (1 << base_reg))
7411 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7412 }
7413 else /* STM. */
7414 {
7415 /* Not allowed for type 2. */
7416 if (inst.instruction & LDM_TYPE_2_OR_3)
7417 as_warn (_("writeback of base register is UNPREDICTABLE"));
7418 /* Only allowed if base reg not in list, or first in list. */
7419 else if ((range & (1 << base_reg))
7420 && (range & ((1 << base_reg) - 1)))
7421 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7422 }
7423 }
7424 }
7425
7426 /* ARMv5TE load-consecutive (argument parse)
7427 Mode is like LDRH.
7428
7429 LDRccD R, mode
7430 STRccD R, mode. */
7431
7432 static void
7433 do_ldrd (void)
7434 {
7435 constraint (inst.operands[0].reg % 2 != 0,
7436 _("first destination register must be even"));
7437 constraint (inst.operands[1].present
7438 && inst.operands[1].reg != inst.operands[0].reg + 1,
7439 _("can only load two consecutive registers"));
7440 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7441 constraint (!inst.operands[2].isreg, _("'[' expected"));
7442
7443 if (!inst.operands[1].present)
7444 inst.operands[1].reg = inst.operands[0].reg + 1;
7445
7446 if (inst.instruction & LOAD_BIT)
7447 {
7448 /* encode_arm_addr_mode_3 will diagnose overlap between the base
7449 register and the first register written; we have to diagnose
7450 overlap between the base and the second register written here. */
7451
7452 if (inst.operands[2].reg == inst.operands[1].reg
7453 && (inst.operands[2].writeback || inst.operands[2].postind))
7454 as_warn (_("base register written back, and overlaps "
7455 "second destination register"));
7456
7457 /* For an index-register load, the index register must not overlap the
7458 destination (even if not write-back). */
7459 else if (inst.operands[2].immisreg
7460 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
7461 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
7462 as_warn (_("index register overlaps destination register"));
7463 }
7464
7465 inst.instruction |= inst.operands[0].reg << 12;
7466 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
7467 }
7468
7469 static void
7470 do_ldrex (void)
7471 {
7472 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
7473 || inst.operands[1].postind || inst.operands[1].writeback
7474 || inst.operands[1].immisreg || inst.operands[1].shifted
7475 || inst.operands[1].negative
7476 /* This can arise if the programmer has written
7477 strex rN, rM, foo
7478 or if they have mistakenly used a register name as the last
7479 operand, eg:
7480 strex rN, rM, rX
7481 It is very difficult to distinguish between these two cases
7482 because "rX" might actually be a label. ie the register
7483 name has been occluded by a symbol of the same name. So we
7484 just generate a general 'bad addressing mode' type error
7485 message and leave it up to the programmer to discover the
7486 true cause and fix their mistake. */
7487 || (inst.operands[1].reg == REG_PC),
7488 BAD_ADDR_MODE);
7489
7490 constraint (inst.reloc.exp.X_op != O_constant
7491 || inst.reloc.exp.X_add_number != 0,
7492 _("offset must be zero in ARM encoding"));
7493
7494 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
7495
7496 inst.instruction |= inst.operands[0].reg << 12;
7497 inst.instruction |= inst.operands[1].reg << 16;
7498 inst.reloc.type = BFD_RELOC_UNUSED;
7499 }
7500
7501 static void
7502 do_ldrexd (void)
7503 {
7504 constraint (inst.operands[0].reg % 2 != 0,
7505 _("even register required"));
7506 constraint (inst.operands[1].present
7507 && inst.operands[1].reg != inst.operands[0].reg + 1,
7508 _("can only load two consecutive registers"));
7509 /* If op 1 were present and equal to PC, this function wouldn't
7510 have been called in the first place. */
7511 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7512
7513 inst.instruction |= inst.operands[0].reg << 12;
7514 inst.instruction |= inst.operands[2].reg << 16;
7515 }
7516
7517 static void
7518 do_ldst (void)
7519 {
7520 inst.instruction |= inst.operands[0].reg << 12;
7521 if (!inst.operands[1].isreg)
7522 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7523 return;
7524 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7525 }
7526
7527 static void
7528 do_ldstt (void)
7529 {
7530 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7531 reject [Rn,...]. */
7532 if (inst.operands[1].preind)
7533 {
7534 constraint (inst.reloc.exp.X_op != O_constant
7535 || inst.reloc.exp.X_add_number != 0,
7536 _("this instruction requires a post-indexed address"));
7537
7538 inst.operands[1].preind = 0;
7539 inst.operands[1].postind = 1;
7540 inst.operands[1].writeback = 1;
7541 }
7542 inst.instruction |= inst.operands[0].reg << 12;
7543 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7544 }
7545
7546 /* Halfword and signed-byte load/store operations. */
7547
7548 static void
7549 do_ldstv4 (void)
7550 {
7551 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7552 inst.instruction |= inst.operands[0].reg << 12;
7553 if (!inst.operands[1].isreg)
7554 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7555 return;
7556 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7557 }
7558
7559 static void
7560 do_ldsttv4 (void)
7561 {
7562 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7563 reject [Rn,...]. */
7564 if (inst.operands[1].preind)
7565 {
7566 constraint (inst.reloc.exp.X_op != O_constant
7567 || inst.reloc.exp.X_add_number != 0,
7568 _("this instruction requires a post-indexed address"));
7569
7570 inst.operands[1].preind = 0;
7571 inst.operands[1].postind = 1;
7572 inst.operands[1].writeback = 1;
7573 }
7574 inst.instruction |= inst.operands[0].reg << 12;
7575 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7576 }
7577
7578 /* Co-processor register load/store.
7579 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7580 static void
7581 do_lstc (void)
7582 {
7583 inst.instruction |= inst.operands[0].reg << 8;
7584 inst.instruction |= inst.operands[1].reg << 12;
7585 encode_arm_cp_address (2, TRUE, TRUE, 0);
7586 }
7587
7588 static void
7589 do_mlas (void)
7590 {
7591 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7592 if (inst.operands[0].reg == inst.operands[1].reg
7593 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7594 && !(inst.instruction & 0x00400000))
7595 as_tsktsk (_("Rd and Rm should be different in mla"));
7596
7597 inst.instruction |= inst.operands[0].reg << 16;
7598 inst.instruction |= inst.operands[1].reg;
7599 inst.instruction |= inst.operands[2].reg << 8;
7600 inst.instruction |= inst.operands[3].reg << 12;
7601 }
7602
7603 static void
7604 do_mov (void)
7605 {
7606 inst.instruction |= inst.operands[0].reg << 12;
7607 encode_arm_shifter_operand (1);
7608 }
7609
7610 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7611 static void
7612 do_mov16 (void)
7613 {
7614 bfd_vma imm;
7615 bfd_boolean top;
7616
7617 top = (inst.instruction & 0x00400000) != 0;
7618 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7619 _(":lower16: not allowed this instruction"));
7620 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7621 _(":upper16: not allowed instruction"));
7622 inst.instruction |= inst.operands[0].reg << 12;
7623 if (inst.reloc.type == BFD_RELOC_UNUSED)
7624 {
7625 imm = inst.reloc.exp.X_add_number;
7626 /* The value is in two pieces: 0:11, 16:19. */
7627 inst.instruction |= (imm & 0x00000fff);
7628 inst.instruction |= (imm & 0x0000f000) << 4;
7629 }
7630 }
7631
7632 static void do_vfp_nsyn_opcode (const char *);
7633
7634 static int
7635 do_vfp_nsyn_mrs (void)
7636 {
7637 if (inst.operands[0].isvec)
7638 {
7639 if (inst.operands[1].reg != 1)
7640 first_error (_("operand 1 must be FPSCR"));
7641 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7642 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7643 do_vfp_nsyn_opcode ("fmstat");
7644 }
7645 else if (inst.operands[1].isvec)
7646 do_vfp_nsyn_opcode ("fmrx");
7647 else
7648 return FAIL;
7649
7650 return SUCCESS;
7651 }
7652
7653 static int
7654 do_vfp_nsyn_msr (void)
7655 {
7656 if (inst.operands[0].isvec)
7657 do_vfp_nsyn_opcode ("fmxr");
7658 else
7659 return FAIL;
7660
7661 return SUCCESS;
7662 }
7663
7664 static void
7665 do_vmrs (void)
7666 {
7667 unsigned Rt = inst.operands[0].reg;
7668
7669 if (thumb_mode && inst.operands[0].reg == REG_SP)
7670 {
7671 inst.error = BAD_SP;
7672 return;
7673 }
7674
7675 /* APSR_ sets isvec. All other refs to PC are illegal. */
7676 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
7677 {
7678 inst.error = BAD_PC;
7679 return;
7680 }
7681
7682 if (inst.operands[1].reg != 1)
7683 first_error (_("operand 1 must be FPSCR"));
7684
7685 inst.instruction |= (Rt << 12);
7686 }
7687
7688 static void
7689 do_vmsr (void)
7690 {
7691 unsigned Rt = inst.operands[1].reg;
7692
7693 if (thumb_mode)
7694 reject_bad_reg (Rt);
7695 else if (Rt == REG_PC)
7696 {
7697 inst.error = BAD_PC;
7698 return;
7699 }
7700
7701 if (inst.operands[0].reg != 1)
7702 first_error (_("operand 0 must be FPSCR"));
7703
7704 inst.instruction |= (Rt << 12);
7705 }
7706
7707 static void
7708 do_mrs (void)
7709 {
7710 if (do_vfp_nsyn_mrs () == SUCCESS)
7711 return;
7712
7713 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7714 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7715 != (PSR_c|PSR_f),
7716 _("'CPSR' or 'SPSR' expected"));
7717 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
7718 inst.instruction |= inst.operands[0].reg << 12;
7719 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7720 }
7721
7722 /* Two possible forms:
7723 "{C|S}PSR_<field>, Rm",
7724 "{C|S}PSR_f, #expression". */
7725
7726 static void
7727 do_msr (void)
7728 {
7729 if (do_vfp_nsyn_msr () == SUCCESS)
7730 return;
7731
7732 inst.instruction |= inst.operands[0].imm;
7733 if (inst.operands[1].isreg)
7734 inst.instruction |= inst.operands[1].reg;
7735 else
7736 {
7737 inst.instruction |= INST_IMMEDIATE;
7738 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7739 inst.reloc.pc_rel = 0;
7740 }
7741 }
7742
7743 static void
7744 do_mul (void)
7745 {
7746 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
7747
7748 if (!inst.operands[2].present)
7749 inst.operands[2].reg = inst.operands[0].reg;
7750 inst.instruction |= inst.operands[0].reg << 16;
7751 inst.instruction |= inst.operands[1].reg;
7752 inst.instruction |= inst.operands[2].reg << 8;
7753
7754 if (inst.operands[0].reg == inst.operands[1].reg
7755 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7756 as_tsktsk (_("Rd and Rm should be different in mul"));
7757 }
7758
7759 /* Long Multiply Parser
7760 UMULL RdLo, RdHi, Rm, Rs
7761 SMULL RdLo, RdHi, Rm, Rs
7762 UMLAL RdLo, RdHi, Rm, Rs
7763 SMLAL RdLo, RdHi, Rm, Rs. */
7764
7765 static void
7766 do_mull (void)
7767 {
7768 inst.instruction |= inst.operands[0].reg << 12;
7769 inst.instruction |= inst.operands[1].reg << 16;
7770 inst.instruction |= inst.operands[2].reg;
7771 inst.instruction |= inst.operands[3].reg << 8;
7772
7773 /* rdhi and rdlo must be different. */
7774 if (inst.operands[0].reg == inst.operands[1].reg)
7775 as_tsktsk (_("rdhi and rdlo must be different"));
7776
7777 /* rdhi, rdlo and rm must all be different before armv6. */
7778 if ((inst.operands[0].reg == inst.operands[2].reg
7779 || inst.operands[1].reg == inst.operands[2].reg)
7780 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7781 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7782 }
7783
7784 static void
7785 do_nop (void)
7786 {
7787 if (inst.operands[0].present
7788 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
7789 {
7790 /* Architectural NOP hints are CPSR sets with no bits selected. */
7791 inst.instruction &= 0xf0000000;
7792 inst.instruction |= 0x0320f000;
7793 if (inst.operands[0].present)
7794 inst.instruction |= inst.operands[0].imm;
7795 }
7796 }
7797
7798 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7799 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7800 Condition defaults to COND_ALWAYS.
7801 Error if Rd, Rn or Rm are R15. */
7802
7803 static void
7804 do_pkhbt (void)
7805 {
7806 inst.instruction |= inst.operands[0].reg << 12;
7807 inst.instruction |= inst.operands[1].reg << 16;
7808 inst.instruction |= inst.operands[2].reg;
7809 if (inst.operands[3].present)
7810 encode_arm_shift (3);
7811 }
7812
7813 /* ARM V6 PKHTB (Argument Parse). */
7814
7815 static void
7816 do_pkhtb (void)
7817 {
7818 if (!inst.operands[3].present)
7819 {
7820 /* If the shift specifier is omitted, turn the instruction
7821 into pkhbt rd, rm, rn. */
7822 inst.instruction &= 0xfff00010;
7823 inst.instruction |= inst.operands[0].reg << 12;
7824 inst.instruction |= inst.operands[1].reg;
7825 inst.instruction |= inst.operands[2].reg << 16;
7826 }
7827 else
7828 {
7829 inst.instruction |= inst.operands[0].reg << 12;
7830 inst.instruction |= inst.operands[1].reg << 16;
7831 inst.instruction |= inst.operands[2].reg;
7832 encode_arm_shift (3);
7833 }
7834 }
7835
7836 /* ARMv5TE: Preload-Cache
7837
7838 PLD <addr_mode>
7839
7840 Syntactically, like LDR with B=1, W=0, L=1. */
7841
7842 static void
7843 do_pld (void)
7844 {
7845 constraint (!inst.operands[0].isreg,
7846 _("'[' expected after PLD mnemonic"));
7847 constraint (inst.operands[0].postind,
7848 _("post-indexed expression used in preload instruction"));
7849 constraint (inst.operands[0].writeback,
7850 _("writeback used in preload instruction"));
7851 constraint (!inst.operands[0].preind,
7852 _("unindexed addressing used in preload instruction"));
7853 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7854 }
7855
7856 /* ARMv7: PLI <addr_mode> */
7857 static void
7858 do_pli (void)
7859 {
7860 constraint (!inst.operands[0].isreg,
7861 _("'[' expected after PLI mnemonic"));
7862 constraint (inst.operands[0].postind,
7863 _("post-indexed expression used in preload instruction"));
7864 constraint (inst.operands[0].writeback,
7865 _("writeback used in preload instruction"));
7866 constraint (!inst.operands[0].preind,
7867 _("unindexed addressing used in preload instruction"));
7868 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7869 inst.instruction &= ~PRE_INDEX;
7870 }
7871
7872 static void
7873 do_push_pop (void)
7874 {
7875 inst.operands[1] = inst.operands[0];
7876 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7877 inst.operands[0].isreg = 1;
7878 inst.operands[0].writeback = 1;
7879 inst.operands[0].reg = REG_SP;
7880 do_ldmstm ();
7881 }
7882
7883 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7884 word at the specified address and the following word
7885 respectively.
7886 Unconditionally executed.
7887 Error if Rn is R15. */
7888
7889 static void
7890 do_rfe (void)
7891 {
7892 inst.instruction |= inst.operands[0].reg << 16;
7893 if (inst.operands[0].writeback)
7894 inst.instruction |= WRITE_BACK;
7895 }
7896
7897 /* ARM V6 ssat (argument parse). */
7898
7899 static void
7900 do_ssat (void)
7901 {
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7904 inst.instruction |= inst.operands[2].reg;
7905
7906 if (inst.operands[3].present)
7907 encode_arm_shift (3);
7908 }
7909
7910 /* ARM V6 usat (argument parse). */
7911
7912 static void
7913 do_usat (void)
7914 {
7915 inst.instruction |= inst.operands[0].reg << 12;
7916 inst.instruction |= inst.operands[1].imm << 16;
7917 inst.instruction |= inst.operands[2].reg;
7918
7919 if (inst.operands[3].present)
7920 encode_arm_shift (3);
7921 }
7922
7923 /* ARM V6 ssat16 (argument parse). */
7924
7925 static void
7926 do_ssat16 (void)
7927 {
7928 inst.instruction |= inst.operands[0].reg << 12;
7929 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7930 inst.instruction |= inst.operands[2].reg;
7931 }
7932
7933 static void
7934 do_usat16 (void)
7935 {
7936 inst.instruction |= inst.operands[0].reg << 12;
7937 inst.instruction |= inst.operands[1].imm << 16;
7938 inst.instruction |= inst.operands[2].reg;
7939 }
7940
7941 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7942 preserving the other bits.
7943
7944 setend <endian_specifier>, where <endian_specifier> is either
7945 BE or LE. */
7946
7947 static void
7948 do_setend (void)
7949 {
7950 if (inst.operands[0].imm)
7951 inst.instruction |= 0x200;
7952 }
7953
7954 static void
7955 do_shift (void)
7956 {
7957 unsigned int Rm = (inst.operands[1].present
7958 ? inst.operands[1].reg
7959 : inst.operands[0].reg);
7960
7961 inst.instruction |= inst.operands[0].reg << 12;
7962 inst.instruction |= Rm;
7963 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7964 {
7965 inst.instruction |= inst.operands[2].reg << 8;
7966 inst.instruction |= SHIFT_BY_REG;
7967 }
7968 else
7969 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7970 }
7971
7972 static void
7973 do_smc (void)
7974 {
7975 inst.reloc.type = BFD_RELOC_ARM_SMC;
7976 inst.reloc.pc_rel = 0;
7977 }
7978
7979 static void
7980 do_swi (void)
7981 {
7982 inst.reloc.type = BFD_RELOC_ARM_SWI;
7983 inst.reloc.pc_rel = 0;
7984 }
7985
7986 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7987 SMLAxy{cond} Rd,Rm,Rs,Rn
7988 SMLAWy{cond} Rd,Rm,Rs,Rn
7989 Error if any register is R15. */
7990
7991 static void
7992 do_smla (void)
7993 {
7994 inst.instruction |= inst.operands[0].reg << 16;
7995 inst.instruction |= inst.operands[1].reg;
7996 inst.instruction |= inst.operands[2].reg << 8;
7997 inst.instruction |= inst.operands[3].reg << 12;
7998 }
7999
8000 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8001 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8002 Error if any register is R15.
8003 Warning if Rdlo == Rdhi. */
8004
8005 static void
8006 do_smlal (void)
8007 {
8008 inst.instruction |= inst.operands[0].reg << 12;
8009 inst.instruction |= inst.operands[1].reg << 16;
8010 inst.instruction |= inst.operands[2].reg;
8011 inst.instruction |= inst.operands[3].reg << 8;
8012
8013 if (inst.operands[0].reg == inst.operands[1].reg)
8014 as_tsktsk (_("rdhi and rdlo must be different"));
8015 }
8016
8017 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8018 SMULxy{cond} Rd,Rm,Rs
8019 Error if any register is R15. */
8020
8021 static void
8022 do_smul (void)
8023 {
8024 inst.instruction |= inst.operands[0].reg << 16;
8025 inst.instruction |= inst.operands[1].reg;
8026 inst.instruction |= inst.operands[2].reg << 8;
8027 }
8028
8029 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8030 the same for both ARM and Thumb-2. */
8031
8032 static void
8033 do_srs (void)
8034 {
8035 int reg;
8036
8037 if (inst.operands[0].present)
8038 {
8039 reg = inst.operands[0].reg;
8040 constraint (reg != REG_SP, _("SRS base register must be r13"));
8041 }
8042 else
8043 reg = REG_SP;
8044
8045 inst.instruction |= reg << 16;
8046 inst.instruction |= inst.operands[1].imm;
8047 if (inst.operands[0].writeback || inst.operands[1].writeback)
8048 inst.instruction |= WRITE_BACK;
8049 }
8050
8051 /* ARM V6 strex (argument parse). */
8052
8053 static void
8054 do_strex (void)
8055 {
8056 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8057 || inst.operands[2].postind || inst.operands[2].writeback
8058 || inst.operands[2].immisreg || inst.operands[2].shifted
8059 || inst.operands[2].negative
8060 /* See comment in do_ldrex(). */
8061 || (inst.operands[2].reg == REG_PC),
8062 BAD_ADDR_MODE);
8063
8064 constraint (inst.operands[0].reg == inst.operands[1].reg
8065 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8066
8067 constraint (inst.reloc.exp.X_op != O_constant
8068 || inst.reloc.exp.X_add_number != 0,
8069 _("offset must be zero in ARM encoding"));
8070
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[1].reg;
8073 inst.instruction |= inst.operands[2].reg << 16;
8074 inst.reloc.type = BFD_RELOC_UNUSED;
8075 }
8076
8077 static void
8078 do_strexd (void)
8079 {
8080 constraint (inst.operands[1].reg % 2 != 0,
8081 _("even register required"));
8082 constraint (inst.operands[2].present
8083 && inst.operands[2].reg != inst.operands[1].reg + 1,
8084 _("can only store two consecutive registers"));
8085 /* If op 2 were present and equal to PC, this function wouldn't
8086 have been called in the first place. */
8087 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8088
8089 constraint (inst.operands[0].reg == inst.operands[1].reg
8090 || inst.operands[0].reg == inst.operands[1].reg + 1
8091 || inst.operands[0].reg == inst.operands[3].reg,
8092 BAD_OVERLAP);
8093
8094 inst.instruction |= inst.operands[0].reg << 12;
8095 inst.instruction |= inst.operands[1].reg;
8096 inst.instruction |= inst.operands[3].reg << 16;
8097 }
8098
8099 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8100 extends it to 32-bits, and adds the result to a value in another
8101 register. You can specify a rotation by 0, 8, 16, or 24 bits
8102 before extracting the 16-bit value.
8103 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8104 Condition defaults to COND_ALWAYS.
8105 Error if any register uses R15. */
8106
8107 static void
8108 do_sxtah (void)
8109 {
8110 inst.instruction |= inst.operands[0].reg << 12;
8111 inst.instruction |= inst.operands[1].reg << 16;
8112 inst.instruction |= inst.operands[2].reg;
8113 inst.instruction |= inst.operands[3].imm << 10;
8114 }
8115
8116 /* ARM V6 SXTH.
8117
8118 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8119 Condition defaults to COND_ALWAYS.
8120 Error if any register uses R15. */
8121
8122 static void
8123 do_sxth (void)
8124 {
8125 inst.instruction |= inst.operands[0].reg << 12;
8126 inst.instruction |= inst.operands[1].reg;
8127 inst.instruction |= inst.operands[2].imm << 10;
8128 }
8129 \f
8130 /* VFP instructions. In a logical order: SP variant first, monad
8131 before dyad, arithmetic then move then load/store. */
8132
8133 static void
8134 do_vfp_sp_monadic (void)
8135 {
8136 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8137 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8138 }
8139
8140 static void
8141 do_vfp_sp_dyadic (void)
8142 {
8143 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8144 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8145 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8146 }
8147
8148 static void
8149 do_vfp_sp_compare_z (void)
8150 {
8151 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8152 }
8153
8154 static void
8155 do_vfp_dp_sp_cvt (void)
8156 {
8157 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8158 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8159 }
8160
8161 static void
8162 do_vfp_sp_dp_cvt (void)
8163 {
8164 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8165 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8166 }
8167
8168 static void
8169 do_vfp_reg_from_sp (void)
8170 {
8171 inst.instruction |= inst.operands[0].reg << 12;
8172 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8173 }
8174
8175 static void
8176 do_vfp_reg2_from_sp2 (void)
8177 {
8178 constraint (inst.operands[2].imm != 2,
8179 _("only two consecutive VFP SP registers allowed here"));
8180 inst.instruction |= inst.operands[0].reg << 12;
8181 inst.instruction |= inst.operands[1].reg << 16;
8182 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8183 }
8184
8185 static void
8186 do_vfp_sp_from_reg (void)
8187 {
8188 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8189 inst.instruction |= inst.operands[1].reg << 12;
8190 }
8191
8192 static void
8193 do_vfp_sp2_from_reg2 (void)
8194 {
8195 constraint (inst.operands[0].imm != 2,
8196 _("only two consecutive VFP SP registers allowed here"));
8197 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8198 inst.instruction |= inst.operands[1].reg << 12;
8199 inst.instruction |= inst.operands[2].reg << 16;
8200 }
8201
8202 static void
8203 do_vfp_sp_ldst (void)
8204 {
8205 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8206 encode_arm_cp_address (1, FALSE, TRUE, 0);
8207 }
8208
8209 static void
8210 do_vfp_dp_ldst (void)
8211 {
8212 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8213 encode_arm_cp_address (1, FALSE, TRUE, 0);
8214 }
8215
8216
8217 static void
8218 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8219 {
8220 if (inst.operands[0].writeback)
8221 inst.instruction |= WRITE_BACK;
8222 else
8223 constraint (ldstm_type != VFP_LDSTMIA,
8224 _("this addressing mode requires base-register writeback"));
8225 inst.instruction |= inst.operands[0].reg << 16;
8226 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8227 inst.instruction |= inst.operands[1].imm;
8228 }
8229
8230 static void
8231 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8232 {
8233 int count;
8234
8235 if (inst.operands[0].writeback)
8236 inst.instruction |= WRITE_BACK;
8237 else
8238 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8239 _("this addressing mode requires base-register writeback"));
8240
8241 inst.instruction |= inst.operands[0].reg << 16;
8242 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8243
8244 count = inst.operands[1].imm << 1;
8245 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8246 count += 1;
8247
8248 inst.instruction |= count;
8249 }
8250
8251 static void
8252 do_vfp_sp_ldstmia (void)
8253 {
8254 vfp_sp_ldstm (VFP_LDSTMIA);
8255 }
8256
8257 static void
8258 do_vfp_sp_ldstmdb (void)
8259 {
8260 vfp_sp_ldstm (VFP_LDSTMDB);
8261 }
8262
8263 static void
8264 do_vfp_dp_ldstmia (void)
8265 {
8266 vfp_dp_ldstm (VFP_LDSTMIA);
8267 }
8268
8269 static void
8270 do_vfp_dp_ldstmdb (void)
8271 {
8272 vfp_dp_ldstm (VFP_LDSTMDB);
8273 }
8274
8275 static void
8276 do_vfp_xp_ldstmia (void)
8277 {
8278 vfp_dp_ldstm (VFP_LDSTMIAX);
8279 }
8280
8281 static void
8282 do_vfp_xp_ldstmdb (void)
8283 {
8284 vfp_dp_ldstm (VFP_LDSTMDBX);
8285 }
8286
8287 static void
8288 do_vfp_dp_rd_rm (void)
8289 {
8290 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8291 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8292 }
8293
8294 static void
8295 do_vfp_dp_rn_rd (void)
8296 {
8297 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8298 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8299 }
8300
8301 static void
8302 do_vfp_dp_rd_rn (void)
8303 {
8304 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8305 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8306 }
8307
8308 static void
8309 do_vfp_dp_rd_rn_rm (void)
8310 {
8311 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8312 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8313 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8314 }
8315
8316 static void
8317 do_vfp_dp_rd (void)
8318 {
8319 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8320 }
8321
8322 static void
8323 do_vfp_dp_rm_rd_rn (void)
8324 {
8325 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8326 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8327 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8328 }
8329
8330 /* VFPv3 instructions. */
8331 static void
8332 do_vfp_sp_const (void)
8333 {
8334 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8335 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8336 inst.instruction |= (inst.operands[1].imm & 0x0f);
8337 }
8338
8339 static void
8340 do_vfp_dp_const (void)
8341 {
8342 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8343 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8344 inst.instruction |= (inst.operands[1].imm & 0x0f);
8345 }
8346
8347 static void
8348 vfp_conv (int srcsize)
8349 {
8350 unsigned immbits = srcsize - inst.operands[1].imm;
8351 inst.instruction |= (immbits & 1) << 5;
8352 inst.instruction |= (immbits >> 1);
8353 }
8354
8355 static void
8356 do_vfp_sp_conv_16 (void)
8357 {
8358 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8359 vfp_conv (16);
8360 }
8361
8362 static void
8363 do_vfp_dp_conv_16 (void)
8364 {
8365 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8366 vfp_conv (16);
8367 }
8368
8369 static void
8370 do_vfp_sp_conv_32 (void)
8371 {
8372 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8373 vfp_conv (32);
8374 }
8375
8376 static void
8377 do_vfp_dp_conv_32 (void)
8378 {
8379 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8380 vfp_conv (32);
8381 }
8382 \f
8383 /* FPA instructions. Also in a logical order. */
8384
8385 static void
8386 do_fpa_cmp (void)
8387 {
8388 inst.instruction |= inst.operands[0].reg << 16;
8389 inst.instruction |= inst.operands[1].reg;
8390 }
8391
8392 static void
8393 do_fpa_ldmstm (void)
8394 {
8395 inst.instruction |= inst.operands[0].reg << 12;
8396 switch (inst.operands[1].imm)
8397 {
8398 case 1: inst.instruction |= CP_T_X; break;
8399 case 2: inst.instruction |= CP_T_Y; break;
8400 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
8401 case 4: break;
8402 default: abort ();
8403 }
8404
8405 if (inst.instruction & (PRE_INDEX | INDEX_UP))
8406 {
8407 /* The instruction specified "ea" or "fd", so we can only accept
8408 [Rn]{!}. The instruction does not really support stacking or
8409 unstacking, so we have to emulate these by setting appropriate
8410 bits and offsets. */
8411 constraint (inst.reloc.exp.X_op != O_constant
8412 || inst.reloc.exp.X_add_number != 0,
8413 _("this instruction does not support indexing"));
8414
8415 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
8416 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
8417
8418 if (!(inst.instruction & INDEX_UP))
8419 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
8420
8421 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
8422 {
8423 inst.operands[2].preind = 0;
8424 inst.operands[2].postind = 1;
8425 }
8426 }
8427
8428 encode_arm_cp_address (2, TRUE, TRUE, 0);
8429 }
8430 \f
8431 /* iWMMXt instructions: strictly in alphabetical order. */
8432
8433 static void
8434 do_iwmmxt_tandorc (void)
8435 {
8436 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
8437 }
8438
8439 static void
8440 do_iwmmxt_textrc (void)
8441 {
8442 inst.instruction |= inst.operands[0].reg << 12;
8443 inst.instruction |= inst.operands[1].imm;
8444 }
8445
8446 static void
8447 do_iwmmxt_textrm (void)
8448 {
8449 inst.instruction |= inst.operands[0].reg << 12;
8450 inst.instruction |= inst.operands[1].reg << 16;
8451 inst.instruction |= inst.operands[2].imm;
8452 }
8453
8454 static void
8455 do_iwmmxt_tinsr (void)
8456 {
8457 inst.instruction |= inst.operands[0].reg << 16;
8458 inst.instruction |= inst.operands[1].reg << 12;
8459 inst.instruction |= inst.operands[2].imm;
8460 }
8461
8462 static void
8463 do_iwmmxt_tmia (void)
8464 {
8465 inst.instruction |= inst.operands[0].reg << 5;
8466 inst.instruction |= inst.operands[1].reg;
8467 inst.instruction |= inst.operands[2].reg << 12;
8468 }
8469
8470 static void
8471 do_iwmmxt_waligni (void)
8472 {
8473 inst.instruction |= inst.operands[0].reg << 12;
8474 inst.instruction |= inst.operands[1].reg << 16;
8475 inst.instruction |= inst.operands[2].reg;
8476 inst.instruction |= inst.operands[3].imm << 20;
8477 }
8478
8479 static void
8480 do_iwmmxt_wmerge (void)
8481 {
8482 inst.instruction |= inst.operands[0].reg << 12;
8483 inst.instruction |= inst.operands[1].reg << 16;
8484 inst.instruction |= inst.operands[2].reg;
8485 inst.instruction |= inst.operands[3].imm << 21;
8486 }
8487
8488 static void
8489 do_iwmmxt_wmov (void)
8490 {
8491 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
8492 inst.instruction |= inst.operands[0].reg << 12;
8493 inst.instruction |= inst.operands[1].reg << 16;
8494 inst.instruction |= inst.operands[1].reg;
8495 }
8496
8497 static void
8498 do_iwmmxt_wldstbh (void)
8499 {
8500 int reloc;
8501 inst.instruction |= inst.operands[0].reg << 12;
8502 if (thumb_mode)
8503 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
8504 else
8505 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
8506 encode_arm_cp_address (1, TRUE, FALSE, reloc);
8507 }
8508
8509 static void
8510 do_iwmmxt_wldstw (void)
8511 {
8512 /* RIWR_RIWC clears .isreg for a control register. */
8513 if (!inst.operands[0].isreg)
8514 {
8515 constraint (inst.cond != COND_ALWAYS, BAD_COND);
8516 inst.instruction |= 0xf0000000;
8517 }
8518
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 encode_arm_cp_address (1, TRUE, TRUE, 0);
8521 }
8522
8523 static void
8524 do_iwmmxt_wldstd (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
8528 && inst.operands[1].immisreg)
8529 {
8530 inst.instruction &= ~0x1a000ff;
8531 inst.instruction |= (0xf << 28);
8532 if (inst.operands[1].preind)
8533 inst.instruction |= PRE_INDEX;
8534 if (!inst.operands[1].negative)
8535 inst.instruction |= INDEX_UP;
8536 if (inst.operands[1].writeback)
8537 inst.instruction |= WRITE_BACK;
8538 inst.instruction |= inst.operands[1].reg << 16;
8539 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8540 inst.instruction |= inst.operands[1].imm;
8541 }
8542 else
8543 encode_arm_cp_address (1, TRUE, FALSE, 0);
8544 }
8545
8546 static void
8547 do_iwmmxt_wshufh (void)
8548 {
8549 inst.instruction |= inst.operands[0].reg << 12;
8550 inst.instruction |= inst.operands[1].reg << 16;
8551 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8552 inst.instruction |= (inst.operands[2].imm & 0x0f);
8553 }
8554
8555 static void
8556 do_iwmmxt_wzero (void)
8557 {
8558 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8559 inst.instruction |= inst.operands[0].reg;
8560 inst.instruction |= inst.operands[0].reg << 12;
8561 inst.instruction |= inst.operands[0].reg << 16;
8562 }
8563
8564 static void
8565 do_iwmmxt_wrwrwr_or_imm5 (void)
8566 {
8567 if (inst.operands[2].isreg)
8568 do_rd_rn_rm ();
8569 else {
8570 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8571 _("immediate operand requires iWMMXt2"));
8572 do_rd_rn ();
8573 if (inst.operands[2].imm == 0)
8574 {
8575 switch ((inst.instruction >> 20) & 0xf)
8576 {
8577 case 4:
8578 case 5:
8579 case 6:
8580 case 7:
8581 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8582 inst.operands[2].imm = 16;
8583 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8584 break;
8585 case 8:
8586 case 9:
8587 case 10:
8588 case 11:
8589 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8590 inst.operands[2].imm = 32;
8591 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8592 break;
8593 case 12:
8594 case 13:
8595 case 14:
8596 case 15:
8597 {
8598 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8599 unsigned long wrn;
8600 wrn = (inst.instruction >> 16) & 0xf;
8601 inst.instruction &= 0xff0fff0f;
8602 inst.instruction |= wrn;
8603 /* Bail out here; the instruction is now assembled. */
8604 return;
8605 }
8606 }
8607 }
8608 /* Map 32 -> 0, etc. */
8609 inst.operands[2].imm &= 0x1f;
8610 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8611 }
8612 }
8613 \f
8614 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8615 operations first, then control, shift, and load/store. */
8616
8617 /* Insns like "foo X,Y,Z". */
8618
8619 static void
8620 do_mav_triple (void)
8621 {
8622 inst.instruction |= inst.operands[0].reg << 16;
8623 inst.instruction |= inst.operands[1].reg;
8624 inst.instruction |= inst.operands[2].reg << 12;
8625 }
8626
8627 /* Insns like "foo W,X,Y,Z".
8628 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8629
8630 static void
8631 do_mav_quad (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 5;
8634 inst.instruction |= inst.operands[1].reg << 12;
8635 inst.instruction |= inst.operands[2].reg << 16;
8636 inst.instruction |= inst.operands[3].reg;
8637 }
8638
8639 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8640 static void
8641 do_mav_dspsc (void)
8642 {
8643 inst.instruction |= inst.operands[1].reg << 12;
8644 }
8645
8646 /* Maverick shift immediate instructions.
8647 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8648 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8649
8650 static void
8651 do_mav_shift (void)
8652 {
8653 int imm = inst.operands[2].imm;
8654
8655 inst.instruction |= inst.operands[0].reg << 12;
8656 inst.instruction |= inst.operands[1].reg << 16;
8657
8658 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8659 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8660 Bit 4 should be 0. */
8661 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8662
8663 inst.instruction |= imm;
8664 }
8665 \f
8666 /* XScale instructions. Also sorted arithmetic before move. */
8667
8668 /* Xscale multiply-accumulate (argument parse)
8669 MIAcc acc0,Rm,Rs
8670 MIAPHcc acc0,Rm,Rs
8671 MIAxycc acc0,Rm,Rs. */
8672
8673 static void
8674 do_xsc_mia (void)
8675 {
8676 inst.instruction |= inst.operands[1].reg;
8677 inst.instruction |= inst.operands[2].reg << 12;
8678 }
8679
8680 /* Xscale move-accumulator-register (argument parse)
8681
8682 MARcc acc0,RdLo,RdHi. */
8683
8684 static void
8685 do_xsc_mar (void)
8686 {
8687 inst.instruction |= inst.operands[1].reg << 12;
8688 inst.instruction |= inst.operands[2].reg << 16;
8689 }
8690
8691 /* Xscale move-register-accumulator (argument parse)
8692
8693 MRAcc RdLo,RdHi,acc0. */
8694
8695 static void
8696 do_xsc_mra (void)
8697 {
8698 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8699 inst.instruction |= inst.operands[0].reg << 12;
8700 inst.instruction |= inst.operands[1].reg << 16;
8701 }
8702 \f
8703 /* Encoding functions relevant only to Thumb. */
8704
8705 /* inst.operands[i] is a shifted-register operand; encode
8706 it into inst.instruction in the format used by Thumb32. */
8707
8708 static void
8709 encode_thumb32_shifted_operand (int i)
8710 {
8711 unsigned int value = inst.reloc.exp.X_add_number;
8712 unsigned int shift = inst.operands[i].shift_kind;
8713
8714 constraint (inst.operands[i].immisreg,
8715 _("shift by register not allowed in thumb mode"));
8716 inst.instruction |= inst.operands[i].reg;
8717 if (shift == SHIFT_RRX)
8718 inst.instruction |= SHIFT_ROR << 4;
8719 else
8720 {
8721 constraint (inst.reloc.exp.X_op != O_constant,
8722 _("expression too complex"));
8723
8724 constraint (value > 32
8725 || (value == 32 && (shift == SHIFT_LSL
8726 || shift == SHIFT_ROR)),
8727 _("shift expression is too large"));
8728
8729 if (value == 0)
8730 shift = SHIFT_LSL;
8731 else if (value == 32)
8732 value = 0;
8733
8734 inst.instruction |= shift << 4;
8735 inst.instruction |= (value & 0x1c) << 10;
8736 inst.instruction |= (value & 0x03) << 6;
8737 }
8738 }
8739
8740
8741 /* inst.operands[i] was set up by parse_address. Encode it into a
8742 Thumb32 format load or store instruction. Reject forms that cannot
8743 be used with such instructions. If is_t is true, reject forms that
8744 cannot be used with a T instruction; if is_d is true, reject forms
8745 that cannot be used with a D instruction. If it is a store insn,
8746 reject PC in Rn. */
8747
8748 static void
8749 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8750 {
8751 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8752
8753 constraint (!inst.operands[i].isreg,
8754 _("Instruction does not support =N addresses"));
8755
8756 inst.instruction |= inst.operands[i].reg << 16;
8757 if (inst.operands[i].immisreg)
8758 {
8759 constraint (is_pc, BAD_PC_ADDRESSING);
8760 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8761 constraint (inst.operands[i].negative,
8762 _("Thumb does not support negative register indexing"));
8763 constraint (inst.operands[i].postind,
8764 _("Thumb does not support register post-indexing"));
8765 constraint (inst.operands[i].writeback,
8766 _("Thumb does not support register indexing with writeback"));
8767 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8768 _("Thumb supports only LSL in shifted register indexing"));
8769
8770 inst.instruction |= inst.operands[i].imm;
8771 if (inst.operands[i].shifted)
8772 {
8773 constraint (inst.reloc.exp.X_op != O_constant,
8774 _("expression too complex"));
8775 constraint (inst.reloc.exp.X_add_number < 0
8776 || inst.reloc.exp.X_add_number > 3,
8777 _("shift out of range"));
8778 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8779 }
8780 inst.reloc.type = BFD_RELOC_UNUSED;
8781 }
8782 else if (inst.operands[i].preind)
8783 {
8784 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
8785 constraint (is_t && inst.operands[i].writeback,
8786 _("cannot use writeback with this instruction"));
8787 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
8788 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
8789
8790 if (is_d)
8791 {
8792 inst.instruction |= 0x01000000;
8793 if (inst.operands[i].writeback)
8794 inst.instruction |= 0x00200000;
8795 }
8796 else
8797 {
8798 inst.instruction |= 0x00000c00;
8799 if (inst.operands[i].writeback)
8800 inst.instruction |= 0x00000100;
8801 }
8802 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8803 }
8804 else if (inst.operands[i].postind)
8805 {
8806 gas_assert (inst.operands[i].writeback);
8807 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8808 constraint (is_t, _("cannot use post-indexing with this instruction"));
8809
8810 if (is_d)
8811 inst.instruction |= 0x00200000;
8812 else
8813 inst.instruction |= 0x00000900;
8814 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8815 }
8816 else /* unindexed - only for coprocessor */
8817 inst.error = _("instruction does not accept unindexed addressing");
8818 }
8819
8820 /* Table of Thumb instructions which exist in both 16- and 32-bit
8821 encodings (the latter only in post-V6T2 cores). The index is the
8822 value used in the insns table below. When there is more than one
8823 possible 16-bit encoding for the instruction, this table always
8824 holds variant (1).
8825 Also contains several pseudo-instructions used during relaxation. */
8826 #define T16_32_TAB \
8827 X(_adc, 4140, eb400000), \
8828 X(_adcs, 4140, eb500000), \
8829 X(_add, 1c00, eb000000), \
8830 X(_adds, 1c00, eb100000), \
8831 X(_addi, 0000, f1000000), \
8832 X(_addis, 0000, f1100000), \
8833 X(_add_pc,000f, f20f0000), \
8834 X(_add_sp,000d, f10d0000), \
8835 X(_adr, 000f, f20f0000), \
8836 X(_and, 4000, ea000000), \
8837 X(_ands, 4000, ea100000), \
8838 X(_asr, 1000, fa40f000), \
8839 X(_asrs, 1000, fa50f000), \
8840 X(_b, e000, f000b000), \
8841 X(_bcond, d000, f0008000), \
8842 X(_bic, 4380, ea200000), \
8843 X(_bics, 4380, ea300000), \
8844 X(_cmn, 42c0, eb100f00), \
8845 X(_cmp, 2800, ebb00f00), \
8846 X(_cpsie, b660, f3af8400), \
8847 X(_cpsid, b670, f3af8600), \
8848 X(_cpy, 4600, ea4f0000), \
8849 X(_dec_sp,80dd, f1ad0d00), \
8850 X(_eor, 4040, ea800000), \
8851 X(_eors, 4040, ea900000), \
8852 X(_inc_sp,00dd, f10d0d00), \
8853 X(_ldmia, c800, e8900000), \
8854 X(_ldr, 6800, f8500000), \
8855 X(_ldrb, 7800, f8100000), \
8856 X(_ldrh, 8800, f8300000), \
8857 X(_ldrsb, 5600, f9100000), \
8858 X(_ldrsh, 5e00, f9300000), \
8859 X(_ldr_pc,4800, f85f0000), \
8860 X(_ldr_pc2,4800, f85f0000), \
8861 X(_ldr_sp,9800, f85d0000), \
8862 X(_lsl, 0000, fa00f000), \
8863 X(_lsls, 0000, fa10f000), \
8864 X(_lsr, 0800, fa20f000), \
8865 X(_lsrs, 0800, fa30f000), \
8866 X(_mov, 2000, ea4f0000), \
8867 X(_movs, 2000, ea5f0000), \
8868 X(_mul, 4340, fb00f000), \
8869 X(_muls, 4340, ffffffff), /* no 32b muls */ \
8870 X(_mvn, 43c0, ea6f0000), \
8871 X(_mvns, 43c0, ea7f0000), \
8872 X(_neg, 4240, f1c00000), /* rsb #0 */ \
8873 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
8874 X(_orr, 4300, ea400000), \
8875 X(_orrs, 4300, ea500000), \
8876 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8877 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
8878 X(_rev, ba00, fa90f080), \
8879 X(_rev16, ba40, fa90f090), \
8880 X(_revsh, bac0, fa90f0b0), \
8881 X(_ror, 41c0, fa60f000), \
8882 X(_rors, 41c0, fa70f000), \
8883 X(_sbc, 4180, eb600000), \
8884 X(_sbcs, 4180, eb700000), \
8885 X(_stmia, c000, e8800000), \
8886 X(_str, 6000, f8400000), \
8887 X(_strb, 7000, f8000000), \
8888 X(_strh, 8000, f8200000), \
8889 X(_str_sp,9000, f84d0000), \
8890 X(_sub, 1e00, eba00000), \
8891 X(_subs, 1e00, ebb00000), \
8892 X(_subi, 8000, f1a00000), \
8893 X(_subis, 8000, f1b00000), \
8894 X(_sxtb, b240, fa4ff080), \
8895 X(_sxth, b200, fa0ff080), \
8896 X(_tst, 4200, ea100f00), \
8897 X(_uxtb, b2c0, fa5ff080), \
8898 X(_uxth, b280, fa1ff080), \
8899 X(_nop, bf00, f3af8000), \
8900 X(_yield, bf10, f3af8001), \
8901 X(_wfe, bf20, f3af8002), \
8902 X(_wfi, bf30, f3af8003), \
8903 X(_sev, bf40, f3af8004),
8904
8905 /* To catch errors in encoding functions, the codes are all offset by
8906 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8907 as 16-bit instructions. */
8908 #define X(a,b,c) T_MNEM##a
8909 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8910 #undef X
8911
8912 #define X(a,b,c) 0x##b
8913 static const unsigned short thumb_op16[] = { T16_32_TAB };
8914 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8915 #undef X
8916
8917 #define X(a,b,c) 0x##c
8918 static const unsigned int thumb_op32[] = { T16_32_TAB };
8919 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8920 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8921 #undef X
8922 #undef T16_32_TAB
8923
8924 /* Thumb instruction encoders, in alphabetical order. */
8925
8926 /* ADDW or SUBW. */
8927
8928 static void
8929 do_t_add_sub_w (void)
8930 {
8931 int Rd, Rn;
8932
8933 Rd = inst.operands[0].reg;
8934 Rn = inst.operands[1].reg;
8935
8936 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
8937 is the SP-{plus,minus}-immediate form of the instruction. */
8938 if (Rn == REG_SP)
8939 constraint (Rd == REG_PC, BAD_PC);
8940 else
8941 reject_bad_reg (Rd);
8942
8943 inst.instruction |= (Rn << 16) | (Rd << 8);
8944 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8945 }
8946
8947 /* Parse an add or subtract instruction. We get here with inst.instruction
8948 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8949
8950 static void
8951 do_t_add_sub (void)
8952 {
8953 int Rd, Rs, Rn;
8954
8955 Rd = inst.operands[0].reg;
8956 Rs = (inst.operands[1].present
8957 ? inst.operands[1].reg /* Rd, Rs, foo */
8958 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8959
8960 if (Rd == REG_PC)
8961 set_it_insn_type_last ();
8962
8963 if (unified_syntax)
8964 {
8965 bfd_boolean flags;
8966 bfd_boolean narrow;
8967 int opcode;
8968
8969 flags = (inst.instruction == T_MNEM_adds
8970 || inst.instruction == T_MNEM_subs);
8971 if (flags)
8972 narrow = !in_it_block ();
8973 else
8974 narrow = in_it_block ();
8975 if (!inst.operands[2].isreg)
8976 {
8977 int add;
8978
8979 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
8980
8981 add = (inst.instruction == T_MNEM_add
8982 || inst.instruction == T_MNEM_adds);
8983 opcode = 0;
8984 if (inst.size_req != 4)
8985 {
8986 /* Attempt to use a narrow opcode, with relaxation if
8987 appropriate. */
8988 if (Rd == REG_SP && Rs == REG_SP && !flags)
8989 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8990 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8991 opcode = T_MNEM_add_sp;
8992 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8993 opcode = T_MNEM_add_pc;
8994 else if (Rd <= 7 && Rs <= 7 && narrow)
8995 {
8996 if (flags)
8997 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8998 else
8999 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9000 }
9001 if (opcode)
9002 {
9003 inst.instruction = THUMB_OP16(opcode);
9004 inst.instruction |= (Rd << 4) | Rs;
9005 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9006 if (inst.size_req != 2)
9007 inst.relax = opcode;
9008 }
9009 else
9010 constraint (inst.size_req == 2, BAD_HIREG);
9011 }
9012 if (inst.size_req == 4
9013 || (inst.size_req != 2 && !opcode))
9014 {
9015 if (Rd == REG_PC)
9016 {
9017 constraint (add, BAD_PC);
9018 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9019 _("only SUBS PC, LR, #const allowed"));
9020 constraint (inst.reloc.exp.X_op != O_constant,
9021 _("expression too complex"));
9022 constraint (inst.reloc.exp.X_add_number < 0
9023 || inst.reloc.exp.X_add_number > 0xff,
9024 _("immediate value out of range"));
9025 inst.instruction = T2_SUBS_PC_LR
9026 | inst.reloc.exp.X_add_number;
9027 inst.reloc.type = BFD_RELOC_UNUSED;
9028 return;
9029 }
9030 else if (Rs == REG_PC)
9031 {
9032 /* Always use addw/subw. */
9033 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9034 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9035 }
9036 else
9037 {
9038 inst.instruction = THUMB_OP32 (inst.instruction);
9039 inst.instruction = (inst.instruction & 0xe1ffffff)
9040 | 0x10000000;
9041 if (flags)
9042 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9043 else
9044 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9045 }
9046 inst.instruction |= Rd << 8;
9047 inst.instruction |= Rs << 16;
9048 }
9049 }
9050 else
9051 {
9052 Rn = inst.operands[2].reg;
9053 /* See if we can do this with a 16-bit instruction. */
9054 if (!inst.operands[2].shifted && inst.size_req != 4)
9055 {
9056 if (Rd > 7 || Rs > 7 || Rn > 7)
9057 narrow = FALSE;
9058
9059 if (narrow)
9060 {
9061 inst.instruction = ((inst.instruction == T_MNEM_adds
9062 || inst.instruction == T_MNEM_add)
9063 ? T_OPCODE_ADD_R3
9064 : T_OPCODE_SUB_R3);
9065 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9066 return;
9067 }
9068
9069 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9070 {
9071 /* Thumb-1 cores (except v6-M) require at least one high
9072 register in a narrow non flag setting add. */
9073 if (Rd > 7 || Rn > 7
9074 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9075 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9076 {
9077 if (Rd == Rn)
9078 {
9079 Rn = Rs;
9080 Rs = Rd;
9081 }
9082 inst.instruction = T_OPCODE_ADD_HI;
9083 inst.instruction |= (Rd & 8) << 4;
9084 inst.instruction |= (Rd & 7);
9085 inst.instruction |= Rn << 3;
9086 return;
9087 }
9088 }
9089 }
9090
9091 constraint (Rd == REG_PC, BAD_PC);
9092 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9093 constraint (Rs == REG_PC, BAD_PC);
9094 reject_bad_reg (Rn);
9095
9096 /* If we get here, it can't be done in 16 bits. */
9097 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9098 _("shift must be constant"));
9099 inst.instruction = THUMB_OP32 (inst.instruction);
9100 inst.instruction |= Rd << 8;
9101 inst.instruction |= Rs << 16;
9102 encode_thumb32_shifted_operand (2);
9103 }
9104 }
9105 else
9106 {
9107 constraint (inst.instruction == T_MNEM_adds
9108 || inst.instruction == T_MNEM_subs,
9109 BAD_THUMB32);
9110
9111 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9112 {
9113 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9114 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9115 BAD_HIREG);
9116
9117 inst.instruction = (inst.instruction == T_MNEM_add
9118 ? 0x0000 : 0x8000);
9119 inst.instruction |= (Rd << 4) | Rs;
9120 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9121 return;
9122 }
9123
9124 Rn = inst.operands[2].reg;
9125 constraint (inst.operands[2].shifted, _("unshifted register required"));
9126
9127 /* We now have Rd, Rs, and Rn set to registers. */
9128 if (Rd > 7 || Rs > 7 || Rn > 7)
9129 {
9130 /* Can't do this for SUB. */
9131 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9132 inst.instruction = T_OPCODE_ADD_HI;
9133 inst.instruction |= (Rd & 8) << 4;
9134 inst.instruction |= (Rd & 7);
9135 if (Rs == Rd)
9136 inst.instruction |= Rn << 3;
9137 else if (Rn == Rd)
9138 inst.instruction |= Rs << 3;
9139 else
9140 constraint (1, _("dest must overlap one source register"));
9141 }
9142 else
9143 {
9144 inst.instruction = (inst.instruction == T_MNEM_add
9145 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9146 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9147 }
9148 }
9149 }
9150
9151 static void
9152 do_t_adr (void)
9153 {
9154 unsigned Rd;
9155
9156 Rd = inst.operands[0].reg;
9157 reject_bad_reg (Rd);
9158
9159 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9160 {
9161 /* Defer to section relaxation. */
9162 inst.relax = inst.instruction;
9163 inst.instruction = THUMB_OP16 (inst.instruction);
9164 inst.instruction |= Rd << 4;
9165 }
9166 else if (unified_syntax && inst.size_req != 2)
9167 {
9168 /* Generate a 32-bit opcode. */
9169 inst.instruction = THUMB_OP32 (inst.instruction);
9170 inst.instruction |= Rd << 8;
9171 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9172 inst.reloc.pc_rel = 1;
9173 }
9174 else
9175 {
9176 /* Generate a 16-bit opcode. */
9177 inst.instruction = THUMB_OP16 (inst.instruction);
9178 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9179 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9180 inst.reloc.pc_rel = 1;
9181
9182 inst.instruction |= Rd << 4;
9183 }
9184 }
9185
9186 /* Arithmetic instructions for which there is just one 16-bit
9187 instruction encoding, and it allows only two low registers.
9188 For maximal compatibility with ARM syntax, we allow three register
9189 operands even when Thumb-32 instructions are not available, as long
9190 as the first two are identical. For instance, both "sbc r0,r1" and
9191 "sbc r0,r0,r1" are allowed. */
9192 static void
9193 do_t_arit3 (void)
9194 {
9195 int Rd, Rs, Rn;
9196
9197 Rd = inst.operands[0].reg;
9198 Rs = (inst.operands[1].present
9199 ? inst.operands[1].reg /* Rd, Rs, foo */
9200 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9201 Rn = inst.operands[2].reg;
9202
9203 reject_bad_reg (Rd);
9204 reject_bad_reg (Rs);
9205 if (inst.operands[2].isreg)
9206 reject_bad_reg (Rn);
9207
9208 if (unified_syntax)
9209 {
9210 if (!inst.operands[2].isreg)
9211 {
9212 /* For an immediate, we always generate a 32-bit opcode;
9213 section relaxation will shrink it later if possible. */
9214 inst.instruction = THUMB_OP32 (inst.instruction);
9215 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9216 inst.instruction |= Rd << 8;
9217 inst.instruction |= Rs << 16;
9218 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9219 }
9220 else
9221 {
9222 bfd_boolean narrow;
9223
9224 /* See if we can do this with a 16-bit instruction. */
9225 if (THUMB_SETS_FLAGS (inst.instruction))
9226 narrow = !in_it_block ();
9227 else
9228 narrow = in_it_block ();
9229
9230 if (Rd > 7 || Rn > 7 || Rs > 7)
9231 narrow = FALSE;
9232 if (inst.operands[2].shifted)
9233 narrow = FALSE;
9234 if (inst.size_req == 4)
9235 narrow = FALSE;
9236
9237 if (narrow
9238 && Rd == Rs)
9239 {
9240 inst.instruction = THUMB_OP16 (inst.instruction);
9241 inst.instruction |= Rd;
9242 inst.instruction |= Rn << 3;
9243 return;
9244 }
9245
9246 /* If we get here, it can't be done in 16 bits. */
9247 constraint (inst.operands[2].shifted
9248 && inst.operands[2].immisreg,
9249 _("shift must be constant"));
9250 inst.instruction = THUMB_OP32 (inst.instruction);
9251 inst.instruction |= Rd << 8;
9252 inst.instruction |= Rs << 16;
9253 encode_thumb32_shifted_operand (2);
9254 }
9255 }
9256 else
9257 {
9258 /* On its face this is a lie - the instruction does set the
9259 flags. However, the only supported mnemonic in this mode
9260 says it doesn't. */
9261 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9262
9263 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9264 _("unshifted register required"));
9265 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9266 constraint (Rd != Rs,
9267 _("dest and source1 must be the same register"));
9268
9269 inst.instruction = THUMB_OP16 (inst.instruction);
9270 inst.instruction |= Rd;
9271 inst.instruction |= Rn << 3;
9272 }
9273 }
9274
9275 /* Similarly, but for instructions where the arithmetic operation is
9276 commutative, so we can allow either of them to be different from
9277 the destination operand in a 16-bit instruction. For instance, all
9278 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9279 accepted. */
9280 static void
9281 do_t_arit3c (void)
9282 {
9283 int Rd, Rs, Rn;
9284
9285 Rd = inst.operands[0].reg;
9286 Rs = (inst.operands[1].present
9287 ? inst.operands[1].reg /* Rd, Rs, foo */
9288 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9289 Rn = inst.operands[2].reg;
9290
9291 reject_bad_reg (Rd);
9292 reject_bad_reg (Rs);
9293 if (inst.operands[2].isreg)
9294 reject_bad_reg (Rn);
9295
9296 if (unified_syntax)
9297 {
9298 if (!inst.operands[2].isreg)
9299 {
9300 /* For an immediate, we always generate a 32-bit opcode;
9301 section relaxation will shrink it later if possible. */
9302 inst.instruction = THUMB_OP32 (inst.instruction);
9303 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9304 inst.instruction |= Rd << 8;
9305 inst.instruction |= Rs << 16;
9306 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9307 }
9308 else
9309 {
9310 bfd_boolean narrow;
9311
9312 /* See if we can do this with a 16-bit instruction. */
9313 if (THUMB_SETS_FLAGS (inst.instruction))
9314 narrow = !in_it_block ();
9315 else
9316 narrow = in_it_block ();
9317
9318 if (Rd > 7 || Rn > 7 || Rs > 7)
9319 narrow = FALSE;
9320 if (inst.operands[2].shifted)
9321 narrow = FALSE;
9322 if (inst.size_req == 4)
9323 narrow = FALSE;
9324
9325 if (narrow)
9326 {
9327 if (Rd == Rs)
9328 {
9329 inst.instruction = THUMB_OP16 (inst.instruction);
9330 inst.instruction |= Rd;
9331 inst.instruction |= Rn << 3;
9332 return;
9333 }
9334 if (Rd == Rn)
9335 {
9336 inst.instruction = THUMB_OP16 (inst.instruction);
9337 inst.instruction |= Rd;
9338 inst.instruction |= Rs << 3;
9339 return;
9340 }
9341 }
9342
9343 /* If we get here, it can't be done in 16 bits. */
9344 constraint (inst.operands[2].shifted
9345 && inst.operands[2].immisreg,
9346 _("shift must be constant"));
9347 inst.instruction = THUMB_OP32 (inst.instruction);
9348 inst.instruction |= Rd << 8;
9349 inst.instruction |= Rs << 16;
9350 encode_thumb32_shifted_operand (2);
9351 }
9352 }
9353 else
9354 {
9355 /* On its face this is a lie - the instruction does set the
9356 flags. However, the only supported mnemonic in this mode
9357 says it doesn't. */
9358 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9359
9360 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9361 _("unshifted register required"));
9362 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9363
9364 inst.instruction = THUMB_OP16 (inst.instruction);
9365 inst.instruction |= Rd;
9366
9367 if (Rd == Rs)
9368 inst.instruction |= Rn << 3;
9369 else if (Rd == Rn)
9370 inst.instruction |= Rs << 3;
9371 else
9372 constraint (1, _("dest must overlap one source register"));
9373 }
9374 }
9375
9376 static void
9377 do_t_barrier (void)
9378 {
9379 if (inst.operands[0].present)
9380 {
9381 constraint ((inst.instruction & 0xf0) != 0x40
9382 && inst.operands[0].imm != 0xf,
9383 _("bad barrier type"));
9384 inst.instruction |= inst.operands[0].imm;
9385 }
9386 else
9387 inst.instruction |= 0xf;
9388 }
9389
9390 static void
9391 do_t_bfc (void)
9392 {
9393 unsigned Rd;
9394 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9395 constraint (msb > 32, _("bit-field extends past end of register"));
9396 /* The instruction encoding stores the LSB and MSB,
9397 not the LSB and width. */
9398 Rd = inst.operands[0].reg;
9399 reject_bad_reg (Rd);
9400 inst.instruction |= Rd << 8;
9401 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
9402 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
9403 inst.instruction |= msb - 1;
9404 }
9405
9406 static void
9407 do_t_bfi (void)
9408 {
9409 int Rd, Rn;
9410 unsigned int msb;
9411
9412 Rd = inst.operands[0].reg;
9413 reject_bad_reg (Rd);
9414
9415 /* #0 in second position is alternative syntax for bfc, which is
9416 the same instruction but with REG_PC in the Rm field. */
9417 if (!inst.operands[1].isreg)
9418 Rn = REG_PC;
9419 else
9420 {
9421 Rn = inst.operands[1].reg;
9422 reject_bad_reg (Rn);
9423 }
9424
9425 msb = inst.operands[2].imm + inst.operands[3].imm;
9426 constraint (msb > 32, _("bit-field extends past end of register"));
9427 /* The instruction encoding stores the LSB and MSB,
9428 not the LSB and width. */
9429 inst.instruction |= Rd << 8;
9430 inst.instruction |= Rn << 16;
9431 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9432 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9433 inst.instruction |= msb - 1;
9434 }
9435
9436 static void
9437 do_t_bfx (void)
9438 {
9439 unsigned Rd, Rn;
9440
9441 Rd = inst.operands[0].reg;
9442 Rn = inst.operands[1].reg;
9443
9444 reject_bad_reg (Rd);
9445 reject_bad_reg (Rn);
9446
9447 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9448 _("bit-field extends past end of register"));
9449 inst.instruction |= Rd << 8;
9450 inst.instruction |= Rn << 16;
9451 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
9452 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
9453 inst.instruction |= inst.operands[3].imm - 1;
9454 }
9455
9456 /* ARM V5 Thumb BLX (argument parse)
9457 BLX <target_addr> which is BLX(1)
9458 BLX <Rm> which is BLX(2)
9459 Unfortunately, there are two different opcodes for this mnemonic.
9460 So, the insns[].value is not used, and the code here zaps values
9461 into inst.instruction.
9462
9463 ??? How to take advantage of the additional two bits of displacement
9464 available in Thumb32 mode? Need new relocation? */
9465
9466 static void
9467 do_t_blx (void)
9468 {
9469 set_it_insn_type_last ();
9470
9471 if (inst.operands[0].isreg)
9472 {
9473 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9474 /* We have a register, so this is BLX(2). */
9475 inst.instruction |= inst.operands[0].reg << 3;
9476 }
9477 else
9478 {
9479 /* No register. This must be BLX(1). */
9480 inst.instruction = 0xf000e800;
9481 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
9482 inst.reloc.pc_rel = 1;
9483 }
9484 }
9485
9486 static void
9487 do_t_branch (void)
9488 {
9489 int opcode;
9490 int cond;
9491
9492 cond = inst.cond;
9493 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
9494
9495 if (in_it_block ())
9496 {
9497 /* Conditional branches inside IT blocks are encoded as unconditional
9498 branches. */
9499 cond = COND_ALWAYS;
9500 }
9501 else
9502 cond = inst.cond;
9503
9504 if (cond != COND_ALWAYS)
9505 opcode = T_MNEM_bcond;
9506 else
9507 opcode = inst.instruction;
9508
9509 if (unified_syntax && inst.size_req == 4)
9510 {
9511 inst.instruction = THUMB_OP32(opcode);
9512 if (cond == COND_ALWAYS)
9513 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
9514 else
9515 {
9516 gas_assert (cond != 0xF);
9517 inst.instruction |= cond << 22;
9518 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
9519 }
9520 }
9521 else
9522 {
9523 inst.instruction = THUMB_OP16(opcode);
9524 if (cond == COND_ALWAYS)
9525 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
9526 else
9527 {
9528 inst.instruction |= cond << 8;
9529 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
9530 }
9531 /* Allow section relaxation. */
9532 if (unified_syntax && inst.size_req != 2)
9533 inst.relax = opcode;
9534 }
9535
9536 inst.reloc.pc_rel = 1;
9537 }
9538
9539 static void
9540 do_t_bkpt (void)
9541 {
9542 constraint (inst.cond != COND_ALWAYS,
9543 _("instruction is always unconditional"));
9544 if (inst.operands[0].present)
9545 {
9546 constraint (inst.operands[0].imm > 255,
9547 _("immediate value out of range"));
9548 inst.instruction |= inst.operands[0].imm;
9549 set_it_insn_type (NEUTRAL_IT_INSN);
9550 }
9551 }
9552
9553 static void
9554 do_t_branch23 (void)
9555 {
9556 set_it_insn_type_last ();
9557 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
9558 inst.reloc.pc_rel = 1;
9559
9560 #if defined(OBJ_COFF)
9561 /* If the destination of the branch is a defined symbol which does not have
9562 the THUMB_FUNC attribute, then we must be calling a function which has
9563 the (interfacearm) attribute. We look for the Thumb entry point to that
9564 function and change the branch to refer to that function instead. */
9565 if ( inst.reloc.exp.X_op == O_symbol
9566 && inst.reloc.exp.X_add_symbol != NULL
9567 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
9568 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
9569 inst.reloc.exp.X_add_symbol =
9570 find_real_start (inst.reloc.exp.X_add_symbol);
9571 #endif
9572 }
9573
9574 static void
9575 do_t_bx (void)
9576 {
9577 set_it_insn_type_last ();
9578 inst.instruction |= inst.operands[0].reg << 3;
9579 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
9580 should cause the alignment to be checked once it is known. This is
9581 because BX PC only works if the instruction is word aligned. */
9582 }
9583
9584 static void
9585 do_t_bxj (void)
9586 {
9587 int Rm;
9588
9589 set_it_insn_type_last ();
9590 Rm = inst.operands[0].reg;
9591 reject_bad_reg (Rm);
9592 inst.instruction |= Rm << 16;
9593 }
9594
9595 static void
9596 do_t_clz (void)
9597 {
9598 unsigned Rd;
9599 unsigned Rm;
9600
9601 Rd = inst.operands[0].reg;
9602 Rm = inst.operands[1].reg;
9603
9604 reject_bad_reg (Rd);
9605 reject_bad_reg (Rm);
9606
9607 inst.instruction |= Rd << 8;
9608 inst.instruction |= Rm << 16;
9609 inst.instruction |= Rm;
9610 }
9611
9612 static void
9613 do_t_cps (void)
9614 {
9615 set_it_insn_type (OUTSIDE_IT_INSN);
9616 inst.instruction |= inst.operands[0].imm;
9617 }
9618
9619 static void
9620 do_t_cpsi (void)
9621 {
9622 set_it_insn_type (OUTSIDE_IT_INSN);
9623 if (unified_syntax
9624 && (inst.operands[1].present || inst.size_req == 4)
9625 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9626 {
9627 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9628 inst.instruction = 0xf3af8000;
9629 inst.instruction |= imod << 9;
9630 inst.instruction |= inst.operands[0].imm << 5;
9631 if (inst.operands[1].present)
9632 inst.instruction |= 0x100 | inst.operands[1].imm;
9633 }
9634 else
9635 {
9636 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9637 && (inst.operands[0].imm & 4),
9638 _("selected processor does not support 'A' form "
9639 "of this instruction"));
9640 constraint (inst.operands[1].present || inst.size_req == 4,
9641 _("Thumb does not support the 2-argument "
9642 "form of this instruction"));
9643 inst.instruction |= inst.operands[0].imm;
9644 }
9645 }
9646
9647 /* THUMB CPY instruction (argument parse). */
9648
9649 static void
9650 do_t_cpy (void)
9651 {
9652 if (inst.size_req == 4)
9653 {
9654 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9655 inst.instruction |= inst.operands[0].reg << 8;
9656 inst.instruction |= inst.operands[1].reg;
9657 }
9658 else
9659 {
9660 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9661 inst.instruction |= (inst.operands[0].reg & 0x7);
9662 inst.instruction |= inst.operands[1].reg << 3;
9663 }
9664 }
9665
9666 static void
9667 do_t_cbz (void)
9668 {
9669 set_it_insn_type (OUTSIDE_IT_INSN);
9670 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9671 inst.instruction |= inst.operands[0].reg;
9672 inst.reloc.pc_rel = 1;
9673 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9674 }
9675
9676 static void
9677 do_t_dbg (void)
9678 {
9679 inst.instruction |= inst.operands[0].imm;
9680 }
9681
9682 static void
9683 do_t_div (void)
9684 {
9685 unsigned Rd, Rn, Rm;
9686
9687 Rd = inst.operands[0].reg;
9688 Rn = (inst.operands[1].present
9689 ? inst.operands[1].reg : Rd);
9690 Rm = inst.operands[2].reg;
9691
9692 reject_bad_reg (Rd);
9693 reject_bad_reg (Rn);
9694 reject_bad_reg (Rm);
9695
9696 inst.instruction |= Rd << 8;
9697 inst.instruction |= Rn << 16;
9698 inst.instruction |= Rm;
9699 }
9700
9701 static void
9702 do_t_hint (void)
9703 {
9704 if (unified_syntax && inst.size_req == 4)
9705 inst.instruction = THUMB_OP32 (inst.instruction);
9706 else
9707 inst.instruction = THUMB_OP16 (inst.instruction);
9708 }
9709
9710 static void
9711 do_t_it (void)
9712 {
9713 unsigned int cond = inst.operands[0].imm;
9714
9715 set_it_insn_type (IT_INSN);
9716 now_it.mask = (inst.instruction & 0xf) | 0x10;
9717 now_it.cc = cond;
9718
9719 /* If the condition is a negative condition, invert the mask. */
9720 if ((cond & 0x1) == 0x0)
9721 {
9722 unsigned int mask = inst.instruction & 0x000f;
9723
9724 if ((mask & 0x7) == 0)
9725 /* no conversion needed */;
9726 else if ((mask & 0x3) == 0)
9727 mask ^= 0x8;
9728 else if ((mask & 0x1) == 0)
9729 mask ^= 0xC;
9730 else
9731 mask ^= 0xE;
9732
9733 inst.instruction &= 0xfff0;
9734 inst.instruction |= mask;
9735 }
9736
9737 inst.instruction |= cond << 4;
9738 }
9739
9740 /* Helper function used for both push/pop and ldm/stm. */
9741 static void
9742 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9743 {
9744 bfd_boolean load;
9745
9746 load = (inst.instruction & (1 << 20)) != 0;
9747
9748 if (mask & (1 << 13))
9749 inst.error = _("SP not allowed in register list");
9750 if (load)
9751 {
9752 if (mask & (1 << 15))
9753 {
9754 if (mask & (1 << 14))
9755 inst.error = _("LR and PC should not both be in register list");
9756 else
9757 set_it_insn_type_last ();
9758 }
9759
9760 if ((mask & (1 << base)) != 0
9761 && writeback)
9762 as_warn (_("base register should not be in register list "
9763 "when written back"));
9764 }
9765 else
9766 {
9767 if (mask & (1 << 15))
9768 inst.error = _("PC not allowed in register list");
9769
9770 if (mask & (1 << base))
9771 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9772 }
9773
9774 if ((mask & (mask - 1)) == 0)
9775 {
9776 /* Single register transfers implemented as str/ldr. */
9777 if (writeback)
9778 {
9779 if (inst.instruction & (1 << 23))
9780 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9781 else
9782 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9783 }
9784 else
9785 {
9786 if (inst.instruction & (1 << 23))
9787 inst.instruction = 0x00800000; /* ia -> [base] */
9788 else
9789 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9790 }
9791
9792 inst.instruction |= 0xf8400000;
9793 if (load)
9794 inst.instruction |= 0x00100000;
9795
9796 mask = ffs (mask) - 1;
9797 mask <<= 12;
9798 }
9799 else if (writeback)
9800 inst.instruction |= WRITE_BACK;
9801
9802 inst.instruction |= mask;
9803 inst.instruction |= base << 16;
9804 }
9805
9806 static void
9807 do_t_ldmstm (void)
9808 {
9809 /* This really doesn't seem worth it. */
9810 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9811 _("expression too complex"));
9812 constraint (inst.operands[1].writeback,
9813 _("Thumb load/store multiple does not support {reglist}^"));
9814
9815 if (unified_syntax)
9816 {
9817 bfd_boolean narrow;
9818 unsigned mask;
9819
9820 narrow = FALSE;
9821 /* See if we can use a 16-bit instruction. */
9822 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9823 && inst.size_req != 4
9824 && !(inst.operands[1].imm & ~0xff))
9825 {
9826 mask = 1 << inst.operands[0].reg;
9827
9828 if (inst.operands[0].reg <= 7
9829 && (inst.instruction == T_MNEM_stmia
9830 ? inst.operands[0].writeback
9831 : (inst.operands[0].writeback
9832 == !(inst.operands[1].imm & mask))))
9833 {
9834 if (inst.instruction == T_MNEM_stmia
9835 && (inst.operands[1].imm & mask)
9836 && (inst.operands[1].imm & (mask - 1)))
9837 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9838 inst.operands[0].reg);
9839
9840 inst.instruction = THUMB_OP16 (inst.instruction);
9841 inst.instruction |= inst.operands[0].reg << 8;
9842 inst.instruction |= inst.operands[1].imm;
9843 narrow = TRUE;
9844 }
9845 else if (inst.operands[0] .reg == REG_SP
9846 && inst.operands[0].writeback)
9847 {
9848 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9849 ? T_MNEM_push : T_MNEM_pop);
9850 inst.instruction |= inst.operands[1].imm;
9851 narrow = TRUE;
9852 }
9853 }
9854
9855 if (!narrow)
9856 {
9857 if (inst.instruction < 0xffff)
9858 inst.instruction = THUMB_OP32 (inst.instruction);
9859
9860 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9861 inst.operands[0].writeback);
9862 }
9863 }
9864 else
9865 {
9866 constraint (inst.operands[0].reg > 7
9867 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9868 constraint (inst.instruction != T_MNEM_ldmia
9869 && inst.instruction != T_MNEM_stmia,
9870 _("Thumb-2 instruction only valid in unified syntax"));
9871 if (inst.instruction == T_MNEM_stmia)
9872 {
9873 if (!inst.operands[0].writeback)
9874 as_warn (_("this instruction will write back the base register"));
9875 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9876 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9877 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9878 inst.operands[0].reg);
9879 }
9880 else
9881 {
9882 if (!inst.operands[0].writeback
9883 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9884 as_warn (_("this instruction will write back the base register"));
9885 else if (inst.operands[0].writeback
9886 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9887 as_warn (_("this instruction will not write back the base register"));
9888 }
9889
9890 inst.instruction = THUMB_OP16 (inst.instruction);
9891 inst.instruction |= inst.operands[0].reg << 8;
9892 inst.instruction |= inst.operands[1].imm;
9893 }
9894 }
9895
9896 static void
9897 do_t_ldrex (void)
9898 {
9899 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9900 || inst.operands[1].postind || inst.operands[1].writeback
9901 || inst.operands[1].immisreg || inst.operands[1].shifted
9902 || inst.operands[1].negative,
9903 BAD_ADDR_MODE);
9904
9905 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9906
9907 inst.instruction |= inst.operands[0].reg << 12;
9908 inst.instruction |= inst.operands[1].reg << 16;
9909 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9910 }
9911
9912 static void
9913 do_t_ldrexd (void)
9914 {
9915 if (!inst.operands[1].present)
9916 {
9917 constraint (inst.operands[0].reg == REG_LR,
9918 _("r14 not allowed as first register "
9919 "when second register is omitted"));
9920 inst.operands[1].reg = inst.operands[0].reg + 1;
9921 }
9922 constraint (inst.operands[0].reg == inst.operands[1].reg,
9923 BAD_OVERLAP);
9924
9925 inst.instruction |= inst.operands[0].reg << 12;
9926 inst.instruction |= inst.operands[1].reg << 8;
9927 inst.instruction |= inst.operands[2].reg << 16;
9928 }
9929
9930 static void
9931 do_t_ldst (void)
9932 {
9933 unsigned long opcode;
9934 int Rn;
9935
9936 if (inst.operands[0].isreg
9937 && !inst.operands[0].preind
9938 && inst.operands[0].reg == REG_PC)
9939 set_it_insn_type_last ();
9940
9941 opcode = inst.instruction;
9942 if (unified_syntax)
9943 {
9944 if (!inst.operands[1].isreg)
9945 {
9946 if (opcode <= 0xffff)
9947 inst.instruction = THUMB_OP32 (opcode);
9948 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9949 return;
9950 }
9951 if (inst.operands[1].isreg
9952 && !inst.operands[1].writeback
9953 && !inst.operands[1].shifted && !inst.operands[1].postind
9954 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9955 && opcode <= 0xffff
9956 && inst.size_req != 4)
9957 {
9958 /* Insn may have a 16-bit form. */
9959 Rn = inst.operands[1].reg;
9960 if (inst.operands[1].immisreg)
9961 {
9962 inst.instruction = THUMB_OP16 (opcode);
9963 /* [Rn, Rik] */
9964 if (Rn <= 7 && inst.operands[1].imm <= 7)
9965 goto op16;
9966 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
9967 reject_bad_reg (inst.operands[1].imm);
9968 }
9969 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9970 && opcode != T_MNEM_ldrsb)
9971 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9972 || (Rn == REG_SP && opcode == T_MNEM_str))
9973 {
9974 /* [Rn, #const] */
9975 if (Rn > 7)
9976 {
9977 if (Rn == REG_PC)
9978 {
9979 if (inst.reloc.pc_rel)
9980 opcode = T_MNEM_ldr_pc2;
9981 else
9982 opcode = T_MNEM_ldr_pc;
9983 }
9984 else
9985 {
9986 if (opcode == T_MNEM_ldr)
9987 opcode = T_MNEM_ldr_sp;
9988 else
9989 opcode = T_MNEM_str_sp;
9990 }
9991 inst.instruction = inst.operands[0].reg << 8;
9992 }
9993 else
9994 {
9995 inst.instruction = inst.operands[0].reg;
9996 inst.instruction |= inst.operands[1].reg << 3;
9997 }
9998 inst.instruction |= THUMB_OP16 (opcode);
9999 if (inst.size_req == 2)
10000 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10001 else
10002 inst.relax = opcode;
10003 return;
10004 }
10005 }
10006 /* Definitely a 32-bit variant. */
10007
10008 /* Do some validations regarding addressing modes. */
10009 if (inst.operands[1].immisreg && opcode != T_MNEM_ldr
10010 && opcode != T_MNEM_str)
10011 reject_bad_reg (inst.operands[1].imm);
10012
10013 inst.instruction = THUMB_OP32 (opcode);
10014 inst.instruction |= inst.operands[0].reg << 12;
10015 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10016 return;
10017 }
10018
10019 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10020
10021 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10022 {
10023 /* Only [Rn,Rm] is acceptable. */
10024 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10025 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10026 || inst.operands[1].postind || inst.operands[1].shifted
10027 || inst.operands[1].negative,
10028 _("Thumb does not support this addressing mode"));
10029 inst.instruction = THUMB_OP16 (inst.instruction);
10030 goto op16;
10031 }
10032
10033 inst.instruction = THUMB_OP16 (inst.instruction);
10034 if (!inst.operands[1].isreg)
10035 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10036 return;
10037
10038 constraint (!inst.operands[1].preind
10039 || inst.operands[1].shifted
10040 || inst.operands[1].writeback,
10041 _("Thumb does not support this addressing mode"));
10042 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10043 {
10044 constraint (inst.instruction & 0x0600,
10045 _("byte or halfword not valid for base register"));
10046 constraint (inst.operands[1].reg == REG_PC
10047 && !(inst.instruction & THUMB_LOAD_BIT),
10048 _("r15 based store not allowed"));
10049 constraint (inst.operands[1].immisreg,
10050 _("invalid base register for register offset"));
10051
10052 if (inst.operands[1].reg == REG_PC)
10053 inst.instruction = T_OPCODE_LDR_PC;
10054 else if (inst.instruction & THUMB_LOAD_BIT)
10055 inst.instruction = T_OPCODE_LDR_SP;
10056 else
10057 inst.instruction = T_OPCODE_STR_SP;
10058
10059 inst.instruction |= inst.operands[0].reg << 8;
10060 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10061 return;
10062 }
10063
10064 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10065 if (!inst.operands[1].immisreg)
10066 {
10067 /* Immediate offset. */
10068 inst.instruction |= inst.operands[0].reg;
10069 inst.instruction |= inst.operands[1].reg << 3;
10070 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10071 return;
10072 }
10073
10074 /* Register offset. */
10075 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10076 constraint (inst.operands[1].negative,
10077 _("Thumb does not support this addressing mode"));
10078
10079 op16:
10080 switch (inst.instruction)
10081 {
10082 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10083 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10084 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10085 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10086 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10087 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10088 case 0x5600 /* ldrsb */:
10089 case 0x5e00 /* ldrsh */: break;
10090 default: abort ();
10091 }
10092
10093 inst.instruction |= inst.operands[0].reg;
10094 inst.instruction |= inst.operands[1].reg << 3;
10095 inst.instruction |= inst.operands[1].imm << 6;
10096 }
10097
10098 static void
10099 do_t_ldstd (void)
10100 {
10101 if (!inst.operands[1].present)
10102 {
10103 inst.operands[1].reg = inst.operands[0].reg + 1;
10104 constraint (inst.operands[0].reg == REG_LR,
10105 _("r14 not allowed here"));
10106 }
10107 inst.instruction |= inst.operands[0].reg << 12;
10108 inst.instruction |= inst.operands[1].reg << 8;
10109 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10110 }
10111
10112 static void
10113 do_t_ldstt (void)
10114 {
10115 inst.instruction |= inst.operands[0].reg << 12;
10116 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10117 }
10118
10119 static void
10120 do_t_mla (void)
10121 {
10122 unsigned Rd, Rn, Rm, Ra;
10123
10124 Rd = inst.operands[0].reg;
10125 Rn = inst.operands[1].reg;
10126 Rm = inst.operands[2].reg;
10127 Ra = inst.operands[3].reg;
10128
10129 reject_bad_reg (Rd);
10130 reject_bad_reg (Rn);
10131 reject_bad_reg (Rm);
10132 reject_bad_reg (Ra);
10133
10134 inst.instruction |= Rd << 8;
10135 inst.instruction |= Rn << 16;
10136 inst.instruction |= Rm;
10137 inst.instruction |= Ra << 12;
10138 }
10139
10140 static void
10141 do_t_mlal (void)
10142 {
10143 unsigned RdLo, RdHi, Rn, Rm;
10144
10145 RdLo = inst.operands[0].reg;
10146 RdHi = inst.operands[1].reg;
10147 Rn = inst.operands[2].reg;
10148 Rm = inst.operands[3].reg;
10149
10150 reject_bad_reg (RdLo);
10151 reject_bad_reg (RdHi);
10152 reject_bad_reg (Rn);
10153 reject_bad_reg (Rm);
10154
10155 inst.instruction |= RdLo << 12;
10156 inst.instruction |= RdHi << 8;
10157 inst.instruction |= Rn << 16;
10158 inst.instruction |= Rm;
10159 }
10160
10161 static void
10162 do_t_mov_cmp (void)
10163 {
10164 unsigned Rn, Rm;
10165
10166 Rn = inst.operands[0].reg;
10167 Rm = inst.operands[1].reg;
10168
10169 if (Rn == REG_PC)
10170 set_it_insn_type_last ();
10171
10172 if (unified_syntax)
10173 {
10174 int r0off = (inst.instruction == T_MNEM_mov
10175 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10176 unsigned long opcode;
10177 bfd_boolean narrow;
10178 bfd_boolean low_regs;
10179
10180 low_regs = (Rn <= 7 && Rm <= 7);
10181 opcode = inst.instruction;
10182 if (in_it_block ())
10183 narrow = opcode != T_MNEM_movs;
10184 else
10185 narrow = opcode != T_MNEM_movs || low_regs;
10186 if (inst.size_req == 4
10187 || inst.operands[1].shifted)
10188 narrow = FALSE;
10189
10190 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10191 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10192 && !inst.operands[1].shifted
10193 && Rn == REG_PC
10194 && Rm == REG_LR)
10195 {
10196 inst.instruction = T2_SUBS_PC_LR;
10197 return;
10198 }
10199
10200 if (opcode == T_MNEM_cmp)
10201 {
10202 constraint (Rn == REG_PC, BAD_PC);
10203 if (narrow)
10204 {
10205 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10206 but valid. */
10207 warn_deprecated_sp (Rm);
10208 /* R15 was documented as a valid choice for Rm in ARMv6,
10209 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10210 tools reject R15, so we do too. */
10211 constraint (Rm == REG_PC, BAD_PC);
10212 }
10213 else
10214 reject_bad_reg (Rm);
10215 }
10216 else if (opcode == T_MNEM_mov
10217 || opcode == T_MNEM_movs)
10218 {
10219 if (inst.operands[1].isreg)
10220 {
10221 if (opcode == T_MNEM_movs)
10222 {
10223 reject_bad_reg (Rn);
10224 reject_bad_reg (Rm);
10225 }
10226 else if ((Rn == REG_SP || Rn == REG_PC)
10227 && (Rm == REG_SP || Rm == REG_PC))
10228 reject_bad_reg (Rm);
10229 }
10230 else
10231 reject_bad_reg (Rn);
10232 }
10233
10234 if (!inst.operands[1].isreg)
10235 {
10236 /* Immediate operand. */
10237 if (!in_it_block () && opcode == T_MNEM_mov)
10238 narrow = 0;
10239 if (low_regs && narrow)
10240 {
10241 inst.instruction = THUMB_OP16 (opcode);
10242 inst.instruction |= Rn << 8;
10243 if (inst.size_req == 2)
10244 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10245 else
10246 inst.relax = opcode;
10247 }
10248 else
10249 {
10250 inst.instruction = THUMB_OP32 (inst.instruction);
10251 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10252 inst.instruction |= Rn << r0off;
10253 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10254 }
10255 }
10256 else if (inst.operands[1].shifted && inst.operands[1].immisreg
10257 && (inst.instruction == T_MNEM_mov
10258 || inst.instruction == T_MNEM_movs))
10259 {
10260 /* Register shifts are encoded as separate shift instructions. */
10261 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
10262
10263 if (in_it_block ())
10264 narrow = !flags;
10265 else
10266 narrow = flags;
10267
10268 if (inst.size_req == 4)
10269 narrow = FALSE;
10270
10271 if (!low_regs || inst.operands[1].imm > 7)
10272 narrow = FALSE;
10273
10274 if (Rn != Rm)
10275 narrow = FALSE;
10276
10277 switch (inst.operands[1].shift_kind)
10278 {
10279 case SHIFT_LSL:
10280 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
10281 break;
10282 case SHIFT_ASR:
10283 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
10284 break;
10285 case SHIFT_LSR:
10286 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
10287 break;
10288 case SHIFT_ROR:
10289 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
10290 break;
10291 default:
10292 abort ();
10293 }
10294
10295 inst.instruction = opcode;
10296 if (narrow)
10297 {
10298 inst.instruction |= Rn;
10299 inst.instruction |= inst.operands[1].imm << 3;
10300 }
10301 else
10302 {
10303 if (flags)
10304 inst.instruction |= CONDS_BIT;
10305
10306 inst.instruction |= Rn << 8;
10307 inst.instruction |= Rm << 16;
10308 inst.instruction |= inst.operands[1].imm;
10309 }
10310 }
10311 else if (!narrow)
10312 {
10313 /* Some mov with immediate shift have narrow variants.
10314 Register shifts are handled above. */
10315 if (low_regs && inst.operands[1].shifted
10316 && (inst.instruction == T_MNEM_mov
10317 || inst.instruction == T_MNEM_movs))
10318 {
10319 if (in_it_block ())
10320 narrow = (inst.instruction == T_MNEM_mov);
10321 else
10322 narrow = (inst.instruction == T_MNEM_movs);
10323 }
10324
10325 if (narrow)
10326 {
10327 switch (inst.operands[1].shift_kind)
10328 {
10329 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10330 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10331 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10332 default: narrow = FALSE; break;
10333 }
10334 }
10335
10336 if (narrow)
10337 {
10338 inst.instruction |= Rn;
10339 inst.instruction |= Rm << 3;
10340 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10341 }
10342 else
10343 {
10344 inst.instruction = THUMB_OP32 (inst.instruction);
10345 inst.instruction |= Rn << r0off;
10346 encode_thumb32_shifted_operand (1);
10347 }
10348 }
10349 else
10350 switch (inst.instruction)
10351 {
10352 case T_MNEM_mov:
10353 inst.instruction = T_OPCODE_MOV_HR;
10354 inst.instruction |= (Rn & 0x8) << 4;
10355 inst.instruction |= (Rn & 0x7);
10356 inst.instruction |= Rm << 3;
10357 break;
10358
10359 case T_MNEM_movs:
10360 /* We know we have low registers at this point.
10361 Generate ADD Rd, Rs, #0. */
10362 inst.instruction = T_OPCODE_ADD_I3;
10363 inst.instruction |= Rn;
10364 inst.instruction |= Rm << 3;
10365 break;
10366
10367 case T_MNEM_cmp:
10368 if (low_regs)
10369 {
10370 inst.instruction = T_OPCODE_CMP_LR;
10371 inst.instruction |= Rn;
10372 inst.instruction |= Rm << 3;
10373 }
10374 else
10375 {
10376 inst.instruction = T_OPCODE_CMP_HR;
10377 inst.instruction |= (Rn & 0x8) << 4;
10378 inst.instruction |= (Rn & 0x7);
10379 inst.instruction |= Rm << 3;
10380 }
10381 break;
10382 }
10383 return;
10384 }
10385
10386 inst.instruction = THUMB_OP16 (inst.instruction);
10387
10388 /* PR 10443: Do not silently ignore shifted operands. */
10389 constraint (inst.operands[1].shifted,
10390 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
10391
10392 if (inst.operands[1].isreg)
10393 {
10394 if (Rn < 8 && Rm < 8)
10395 {
10396 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
10397 since a MOV instruction produces unpredictable results. */
10398 if (inst.instruction == T_OPCODE_MOV_I8)
10399 inst.instruction = T_OPCODE_ADD_I3;
10400 else
10401 inst.instruction = T_OPCODE_CMP_LR;
10402
10403 inst.instruction |= Rn;
10404 inst.instruction |= Rm << 3;
10405 }
10406 else
10407 {
10408 if (inst.instruction == T_OPCODE_MOV_I8)
10409 inst.instruction = T_OPCODE_MOV_HR;
10410 else
10411 inst.instruction = T_OPCODE_CMP_HR;
10412 do_t_cpy ();
10413 }
10414 }
10415 else
10416 {
10417 constraint (Rn > 7,
10418 _("only lo regs allowed with immediate"));
10419 inst.instruction |= Rn << 8;
10420 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
10421 }
10422 }
10423
10424 static void
10425 do_t_mov16 (void)
10426 {
10427 unsigned Rd;
10428 bfd_vma imm;
10429 bfd_boolean top;
10430
10431 top = (inst.instruction & 0x00800000) != 0;
10432 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
10433 {
10434 constraint (top, _(":lower16: not allowed this instruction"));
10435 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
10436 }
10437 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
10438 {
10439 constraint (!top, _(":upper16: not allowed this instruction"));
10440 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
10441 }
10442
10443 Rd = inst.operands[0].reg;
10444 reject_bad_reg (Rd);
10445
10446 inst.instruction |= Rd << 8;
10447 if (inst.reloc.type == BFD_RELOC_UNUSED)
10448 {
10449 imm = inst.reloc.exp.X_add_number;
10450 inst.instruction |= (imm & 0xf000) << 4;
10451 inst.instruction |= (imm & 0x0800) << 15;
10452 inst.instruction |= (imm & 0x0700) << 4;
10453 inst.instruction |= (imm & 0x00ff);
10454 }
10455 }
10456
10457 static void
10458 do_t_mvn_tst (void)
10459 {
10460 unsigned Rn, Rm;
10461
10462 Rn = inst.operands[0].reg;
10463 Rm = inst.operands[1].reg;
10464
10465 if (inst.instruction == T_MNEM_cmp
10466 || inst.instruction == T_MNEM_cmn)
10467 constraint (Rn == REG_PC, BAD_PC);
10468 else
10469 reject_bad_reg (Rn);
10470 reject_bad_reg (Rm);
10471
10472 if (unified_syntax)
10473 {
10474 int r0off = (inst.instruction == T_MNEM_mvn
10475 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
10476 bfd_boolean narrow;
10477
10478 if (inst.size_req == 4
10479 || inst.instruction > 0xffff
10480 || inst.operands[1].shifted
10481 || Rn > 7 || Rm > 7)
10482 narrow = FALSE;
10483 else if (inst.instruction == T_MNEM_cmn)
10484 narrow = TRUE;
10485 else if (THUMB_SETS_FLAGS (inst.instruction))
10486 narrow = !in_it_block ();
10487 else
10488 narrow = in_it_block ();
10489
10490 if (!inst.operands[1].isreg)
10491 {
10492 /* For an immediate, we always generate a 32-bit opcode;
10493 section relaxation will shrink it later if possible. */
10494 if (inst.instruction < 0xffff)
10495 inst.instruction = THUMB_OP32 (inst.instruction);
10496 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10497 inst.instruction |= Rn << r0off;
10498 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10499 }
10500 else
10501 {
10502 /* See if we can do this with a 16-bit instruction. */
10503 if (narrow)
10504 {
10505 inst.instruction = THUMB_OP16 (inst.instruction);
10506 inst.instruction |= Rn;
10507 inst.instruction |= Rm << 3;
10508 }
10509 else
10510 {
10511 constraint (inst.operands[1].shifted
10512 && inst.operands[1].immisreg,
10513 _("shift must be constant"));
10514 if (inst.instruction < 0xffff)
10515 inst.instruction = THUMB_OP32 (inst.instruction);
10516 inst.instruction |= Rn << r0off;
10517 encode_thumb32_shifted_operand (1);
10518 }
10519 }
10520 }
10521 else
10522 {
10523 constraint (inst.instruction > 0xffff
10524 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
10525 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
10526 _("unshifted register required"));
10527 constraint (Rn > 7 || Rm > 7,
10528 BAD_HIREG);
10529
10530 inst.instruction = THUMB_OP16 (inst.instruction);
10531 inst.instruction |= Rn;
10532 inst.instruction |= Rm << 3;
10533 }
10534 }
10535
10536 static void
10537 do_t_mrs (void)
10538 {
10539 unsigned Rd;
10540 int flags;
10541
10542 if (do_vfp_nsyn_mrs () == SUCCESS)
10543 return;
10544
10545 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
10546 if (flags == 0)
10547 {
10548 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10549 _("selected processor does not support "
10550 "requested special purpose register"));
10551 }
10552 else
10553 {
10554 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10555 _("selected processor does not support "
10556 "requested special purpose register"));
10557 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
10558 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
10559 _("'CPSR' or 'SPSR' expected"));
10560 }
10561
10562 Rd = inst.operands[0].reg;
10563 reject_bad_reg (Rd);
10564
10565 inst.instruction |= Rd << 8;
10566 inst.instruction |= (flags & SPSR_BIT) >> 2;
10567 inst.instruction |= inst.operands[1].imm & 0xff;
10568 }
10569
10570 static void
10571 do_t_msr (void)
10572 {
10573 int flags;
10574 unsigned Rn;
10575
10576 if (do_vfp_nsyn_msr () == SUCCESS)
10577 return;
10578
10579 constraint (!inst.operands[1].isreg,
10580 _("Thumb encoding does not support an immediate here"));
10581 flags = inst.operands[0].imm;
10582 if (flags & ~0xff)
10583 {
10584 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
10585 _("selected processor does not support "
10586 "requested special purpose register"));
10587 }
10588 else
10589 {
10590 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
10591 _("selected processor does not support "
10592 "requested special purpose register"));
10593 flags |= PSR_f;
10594 }
10595
10596 Rn = inst.operands[1].reg;
10597 reject_bad_reg (Rn);
10598
10599 inst.instruction |= (flags & SPSR_BIT) >> 2;
10600 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
10601 inst.instruction |= (flags & 0xff);
10602 inst.instruction |= Rn << 16;
10603 }
10604
10605 static void
10606 do_t_mul (void)
10607 {
10608 bfd_boolean narrow;
10609 unsigned Rd, Rn, Rm;
10610
10611 if (!inst.operands[2].present)
10612 inst.operands[2].reg = inst.operands[0].reg;
10613
10614 Rd = inst.operands[0].reg;
10615 Rn = inst.operands[1].reg;
10616 Rm = inst.operands[2].reg;
10617
10618 if (unified_syntax)
10619 {
10620 if (inst.size_req == 4
10621 || (Rd != Rn
10622 && Rd != Rm)
10623 || Rn > 7
10624 || Rm > 7)
10625 narrow = FALSE;
10626 else if (inst.instruction == T_MNEM_muls)
10627 narrow = !in_it_block ();
10628 else
10629 narrow = in_it_block ();
10630 }
10631 else
10632 {
10633 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
10634 constraint (Rn > 7 || Rm > 7,
10635 BAD_HIREG);
10636 narrow = TRUE;
10637 }
10638
10639 if (narrow)
10640 {
10641 /* 16-bit MULS/Conditional MUL. */
10642 inst.instruction = THUMB_OP16 (inst.instruction);
10643 inst.instruction |= Rd;
10644
10645 if (Rd == Rn)
10646 inst.instruction |= Rm << 3;
10647 else if (Rd == Rm)
10648 inst.instruction |= Rn << 3;
10649 else
10650 constraint (1, _("dest must overlap one source register"));
10651 }
10652 else
10653 {
10654 constraint (inst.instruction != T_MNEM_mul,
10655 _("Thumb-2 MUL must not set flags"));
10656 /* 32-bit MUL. */
10657 inst.instruction = THUMB_OP32 (inst.instruction);
10658 inst.instruction |= Rd << 8;
10659 inst.instruction |= Rn << 16;
10660 inst.instruction |= Rm << 0;
10661
10662 reject_bad_reg (Rd);
10663 reject_bad_reg (Rn);
10664 reject_bad_reg (Rm);
10665 }
10666 }
10667
10668 static void
10669 do_t_mull (void)
10670 {
10671 unsigned RdLo, RdHi, Rn, Rm;
10672
10673 RdLo = inst.operands[0].reg;
10674 RdHi = inst.operands[1].reg;
10675 Rn = inst.operands[2].reg;
10676 Rm = inst.operands[3].reg;
10677
10678 reject_bad_reg (RdLo);
10679 reject_bad_reg (RdHi);
10680 reject_bad_reg (Rn);
10681 reject_bad_reg (Rm);
10682
10683 inst.instruction |= RdLo << 12;
10684 inst.instruction |= RdHi << 8;
10685 inst.instruction |= Rn << 16;
10686 inst.instruction |= Rm;
10687
10688 if (RdLo == RdHi)
10689 as_tsktsk (_("rdhi and rdlo must be different"));
10690 }
10691
10692 static void
10693 do_t_nop (void)
10694 {
10695 set_it_insn_type (NEUTRAL_IT_INSN);
10696
10697 if (unified_syntax)
10698 {
10699 if (inst.size_req == 4 || inst.operands[0].imm > 15)
10700 {
10701 inst.instruction = THUMB_OP32 (inst.instruction);
10702 inst.instruction |= inst.operands[0].imm;
10703 }
10704 else
10705 {
10706 /* PR9722: Check for Thumb2 availability before
10707 generating a thumb2 nop instruction. */
10708 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
10709 {
10710 inst.instruction = THUMB_OP16 (inst.instruction);
10711 inst.instruction |= inst.operands[0].imm << 4;
10712 }
10713 else
10714 inst.instruction = 0x46c0;
10715 }
10716 }
10717 else
10718 {
10719 constraint (inst.operands[0].present,
10720 _("Thumb does not support NOP with hints"));
10721 inst.instruction = 0x46c0;
10722 }
10723 }
10724
10725 static void
10726 do_t_neg (void)
10727 {
10728 if (unified_syntax)
10729 {
10730 bfd_boolean narrow;
10731
10732 if (THUMB_SETS_FLAGS (inst.instruction))
10733 narrow = !in_it_block ();
10734 else
10735 narrow = in_it_block ();
10736 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10737 narrow = FALSE;
10738 if (inst.size_req == 4)
10739 narrow = FALSE;
10740
10741 if (!narrow)
10742 {
10743 inst.instruction = THUMB_OP32 (inst.instruction);
10744 inst.instruction |= inst.operands[0].reg << 8;
10745 inst.instruction |= inst.operands[1].reg << 16;
10746 }
10747 else
10748 {
10749 inst.instruction = THUMB_OP16 (inst.instruction);
10750 inst.instruction |= inst.operands[0].reg;
10751 inst.instruction |= inst.operands[1].reg << 3;
10752 }
10753 }
10754 else
10755 {
10756 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10757 BAD_HIREG);
10758 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10759
10760 inst.instruction = THUMB_OP16 (inst.instruction);
10761 inst.instruction |= inst.operands[0].reg;
10762 inst.instruction |= inst.operands[1].reg << 3;
10763 }
10764 }
10765
10766 static void
10767 do_t_orn (void)
10768 {
10769 unsigned Rd, Rn;
10770
10771 Rd = inst.operands[0].reg;
10772 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
10773
10774 reject_bad_reg (Rd);
10775 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
10776 reject_bad_reg (Rn);
10777
10778 inst.instruction |= Rd << 8;
10779 inst.instruction |= Rn << 16;
10780
10781 if (!inst.operands[2].isreg)
10782 {
10783 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10784 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10785 }
10786 else
10787 {
10788 unsigned Rm;
10789
10790 Rm = inst.operands[2].reg;
10791 reject_bad_reg (Rm);
10792
10793 constraint (inst.operands[2].shifted
10794 && inst.operands[2].immisreg,
10795 _("shift must be constant"));
10796 encode_thumb32_shifted_operand (2);
10797 }
10798 }
10799
10800 static void
10801 do_t_pkhbt (void)
10802 {
10803 unsigned Rd, Rn, Rm;
10804
10805 Rd = inst.operands[0].reg;
10806 Rn = inst.operands[1].reg;
10807 Rm = inst.operands[2].reg;
10808
10809 reject_bad_reg (Rd);
10810 reject_bad_reg (Rn);
10811 reject_bad_reg (Rm);
10812
10813 inst.instruction |= Rd << 8;
10814 inst.instruction |= Rn << 16;
10815 inst.instruction |= Rm;
10816 if (inst.operands[3].present)
10817 {
10818 unsigned int val = inst.reloc.exp.X_add_number;
10819 constraint (inst.reloc.exp.X_op != O_constant,
10820 _("expression too complex"));
10821 inst.instruction |= (val & 0x1c) << 10;
10822 inst.instruction |= (val & 0x03) << 6;
10823 }
10824 }
10825
10826 static void
10827 do_t_pkhtb (void)
10828 {
10829 if (!inst.operands[3].present)
10830 {
10831 unsigned Rtmp;
10832
10833 inst.instruction &= ~0x00000020;
10834
10835 /* PR 10168. Swap the Rm and Rn registers. */
10836 Rtmp = inst.operands[1].reg;
10837 inst.operands[1].reg = inst.operands[2].reg;
10838 inst.operands[2].reg = Rtmp;
10839 }
10840 do_t_pkhbt ();
10841 }
10842
10843 static void
10844 do_t_pld (void)
10845 {
10846 if (inst.operands[0].immisreg)
10847 reject_bad_reg (inst.operands[0].imm);
10848
10849 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10850 }
10851
10852 static void
10853 do_t_push_pop (void)
10854 {
10855 unsigned mask;
10856
10857 constraint (inst.operands[0].writeback,
10858 _("push/pop do not support {reglist}^"));
10859 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10860 _("expression too complex"));
10861
10862 mask = inst.operands[0].imm;
10863 if ((mask & ~0xff) == 0)
10864 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10865 else if ((inst.instruction == T_MNEM_push
10866 && (mask & ~0xff) == 1 << REG_LR)
10867 || (inst.instruction == T_MNEM_pop
10868 && (mask & ~0xff) == 1 << REG_PC))
10869 {
10870 inst.instruction = THUMB_OP16 (inst.instruction);
10871 inst.instruction |= THUMB_PP_PC_LR;
10872 inst.instruction |= mask & 0xff;
10873 }
10874 else if (unified_syntax)
10875 {
10876 inst.instruction = THUMB_OP32 (inst.instruction);
10877 encode_thumb2_ldmstm (13, mask, TRUE);
10878 }
10879 else
10880 {
10881 inst.error = _("invalid register list to push/pop instruction");
10882 return;
10883 }
10884 }
10885
10886 static void
10887 do_t_rbit (void)
10888 {
10889 unsigned Rd, Rm;
10890
10891 Rd = inst.operands[0].reg;
10892 Rm = inst.operands[1].reg;
10893
10894 reject_bad_reg (Rd);
10895 reject_bad_reg (Rm);
10896
10897 inst.instruction |= Rd << 8;
10898 inst.instruction |= Rm << 16;
10899 inst.instruction |= Rm;
10900 }
10901
10902 static void
10903 do_t_rev (void)
10904 {
10905 unsigned Rd, Rm;
10906
10907 Rd = inst.operands[0].reg;
10908 Rm = inst.operands[1].reg;
10909
10910 reject_bad_reg (Rd);
10911 reject_bad_reg (Rm);
10912
10913 if (Rd <= 7 && Rm <= 7
10914 && inst.size_req != 4)
10915 {
10916 inst.instruction = THUMB_OP16 (inst.instruction);
10917 inst.instruction |= Rd;
10918 inst.instruction |= Rm << 3;
10919 }
10920 else if (unified_syntax)
10921 {
10922 inst.instruction = THUMB_OP32 (inst.instruction);
10923 inst.instruction |= Rd << 8;
10924 inst.instruction |= Rm << 16;
10925 inst.instruction |= Rm;
10926 }
10927 else
10928 inst.error = BAD_HIREG;
10929 }
10930
10931 static void
10932 do_t_rrx (void)
10933 {
10934 unsigned Rd, Rm;
10935
10936 Rd = inst.operands[0].reg;
10937 Rm = inst.operands[1].reg;
10938
10939 reject_bad_reg (Rd);
10940 reject_bad_reg (Rm);
10941
10942 inst.instruction |= Rd << 8;
10943 inst.instruction |= Rm;
10944 }
10945
10946 static void
10947 do_t_rsb (void)
10948 {
10949 unsigned Rd, Rs;
10950
10951 Rd = inst.operands[0].reg;
10952 Rs = (inst.operands[1].present
10953 ? inst.operands[1].reg /* Rd, Rs, foo */
10954 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10955
10956 reject_bad_reg (Rd);
10957 reject_bad_reg (Rs);
10958 if (inst.operands[2].isreg)
10959 reject_bad_reg (inst.operands[2].reg);
10960
10961 inst.instruction |= Rd << 8;
10962 inst.instruction |= Rs << 16;
10963 if (!inst.operands[2].isreg)
10964 {
10965 bfd_boolean narrow;
10966
10967 if ((inst.instruction & 0x00100000) != 0)
10968 narrow = !in_it_block ();
10969 else
10970 narrow = in_it_block ();
10971
10972 if (Rd > 7 || Rs > 7)
10973 narrow = FALSE;
10974
10975 if (inst.size_req == 4 || !unified_syntax)
10976 narrow = FALSE;
10977
10978 if (inst.reloc.exp.X_op != O_constant
10979 || inst.reloc.exp.X_add_number != 0)
10980 narrow = FALSE;
10981
10982 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10983 relaxation, but it doesn't seem worth the hassle. */
10984 if (narrow)
10985 {
10986 inst.reloc.type = BFD_RELOC_UNUSED;
10987 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10988 inst.instruction |= Rs << 3;
10989 inst.instruction |= Rd;
10990 }
10991 else
10992 {
10993 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10994 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10995 }
10996 }
10997 else
10998 encode_thumb32_shifted_operand (2);
10999 }
11000
11001 static void
11002 do_t_setend (void)
11003 {
11004 set_it_insn_type (OUTSIDE_IT_INSN);
11005 if (inst.operands[0].imm)
11006 inst.instruction |= 0x8;
11007 }
11008
11009 static void
11010 do_t_shift (void)
11011 {
11012 if (!inst.operands[1].present)
11013 inst.operands[1].reg = inst.operands[0].reg;
11014
11015 if (unified_syntax)
11016 {
11017 bfd_boolean narrow;
11018 int shift_kind;
11019
11020 switch (inst.instruction)
11021 {
11022 case T_MNEM_asr:
11023 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11024 case T_MNEM_lsl:
11025 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11026 case T_MNEM_lsr:
11027 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11028 case T_MNEM_ror:
11029 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11030 default: abort ();
11031 }
11032
11033 if (THUMB_SETS_FLAGS (inst.instruction))
11034 narrow = !in_it_block ();
11035 else
11036 narrow = in_it_block ();
11037 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11038 narrow = FALSE;
11039 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11040 narrow = FALSE;
11041 if (inst.operands[2].isreg
11042 && (inst.operands[1].reg != inst.operands[0].reg
11043 || inst.operands[2].reg > 7))
11044 narrow = FALSE;
11045 if (inst.size_req == 4)
11046 narrow = FALSE;
11047
11048 reject_bad_reg (inst.operands[0].reg);
11049 reject_bad_reg (inst.operands[1].reg);
11050
11051 if (!narrow)
11052 {
11053 if (inst.operands[2].isreg)
11054 {
11055 reject_bad_reg (inst.operands[2].reg);
11056 inst.instruction = THUMB_OP32 (inst.instruction);
11057 inst.instruction |= inst.operands[0].reg << 8;
11058 inst.instruction |= inst.operands[1].reg << 16;
11059 inst.instruction |= inst.operands[2].reg;
11060 }
11061 else
11062 {
11063 inst.operands[1].shifted = 1;
11064 inst.operands[1].shift_kind = shift_kind;
11065 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11066 ? T_MNEM_movs : T_MNEM_mov);
11067 inst.instruction |= inst.operands[0].reg << 8;
11068 encode_thumb32_shifted_operand (1);
11069 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11070 inst.reloc.type = BFD_RELOC_UNUSED;
11071 }
11072 }
11073 else
11074 {
11075 if (inst.operands[2].isreg)
11076 {
11077 switch (shift_kind)
11078 {
11079 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11080 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11081 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11082 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11083 default: abort ();
11084 }
11085
11086 inst.instruction |= inst.operands[0].reg;
11087 inst.instruction |= inst.operands[2].reg << 3;
11088 }
11089 else
11090 {
11091 switch (shift_kind)
11092 {
11093 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11094 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11095 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11096 default: abort ();
11097 }
11098 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11099 inst.instruction |= inst.operands[0].reg;
11100 inst.instruction |= inst.operands[1].reg << 3;
11101 }
11102 }
11103 }
11104 else
11105 {
11106 constraint (inst.operands[0].reg > 7
11107 || inst.operands[1].reg > 7, BAD_HIREG);
11108 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11109
11110 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11111 {
11112 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11113 constraint (inst.operands[0].reg != inst.operands[1].reg,
11114 _("source1 and dest must be same register"));
11115
11116 switch (inst.instruction)
11117 {
11118 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11119 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11120 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11121 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11122 default: abort ();
11123 }
11124
11125 inst.instruction |= inst.operands[0].reg;
11126 inst.instruction |= inst.operands[2].reg << 3;
11127 }
11128 else
11129 {
11130 switch (inst.instruction)
11131 {
11132 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11133 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11134 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11135 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11136 default: abort ();
11137 }
11138 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11139 inst.instruction |= inst.operands[0].reg;
11140 inst.instruction |= inst.operands[1].reg << 3;
11141 }
11142 }
11143 }
11144
11145 static void
11146 do_t_simd (void)
11147 {
11148 unsigned Rd, Rn, Rm;
11149
11150 Rd = inst.operands[0].reg;
11151 Rn = inst.operands[1].reg;
11152 Rm = inst.operands[2].reg;
11153
11154 reject_bad_reg (Rd);
11155 reject_bad_reg (Rn);
11156 reject_bad_reg (Rm);
11157
11158 inst.instruction |= Rd << 8;
11159 inst.instruction |= Rn << 16;
11160 inst.instruction |= Rm;
11161 }
11162
11163 static void
11164 do_t_simd2 (void)
11165 {
11166 unsigned Rd, Rn, Rm;
11167
11168 Rd = inst.operands[0].reg;
11169 Rm = inst.operands[1].reg;
11170 Rn = inst.operands[2].reg;
11171
11172 reject_bad_reg (Rd);
11173 reject_bad_reg (Rn);
11174 reject_bad_reg (Rm);
11175
11176 inst.instruction |= Rd << 8;
11177 inst.instruction |= Rn << 16;
11178 inst.instruction |= Rm;
11179 }
11180
11181 static void
11182 do_t_smc (void)
11183 {
11184 unsigned int value = inst.reloc.exp.X_add_number;
11185 constraint (inst.reloc.exp.X_op != O_constant,
11186 _("expression too complex"));
11187 inst.reloc.type = BFD_RELOC_UNUSED;
11188 inst.instruction |= (value & 0xf000) >> 12;
11189 inst.instruction |= (value & 0x0ff0);
11190 inst.instruction |= (value & 0x000f) << 16;
11191 }
11192
11193 static void
11194 do_t_ssat_usat (int bias)
11195 {
11196 unsigned Rd, Rn;
11197
11198 Rd = inst.operands[0].reg;
11199 Rn = inst.operands[2].reg;
11200
11201 reject_bad_reg (Rd);
11202 reject_bad_reg (Rn);
11203
11204 inst.instruction |= Rd << 8;
11205 inst.instruction |= inst.operands[1].imm - bias;
11206 inst.instruction |= Rn << 16;
11207
11208 if (inst.operands[3].present)
11209 {
11210 offsetT shift_amount = inst.reloc.exp.X_add_number;
11211
11212 inst.reloc.type = BFD_RELOC_UNUSED;
11213
11214 constraint (inst.reloc.exp.X_op != O_constant,
11215 _("expression too complex"));
11216
11217 if (shift_amount != 0)
11218 {
11219 constraint (shift_amount > 31,
11220 _("shift expression is too large"));
11221
11222 if (inst.operands[3].shift_kind == SHIFT_ASR)
11223 inst.instruction |= 0x00200000; /* sh bit. */
11224
11225 inst.instruction |= (shift_amount & 0x1c) << 10;
11226 inst.instruction |= (shift_amount & 0x03) << 6;
11227 }
11228 }
11229 }
11230
11231 static void
11232 do_t_ssat (void)
11233 {
11234 do_t_ssat_usat (1);
11235 }
11236
11237 static void
11238 do_t_ssat16 (void)
11239 {
11240 unsigned Rd, Rn;
11241
11242 Rd = inst.operands[0].reg;
11243 Rn = inst.operands[2].reg;
11244
11245 reject_bad_reg (Rd);
11246 reject_bad_reg (Rn);
11247
11248 inst.instruction |= Rd << 8;
11249 inst.instruction |= inst.operands[1].imm - 1;
11250 inst.instruction |= Rn << 16;
11251 }
11252
11253 static void
11254 do_t_strex (void)
11255 {
11256 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
11257 || inst.operands[2].postind || inst.operands[2].writeback
11258 || inst.operands[2].immisreg || inst.operands[2].shifted
11259 || inst.operands[2].negative,
11260 BAD_ADDR_MODE);
11261
11262 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
11263
11264 inst.instruction |= inst.operands[0].reg << 8;
11265 inst.instruction |= inst.operands[1].reg << 12;
11266 inst.instruction |= inst.operands[2].reg << 16;
11267 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
11268 }
11269
11270 static void
11271 do_t_strexd (void)
11272 {
11273 if (!inst.operands[2].present)
11274 inst.operands[2].reg = inst.operands[1].reg + 1;
11275
11276 constraint (inst.operands[0].reg == inst.operands[1].reg
11277 || inst.operands[0].reg == inst.operands[2].reg
11278 || inst.operands[0].reg == inst.operands[3].reg
11279 || inst.operands[1].reg == inst.operands[2].reg,
11280 BAD_OVERLAP);
11281
11282 inst.instruction |= inst.operands[0].reg;
11283 inst.instruction |= inst.operands[1].reg << 12;
11284 inst.instruction |= inst.operands[2].reg << 8;
11285 inst.instruction |= inst.operands[3].reg << 16;
11286 }
11287
11288 static void
11289 do_t_sxtah (void)
11290 {
11291 unsigned Rd, Rn, Rm;
11292
11293 Rd = inst.operands[0].reg;
11294 Rn = inst.operands[1].reg;
11295 Rm = inst.operands[2].reg;
11296
11297 reject_bad_reg (Rd);
11298 reject_bad_reg (Rn);
11299 reject_bad_reg (Rm);
11300
11301 inst.instruction |= Rd << 8;
11302 inst.instruction |= Rn << 16;
11303 inst.instruction |= Rm;
11304 inst.instruction |= inst.operands[3].imm << 4;
11305 }
11306
11307 static void
11308 do_t_sxth (void)
11309 {
11310 unsigned Rd, Rm;
11311
11312 Rd = inst.operands[0].reg;
11313 Rm = inst.operands[1].reg;
11314
11315 reject_bad_reg (Rd);
11316 reject_bad_reg (Rm);
11317
11318 if (inst.instruction <= 0xffff
11319 && inst.size_req != 4
11320 && Rd <= 7 && Rm <= 7
11321 && (!inst.operands[2].present || inst.operands[2].imm == 0))
11322 {
11323 inst.instruction = THUMB_OP16 (inst.instruction);
11324 inst.instruction |= Rd;
11325 inst.instruction |= Rm << 3;
11326 }
11327 else if (unified_syntax)
11328 {
11329 if (inst.instruction <= 0xffff)
11330 inst.instruction = THUMB_OP32 (inst.instruction);
11331 inst.instruction |= Rd << 8;
11332 inst.instruction |= Rm;
11333 inst.instruction |= inst.operands[2].imm << 4;
11334 }
11335 else
11336 {
11337 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
11338 _("Thumb encoding does not support rotation"));
11339 constraint (1, BAD_HIREG);
11340 }
11341 }
11342
11343 static void
11344 do_t_swi (void)
11345 {
11346 inst.reloc.type = BFD_RELOC_ARM_SWI;
11347 }
11348
11349 static void
11350 do_t_tb (void)
11351 {
11352 unsigned Rn, Rm;
11353 int half;
11354
11355 half = (inst.instruction & 0x10) != 0;
11356 set_it_insn_type_last ();
11357 constraint (inst.operands[0].immisreg,
11358 _("instruction requires register index"));
11359
11360 Rn = inst.operands[0].reg;
11361 Rm = inst.operands[0].imm;
11362
11363 constraint (Rn == REG_SP, BAD_SP);
11364 reject_bad_reg (Rm);
11365
11366 constraint (!half && inst.operands[0].shifted,
11367 _("instruction does not allow shifted index"));
11368 inst.instruction |= (Rn << 16) | Rm;
11369 }
11370
11371 static void
11372 do_t_usat (void)
11373 {
11374 do_t_ssat_usat (0);
11375 }
11376
11377 static void
11378 do_t_usat16 (void)
11379 {
11380 unsigned Rd, Rn;
11381
11382 Rd = inst.operands[0].reg;
11383 Rn = inst.operands[2].reg;
11384
11385 reject_bad_reg (Rd);
11386 reject_bad_reg (Rn);
11387
11388 inst.instruction |= Rd << 8;
11389 inst.instruction |= inst.operands[1].imm;
11390 inst.instruction |= Rn << 16;
11391 }
11392
11393 /* Neon instruction encoder helpers. */
11394
11395 /* Encodings for the different types for various Neon opcodes. */
11396
11397 /* An "invalid" code for the following tables. */
11398 #define N_INV -1u
11399
11400 struct neon_tab_entry
11401 {
11402 unsigned integer;
11403 unsigned float_or_poly;
11404 unsigned scalar_or_imm;
11405 };
11406
11407 /* Map overloaded Neon opcodes to their respective encodings. */
11408 #define NEON_ENC_TAB \
11409 X(vabd, 0x0000700, 0x1200d00, N_INV), \
11410 X(vmax, 0x0000600, 0x0000f00, N_INV), \
11411 X(vmin, 0x0000610, 0x0200f00, N_INV), \
11412 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
11413 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
11414 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
11415 X(vadd, 0x0000800, 0x0000d00, N_INV), \
11416 X(vsub, 0x1000800, 0x0200d00, N_INV), \
11417 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
11418 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
11419 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
11420 /* Register variants of the following two instructions are encoded as
11421 vcge / vcgt with the operands reversed. */ \
11422 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
11423 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
11424 X(vfma, N_INV, 0x0000c10, N_INV), \
11425 X(vfms, N_INV, 0x0200c10, N_INV), \
11426 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
11427 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
11428 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
11429 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
11430 X(vmlal, 0x0800800, N_INV, 0x0800240), \
11431 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
11432 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
11433 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
11434 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
11435 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
11436 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
11437 X(vshl, 0x0000400, N_INV, 0x0800510), \
11438 X(vqshl, 0x0000410, N_INV, 0x0800710), \
11439 X(vand, 0x0000110, N_INV, 0x0800030), \
11440 X(vbic, 0x0100110, N_INV, 0x0800030), \
11441 X(veor, 0x1000110, N_INV, N_INV), \
11442 X(vorn, 0x0300110, N_INV, 0x0800010), \
11443 X(vorr, 0x0200110, N_INV, 0x0800010), \
11444 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
11445 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
11446 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
11447 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
11448 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
11449 X(vst1, 0x0000000, 0x0800000, N_INV), \
11450 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
11451 X(vst2, 0x0000100, 0x0800100, N_INV), \
11452 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
11453 X(vst3, 0x0000200, 0x0800200, N_INV), \
11454 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
11455 X(vst4, 0x0000300, 0x0800300, N_INV), \
11456 X(vmovn, 0x1b20200, N_INV, N_INV), \
11457 X(vtrn, 0x1b20080, N_INV, N_INV), \
11458 X(vqmovn, 0x1b20200, N_INV, N_INV), \
11459 X(vqmovun, 0x1b20240, N_INV, N_INV), \
11460 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
11461 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
11462 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
11463 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
11464 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
11465 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
11466 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
11467 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
11468 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
11469
11470 enum neon_opc
11471 {
11472 #define X(OPC,I,F,S) N_MNEM_##OPC
11473 NEON_ENC_TAB
11474 #undef X
11475 };
11476
11477 static const struct neon_tab_entry neon_enc_tab[] =
11478 {
11479 #define X(OPC,I,F,S) { (I), (F), (S) }
11480 NEON_ENC_TAB
11481 #undef X
11482 };
11483
11484 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
11485 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11486 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11487 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11488 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11489 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11490 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11491 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
11492 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
11493 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
11494 #define NEON_ENC_SINGLE_(X) \
11495 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
11496 #define NEON_ENC_DOUBLE_(X) \
11497 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
11498
11499 #define NEON_ENCODE(type, inst) \
11500 do \
11501 { \
11502 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
11503 inst.is_neon = 1; \
11504 } \
11505 while (0)
11506
11507 #define check_neon_suffixes \
11508 do \
11509 { \
11510 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
11511 { \
11512 as_bad (_("invalid neon suffix for non neon instruction")); \
11513 return; \
11514 } \
11515 } \
11516 while (0)
11517
11518 /* Define shapes for instruction operands. The following mnemonic characters
11519 are used in this table:
11520
11521 F - VFP S<n> register
11522 D - Neon D<n> register
11523 Q - Neon Q<n> register
11524 I - Immediate
11525 S - Scalar
11526 R - ARM register
11527 L - D<n> register list
11528
11529 This table is used to generate various data:
11530 - enumerations of the form NS_DDR to be used as arguments to
11531 neon_select_shape.
11532 - a table classifying shapes into single, double, quad, mixed.
11533 - a table used to drive neon_select_shape. */
11534
11535 #define NEON_SHAPE_DEF \
11536 X(3, (D, D, D), DOUBLE), \
11537 X(3, (Q, Q, Q), QUAD), \
11538 X(3, (D, D, I), DOUBLE), \
11539 X(3, (Q, Q, I), QUAD), \
11540 X(3, (D, D, S), DOUBLE), \
11541 X(3, (Q, Q, S), QUAD), \
11542 X(2, (D, D), DOUBLE), \
11543 X(2, (Q, Q), QUAD), \
11544 X(2, (D, S), DOUBLE), \
11545 X(2, (Q, S), QUAD), \
11546 X(2, (D, R), DOUBLE), \
11547 X(2, (Q, R), QUAD), \
11548 X(2, (D, I), DOUBLE), \
11549 X(2, (Q, I), QUAD), \
11550 X(3, (D, L, D), DOUBLE), \
11551 X(2, (D, Q), MIXED), \
11552 X(2, (Q, D), MIXED), \
11553 X(3, (D, Q, I), MIXED), \
11554 X(3, (Q, D, I), MIXED), \
11555 X(3, (Q, D, D), MIXED), \
11556 X(3, (D, Q, Q), MIXED), \
11557 X(3, (Q, Q, D), MIXED), \
11558 X(3, (Q, D, S), MIXED), \
11559 X(3, (D, Q, S), MIXED), \
11560 X(4, (D, D, D, I), DOUBLE), \
11561 X(4, (Q, Q, Q, I), QUAD), \
11562 X(2, (F, F), SINGLE), \
11563 X(3, (F, F, F), SINGLE), \
11564 X(2, (F, I), SINGLE), \
11565 X(2, (F, D), MIXED), \
11566 X(2, (D, F), MIXED), \
11567 X(3, (F, F, I), MIXED), \
11568 X(4, (R, R, F, F), SINGLE), \
11569 X(4, (F, F, R, R), SINGLE), \
11570 X(3, (D, R, R), DOUBLE), \
11571 X(3, (R, R, D), DOUBLE), \
11572 X(2, (S, R), SINGLE), \
11573 X(2, (R, S), SINGLE), \
11574 X(2, (F, R), SINGLE), \
11575 X(2, (R, F), SINGLE)
11576
11577 #define S2(A,B) NS_##A##B
11578 #define S3(A,B,C) NS_##A##B##C
11579 #define S4(A,B,C,D) NS_##A##B##C##D
11580
11581 #define X(N, L, C) S##N L
11582
11583 enum neon_shape
11584 {
11585 NEON_SHAPE_DEF,
11586 NS_NULL
11587 };
11588
11589 #undef X
11590 #undef S2
11591 #undef S3
11592 #undef S4
11593
11594 enum neon_shape_class
11595 {
11596 SC_SINGLE,
11597 SC_DOUBLE,
11598 SC_QUAD,
11599 SC_MIXED
11600 };
11601
11602 #define X(N, L, C) SC_##C
11603
11604 static enum neon_shape_class neon_shape_class[] =
11605 {
11606 NEON_SHAPE_DEF
11607 };
11608
11609 #undef X
11610
11611 enum neon_shape_el
11612 {
11613 SE_F,
11614 SE_D,
11615 SE_Q,
11616 SE_I,
11617 SE_S,
11618 SE_R,
11619 SE_L
11620 };
11621
11622 /* Register widths of above. */
11623 static unsigned neon_shape_el_size[] =
11624 {
11625 32,
11626 64,
11627 128,
11628 0,
11629 32,
11630 32,
11631 0
11632 };
11633
11634 struct neon_shape_info
11635 {
11636 unsigned els;
11637 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
11638 };
11639
11640 #define S2(A,B) { SE_##A, SE_##B }
11641 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
11642 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
11643
11644 #define X(N, L, C) { N, S##N L }
11645
11646 static struct neon_shape_info neon_shape_tab[] =
11647 {
11648 NEON_SHAPE_DEF
11649 };
11650
11651 #undef X
11652 #undef S2
11653 #undef S3
11654 #undef S4
11655
11656 /* Bit masks used in type checking given instructions.
11657 'N_EQK' means the type must be the same as (or based on in some way) the key
11658 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
11659 set, various other bits can be set as well in order to modify the meaning of
11660 the type constraint. */
11661
11662 enum neon_type_mask
11663 {
11664 N_S8 = 0x0000001,
11665 N_S16 = 0x0000002,
11666 N_S32 = 0x0000004,
11667 N_S64 = 0x0000008,
11668 N_U8 = 0x0000010,
11669 N_U16 = 0x0000020,
11670 N_U32 = 0x0000040,
11671 N_U64 = 0x0000080,
11672 N_I8 = 0x0000100,
11673 N_I16 = 0x0000200,
11674 N_I32 = 0x0000400,
11675 N_I64 = 0x0000800,
11676 N_8 = 0x0001000,
11677 N_16 = 0x0002000,
11678 N_32 = 0x0004000,
11679 N_64 = 0x0008000,
11680 N_P8 = 0x0010000,
11681 N_P16 = 0x0020000,
11682 N_F16 = 0x0040000,
11683 N_F32 = 0x0080000,
11684 N_F64 = 0x0100000,
11685 N_KEY = 0x1000000, /* Key element (main type specifier). */
11686 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
11687 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
11688 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
11689 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
11690 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
11691 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
11692 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
11693 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
11694 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
11695 N_UTYP = 0,
11696 N_MAX_NONSPECIAL = N_F64
11697 };
11698
11699 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
11700
11701 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
11702 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
11703 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
11704 #define N_SUF_32 (N_SU_32 | N_F32)
11705 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
11706 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
11707
11708 /* Pass this as the first type argument to neon_check_type to ignore types
11709 altogether. */
11710 #define N_IGNORE_TYPE (N_KEY | N_EQK)
11711
11712 /* Select a "shape" for the current instruction (describing register types or
11713 sizes) from a list of alternatives. Return NS_NULL if the current instruction
11714 doesn't fit. For non-polymorphic shapes, checking is usually done as a
11715 function of operand parsing, so this function doesn't need to be called.
11716 Shapes should be listed in order of decreasing length. */
11717
11718 static enum neon_shape
11719 neon_select_shape (enum neon_shape shape, ...)
11720 {
11721 va_list ap;
11722 enum neon_shape first_shape = shape;
11723
11724 /* Fix missing optional operands. FIXME: we don't know at this point how
11725 many arguments we should have, so this makes the assumption that we have
11726 > 1. This is true of all current Neon opcodes, I think, but may not be
11727 true in the future. */
11728 if (!inst.operands[1].present)
11729 inst.operands[1] = inst.operands[0];
11730
11731 va_start (ap, shape);
11732
11733 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
11734 {
11735 unsigned j;
11736 int matches = 1;
11737
11738 for (j = 0; j < neon_shape_tab[shape].els; j++)
11739 {
11740 if (!inst.operands[j].present)
11741 {
11742 matches = 0;
11743 break;
11744 }
11745
11746 switch (neon_shape_tab[shape].el[j])
11747 {
11748 case SE_F:
11749 if (!(inst.operands[j].isreg
11750 && inst.operands[j].isvec
11751 && inst.operands[j].issingle
11752 && !inst.operands[j].isquad))
11753 matches = 0;
11754 break;
11755
11756 case SE_D:
11757 if (!(inst.operands[j].isreg
11758 && inst.operands[j].isvec
11759 && !inst.operands[j].isquad
11760 && !inst.operands[j].issingle))
11761 matches = 0;
11762 break;
11763
11764 case SE_R:
11765 if (!(inst.operands[j].isreg
11766 && !inst.operands[j].isvec))
11767 matches = 0;
11768 break;
11769
11770 case SE_Q:
11771 if (!(inst.operands[j].isreg
11772 && inst.operands[j].isvec
11773 && inst.operands[j].isquad
11774 && !inst.operands[j].issingle))
11775 matches = 0;
11776 break;
11777
11778 case SE_I:
11779 if (!(!inst.operands[j].isreg
11780 && !inst.operands[j].isscalar))
11781 matches = 0;
11782 break;
11783
11784 case SE_S:
11785 if (!(!inst.operands[j].isreg
11786 && inst.operands[j].isscalar))
11787 matches = 0;
11788 break;
11789
11790 case SE_L:
11791 break;
11792 }
11793 if (!matches)
11794 break;
11795 }
11796 if (matches)
11797 break;
11798 }
11799
11800 va_end (ap);
11801
11802 if (shape == NS_NULL && first_shape != NS_NULL)
11803 first_error (_("invalid instruction shape"));
11804
11805 return shape;
11806 }
11807
11808 /* True if SHAPE is predominantly a quadword operation (most of the time, this
11809 means the Q bit should be set). */
11810
11811 static int
11812 neon_quad (enum neon_shape shape)
11813 {
11814 return neon_shape_class[shape] == SC_QUAD;
11815 }
11816
11817 static void
11818 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
11819 unsigned *g_size)
11820 {
11821 /* Allow modification to be made to types which are constrained to be
11822 based on the key element, based on bits set alongside N_EQK. */
11823 if ((typebits & N_EQK) != 0)
11824 {
11825 if ((typebits & N_HLF) != 0)
11826 *g_size /= 2;
11827 else if ((typebits & N_DBL) != 0)
11828 *g_size *= 2;
11829 if ((typebits & N_SGN) != 0)
11830 *g_type = NT_signed;
11831 else if ((typebits & N_UNS) != 0)
11832 *g_type = NT_unsigned;
11833 else if ((typebits & N_INT) != 0)
11834 *g_type = NT_integer;
11835 else if ((typebits & N_FLT) != 0)
11836 *g_type = NT_float;
11837 else if ((typebits & N_SIZ) != 0)
11838 *g_type = NT_untyped;
11839 }
11840 }
11841
11842 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
11843 operand type, i.e. the single type specified in a Neon instruction when it
11844 is the only one given. */
11845
11846 static struct neon_type_el
11847 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
11848 {
11849 struct neon_type_el dest = *key;
11850
11851 gas_assert ((thisarg & N_EQK) != 0);
11852
11853 neon_modify_type_size (thisarg, &dest.type, &dest.size);
11854
11855 return dest;
11856 }
11857
11858 /* Convert Neon type and size into compact bitmask representation. */
11859
11860 static enum neon_type_mask
11861 type_chk_of_el_type (enum neon_el_type type, unsigned size)
11862 {
11863 switch (type)
11864 {
11865 case NT_untyped:
11866 switch (size)
11867 {
11868 case 8: return N_8;
11869 case 16: return N_16;
11870 case 32: return N_32;
11871 case 64: return N_64;
11872 default: ;
11873 }
11874 break;
11875
11876 case NT_integer:
11877 switch (size)
11878 {
11879 case 8: return N_I8;
11880 case 16: return N_I16;
11881 case 32: return N_I32;
11882 case 64: return N_I64;
11883 default: ;
11884 }
11885 break;
11886
11887 case NT_float:
11888 switch (size)
11889 {
11890 case 16: return N_F16;
11891 case 32: return N_F32;
11892 case 64: return N_F64;
11893 default: ;
11894 }
11895 break;
11896
11897 case NT_poly:
11898 switch (size)
11899 {
11900 case 8: return N_P8;
11901 case 16: return N_P16;
11902 default: ;
11903 }
11904 break;
11905
11906 case NT_signed:
11907 switch (size)
11908 {
11909 case 8: return N_S8;
11910 case 16: return N_S16;
11911 case 32: return N_S32;
11912 case 64: return N_S64;
11913 default: ;
11914 }
11915 break;
11916
11917 case NT_unsigned:
11918 switch (size)
11919 {
11920 case 8: return N_U8;
11921 case 16: return N_U16;
11922 case 32: return N_U32;
11923 case 64: return N_U64;
11924 default: ;
11925 }
11926 break;
11927
11928 default: ;
11929 }
11930
11931 return N_UTYP;
11932 }
11933
11934 /* Convert compact Neon bitmask type representation to a type and size. Only
11935 handles the case where a single bit is set in the mask. */
11936
11937 static int
11938 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
11939 enum neon_type_mask mask)
11940 {
11941 if ((mask & N_EQK) != 0)
11942 return FAIL;
11943
11944 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
11945 *size = 8;
11946 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11947 *size = 16;
11948 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11949 *size = 32;
11950 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11951 *size = 64;
11952 else
11953 return FAIL;
11954
11955 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11956 *type = NT_signed;
11957 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11958 *type = NT_unsigned;
11959 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11960 *type = NT_integer;
11961 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11962 *type = NT_untyped;
11963 else if ((mask & (N_P8 | N_P16)) != 0)
11964 *type = NT_poly;
11965 else if ((mask & (N_F32 | N_F64)) != 0)
11966 *type = NT_float;
11967 else
11968 return FAIL;
11969
11970 return SUCCESS;
11971 }
11972
11973 /* Modify a bitmask of allowed types. This is only needed for type
11974 relaxation. */
11975
11976 static unsigned
11977 modify_types_allowed (unsigned allowed, unsigned mods)
11978 {
11979 unsigned size;
11980 enum neon_el_type type;
11981 unsigned destmask;
11982 int i;
11983
11984 destmask = 0;
11985
11986 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11987 {
11988 if (el_type_of_type_chk (&type, &size,
11989 (enum neon_type_mask) (allowed & i)) == SUCCESS)
11990 {
11991 neon_modify_type_size (mods, &type, &size);
11992 destmask |= type_chk_of_el_type (type, size);
11993 }
11994 }
11995
11996 return destmask;
11997 }
11998
11999 /* Check type and return type classification.
12000 The manual states (paraphrase): If one datatype is given, it indicates the
12001 type given in:
12002 - the second operand, if there is one
12003 - the operand, if there is no second operand
12004 - the result, if there are no operands.
12005 This isn't quite good enough though, so we use a concept of a "key" datatype
12006 which is set on a per-instruction basis, which is the one which matters when
12007 only one data type is written.
12008 Note: this function has side-effects (e.g. filling in missing operands). All
12009 Neon instructions should call it before performing bit encoding. */
12010
12011 static struct neon_type_el
12012 neon_check_type (unsigned els, enum neon_shape ns, ...)
12013 {
12014 va_list ap;
12015 unsigned i, pass, key_el = 0;
12016 unsigned types[NEON_MAX_TYPE_ELS];
12017 enum neon_el_type k_type = NT_invtype;
12018 unsigned k_size = -1u;
12019 struct neon_type_el badtype = {NT_invtype, -1};
12020 unsigned key_allowed = 0;
12021
12022 /* Optional registers in Neon instructions are always (not) in operand 1.
12023 Fill in the missing operand here, if it was omitted. */
12024 if (els > 1 && !inst.operands[1].present)
12025 inst.operands[1] = inst.operands[0];
12026
12027 /* Suck up all the varargs. */
12028 va_start (ap, ns);
12029 for (i = 0; i < els; i++)
12030 {
12031 unsigned thisarg = va_arg (ap, unsigned);
12032 if (thisarg == N_IGNORE_TYPE)
12033 {
12034 va_end (ap);
12035 return badtype;
12036 }
12037 types[i] = thisarg;
12038 if ((thisarg & N_KEY) != 0)
12039 key_el = i;
12040 }
12041 va_end (ap);
12042
12043 if (inst.vectype.elems > 0)
12044 for (i = 0; i < els; i++)
12045 if (inst.operands[i].vectype.type != NT_invtype)
12046 {
12047 first_error (_("types specified in both the mnemonic and operands"));
12048 return badtype;
12049 }
12050
12051 /* Duplicate inst.vectype elements here as necessary.
12052 FIXME: No idea if this is exactly the same as the ARM assembler,
12053 particularly when an insn takes one register and one non-register
12054 operand. */
12055 if (inst.vectype.elems == 1 && els > 1)
12056 {
12057 unsigned j;
12058 inst.vectype.elems = els;
12059 inst.vectype.el[key_el] = inst.vectype.el[0];
12060 for (j = 0; j < els; j++)
12061 if (j != key_el)
12062 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12063 types[j]);
12064 }
12065 else if (inst.vectype.elems == 0 && els > 0)
12066 {
12067 unsigned j;
12068 /* No types were given after the mnemonic, so look for types specified
12069 after each operand. We allow some flexibility here; as long as the
12070 "key" operand has a type, we can infer the others. */
12071 for (j = 0; j < els; j++)
12072 if (inst.operands[j].vectype.type != NT_invtype)
12073 inst.vectype.el[j] = inst.operands[j].vectype;
12074
12075 if (inst.operands[key_el].vectype.type != NT_invtype)
12076 {
12077 for (j = 0; j < els; j++)
12078 if (inst.operands[j].vectype.type == NT_invtype)
12079 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12080 types[j]);
12081 }
12082 else
12083 {
12084 first_error (_("operand types can't be inferred"));
12085 return badtype;
12086 }
12087 }
12088 else if (inst.vectype.elems != els)
12089 {
12090 first_error (_("type specifier has the wrong number of parts"));
12091 return badtype;
12092 }
12093
12094 for (pass = 0; pass < 2; pass++)
12095 {
12096 for (i = 0; i < els; i++)
12097 {
12098 unsigned thisarg = types[i];
12099 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12100 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12101 enum neon_el_type g_type = inst.vectype.el[i].type;
12102 unsigned g_size = inst.vectype.el[i].size;
12103
12104 /* Decay more-specific signed & unsigned types to sign-insensitive
12105 integer types if sign-specific variants are unavailable. */
12106 if ((g_type == NT_signed || g_type == NT_unsigned)
12107 && (types_allowed & N_SU_ALL) == 0)
12108 g_type = NT_integer;
12109
12110 /* If only untyped args are allowed, decay any more specific types to
12111 them. Some instructions only care about signs for some element
12112 sizes, so handle that properly. */
12113 if ((g_size == 8 && (types_allowed & N_8) != 0)
12114 || (g_size == 16 && (types_allowed & N_16) != 0)
12115 || (g_size == 32 && (types_allowed & N_32) != 0)
12116 || (g_size == 64 && (types_allowed & N_64) != 0))
12117 g_type = NT_untyped;
12118
12119 if (pass == 0)
12120 {
12121 if ((thisarg & N_KEY) != 0)
12122 {
12123 k_type = g_type;
12124 k_size = g_size;
12125 key_allowed = thisarg & ~N_KEY;
12126 }
12127 }
12128 else
12129 {
12130 if ((thisarg & N_VFP) != 0)
12131 {
12132 enum neon_shape_el regshape;
12133 unsigned regwidth, match;
12134
12135 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12136 if (ns == NS_NULL)
12137 {
12138 first_error (_("invalid instruction shape"));
12139 return badtype;
12140 }
12141 regshape = neon_shape_tab[ns].el[i];
12142 regwidth = neon_shape_el_size[regshape];
12143
12144 /* In VFP mode, operands must match register widths. If we
12145 have a key operand, use its width, else use the width of
12146 the current operand. */
12147 if (k_size != -1u)
12148 match = k_size;
12149 else
12150 match = g_size;
12151
12152 if (regwidth != match)
12153 {
12154 first_error (_("operand size must match register width"));
12155 return badtype;
12156 }
12157 }
12158
12159 if ((thisarg & N_EQK) == 0)
12160 {
12161 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12162
12163 if ((given_type & types_allowed) == 0)
12164 {
12165 first_error (_("bad type in Neon instruction"));
12166 return badtype;
12167 }
12168 }
12169 else
12170 {
12171 enum neon_el_type mod_k_type = k_type;
12172 unsigned mod_k_size = k_size;
12173 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
12174 if (g_type != mod_k_type || g_size != mod_k_size)
12175 {
12176 first_error (_("inconsistent types in Neon instruction"));
12177 return badtype;
12178 }
12179 }
12180 }
12181 }
12182 }
12183
12184 return inst.vectype.el[key_el];
12185 }
12186
12187 /* Neon-style VFP instruction forwarding. */
12188
12189 /* Thumb VFP instructions have 0xE in the condition field. */
12190
12191 static void
12192 do_vfp_cond_or_thumb (void)
12193 {
12194 inst.is_neon = 1;
12195
12196 if (thumb_mode)
12197 inst.instruction |= 0xe0000000;
12198 else
12199 inst.instruction |= inst.cond << 28;
12200 }
12201
12202 /* Look up and encode a simple mnemonic, for use as a helper function for the
12203 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
12204 etc. It is assumed that operand parsing has already been done, and that the
12205 operands are in the form expected by the given opcode (this isn't necessarily
12206 the same as the form in which they were parsed, hence some massaging must
12207 take place before this function is called).
12208 Checks current arch version against that in the looked-up opcode. */
12209
12210 static void
12211 do_vfp_nsyn_opcode (const char *opname)
12212 {
12213 const struct asm_opcode *opcode;
12214
12215 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
12216
12217 if (!opcode)
12218 abort ();
12219
12220 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
12221 thumb_mode ? *opcode->tvariant : *opcode->avariant),
12222 _(BAD_FPU));
12223
12224 inst.is_neon = 1;
12225
12226 if (thumb_mode)
12227 {
12228 inst.instruction = opcode->tvalue;
12229 opcode->tencode ();
12230 }
12231 else
12232 {
12233 inst.instruction = (inst.cond << 28) | opcode->avalue;
12234 opcode->aencode ();
12235 }
12236 }
12237
12238 static void
12239 do_vfp_nsyn_add_sub (enum neon_shape rs)
12240 {
12241 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
12242
12243 if (rs == NS_FFF)
12244 {
12245 if (is_add)
12246 do_vfp_nsyn_opcode ("fadds");
12247 else
12248 do_vfp_nsyn_opcode ("fsubs");
12249 }
12250 else
12251 {
12252 if (is_add)
12253 do_vfp_nsyn_opcode ("faddd");
12254 else
12255 do_vfp_nsyn_opcode ("fsubd");
12256 }
12257 }
12258
12259 /* Check operand types to see if this is a VFP instruction, and if so call
12260 PFN (). */
12261
12262 static int
12263 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
12264 {
12265 enum neon_shape rs;
12266 struct neon_type_el et;
12267
12268 switch (args)
12269 {
12270 case 2:
12271 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12272 et = neon_check_type (2, rs,
12273 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12274 break;
12275
12276 case 3:
12277 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12278 et = neon_check_type (3, rs,
12279 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12280 break;
12281
12282 default:
12283 abort ();
12284 }
12285
12286 if (et.type != NT_invtype)
12287 {
12288 pfn (rs);
12289 return SUCCESS;
12290 }
12291
12292 inst.error = NULL;
12293 return FAIL;
12294 }
12295
12296 static void
12297 do_vfp_nsyn_mla_mls (enum neon_shape rs)
12298 {
12299 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
12300
12301 if (rs == NS_FFF)
12302 {
12303 if (is_mla)
12304 do_vfp_nsyn_opcode ("fmacs");
12305 else
12306 do_vfp_nsyn_opcode ("fnmacs");
12307 }
12308 else
12309 {
12310 if (is_mla)
12311 do_vfp_nsyn_opcode ("fmacd");
12312 else
12313 do_vfp_nsyn_opcode ("fnmacd");
12314 }
12315 }
12316
12317 static void
12318 do_vfp_nsyn_fma_fms (enum neon_shape rs)
12319 {
12320 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
12321
12322 if (rs == NS_FFF)
12323 {
12324 if (is_fma)
12325 do_vfp_nsyn_opcode ("ffmas");
12326 else
12327 do_vfp_nsyn_opcode ("ffnmas");
12328 }
12329 else
12330 {
12331 if (is_fma)
12332 do_vfp_nsyn_opcode ("ffmad");
12333 else
12334 do_vfp_nsyn_opcode ("ffnmad");
12335 }
12336 }
12337
12338 static void
12339 do_vfp_nsyn_mul (enum neon_shape rs)
12340 {
12341 if (rs == NS_FFF)
12342 do_vfp_nsyn_opcode ("fmuls");
12343 else
12344 do_vfp_nsyn_opcode ("fmuld");
12345 }
12346
12347 static void
12348 do_vfp_nsyn_abs_neg (enum neon_shape rs)
12349 {
12350 int is_neg = (inst.instruction & 0x80) != 0;
12351 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
12352
12353 if (rs == NS_FF)
12354 {
12355 if (is_neg)
12356 do_vfp_nsyn_opcode ("fnegs");
12357 else
12358 do_vfp_nsyn_opcode ("fabss");
12359 }
12360 else
12361 {
12362 if (is_neg)
12363 do_vfp_nsyn_opcode ("fnegd");
12364 else
12365 do_vfp_nsyn_opcode ("fabsd");
12366 }
12367 }
12368
12369 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
12370 insns belong to Neon, and are handled elsewhere. */
12371
12372 static void
12373 do_vfp_nsyn_ldm_stm (int is_dbmode)
12374 {
12375 int is_ldm = (inst.instruction & (1 << 20)) != 0;
12376 if (is_ldm)
12377 {
12378 if (is_dbmode)
12379 do_vfp_nsyn_opcode ("fldmdbs");
12380 else
12381 do_vfp_nsyn_opcode ("fldmias");
12382 }
12383 else
12384 {
12385 if (is_dbmode)
12386 do_vfp_nsyn_opcode ("fstmdbs");
12387 else
12388 do_vfp_nsyn_opcode ("fstmias");
12389 }
12390 }
12391
12392 static void
12393 do_vfp_nsyn_sqrt (void)
12394 {
12395 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12396 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12397
12398 if (rs == NS_FF)
12399 do_vfp_nsyn_opcode ("fsqrts");
12400 else
12401 do_vfp_nsyn_opcode ("fsqrtd");
12402 }
12403
12404 static void
12405 do_vfp_nsyn_div (void)
12406 {
12407 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12408 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12409 N_F32 | N_F64 | N_KEY | N_VFP);
12410
12411 if (rs == NS_FFF)
12412 do_vfp_nsyn_opcode ("fdivs");
12413 else
12414 do_vfp_nsyn_opcode ("fdivd");
12415 }
12416
12417 static void
12418 do_vfp_nsyn_nmul (void)
12419 {
12420 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
12421 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
12422 N_F32 | N_F64 | N_KEY | N_VFP);
12423
12424 if (rs == NS_FFF)
12425 {
12426 NEON_ENCODE (SINGLE, inst);
12427 do_vfp_sp_dyadic ();
12428 }
12429 else
12430 {
12431 NEON_ENCODE (DOUBLE, inst);
12432 do_vfp_dp_rd_rn_rm ();
12433 }
12434 do_vfp_cond_or_thumb ();
12435 }
12436
12437 static void
12438 do_vfp_nsyn_cmp (void)
12439 {
12440 if (inst.operands[1].isreg)
12441 {
12442 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
12443 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
12444
12445 if (rs == NS_FF)
12446 {
12447 NEON_ENCODE (SINGLE, inst);
12448 do_vfp_sp_monadic ();
12449 }
12450 else
12451 {
12452 NEON_ENCODE (DOUBLE, inst);
12453 do_vfp_dp_rd_rm ();
12454 }
12455 }
12456 else
12457 {
12458 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
12459 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
12460
12461 switch (inst.instruction & 0x0fffffff)
12462 {
12463 case N_MNEM_vcmp:
12464 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
12465 break;
12466 case N_MNEM_vcmpe:
12467 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
12468 break;
12469 default:
12470 abort ();
12471 }
12472
12473 if (rs == NS_FI)
12474 {
12475 NEON_ENCODE (SINGLE, inst);
12476 do_vfp_sp_compare_z ();
12477 }
12478 else
12479 {
12480 NEON_ENCODE (DOUBLE, inst);
12481 do_vfp_dp_rd ();
12482 }
12483 }
12484 do_vfp_cond_or_thumb ();
12485 }
12486
12487 static void
12488 nsyn_insert_sp (void)
12489 {
12490 inst.operands[1] = inst.operands[0];
12491 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
12492 inst.operands[0].reg = REG_SP;
12493 inst.operands[0].isreg = 1;
12494 inst.operands[0].writeback = 1;
12495 inst.operands[0].present = 1;
12496 }
12497
12498 static void
12499 do_vfp_nsyn_push (void)
12500 {
12501 nsyn_insert_sp ();
12502 if (inst.operands[1].issingle)
12503 do_vfp_nsyn_opcode ("fstmdbs");
12504 else
12505 do_vfp_nsyn_opcode ("fstmdbd");
12506 }
12507
12508 static void
12509 do_vfp_nsyn_pop (void)
12510 {
12511 nsyn_insert_sp ();
12512 if (inst.operands[1].issingle)
12513 do_vfp_nsyn_opcode ("fldmias");
12514 else
12515 do_vfp_nsyn_opcode ("fldmiad");
12516 }
12517
12518 /* Fix up Neon data-processing instructions, ORing in the correct bits for
12519 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
12520
12521 static void
12522 neon_dp_fixup (struct arm_it* insn)
12523 {
12524 unsigned int i = insn->instruction;
12525 insn->is_neon = 1;
12526
12527 if (thumb_mode)
12528 {
12529 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
12530 if (i & (1 << 24))
12531 i |= 1 << 28;
12532
12533 i &= ~(1 << 24);
12534
12535 i |= 0xef000000;
12536 }
12537 else
12538 i |= 0xf2000000;
12539
12540 insn->instruction = i;
12541 }
12542
12543 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
12544 (0, 1, 2, 3). */
12545
12546 static unsigned
12547 neon_logbits (unsigned x)
12548 {
12549 return ffs (x) - 4;
12550 }
12551
12552 #define LOW4(R) ((R) & 0xf)
12553 #define HI1(R) (((R) >> 4) & 1)
12554
12555 /* Encode insns with bit pattern:
12556
12557 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12558 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
12559
12560 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
12561 different meaning for some instruction. */
12562
12563 static void
12564 neon_three_same (int isquad, int ubit, int size)
12565 {
12566 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12567 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12568 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12569 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12570 inst.instruction |= LOW4 (inst.operands[2].reg);
12571 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12572 inst.instruction |= (isquad != 0) << 6;
12573 inst.instruction |= (ubit != 0) << 24;
12574 if (size != -1)
12575 inst.instruction |= neon_logbits (size) << 20;
12576
12577 neon_dp_fixup (&inst);
12578 }
12579
12580 /* Encode instructions of the form:
12581
12582 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
12583 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
12584
12585 Don't write size if SIZE == -1. */
12586
12587 static void
12588 neon_two_same (int qbit, int ubit, int size)
12589 {
12590 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12591 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12592 inst.instruction |= LOW4 (inst.operands[1].reg);
12593 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12594 inst.instruction |= (qbit != 0) << 6;
12595 inst.instruction |= (ubit != 0) << 24;
12596
12597 if (size != -1)
12598 inst.instruction |= neon_logbits (size) << 18;
12599
12600 neon_dp_fixup (&inst);
12601 }
12602
12603 /* Neon instruction encoders, in approximate order of appearance. */
12604
12605 static void
12606 do_neon_dyadic_i_su (void)
12607 {
12608 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12609 struct neon_type_el et = neon_check_type (3, rs,
12610 N_EQK, N_EQK, N_SU_32 | N_KEY);
12611 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12612 }
12613
12614 static void
12615 do_neon_dyadic_i64_su (void)
12616 {
12617 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12618 struct neon_type_el et = neon_check_type (3, rs,
12619 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12620 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12621 }
12622
12623 static void
12624 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
12625 unsigned immbits)
12626 {
12627 unsigned size = et.size >> 3;
12628 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12629 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12630 inst.instruction |= LOW4 (inst.operands[1].reg);
12631 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12632 inst.instruction |= (isquad != 0) << 6;
12633 inst.instruction |= immbits << 16;
12634 inst.instruction |= (size >> 3) << 7;
12635 inst.instruction |= (size & 0x7) << 19;
12636 if (write_ubit)
12637 inst.instruction |= (uval != 0) << 24;
12638
12639 neon_dp_fixup (&inst);
12640 }
12641
12642 static void
12643 do_neon_shl_imm (void)
12644 {
12645 if (!inst.operands[2].isreg)
12646 {
12647 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12648 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
12649 NEON_ENCODE (IMMED, inst);
12650 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
12651 }
12652 else
12653 {
12654 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12655 struct neon_type_el et = neon_check_type (3, rs,
12656 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12657 unsigned int tmp;
12658
12659 /* VSHL/VQSHL 3-register variants have syntax such as:
12660 vshl.xx Dd, Dm, Dn
12661 whereas other 3-register operations encoded by neon_three_same have
12662 syntax like:
12663 vadd.xx Dd, Dn, Dm
12664 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
12665 here. */
12666 tmp = inst.operands[2].reg;
12667 inst.operands[2].reg = inst.operands[1].reg;
12668 inst.operands[1].reg = tmp;
12669 NEON_ENCODE (INTEGER, inst);
12670 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12671 }
12672 }
12673
12674 static void
12675 do_neon_qshl_imm (void)
12676 {
12677 if (!inst.operands[2].isreg)
12678 {
12679 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12680 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12681
12682 NEON_ENCODE (IMMED, inst);
12683 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12684 inst.operands[2].imm);
12685 }
12686 else
12687 {
12688 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12689 struct neon_type_el et = neon_check_type (3, rs,
12690 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
12691 unsigned int tmp;
12692
12693 /* See note in do_neon_shl_imm. */
12694 tmp = inst.operands[2].reg;
12695 inst.operands[2].reg = inst.operands[1].reg;
12696 inst.operands[1].reg = tmp;
12697 NEON_ENCODE (INTEGER, inst);
12698 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12699 }
12700 }
12701
12702 static void
12703 do_neon_rshl (void)
12704 {
12705 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12706 struct neon_type_el et = neon_check_type (3, rs,
12707 N_EQK, N_EQK, N_SU_ALL | N_KEY);
12708 unsigned int tmp;
12709
12710 tmp = inst.operands[2].reg;
12711 inst.operands[2].reg = inst.operands[1].reg;
12712 inst.operands[1].reg = tmp;
12713 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
12714 }
12715
12716 static int
12717 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
12718 {
12719 /* Handle .I8 pseudo-instructions. */
12720 if (size == 8)
12721 {
12722 /* Unfortunately, this will make everything apart from zero out-of-range.
12723 FIXME is this the intended semantics? There doesn't seem much point in
12724 accepting .I8 if so. */
12725 immediate |= immediate << 8;
12726 size = 16;
12727 }
12728
12729 if (size >= 32)
12730 {
12731 if (immediate == (immediate & 0x000000ff))
12732 {
12733 *immbits = immediate;
12734 return 0x1;
12735 }
12736 else if (immediate == (immediate & 0x0000ff00))
12737 {
12738 *immbits = immediate >> 8;
12739 return 0x3;
12740 }
12741 else if (immediate == (immediate & 0x00ff0000))
12742 {
12743 *immbits = immediate >> 16;
12744 return 0x5;
12745 }
12746 else if (immediate == (immediate & 0xff000000))
12747 {
12748 *immbits = immediate >> 24;
12749 return 0x7;
12750 }
12751 if ((immediate & 0xffff) != (immediate >> 16))
12752 goto bad_immediate;
12753 immediate &= 0xffff;
12754 }
12755
12756 if (immediate == (immediate & 0x000000ff))
12757 {
12758 *immbits = immediate;
12759 return 0x9;
12760 }
12761 else if (immediate == (immediate & 0x0000ff00))
12762 {
12763 *immbits = immediate >> 8;
12764 return 0xb;
12765 }
12766
12767 bad_immediate:
12768 first_error (_("immediate value out of range"));
12769 return FAIL;
12770 }
12771
12772 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
12773 A, B, C, D. */
12774
12775 static int
12776 neon_bits_same_in_bytes (unsigned imm)
12777 {
12778 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
12779 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
12780 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
12781 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
12782 }
12783
12784 /* For immediate of above form, return 0bABCD. */
12785
12786 static unsigned
12787 neon_squash_bits (unsigned imm)
12788 {
12789 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
12790 | ((imm & 0x01000000) >> 21);
12791 }
12792
12793 /* Compress quarter-float representation to 0b...000 abcdefgh. */
12794
12795 static unsigned
12796 neon_qfloat_bits (unsigned imm)
12797 {
12798 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
12799 }
12800
12801 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
12802 the instruction. *OP is passed as the initial value of the op field, and
12803 may be set to a different value depending on the constant (i.e.
12804 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
12805 MVN). If the immediate looks like a repeated pattern then also
12806 try smaller element sizes. */
12807
12808 static int
12809 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
12810 unsigned *immbits, int *op, int size,
12811 enum neon_el_type type)
12812 {
12813 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
12814 float. */
12815 if (type == NT_float && !float_p)
12816 return FAIL;
12817
12818 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
12819 {
12820 if (size != 32 || *op == 1)
12821 return FAIL;
12822 *immbits = neon_qfloat_bits (immlo);
12823 return 0xf;
12824 }
12825
12826 if (size == 64)
12827 {
12828 if (neon_bits_same_in_bytes (immhi)
12829 && neon_bits_same_in_bytes (immlo))
12830 {
12831 if (*op == 1)
12832 return FAIL;
12833 *immbits = (neon_squash_bits (immhi) << 4)
12834 | neon_squash_bits (immlo);
12835 *op = 1;
12836 return 0xe;
12837 }
12838
12839 if (immhi != immlo)
12840 return FAIL;
12841 }
12842
12843 if (size >= 32)
12844 {
12845 if (immlo == (immlo & 0x000000ff))
12846 {
12847 *immbits = immlo;
12848 return 0x0;
12849 }
12850 else if (immlo == (immlo & 0x0000ff00))
12851 {
12852 *immbits = immlo >> 8;
12853 return 0x2;
12854 }
12855 else if (immlo == (immlo & 0x00ff0000))
12856 {
12857 *immbits = immlo >> 16;
12858 return 0x4;
12859 }
12860 else if (immlo == (immlo & 0xff000000))
12861 {
12862 *immbits = immlo >> 24;
12863 return 0x6;
12864 }
12865 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
12866 {
12867 *immbits = (immlo >> 8) & 0xff;
12868 return 0xc;
12869 }
12870 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
12871 {
12872 *immbits = (immlo >> 16) & 0xff;
12873 return 0xd;
12874 }
12875
12876 if ((immlo & 0xffff) != (immlo >> 16))
12877 return FAIL;
12878 immlo &= 0xffff;
12879 }
12880
12881 if (size >= 16)
12882 {
12883 if (immlo == (immlo & 0x000000ff))
12884 {
12885 *immbits = immlo;
12886 return 0x8;
12887 }
12888 else if (immlo == (immlo & 0x0000ff00))
12889 {
12890 *immbits = immlo >> 8;
12891 return 0xa;
12892 }
12893
12894 if ((immlo & 0xff) != (immlo >> 8))
12895 return FAIL;
12896 immlo &= 0xff;
12897 }
12898
12899 if (immlo == (immlo & 0x000000ff))
12900 {
12901 /* Don't allow MVN with 8-bit immediate. */
12902 if (*op == 1)
12903 return FAIL;
12904 *immbits = immlo;
12905 return 0xe;
12906 }
12907
12908 return FAIL;
12909 }
12910
12911 /* Write immediate bits [7:0] to the following locations:
12912
12913 |28/24|23 19|18 16|15 4|3 0|
12914 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
12915
12916 This function is used by VMOV/VMVN/VORR/VBIC. */
12917
12918 static void
12919 neon_write_immbits (unsigned immbits)
12920 {
12921 inst.instruction |= immbits & 0xf;
12922 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
12923 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
12924 }
12925
12926 /* Invert low-order SIZE bits of XHI:XLO. */
12927
12928 static void
12929 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
12930 {
12931 unsigned immlo = xlo ? *xlo : 0;
12932 unsigned immhi = xhi ? *xhi : 0;
12933
12934 switch (size)
12935 {
12936 case 8:
12937 immlo = (~immlo) & 0xff;
12938 break;
12939
12940 case 16:
12941 immlo = (~immlo) & 0xffff;
12942 break;
12943
12944 case 64:
12945 immhi = (~immhi) & 0xffffffff;
12946 /* fall through. */
12947
12948 case 32:
12949 immlo = (~immlo) & 0xffffffff;
12950 break;
12951
12952 default:
12953 abort ();
12954 }
12955
12956 if (xlo)
12957 *xlo = immlo;
12958
12959 if (xhi)
12960 *xhi = immhi;
12961 }
12962
12963 static void
12964 do_neon_logic (void)
12965 {
12966 if (inst.operands[2].present && inst.operands[2].isreg)
12967 {
12968 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12969 neon_check_type (3, rs, N_IGNORE_TYPE);
12970 /* U bit and size field were set as part of the bitmask. */
12971 NEON_ENCODE (INTEGER, inst);
12972 neon_three_same (neon_quad (rs), 0, -1);
12973 }
12974 else
12975 {
12976 const int three_ops_form = (inst.operands[2].present
12977 && !inst.operands[2].isreg);
12978 const int immoperand = (three_ops_form ? 2 : 1);
12979 enum neon_shape rs = (three_ops_form
12980 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
12981 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
12982 struct neon_type_el et = neon_check_type (2, rs,
12983 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12984 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
12985 unsigned immbits;
12986 int cmode;
12987
12988 if (et.type == NT_invtype)
12989 return;
12990
12991 if (three_ops_form)
12992 constraint (inst.operands[0].reg != inst.operands[1].reg,
12993 _("first and second operands shall be the same register"));
12994
12995 NEON_ENCODE (IMMED, inst);
12996
12997 immbits = inst.operands[immoperand].imm;
12998 if (et.size == 64)
12999 {
13000 /* .i64 is a pseudo-op, so the immediate must be a repeating
13001 pattern. */
13002 if (immbits != (inst.operands[immoperand].regisimm ?
13003 inst.operands[immoperand].reg : 0))
13004 {
13005 /* Set immbits to an invalid constant. */
13006 immbits = 0xdeadbeef;
13007 }
13008 }
13009
13010 switch (opcode)
13011 {
13012 case N_MNEM_vbic:
13013 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13014 break;
13015
13016 case N_MNEM_vorr:
13017 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13018 break;
13019
13020 case N_MNEM_vand:
13021 /* Pseudo-instruction for VBIC. */
13022 neon_invert_size (&immbits, 0, et.size);
13023 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13024 break;
13025
13026 case N_MNEM_vorn:
13027 /* Pseudo-instruction for VORR. */
13028 neon_invert_size (&immbits, 0, et.size);
13029 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13030 break;
13031
13032 default:
13033 abort ();
13034 }
13035
13036 if (cmode == FAIL)
13037 return;
13038
13039 inst.instruction |= neon_quad (rs) << 6;
13040 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13041 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13042 inst.instruction |= cmode << 8;
13043 neon_write_immbits (immbits);
13044
13045 neon_dp_fixup (&inst);
13046 }
13047 }
13048
13049 static void
13050 do_neon_bitfield (void)
13051 {
13052 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13053 neon_check_type (3, rs, N_IGNORE_TYPE);
13054 neon_three_same (neon_quad (rs), 0, -1);
13055 }
13056
13057 static void
13058 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13059 unsigned destbits)
13060 {
13061 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13062 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13063 types | N_KEY);
13064 if (et.type == NT_float)
13065 {
13066 NEON_ENCODE (FLOAT, inst);
13067 neon_three_same (neon_quad (rs), 0, -1);
13068 }
13069 else
13070 {
13071 NEON_ENCODE (INTEGER, inst);
13072 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13073 }
13074 }
13075
13076 static void
13077 do_neon_dyadic_if_su (void)
13078 {
13079 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13080 }
13081
13082 static void
13083 do_neon_dyadic_if_su_d (void)
13084 {
13085 /* This version only allow D registers, but that constraint is enforced during
13086 operand parsing so we don't need to do anything extra here. */
13087 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13088 }
13089
13090 static void
13091 do_neon_dyadic_if_i_d (void)
13092 {
13093 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13094 affected if we specify unsigned args. */
13095 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13096 }
13097
13098 enum vfp_or_neon_is_neon_bits
13099 {
13100 NEON_CHECK_CC = 1,
13101 NEON_CHECK_ARCH = 2
13102 };
13103
13104 /* Call this function if an instruction which may have belonged to the VFP or
13105 Neon instruction sets, but turned out to be a Neon instruction (due to the
13106 operand types involved, etc.). We have to check and/or fix-up a couple of
13107 things:
13108
13109 - Make sure the user hasn't attempted to make a Neon instruction
13110 conditional.
13111 - Alter the value in the condition code field if necessary.
13112 - Make sure that the arch supports Neon instructions.
13113
13114 Which of these operations take place depends on bits from enum
13115 vfp_or_neon_is_neon_bits.
13116
13117 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13118 current instruction's condition is COND_ALWAYS, the condition field is
13119 changed to inst.uncond_value. This is necessary because instructions shared
13120 between VFP and Neon may be conditional for the VFP variants only, and the
13121 unconditional Neon version must have, e.g., 0xF in the condition field. */
13122
13123 static int
13124 vfp_or_neon_is_neon (unsigned check)
13125 {
13126 /* Conditions are always legal in Thumb mode (IT blocks). */
13127 if (!thumb_mode && (check & NEON_CHECK_CC))
13128 {
13129 if (inst.cond != COND_ALWAYS)
13130 {
13131 first_error (_(BAD_COND));
13132 return FAIL;
13133 }
13134 if (inst.uncond_value != -1)
13135 inst.instruction |= inst.uncond_value << 28;
13136 }
13137
13138 if ((check & NEON_CHECK_ARCH)
13139 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13140 {
13141 first_error (_(BAD_FPU));
13142 return FAIL;
13143 }
13144
13145 return SUCCESS;
13146 }
13147
13148 static void
13149 do_neon_addsub_if_i (void)
13150 {
13151 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13152 return;
13153
13154 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13155 return;
13156
13157 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13158 affected if we specify unsigned args. */
13159 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13160 }
13161
13162 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13163 result to be:
13164 V<op> A,B (A is operand 0, B is operand 2)
13165 to mean:
13166 V<op> A,B,A
13167 not:
13168 V<op> A,B,B
13169 so handle that case specially. */
13170
13171 static void
13172 neon_exchange_operands (void)
13173 {
13174 void *scratch = alloca (sizeof (inst.operands[0]));
13175 if (inst.operands[1].present)
13176 {
13177 /* Swap operands[1] and operands[2]. */
13178 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
13179 inst.operands[1] = inst.operands[2];
13180 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
13181 }
13182 else
13183 {
13184 inst.operands[1] = inst.operands[2];
13185 inst.operands[2] = inst.operands[0];
13186 }
13187 }
13188
13189 static void
13190 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
13191 {
13192 if (inst.operands[2].isreg)
13193 {
13194 if (invert)
13195 neon_exchange_operands ();
13196 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
13197 }
13198 else
13199 {
13200 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13201 struct neon_type_el et = neon_check_type (2, rs,
13202 N_EQK | N_SIZ, immtypes | N_KEY);
13203
13204 NEON_ENCODE (IMMED, inst);
13205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13207 inst.instruction |= LOW4 (inst.operands[1].reg);
13208 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13209 inst.instruction |= neon_quad (rs) << 6;
13210 inst.instruction |= (et.type == NT_float) << 10;
13211 inst.instruction |= neon_logbits (et.size) << 18;
13212
13213 neon_dp_fixup (&inst);
13214 }
13215 }
13216
13217 static void
13218 do_neon_cmp (void)
13219 {
13220 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
13221 }
13222
13223 static void
13224 do_neon_cmp_inv (void)
13225 {
13226 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
13227 }
13228
13229 static void
13230 do_neon_ceq (void)
13231 {
13232 neon_compare (N_IF_32, N_IF_32, FALSE);
13233 }
13234
13235 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
13236 scalars, which are encoded in 5 bits, M : Rm.
13237 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
13238 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
13239 index in M. */
13240
13241 static unsigned
13242 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
13243 {
13244 unsigned regno = NEON_SCALAR_REG (scalar);
13245 unsigned elno = NEON_SCALAR_INDEX (scalar);
13246
13247 switch (elsize)
13248 {
13249 case 16:
13250 if (regno > 7 || elno > 3)
13251 goto bad_scalar;
13252 return regno | (elno << 3);
13253
13254 case 32:
13255 if (regno > 15 || elno > 1)
13256 goto bad_scalar;
13257 return regno | (elno << 4);
13258
13259 default:
13260 bad_scalar:
13261 first_error (_("scalar out of range for multiply instruction"));
13262 }
13263
13264 return 0;
13265 }
13266
13267 /* Encode multiply / multiply-accumulate scalar instructions. */
13268
13269 static void
13270 neon_mul_mac (struct neon_type_el et, int ubit)
13271 {
13272 unsigned scalar;
13273
13274 /* Give a more helpful error message if we have an invalid type. */
13275 if (et.type == NT_invtype)
13276 return;
13277
13278 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
13279 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13280 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13281 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13282 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13283 inst.instruction |= LOW4 (scalar);
13284 inst.instruction |= HI1 (scalar) << 5;
13285 inst.instruction |= (et.type == NT_float) << 8;
13286 inst.instruction |= neon_logbits (et.size) << 20;
13287 inst.instruction |= (ubit != 0) << 24;
13288
13289 neon_dp_fixup (&inst);
13290 }
13291
13292 static void
13293 do_neon_mac_maybe_scalar (void)
13294 {
13295 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
13296 return;
13297
13298 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13299 return;
13300
13301 if (inst.operands[2].isscalar)
13302 {
13303 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13304 struct neon_type_el et = neon_check_type (3, rs,
13305 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
13306 NEON_ENCODE (SCALAR, inst);
13307 neon_mul_mac (et, neon_quad (rs));
13308 }
13309 else
13310 {
13311 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13312 affected if we specify unsigned args. */
13313 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13314 }
13315 }
13316
13317 static void
13318 do_neon_fmac (void)
13319 {
13320 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
13321 return;
13322
13323 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13324 return;
13325
13326 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13327 }
13328
13329 static void
13330 do_neon_tst (void)
13331 {
13332 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13333 struct neon_type_el et = neon_check_type (3, rs,
13334 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
13335 neon_three_same (neon_quad (rs), 0, et.size);
13336 }
13337
13338 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
13339 same types as the MAC equivalents. The polynomial type for this instruction
13340 is encoded the same as the integer type. */
13341
13342 static void
13343 do_neon_mul (void)
13344 {
13345 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
13346 return;
13347
13348 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13349 return;
13350
13351 if (inst.operands[2].isscalar)
13352 do_neon_mac_maybe_scalar ();
13353 else
13354 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
13355 }
13356
13357 static void
13358 do_neon_qdmulh (void)
13359 {
13360 if (inst.operands[2].isscalar)
13361 {
13362 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
13363 struct neon_type_el et = neon_check_type (3, rs,
13364 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13365 NEON_ENCODE (SCALAR, inst);
13366 neon_mul_mac (et, neon_quad (rs));
13367 }
13368 else
13369 {
13370 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13371 struct neon_type_el et = neon_check_type (3, rs,
13372 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
13373 NEON_ENCODE (INTEGER, inst);
13374 /* The U bit (rounding) comes from bit mask. */
13375 neon_three_same (neon_quad (rs), 0, et.size);
13376 }
13377 }
13378
13379 static void
13380 do_neon_fcmp_absolute (void)
13381 {
13382 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13383 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13384 /* Size field comes from bit mask. */
13385 neon_three_same (neon_quad (rs), 1, -1);
13386 }
13387
13388 static void
13389 do_neon_fcmp_absolute_inv (void)
13390 {
13391 neon_exchange_operands ();
13392 do_neon_fcmp_absolute ();
13393 }
13394
13395 static void
13396 do_neon_step (void)
13397 {
13398 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13399 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
13400 neon_three_same (neon_quad (rs), 0, -1);
13401 }
13402
13403 static void
13404 do_neon_abs_neg (void)
13405 {
13406 enum neon_shape rs;
13407 struct neon_type_el et;
13408
13409 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
13410 return;
13411
13412 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13413 return;
13414
13415 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13416 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
13417
13418 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13419 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13420 inst.instruction |= LOW4 (inst.operands[1].reg);
13421 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13422 inst.instruction |= neon_quad (rs) << 6;
13423 inst.instruction |= (et.type == NT_float) << 10;
13424 inst.instruction |= neon_logbits (et.size) << 18;
13425
13426 neon_dp_fixup (&inst);
13427 }
13428
13429 static void
13430 do_neon_sli (void)
13431 {
13432 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13433 struct neon_type_el et = neon_check_type (2, rs,
13434 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13435 int imm = inst.operands[2].imm;
13436 constraint (imm < 0 || (unsigned)imm >= et.size,
13437 _("immediate out of range for insert"));
13438 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13439 }
13440
13441 static void
13442 do_neon_sri (void)
13443 {
13444 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13445 struct neon_type_el et = neon_check_type (2, rs,
13446 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13447 int imm = inst.operands[2].imm;
13448 constraint (imm < 1 || (unsigned)imm > et.size,
13449 _("immediate out of range for insert"));
13450 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
13451 }
13452
13453 static void
13454 do_neon_qshlu_imm (void)
13455 {
13456 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13457 struct neon_type_el et = neon_check_type (2, rs,
13458 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
13459 int imm = inst.operands[2].imm;
13460 constraint (imm < 0 || (unsigned)imm >= et.size,
13461 _("immediate out of range for shift"));
13462 /* Only encodes the 'U present' variant of the instruction.
13463 In this case, signed types have OP (bit 8) set to 0.
13464 Unsigned types have OP set to 1. */
13465 inst.instruction |= (et.type == NT_unsigned) << 8;
13466 /* The rest of the bits are the same as other immediate shifts. */
13467 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
13468 }
13469
13470 static void
13471 do_neon_qmovn (void)
13472 {
13473 struct neon_type_el et = neon_check_type (2, NS_DQ,
13474 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13475 /* Saturating move where operands can be signed or unsigned, and the
13476 destination has the same signedness. */
13477 NEON_ENCODE (INTEGER, inst);
13478 if (et.type == NT_unsigned)
13479 inst.instruction |= 0xc0;
13480 else
13481 inst.instruction |= 0x80;
13482 neon_two_same (0, 1, et.size / 2);
13483 }
13484
13485 static void
13486 do_neon_qmovun (void)
13487 {
13488 struct neon_type_el et = neon_check_type (2, NS_DQ,
13489 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13490 /* Saturating move with unsigned results. Operands must be signed. */
13491 NEON_ENCODE (INTEGER, inst);
13492 neon_two_same (0, 1, et.size / 2);
13493 }
13494
13495 static void
13496 do_neon_rshift_sat_narrow (void)
13497 {
13498 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13499 or unsigned. If operands are unsigned, results must also be unsigned. */
13500 struct neon_type_el et = neon_check_type (2, NS_DQI,
13501 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
13502 int imm = inst.operands[2].imm;
13503 /* This gets the bounds check, size encoding and immediate bits calculation
13504 right. */
13505 et.size /= 2;
13506
13507 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
13508 VQMOVN.I<size> <Dd>, <Qm>. */
13509 if (imm == 0)
13510 {
13511 inst.operands[2].present = 0;
13512 inst.instruction = N_MNEM_vqmovn;
13513 do_neon_qmovn ();
13514 return;
13515 }
13516
13517 constraint (imm < 1 || (unsigned)imm > et.size,
13518 _("immediate out of range"));
13519 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
13520 }
13521
13522 static void
13523 do_neon_rshift_sat_narrow_u (void)
13524 {
13525 /* FIXME: Types for narrowing. If operands are signed, results can be signed
13526 or unsigned. If operands are unsigned, results must also be unsigned. */
13527 struct neon_type_el et = neon_check_type (2, NS_DQI,
13528 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
13529 int imm = inst.operands[2].imm;
13530 /* This gets the bounds check, size encoding and immediate bits calculation
13531 right. */
13532 et.size /= 2;
13533
13534 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
13535 VQMOVUN.I<size> <Dd>, <Qm>. */
13536 if (imm == 0)
13537 {
13538 inst.operands[2].present = 0;
13539 inst.instruction = N_MNEM_vqmovun;
13540 do_neon_qmovun ();
13541 return;
13542 }
13543
13544 constraint (imm < 1 || (unsigned)imm > et.size,
13545 _("immediate out of range"));
13546 /* FIXME: The manual is kind of unclear about what value U should have in
13547 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
13548 must be 1. */
13549 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
13550 }
13551
13552 static void
13553 do_neon_movn (void)
13554 {
13555 struct neon_type_el et = neon_check_type (2, NS_DQ,
13556 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13557 NEON_ENCODE (INTEGER, inst);
13558 neon_two_same (0, 1, et.size / 2);
13559 }
13560
13561 static void
13562 do_neon_rshift_narrow (void)
13563 {
13564 struct neon_type_el et = neon_check_type (2, NS_DQI,
13565 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
13566 int imm = inst.operands[2].imm;
13567 /* This gets the bounds check, size encoding and immediate bits calculation
13568 right. */
13569 et.size /= 2;
13570
13571 /* If immediate is zero then we are a pseudo-instruction for
13572 VMOVN.I<size> <Dd>, <Qm> */
13573 if (imm == 0)
13574 {
13575 inst.operands[2].present = 0;
13576 inst.instruction = N_MNEM_vmovn;
13577 do_neon_movn ();
13578 return;
13579 }
13580
13581 constraint (imm < 1 || (unsigned)imm > et.size,
13582 _("immediate out of range for narrowing operation"));
13583 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
13584 }
13585
13586 static void
13587 do_neon_shll (void)
13588 {
13589 /* FIXME: Type checking when lengthening. */
13590 struct neon_type_el et = neon_check_type (2, NS_QDI,
13591 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
13592 unsigned imm = inst.operands[2].imm;
13593
13594 if (imm == et.size)
13595 {
13596 /* Maximum shift variant. */
13597 NEON_ENCODE (INTEGER, inst);
13598 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13599 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13600 inst.instruction |= LOW4 (inst.operands[1].reg);
13601 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13602 inst.instruction |= neon_logbits (et.size) << 18;
13603
13604 neon_dp_fixup (&inst);
13605 }
13606 else
13607 {
13608 /* A more-specific type check for non-max versions. */
13609 et = neon_check_type (2, NS_QDI,
13610 N_EQK | N_DBL, N_SU_32 | N_KEY);
13611 NEON_ENCODE (IMMED, inst);
13612 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
13613 }
13614 }
13615
13616 /* Check the various types for the VCVT instruction, and return which version
13617 the current instruction is. */
13618
13619 static int
13620 neon_cvt_flavour (enum neon_shape rs)
13621 {
13622 #define CVT_VAR(C,X,Y) \
13623 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
13624 if (et.type != NT_invtype) \
13625 { \
13626 inst.error = NULL; \
13627 return (C); \
13628 }
13629 struct neon_type_el et;
13630 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
13631 || rs == NS_FF) ? N_VFP : 0;
13632 /* The instruction versions which take an immediate take one register
13633 argument, which is extended to the width of the full register. Thus the
13634 "source" and "destination" registers must have the same width. Hack that
13635 here by making the size equal to the key (wider, in this case) operand. */
13636 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
13637
13638 CVT_VAR (0, N_S32, N_F32);
13639 CVT_VAR (1, N_U32, N_F32);
13640 CVT_VAR (2, N_F32, N_S32);
13641 CVT_VAR (3, N_F32, N_U32);
13642 /* Half-precision conversions. */
13643 CVT_VAR (4, N_F32, N_F16);
13644 CVT_VAR (5, N_F16, N_F32);
13645
13646 whole_reg = N_VFP;
13647
13648 /* VFP instructions. */
13649 CVT_VAR (6, N_F32, N_F64);
13650 CVT_VAR (7, N_F64, N_F32);
13651 CVT_VAR (8, N_S32, N_F64 | key);
13652 CVT_VAR (9, N_U32, N_F64 | key);
13653 CVT_VAR (10, N_F64 | key, N_S32);
13654 CVT_VAR (11, N_F64 | key, N_U32);
13655 /* VFP instructions with bitshift. */
13656 CVT_VAR (12, N_F32 | key, N_S16);
13657 CVT_VAR (13, N_F32 | key, N_U16);
13658 CVT_VAR (14, N_F64 | key, N_S16);
13659 CVT_VAR (15, N_F64 | key, N_U16);
13660 CVT_VAR (16, N_S16, N_F32 | key);
13661 CVT_VAR (17, N_U16, N_F32 | key);
13662 CVT_VAR (18, N_S16, N_F64 | key);
13663 CVT_VAR (19, N_U16, N_F64 | key);
13664
13665 return -1;
13666 #undef CVT_VAR
13667 }
13668
13669 /* Neon-syntax VFP conversions. */
13670
13671 static void
13672 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
13673 {
13674 const char *opname = 0;
13675
13676 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
13677 {
13678 /* Conversions with immediate bitshift. */
13679 const char *enc[] =
13680 {
13681 "ftosls",
13682 "ftouls",
13683 "fsltos",
13684 "fultos",
13685 NULL,
13686 NULL,
13687 NULL,
13688 NULL,
13689 "ftosld",
13690 "ftould",
13691 "fsltod",
13692 "fultod",
13693 "fshtos",
13694 "fuhtos",
13695 "fshtod",
13696 "fuhtod",
13697 "ftoshs",
13698 "ftouhs",
13699 "ftoshd",
13700 "ftouhd"
13701 };
13702
13703 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13704 {
13705 opname = enc[flavour];
13706 constraint (inst.operands[0].reg != inst.operands[1].reg,
13707 _("operands 0 and 1 must be the same register"));
13708 inst.operands[1] = inst.operands[2];
13709 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
13710 }
13711 }
13712 else
13713 {
13714 /* Conversions without bitshift. */
13715 const char *enc[] =
13716 {
13717 "ftosis",
13718 "ftouis",
13719 "fsitos",
13720 "fuitos",
13721 "NULL",
13722 "NULL",
13723 "fcvtsd",
13724 "fcvtds",
13725 "ftosid",
13726 "ftouid",
13727 "fsitod",
13728 "fuitod"
13729 };
13730
13731 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
13732 opname = enc[flavour];
13733 }
13734
13735 if (opname)
13736 do_vfp_nsyn_opcode (opname);
13737 }
13738
13739 static void
13740 do_vfp_nsyn_cvtz (void)
13741 {
13742 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
13743 int flavour = neon_cvt_flavour (rs);
13744 const char *enc[] =
13745 {
13746 "ftosizs",
13747 "ftouizs",
13748 NULL,
13749 NULL,
13750 NULL,
13751 NULL,
13752 NULL,
13753 NULL,
13754 "ftosizd",
13755 "ftouizd"
13756 };
13757
13758 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
13759 do_vfp_nsyn_opcode (enc[flavour]);
13760 }
13761
13762 static void
13763 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
13764 {
13765 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
13766 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
13767 int flavour = neon_cvt_flavour (rs);
13768
13769 /* PR11109: Handle round-to-zero for VCVT conversions. */
13770 if (round_to_zero
13771 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
13772 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
13773 && (rs == NS_FD || rs == NS_FF))
13774 {
13775 do_vfp_nsyn_cvtz ();
13776 return;
13777 }
13778
13779 /* VFP rather than Neon conversions. */
13780 if (flavour >= 6)
13781 {
13782 do_vfp_nsyn_cvt (rs, flavour);
13783 return;
13784 }
13785
13786 switch (rs)
13787 {
13788 case NS_DDI:
13789 case NS_QQI:
13790 {
13791 unsigned immbits;
13792 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
13793
13794 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13795 return;
13796
13797 /* Fixed-point conversion with #0 immediate is encoded as an
13798 integer conversion. */
13799 if (inst.operands[2].present && inst.operands[2].imm == 0)
13800 goto int_encode;
13801 immbits = 32 - inst.operands[2].imm;
13802 NEON_ENCODE (IMMED, inst);
13803 if (flavour != -1)
13804 inst.instruction |= enctab[flavour];
13805 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13806 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13807 inst.instruction |= LOW4 (inst.operands[1].reg);
13808 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13809 inst.instruction |= neon_quad (rs) << 6;
13810 inst.instruction |= 1 << 21;
13811 inst.instruction |= immbits << 16;
13812
13813 neon_dp_fixup (&inst);
13814 }
13815 break;
13816
13817 case NS_DD:
13818 case NS_QQ:
13819 int_encode:
13820 {
13821 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
13822
13823 NEON_ENCODE (INTEGER, inst);
13824
13825 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13826 return;
13827
13828 if (flavour != -1)
13829 inst.instruction |= enctab[flavour];
13830
13831 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13832 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13833 inst.instruction |= LOW4 (inst.operands[1].reg);
13834 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13835 inst.instruction |= neon_quad (rs) << 6;
13836 inst.instruction |= 2 << 18;
13837
13838 neon_dp_fixup (&inst);
13839 }
13840 break;
13841
13842 /* Half-precision conversions for Advanced SIMD -- neon. */
13843 case NS_QD:
13844 case NS_DQ:
13845
13846 if ((rs == NS_DQ)
13847 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
13848 {
13849 as_bad (_("operand size must match register width"));
13850 break;
13851 }
13852
13853 if ((rs == NS_QD)
13854 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
13855 {
13856 as_bad (_("operand size must match register width"));
13857 break;
13858 }
13859
13860 if (rs == NS_DQ)
13861 inst.instruction = 0x3b60600;
13862 else
13863 inst.instruction = 0x3b60700;
13864
13865 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13866 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13867 inst.instruction |= LOW4 (inst.operands[1].reg);
13868 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13869 neon_dp_fixup (&inst);
13870 break;
13871
13872 default:
13873 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
13874 do_vfp_nsyn_cvt (rs, flavour);
13875 }
13876 }
13877
13878 static void
13879 do_neon_cvtr (void)
13880 {
13881 do_neon_cvt_1 (FALSE);
13882 }
13883
13884 static void
13885 do_neon_cvt (void)
13886 {
13887 do_neon_cvt_1 (TRUE);
13888 }
13889
13890 static void
13891 do_neon_cvtb (void)
13892 {
13893 inst.instruction = 0xeb20a40;
13894
13895 /* The sizes are attached to the mnemonic. */
13896 if (inst.vectype.el[0].type != NT_invtype
13897 && inst.vectype.el[0].size == 16)
13898 inst.instruction |= 0x00010000;
13899
13900 /* Programmer's syntax: the sizes are attached to the operands. */
13901 else if (inst.operands[0].vectype.type != NT_invtype
13902 && inst.operands[0].vectype.size == 16)
13903 inst.instruction |= 0x00010000;
13904
13905 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
13906 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
13907 do_vfp_cond_or_thumb ();
13908 }
13909
13910
13911 static void
13912 do_neon_cvtt (void)
13913 {
13914 do_neon_cvtb ();
13915 inst.instruction |= 0x80;
13916 }
13917
13918 static void
13919 neon_move_immediate (void)
13920 {
13921 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
13922 struct neon_type_el et = neon_check_type (2, rs,
13923 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13924 unsigned immlo, immhi = 0, immbits;
13925 int op, cmode, float_p;
13926
13927 constraint (et.type == NT_invtype,
13928 _("operand size must be specified for immediate VMOV"));
13929
13930 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
13931 op = (inst.instruction & (1 << 5)) != 0;
13932
13933 immlo = inst.operands[1].imm;
13934 if (inst.operands[1].regisimm)
13935 immhi = inst.operands[1].reg;
13936
13937 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
13938 _("immediate has bits set outside the operand size"));
13939
13940 float_p = inst.operands[1].immisfloat;
13941
13942 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
13943 et.size, et.type)) == FAIL)
13944 {
13945 /* Invert relevant bits only. */
13946 neon_invert_size (&immlo, &immhi, et.size);
13947 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
13948 with one or the other; those cases are caught by
13949 neon_cmode_for_move_imm. */
13950 op = !op;
13951 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
13952 &op, et.size, et.type)) == FAIL)
13953 {
13954 first_error (_("immediate out of range"));
13955 return;
13956 }
13957 }
13958
13959 inst.instruction &= ~(1 << 5);
13960 inst.instruction |= op << 5;
13961
13962 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13963 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13964 inst.instruction |= neon_quad (rs) << 6;
13965 inst.instruction |= cmode << 8;
13966
13967 neon_write_immbits (immbits);
13968 }
13969
13970 static void
13971 do_neon_mvn (void)
13972 {
13973 if (inst.operands[1].isreg)
13974 {
13975 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13976
13977 NEON_ENCODE (INTEGER, inst);
13978 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13979 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13980 inst.instruction |= LOW4 (inst.operands[1].reg);
13981 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13982 inst.instruction |= neon_quad (rs) << 6;
13983 }
13984 else
13985 {
13986 NEON_ENCODE (IMMED, inst);
13987 neon_move_immediate ();
13988 }
13989
13990 neon_dp_fixup (&inst);
13991 }
13992
13993 /* Encode instructions of form:
13994
13995 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13996 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
13997
13998 static void
13999 neon_mixed_length (struct neon_type_el et, unsigned size)
14000 {
14001 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14002 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14003 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14004 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14005 inst.instruction |= LOW4 (inst.operands[2].reg);
14006 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14007 inst.instruction |= (et.type == NT_unsigned) << 24;
14008 inst.instruction |= neon_logbits (size) << 20;
14009
14010 neon_dp_fixup (&inst);
14011 }
14012
14013 static void
14014 do_neon_dyadic_long (void)
14015 {
14016 /* FIXME: Type checking for lengthening op. */
14017 struct neon_type_el et = neon_check_type (3, NS_QDD,
14018 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14019 neon_mixed_length (et, et.size);
14020 }
14021
14022 static void
14023 do_neon_abal (void)
14024 {
14025 struct neon_type_el et = neon_check_type (3, NS_QDD,
14026 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14027 neon_mixed_length (et, et.size);
14028 }
14029
14030 static void
14031 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14032 {
14033 if (inst.operands[2].isscalar)
14034 {
14035 struct neon_type_el et = neon_check_type (3, NS_QDS,
14036 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14037 NEON_ENCODE (SCALAR, inst);
14038 neon_mul_mac (et, et.type == NT_unsigned);
14039 }
14040 else
14041 {
14042 struct neon_type_el et = neon_check_type (3, NS_QDD,
14043 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14044 NEON_ENCODE (INTEGER, inst);
14045 neon_mixed_length (et, et.size);
14046 }
14047 }
14048
14049 static void
14050 do_neon_mac_maybe_scalar_long (void)
14051 {
14052 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14053 }
14054
14055 static void
14056 do_neon_dyadic_wide (void)
14057 {
14058 struct neon_type_el et = neon_check_type (3, NS_QQD,
14059 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14060 neon_mixed_length (et, et.size);
14061 }
14062
14063 static void
14064 do_neon_dyadic_narrow (void)
14065 {
14066 struct neon_type_el et = neon_check_type (3, NS_QDD,
14067 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14068 /* Operand sign is unimportant, and the U bit is part of the opcode,
14069 so force the operand type to integer. */
14070 et.type = NT_integer;
14071 neon_mixed_length (et, et.size / 2);
14072 }
14073
14074 static void
14075 do_neon_mul_sat_scalar_long (void)
14076 {
14077 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14078 }
14079
14080 static void
14081 do_neon_vmull (void)
14082 {
14083 if (inst.operands[2].isscalar)
14084 do_neon_mac_maybe_scalar_long ();
14085 else
14086 {
14087 struct neon_type_el et = neon_check_type (3, NS_QDD,
14088 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14089 if (et.type == NT_poly)
14090 NEON_ENCODE (POLY, inst);
14091 else
14092 NEON_ENCODE (INTEGER, inst);
14093 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14094 zero. Should be OK as-is. */
14095 neon_mixed_length (et, et.size);
14096 }
14097 }
14098
14099 static void
14100 do_neon_ext (void)
14101 {
14102 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14103 struct neon_type_el et = neon_check_type (3, rs,
14104 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14105 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14106
14107 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14108 _("shift out of range"));
14109 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14110 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14111 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14112 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14113 inst.instruction |= LOW4 (inst.operands[2].reg);
14114 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14115 inst.instruction |= neon_quad (rs) << 6;
14116 inst.instruction |= imm << 8;
14117
14118 neon_dp_fixup (&inst);
14119 }
14120
14121 static void
14122 do_neon_rev (void)
14123 {
14124 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14125 struct neon_type_el et = neon_check_type (2, rs,
14126 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14127 unsigned op = (inst.instruction >> 7) & 3;
14128 /* N (width of reversed regions) is encoded as part of the bitmask. We
14129 extract it here to check the elements to be reversed are smaller.
14130 Otherwise we'd get a reserved instruction. */
14131 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14132 gas_assert (elsize != 0);
14133 constraint (et.size >= elsize,
14134 _("elements must be smaller than reversal region"));
14135 neon_two_same (neon_quad (rs), 1, et.size);
14136 }
14137
14138 static void
14139 do_neon_dup (void)
14140 {
14141 if (inst.operands[1].isscalar)
14142 {
14143 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14144 struct neon_type_el et = neon_check_type (2, rs,
14145 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14146 unsigned sizebits = et.size >> 3;
14147 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14148 int logsize = neon_logbits (et.size);
14149 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14150
14151 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14152 return;
14153
14154 NEON_ENCODE (SCALAR, inst);
14155 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14156 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14157 inst.instruction |= LOW4 (dm);
14158 inst.instruction |= HI1 (dm) << 5;
14159 inst.instruction |= neon_quad (rs) << 6;
14160 inst.instruction |= x << 17;
14161 inst.instruction |= sizebits << 16;
14162
14163 neon_dp_fixup (&inst);
14164 }
14165 else
14166 {
14167 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
14168 struct neon_type_el et = neon_check_type (2, rs,
14169 N_8 | N_16 | N_32 | N_KEY, N_EQK);
14170 /* Duplicate ARM register to lanes of vector. */
14171 NEON_ENCODE (ARMREG, inst);
14172 switch (et.size)
14173 {
14174 case 8: inst.instruction |= 0x400000; break;
14175 case 16: inst.instruction |= 0x000020; break;
14176 case 32: inst.instruction |= 0x000000; break;
14177 default: break;
14178 }
14179 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14180 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
14181 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
14182 inst.instruction |= neon_quad (rs) << 21;
14183 /* The encoding for this instruction is identical for the ARM and Thumb
14184 variants, except for the condition field. */
14185 do_vfp_cond_or_thumb ();
14186 }
14187 }
14188
14189 /* VMOV has particularly many variations. It can be one of:
14190 0. VMOV<c><q> <Qd>, <Qm>
14191 1. VMOV<c><q> <Dd>, <Dm>
14192 (Register operations, which are VORR with Rm = Rn.)
14193 2. VMOV<c><q>.<dt> <Qd>, #<imm>
14194 3. VMOV<c><q>.<dt> <Dd>, #<imm>
14195 (Immediate loads.)
14196 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
14197 (ARM register to scalar.)
14198 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
14199 (Two ARM registers to vector.)
14200 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
14201 (Scalar to ARM register.)
14202 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
14203 (Vector to two ARM registers.)
14204 8. VMOV.F32 <Sd>, <Sm>
14205 9. VMOV.F64 <Dd>, <Dm>
14206 (VFP register moves.)
14207 10. VMOV.F32 <Sd>, #imm
14208 11. VMOV.F64 <Dd>, #imm
14209 (VFP float immediate load.)
14210 12. VMOV <Rd>, <Sm>
14211 (VFP single to ARM reg.)
14212 13. VMOV <Sd>, <Rm>
14213 (ARM reg to VFP single.)
14214 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
14215 (Two ARM regs to two VFP singles.)
14216 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
14217 (Two VFP singles to two ARM regs.)
14218
14219 These cases can be disambiguated using neon_select_shape, except cases 1/9
14220 and 3/11 which depend on the operand type too.
14221
14222 All the encoded bits are hardcoded by this function.
14223
14224 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
14225 Cases 5, 7 may be used with VFPv2 and above.
14226
14227 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
14228 can specify a type where it doesn't make sense to, and is ignored). */
14229
14230 static void
14231 do_neon_mov (void)
14232 {
14233 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
14234 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
14235 NS_NULL);
14236 struct neon_type_el et;
14237 const char *ldconst = 0;
14238
14239 switch (rs)
14240 {
14241 case NS_DD: /* case 1/9. */
14242 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14243 /* It is not an error here if no type is given. */
14244 inst.error = NULL;
14245 if (et.type == NT_float && et.size == 64)
14246 {
14247 do_vfp_nsyn_opcode ("fcpyd");
14248 break;
14249 }
14250 /* fall through. */
14251
14252 case NS_QQ: /* case 0/1. */
14253 {
14254 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14255 return;
14256 /* The architecture manual I have doesn't explicitly state which
14257 value the U bit should have for register->register moves, but
14258 the equivalent VORR instruction has U = 0, so do that. */
14259 inst.instruction = 0x0200110;
14260 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14261 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14262 inst.instruction |= LOW4 (inst.operands[1].reg);
14263 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14264 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14265 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14266 inst.instruction |= neon_quad (rs) << 6;
14267
14268 neon_dp_fixup (&inst);
14269 }
14270 break;
14271
14272 case NS_DI: /* case 3/11. */
14273 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
14274 inst.error = NULL;
14275 if (et.type == NT_float && et.size == 64)
14276 {
14277 /* case 11 (fconstd). */
14278 ldconst = "fconstd";
14279 goto encode_fconstd;
14280 }
14281 /* fall through. */
14282
14283 case NS_QI: /* case 2/3. */
14284 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14285 return;
14286 inst.instruction = 0x0800010;
14287 neon_move_immediate ();
14288 neon_dp_fixup (&inst);
14289 break;
14290
14291 case NS_SR: /* case 4. */
14292 {
14293 unsigned bcdebits = 0;
14294 int logsize;
14295 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
14296 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
14297
14298 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
14299 logsize = neon_logbits (et.size);
14300
14301 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14302 _(BAD_FPU));
14303 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14304 && et.size != 32, _(BAD_FPU));
14305 constraint (et.type == NT_invtype, _("bad type for scalar"));
14306 constraint (x >= 64 / et.size, _("scalar index out of range"));
14307
14308 switch (et.size)
14309 {
14310 case 8: bcdebits = 0x8; break;
14311 case 16: bcdebits = 0x1; break;
14312 case 32: bcdebits = 0x0; break;
14313 default: ;
14314 }
14315
14316 bcdebits |= x << logsize;
14317
14318 inst.instruction = 0xe000b10;
14319 do_vfp_cond_or_thumb ();
14320 inst.instruction |= LOW4 (dn) << 16;
14321 inst.instruction |= HI1 (dn) << 7;
14322 inst.instruction |= inst.operands[1].reg << 12;
14323 inst.instruction |= (bcdebits & 3) << 5;
14324 inst.instruction |= (bcdebits >> 2) << 21;
14325 }
14326 break;
14327
14328 case NS_DRR: /* case 5 (fmdrr). */
14329 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14330 _(BAD_FPU));
14331
14332 inst.instruction = 0xc400b10;
14333 do_vfp_cond_or_thumb ();
14334 inst.instruction |= LOW4 (inst.operands[0].reg);
14335 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
14336 inst.instruction |= inst.operands[1].reg << 12;
14337 inst.instruction |= inst.operands[2].reg << 16;
14338 break;
14339
14340 case NS_RS: /* case 6. */
14341 {
14342 unsigned logsize;
14343 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
14344 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
14345 unsigned abcdebits = 0;
14346
14347 et = neon_check_type (2, NS_NULL,
14348 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
14349 logsize = neon_logbits (et.size);
14350
14351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
14352 _(BAD_FPU));
14353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
14354 && et.size != 32, _(BAD_FPU));
14355 constraint (et.type == NT_invtype, _("bad type for scalar"));
14356 constraint (x >= 64 / et.size, _("scalar index out of range"));
14357
14358 switch (et.size)
14359 {
14360 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
14361 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
14362 case 32: abcdebits = 0x00; break;
14363 default: ;
14364 }
14365
14366 abcdebits |= x << logsize;
14367 inst.instruction = 0xe100b10;
14368 do_vfp_cond_or_thumb ();
14369 inst.instruction |= LOW4 (dn) << 16;
14370 inst.instruction |= HI1 (dn) << 7;
14371 inst.instruction |= inst.operands[0].reg << 12;
14372 inst.instruction |= (abcdebits & 3) << 5;
14373 inst.instruction |= (abcdebits >> 2) << 21;
14374 }
14375 break;
14376
14377 case NS_RRD: /* case 7 (fmrrd). */
14378 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
14379 _(BAD_FPU));
14380
14381 inst.instruction = 0xc500b10;
14382 do_vfp_cond_or_thumb ();
14383 inst.instruction |= inst.operands[0].reg << 12;
14384 inst.instruction |= inst.operands[1].reg << 16;
14385 inst.instruction |= LOW4 (inst.operands[2].reg);
14386 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14387 break;
14388
14389 case NS_FF: /* case 8 (fcpys). */
14390 do_vfp_nsyn_opcode ("fcpys");
14391 break;
14392
14393 case NS_FI: /* case 10 (fconsts). */
14394 ldconst = "fconsts";
14395 encode_fconstd:
14396 if (is_quarter_float (inst.operands[1].imm))
14397 {
14398 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
14399 do_vfp_nsyn_opcode (ldconst);
14400 }
14401 else
14402 first_error (_("immediate out of range"));
14403 break;
14404
14405 case NS_RF: /* case 12 (fmrs). */
14406 do_vfp_nsyn_opcode ("fmrs");
14407 break;
14408
14409 case NS_FR: /* case 13 (fmsr). */
14410 do_vfp_nsyn_opcode ("fmsr");
14411 break;
14412
14413 /* The encoders for the fmrrs and fmsrr instructions expect three operands
14414 (one of which is a list), but we have parsed four. Do some fiddling to
14415 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
14416 expect. */
14417 case NS_RRFF: /* case 14 (fmrrs). */
14418 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
14419 _("VFP registers must be adjacent"));
14420 inst.operands[2].imm = 2;
14421 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14422 do_vfp_nsyn_opcode ("fmrrs");
14423 break;
14424
14425 case NS_FFRR: /* case 15 (fmsrr). */
14426 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
14427 _("VFP registers must be adjacent"));
14428 inst.operands[1] = inst.operands[2];
14429 inst.operands[2] = inst.operands[3];
14430 inst.operands[0].imm = 2;
14431 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
14432 do_vfp_nsyn_opcode ("fmsrr");
14433 break;
14434
14435 default:
14436 abort ();
14437 }
14438 }
14439
14440 static void
14441 do_neon_rshift_round_imm (void)
14442 {
14443 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14444 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
14445 int imm = inst.operands[2].imm;
14446
14447 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
14448 if (imm == 0)
14449 {
14450 inst.operands[2].present = 0;
14451 do_neon_mov ();
14452 return;
14453 }
14454
14455 constraint (imm < 1 || (unsigned)imm > et.size,
14456 _("immediate out of range for shift"));
14457 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
14458 et.size - imm);
14459 }
14460
14461 static void
14462 do_neon_movl (void)
14463 {
14464 struct neon_type_el et = neon_check_type (2, NS_QD,
14465 N_EQK | N_DBL, N_SU_32 | N_KEY);
14466 unsigned sizebits = et.size >> 3;
14467 inst.instruction |= sizebits << 19;
14468 neon_two_same (0, et.type == NT_unsigned, -1);
14469 }
14470
14471 static void
14472 do_neon_trn (void)
14473 {
14474 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14475 struct neon_type_el et = neon_check_type (2, rs,
14476 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14477 NEON_ENCODE (INTEGER, inst);
14478 neon_two_same (neon_quad (rs), 1, et.size);
14479 }
14480
14481 static void
14482 do_neon_zip_uzp (void)
14483 {
14484 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14485 struct neon_type_el et = neon_check_type (2, rs,
14486 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14487 if (rs == NS_DD && et.size == 32)
14488 {
14489 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
14490 inst.instruction = N_MNEM_vtrn;
14491 do_neon_trn ();
14492 return;
14493 }
14494 neon_two_same (neon_quad (rs), 1, et.size);
14495 }
14496
14497 static void
14498 do_neon_sat_abs_neg (void)
14499 {
14500 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14501 struct neon_type_el et = neon_check_type (2, rs,
14502 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14503 neon_two_same (neon_quad (rs), 1, et.size);
14504 }
14505
14506 static void
14507 do_neon_pair_long (void)
14508 {
14509 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14510 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
14511 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
14512 inst.instruction |= (et.type == NT_unsigned) << 7;
14513 neon_two_same (neon_quad (rs), 1, et.size);
14514 }
14515
14516 static void
14517 do_neon_recip_est (void)
14518 {
14519 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14520 struct neon_type_el et = neon_check_type (2, rs,
14521 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
14522 inst.instruction |= (et.type == NT_float) << 8;
14523 neon_two_same (neon_quad (rs), 1, et.size);
14524 }
14525
14526 static void
14527 do_neon_cls (void)
14528 {
14529 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14530 struct neon_type_el et = neon_check_type (2, rs,
14531 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
14532 neon_two_same (neon_quad (rs), 1, et.size);
14533 }
14534
14535 static void
14536 do_neon_clz (void)
14537 {
14538 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14539 struct neon_type_el et = neon_check_type (2, rs,
14540 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
14541 neon_two_same (neon_quad (rs), 1, et.size);
14542 }
14543
14544 static void
14545 do_neon_cnt (void)
14546 {
14547 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14548 struct neon_type_el et = neon_check_type (2, rs,
14549 N_EQK | N_INT, N_8 | N_KEY);
14550 neon_two_same (neon_quad (rs), 1, et.size);
14551 }
14552
14553 static void
14554 do_neon_swp (void)
14555 {
14556 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14557 neon_two_same (neon_quad (rs), 1, -1);
14558 }
14559
14560 static void
14561 do_neon_tbl_tbx (void)
14562 {
14563 unsigned listlenbits;
14564 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
14565
14566 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
14567 {
14568 first_error (_("bad list length for table lookup"));
14569 return;
14570 }
14571
14572 listlenbits = inst.operands[1].imm - 1;
14573 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14574 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14575 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14576 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14577 inst.instruction |= LOW4 (inst.operands[2].reg);
14578 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14579 inst.instruction |= listlenbits << 8;
14580
14581 neon_dp_fixup (&inst);
14582 }
14583
14584 static void
14585 do_neon_ldm_stm (void)
14586 {
14587 /* P, U and L bits are part of bitmask. */
14588 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
14589 unsigned offsetbits = inst.operands[1].imm * 2;
14590
14591 if (inst.operands[1].issingle)
14592 {
14593 do_vfp_nsyn_ldm_stm (is_dbmode);
14594 return;
14595 }
14596
14597 constraint (is_dbmode && !inst.operands[0].writeback,
14598 _("writeback (!) must be used for VLDMDB and VSTMDB"));
14599
14600 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
14601 _("register list must contain at least 1 and at most 16 "
14602 "registers"));
14603
14604 inst.instruction |= inst.operands[0].reg << 16;
14605 inst.instruction |= inst.operands[0].writeback << 21;
14606 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
14607 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
14608
14609 inst.instruction |= offsetbits;
14610
14611 do_vfp_cond_or_thumb ();
14612 }
14613
14614 static void
14615 do_neon_ldr_str (void)
14616 {
14617 int is_ldr = (inst.instruction & (1 << 20)) != 0;
14618
14619 if (inst.operands[0].issingle)
14620 {
14621 if (is_ldr)
14622 do_vfp_nsyn_opcode ("flds");
14623 else
14624 do_vfp_nsyn_opcode ("fsts");
14625 }
14626 else
14627 {
14628 if (is_ldr)
14629 do_vfp_nsyn_opcode ("fldd");
14630 else
14631 do_vfp_nsyn_opcode ("fstd");
14632 }
14633 }
14634
14635 /* "interleave" version also handles non-interleaving register VLD1/VST1
14636 instructions. */
14637
14638 static void
14639 do_neon_ld_st_interleave (void)
14640 {
14641 struct neon_type_el et = neon_check_type (1, NS_NULL,
14642 N_8 | N_16 | N_32 | N_64);
14643 unsigned alignbits = 0;
14644 unsigned idx;
14645 /* The bits in this table go:
14646 0: register stride of one (0) or two (1)
14647 1,2: register list length, minus one (1, 2, 3, 4).
14648 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
14649 We use -1 for invalid entries. */
14650 const int typetable[] =
14651 {
14652 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
14653 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
14654 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
14655 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
14656 };
14657 int typebits;
14658
14659 if (et.type == NT_invtype)
14660 return;
14661
14662 if (inst.operands[1].immisalign)
14663 switch (inst.operands[1].imm >> 8)
14664 {
14665 case 64: alignbits = 1; break;
14666 case 128:
14667 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
14668 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14669 goto bad_alignment;
14670 alignbits = 2;
14671 break;
14672 case 256:
14673 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
14674 goto bad_alignment;
14675 alignbits = 3;
14676 break;
14677 default:
14678 bad_alignment:
14679 first_error (_("bad alignment"));
14680 return;
14681 }
14682
14683 inst.instruction |= alignbits << 4;
14684 inst.instruction |= neon_logbits (et.size) << 6;
14685
14686 /* Bits [4:6] of the immediate in a list specifier encode register stride
14687 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
14688 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
14689 up the right value for "type" in a table based on this value and the given
14690 list style, then stick it back. */
14691 idx = ((inst.operands[0].imm >> 4) & 7)
14692 | (((inst.instruction >> 8) & 3) << 3);
14693
14694 typebits = typetable[idx];
14695
14696 constraint (typebits == -1, _("bad list type for instruction"));
14697
14698 inst.instruction &= ~0xf00;
14699 inst.instruction |= typebits << 8;
14700 }
14701
14702 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
14703 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
14704 otherwise. The variable arguments are a list of pairs of legal (size, align)
14705 values, terminated with -1. */
14706
14707 static int
14708 neon_alignment_bit (int size, int align, int *do_align, ...)
14709 {
14710 va_list ap;
14711 int result = FAIL, thissize, thisalign;
14712
14713 if (!inst.operands[1].immisalign)
14714 {
14715 *do_align = 0;
14716 return SUCCESS;
14717 }
14718
14719 va_start (ap, do_align);
14720
14721 do
14722 {
14723 thissize = va_arg (ap, int);
14724 if (thissize == -1)
14725 break;
14726 thisalign = va_arg (ap, int);
14727
14728 if (size == thissize && align == thisalign)
14729 result = SUCCESS;
14730 }
14731 while (result != SUCCESS);
14732
14733 va_end (ap);
14734
14735 if (result == SUCCESS)
14736 *do_align = 1;
14737 else
14738 first_error (_("unsupported alignment for instruction"));
14739
14740 return result;
14741 }
14742
14743 static void
14744 do_neon_ld_st_lane (void)
14745 {
14746 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14747 int align_good, do_align = 0;
14748 int logsize = neon_logbits (et.size);
14749 int align = inst.operands[1].imm >> 8;
14750 int n = (inst.instruction >> 8) & 3;
14751 int max_el = 64 / et.size;
14752
14753 if (et.type == NT_invtype)
14754 return;
14755
14756 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
14757 _("bad list length"));
14758 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
14759 _("scalar index out of range"));
14760 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
14761 && et.size == 8,
14762 _("stride of 2 unavailable when element size is 8"));
14763
14764 switch (n)
14765 {
14766 case 0: /* VLD1 / VST1. */
14767 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
14768 32, 32, -1);
14769 if (align_good == FAIL)
14770 return;
14771 if (do_align)
14772 {
14773 unsigned alignbits = 0;
14774 switch (et.size)
14775 {
14776 case 16: alignbits = 0x1; break;
14777 case 32: alignbits = 0x3; break;
14778 default: ;
14779 }
14780 inst.instruction |= alignbits << 4;
14781 }
14782 break;
14783
14784 case 1: /* VLD2 / VST2. */
14785 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
14786 32, 64, -1);
14787 if (align_good == FAIL)
14788 return;
14789 if (do_align)
14790 inst.instruction |= 1 << 4;
14791 break;
14792
14793 case 2: /* VLD3 / VST3. */
14794 constraint (inst.operands[1].immisalign,
14795 _("can't use alignment with this instruction"));
14796 break;
14797
14798 case 3: /* VLD4 / VST4. */
14799 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14800 16, 64, 32, 64, 32, 128, -1);
14801 if (align_good == FAIL)
14802 return;
14803 if (do_align)
14804 {
14805 unsigned alignbits = 0;
14806 switch (et.size)
14807 {
14808 case 8: alignbits = 0x1; break;
14809 case 16: alignbits = 0x1; break;
14810 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
14811 default: ;
14812 }
14813 inst.instruction |= alignbits << 4;
14814 }
14815 break;
14816
14817 default: ;
14818 }
14819
14820 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
14821 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14822 inst.instruction |= 1 << (4 + logsize);
14823
14824 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
14825 inst.instruction |= logsize << 10;
14826 }
14827
14828 /* Encode single n-element structure to all lanes VLD<n> instructions. */
14829
14830 static void
14831 do_neon_ld_dup (void)
14832 {
14833 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
14834 int align_good, do_align = 0;
14835
14836 if (et.type == NT_invtype)
14837 return;
14838
14839 switch ((inst.instruction >> 8) & 3)
14840 {
14841 case 0: /* VLD1. */
14842 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
14843 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14844 &do_align, 16, 16, 32, 32, -1);
14845 if (align_good == FAIL)
14846 return;
14847 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
14848 {
14849 case 1: break;
14850 case 2: inst.instruction |= 1 << 5; break;
14851 default: first_error (_("bad list length")); return;
14852 }
14853 inst.instruction |= neon_logbits (et.size) << 6;
14854 break;
14855
14856 case 1: /* VLD2. */
14857 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
14858 &do_align, 8, 16, 16, 32, 32, 64, -1);
14859 if (align_good == FAIL)
14860 return;
14861 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
14862 _("bad list length"));
14863 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14864 inst.instruction |= 1 << 5;
14865 inst.instruction |= neon_logbits (et.size) << 6;
14866 break;
14867
14868 case 2: /* VLD3. */
14869 constraint (inst.operands[1].immisalign,
14870 _("can't use alignment with this instruction"));
14871 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
14872 _("bad list length"));
14873 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14874 inst.instruction |= 1 << 5;
14875 inst.instruction |= neon_logbits (et.size) << 6;
14876 break;
14877
14878 case 3: /* VLD4. */
14879 {
14880 int align = inst.operands[1].imm >> 8;
14881 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
14882 16, 64, 32, 64, 32, 128, -1);
14883 if (align_good == FAIL)
14884 return;
14885 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
14886 _("bad list length"));
14887 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
14888 inst.instruction |= 1 << 5;
14889 if (et.size == 32 && align == 128)
14890 inst.instruction |= 0x3 << 6;
14891 else
14892 inst.instruction |= neon_logbits (et.size) << 6;
14893 }
14894 break;
14895
14896 default: ;
14897 }
14898
14899 inst.instruction |= do_align << 4;
14900 }
14901
14902 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
14903 apart from bits [11:4]. */
14904
14905 static void
14906 do_neon_ldx_stx (void)
14907 {
14908 if (inst.operands[1].isreg)
14909 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
14910
14911 switch (NEON_LANE (inst.operands[0].imm))
14912 {
14913 case NEON_INTERLEAVE_LANES:
14914 NEON_ENCODE (INTERLV, inst);
14915 do_neon_ld_st_interleave ();
14916 break;
14917
14918 case NEON_ALL_LANES:
14919 NEON_ENCODE (DUP, inst);
14920 do_neon_ld_dup ();
14921 break;
14922
14923 default:
14924 NEON_ENCODE (LANE, inst);
14925 do_neon_ld_st_lane ();
14926 }
14927
14928 /* L bit comes from bit mask. */
14929 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14930 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14931 inst.instruction |= inst.operands[1].reg << 16;
14932
14933 if (inst.operands[1].postind)
14934 {
14935 int postreg = inst.operands[1].imm & 0xf;
14936 constraint (!inst.operands[1].immisreg,
14937 _("post-index must be a register"));
14938 constraint (postreg == 0xd || postreg == 0xf,
14939 _("bad register for post-index"));
14940 inst.instruction |= postreg;
14941 }
14942 else if (inst.operands[1].writeback)
14943 {
14944 inst.instruction |= 0xd;
14945 }
14946 else
14947 inst.instruction |= 0xf;
14948
14949 if (thumb_mode)
14950 inst.instruction |= 0xf9000000;
14951 else
14952 inst.instruction |= 0xf4000000;
14953 }
14954 \f
14955 /* Overall per-instruction processing. */
14956
14957 /* We need to be able to fix up arbitrary expressions in some statements.
14958 This is so that we can handle symbols that are an arbitrary distance from
14959 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
14960 which returns part of an address in a form which will be valid for
14961 a data instruction. We do this by pushing the expression into a symbol
14962 in the expr_section, and creating a fix for that. */
14963
14964 static void
14965 fix_new_arm (fragS * frag,
14966 int where,
14967 short int size,
14968 expressionS * exp,
14969 int pc_rel,
14970 int reloc)
14971 {
14972 fixS * new_fix;
14973
14974 switch (exp->X_op)
14975 {
14976 case O_constant:
14977 case O_symbol:
14978 case O_add:
14979 case O_subtract:
14980 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
14981 (enum bfd_reloc_code_real) reloc);
14982 break;
14983
14984 default:
14985 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
14986 pc_rel, (enum bfd_reloc_code_real) reloc);
14987 break;
14988 }
14989
14990 /* Mark whether the fix is to a THUMB instruction, or an ARM
14991 instruction. */
14992 new_fix->tc_fix_data = thumb_mode;
14993 }
14994
14995 /* Create a frg for an instruction requiring relaxation. */
14996 static void
14997 output_relax_insn (void)
14998 {
14999 char * to;
15000 symbolS *sym;
15001 int offset;
15002
15003 /* The size of the instruction is unknown, so tie the debug info to the
15004 start of the instruction. */
15005 dwarf2_emit_insn (0);
15006
15007 switch (inst.reloc.exp.X_op)
15008 {
15009 case O_symbol:
15010 sym = inst.reloc.exp.X_add_symbol;
15011 offset = inst.reloc.exp.X_add_number;
15012 break;
15013 case O_constant:
15014 sym = NULL;
15015 offset = inst.reloc.exp.X_add_number;
15016 break;
15017 default:
15018 sym = make_expr_symbol (&inst.reloc.exp);
15019 offset = 0;
15020 break;
15021 }
15022 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15023 inst.relax, sym, offset, NULL/*offset, opcode*/);
15024 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15025 }
15026
15027 /* Write a 32-bit thumb instruction to buf. */
15028 static void
15029 put_thumb32_insn (char * buf, unsigned long insn)
15030 {
15031 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15032 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15033 }
15034
15035 static void
15036 output_inst (const char * str)
15037 {
15038 char * to = NULL;
15039
15040 if (inst.error)
15041 {
15042 as_bad ("%s -- `%s'", inst.error, str);
15043 return;
15044 }
15045 if (inst.relax)
15046 {
15047 output_relax_insn ();
15048 return;
15049 }
15050 if (inst.size == 0)
15051 return;
15052
15053 to = frag_more (inst.size);
15054 /* PR 9814: Record the thumb mode into the current frag so that we know
15055 what type of NOP padding to use, if necessary. We override any previous
15056 setting so that if the mode has changed then the NOPS that we use will
15057 match the encoding of the last instruction in the frag. */
15058 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15059
15060 if (thumb_mode && (inst.size > THUMB_SIZE))
15061 {
15062 gas_assert (inst.size == (2 * THUMB_SIZE));
15063 put_thumb32_insn (to, inst.instruction);
15064 }
15065 else if (inst.size > INSN_SIZE)
15066 {
15067 gas_assert (inst.size == (2 * INSN_SIZE));
15068 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15069 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15070 }
15071 else
15072 md_number_to_chars (to, inst.instruction, inst.size);
15073
15074 if (inst.reloc.type != BFD_RELOC_UNUSED)
15075 fix_new_arm (frag_now, to - frag_now->fr_literal,
15076 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15077 inst.reloc.type);
15078
15079 dwarf2_emit_insn (inst.size);
15080 }
15081
15082 static char *
15083 output_it_inst (int cond, int mask, char * to)
15084 {
15085 unsigned long instruction = 0xbf00;
15086
15087 mask &= 0xf;
15088 instruction |= mask;
15089 instruction |= cond << 4;
15090
15091 if (to == NULL)
15092 {
15093 to = frag_more (2);
15094 #ifdef OBJ_ELF
15095 dwarf2_emit_insn (2);
15096 #endif
15097 }
15098
15099 md_number_to_chars (to, instruction, 2);
15100
15101 return to;
15102 }
15103
15104 /* Tag values used in struct asm_opcode's tag field. */
15105 enum opcode_tag
15106 {
15107 OT_unconditional, /* Instruction cannot be conditionalized.
15108 The ARM condition field is still 0xE. */
15109 OT_unconditionalF, /* Instruction cannot be conditionalized
15110 and carries 0xF in its ARM condition field. */
15111 OT_csuffix, /* Instruction takes a conditional suffix. */
15112 OT_csuffixF, /* Some forms of the instruction take a conditional
15113 suffix, others place 0xF where the condition field
15114 would be. */
15115 OT_cinfix3, /* Instruction takes a conditional infix,
15116 beginning at character index 3. (In
15117 unified mode, it becomes a suffix.) */
15118 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15119 tsts, cmps, cmns, and teqs. */
15120 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15121 character index 3, even in unified mode. Used for
15122 legacy instructions where suffix and infix forms
15123 may be ambiguous. */
15124 OT_csuf_or_in3, /* Instruction takes either a conditional
15125 suffix or an infix at character index 3. */
15126 OT_odd_infix_unc, /* This is the unconditional variant of an
15127 instruction that takes a conditional infix
15128 at an unusual position. In unified mode,
15129 this variant will accept a suffix. */
15130 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
15131 are the conditional variants of instructions that
15132 take conditional infixes in unusual positions.
15133 The infix appears at character index
15134 (tag - OT_odd_infix_0). These are not accepted
15135 in unified mode. */
15136 };
15137
15138 /* Subroutine of md_assemble, responsible for looking up the primary
15139 opcode from the mnemonic the user wrote. STR points to the
15140 beginning of the mnemonic.
15141
15142 This is not simply a hash table lookup, because of conditional
15143 variants. Most instructions have conditional variants, which are
15144 expressed with a _conditional affix_ to the mnemonic. If we were
15145 to encode each conditional variant as a literal string in the opcode
15146 table, it would have approximately 20,000 entries.
15147
15148 Most mnemonics take this affix as a suffix, and in unified syntax,
15149 'most' is upgraded to 'all'. However, in the divided syntax, some
15150 instructions take the affix as an infix, notably the s-variants of
15151 the arithmetic instructions. Of those instructions, all but six
15152 have the infix appear after the third character of the mnemonic.
15153
15154 Accordingly, the algorithm for looking up primary opcodes given
15155 an identifier is:
15156
15157 1. Look up the identifier in the opcode table.
15158 If we find a match, go to step U.
15159
15160 2. Look up the last two characters of the identifier in the
15161 conditions table. If we find a match, look up the first N-2
15162 characters of the identifier in the opcode table. If we
15163 find a match, go to step CE.
15164
15165 3. Look up the fourth and fifth characters of the identifier in
15166 the conditions table. If we find a match, extract those
15167 characters from the identifier, and look up the remaining
15168 characters in the opcode table. If we find a match, go
15169 to step CM.
15170
15171 4. Fail.
15172
15173 U. Examine the tag field of the opcode structure, in case this is
15174 one of the six instructions with its conditional infix in an
15175 unusual place. If it is, the tag tells us where to find the
15176 infix; look it up in the conditions table and set inst.cond
15177 accordingly. Otherwise, this is an unconditional instruction.
15178 Again set inst.cond accordingly. Return the opcode structure.
15179
15180 CE. Examine the tag field to make sure this is an instruction that
15181 should receive a conditional suffix. If it is not, fail.
15182 Otherwise, set inst.cond from the suffix we already looked up,
15183 and return the opcode structure.
15184
15185 CM. Examine the tag field to make sure this is an instruction that
15186 should receive a conditional infix after the third character.
15187 If it is not, fail. Otherwise, undo the edits to the current
15188 line of input and proceed as for case CE. */
15189
15190 static const struct asm_opcode *
15191 opcode_lookup (char **str)
15192 {
15193 char *end, *base;
15194 char *affix;
15195 const struct asm_opcode *opcode;
15196 const struct asm_cond *cond;
15197 char save[2];
15198
15199 /* Scan up to the end of the mnemonic, which must end in white space,
15200 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
15201 for (base = end = *str; *end != '\0'; end++)
15202 if (*end == ' ' || *end == '.')
15203 break;
15204
15205 if (end == base)
15206 return NULL;
15207
15208 /* Handle a possible width suffix and/or Neon type suffix. */
15209 if (end[0] == '.')
15210 {
15211 int offset = 2;
15212
15213 /* The .w and .n suffixes are only valid if the unified syntax is in
15214 use. */
15215 if (unified_syntax && end[1] == 'w')
15216 inst.size_req = 4;
15217 else if (unified_syntax && end[1] == 'n')
15218 inst.size_req = 2;
15219 else
15220 offset = 0;
15221
15222 inst.vectype.elems = 0;
15223
15224 *str = end + offset;
15225
15226 if (end[offset] == '.')
15227 {
15228 /* See if we have a Neon type suffix (possible in either unified or
15229 non-unified ARM syntax mode). */
15230 if (parse_neon_type (&inst.vectype, str) == FAIL)
15231 return NULL;
15232 }
15233 else if (end[offset] != '\0' && end[offset] != ' ')
15234 return NULL;
15235 }
15236 else
15237 *str = end;
15238
15239 /* Look for unaffixed or special-case affixed mnemonic. */
15240 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15241 end - base);
15242 if (opcode)
15243 {
15244 /* step U */
15245 if (opcode->tag < OT_odd_infix_0)
15246 {
15247 inst.cond = COND_ALWAYS;
15248 return opcode;
15249 }
15250
15251 if (warn_on_deprecated && unified_syntax)
15252 as_warn (_("conditional infixes are deprecated in unified syntax"));
15253 affix = base + (opcode->tag - OT_odd_infix_0);
15254 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15255 gas_assert (cond);
15256
15257 inst.cond = cond->value;
15258 return opcode;
15259 }
15260
15261 /* Cannot have a conditional suffix on a mnemonic of less than two
15262 characters. */
15263 if (end - base < 3)
15264 return NULL;
15265
15266 /* Look for suffixed mnemonic. */
15267 affix = end - 2;
15268 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15269 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15270 affix - base);
15271 if (opcode && cond)
15272 {
15273 /* step CE */
15274 switch (opcode->tag)
15275 {
15276 case OT_cinfix3_legacy:
15277 /* Ignore conditional suffixes matched on infix only mnemonics. */
15278 break;
15279
15280 case OT_cinfix3:
15281 case OT_cinfix3_deprecated:
15282 case OT_odd_infix_unc:
15283 if (!unified_syntax)
15284 return 0;
15285 /* else fall through */
15286
15287 case OT_csuffix:
15288 case OT_csuffixF:
15289 case OT_csuf_or_in3:
15290 inst.cond = cond->value;
15291 return opcode;
15292
15293 case OT_unconditional:
15294 case OT_unconditionalF:
15295 if (thumb_mode)
15296 inst.cond = cond->value;
15297 else
15298 {
15299 /* Delayed diagnostic. */
15300 inst.error = BAD_COND;
15301 inst.cond = COND_ALWAYS;
15302 }
15303 return opcode;
15304
15305 default:
15306 return NULL;
15307 }
15308 }
15309
15310 /* Cannot have a usual-position infix on a mnemonic of less than
15311 six characters (five would be a suffix). */
15312 if (end - base < 6)
15313 return NULL;
15314
15315 /* Look for infixed mnemonic in the usual position. */
15316 affix = base + 3;
15317 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
15318 if (!cond)
15319 return NULL;
15320
15321 memcpy (save, affix, 2);
15322 memmove (affix, affix + 2, (end - affix) - 2);
15323 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
15324 (end - base) - 2);
15325 memmove (affix + 2, affix, (end - affix) - 2);
15326 memcpy (affix, save, 2);
15327
15328 if (opcode
15329 && (opcode->tag == OT_cinfix3
15330 || opcode->tag == OT_cinfix3_deprecated
15331 || opcode->tag == OT_csuf_or_in3
15332 || opcode->tag == OT_cinfix3_legacy))
15333 {
15334 /* Step CM. */
15335 if (warn_on_deprecated && unified_syntax
15336 && (opcode->tag == OT_cinfix3
15337 || opcode->tag == OT_cinfix3_deprecated))
15338 as_warn (_("conditional infixes are deprecated in unified syntax"));
15339
15340 inst.cond = cond->value;
15341 return opcode;
15342 }
15343
15344 return NULL;
15345 }
15346
15347 /* This function generates an initial IT instruction, leaving its block
15348 virtually open for the new instructions. Eventually,
15349 the mask will be updated by now_it_add_mask () each time
15350 a new instruction needs to be included in the IT block.
15351 Finally, the block is closed with close_automatic_it_block ().
15352 The block closure can be requested either from md_assemble (),
15353 a tencode (), or due to a label hook. */
15354
15355 static void
15356 new_automatic_it_block (int cond)
15357 {
15358 now_it.state = AUTOMATIC_IT_BLOCK;
15359 now_it.mask = 0x18;
15360 now_it.cc = cond;
15361 now_it.block_length = 1;
15362 mapping_state (MAP_THUMB);
15363 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
15364 }
15365
15366 /* Close an automatic IT block.
15367 See comments in new_automatic_it_block (). */
15368
15369 static void
15370 close_automatic_it_block (void)
15371 {
15372 now_it.mask = 0x10;
15373 now_it.block_length = 0;
15374 }
15375
15376 /* Update the mask of the current automatically-generated IT
15377 instruction. See comments in new_automatic_it_block (). */
15378
15379 static void
15380 now_it_add_mask (int cond)
15381 {
15382 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
15383 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
15384 | ((bitvalue) << (nbit)))
15385 const int resulting_bit = (cond & 1);
15386
15387 now_it.mask &= 0xf;
15388 now_it.mask = SET_BIT_VALUE (now_it.mask,
15389 resulting_bit,
15390 (5 - now_it.block_length));
15391 now_it.mask = SET_BIT_VALUE (now_it.mask,
15392 1,
15393 ((5 - now_it.block_length) - 1) );
15394 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
15395
15396 #undef CLEAR_BIT
15397 #undef SET_BIT_VALUE
15398 }
15399
15400 /* The IT blocks handling machinery is accessed through the these functions:
15401 it_fsm_pre_encode () from md_assemble ()
15402 set_it_insn_type () optional, from the tencode functions
15403 set_it_insn_type_last () ditto
15404 in_it_block () ditto
15405 it_fsm_post_encode () from md_assemble ()
15406 force_automatic_it_block_close () from label habdling functions
15407
15408 Rationale:
15409 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
15410 initializing the IT insn type with a generic initial value depending
15411 on the inst.condition.
15412 2) During the tencode function, two things may happen:
15413 a) The tencode function overrides the IT insn type by
15414 calling either set_it_insn_type (type) or set_it_insn_type_last ().
15415 b) The tencode function queries the IT block state by
15416 calling in_it_block () (i.e. to determine narrow/not narrow mode).
15417
15418 Both set_it_insn_type and in_it_block run the internal FSM state
15419 handling function (handle_it_state), because: a) setting the IT insn
15420 type may incur in an invalid state (exiting the function),
15421 and b) querying the state requires the FSM to be updated.
15422 Specifically we want to avoid creating an IT block for conditional
15423 branches, so it_fsm_pre_encode is actually a guess and we can't
15424 determine whether an IT block is required until the tencode () routine
15425 has decided what type of instruction this actually it.
15426 Because of this, if set_it_insn_type and in_it_block have to be used,
15427 set_it_insn_type has to be called first.
15428
15429 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
15430 determines the insn IT type depending on the inst.cond code.
15431 When a tencode () routine encodes an instruction that can be
15432 either outside an IT block, or, in the case of being inside, has to be
15433 the last one, set_it_insn_type_last () will determine the proper
15434 IT instruction type based on the inst.cond code. Otherwise,
15435 set_it_insn_type can be called for overriding that logic or
15436 for covering other cases.
15437
15438 Calling handle_it_state () may not transition the IT block state to
15439 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
15440 still queried. Instead, if the FSM determines that the state should
15441 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
15442 after the tencode () function: that's what it_fsm_post_encode () does.
15443
15444 Since in_it_block () calls the state handling function to get an
15445 updated state, an error may occur (due to invalid insns combination).
15446 In that case, inst.error is set.
15447 Therefore, inst.error has to be checked after the execution of
15448 the tencode () routine.
15449
15450 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
15451 any pending state change (if any) that didn't take place in
15452 handle_it_state () as explained above. */
15453
15454 static void
15455 it_fsm_pre_encode (void)
15456 {
15457 if (inst.cond != COND_ALWAYS)
15458 inst.it_insn_type = INSIDE_IT_INSN;
15459 else
15460 inst.it_insn_type = OUTSIDE_IT_INSN;
15461
15462 now_it.state_handled = 0;
15463 }
15464
15465 /* IT state FSM handling function. */
15466
15467 static int
15468 handle_it_state (void)
15469 {
15470 now_it.state_handled = 1;
15471
15472 switch (now_it.state)
15473 {
15474 case OUTSIDE_IT_BLOCK:
15475 switch (inst.it_insn_type)
15476 {
15477 case OUTSIDE_IT_INSN:
15478 break;
15479
15480 case INSIDE_IT_INSN:
15481 case INSIDE_IT_LAST_INSN:
15482 if (thumb_mode == 0)
15483 {
15484 if (unified_syntax
15485 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
15486 as_tsktsk (_("Warning: conditional outside an IT block"\
15487 " for Thumb."));
15488 }
15489 else
15490 {
15491 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
15492 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
15493 {
15494 /* Automatically generate the IT instruction. */
15495 new_automatic_it_block (inst.cond);
15496 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
15497 close_automatic_it_block ();
15498 }
15499 else
15500 {
15501 inst.error = BAD_OUT_IT;
15502 return FAIL;
15503 }
15504 }
15505 break;
15506
15507 case IF_INSIDE_IT_LAST_INSN:
15508 case NEUTRAL_IT_INSN:
15509 break;
15510
15511 case IT_INSN:
15512 now_it.state = MANUAL_IT_BLOCK;
15513 now_it.block_length = 0;
15514 break;
15515 }
15516 break;
15517
15518 case AUTOMATIC_IT_BLOCK:
15519 /* Three things may happen now:
15520 a) We should increment current it block size;
15521 b) We should close current it block (closing insn or 4 insns);
15522 c) We should close current it block and start a new one (due
15523 to incompatible conditions or
15524 4 insns-length block reached). */
15525
15526 switch (inst.it_insn_type)
15527 {
15528 case OUTSIDE_IT_INSN:
15529 /* The closure of the block shall happen immediatelly,
15530 so any in_it_block () call reports the block as closed. */
15531 force_automatic_it_block_close ();
15532 break;
15533
15534 case INSIDE_IT_INSN:
15535 case INSIDE_IT_LAST_INSN:
15536 case IF_INSIDE_IT_LAST_INSN:
15537 now_it.block_length++;
15538
15539 if (now_it.block_length > 4
15540 || !now_it_compatible (inst.cond))
15541 {
15542 force_automatic_it_block_close ();
15543 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
15544 new_automatic_it_block (inst.cond);
15545 }
15546 else
15547 {
15548 now_it_add_mask (inst.cond);
15549 }
15550
15551 if (now_it.state == AUTOMATIC_IT_BLOCK
15552 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
15553 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
15554 close_automatic_it_block ();
15555 break;
15556
15557 case NEUTRAL_IT_INSN:
15558 now_it.block_length++;
15559
15560 if (now_it.block_length > 4)
15561 force_automatic_it_block_close ();
15562 else
15563 now_it_add_mask (now_it.cc & 1);
15564 break;
15565
15566 case IT_INSN:
15567 close_automatic_it_block ();
15568 now_it.state = MANUAL_IT_BLOCK;
15569 break;
15570 }
15571 break;
15572
15573 case MANUAL_IT_BLOCK:
15574 {
15575 /* Check conditional suffixes. */
15576 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
15577 int is_last;
15578 now_it.mask <<= 1;
15579 now_it.mask &= 0x1f;
15580 is_last = (now_it.mask == 0x10);
15581
15582 switch (inst.it_insn_type)
15583 {
15584 case OUTSIDE_IT_INSN:
15585 inst.error = BAD_NOT_IT;
15586 return FAIL;
15587
15588 case INSIDE_IT_INSN:
15589 if (cond != inst.cond)
15590 {
15591 inst.error = BAD_IT_COND;
15592 return FAIL;
15593 }
15594 break;
15595
15596 case INSIDE_IT_LAST_INSN:
15597 case IF_INSIDE_IT_LAST_INSN:
15598 if (cond != inst.cond)
15599 {
15600 inst.error = BAD_IT_COND;
15601 return FAIL;
15602 }
15603 if (!is_last)
15604 {
15605 inst.error = BAD_BRANCH;
15606 return FAIL;
15607 }
15608 break;
15609
15610 case NEUTRAL_IT_INSN:
15611 /* The BKPT instruction is unconditional even in an IT block. */
15612 break;
15613
15614 case IT_INSN:
15615 inst.error = BAD_IT_IT;
15616 return FAIL;
15617 }
15618 }
15619 break;
15620 }
15621
15622 return SUCCESS;
15623 }
15624
15625 static void
15626 it_fsm_post_encode (void)
15627 {
15628 int is_last;
15629
15630 if (!now_it.state_handled)
15631 handle_it_state ();
15632
15633 is_last = (now_it.mask == 0x10);
15634 if (is_last)
15635 {
15636 now_it.state = OUTSIDE_IT_BLOCK;
15637 now_it.mask = 0;
15638 }
15639 }
15640
15641 static void
15642 force_automatic_it_block_close (void)
15643 {
15644 if (now_it.state == AUTOMATIC_IT_BLOCK)
15645 {
15646 close_automatic_it_block ();
15647 now_it.state = OUTSIDE_IT_BLOCK;
15648 now_it.mask = 0;
15649 }
15650 }
15651
15652 static int
15653 in_it_block (void)
15654 {
15655 if (!now_it.state_handled)
15656 handle_it_state ();
15657
15658 return now_it.state != OUTSIDE_IT_BLOCK;
15659 }
15660
15661 void
15662 md_assemble (char *str)
15663 {
15664 char *p = str;
15665 const struct asm_opcode * opcode;
15666
15667 /* Align the previous label if needed. */
15668 if (last_label_seen != NULL)
15669 {
15670 symbol_set_frag (last_label_seen, frag_now);
15671 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
15672 S_SET_SEGMENT (last_label_seen, now_seg);
15673 }
15674
15675 memset (&inst, '\0', sizeof (inst));
15676 inst.reloc.type = BFD_RELOC_UNUSED;
15677
15678 opcode = opcode_lookup (&p);
15679 if (!opcode)
15680 {
15681 /* It wasn't an instruction, but it might be a register alias of
15682 the form alias .req reg, or a Neon .dn/.qn directive. */
15683 if (! create_register_alias (str, p)
15684 && ! create_neon_reg_alias (str, p))
15685 as_bad (_("bad instruction `%s'"), str);
15686
15687 return;
15688 }
15689
15690 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
15691 as_warn (_("s suffix on comparison instruction is deprecated"));
15692
15693 /* The value which unconditional instructions should have in place of the
15694 condition field. */
15695 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
15696
15697 if (thumb_mode)
15698 {
15699 arm_feature_set variant;
15700
15701 variant = cpu_variant;
15702 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
15703 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
15704 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
15705 /* Check that this instruction is supported for this CPU. */
15706 if (!opcode->tvariant
15707 || (thumb_mode == 1
15708 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
15709 {
15710 as_bad (_("selected processor does not support `%s'"), str);
15711 return;
15712 }
15713 if (inst.cond != COND_ALWAYS && !unified_syntax
15714 && opcode->tencode != do_t_branch)
15715 {
15716 as_bad (_("Thumb does not support conditional execution"));
15717 return;
15718 }
15719
15720 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
15721 {
15722 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
15723 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
15724 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
15725 {
15726 /* Two things are addressed here.
15727 1) Implicit require narrow instructions on Thumb-1.
15728 This avoids relaxation accidentally introducing Thumb-2
15729 instructions.
15730 2) Reject wide instructions in non Thumb-2 cores. */
15731 if (inst.size_req == 0)
15732 inst.size_req = 2;
15733 else if (inst.size_req == 4)
15734 {
15735 as_bad (_("selected processor does not support `%s'"), str);
15736 return;
15737 }
15738 }
15739 }
15740
15741 inst.instruction = opcode->tvalue;
15742
15743 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
15744 {
15745 /* Prepare the it_insn_type for those encodings that don't set
15746 it. */
15747 it_fsm_pre_encode ();
15748
15749 opcode->tencode ();
15750
15751 it_fsm_post_encode ();
15752 }
15753
15754 if (!(inst.error || inst.relax))
15755 {
15756 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
15757 inst.size = (inst.instruction > 0xffff ? 4 : 2);
15758 if (inst.size_req && inst.size_req != inst.size)
15759 {
15760 as_bad (_("cannot honor width suffix -- `%s'"), str);
15761 return;
15762 }
15763 }
15764
15765 /* Something has gone badly wrong if we try to relax a fixed size
15766 instruction. */
15767 gas_assert (inst.size_req == 0 || !inst.relax);
15768
15769 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15770 *opcode->tvariant);
15771 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
15772 set those bits when Thumb-2 32-bit instructions are seen. ie.
15773 anything other than bl/blx and v6-M instructions.
15774 This is overly pessimistic for relaxable instructions. */
15775 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
15776 || inst.relax)
15777 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
15778 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
15779 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
15780 arm_ext_v6t2);
15781
15782 check_neon_suffixes;
15783
15784 if (!inst.error)
15785 {
15786 mapping_state (MAP_THUMB);
15787 }
15788 }
15789 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
15790 {
15791 bfd_boolean is_bx;
15792
15793 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
15794 is_bx = (opcode->aencode == do_bx);
15795
15796 /* Check that this instruction is supported for this CPU. */
15797 if (!(is_bx && fix_v4bx)
15798 && !(opcode->avariant &&
15799 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
15800 {
15801 as_bad (_("selected processor does not support `%s'"), str);
15802 return;
15803 }
15804 if (inst.size_req)
15805 {
15806 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
15807 return;
15808 }
15809
15810 inst.instruction = opcode->avalue;
15811 if (opcode->tag == OT_unconditionalF)
15812 inst.instruction |= 0xF << 28;
15813 else
15814 inst.instruction |= inst.cond << 28;
15815 inst.size = INSN_SIZE;
15816 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
15817 {
15818 it_fsm_pre_encode ();
15819 opcode->aencode ();
15820 it_fsm_post_encode ();
15821 }
15822 /* Arm mode bx is marked as both v4T and v5 because it's still required
15823 on a hypothetical non-thumb v5 core. */
15824 if (is_bx)
15825 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
15826 else
15827 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
15828 *opcode->avariant);
15829
15830 check_neon_suffixes;
15831
15832 if (!inst.error)
15833 {
15834 mapping_state (MAP_ARM);
15835 }
15836 }
15837 else
15838 {
15839 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
15840 "-- `%s'"), str);
15841 return;
15842 }
15843 output_inst (str);
15844 }
15845
15846 static void
15847 check_it_blocks_finished (void)
15848 {
15849 #ifdef OBJ_ELF
15850 asection *sect;
15851
15852 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
15853 if (seg_info (sect)->tc_segment_info_data.current_it.state
15854 == MANUAL_IT_BLOCK)
15855 {
15856 as_warn (_("section '%s' finished with an open IT block."),
15857 sect->name);
15858 }
15859 #else
15860 if (now_it.state == MANUAL_IT_BLOCK)
15861 as_warn (_("file finished with an open IT block."));
15862 #endif
15863 }
15864
15865 /* Various frobbings of labels and their addresses. */
15866
15867 void
15868 arm_start_line_hook (void)
15869 {
15870 last_label_seen = NULL;
15871 }
15872
15873 void
15874 arm_frob_label (symbolS * sym)
15875 {
15876 last_label_seen = sym;
15877
15878 ARM_SET_THUMB (sym, thumb_mode);
15879
15880 #if defined OBJ_COFF || defined OBJ_ELF
15881 ARM_SET_INTERWORK (sym, support_interwork);
15882 #endif
15883
15884 force_automatic_it_block_close ();
15885
15886 /* Note - do not allow local symbols (.Lxxx) to be labelled
15887 as Thumb functions. This is because these labels, whilst
15888 they exist inside Thumb code, are not the entry points for
15889 possible ARM->Thumb calls. Also, these labels can be used
15890 as part of a computed goto or switch statement. eg gcc
15891 can generate code that looks like this:
15892
15893 ldr r2, [pc, .Laaa]
15894 lsl r3, r3, #2
15895 ldr r2, [r3, r2]
15896 mov pc, r2
15897
15898 .Lbbb: .word .Lxxx
15899 .Lccc: .word .Lyyy
15900 ..etc...
15901 .Laaa: .word Lbbb
15902
15903 The first instruction loads the address of the jump table.
15904 The second instruction converts a table index into a byte offset.
15905 The third instruction gets the jump address out of the table.
15906 The fourth instruction performs the jump.
15907
15908 If the address stored at .Laaa is that of a symbol which has the
15909 Thumb_Func bit set, then the linker will arrange for this address
15910 to have the bottom bit set, which in turn would mean that the
15911 address computation performed by the third instruction would end
15912 up with the bottom bit set. Since the ARM is capable of unaligned
15913 word loads, the instruction would then load the incorrect address
15914 out of the jump table, and chaos would ensue. */
15915 if (label_is_thumb_function_name
15916 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
15917 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
15918 {
15919 /* When the address of a Thumb function is taken the bottom
15920 bit of that address should be set. This will allow
15921 interworking between Arm and Thumb functions to work
15922 correctly. */
15923
15924 THUMB_SET_FUNC (sym, 1);
15925
15926 label_is_thumb_function_name = FALSE;
15927 }
15928
15929 dwarf2_emit_label (sym);
15930 }
15931
15932 bfd_boolean
15933 arm_data_in_code (void)
15934 {
15935 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
15936 {
15937 *input_line_pointer = '/';
15938 input_line_pointer += 5;
15939 *input_line_pointer = 0;
15940 return TRUE;
15941 }
15942
15943 return FALSE;
15944 }
15945
15946 char *
15947 arm_canonicalize_symbol_name (char * name)
15948 {
15949 int len;
15950
15951 if (thumb_mode && (len = strlen (name)) > 5
15952 && streq (name + len - 5, "/data"))
15953 *(name + len - 5) = 0;
15954
15955 return name;
15956 }
15957 \f
15958 /* Table of all register names defined by default. The user can
15959 define additional names with .req. Note that all register names
15960 should appear in both upper and lowercase variants. Some registers
15961 also have mixed-case names. */
15962
15963 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
15964 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
15965 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
15966 #define REGSET(p,t) \
15967 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
15968 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
15969 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
15970 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
15971 #define REGSETH(p,t) \
15972 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
15973 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
15974 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
15975 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
15976 #define REGSET2(p,t) \
15977 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
15978 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
15979 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
15980 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
15981
15982 static const struct reg_entry reg_names[] =
15983 {
15984 /* ARM integer registers. */
15985 REGSET(r, RN), REGSET(R, RN),
15986
15987 /* ATPCS synonyms. */
15988 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
15989 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
15990 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
15991
15992 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
15993 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
15994 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
15995
15996 /* Well-known aliases. */
15997 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
15998 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
15999
16000 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16001 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16002
16003 /* Coprocessor numbers. */
16004 REGSET(p, CP), REGSET(P, CP),
16005
16006 /* Coprocessor register numbers. The "cr" variants are for backward
16007 compatibility. */
16008 REGSET(c, CN), REGSET(C, CN),
16009 REGSET(cr, CN), REGSET(CR, CN),
16010
16011 /* FPA registers. */
16012 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16013 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16014
16015 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16016 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16017
16018 /* VFP SP registers. */
16019 REGSET(s,VFS), REGSET(S,VFS),
16020 REGSETH(s,VFS), REGSETH(S,VFS),
16021
16022 /* VFP DP Registers. */
16023 REGSET(d,VFD), REGSET(D,VFD),
16024 /* Extra Neon DP registers. */
16025 REGSETH(d,VFD), REGSETH(D,VFD),
16026
16027 /* Neon QP registers. */
16028 REGSET2(q,NQ), REGSET2(Q,NQ),
16029
16030 /* VFP control registers. */
16031 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
16032 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
16033 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
16034 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
16035 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
16036 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
16037
16038 /* Maverick DSP coprocessor registers. */
16039 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
16040 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
16041
16042 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
16043 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
16044 REGDEF(dspsc,0,DSPSC),
16045
16046 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
16047 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
16048 REGDEF(DSPSC,0,DSPSC),
16049
16050 /* iWMMXt data registers - p0, c0-15. */
16051 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
16052
16053 /* iWMMXt control registers - p1, c0-3. */
16054 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
16055 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
16056 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
16057 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
16058
16059 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
16060 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
16061 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
16062 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
16063 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
16064
16065 /* XScale accumulator registers. */
16066 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
16067 };
16068 #undef REGDEF
16069 #undef REGNUM
16070 #undef REGSET
16071
16072 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
16073 within psr_required_here. */
16074 static const struct asm_psr psrs[] =
16075 {
16076 /* Backward compatibility notation. Note that "all" is no longer
16077 truly all possible PSR bits. */
16078 {"all", PSR_c | PSR_f},
16079 {"flg", PSR_f},
16080 {"ctl", PSR_c},
16081
16082 /* Individual flags. */
16083 {"f", PSR_f},
16084 {"c", PSR_c},
16085 {"x", PSR_x},
16086 {"s", PSR_s},
16087 /* Combinations of flags. */
16088 {"fs", PSR_f | PSR_s},
16089 {"fx", PSR_f | PSR_x},
16090 {"fc", PSR_f | PSR_c},
16091 {"sf", PSR_s | PSR_f},
16092 {"sx", PSR_s | PSR_x},
16093 {"sc", PSR_s | PSR_c},
16094 {"xf", PSR_x | PSR_f},
16095 {"xs", PSR_x | PSR_s},
16096 {"xc", PSR_x | PSR_c},
16097 {"cf", PSR_c | PSR_f},
16098 {"cs", PSR_c | PSR_s},
16099 {"cx", PSR_c | PSR_x},
16100 {"fsx", PSR_f | PSR_s | PSR_x},
16101 {"fsc", PSR_f | PSR_s | PSR_c},
16102 {"fxs", PSR_f | PSR_x | PSR_s},
16103 {"fxc", PSR_f | PSR_x | PSR_c},
16104 {"fcs", PSR_f | PSR_c | PSR_s},
16105 {"fcx", PSR_f | PSR_c | PSR_x},
16106 {"sfx", PSR_s | PSR_f | PSR_x},
16107 {"sfc", PSR_s | PSR_f | PSR_c},
16108 {"sxf", PSR_s | PSR_x | PSR_f},
16109 {"sxc", PSR_s | PSR_x | PSR_c},
16110 {"scf", PSR_s | PSR_c | PSR_f},
16111 {"scx", PSR_s | PSR_c | PSR_x},
16112 {"xfs", PSR_x | PSR_f | PSR_s},
16113 {"xfc", PSR_x | PSR_f | PSR_c},
16114 {"xsf", PSR_x | PSR_s | PSR_f},
16115 {"xsc", PSR_x | PSR_s | PSR_c},
16116 {"xcf", PSR_x | PSR_c | PSR_f},
16117 {"xcs", PSR_x | PSR_c | PSR_s},
16118 {"cfs", PSR_c | PSR_f | PSR_s},
16119 {"cfx", PSR_c | PSR_f | PSR_x},
16120 {"csf", PSR_c | PSR_s | PSR_f},
16121 {"csx", PSR_c | PSR_s | PSR_x},
16122 {"cxf", PSR_c | PSR_x | PSR_f},
16123 {"cxs", PSR_c | PSR_x | PSR_s},
16124 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
16125 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
16126 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
16127 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
16128 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
16129 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
16130 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
16131 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
16132 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
16133 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
16134 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
16135 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
16136 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
16137 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
16138 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
16139 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
16140 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
16141 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
16142 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
16143 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
16144 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
16145 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
16146 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
16147 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
16148 };
16149
16150 /* Table of V7M psr names. */
16151 static const struct asm_psr v7m_psrs[] =
16152 {
16153 {"apsr", 0 }, {"APSR", 0 },
16154 {"iapsr", 1 }, {"IAPSR", 1 },
16155 {"eapsr", 2 }, {"EAPSR", 2 },
16156 {"psr", 3 }, {"PSR", 3 },
16157 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
16158 {"ipsr", 5 }, {"IPSR", 5 },
16159 {"epsr", 6 }, {"EPSR", 6 },
16160 {"iepsr", 7 }, {"IEPSR", 7 },
16161 {"msp", 8 }, {"MSP", 8 },
16162 {"psp", 9 }, {"PSP", 9 },
16163 {"primask", 16}, {"PRIMASK", 16},
16164 {"basepri", 17}, {"BASEPRI", 17},
16165 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
16166 {"faultmask", 19}, {"FAULTMASK", 19},
16167 {"control", 20}, {"CONTROL", 20}
16168 };
16169
16170 /* Table of all shift-in-operand names. */
16171 static const struct asm_shift_name shift_names [] =
16172 {
16173 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
16174 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
16175 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
16176 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
16177 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
16178 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
16179 };
16180
16181 /* Table of all explicit relocation names. */
16182 #ifdef OBJ_ELF
16183 static struct reloc_entry reloc_names[] =
16184 {
16185 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
16186 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
16187 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
16188 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
16189 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
16190 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
16191 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
16192 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
16193 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
16194 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
16195 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
16196 };
16197 #endif
16198
16199 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
16200 static const struct asm_cond conds[] =
16201 {
16202 {"eq", 0x0},
16203 {"ne", 0x1},
16204 {"cs", 0x2}, {"hs", 0x2},
16205 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
16206 {"mi", 0x4},
16207 {"pl", 0x5},
16208 {"vs", 0x6},
16209 {"vc", 0x7},
16210 {"hi", 0x8},
16211 {"ls", 0x9},
16212 {"ge", 0xa},
16213 {"lt", 0xb},
16214 {"gt", 0xc},
16215 {"le", 0xd},
16216 {"al", 0xe}
16217 };
16218
16219 static struct asm_barrier_opt barrier_opt_names[] =
16220 {
16221 { "sy", 0xf },
16222 { "un", 0x7 },
16223 { "st", 0xe },
16224 { "unst", 0x6 }
16225 };
16226
16227 /* Table of ARM-format instructions. */
16228
16229 /* Macros for gluing together operand strings. N.B. In all cases
16230 other than OPS0, the trailing OP_stop comes from default
16231 zero-initialization of the unspecified elements of the array. */
16232 #define OPS0() { OP_stop, }
16233 #define OPS1(a) { OP_##a, }
16234 #define OPS2(a,b) { OP_##a,OP_##b, }
16235 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
16236 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
16237 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
16238 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
16239
16240 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
16241 This is useful when mixing operands for ARM and THUMB, i.e. using the
16242 MIX_ARM_THUMB_OPERANDS macro.
16243 In order to use these macros, prefix the number of operands with _
16244 e.g. _3. */
16245 #define OPS_1(a) { a, }
16246 #define OPS_2(a,b) { a,b, }
16247 #define OPS_3(a,b,c) { a,b,c, }
16248 #define OPS_4(a,b,c,d) { a,b,c,d, }
16249 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
16250 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
16251
16252 /* These macros abstract out the exact format of the mnemonic table and
16253 save some repeated characters. */
16254
16255 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
16256 #define TxCE(mnem, op, top, nops, ops, ae, te) \
16257 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
16258 THUMB_VARIANT, do_##ae, do_##te }
16259
16260 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
16261 a T_MNEM_xyz enumerator. */
16262 #define TCE(mnem, aop, top, nops, ops, ae, te) \
16263 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
16264 #define tCE(mnem, aop, top, nops, ops, ae, te) \
16265 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16266
16267 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
16268 infix after the third character. */
16269 #define TxC3(mnem, op, top, nops, ops, ae, te) \
16270 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
16271 THUMB_VARIANT, do_##ae, do_##te }
16272 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
16273 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
16274 THUMB_VARIANT, do_##ae, do_##te }
16275 #define TC3(mnem, aop, top, nops, ops, ae, te) \
16276 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
16277 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
16278 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
16279 #define tC3(mnem, aop, top, nops, ops, ae, te) \
16280 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16281 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
16282 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
16283
16284 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
16285 appear in the condition table. */
16286 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
16287 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16288 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
16289
16290 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
16291 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
16292 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
16293 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
16294 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
16295 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
16296 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
16297 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
16298 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
16299 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
16300 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
16301 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
16302 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
16303 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
16304 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
16305 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
16306 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
16307 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
16308 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
16309 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
16310
16311 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
16312 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
16313 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
16314 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
16315
16316 /* Mnemonic that cannot be conditionalized. The ARM condition-code
16317 field is still 0xE. Many of the Thumb variants can be executed
16318 conditionally, so this is checked separately. */
16319 #define TUE(mnem, op, top, nops, ops, ae, te) \
16320 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
16321 THUMB_VARIANT, do_##ae, do_##te }
16322
16323 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
16324 condition code field. */
16325 #define TUF(mnem, op, top, nops, ops, ae, te) \
16326 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
16327 THUMB_VARIANT, do_##ae, do_##te }
16328
16329 /* ARM-only variants of all the above. */
16330 #define CE(mnem, op, nops, ops, ae) \
16331 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16332
16333 #define C3(mnem, op, nops, ops, ae) \
16334 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16335
16336 /* Legacy mnemonics that always have conditional infix after the third
16337 character. */
16338 #define CL(mnem, op, nops, ops, ae) \
16339 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16340 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16341
16342 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
16343 #define cCE(mnem, op, nops, ops, ae) \
16344 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16345
16346 /* Legacy coprocessor instructions where conditional infix and conditional
16347 suffix are ambiguous. For consistency this includes all FPA instructions,
16348 not just the potentially ambiguous ones. */
16349 #define cCL(mnem, op, nops, ops, ae) \
16350 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
16351 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16352
16353 /* Coprocessor, takes either a suffix or a position-3 infix
16354 (for an FPA corner case). */
16355 #define C3E(mnem, op, nops, ops, ae) \
16356 { mnem, OPS##nops ops, OT_csuf_or_in3, \
16357 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
16358
16359 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
16360 { m1 #m2 m3, OPS##nops ops, \
16361 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
16362 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
16363
16364 #define CM(m1, m2, op, nops, ops, ae) \
16365 xCM_ (m1, , m2, op, nops, ops, ae), \
16366 xCM_ (m1, eq, m2, op, nops, ops, ae), \
16367 xCM_ (m1, ne, m2, op, nops, ops, ae), \
16368 xCM_ (m1, cs, m2, op, nops, ops, ae), \
16369 xCM_ (m1, hs, m2, op, nops, ops, ae), \
16370 xCM_ (m1, cc, m2, op, nops, ops, ae), \
16371 xCM_ (m1, ul, m2, op, nops, ops, ae), \
16372 xCM_ (m1, lo, m2, op, nops, ops, ae), \
16373 xCM_ (m1, mi, m2, op, nops, ops, ae), \
16374 xCM_ (m1, pl, m2, op, nops, ops, ae), \
16375 xCM_ (m1, vs, m2, op, nops, ops, ae), \
16376 xCM_ (m1, vc, m2, op, nops, ops, ae), \
16377 xCM_ (m1, hi, m2, op, nops, ops, ae), \
16378 xCM_ (m1, ls, m2, op, nops, ops, ae), \
16379 xCM_ (m1, ge, m2, op, nops, ops, ae), \
16380 xCM_ (m1, lt, m2, op, nops, ops, ae), \
16381 xCM_ (m1, gt, m2, op, nops, ops, ae), \
16382 xCM_ (m1, le, m2, op, nops, ops, ae), \
16383 xCM_ (m1, al, m2, op, nops, ops, ae)
16384
16385 #define UE(mnem, op, nops, ops, ae) \
16386 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16387
16388 #define UF(mnem, op, nops, ops, ae) \
16389 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
16390
16391 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
16392 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
16393 use the same encoding function for each. */
16394 #define NUF(mnem, op, nops, ops, enc) \
16395 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
16396 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16397
16398 /* Neon data processing, version which indirects through neon_enc_tab for
16399 the various overloaded versions of opcodes. */
16400 #define nUF(mnem, op, nops, ops, enc) \
16401 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
16402 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16403
16404 /* Neon insn with conditional suffix for the ARM version, non-overloaded
16405 version. */
16406 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
16407 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
16408 THUMB_VARIANT, do_##enc, do_##enc }
16409
16410 #define NCE(mnem, op, nops, ops, enc) \
16411 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16412
16413 #define NCEF(mnem, op, nops, ops, enc) \
16414 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16415
16416 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
16417 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
16418 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
16419 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
16420
16421 #define nCE(mnem, op, nops, ops, enc) \
16422 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
16423
16424 #define nCEF(mnem, op, nops, ops, enc) \
16425 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
16426
16427 #define do_0 0
16428
16429 /* Thumb-only, unconditional. */
16430 #define UT(mnem, op, nops, ops, te) TUE (mnem, 0, op, nops, ops, 0, te)
16431
16432 static const struct asm_opcode insns[] =
16433 {
16434 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
16435 #define THUMB_VARIANT &arm_ext_v4t
16436 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
16437 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
16438 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
16439 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
16440 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
16441 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
16442 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
16443 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
16444 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
16445 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
16446 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
16447 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
16448 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
16449 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
16450 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
16451 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
16452
16453 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
16454 for setting PSR flag bits. They are obsolete in V6 and do not
16455 have Thumb equivalents. */
16456 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16457 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
16458 CL("tstp", 110f000, 2, (RR, SH), cmp),
16459 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16460 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
16461 CL("cmpp", 150f000, 2, (RR, SH), cmp),
16462 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16463 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
16464 CL("cmnp", 170f000, 2, (RR, SH), cmp),
16465
16466 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
16467 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
16468 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
16469 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
16470
16471 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
16472 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16473 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
16474 OP_RRnpc),
16475 OP_ADDRGLDR),ldst, t_ldst),
16476 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
16477
16478 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16479 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16480 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16481 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16482 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16483 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16484
16485 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
16486 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
16487 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
16488 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
16489
16490 /* Pseudo ops. */
16491 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
16492 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
16493 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
16494
16495 /* Thumb-compatibility pseudo ops. */
16496 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
16497 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
16498 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
16499 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
16500 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
16501 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
16502 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
16503 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
16504 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
16505 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
16506 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
16507 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
16508
16509 /* These may simplify to neg. */
16510 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
16511 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
16512
16513 #undef THUMB_VARIANT
16514 #define THUMB_VARIANT & arm_ext_v6
16515
16516 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
16517
16518 /* V1 instructions with no Thumb analogue prior to V6T2. */
16519 #undef THUMB_VARIANT
16520 #define THUMB_VARIANT & arm_ext_v6t2
16521
16522 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16523 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
16524 CL("teqp", 130f000, 2, (RR, SH), cmp),
16525
16526 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16527 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16528 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
16529 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
16530
16531 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16532 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16533
16534 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16535 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
16536
16537 /* V1 instructions with no Thumb analogue at all. */
16538 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
16539 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
16540
16541 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
16542 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
16543 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
16544 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
16545 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
16546 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
16547 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
16548 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
16549
16550 #undef ARM_VARIANT
16551 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
16552 #undef THUMB_VARIANT
16553 #define THUMB_VARIANT & arm_ext_v4t
16554
16555 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16556 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
16557
16558 #undef THUMB_VARIANT
16559 #define THUMB_VARIANT & arm_ext_v6t2
16560
16561 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16562 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
16563
16564 /* Generic coprocessor instructions. */
16565 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16566 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16567 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16568 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16569 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16570 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16571 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16572
16573 #undef ARM_VARIANT
16574 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
16575
16576 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16577 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
16578
16579 #undef ARM_VARIANT
16580 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
16581 #undef THUMB_VARIANT
16582 #define THUMB_VARIANT & arm_ext_msr
16583
16584 TCE("mrs", 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
16585 TCE("msr", 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
16586
16587 #undef ARM_VARIANT
16588 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
16589 #undef THUMB_VARIANT
16590 #define THUMB_VARIANT & arm_ext_v6t2
16591
16592 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16593 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16594 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16595 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16596 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16597 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16598 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
16599 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
16600
16601 #undef ARM_VARIANT
16602 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
16603 #undef THUMB_VARIANT
16604 #define THUMB_VARIANT & arm_ext_v4t
16605
16606 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16607 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16608 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16609 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16610 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16611 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
16612
16613 #undef ARM_VARIANT
16614 #define ARM_VARIANT & arm_ext_v4t_5
16615
16616 /* ARM Architecture 4T. */
16617 /* Note: bx (and blx) are required on V5, even if the processor does
16618 not support Thumb. */
16619 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
16620
16621 #undef ARM_VARIANT
16622 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
16623 #undef THUMB_VARIANT
16624 #define THUMB_VARIANT & arm_ext_v5t
16625
16626 /* Note: blx has 2 variants; the .value coded here is for
16627 BLX(2). Only this variant has conditional execution. */
16628 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
16629 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
16630
16631 #undef THUMB_VARIANT
16632 #define THUMB_VARIANT & arm_ext_v6t2
16633
16634 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
16635 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16636 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16637 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16638 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
16639 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
16640 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16641 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
16642
16643 #undef ARM_VARIANT
16644 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
16645 #undef THUMB_VARIANT
16646 #define THUMB_VARIANT &arm_ext_v5exp
16647
16648 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16649 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16650 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16651 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16652
16653 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16654 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
16655
16656 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16657 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16658 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16659 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
16660
16661 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16662 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16663 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16664 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16665
16666 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16667 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16668
16669 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16670 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16671 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16672 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
16673
16674 #undef ARM_VARIANT
16675 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
16676 #undef THUMB_VARIANT
16677 #define THUMB_VARIANT &arm_ext_v6t2
16678
16679 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
16680 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
16681 ldrd, t_ldstd),
16682 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
16683 ADDRGLDRS), ldrd, t_ldstd),
16684
16685 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16686 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16687
16688 #undef ARM_VARIANT
16689 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
16690
16691 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
16692
16693 #undef ARM_VARIANT
16694 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
16695 #undef THUMB_VARIANT
16696 #define THUMB_VARIANT & arm_ext_v6
16697
16698 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
16699 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
16700 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16701 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16702 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
16703 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16704 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16705 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16706 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16707 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
16708
16709 #undef THUMB_VARIANT
16710 #define THUMB_VARIANT & arm_ext_v6t2
16711
16712 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
16713 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16714 strex, t_strex),
16715 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16716 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
16717
16718 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
16719 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
16720
16721 /* ARM V6 not included in V7M. */
16722 #undef THUMB_VARIANT
16723 #define THUMB_VARIANT & arm_ext_v6_notm
16724 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16725 UF(rfeib, 9900a00, 1, (RRw), rfe),
16726 UF(rfeda, 8100a00, 1, (RRw), rfe),
16727 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16728 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
16729 UF(rfefa, 9900a00, 1, (RRw), rfe),
16730 UF(rfeea, 8100a00, 1, (RRw), rfe),
16731 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
16732 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
16733 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
16734 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
16735 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
16736
16737 /* ARM V6 not included in V7M (eg. integer SIMD). */
16738 #undef THUMB_VARIANT
16739 #define THUMB_VARIANT & arm_ext_v6_dsp
16740 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
16741 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
16742 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
16743 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16744 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16745 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16746 /* Old name for QASX. */
16747 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16748 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16749 /* Old name for QSAX. */
16750 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16751 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16752 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16753 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16754 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16755 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16756 /* Old name for SASX. */
16757 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16758 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16759 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16760 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16761 /* Old name for SHASX. */
16762 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16763 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16764 /* Old name for SHSAX. */
16765 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16766 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16767 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16768 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16769 /* Old name for SSAX. */
16770 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16771 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16772 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16773 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16774 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16775 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16776 /* Old name for UASX. */
16777 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16778 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16779 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16780 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16781 /* Old name for UHASX. */
16782 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16783 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16784 /* Old name for UHSAX. */
16785 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16786 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16787 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16788 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16789 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16790 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16791 /* Old name for UQASX. */
16792 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16793 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16794 /* Old name for UQSAX. */
16795 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16796 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16797 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16798 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16799 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16800 /* Old name for USAX. */
16801 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16802 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16803 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16804 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16805 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16806 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16807 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16808 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16809 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
16810 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
16811 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
16812 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16813 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16814 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16815 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16816 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16817 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16818 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16819 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
16820 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16821 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16822 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16823 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16824 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16825 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16826 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16827 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16828 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16829 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16830 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
16831 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
16832 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
16833 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
16834 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
16835
16836 #undef ARM_VARIANT
16837 #define ARM_VARIANT & arm_ext_v6k
16838 #undef THUMB_VARIANT
16839 #define THUMB_VARIANT & arm_ext_v6k
16840
16841 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
16842 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
16843 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
16844 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
16845
16846 #undef THUMB_VARIANT
16847 #define THUMB_VARIANT & arm_ext_v6_notm
16848 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
16849 ldrexd, t_ldrexd),
16850 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
16851 RRnpcb), strexd, t_strexd),
16852
16853 #undef THUMB_VARIANT
16854 #define THUMB_VARIANT & arm_ext_v6t2
16855 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
16856 rd_rn, rd_rn),
16857 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
16858 rd_rn, rd_rn),
16859 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16860 strex, rm_rd_rn),
16861 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
16862 strex, rm_rd_rn),
16863 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
16864
16865 #undef ARM_VARIANT
16866 #define ARM_VARIANT & arm_ext_v6z
16867
16868 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
16869
16870 #undef ARM_VARIANT
16871 #define ARM_VARIANT & arm_ext_v6t2
16872
16873 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
16874 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
16875 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16876 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
16877
16878 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
16879 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
16880 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
16881 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
16882
16883 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16884 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16885 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16886 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
16887
16888 UT("cbnz", b900, 2, (RR, EXP), t_cbz),
16889 UT("cbz", b100, 2, (RR, EXP), t_cbz),
16890
16891 /* ARM does not really have an IT instruction, so always allow it.
16892 The opcode is copied from Thumb in order to allow warnings in
16893 -mimplicit-it=[never | arm] modes. */
16894 #undef ARM_VARIANT
16895 #define ARM_VARIANT & arm_ext_v1
16896
16897 TUE("it", bf08, bf08, 1, (COND), it, t_it),
16898 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
16899 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
16900 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
16901 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
16902 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
16903 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
16904 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
16905 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
16906 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
16907 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
16908 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
16909 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
16910 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
16911 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
16912 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
16913 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
16914 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
16915
16916 /* Thumb2 only instructions. */
16917 #undef ARM_VARIANT
16918 #define ARM_VARIANT NULL
16919
16920 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16921 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
16922 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
16923 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
16924 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
16925 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
16926
16927 /* Thumb-2 hardware division instructions (R and M profiles only). */
16928 #undef THUMB_VARIANT
16929 #define THUMB_VARIANT & arm_ext_div
16930
16931 TCE("sdiv", 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
16932 TCE("udiv", 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
16933
16934 /* ARM V6M/V7 instructions. */
16935 #undef ARM_VARIANT
16936 #define ARM_VARIANT & arm_ext_barrier
16937 #undef THUMB_VARIANT
16938 #define THUMB_VARIANT & arm_ext_barrier
16939
16940 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
16941 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
16942 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
16943
16944 /* ARM V7 instructions. */
16945 #undef ARM_VARIANT
16946 #define ARM_VARIANT & arm_ext_v7
16947 #undef THUMB_VARIANT
16948 #define THUMB_VARIANT & arm_ext_v7
16949
16950 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
16951 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
16952
16953 #undef ARM_VARIANT
16954 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
16955
16956 cCE("wfs", e200110, 1, (RR), rd),
16957 cCE("rfs", e300110, 1, (RR), rd),
16958 cCE("wfc", e400110, 1, (RR), rd),
16959 cCE("rfc", e500110, 1, (RR), rd),
16960
16961 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
16962 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
16963 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
16964 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
16965
16966 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
16967 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
16968 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
16969 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
16970
16971 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
16972 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
16973 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
16974 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
16975 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
16976 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
16977 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
16978 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
16979 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
16980 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
16981 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
16982 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
16983
16984 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
16985 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
16986 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
16987 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
16988 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
16989 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
16990 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
16991 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
16992 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
16993 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
16994 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
16995 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
16996
16997 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
16998 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
16999 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
17000 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
17001 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
17002 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
17003 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
17004 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
17005 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
17006 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
17007 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
17008 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
17009
17010 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
17011 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
17012 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
17013 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
17014 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
17015 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
17016 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
17017 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
17018 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
17019 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
17020 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
17021 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
17022
17023 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
17024 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
17025 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
17026 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
17027 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
17028 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
17029 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
17030 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
17031 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
17032 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
17033 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
17034 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
17035
17036 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
17037 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
17038 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
17039 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
17040 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
17041 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
17042 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
17043 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
17044 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
17045 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
17046 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
17047 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
17048
17049 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
17050 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
17051 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
17052 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
17053 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
17054 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
17055 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
17056 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
17057 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
17058 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
17059 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
17060 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
17061
17062 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
17063 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
17064 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
17065 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
17066 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
17067 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
17068 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
17069 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
17070 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
17071 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
17072 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
17073 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
17074
17075 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
17076 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
17077 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
17078 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
17079 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
17080 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
17081 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
17082 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
17083 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
17084 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
17085 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
17086 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
17087
17088 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
17089 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
17090 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
17091 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
17092 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
17093 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
17094 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
17095 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
17096 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
17097 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
17098 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
17099 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
17100
17101 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
17102 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
17103 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
17104 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
17105 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
17106 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
17107 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
17108 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
17109 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
17110 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
17111 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
17112 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
17113
17114 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
17115 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
17116 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
17117 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
17118 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
17119 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
17120 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
17121 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
17122 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
17123 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
17124 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
17125 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
17126
17127 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
17128 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
17129 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
17130 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
17131 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
17132 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
17133 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
17134 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
17135 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
17136 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
17137 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
17138 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
17139
17140 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
17141 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
17142 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
17143 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
17144 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
17145 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
17146 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
17147 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
17148 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
17149 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
17150 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
17151 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
17152
17153 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
17154 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
17155 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
17156 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
17157 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
17158 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
17159 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
17160 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
17161 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
17162 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
17163 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
17164 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
17165
17166 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
17167 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
17168 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
17169 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
17170 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
17171 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
17172 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
17173 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
17174 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
17175 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
17176 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
17177 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
17178
17179 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
17180 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
17181 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
17182 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
17183 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
17184 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17185 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17186 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17187 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
17188 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
17189 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
17190 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
17191
17192 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
17193 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
17194 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
17195 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
17196 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
17197 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17198 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17199 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17200 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
17201 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
17202 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
17203 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
17204
17205 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
17206 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
17207 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
17208 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
17209 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
17210 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17211 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17212 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17213 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
17214 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
17215 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
17216 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
17217
17218 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
17219 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
17220 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
17221 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
17222 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
17223 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17224 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17225 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17226 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
17227 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
17228 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
17229 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
17230
17231 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
17232 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
17233 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
17234 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
17235 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
17236 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17237 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17238 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17239 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
17240 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
17241 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
17242 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
17243
17244 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
17245 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
17246 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
17247 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
17248 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
17249 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17250 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17251 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17252 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
17253 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
17254 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
17255 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
17256
17257 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
17258 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
17259 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
17260 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
17261 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
17262 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17263 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17264 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17265 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
17266 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
17267 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
17268 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
17269
17270 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
17271 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
17272 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
17273 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
17274 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
17275 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17276 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17277 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17278 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
17279 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
17280 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
17281 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
17282
17283 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
17284 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
17285 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
17286 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
17287 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
17288 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17289 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17290 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17291 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
17292 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
17293 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
17294 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
17295
17296 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
17297 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
17298 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
17299 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
17300 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
17301 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17302 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17303 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17304 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
17305 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
17306 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
17307 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
17308
17309 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17310 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17311 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17312 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17313 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17314 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17315 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17316 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17317 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17318 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17319 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17320 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17321
17322 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17323 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17324 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17325 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17326 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17327 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17328 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17329 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17330 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17331 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17332 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17333 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17334
17335 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
17336 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
17337 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
17338 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
17339 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
17340 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
17341 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
17342 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
17343 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
17344 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
17345 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
17346 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
17347
17348 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
17349 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
17350 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
17351 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
17352
17353 cCL("flts", e000110, 2, (RF, RR), rn_rd),
17354 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
17355 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
17356 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
17357 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
17358 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
17359 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
17360 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
17361 cCL("flte", e080110, 2, (RF, RR), rn_rd),
17362 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
17363 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
17364 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
17365
17366 /* The implementation of the FIX instruction is broken on some
17367 assemblers, in that it accepts a precision specifier as well as a
17368 rounding specifier, despite the fact that this is meaningless.
17369 To be more compatible, we accept it as well, though of course it
17370 does not set any bits. */
17371 cCE("fix", e100110, 2, (RR, RF), rd_rm),
17372 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
17373 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
17374 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
17375 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
17376 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
17377 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
17378 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
17379 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
17380 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
17381 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
17382 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
17383 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
17384
17385 /* Instructions that were new with the real FPA, call them V2. */
17386 #undef ARM_VARIANT
17387 #define ARM_VARIANT & fpu_fpa_ext_v2
17388
17389 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17390 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17391 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17392 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17393 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17394 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
17395
17396 #undef ARM_VARIANT
17397 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
17398
17399 /* Moves and type conversions. */
17400 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
17401 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
17402 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
17403 cCE("fmstat", ef1fa10, 0, (), noargs),
17404 cCE("vmrs", ef10a10, 2, (APSR_RR, RVC), vmrs),
17405 cCE("vmsr", ee10a10, 2, (RVC, RR), vmsr),
17406 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
17407 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
17408 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
17409 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17410 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
17411 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
17412 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
17413 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
17414
17415 /* Memory operations. */
17416 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17417 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
17418 cCE("fldmias", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17419 cCE("fldmfds", c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17420 cCE("fldmdbs", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17421 cCE("fldmeas", d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17422 cCE("fldmiax", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17423 cCE("fldmfdx", c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17424 cCE("fldmdbx", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17425 cCE("fldmeax", d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17426 cCE("fstmias", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17427 cCE("fstmeas", c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
17428 cCE("fstmdbs", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17429 cCE("fstmfds", d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
17430 cCE("fstmiax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17431 cCE("fstmeax", c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
17432 cCE("fstmdbx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17433 cCE("fstmfdx", d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
17434
17435 /* Monadic operations. */
17436 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
17437 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
17438 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
17439
17440 /* Dyadic operations. */
17441 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17442 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17443 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17444 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17445 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17446 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17447 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17448 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17449 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17450
17451 /* Comparisons. */
17452 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
17453 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
17454 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
17455 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
17456
17457 /* Double precision load/store are still present on single precision
17458 implementations. */
17459 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17460 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
17461 cCE("fldmiad", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17462 cCE("fldmfdd", c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17463 cCE("fldmdbd", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17464 cCE("fldmead", d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17465 cCE("fstmiad", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17466 cCE("fstmead", c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
17467 cCE("fstmdbd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17468 cCE("fstmfdd", d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
17469
17470 #undef ARM_VARIANT
17471 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
17472
17473 /* Moves and type conversions. */
17474 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17475 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17476 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17477 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
17478 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
17479 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
17480 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
17481 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
17482 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
17483 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17484 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17485 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
17486 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
17487
17488 /* Monadic operations. */
17489 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17490 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17491 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17492
17493 /* Dyadic operations. */
17494 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17495 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17496 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17497 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17498 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17499 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17500 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17501 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17502 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17503
17504 /* Comparisons. */
17505 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
17506 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
17507 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
17508 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
17509
17510 #undef ARM_VARIANT
17511 #define ARM_VARIANT & fpu_vfp_ext_v2
17512
17513 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
17514 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
17515 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
17516 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
17517
17518 /* Instructions which may belong to either the Neon or VFP instruction sets.
17519 Individual encoder functions perform additional architecture checks. */
17520 #undef ARM_VARIANT
17521 #define ARM_VARIANT & fpu_vfp_ext_v1xd
17522 #undef THUMB_VARIANT
17523 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
17524
17525 /* These mnemonics are unique to VFP. */
17526 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
17527 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
17528 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17529 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17530 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17531 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17532 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
17533 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
17534 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
17535 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
17536
17537 /* Mnemonics shared by Neon and VFP. */
17538 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
17539 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17540 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
17541
17542 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17543 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
17544
17545 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17546 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
17547
17548 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17549 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17550 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17551 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17552 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17553 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
17554 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17555 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
17556
17557 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
17558 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
17559 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
17560 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
17561
17562
17563 /* NOTE: All VMOV encoding is special-cased! */
17564 NCE(vmov, 0, 1, (VMOV), neon_mov),
17565 NCE(vmovq, 0, 1, (VMOV), neon_mov),
17566
17567 #undef THUMB_VARIANT
17568 #define THUMB_VARIANT & fpu_neon_ext_v1
17569 #undef ARM_VARIANT
17570 #define ARM_VARIANT & fpu_neon_ext_v1
17571
17572 /* Data processing with three registers of the same length. */
17573 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
17574 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
17575 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
17576 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17577 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17578 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17579 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17580 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
17581 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
17582 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
17583 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17584 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17585 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
17586 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
17587 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17588 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17589 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
17590 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
17591 /* If not immediate, fall back to neon_dyadic_i64_su.
17592 shl_imm should accept I8 I16 I32 I64,
17593 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
17594 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
17595 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
17596 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
17597 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
17598 /* Logic ops, types optional & ignored. */
17599 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17600 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17601 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17602 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17603 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17604 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17605 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
17606 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
17607 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
17608 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
17609 /* Bitfield ops, untyped. */
17610 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17611 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17612 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17613 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17614 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
17615 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
17616 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
17617 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17618 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17619 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17620 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17621 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
17622 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
17623 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
17624 back to neon_dyadic_if_su. */
17625 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17626 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17627 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
17628 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
17629 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17630 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17631 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
17632 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
17633 /* Comparison. Type I8 I16 I32 F32. */
17634 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
17635 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
17636 /* As above, D registers only. */
17637 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17638 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
17639 /* Int and float variants, signedness unimportant. */
17640 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17641 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
17642 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
17643 /* Add/sub take types I8 I16 I32 I64 F32. */
17644 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17645 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
17646 /* vtst takes sizes 8, 16, 32. */
17647 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
17648 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
17649 /* VMUL takes I8 I16 I32 F32 P8. */
17650 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
17651 /* VQD{R}MULH takes S16 S32. */
17652 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17653 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17654 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
17655 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
17656 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17657 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17658 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
17659 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
17660 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17661 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17662 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
17663 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
17664 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17665 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17666 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
17667 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
17668
17669 /* Two address, int/float. Types S8 S16 S32 F32. */
17670 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
17671 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
17672
17673 /* Data processing with two registers and a shift amount. */
17674 /* Right shifts, and variants with rounding.
17675 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
17676 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17677 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17678 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
17679 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
17680 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17681 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17682 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
17683 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
17684 /* Shift and insert. Sizes accepted 8 16 32 64. */
17685 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
17686 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
17687 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
17688 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
17689 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
17690 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
17691 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
17692 /* Right shift immediate, saturating & narrowing, with rounding variants.
17693 Types accepted S16 S32 S64 U16 U32 U64. */
17694 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17695 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
17696 /* As above, unsigned. Types accepted S16 S32 S64. */
17697 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17698 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
17699 /* Right shift narrowing. Types accepted I16 I32 I64. */
17700 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17701 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
17702 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
17703 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
17704 /* CVT with optional immediate for fixed-point variant. */
17705 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
17706
17707 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
17708 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
17709
17710 /* Data processing, three registers of different lengths. */
17711 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
17712 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
17713 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
17714 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
17715 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
17716 /* If not scalar, fall back to neon_dyadic_long.
17717 Vector types as above, scalar types S16 S32 U16 U32. */
17718 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17719 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
17720 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
17721 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17722 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
17723 /* Dyadic, narrowing insns. Types I16 I32 I64. */
17724 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17725 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17726 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17727 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
17728 /* Saturating doubling multiplies. Types S16 S32. */
17729 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17730 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17731 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
17732 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
17733 S16 S32 U16 U32. */
17734 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
17735
17736 /* Extract. Size 8. */
17737 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
17738 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
17739
17740 /* Two registers, miscellaneous. */
17741 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
17742 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
17743 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
17744 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
17745 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
17746 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
17747 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
17748 /* Vector replicate. Sizes 8 16 32. */
17749 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
17750 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
17751 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
17752 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
17753 /* VMOVN. Types I16 I32 I64. */
17754 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
17755 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
17756 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
17757 /* VQMOVUN. Types S16 S32 S64. */
17758 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
17759 /* VZIP / VUZP. Sizes 8 16 32. */
17760 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
17761 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
17762 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
17763 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
17764 /* VQABS / VQNEG. Types S8 S16 S32. */
17765 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17766 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
17767 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
17768 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
17769 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
17770 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
17771 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
17772 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
17773 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
17774 /* Reciprocal estimates. Types U32 F32. */
17775 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
17776 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
17777 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
17778 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
17779 /* VCLS. Types S8 S16 S32. */
17780 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
17781 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
17782 /* VCLZ. Types I8 I16 I32. */
17783 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
17784 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
17785 /* VCNT. Size 8. */
17786 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
17787 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
17788 /* Two address, untyped. */
17789 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
17790 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
17791 /* VTRN. Sizes 8 16 32. */
17792 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
17793 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
17794
17795 /* Table lookup. Size 8. */
17796 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17797 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
17798
17799 #undef THUMB_VARIANT
17800 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
17801 #undef ARM_VARIANT
17802 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
17803
17804 /* Neon element/structure load/store. */
17805 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17806 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
17807 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17808 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
17809 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17810 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
17811 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17812 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
17813
17814 #undef THUMB_VARIANT
17815 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
17816 #undef ARM_VARIANT
17817 #define ARM_VARIANT &fpu_vfp_ext_v3xd
17818 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
17819 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17820 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17821 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17822 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17823 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17824 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17825 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
17826 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
17827
17828 #undef THUMB_VARIANT
17829 #define THUMB_VARIANT & fpu_vfp_ext_v3
17830 #undef ARM_VARIANT
17831 #define ARM_VARIANT & fpu_vfp_ext_v3
17832
17833 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
17834 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17835 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17836 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17837 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17838 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17839 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17840 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
17841 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
17842
17843 #undef ARM_VARIANT
17844 #define ARM_VARIANT &fpu_vfp_ext_fma
17845 #undef THUMB_VARIANT
17846 #define THUMB_VARIANT &fpu_vfp_ext_fma
17847 /* Mnemonics shared by Neon and VFP. These are included in the
17848 VFP FMA variant; NEON and VFP FMA always includes the NEON
17849 FMA instructions. */
17850 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17851 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
17852 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
17853 the v form should always be used. */
17854 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17855 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
17856 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17857 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
17858 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17859 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
17860
17861 #undef THUMB_VARIANT
17862 #undef ARM_VARIANT
17863 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
17864
17865 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17866 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17867 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17868 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17869 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17870 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
17871 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
17872 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
17873
17874 #undef ARM_VARIANT
17875 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
17876
17877 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
17878 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
17879 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
17880 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
17881 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
17882 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
17883 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
17884 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
17885 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
17886 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17887 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17888 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
17889 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17890 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17891 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
17892 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17893 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17894 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
17895 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
17896 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
17897 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17898 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17899 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17900 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17901 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17902 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
17903 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
17904 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
17905 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
17906 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
17907 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
17908 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
17909 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
17910 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
17911 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
17912 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
17913 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
17914 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17915 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17916 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17917 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17918 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17919 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17920 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17921 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17922 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17923 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
17924 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17925 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17926 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17927 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17928 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17929 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17930 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17931 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17932 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17933 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17934 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17935 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17936 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17937 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17938 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17939 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17940 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17941 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17942 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17943 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17944 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
17945 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
17946 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
17947 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17948 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17949 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17950 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17951 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17952 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17953 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17954 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17955 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17956 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17957 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17958 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17959 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17960 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17961 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17962 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17963 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17964 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17965 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
17966 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17967 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17968 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17969 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17970 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17971 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17972 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17973 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17974 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17975 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17976 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17977 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17978 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17979 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17980 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17981 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17982 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17983 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17984 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17985 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17986 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
17987 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
17988 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17989 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17990 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17991 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17992 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17993 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17994 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17995 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17996 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17997 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
17998 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
17999 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18000 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18001 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18002 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18003 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18004 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
18005 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
18006 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18007 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18008 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18009 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18010 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18011 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18012 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18013 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18014 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18015 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18016 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18017 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18018 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18019 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
18020 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
18021 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
18022 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
18023 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
18024 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
18025 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18026 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18027 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18028 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
18029 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
18030 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
18031 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
18032 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
18033 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
18034 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18035 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18036 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18037 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18038 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
18039
18040 #undef ARM_VARIANT
18041 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
18042
18043 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
18044 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
18045 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
18046 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
18047 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
18048 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
18049 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18050 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18051 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18052 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18053 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18054 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18055 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18056 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18057 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18058 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18059 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18060 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18061 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18062 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18063 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
18064 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18065 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18066 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18067 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18068 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18069 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18070 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18071 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18072 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18073 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18074 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18075 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18076 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18077 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18078 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18079 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18080 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18081 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18082 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18083 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18084 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18085 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18086 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18087 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18088 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18089 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18090 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18091 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18092 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18093 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18094 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18095 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18096 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18097 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18098 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18099 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18100
18101 #undef ARM_VARIANT
18102 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
18103
18104 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18105 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18106 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18107 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18108 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
18109 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
18110 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
18111 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
18112 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
18113 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
18114 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
18115 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
18116 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
18117 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
18118 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
18119 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
18120 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
18121 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
18122 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
18123 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
18124 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
18125 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
18126 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
18127 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
18128 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
18129 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
18130 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
18131 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
18132 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
18133 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
18134 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
18135 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
18136 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
18137 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
18138 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
18139 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
18140 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
18141 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
18142 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
18143 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
18144 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
18145 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
18146 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
18147 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
18148 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
18149 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
18150 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
18151 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
18152 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
18153 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
18154 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
18155 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
18156 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
18157 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
18158 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
18159 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
18160 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
18161 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
18162 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
18163 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
18164 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
18165 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
18166 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
18167 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
18168 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18169 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18170 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18171 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18172 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18173 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
18174 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18175 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
18176 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18177 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
18178 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18179 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
18180 };
18181 #undef ARM_VARIANT
18182 #undef THUMB_VARIANT
18183 #undef TCE
18184 #undef TCM
18185 #undef TUE
18186 #undef TUF
18187 #undef TCC
18188 #undef cCE
18189 #undef cCL
18190 #undef C3E
18191 #undef CE
18192 #undef CM
18193 #undef UE
18194 #undef UF
18195 #undef UT
18196 #undef NUF
18197 #undef nUF
18198 #undef NCE
18199 #undef nCE
18200 #undef OPS0
18201 #undef OPS1
18202 #undef OPS2
18203 #undef OPS3
18204 #undef OPS4
18205 #undef OPS5
18206 #undef OPS6
18207 #undef do_0
18208 \f
18209 /* MD interface: bits in the object file. */
18210
18211 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
18212 for use in the a.out file, and stores them in the array pointed to by buf.
18213 This knows about the endian-ness of the target machine and does
18214 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
18215 2 (short) and 4 (long) Floating numbers are put out as a series of
18216 LITTLENUMS (shorts, here at least). */
18217
18218 void
18219 md_number_to_chars (char * buf, valueT val, int n)
18220 {
18221 if (target_big_endian)
18222 number_to_chars_bigendian (buf, val, n);
18223 else
18224 number_to_chars_littleendian (buf, val, n);
18225 }
18226
18227 static valueT
18228 md_chars_to_number (char * buf, int n)
18229 {
18230 valueT result = 0;
18231 unsigned char * where = (unsigned char *) buf;
18232
18233 if (target_big_endian)
18234 {
18235 while (n--)
18236 {
18237 result <<= 8;
18238 result |= (*where++ & 255);
18239 }
18240 }
18241 else
18242 {
18243 while (n--)
18244 {
18245 result <<= 8;
18246 result |= (where[n] & 255);
18247 }
18248 }
18249
18250 return result;
18251 }
18252
18253 /* MD interface: Sections. */
18254
18255 /* Estimate the size of a frag before relaxing. Assume everything fits in
18256 2 bytes. */
18257
18258 int
18259 md_estimate_size_before_relax (fragS * fragp,
18260 segT segtype ATTRIBUTE_UNUSED)
18261 {
18262 fragp->fr_var = 2;
18263 return 2;
18264 }
18265
18266 /* Convert a machine dependent frag. */
18267
18268 void
18269 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
18270 {
18271 unsigned long insn;
18272 unsigned long old_op;
18273 char *buf;
18274 expressionS exp;
18275 fixS *fixp;
18276 int reloc_type;
18277 int pc_rel;
18278 int opcode;
18279
18280 buf = fragp->fr_literal + fragp->fr_fix;
18281
18282 old_op = bfd_get_16(abfd, buf);
18283 if (fragp->fr_symbol)
18284 {
18285 exp.X_op = O_symbol;
18286 exp.X_add_symbol = fragp->fr_symbol;
18287 }
18288 else
18289 {
18290 exp.X_op = O_constant;
18291 }
18292 exp.X_add_number = fragp->fr_offset;
18293 opcode = fragp->fr_subtype;
18294 switch (opcode)
18295 {
18296 case T_MNEM_ldr_pc:
18297 case T_MNEM_ldr_pc2:
18298 case T_MNEM_ldr_sp:
18299 case T_MNEM_str_sp:
18300 case T_MNEM_ldr:
18301 case T_MNEM_ldrb:
18302 case T_MNEM_ldrh:
18303 case T_MNEM_str:
18304 case T_MNEM_strb:
18305 case T_MNEM_strh:
18306 if (fragp->fr_var == 4)
18307 {
18308 insn = THUMB_OP32 (opcode);
18309 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
18310 {
18311 insn |= (old_op & 0x700) << 4;
18312 }
18313 else
18314 {
18315 insn |= (old_op & 7) << 12;
18316 insn |= (old_op & 0x38) << 13;
18317 }
18318 insn |= 0x00000c00;
18319 put_thumb32_insn (buf, insn);
18320 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
18321 }
18322 else
18323 {
18324 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
18325 }
18326 pc_rel = (opcode == T_MNEM_ldr_pc2);
18327 break;
18328 case T_MNEM_adr:
18329 if (fragp->fr_var == 4)
18330 {
18331 insn = THUMB_OP32 (opcode);
18332 insn |= (old_op & 0xf0) << 4;
18333 put_thumb32_insn (buf, insn);
18334 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
18335 }
18336 else
18337 {
18338 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18339 exp.X_add_number -= 4;
18340 }
18341 pc_rel = 1;
18342 break;
18343 case T_MNEM_mov:
18344 case T_MNEM_movs:
18345 case T_MNEM_cmp:
18346 case T_MNEM_cmn:
18347 if (fragp->fr_var == 4)
18348 {
18349 int r0off = (opcode == T_MNEM_mov
18350 || opcode == T_MNEM_movs) ? 0 : 8;
18351 insn = THUMB_OP32 (opcode);
18352 insn = (insn & 0xe1ffffff) | 0x10000000;
18353 insn |= (old_op & 0x700) << r0off;
18354 put_thumb32_insn (buf, insn);
18355 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18356 }
18357 else
18358 {
18359 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
18360 }
18361 pc_rel = 0;
18362 break;
18363 case T_MNEM_b:
18364 if (fragp->fr_var == 4)
18365 {
18366 insn = THUMB_OP32(opcode);
18367 put_thumb32_insn (buf, insn);
18368 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
18369 }
18370 else
18371 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
18372 pc_rel = 1;
18373 break;
18374 case T_MNEM_bcond:
18375 if (fragp->fr_var == 4)
18376 {
18377 insn = THUMB_OP32(opcode);
18378 insn |= (old_op & 0xf00) << 14;
18379 put_thumb32_insn (buf, insn);
18380 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
18381 }
18382 else
18383 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
18384 pc_rel = 1;
18385 break;
18386 case T_MNEM_add_sp:
18387 case T_MNEM_add_pc:
18388 case T_MNEM_inc_sp:
18389 case T_MNEM_dec_sp:
18390 if (fragp->fr_var == 4)
18391 {
18392 /* ??? Choose between add and addw. */
18393 insn = THUMB_OP32 (opcode);
18394 insn |= (old_op & 0xf0) << 4;
18395 put_thumb32_insn (buf, insn);
18396 if (opcode == T_MNEM_add_pc)
18397 reloc_type = BFD_RELOC_ARM_T32_IMM12;
18398 else
18399 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18400 }
18401 else
18402 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18403 pc_rel = 0;
18404 break;
18405
18406 case T_MNEM_addi:
18407 case T_MNEM_addis:
18408 case T_MNEM_subi:
18409 case T_MNEM_subis:
18410 if (fragp->fr_var == 4)
18411 {
18412 insn = THUMB_OP32 (opcode);
18413 insn |= (old_op & 0xf0) << 4;
18414 insn |= (old_op & 0xf) << 16;
18415 put_thumb32_insn (buf, insn);
18416 if (insn & (1 << 20))
18417 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
18418 else
18419 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
18420 }
18421 else
18422 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
18423 pc_rel = 0;
18424 break;
18425 default:
18426 abort ();
18427 }
18428 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
18429 (enum bfd_reloc_code_real) reloc_type);
18430 fixp->fx_file = fragp->fr_file;
18431 fixp->fx_line = fragp->fr_line;
18432 fragp->fr_fix += fragp->fr_var;
18433 }
18434
18435 /* Return the size of a relaxable immediate operand instruction.
18436 SHIFT and SIZE specify the form of the allowable immediate. */
18437 static int
18438 relax_immediate (fragS *fragp, int size, int shift)
18439 {
18440 offsetT offset;
18441 offsetT mask;
18442 offsetT low;
18443
18444 /* ??? Should be able to do better than this. */
18445 if (fragp->fr_symbol)
18446 return 4;
18447
18448 low = (1 << shift) - 1;
18449 mask = (1 << (shift + size)) - (1 << shift);
18450 offset = fragp->fr_offset;
18451 /* Force misaligned offsets to 32-bit variant. */
18452 if (offset & low)
18453 return 4;
18454 if (offset & ~mask)
18455 return 4;
18456 return 2;
18457 }
18458
18459 /* Get the address of a symbol during relaxation. */
18460 static addressT
18461 relaxed_symbol_addr (fragS *fragp, long stretch)
18462 {
18463 fragS *sym_frag;
18464 addressT addr;
18465 symbolS *sym;
18466
18467 sym = fragp->fr_symbol;
18468 sym_frag = symbol_get_frag (sym);
18469 know (S_GET_SEGMENT (sym) != absolute_section
18470 || sym_frag == &zero_address_frag);
18471 addr = S_GET_VALUE (sym) + fragp->fr_offset;
18472
18473 /* If frag has yet to be reached on this pass, assume it will
18474 move by STRETCH just as we did. If this is not so, it will
18475 be because some frag between grows, and that will force
18476 another pass. */
18477
18478 if (stretch != 0
18479 && sym_frag->relax_marker != fragp->relax_marker)
18480 {
18481 fragS *f;
18482
18483 /* Adjust stretch for any alignment frag. Note that if have
18484 been expanding the earlier code, the symbol may be
18485 defined in what appears to be an earlier frag. FIXME:
18486 This doesn't handle the fr_subtype field, which specifies
18487 a maximum number of bytes to skip when doing an
18488 alignment. */
18489 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
18490 {
18491 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
18492 {
18493 if (stretch < 0)
18494 stretch = - ((- stretch)
18495 & ~ ((1 << (int) f->fr_offset) - 1));
18496 else
18497 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
18498 if (stretch == 0)
18499 break;
18500 }
18501 }
18502 if (f != NULL)
18503 addr += stretch;
18504 }
18505
18506 return addr;
18507 }
18508
18509 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
18510 load. */
18511 static int
18512 relax_adr (fragS *fragp, asection *sec, long stretch)
18513 {
18514 addressT addr;
18515 offsetT val;
18516
18517 /* Assume worst case for symbols not known to be in the same section. */
18518 if (fragp->fr_symbol == NULL
18519 || !S_IS_DEFINED (fragp->fr_symbol)
18520 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18521 return 4;
18522
18523 val = relaxed_symbol_addr (fragp, stretch);
18524 addr = fragp->fr_address + fragp->fr_fix;
18525 addr = (addr + 4) & ~3;
18526 /* Force misaligned targets to 32-bit variant. */
18527 if (val & 3)
18528 return 4;
18529 val -= addr;
18530 if (val < 0 || val > 1020)
18531 return 4;
18532 return 2;
18533 }
18534
18535 /* Return the size of a relaxable add/sub immediate instruction. */
18536 static int
18537 relax_addsub (fragS *fragp, asection *sec)
18538 {
18539 char *buf;
18540 int op;
18541
18542 buf = fragp->fr_literal + fragp->fr_fix;
18543 op = bfd_get_16(sec->owner, buf);
18544 if ((op & 0xf) == ((op >> 4) & 0xf))
18545 return relax_immediate (fragp, 8, 0);
18546 else
18547 return relax_immediate (fragp, 3, 0);
18548 }
18549
18550
18551 /* Return the size of a relaxable branch instruction. BITS is the
18552 size of the offset field in the narrow instruction. */
18553
18554 static int
18555 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
18556 {
18557 addressT addr;
18558 offsetT val;
18559 offsetT limit;
18560
18561 /* Assume worst case for symbols not known to be in the same section. */
18562 if (!S_IS_DEFINED (fragp->fr_symbol)
18563 || sec != S_GET_SEGMENT (fragp->fr_symbol))
18564 return 4;
18565
18566 #ifdef OBJ_ELF
18567 if (S_IS_DEFINED (fragp->fr_symbol)
18568 && ARM_IS_FUNC (fragp->fr_symbol))
18569 return 4;
18570 #endif
18571
18572 val = relaxed_symbol_addr (fragp, stretch);
18573 addr = fragp->fr_address + fragp->fr_fix + 4;
18574 val -= addr;
18575
18576 /* Offset is a signed value *2 */
18577 limit = 1 << bits;
18578 if (val >= limit || val < -limit)
18579 return 4;
18580 return 2;
18581 }
18582
18583
18584 /* Relax a machine dependent frag. This returns the amount by which
18585 the current size of the frag should change. */
18586
18587 int
18588 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
18589 {
18590 int oldsize;
18591 int newsize;
18592
18593 oldsize = fragp->fr_var;
18594 switch (fragp->fr_subtype)
18595 {
18596 case T_MNEM_ldr_pc2:
18597 newsize = relax_adr (fragp, sec, stretch);
18598 break;
18599 case T_MNEM_ldr_pc:
18600 case T_MNEM_ldr_sp:
18601 case T_MNEM_str_sp:
18602 newsize = relax_immediate (fragp, 8, 2);
18603 break;
18604 case T_MNEM_ldr:
18605 case T_MNEM_str:
18606 newsize = relax_immediate (fragp, 5, 2);
18607 break;
18608 case T_MNEM_ldrh:
18609 case T_MNEM_strh:
18610 newsize = relax_immediate (fragp, 5, 1);
18611 break;
18612 case T_MNEM_ldrb:
18613 case T_MNEM_strb:
18614 newsize = relax_immediate (fragp, 5, 0);
18615 break;
18616 case T_MNEM_adr:
18617 newsize = relax_adr (fragp, sec, stretch);
18618 break;
18619 case T_MNEM_mov:
18620 case T_MNEM_movs:
18621 case T_MNEM_cmp:
18622 case T_MNEM_cmn:
18623 newsize = relax_immediate (fragp, 8, 0);
18624 break;
18625 case T_MNEM_b:
18626 newsize = relax_branch (fragp, sec, 11, stretch);
18627 break;
18628 case T_MNEM_bcond:
18629 newsize = relax_branch (fragp, sec, 8, stretch);
18630 break;
18631 case T_MNEM_add_sp:
18632 case T_MNEM_add_pc:
18633 newsize = relax_immediate (fragp, 8, 2);
18634 break;
18635 case T_MNEM_inc_sp:
18636 case T_MNEM_dec_sp:
18637 newsize = relax_immediate (fragp, 7, 2);
18638 break;
18639 case T_MNEM_addi:
18640 case T_MNEM_addis:
18641 case T_MNEM_subi:
18642 case T_MNEM_subis:
18643 newsize = relax_addsub (fragp, sec);
18644 break;
18645 default:
18646 abort ();
18647 }
18648
18649 fragp->fr_var = newsize;
18650 /* Freeze wide instructions that are at or before the same location as
18651 in the previous pass. This avoids infinite loops.
18652 Don't freeze them unconditionally because targets may be artificially
18653 misaligned by the expansion of preceding frags. */
18654 if (stretch <= 0 && newsize > 2)
18655 {
18656 md_convert_frag (sec->owner, sec, fragp);
18657 frag_wane (fragp);
18658 }
18659
18660 return newsize - oldsize;
18661 }
18662
18663 /* Round up a section size to the appropriate boundary. */
18664
18665 valueT
18666 md_section_align (segT segment ATTRIBUTE_UNUSED,
18667 valueT size)
18668 {
18669 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
18670 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
18671 {
18672 /* For a.out, force the section size to be aligned. If we don't do
18673 this, BFD will align it for us, but it will not write out the
18674 final bytes of the section. This may be a bug in BFD, but it is
18675 easier to fix it here since that is how the other a.out targets
18676 work. */
18677 int align;
18678
18679 align = bfd_get_section_alignment (stdoutput, segment);
18680 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
18681 }
18682 #endif
18683
18684 return size;
18685 }
18686
18687 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
18688 of an rs_align_code fragment. */
18689
18690 void
18691 arm_handle_align (fragS * fragP)
18692 {
18693 static char const arm_noop[2][2][4] =
18694 {
18695 { /* ARMv1 */
18696 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
18697 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
18698 },
18699 { /* ARMv6k */
18700 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
18701 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
18702 },
18703 };
18704 static char const thumb_noop[2][2][2] =
18705 {
18706 { /* Thumb-1 */
18707 {0xc0, 0x46}, /* LE */
18708 {0x46, 0xc0}, /* BE */
18709 },
18710 { /* Thumb-2 */
18711 {0x00, 0xbf}, /* LE */
18712 {0xbf, 0x00} /* BE */
18713 }
18714 };
18715 static char const wide_thumb_noop[2][4] =
18716 { /* Wide Thumb-2 */
18717 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
18718 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
18719 };
18720
18721 unsigned bytes, fix, noop_size;
18722 char * p;
18723 const char * noop;
18724 const char *narrow_noop = NULL;
18725 #ifdef OBJ_ELF
18726 enum mstate state;
18727 #endif
18728
18729 if (fragP->fr_type != rs_align_code)
18730 return;
18731
18732 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
18733 p = fragP->fr_literal + fragP->fr_fix;
18734 fix = 0;
18735
18736 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
18737 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
18738
18739 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
18740
18741 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
18742 {
18743 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
18744 {
18745 narrow_noop = thumb_noop[1][target_big_endian];
18746 noop = wide_thumb_noop[target_big_endian];
18747 }
18748 else
18749 noop = thumb_noop[0][target_big_endian];
18750 noop_size = 2;
18751 #ifdef OBJ_ELF
18752 state = MAP_THUMB;
18753 #endif
18754 }
18755 else
18756 {
18757 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
18758 [target_big_endian];
18759 noop_size = 4;
18760 #ifdef OBJ_ELF
18761 state = MAP_ARM;
18762 #endif
18763 }
18764
18765 fragP->fr_var = noop_size;
18766
18767 if (bytes & (noop_size - 1))
18768 {
18769 fix = bytes & (noop_size - 1);
18770 #ifdef OBJ_ELF
18771 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
18772 #endif
18773 memset (p, 0, fix);
18774 p += fix;
18775 bytes -= fix;
18776 }
18777
18778 if (narrow_noop)
18779 {
18780 if (bytes & noop_size)
18781 {
18782 /* Insert a narrow noop. */
18783 memcpy (p, narrow_noop, noop_size);
18784 p += noop_size;
18785 bytes -= noop_size;
18786 fix += noop_size;
18787 }
18788
18789 /* Use wide noops for the remainder */
18790 noop_size = 4;
18791 }
18792
18793 while (bytes >= noop_size)
18794 {
18795 memcpy (p, noop, noop_size);
18796 p += noop_size;
18797 bytes -= noop_size;
18798 fix += noop_size;
18799 }
18800
18801 fragP->fr_fix += fix;
18802 }
18803
18804 /* Called from md_do_align. Used to create an alignment
18805 frag in a code section. */
18806
18807 void
18808 arm_frag_align_code (int n, int max)
18809 {
18810 char * p;
18811
18812 /* We assume that there will never be a requirement
18813 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
18814 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
18815 {
18816 char err_msg[128];
18817
18818 sprintf (err_msg,
18819 _("alignments greater than %d bytes not supported in .text sections."),
18820 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
18821 as_fatal ("%s", err_msg);
18822 }
18823
18824 p = frag_var (rs_align_code,
18825 MAX_MEM_FOR_RS_ALIGN_CODE,
18826 1,
18827 (relax_substateT) max,
18828 (symbolS *) NULL,
18829 (offsetT) n,
18830 (char *) NULL);
18831 *p = 0;
18832 }
18833
18834 /* Perform target specific initialisation of a frag.
18835 Note - despite the name this initialisation is not done when the frag
18836 is created, but only when its type is assigned. A frag can be created
18837 and used a long time before its type is set, so beware of assuming that
18838 this initialisationis performed first. */
18839
18840 #ifndef OBJ_ELF
18841 void
18842 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
18843 {
18844 /* Record whether this frag is in an ARM or a THUMB area. */
18845 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18846 }
18847
18848 #else /* OBJ_ELF is defined. */
18849 void
18850 arm_init_frag (fragS * fragP, int max_chars)
18851 {
18852 /* If the current ARM vs THUMB mode has not already
18853 been recorded into this frag then do so now. */
18854 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
18855 {
18856 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
18857
18858 /* Record a mapping symbol for alignment frags. We will delete this
18859 later if the alignment ends up empty. */
18860 switch (fragP->fr_type)
18861 {
18862 case rs_align:
18863 case rs_align_test:
18864 case rs_fill:
18865 mapping_state_2 (MAP_DATA, max_chars);
18866 break;
18867 case rs_align_code:
18868 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
18869 break;
18870 default:
18871 break;
18872 }
18873 }
18874 }
18875
18876 /* When we change sections we need to issue a new mapping symbol. */
18877
18878 void
18879 arm_elf_change_section (void)
18880 {
18881 /* Link an unlinked unwind index table section to the .text section. */
18882 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
18883 && elf_linked_to_section (now_seg) == NULL)
18884 elf_linked_to_section (now_seg) = text_section;
18885 }
18886
18887 int
18888 arm_elf_section_type (const char * str, size_t len)
18889 {
18890 if (len == 5 && strncmp (str, "exidx", 5) == 0)
18891 return SHT_ARM_EXIDX;
18892
18893 return -1;
18894 }
18895 \f
18896 /* Code to deal with unwinding tables. */
18897
18898 static void add_unwind_adjustsp (offsetT);
18899
18900 /* Generate any deferred unwind frame offset. */
18901
18902 static void
18903 flush_pending_unwind (void)
18904 {
18905 offsetT offset;
18906
18907 offset = unwind.pending_offset;
18908 unwind.pending_offset = 0;
18909 if (offset != 0)
18910 add_unwind_adjustsp (offset);
18911 }
18912
18913 /* Add an opcode to this list for this function. Two-byte opcodes should
18914 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
18915 order. */
18916
18917 static void
18918 add_unwind_opcode (valueT op, int length)
18919 {
18920 /* Add any deferred stack adjustment. */
18921 if (unwind.pending_offset)
18922 flush_pending_unwind ();
18923
18924 unwind.sp_restored = 0;
18925
18926 if (unwind.opcode_count + length > unwind.opcode_alloc)
18927 {
18928 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
18929 if (unwind.opcodes)
18930 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
18931 unwind.opcode_alloc);
18932 else
18933 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
18934 }
18935 while (length > 0)
18936 {
18937 length--;
18938 unwind.opcodes[unwind.opcode_count] = op & 0xff;
18939 op >>= 8;
18940 unwind.opcode_count++;
18941 }
18942 }
18943
18944 /* Add unwind opcodes to adjust the stack pointer. */
18945
18946 static void
18947 add_unwind_adjustsp (offsetT offset)
18948 {
18949 valueT op;
18950
18951 if (offset > 0x200)
18952 {
18953 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
18954 char bytes[5];
18955 int n;
18956 valueT o;
18957
18958 /* Long form: 0xb2, uleb128. */
18959 /* This might not fit in a word so add the individual bytes,
18960 remembering the list is built in reverse order. */
18961 o = (valueT) ((offset - 0x204) >> 2);
18962 if (o == 0)
18963 add_unwind_opcode (0, 1);
18964
18965 /* Calculate the uleb128 encoding of the offset. */
18966 n = 0;
18967 while (o)
18968 {
18969 bytes[n] = o & 0x7f;
18970 o >>= 7;
18971 if (o)
18972 bytes[n] |= 0x80;
18973 n++;
18974 }
18975 /* Add the insn. */
18976 for (; n; n--)
18977 add_unwind_opcode (bytes[n - 1], 1);
18978 add_unwind_opcode (0xb2, 1);
18979 }
18980 else if (offset > 0x100)
18981 {
18982 /* Two short opcodes. */
18983 add_unwind_opcode (0x3f, 1);
18984 op = (offset - 0x104) >> 2;
18985 add_unwind_opcode (op, 1);
18986 }
18987 else if (offset > 0)
18988 {
18989 /* Short opcode. */
18990 op = (offset - 4) >> 2;
18991 add_unwind_opcode (op, 1);
18992 }
18993 else if (offset < 0)
18994 {
18995 offset = -offset;
18996 while (offset > 0x100)
18997 {
18998 add_unwind_opcode (0x7f, 1);
18999 offset -= 0x100;
19000 }
19001 op = ((offset - 4) >> 2) | 0x40;
19002 add_unwind_opcode (op, 1);
19003 }
19004 }
19005
19006 /* Finish the list of unwind opcodes for this function. */
19007 static void
19008 finish_unwind_opcodes (void)
19009 {
19010 valueT op;
19011
19012 if (unwind.fp_used)
19013 {
19014 /* Adjust sp as necessary. */
19015 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
19016 flush_pending_unwind ();
19017
19018 /* After restoring sp from the frame pointer. */
19019 op = 0x90 | unwind.fp_reg;
19020 add_unwind_opcode (op, 1);
19021 }
19022 else
19023 flush_pending_unwind ();
19024 }
19025
19026
19027 /* Start an exception table entry. If idx is nonzero this is an index table
19028 entry. */
19029
19030 static void
19031 start_unwind_section (const segT text_seg, int idx)
19032 {
19033 const char * text_name;
19034 const char * prefix;
19035 const char * prefix_once;
19036 const char * group_name;
19037 size_t prefix_len;
19038 size_t text_len;
19039 char * sec_name;
19040 size_t sec_name_len;
19041 int type;
19042 int flags;
19043 int linkonce;
19044
19045 if (idx)
19046 {
19047 prefix = ELF_STRING_ARM_unwind;
19048 prefix_once = ELF_STRING_ARM_unwind_once;
19049 type = SHT_ARM_EXIDX;
19050 }
19051 else
19052 {
19053 prefix = ELF_STRING_ARM_unwind_info;
19054 prefix_once = ELF_STRING_ARM_unwind_info_once;
19055 type = SHT_PROGBITS;
19056 }
19057
19058 text_name = segment_name (text_seg);
19059 if (streq (text_name, ".text"))
19060 text_name = "";
19061
19062 if (strncmp (text_name, ".gnu.linkonce.t.",
19063 strlen (".gnu.linkonce.t.")) == 0)
19064 {
19065 prefix = prefix_once;
19066 text_name += strlen (".gnu.linkonce.t.");
19067 }
19068
19069 prefix_len = strlen (prefix);
19070 text_len = strlen (text_name);
19071 sec_name_len = prefix_len + text_len;
19072 sec_name = (char *) xmalloc (sec_name_len + 1);
19073 memcpy (sec_name, prefix, prefix_len);
19074 memcpy (sec_name + prefix_len, text_name, text_len);
19075 sec_name[prefix_len + text_len] = '\0';
19076
19077 flags = SHF_ALLOC;
19078 linkonce = 0;
19079 group_name = 0;
19080
19081 /* Handle COMDAT group. */
19082 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
19083 {
19084 group_name = elf_group_name (text_seg);
19085 if (group_name == NULL)
19086 {
19087 as_bad (_("Group section `%s' has no group signature"),
19088 segment_name (text_seg));
19089 ignore_rest_of_line ();
19090 return;
19091 }
19092 flags |= SHF_GROUP;
19093 linkonce = 1;
19094 }
19095
19096 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
19097
19098 /* Set the section link for index tables. */
19099 if (idx)
19100 elf_linked_to_section (now_seg) = text_seg;
19101 }
19102
19103
19104 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
19105 personality routine data. Returns zero, or the index table value for
19106 and inline entry. */
19107
19108 static valueT
19109 create_unwind_entry (int have_data)
19110 {
19111 int size;
19112 addressT where;
19113 char *ptr;
19114 /* The current word of data. */
19115 valueT data;
19116 /* The number of bytes left in this word. */
19117 int n;
19118
19119 finish_unwind_opcodes ();
19120
19121 /* Remember the current text section. */
19122 unwind.saved_seg = now_seg;
19123 unwind.saved_subseg = now_subseg;
19124
19125 start_unwind_section (now_seg, 0);
19126
19127 if (unwind.personality_routine == NULL)
19128 {
19129 if (unwind.personality_index == -2)
19130 {
19131 if (have_data)
19132 as_bad (_("handlerdata in cantunwind frame"));
19133 return 1; /* EXIDX_CANTUNWIND. */
19134 }
19135
19136 /* Use a default personality routine if none is specified. */
19137 if (unwind.personality_index == -1)
19138 {
19139 if (unwind.opcode_count > 3)
19140 unwind.personality_index = 1;
19141 else
19142 unwind.personality_index = 0;
19143 }
19144
19145 /* Space for the personality routine entry. */
19146 if (unwind.personality_index == 0)
19147 {
19148 if (unwind.opcode_count > 3)
19149 as_bad (_("too many unwind opcodes for personality routine 0"));
19150
19151 if (!have_data)
19152 {
19153 /* All the data is inline in the index table. */
19154 data = 0x80;
19155 n = 3;
19156 while (unwind.opcode_count > 0)
19157 {
19158 unwind.opcode_count--;
19159 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19160 n--;
19161 }
19162
19163 /* Pad with "finish" opcodes. */
19164 while (n--)
19165 data = (data << 8) | 0xb0;
19166
19167 return data;
19168 }
19169 size = 0;
19170 }
19171 else
19172 /* We get two opcodes "free" in the first word. */
19173 size = unwind.opcode_count - 2;
19174 }
19175 else
19176 /* An extra byte is required for the opcode count. */
19177 size = unwind.opcode_count + 1;
19178
19179 size = (size + 3) >> 2;
19180 if (size > 0xff)
19181 as_bad (_("too many unwind opcodes"));
19182
19183 frag_align (2, 0, 0);
19184 record_alignment (now_seg, 2);
19185 unwind.table_entry = expr_build_dot ();
19186
19187 /* Allocate the table entry. */
19188 ptr = frag_more ((size << 2) + 4);
19189 where = frag_now_fix () - ((size << 2) + 4);
19190
19191 switch (unwind.personality_index)
19192 {
19193 case -1:
19194 /* ??? Should this be a PLT generating relocation? */
19195 /* Custom personality routine. */
19196 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
19197 BFD_RELOC_ARM_PREL31);
19198
19199 where += 4;
19200 ptr += 4;
19201
19202 /* Set the first byte to the number of additional words. */
19203 data = size - 1;
19204 n = 3;
19205 break;
19206
19207 /* ABI defined personality routines. */
19208 case 0:
19209 /* Three opcodes bytes are packed into the first word. */
19210 data = 0x80;
19211 n = 3;
19212 break;
19213
19214 case 1:
19215 case 2:
19216 /* The size and first two opcode bytes go in the first word. */
19217 data = ((0x80 + unwind.personality_index) << 8) | size;
19218 n = 2;
19219 break;
19220
19221 default:
19222 /* Should never happen. */
19223 abort ();
19224 }
19225
19226 /* Pack the opcodes into words (MSB first), reversing the list at the same
19227 time. */
19228 while (unwind.opcode_count > 0)
19229 {
19230 if (n == 0)
19231 {
19232 md_number_to_chars (ptr, data, 4);
19233 ptr += 4;
19234 n = 4;
19235 data = 0;
19236 }
19237 unwind.opcode_count--;
19238 n--;
19239 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
19240 }
19241
19242 /* Finish off the last word. */
19243 if (n < 4)
19244 {
19245 /* Pad with "finish" opcodes. */
19246 while (n--)
19247 data = (data << 8) | 0xb0;
19248
19249 md_number_to_chars (ptr, data, 4);
19250 }
19251
19252 if (!have_data)
19253 {
19254 /* Add an empty descriptor if there is no user-specified data. */
19255 ptr = frag_more (4);
19256 md_number_to_chars (ptr, 0, 4);
19257 }
19258
19259 return 0;
19260 }
19261
19262
19263 /* Initialize the DWARF-2 unwind information for this procedure. */
19264
19265 void
19266 tc_arm_frame_initial_instructions (void)
19267 {
19268 cfi_add_CFA_def_cfa (REG_SP, 0);
19269 }
19270 #endif /* OBJ_ELF */
19271
19272 /* Convert REGNAME to a DWARF-2 register number. */
19273
19274 int
19275 tc_arm_regname_to_dw2regnum (char *regname)
19276 {
19277 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
19278
19279 if (reg == FAIL)
19280 return -1;
19281
19282 return reg;
19283 }
19284
19285 #ifdef TE_PE
19286 void
19287 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
19288 {
19289 expressionS exp;
19290
19291 exp.X_op = O_secrel;
19292 exp.X_add_symbol = symbol;
19293 exp.X_add_number = 0;
19294 emit_expr (&exp, size);
19295 }
19296 #endif
19297
19298 /* MD interface: Symbol and relocation handling. */
19299
19300 /* Return the address within the segment that a PC-relative fixup is
19301 relative to. For ARM, PC-relative fixups applied to instructions
19302 are generally relative to the location of the fixup plus 8 bytes.
19303 Thumb branches are offset by 4, and Thumb loads relative to PC
19304 require special handling. */
19305
19306 long
19307 md_pcrel_from_section (fixS * fixP, segT seg)
19308 {
19309 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
19310
19311 /* If this is pc-relative and we are going to emit a relocation
19312 then we just want to put out any pipeline compensation that the linker
19313 will need. Otherwise we want to use the calculated base.
19314 For WinCE we skip the bias for externals as well, since this
19315 is how the MS ARM-CE assembler behaves and we want to be compatible. */
19316 if (fixP->fx_pcrel
19317 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19318 || (arm_force_relocation (fixP)
19319 #ifdef TE_WINCE
19320 && !S_IS_EXTERNAL (fixP->fx_addsy)
19321 #endif
19322 )))
19323 base = 0;
19324
19325
19326 switch (fixP->fx_r_type)
19327 {
19328 /* PC relative addressing on the Thumb is slightly odd as the
19329 bottom two bits of the PC are forced to zero for the
19330 calculation. This happens *after* application of the
19331 pipeline offset. However, Thumb adrl already adjusts for
19332 this, so we need not do it again. */
19333 case BFD_RELOC_ARM_THUMB_ADD:
19334 return base & ~3;
19335
19336 case BFD_RELOC_ARM_THUMB_OFFSET:
19337 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19338 case BFD_RELOC_ARM_T32_ADD_PC12:
19339 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
19340 return (base + 4) & ~3;
19341
19342 /* Thumb branches are simply offset by +4. */
19343 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19344 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19345 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19346 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19347 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19348 return base + 4;
19349
19350 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19351 if (fixP->fx_addsy
19352 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19353 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19354 && ARM_IS_FUNC (fixP->fx_addsy)
19355 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19356 base = fixP->fx_where + fixP->fx_frag->fr_address;
19357 return base + 4;
19358
19359 /* BLX is like branches above, but forces the low two bits of PC to
19360 zero. */
19361 case BFD_RELOC_THUMB_PCREL_BLX:
19362 if (fixP->fx_addsy
19363 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19364 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19365 && THUMB_IS_FUNC (fixP->fx_addsy)
19366 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19367 base = fixP->fx_where + fixP->fx_frag->fr_address;
19368 return (base + 4) & ~3;
19369
19370 /* ARM mode branches are offset by +8. However, the Windows CE
19371 loader expects the relocation not to take this into account. */
19372 case BFD_RELOC_ARM_PCREL_BLX:
19373 if (fixP->fx_addsy
19374 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19375 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19376 && ARM_IS_FUNC (fixP->fx_addsy)
19377 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19378 base = fixP->fx_where + fixP->fx_frag->fr_address;
19379 return base + 8;
19380
19381 case BFD_RELOC_ARM_PCREL_CALL:
19382 if (fixP->fx_addsy
19383 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19384 && (!S_IS_EXTERNAL (fixP->fx_addsy))
19385 && THUMB_IS_FUNC (fixP->fx_addsy)
19386 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
19387 base = fixP->fx_where + fixP->fx_frag->fr_address;
19388 return base + 8;
19389
19390 case BFD_RELOC_ARM_PCREL_BRANCH:
19391 case BFD_RELOC_ARM_PCREL_JUMP:
19392 case BFD_RELOC_ARM_PLT32:
19393 #ifdef TE_WINCE
19394 /* When handling fixups immediately, because we have already
19395 discovered the value of a symbol, or the address of the frag involved
19396 we must account for the offset by +8, as the OS loader will never see the reloc.
19397 see fixup_segment() in write.c
19398 The S_IS_EXTERNAL test handles the case of global symbols.
19399 Those need the calculated base, not just the pipe compensation the linker will need. */
19400 if (fixP->fx_pcrel
19401 && fixP->fx_addsy != NULL
19402 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
19403 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
19404 return base + 8;
19405 return base;
19406 #else
19407 return base + 8;
19408 #endif
19409
19410
19411 /* ARM mode loads relative to PC are also offset by +8. Unlike
19412 branches, the Windows CE loader *does* expect the relocation
19413 to take this into account. */
19414 case BFD_RELOC_ARM_OFFSET_IMM:
19415 case BFD_RELOC_ARM_OFFSET_IMM8:
19416 case BFD_RELOC_ARM_HWLITERAL:
19417 case BFD_RELOC_ARM_LITERAL:
19418 case BFD_RELOC_ARM_CP_OFF_IMM:
19419 return base + 8;
19420
19421
19422 /* Other PC-relative relocations are un-offset. */
19423 default:
19424 return base;
19425 }
19426 }
19427
19428 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
19429 Otherwise we have no need to default values of symbols. */
19430
19431 symbolS *
19432 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
19433 {
19434 #ifdef OBJ_ELF
19435 if (name[0] == '_' && name[1] == 'G'
19436 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
19437 {
19438 if (!GOT_symbol)
19439 {
19440 if (symbol_find (name))
19441 as_bad (_("GOT already in the symbol table"));
19442
19443 GOT_symbol = symbol_new (name, undefined_section,
19444 (valueT) 0, & zero_address_frag);
19445 }
19446
19447 return GOT_symbol;
19448 }
19449 #endif
19450
19451 return NULL;
19452 }
19453
19454 /* Subroutine of md_apply_fix. Check to see if an immediate can be
19455 computed as two separate immediate values, added together. We
19456 already know that this value cannot be computed by just one ARM
19457 instruction. */
19458
19459 static unsigned int
19460 validate_immediate_twopart (unsigned int val,
19461 unsigned int * highpart)
19462 {
19463 unsigned int a;
19464 unsigned int i;
19465
19466 for (i = 0; i < 32; i += 2)
19467 if (((a = rotate_left (val, i)) & 0xff) != 0)
19468 {
19469 if (a & 0xff00)
19470 {
19471 if (a & ~ 0xffff)
19472 continue;
19473 * highpart = (a >> 8) | ((i + 24) << 7);
19474 }
19475 else if (a & 0xff0000)
19476 {
19477 if (a & 0xff000000)
19478 continue;
19479 * highpart = (a >> 16) | ((i + 16) << 7);
19480 }
19481 else
19482 {
19483 gas_assert (a & 0xff000000);
19484 * highpart = (a >> 24) | ((i + 8) << 7);
19485 }
19486
19487 return (a & 0xff) | (i << 7);
19488 }
19489
19490 return FAIL;
19491 }
19492
19493 static int
19494 validate_offset_imm (unsigned int val, int hwse)
19495 {
19496 if ((hwse && val > 255) || val > 4095)
19497 return FAIL;
19498 return val;
19499 }
19500
19501 /* Subroutine of md_apply_fix. Do those data_ops which can take a
19502 negative immediate constant by altering the instruction. A bit of
19503 a hack really.
19504 MOV <-> MVN
19505 AND <-> BIC
19506 ADC <-> SBC
19507 by inverting the second operand, and
19508 ADD <-> SUB
19509 CMP <-> CMN
19510 by negating the second operand. */
19511
19512 static int
19513 negate_data_op (unsigned long * instruction,
19514 unsigned long value)
19515 {
19516 int op, new_inst;
19517 unsigned long negated, inverted;
19518
19519 negated = encode_arm_immediate (-value);
19520 inverted = encode_arm_immediate (~value);
19521
19522 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
19523 switch (op)
19524 {
19525 /* First negates. */
19526 case OPCODE_SUB: /* ADD <-> SUB */
19527 new_inst = OPCODE_ADD;
19528 value = negated;
19529 break;
19530
19531 case OPCODE_ADD:
19532 new_inst = OPCODE_SUB;
19533 value = negated;
19534 break;
19535
19536 case OPCODE_CMP: /* CMP <-> CMN */
19537 new_inst = OPCODE_CMN;
19538 value = negated;
19539 break;
19540
19541 case OPCODE_CMN:
19542 new_inst = OPCODE_CMP;
19543 value = negated;
19544 break;
19545
19546 /* Now Inverted ops. */
19547 case OPCODE_MOV: /* MOV <-> MVN */
19548 new_inst = OPCODE_MVN;
19549 value = inverted;
19550 break;
19551
19552 case OPCODE_MVN:
19553 new_inst = OPCODE_MOV;
19554 value = inverted;
19555 break;
19556
19557 case OPCODE_AND: /* AND <-> BIC */
19558 new_inst = OPCODE_BIC;
19559 value = inverted;
19560 break;
19561
19562 case OPCODE_BIC:
19563 new_inst = OPCODE_AND;
19564 value = inverted;
19565 break;
19566
19567 case OPCODE_ADC: /* ADC <-> SBC */
19568 new_inst = OPCODE_SBC;
19569 value = inverted;
19570 break;
19571
19572 case OPCODE_SBC:
19573 new_inst = OPCODE_ADC;
19574 value = inverted;
19575 break;
19576
19577 /* We cannot do anything. */
19578 default:
19579 return FAIL;
19580 }
19581
19582 if (value == (unsigned) FAIL)
19583 return FAIL;
19584
19585 *instruction &= OPCODE_MASK;
19586 *instruction |= new_inst << DATA_OP_SHIFT;
19587 return value;
19588 }
19589
19590 /* Like negate_data_op, but for Thumb-2. */
19591
19592 static unsigned int
19593 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
19594 {
19595 int op, new_inst;
19596 int rd;
19597 unsigned int negated, inverted;
19598
19599 negated = encode_thumb32_immediate (-value);
19600 inverted = encode_thumb32_immediate (~value);
19601
19602 rd = (*instruction >> 8) & 0xf;
19603 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
19604 switch (op)
19605 {
19606 /* ADD <-> SUB. Includes CMP <-> CMN. */
19607 case T2_OPCODE_SUB:
19608 new_inst = T2_OPCODE_ADD;
19609 value = negated;
19610 break;
19611
19612 case T2_OPCODE_ADD:
19613 new_inst = T2_OPCODE_SUB;
19614 value = negated;
19615 break;
19616
19617 /* ORR <-> ORN. Includes MOV <-> MVN. */
19618 case T2_OPCODE_ORR:
19619 new_inst = T2_OPCODE_ORN;
19620 value = inverted;
19621 break;
19622
19623 case T2_OPCODE_ORN:
19624 new_inst = T2_OPCODE_ORR;
19625 value = inverted;
19626 break;
19627
19628 /* AND <-> BIC. TST has no inverted equivalent. */
19629 case T2_OPCODE_AND:
19630 new_inst = T2_OPCODE_BIC;
19631 if (rd == 15)
19632 value = FAIL;
19633 else
19634 value = inverted;
19635 break;
19636
19637 case T2_OPCODE_BIC:
19638 new_inst = T2_OPCODE_AND;
19639 value = inverted;
19640 break;
19641
19642 /* ADC <-> SBC */
19643 case T2_OPCODE_ADC:
19644 new_inst = T2_OPCODE_SBC;
19645 value = inverted;
19646 break;
19647
19648 case T2_OPCODE_SBC:
19649 new_inst = T2_OPCODE_ADC;
19650 value = inverted;
19651 break;
19652
19653 /* We cannot do anything. */
19654 default:
19655 return FAIL;
19656 }
19657
19658 if (value == (unsigned int)FAIL)
19659 return FAIL;
19660
19661 *instruction &= T2_OPCODE_MASK;
19662 *instruction |= new_inst << T2_DATA_OP_SHIFT;
19663 return value;
19664 }
19665
19666 /* Read a 32-bit thumb instruction from buf. */
19667 static unsigned long
19668 get_thumb32_insn (char * buf)
19669 {
19670 unsigned long insn;
19671 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
19672 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19673
19674 return insn;
19675 }
19676
19677
19678 /* We usually want to set the low bit on the address of thumb function
19679 symbols. In particular .word foo - . should have the low bit set.
19680 Generic code tries to fold the difference of two symbols to
19681 a constant. Prevent this and force a relocation when the first symbols
19682 is a thumb function. */
19683
19684 bfd_boolean
19685 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
19686 {
19687 if (op == O_subtract
19688 && l->X_op == O_symbol
19689 && r->X_op == O_symbol
19690 && THUMB_IS_FUNC (l->X_add_symbol))
19691 {
19692 l->X_op = O_subtract;
19693 l->X_op_symbol = r->X_add_symbol;
19694 l->X_add_number -= r->X_add_number;
19695 return TRUE;
19696 }
19697
19698 /* Process as normal. */
19699 return FALSE;
19700 }
19701
19702 /* Encode Thumb2 unconditional branches and calls. The encoding
19703 for the 2 are identical for the immediate values. */
19704
19705 static void
19706 encode_thumb2_b_bl_offset (char * buf, offsetT value)
19707 {
19708 #define T2I1I2MASK ((1 << 13) | (1 << 11))
19709 offsetT newval;
19710 offsetT newval2;
19711 addressT S, I1, I2, lo, hi;
19712
19713 S = (value >> 24) & 0x01;
19714 I1 = (value >> 23) & 0x01;
19715 I2 = (value >> 22) & 0x01;
19716 hi = (value >> 12) & 0x3ff;
19717 lo = (value >> 1) & 0x7ff;
19718 newval = md_chars_to_number (buf, THUMB_SIZE);
19719 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
19720 newval |= (S << 10) | hi;
19721 newval2 &= ~T2I1I2MASK;
19722 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
19723 md_number_to_chars (buf, newval, THUMB_SIZE);
19724 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
19725 }
19726
19727 void
19728 md_apply_fix (fixS * fixP,
19729 valueT * valP,
19730 segT seg)
19731 {
19732 offsetT value = * valP;
19733 offsetT newval;
19734 unsigned int newimm;
19735 unsigned long temp;
19736 int sign;
19737 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
19738
19739 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
19740
19741 /* Note whether this will delete the relocation. */
19742
19743 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
19744 fixP->fx_done = 1;
19745
19746 /* On a 64-bit host, silently truncate 'value' to 32 bits for
19747 consistency with the behaviour on 32-bit hosts. Remember value
19748 for emit_reloc. */
19749 value &= 0xffffffff;
19750 value ^= 0x80000000;
19751 value -= 0x80000000;
19752
19753 *valP = value;
19754 fixP->fx_addnumber = value;
19755
19756 /* Same treatment for fixP->fx_offset. */
19757 fixP->fx_offset &= 0xffffffff;
19758 fixP->fx_offset ^= 0x80000000;
19759 fixP->fx_offset -= 0x80000000;
19760
19761 switch (fixP->fx_r_type)
19762 {
19763 case BFD_RELOC_NONE:
19764 /* This will need to go in the object file. */
19765 fixP->fx_done = 0;
19766 break;
19767
19768 case BFD_RELOC_ARM_IMMEDIATE:
19769 /* We claim that this fixup has been processed here,
19770 even if in fact we generate an error because we do
19771 not have a reloc for it, so tc_gen_reloc will reject it. */
19772 fixP->fx_done = 1;
19773
19774 if (fixP->fx_addsy
19775 && ! S_IS_DEFINED (fixP->fx_addsy))
19776 {
19777 as_bad_where (fixP->fx_file, fixP->fx_line,
19778 _("undefined symbol %s used as an immediate value"),
19779 S_GET_NAME (fixP->fx_addsy));
19780 break;
19781 }
19782
19783 if (fixP->fx_addsy
19784 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19785 {
19786 as_bad_where (fixP->fx_file, fixP->fx_line,
19787 _("symbol %s is in a different section"),
19788 S_GET_NAME (fixP->fx_addsy));
19789 break;
19790 }
19791
19792 newimm = encode_arm_immediate (value);
19793 temp = md_chars_to_number (buf, INSN_SIZE);
19794
19795 /* If the instruction will fail, see if we can fix things up by
19796 changing the opcode. */
19797 if (newimm == (unsigned int) FAIL
19798 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
19799 {
19800 as_bad_where (fixP->fx_file, fixP->fx_line,
19801 _("invalid constant (%lx) after fixup"),
19802 (unsigned long) value);
19803 break;
19804 }
19805
19806 newimm |= (temp & 0xfffff000);
19807 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19808 break;
19809
19810 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19811 {
19812 unsigned int highpart = 0;
19813 unsigned int newinsn = 0xe1a00000; /* nop. */
19814
19815 if (fixP->fx_addsy
19816 && ! S_IS_DEFINED (fixP->fx_addsy))
19817 {
19818 as_bad_where (fixP->fx_file, fixP->fx_line,
19819 _("undefined symbol %s used as an immediate value"),
19820 S_GET_NAME (fixP->fx_addsy));
19821 break;
19822 }
19823
19824 if (fixP->fx_addsy
19825 && S_GET_SEGMENT (fixP->fx_addsy) != seg)
19826 {
19827 as_bad_where (fixP->fx_file, fixP->fx_line,
19828 _("symbol %s is in a different section"),
19829 S_GET_NAME (fixP->fx_addsy));
19830 break;
19831 }
19832
19833 newimm = encode_arm_immediate (value);
19834 temp = md_chars_to_number (buf, INSN_SIZE);
19835
19836 /* If the instruction will fail, see if we can fix things up by
19837 changing the opcode. */
19838 if (newimm == (unsigned int) FAIL
19839 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
19840 {
19841 /* No ? OK - try using two ADD instructions to generate
19842 the value. */
19843 newimm = validate_immediate_twopart (value, & highpart);
19844
19845 /* Yes - then make sure that the second instruction is
19846 also an add. */
19847 if (newimm != (unsigned int) FAIL)
19848 newinsn = temp;
19849 /* Still No ? Try using a negated value. */
19850 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
19851 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
19852 /* Otherwise - give up. */
19853 else
19854 {
19855 as_bad_where (fixP->fx_file, fixP->fx_line,
19856 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
19857 (long) value);
19858 break;
19859 }
19860
19861 /* Replace the first operand in the 2nd instruction (which
19862 is the PC) with the destination register. We have
19863 already added in the PC in the first instruction and we
19864 do not want to do it again. */
19865 newinsn &= ~ 0xf0000;
19866 newinsn |= ((newinsn & 0x0f000) << 4);
19867 }
19868
19869 newimm |= (temp & 0xfffff000);
19870 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
19871
19872 highpart |= (newinsn & 0xfffff000);
19873 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
19874 }
19875 break;
19876
19877 case BFD_RELOC_ARM_OFFSET_IMM:
19878 if (!fixP->fx_done && seg->use_rela_p)
19879 value = 0;
19880
19881 case BFD_RELOC_ARM_LITERAL:
19882 sign = value >= 0;
19883
19884 if (value < 0)
19885 value = - value;
19886
19887 if (validate_offset_imm (value, 0) == FAIL)
19888 {
19889 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
19890 as_bad_where (fixP->fx_file, fixP->fx_line,
19891 _("invalid literal constant: pool needs to be closer"));
19892 else
19893 as_bad_where (fixP->fx_file, fixP->fx_line,
19894 _("bad immediate value for offset (%ld)"),
19895 (long) value);
19896 break;
19897 }
19898
19899 newval = md_chars_to_number (buf, INSN_SIZE);
19900 newval &= 0xff7ff000;
19901 newval |= value | (sign ? INDEX_UP : 0);
19902 md_number_to_chars (buf, newval, INSN_SIZE);
19903 break;
19904
19905 case BFD_RELOC_ARM_OFFSET_IMM8:
19906 case BFD_RELOC_ARM_HWLITERAL:
19907 sign = value >= 0;
19908
19909 if (value < 0)
19910 value = - value;
19911
19912 if (validate_offset_imm (value, 1) == FAIL)
19913 {
19914 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
19915 as_bad_where (fixP->fx_file, fixP->fx_line,
19916 _("invalid literal constant: pool needs to be closer"));
19917 else
19918 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
19919 (long) value);
19920 break;
19921 }
19922
19923 newval = md_chars_to_number (buf, INSN_SIZE);
19924 newval &= 0xff7ff0f0;
19925 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
19926 md_number_to_chars (buf, newval, INSN_SIZE);
19927 break;
19928
19929 case BFD_RELOC_ARM_T32_OFFSET_U8:
19930 if (value < 0 || value > 1020 || value % 4 != 0)
19931 as_bad_where (fixP->fx_file, fixP->fx_line,
19932 _("bad immediate value for offset (%ld)"), (long) value);
19933 value /= 4;
19934
19935 newval = md_chars_to_number (buf+2, THUMB_SIZE);
19936 newval |= value;
19937 md_number_to_chars (buf+2, newval, THUMB_SIZE);
19938 break;
19939
19940 case BFD_RELOC_ARM_T32_OFFSET_IMM:
19941 /* This is a complicated relocation used for all varieties of Thumb32
19942 load/store instruction with immediate offset:
19943
19944 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
19945 *4, optional writeback(W)
19946 (doubleword load/store)
19947
19948 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
19949 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
19950 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
19951 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
19952 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
19953
19954 Uppercase letters indicate bits that are already encoded at
19955 this point. Lowercase letters are our problem. For the
19956 second block of instructions, the secondary opcode nybble
19957 (bits 8..11) is present, and bit 23 is zero, even if this is
19958 a PC-relative operation. */
19959 newval = md_chars_to_number (buf, THUMB_SIZE);
19960 newval <<= 16;
19961 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
19962
19963 if ((newval & 0xf0000000) == 0xe0000000)
19964 {
19965 /* Doubleword load/store: 8-bit offset, scaled by 4. */
19966 if (value >= 0)
19967 newval |= (1 << 23);
19968 else
19969 value = -value;
19970 if (value % 4 != 0)
19971 {
19972 as_bad_where (fixP->fx_file, fixP->fx_line,
19973 _("offset not a multiple of 4"));
19974 break;
19975 }
19976 value /= 4;
19977 if (value > 0xff)
19978 {
19979 as_bad_where (fixP->fx_file, fixP->fx_line,
19980 _("offset out of range"));
19981 break;
19982 }
19983 newval &= ~0xff;
19984 }
19985 else if ((newval & 0x000f0000) == 0x000f0000)
19986 {
19987 /* PC-relative, 12-bit offset. */
19988 if (value >= 0)
19989 newval |= (1 << 23);
19990 else
19991 value = -value;
19992 if (value > 0xfff)
19993 {
19994 as_bad_where (fixP->fx_file, fixP->fx_line,
19995 _("offset out of range"));
19996 break;
19997 }
19998 newval &= ~0xfff;
19999 }
20000 else if ((newval & 0x00000100) == 0x00000100)
20001 {
20002 /* Writeback: 8-bit, +/- offset. */
20003 if (value >= 0)
20004 newval |= (1 << 9);
20005 else
20006 value = -value;
20007 if (value > 0xff)
20008 {
20009 as_bad_where (fixP->fx_file, fixP->fx_line,
20010 _("offset out of range"));
20011 break;
20012 }
20013 newval &= ~0xff;
20014 }
20015 else if ((newval & 0x00000f00) == 0x00000e00)
20016 {
20017 /* T-instruction: positive 8-bit offset. */
20018 if (value < 0 || value > 0xff)
20019 {
20020 as_bad_where (fixP->fx_file, fixP->fx_line,
20021 _("offset out of range"));
20022 break;
20023 }
20024 newval &= ~0xff;
20025 newval |= value;
20026 }
20027 else
20028 {
20029 /* Positive 12-bit or negative 8-bit offset. */
20030 int limit;
20031 if (value >= 0)
20032 {
20033 newval |= (1 << 23);
20034 limit = 0xfff;
20035 }
20036 else
20037 {
20038 value = -value;
20039 limit = 0xff;
20040 }
20041 if (value > limit)
20042 {
20043 as_bad_where (fixP->fx_file, fixP->fx_line,
20044 _("offset out of range"));
20045 break;
20046 }
20047 newval &= ~limit;
20048 }
20049
20050 newval |= value;
20051 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
20052 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
20053 break;
20054
20055 case BFD_RELOC_ARM_SHIFT_IMM:
20056 newval = md_chars_to_number (buf, INSN_SIZE);
20057 if (((unsigned long) value) > 32
20058 || (value == 32
20059 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
20060 {
20061 as_bad_where (fixP->fx_file, fixP->fx_line,
20062 _("shift expression is too large"));
20063 break;
20064 }
20065
20066 if (value == 0)
20067 /* Shifts of zero must be done as lsl. */
20068 newval &= ~0x60;
20069 else if (value == 32)
20070 value = 0;
20071 newval &= 0xfffff07f;
20072 newval |= (value & 0x1f) << 7;
20073 md_number_to_chars (buf, newval, INSN_SIZE);
20074 break;
20075
20076 case BFD_RELOC_ARM_T32_IMMEDIATE:
20077 case BFD_RELOC_ARM_T32_ADD_IMM:
20078 case BFD_RELOC_ARM_T32_IMM12:
20079 case BFD_RELOC_ARM_T32_ADD_PC12:
20080 /* We claim that this fixup has been processed here,
20081 even if in fact we generate an error because we do
20082 not have a reloc for it, so tc_gen_reloc will reject it. */
20083 fixP->fx_done = 1;
20084
20085 if (fixP->fx_addsy
20086 && ! S_IS_DEFINED (fixP->fx_addsy))
20087 {
20088 as_bad_where (fixP->fx_file, fixP->fx_line,
20089 _("undefined symbol %s used as an immediate value"),
20090 S_GET_NAME (fixP->fx_addsy));
20091 break;
20092 }
20093
20094 newval = md_chars_to_number (buf, THUMB_SIZE);
20095 newval <<= 16;
20096 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
20097
20098 newimm = FAIL;
20099 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
20100 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20101 {
20102 newimm = encode_thumb32_immediate (value);
20103 if (newimm == (unsigned int) FAIL)
20104 newimm = thumb32_negate_data_op (&newval, value);
20105 }
20106 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
20107 && newimm == (unsigned int) FAIL)
20108 {
20109 /* Turn add/sum into addw/subw. */
20110 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
20111 newval = (newval & 0xfeffffff) | 0x02000000;
20112
20113 /* 12 bit immediate for addw/subw. */
20114 if (value < 0)
20115 {
20116 value = -value;
20117 newval ^= 0x00a00000;
20118 }
20119 if (value > 0xfff)
20120 newimm = (unsigned int) FAIL;
20121 else
20122 newimm = value;
20123 }
20124
20125 if (newimm == (unsigned int)FAIL)
20126 {
20127 as_bad_where (fixP->fx_file, fixP->fx_line,
20128 _("invalid constant (%lx) after fixup"),
20129 (unsigned long) value);
20130 break;
20131 }
20132
20133 newval |= (newimm & 0x800) << 15;
20134 newval |= (newimm & 0x700) << 4;
20135 newval |= (newimm & 0x0ff);
20136
20137 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
20138 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
20139 break;
20140
20141 case BFD_RELOC_ARM_SMC:
20142 if (((unsigned long) value) > 0xffff)
20143 as_bad_where (fixP->fx_file, fixP->fx_line,
20144 _("invalid smc expression"));
20145 newval = md_chars_to_number (buf, INSN_SIZE);
20146 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
20147 md_number_to_chars (buf, newval, INSN_SIZE);
20148 break;
20149
20150 case BFD_RELOC_ARM_SWI:
20151 if (fixP->tc_fix_data != 0)
20152 {
20153 if (((unsigned long) value) > 0xff)
20154 as_bad_where (fixP->fx_file, fixP->fx_line,
20155 _("invalid swi expression"));
20156 newval = md_chars_to_number (buf, THUMB_SIZE);
20157 newval |= value;
20158 md_number_to_chars (buf, newval, THUMB_SIZE);
20159 }
20160 else
20161 {
20162 if (((unsigned long) value) > 0x00ffffff)
20163 as_bad_where (fixP->fx_file, fixP->fx_line,
20164 _("invalid swi expression"));
20165 newval = md_chars_to_number (buf, INSN_SIZE);
20166 newval |= value;
20167 md_number_to_chars (buf, newval, INSN_SIZE);
20168 }
20169 break;
20170
20171 case BFD_RELOC_ARM_MULTI:
20172 if (((unsigned long) value) > 0xffff)
20173 as_bad_where (fixP->fx_file, fixP->fx_line,
20174 _("invalid expression in load/store multiple"));
20175 newval = value | md_chars_to_number (buf, INSN_SIZE);
20176 md_number_to_chars (buf, newval, INSN_SIZE);
20177 break;
20178
20179 #ifdef OBJ_ELF
20180 case BFD_RELOC_ARM_PCREL_CALL:
20181
20182 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20183 && fixP->fx_addsy
20184 && !S_IS_EXTERNAL (fixP->fx_addsy)
20185 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20186 && THUMB_IS_FUNC (fixP->fx_addsy))
20187 /* Flip the bl to blx. This is a simple flip
20188 bit here because we generate PCREL_CALL for
20189 unconditional bls. */
20190 {
20191 newval = md_chars_to_number (buf, INSN_SIZE);
20192 newval = newval | 0x10000000;
20193 md_number_to_chars (buf, newval, INSN_SIZE);
20194 temp = 1;
20195 fixP->fx_done = 1;
20196 }
20197 else
20198 temp = 3;
20199 goto arm_branch_common;
20200
20201 case BFD_RELOC_ARM_PCREL_JUMP:
20202 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20203 && fixP->fx_addsy
20204 && !S_IS_EXTERNAL (fixP->fx_addsy)
20205 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20206 && THUMB_IS_FUNC (fixP->fx_addsy))
20207 {
20208 /* This would map to a bl<cond>, b<cond>,
20209 b<always> to a Thumb function. We
20210 need to force a relocation for this particular
20211 case. */
20212 newval = md_chars_to_number (buf, INSN_SIZE);
20213 fixP->fx_done = 0;
20214 }
20215
20216 case BFD_RELOC_ARM_PLT32:
20217 #endif
20218 case BFD_RELOC_ARM_PCREL_BRANCH:
20219 temp = 3;
20220 goto arm_branch_common;
20221
20222 case BFD_RELOC_ARM_PCREL_BLX:
20223
20224 temp = 1;
20225 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
20226 && fixP->fx_addsy
20227 && !S_IS_EXTERNAL (fixP->fx_addsy)
20228 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20229 && ARM_IS_FUNC (fixP->fx_addsy))
20230 {
20231 /* Flip the blx to a bl and warn. */
20232 const char *name = S_GET_NAME (fixP->fx_addsy);
20233 newval = 0xeb000000;
20234 as_warn_where (fixP->fx_file, fixP->fx_line,
20235 _("blx to '%s' an ARM ISA state function changed to bl"),
20236 name);
20237 md_number_to_chars (buf, newval, INSN_SIZE);
20238 temp = 3;
20239 fixP->fx_done = 1;
20240 }
20241
20242 #ifdef OBJ_ELF
20243 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
20244 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
20245 #endif
20246
20247 arm_branch_common:
20248 /* We are going to store value (shifted right by two) in the
20249 instruction, in a 24 bit, signed field. Bits 26 through 32 either
20250 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
20251 also be be clear. */
20252 if (value & temp)
20253 as_bad_where (fixP->fx_file, fixP->fx_line,
20254 _("misaligned branch destination"));
20255 if ((value & (offsetT)0xfe000000) != (offsetT)0
20256 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
20257 as_bad_where (fixP->fx_file, fixP->fx_line,
20258 _("branch out of range"));
20259
20260 if (fixP->fx_done || !seg->use_rela_p)
20261 {
20262 newval = md_chars_to_number (buf, INSN_SIZE);
20263 newval |= (value >> 2) & 0x00ffffff;
20264 /* Set the H bit on BLX instructions. */
20265 if (temp == 1)
20266 {
20267 if (value & 2)
20268 newval |= 0x01000000;
20269 else
20270 newval &= ~0x01000000;
20271 }
20272 md_number_to_chars (buf, newval, INSN_SIZE);
20273 }
20274 break;
20275
20276 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
20277 /* CBZ can only branch forward. */
20278
20279 /* Attempts to use CBZ to branch to the next instruction
20280 (which, strictly speaking, are prohibited) will be turned into
20281 no-ops.
20282
20283 FIXME: It may be better to remove the instruction completely and
20284 perform relaxation. */
20285 if (value == -2)
20286 {
20287 newval = md_chars_to_number (buf, THUMB_SIZE);
20288 newval = 0xbf00; /* NOP encoding T1 */
20289 md_number_to_chars (buf, newval, THUMB_SIZE);
20290 }
20291 else
20292 {
20293 if (value & ~0x7e)
20294 as_bad_where (fixP->fx_file, fixP->fx_line,
20295 _("branch out of range"));
20296
20297 if (fixP->fx_done || !seg->use_rela_p)
20298 {
20299 newval = md_chars_to_number (buf, THUMB_SIZE);
20300 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
20301 md_number_to_chars (buf, newval, THUMB_SIZE);
20302 }
20303 }
20304 break;
20305
20306 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
20307 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
20308 as_bad_where (fixP->fx_file, fixP->fx_line,
20309 _("branch out of range"));
20310
20311 if (fixP->fx_done || !seg->use_rela_p)
20312 {
20313 newval = md_chars_to_number (buf, THUMB_SIZE);
20314 newval |= (value & 0x1ff) >> 1;
20315 md_number_to_chars (buf, newval, THUMB_SIZE);
20316 }
20317 break;
20318
20319 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
20320 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
20321 as_bad_where (fixP->fx_file, fixP->fx_line,
20322 _("branch out of range"));
20323
20324 if (fixP->fx_done || !seg->use_rela_p)
20325 {
20326 newval = md_chars_to_number (buf, THUMB_SIZE);
20327 newval |= (value & 0xfff) >> 1;
20328 md_number_to_chars (buf, newval, THUMB_SIZE);
20329 }
20330 break;
20331
20332 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20333 if (fixP->fx_addsy
20334 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20335 && !S_IS_EXTERNAL (fixP->fx_addsy)
20336 && S_IS_DEFINED (fixP->fx_addsy)
20337 && ARM_IS_FUNC (fixP->fx_addsy)
20338 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20339 {
20340 /* Force a relocation for a branch 20 bits wide. */
20341 fixP->fx_done = 0;
20342 }
20343 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
20344 as_bad_where (fixP->fx_file, fixP->fx_line,
20345 _("conditional branch out of range"));
20346
20347 if (fixP->fx_done || !seg->use_rela_p)
20348 {
20349 offsetT newval2;
20350 addressT S, J1, J2, lo, hi;
20351
20352 S = (value & 0x00100000) >> 20;
20353 J2 = (value & 0x00080000) >> 19;
20354 J1 = (value & 0x00040000) >> 18;
20355 hi = (value & 0x0003f000) >> 12;
20356 lo = (value & 0x00000ffe) >> 1;
20357
20358 newval = md_chars_to_number (buf, THUMB_SIZE);
20359 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20360 newval |= (S << 10) | hi;
20361 newval2 |= (J1 << 13) | (J2 << 11) | lo;
20362 md_number_to_chars (buf, newval, THUMB_SIZE);
20363 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20364 }
20365 break;
20366
20367 case BFD_RELOC_THUMB_PCREL_BLX:
20368
20369 /* If there is a blx from a thumb state function to
20370 another thumb function flip this to a bl and warn
20371 about it. */
20372
20373 if (fixP->fx_addsy
20374 && S_IS_DEFINED (fixP->fx_addsy)
20375 && !S_IS_EXTERNAL (fixP->fx_addsy)
20376 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20377 && THUMB_IS_FUNC (fixP->fx_addsy))
20378 {
20379 const char *name = S_GET_NAME (fixP->fx_addsy);
20380 as_warn_where (fixP->fx_file, fixP->fx_line,
20381 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
20382 name);
20383 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20384 newval = newval | 0x1000;
20385 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20386 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20387 fixP->fx_done = 1;
20388 }
20389
20390
20391 goto thumb_bl_common;
20392
20393 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20394
20395 /* A bl from Thumb state ISA to an internal ARM state function
20396 is converted to a blx. */
20397 if (fixP->fx_addsy
20398 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20399 && !S_IS_EXTERNAL (fixP->fx_addsy)
20400 && S_IS_DEFINED (fixP->fx_addsy)
20401 && ARM_IS_FUNC (fixP->fx_addsy)
20402 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20403 {
20404 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20405 newval = newval & ~0x1000;
20406 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
20407 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
20408 fixP->fx_done = 1;
20409 }
20410
20411 thumb_bl_common:
20412
20413 #ifdef OBJ_ELF
20414 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4 &&
20415 fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20416 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
20417 #endif
20418
20419 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
20420 /* For a BLX instruction, make sure that the relocation is rounded up
20421 to a word boundary. This follows the semantics of the instruction
20422 which specifies that bit 1 of the target address will come from bit
20423 1 of the base address. */
20424 value = (value + 1) & ~ 1;
20425
20426
20427 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
20428 {
20429 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
20430 {
20431 as_bad_where (fixP->fx_file, fixP->fx_line,
20432 _("branch out of range"));
20433 }
20434 else if ((value & ~0x1ffffff)
20435 && ((value & ~0x1ffffff) != ~0x1ffffff))
20436 {
20437 as_bad_where (fixP->fx_file, fixP->fx_line,
20438 _("Thumb2 branch out of range"));
20439 }
20440 }
20441
20442 if (fixP->fx_done || !seg->use_rela_p)
20443 encode_thumb2_b_bl_offset (buf, value);
20444
20445 break;
20446
20447 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20448 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
20449 as_bad_where (fixP->fx_file, fixP->fx_line,
20450 _("branch out of range"));
20451
20452 if (fixP->fx_done || !seg->use_rela_p)
20453 encode_thumb2_b_bl_offset (buf, value);
20454
20455 break;
20456
20457 case BFD_RELOC_8:
20458 if (fixP->fx_done || !seg->use_rela_p)
20459 md_number_to_chars (buf, value, 1);
20460 break;
20461
20462 case BFD_RELOC_16:
20463 if (fixP->fx_done || !seg->use_rela_p)
20464 md_number_to_chars (buf, value, 2);
20465 break;
20466
20467 #ifdef OBJ_ELF
20468 case BFD_RELOC_ARM_TLS_GD32:
20469 case BFD_RELOC_ARM_TLS_LE32:
20470 case BFD_RELOC_ARM_TLS_IE32:
20471 case BFD_RELOC_ARM_TLS_LDM32:
20472 case BFD_RELOC_ARM_TLS_LDO32:
20473 S_SET_THREAD_LOCAL (fixP->fx_addsy);
20474 /* fall through */
20475
20476 case BFD_RELOC_ARM_GOT32:
20477 case BFD_RELOC_ARM_GOTOFF:
20478 if (fixP->fx_done || !seg->use_rela_p)
20479 md_number_to_chars (buf, 0, 4);
20480 break;
20481
20482 case BFD_RELOC_ARM_TARGET2:
20483 /* TARGET2 is not partial-inplace, so we need to write the
20484 addend here for REL targets, because it won't be written out
20485 during reloc processing later. */
20486 if (fixP->fx_done || !seg->use_rela_p)
20487 md_number_to_chars (buf, fixP->fx_offset, 4);
20488 break;
20489 #endif
20490
20491 case BFD_RELOC_RVA:
20492 case BFD_RELOC_32:
20493 case BFD_RELOC_ARM_TARGET1:
20494 case BFD_RELOC_ARM_ROSEGREL32:
20495 case BFD_RELOC_ARM_SBREL32:
20496 case BFD_RELOC_32_PCREL:
20497 #ifdef TE_PE
20498 case BFD_RELOC_32_SECREL:
20499 #endif
20500 if (fixP->fx_done || !seg->use_rela_p)
20501 #ifdef TE_WINCE
20502 /* For WinCE we only do this for pcrel fixups. */
20503 if (fixP->fx_done || fixP->fx_pcrel)
20504 #endif
20505 md_number_to_chars (buf, value, 4);
20506 break;
20507
20508 #ifdef OBJ_ELF
20509 case BFD_RELOC_ARM_PREL31:
20510 if (fixP->fx_done || !seg->use_rela_p)
20511 {
20512 newval = md_chars_to_number (buf, 4) & 0x80000000;
20513 if ((value ^ (value >> 1)) & 0x40000000)
20514 {
20515 as_bad_where (fixP->fx_file, fixP->fx_line,
20516 _("rel31 relocation overflow"));
20517 }
20518 newval |= value & 0x7fffffff;
20519 md_number_to_chars (buf, newval, 4);
20520 }
20521 break;
20522 #endif
20523
20524 case BFD_RELOC_ARM_CP_OFF_IMM:
20525 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20526 if (value < -1023 || value > 1023 || (value & 3))
20527 as_bad_where (fixP->fx_file, fixP->fx_line,
20528 _("co-processor offset out of range"));
20529 cp_off_common:
20530 sign = value >= 0;
20531 if (value < 0)
20532 value = -value;
20533 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20534 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20535 newval = md_chars_to_number (buf, INSN_SIZE);
20536 else
20537 newval = get_thumb32_insn (buf);
20538 newval &= 0xff7fff00;
20539 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
20540 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
20541 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
20542 md_number_to_chars (buf, newval, INSN_SIZE);
20543 else
20544 put_thumb32_insn (buf, newval);
20545 break;
20546
20547 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
20548 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
20549 if (value < -255 || value > 255)
20550 as_bad_where (fixP->fx_file, fixP->fx_line,
20551 _("co-processor offset out of range"));
20552 value *= 4;
20553 goto cp_off_common;
20554
20555 case BFD_RELOC_ARM_THUMB_OFFSET:
20556 newval = md_chars_to_number (buf, THUMB_SIZE);
20557 /* Exactly what ranges, and where the offset is inserted depends
20558 on the type of instruction, we can establish this from the
20559 top 4 bits. */
20560 switch (newval >> 12)
20561 {
20562 case 4: /* PC load. */
20563 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
20564 forced to zero for these loads; md_pcrel_from has already
20565 compensated for this. */
20566 if (value & 3)
20567 as_bad_where (fixP->fx_file, fixP->fx_line,
20568 _("invalid offset, target not word aligned (0x%08lX)"),
20569 (((unsigned long) fixP->fx_frag->fr_address
20570 + (unsigned long) fixP->fx_where) & ~3)
20571 + (unsigned long) value);
20572
20573 if (value & ~0x3fc)
20574 as_bad_where (fixP->fx_file, fixP->fx_line,
20575 _("invalid offset, value too big (0x%08lX)"),
20576 (long) value);
20577
20578 newval |= value >> 2;
20579 break;
20580
20581 case 9: /* SP load/store. */
20582 if (value & ~0x3fc)
20583 as_bad_where (fixP->fx_file, fixP->fx_line,
20584 _("invalid offset, value too big (0x%08lX)"),
20585 (long) value);
20586 newval |= value >> 2;
20587 break;
20588
20589 case 6: /* Word load/store. */
20590 if (value & ~0x7c)
20591 as_bad_where (fixP->fx_file, fixP->fx_line,
20592 _("invalid offset, value too big (0x%08lX)"),
20593 (long) value);
20594 newval |= value << 4; /* 6 - 2. */
20595 break;
20596
20597 case 7: /* Byte load/store. */
20598 if (value & ~0x1f)
20599 as_bad_where (fixP->fx_file, fixP->fx_line,
20600 _("invalid offset, value too big (0x%08lX)"),
20601 (long) value);
20602 newval |= value << 6;
20603 break;
20604
20605 case 8: /* Halfword load/store. */
20606 if (value & ~0x3e)
20607 as_bad_where (fixP->fx_file, fixP->fx_line,
20608 _("invalid offset, value too big (0x%08lX)"),
20609 (long) value);
20610 newval |= value << 5; /* 6 - 1. */
20611 break;
20612
20613 default:
20614 as_bad_where (fixP->fx_file, fixP->fx_line,
20615 "Unable to process relocation for thumb opcode: %lx",
20616 (unsigned long) newval);
20617 break;
20618 }
20619 md_number_to_chars (buf, newval, THUMB_SIZE);
20620 break;
20621
20622 case BFD_RELOC_ARM_THUMB_ADD:
20623 /* This is a complicated relocation, since we use it for all of
20624 the following immediate relocations:
20625
20626 3bit ADD/SUB
20627 8bit ADD/SUB
20628 9bit ADD/SUB SP word-aligned
20629 10bit ADD PC/SP word-aligned
20630
20631 The type of instruction being processed is encoded in the
20632 instruction field:
20633
20634 0x8000 SUB
20635 0x00F0 Rd
20636 0x000F Rs
20637 */
20638 newval = md_chars_to_number (buf, THUMB_SIZE);
20639 {
20640 int rd = (newval >> 4) & 0xf;
20641 int rs = newval & 0xf;
20642 int subtract = !!(newval & 0x8000);
20643
20644 /* Check for HI regs, only very restricted cases allowed:
20645 Adjusting SP, and using PC or SP to get an address. */
20646 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
20647 || (rs > 7 && rs != REG_SP && rs != REG_PC))
20648 as_bad_where (fixP->fx_file, fixP->fx_line,
20649 _("invalid Hi register with immediate"));
20650
20651 /* If value is negative, choose the opposite instruction. */
20652 if (value < 0)
20653 {
20654 value = -value;
20655 subtract = !subtract;
20656 if (value < 0)
20657 as_bad_where (fixP->fx_file, fixP->fx_line,
20658 _("immediate value out of range"));
20659 }
20660
20661 if (rd == REG_SP)
20662 {
20663 if (value & ~0x1fc)
20664 as_bad_where (fixP->fx_file, fixP->fx_line,
20665 _("invalid immediate for stack address calculation"));
20666 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
20667 newval |= value >> 2;
20668 }
20669 else if (rs == REG_PC || rs == REG_SP)
20670 {
20671 if (subtract || value & ~0x3fc)
20672 as_bad_where (fixP->fx_file, fixP->fx_line,
20673 _("invalid immediate for address calculation (value = 0x%08lX)"),
20674 (unsigned long) value);
20675 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
20676 newval |= rd << 8;
20677 newval |= value >> 2;
20678 }
20679 else if (rs == rd)
20680 {
20681 if (value & ~0xff)
20682 as_bad_where (fixP->fx_file, fixP->fx_line,
20683 _("immediate value out of range"));
20684 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
20685 newval |= (rd << 8) | value;
20686 }
20687 else
20688 {
20689 if (value & ~0x7)
20690 as_bad_where (fixP->fx_file, fixP->fx_line,
20691 _("immediate value out of range"));
20692 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
20693 newval |= rd | (rs << 3) | (value << 6);
20694 }
20695 }
20696 md_number_to_chars (buf, newval, THUMB_SIZE);
20697 break;
20698
20699 case BFD_RELOC_ARM_THUMB_IMM:
20700 newval = md_chars_to_number (buf, THUMB_SIZE);
20701 if (value < 0 || value > 255)
20702 as_bad_where (fixP->fx_file, fixP->fx_line,
20703 _("invalid immediate: %ld is out of range"),
20704 (long) value);
20705 newval |= value;
20706 md_number_to_chars (buf, newval, THUMB_SIZE);
20707 break;
20708
20709 case BFD_RELOC_ARM_THUMB_SHIFT:
20710 /* 5bit shift value (0..32). LSL cannot take 32. */
20711 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
20712 temp = newval & 0xf800;
20713 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
20714 as_bad_where (fixP->fx_file, fixP->fx_line,
20715 _("invalid shift value: %ld"), (long) value);
20716 /* Shifts of zero must be encoded as LSL. */
20717 if (value == 0)
20718 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
20719 /* Shifts of 32 are encoded as zero. */
20720 else if (value == 32)
20721 value = 0;
20722 newval |= value << 6;
20723 md_number_to_chars (buf, newval, THUMB_SIZE);
20724 break;
20725
20726 case BFD_RELOC_VTABLE_INHERIT:
20727 case BFD_RELOC_VTABLE_ENTRY:
20728 fixP->fx_done = 0;
20729 return;
20730
20731 case BFD_RELOC_ARM_MOVW:
20732 case BFD_RELOC_ARM_MOVT:
20733 case BFD_RELOC_ARM_THUMB_MOVW:
20734 case BFD_RELOC_ARM_THUMB_MOVT:
20735 if (fixP->fx_done || !seg->use_rela_p)
20736 {
20737 /* REL format relocations are limited to a 16-bit addend. */
20738 if (!fixP->fx_done)
20739 {
20740 if (value < -0x8000 || value > 0x7fff)
20741 as_bad_where (fixP->fx_file, fixP->fx_line,
20742 _("offset out of range"));
20743 }
20744 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
20745 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20746 {
20747 value >>= 16;
20748 }
20749
20750 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
20751 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
20752 {
20753 newval = get_thumb32_insn (buf);
20754 newval &= 0xfbf08f00;
20755 newval |= (value & 0xf000) << 4;
20756 newval |= (value & 0x0800) << 15;
20757 newval |= (value & 0x0700) << 4;
20758 newval |= (value & 0x00ff);
20759 put_thumb32_insn (buf, newval);
20760 }
20761 else
20762 {
20763 newval = md_chars_to_number (buf, 4);
20764 newval &= 0xfff0f000;
20765 newval |= value & 0x0fff;
20766 newval |= (value & 0xf000) << 4;
20767 md_number_to_chars (buf, newval, 4);
20768 }
20769 }
20770 return;
20771
20772 case BFD_RELOC_ARM_ALU_PC_G0_NC:
20773 case BFD_RELOC_ARM_ALU_PC_G0:
20774 case BFD_RELOC_ARM_ALU_PC_G1_NC:
20775 case BFD_RELOC_ARM_ALU_PC_G1:
20776 case BFD_RELOC_ARM_ALU_PC_G2:
20777 case BFD_RELOC_ARM_ALU_SB_G0_NC:
20778 case BFD_RELOC_ARM_ALU_SB_G0:
20779 case BFD_RELOC_ARM_ALU_SB_G1_NC:
20780 case BFD_RELOC_ARM_ALU_SB_G1:
20781 case BFD_RELOC_ARM_ALU_SB_G2:
20782 gas_assert (!fixP->fx_done);
20783 if (!seg->use_rela_p)
20784 {
20785 bfd_vma insn;
20786 bfd_vma encoded_addend;
20787 bfd_vma addend_abs = abs (value);
20788
20789 /* Check that the absolute value of the addend can be
20790 expressed as an 8-bit constant plus a rotation. */
20791 encoded_addend = encode_arm_immediate (addend_abs);
20792 if (encoded_addend == (unsigned int) FAIL)
20793 as_bad_where (fixP->fx_file, fixP->fx_line,
20794 _("the offset 0x%08lX is not representable"),
20795 (unsigned long) addend_abs);
20796
20797 /* Extract the instruction. */
20798 insn = md_chars_to_number (buf, INSN_SIZE);
20799
20800 /* If the addend is positive, use an ADD instruction.
20801 Otherwise use a SUB. Take care not to destroy the S bit. */
20802 insn &= 0xff1fffff;
20803 if (value < 0)
20804 insn |= 1 << 22;
20805 else
20806 insn |= 1 << 23;
20807
20808 /* Place the encoded addend into the first 12 bits of the
20809 instruction. */
20810 insn &= 0xfffff000;
20811 insn |= encoded_addend;
20812
20813 /* Update the instruction. */
20814 md_number_to_chars (buf, insn, INSN_SIZE);
20815 }
20816 break;
20817
20818 case BFD_RELOC_ARM_LDR_PC_G0:
20819 case BFD_RELOC_ARM_LDR_PC_G1:
20820 case BFD_RELOC_ARM_LDR_PC_G2:
20821 case BFD_RELOC_ARM_LDR_SB_G0:
20822 case BFD_RELOC_ARM_LDR_SB_G1:
20823 case BFD_RELOC_ARM_LDR_SB_G2:
20824 gas_assert (!fixP->fx_done);
20825 if (!seg->use_rela_p)
20826 {
20827 bfd_vma insn;
20828 bfd_vma addend_abs = abs (value);
20829
20830 /* Check that the absolute value of the addend can be
20831 encoded in 12 bits. */
20832 if (addend_abs >= 0x1000)
20833 as_bad_where (fixP->fx_file, fixP->fx_line,
20834 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
20835 (unsigned long) addend_abs);
20836
20837 /* Extract the instruction. */
20838 insn = md_chars_to_number (buf, INSN_SIZE);
20839
20840 /* If the addend is negative, clear bit 23 of the instruction.
20841 Otherwise set it. */
20842 if (value < 0)
20843 insn &= ~(1 << 23);
20844 else
20845 insn |= 1 << 23;
20846
20847 /* Place the absolute value of the addend into the first 12 bits
20848 of the instruction. */
20849 insn &= 0xfffff000;
20850 insn |= addend_abs;
20851
20852 /* Update the instruction. */
20853 md_number_to_chars (buf, insn, INSN_SIZE);
20854 }
20855 break;
20856
20857 case BFD_RELOC_ARM_LDRS_PC_G0:
20858 case BFD_RELOC_ARM_LDRS_PC_G1:
20859 case BFD_RELOC_ARM_LDRS_PC_G2:
20860 case BFD_RELOC_ARM_LDRS_SB_G0:
20861 case BFD_RELOC_ARM_LDRS_SB_G1:
20862 case BFD_RELOC_ARM_LDRS_SB_G2:
20863 gas_assert (!fixP->fx_done);
20864 if (!seg->use_rela_p)
20865 {
20866 bfd_vma insn;
20867 bfd_vma addend_abs = abs (value);
20868
20869 /* Check that the absolute value of the addend can be
20870 encoded in 8 bits. */
20871 if (addend_abs >= 0x100)
20872 as_bad_where (fixP->fx_file, fixP->fx_line,
20873 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
20874 (unsigned long) addend_abs);
20875
20876 /* Extract the instruction. */
20877 insn = md_chars_to_number (buf, INSN_SIZE);
20878
20879 /* If the addend is negative, clear bit 23 of the instruction.
20880 Otherwise set it. */
20881 if (value < 0)
20882 insn &= ~(1 << 23);
20883 else
20884 insn |= 1 << 23;
20885
20886 /* Place the first four bits of the absolute value of the addend
20887 into the first 4 bits of the instruction, and the remaining
20888 four into bits 8 .. 11. */
20889 insn &= 0xfffff0f0;
20890 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
20891
20892 /* Update the instruction. */
20893 md_number_to_chars (buf, insn, INSN_SIZE);
20894 }
20895 break;
20896
20897 case BFD_RELOC_ARM_LDC_PC_G0:
20898 case BFD_RELOC_ARM_LDC_PC_G1:
20899 case BFD_RELOC_ARM_LDC_PC_G2:
20900 case BFD_RELOC_ARM_LDC_SB_G0:
20901 case BFD_RELOC_ARM_LDC_SB_G1:
20902 case BFD_RELOC_ARM_LDC_SB_G2:
20903 gas_assert (!fixP->fx_done);
20904 if (!seg->use_rela_p)
20905 {
20906 bfd_vma insn;
20907 bfd_vma addend_abs = abs (value);
20908
20909 /* Check that the absolute value of the addend is a multiple of
20910 four and, when divided by four, fits in 8 bits. */
20911 if (addend_abs & 0x3)
20912 as_bad_where (fixP->fx_file, fixP->fx_line,
20913 _("bad offset 0x%08lX (must be word-aligned)"),
20914 (unsigned long) addend_abs);
20915
20916 if ((addend_abs >> 2) > 0xff)
20917 as_bad_where (fixP->fx_file, fixP->fx_line,
20918 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
20919 (unsigned long) addend_abs);
20920
20921 /* Extract the instruction. */
20922 insn = md_chars_to_number (buf, INSN_SIZE);
20923
20924 /* If the addend is negative, clear bit 23 of the instruction.
20925 Otherwise set it. */
20926 if (value < 0)
20927 insn &= ~(1 << 23);
20928 else
20929 insn |= 1 << 23;
20930
20931 /* Place the addend (divided by four) into the first eight
20932 bits of the instruction. */
20933 insn &= 0xfffffff0;
20934 insn |= addend_abs >> 2;
20935
20936 /* Update the instruction. */
20937 md_number_to_chars (buf, insn, INSN_SIZE);
20938 }
20939 break;
20940
20941 case BFD_RELOC_ARM_V4BX:
20942 /* This will need to go in the object file. */
20943 fixP->fx_done = 0;
20944 break;
20945
20946 case BFD_RELOC_UNUSED:
20947 default:
20948 as_bad_where (fixP->fx_file, fixP->fx_line,
20949 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
20950 }
20951 }
20952
20953 /* Translate internal representation of relocation info to BFD target
20954 format. */
20955
20956 arelent *
20957 tc_gen_reloc (asection *section, fixS *fixp)
20958 {
20959 arelent * reloc;
20960 bfd_reloc_code_real_type code;
20961
20962 reloc = (arelent *) xmalloc (sizeof (arelent));
20963
20964 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
20965 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
20966 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
20967
20968 if (fixp->fx_pcrel)
20969 {
20970 if (section->use_rela_p)
20971 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
20972 else
20973 fixp->fx_offset = reloc->address;
20974 }
20975 reloc->addend = fixp->fx_offset;
20976
20977 switch (fixp->fx_r_type)
20978 {
20979 case BFD_RELOC_8:
20980 if (fixp->fx_pcrel)
20981 {
20982 code = BFD_RELOC_8_PCREL;
20983 break;
20984 }
20985
20986 case BFD_RELOC_16:
20987 if (fixp->fx_pcrel)
20988 {
20989 code = BFD_RELOC_16_PCREL;
20990 break;
20991 }
20992
20993 case BFD_RELOC_32:
20994 if (fixp->fx_pcrel)
20995 {
20996 code = BFD_RELOC_32_PCREL;
20997 break;
20998 }
20999
21000 case BFD_RELOC_ARM_MOVW:
21001 if (fixp->fx_pcrel)
21002 {
21003 code = BFD_RELOC_ARM_MOVW_PCREL;
21004 break;
21005 }
21006
21007 case BFD_RELOC_ARM_MOVT:
21008 if (fixp->fx_pcrel)
21009 {
21010 code = BFD_RELOC_ARM_MOVT_PCREL;
21011 break;
21012 }
21013
21014 case BFD_RELOC_ARM_THUMB_MOVW:
21015 if (fixp->fx_pcrel)
21016 {
21017 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
21018 break;
21019 }
21020
21021 case BFD_RELOC_ARM_THUMB_MOVT:
21022 if (fixp->fx_pcrel)
21023 {
21024 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
21025 break;
21026 }
21027
21028 case BFD_RELOC_NONE:
21029 case BFD_RELOC_ARM_PCREL_BRANCH:
21030 case BFD_RELOC_ARM_PCREL_BLX:
21031 case BFD_RELOC_RVA:
21032 case BFD_RELOC_THUMB_PCREL_BRANCH7:
21033 case BFD_RELOC_THUMB_PCREL_BRANCH9:
21034 case BFD_RELOC_THUMB_PCREL_BRANCH12:
21035 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21036 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21037 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21038 case BFD_RELOC_VTABLE_ENTRY:
21039 case BFD_RELOC_VTABLE_INHERIT:
21040 #ifdef TE_PE
21041 case BFD_RELOC_32_SECREL:
21042 #endif
21043 code = fixp->fx_r_type;
21044 break;
21045
21046 case BFD_RELOC_THUMB_PCREL_BLX:
21047 #ifdef OBJ_ELF
21048 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21049 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
21050 else
21051 #endif
21052 code = BFD_RELOC_THUMB_PCREL_BLX;
21053 break;
21054
21055 case BFD_RELOC_ARM_LITERAL:
21056 case BFD_RELOC_ARM_HWLITERAL:
21057 /* If this is called then the a literal has
21058 been referenced across a section boundary. */
21059 as_bad_where (fixp->fx_file, fixp->fx_line,
21060 _("literal referenced across section boundary"));
21061 return NULL;
21062
21063 #ifdef OBJ_ELF
21064 case BFD_RELOC_ARM_GOT32:
21065 case BFD_RELOC_ARM_GOTOFF:
21066 case BFD_RELOC_ARM_PLT32:
21067 case BFD_RELOC_ARM_TARGET1:
21068 case BFD_RELOC_ARM_ROSEGREL32:
21069 case BFD_RELOC_ARM_SBREL32:
21070 case BFD_RELOC_ARM_PREL31:
21071 case BFD_RELOC_ARM_TARGET2:
21072 case BFD_RELOC_ARM_TLS_LE32:
21073 case BFD_RELOC_ARM_TLS_LDO32:
21074 case BFD_RELOC_ARM_PCREL_CALL:
21075 case BFD_RELOC_ARM_PCREL_JUMP:
21076 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21077 case BFD_RELOC_ARM_ALU_PC_G0:
21078 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21079 case BFD_RELOC_ARM_ALU_PC_G1:
21080 case BFD_RELOC_ARM_ALU_PC_G2:
21081 case BFD_RELOC_ARM_LDR_PC_G0:
21082 case BFD_RELOC_ARM_LDR_PC_G1:
21083 case BFD_RELOC_ARM_LDR_PC_G2:
21084 case BFD_RELOC_ARM_LDRS_PC_G0:
21085 case BFD_RELOC_ARM_LDRS_PC_G1:
21086 case BFD_RELOC_ARM_LDRS_PC_G2:
21087 case BFD_RELOC_ARM_LDC_PC_G0:
21088 case BFD_RELOC_ARM_LDC_PC_G1:
21089 case BFD_RELOC_ARM_LDC_PC_G2:
21090 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21091 case BFD_RELOC_ARM_ALU_SB_G0:
21092 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21093 case BFD_RELOC_ARM_ALU_SB_G1:
21094 case BFD_RELOC_ARM_ALU_SB_G2:
21095 case BFD_RELOC_ARM_LDR_SB_G0:
21096 case BFD_RELOC_ARM_LDR_SB_G1:
21097 case BFD_RELOC_ARM_LDR_SB_G2:
21098 case BFD_RELOC_ARM_LDRS_SB_G0:
21099 case BFD_RELOC_ARM_LDRS_SB_G1:
21100 case BFD_RELOC_ARM_LDRS_SB_G2:
21101 case BFD_RELOC_ARM_LDC_SB_G0:
21102 case BFD_RELOC_ARM_LDC_SB_G1:
21103 case BFD_RELOC_ARM_LDC_SB_G2:
21104 case BFD_RELOC_ARM_V4BX:
21105 code = fixp->fx_r_type;
21106 break;
21107
21108 case BFD_RELOC_ARM_TLS_GD32:
21109 case BFD_RELOC_ARM_TLS_IE32:
21110 case BFD_RELOC_ARM_TLS_LDM32:
21111 /* BFD will include the symbol's address in the addend.
21112 But we don't want that, so subtract it out again here. */
21113 if (!S_IS_COMMON (fixp->fx_addsy))
21114 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
21115 code = fixp->fx_r_type;
21116 break;
21117 #endif
21118
21119 case BFD_RELOC_ARM_IMMEDIATE:
21120 as_bad_where (fixp->fx_file, fixp->fx_line,
21121 _("internal relocation (type: IMMEDIATE) not fixed up"));
21122 return NULL;
21123
21124 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21125 as_bad_where (fixp->fx_file, fixp->fx_line,
21126 _("ADRL used for a symbol not defined in the same file"));
21127 return NULL;
21128
21129 case BFD_RELOC_ARM_OFFSET_IMM:
21130 if (section->use_rela_p)
21131 {
21132 code = fixp->fx_r_type;
21133 break;
21134 }
21135
21136 if (fixp->fx_addsy != NULL
21137 && !S_IS_DEFINED (fixp->fx_addsy)
21138 && S_IS_LOCAL (fixp->fx_addsy))
21139 {
21140 as_bad_where (fixp->fx_file, fixp->fx_line,
21141 _("undefined local label `%s'"),
21142 S_GET_NAME (fixp->fx_addsy));
21143 return NULL;
21144 }
21145
21146 as_bad_where (fixp->fx_file, fixp->fx_line,
21147 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
21148 return NULL;
21149
21150 default:
21151 {
21152 char * type;
21153
21154 switch (fixp->fx_r_type)
21155 {
21156 case BFD_RELOC_NONE: type = "NONE"; break;
21157 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
21158 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
21159 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
21160 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
21161 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
21162 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
21163 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
21164 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
21165 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
21166 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
21167 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
21168 default: type = _("<unknown>"); break;
21169 }
21170 as_bad_where (fixp->fx_file, fixp->fx_line,
21171 _("cannot represent %s relocation in this object file format"),
21172 type);
21173 return NULL;
21174 }
21175 }
21176
21177 #ifdef OBJ_ELF
21178 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
21179 && GOT_symbol
21180 && fixp->fx_addsy == GOT_symbol)
21181 {
21182 code = BFD_RELOC_ARM_GOTPC;
21183 reloc->addend = fixp->fx_offset = reloc->address;
21184 }
21185 #endif
21186
21187 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
21188
21189 if (reloc->howto == NULL)
21190 {
21191 as_bad_where (fixp->fx_file, fixp->fx_line,
21192 _("cannot represent %s relocation in this object file format"),
21193 bfd_get_reloc_code_name (code));
21194 return NULL;
21195 }
21196
21197 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
21198 vtable entry to be used in the relocation's section offset. */
21199 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21200 reloc->address = fixp->fx_offset;
21201
21202 return reloc;
21203 }
21204
21205 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
21206
21207 void
21208 cons_fix_new_arm (fragS * frag,
21209 int where,
21210 int size,
21211 expressionS * exp)
21212 {
21213 bfd_reloc_code_real_type type;
21214 int pcrel = 0;
21215
21216 /* Pick a reloc.
21217 FIXME: @@ Should look at CPU word size. */
21218 switch (size)
21219 {
21220 case 1:
21221 type = BFD_RELOC_8;
21222 break;
21223 case 2:
21224 type = BFD_RELOC_16;
21225 break;
21226 case 4:
21227 default:
21228 type = BFD_RELOC_32;
21229 break;
21230 case 8:
21231 type = BFD_RELOC_64;
21232 break;
21233 }
21234
21235 #ifdef TE_PE
21236 if (exp->X_op == O_secrel)
21237 {
21238 exp->X_op = O_symbol;
21239 type = BFD_RELOC_32_SECREL;
21240 }
21241 #endif
21242
21243 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
21244 }
21245
21246 #if defined (OBJ_COFF)
21247 void
21248 arm_validate_fix (fixS * fixP)
21249 {
21250 /* If the destination of the branch is a defined symbol which does not have
21251 the THUMB_FUNC attribute, then we must be calling a function which has
21252 the (interfacearm) attribute. We look for the Thumb entry point to that
21253 function and change the branch to refer to that function instead. */
21254 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
21255 && fixP->fx_addsy != NULL
21256 && S_IS_DEFINED (fixP->fx_addsy)
21257 && ! THUMB_IS_FUNC (fixP->fx_addsy))
21258 {
21259 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
21260 }
21261 }
21262 #endif
21263
21264
21265 int
21266 arm_force_relocation (struct fix * fixp)
21267 {
21268 #if defined (OBJ_COFF) && defined (TE_PE)
21269 if (fixp->fx_r_type == BFD_RELOC_RVA)
21270 return 1;
21271 #endif
21272
21273 /* In case we have a call or a branch to a function in ARM ISA mode from
21274 a thumb function or vice-versa force the relocation. These relocations
21275 are cleared off for some cores that might have blx and simple transformations
21276 are possible. */
21277
21278 #ifdef OBJ_ELF
21279 switch (fixp->fx_r_type)
21280 {
21281 case BFD_RELOC_ARM_PCREL_JUMP:
21282 case BFD_RELOC_ARM_PCREL_CALL:
21283 case BFD_RELOC_THUMB_PCREL_BLX:
21284 if (THUMB_IS_FUNC (fixp->fx_addsy))
21285 return 1;
21286 break;
21287
21288 case BFD_RELOC_ARM_PCREL_BLX:
21289 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21290 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21291 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21292 if (ARM_IS_FUNC (fixp->fx_addsy))
21293 return 1;
21294 break;
21295
21296 default:
21297 break;
21298 }
21299 #endif
21300
21301 /* Resolve these relocations even if the symbol is extern or weak. */
21302 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
21303 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
21304 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
21305 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
21306 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21307 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
21308 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
21309 return 0;
21310
21311 /* Always leave these relocations for the linker. */
21312 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21313 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21314 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21315 return 1;
21316
21317 /* Always generate relocations against function symbols. */
21318 if (fixp->fx_r_type == BFD_RELOC_32
21319 && fixp->fx_addsy
21320 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
21321 return 1;
21322
21323 return generic_force_reloc (fixp);
21324 }
21325
21326 #if defined (OBJ_ELF) || defined (OBJ_COFF)
21327 /* Relocations against function names must be left unadjusted,
21328 so that the linker can use this information to generate interworking
21329 stubs. The MIPS version of this function
21330 also prevents relocations that are mips-16 specific, but I do not
21331 know why it does this.
21332
21333 FIXME:
21334 There is one other problem that ought to be addressed here, but
21335 which currently is not: Taking the address of a label (rather
21336 than a function) and then later jumping to that address. Such
21337 addresses also ought to have their bottom bit set (assuming that
21338 they reside in Thumb code), but at the moment they will not. */
21339
21340 bfd_boolean
21341 arm_fix_adjustable (fixS * fixP)
21342 {
21343 if (fixP->fx_addsy == NULL)
21344 return 1;
21345
21346 /* Preserve relocations against symbols with function type. */
21347 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
21348 return FALSE;
21349
21350 if (THUMB_IS_FUNC (fixP->fx_addsy)
21351 && fixP->fx_subsy == NULL)
21352 return FALSE;
21353
21354 /* We need the symbol name for the VTABLE entries. */
21355 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
21356 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
21357 return FALSE;
21358
21359 /* Don't allow symbols to be discarded on GOT related relocs. */
21360 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
21361 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
21362 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
21363 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
21364 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
21365 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
21366 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
21367 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
21368 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
21369 return FALSE;
21370
21371 /* Similarly for group relocations. */
21372 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
21373 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
21374 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
21375 return FALSE;
21376
21377 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
21378 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
21379 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21380 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
21381 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
21382 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21383 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
21384 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
21385 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
21386 return FALSE;
21387
21388 return TRUE;
21389 }
21390 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
21391
21392 #ifdef OBJ_ELF
21393
21394 const char *
21395 elf32_arm_target_format (void)
21396 {
21397 #ifdef TE_SYMBIAN
21398 return (target_big_endian
21399 ? "elf32-bigarm-symbian"
21400 : "elf32-littlearm-symbian");
21401 #elif defined (TE_VXWORKS)
21402 return (target_big_endian
21403 ? "elf32-bigarm-vxworks"
21404 : "elf32-littlearm-vxworks");
21405 #else
21406 if (target_big_endian)
21407 return "elf32-bigarm";
21408 else
21409 return "elf32-littlearm";
21410 #endif
21411 }
21412
21413 void
21414 armelf_frob_symbol (symbolS * symp,
21415 int * puntp)
21416 {
21417 elf_frob_symbol (symp, puntp);
21418 }
21419 #endif
21420
21421 /* MD interface: Finalization. */
21422
21423 void
21424 arm_cleanup (void)
21425 {
21426 literal_pool * pool;
21427
21428 /* Ensure that all the IT blocks are properly closed. */
21429 check_it_blocks_finished ();
21430
21431 for (pool = list_of_pools; pool; pool = pool->next)
21432 {
21433 /* Put it at the end of the relevant section. */
21434 subseg_set (pool->section, pool->sub_section);
21435 #ifdef OBJ_ELF
21436 arm_elf_change_section ();
21437 #endif
21438 s_ltorg (0);
21439 }
21440 }
21441
21442 #ifdef OBJ_ELF
21443 /* Remove any excess mapping symbols generated for alignment frags in
21444 SEC. We may have created a mapping symbol before a zero byte
21445 alignment; remove it if there's a mapping symbol after the
21446 alignment. */
21447 static void
21448 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
21449 void *dummy ATTRIBUTE_UNUSED)
21450 {
21451 segment_info_type *seginfo = seg_info (sec);
21452 fragS *fragp;
21453
21454 if (seginfo == NULL || seginfo->frchainP == NULL)
21455 return;
21456
21457 for (fragp = seginfo->frchainP->frch_root;
21458 fragp != NULL;
21459 fragp = fragp->fr_next)
21460 {
21461 symbolS *sym = fragp->tc_frag_data.last_map;
21462 fragS *next = fragp->fr_next;
21463
21464 /* Variable-sized frags have been converted to fixed size by
21465 this point. But if this was variable-sized to start with,
21466 there will be a fixed-size frag after it. So don't handle
21467 next == NULL. */
21468 if (sym == NULL || next == NULL)
21469 continue;
21470
21471 if (S_GET_VALUE (sym) < next->fr_address)
21472 /* Not at the end of this frag. */
21473 continue;
21474 know (S_GET_VALUE (sym) == next->fr_address);
21475
21476 do
21477 {
21478 if (next->tc_frag_data.first_map != NULL)
21479 {
21480 /* Next frag starts with a mapping symbol. Discard this
21481 one. */
21482 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21483 break;
21484 }
21485
21486 if (next->fr_next == NULL)
21487 {
21488 /* This mapping symbol is at the end of the section. Discard
21489 it. */
21490 know (next->fr_fix == 0 && next->fr_var == 0);
21491 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
21492 break;
21493 }
21494
21495 /* As long as we have empty frags without any mapping symbols,
21496 keep looking. */
21497 /* If the next frag is non-empty and does not start with a
21498 mapping symbol, then this mapping symbol is required. */
21499 if (next->fr_address != next->fr_next->fr_address)
21500 break;
21501
21502 next = next->fr_next;
21503 }
21504 while (next != NULL);
21505 }
21506 }
21507 #endif
21508
21509 /* Adjust the symbol table. This marks Thumb symbols as distinct from
21510 ARM ones. */
21511
21512 void
21513 arm_adjust_symtab (void)
21514 {
21515 #ifdef OBJ_COFF
21516 symbolS * sym;
21517
21518 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21519 {
21520 if (ARM_IS_THUMB (sym))
21521 {
21522 if (THUMB_IS_FUNC (sym))
21523 {
21524 /* Mark the symbol as a Thumb function. */
21525 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
21526 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
21527 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
21528
21529 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
21530 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
21531 else
21532 as_bad (_("%s: unexpected function type: %d"),
21533 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
21534 }
21535 else switch (S_GET_STORAGE_CLASS (sym))
21536 {
21537 case C_EXT:
21538 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
21539 break;
21540 case C_STAT:
21541 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
21542 break;
21543 case C_LABEL:
21544 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
21545 break;
21546 default:
21547 /* Do nothing. */
21548 break;
21549 }
21550 }
21551
21552 if (ARM_IS_INTERWORK (sym))
21553 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
21554 }
21555 #endif
21556 #ifdef OBJ_ELF
21557 symbolS * sym;
21558 char bind;
21559
21560 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
21561 {
21562 if (ARM_IS_THUMB (sym))
21563 {
21564 elf_symbol_type * elf_sym;
21565
21566 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
21567 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
21568
21569 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
21570 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
21571 {
21572 /* If it's a .thumb_func, declare it as so,
21573 otherwise tag label as .code 16. */
21574 if (THUMB_IS_FUNC (sym))
21575 elf_sym->internal_elf_sym.st_info =
21576 ELF_ST_INFO (bind, STT_ARM_TFUNC);
21577 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
21578 elf_sym->internal_elf_sym.st_info =
21579 ELF_ST_INFO (bind, STT_ARM_16BIT);
21580 }
21581 }
21582 }
21583
21584 /* Remove any overlapping mapping symbols generated by alignment frags. */
21585 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
21586 #endif
21587 }
21588
21589 /* MD interface: Initialization. */
21590
21591 static void
21592 set_constant_flonums (void)
21593 {
21594 int i;
21595
21596 for (i = 0; i < NUM_FLOAT_VALS; i++)
21597 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
21598 abort ();
21599 }
21600
21601 /* Auto-select Thumb mode if it's the only available instruction set for the
21602 given architecture. */
21603
21604 static void
21605 autoselect_thumb_from_cpu_variant (void)
21606 {
21607 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21608 opcode_select (16);
21609 }
21610
21611 void
21612 md_begin (void)
21613 {
21614 unsigned mach;
21615 unsigned int i;
21616
21617 if ( (arm_ops_hsh = hash_new ()) == NULL
21618 || (arm_cond_hsh = hash_new ()) == NULL
21619 || (arm_shift_hsh = hash_new ()) == NULL
21620 || (arm_psr_hsh = hash_new ()) == NULL
21621 || (arm_v7m_psr_hsh = hash_new ()) == NULL
21622 || (arm_reg_hsh = hash_new ()) == NULL
21623 || (arm_reloc_hsh = hash_new ()) == NULL
21624 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
21625 as_fatal (_("virtual memory exhausted"));
21626
21627 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
21628 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
21629 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
21630 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
21631 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
21632 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
21633 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
21634 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
21635 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
21636 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
21637 (void *) (v7m_psrs + i));
21638 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
21639 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
21640 for (i = 0;
21641 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
21642 i++)
21643 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
21644 (void *) (barrier_opt_names + i));
21645 #ifdef OBJ_ELF
21646 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
21647 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
21648 #endif
21649
21650 set_constant_flonums ();
21651
21652 /* Set the cpu variant based on the command-line options. We prefer
21653 -mcpu= over -march= if both are set (as for GCC); and we prefer
21654 -mfpu= over any other way of setting the floating point unit.
21655 Use of legacy options with new options are faulted. */
21656 if (legacy_cpu)
21657 {
21658 if (mcpu_cpu_opt || march_cpu_opt)
21659 as_bad (_("use of old and new-style options to set CPU type"));
21660
21661 mcpu_cpu_opt = legacy_cpu;
21662 }
21663 else if (!mcpu_cpu_opt)
21664 mcpu_cpu_opt = march_cpu_opt;
21665
21666 if (legacy_fpu)
21667 {
21668 if (mfpu_opt)
21669 as_bad (_("use of old and new-style options to set FPU type"));
21670
21671 mfpu_opt = legacy_fpu;
21672 }
21673 else if (!mfpu_opt)
21674 {
21675 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
21676 || defined (TE_NetBSD) || defined (TE_VXWORKS))
21677 /* Some environments specify a default FPU. If they don't, infer it
21678 from the processor. */
21679 if (mcpu_fpu_opt)
21680 mfpu_opt = mcpu_fpu_opt;
21681 else
21682 mfpu_opt = march_fpu_opt;
21683 #else
21684 mfpu_opt = &fpu_default;
21685 #endif
21686 }
21687
21688 if (!mfpu_opt)
21689 {
21690 if (mcpu_cpu_opt != NULL)
21691 mfpu_opt = &fpu_default;
21692 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
21693 mfpu_opt = &fpu_arch_vfp_v2;
21694 else
21695 mfpu_opt = &fpu_arch_fpa;
21696 }
21697
21698 #ifdef CPU_DEFAULT
21699 if (!mcpu_cpu_opt)
21700 {
21701 mcpu_cpu_opt = &cpu_default;
21702 selected_cpu = cpu_default;
21703 }
21704 #else
21705 if (mcpu_cpu_opt)
21706 selected_cpu = *mcpu_cpu_opt;
21707 else
21708 mcpu_cpu_opt = &arm_arch_any;
21709 #endif
21710
21711 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21712
21713 autoselect_thumb_from_cpu_variant ();
21714
21715 arm_arch_used = thumb_arch_used = arm_arch_none;
21716
21717 #if defined OBJ_COFF || defined OBJ_ELF
21718 {
21719 unsigned int flags = 0;
21720
21721 #if defined OBJ_ELF
21722 flags = meabi_flags;
21723
21724 switch (meabi_flags)
21725 {
21726 case EF_ARM_EABI_UNKNOWN:
21727 #endif
21728 /* Set the flags in the private structure. */
21729 if (uses_apcs_26) flags |= F_APCS26;
21730 if (support_interwork) flags |= F_INTERWORK;
21731 if (uses_apcs_float) flags |= F_APCS_FLOAT;
21732 if (pic_code) flags |= F_PIC;
21733 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
21734 flags |= F_SOFT_FLOAT;
21735
21736 switch (mfloat_abi_opt)
21737 {
21738 case ARM_FLOAT_ABI_SOFT:
21739 case ARM_FLOAT_ABI_SOFTFP:
21740 flags |= F_SOFT_FLOAT;
21741 break;
21742
21743 case ARM_FLOAT_ABI_HARD:
21744 if (flags & F_SOFT_FLOAT)
21745 as_bad (_("hard-float conflicts with specified fpu"));
21746 break;
21747 }
21748
21749 /* Using pure-endian doubles (even if soft-float). */
21750 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
21751 flags |= F_VFP_FLOAT;
21752
21753 #if defined OBJ_ELF
21754 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
21755 flags |= EF_ARM_MAVERICK_FLOAT;
21756 break;
21757
21758 case EF_ARM_EABI_VER4:
21759 case EF_ARM_EABI_VER5:
21760 /* No additional flags to set. */
21761 break;
21762
21763 default:
21764 abort ();
21765 }
21766 #endif
21767 bfd_set_private_flags (stdoutput, flags);
21768
21769 /* We have run out flags in the COFF header to encode the
21770 status of ATPCS support, so instead we create a dummy,
21771 empty, debug section called .arm.atpcs. */
21772 if (atpcs)
21773 {
21774 asection * sec;
21775
21776 sec = bfd_make_section (stdoutput, ".arm.atpcs");
21777
21778 if (sec != NULL)
21779 {
21780 bfd_set_section_flags
21781 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
21782 bfd_set_section_size (stdoutput, sec, 0);
21783 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
21784 }
21785 }
21786 }
21787 #endif
21788
21789 /* Record the CPU type as well. */
21790 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
21791 mach = bfd_mach_arm_iWMMXt2;
21792 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
21793 mach = bfd_mach_arm_iWMMXt;
21794 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
21795 mach = bfd_mach_arm_XScale;
21796 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
21797 mach = bfd_mach_arm_ep9312;
21798 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
21799 mach = bfd_mach_arm_5TE;
21800 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
21801 {
21802 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21803 mach = bfd_mach_arm_5T;
21804 else
21805 mach = bfd_mach_arm_5;
21806 }
21807 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
21808 {
21809 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
21810 mach = bfd_mach_arm_4T;
21811 else
21812 mach = bfd_mach_arm_4;
21813 }
21814 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
21815 mach = bfd_mach_arm_3M;
21816 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
21817 mach = bfd_mach_arm_3;
21818 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
21819 mach = bfd_mach_arm_2a;
21820 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
21821 mach = bfd_mach_arm_2;
21822 else
21823 mach = bfd_mach_arm_unknown;
21824
21825 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
21826 }
21827
21828 /* Command line processing. */
21829
21830 /* md_parse_option
21831 Invocation line includes a switch not recognized by the base assembler.
21832 See if it's a processor-specific option.
21833
21834 This routine is somewhat complicated by the need for backwards
21835 compatibility (since older releases of gcc can't be changed).
21836 The new options try to make the interface as compatible as
21837 possible with GCC.
21838
21839 New options (supported) are:
21840
21841 -mcpu=<cpu name> Assemble for selected processor
21842 -march=<architecture name> Assemble for selected architecture
21843 -mfpu=<fpu architecture> Assemble for selected FPU.
21844 -EB/-mbig-endian Big-endian
21845 -EL/-mlittle-endian Little-endian
21846 -k Generate PIC code
21847 -mthumb Start in Thumb mode
21848 -mthumb-interwork Code supports ARM/Thumb interworking
21849
21850 -m[no-]warn-deprecated Warn about deprecated features
21851
21852 For now we will also provide support for:
21853
21854 -mapcs-32 32-bit Program counter
21855 -mapcs-26 26-bit Program counter
21856 -macps-float Floats passed in FP registers
21857 -mapcs-reentrant Reentrant code
21858 -matpcs
21859 (sometime these will probably be replaced with -mapcs=<list of options>
21860 and -matpcs=<list of options>)
21861
21862 The remaining options are only supported for back-wards compatibility.
21863 Cpu variants, the arm part is optional:
21864 -m[arm]1 Currently not supported.
21865 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
21866 -m[arm]3 Arm 3 processor
21867 -m[arm]6[xx], Arm 6 processors
21868 -m[arm]7[xx][t][[d]m] Arm 7 processors
21869 -m[arm]8[10] Arm 8 processors
21870 -m[arm]9[20][tdmi] Arm 9 processors
21871 -mstrongarm[110[0]] StrongARM processors
21872 -mxscale XScale processors
21873 -m[arm]v[2345[t[e]]] Arm architectures
21874 -mall All (except the ARM1)
21875 FP variants:
21876 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
21877 -mfpe-old (No float load/store multiples)
21878 -mvfpxd VFP Single precision
21879 -mvfp All VFP
21880 -mno-fpu Disable all floating point instructions
21881
21882 The following CPU names are recognized:
21883 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
21884 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
21885 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
21886 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
21887 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
21888 arm10t arm10e, arm1020t, arm1020e, arm10200e,
21889 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
21890
21891 */
21892
21893 const char * md_shortopts = "m:k";
21894
21895 #ifdef ARM_BI_ENDIAN
21896 #define OPTION_EB (OPTION_MD_BASE + 0)
21897 #define OPTION_EL (OPTION_MD_BASE + 1)
21898 #else
21899 #if TARGET_BYTES_BIG_ENDIAN
21900 #define OPTION_EB (OPTION_MD_BASE + 0)
21901 #else
21902 #define OPTION_EL (OPTION_MD_BASE + 1)
21903 #endif
21904 #endif
21905 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
21906
21907 struct option md_longopts[] =
21908 {
21909 #ifdef OPTION_EB
21910 {"EB", no_argument, NULL, OPTION_EB},
21911 #endif
21912 #ifdef OPTION_EL
21913 {"EL", no_argument, NULL, OPTION_EL},
21914 #endif
21915 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
21916 {NULL, no_argument, NULL, 0}
21917 };
21918
21919 size_t md_longopts_size = sizeof (md_longopts);
21920
21921 struct arm_option_table
21922 {
21923 char *option; /* Option name to match. */
21924 char *help; /* Help information. */
21925 int *var; /* Variable to change. */
21926 int value; /* What to change it to. */
21927 char *deprecated; /* If non-null, print this message. */
21928 };
21929
21930 struct arm_option_table arm_opts[] =
21931 {
21932 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
21933 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
21934 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
21935 &support_interwork, 1, NULL},
21936 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
21937 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
21938 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
21939 1, NULL},
21940 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
21941 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
21942 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
21943 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
21944 NULL},
21945
21946 /* These are recognized by the assembler, but have no affect on code. */
21947 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
21948 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
21949
21950 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
21951 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
21952 &warn_on_deprecated, 0, NULL},
21953 {NULL, NULL, NULL, 0, NULL}
21954 };
21955
21956 struct arm_legacy_option_table
21957 {
21958 char *option; /* Option name to match. */
21959 const arm_feature_set **var; /* Variable to change. */
21960 const arm_feature_set value; /* What to change it to. */
21961 char *deprecated; /* If non-null, print this message. */
21962 };
21963
21964 const struct arm_legacy_option_table arm_legacy_opts[] =
21965 {
21966 /* DON'T add any new processors to this list -- we want the whole list
21967 to go away... Add them to the processors table instead. */
21968 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21969 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
21970 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21971 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
21972 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21973 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
21974 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21975 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
21976 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21977 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
21978 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21979 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
21980 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21981 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
21982 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21983 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
21984 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21985 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
21986 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21987 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
21988 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21989 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
21990 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21991 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
21992 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21993 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
21994 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21995 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
21996 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21997 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
21998 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
21999 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
22000 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22001 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
22002 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22003 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
22004 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22005 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
22006 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22007 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
22008 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22009 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
22010 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22011 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
22012 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22013 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
22014 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22015 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22016 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22017 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
22018 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22019 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
22020 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22021 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
22022 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22023 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
22024 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22025 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
22026 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22027 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
22028 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22029 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
22030 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22031 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
22032 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22033 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
22034 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22035 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
22036 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
22037 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
22038 N_("use -mcpu=strongarm110")},
22039 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
22040 N_("use -mcpu=strongarm1100")},
22041 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
22042 N_("use -mcpu=strongarm1110")},
22043 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
22044 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
22045 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
22046
22047 /* Architecture variants -- don't add any more to this list either. */
22048 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22049 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
22050 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22051 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
22052 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22053 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
22054 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22055 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
22056 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22057 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
22058 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22059 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
22060 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22061 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
22062 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22063 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
22064 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22065 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
22066
22067 /* Floating point variants -- don't add any more to this list either. */
22068 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
22069 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
22070 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
22071 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
22072 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
22073
22074 {NULL, NULL, ARM_ARCH_NONE, NULL}
22075 };
22076
22077 struct arm_cpu_option_table
22078 {
22079 char *name;
22080 const arm_feature_set value;
22081 /* For some CPUs we assume an FPU unless the user explicitly sets
22082 -mfpu=... */
22083 const arm_feature_set default_fpu;
22084 /* The canonical name of the CPU, or NULL to use NAME converted to upper
22085 case. */
22086 const char *canonical_name;
22087 };
22088
22089 /* This list should, at a minimum, contain all the cpu names
22090 recognized by GCC. */
22091 static const struct arm_cpu_option_table arm_cpus[] =
22092 {
22093 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
22094 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
22095 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
22096 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22097 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
22098 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22099 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22100 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22101 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22102 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22103 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22104 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22105 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22106 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22107 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22108 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
22109 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22110 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22111 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22112 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22113 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22114 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22115 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22116 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22117 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22118 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22119 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22120 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
22121 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22122 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22123 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22124 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22125 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22126 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22127 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22128 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22129 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22130 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22131 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22132 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
22133 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22134 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22135 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22136 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
22137 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22138 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
22139 /* For V5 or later processors we default to using VFP; but the user
22140 should really set the FPU type explicitly. */
22141 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22142 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22143 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22144 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
22145 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22146 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22147 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
22148 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22149 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
22150 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
22151 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22152 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22153 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22154 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22155 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22156 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
22157 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
22158 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22159 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22160 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
22161 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
22162 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
22163 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
22164 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
22165 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
22166 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
22167 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
22168 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
22169 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
22170 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
22171 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
22172 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
22173 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
22174 {"cortex-a5", ARM_ARCH_V7A, FPU_NONE, NULL},
22175 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22176 | FPU_NEON_EXT_V1),
22177 NULL},
22178 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE (0, FPU_VFP_V3
22179 | FPU_NEON_EXT_V1),
22180 NULL},
22181 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
22182 {"cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16, NULL},
22183 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
22184 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
22185 {"cortex-m0", ARM_ARCH_V6M, FPU_NONE, NULL},
22186 /* ??? XSCALE is really an architecture. */
22187 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22188 /* ??? iwmmxt is not a processor. */
22189 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
22190 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
22191 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
22192 /* Maverick */
22193 {"ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
22194 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
22195 };
22196
22197 struct arm_arch_option_table
22198 {
22199 char *name;
22200 const arm_feature_set value;
22201 const arm_feature_set default_fpu;
22202 };
22203
22204 /* This list should, at a minimum, contain all the architecture names
22205 recognized by GCC. */
22206 static const struct arm_arch_option_table arm_archs[] =
22207 {
22208 {"all", ARM_ANY, FPU_ARCH_FPA},
22209 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
22210 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
22211 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
22212 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
22213 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
22214 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
22215 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
22216 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
22217 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
22218 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
22219 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
22220 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
22221 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
22222 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
22223 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
22224 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
22225 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
22226 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
22227 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
22228 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
22229 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
22230 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
22231 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
22232 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
22233 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
22234 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
22235 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
22236 /* The official spelling of the ARMv7 profile variants is the dashed form.
22237 Accept the non-dashed form for compatibility with old toolchains. */
22238 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22239 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22240 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22241 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
22242 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
22243 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
22244 {"armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP},
22245 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
22246 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
22247 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
22248 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
22249 };
22250
22251 /* ISA extensions in the co-processor space. */
22252 struct arm_option_cpu_value_table
22253 {
22254 char *name;
22255 const arm_feature_set value;
22256 };
22257
22258 static const struct arm_option_cpu_value_table arm_extensions[] =
22259 {
22260 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
22261 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
22262 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
22263 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
22264 {NULL, ARM_ARCH_NONE}
22265 };
22266
22267 /* This list should, at a minimum, contain all the fpu names
22268 recognized by GCC. */
22269 static const struct arm_option_cpu_value_table arm_fpus[] =
22270 {
22271 {"softfpa", FPU_NONE},
22272 {"fpe", FPU_ARCH_FPE},
22273 {"fpe2", FPU_ARCH_FPE},
22274 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
22275 {"fpa", FPU_ARCH_FPA},
22276 {"fpa10", FPU_ARCH_FPA},
22277 {"fpa11", FPU_ARCH_FPA},
22278 {"arm7500fe", FPU_ARCH_FPA},
22279 {"softvfp", FPU_ARCH_VFP},
22280 {"softvfp+vfp", FPU_ARCH_VFP_V2},
22281 {"vfp", FPU_ARCH_VFP_V2},
22282 {"vfp9", FPU_ARCH_VFP_V2},
22283 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
22284 {"vfp10", FPU_ARCH_VFP_V2},
22285 {"vfp10-r0", FPU_ARCH_VFP_V1},
22286 {"vfpxd", FPU_ARCH_VFP_V1xD},
22287 {"vfpv2", FPU_ARCH_VFP_V2},
22288 {"vfpv3", FPU_ARCH_VFP_V3},
22289 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
22290 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
22291 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
22292 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
22293 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
22294 {"arm1020t", FPU_ARCH_VFP_V1},
22295 {"arm1020e", FPU_ARCH_VFP_V2},
22296 {"arm1136jfs", FPU_ARCH_VFP_V2},
22297 {"arm1136jf-s", FPU_ARCH_VFP_V2},
22298 {"maverick", FPU_ARCH_MAVERICK},
22299 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
22300 {"neon-fp16", FPU_ARCH_NEON_FP16},
22301 {"vfpv4", FPU_ARCH_VFP_V4},
22302 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
22303 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
22304 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
22305 {NULL, ARM_ARCH_NONE}
22306 };
22307
22308 struct arm_option_value_table
22309 {
22310 char *name;
22311 long value;
22312 };
22313
22314 static const struct arm_option_value_table arm_float_abis[] =
22315 {
22316 {"hard", ARM_FLOAT_ABI_HARD},
22317 {"softfp", ARM_FLOAT_ABI_SOFTFP},
22318 {"soft", ARM_FLOAT_ABI_SOFT},
22319 {NULL, 0}
22320 };
22321
22322 #ifdef OBJ_ELF
22323 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
22324 static const struct arm_option_value_table arm_eabis[] =
22325 {
22326 {"gnu", EF_ARM_EABI_UNKNOWN},
22327 {"4", EF_ARM_EABI_VER4},
22328 {"5", EF_ARM_EABI_VER5},
22329 {NULL, 0}
22330 };
22331 #endif
22332
22333 struct arm_long_option_table
22334 {
22335 char * option; /* Substring to match. */
22336 char * help; /* Help information. */
22337 int (* func) (char * subopt); /* Function to decode sub-option. */
22338 char * deprecated; /* If non-null, print this message. */
22339 };
22340
22341 static bfd_boolean
22342 arm_parse_extension (char * str, const arm_feature_set **opt_p)
22343 {
22344 arm_feature_set *ext_set = (arm_feature_set *)
22345 xmalloc (sizeof (arm_feature_set));
22346
22347 /* Copy the feature set, so that we can modify it. */
22348 *ext_set = **opt_p;
22349 *opt_p = ext_set;
22350
22351 while (str != NULL && *str != 0)
22352 {
22353 const struct arm_option_cpu_value_table * opt;
22354 char * ext;
22355 int optlen;
22356
22357 if (*str != '+')
22358 {
22359 as_bad (_("invalid architectural extension"));
22360 return FALSE;
22361 }
22362
22363 str++;
22364 ext = strchr (str, '+');
22365
22366 if (ext != NULL)
22367 optlen = ext - str;
22368 else
22369 optlen = strlen (str);
22370
22371 if (optlen == 0)
22372 {
22373 as_bad (_("missing architectural extension"));
22374 return FALSE;
22375 }
22376
22377 for (opt = arm_extensions; opt->name != NULL; opt++)
22378 if (strncmp (opt->name, str, optlen) == 0)
22379 {
22380 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
22381 break;
22382 }
22383
22384 if (opt->name == NULL)
22385 {
22386 as_bad (_("unknown architectural extension `%s'"), str);
22387 return FALSE;
22388 }
22389
22390 str = ext;
22391 };
22392
22393 return TRUE;
22394 }
22395
22396 static bfd_boolean
22397 arm_parse_cpu (char * str)
22398 {
22399 const struct arm_cpu_option_table * opt;
22400 char * ext = strchr (str, '+');
22401 int optlen;
22402
22403 if (ext != NULL)
22404 optlen = ext - str;
22405 else
22406 optlen = strlen (str);
22407
22408 if (optlen == 0)
22409 {
22410 as_bad (_("missing cpu name `%s'"), str);
22411 return FALSE;
22412 }
22413
22414 for (opt = arm_cpus; opt->name != NULL; opt++)
22415 if (strncmp (opt->name, str, optlen) == 0)
22416 {
22417 mcpu_cpu_opt = &opt->value;
22418 mcpu_fpu_opt = &opt->default_fpu;
22419 if (opt->canonical_name)
22420 strcpy (selected_cpu_name, opt->canonical_name);
22421 else
22422 {
22423 int i;
22424
22425 for (i = 0; i < optlen; i++)
22426 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22427 selected_cpu_name[i] = 0;
22428 }
22429
22430 if (ext != NULL)
22431 return arm_parse_extension (ext, &mcpu_cpu_opt);
22432
22433 return TRUE;
22434 }
22435
22436 as_bad (_("unknown cpu `%s'"), str);
22437 return FALSE;
22438 }
22439
22440 static bfd_boolean
22441 arm_parse_arch (char * str)
22442 {
22443 const struct arm_arch_option_table *opt;
22444 char *ext = strchr (str, '+');
22445 int optlen;
22446
22447 if (ext != NULL)
22448 optlen = ext - str;
22449 else
22450 optlen = strlen (str);
22451
22452 if (optlen == 0)
22453 {
22454 as_bad (_("missing architecture name `%s'"), str);
22455 return FALSE;
22456 }
22457
22458 for (opt = arm_archs; opt->name != NULL; opt++)
22459 if (streq (opt->name, str))
22460 {
22461 march_cpu_opt = &opt->value;
22462 march_fpu_opt = &opt->default_fpu;
22463 strcpy (selected_cpu_name, opt->name);
22464
22465 if (ext != NULL)
22466 return arm_parse_extension (ext, &march_cpu_opt);
22467
22468 return TRUE;
22469 }
22470
22471 as_bad (_("unknown architecture `%s'\n"), str);
22472 return FALSE;
22473 }
22474
22475 static bfd_boolean
22476 arm_parse_fpu (char * str)
22477 {
22478 const struct arm_option_cpu_value_table * opt;
22479
22480 for (opt = arm_fpus; opt->name != NULL; opt++)
22481 if (streq (opt->name, str))
22482 {
22483 mfpu_opt = &opt->value;
22484 return TRUE;
22485 }
22486
22487 as_bad (_("unknown floating point format `%s'\n"), str);
22488 return FALSE;
22489 }
22490
22491 static bfd_boolean
22492 arm_parse_float_abi (char * str)
22493 {
22494 const struct arm_option_value_table * opt;
22495
22496 for (opt = arm_float_abis; opt->name != NULL; opt++)
22497 if (streq (opt->name, str))
22498 {
22499 mfloat_abi_opt = opt->value;
22500 return TRUE;
22501 }
22502
22503 as_bad (_("unknown floating point abi `%s'\n"), str);
22504 return FALSE;
22505 }
22506
22507 #ifdef OBJ_ELF
22508 static bfd_boolean
22509 arm_parse_eabi (char * str)
22510 {
22511 const struct arm_option_value_table *opt;
22512
22513 for (opt = arm_eabis; opt->name != NULL; opt++)
22514 if (streq (opt->name, str))
22515 {
22516 meabi_flags = opt->value;
22517 return TRUE;
22518 }
22519 as_bad (_("unknown EABI `%s'\n"), str);
22520 return FALSE;
22521 }
22522 #endif
22523
22524 static bfd_boolean
22525 arm_parse_it_mode (char * str)
22526 {
22527 bfd_boolean ret = TRUE;
22528
22529 if (streq ("arm", str))
22530 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
22531 else if (streq ("thumb", str))
22532 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
22533 else if (streq ("always", str))
22534 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
22535 else if (streq ("never", str))
22536 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
22537 else
22538 {
22539 as_bad (_("unknown implicit IT mode `%s', should be "\
22540 "arm, thumb, always, or never."), str);
22541 ret = FALSE;
22542 }
22543
22544 return ret;
22545 }
22546
22547 struct arm_long_option_table arm_long_opts[] =
22548 {
22549 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
22550 arm_parse_cpu, NULL},
22551 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
22552 arm_parse_arch, NULL},
22553 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
22554 arm_parse_fpu, NULL},
22555 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
22556 arm_parse_float_abi, NULL},
22557 #ifdef OBJ_ELF
22558 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
22559 arm_parse_eabi, NULL},
22560 #endif
22561 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
22562 arm_parse_it_mode, NULL},
22563 {NULL, NULL, 0, NULL}
22564 };
22565
22566 int
22567 md_parse_option (int c, char * arg)
22568 {
22569 struct arm_option_table *opt;
22570 const struct arm_legacy_option_table *fopt;
22571 struct arm_long_option_table *lopt;
22572
22573 switch (c)
22574 {
22575 #ifdef OPTION_EB
22576 case OPTION_EB:
22577 target_big_endian = 1;
22578 break;
22579 #endif
22580
22581 #ifdef OPTION_EL
22582 case OPTION_EL:
22583 target_big_endian = 0;
22584 break;
22585 #endif
22586
22587 case OPTION_FIX_V4BX:
22588 fix_v4bx = TRUE;
22589 break;
22590
22591 case 'a':
22592 /* Listing option. Just ignore these, we don't support additional
22593 ones. */
22594 return 0;
22595
22596 default:
22597 for (opt = arm_opts; opt->option != NULL; opt++)
22598 {
22599 if (c == opt->option[0]
22600 && ((arg == NULL && opt->option[1] == 0)
22601 || streq (arg, opt->option + 1)))
22602 {
22603 /* If the option is deprecated, tell the user. */
22604 if (warn_on_deprecated && opt->deprecated != NULL)
22605 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22606 arg ? arg : "", _(opt->deprecated));
22607
22608 if (opt->var != NULL)
22609 *opt->var = opt->value;
22610
22611 return 1;
22612 }
22613 }
22614
22615 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
22616 {
22617 if (c == fopt->option[0]
22618 && ((arg == NULL && fopt->option[1] == 0)
22619 || streq (arg, fopt->option + 1)))
22620 {
22621 /* If the option is deprecated, tell the user. */
22622 if (warn_on_deprecated && fopt->deprecated != NULL)
22623 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
22624 arg ? arg : "", _(fopt->deprecated));
22625
22626 if (fopt->var != NULL)
22627 *fopt->var = &fopt->value;
22628
22629 return 1;
22630 }
22631 }
22632
22633 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22634 {
22635 /* These options are expected to have an argument. */
22636 if (c == lopt->option[0]
22637 && arg != NULL
22638 && strncmp (arg, lopt->option + 1,
22639 strlen (lopt->option + 1)) == 0)
22640 {
22641 /* If the option is deprecated, tell the user. */
22642 if (warn_on_deprecated && lopt->deprecated != NULL)
22643 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
22644 _(lopt->deprecated));
22645
22646 /* Call the sup-option parser. */
22647 return lopt->func (arg + strlen (lopt->option) - 1);
22648 }
22649 }
22650
22651 return 0;
22652 }
22653
22654 return 1;
22655 }
22656
22657 void
22658 md_show_usage (FILE * fp)
22659 {
22660 struct arm_option_table *opt;
22661 struct arm_long_option_table *lopt;
22662
22663 fprintf (fp, _(" ARM-specific assembler options:\n"));
22664
22665 for (opt = arm_opts; opt->option != NULL; opt++)
22666 if (opt->help != NULL)
22667 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
22668
22669 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
22670 if (lopt->help != NULL)
22671 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
22672
22673 #ifdef OPTION_EB
22674 fprintf (fp, _("\
22675 -EB assemble code for a big-endian cpu\n"));
22676 #endif
22677
22678 #ifdef OPTION_EL
22679 fprintf (fp, _("\
22680 -EL assemble code for a little-endian cpu\n"));
22681 #endif
22682
22683 fprintf (fp, _("\
22684 --fix-v4bx Allow BX in ARMv4 code\n"));
22685 }
22686
22687
22688 #ifdef OBJ_ELF
22689 typedef struct
22690 {
22691 int val;
22692 arm_feature_set flags;
22693 } cpu_arch_ver_table;
22694
22695 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
22696 least features first. */
22697 static const cpu_arch_ver_table cpu_arch_ver[] =
22698 {
22699 {1, ARM_ARCH_V4},
22700 {2, ARM_ARCH_V4T},
22701 {3, ARM_ARCH_V5},
22702 {3, ARM_ARCH_V5T},
22703 {4, ARM_ARCH_V5TE},
22704 {5, ARM_ARCH_V5TEJ},
22705 {6, ARM_ARCH_V6},
22706 {7, ARM_ARCH_V6Z},
22707 {9, ARM_ARCH_V6K},
22708 {11, ARM_ARCH_V6M},
22709 {8, ARM_ARCH_V6T2},
22710 {10, ARM_ARCH_V7A},
22711 {10, ARM_ARCH_V7R},
22712 {10, ARM_ARCH_V7M},
22713 {0, ARM_ARCH_NONE}
22714 };
22715
22716 /* Set an attribute if it has not already been set by the user. */
22717 static void
22718 aeabi_set_attribute_int (int tag, int value)
22719 {
22720 if (tag < 1
22721 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22722 || !attributes_set_explicitly[tag])
22723 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
22724 }
22725
22726 static void
22727 aeabi_set_attribute_string (int tag, const char *value)
22728 {
22729 if (tag < 1
22730 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
22731 || !attributes_set_explicitly[tag])
22732 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
22733 }
22734
22735 /* Set the public EABI object attributes. */
22736 static void
22737 aeabi_set_public_attributes (void)
22738 {
22739 int arch;
22740 arm_feature_set flags;
22741 arm_feature_set tmp;
22742 const cpu_arch_ver_table *p;
22743
22744 /* Choose the architecture based on the capabilities of the requested cpu
22745 (if any) and/or the instructions actually used. */
22746 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
22747 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
22748 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
22749 /*Allow the user to override the reported architecture. */
22750 if (object_arch)
22751 {
22752 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
22753 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
22754 }
22755
22756 tmp = flags;
22757 arch = 0;
22758 for (p = cpu_arch_ver; p->val; p++)
22759 {
22760 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
22761 {
22762 arch = p->val;
22763 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
22764 }
22765 }
22766
22767 /* The table lookup above finds the last architecture to contribute
22768 a new feature. Unfortunately, Tag13 is a subset of the union of
22769 v6T2 and v7-M, so it is never seen as contributing a new feature.
22770 We can not search for the last entry which is entirely used,
22771 because if no CPU is specified we build up only those flags
22772 actually used. Perhaps we should separate out the specified
22773 and implicit cases. Avoid taking this path for -march=all by
22774 checking for contradictory v7-A / v7-M features. */
22775 if (arch == 10
22776 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
22777 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
22778 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
22779 arch = 13;
22780
22781 /* Tag_CPU_name. */
22782 if (selected_cpu_name[0])
22783 {
22784 char *q;
22785
22786 q = selected_cpu_name;
22787 if (strncmp (q, "armv", 4) == 0)
22788 {
22789 int i;
22790
22791 q += 4;
22792 for (i = 0; q[i]; i++)
22793 q[i] = TOUPPER (q[i]);
22794 }
22795 aeabi_set_attribute_string (Tag_CPU_name, q);
22796 }
22797
22798 /* Tag_CPU_arch. */
22799 aeabi_set_attribute_int (Tag_CPU_arch, arch);
22800
22801 /* Tag_CPU_arch_profile. */
22802 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
22803 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
22804 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
22805 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
22806 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
22807 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
22808
22809 /* Tag_ARM_ISA_use. */
22810 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
22811 || arch == 0)
22812 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
22813
22814 /* Tag_THUMB_ISA_use. */
22815 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
22816 || arch == 0)
22817 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
22818 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
22819
22820 /* Tag_VFP_arch. */
22821 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
22822 aeabi_set_attribute_int (Tag_VFP_arch,
22823 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
22824 ? 5 : 6);
22825 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
22826 aeabi_set_attribute_int (Tag_VFP_arch, 3);
22827 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
22828 aeabi_set_attribute_int (Tag_VFP_arch, 4);
22829 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
22830 aeabi_set_attribute_int (Tag_VFP_arch, 2);
22831 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
22832 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
22833 aeabi_set_attribute_int (Tag_VFP_arch, 1);
22834
22835 /* Tag_WMMX_arch. */
22836 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
22837 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
22838 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
22839 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
22840
22841 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
22842 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
22843 aeabi_set_attribute_int
22844 (Tag_Advanced_SIMD_arch, (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma)
22845 ? 2 : 1));
22846
22847 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
22848 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16))
22849 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
22850 }
22851
22852 /* Add the default contents for the .ARM.attributes section. */
22853 void
22854 arm_md_end (void)
22855 {
22856 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22857 return;
22858
22859 aeabi_set_public_attributes ();
22860 }
22861 #endif /* OBJ_ELF */
22862
22863
22864 /* Parse a .cpu directive. */
22865
22866 static void
22867 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
22868 {
22869 const struct arm_cpu_option_table *opt;
22870 char *name;
22871 char saved_char;
22872
22873 name = input_line_pointer;
22874 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22875 input_line_pointer++;
22876 saved_char = *input_line_pointer;
22877 *input_line_pointer = 0;
22878
22879 /* Skip the first "all" entry. */
22880 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
22881 if (streq (opt->name, name))
22882 {
22883 mcpu_cpu_opt = &opt->value;
22884 selected_cpu = opt->value;
22885 if (opt->canonical_name)
22886 strcpy (selected_cpu_name, opt->canonical_name);
22887 else
22888 {
22889 int i;
22890 for (i = 0; opt->name[i]; i++)
22891 selected_cpu_name[i] = TOUPPER (opt->name[i]);
22892 selected_cpu_name[i] = 0;
22893 }
22894 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22895 *input_line_pointer = saved_char;
22896 demand_empty_rest_of_line ();
22897 return;
22898 }
22899 as_bad (_("unknown cpu `%s'"), name);
22900 *input_line_pointer = saved_char;
22901 ignore_rest_of_line ();
22902 }
22903
22904
22905 /* Parse a .arch directive. */
22906
22907 static void
22908 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
22909 {
22910 const struct arm_arch_option_table *opt;
22911 char saved_char;
22912 char *name;
22913
22914 name = input_line_pointer;
22915 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22916 input_line_pointer++;
22917 saved_char = *input_line_pointer;
22918 *input_line_pointer = 0;
22919
22920 /* Skip the first "all" entry. */
22921 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22922 if (streq (opt->name, name))
22923 {
22924 mcpu_cpu_opt = &opt->value;
22925 selected_cpu = opt->value;
22926 strcpy (selected_cpu_name, opt->name);
22927 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22928 *input_line_pointer = saved_char;
22929 demand_empty_rest_of_line ();
22930 return;
22931 }
22932
22933 as_bad (_("unknown architecture `%s'\n"), name);
22934 *input_line_pointer = saved_char;
22935 ignore_rest_of_line ();
22936 }
22937
22938
22939 /* Parse a .object_arch directive. */
22940
22941 static void
22942 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
22943 {
22944 const struct arm_arch_option_table *opt;
22945 char saved_char;
22946 char *name;
22947
22948 name = input_line_pointer;
22949 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22950 input_line_pointer++;
22951 saved_char = *input_line_pointer;
22952 *input_line_pointer = 0;
22953
22954 /* Skip the first "all" entry. */
22955 for (opt = arm_archs + 1; opt->name != NULL; opt++)
22956 if (streq (opt->name, name))
22957 {
22958 object_arch = &opt->value;
22959 *input_line_pointer = saved_char;
22960 demand_empty_rest_of_line ();
22961 return;
22962 }
22963
22964 as_bad (_("unknown architecture `%s'\n"), name);
22965 *input_line_pointer = saved_char;
22966 ignore_rest_of_line ();
22967 }
22968
22969 /* Parse a .fpu directive. */
22970
22971 static void
22972 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
22973 {
22974 const struct arm_option_cpu_value_table *opt;
22975 char saved_char;
22976 char *name;
22977
22978 name = input_line_pointer;
22979 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
22980 input_line_pointer++;
22981 saved_char = *input_line_pointer;
22982 *input_line_pointer = 0;
22983
22984 for (opt = arm_fpus; opt->name != NULL; opt++)
22985 if (streq (opt->name, name))
22986 {
22987 mfpu_opt = &opt->value;
22988 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22989 *input_line_pointer = saved_char;
22990 demand_empty_rest_of_line ();
22991 return;
22992 }
22993
22994 as_bad (_("unknown floating point format `%s'\n"), name);
22995 *input_line_pointer = saved_char;
22996 ignore_rest_of_line ();
22997 }
22998
22999 /* Copy symbol information. */
23000
23001 void
23002 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
23003 {
23004 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
23005 }
23006
23007 #ifdef OBJ_ELF
23008 /* Given a symbolic attribute NAME, return the proper integer value.
23009 Returns -1 if the attribute is not known. */
23010
23011 int
23012 arm_convert_symbolic_attribute (const char *name)
23013 {
23014 static const struct
23015 {
23016 const char * name;
23017 const int tag;
23018 }
23019 attribute_table[] =
23020 {
23021 /* When you modify this table you should
23022 also modify the list in doc/c-arm.texi. */
23023 #define T(tag) {#tag, tag}
23024 T (Tag_CPU_raw_name),
23025 T (Tag_CPU_name),
23026 T (Tag_CPU_arch),
23027 T (Tag_CPU_arch_profile),
23028 T (Tag_ARM_ISA_use),
23029 T (Tag_THUMB_ISA_use),
23030 T (Tag_VFP_arch),
23031 T (Tag_WMMX_arch),
23032 T (Tag_Advanced_SIMD_arch),
23033 T (Tag_PCS_config),
23034 T (Tag_ABI_PCS_R9_use),
23035 T (Tag_ABI_PCS_RW_data),
23036 T (Tag_ABI_PCS_RO_data),
23037 T (Tag_ABI_PCS_GOT_use),
23038 T (Tag_ABI_PCS_wchar_t),
23039 T (Tag_ABI_FP_rounding),
23040 T (Tag_ABI_FP_denormal),
23041 T (Tag_ABI_FP_exceptions),
23042 T (Tag_ABI_FP_user_exceptions),
23043 T (Tag_ABI_FP_number_model),
23044 T (Tag_ABI_align8_needed),
23045 T (Tag_ABI_align8_preserved),
23046 T (Tag_ABI_enum_size),
23047 T (Tag_ABI_HardFP_use),
23048 T (Tag_ABI_VFP_args),
23049 T (Tag_ABI_WMMX_args),
23050 T (Tag_ABI_optimization_goals),
23051 T (Tag_ABI_FP_optimization_goals),
23052 T (Tag_compatibility),
23053 T (Tag_CPU_unaligned_access),
23054 T (Tag_VFP_HP_extension),
23055 T (Tag_ABI_FP_16bit_format),
23056 T (Tag_MPextension_use),
23057 T (Tag_DIV_use),
23058 T (Tag_nodefaults),
23059 T (Tag_also_compatible_with),
23060 T (Tag_conformance),
23061 T (Tag_T2EE_use),
23062 T (Tag_Virtualization_use),
23063 /* We deliberately do not include Tag_MPextension_use_legacy. */
23064 #undef T
23065 };
23066 unsigned int i;
23067
23068 if (name == NULL)
23069 return -1;
23070
23071 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
23072 if (streq (name, attribute_table[i].name))
23073 return attribute_table[i].tag;
23074
23075 return -1;
23076 }
23077
23078
23079 /* Apply sym value for relocations only in the case that
23080 they are for local symbols and you have the respective
23081 architectural feature for blx and simple switches. */
23082 int
23083 arm_apply_sym_value (struct fix * fixP)
23084 {
23085 if (fixP->fx_addsy
23086 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
23087 && !S_IS_EXTERNAL (fixP->fx_addsy))
23088 {
23089 switch (fixP->fx_r_type)
23090 {
23091 case BFD_RELOC_ARM_PCREL_BLX:
23092 case BFD_RELOC_THUMB_PCREL_BRANCH23:
23093 if (ARM_IS_FUNC (fixP->fx_addsy))
23094 return 1;
23095 break;
23096
23097 case BFD_RELOC_ARM_PCREL_CALL:
23098 case BFD_RELOC_THUMB_PCREL_BLX:
23099 if (THUMB_IS_FUNC (fixP->fx_addsy))
23100 return 1;
23101 break;
23102
23103 default:
23104 break;
23105 }
23106
23107 }
23108 return 0;
23109 }
23110 #endif /* OBJ_ELF */