gas:
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 /* Bit N indicates that an R_ARM_NONE relocation has been output for
81 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
82 emitted only once per section, to save unnecessary bloat. */
83 static unsigned int marked_pr_dependency = 0;
84
85 #endif /* OBJ_ELF */
86
87 /* Results from operand parsing worker functions. */
88
89 typedef enum
90 {
91 PARSE_OPERAND_SUCCESS,
92 PARSE_OPERAND_FAIL,
93 PARSE_OPERAND_FAIL_NO_BACKTRACK
94 } parse_operand_result;
95
96 enum arm_float_abi
97 {
98 ARM_FLOAT_ABI_HARD,
99 ARM_FLOAT_ABI_SOFTFP,
100 ARM_FLOAT_ABI_SOFT
101 };
102
103 /* Types of processor to assemble for. */
104 #ifndef CPU_DEFAULT
105 #if defined __XSCALE__
106 #define CPU_DEFAULT ARM_ARCH_XSCALE
107 #else
108 #if defined __thumb__
109 #define CPU_DEFAULT ARM_ARCH_V5T
110 #endif
111 #endif
112 #endif
113
114 #ifndef FPU_DEFAULT
115 # ifdef TE_LINUX
116 # define FPU_DEFAULT FPU_ARCH_FPA
117 # elif defined (TE_NetBSD)
118 # ifdef OBJ_ELF
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
120 # else
121 /* Legacy a.out format. */
122 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
123 # endif
124 # elif defined (TE_VXWORKS)
125 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
126 # else
127 /* For backwards compatibility, default to FPA. */
128 # define FPU_DEFAULT FPU_ARCH_FPA
129 # endif
130 #endif /* ifndef FPU_DEFAULT */
131
132 #define streq(a, b) (strcmp (a, b) == 0)
133
134 static arm_feature_set cpu_variant;
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148
149 /* Variables that we set while parsing command-line options. Once all
150 options have been read we re-process these values to set the real
151 assembly flags. */
152 static const arm_feature_set *legacy_cpu = NULL;
153 static const arm_feature_set *legacy_fpu = NULL;
154
155 static const arm_feature_set *mcpu_cpu_opt = NULL;
156 static const arm_feature_set *mcpu_fpu_opt = NULL;
157 static const arm_feature_set *march_cpu_opt = NULL;
158 static const arm_feature_set *march_fpu_opt = NULL;
159 static const arm_feature_set *mfpu_opt = NULL;
160 static const arm_feature_set *object_arch = NULL;
161
162 /* Constants for known architecture features. */
163 static const arm_feature_set fpu_default = FPU_DEFAULT;
164 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
165 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
166 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
167 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
168 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
169 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
170 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
171 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
172
173 #ifdef CPU_DEFAULT
174 static const arm_feature_set cpu_default = CPU_DEFAULT;
175 #endif
176
177 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
178 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
179 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
180 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
181 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
182 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
183 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
184 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v4t_5 =
186 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
187 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
188 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
189 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
190 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
191 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
192 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
193 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
194 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
195 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
196 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
197 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
198 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
199 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
200 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
201 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
202 static const arm_feature_set arm_ext_m =
203 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_V7M, 0);
204
205 static const arm_feature_set arm_arch_any = ARM_ANY;
206 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
207 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
208 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
209
210 static const arm_feature_set arm_cext_iwmmxt2 =
211 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
212 static const arm_feature_set arm_cext_iwmmxt =
213 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
214 static const arm_feature_set arm_cext_xscale =
215 ARM_FEATURE (0, ARM_CEXT_XSCALE);
216 static const arm_feature_set arm_cext_maverick =
217 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
218 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
219 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
220 static const arm_feature_set fpu_vfp_ext_v1xd =
221 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
222 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
223 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
224 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
225 static const arm_feature_set fpu_vfp_ext_d32 =
226 ARM_FEATURE (0, FPU_VFP_EXT_D32);
227 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
228 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
229 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
230 static const arm_feature_set fpu_neon_fp16 = ARM_FEATURE (0, FPU_NEON_FP16);
231
232 static int mfloat_abi_opt = -1;
233 /* Record user cpu selection for object attributes. */
234 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
235 /* Must be long enough to hold any of the names in arm_cpus. */
236 static char selected_cpu_name[16];
237 #ifdef OBJ_ELF
238 # ifdef EABI_DEFAULT
239 static int meabi_flags = EABI_DEFAULT;
240 # else
241 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
242 # endif
243
244 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
245
246 bfd_boolean
247 arm_is_eabi (void)
248 {
249 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
250 }
251 #endif
252
253 #ifdef OBJ_ELF
254 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
255 symbolS * GOT_symbol;
256 #endif
257
258 /* 0: assemble for ARM,
259 1: assemble for Thumb,
260 2: assemble for Thumb even though target CPU does not support thumb
261 instructions. */
262 static int thumb_mode = 0;
263
264 /* If unified_syntax is true, we are processing the new unified
265 ARM/Thumb syntax. Important differences from the old ARM mode:
266
267 - Immediate operands do not require a # prefix.
268 - Conditional affixes always appear at the end of the
269 instruction. (For backward compatibility, those instructions
270 that formerly had them in the middle, continue to accept them
271 there.)
272 - The IT instruction may appear, and if it does is validated
273 against subsequent conditional affixes. It does not generate
274 machine code.
275
276 Important differences from the old Thumb mode:
277
278 - Immediate operands do not require a # prefix.
279 - Most of the V6T2 instructions are only available in unified mode.
280 - The .N and .W suffixes are recognized and honored (it is an error
281 if they cannot be honored).
282 - All instructions set the flags if and only if they have an 's' affix.
283 - Conditional affixes may be used. They are validated against
284 preceding IT instructions. Unlike ARM mode, you cannot use a
285 conditional affix except in the scope of an IT instruction. */
286
287 static bfd_boolean unified_syntax = FALSE;
288
289 enum neon_el_type
290 {
291 NT_invtype,
292 NT_untyped,
293 NT_integer,
294 NT_float,
295 NT_poly,
296 NT_signed,
297 NT_unsigned
298 };
299
300 struct neon_type_el
301 {
302 enum neon_el_type type;
303 unsigned size;
304 };
305
306 #define NEON_MAX_TYPE_ELS 4
307
308 struct neon_type
309 {
310 struct neon_type_el el[NEON_MAX_TYPE_ELS];
311 unsigned elems;
312 };
313
314 struct arm_it
315 {
316 const char * error;
317 unsigned long instruction;
318 int size;
319 int size_req;
320 int cond;
321 /* "uncond_value" is set to the value in place of the conditional field in
322 unconditional versions of the instruction, or -1 if nothing is
323 appropriate. */
324 int uncond_value;
325 struct neon_type vectype;
326 /* Set to the opcode if the instruction needs relaxation.
327 Zero if the instruction is not relaxed. */
328 unsigned long relax;
329 struct
330 {
331 bfd_reloc_code_real_type type;
332 expressionS exp;
333 int pc_rel;
334 } reloc;
335
336 struct
337 {
338 unsigned reg;
339 signed int imm;
340 struct neon_type_el vectype;
341 unsigned present : 1; /* Operand present. */
342 unsigned isreg : 1; /* Operand was a register. */
343 unsigned immisreg : 1; /* .imm field is a second register. */
344 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
345 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
346 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
347 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
348 instructions. This allows us to disambiguate ARM <-> vector insns. */
349 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
350 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
351 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
352 unsigned issingle : 1; /* Operand is VFP single-precision register. */
353 unsigned hasreloc : 1; /* Operand has relocation suffix. */
354 unsigned writeback : 1; /* Operand has trailing ! */
355 unsigned preind : 1; /* Preindexed address. */
356 unsigned postind : 1; /* Postindexed address. */
357 unsigned negative : 1; /* Index register was negated. */
358 unsigned shifted : 1; /* Shift applied to operation. */
359 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
360 } operands[6];
361 };
362
363 static struct arm_it inst;
364
365 #define NUM_FLOAT_VALS 8
366
367 const char * fp_const[] =
368 {
369 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
370 };
371
372 /* Number of littlenums required to hold an extended precision number. */
373 #define MAX_LITTLENUMS 6
374
375 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
376
377 #define FAIL (-1)
378 #define SUCCESS (0)
379
380 #define SUFF_S 1
381 #define SUFF_D 2
382 #define SUFF_E 3
383 #define SUFF_P 4
384
385 #define CP_T_X 0x00008000
386 #define CP_T_Y 0x00400000
387
388 #define CONDS_BIT 0x00100000
389 #define LOAD_BIT 0x00100000
390
391 #define DOUBLE_LOAD_FLAG 0x00000001
392
393 struct asm_cond
394 {
395 const char * template;
396 unsigned long value;
397 };
398
399 #define COND_ALWAYS 0xE
400
401 struct asm_psr
402 {
403 const char *template;
404 unsigned long field;
405 };
406
407 struct asm_barrier_opt
408 {
409 const char *template;
410 unsigned long value;
411 };
412
413 /* The bit that distinguishes CPSR and SPSR. */
414 #define SPSR_BIT (1 << 22)
415
416 /* The individual PSR flag bits. */
417 #define PSR_c (1 << 16)
418 #define PSR_x (1 << 17)
419 #define PSR_s (1 << 18)
420 #define PSR_f (1 << 19)
421
422 struct reloc_entry
423 {
424 char *name;
425 bfd_reloc_code_real_type reloc;
426 };
427
428 enum vfp_reg_pos
429 {
430 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
431 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
432 };
433
434 enum vfp_ldstm_type
435 {
436 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
437 };
438
439 /* Bits for DEFINED field in neon_typed_alias. */
440 #define NTA_HASTYPE 1
441 #define NTA_HASINDEX 2
442
443 struct neon_typed_alias
444 {
445 unsigned char defined;
446 unsigned char index;
447 struct neon_type_el eltype;
448 };
449
450 /* ARM register categories. This includes coprocessor numbers and various
451 architecture extensions' registers. */
452 enum arm_reg_type
453 {
454 REG_TYPE_RN,
455 REG_TYPE_CP,
456 REG_TYPE_CN,
457 REG_TYPE_FN,
458 REG_TYPE_VFS,
459 REG_TYPE_VFD,
460 REG_TYPE_NQ,
461 REG_TYPE_VFSD,
462 REG_TYPE_NDQ,
463 REG_TYPE_NSDQ,
464 REG_TYPE_VFC,
465 REG_TYPE_MVF,
466 REG_TYPE_MVD,
467 REG_TYPE_MVFX,
468 REG_TYPE_MVDX,
469 REG_TYPE_MVAX,
470 REG_TYPE_DSPSC,
471 REG_TYPE_MMXWR,
472 REG_TYPE_MMXWC,
473 REG_TYPE_MMXWCG,
474 REG_TYPE_XSCALE,
475 };
476
477 /* Structure for a hash table entry for a register.
478 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
479 information which states whether a vector type or index is specified (for a
480 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
481 struct reg_entry
482 {
483 const char *name;
484 unsigned char number;
485 unsigned char type;
486 unsigned char builtin;
487 struct neon_typed_alias *neon;
488 };
489
490 /* Diagnostics used when we don't get a register of the expected type. */
491 const char *const reg_expected_msgs[] =
492 {
493 N_("ARM register expected"),
494 N_("bad or missing co-processor number"),
495 N_("co-processor register expected"),
496 N_("FPA register expected"),
497 N_("VFP single precision register expected"),
498 N_("VFP/Neon double precision register expected"),
499 N_("Neon quad precision register expected"),
500 N_("VFP single or double precision register expected"),
501 N_("Neon double or quad precision register expected"),
502 N_("VFP single, double or Neon quad precision register expected"),
503 N_("VFP system register expected"),
504 N_("Maverick MVF register expected"),
505 N_("Maverick MVD register expected"),
506 N_("Maverick MVFX register expected"),
507 N_("Maverick MVDX register expected"),
508 N_("Maverick MVAX register expected"),
509 N_("Maverick DSPSC register expected"),
510 N_("iWMMXt data register expected"),
511 N_("iWMMXt control register expected"),
512 N_("iWMMXt scalar register expected"),
513 N_("XScale accumulator register expected"),
514 };
515
516 /* Some well known registers that we refer to directly elsewhere. */
517 #define REG_SP 13
518 #define REG_LR 14
519 #define REG_PC 15
520
521 /* ARM instructions take 4bytes in the object file, Thumb instructions
522 take 2: */
523 #define INSN_SIZE 4
524
525 struct asm_opcode
526 {
527 /* Basic string to match. */
528 const char *template;
529
530 /* Parameters to instruction. */
531 unsigned char operands[8];
532
533 /* Conditional tag - see opcode_lookup. */
534 unsigned int tag : 4;
535
536 /* Basic instruction code. */
537 unsigned int avalue : 28;
538
539 /* Thumb-format instruction code. */
540 unsigned int tvalue;
541
542 /* Which architecture variant provides this instruction. */
543 const arm_feature_set *avariant;
544 const arm_feature_set *tvariant;
545
546 /* Function to call to encode instruction in ARM format. */
547 void (* aencode) (void);
548
549 /* Function to call to encode instruction in Thumb format. */
550 void (* tencode) (void);
551 };
552
553 /* Defines for various bits that we will want to toggle. */
554 #define INST_IMMEDIATE 0x02000000
555 #define OFFSET_REG 0x02000000
556 #define HWOFFSET_IMM 0x00400000
557 #define SHIFT_BY_REG 0x00000010
558 #define PRE_INDEX 0x01000000
559 #define INDEX_UP 0x00800000
560 #define WRITE_BACK 0x00200000
561 #define LDM_TYPE_2_OR_3 0x00400000
562 #define CPSI_MMOD 0x00020000
563
564 #define LITERAL_MASK 0xf000f000
565 #define OPCODE_MASK 0xfe1fffff
566 #define V4_STR_BIT 0x00000020
567
568 #define T2_SUBS_PC_LR 0xf3de8f00
569
570 #define DATA_OP_SHIFT 21
571
572 #define T2_OPCODE_MASK 0xfe1fffff
573 #define T2_DATA_OP_SHIFT 21
574
575 /* Codes to distinguish the arithmetic instructions. */
576 #define OPCODE_AND 0
577 #define OPCODE_EOR 1
578 #define OPCODE_SUB 2
579 #define OPCODE_RSB 3
580 #define OPCODE_ADD 4
581 #define OPCODE_ADC 5
582 #define OPCODE_SBC 6
583 #define OPCODE_RSC 7
584 #define OPCODE_TST 8
585 #define OPCODE_TEQ 9
586 #define OPCODE_CMP 10
587 #define OPCODE_CMN 11
588 #define OPCODE_ORR 12
589 #define OPCODE_MOV 13
590 #define OPCODE_BIC 14
591 #define OPCODE_MVN 15
592
593 #define T2_OPCODE_AND 0
594 #define T2_OPCODE_BIC 1
595 #define T2_OPCODE_ORR 2
596 #define T2_OPCODE_ORN 3
597 #define T2_OPCODE_EOR 4
598 #define T2_OPCODE_ADD 8
599 #define T2_OPCODE_ADC 10
600 #define T2_OPCODE_SBC 11
601 #define T2_OPCODE_SUB 13
602 #define T2_OPCODE_RSB 14
603
604 #define T_OPCODE_MUL 0x4340
605 #define T_OPCODE_TST 0x4200
606 #define T_OPCODE_CMN 0x42c0
607 #define T_OPCODE_NEG 0x4240
608 #define T_OPCODE_MVN 0x43c0
609
610 #define T_OPCODE_ADD_R3 0x1800
611 #define T_OPCODE_SUB_R3 0x1a00
612 #define T_OPCODE_ADD_HI 0x4400
613 #define T_OPCODE_ADD_ST 0xb000
614 #define T_OPCODE_SUB_ST 0xb080
615 #define T_OPCODE_ADD_SP 0xa800
616 #define T_OPCODE_ADD_PC 0xa000
617 #define T_OPCODE_ADD_I8 0x3000
618 #define T_OPCODE_SUB_I8 0x3800
619 #define T_OPCODE_ADD_I3 0x1c00
620 #define T_OPCODE_SUB_I3 0x1e00
621
622 #define T_OPCODE_ASR_R 0x4100
623 #define T_OPCODE_LSL_R 0x4080
624 #define T_OPCODE_LSR_R 0x40c0
625 #define T_OPCODE_ROR_R 0x41c0
626 #define T_OPCODE_ASR_I 0x1000
627 #define T_OPCODE_LSL_I 0x0000
628 #define T_OPCODE_LSR_I 0x0800
629
630 #define T_OPCODE_MOV_I8 0x2000
631 #define T_OPCODE_CMP_I8 0x2800
632 #define T_OPCODE_CMP_LR 0x4280
633 #define T_OPCODE_MOV_HR 0x4600
634 #define T_OPCODE_CMP_HR 0x4500
635
636 #define T_OPCODE_LDR_PC 0x4800
637 #define T_OPCODE_LDR_SP 0x9800
638 #define T_OPCODE_STR_SP 0x9000
639 #define T_OPCODE_LDR_IW 0x6800
640 #define T_OPCODE_STR_IW 0x6000
641 #define T_OPCODE_LDR_IH 0x8800
642 #define T_OPCODE_STR_IH 0x8000
643 #define T_OPCODE_LDR_IB 0x7800
644 #define T_OPCODE_STR_IB 0x7000
645 #define T_OPCODE_LDR_RW 0x5800
646 #define T_OPCODE_STR_RW 0x5000
647 #define T_OPCODE_LDR_RH 0x5a00
648 #define T_OPCODE_STR_RH 0x5200
649 #define T_OPCODE_LDR_RB 0x5c00
650 #define T_OPCODE_STR_RB 0x5400
651
652 #define T_OPCODE_PUSH 0xb400
653 #define T_OPCODE_POP 0xbc00
654
655 #define T_OPCODE_BRANCH 0xe000
656
657 #define THUMB_SIZE 2 /* Size of thumb instruction. */
658 #define THUMB_PP_PC_LR 0x0100
659 #define THUMB_LOAD_BIT 0x0800
660 #define THUMB2_LOAD_BIT 0x00100000
661
662 #define BAD_ARGS _("bad arguments to instruction")
663 #define BAD_PC _("r15 not allowed here")
664 #define BAD_COND _("instruction cannot be conditional")
665 #define BAD_OVERLAP _("registers may not be the same")
666 #define BAD_HIREG _("lo register required")
667 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
668 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
669 #define BAD_BRANCH _("branch must be last instruction in IT block")
670 #define BAD_NOT_IT _("instruction not allowed in IT block")
671 #define BAD_FPU _("selected FPU does not support instruction")
672
673 static struct hash_control *arm_ops_hsh;
674 static struct hash_control *arm_cond_hsh;
675 static struct hash_control *arm_shift_hsh;
676 static struct hash_control *arm_psr_hsh;
677 static struct hash_control *arm_v7m_psr_hsh;
678 static struct hash_control *arm_reg_hsh;
679 static struct hash_control *arm_reloc_hsh;
680 static struct hash_control *arm_barrier_opt_hsh;
681
682 /* Stuff needed to resolve the label ambiguity
683 As:
684 ...
685 label: <insn>
686 may differ from:
687 ...
688 label:
689 <insn> */
690
691 symbolS * last_label_seen;
692 static int label_is_thumb_function_name = FALSE;
693 \f
694 /* Literal pool structure. Held on a per-section
695 and per-sub-section basis. */
696
697 #define MAX_LITERAL_POOL_SIZE 1024
698 typedef struct literal_pool
699 {
700 expressionS literals [MAX_LITERAL_POOL_SIZE];
701 unsigned int next_free_entry;
702 unsigned int id;
703 symbolS * symbol;
704 segT section;
705 subsegT sub_section;
706 struct literal_pool * next;
707 } literal_pool;
708
709 /* Pointer to a linked list of literal pools. */
710 literal_pool * list_of_pools = NULL;
711
712 /* State variables for IT block handling. */
713 static bfd_boolean current_it_mask = 0;
714 static int current_cc;
715 \f
716 /* Pure syntax. */
717
718 /* This array holds the chars that always start a comment. If the
719 pre-processor is disabled, these aren't very useful. */
720 const char comment_chars[] = "@";
721
722 /* This array holds the chars that only start a comment at the beginning of
723 a line. If the line seems to have the form '# 123 filename'
724 .line and .file directives will appear in the pre-processed output. */
725 /* Note that input_file.c hand checks for '#' at the beginning of the
726 first line of the input file. This is because the compiler outputs
727 #NO_APP at the beginning of its output. */
728 /* Also note that comments like this one will always work. */
729 const char line_comment_chars[] = "#";
730
731 const char line_separator_chars[] = ";";
732
733 /* Chars that can be used to separate mant
734 from exp in floating point numbers. */
735 const char EXP_CHARS[] = "eE";
736
737 /* Chars that mean this number is a floating point constant. */
738 /* As in 0f12.456 */
739 /* or 0d1.2345e12 */
740
741 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
742
743 /* Prefix characters that indicate the start of an immediate
744 value. */
745 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
746
747 /* Separator character handling. */
748
749 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
750
751 static inline int
752 skip_past_char (char ** str, char c)
753 {
754 if (**str == c)
755 {
756 (*str)++;
757 return SUCCESS;
758 }
759 else
760 return FAIL;
761 }
762 #define skip_past_comma(str) skip_past_char (str, ',')
763
764 /* Arithmetic expressions (possibly involving symbols). */
765
766 /* Return TRUE if anything in the expression is a bignum. */
767
768 static int
769 walk_no_bignums (symbolS * sp)
770 {
771 if (symbol_get_value_expression (sp)->X_op == O_big)
772 return 1;
773
774 if (symbol_get_value_expression (sp)->X_add_symbol)
775 {
776 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
777 || (symbol_get_value_expression (sp)->X_op_symbol
778 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
779 }
780
781 return 0;
782 }
783
784 static int in_my_get_expression = 0;
785
786 /* Third argument to my_get_expression. */
787 #define GE_NO_PREFIX 0
788 #define GE_IMM_PREFIX 1
789 #define GE_OPT_PREFIX 2
790 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
791 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
792 #define GE_OPT_PREFIX_BIG 3
793
794 static int
795 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
796 {
797 char * save_in;
798 segT seg;
799
800 /* In unified syntax, all prefixes are optional. */
801 if (unified_syntax)
802 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
803 : GE_OPT_PREFIX;
804
805 switch (prefix_mode)
806 {
807 case GE_NO_PREFIX: break;
808 case GE_IMM_PREFIX:
809 if (!is_immediate_prefix (**str))
810 {
811 inst.error = _("immediate expression requires a # prefix");
812 return FAIL;
813 }
814 (*str)++;
815 break;
816 case GE_OPT_PREFIX:
817 case GE_OPT_PREFIX_BIG:
818 if (is_immediate_prefix (**str))
819 (*str)++;
820 break;
821 default: abort ();
822 }
823
824 memset (ep, 0, sizeof (expressionS));
825
826 save_in = input_line_pointer;
827 input_line_pointer = *str;
828 in_my_get_expression = 1;
829 seg = expression (ep);
830 in_my_get_expression = 0;
831
832 if (ep->X_op == O_illegal)
833 {
834 /* We found a bad expression in md_operand(). */
835 *str = input_line_pointer;
836 input_line_pointer = save_in;
837 if (inst.error == NULL)
838 inst.error = _("bad expression");
839 return 1;
840 }
841
842 #ifdef OBJ_AOUT
843 if (seg != absolute_section
844 && seg != text_section
845 && seg != data_section
846 && seg != bss_section
847 && seg != undefined_section)
848 {
849 inst.error = _("bad segment");
850 *str = input_line_pointer;
851 input_line_pointer = save_in;
852 return 1;
853 }
854 #endif
855
856 /* Get rid of any bignums now, so that we don't generate an error for which
857 we can't establish a line number later on. Big numbers are never valid
858 in instructions, which is where this routine is always called. */
859 if (prefix_mode != GE_OPT_PREFIX_BIG
860 && (ep->X_op == O_big
861 || (ep->X_add_symbol
862 && (walk_no_bignums (ep->X_add_symbol)
863 || (ep->X_op_symbol
864 && walk_no_bignums (ep->X_op_symbol))))))
865 {
866 inst.error = _("invalid constant");
867 *str = input_line_pointer;
868 input_line_pointer = save_in;
869 return 1;
870 }
871
872 *str = input_line_pointer;
873 input_line_pointer = save_in;
874 return 0;
875 }
876
877 /* Turn a string in input_line_pointer into a floating point constant
878 of type TYPE, and store the appropriate bytes in *LITP. The number
879 of LITTLENUMS emitted is stored in *SIZEP. An error message is
880 returned, or NULL on OK.
881
882 Note that fp constants aren't represent in the normal way on the ARM.
883 In big endian mode, things are as expected. However, in little endian
884 mode fp constants are big-endian word-wise, and little-endian byte-wise
885 within the words. For example, (double) 1.1 in big endian mode is
886 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
887 the byte sequence 99 99 f1 3f 9a 99 99 99.
888
889 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
890
891 char *
892 md_atof (int type, char * litP, int * sizeP)
893 {
894 int prec;
895 LITTLENUM_TYPE words[MAX_LITTLENUMS];
896 char *t;
897 int i;
898
899 switch (type)
900 {
901 case 'f':
902 case 'F':
903 case 's':
904 case 'S':
905 prec = 2;
906 break;
907
908 case 'd':
909 case 'D':
910 case 'r':
911 case 'R':
912 prec = 4;
913 break;
914
915 case 'x':
916 case 'X':
917 prec = 5;
918 break;
919
920 case 'p':
921 case 'P':
922 prec = 5;
923 break;
924
925 default:
926 *sizeP = 0;
927 return _("Unrecognized or unsupported floating point constant");
928 }
929
930 t = atof_ieee (input_line_pointer, type, words);
931 if (t)
932 input_line_pointer = t;
933 *sizeP = prec * sizeof (LITTLENUM_TYPE);
934
935 if (target_big_endian)
936 {
937 for (i = 0; i < prec; i++)
938 {
939 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
940 litP += sizeof (LITTLENUM_TYPE);
941 }
942 }
943 else
944 {
945 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
946 for (i = prec - 1; i >= 0; i--)
947 {
948 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
949 litP += sizeof (LITTLENUM_TYPE);
950 }
951 else
952 /* For a 4 byte float the order of elements in `words' is 1 0.
953 For an 8 byte float the order is 1 0 3 2. */
954 for (i = 0; i < prec; i += 2)
955 {
956 md_number_to_chars (litP, (valueT) words[i + 1],
957 sizeof (LITTLENUM_TYPE));
958 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
959 (valueT) words[i], sizeof (LITTLENUM_TYPE));
960 litP += 2 * sizeof (LITTLENUM_TYPE);
961 }
962 }
963
964 return NULL;
965 }
966
967 /* We handle all bad expressions here, so that we can report the faulty
968 instruction in the error message. */
969 void
970 md_operand (expressionS * expr)
971 {
972 if (in_my_get_expression)
973 expr->X_op = O_illegal;
974 }
975
976 /* Immediate values. */
977
978 /* Generic immediate-value read function for use in directives.
979 Accepts anything that 'expression' can fold to a constant.
980 *val receives the number. */
981 #ifdef OBJ_ELF
982 static int
983 immediate_for_directive (int *val)
984 {
985 expressionS exp;
986 exp.X_op = O_illegal;
987
988 if (is_immediate_prefix (*input_line_pointer))
989 {
990 input_line_pointer++;
991 expression (&exp);
992 }
993
994 if (exp.X_op != O_constant)
995 {
996 as_bad (_("expected #constant"));
997 ignore_rest_of_line ();
998 return FAIL;
999 }
1000 *val = exp.X_add_number;
1001 return SUCCESS;
1002 }
1003 #endif
1004
1005 /* Register parsing. */
1006
1007 /* Generic register parser. CCP points to what should be the
1008 beginning of a register name. If it is indeed a valid register
1009 name, advance CCP over it and return the reg_entry structure;
1010 otherwise return NULL. Does not issue diagnostics. */
1011
1012 static struct reg_entry *
1013 arm_reg_parse_multi (char **ccp)
1014 {
1015 char *start = *ccp;
1016 char *p;
1017 struct reg_entry *reg;
1018
1019 #ifdef REGISTER_PREFIX
1020 if (*start != REGISTER_PREFIX)
1021 return NULL;
1022 start++;
1023 #endif
1024 #ifdef OPTIONAL_REGISTER_PREFIX
1025 if (*start == OPTIONAL_REGISTER_PREFIX)
1026 start++;
1027 #endif
1028
1029 p = start;
1030 if (!ISALPHA (*p) || !is_name_beginner (*p))
1031 return NULL;
1032
1033 do
1034 p++;
1035 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1036
1037 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1038
1039 if (!reg)
1040 return NULL;
1041
1042 *ccp = p;
1043 return reg;
1044 }
1045
1046 static int
1047 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1048 enum arm_reg_type type)
1049 {
1050 /* Alternative syntaxes are accepted for a few register classes. */
1051 switch (type)
1052 {
1053 case REG_TYPE_MVF:
1054 case REG_TYPE_MVD:
1055 case REG_TYPE_MVFX:
1056 case REG_TYPE_MVDX:
1057 /* Generic coprocessor register names are allowed for these. */
1058 if (reg && reg->type == REG_TYPE_CN)
1059 return reg->number;
1060 break;
1061
1062 case REG_TYPE_CP:
1063 /* For backward compatibility, a bare number is valid here. */
1064 {
1065 unsigned long processor = strtoul (start, ccp, 10);
1066 if (*ccp != start && processor <= 15)
1067 return processor;
1068 }
1069
1070 case REG_TYPE_MMXWC:
1071 /* WC includes WCG. ??? I'm not sure this is true for all
1072 instructions that take WC registers. */
1073 if (reg && reg->type == REG_TYPE_MMXWCG)
1074 return reg->number;
1075 break;
1076
1077 default:
1078 break;
1079 }
1080
1081 return FAIL;
1082 }
1083
1084 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1085 return value is the register number or FAIL. */
1086
1087 static int
1088 arm_reg_parse (char **ccp, enum arm_reg_type type)
1089 {
1090 char *start = *ccp;
1091 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1092 int ret;
1093
1094 /* Do not allow a scalar (reg+index) to parse as a register. */
1095 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1096 return FAIL;
1097
1098 if (reg && reg->type == type)
1099 return reg->number;
1100
1101 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1102 return ret;
1103
1104 *ccp = start;
1105 return FAIL;
1106 }
1107
1108 /* Parse a Neon type specifier. *STR should point at the leading '.'
1109 character. Does no verification at this stage that the type fits the opcode
1110 properly. E.g.,
1111
1112 .i32.i32.s16
1113 .s32.f32
1114 .u16
1115
1116 Can all be legally parsed by this function.
1117
1118 Fills in neon_type struct pointer with parsed information, and updates STR
1119 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1120 type, FAIL if not. */
1121
1122 static int
1123 parse_neon_type (struct neon_type *type, char **str)
1124 {
1125 char *ptr = *str;
1126
1127 if (type)
1128 type->elems = 0;
1129
1130 while (type->elems < NEON_MAX_TYPE_ELS)
1131 {
1132 enum neon_el_type thistype = NT_untyped;
1133 unsigned thissize = -1u;
1134
1135 if (*ptr != '.')
1136 break;
1137
1138 ptr++;
1139
1140 /* Just a size without an explicit type. */
1141 if (ISDIGIT (*ptr))
1142 goto parsesize;
1143
1144 switch (TOLOWER (*ptr))
1145 {
1146 case 'i': thistype = NT_integer; break;
1147 case 'f': thistype = NT_float; break;
1148 case 'p': thistype = NT_poly; break;
1149 case 's': thistype = NT_signed; break;
1150 case 'u': thistype = NT_unsigned; break;
1151 case 'd':
1152 thistype = NT_float;
1153 thissize = 64;
1154 ptr++;
1155 goto done;
1156 default:
1157 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1158 return FAIL;
1159 }
1160
1161 ptr++;
1162
1163 /* .f is an abbreviation for .f32. */
1164 if (thistype == NT_float && !ISDIGIT (*ptr))
1165 thissize = 32;
1166 else
1167 {
1168 parsesize:
1169 thissize = strtoul (ptr, &ptr, 10);
1170
1171 if (thissize != 8 && thissize != 16 && thissize != 32
1172 && thissize != 64)
1173 {
1174 as_bad (_("bad size %d in type specifier"), thissize);
1175 return FAIL;
1176 }
1177 }
1178
1179 done:
1180 if (type)
1181 {
1182 type->el[type->elems].type = thistype;
1183 type->el[type->elems].size = thissize;
1184 type->elems++;
1185 }
1186 }
1187
1188 /* Empty/missing type is not a successful parse. */
1189 if (type->elems == 0)
1190 return FAIL;
1191
1192 *str = ptr;
1193
1194 return SUCCESS;
1195 }
1196
1197 /* Errors may be set multiple times during parsing or bit encoding
1198 (particularly in the Neon bits), but usually the earliest error which is set
1199 will be the most meaningful. Avoid overwriting it with later (cascading)
1200 errors by calling this function. */
1201
1202 static void
1203 first_error (const char *err)
1204 {
1205 if (!inst.error)
1206 inst.error = err;
1207 }
1208
1209 /* Parse a single type, e.g. ".s32", leading period included. */
1210 static int
1211 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1212 {
1213 char *str = *ccp;
1214 struct neon_type optype;
1215
1216 if (*str == '.')
1217 {
1218 if (parse_neon_type (&optype, &str) == SUCCESS)
1219 {
1220 if (optype.elems == 1)
1221 *vectype = optype.el[0];
1222 else
1223 {
1224 first_error (_("only one type should be specified for operand"));
1225 return FAIL;
1226 }
1227 }
1228 else
1229 {
1230 first_error (_("vector type expected"));
1231 return FAIL;
1232 }
1233 }
1234 else
1235 return FAIL;
1236
1237 *ccp = str;
1238
1239 return SUCCESS;
1240 }
1241
1242 /* Special meanings for indices (which have a range of 0-7), which will fit into
1243 a 4-bit integer. */
1244
1245 #define NEON_ALL_LANES 15
1246 #define NEON_INTERLEAVE_LANES 14
1247
1248 /* Parse either a register or a scalar, with an optional type. Return the
1249 register number, and optionally fill in the actual type of the register
1250 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1251 type/index information in *TYPEINFO. */
1252
1253 static int
1254 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1255 enum arm_reg_type *rtype,
1256 struct neon_typed_alias *typeinfo)
1257 {
1258 char *str = *ccp;
1259 struct reg_entry *reg = arm_reg_parse_multi (&str);
1260 struct neon_typed_alias atype;
1261 struct neon_type_el parsetype;
1262
1263 atype.defined = 0;
1264 atype.index = -1;
1265 atype.eltype.type = NT_invtype;
1266 atype.eltype.size = -1;
1267
1268 /* Try alternate syntax for some types of register. Note these are mutually
1269 exclusive with the Neon syntax extensions. */
1270 if (reg == NULL)
1271 {
1272 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1273 if (altreg != FAIL)
1274 *ccp = str;
1275 if (typeinfo)
1276 *typeinfo = atype;
1277 return altreg;
1278 }
1279
1280 /* Undo polymorphism when a set of register types may be accepted. */
1281 if ((type == REG_TYPE_NDQ
1282 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1283 || (type == REG_TYPE_VFSD
1284 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1285 || (type == REG_TYPE_NSDQ
1286 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1287 || reg->type == REG_TYPE_NQ))
1288 || (type == REG_TYPE_MMXWC
1289 && (reg->type == REG_TYPE_MMXWCG)))
1290 type = reg->type;
1291
1292 if (type != reg->type)
1293 return FAIL;
1294
1295 if (reg->neon)
1296 atype = *reg->neon;
1297
1298 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1299 {
1300 if ((atype.defined & NTA_HASTYPE) != 0)
1301 {
1302 first_error (_("can't redefine type for operand"));
1303 return FAIL;
1304 }
1305 atype.defined |= NTA_HASTYPE;
1306 atype.eltype = parsetype;
1307 }
1308
1309 if (skip_past_char (&str, '[') == SUCCESS)
1310 {
1311 if (type != REG_TYPE_VFD)
1312 {
1313 first_error (_("only D registers may be indexed"));
1314 return FAIL;
1315 }
1316
1317 if ((atype.defined & NTA_HASINDEX) != 0)
1318 {
1319 first_error (_("can't change index for operand"));
1320 return FAIL;
1321 }
1322
1323 atype.defined |= NTA_HASINDEX;
1324
1325 if (skip_past_char (&str, ']') == SUCCESS)
1326 atype.index = NEON_ALL_LANES;
1327 else
1328 {
1329 expressionS exp;
1330
1331 my_get_expression (&exp, &str, GE_NO_PREFIX);
1332
1333 if (exp.X_op != O_constant)
1334 {
1335 first_error (_("constant expression required"));
1336 return FAIL;
1337 }
1338
1339 if (skip_past_char (&str, ']') == FAIL)
1340 return FAIL;
1341
1342 atype.index = exp.X_add_number;
1343 }
1344 }
1345
1346 if (typeinfo)
1347 *typeinfo = atype;
1348
1349 if (rtype)
1350 *rtype = type;
1351
1352 *ccp = str;
1353
1354 return reg->number;
1355 }
1356
1357 /* Like arm_reg_parse, but allow allow the following extra features:
1358 - If RTYPE is non-zero, return the (possibly restricted) type of the
1359 register (e.g. Neon double or quad reg when either has been requested).
1360 - If this is a Neon vector type with additional type information, fill
1361 in the struct pointed to by VECTYPE (if non-NULL).
1362 This function will fault on encountering a scalar. */
1363
1364 static int
1365 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1366 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1367 {
1368 struct neon_typed_alias atype;
1369 char *str = *ccp;
1370 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1371
1372 if (reg == FAIL)
1373 return FAIL;
1374
1375 /* Do not allow a scalar (reg+index) to parse as a register. */
1376 if ((atype.defined & NTA_HASINDEX) != 0)
1377 {
1378 first_error (_("register operand expected, but got scalar"));
1379 return FAIL;
1380 }
1381
1382 if (vectype)
1383 *vectype = atype.eltype;
1384
1385 *ccp = str;
1386
1387 return reg;
1388 }
1389
1390 #define NEON_SCALAR_REG(X) ((X) >> 4)
1391 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1392
1393 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1394 have enough information to be able to do a good job bounds-checking. So, we
1395 just do easy checks here, and do further checks later. */
1396
1397 static int
1398 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1399 {
1400 int reg;
1401 char *str = *ccp;
1402 struct neon_typed_alias atype;
1403
1404 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1405
1406 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1407 return FAIL;
1408
1409 if (atype.index == NEON_ALL_LANES)
1410 {
1411 first_error (_("scalar must have an index"));
1412 return FAIL;
1413 }
1414 else if (atype.index >= 64 / elsize)
1415 {
1416 first_error (_("scalar index out of range"));
1417 return FAIL;
1418 }
1419
1420 if (type)
1421 *type = atype.eltype;
1422
1423 *ccp = str;
1424
1425 return reg * 16 + atype.index;
1426 }
1427
1428 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1429 static long
1430 parse_reg_list (char ** strp)
1431 {
1432 char * str = * strp;
1433 long range = 0;
1434 int another_range;
1435
1436 /* We come back here if we get ranges concatenated by '+' or '|'. */
1437 do
1438 {
1439 another_range = 0;
1440
1441 if (*str == '{')
1442 {
1443 int in_range = 0;
1444 int cur_reg = -1;
1445
1446 str++;
1447 do
1448 {
1449 int reg;
1450
1451 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1452 {
1453 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1454 return FAIL;
1455 }
1456
1457 if (in_range)
1458 {
1459 int i;
1460
1461 if (reg <= cur_reg)
1462 {
1463 first_error (_("bad range in register list"));
1464 return FAIL;
1465 }
1466
1467 for (i = cur_reg + 1; i < reg; i++)
1468 {
1469 if (range & (1 << i))
1470 as_tsktsk
1471 (_("Warning: duplicated register (r%d) in register list"),
1472 i);
1473 else
1474 range |= 1 << i;
1475 }
1476 in_range = 0;
1477 }
1478
1479 if (range & (1 << reg))
1480 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1481 reg);
1482 else if (reg <= cur_reg)
1483 as_tsktsk (_("Warning: register range not in ascending order"));
1484
1485 range |= 1 << reg;
1486 cur_reg = reg;
1487 }
1488 while (skip_past_comma (&str) != FAIL
1489 || (in_range = 1, *str++ == '-'));
1490 str--;
1491
1492 if (*str++ != '}')
1493 {
1494 first_error (_("missing `}'"));
1495 return FAIL;
1496 }
1497 }
1498 else
1499 {
1500 expressionS expr;
1501
1502 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1503 return FAIL;
1504
1505 if (expr.X_op == O_constant)
1506 {
1507 if (expr.X_add_number
1508 != (expr.X_add_number & 0x0000ffff))
1509 {
1510 inst.error = _("invalid register mask");
1511 return FAIL;
1512 }
1513
1514 if ((range & expr.X_add_number) != 0)
1515 {
1516 int regno = range & expr.X_add_number;
1517
1518 regno &= -regno;
1519 regno = (1 << regno) - 1;
1520 as_tsktsk
1521 (_("Warning: duplicated register (r%d) in register list"),
1522 regno);
1523 }
1524
1525 range |= expr.X_add_number;
1526 }
1527 else
1528 {
1529 if (inst.reloc.type != 0)
1530 {
1531 inst.error = _("expression too complex");
1532 return FAIL;
1533 }
1534
1535 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1536 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1537 inst.reloc.pc_rel = 0;
1538 }
1539 }
1540
1541 if (*str == '|' || *str == '+')
1542 {
1543 str++;
1544 another_range = 1;
1545 }
1546 }
1547 while (another_range);
1548
1549 *strp = str;
1550 return range;
1551 }
1552
1553 /* Types of registers in a list. */
1554
1555 enum reg_list_els
1556 {
1557 REGLIST_VFP_S,
1558 REGLIST_VFP_D,
1559 REGLIST_NEON_D
1560 };
1561
1562 /* Parse a VFP register list. If the string is invalid return FAIL.
1563 Otherwise return the number of registers, and set PBASE to the first
1564 register. Parses registers of type ETYPE.
1565 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1566 - Q registers can be used to specify pairs of D registers
1567 - { } can be omitted from around a singleton register list
1568 FIXME: This is not implemented, as it would require backtracking in
1569 some cases, e.g.:
1570 vtbl.8 d3,d4,d5
1571 This could be done (the meaning isn't really ambiguous), but doesn't
1572 fit in well with the current parsing framework.
1573 - 32 D registers may be used (also true for VFPv3).
1574 FIXME: Types are ignored in these register lists, which is probably a
1575 bug. */
1576
1577 static int
1578 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1579 {
1580 char *str = *ccp;
1581 int base_reg;
1582 int new_base;
1583 enum arm_reg_type regtype = 0;
1584 int max_regs = 0;
1585 int count = 0;
1586 int warned = 0;
1587 unsigned long mask = 0;
1588 int i;
1589
1590 if (*str != '{')
1591 {
1592 inst.error = _("expecting {");
1593 return FAIL;
1594 }
1595
1596 str++;
1597
1598 switch (etype)
1599 {
1600 case REGLIST_VFP_S:
1601 regtype = REG_TYPE_VFS;
1602 max_regs = 32;
1603 break;
1604
1605 case REGLIST_VFP_D:
1606 regtype = REG_TYPE_VFD;
1607 break;
1608
1609 case REGLIST_NEON_D:
1610 regtype = REG_TYPE_NDQ;
1611 break;
1612 }
1613
1614 if (etype != REGLIST_VFP_S)
1615 {
1616 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1617 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1618 {
1619 max_regs = 32;
1620 if (thumb_mode)
1621 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1622 fpu_vfp_ext_d32);
1623 else
1624 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1625 fpu_vfp_ext_d32);
1626 }
1627 else
1628 max_regs = 16;
1629 }
1630
1631 base_reg = max_regs;
1632
1633 do
1634 {
1635 int setmask = 1, addregs = 1;
1636
1637 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1638
1639 if (new_base == FAIL)
1640 {
1641 first_error (_(reg_expected_msgs[regtype]));
1642 return FAIL;
1643 }
1644
1645 if (new_base >= max_regs)
1646 {
1647 first_error (_("register out of range in list"));
1648 return FAIL;
1649 }
1650
1651 /* Note: a value of 2 * n is returned for the register Q<n>. */
1652 if (regtype == REG_TYPE_NQ)
1653 {
1654 setmask = 3;
1655 addregs = 2;
1656 }
1657
1658 if (new_base < base_reg)
1659 base_reg = new_base;
1660
1661 if (mask & (setmask << new_base))
1662 {
1663 first_error (_("invalid register list"));
1664 return FAIL;
1665 }
1666
1667 if ((mask >> new_base) != 0 && ! warned)
1668 {
1669 as_tsktsk (_("register list not in ascending order"));
1670 warned = 1;
1671 }
1672
1673 mask |= setmask << new_base;
1674 count += addregs;
1675
1676 if (*str == '-') /* We have the start of a range expression */
1677 {
1678 int high_range;
1679
1680 str++;
1681
1682 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1683 == FAIL)
1684 {
1685 inst.error = gettext (reg_expected_msgs[regtype]);
1686 return FAIL;
1687 }
1688
1689 if (high_range >= max_regs)
1690 {
1691 first_error (_("register out of range in list"));
1692 return FAIL;
1693 }
1694
1695 if (regtype == REG_TYPE_NQ)
1696 high_range = high_range + 1;
1697
1698 if (high_range <= new_base)
1699 {
1700 inst.error = _("register range not in ascending order");
1701 return FAIL;
1702 }
1703
1704 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1705 {
1706 if (mask & (setmask << new_base))
1707 {
1708 inst.error = _("invalid register list");
1709 return FAIL;
1710 }
1711
1712 mask |= setmask << new_base;
1713 count += addregs;
1714 }
1715 }
1716 }
1717 while (skip_past_comma (&str) != FAIL);
1718
1719 str++;
1720
1721 /* Sanity check -- should have raised a parse error above. */
1722 if (count == 0 || count > max_regs)
1723 abort ();
1724
1725 *pbase = base_reg;
1726
1727 /* Final test -- the registers must be consecutive. */
1728 mask >>= base_reg;
1729 for (i = 0; i < count; i++)
1730 {
1731 if ((mask & (1u << i)) == 0)
1732 {
1733 inst.error = _("non-contiguous register range");
1734 return FAIL;
1735 }
1736 }
1737
1738 *ccp = str;
1739
1740 return count;
1741 }
1742
1743 /* True if two alias types are the same. */
1744
1745 static int
1746 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1747 {
1748 if (!a && !b)
1749 return 1;
1750
1751 if (!a || !b)
1752 return 0;
1753
1754 if (a->defined != b->defined)
1755 return 0;
1756
1757 if ((a->defined & NTA_HASTYPE) != 0
1758 && (a->eltype.type != b->eltype.type
1759 || a->eltype.size != b->eltype.size))
1760 return 0;
1761
1762 if ((a->defined & NTA_HASINDEX) != 0
1763 && (a->index != b->index))
1764 return 0;
1765
1766 return 1;
1767 }
1768
1769 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1770 The base register is put in *PBASE.
1771 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1772 the return value.
1773 The register stride (minus one) is put in bit 4 of the return value.
1774 Bits [6:5] encode the list length (minus one).
1775 The type of the list elements is put in *ELTYPE, if non-NULL. */
1776
1777 #define NEON_LANE(X) ((X) & 0xf)
1778 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1779 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1780
1781 static int
1782 parse_neon_el_struct_list (char **str, unsigned *pbase,
1783 struct neon_type_el *eltype)
1784 {
1785 char *ptr = *str;
1786 int base_reg = -1;
1787 int reg_incr = -1;
1788 int count = 0;
1789 int lane = -1;
1790 int leading_brace = 0;
1791 enum arm_reg_type rtype = REG_TYPE_NDQ;
1792 int addregs = 1;
1793 const char *const incr_error = "register stride must be 1 or 2";
1794 const char *const type_error = "mismatched element/structure types in list";
1795 struct neon_typed_alias firsttype;
1796
1797 if (skip_past_char (&ptr, '{') == SUCCESS)
1798 leading_brace = 1;
1799
1800 do
1801 {
1802 struct neon_typed_alias atype;
1803 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1804
1805 if (getreg == FAIL)
1806 {
1807 first_error (_(reg_expected_msgs[rtype]));
1808 return FAIL;
1809 }
1810
1811 if (base_reg == -1)
1812 {
1813 base_reg = getreg;
1814 if (rtype == REG_TYPE_NQ)
1815 {
1816 reg_incr = 1;
1817 addregs = 2;
1818 }
1819 firsttype = atype;
1820 }
1821 else if (reg_incr == -1)
1822 {
1823 reg_incr = getreg - base_reg;
1824 if (reg_incr < 1 || reg_incr > 2)
1825 {
1826 first_error (_(incr_error));
1827 return FAIL;
1828 }
1829 }
1830 else if (getreg != base_reg + reg_incr * count)
1831 {
1832 first_error (_(incr_error));
1833 return FAIL;
1834 }
1835
1836 if (!neon_alias_types_same (&atype, &firsttype))
1837 {
1838 first_error (_(type_error));
1839 return FAIL;
1840 }
1841
1842 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1843 modes. */
1844 if (ptr[0] == '-')
1845 {
1846 struct neon_typed_alias htype;
1847 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1848 if (lane == -1)
1849 lane = NEON_INTERLEAVE_LANES;
1850 else if (lane != NEON_INTERLEAVE_LANES)
1851 {
1852 first_error (_(type_error));
1853 return FAIL;
1854 }
1855 if (reg_incr == -1)
1856 reg_incr = 1;
1857 else if (reg_incr != 1)
1858 {
1859 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1860 return FAIL;
1861 }
1862 ptr++;
1863 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1864 if (hireg == FAIL)
1865 {
1866 first_error (_(reg_expected_msgs[rtype]));
1867 return FAIL;
1868 }
1869 if (!neon_alias_types_same (&htype, &firsttype))
1870 {
1871 first_error (_(type_error));
1872 return FAIL;
1873 }
1874 count += hireg + dregs - getreg;
1875 continue;
1876 }
1877
1878 /* If we're using Q registers, we can't use [] or [n] syntax. */
1879 if (rtype == REG_TYPE_NQ)
1880 {
1881 count += 2;
1882 continue;
1883 }
1884
1885 if ((atype.defined & NTA_HASINDEX) != 0)
1886 {
1887 if (lane == -1)
1888 lane = atype.index;
1889 else if (lane != atype.index)
1890 {
1891 first_error (_(type_error));
1892 return FAIL;
1893 }
1894 }
1895 else if (lane == -1)
1896 lane = NEON_INTERLEAVE_LANES;
1897 else if (lane != NEON_INTERLEAVE_LANES)
1898 {
1899 first_error (_(type_error));
1900 return FAIL;
1901 }
1902 count++;
1903 }
1904 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1905
1906 /* No lane set by [x]. We must be interleaving structures. */
1907 if (lane == -1)
1908 lane = NEON_INTERLEAVE_LANES;
1909
1910 /* Sanity check. */
1911 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1912 || (count > 1 && reg_incr == -1))
1913 {
1914 first_error (_("error parsing element/structure list"));
1915 return FAIL;
1916 }
1917
1918 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1919 {
1920 first_error (_("expected }"));
1921 return FAIL;
1922 }
1923
1924 if (reg_incr == -1)
1925 reg_incr = 1;
1926
1927 if (eltype)
1928 *eltype = firsttype.eltype;
1929
1930 *pbase = base_reg;
1931 *str = ptr;
1932
1933 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1934 }
1935
1936 /* Parse an explicit relocation suffix on an expression. This is
1937 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1938 arm_reloc_hsh contains no entries, so this function can only
1939 succeed if there is no () after the word. Returns -1 on error,
1940 BFD_RELOC_UNUSED if there wasn't any suffix. */
1941 static int
1942 parse_reloc (char **str)
1943 {
1944 struct reloc_entry *r;
1945 char *p, *q;
1946
1947 if (**str != '(')
1948 return BFD_RELOC_UNUSED;
1949
1950 p = *str + 1;
1951 q = p;
1952
1953 while (*q && *q != ')' && *q != ',')
1954 q++;
1955 if (*q != ')')
1956 return -1;
1957
1958 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1959 return -1;
1960
1961 *str = q + 1;
1962 return r->reloc;
1963 }
1964
1965 /* Directives: register aliases. */
1966
1967 static struct reg_entry *
1968 insert_reg_alias (char *str, int number, int type)
1969 {
1970 struct reg_entry *new;
1971 const char *name;
1972
1973 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1974 {
1975 if (new->builtin)
1976 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1977
1978 /* Only warn about a redefinition if it's not defined as the
1979 same register. */
1980 else if (new->number != number || new->type != type)
1981 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1982
1983 return NULL;
1984 }
1985
1986 name = xstrdup (str);
1987 new = xmalloc (sizeof (struct reg_entry));
1988
1989 new->name = name;
1990 new->number = number;
1991 new->type = type;
1992 new->builtin = FALSE;
1993 new->neon = NULL;
1994
1995 if (hash_insert (arm_reg_hsh, name, (void *) new))
1996 abort ();
1997
1998 return new;
1999 }
2000
2001 static void
2002 insert_neon_reg_alias (char *str, int number, int type,
2003 struct neon_typed_alias *atype)
2004 {
2005 struct reg_entry *reg = insert_reg_alias (str, number, type);
2006
2007 if (!reg)
2008 {
2009 first_error (_("attempt to redefine typed alias"));
2010 return;
2011 }
2012
2013 if (atype)
2014 {
2015 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2016 *reg->neon = *atype;
2017 }
2018 }
2019
2020 /* Look for the .req directive. This is of the form:
2021
2022 new_register_name .req existing_register_name
2023
2024 If we find one, or if it looks sufficiently like one that we want to
2025 handle any error here, return TRUE. Otherwise return FALSE. */
2026
2027 static bfd_boolean
2028 create_register_alias (char * newname, char *p)
2029 {
2030 struct reg_entry *old;
2031 char *oldname, *nbuf;
2032 size_t nlen;
2033
2034 /* The input scrubber ensures that whitespace after the mnemonic is
2035 collapsed to single spaces. */
2036 oldname = p;
2037 if (strncmp (oldname, " .req ", 6) != 0)
2038 return FALSE;
2039
2040 oldname += 6;
2041 if (*oldname == '\0')
2042 return FALSE;
2043
2044 old = hash_find (arm_reg_hsh, oldname);
2045 if (!old)
2046 {
2047 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2048 return TRUE;
2049 }
2050
2051 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2052 the desired alias name, and p points to its end. If not, then
2053 the desired alias name is in the global original_case_string. */
2054 #ifdef TC_CASE_SENSITIVE
2055 nlen = p - newname;
2056 #else
2057 newname = original_case_string;
2058 nlen = strlen (newname);
2059 #endif
2060
2061 nbuf = alloca (nlen + 1);
2062 memcpy (nbuf, newname, nlen);
2063 nbuf[nlen] = '\0';
2064
2065 /* Create aliases under the new name as stated; an all-lowercase
2066 version of the new name; and an all-uppercase version of the new
2067 name. */
2068 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2069 {
2070 for (p = nbuf; *p; p++)
2071 *p = TOUPPER (*p);
2072
2073 if (strncmp (nbuf, newname, nlen))
2074 {
2075 /* If this attempt to create an additional alias fails, do not bother
2076 trying to create the all-lower case alias. We will fail and issue
2077 a second, duplicate error message. This situation arises when the
2078 programmer does something like:
2079 foo .req r0
2080 Foo .req r1
2081 The second .req creates the "Foo" alias but then fails to create
2082 the artificial FOO alias because it has already been created by the
2083 first .req. */
2084 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2085 return TRUE;
2086 }
2087
2088 for (p = nbuf; *p; p++)
2089 *p = TOLOWER (*p);
2090
2091 if (strncmp (nbuf, newname, nlen))
2092 insert_reg_alias (nbuf, old->number, old->type);
2093 }
2094
2095 return TRUE;
2096 }
2097
2098 /* Create a Neon typed/indexed register alias using directives, e.g.:
2099 X .dn d5.s32[1]
2100 Y .qn 6.s16
2101 Z .dn d7
2102 T .dn Z[0]
2103 These typed registers can be used instead of the types specified after the
2104 Neon mnemonic, so long as all operands given have types. Types can also be
2105 specified directly, e.g.:
2106 vadd d0.s32, d1.s32, d2.s32 */
2107
2108 static int
2109 create_neon_reg_alias (char *newname, char *p)
2110 {
2111 enum arm_reg_type basetype;
2112 struct reg_entry *basereg;
2113 struct reg_entry mybasereg;
2114 struct neon_type ntype;
2115 struct neon_typed_alias typeinfo;
2116 char *namebuf, *nameend;
2117 int namelen;
2118
2119 typeinfo.defined = 0;
2120 typeinfo.eltype.type = NT_invtype;
2121 typeinfo.eltype.size = -1;
2122 typeinfo.index = -1;
2123
2124 nameend = p;
2125
2126 if (strncmp (p, " .dn ", 5) == 0)
2127 basetype = REG_TYPE_VFD;
2128 else if (strncmp (p, " .qn ", 5) == 0)
2129 basetype = REG_TYPE_NQ;
2130 else
2131 return 0;
2132
2133 p += 5;
2134
2135 if (*p == '\0')
2136 return 0;
2137
2138 basereg = arm_reg_parse_multi (&p);
2139
2140 if (basereg && basereg->type != basetype)
2141 {
2142 as_bad (_("bad type for register"));
2143 return 0;
2144 }
2145
2146 if (basereg == NULL)
2147 {
2148 expressionS exp;
2149 /* Try parsing as an integer. */
2150 my_get_expression (&exp, &p, GE_NO_PREFIX);
2151 if (exp.X_op != O_constant)
2152 {
2153 as_bad (_("expression must be constant"));
2154 return 0;
2155 }
2156 basereg = &mybasereg;
2157 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2158 : exp.X_add_number;
2159 basereg->neon = 0;
2160 }
2161
2162 if (basereg->neon)
2163 typeinfo = *basereg->neon;
2164
2165 if (parse_neon_type (&ntype, &p) == SUCCESS)
2166 {
2167 /* We got a type. */
2168 if (typeinfo.defined & NTA_HASTYPE)
2169 {
2170 as_bad (_("can't redefine the type of a register alias"));
2171 return 0;
2172 }
2173
2174 typeinfo.defined |= NTA_HASTYPE;
2175 if (ntype.elems != 1)
2176 {
2177 as_bad (_("you must specify a single type only"));
2178 return 0;
2179 }
2180 typeinfo.eltype = ntype.el[0];
2181 }
2182
2183 if (skip_past_char (&p, '[') == SUCCESS)
2184 {
2185 expressionS exp;
2186 /* We got a scalar index. */
2187
2188 if (typeinfo.defined & NTA_HASINDEX)
2189 {
2190 as_bad (_("can't redefine the index of a scalar alias"));
2191 return 0;
2192 }
2193
2194 my_get_expression (&exp, &p, GE_NO_PREFIX);
2195
2196 if (exp.X_op != O_constant)
2197 {
2198 as_bad (_("scalar index must be constant"));
2199 return 0;
2200 }
2201
2202 typeinfo.defined |= NTA_HASINDEX;
2203 typeinfo.index = exp.X_add_number;
2204
2205 if (skip_past_char (&p, ']') == FAIL)
2206 {
2207 as_bad (_("expecting ]"));
2208 return 0;
2209 }
2210 }
2211
2212 namelen = nameend - newname;
2213 namebuf = alloca (namelen + 1);
2214 strncpy (namebuf, newname, namelen);
2215 namebuf[namelen] = '\0';
2216
2217 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2218 typeinfo.defined != 0 ? &typeinfo : NULL);
2219
2220 /* Insert name in all uppercase. */
2221 for (p = namebuf; *p; p++)
2222 *p = TOUPPER (*p);
2223
2224 if (strncmp (namebuf, newname, namelen))
2225 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2226 typeinfo.defined != 0 ? &typeinfo : NULL);
2227
2228 /* Insert name in all lowercase. */
2229 for (p = namebuf; *p; p++)
2230 *p = TOLOWER (*p);
2231
2232 if (strncmp (namebuf, newname, namelen))
2233 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2234 typeinfo.defined != 0 ? &typeinfo : NULL);
2235
2236 return 1;
2237 }
2238
2239 /* Should never be called, as .req goes between the alias and the
2240 register name, not at the beginning of the line. */
2241 static void
2242 s_req (int a ATTRIBUTE_UNUSED)
2243 {
2244 as_bad (_("invalid syntax for .req directive"));
2245 }
2246
2247 static void
2248 s_dn (int a ATTRIBUTE_UNUSED)
2249 {
2250 as_bad (_("invalid syntax for .dn directive"));
2251 }
2252
2253 static void
2254 s_qn (int a ATTRIBUTE_UNUSED)
2255 {
2256 as_bad (_("invalid syntax for .qn directive"));
2257 }
2258
2259 /* The .unreq directive deletes an alias which was previously defined
2260 by .req. For example:
2261
2262 my_alias .req r11
2263 .unreq my_alias */
2264
2265 static void
2266 s_unreq (int a ATTRIBUTE_UNUSED)
2267 {
2268 char * name;
2269 char saved_char;
2270
2271 name = input_line_pointer;
2272
2273 while (*input_line_pointer != 0
2274 && *input_line_pointer != ' '
2275 && *input_line_pointer != '\n')
2276 ++input_line_pointer;
2277
2278 saved_char = *input_line_pointer;
2279 *input_line_pointer = 0;
2280
2281 if (!*name)
2282 as_bad (_("invalid syntax for .unreq directive"));
2283 else
2284 {
2285 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2286
2287 if (!reg)
2288 as_bad (_("unknown register alias '%s'"), name);
2289 else if (reg->builtin)
2290 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2291 name);
2292 else
2293 {
2294 char * p;
2295 char * nbuf;
2296
2297 hash_delete (arm_reg_hsh, name, FALSE);
2298 free ((char *) reg->name);
2299 if (reg->neon)
2300 free (reg->neon);
2301 free (reg);
2302
2303 /* Also locate the all upper case and all lower case versions.
2304 Do not complain if we cannot find one or the other as it
2305 was probably deleted above. */
2306
2307 nbuf = strdup (name);
2308 for (p = nbuf; *p; p++)
2309 *p = TOUPPER (*p);
2310 reg = hash_find (arm_reg_hsh, nbuf);
2311 if (reg)
2312 {
2313 hash_delete (arm_reg_hsh, nbuf, FALSE);
2314 free ((char *) reg->name);
2315 if (reg->neon)
2316 free (reg->neon);
2317 free (reg);
2318 }
2319
2320 for (p = nbuf; *p; p++)
2321 *p = TOLOWER (*p);
2322 reg = hash_find (arm_reg_hsh, nbuf);
2323 if (reg)
2324 {
2325 hash_delete (arm_reg_hsh, nbuf, FALSE);
2326 free ((char *) reg->name);
2327 if (reg->neon)
2328 free (reg->neon);
2329 free (reg);
2330 }
2331
2332 free (nbuf);
2333 }
2334 }
2335
2336 *input_line_pointer = saved_char;
2337 demand_empty_rest_of_line ();
2338 }
2339
2340 /* Directives: Instruction set selection. */
2341
2342 #ifdef OBJ_ELF
2343 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2344 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2345 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2346 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2347
2348 static enum mstate mapstate = MAP_UNDEFINED;
2349
2350 void
2351 mapping_state (enum mstate state)
2352 {
2353 symbolS * symbolP;
2354 const char * symname;
2355 int type;
2356
2357 if (mapstate == state)
2358 /* The mapping symbol has already been emitted.
2359 There is nothing else to do. */
2360 return;
2361
2362 mapstate = state;
2363
2364 switch (state)
2365 {
2366 case MAP_DATA:
2367 symname = "$d";
2368 type = BSF_NO_FLAGS;
2369 break;
2370 case MAP_ARM:
2371 symname = "$a";
2372 type = BSF_NO_FLAGS;
2373 break;
2374 case MAP_THUMB:
2375 symname = "$t";
2376 type = BSF_NO_FLAGS;
2377 break;
2378 case MAP_UNDEFINED:
2379 return;
2380 default:
2381 abort ();
2382 }
2383
2384 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2385
2386 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2387 symbol_table_insert (symbolP);
2388 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2389
2390 switch (state)
2391 {
2392 case MAP_ARM:
2393 THUMB_SET_FUNC (symbolP, 0);
2394 ARM_SET_THUMB (symbolP, 0);
2395 ARM_SET_INTERWORK (symbolP, support_interwork);
2396 break;
2397
2398 case MAP_THUMB:
2399 THUMB_SET_FUNC (symbolP, 1);
2400 ARM_SET_THUMB (symbolP, 1);
2401 ARM_SET_INTERWORK (symbolP, support_interwork);
2402 break;
2403
2404 case MAP_DATA:
2405 default:
2406 return;
2407 }
2408 }
2409 #else
2410 #define mapping_state(x) /* nothing */
2411 #endif
2412
2413 /* Find the real, Thumb encoded start of a Thumb function. */
2414
2415 static symbolS *
2416 find_real_start (symbolS * symbolP)
2417 {
2418 char * real_start;
2419 const char * name = S_GET_NAME (symbolP);
2420 symbolS * new_target;
2421
2422 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2423 #define STUB_NAME ".real_start_of"
2424
2425 if (name == NULL)
2426 abort ();
2427
2428 /* The compiler may generate BL instructions to local labels because
2429 it needs to perform a branch to a far away location. These labels
2430 do not have a corresponding ".real_start_of" label. We check
2431 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2432 the ".real_start_of" convention for nonlocal branches. */
2433 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2434 return symbolP;
2435
2436 real_start = ACONCAT ((STUB_NAME, name, NULL));
2437 new_target = symbol_find (real_start);
2438
2439 if (new_target == NULL)
2440 {
2441 as_warn (_("Failed to find real start of function: %s\n"), name);
2442 new_target = symbolP;
2443 }
2444
2445 return new_target;
2446 }
2447
2448 static void
2449 opcode_select (int width)
2450 {
2451 switch (width)
2452 {
2453 case 16:
2454 if (! thumb_mode)
2455 {
2456 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2457 as_bad (_("selected processor does not support THUMB opcodes"));
2458
2459 thumb_mode = 1;
2460 /* No need to force the alignment, since we will have been
2461 coming from ARM mode, which is word-aligned. */
2462 record_alignment (now_seg, 1);
2463 }
2464 mapping_state (MAP_THUMB);
2465 break;
2466
2467 case 32:
2468 if (thumb_mode)
2469 {
2470 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2471 as_bad (_("selected processor does not support ARM opcodes"));
2472
2473 thumb_mode = 0;
2474
2475 if (!need_pass_2)
2476 frag_align (2, 0, 0);
2477
2478 record_alignment (now_seg, 1);
2479 }
2480 mapping_state (MAP_ARM);
2481 break;
2482
2483 default:
2484 as_bad (_("invalid instruction size selected (%d)"), width);
2485 }
2486 }
2487
2488 static void
2489 s_arm (int ignore ATTRIBUTE_UNUSED)
2490 {
2491 opcode_select (32);
2492 demand_empty_rest_of_line ();
2493 }
2494
2495 static void
2496 s_thumb (int ignore ATTRIBUTE_UNUSED)
2497 {
2498 opcode_select (16);
2499 demand_empty_rest_of_line ();
2500 }
2501
2502 static void
2503 s_code (int unused ATTRIBUTE_UNUSED)
2504 {
2505 int temp;
2506
2507 temp = get_absolute_expression ();
2508 switch (temp)
2509 {
2510 case 16:
2511 case 32:
2512 opcode_select (temp);
2513 break;
2514
2515 default:
2516 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2517 }
2518 }
2519
2520 static void
2521 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2522 {
2523 /* If we are not already in thumb mode go into it, EVEN if
2524 the target processor does not support thumb instructions.
2525 This is used by gcc/config/arm/lib1funcs.asm for example
2526 to compile interworking support functions even if the
2527 target processor should not support interworking. */
2528 if (! thumb_mode)
2529 {
2530 thumb_mode = 2;
2531 record_alignment (now_seg, 1);
2532 }
2533
2534 demand_empty_rest_of_line ();
2535 }
2536
2537 static void
2538 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2539 {
2540 s_thumb (0);
2541
2542 /* The following label is the name/address of the start of a Thumb function.
2543 We need to know this for the interworking support. */
2544 label_is_thumb_function_name = TRUE;
2545 }
2546
2547 /* Perform a .set directive, but also mark the alias as
2548 being a thumb function. */
2549
2550 static void
2551 s_thumb_set (int equiv)
2552 {
2553 /* XXX the following is a duplicate of the code for s_set() in read.c
2554 We cannot just call that code as we need to get at the symbol that
2555 is created. */
2556 char * name;
2557 char delim;
2558 char * end_name;
2559 symbolS * symbolP;
2560
2561 /* Especial apologies for the random logic:
2562 This just grew, and could be parsed much more simply!
2563 Dean - in haste. */
2564 name = input_line_pointer;
2565 delim = get_symbol_end ();
2566 end_name = input_line_pointer;
2567 *end_name = delim;
2568
2569 if (*input_line_pointer != ',')
2570 {
2571 *end_name = 0;
2572 as_bad (_("expected comma after name \"%s\""), name);
2573 *end_name = delim;
2574 ignore_rest_of_line ();
2575 return;
2576 }
2577
2578 input_line_pointer++;
2579 *end_name = 0;
2580
2581 if (name[0] == '.' && name[1] == '\0')
2582 {
2583 /* XXX - this should not happen to .thumb_set. */
2584 abort ();
2585 }
2586
2587 if ((symbolP = symbol_find (name)) == NULL
2588 && (symbolP = md_undefined_symbol (name)) == NULL)
2589 {
2590 #ifndef NO_LISTING
2591 /* When doing symbol listings, play games with dummy fragments living
2592 outside the normal fragment chain to record the file and line info
2593 for this symbol. */
2594 if (listing & LISTING_SYMBOLS)
2595 {
2596 extern struct list_info_struct * listing_tail;
2597 fragS * dummy_frag = xmalloc (sizeof (fragS));
2598
2599 memset (dummy_frag, 0, sizeof (fragS));
2600 dummy_frag->fr_type = rs_fill;
2601 dummy_frag->line = listing_tail;
2602 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2603 dummy_frag->fr_symbol = symbolP;
2604 }
2605 else
2606 #endif
2607 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2608
2609 #ifdef OBJ_COFF
2610 /* "set" symbols are local unless otherwise specified. */
2611 SF_SET_LOCAL (symbolP);
2612 #endif /* OBJ_COFF */
2613 } /* Make a new symbol. */
2614
2615 symbol_table_insert (symbolP);
2616
2617 * end_name = delim;
2618
2619 if (equiv
2620 && S_IS_DEFINED (symbolP)
2621 && S_GET_SEGMENT (symbolP) != reg_section)
2622 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2623
2624 pseudo_set (symbolP);
2625
2626 demand_empty_rest_of_line ();
2627
2628 /* XXX Now we come to the Thumb specific bit of code. */
2629
2630 THUMB_SET_FUNC (symbolP, 1);
2631 ARM_SET_THUMB (symbolP, 1);
2632 #if defined OBJ_ELF || defined OBJ_COFF
2633 ARM_SET_INTERWORK (symbolP, support_interwork);
2634 #endif
2635 }
2636
2637 /* Directives: Mode selection. */
2638
2639 /* .syntax [unified|divided] - choose the new unified syntax
2640 (same for Arm and Thumb encoding, modulo slight differences in what
2641 can be represented) or the old divergent syntax for each mode. */
2642 static void
2643 s_syntax (int unused ATTRIBUTE_UNUSED)
2644 {
2645 char *name, delim;
2646
2647 name = input_line_pointer;
2648 delim = get_symbol_end ();
2649
2650 if (!strcasecmp (name, "unified"))
2651 unified_syntax = TRUE;
2652 else if (!strcasecmp (name, "divided"))
2653 unified_syntax = FALSE;
2654 else
2655 {
2656 as_bad (_("unrecognized syntax mode \"%s\""), name);
2657 return;
2658 }
2659 *input_line_pointer = delim;
2660 demand_empty_rest_of_line ();
2661 }
2662
2663 /* Directives: sectioning and alignment. */
2664
2665 /* Same as s_align_ptwo but align 0 => align 2. */
2666
2667 static void
2668 s_align (int unused ATTRIBUTE_UNUSED)
2669 {
2670 int temp;
2671 bfd_boolean fill_p;
2672 long temp_fill;
2673 long max_alignment = 15;
2674
2675 temp = get_absolute_expression ();
2676 if (temp > max_alignment)
2677 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2678 else if (temp < 0)
2679 {
2680 as_bad (_("alignment negative. 0 assumed."));
2681 temp = 0;
2682 }
2683
2684 if (*input_line_pointer == ',')
2685 {
2686 input_line_pointer++;
2687 temp_fill = get_absolute_expression ();
2688 fill_p = TRUE;
2689 }
2690 else
2691 {
2692 fill_p = FALSE;
2693 temp_fill = 0;
2694 }
2695
2696 if (!temp)
2697 temp = 2;
2698
2699 /* Only make a frag if we HAVE to. */
2700 if (temp && !need_pass_2)
2701 {
2702 if (!fill_p && subseg_text_p (now_seg))
2703 frag_align_code (temp, 0);
2704 else
2705 frag_align (temp, (int) temp_fill, 0);
2706 }
2707 demand_empty_rest_of_line ();
2708
2709 record_alignment (now_seg, temp);
2710 }
2711
2712 static void
2713 s_bss (int ignore ATTRIBUTE_UNUSED)
2714 {
2715 /* We don't support putting frags in the BSS segment, we fake it by
2716 marking in_bss, then looking at s_skip for clues. */
2717 subseg_set (bss_section, 0);
2718 demand_empty_rest_of_line ();
2719 mapping_state (MAP_DATA);
2720 }
2721
2722 static void
2723 s_even (int ignore ATTRIBUTE_UNUSED)
2724 {
2725 /* Never make frag if expect extra pass. */
2726 if (!need_pass_2)
2727 frag_align (1, 0, 0);
2728
2729 record_alignment (now_seg, 1);
2730
2731 demand_empty_rest_of_line ();
2732 }
2733
2734 /* Directives: Literal pools. */
2735
2736 static literal_pool *
2737 find_literal_pool (void)
2738 {
2739 literal_pool * pool;
2740
2741 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2742 {
2743 if (pool->section == now_seg
2744 && pool->sub_section == now_subseg)
2745 break;
2746 }
2747
2748 return pool;
2749 }
2750
2751 static literal_pool *
2752 find_or_make_literal_pool (void)
2753 {
2754 /* Next literal pool ID number. */
2755 static unsigned int latest_pool_num = 1;
2756 literal_pool * pool;
2757
2758 pool = find_literal_pool ();
2759
2760 if (pool == NULL)
2761 {
2762 /* Create a new pool. */
2763 pool = xmalloc (sizeof (* pool));
2764 if (! pool)
2765 return NULL;
2766
2767 pool->next_free_entry = 0;
2768 pool->section = now_seg;
2769 pool->sub_section = now_subseg;
2770 pool->next = list_of_pools;
2771 pool->symbol = NULL;
2772
2773 /* Add it to the list. */
2774 list_of_pools = pool;
2775 }
2776
2777 /* New pools, and emptied pools, will have a NULL symbol. */
2778 if (pool->symbol == NULL)
2779 {
2780 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2781 (valueT) 0, &zero_address_frag);
2782 pool->id = latest_pool_num ++;
2783 }
2784
2785 /* Done. */
2786 return pool;
2787 }
2788
2789 /* Add the literal in the global 'inst'
2790 structure to the relevant literal pool. */
2791
2792 static int
2793 add_to_lit_pool (void)
2794 {
2795 literal_pool * pool;
2796 unsigned int entry;
2797
2798 pool = find_or_make_literal_pool ();
2799
2800 /* Check if this literal value is already in the pool. */
2801 for (entry = 0; entry < pool->next_free_entry; entry ++)
2802 {
2803 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2804 && (inst.reloc.exp.X_op == O_constant)
2805 && (pool->literals[entry].X_add_number
2806 == inst.reloc.exp.X_add_number)
2807 && (pool->literals[entry].X_unsigned
2808 == inst.reloc.exp.X_unsigned))
2809 break;
2810
2811 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2812 && (inst.reloc.exp.X_op == O_symbol)
2813 && (pool->literals[entry].X_add_number
2814 == inst.reloc.exp.X_add_number)
2815 && (pool->literals[entry].X_add_symbol
2816 == inst.reloc.exp.X_add_symbol)
2817 && (pool->literals[entry].X_op_symbol
2818 == inst.reloc.exp.X_op_symbol))
2819 break;
2820 }
2821
2822 /* Do we need to create a new entry? */
2823 if (entry == pool->next_free_entry)
2824 {
2825 if (entry >= MAX_LITERAL_POOL_SIZE)
2826 {
2827 inst.error = _("literal pool overflow");
2828 return FAIL;
2829 }
2830
2831 pool->literals[entry] = inst.reloc.exp;
2832 pool->next_free_entry += 1;
2833 }
2834
2835 inst.reloc.exp.X_op = O_symbol;
2836 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2837 inst.reloc.exp.X_add_symbol = pool->symbol;
2838
2839 return SUCCESS;
2840 }
2841
2842 /* Can't use symbol_new here, so have to create a symbol and then at
2843 a later date assign it a value. Thats what these functions do. */
2844
2845 static void
2846 symbol_locate (symbolS * symbolP,
2847 const char * name, /* It is copied, the caller can modify. */
2848 segT segment, /* Segment identifier (SEG_<something>). */
2849 valueT valu, /* Symbol value. */
2850 fragS * frag) /* Associated fragment. */
2851 {
2852 unsigned int name_length;
2853 char * preserved_copy_of_name;
2854
2855 name_length = strlen (name) + 1; /* +1 for \0. */
2856 obstack_grow (&notes, name, name_length);
2857 preserved_copy_of_name = obstack_finish (&notes);
2858
2859 #ifdef tc_canonicalize_symbol_name
2860 preserved_copy_of_name =
2861 tc_canonicalize_symbol_name (preserved_copy_of_name);
2862 #endif
2863
2864 S_SET_NAME (symbolP, preserved_copy_of_name);
2865
2866 S_SET_SEGMENT (symbolP, segment);
2867 S_SET_VALUE (symbolP, valu);
2868 symbol_clear_list_pointers (symbolP);
2869
2870 symbol_set_frag (symbolP, frag);
2871
2872 /* Link to end of symbol chain. */
2873 {
2874 extern int symbol_table_frozen;
2875
2876 if (symbol_table_frozen)
2877 abort ();
2878 }
2879
2880 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2881
2882 obj_symbol_new_hook (symbolP);
2883
2884 #ifdef tc_symbol_new_hook
2885 tc_symbol_new_hook (symbolP);
2886 #endif
2887
2888 #ifdef DEBUG_SYMS
2889 verify_symbol_chain (symbol_rootP, symbol_lastP);
2890 #endif /* DEBUG_SYMS */
2891 }
2892
2893
2894 static void
2895 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2896 {
2897 unsigned int entry;
2898 literal_pool * pool;
2899 char sym_name[20];
2900
2901 pool = find_literal_pool ();
2902 if (pool == NULL
2903 || pool->symbol == NULL
2904 || pool->next_free_entry == 0)
2905 return;
2906
2907 mapping_state (MAP_DATA);
2908
2909 /* Align pool as you have word accesses.
2910 Only make a frag if we have to. */
2911 if (!need_pass_2)
2912 frag_align (2, 0, 0);
2913
2914 record_alignment (now_seg, 2);
2915
2916 sprintf (sym_name, "$$lit_\002%x", pool->id);
2917
2918 symbol_locate (pool->symbol, sym_name, now_seg,
2919 (valueT) frag_now_fix (), frag_now);
2920 symbol_table_insert (pool->symbol);
2921
2922 ARM_SET_THUMB (pool->symbol, thumb_mode);
2923
2924 #if defined OBJ_COFF || defined OBJ_ELF
2925 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2926 #endif
2927
2928 for (entry = 0; entry < pool->next_free_entry; entry ++)
2929 /* First output the expression in the instruction to the pool. */
2930 emit_expr (&(pool->literals[entry]), 4); /* .word */
2931
2932 /* Mark the pool as empty. */
2933 pool->next_free_entry = 0;
2934 pool->symbol = NULL;
2935 }
2936
2937 #ifdef OBJ_ELF
2938 /* Forward declarations for functions below, in the MD interface
2939 section. */
2940 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2941 static valueT create_unwind_entry (int);
2942 static void start_unwind_section (const segT, int);
2943 static void add_unwind_opcode (valueT, int);
2944 static void flush_pending_unwind (void);
2945
2946 /* Directives: Data. */
2947
2948 static void
2949 s_arm_elf_cons (int nbytes)
2950 {
2951 expressionS exp;
2952
2953 #ifdef md_flush_pending_output
2954 md_flush_pending_output ();
2955 #endif
2956
2957 if (is_it_end_of_statement ())
2958 {
2959 demand_empty_rest_of_line ();
2960 return;
2961 }
2962
2963 #ifdef md_cons_align
2964 md_cons_align (nbytes);
2965 #endif
2966
2967 mapping_state (MAP_DATA);
2968 do
2969 {
2970 int reloc;
2971 char *base = input_line_pointer;
2972
2973 expression (& exp);
2974
2975 if (exp.X_op != O_symbol)
2976 emit_expr (&exp, (unsigned int) nbytes);
2977 else
2978 {
2979 char *before_reloc = input_line_pointer;
2980 reloc = parse_reloc (&input_line_pointer);
2981 if (reloc == -1)
2982 {
2983 as_bad (_("unrecognized relocation suffix"));
2984 ignore_rest_of_line ();
2985 return;
2986 }
2987 else if (reloc == BFD_RELOC_UNUSED)
2988 emit_expr (&exp, (unsigned int) nbytes);
2989 else
2990 {
2991 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2992 int size = bfd_get_reloc_size (howto);
2993
2994 if (reloc == BFD_RELOC_ARM_PLT32)
2995 {
2996 as_bad (_("(plt) is only valid on branch targets"));
2997 reloc = BFD_RELOC_UNUSED;
2998 size = 0;
2999 }
3000
3001 if (size > nbytes)
3002 as_bad (_("%s relocations do not fit in %d bytes"),
3003 howto->name, nbytes);
3004 else
3005 {
3006 /* We've parsed an expression stopping at O_symbol.
3007 But there may be more expression left now that we
3008 have parsed the relocation marker. Parse it again.
3009 XXX Surely there is a cleaner way to do this. */
3010 char *p = input_line_pointer;
3011 int offset;
3012 char *save_buf = alloca (input_line_pointer - base);
3013 memcpy (save_buf, base, input_line_pointer - base);
3014 memmove (base + (input_line_pointer - before_reloc),
3015 base, before_reloc - base);
3016
3017 input_line_pointer = base + (input_line_pointer-before_reloc);
3018 expression (&exp);
3019 memcpy (base, save_buf, p - base);
3020
3021 offset = nbytes - size;
3022 p = frag_more ((int) nbytes);
3023 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3024 size, &exp, 0, reloc);
3025 }
3026 }
3027 }
3028 }
3029 while (*input_line_pointer++ == ',');
3030
3031 /* Put terminator back into stream. */
3032 input_line_pointer --;
3033 demand_empty_rest_of_line ();
3034 }
3035
3036
3037 /* Parse a .rel31 directive. */
3038
3039 static void
3040 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3041 {
3042 expressionS exp;
3043 char *p;
3044 valueT highbit;
3045
3046 highbit = 0;
3047 if (*input_line_pointer == '1')
3048 highbit = 0x80000000;
3049 else if (*input_line_pointer != '0')
3050 as_bad (_("expected 0 or 1"));
3051
3052 input_line_pointer++;
3053 if (*input_line_pointer != ',')
3054 as_bad (_("missing comma"));
3055 input_line_pointer++;
3056
3057 #ifdef md_flush_pending_output
3058 md_flush_pending_output ();
3059 #endif
3060
3061 #ifdef md_cons_align
3062 md_cons_align (4);
3063 #endif
3064
3065 mapping_state (MAP_DATA);
3066
3067 expression (&exp);
3068
3069 p = frag_more (4);
3070 md_number_to_chars (p, highbit, 4);
3071 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3072 BFD_RELOC_ARM_PREL31);
3073
3074 demand_empty_rest_of_line ();
3075 }
3076
3077 /* Directives: AEABI stack-unwind tables. */
3078
3079 /* Parse an unwind_fnstart directive. Simply records the current location. */
3080
3081 static void
3082 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3083 {
3084 demand_empty_rest_of_line ();
3085 /* Mark the start of the function. */
3086 unwind.proc_start = expr_build_dot ();
3087
3088 /* Reset the rest of the unwind info. */
3089 unwind.opcode_count = 0;
3090 unwind.table_entry = NULL;
3091 unwind.personality_routine = NULL;
3092 unwind.personality_index = -1;
3093 unwind.frame_size = 0;
3094 unwind.fp_offset = 0;
3095 unwind.fp_reg = 13;
3096 unwind.fp_used = 0;
3097 unwind.sp_restored = 0;
3098 }
3099
3100
3101 /* Parse a handlerdata directive. Creates the exception handling table entry
3102 for the function. */
3103
3104 static void
3105 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3106 {
3107 demand_empty_rest_of_line ();
3108 if (unwind.table_entry)
3109 as_bad (_("duplicate .handlerdata directive"));
3110
3111 create_unwind_entry (1);
3112 }
3113
3114 /* Parse an unwind_fnend directive. Generates the index table entry. */
3115
3116 static void
3117 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3118 {
3119 long where;
3120 char *ptr;
3121 valueT val;
3122
3123 demand_empty_rest_of_line ();
3124
3125 /* Add eh table entry. */
3126 if (unwind.table_entry == NULL)
3127 val = create_unwind_entry (0);
3128 else
3129 val = 0;
3130
3131 /* Add index table entry. This is two words. */
3132 start_unwind_section (unwind.saved_seg, 1);
3133 frag_align (2, 0, 0);
3134 record_alignment (now_seg, 2);
3135
3136 ptr = frag_more (8);
3137 where = frag_now_fix () - 8;
3138
3139 /* Self relative offset of the function start. */
3140 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3141 BFD_RELOC_ARM_PREL31);
3142
3143 /* Indicate dependency on EHABI-defined personality routines to the
3144 linker, if it hasn't been done already. */
3145 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3146 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3147 {
3148 static const char *const name[] =
3149 {
3150 "__aeabi_unwind_cpp_pr0",
3151 "__aeabi_unwind_cpp_pr1",
3152 "__aeabi_unwind_cpp_pr2"
3153 };
3154 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3155 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3156 marked_pr_dependency |= 1 << unwind.personality_index;
3157 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3158 = marked_pr_dependency;
3159 }
3160
3161 if (val)
3162 /* Inline exception table entry. */
3163 md_number_to_chars (ptr + 4, val, 4);
3164 else
3165 /* Self relative offset of the table entry. */
3166 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3167 BFD_RELOC_ARM_PREL31);
3168
3169 /* Restore the original section. */
3170 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3171 }
3172
3173
3174 /* Parse an unwind_cantunwind directive. */
3175
3176 static void
3177 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3178 {
3179 demand_empty_rest_of_line ();
3180 if (unwind.personality_routine || unwind.personality_index != -1)
3181 as_bad (_("personality routine specified for cantunwind frame"));
3182
3183 unwind.personality_index = -2;
3184 }
3185
3186
3187 /* Parse a personalityindex directive. */
3188
3189 static void
3190 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3191 {
3192 expressionS exp;
3193
3194 if (unwind.personality_routine || unwind.personality_index != -1)
3195 as_bad (_("duplicate .personalityindex directive"));
3196
3197 expression (&exp);
3198
3199 if (exp.X_op != O_constant
3200 || exp.X_add_number < 0 || exp.X_add_number > 15)
3201 {
3202 as_bad (_("bad personality routine number"));
3203 ignore_rest_of_line ();
3204 return;
3205 }
3206
3207 unwind.personality_index = exp.X_add_number;
3208
3209 demand_empty_rest_of_line ();
3210 }
3211
3212
3213 /* Parse a personality directive. */
3214
3215 static void
3216 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3217 {
3218 char *name, *p, c;
3219
3220 if (unwind.personality_routine || unwind.personality_index != -1)
3221 as_bad (_("duplicate .personality directive"));
3222
3223 name = input_line_pointer;
3224 c = get_symbol_end ();
3225 p = input_line_pointer;
3226 unwind.personality_routine = symbol_find_or_make (name);
3227 *p = c;
3228 demand_empty_rest_of_line ();
3229 }
3230
3231
3232 /* Parse a directive saving core registers. */
3233
3234 static void
3235 s_arm_unwind_save_core (void)
3236 {
3237 valueT op;
3238 long range;
3239 int n;
3240
3241 range = parse_reg_list (&input_line_pointer);
3242 if (range == FAIL)
3243 {
3244 as_bad (_("expected register list"));
3245 ignore_rest_of_line ();
3246 return;
3247 }
3248
3249 demand_empty_rest_of_line ();
3250
3251 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3252 into .unwind_save {..., sp...}. We aren't bothered about the value of
3253 ip because it is clobbered by calls. */
3254 if (unwind.sp_restored && unwind.fp_reg == 12
3255 && (range & 0x3000) == 0x1000)
3256 {
3257 unwind.opcode_count--;
3258 unwind.sp_restored = 0;
3259 range = (range | 0x2000) & ~0x1000;
3260 unwind.pending_offset = 0;
3261 }
3262
3263 /* Pop r4-r15. */
3264 if (range & 0xfff0)
3265 {
3266 /* See if we can use the short opcodes. These pop a block of up to 8
3267 registers starting with r4, plus maybe r14. */
3268 for (n = 0; n < 8; n++)
3269 {
3270 /* Break at the first non-saved register. */
3271 if ((range & (1 << (n + 4))) == 0)
3272 break;
3273 }
3274 /* See if there are any other bits set. */
3275 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3276 {
3277 /* Use the long form. */
3278 op = 0x8000 | ((range >> 4) & 0xfff);
3279 add_unwind_opcode (op, 2);
3280 }
3281 else
3282 {
3283 /* Use the short form. */
3284 if (range & 0x4000)
3285 op = 0xa8; /* Pop r14. */
3286 else
3287 op = 0xa0; /* Do not pop r14. */
3288 op |= (n - 1);
3289 add_unwind_opcode (op, 1);
3290 }
3291 }
3292
3293 /* Pop r0-r3. */
3294 if (range & 0xf)
3295 {
3296 op = 0xb100 | (range & 0xf);
3297 add_unwind_opcode (op, 2);
3298 }
3299
3300 /* Record the number of bytes pushed. */
3301 for (n = 0; n < 16; n++)
3302 {
3303 if (range & (1 << n))
3304 unwind.frame_size += 4;
3305 }
3306 }
3307
3308
3309 /* Parse a directive saving FPA registers. */
3310
3311 static void
3312 s_arm_unwind_save_fpa (int reg)
3313 {
3314 expressionS exp;
3315 int num_regs;
3316 valueT op;
3317
3318 /* Get Number of registers to transfer. */
3319 if (skip_past_comma (&input_line_pointer) != FAIL)
3320 expression (&exp);
3321 else
3322 exp.X_op = O_illegal;
3323
3324 if (exp.X_op != O_constant)
3325 {
3326 as_bad (_("expected , <constant>"));
3327 ignore_rest_of_line ();
3328 return;
3329 }
3330
3331 num_regs = exp.X_add_number;
3332
3333 if (num_regs < 1 || num_regs > 4)
3334 {
3335 as_bad (_("number of registers must be in the range [1:4]"));
3336 ignore_rest_of_line ();
3337 return;
3338 }
3339
3340 demand_empty_rest_of_line ();
3341
3342 if (reg == 4)
3343 {
3344 /* Short form. */
3345 op = 0xb4 | (num_regs - 1);
3346 add_unwind_opcode (op, 1);
3347 }
3348 else
3349 {
3350 /* Long form. */
3351 op = 0xc800 | (reg << 4) | (num_regs - 1);
3352 add_unwind_opcode (op, 2);
3353 }
3354 unwind.frame_size += num_regs * 12;
3355 }
3356
3357
3358 /* Parse a directive saving VFP registers for ARMv6 and above. */
3359
3360 static void
3361 s_arm_unwind_save_vfp_armv6 (void)
3362 {
3363 int count;
3364 unsigned int start;
3365 valueT op;
3366 int num_vfpv3_regs = 0;
3367 int num_regs_below_16;
3368
3369 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3370 if (count == FAIL)
3371 {
3372 as_bad (_("expected register list"));
3373 ignore_rest_of_line ();
3374 return;
3375 }
3376
3377 demand_empty_rest_of_line ();
3378
3379 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3380 than FSTMX/FLDMX-style ones). */
3381
3382 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3383 if (start >= 16)
3384 num_vfpv3_regs = count;
3385 else if (start + count > 16)
3386 num_vfpv3_regs = start + count - 16;
3387
3388 if (num_vfpv3_regs > 0)
3389 {
3390 int start_offset = start > 16 ? start - 16 : 0;
3391 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3392 add_unwind_opcode (op, 2);
3393 }
3394
3395 /* Generate opcode for registers numbered in the range 0 .. 15. */
3396 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3397 assert (num_regs_below_16 + num_vfpv3_regs == count);
3398 if (num_regs_below_16 > 0)
3399 {
3400 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3401 add_unwind_opcode (op, 2);
3402 }
3403
3404 unwind.frame_size += count * 8;
3405 }
3406
3407
3408 /* Parse a directive saving VFP registers for pre-ARMv6. */
3409
3410 static void
3411 s_arm_unwind_save_vfp (void)
3412 {
3413 int count;
3414 unsigned int reg;
3415 valueT op;
3416
3417 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3418 if (count == FAIL)
3419 {
3420 as_bad (_("expected register list"));
3421 ignore_rest_of_line ();
3422 return;
3423 }
3424
3425 demand_empty_rest_of_line ();
3426
3427 if (reg == 8)
3428 {
3429 /* Short form. */
3430 op = 0xb8 | (count - 1);
3431 add_unwind_opcode (op, 1);
3432 }
3433 else
3434 {
3435 /* Long form. */
3436 op = 0xb300 | (reg << 4) | (count - 1);
3437 add_unwind_opcode (op, 2);
3438 }
3439 unwind.frame_size += count * 8 + 4;
3440 }
3441
3442
3443 /* Parse a directive saving iWMMXt data registers. */
3444
3445 static void
3446 s_arm_unwind_save_mmxwr (void)
3447 {
3448 int reg;
3449 int hi_reg;
3450 int i;
3451 unsigned mask = 0;
3452 valueT op;
3453
3454 if (*input_line_pointer == '{')
3455 input_line_pointer++;
3456
3457 do
3458 {
3459 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3460
3461 if (reg == FAIL)
3462 {
3463 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3464 goto error;
3465 }
3466
3467 if (mask >> reg)
3468 as_tsktsk (_("register list not in ascending order"));
3469 mask |= 1 << reg;
3470
3471 if (*input_line_pointer == '-')
3472 {
3473 input_line_pointer++;
3474 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3475 if (hi_reg == FAIL)
3476 {
3477 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3478 goto error;
3479 }
3480 else if (reg >= hi_reg)
3481 {
3482 as_bad (_("bad register range"));
3483 goto error;
3484 }
3485 for (; reg < hi_reg; reg++)
3486 mask |= 1 << reg;
3487 }
3488 }
3489 while (skip_past_comma (&input_line_pointer) != FAIL);
3490
3491 if (*input_line_pointer == '}')
3492 input_line_pointer++;
3493
3494 demand_empty_rest_of_line ();
3495
3496 /* Generate any deferred opcodes because we're going to be looking at
3497 the list. */
3498 flush_pending_unwind ();
3499
3500 for (i = 0; i < 16; i++)
3501 {
3502 if (mask & (1 << i))
3503 unwind.frame_size += 8;
3504 }
3505
3506 /* Attempt to combine with a previous opcode. We do this because gcc
3507 likes to output separate unwind directives for a single block of
3508 registers. */
3509 if (unwind.opcode_count > 0)
3510 {
3511 i = unwind.opcodes[unwind.opcode_count - 1];
3512 if ((i & 0xf8) == 0xc0)
3513 {
3514 i &= 7;
3515 /* Only merge if the blocks are contiguous. */
3516 if (i < 6)
3517 {
3518 if ((mask & 0xfe00) == (1 << 9))
3519 {
3520 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3521 unwind.opcode_count--;
3522 }
3523 }
3524 else if (i == 6 && unwind.opcode_count >= 2)
3525 {
3526 i = unwind.opcodes[unwind.opcode_count - 2];
3527 reg = i >> 4;
3528 i &= 0xf;
3529
3530 op = 0xffff << (reg - 1);
3531 if (reg > 0
3532 && ((mask & op) == (1u << (reg - 1))))
3533 {
3534 op = (1 << (reg + i + 1)) - 1;
3535 op &= ~((1 << reg) - 1);
3536 mask |= op;
3537 unwind.opcode_count -= 2;
3538 }
3539 }
3540 }
3541 }
3542
3543 hi_reg = 15;
3544 /* We want to generate opcodes in the order the registers have been
3545 saved, ie. descending order. */
3546 for (reg = 15; reg >= -1; reg--)
3547 {
3548 /* Save registers in blocks. */
3549 if (reg < 0
3550 || !(mask & (1 << reg)))
3551 {
3552 /* We found an unsaved reg. Generate opcodes to save the
3553 preceding block. */
3554 if (reg != hi_reg)
3555 {
3556 if (reg == 9)
3557 {
3558 /* Short form. */
3559 op = 0xc0 | (hi_reg - 10);
3560 add_unwind_opcode (op, 1);
3561 }
3562 else
3563 {
3564 /* Long form. */
3565 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3566 add_unwind_opcode (op, 2);
3567 }
3568 }
3569 hi_reg = reg - 1;
3570 }
3571 }
3572
3573 return;
3574 error:
3575 ignore_rest_of_line ();
3576 }
3577
3578 static void
3579 s_arm_unwind_save_mmxwcg (void)
3580 {
3581 int reg;
3582 int hi_reg;
3583 unsigned mask = 0;
3584 valueT op;
3585
3586 if (*input_line_pointer == '{')
3587 input_line_pointer++;
3588
3589 do
3590 {
3591 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3592
3593 if (reg == FAIL)
3594 {
3595 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3596 goto error;
3597 }
3598
3599 reg -= 8;
3600 if (mask >> reg)
3601 as_tsktsk (_("register list not in ascending order"));
3602 mask |= 1 << reg;
3603
3604 if (*input_line_pointer == '-')
3605 {
3606 input_line_pointer++;
3607 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3608 if (hi_reg == FAIL)
3609 {
3610 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
3611 goto error;
3612 }
3613 else if (reg >= hi_reg)
3614 {
3615 as_bad (_("bad register range"));
3616 goto error;
3617 }
3618 for (; reg < hi_reg; reg++)
3619 mask |= 1 << reg;
3620 }
3621 }
3622 while (skip_past_comma (&input_line_pointer) != FAIL);
3623
3624 if (*input_line_pointer == '}')
3625 input_line_pointer++;
3626
3627 demand_empty_rest_of_line ();
3628
3629 /* Generate any deferred opcodes because we're going to be looking at
3630 the list. */
3631 flush_pending_unwind ();
3632
3633 for (reg = 0; reg < 16; reg++)
3634 {
3635 if (mask & (1 << reg))
3636 unwind.frame_size += 4;
3637 }
3638 op = 0xc700 | mask;
3639 add_unwind_opcode (op, 2);
3640 return;
3641 error:
3642 ignore_rest_of_line ();
3643 }
3644
3645
3646 /* Parse an unwind_save directive.
3647 If the argument is non-zero, this is a .vsave directive. */
3648
3649 static void
3650 s_arm_unwind_save (int arch_v6)
3651 {
3652 char *peek;
3653 struct reg_entry *reg;
3654 bfd_boolean had_brace = FALSE;
3655
3656 /* Figure out what sort of save we have. */
3657 peek = input_line_pointer;
3658
3659 if (*peek == '{')
3660 {
3661 had_brace = TRUE;
3662 peek++;
3663 }
3664
3665 reg = arm_reg_parse_multi (&peek);
3666
3667 if (!reg)
3668 {
3669 as_bad (_("register expected"));
3670 ignore_rest_of_line ();
3671 return;
3672 }
3673
3674 switch (reg->type)
3675 {
3676 case REG_TYPE_FN:
3677 if (had_brace)
3678 {
3679 as_bad (_("FPA .unwind_save does not take a register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683 input_line_pointer = peek;
3684 s_arm_unwind_save_fpa (reg->number);
3685 return;
3686
3687 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3688 case REG_TYPE_VFD:
3689 if (arch_v6)
3690 s_arm_unwind_save_vfp_armv6 ();
3691 else
3692 s_arm_unwind_save_vfp ();
3693 return;
3694 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3695 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3696
3697 default:
3698 as_bad (_(".unwind_save does not support this kind of register"));
3699 ignore_rest_of_line ();
3700 }
3701 }
3702
3703
3704 /* Parse an unwind_movsp directive. */
3705
3706 static void
3707 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3708 {
3709 int reg;
3710 valueT op;
3711 int offset;
3712
3713 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3714 if (reg == FAIL)
3715 {
3716 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
3717 ignore_rest_of_line ();
3718 return;
3719 }
3720
3721 /* Optional constant. */
3722 if (skip_past_comma (&input_line_pointer) != FAIL)
3723 {
3724 if (immediate_for_directive (&offset) == FAIL)
3725 return;
3726 }
3727 else
3728 offset = 0;
3729
3730 demand_empty_rest_of_line ();
3731
3732 if (reg == REG_SP || reg == REG_PC)
3733 {
3734 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3735 return;
3736 }
3737
3738 if (unwind.fp_reg != REG_SP)
3739 as_bad (_("unexpected .unwind_movsp directive"));
3740
3741 /* Generate opcode to restore the value. */
3742 op = 0x90 | reg;
3743 add_unwind_opcode (op, 1);
3744
3745 /* Record the information for later. */
3746 unwind.fp_reg = reg;
3747 unwind.fp_offset = unwind.frame_size - offset;
3748 unwind.sp_restored = 1;
3749 }
3750
3751 /* Parse an unwind_pad directive. */
3752
3753 static void
3754 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3755 {
3756 int offset;
3757
3758 if (immediate_for_directive (&offset) == FAIL)
3759 return;
3760
3761 if (offset & 3)
3762 {
3763 as_bad (_("stack increment must be multiple of 4"));
3764 ignore_rest_of_line ();
3765 return;
3766 }
3767
3768 /* Don't generate any opcodes, just record the details for later. */
3769 unwind.frame_size += offset;
3770 unwind.pending_offset += offset;
3771
3772 demand_empty_rest_of_line ();
3773 }
3774
3775 /* Parse an unwind_setfp directive. */
3776
3777 static void
3778 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3779 {
3780 int sp_reg;
3781 int fp_reg;
3782 int offset;
3783
3784 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3785 if (skip_past_comma (&input_line_pointer) == FAIL)
3786 sp_reg = FAIL;
3787 else
3788 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3789
3790 if (fp_reg == FAIL || sp_reg == FAIL)
3791 {
3792 as_bad (_("expected <reg>, <reg>"));
3793 ignore_rest_of_line ();
3794 return;
3795 }
3796
3797 /* Optional constant. */
3798 if (skip_past_comma (&input_line_pointer) != FAIL)
3799 {
3800 if (immediate_for_directive (&offset) == FAIL)
3801 return;
3802 }
3803 else
3804 offset = 0;
3805
3806 demand_empty_rest_of_line ();
3807
3808 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3809 {
3810 as_bad (_("register must be either sp or set by a previous"
3811 "unwind_movsp directive"));
3812 return;
3813 }
3814
3815 /* Don't generate any opcodes, just record the information for later. */
3816 unwind.fp_reg = fp_reg;
3817 unwind.fp_used = 1;
3818 if (sp_reg == 13)
3819 unwind.fp_offset = unwind.frame_size - offset;
3820 else
3821 unwind.fp_offset -= offset;
3822 }
3823
3824 /* Parse an unwind_raw directive. */
3825
3826 static void
3827 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3828 {
3829 expressionS exp;
3830 /* This is an arbitrary limit. */
3831 unsigned char op[16];
3832 int count;
3833
3834 expression (&exp);
3835 if (exp.X_op == O_constant
3836 && skip_past_comma (&input_line_pointer) != FAIL)
3837 {
3838 unwind.frame_size += exp.X_add_number;
3839 expression (&exp);
3840 }
3841 else
3842 exp.X_op = O_illegal;
3843
3844 if (exp.X_op != O_constant)
3845 {
3846 as_bad (_("expected <offset>, <opcode>"));
3847 ignore_rest_of_line ();
3848 return;
3849 }
3850
3851 count = 0;
3852
3853 /* Parse the opcode. */
3854 for (;;)
3855 {
3856 if (count >= 16)
3857 {
3858 as_bad (_("unwind opcode too long"));
3859 ignore_rest_of_line ();
3860 }
3861 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3862 {
3863 as_bad (_("invalid unwind opcode"));
3864 ignore_rest_of_line ();
3865 return;
3866 }
3867 op[count++] = exp.X_add_number;
3868
3869 /* Parse the next byte. */
3870 if (skip_past_comma (&input_line_pointer) == FAIL)
3871 break;
3872
3873 expression (&exp);
3874 }
3875
3876 /* Add the opcode bytes in reverse order. */
3877 while (count--)
3878 add_unwind_opcode (op[count], 1);
3879
3880 demand_empty_rest_of_line ();
3881 }
3882
3883
3884 /* Parse a .eabi_attribute directive. */
3885
3886 static void
3887 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3888 {
3889 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
3890
3891 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
3892 attributes_set_explicitly[tag] = 1;
3893 }
3894 #endif /* OBJ_ELF */
3895
3896 static void s_arm_arch (int);
3897 static void s_arm_object_arch (int);
3898 static void s_arm_cpu (int);
3899 static void s_arm_fpu (int);
3900
3901 #ifdef TE_PE
3902
3903 static void
3904 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3905 {
3906 expressionS exp;
3907
3908 do
3909 {
3910 expression (&exp);
3911 if (exp.X_op == O_symbol)
3912 exp.X_op = O_secrel;
3913
3914 emit_expr (&exp, 4);
3915 }
3916 while (*input_line_pointer++ == ',');
3917
3918 input_line_pointer--;
3919 demand_empty_rest_of_line ();
3920 }
3921 #endif /* TE_PE */
3922
3923 /* This table describes all the machine specific pseudo-ops the assembler
3924 has to support. The fields are:
3925 pseudo-op name without dot
3926 function to call to execute this pseudo-op
3927 Integer arg to pass to the function. */
3928
3929 const pseudo_typeS md_pseudo_table[] =
3930 {
3931 /* Never called because '.req' does not start a line. */
3932 { "req", s_req, 0 },
3933 /* Following two are likewise never called. */
3934 { "dn", s_dn, 0 },
3935 { "qn", s_qn, 0 },
3936 { "unreq", s_unreq, 0 },
3937 { "bss", s_bss, 0 },
3938 { "align", s_align, 0 },
3939 { "arm", s_arm, 0 },
3940 { "thumb", s_thumb, 0 },
3941 { "code", s_code, 0 },
3942 { "force_thumb", s_force_thumb, 0 },
3943 { "thumb_func", s_thumb_func, 0 },
3944 { "thumb_set", s_thumb_set, 0 },
3945 { "even", s_even, 0 },
3946 { "ltorg", s_ltorg, 0 },
3947 { "pool", s_ltorg, 0 },
3948 { "syntax", s_syntax, 0 },
3949 { "cpu", s_arm_cpu, 0 },
3950 { "arch", s_arm_arch, 0 },
3951 { "object_arch", s_arm_object_arch, 0 },
3952 { "fpu", s_arm_fpu, 0 },
3953 #ifdef OBJ_ELF
3954 { "word", s_arm_elf_cons, 4 },
3955 { "long", s_arm_elf_cons, 4 },
3956 { "rel31", s_arm_rel31, 0 },
3957 { "fnstart", s_arm_unwind_fnstart, 0 },
3958 { "fnend", s_arm_unwind_fnend, 0 },
3959 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3960 { "personality", s_arm_unwind_personality, 0 },
3961 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3962 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3963 { "save", s_arm_unwind_save, 0 },
3964 { "vsave", s_arm_unwind_save, 1 },
3965 { "movsp", s_arm_unwind_movsp, 0 },
3966 { "pad", s_arm_unwind_pad, 0 },
3967 { "setfp", s_arm_unwind_setfp, 0 },
3968 { "unwind_raw", s_arm_unwind_raw, 0 },
3969 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3970 #else
3971 { "word", cons, 4},
3972
3973 /* These are used for dwarf. */
3974 {"2byte", cons, 2},
3975 {"4byte", cons, 4},
3976 {"8byte", cons, 8},
3977 /* These are used for dwarf2. */
3978 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3979 { "loc", dwarf2_directive_loc, 0 },
3980 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3981 #endif
3982 { "extend", float_cons, 'x' },
3983 { "ldouble", float_cons, 'x' },
3984 { "packed", float_cons, 'p' },
3985 #ifdef TE_PE
3986 {"secrel32", pe_directive_secrel, 0},
3987 #endif
3988 { 0, 0, 0 }
3989 };
3990 \f
3991 /* Parser functions used exclusively in instruction operands. */
3992
3993 /* Generic immediate-value read function for use in insn parsing.
3994 STR points to the beginning of the immediate (the leading #);
3995 VAL receives the value; if the value is outside [MIN, MAX]
3996 issue an error. PREFIX_OPT is true if the immediate prefix is
3997 optional. */
3998
3999 static int
4000 parse_immediate (char **str, int *val, int min, int max,
4001 bfd_boolean prefix_opt)
4002 {
4003 expressionS exp;
4004 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4005 if (exp.X_op != O_constant)
4006 {
4007 inst.error = _("constant expression required");
4008 return FAIL;
4009 }
4010
4011 if (exp.X_add_number < min || exp.X_add_number > max)
4012 {
4013 inst.error = _("immediate value out of range");
4014 return FAIL;
4015 }
4016
4017 *val = exp.X_add_number;
4018 return SUCCESS;
4019 }
4020
4021 /* Less-generic immediate-value read function with the possibility of loading a
4022 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4023 instructions. Puts the result directly in inst.operands[i]. */
4024
4025 static int
4026 parse_big_immediate (char **str, int i)
4027 {
4028 expressionS exp;
4029 char *ptr = *str;
4030
4031 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4032
4033 if (exp.X_op == O_constant)
4034 {
4035 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4036 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4037 O_constant. We have to be careful not to break compilation for
4038 32-bit X_add_number, though. */
4039 if ((exp.X_add_number & ~0xffffffffl) != 0)
4040 {
4041 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4042 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4043 inst.operands[i].regisimm = 1;
4044 }
4045 }
4046 else if (exp.X_op == O_big
4047 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4048 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4049 {
4050 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4051 /* Bignums have their least significant bits in
4052 generic_bignum[0]. Make sure we put 32 bits in imm and
4053 32 bits in reg, in a (hopefully) portable way. */
4054 assert (parts != 0);
4055 inst.operands[i].imm = 0;
4056 for (j = 0; j < parts; j++, idx++)
4057 inst.operands[i].imm |= generic_bignum[idx]
4058 << (LITTLENUM_NUMBER_OF_BITS * j);
4059 inst.operands[i].reg = 0;
4060 for (j = 0; j < parts; j++, idx++)
4061 inst.operands[i].reg |= generic_bignum[idx]
4062 << (LITTLENUM_NUMBER_OF_BITS * j);
4063 inst.operands[i].regisimm = 1;
4064 }
4065 else
4066 return FAIL;
4067
4068 *str = ptr;
4069
4070 return SUCCESS;
4071 }
4072
4073 /* Returns the pseudo-register number of an FPA immediate constant,
4074 or FAIL if there isn't a valid constant here. */
4075
4076 static int
4077 parse_fpa_immediate (char ** str)
4078 {
4079 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4080 char * save_in;
4081 expressionS exp;
4082 int i;
4083 int j;
4084
4085 /* First try and match exact strings, this is to guarantee
4086 that some formats will work even for cross assembly. */
4087
4088 for (i = 0; fp_const[i]; i++)
4089 {
4090 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4091 {
4092 char *start = *str;
4093
4094 *str += strlen (fp_const[i]);
4095 if (is_end_of_line[(unsigned char) **str])
4096 return i + 8;
4097 *str = start;
4098 }
4099 }
4100
4101 /* Just because we didn't get a match doesn't mean that the constant
4102 isn't valid, just that it is in a format that we don't
4103 automatically recognize. Try parsing it with the standard
4104 expression routines. */
4105
4106 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4107
4108 /* Look for a raw floating point number. */
4109 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4110 && is_end_of_line[(unsigned char) *save_in])
4111 {
4112 for (i = 0; i < NUM_FLOAT_VALS; i++)
4113 {
4114 for (j = 0; j < MAX_LITTLENUMS; j++)
4115 {
4116 if (words[j] != fp_values[i][j])
4117 break;
4118 }
4119
4120 if (j == MAX_LITTLENUMS)
4121 {
4122 *str = save_in;
4123 return i + 8;
4124 }
4125 }
4126 }
4127
4128 /* Try and parse a more complex expression, this will probably fail
4129 unless the code uses a floating point prefix (eg "0f"). */
4130 save_in = input_line_pointer;
4131 input_line_pointer = *str;
4132 if (expression (&exp) == absolute_section
4133 && exp.X_op == O_big
4134 && exp.X_add_number < 0)
4135 {
4136 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4137 Ditto for 15. */
4138 if (gen_to_words (words, 5, (long) 15) == 0)
4139 {
4140 for (i = 0; i < NUM_FLOAT_VALS; i++)
4141 {
4142 for (j = 0; j < MAX_LITTLENUMS; j++)
4143 {
4144 if (words[j] != fp_values[i][j])
4145 break;
4146 }
4147
4148 if (j == MAX_LITTLENUMS)
4149 {
4150 *str = input_line_pointer;
4151 input_line_pointer = save_in;
4152 return i + 8;
4153 }
4154 }
4155 }
4156 }
4157
4158 *str = input_line_pointer;
4159 input_line_pointer = save_in;
4160 inst.error = _("invalid FPA immediate expression");
4161 return FAIL;
4162 }
4163
4164 /* Returns 1 if a number has "quarter-precision" float format
4165 0baBbbbbbc defgh000 00000000 00000000. */
4166
4167 static int
4168 is_quarter_float (unsigned imm)
4169 {
4170 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4171 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4172 }
4173
4174 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4175 0baBbbbbbc defgh000 00000000 00000000.
4176 The zero and minus-zero cases need special handling, since they can't be
4177 encoded in the "quarter-precision" float format, but can nonetheless be
4178 loaded as integer constants. */
4179
4180 static unsigned
4181 parse_qfloat_immediate (char **ccp, int *immed)
4182 {
4183 char *str = *ccp;
4184 char *fpnum;
4185 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4186 int found_fpchar = 0;
4187
4188 skip_past_char (&str, '#');
4189
4190 /* We must not accidentally parse an integer as a floating-point number. Make
4191 sure that the value we parse is not an integer by checking for special
4192 characters '.' or 'e'.
4193 FIXME: This is a horrible hack, but doing better is tricky because type
4194 information isn't in a very usable state at parse time. */
4195 fpnum = str;
4196 skip_whitespace (fpnum);
4197
4198 if (strncmp (fpnum, "0x", 2) == 0)
4199 return FAIL;
4200 else
4201 {
4202 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4203 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4204 {
4205 found_fpchar = 1;
4206 break;
4207 }
4208
4209 if (!found_fpchar)
4210 return FAIL;
4211 }
4212
4213 if ((str = atof_ieee (str, 's', words)) != NULL)
4214 {
4215 unsigned fpword = 0;
4216 int i;
4217
4218 /* Our FP word must be 32 bits (single-precision FP). */
4219 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4220 {
4221 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4222 fpword |= words[i];
4223 }
4224
4225 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4226 *immed = fpword;
4227 else
4228 return FAIL;
4229
4230 *ccp = str;
4231
4232 return SUCCESS;
4233 }
4234
4235 return FAIL;
4236 }
4237
4238 /* Shift operands. */
4239 enum shift_kind
4240 {
4241 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4242 };
4243
4244 struct asm_shift_name
4245 {
4246 const char *name;
4247 enum shift_kind kind;
4248 };
4249
4250 /* Third argument to parse_shift. */
4251 enum parse_shift_mode
4252 {
4253 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4254 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4255 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4256 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4257 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4258 };
4259
4260 /* Parse a <shift> specifier on an ARM data processing instruction.
4261 This has three forms:
4262
4263 (LSL|LSR|ASL|ASR|ROR) Rs
4264 (LSL|LSR|ASL|ASR|ROR) #imm
4265 RRX
4266
4267 Note that ASL is assimilated to LSL in the instruction encoding, and
4268 RRX to ROR #0 (which cannot be written as such). */
4269
4270 static int
4271 parse_shift (char **str, int i, enum parse_shift_mode mode)
4272 {
4273 const struct asm_shift_name *shift_name;
4274 enum shift_kind shift;
4275 char *s = *str;
4276 char *p = s;
4277 int reg;
4278
4279 for (p = *str; ISALPHA (*p); p++)
4280 ;
4281
4282 if (p == *str)
4283 {
4284 inst.error = _("shift expression expected");
4285 return FAIL;
4286 }
4287
4288 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4289
4290 if (shift_name == NULL)
4291 {
4292 inst.error = _("shift expression expected");
4293 return FAIL;
4294 }
4295
4296 shift = shift_name->kind;
4297
4298 switch (mode)
4299 {
4300 case NO_SHIFT_RESTRICT:
4301 case SHIFT_IMMEDIATE: break;
4302
4303 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4304 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4305 {
4306 inst.error = _("'LSL' or 'ASR' required");
4307 return FAIL;
4308 }
4309 break;
4310
4311 case SHIFT_LSL_IMMEDIATE:
4312 if (shift != SHIFT_LSL)
4313 {
4314 inst.error = _("'LSL' required");
4315 return FAIL;
4316 }
4317 break;
4318
4319 case SHIFT_ASR_IMMEDIATE:
4320 if (shift != SHIFT_ASR)
4321 {
4322 inst.error = _("'ASR' required");
4323 return FAIL;
4324 }
4325 break;
4326
4327 default: abort ();
4328 }
4329
4330 if (shift != SHIFT_RRX)
4331 {
4332 /* Whitespace can appear here if the next thing is a bare digit. */
4333 skip_whitespace (p);
4334
4335 if (mode == NO_SHIFT_RESTRICT
4336 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4337 {
4338 inst.operands[i].imm = reg;
4339 inst.operands[i].immisreg = 1;
4340 }
4341 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4342 return FAIL;
4343 }
4344 inst.operands[i].shift_kind = shift;
4345 inst.operands[i].shifted = 1;
4346 *str = p;
4347 return SUCCESS;
4348 }
4349
4350 /* Parse a <shifter_operand> for an ARM data processing instruction:
4351
4352 #<immediate>
4353 #<immediate>, <rotate>
4354 <Rm>
4355 <Rm>, <shift>
4356
4357 where <shift> is defined by parse_shift above, and <rotate> is a
4358 multiple of 2 between 0 and 30. Validation of immediate operands
4359 is deferred to md_apply_fix. */
4360
4361 static int
4362 parse_shifter_operand (char **str, int i)
4363 {
4364 int value;
4365 expressionS expr;
4366
4367 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4368 {
4369 inst.operands[i].reg = value;
4370 inst.operands[i].isreg = 1;
4371
4372 /* parse_shift will override this if appropriate */
4373 inst.reloc.exp.X_op = O_constant;
4374 inst.reloc.exp.X_add_number = 0;
4375
4376 if (skip_past_comma (str) == FAIL)
4377 return SUCCESS;
4378
4379 /* Shift operation on register. */
4380 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4381 }
4382
4383 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4384 return FAIL;
4385
4386 if (skip_past_comma (str) == SUCCESS)
4387 {
4388 /* #x, y -- ie explicit rotation by Y. */
4389 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4390 return FAIL;
4391
4392 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4393 {
4394 inst.error = _("constant expression expected");
4395 return FAIL;
4396 }
4397
4398 value = expr.X_add_number;
4399 if (value < 0 || value > 30 || value % 2 != 0)
4400 {
4401 inst.error = _("invalid rotation");
4402 return FAIL;
4403 }
4404 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4405 {
4406 inst.error = _("invalid constant");
4407 return FAIL;
4408 }
4409
4410 /* Convert to decoded value. md_apply_fix will put it back. */
4411 inst.reloc.exp.X_add_number
4412 = (((inst.reloc.exp.X_add_number << (32 - value))
4413 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4414 }
4415
4416 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4417 inst.reloc.pc_rel = 0;
4418 return SUCCESS;
4419 }
4420
4421 /* Group relocation information. Each entry in the table contains the
4422 textual name of the relocation as may appear in assembler source
4423 and must end with a colon.
4424 Along with this textual name are the relocation codes to be used if
4425 the corresponding instruction is an ALU instruction (ADD or SUB only),
4426 an LDR, an LDRS, or an LDC. */
4427
4428 struct group_reloc_table_entry
4429 {
4430 const char *name;
4431 int alu_code;
4432 int ldr_code;
4433 int ldrs_code;
4434 int ldc_code;
4435 };
4436
4437 typedef enum
4438 {
4439 /* Varieties of non-ALU group relocation. */
4440
4441 GROUP_LDR,
4442 GROUP_LDRS,
4443 GROUP_LDC
4444 } group_reloc_type;
4445
4446 static struct group_reloc_table_entry group_reloc_table[] =
4447 { /* Program counter relative: */
4448 { "pc_g0_nc",
4449 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4450 0, /* LDR */
4451 0, /* LDRS */
4452 0 }, /* LDC */
4453 { "pc_g0",
4454 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4455 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4456 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4457 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4458 { "pc_g1_nc",
4459 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4460 0, /* LDR */
4461 0, /* LDRS */
4462 0 }, /* LDC */
4463 { "pc_g1",
4464 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4465 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4466 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4467 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4468 { "pc_g2",
4469 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4470 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4471 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4472 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4473 /* Section base relative */
4474 { "sb_g0_nc",
4475 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4476 0, /* LDR */
4477 0, /* LDRS */
4478 0 }, /* LDC */
4479 { "sb_g0",
4480 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4481 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4482 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4483 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4484 { "sb_g1_nc",
4485 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4486 0, /* LDR */
4487 0, /* LDRS */
4488 0 }, /* LDC */
4489 { "sb_g1",
4490 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4491 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4492 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4493 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4494 { "sb_g2",
4495 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4496 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4497 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4498 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4499
4500 /* Given the address of a pointer pointing to the textual name of a group
4501 relocation as may appear in assembler source, attempt to find its details
4502 in group_reloc_table. The pointer will be updated to the character after
4503 the trailing colon. On failure, FAIL will be returned; SUCCESS
4504 otherwise. On success, *entry will be updated to point at the relevant
4505 group_reloc_table entry. */
4506
4507 static int
4508 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4509 {
4510 unsigned int i;
4511 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4512 {
4513 int length = strlen (group_reloc_table[i].name);
4514
4515 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4516 && (*str)[length] == ':')
4517 {
4518 *out = &group_reloc_table[i];
4519 *str += (length + 1);
4520 return SUCCESS;
4521 }
4522 }
4523
4524 return FAIL;
4525 }
4526
4527 /* Parse a <shifter_operand> for an ARM data processing instruction
4528 (as for parse_shifter_operand) where group relocations are allowed:
4529
4530 #<immediate>
4531 #<immediate>, <rotate>
4532 #:<group_reloc>:<expression>
4533 <Rm>
4534 <Rm>, <shift>
4535
4536 where <group_reloc> is one of the strings defined in group_reloc_table.
4537 The hashes are optional.
4538
4539 Everything else is as for parse_shifter_operand. */
4540
4541 static parse_operand_result
4542 parse_shifter_operand_group_reloc (char **str, int i)
4543 {
4544 /* Determine if we have the sequence of characters #: or just :
4545 coming next. If we do, then we check for a group relocation.
4546 If we don't, punt the whole lot to parse_shifter_operand. */
4547
4548 if (((*str)[0] == '#' && (*str)[1] == ':')
4549 || (*str)[0] == ':')
4550 {
4551 struct group_reloc_table_entry *entry;
4552
4553 if ((*str)[0] == '#')
4554 (*str) += 2;
4555 else
4556 (*str)++;
4557
4558 /* Try to parse a group relocation. Anything else is an error. */
4559 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4560 {
4561 inst.error = _("unknown group relocation");
4562 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4563 }
4564
4565 /* We now have the group relocation table entry corresponding to
4566 the name in the assembler source. Next, we parse the expression. */
4567 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4568 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4569
4570 /* Record the relocation type (always the ALU variant here). */
4571 inst.reloc.type = entry->alu_code;
4572 assert (inst.reloc.type != 0);
4573
4574 return PARSE_OPERAND_SUCCESS;
4575 }
4576 else
4577 return parse_shifter_operand (str, i) == SUCCESS
4578 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4579
4580 /* Never reached. */
4581 }
4582
4583 /* Parse all forms of an ARM address expression. Information is written
4584 to inst.operands[i] and/or inst.reloc.
4585
4586 Preindexed addressing (.preind=1):
4587
4588 [Rn, #offset] .reg=Rn .reloc.exp=offset
4589 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4590 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4591 .shift_kind=shift .reloc.exp=shift_imm
4592
4593 These three may have a trailing ! which causes .writeback to be set also.
4594
4595 Postindexed addressing (.postind=1, .writeback=1):
4596
4597 [Rn], #offset .reg=Rn .reloc.exp=offset
4598 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4599 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4600 .shift_kind=shift .reloc.exp=shift_imm
4601
4602 Unindexed addressing (.preind=0, .postind=0):
4603
4604 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4605
4606 Other:
4607
4608 [Rn]{!} shorthand for [Rn,#0]{!}
4609 =immediate .isreg=0 .reloc.exp=immediate
4610 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4611
4612 It is the caller's responsibility to check for addressing modes not
4613 supported by the instruction, and to set inst.reloc.type. */
4614
4615 static parse_operand_result
4616 parse_address_main (char **str, int i, int group_relocations,
4617 group_reloc_type group_type)
4618 {
4619 char *p = *str;
4620 int reg;
4621
4622 if (skip_past_char (&p, '[') == FAIL)
4623 {
4624 if (skip_past_char (&p, '=') == FAIL)
4625 {
4626 /* bare address - translate to PC-relative offset */
4627 inst.reloc.pc_rel = 1;
4628 inst.operands[i].reg = REG_PC;
4629 inst.operands[i].isreg = 1;
4630 inst.operands[i].preind = 1;
4631 }
4632 /* else a load-constant pseudo op, no special treatment needed here */
4633
4634 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4635 return PARSE_OPERAND_FAIL;
4636
4637 *str = p;
4638 return PARSE_OPERAND_SUCCESS;
4639 }
4640
4641 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4642 {
4643 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4644 return PARSE_OPERAND_FAIL;
4645 }
4646 inst.operands[i].reg = reg;
4647 inst.operands[i].isreg = 1;
4648
4649 if (skip_past_comma (&p) == SUCCESS)
4650 {
4651 inst.operands[i].preind = 1;
4652
4653 if (*p == '+') p++;
4654 else if (*p == '-') p++, inst.operands[i].negative = 1;
4655
4656 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4657 {
4658 inst.operands[i].imm = reg;
4659 inst.operands[i].immisreg = 1;
4660
4661 if (skip_past_comma (&p) == SUCCESS)
4662 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4663 return PARSE_OPERAND_FAIL;
4664 }
4665 else if (skip_past_char (&p, ':') == SUCCESS)
4666 {
4667 /* FIXME: '@' should be used here, but it's filtered out by generic
4668 code before we get to see it here. This may be subject to
4669 change. */
4670 expressionS exp;
4671 my_get_expression (&exp, &p, GE_NO_PREFIX);
4672 if (exp.X_op != O_constant)
4673 {
4674 inst.error = _("alignment must be constant");
4675 return PARSE_OPERAND_FAIL;
4676 }
4677 inst.operands[i].imm = exp.X_add_number << 8;
4678 inst.operands[i].immisalign = 1;
4679 /* Alignments are not pre-indexes. */
4680 inst.operands[i].preind = 0;
4681 }
4682 else
4683 {
4684 if (inst.operands[i].negative)
4685 {
4686 inst.operands[i].negative = 0;
4687 p--;
4688 }
4689
4690 if (group_relocations
4691 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4692 {
4693 struct group_reloc_table_entry *entry;
4694
4695 /* Skip over the #: or : sequence. */
4696 if (*p == '#')
4697 p += 2;
4698 else
4699 p++;
4700
4701 /* Try to parse a group relocation. Anything else is an
4702 error. */
4703 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4704 {
4705 inst.error = _("unknown group relocation");
4706 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4707 }
4708
4709 /* We now have the group relocation table entry corresponding to
4710 the name in the assembler source. Next, we parse the
4711 expression. */
4712 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4713 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4714
4715 /* Record the relocation type. */
4716 switch (group_type)
4717 {
4718 case GROUP_LDR:
4719 inst.reloc.type = entry->ldr_code;
4720 break;
4721
4722 case GROUP_LDRS:
4723 inst.reloc.type = entry->ldrs_code;
4724 break;
4725
4726 case GROUP_LDC:
4727 inst.reloc.type = entry->ldc_code;
4728 break;
4729
4730 default:
4731 assert (0);
4732 }
4733
4734 if (inst.reloc.type == 0)
4735 {
4736 inst.error = _("this group relocation is not allowed on this instruction");
4737 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4738 }
4739 }
4740 else
4741 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4742 return PARSE_OPERAND_FAIL;
4743 }
4744 }
4745
4746 if (skip_past_char (&p, ']') == FAIL)
4747 {
4748 inst.error = _("']' expected");
4749 return PARSE_OPERAND_FAIL;
4750 }
4751
4752 if (skip_past_char (&p, '!') == SUCCESS)
4753 inst.operands[i].writeback = 1;
4754
4755 else if (skip_past_comma (&p) == SUCCESS)
4756 {
4757 if (skip_past_char (&p, '{') == SUCCESS)
4758 {
4759 /* [Rn], {expr} - unindexed, with option */
4760 if (parse_immediate (&p, &inst.operands[i].imm,
4761 0, 255, TRUE) == FAIL)
4762 return PARSE_OPERAND_FAIL;
4763
4764 if (skip_past_char (&p, '}') == FAIL)
4765 {
4766 inst.error = _("'}' expected at end of 'option' field");
4767 return PARSE_OPERAND_FAIL;
4768 }
4769 if (inst.operands[i].preind)
4770 {
4771 inst.error = _("cannot combine index with option");
4772 return PARSE_OPERAND_FAIL;
4773 }
4774 *str = p;
4775 return PARSE_OPERAND_SUCCESS;
4776 }
4777 else
4778 {
4779 inst.operands[i].postind = 1;
4780 inst.operands[i].writeback = 1;
4781
4782 if (inst.operands[i].preind)
4783 {
4784 inst.error = _("cannot combine pre- and post-indexing");
4785 return PARSE_OPERAND_FAIL;
4786 }
4787
4788 if (*p == '+') p++;
4789 else if (*p == '-') p++, inst.operands[i].negative = 1;
4790
4791 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4792 {
4793 /* We might be using the immediate for alignment already. If we
4794 are, OR the register number into the low-order bits. */
4795 if (inst.operands[i].immisalign)
4796 inst.operands[i].imm |= reg;
4797 else
4798 inst.operands[i].imm = reg;
4799 inst.operands[i].immisreg = 1;
4800
4801 if (skip_past_comma (&p) == SUCCESS)
4802 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4803 return PARSE_OPERAND_FAIL;
4804 }
4805 else
4806 {
4807 if (inst.operands[i].negative)
4808 {
4809 inst.operands[i].negative = 0;
4810 p--;
4811 }
4812 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4813 return PARSE_OPERAND_FAIL;
4814 }
4815 }
4816 }
4817
4818 /* If at this point neither .preind nor .postind is set, we have a
4819 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4820 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4821 {
4822 inst.operands[i].preind = 1;
4823 inst.reloc.exp.X_op = O_constant;
4824 inst.reloc.exp.X_add_number = 0;
4825 }
4826 *str = p;
4827 return PARSE_OPERAND_SUCCESS;
4828 }
4829
4830 static int
4831 parse_address (char **str, int i)
4832 {
4833 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4834 ? SUCCESS : FAIL;
4835 }
4836
4837 static parse_operand_result
4838 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4839 {
4840 return parse_address_main (str, i, 1, type);
4841 }
4842
4843 /* Parse an operand for a MOVW or MOVT instruction. */
4844 static int
4845 parse_half (char **str)
4846 {
4847 char * p;
4848
4849 p = *str;
4850 skip_past_char (&p, '#');
4851 if (strncasecmp (p, ":lower16:", 9) == 0)
4852 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4853 else if (strncasecmp (p, ":upper16:", 9) == 0)
4854 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4855
4856 if (inst.reloc.type != BFD_RELOC_UNUSED)
4857 {
4858 p += 9;
4859 skip_whitespace (p);
4860 }
4861
4862 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4863 return FAIL;
4864
4865 if (inst.reloc.type == BFD_RELOC_UNUSED)
4866 {
4867 if (inst.reloc.exp.X_op != O_constant)
4868 {
4869 inst.error = _("constant expression expected");
4870 return FAIL;
4871 }
4872 if (inst.reloc.exp.X_add_number < 0
4873 || inst.reloc.exp.X_add_number > 0xffff)
4874 {
4875 inst.error = _("immediate value out of range");
4876 return FAIL;
4877 }
4878 }
4879 *str = p;
4880 return SUCCESS;
4881 }
4882
4883 /* Miscellaneous. */
4884
4885 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4886 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4887 static int
4888 parse_psr (char **str)
4889 {
4890 char *p;
4891 unsigned long psr_field;
4892 const struct asm_psr *psr;
4893 char *start;
4894
4895 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4896 feature for ease of use and backwards compatibility. */
4897 p = *str;
4898 if (strncasecmp (p, "SPSR", 4) == 0)
4899 psr_field = SPSR_BIT;
4900 else if (strncasecmp (p, "CPSR", 4) == 0)
4901 psr_field = 0;
4902 else
4903 {
4904 start = p;
4905 do
4906 p++;
4907 while (ISALNUM (*p) || *p == '_');
4908
4909 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4910 if (!psr)
4911 return FAIL;
4912
4913 *str = p;
4914 return psr->field;
4915 }
4916
4917 p += 4;
4918 if (*p == '_')
4919 {
4920 /* A suffix follows. */
4921 p++;
4922 start = p;
4923
4924 do
4925 p++;
4926 while (ISALNUM (*p) || *p == '_');
4927
4928 psr = hash_find_n (arm_psr_hsh, start, p - start);
4929 if (!psr)
4930 goto error;
4931
4932 psr_field |= psr->field;
4933 }
4934 else
4935 {
4936 if (ISALNUM (*p))
4937 goto error; /* Garbage after "[CS]PSR". */
4938
4939 psr_field |= (PSR_c | PSR_f);
4940 }
4941 *str = p;
4942 return psr_field;
4943
4944 error:
4945 inst.error = _("flag for {c}psr instruction expected");
4946 return FAIL;
4947 }
4948
4949 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4950 value suitable for splatting into the AIF field of the instruction. */
4951
4952 static int
4953 parse_cps_flags (char **str)
4954 {
4955 int val = 0;
4956 int saw_a_flag = 0;
4957 char *s = *str;
4958
4959 for (;;)
4960 switch (*s++)
4961 {
4962 case '\0': case ',':
4963 goto done;
4964
4965 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4966 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4967 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4968
4969 default:
4970 inst.error = _("unrecognized CPS flag");
4971 return FAIL;
4972 }
4973
4974 done:
4975 if (saw_a_flag == 0)
4976 {
4977 inst.error = _("missing CPS flags");
4978 return FAIL;
4979 }
4980
4981 *str = s - 1;
4982 return val;
4983 }
4984
4985 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4986 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4987
4988 static int
4989 parse_endian_specifier (char **str)
4990 {
4991 int little_endian;
4992 char *s = *str;
4993
4994 if (strncasecmp (s, "BE", 2))
4995 little_endian = 0;
4996 else if (strncasecmp (s, "LE", 2))
4997 little_endian = 1;
4998 else
4999 {
5000 inst.error = _("valid endian specifiers are be or le");
5001 return FAIL;
5002 }
5003
5004 if (ISALNUM (s[2]) || s[2] == '_')
5005 {
5006 inst.error = _("valid endian specifiers are be or le");
5007 return FAIL;
5008 }
5009
5010 *str = s + 2;
5011 return little_endian;
5012 }
5013
5014 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5015 value suitable for poking into the rotate field of an sxt or sxta
5016 instruction, or FAIL on error. */
5017
5018 static int
5019 parse_ror (char **str)
5020 {
5021 int rot;
5022 char *s = *str;
5023
5024 if (strncasecmp (s, "ROR", 3) == 0)
5025 s += 3;
5026 else
5027 {
5028 inst.error = _("missing rotation field after comma");
5029 return FAIL;
5030 }
5031
5032 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5033 return FAIL;
5034
5035 switch (rot)
5036 {
5037 case 0: *str = s; return 0x0;
5038 case 8: *str = s; return 0x1;
5039 case 16: *str = s; return 0x2;
5040 case 24: *str = s; return 0x3;
5041
5042 default:
5043 inst.error = _("rotation can only be 0, 8, 16, or 24");
5044 return FAIL;
5045 }
5046 }
5047
5048 /* Parse a conditional code (from conds[] below). The value returned is in the
5049 range 0 .. 14, or FAIL. */
5050 static int
5051 parse_cond (char **str)
5052 {
5053 char *q;
5054 const struct asm_cond *c;
5055 int n;
5056 /* Condition codes are always 2 characters, so matching up to
5057 3 characters is sufficient. */
5058 char cond[3];
5059
5060 q = *str;
5061 n = 0;
5062 while (ISALPHA (*q) && n < 3)
5063 {
5064 cond[n] = TOLOWER(*q);
5065 q++;
5066 n++;
5067 }
5068
5069 c = hash_find_n (arm_cond_hsh, cond, n);
5070 if (!c)
5071 {
5072 inst.error = _("condition required");
5073 return FAIL;
5074 }
5075
5076 *str = q;
5077 return c->value;
5078 }
5079
5080 /* Parse an option for a barrier instruction. Returns the encoding for the
5081 option, or FAIL. */
5082 static int
5083 parse_barrier (char **str)
5084 {
5085 char *p, *q;
5086 const struct asm_barrier_opt *o;
5087
5088 p = q = *str;
5089 while (ISALPHA (*q))
5090 q++;
5091
5092 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5093 if (!o)
5094 return FAIL;
5095
5096 *str = q;
5097 return o->value;
5098 }
5099
5100 /* Parse the operands of a table branch instruction. Similar to a memory
5101 operand. */
5102 static int
5103 parse_tb (char **str)
5104 {
5105 char * p = *str;
5106 int reg;
5107
5108 if (skip_past_char (&p, '[') == FAIL)
5109 {
5110 inst.error = _("'[' expected");
5111 return FAIL;
5112 }
5113
5114 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5115 {
5116 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5117 return FAIL;
5118 }
5119 inst.operands[0].reg = reg;
5120
5121 if (skip_past_comma (&p) == FAIL)
5122 {
5123 inst.error = _("',' expected");
5124 return FAIL;
5125 }
5126
5127 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5128 {
5129 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5130 return FAIL;
5131 }
5132 inst.operands[0].imm = reg;
5133
5134 if (skip_past_comma (&p) == SUCCESS)
5135 {
5136 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5137 return FAIL;
5138 if (inst.reloc.exp.X_add_number != 1)
5139 {
5140 inst.error = _("invalid shift");
5141 return FAIL;
5142 }
5143 inst.operands[0].shifted = 1;
5144 }
5145
5146 if (skip_past_char (&p, ']') == FAIL)
5147 {
5148 inst.error = _("']' expected");
5149 return FAIL;
5150 }
5151 *str = p;
5152 return SUCCESS;
5153 }
5154
5155 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5156 information on the types the operands can take and how they are encoded.
5157 Up to four operands may be read; this function handles setting the
5158 ".present" field for each read operand itself.
5159 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5160 else returns FAIL. */
5161
5162 static int
5163 parse_neon_mov (char **str, int *which_operand)
5164 {
5165 int i = *which_operand, val;
5166 enum arm_reg_type rtype;
5167 char *ptr = *str;
5168 struct neon_type_el optype;
5169
5170 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5171 {
5172 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5173 inst.operands[i].reg = val;
5174 inst.operands[i].isscalar = 1;
5175 inst.operands[i].vectype = optype;
5176 inst.operands[i++].present = 1;
5177
5178 if (skip_past_comma (&ptr) == FAIL)
5179 goto wanted_comma;
5180
5181 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5182 goto wanted_arm;
5183
5184 inst.operands[i].reg = val;
5185 inst.operands[i].isreg = 1;
5186 inst.operands[i].present = 1;
5187 }
5188 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5189 != FAIL)
5190 {
5191 /* Cases 0, 1, 2, 3, 5 (D only). */
5192 if (skip_past_comma (&ptr) == FAIL)
5193 goto wanted_comma;
5194
5195 inst.operands[i].reg = val;
5196 inst.operands[i].isreg = 1;
5197 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5198 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5199 inst.operands[i].isvec = 1;
5200 inst.operands[i].vectype = optype;
5201 inst.operands[i++].present = 1;
5202
5203 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5204 {
5205 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5206 Case 13: VMOV <Sd>, <Rm> */
5207 inst.operands[i].reg = val;
5208 inst.operands[i].isreg = 1;
5209 inst.operands[i].present = 1;
5210
5211 if (rtype == REG_TYPE_NQ)
5212 {
5213 first_error (_("can't use Neon quad register here"));
5214 return FAIL;
5215 }
5216 else if (rtype != REG_TYPE_VFS)
5217 {
5218 i++;
5219 if (skip_past_comma (&ptr) == FAIL)
5220 goto wanted_comma;
5221 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5222 goto wanted_arm;
5223 inst.operands[i].reg = val;
5224 inst.operands[i].isreg = 1;
5225 inst.operands[i].present = 1;
5226 }
5227 }
5228 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5229 &optype)) != FAIL)
5230 {
5231 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5232 Case 1: VMOV<c><q> <Dd>, <Dm>
5233 Case 8: VMOV.F32 <Sd>, <Sm>
5234 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5235
5236 inst.operands[i].reg = val;
5237 inst.operands[i].isreg = 1;
5238 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5239 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5240 inst.operands[i].isvec = 1;
5241 inst.operands[i].vectype = optype;
5242 inst.operands[i].present = 1;
5243
5244 if (skip_past_comma (&ptr) == SUCCESS)
5245 {
5246 /* Case 15. */
5247 i++;
5248
5249 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5250 goto wanted_arm;
5251
5252 inst.operands[i].reg = val;
5253 inst.operands[i].isreg = 1;
5254 inst.operands[i++].present = 1;
5255
5256 if (skip_past_comma (&ptr) == FAIL)
5257 goto wanted_comma;
5258
5259 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5260 goto wanted_arm;
5261
5262 inst.operands[i].reg = val;
5263 inst.operands[i].isreg = 1;
5264 inst.operands[i++].present = 1;
5265 }
5266 }
5267 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5268 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5269 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5270 Case 10: VMOV.F32 <Sd>, #<imm>
5271 Case 11: VMOV.F64 <Dd>, #<imm> */
5272 inst.operands[i].immisfloat = 1;
5273 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5274 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5275 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5276 ;
5277 else
5278 {
5279 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5280 return FAIL;
5281 }
5282 }
5283 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5284 {
5285 /* Cases 6, 7. */
5286 inst.operands[i].reg = val;
5287 inst.operands[i].isreg = 1;
5288 inst.operands[i++].present = 1;
5289
5290 if (skip_past_comma (&ptr) == FAIL)
5291 goto wanted_comma;
5292
5293 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5294 {
5295 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5296 inst.operands[i].reg = val;
5297 inst.operands[i].isscalar = 1;
5298 inst.operands[i].present = 1;
5299 inst.operands[i].vectype = optype;
5300 }
5301 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5302 {
5303 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5304 inst.operands[i].reg = val;
5305 inst.operands[i].isreg = 1;
5306 inst.operands[i++].present = 1;
5307
5308 if (skip_past_comma (&ptr) == FAIL)
5309 goto wanted_comma;
5310
5311 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5312 == FAIL)
5313 {
5314 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5315 return FAIL;
5316 }
5317
5318 inst.operands[i].reg = val;
5319 inst.operands[i].isreg = 1;
5320 inst.operands[i].isvec = 1;
5321 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5322 inst.operands[i].vectype = optype;
5323 inst.operands[i].present = 1;
5324
5325 if (rtype == REG_TYPE_VFS)
5326 {
5327 /* Case 14. */
5328 i++;
5329 if (skip_past_comma (&ptr) == FAIL)
5330 goto wanted_comma;
5331 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5332 &optype)) == FAIL)
5333 {
5334 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5335 return FAIL;
5336 }
5337 inst.operands[i].reg = val;
5338 inst.operands[i].isreg = 1;
5339 inst.operands[i].isvec = 1;
5340 inst.operands[i].issingle = 1;
5341 inst.operands[i].vectype = optype;
5342 inst.operands[i].present = 1;
5343 }
5344 }
5345 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5346 != FAIL)
5347 {
5348 /* Case 13. */
5349 inst.operands[i].reg = val;
5350 inst.operands[i].isreg = 1;
5351 inst.operands[i].isvec = 1;
5352 inst.operands[i].issingle = 1;
5353 inst.operands[i].vectype = optype;
5354 inst.operands[i++].present = 1;
5355 }
5356 }
5357 else
5358 {
5359 first_error (_("parse error"));
5360 return FAIL;
5361 }
5362
5363 /* Successfully parsed the operands. Update args. */
5364 *which_operand = i;
5365 *str = ptr;
5366 return SUCCESS;
5367
5368 wanted_comma:
5369 first_error (_("expected comma"));
5370 return FAIL;
5371
5372 wanted_arm:
5373 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5374 return FAIL;
5375 }
5376
5377 /* Matcher codes for parse_operands. */
5378 enum operand_parse_code
5379 {
5380 OP_stop, /* end of line */
5381
5382 OP_RR, /* ARM register */
5383 OP_RRnpc, /* ARM register, not r15 */
5384 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5385 OP_RRw, /* ARM register, not r15, optional trailing ! */
5386 OP_RCP, /* Coprocessor number */
5387 OP_RCN, /* Coprocessor register */
5388 OP_RF, /* FPA register */
5389 OP_RVS, /* VFP single precision register */
5390 OP_RVD, /* VFP double precision register (0..15) */
5391 OP_RND, /* Neon double precision register (0..31) */
5392 OP_RNQ, /* Neon quad precision register */
5393 OP_RVSD, /* VFP single or double precision register */
5394 OP_RNDQ, /* Neon double or quad precision register */
5395 OP_RNSDQ, /* Neon single, double or quad precision register */
5396 OP_RNSC, /* Neon scalar D[X] */
5397 OP_RVC, /* VFP control register */
5398 OP_RMF, /* Maverick F register */
5399 OP_RMD, /* Maverick D register */
5400 OP_RMFX, /* Maverick FX register */
5401 OP_RMDX, /* Maverick DX register */
5402 OP_RMAX, /* Maverick AX register */
5403 OP_RMDS, /* Maverick DSPSC register */
5404 OP_RIWR, /* iWMMXt wR register */
5405 OP_RIWC, /* iWMMXt wC register */
5406 OP_RIWG, /* iWMMXt wCG register */
5407 OP_RXA, /* XScale accumulator register */
5408
5409 OP_REGLST, /* ARM register list */
5410 OP_VRSLST, /* VFP single-precision register list */
5411 OP_VRDLST, /* VFP double-precision register list */
5412 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5413 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5414 OP_NSTRLST, /* Neon element/structure list */
5415
5416 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5417 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5418 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5419 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5420 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5421 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5422 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5423 OP_VMOV, /* Neon VMOV operands. */
5424 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5425 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5426 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5427
5428 OP_I0, /* immediate zero */
5429 OP_I7, /* immediate value 0 .. 7 */
5430 OP_I15, /* 0 .. 15 */
5431 OP_I16, /* 1 .. 16 */
5432 OP_I16z, /* 0 .. 16 */
5433 OP_I31, /* 0 .. 31 */
5434 OP_I31w, /* 0 .. 31, optional trailing ! */
5435 OP_I32, /* 1 .. 32 */
5436 OP_I32z, /* 0 .. 32 */
5437 OP_I63, /* 0 .. 63 */
5438 OP_I63s, /* -64 .. 63 */
5439 OP_I64, /* 1 .. 64 */
5440 OP_I64z, /* 0 .. 64 */
5441 OP_I255, /* 0 .. 255 */
5442
5443 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5444 OP_I7b, /* 0 .. 7 */
5445 OP_I15b, /* 0 .. 15 */
5446 OP_I31b, /* 0 .. 31 */
5447
5448 OP_SH, /* shifter operand */
5449 OP_SHG, /* shifter operand with possible group relocation */
5450 OP_ADDR, /* Memory address expression (any mode) */
5451 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5452 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5453 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5454 OP_EXP, /* arbitrary expression */
5455 OP_EXPi, /* same, with optional immediate prefix */
5456 OP_EXPr, /* same, with optional relocation suffix */
5457 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5458
5459 OP_CPSF, /* CPS flags */
5460 OP_ENDI, /* Endianness specifier */
5461 OP_PSR, /* CPSR/SPSR mask for msr */
5462 OP_COND, /* conditional code */
5463 OP_TB, /* Table branch. */
5464
5465 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5466 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5467
5468 OP_RRnpc_I0, /* ARM register or literal 0 */
5469 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5470 OP_RR_EXi, /* ARM register or expression with imm prefix */
5471 OP_RF_IF, /* FPA register or immediate */
5472 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5473 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5474
5475 /* Optional operands. */
5476 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5477 OP_oI31b, /* 0 .. 31 */
5478 OP_oI32b, /* 1 .. 32 */
5479 OP_oIffffb, /* 0 .. 65535 */
5480 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5481
5482 OP_oRR, /* ARM register */
5483 OP_oRRnpc, /* ARM register, not the PC */
5484 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5485 OP_oRND, /* Optional Neon double precision register */
5486 OP_oRNQ, /* Optional Neon quad precision register */
5487 OP_oRNDQ, /* Optional Neon double or quad precision register */
5488 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5489 OP_oSHll, /* LSL immediate */
5490 OP_oSHar, /* ASR immediate */
5491 OP_oSHllar, /* LSL or ASR immediate */
5492 OP_oROR, /* ROR 0/8/16/24 */
5493 OP_oBARRIER, /* Option argument for a barrier instruction. */
5494
5495 OP_FIRST_OPTIONAL = OP_oI7b
5496 };
5497
5498 /* Generic instruction operand parser. This does no encoding and no
5499 semantic validation; it merely squirrels values away in the inst
5500 structure. Returns SUCCESS or FAIL depending on whether the
5501 specified grammar matched. */
5502 static int
5503 parse_operands (char *str, const unsigned char *pattern)
5504 {
5505 unsigned const char *upat = pattern;
5506 char *backtrack_pos = 0;
5507 const char *backtrack_error = 0;
5508 int i, val, backtrack_index = 0;
5509 enum arm_reg_type rtype;
5510 parse_operand_result result;
5511
5512 #define po_char_or_fail(chr) do { \
5513 if (skip_past_char (&str, chr) == FAIL) \
5514 goto bad_args; \
5515 } while (0)
5516
5517 #define po_reg_or_fail(regtype) do { \
5518 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5519 &inst.operands[i].vectype); \
5520 if (val == FAIL) \
5521 { \
5522 first_error (_(reg_expected_msgs[regtype])); \
5523 goto failure; \
5524 } \
5525 inst.operands[i].reg = val; \
5526 inst.operands[i].isreg = 1; \
5527 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5528 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5529 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5530 || rtype == REG_TYPE_VFD \
5531 || rtype == REG_TYPE_NQ); \
5532 } while (0)
5533
5534 #define po_reg_or_goto(regtype, label) do { \
5535 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5536 &inst.operands[i].vectype); \
5537 if (val == FAIL) \
5538 goto label; \
5539 \
5540 inst.operands[i].reg = val; \
5541 inst.operands[i].isreg = 1; \
5542 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5543 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5544 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5545 || rtype == REG_TYPE_VFD \
5546 || rtype == REG_TYPE_NQ); \
5547 } while (0)
5548
5549 #define po_imm_or_fail(min, max, popt) do { \
5550 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5551 goto failure; \
5552 inst.operands[i].imm = val; \
5553 } while (0)
5554
5555 #define po_scalar_or_goto(elsz, label) do { \
5556 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5557 if (val == FAIL) \
5558 goto label; \
5559 inst.operands[i].reg = val; \
5560 inst.operands[i].isscalar = 1; \
5561 } while (0)
5562
5563 #define po_misc_or_fail(expr) do { \
5564 if (expr) \
5565 goto failure; \
5566 } while (0)
5567
5568 #define po_misc_or_fail_no_backtrack(expr) do { \
5569 result = expr; \
5570 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5571 backtrack_pos = 0; \
5572 if (result != PARSE_OPERAND_SUCCESS) \
5573 goto failure; \
5574 } while (0)
5575
5576 skip_whitespace (str);
5577
5578 for (i = 0; upat[i] != OP_stop; i++)
5579 {
5580 if (upat[i] >= OP_FIRST_OPTIONAL)
5581 {
5582 /* Remember where we are in case we need to backtrack. */
5583 assert (!backtrack_pos);
5584 backtrack_pos = str;
5585 backtrack_error = inst.error;
5586 backtrack_index = i;
5587 }
5588
5589 if (i > 0 && (i > 1 || inst.operands[0].present))
5590 po_char_or_fail (',');
5591
5592 switch (upat[i])
5593 {
5594 /* Registers */
5595 case OP_oRRnpc:
5596 case OP_RRnpc:
5597 case OP_oRR:
5598 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5599 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5600 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5601 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5602 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5603 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5604 case OP_oRND:
5605 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5606 case OP_RVC:
5607 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5608 break;
5609 /* Also accept generic coprocessor regs for unknown registers. */
5610 coproc_reg:
5611 po_reg_or_fail (REG_TYPE_CN);
5612 break;
5613 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5614 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5615 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5616 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5617 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5618 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5619 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5620 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5621 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5622 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5623 case OP_oRNQ:
5624 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5625 case OP_oRNDQ:
5626 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5627 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5628 case OP_oRNSDQ:
5629 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5630
5631 /* Neon scalar. Using an element size of 8 means that some invalid
5632 scalars are accepted here, so deal with those in later code. */
5633 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5634
5635 /* WARNING: We can expand to two operands here. This has the potential
5636 to totally confuse the backtracking mechanism! It will be OK at
5637 least as long as we don't try to use optional args as well,
5638 though. */
5639 case OP_NILO:
5640 {
5641 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5642 inst.operands[i].present = 1;
5643 i++;
5644 skip_past_comma (&str);
5645 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5646 break;
5647 one_reg_only:
5648 /* Optional register operand was omitted. Unfortunately, it's in
5649 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5650 here (this is a bit grotty). */
5651 inst.operands[i] = inst.operands[i-1];
5652 inst.operands[i-1].present = 0;
5653 break;
5654 try_imm:
5655 /* There's a possibility of getting a 64-bit immediate here, so
5656 we need special handling. */
5657 if (parse_big_immediate (&str, i) == FAIL)
5658 {
5659 inst.error = _("immediate value is out of range");
5660 goto failure;
5661 }
5662 }
5663 break;
5664
5665 case OP_RNDQ_I0:
5666 {
5667 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5668 break;
5669 try_imm0:
5670 po_imm_or_fail (0, 0, TRUE);
5671 }
5672 break;
5673
5674 case OP_RVSD_I0:
5675 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5676 break;
5677
5678 case OP_RR_RNSC:
5679 {
5680 po_scalar_or_goto (8, try_rr);
5681 break;
5682 try_rr:
5683 po_reg_or_fail (REG_TYPE_RN);
5684 }
5685 break;
5686
5687 case OP_RNSDQ_RNSC:
5688 {
5689 po_scalar_or_goto (8, try_nsdq);
5690 break;
5691 try_nsdq:
5692 po_reg_or_fail (REG_TYPE_NSDQ);
5693 }
5694 break;
5695
5696 case OP_RNDQ_RNSC:
5697 {
5698 po_scalar_or_goto (8, try_ndq);
5699 break;
5700 try_ndq:
5701 po_reg_or_fail (REG_TYPE_NDQ);
5702 }
5703 break;
5704
5705 case OP_RND_RNSC:
5706 {
5707 po_scalar_or_goto (8, try_vfd);
5708 break;
5709 try_vfd:
5710 po_reg_or_fail (REG_TYPE_VFD);
5711 }
5712 break;
5713
5714 case OP_VMOV:
5715 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5716 not careful then bad things might happen. */
5717 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5718 break;
5719
5720 case OP_RNDQ_IMVNb:
5721 {
5722 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5723 break;
5724 try_mvnimm:
5725 /* There's a possibility of getting a 64-bit immediate here, so
5726 we need special handling. */
5727 if (parse_big_immediate (&str, i) == FAIL)
5728 {
5729 inst.error = _("immediate value is out of range");
5730 goto failure;
5731 }
5732 }
5733 break;
5734
5735 case OP_RNDQ_I63b:
5736 {
5737 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5738 break;
5739 try_shimm:
5740 po_imm_or_fail (0, 63, TRUE);
5741 }
5742 break;
5743
5744 case OP_RRnpcb:
5745 po_char_or_fail ('[');
5746 po_reg_or_fail (REG_TYPE_RN);
5747 po_char_or_fail (']');
5748 break;
5749
5750 case OP_RRw:
5751 case OP_oRRw:
5752 po_reg_or_fail (REG_TYPE_RN);
5753 if (skip_past_char (&str, '!') == SUCCESS)
5754 inst.operands[i].writeback = 1;
5755 break;
5756
5757 /* Immediates */
5758 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5759 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5760 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5761 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5762 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5763 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5764 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5765 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5766 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5767 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5768 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5769 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5770
5771 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5772 case OP_oI7b:
5773 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5774 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5775 case OP_oI31b:
5776 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5777 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5778 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5779
5780 /* Immediate variants */
5781 case OP_oI255c:
5782 po_char_or_fail ('{');
5783 po_imm_or_fail (0, 255, TRUE);
5784 po_char_or_fail ('}');
5785 break;
5786
5787 case OP_I31w:
5788 /* The expression parser chokes on a trailing !, so we have
5789 to find it first and zap it. */
5790 {
5791 char *s = str;
5792 while (*s && *s != ',')
5793 s++;
5794 if (s[-1] == '!')
5795 {
5796 s[-1] = '\0';
5797 inst.operands[i].writeback = 1;
5798 }
5799 po_imm_or_fail (0, 31, TRUE);
5800 if (str == s - 1)
5801 str = s;
5802 }
5803 break;
5804
5805 /* Expressions */
5806 case OP_EXPi: EXPi:
5807 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5808 GE_OPT_PREFIX));
5809 break;
5810
5811 case OP_EXP:
5812 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5813 GE_NO_PREFIX));
5814 break;
5815
5816 case OP_EXPr: EXPr:
5817 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5818 GE_NO_PREFIX));
5819 if (inst.reloc.exp.X_op == O_symbol)
5820 {
5821 val = parse_reloc (&str);
5822 if (val == -1)
5823 {
5824 inst.error = _("unrecognized relocation suffix");
5825 goto failure;
5826 }
5827 else if (val != BFD_RELOC_UNUSED)
5828 {
5829 inst.operands[i].imm = val;
5830 inst.operands[i].hasreloc = 1;
5831 }
5832 }
5833 break;
5834
5835 /* Operand for MOVW or MOVT. */
5836 case OP_HALF:
5837 po_misc_or_fail (parse_half (&str));
5838 break;
5839
5840 /* Register or expression */
5841 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5842 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5843
5844 /* Register or immediate */
5845 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5846 I0: po_imm_or_fail (0, 0, FALSE); break;
5847
5848 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5849 IF:
5850 if (!is_immediate_prefix (*str))
5851 goto bad_args;
5852 str++;
5853 val = parse_fpa_immediate (&str);
5854 if (val == FAIL)
5855 goto failure;
5856 /* FPA immediates are encoded as registers 8-15.
5857 parse_fpa_immediate has already applied the offset. */
5858 inst.operands[i].reg = val;
5859 inst.operands[i].isreg = 1;
5860 break;
5861
5862 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5863 I32z: po_imm_or_fail (0, 32, FALSE); break;
5864
5865 /* Two kinds of register */
5866 case OP_RIWR_RIWC:
5867 {
5868 struct reg_entry *rege = arm_reg_parse_multi (&str);
5869 if (!rege
5870 || (rege->type != REG_TYPE_MMXWR
5871 && rege->type != REG_TYPE_MMXWC
5872 && rege->type != REG_TYPE_MMXWCG))
5873 {
5874 inst.error = _("iWMMXt data or control register expected");
5875 goto failure;
5876 }
5877 inst.operands[i].reg = rege->number;
5878 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5879 }
5880 break;
5881
5882 case OP_RIWC_RIWG:
5883 {
5884 struct reg_entry *rege = arm_reg_parse_multi (&str);
5885 if (!rege
5886 || (rege->type != REG_TYPE_MMXWC
5887 && rege->type != REG_TYPE_MMXWCG))
5888 {
5889 inst.error = _("iWMMXt control register expected");
5890 goto failure;
5891 }
5892 inst.operands[i].reg = rege->number;
5893 inst.operands[i].isreg = 1;
5894 }
5895 break;
5896
5897 /* Misc */
5898 case OP_CPSF: val = parse_cps_flags (&str); break;
5899 case OP_ENDI: val = parse_endian_specifier (&str); break;
5900 case OP_oROR: val = parse_ror (&str); break;
5901 case OP_PSR: val = parse_psr (&str); break;
5902 case OP_COND: val = parse_cond (&str); break;
5903 case OP_oBARRIER:val = parse_barrier (&str); break;
5904
5905 case OP_RVC_PSR:
5906 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5907 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5908 break;
5909 try_psr:
5910 val = parse_psr (&str);
5911 break;
5912
5913 case OP_APSR_RR:
5914 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5915 break;
5916 try_apsr:
5917 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5918 instruction). */
5919 if (strncasecmp (str, "APSR_", 5) == 0)
5920 {
5921 unsigned found = 0;
5922 str += 5;
5923 while (found < 15)
5924 switch (*str++)
5925 {
5926 case 'c': found = (found & 1) ? 16 : found | 1; break;
5927 case 'n': found = (found & 2) ? 16 : found | 2; break;
5928 case 'z': found = (found & 4) ? 16 : found | 4; break;
5929 case 'v': found = (found & 8) ? 16 : found | 8; break;
5930 default: found = 16;
5931 }
5932 if (found != 15)
5933 goto failure;
5934 inst.operands[i].isvec = 1;
5935 }
5936 else
5937 goto failure;
5938 break;
5939
5940 case OP_TB:
5941 po_misc_or_fail (parse_tb (&str));
5942 break;
5943
5944 /* Register lists */
5945 case OP_REGLST:
5946 val = parse_reg_list (&str);
5947 if (*str == '^')
5948 {
5949 inst.operands[1].writeback = 1;
5950 str++;
5951 }
5952 break;
5953
5954 case OP_VRSLST:
5955 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5956 break;
5957
5958 case OP_VRDLST:
5959 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5960 break;
5961
5962 case OP_VRSDLST:
5963 /* Allow Q registers too. */
5964 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5965 REGLIST_NEON_D);
5966 if (val == FAIL)
5967 {
5968 inst.error = NULL;
5969 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5970 REGLIST_VFP_S);
5971 inst.operands[i].issingle = 1;
5972 }
5973 break;
5974
5975 case OP_NRDLST:
5976 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5977 REGLIST_NEON_D);
5978 break;
5979
5980 case OP_NSTRLST:
5981 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5982 &inst.operands[i].vectype);
5983 break;
5984
5985 /* Addressing modes */
5986 case OP_ADDR:
5987 po_misc_or_fail (parse_address (&str, i));
5988 break;
5989
5990 case OP_ADDRGLDR:
5991 po_misc_or_fail_no_backtrack (
5992 parse_address_group_reloc (&str, i, GROUP_LDR));
5993 break;
5994
5995 case OP_ADDRGLDRS:
5996 po_misc_or_fail_no_backtrack (
5997 parse_address_group_reloc (&str, i, GROUP_LDRS));
5998 break;
5999
6000 case OP_ADDRGLDC:
6001 po_misc_or_fail_no_backtrack (
6002 parse_address_group_reloc (&str, i, GROUP_LDC));
6003 break;
6004
6005 case OP_SH:
6006 po_misc_or_fail (parse_shifter_operand (&str, i));
6007 break;
6008
6009 case OP_SHG:
6010 po_misc_or_fail_no_backtrack (
6011 parse_shifter_operand_group_reloc (&str, i));
6012 break;
6013
6014 case OP_oSHll:
6015 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6016 break;
6017
6018 case OP_oSHar:
6019 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6020 break;
6021
6022 case OP_oSHllar:
6023 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6024 break;
6025
6026 default:
6027 as_fatal (_("unhandled operand code %d"), upat[i]);
6028 }
6029
6030 /* Various value-based sanity checks and shared operations. We
6031 do not signal immediate failures for the register constraints;
6032 this allows a syntax error to take precedence. */
6033 switch (upat[i])
6034 {
6035 case OP_oRRnpc:
6036 case OP_RRnpc:
6037 case OP_RRnpcb:
6038 case OP_RRw:
6039 case OP_oRRw:
6040 case OP_RRnpc_I0:
6041 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6042 inst.error = BAD_PC;
6043 break;
6044
6045 case OP_CPSF:
6046 case OP_ENDI:
6047 case OP_oROR:
6048 case OP_PSR:
6049 case OP_RVC_PSR:
6050 case OP_COND:
6051 case OP_oBARRIER:
6052 case OP_REGLST:
6053 case OP_VRSLST:
6054 case OP_VRDLST:
6055 case OP_VRSDLST:
6056 case OP_NRDLST:
6057 case OP_NSTRLST:
6058 if (val == FAIL)
6059 goto failure;
6060 inst.operands[i].imm = val;
6061 break;
6062
6063 default:
6064 break;
6065 }
6066
6067 /* If we get here, this operand was successfully parsed. */
6068 inst.operands[i].present = 1;
6069 continue;
6070
6071 bad_args:
6072 inst.error = BAD_ARGS;
6073
6074 failure:
6075 if (!backtrack_pos)
6076 {
6077 /* The parse routine should already have set inst.error, but set a
6078 default here just in case. */
6079 if (!inst.error)
6080 inst.error = _("syntax error");
6081 return FAIL;
6082 }
6083
6084 /* Do not backtrack over a trailing optional argument that
6085 absorbed some text. We will only fail again, with the
6086 'garbage following instruction' error message, which is
6087 probably less helpful than the current one. */
6088 if (backtrack_index == i && backtrack_pos != str
6089 && upat[i+1] == OP_stop)
6090 {
6091 if (!inst.error)
6092 inst.error = _("syntax error");
6093 return FAIL;
6094 }
6095
6096 /* Try again, skipping the optional argument at backtrack_pos. */
6097 str = backtrack_pos;
6098 inst.error = backtrack_error;
6099 inst.operands[backtrack_index].present = 0;
6100 i = backtrack_index;
6101 backtrack_pos = 0;
6102 }
6103
6104 /* Check that we have parsed all the arguments. */
6105 if (*str != '\0' && !inst.error)
6106 inst.error = _("garbage following instruction");
6107
6108 return inst.error ? FAIL : SUCCESS;
6109 }
6110
6111 #undef po_char_or_fail
6112 #undef po_reg_or_fail
6113 #undef po_reg_or_goto
6114 #undef po_imm_or_fail
6115 #undef po_scalar_or_fail
6116 \f
6117 /* Shorthand macro for instruction encoding functions issuing errors. */
6118 #define constraint(expr, err) do { \
6119 if (expr) \
6120 { \
6121 inst.error = err; \
6122 return; \
6123 } \
6124 } while (0)
6125
6126 /* Functions for operand encoding. ARM, then Thumb. */
6127
6128 #define rotate_left(v, n) (v << n | v >> (32 - n))
6129
6130 /* If VAL can be encoded in the immediate field of an ARM instruction,
6131 return the encoded form. Otherwise, return FAIL. */
6132
6133 static unsigned int
6134 encode_arm_immediate (unsigned int val)
6135 {
6136 unsigned int a, i;
6137
6138 for (i = 0; i < 32; i += 2)
6139 if ((a = rotate_left (val, i)) <= 0xff)
6140 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6141
6142 return FAIL;
6143 }
6144
6145 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6146 return the encoded form. Otherwise, return FAIL. */
6147 static unsigned int
6148 encode_thumb32_immediate (unsigned int val)
6149 {
6150 unsigned int a, i;
6151
6152 if (val <= 0xff)
6153 return val;
6154
6155 for (i = 1; i <= 24; i++)
6156 {
6157 a = val >> i;
6158 if ((val & ~(0xff << i)) == 0)
6159 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6160 }
6161
6162 a = val & 0xff;
6163 if (val == ((a << 16) | a))
6164 return 0x100 | a;
6165 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6166 return 0x300 | a;
6167
6168 a = val & 0xff00;
6169 if (val == ((a << 16) | a))
6170 return 0x200 | (a >> 8);
6171
6172 return FAIL;
6173 }
6174 /* Encode a VFP SP or DP register number into inst.instruction. */
6175
6176 static void
6177 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6178 {
6179 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6180 && reg > 15)
6181 {
6182 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6183 {
6184 if (thumb_mode)
6185 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6186 fpu_vfp_ext_d32);
6187 else
6188 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6189 fpu_vfp_ext_d32);
6190 }
6191 else
6192 {
6193 first_error (_("D register out of range for selected VFP version"));
6194 return;
6195 }
6196 }
6197
6198 switch (pos)
6199 {
6200 case VFP_REG_Sd:
6201 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6202 break;
6203
6204 case VFP_REG_Sn:
6205 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6206 break;
6207
6208 case VFP_REG_Sm:
6209 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6210 break;
6211
6212 case VFP_REG_Dd:
6213 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6214 break;
6215
6216 case VFP_REG_Dn:
6217 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6218 break;
6219
6220 case VFP_REG_Dm:
6221 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6222 break;
6223
6224 default:
6225 abort ();
6226 }
6227 }
6228
6229 /* Encode a <shift> in an ARM-format instruction. The immediate,
6230 if any, is handled by md_apply_fix. */
6231 static void
6232 encode_arm_shift (int i)
6233 {
6234 if (inst.operands[i].shift_kind == SHIFT_RRX)
6235 inst.instruction |= SHIFT_ROR << 5;
6236 else
6237 {
6238 inst.instruction |= inst.operands[i].shift_kind << 5;
6239 if (inst.operands[i].immisreg)
6240 {
6241 inst.instruction |= SHIFT_BY_REG;
6242 inst.instruction |= inst.operands[i].imm << 8;
6243 }
6244 else
6245 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6246 }
6247 }
6248
6249 static void
6250 encode_arm_shifter_operand (int i)
6251 {
6252 if (inst.operands[i].isreg)
6253 {
6254 inst.instruction |= inst.operands[i].reg;
6255 encode_arm_shift (i);
6256 }
6257 else
6258 inst.instruction |= INST_IMMEDIATE;
6259 }
6260
6261 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6262 static void
6263 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6264 {
6265 assert (inst.operands[i].isreg);
6266 inst.instruction |= inst.operands[i].reg << 16;
6267
6268 if (inst.operands[i].preind)
6269 {
6270 if (is_t)
6271 {
6272 inst.error = _("instruction does not accept preindexed addressing");
6273 return;
6274 }
6275 inst.instruction |= PRE_INDEX;
6276 if (inst.operands[i].writeback)
6277 inst.instruction |= WRITE_BACK;
6278
6279 }
6280 else if (inst.operands[i].postind)
6281 {
6282 assert (inst.operands[i].writeback);
6283 if (is_t)
6284 inst.instruction |= WRITE_BACK;
6285 }
6286 else /* unindexed - only for coprocessor */
6287 {
6288 inst.error = _("instruction does not accept unindexed addressing");
6289 return;
6290 }
6291
6292 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6293 && (((inst.instruction & 0x000f0000) >> 16)
6294 == ((inst.instruction & 0x0000f000) >> 12)))
6295 as_warn ((inst.instruction & LOAD_BIT)
6296 ? _("destination register same as write-back base")
6297 : _("source register same as write-back base"));
6298 }
6299
6300 /* inst.operands[i] was set up by parse_address. Encode it into an
6301 ARM-format mode 2 load or store instruction. If is_t is true,
6302 reject forms that cannot be used with a T instruction (i.e. not
6303 post-indexed). */
6304 static void
6305 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6306 {
6307 encode_arm_addr_mode_common (i, is_t);
6308
6309 if (inst.operands[i].immisreg)
6310 {
6311 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6312 inst.instruction |= inst.operands[i].imm;
6313 if (!inst.operands[i].negative)
6314 inst.instruction |= INDEX_UP;
6315 if (inst.operands[i].shifted)
6316 {
6317 if (inst.operands[i].shift_kind == SHIFT_RRX)
6318 inst.instruction |= SHIFT_ROR << 5;
6319 else
6320 {
6321 inst.instruction |= inst.operands[i].shift_kind << 5;
6322 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6323 }
6324 }
6325 }
6326 else /* immediate offset in inst.reloc */
6327 {
6328 if (inst.reloc.type == BFD_RELOC_UNUSED)
6329 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6330 }
6331 }
6332
6333 /* inst.operands[i] was set up by parse_address. Encode it into an
6334 ARM-format mode 3 load or store instruction. Reject forms that
6335 cannot be used with such instructions. If is_t is true, reject
6336 forms that cannot be used with a T instruction (i.e. not
6337 post-indexed). */
6338 static void
6339 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6340 {
6341 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6342 {
6343 inst.error = _("instruction does not accept scaled register index");
6344 return;
6345 }
6346
6347 encode_arm_addr_mode_common (i, is_t);
6348
6349 if (inst.operands[i].immisreg)
6350 {
6351 inst.instruction |= inst.operands[i].imm;
6352 if (!inst.operands[i].negative)
6353 inst.instruction |= INDEX_UP;
6354 }
6355 else /* immediate offset in inst.reloc */
6356 {
6357 inst.instruction |= HWOFFSET_IMM;
6358 if (inst.reloc.type == BFD_RELOC_UNUSED)
6359 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6360 }
6361 }
6362
6363 /* inst.operands[i] was set up by parse_address. Encode it into an
6364 ARM-format instruction. Reject all forms which cannot be encoded
6365 into a coprocessor load/store instruction. If wb_ok is false,
6366 reject use of writeback; if unind_ok is false, reject use of
6367 unindexed addressing. If reloc_override is not 0, use it instead
6368 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6369 (in which case it is preserved). */
6370
6371 static int
6372 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6373 {
6374 inst.instruction |= inst.operands[i].reg << 16;
6375
6376 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6377
6378 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6379 {
6380 assert (!inst.operands[i].writeback);
6381 if (!unind_ok)
6382 {
6383 inst.error = _("instruction does not support unindexed addressing");
6384 return FAIL;
6385 }
6386 inst.instruction |= inst.operands[i].imm;
6387 inst.instruction |= INDEX_UP;
6388 return SUCCESS;
6389 }
6390
6391 if (inst.operands[i].preind)
6392 inst.instruction |= PRE_INDEX;
6393
6394 if (inst.operands[i].writeback)
6395 {
6396 if (inst.operands[i].reg == REG_PC)
6397 {
6398 inst.error = _("pc may not be used with write-back");
6399 return FAIL;
6400 }
6401 if (!wb_ok)
6402 {
6403 inst.error = _("instruction does not support writeback");
6404 return FAIL;
6405 }
6406 inst.instruction |= WRITE_BACK;
6407 }
6408
6409 if (reloc_override)
6410 inst.reloc.type = reloc_override;
6411 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6412 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6413 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6414 {
6415 if (thumb_mode)
6416 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6417 else
6418 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6419 }
6420
6421 return SUCCESS;
6422 }
6423
6424 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6425 Determine whether it can be performed with a move instruction; if
6426 it can, convert inst.instruction to that move instruction and
6427 return 1; if it can't, convert inst.instruction to a literal-pool
6428 load and return 0. If this is not a valid thing to do in the
6429 current context, set inst.error and return 1.
6430
6431 inst.operands[i] describes the destination register. */
6432
6433 static int
6434 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6435 {
6436 unsigned long tbit;
6437
6438 if (thumb_p)
6439 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6440 else
6441 tbit = LOAD_BIT;
6442
6443 if ((inst.instruction & tbit) == 0)
6444 {
6445 inst.error = _("invalid pseudo operation");
6446 return 1;
6447 }
6448 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6449 {
6450 inst.error = _("constant expression expected");
6451 return 1;
6452 }
6453 if (inst.reloc.exp.X_op == O_constant)
6454 {
6455 if (thumb_p)
6456 {
6457 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6458 {
6459 /* This can be done with a mov(1) instruction. */
6460 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6461 inst.instruction |= inst.reloc.exp.X_add_number;
6462 return 1;
6463 }
6464 }
6465 else
6466 {
6467 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6468 if (value != FAIL)
6469 {
6470 /* This can be done with a mov instruction. */
6471 inst.instruction &= LITERAL_MASK;
6472 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6473 inst.instruction |= value & 0xfff;
6474 return 1;
6475 }
6476
6477 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6478 if (value != FAIL)
6479 {
6480 /* This can be done with a mvn instruction. */
6481 inst.instruction &= LITERAL_MASK;
6482 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6483 inst.instruction |= value & 0xfff;
6484 return 1;
6485 }
6486 }
6487 }
6488
6489 if (add_to_lit_pool () == FAIL)
6490 {
6491 inst.error = _("literal pool insertion failed");
6492 return 1;
6493 }
6494 inst.operands[1].reg = REG_PC;
6495 inst.operands[1].isreg = 1;
6496 inst.operands[1].preind = 1;
6497 inst.reloc.pc_rel = 1;
6498 inst.reloc.type = (thumb_p
6499 ? BFD_RELOC_ARM_THUMB_OFFSET
6500 : (mode_3
6501 ? BFD_RELOC_ARM_HWLITERAL
6502 : BFD_RELOC_ARM_LITERAL));
6503 return 0;
6504 }
6505
6506 /* Functions for instruction encoding, sorted by sub-architecture.
6507 First some generics; their names are taken from the conventional
6508 bit positions for register arguments in ARM format instructions. */
6509
6510 static void
6511 do_noargs (void)
6512 {
6513 }
6514
6515 static void
6516 do_rd (void)
6517 {
6518 inst.instruction |= inst.operands[0].reg << 12;
6519 }
6520
6521 static void
6522 do_rd_rm (void)
6523 {
6524 inst.instruction |= inst.operands[0].reg << 12;
6525 inst.instruction |= inst.operands[1].reg;
6526 }
6527
6528 static void
6529 do_rd_rn (void)
6530 {
6531 inst.instruction |= inst.operands[0].reg << 12;
6532 inst.instruction |= inst.operands[1].reg << 16;
6533 }
6534
6535 static void
6536 do_rn_rd (void)
6537 {
6538 inst.instruction |= inst.operands[0].reg << 16;
6539 inst.instruction |= inst.operands[1].reg << 12;
6540 }
6541
6542 static void
6543 do_rd_rm_rn (void)
6544 {
6545 unsigned Rn = inst.operands[2].reg;
6546 /* Enforce restrictions on SWP instruction. */
6547 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6548 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6549 _("Rn must not overlap other operands"));
6550 inst.instruction |= inst.operands[0].reg << 12;
6551 inst.instruction |= inst.operands[1].reg;
6552 inst.instruction |= Rn << 16;
6553 }
6554
6555 static void
6556 do_rd_rn_rm (void)
6557 {
6558 inst.instruction |= inst.operands[0].reg << 12;
6559 inst.instruction |= inst.operands[1].reg << 16;
6560 inst.instruction |= inst.operands[2].reg;
6561 }
6562
6563 static void
6564 do_rm_rd_rn (void)
6565 {
6566 inst.instruction |= inst.operands[0].reg;
6567 inst.instruction |= inst.operands[1].reg << 12;
6568 inst.instruction |= inst.operands[2].reg << 16;
6569 }
6570
6571 static void
6572 do_imm0 (void)
6573 {
6574 inst.instruction |= inst.operands[0].imm;
6575 }
6576
6577 static void
6578 do_rd_cpaddr (void)
6579 {
6580 inst.instruction |= inst.operands[0].reg << 12;
6581 encode_arm_cp_address (1, TRUE, TRUE, 0);
6582 }
6583
6584 /* ARM instructions, in alphabetical order by function name (except
6585 that wrapper functions appear immediately after the function they
6586 wrap). */
6587
6588 /* This is a pseudo-op of the form "adr rd, label" to be converted
6589 into a relative address of the form "add rd, pc, #label-.-8". */
6590
6591 static void
6592 do_adr (void)
6593 {
6594 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6595
6596 /* Frag hacking will turn this into a sub instruction if the offset turns
6597 out to be negative. */
6598 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6599 inst.reloc.pc_rel = 1;
6600 inst.reloc.exp.X_add_number -= 8;
6601 }
6602
6603 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6604 into a relative address of the form:
6605 add rd, pc, #low(label-.-8)"
6606 add rd, rd, #high(label-.-8)" */
6607
6608 static void
6609 do_adrl (void)
6610 {
6611 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6612
6613 /* Frag hacking will turn this into a sub instruction if the offset turns
6614 out to be negative. */
6615 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6616 inst.reloc.pc_rel = 1;
6617 inst.size = INSN_SIZE * 2;
6618 inst.reloc.exp.X_add_number -= 8;
6619 }
6620
6621 static void
6622 do_arit (void)
6623 {
6624 if (!inst.operands[1].present)
6625 inst.operands[1].reg = inst.operands[0].reg;
6626 inst.instruction |= inst.operands[0].reg << 12;
6627 inst.instruction |= inst.operands[1].reg << 16;
6628 encode_arm_shifter_operand (2);
6629 }
6630
6631 static void
6632 do_barrier (void)
6633 {
6634 if (inst.operands[0].present)
6635 {
6636 constraint ((inst.instruction & 0xf0) != 0x40
6637 && inst.operands[0].imm != 0xf,
6638 _("bad barrier type"));
6639 inst.instruction |= inst.operands[0].imm;
6640 }
6641 else
6642 inst.instruction |= 0xf;
6643 }
6644
6645 static void
6646 do_bfc (void)
6647 {
6648 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6649 constraint (msb > 32, _("bit-field extends past end of register"));
6650 /* The instruction encoding stores the LSB and MSB,
6651 not the LSB and width. */
6652 inst.instruction |= inst.operands[0].reg << 12;
6653 inst.instruction |= inst.operands[1].imm << 7;
6654 inst.instruction |= (msb - 1) << 16;
6655 }
6656
6657 static void
6658 do_bfi (void)
6659 {
6660 unsigned int msb;
6661
6662 /* #0 in second position is alternative syntax for bfc, which is
6663 the same instruction but with REG_PC in the Rm field. */
6664 if (!inst.operands[1].isreg)
6665 inst.operands[1].reg = REG_PC;
6666
6667 msb = inst.operands[2].imm + inst.operands[3].imm;
6668 constraint (msb > 32, _("bit-field extends past end of register"));
6669 /* The instruction encoding stores the LSB and MSB,
6670 not the LSB and width. */
6671 inst.instruction |= inst.operands[0].reg << 12;
6672 inst.instruction |= inst.operands[1].reg;
6673 inst.instruction |= inst.operands[2].imm << 7;
6674 inst.instruction |= (msb - 1) << 16;
6675 }
6676
6677 static void
6678 do_bfx (void)
6679 {
6680 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6681 _("bit-field extends past end of register"));
6682 inst.instruction |= inst.operands[0].reg << 12;
6683 inst.instruction |= inst.operands[1].reg;
6684 inst.instruction |= inst.operands[2].imm << 7;
6685 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6686 }
6687
6688 /* ARM V5 breakpoint instruction (argument parse)
6689 BKPT <16 bit unsigned immediate>
6690 Instruction is not conditional.
6691 The bit pattern given in insns[] has the COND_ALWAYS condition,
6692 and it is an error if the caller tried to override that. */
6693
6694 static void
6695 do_bkpt (void)
6696 {
6697 /* Top 12 of 16 bits to bits 19:8. */
6698 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6699
6700 /* Bottom 4 of 16 bits to bits 3:0. */
6701 inst.instruction |= inst.operands[0].imm & 0xf;
6702 }
6703
6704 static void
6705 encode_branch (int default_reloc)
6706 {
6707 if (inst.operands[0].hasreloc)
6708 {
6709 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6710 _("the only suffix valid here is '(plt)'"));
6711 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6712 }
6713 else
6714 {
6715 inst.reloc.type = default_reloc;
6716 }
6717 inst.reloc.pc_rel = 1;
6718 }
6719
6720 static void
6721 do_branch (void)
6722 {
6723 #ifdef OBJ_ELF
6724 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6725 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6726 else
6727 #endif
6728 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6729 }
6730
6731 static void
6732 do_bl (void)
6733 {
6734 #ifdef OBJ_ELF
6735 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6736 {
6737 if (inst.cond == COND_ALWAYS)
6738 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6739 else
6740 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6741 }
6742 else
6743 #endif
6744 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6745 }
6746
6747 /* ARM V5 branch-link-exchange instruction (argument parse)
6748 BLX <target_addr> ie BLX(1)
6749 BLX{<condition>} <Rm> ie BLX(2)
6750 Unfortunately, there are two different opcodes for this mnemonic.
6751 So, the insns[].value is not used, and the code here zaps values
6752 into inst.instruction.
6753 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6754
6755 static void
6756 do_blx (void)
6757 {
6758 if (inst.operands[0].isreg)
6759 {
6760 /* Arg is a register; the opcode provided by insns[] is correct.
6761 It is not illegal to do "blx pc", just useless. */
6762 if (inst.operands[0].reg == REG_PC)
6763 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6764
6765 inst.instruction |= inst.operands[0].reg;
6766 }
6767 else
6768 {
6769 /* Arg is an address; this instruction cannot be executed
6770 conditionally, and the opcode must be adjusted. */
6771 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6772 inst.instruction = 0xfa000000;
6773 #ifdef OBJ_ELF
6774 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6775 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6776 else
6777 #endif
6778 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6779 }
6780 }
6781
6782 static void
6783 do_bx (void)
6784 {
6785 bfd_boolean want_reloc;
6786
6787 if (inst.operands[0].reg == REG_PC)
6788 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6789
6790 inst.instruction |= inst.operands[0].reg;
6791 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
6792 it is for ARMv4t or earlier. */
6793 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
6794 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
6795 want_reloc = TRUE;
6796
6797 #ifdef OBJ_ELF
6798 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
6799 #endif
6800 want_reloc = FALSE;
6801
6802 if (want_reloc)
6803 inst.reloc.type = BFD_RELOC_ARM_V4BX;
6804 }
6805
6806
6807 /* ARM v5TEJ. Jump to Jazelle code. */
6808
6809 static void
6810 do_bxj (void)
6811 {
6812 if (inst.operands[0].reg == REG_PC)
6813 as_tsktsk (_("use of r15 in bxj is not really useful"));
6814
6815 inst.instruction |= inst.operands[0].reg;
6816 }
6817
6818 /* Co-processor data operation:
6819 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6820 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6821 static void
6822 do_cdp (void)
6823 {
6824 inst.instruction |= inst.operands[0].reg << 8;
6825 inst.instruction |= inst.operands[1].imm << 20;
6826 inst.instruction |= inst.operands[2].reg << 12;
6827 inst.instruction |= inst.operands[3].reg << 16;
6828 inst.instruction |= inst.operands[4].reg;
6829 inst.instruction |= inst.operands[5].imm << 5;
6830 }
6831
6832 static void
6833 do_cmp (void)
6834 {
6835 inst.instruction |= inst.operands[0].reg << 16;
6836 encode_arm_shifter_operand (1);
6837 }
6838
6839 /* Transfer between coprocessor and ARM registers.
6840 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6841 MRC2
6842 MCR{cond}
6843 MCR2
6844
6845 No special properties. */
6846
6847 static void
6848 do_co_reg (void)
6849 {
6850 inst.instruction |= inst.operands[0].reg << 8;
6851 inst.instruction |= inst.operands[1].imm << 21;
6852 inst.instruction |= inst.operands[2].reg << 12;
6853 inst.instruction |= inst.operands[3].reg << 16;
6854 inst.instruction |= inst.operands[4].reg;
6855 inst.instruction |= inst.operands[5].imm << 5;
6856 }
6857
6858 /* Transfer between coprocessor register and pair of ARM registers.
6859 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6860 MCRR2
6861 MRRC{cond}
6862 MRRC2
6863
6864 Two XScale instructions are special cases of these:
6865
6866 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6867 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6868
6869 Result unpredictable if Rd or Rn is R15. */
6870
6871 static void
6872 do_co_reg2c (void)
6873 {
6874 inst.instruction |= inst.operands[0].reg << 8;
6875 inst.instruction |= inst.operands[1].imm << 4;
6876 inst.instruction |= inst.operands[2].reg << 12;
6877 inst.instruction |= inst.operands[3].reg << 16;
6878 inst.instruction |= inst.operands[4].reg;
6879 }
6880
6881 static void
6882 do_cpsi (void)
6883 {
6884 inst.instruction |= inst.operands[0].imm << 6;
6885 if (inst.operands[1].present)
6886 {
6887 inst.instruction |= CPSI_MMOD;
6888 inst.instruction |= inst.operands[1].imm;
6889 }
6890 }
6891
6892 static void
6893 do_dbg (void)
6894 {
6895 inst.instruction |= inst.operands[0].imm;
6896 }
6897
6898 static void
6899 do_it (void)
6900 {
6901 /* There is no IT instruction in ARM mode. We
6902 process it but do not generate code for it. */
6903 inst.size = 0;
6904 }
6905
6906 static void
6907 do_ldmstm (void)
6908 {
6909 int base_reg = inst.operands[0].reg;
6910 int range = inst.operands[1].imm;
6911
6912 inst.instruction |= base_reg << 16;
6913 inst.instruction |= range;
6914
6915 if (inst.operands[1].writeback)
6916 inst.instruction |= LDM_TYPE_2_OR_3;
6917
6918 if (inst.operands[0].writeback)
6919 {
6920 inst.instruction |= WRITE_BACK;
6921 /* Check for unpredictable uses of writeback. */
6922 if (inst.instruction & LOAD_BIT)
6923 {
6924 /* Not allowed in LDM type 2. */
6925 if ((inst.instruction & LDM_TYPE_2_OR_3)
6926 && ((range & (1 << REG_PC)) == 0))
6927 as_warn (_("writeback of base register is UNPREDICTABLE"));
6928 /* Only allowed if base reg not in list for other types. */
6929 else if (range & (1 << base_reg))
6930 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6931 }
6932 else /* STM. */
6933 {
6934 /* Not allowed for type 2. */
6935 if (inst.instruction & LDM_TYPE_2_OR_3)
6936 as_warn (_("writeback of base register is UNPREDICTABLE"));
6937 /* Only allowed if base reg not in list, or first in list. */
6938 else if ((range & (1 << base_reg))
6939 && (range & ((1 << base_reg) - 1)))
6940 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6941 }
6942 }
6943 }
6944
6945 /* ARMv5TE load-consecutive (argument parse)
6946 Mode is like LDRH.
6947
6948 LDRccD R, mode
6949 STRccD R, mode. */
6950
6951 static void
6952 do_ldrd (void)
6953 {
6954 constraint (inst.operands[0].reg % 2 != 0,
6955 _("first destination register must be even"));
6956 constraint (inst.operands[1].present
6957 && inst.operands[1].reg != inst.operands[0].reg + 1,
6958 _("can only load two consecutive registers"));
6959 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6960 constraint (!inst.operands[2].isreg, _("'[' expected"));
6961
6962 if (!inst.operands[1].present)
6963 inst.operands[1].reg = inst.operands[0].reg + 1;
6964
6965 if (inst.instruction & LOAD_BIT)
6966 {
6967 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6968 register and the first register written; we have to diagnose
6969 overlap between the base and the second register written here. */
6970
6971 if (inst.operands[2].reg == inst.operands[1].reg
6972 && (inst.operands[2].writeback || inst.operands[2].postind))
6973 as_warn (_("base register written back, and overlaps "
6974 "second destination register"));
6975
6976 /* For an index-register load, the index register must not overlap the
6977 destination (even if not write-back). */
6978 else if (inst.operands[2].immisreg
6979 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6980 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6981 as_warn (_("index register overlaps destination register"));
6982 }
6983
6984 inst.instruction |= inst.operands[0].reg << 12;
6985 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6986 }
6987
6988 static void
6989 do_ldrex (void)
6990 {
6991 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6992 || inst.operands[1].postind || inst.operands[1].writeback
6993 || inst.operands[1].immisreg || inst.operands[1].shifted
6994 || inst.operands[1].negative
6995 /* This can arise if the programmer has written
6996 strex rN, rM, foo
6997 or if they have mistakenly used a register name as the last
6998 operand, eg:
6999 strex rN, rM, rX
7000 It is very difficult to distinguish between these two cases
7001 because "rX" might actually be a label. ie the register
7002 name has been occluded by a symbol of the same name. So we
7003 just generate a general 'bad addressing mode' type error
7004 message and leave it up to the programmer to discover the
7005 true cause and fix their mistake. */
7006 || (inst.operands[1].reg == REG_PC),
7007 BAD_ADDR_MODE);
7008
7009 constraint (inst.reloc.exp.X_op != O_constant
7010 || inst.reloc.exp.X_add_number != 0,
7011 _("offset must be zero in ARM encoding"));
7012
7013 inst.instruction |= inst.operands[0].reg << 12;
7014 inst.instruction |= inst.operands[1].reg << 16;
7015 inst.reloc.type = BFD_RELOC_UNUSED;
7016 }
7017
7018 static void
7019 do_ldrexd (void)
7020 {
7021 constraint (inst.operands[0].reg % 2 != 0,
7022 _("even register required"));
7023 constraint (inst.operands[1].present
7024 && inst.operands[1].reg != inst.operands[0].reg + 1,
7025 _("can only load two consecutive registers"));
7026 /* If op 1 were present and equal to PC, this function wouldn't
7027 have been called in the first place. */
7028 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
7029
7030 inst.instruction |= inst.operands[0].reg << 12;
7031 inst.instruction |= inst.operands[2].reg << 16;
7032 }
7033
7034 static void
7035 do_ldst (void)
7036 {
7037 inst.instruction |= inst.operands[0].reg << 12;
7038 if (!inst.operands[1].isreg)
7039 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7040 return;
7041 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7042 }
7043
7044 static void
7045 do_ldstt (void)
7046 {
7047 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7048 reject [Rn,...]. */
7049 if (inst.operands[1].preind)
7050 {
7051 constraint (inst.reloc.exp.X_op != O_constant
7052 || inst.reloc.exp.X_add_number != 0,
7053 _("this instruction requires a post-indexed address"));
7054
7055 inst.operands[1].preind = 0;
7056 inst.operands[1].postind = 1;
7057 inst.operands[1].writeback = 1;
7058 }
7059 inst.instruction |= inst.operands[0].reg << 12;
7060 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7061 }
7062
7063 /* Halfword and signed-byte load/store operations. */
7064
7065 static void
7066 do_ldstv4 (void)
7067 {
7068 inst.instruction |= inst.operands[0].reg << 12;
7069 if (!inst.operands[1].isreg)
7070 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7071 return;
7072 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7073 }
7074
7075 static void
7076 do_ldsttv4 (void)
7077 {
7078 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7079 reject [Rn,...]. */
7080 if (inst.operands[1].preind)
7081 {
7082 constraint (inst.reloc.exp.X_op != O_constant
7083 || inst.reloc.exp.X_add_number != 0,
7084 _("this instruction requires a post-indexed address"));
7085
7086 inst.operands[1].preind = 0;
7087 inst.operands[1].postind = 1;
7088 inst.operands[1].writeback = 1;
7089 }
7090 inst.instruction |= inst.operands[0].reg << 12;
7091 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7092 }
7093
7094 /* Co-processor register load/store.
7095 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7096 static void
7097 do_lstc (void)
7098 {
7099 inst.instruction |= inst.operands[0].reg << 8;
7100 inst.instruction |= inst.operands[1].reg << 12;
7101 encode_arm_cp_address (2, TRUE, TRUE, 0);
7102 }
7103
7104 static void
7105 do_mlas (void)
7106 {
7107 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7108 if (inst.operands[0].reg == inst.operands[1].reg
7109 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7110 && !(inst.instruction & 0x00400000))
7111 as_tsktsk (_("Rd and Rm should be different in mla"));
7112
7113 inst.instruction |= inst.operands[0].reg << 16;
7114 inst.instruction |= inst.operands[1].reg;
7115 inst.instruction |= inst.operands[2].reg << 8;
7116 inst.instruction |= inst.operands[3].reg << 12;
7117 }
7118
7119 static void
7120 do_mov (void)
7121 {
7122 inst.instruction |= inst.operands[0].reg << 12;
7123 encode_arm_shifter_operand (1);
7124 }
7125
7126 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7127 static void
7128 do_mov16 (void)
7129 {
7130 bfd_vma imm;
7131 bfd_boolean top;
7132
7133 top = (inst.instruction & 0x00400000) != 0;
7134 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7135 _(":lower16: not allowed this instruction"));
7136 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7137 _(":upper16: not allowed instruction"));
7138 inst.instruction |= inst.operands[0].reg << 12;
7139 if (inst.reloc.type == BFD_RELOC_UNUSED)
7140 {
7141 imm = inst.reloc.exp.X_add_number;
7142 /* The value is in two pieces: 0:11, 16:19. */
7143 inst.instruction |= (imm & 0x00000fff);
7144 inst.instruction |= (imm & 0x0000f000) << 4;
7145 }
7146 }
7147
7148 static void do_vfp_nsyn_opcode (const char *);
7149
7150 static int
7151 do_vfp_nsyn_mrs (void)
7152 {
7153 if (inst.operands[0].isvec)
7154 {
7155 if (inst.operands[1].reg != 1)
7156 first_error (_("operand 1 must be FPSCR"));
7157 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7158 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7159 do_vfp_nsyn_opcode ("fmstat");
7160 }
7161 else if (inst.operands[1].isvec)
7162 do_vfp_nsyn_opcode ("fmrx");
7163 else
7164 return FAIL;
7165
7166 return SUCCESS;
7167 }
7168
7169 static int
7170 do_vfp_nsyn_msr (void)
7171 {
7172 if (inst.operands[0].isvec)
7173 do_vfp_nsyn_opcode ("fmxr");
7174 else
7175 return FAIL;
7176
7177 return SUCCESS;
7178 }
7179
7180 static void
7181 do_mrs (void)
7182 {
7183 if (do_vfp_nsyn_mrs () == SUCCESS)
7184 return;
7185
7186 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7187 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7188 != (PSR_c|PSR_f),
7189 _("'CPSR' or 'SPSR' expected"));
7190 inst.instruction |= inst.operands[0].reg << 12;
7191 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7192 }
7193
7194 /* Two possible forms:
7195 "{C|S}PSR_<field>, Rm",
7196 "{C|S}PSR_f, #expression". */
7197
7198 static void
7199 do_msr (void)
7200 {
7201 if (do_vfp_nsyn_msr () == SUCCESS)
7202 return;
7203
7204 inst.instruction |= inst.operands[0].imm;
7205 if (inst.operands[1].isreg)
7206 inst.instruction |= inst.operands[1].reg;
7207 else
7208 {
7209 inst.instruction |= INST_IMMEDIATE;
7210 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7211 inst.reloc.pc_rel = 0;
7212 }
7213 }
7214
7215 static void
7216 do_mul (void)
7217 {
7218 if (!inst.operands[2].present)
7219 inst.operands[2].reg = inst.operands[0].reg;
7220 inst.instruction |= inst.operands[0].reg << 16;
7221 inst.instruction |= inst.operands[1].reg;
7222 inst.instruction |= inst.operands[2].reg << 8;
7223
7224 if (inst.operands[0].reg == inst.operands[1].reg
7225 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7226 as_tsktsk (_("Rd and Rm should be different in mul"));
7227 }
7228
7229 /* Long Multiply Parser
7230 UMULL RdLo, RdHi, Rm, Rs
7231 SMULL RdLo, RdHi, Rm, Rs
7232 UMLAL RdLo, RdHi, Rm, Rs
7233 SMLAL RdLo, RdHi, Rm, Rs. */
7234
7235 static void
7236 do_mull (void)
7237 {
7238 inst.instruction |= inst.operands[0].reg << 12;
7239 inst.instruction |= inst.operands[1].reg << 16;
7240 inst.instruction |= inst.operands[2].reg;
7241 inst.instruction |= inst.operands[3].reg << 8;
7242
7243 /* rdhi and rdlo must be different. */
7244 if (inst.operands[0].reg == inst.operands[1].reg)
7245 as_tsktsk (_("rdhi and rdlo must be different"));
7246
7247 /* rdhi, rdlo and rm must all be different before armv6. */
7248 if ((inst.operands[0].reg == inst.operands[2].reg
7249 || inst.operands[1].reg == inst.operands[2].reg)
7250 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7251 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7252 }
7253
7254 static void
7255 do_nop (void)
7256 {
7257 if (inst.operands[0].present)
7258 {
7259 /* Architectural NOP hints are CPSR sets with no bits selected. */
7260 inst.instruction &= 0xf0000000;
7261 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7262 }
7263 }
7264
7265 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7266 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7267 Condition defaults to COND_ALWAYS.
7268 Error if Rd, Rn or Rm are R15. */
7269
7270 static void
7271 do_pkhbt (void)
7272 {
7273 inst.instruction |= inst.operands[0].reg << 12;
7274 inst.instruction |= inst.operands[1].reg << 16;
7275 inst.instruction |= inst.operands[2].reg;
7276 if (inst.operands[3].present)
7277 encode_arm_shift (3);
7278 }
7279
7280 /* ARM V6 PKHTB (Argument Parse). */
7281
7282 static void
7283 do_pkhtb (void)
7284 {
7285 if (!inst.operands[3].present)
7286 {
7287 /* If the shift specifier is omitted, turn the instruction
7288 into pkhbt rd, rm, rn. */
7289 inst.instruction &= 0xfff00010;
7290 inst.instruction |= inst.operands[0].reg << 12;
7291 inst.instruction |= inst.operands[1].reg;
7292 inst.instruction |= inst.operands[2].reg << 16;
7293 }
7294 else
7295 {
7296 inst.instruction |= inst.operands[0].reg << 12;
7297 inst.instruction |= inst.operands[1].reg << 16;
7298 inst.instruction |= inst.operands[2].reg;
7299 encode_arm_shift (3);
7300 }
7301 }
7302
7303 /* ARMv5TE: Preload-Cache
7304
7305 PLD <addr_mode>
7306
7307 Syntactically, like LDR with B=1, W=0, L=1. */
7308
7309 static void
7310 do_pld (void)
7311 {
7312 constraint (!inst.operands[0].isreg,
7313 _("'[' expected after PLD mnemonic"));
7314 constraint (inst.operands[0].postind,
7315 _("post-indexed expression used in preload instruction"));
7316 constraint (inst.operands[0].writeback,
7317 _("writeback used in preload instruction"));
7318 constraint (!inst.operands[0].preind,
7319 _("unindexed addressing used in preload instruction"));
7320 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7321 }
7322
7323 /* ARMv7: PLI <addr_mode> */
7324 static void
7325 do_pli (void)
7326 {
7327 constraint (!inst.operands[0].isreg,
7328 _("'[' expected after PLI mnemonic"));
7329 constraint (inst.operands[0].postind,
7330 _("post-indexed expression used in preload instruction"));
7331 constraint (inst.operands[0].writeback,
7332 _("writeback used in preload instruction"));
7333 constraint (!inst.operands[0].preind,
7334 _("unindexed addressing used in preload instruction"));
7335 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7336 inst.instruction &= ~PRE_INDEX;
7337 }
7338
7339 static void
7340 do_push_pop (void)
7341 {
7342 inst.operands[1] = inst.operands[0];
7343 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7344 inst.operands[0].isreg = 1;
7345 inst.operands[0].writeback = 1;
7346 inst.operands[0].reg = REG_SP;
7347 do_ldmstm ();
7348 }
7349
7350 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7351 word at the specified address and the following word
7352 respectively.
7353 Unconditionally executed.
7354 Error if Rn is R15. */
7355
7356 static void
7357 do_rfe (void)
7358 {
7359 inst.instruction |= inst.operands[0].reg << 16;
7360 if (inst.operands[0].writeback)
7361 inst.instruction |= WRITE_BACK;
7362 }
7363
7364 /* ARM V6 ssat (argument parse). */
7365
7366 static void
7367 do_ssat (void)
7368 {
7369 inst.instruction |= inst.operands[0].reg << 12;
7370 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7371 inst.instruction |= inst.operands[2].reg;
7372
7373 if (inst.operands[3].present)
7374 encode_arm_shift (3);
7375 }
7376
7377 /* ARM V6 usat (argument parse). */
7378
7379 static void
7380 do_usat (void)
7381 {
7382 inst.instruction |= inst.operands[0].reg << 12;
7383 inst.instruction |= inst.operands[1].imm << 16;
7384 inst.instruction |= inst.operands[2].reg;
7385
7386 if (inst.operands[3].present)
7387 encode_arm_shift (3);
7388 }
7389
7390 /* ARM V6 ssat16 (argument parse). */
7391
7392 static void
7393 do_ssat16 (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7397 inst.instruction |= inst.operands[2].reg;
7398 }
7399
7400 static void
7401 do_usat16 (void)
7402 {
7403 inst.instruction |= inst.operands[0].reg << 12;
7404 inst.instruction |= inst.operands[1].imm << 16;
7405 inst.instruction |= inst.operands[2].reg;
7406 }
7407
7408 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7409 preserving the other bits.
7410
7411 setend <endian_specifier>, where <endian_specifier> is either
7412 BE or LE. */
7413
7414 static void
7415 do_setend (void)
7416 {
7417 if (inst.operands[0].imm)
7418 inst.instruction |= 0x200;
7419 }
7420
7421 static void
7422 do_shift (void)
7423 {
7424 unsigned int Rm = (inst.operands[1].present
7425 ? inst.operands[1].reg
7426 : inst.operands[0].reg);
7427
7428 inst.instruction |= inst.operands[0].reg << 12;
7429 inst.instruction |= Rm;
7430 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7431 {
7432 inst.instruction |= inst.operands[2].reg << 8;
7433 inst.instruction |= SHIFT_BY_REG;
7434 }
7435 else
7436 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7437 }
7438
7439 static void
7440 do_smc (void)
7441 {
7442 inst.reloc.type = BFD_RELOC_ARM_SMC;
7443 inst.reloc.pc_rel = 0;
7444 }
7445
7446 static void
7447 do_swi (void)
7448 {
7449 inst.reloc.type = BFD_RELOC_ARM_SWI;
7450 inst.reloc.pc_rel = 0;
7451 }
7452
7453 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7454 SMLAxy{cond} Rd,Rm,Rs,Rn
7455 SMLAWy{cond} Rd,Rm,Rs,Rn
7456 Error if any register is R15. */
7457
7458 static void
7459 do_smla (void)
7460 {
7461 inst.instruction |= inst.operands[0].reg << 16;
7462 inst.instruction |= inst.operands[1].reg;
7463 inst.instruction |= inst.operands[2].reg << 8;
7464 inst.instruction |= inst.operands[3].reg << 12;
7465 }
7466
7467 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7468 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7469 Error if any register is R15.
7470 Warning if Rdlo == Rdhi. */
7471
7472 static void
7473 do_smlal (void)
7474 {
7475 inst.instruction |= inst.operands[0].reg << 12;
7476 inst.instruction |= inst.operands[1].reg << 16;
7477 inst.instruction |= inst.operands[2].reg;
7478 inst.instruction |= inst.operands[3].reg << 8;
7479
7480 if (inst.operands[0].reg == inst.operands[1].reg)
7481 as_tsktsk (_("rdhi and rdlo must be different"));
7482 }
7483
7484 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7485 SMULxy{cond} Rd,Rm,Rs
7486 Error if any register is R15. */
7487
7488 static void
7489 do_smul (void)
7490 {
7491 inst.instruction |= inst.operands[0].reg << 16;
7492 inst.instruction |= inst.operands[1].reg;
7493 inst.instruction |= inst.operands[2].reg << 8;
7494 }
7495
7496 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7497 the same for both ARM and Thumb-2. */
7498
7499 static void
7500 do_srs (void)
7501 {
7502 int reg;
7503
7504 if (inst.operands[0].present)
7505 {
7506 reg = inst.operands[0].reg;
7507 constraint (reg != 13, _("SRS base register must be r13"));
7508 }
7509 else
7510 reg = 13;
7511
7512 inst.instruction |= reg << 16;
7513 inst.instruction |= inst.operands[1].imm;
7514 if (inst.operands[0].writeback || inst.operands[1].writeback)
7515 inst.instruction |= WRITE_BACK;
7516 }
7517
7518 /* ARM V6 strex (argument parse). */
7519
7520 static void
7521 do_strex (void)
7522 {
7523 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7524 || inst.operands[2].postind || inst.operands[2].writeback
7525 || inst.operands[2].immisreg || inst.operands[2].shifted
7526 || inst.operands[2].negative
7527 /* See comment in do_ldrex(). */
7528 || (inst.operands[2].reg == REG_PC),
7529 BAD_ADDR_MODE);
7530
7531 constraint (inst.operands[0].reg == inst.operands[1].reg
7532 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7533
7534 constraint (inst.reloc.exp.X_op != O_constant
7535 || inst.reloc.exp.X_add_number != 0,
7536 _("offset must be zero in ARM encoding"));
7537
7538 inst.instruction |= inst.operands[0].reg << 12;
7539 inst.instruction |= inst.operands[1].reg;
7540 inst.instruction |= inst.operands[2].reg << 16;
7541 inst.reloc.type = BFD_RELOC_UNUSED;
7542 }
7543
7544 static void
7545 do_strexd (void)
7546 {
7547 constraint (inst.operands[1].reg % 2 != 0,
7548 _("even register required"));
7549 constraint (inst.operands[2].present
7550 && inst.operands[2].reg != inst.operands[1].reg + 1,
7551 _("can only store two consecutive registers"));
7552 /* If op 2 were present and equal to PC, this function wouldn't
7553 have been called in the first place. */
7554 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7555
7556 constraint (inst.operands[0].reg == inst.operands[1].reg
7557 || inst.operands[0].reg == inst.operands[1].reg + 1
7558 || inst.operands[0].reg == inst.operands[3].reg,
7559 BAD_OVERLAP);
7560
7561 inst.instruction |= inst.operands[0].reg << 12;
7562 inst.instruction |= inst.operands[1].reg;
7563 inst.instruction |= inst.operands[3].reg << 16;
7564 }
7565
7566 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7567 extends it to 32-bits, and adds the result to a value in another
7568 register. You can specify a rotation by 0, 8, 16, or 24 bits
7569 before extracting the 16-bit value.
7570 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7571 Condition defaults to COND_ALWAYS.
7572 Error if any register uses R15. */
7573
7574 static void
7575 do_sxtah (void)
7576 {
7577 inst.instruction |= inst.operands[0].reg << 12;
7578 inst.instruction |= inst.operands[1].reg << 16;
7579 inst.instruction |= inst.operands[2].reg;
7580 inst.instruction |= inst.operands[3].imm << 10;
7581 }
7582
7583 /* ARM V6 SXTH.
7584
7585 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7586 Condition defaults to COND_ALWAYS.
7587 Error if any register uses R15. */
7588
7589 static void
7590 do_sxth (void)
7591 {
7592 inst.instruction |= inst.operands[0].reg << 12;
7593 inst.instruction |= inst.operands[1].reg;
7594 inst.instruction |= inst.operands[2].imm << 10;
7595 }
7596 \f
7597 /* VFP instructions. In a logical order: SP variant first, monad
7598 before dyad, arithmetic then move then load/store. */
7599
7600 static void
7601 do_vfp_sp_monadic (void)
7602 {
7603 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7604 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7605 }
7606
7607 static void
7608 do_vfp_sp_dyadic (void)
7609 {
7610 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7611 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7612 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7613 }
7614
7615 static void
7616 do_vfp_sp_compare_z (void)
7617 {
7618 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7619 }
7620
7621 static void
7622 do_vfp_dp_sp_cvt (void)
7623 {
7624 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7625 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7626 }
7627
7628 static void
7629 do_vfp_sp_dp_cvt (void)
7630 {
7631 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7632 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7633 }
7634
7635 static void
7636 do_vfp_reg_from_sp (void)
7637 {
7638 inst.instruction |= inst.operands[0].reg << 12;
7639 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7640 }
7641
7642 static void
7643 do_vfp_reg2_from_sp2 (void)
7644 {
7645 constraint (inst.operands[2].imm != 2,
7646 _("only two consecutive VFP SP registers allowed here"));
7647 inst.instruction |= inst.operands[0].reg << 12;
7648 inst.instruction |= inst.operands[1].reg << 16;
7649 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7650 }
7651
7652 static void
7653 do_vfp_sp_from_reg (void)
7654 {
7655 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7656 inst.instruction |= inst.operands[1].reg << 12;
7657 }
7658
7659 static void
7660 do_vfp_sp2_from_reg2 (void)
7661 {
7662 constraint (inst.operands[0].imm != 2,
7663 _("only two consecutive VFP SP registers allowed here"));
7664 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7665 inst.instruction |= inst.operands[1].reg << 12;
7666 inst.instruction |= inst.operands[2].reg << 16;
7667 }
7668
7669 static void
7670 do_vfp_sp_ldst (void)
7671 {
7672 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7673 encode_arm_cp_address (1, FALSE, TRUE, 0);
7674 }
7675
7676 static void
7677 do_vfp_dp_ldst (void)
7678 {
7679 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7680 encode_arm_cp_address (1, FALSE, TRUE, 0);
7681 }
7682
7683
7684 static void
7685 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7686 {
7687 if (inst.operands[0].writeback)
7688 inst.instruction |= WRITE_BACK;
7689 else
7690 constraint (ldstm_type != VFP_LDSTMIA,
7691 _("this addressing mode requires base-register writeback"));
7692 inst.instruction |= inst.operands[0].reg << 16;
7693 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7694 inst.instruction |= inst.operands[1].imm;
7695 }
7696
7697 static void
7698 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7699 {
7700 int count;
7701
7702 if (inst.operands[0].writeback)
7703 inst.instruction |= WRITE_BACK;
7704 else
7705 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7706 _("this addressing mode requires base-register writeback"));
7707
7708 inst.instruction |= inst.operands[0].reg << 16;
7709 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7710
7711 count = inst.operands[1].imm << 1;
7712 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7713 count += 1;
7714
7715 inst.instruction |= count;
7716 }
7717
7718 static void
7719 do_vfp_sp_ldstmia (void)
7720 {
7721 vfp_sp_ldstm (VFP_LDSTMIA);
7722 }
7723
7724 static void
7725 do_vfp_sp_ldstmdb (void)
7726 {
7727 vfp_sp_ldstm (VFP_LDSTMDB);
7728 }
7729
7730 static void
7731 do_vfp_dp_ldstmia (void)
7732 {
7733 vfp_dp_ldstm (VFP_LDSTMIA);
7734 }
7735
7736 static void
7737 do_vfp_dp_ldstmdb (void)
7738 {
7739 vfp_dp_ldstm (VFP_LDSTMDB);
7740 }
7741
7742 static void
7743 do_vfp_xp_ldstmia (void)
7744 {
7745 vfp_dp_ldstm (VFP_LDSTMIAX);
7746 }
7747
7748 static void
7749 do_vfp_xp_ldstmdb (void)
7750 {
7751 vfp_dp_ldstm (VFP_LDSTMDBX);
7752 }
7753
7754 static void
7755 do_vfp_dp_rd_rm (void)
7756 {
7757 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7758 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7759 }
7760
7761 static void
7762 do_vfp_dp_rn_rd (void)
7763 {
7764 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7765 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7766 }
7767
7768 static void
7769 do_vfp_dp_rd_rn (void)
7770 {
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7772 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7773 }
7774
7775 static void
7776 do_vfp_dp_rd_rn_rm (void)
7777 {
7778 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7779 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7780 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7781 }
7782
7783 static void
7784 do_vfp_dp_rd (void)
7785 {
7786 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7787 }
7788
7789 static void
7790 do_vfp_dp_rm_rd_rn (void)
7791 {
7792 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7793 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7794 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7795 }
7796
7797 /* VFPv3 instructions. */
7798 static void
7799 do_vfp_sp_const (void)
7800 {
7801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7802 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7803 inst.instruction |= (inst.operands[1].imm & 0x0f);
7804 }
7805
7806 static void
7807 do_vfp_dp_const (void)
7808 {
7809 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7810 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7811 inst.instruction |= (inst.operands[1].imm & 0x0f);
7812 }
7813
7814 static void
7815 vfp_conv (int srcsize)
7816 {
7817 unsigned immbits = srcsize - inst.operands[1].imm;
7818 inst.instruction |= (immbits & 1) << 5;
7819 inst.instruction |= (immbits >> 1);
7820 }
7821
7822 static void
7823 do_vfp_sp_conv_16 (void)
7824 {
7825 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7826 vfp_conv (16);
7827 }
7828
7829 static void
7830 do_vfp_dp_conv_16 (void)
7831 {
7832 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7833 vfp_conv (16);
7834 }
7835
7836 static void
7837 do_vfp_sp_conv_32 (void)
7838 {
7839 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7840 vfp_conv (32);
7841 }
7842
7843 static void
7844 do_vfp_dp_conv_32 (void)
7845 {
7846 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7847 vfp_conv (32);
7848 }
7849 \f
7850 /* FPA instructions. Also in a logical order. */
7851
7852 static void
7853 do_fpa_cmp (void)
7854 {
7855 inst.instruction |= inst.operands[0].reg << 16;
7856 inst.instruction |= inst.operands[1].reg;
7857 }
7858
7859 static void
7860 do_fpa_ldmstm (void)
7861 {
7862 inst.instruction |= inst.operands[0].reg << 12;
7863 switch (inst.operands[1].imm)
7864 {
7865 case 1: inst.instruction |= CP_T_X; break;
7866 case 2: inst.instruction |= CP_T_Y; break;
7867 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7868 case 4: break;
7869 default: abort ();
7870 }
7871
7872 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7873 {
7874 /* The instruction specified "ea" or "fd", so we can only accept
7875 [Rn]{!}. The instruction does not really support stacking or
7876 unstacking, so we have to emulate these by setting appropriate
7877 bits and offsets. */
7878 constraint (inst.reloc.exp.X_op != O_constant
7879 || inst.reloc.exp.X_add_number != 0,
7880 _("this instruction does not support indexing"));
7881
7882 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7883 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7884
7885 if (!(inst.instruction & INDEX_UP))
7886 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7887
7888 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7889 {
7890 inst.operands[2].preind = 0;
7891 inst.operands[2].postind = 1;
7892 }
7893 }
7894
7895 encode_arm_cp_address (2, TRUE, TRUE, 0);
7896 }
7897 \f
7898 /* iWMMXt instructions: strictly in alphabetical order. */
7899
7900 static void
7901 do_iwmmxt_tandorc (void)
7902 {
7903 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7904 }
7905
7906 static void
7907 do_iwmmxt_textrc (void)
7908 {
7909 inst.instruction |= inst.operands[0].reg << 12;
7910 inst.instruction |= inst.operands[1].imm;
7911 }
7912
7913 static void
7914 do_iwmmxt_textrm (void)
7915 {
7916 inst.instruction |= inst.operands[0].reg << 12;
7917 inst.instruction |= inst.operands[1].reg << 16;
7918 inst.instruction |= inst.operands[2].imm;
7919 }
7920
7921 static void
7922 do_iwmmxt_tinsr (void)
7923 {
7924 inst.instruction |= inst.operands[0].reg << 16;
7925 inst.instruction |= inst.operands[1].reg << 12;
7926 inst.instruction |= inst.operands[2].imm;
7927 }
7928
7929 static void
7930 do_iwmmxt_tmia (void)
7931 {
7932 inst.instruction |= inst.operands[0].reg << 5;
7933 inst.instruction |= inst.operands[1].reg;
7934 inst.instruction |= inst.operands[2].reg << 12;
7935 }
7936
7937 static void
7938 do_iwmmxt_waligni (void)
7939 {
7940 inst.instruction |= inst.operands[0].reg << 12;
7941 inst.instruction |= inst.operands[1].reg << 16;
7942 inst.instruction |= inst.operands[2].reg;
7943 inst.instruction |= inst.operands[3].imm << 20;
7944 }
7945
7946 static void
7947 do_iwmmxt_wmerge (void)
7948 {
7949 inst.instruction |= inst.operands[0].reg << 12;
7950 inst.instruction |= inst.operands[1].reg << 16;
7951 inst.instruction |= inst.operands[2].reg;
7952 inst.instruction |= inst.operands[3].imm << 21;
7953 }
7954
7955 static void
7956 do_iwmmxt_wmov (void)
7957 {
7958 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7959 inst.instruction |= inst.operands[0].reg << 12;
7960 inst.instruction |= inst.operands[1].reg << 16;
7961 inst.instruction |= inst.operands[1].reg;
7962 }
7963
7964 static void
7965 do_iwmmxt_wldstbh (void)
7966 {
7967 int reloc;
7968 inst.instruction |= inst.operands[0].reg << 12;
7969 if (thumb_mode)
7970 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7971 else
7972 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7973 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7974 }
7975
7976 static void
7977 do_iwmmxt_wldstw (void)
7978 {
7979 /* RIWR_RIWC clears .isreg for a control register. */
7980 if (!inst.operands[0].isreg)
7981 {
7982 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7983 inst.instruction |= 0xf0000000;
7984 }
7985
7986 inst.instruction |= inst.operands[0].reg << 12;
7987 encode_arm_cp_address (1, TRUE, TRUE, 0);
7988 }
7989
7990 static void
7991 do_iwmmxt_wldstd (void)
7992 {
7993 inst.instruction |= inst.operands[0].reg << 12;
7994 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7995 && inst.operands[1].immisreg)
7996 {
7997 inst.instruction &= ~0x1a000ff;
7998 inst.instruction |= (0xf << 28);
7999 if (inst.operands[1].preind)
8000 inst.instruction |= PRE_INDEX;
8001 if (!inst.operands[1].negative)
8002 inst.instruction |= INDEX_UP;
8003 if (inst.operands[1].writeback)
8004 inst.instruction |= WRITE_BACK;
8005 inst.instruction |= inst.operands[1].reg << 16;
8006 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8007 inst.instruction |= inst.operands[1].imm;
8008 }
8009 else
8010 encode_arm_cp_address (1, TRUE, FALSE, 0);
8011 }
8012
8013 static void
8014 do_iwmmxt_wshufh (void)
8015 {
8016 inst.instruction |= inst.operands[0].reg << 12;
8017 inst.instruction |= inst.operands[1].reg << 16;
8018 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
8019 inst.instruction |= (inst.operands[2].imm & 0x0f);
8020 }
8021
8022 static void
8023 do_iwmmxt_wzero (void)
8024 {
8025 /* WZERO reg is an alias for WANDN reg, reg, reg. */
8026 inst.instruction |= inst.operands[0].reg;
8027 inst.instruction |= inst.operands[0].reg << 12;
8028 inst.instruction |= inst.operands[0].reg << 16;
8029 }
8030
8031 static void
8032 do_iwmmxt_wrwrwr_or_imm5 (void)
8033 {
8034 if (inst.operands[2].isreg)
8035 do_rd_rn_rm ();
8036 else {
8037 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8038 _("immediate operand requires iWMMXt2"));
8039 do_rd_rn ();
8040 if (inst.operands[2].imm == 0)
8041 {
8042 switch ((inst.instruction >> 20) & 0xf)
8043 {
8044 case 4:
8045 case 5:
8046 case 6:
8047 case 7:
8048 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8049 inst.operands[2].imm = 16;
8050 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8051 break;
8052 case 8:
8053 case 9:
8054 case 10:
8055 case 11:
8056 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8057 inst.operands[2].imm = 32;
8058 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8059 break;
8060 case 12:
8061 case 13:
8062 case 14:
8063 case 15:
8064 {
8065 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8066 unsigned long wrn;
8067 wrn = (inst.instruction >> 16) & 0xf;
8068 inst.instruction &= 0xff0fff0f;
8069 inst.instruction |= wrn;
8070 /* Bail out here; the instruction is now assembled. */
8071 return;
8072 }
8073 }
8074 }
8075 /* Map 32 -> 0, etc. */
8076 inst.operands[2].imm &= 0x1f;
8077 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8078 }
8079 }
8080 \f
8081 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8082 operations first, then control, shift, and load/store. */
8083
8084 /* Insns like "foo X,Y,Z". */
8085
8086 static void
8087 do_mav_triple (void)
8088 {
8089 inst.instruction |= inst.operands[0].reg << 16;
8090 inst.instruction |= inst.operands[1].reg;
8091 inst.instruction |= inst.operands[2].reg << 12;
8092 }
8093
8094 /* Insns like "foo W,X,Y,Z".
8095 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8096
8097 static void
8098 do_mav_quad (void)
8099 {
8100 inst.instruction |= inst.operands[0].reg << 5;
8101 inst.instruction |= inst.operands[1].reg << 12;
8102 inst.instruction |= inst.operands[2].reg << 16;
8103 inst.instruction |= inst.operands[3].reg;
8104 }
8105
8106 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8107 static void
8108 do_mav_dspsc (void)
8109 {
8110 inst.instruction |= inst.operands[1].reg << 12;
8111 }
8112
8113 /* Maverick shift immediate instructions.
8114 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8115 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8116
8117 static void
8118 do_mav_shift (void)
8119 {
8120 int imm = inst.operands[2].imm;
8121
8122 inst.instruction |= inst.operands[0].reg << 12;
8123 inst.instruction |= inst.operands[1].reg << 16;
8124
8125 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8126 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8127 Bit 4 should be 0. */
8128 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8129
8130 inst.instruction |= imm;
8131 }
8132 \f
8133 /* XScale instructions. Also sorted arithmetic before move. */
8134
8135 /* Xscale multiply-accumulate (argument parse)
8136 MIAcc acc0,Rm,Rs
8137 MIAPHcc acc0,Rm,Rs
8138 MIAxycc acc0,Rm,Rs. */
8139
8140 static void
8141 do_xsc_mia (void)
8142 {
8143 inst.instruction |= inst.operands[1].reg;
8144 inst.instruction |= inst.operands[2].reg << 12;
8145 }
8146
8147 /* Xscale move-accumulator-register (argument parse)
8148
8149 MARcc acc0,RdLo,RdHi. */
8150
8151 static void
8152 do_xsc_mar (void)
8153 {
8154 inst.instruction |= inst.operands[1].reg << 12;
8155 inst.instruction |= inst.operands[2].reg << 16;
8156 }
8157
8158 /* Xscale move-register-accumulator (argument parse)
8159
8160 MRAcc RdLo,RdHi,acc0. */
8161
8162 static void
8163 do_xsc_mra (void)
8164 {
8165 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8166 inst.instruction |= inst.operands[0].reg << 12;
8167 inst.instruction |= inst.operands[1].reg << 16;
8168 }
8169 \f
8170 /* Encoding functions relevant only to Thumb. */
8171
8172 /* inst.operands[i] is a shifted-register operand; encode
8173 it into inst.instruction in the format used by Thumb32. */
8174
8175 static void
8176 encode_thumb32_shifted_operand (int i)
8177 {
8178 unsigned int value = inst.reloc.exp.X_add_number;
8179 unsigned int shift = inst.operands[i].shift_kind;
8180
8181 constraint (inst.operands[i].immisreg,
8182 _("shift by register not allowed in thumb mode"));
8183 inst.instruction |= inst.operands[i].reg;
8184 if (shift == SHIFT_RRX)
8185 inst.instruction |= SHIFT_ROR << 4;
8186 else
8187 {
8188 constraint (inst.reloc.exp.X_op != O_constant,
8189 _("expression too complex"));
8190
8191 constraint (value > 32
8192 || (value == 32 && (shift == SHIFT_LSL
8193 || shift == SHIFT_ROR)),
8194 _("shift expression is too large"));
8195
8196 if (value == 0)
8197 shift = SHIFT_LSL;
8198 else if (value == 32)
8199 value = 0;
8200
8201 inst.instruction |= shift << 4;
8202 inst.instruction |= (value & 0x1c) << 10;
8203 inst.instruction |= (value & 0x03) << 6;
8204 }
8205 }
8206
8207
8208 /* inst.operands[i] was set up by parse_address. Encode it into a
8209 Thumb32 format load or store instruction. Reject forms that cannot
8210 be used with such instructions. If is_t is true, reject forms that
8211 cannot be used with a T instruction; if is_d is true, reject forms
8212 that cannot be used with a D instruction. */
8213
8214 static void
8215 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8216 {
8217 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8218
8219 constraint (!inst.operands[i].isreg,
8220 _("Instruction does not support =N addresses"));
8221
8222 inst.instruction |= inst.operands[i].reg << 16;
8223 if (inst.operands[i].immisreg)
8224 {
8225 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8226 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8227 constraint (inst.operands[i].negative,
8228 _("Thumb does not support negative register indexing"));
8229 constraint (inst.operands[i].postind,
8230 _("Thumb does not support register post-indexing"));
8231 constraint (inst.operands[i].writeback,
8232 _("Thumb does not support register indexing with writeback"));
8233 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8234 _("Thumb supports only LSL in shifted register indexing"));
8235
8236 inst.instruction |= inst.operands[i].imm;
8237 if (inst.operands[i].shifted)
8238 {
8239 constraint (inst.reloc.exp.X_op != O_constant,
8240 _("expression too complex"));
8241 constraint (inst.reloc.exp.X_add_number < 0
8242 || inst.reloc.exp.X_add_number > 3,
8243 _("shift out of range"));
8244 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8245 }
8246 inst.reloc.type = BFD_RELOC_UNUSED;
8247 }
8248 else if (inst.operands[i].preind)
8249 {
8250 constraint (is_pc && inst.operands[i].writeback,
8251 _("cannot use writeback with PC-relative addressing"));
8252 constraint (is_t && inst.operands[i].writeback,
8253 _("cannot use writeback with this instruction"));
8254
8255 if (is_d)
8256 {
8257 inst.instruction |= 0x01000000;
8258 if (inst.operands[i].writeback)
8259 inst.instruction |= 0x00200000;
8260 }
8261 else
8262 {
8263 inst.instruction |= 0x00000c00;
8264 if (inst.operands[i].writeback)
8265 inst.instruction |= 0x00000100;
8266 }
8267 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8268 }
8269 else if (inst.operands[i].postind)
8270 {
8271 assert (inst.operands[i].writeback);
8272 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8273 constraint (is_t, _("cannot use post-indexing with this instruction"));
8274
8275 if (is_d)
8276 inst.instruction |= 0x00200000;
8277 else
8278 inst.instruction |= 0x00000900;
8279 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8280 }
8281 else /* unindexed - only for coprocessor */
8282 inst.error = _("instruction does not accept unindexed addressing");
8283 }
8284
8285 /* Table of Thumb instructions which exist in both 16- and 32-bit
8286 encodings (the latter only in post-V6T2 cores). The index is the
8287 value used in the insns table below. When there is more than one
8288 possible 16-bit encoding for the instruction, this table always
8289 holds variant (1).
8290 Also contains several pseudo-instructions used during relaxation. */
8291 #define T16_32_TAB \
8292 X(adc, 4140, eb400000), \
8293 X(adcs, 4140, eb500000), \
8294 X(add, 1c00, eb000000), \
8295 X(adds, 1c00, eb100000), \
8296 X(addi, 0000, f1000000), \
8297 X(addis, 0000, f1100000), \
8298 X(add_pc,000f, f20f0000), \
8299 X(add_sp,000d, f10d0000), \
8300 X(adr, 000f, f20f0000), \
8301 X(and, 4000, ea000000), \
8302 X(ands, 4000, ea100000), \
8303 X(asr, 1000, fa40f000), \
8304 X(asrs, 1000, fa50f000), \
8305 X(b, e000, f000b000), \
8306 X(bcond, d000, f0008000), \
8307 X(bic, 4380, ea200000), \
8308 X(bics, 4380, ea300000), \
8309 X(cmn, 42c0, eb100f00), \
8310 X(cmp, 2800, ebb00f00), \
8311 X(cpsie, b660, f3af8400), \
8312 X(cpsid, b670, f3af8600), \
8313 X(cpy, 4600, ea4f0000), \
8314 X(dec_sp,80dd, f1ad0d00), \
8315 X(eor, 4040, ea800000), \
8316 X(eors, 4040, ea900000), \
8317 X(inc_sp,00dd, f10d0d00), \
8318 X(ldmia, c800, e8900000), \
8319 X(ldr, 6800, f8500000), \
8320 X(ldrb, 7800, f8100000), \
8321 X(ldrh, 8800, f8300000), \
8322 X(ldrsb, 5600, f9100000), \
8323 X(ldrsh, 5e00, f9300000), \
8324 X(ldr_pc,4800, f85f0000), \
8325 X(ldr_pc2,4800, f85f0000), \
8326 X(ldr_sp,9800, f85d0000), \
8327 X(lsl, 0000, fa00f000), \
8328 X(lsls, 0000, fa10f000), \
8329 X(lsr, 0800, fa20f000), \
8330 X(lsrs, 0800, fa30f000), \
8331 X(mov, 2000, ea4f0000), \
8332 X(movs, 2000, ea5f0000), \
8333 X(mul, 4340, fb00f000), \
8334 X(muls, 4340, ffffffff), /* no 32b muls */ \
8335 X(mvn, 43c0, ea6f0000), \
8336 X(mvns, 43c0, ea7f0000), \
8337 X(neg, 4240, f1c00000), /* rsb #0 */ \
8338 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8339 X(orr, 4300, ea400000), \
8340 X(orrs, 4300, ea500000), \
8341 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8342 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8343 X(rev, ba00, fa90f080), \
8344 X(rev16, ba40, fa90f090), \
8345 X(revsh, bac0, fa90f0b0), \
8346 X(ror, 41c0, fa60f000), \
8347 X(rors, 41c0, fa70f000), \
8348 X(sbc, 4180, eb600000), \
8349 X(sbcs, 4180, eb700000), \
8350 X(stmia, c000, e8800000), \
8351 X(str, 6000, f8400000), \
8352 X(strb, 7000, f8000000), \
8353 X(strh, 8000, f8200000), \
8354 X(str_sp,9000, f84d0000), \
8355 X(sub, 1e00, eba00000), \
8356 X(subs, 1e00, ebb00000), \
8357 X(subi, 8000, f1a00000), \
8358 X(subis, 8000, f1b00000), \
8359 X(sxtb, b240, fa4ff080), \
8360 X(sxth, b200, fa0ff080), \
8361 X(tst, 4200, ea100f00), \
8362 X(uxtb, b2c0, fa5ff080), \
8363 X(uxth, b280, fa1ff080), \
8364 X(nop, bf00, f3af8000), \
8365 X(yield, bf10, f3af8001), \
8366 X(wfe, bf20, f3af8002), \
8367 X(wfi, bf30, f3af8003), \
8368 X(sev, bf40, f3af9004), /* typo, 8004? */
8369
8370 /* To catch errors in encoding functions, the codes are all offset by
8371 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8372 as 16-bit instructions. */
8373 #define X(a,b,c) T_MNEM_##a
8374 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8375 #undef X
8376
8377 #define X(a,b,c) 0x##b
8378 static const unsigned short thumb_op16[] = { T16_32_TAB };
8379 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8380 #undef X
8381
8382 #define X(a,b,c) 0x##c
8383 static const unsigned int thumb_op32[] = { T16_32_TAB };
8384 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8385 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8386 #undef X
8387 #undef T16_32_TAB
8388
8389 /* Thumb instruction encoders, in alphabetical order. */
8390
8391 /* ADDW or SUBW. */
8392 static void
8393 do_t_add_sub_w (void)
8394 {
8395 int Rd, Rn;
8396
8397 Rd = inst.operands[0].reg;
8398 Rn = inst.operands[1].reg;
8399
8400 constraint (Rd == 15, _("PC not allowed as destination"));
8401 inst.instruction |= (Rn << 16) | (Rd << 8);
8402 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8403 }
8404
8405 /* Parse an add or subtract instruction. We get here with inst.instruction
8406 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8407
8408 static void
8409 do_t_add_sub (void)
8410 {
8411 int Rd, Rs, Rn;
8412
8413 Rd = inst.operands[0].reg;
8414 Rs = (inst.operands[1].present
8415 ? inst.operands[1].reg /* Rd, Rs, foo */
8416 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8417
8418 if (unified_syntax)
8419 {
8420 bfd_boolean flags;
8421 bfd_boolean narrow;
8422 int opcode;
8423
8424 flags = (inst.instruction == T_MNEM_adds
8425 || inst.instruction == T_MNEM_subs);
8426 if (flags)
8427 narrow = (current_it_mask == 0);
8428 else
8429 narrow = (current_it_mask != 0);
8430 if (!inst.operands[2].isreg)
8431 {
8432 int add;
8433
8434 add = (inst.instruction == T_MNEM_add
8435 || inst.instruction == T_MNEM_adds);
8436 opcode = 0;
8437 if (inst.size_req != 4)
8438 {
8439 /* Attempt to use a narrow opcode, with relaxation if
8440 appropriate. */
8441 if (Rd == REG_SP && Rs == REG_SP && !flags)
8442 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8443 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8444 opcode = T_MNEM_add_sp;
8445 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8446 opcode = T_MNEM_add_pc;
8447 else if (Rd <= 7 && Rs <= 7 && narrow)
8448 {
8449 if (flags)
8450 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8451 else
8452 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8453 }
8454 if (opcode)
8455 {
8456 inst.instruction = THUMB_OP16(opcode);
8457 inst.instruction |= (Rd << 4) | Rs;
8458 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8459 if (inst.size_req != 2)
8460 inst.relax = opcode;
8461 }
8462 else
8463 constraint (inst.size_req == 2, BAD_HIREG);
8464 }
8465 if (inst.size_req == 4
8466 || (inst.size_req != 2 && !opcode))
8467 {
8468 if (Rd == REG_PC)
8469 {
8470 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8471 _("only SUBS PC, LR, #const allowed"));
8472 constraint (inst.reloc.exp.X_op != O_constant,
8473 _("expression too complex"));
8474 constraint (inst.reloc.exp.X_add_number < 0
8475 || inst.reloc.exp.X_add_number > 0xff,
8476 _("immediate value out of range"));
8477 inst.instruction = T2_SUBS_PC_LR
8478 | inst.reloc.exp.X_add_number;
8479 inst.reloc.type = BFD_RELOC_UNUSED;
8480 return;
8481 }
8482 else if (Rs == REG_PC)
8483 {
8484 /* Always use addw/subw. */
8485 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8486 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8487 }
8488 else
8489 {
8490 inst.instruction = THUMB_OP32 (inst.instruction);
8491 inst.instruction = (inst.instruction & 0xe1ffffff)
8492 | 0x10000000;
8493 if (flags)
8494 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8495 else
8496 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8497 }
8498 inst.instruction |= Rd << 8;
8499 inst.instruction |= Rs << 16;
8500 }
8501 }
8502 else
8503 {
8504 Rn = inst.operands[2].reg;
8505 /* See if we can do this with a 16-bit instruction. */
8506 if (!inst.operands[2].shifted && inst.size_req != 4)
8507 {
8508 if (Rd > 7 || Rs > 7 || Rn > 7)
8509 narrow = FALSE;
8510
8511 if (narrow)
8512 {
8513 inst.instruction = ((inst.instruction == T_MNEM_adds
8514 || inst.instruction == T_MNEM_add)
8515 ? T_OPCODE_ADD_R3
8516 : T_OPCODE_SUB_R3);
8517 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8518 return;
8519 }
8520
8521 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
8522 {
8523 /* Thumb-1 cores (except v6-M) require at least one high
8524 register in a narrow non flag setting add. */
8525 if (Rd > 7 || Rn > 7
8526 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
8527 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
8528 {
8529 if (Rd == Rn)
8530 {
8531 Rn = Rs;
8532 Rs = Rd;
8533 }
8534 inst.instruction = T_OPCODE_ADD_HI;
8535 inst.instruction |= (Rd & 8) << 4;
8536 inst.instruction |= (Rd & 7);
8537 inst.instruction |= Rn << 3;
8538 return;
8539 }
8540 }
8541 }
8542 /* If we get here, it can't be done in 16 bits. */
8543 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8544 _("shift must be constant"));
8545 inst.instruction = THUMB_OP32 (inst.instruction);
8546 inst.instruction |= Rd << 8;
8547 inst.instruction |= Rs << 16;
8548 encode_thumb32_shifted_operand (2);
8549 }
8550 }
8551 else
8552 {
8553 constraint (inst.instruction == T_MNEM_adds
8554 || inst.instruction == T_MNEM_subs,
8555 BAD_THUMB32);
8556
8557 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8558 {
8559 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8560 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8561 BAD_HIREG);
8562
8563 inst.instruction = (inst.instruction == T_MNEM_add
8564 ? 0x0000 : 0x8000);
8565 inst.instruction |= (Rd << 4) | Rs;
8566 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8567 return;
8568 }
8569
8570 Rn = inst.operands[2].reg;
8571 constraint (inst.operands[2].shifted, _("unshifted register required"));
8572
8573 /* We now have Rd, Rs, and Rn set to registers. */
8574 if (Rd > 7 || Rs > 7 || Rn > 7)
8575 {
8576 /* Can't do this for SUB. */
8577 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8578 inst.instruction = T_OPCODE_ADD_HI;
8579 inst.instruction |= (Rd & 8) << 4;
8580 inst.instruction |= (Rd & 7);
8581 if (Rs == Rd)
8582 inst.instruction |= Rn << 3;
8583 else if (Rn == Rd)
8584 inst.instruction |= Rs << 3;
8585 else
8586 constraint (1, _("dest must overlap one source register"));
8587 }
8588 else
8589 {
8590 inst.instruction = (inst.instruction == T_MNEM_add
8591 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8592 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8593 }
8594 }
8595 }
8596
8597 static void
8598 do_t_adr (void)
8599 {
8600 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8601 {
8602 /* Defer to section relaxation. */
8603 inst.relax = inst.instruction;
8604 inst.instruction = THUMB_OP16 (inst.instruction);
8605 inst.instruction |= inst.operands[0].reg << 4;
8606 }
8607 else if (unified_syntax && inst.size_req != 2)
8608 {
8609 /* Generate a 32-bit opcode. */
8610 inst.instruction = THUMB_OP32 (inst.instruction);
8611 inst.instruction |= inst.operands[0].reg << 8;
8612 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8613 inst.reloc.pc_rel = 1;
8614 }
8615 else
8616 {
8617 /* Generate a 16-bit opcode. */
8618 inst.instruction = THUMB_OP16 (inst.instruction);
8619 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8620 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8621 inst.reloc.pc_rel = 1;
8622
8623 inst.instruction |= inst.operands[0].reg << 4;
8624 }
8625 }
8626
8627 /* Arithmetic instructions for which there is just one 16-bit
8628 instruction encoding, and it allows only two low registers.
8629 For maximal compatibility with ARM syntax, we allow three register
8630 operands even when Thumb-32 instructions are not available, as long
8631 as the first two are identical. For instance, both "sbc r0,r1" and
8632 "sbc r0,r0,r1" are allowed. */
8633 static void
8634 do_t_arit3 (void)
8635 {
8636 int Rd, Rs, Rn;
8637
8638 Rd = inst.operands[0].reg;
8639 Rs = (inst.operands[1].present
8640 ? inst.operands[1].reg /* Rd, Rs, foo */
8641 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8642 Rn = inst.operands[2].reg;
8643
8644 if (unified_syntax)
8645 {
8646 if (!inst.operands[2].isreg)
8647 {
8648 /* For an immediate, we always generate a 32-bit opcode;
8649 section relaxation will shrink it later if possible. */
8650 inst.instruction = THUMB_OP32 (inst.instruction);
8651 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8652 inst.instruction |= Rd << 8;
8653 inst.instruction |= Rs << 16;
8654 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8655 }
8656 else
8657 {
8658 bfd_boolean narrow;
8659
8660 /* See if we can do this with a 16-bit instruction. */
8661 if (THUMB_SETS_FLAGS (inst.instruction))
8662 narrow = current_it_mask == 0;
8663 else
8664 narrow = current_it_mask != 0;
8665
8666 if (Rd > 7 || Rn > 7 || Rs > 7)
8667 narrow = FALSE;
8668 if (inst.operands[2].shifted)
8669 narrow = FALSE;
8670 if (inst.size_req == 4)
8671 narrow = FALSE;
8672
8673 if (narrow
8674 && Rd == Rs)
8675 {
8676 inst.instruction = THUMB_OP16 (inst.instruction);
8677 inst.instruction |= Rd;
8678 inst.instruction |= Rn << 3;
8679 return;
8680 }
8681
8682 /* If we get here, it can't be done in 16 bits. */
8683 constraint (inst.operands[2].shifted
8684 && inst.operands[2].immisreg,
8685 _("shift must be constant"));
8686 inst.instruction = THUMB_OP32 (inst.instruction);
8687 inst.instruction |= Rd << 8;
8688 inst.instruction |= Rs << 16;
8689 encode_thumb32_shifted_operand (2);
8690 }
8691 }
8692 else
8693 {
8694 /* On its face this is a lie - the instruction does set the
8695 flags. However, the only supported mnemonic in this mode
8696 says it doesn't. */
8697 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8698
8699 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8700 _("unshifted register required"));
8701 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8702 constraint (Rd != Rs,
8703 _("dest and source1 must be the same register"));
8704
8705 inst.instruction = THUMB_OP16 (inst.instruction);
8706 inst.instruction |= Rd;
8707 inst.instruction |= Rn << 3;
8708 }
8709 }
8710
8711 /* Similarly, but for instructions where the arithmetic operation is
8712 commutative, so we can allow either of them to be different from
8713 the destination operand in a 16-bit instruction. For instance, all
8714 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8715 accepted. */
8716 static void
8717 do_t_arit3c (void)
8718 {
8719 int Rd, Rs, Rn;
8720
8721 Rd = inst.operands[0].reg;
8722 Rs = (inst.operands[1].present
8723 ? inst.operands[1].reg /* Rd, Rs, foo */
8724 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8725 Rn = inst.operands[2].reg;
8726
8727 if (unified_syntax)
8728 {
8729 if (!inst.operands[2].isreg)
8730 {
8731 /* For an immediate, we always generate a 32-bit opcode;
8732 section relaxation will shrink it later if possible. */
8733 inst.instruction = THUMB_OP32 (inst.instruction);
8734 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8735 inst.instruction |= Rd << 8;
8736 inst.instruction |= Rs << 16;
8737 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8738 }
8739 else
8740 {
8741 bfd_boolean narrow;
8742
8743 /* See if we can do this with a 16-bit instruction. */
8744 if (THUMB_SETS_FLAGS (inst.instruction))
8745 narrow = current_it_mask == 0;
8746 else
8747 narrow = current_it_mask != 0;
8748
8749 if (Rd > 7 || Rn > 7 || Rs > 7)
8750 narrow = FALSE;
8751 if (inst.operands[2].shifted)
8752 narrow = FALSE;
8753 if (inst.size_req == 4)
8754 narrow = FALSE;
8755
8756 if (narrow)
8757 {
8758 if (Rd == Rs)
8759 {
8760 inst.instruction = THUMB_OP16 (inst.instruction);
8761 inst.instruction |= Rd;
8762 inst.instruction |= Rn << 3;
8763 return;
8764 }
8765 if (Rd == Rn)
8766 {
8767 inst.instruction = THUMB_OP16 (inst.instruction);
8768 inst.instruction |= Rd;
8769 inst.instruction |= Rs << 3;
8770 return;
8771 }
8772 }
8773
8774 /* If we get here, it can't be done in 16 bits. */
8775 constraint (inst.operands[2].shifted
8776 && inst.operands[2].immisreg,
8777 _("shift must be constant"));
8778 inst.instruction = THUMB_OP32 (inst.instruction);
8779 inst.instruction |= Rd << 8;
8780 inst.instruction |= Rs << 16;
8781 encode_thumb32_shifted_operand (2);
8782 }
8783 }
8784 else
8785 {
8786 /* On its face this is a lie - the instruction does set the
8787 flags. However, the only supported mnemonic in this mode
8788 says it doesn't. */
8789 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8790
8791 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8792 _("unshifted register required"));
8793 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8794
8795 inst.instruction = THUMB_OP16 (inst.instruction);
8796 inst.instruction |= Rd;
8797
8798 if (Rd == Rs)
8799 inst.instruction |= Rn << 3;
8800 else if (Rd == Rn)
8801 inst.instruction |= Rs << 3;
8802 else
8803 constraint (1, _("dest must overlap one source register"));
8804 }
8805 }
8806
8807 static void
8808 do_t_barrier (void)
8809 {
8810 if (inst.operands[0].present)
8811 {
8812 constraint ((inst.instruction & 0xf0) != 0x40
8813 && inst.operands[0].imm != 0xf,
8814 _("bad barrier type"));
8815 inst.instruction |= inst.operands[0].imm;
8816 }
8817 else
8818 inst.instruction |= 0xf;
8819 }
8820
8821 static void
8822 do_t_bfc (void)
8823 {
8824 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8825 constraint (msb > 32, _("bit-field extends past end of register"));
8826 /* The instruction encoding stores the LSB and MSB,
8827 not the LSB and width. */
8828 inst.instruction |= inst.operands[0].reg << 8;
8829 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8830 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8831 inst.instruction |= msb - 1;
8832 }
8833
8834 static void
8835 do_t_bfi (void)
8836 {
8837 unsigned int msb;
8838
8839 /* #0 in second position is alternative syntax for bfc, which is
8840 the same instruction but with REG_PC in the Rm field. */
8841 if (!inst.operands[1].isreg)
8842 inst.operands[1].reg = REG_PC;
8843
8844 msb = inst.operands[2].imm + inst.operands[3].imm;
8845 constraint (msb > 32, _("bit-field extends past end of register"));
8846 /* The instruction encoding stores the LSB and MSB,
8847 not the LSB and width. */
8848 inst.instruction |= inst.operands[0].reg << 8;
8849 inst.instruction |= inst.operands[1].reg << 16;
8850 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8851 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8852 inst.instruction |= msb - 1;
8853 }
8854
8855 static void
8856 do_t_bfx (void)
8857 {
8858 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8859 _("bit-field extends past end of register"));
8860 inst.instruction |= inst.operands[0].reg << 8;
8861 inst.instruction |= inst.operands[1].reg << 16;
8862 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8863 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8864 inst.instruction |= inst.operands[3].imm - 1;
8865 }
8866
8867 /* ARM V5 Thumb BLX (argument parse)
8868 BLX <target_addr> which is BLX(1)
8869 BLX <Rm> which is BLX(2)
8870 Unfortunately, there are two different opcodes for this mnemonic.
8871 So, the insns[].value is not used, and the code here zaps values
8872 into inst.instruction.
8873
8874 ??? How to take advantage of the additional two bits of displacement
8875 available in Thumb32 mode? Need new relocation? */
8876
8877 static void
8878 do_t_blx (void)
8879 {
8880 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8881 if (inst.operands[0].isreg)
8882 /* We have a register, so this is BLX(2). */
8883 inst.instruction |= inst.operands[0].reg << 3;
8884 else
8885 {
8886 /* No register. This must be BLX(1). */
8887 inst.instruction = 0xf000e800;
8888 #ifdef OBJ_ELF
8889 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8890 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8891 else
8892 #endif
8893 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8894 inst.reloc.pc_rel = 1;
8895 }
8896 }
8897
8898 static void
8899 do_t_branch (void)
8900 {
8901 int opcode;
8902 int cond;
8903
8904 if (current_it_mask)
8905 {
8906 /* Conditional branches inside IT blocks are encoded as unconditional
8907 branches. */
8908 cond = COND_ALWAYS;
8909 /* A branch must be the last instruction in an IT block. */
8910 constraint (current_it_mask != 0x10, BAD_BRANCH);
8911 }
8912 else
8913 cond = inst.cond;
8914
8915 if (cond != COND_ALWAYS)
8916 opcode = T_MNEM_bcond;
8917 else
8918 opcode = inst.instruction;
8919
8920 if (unified_syntax && inst.size_req == 4)
8921 {
8922 inst.instruction = THUMB_OP32(opcode);
8923 if (cond == COND_ALWAYS)
8924 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8925 else
8926 {
8927 assert (cond != 0xF);
8928 inst.instruction |= cond << 22;
8929 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8930 }
8931 }
8932 else
8933 {
8934 inst.instruction = THUMB_OP16(opcode);
8935 if (cond == COND_ALWAYS)
8936 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8937 else
8938 {
8939 inst.instruction |= cond << 8;
8940 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8941 }
8942 /* Allow section relaxation. */
8943 if (unified_syntax && inst.size_req != 2)
8944 inst.relax = opcode;
8945 }
8946
8947 inst.reloc.pc_rel = 1;
8948 }
8949
8950 static void
8951 do_t_bkpt (void)
8952 {
8953 constraint (inst.cond != COND_ALWAYS,
8954 _("instruction is always unconditional"));
8955 if (inst.operands[0].present)
8956 {
8957 constraint (inst.operands[0].imm > 255,
8958 _("immediate value out of range"));
8959 inst.instruction |= inst.operands[0].imm;
8960 }
8961 }
8962
8963 static void
8964 do_t_branch23 (void)
8965 {
8966 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8967 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8968 inst.reloc.pc_rel = 1;
8969
8970 /* If the destination of the branch is a defined symbol which does not have
8971 the THUMB_FUNC attribute, then we must be calling a function which has
8972 the (interfacearm) attribute. We look for the Thumb entry point to that
8973 function and change the branch to refer to that function instead. */
8974 if ( inst.reloc.exp.X_op == O_symbol
8975 && inst.reloc.exp.X_add_symbol != NULL
8976 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8977 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8978 inst.reloc.exp.X_add_symbol =
8979 find_real_start (inst.reloc.exp.X_add_symbol);
8980 }
8981
8982 static void
8983 do_t_bx (void)
8984 {
8985 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8986 inst.instruction |= inst.operands[0].reg << 3;
8987 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8988 should cause the alignment to be checked once it is known. This is
8989 because BX PC only works if the instruction is word aligned. */
8990 }
8991
8992 static void
8993 do_t_bxj (void)
8994 {
8995 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8996 if (inst.operands[0].reg == REG_PC)
8997 as_tsktsk (_("use of r15 in bxj is not really useful"));
8998
8999 inst.instruction |= inst.operands[0].reg << 16;
9000 }
9001
9002 static void
9003 do_t_clz (void)
9004 {
9005 inst.instruction |= inst.operands[0].reg << 8;
9006 inst.instruction |= inst.operands[1].reg << 16;
9007 inst.instruction |= inst.operands[1].reg;
9008 }
9009
9010 static void
9011 do_t_cps (void)
9012 {
9013 constraint (current_it_mask, BAD_NOT_IT);
9014 inst.instruction |= inst.operands[0].imm;
9015 }
9016
9017 static void
9018 do_t_cpsi (void)
9019 {
9020 constraint (current_it_mask, BAD_NOT_IT);
9021 if (unified_syntax
9022 && (inst.operands[1].present || inst.size_req == 4)
9023 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
9024 {
9025 unsigned int imod = (inst.instruction & 0x0030) >> 4;
9026 inst.instruction = 0xf3af8000;
9027 inst.instruction |= imod << 9;
9028 inst.instruction |= inst.operands[0].imm << 5;
9029 if (inst.operands[1].present)
9030 inst.instruction |= 0x100 | inst.operands[1].imm;
9031 }
9032 else
9033 {
9034 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
9035 && (inst.operands[0].imm & 4),
9036 _("selected processor does not support 'A' form "
9037 "of this instruction"));
9038 constraint (inst.operands[1].present || inst.size_req == 4,
9039 _("Thumb does not support the 2-argument "
9040 "form of this instruction"));
9041 inst.instruction |= inst.operands[0].imm;
9042 }
9043 }
9044
9045 /* THUMB CPY instruction (argument parse). */
9046
9047 static void
9048 do_t_cpy (void)
9049 {
9050 if (inst.size_req == 4)
9051 {
9052 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9053 inst.instruction |= inst.operands[0].reg << 8;
9054 inst.instruction |= inst.operands[1].reg;
9055 }
9056 else
9057 {
9058 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9059 inst.instruction |= (inst.operands[0].reg & 0x7);
9060 inst.instruction |= inst.operands[1].reg << 3;
9061 }
9062 }
9063
9064 static void
9065 do_t_cbz (void)
9066 {
9067 constraint (current_it_mask, BAD_NOT_IT);
9068 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9069 inst.instruction |= inst.operands[0].reg;
9070 inst.reloc.pc_rel = 1;
9071 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9072 }
9073
9074 static void
9075 do_t_dbg (void)
9076 {
9077 inst.instruction |= inst.operands[0].imm;
9078 }
9079
9080 static void
9081 do_t_div (void)
9082 {
9083 if (!inst.operands[1].present)
9084 inst.operands[1].reg = inst.operands[0].reg;
9085 inst.instruction |= inst.operands[0].reg << 8;
9086 inst.instruction |= inst.operands[1].reg << 16;
9087 inst.instruction |= inst.operands[2].reg;
9088 }
9089
9090 static void
9091 do_t_hint (void)
9092 {
9093 if (unified_syntax && inst.size_req == 4)
9094 inst.instruction = THUMB_OP32 (inst.instruction);
9095 else
9096 inst.instruction = THUMB_OP16 (inst.instruction);
9097 }
9098
9099 static void
9100 do_t_it (void)
9101 {
9102 unsigned int cond = inst.operands[0].imm;
9103
9104 constraint (current_it_mask, BAD_NOT_IT);
9105 current_it_mask = (inst.instruction & 0xf) | 0x10;
9106 current_cc = cond;
9107
9108 /* If the condition is a negative condition, invert the mask. */
9109 if ((cond & 0x1) == 0x0)
9110 {
9111 unsigned int mask = inst.instruction & 0x000f;
9112
9113 if ((mask & 0x7) == 0)
9114 /* no conversion needed */;
9115 else if ((mask & 0x3) == 0)
9116 mask ^= 0x8;
9117 else if ((mask & 0x1) == 0)
9118 mask ^= 0xC;
9119 else
9120 mask ^= 0xE;
9121
9122 inst.instruction &= 0xfff0;
9123 inst.instruction |= mask;
9124 }
9125
9126 inst.instruction |= cond << 4;
9127 }
9128
9129 /* Helper function used for both push/pop and ldm/stm. */
9130 static void
9131 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9132 {
9133 bfd_boolean load;
9134
9135 load = (inst.instruction & (1 << 20)) != 0;
9136
9137 if (mask & (1 << 13))
9138 inst.error = _("SP not allowed in register list");
9139 if (load)
9140 {
9141 if (mask & (1 << 14)
9142 && mask & (1 << 15))
9143 inst.error = _("LR and PC should not both be in register list");
9144
9145 if ((mask & (1 << base)) != 0
9146 && writeback)
9147 as_warn (_("base register should not be in register list "
9148 "when written back"));
9149 }
9150 else
9151 {
9152 if (mask & (1 << 15))
9153 inst.error = _("PC not allowed in register list");
9154
9155 if (mask & (1 << base))
9156 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9157 }
9158
9159 if ((mask & (mask - 1)) == 0)
9160 {
9161 /* Single register transfers implemented as str/ldr. */
9162 if (writeback)
9163 {
9164 if (inst.instruction & (1 << 23))
9165 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9166 else
9167 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9168 }
9169 else
9170 {
9171 if (inst.instruction & (1 << 23))
9172 inst.instruction = 0x00800000; /* ia -> [base] */
9173 else
9174 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9175 }
9176
9177 inst.instruction |= 0xf8400000;
9178 if (load)
9179 inst.instruction |= 0x00100000;
9180
9181 mask = ffs (mask) - 1;
9182 mask <<= 12;
9183 }
9184 else if (writeback)
9185 inst.instruction |= WRITE_BACK;
9186
9187 inst.instruction |= mask;
9188 inst.instruction |= base << 16;
9189 }
9190
9191 static void
9192 do_t_ldmstm (void)
9193 {
9194 /* This really doesn't seem worth it. */
9195 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9196 _("expression too complex"));
9197 constraint (inst.operands[1].writeback,
9198 _("Thumb load/store multiple does not support {reglist}^"));
9199
9200 if (unified_syntax)
9201 {
9202 bfd_boolean narrow;
9203 unsigned mask;
9204
9205 narrow = FALSE;
9206 /* See if we can use a 16-bit instruction. */
9207 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9208 && inst.size_req != 4
9209 && !(inst.operands[1].imm & ~0xff))
9210 {
9211 mask = 1 << inst.operands[0].reg;
9212
9213 if (inst.operands[0].reg <= 7
9214 && (inst.instruction == T_MNEM_stmia
9215 ? inst.operands[0].writeback
9216 : (inst.operands[0].writeback
9217 == !(inst.operands[1].imm & mask))))
9218 {
9219 if (inst.instruction == T_MNEM_stmia
9220 && (inst.operands[1].imm & mask)
9221 && (inst.operands[1].imm & (mask - 1)))
9222 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9223 inst.operands[0].reg);
9224
9225 inst.instruction = THUMB_OP16 (inst.instruction);
9226 inst.instruction |= inst.operands[0].reg << 8;
9227 inst.instruction |= inst.operands[1].imm;
9228 narrow = TRUE;
9229 }
9230 else if (inst.operands[0] .reg == REG_SP
9231 && inst.operands[0].writeback)
9232 {
9233 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9234 ? T_MNEM_push : T_MNEM_pop);
9235 inst.instruction |= inst.operands[1].imm;
9236 narrow = TRUE;
9237 }
9238 }
9239
9240 if (!narrow)
9241 {
9242 if (inst.instruction < 0xffff)
9243 inst.instruction = THUMB_OP32 (inst.instruction);
9244
9245 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9246 inst.operands[0].writeback);
9247 }
9248 }
9249 else
9250 {
9251 constraint (inst.operands[0].reg > 7
9252 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9253 constraint (inst.instruction != T_MNEM_ldmia
9254 && inst.instruction != T_MNEM_stmia,
9255 _("Thumb-2 instruction only valid in unified syntax"));
9256 if (inst.instruction == T_MNEM_stmia)
9257 {
9258 if (!inst.operands[0].writeback)
9259 as_warn (_("this instruction will write back the base register"));
9260 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9261 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9262 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9263 inst.operands[0].reg);
9264 }
9265 else
9266 {
9267 if (!inst.operands[0].writeback
9268 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9269 as_warn (_("this instruction will write back the base register"));
9270 else if (inst.operands[0].writeback
9271 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9272 as_warn (_("this instruction will not write back the base register"));
9273 }
9274
9275 inst.instruction = THUMB_OP16 (inst.instruction);
9276 inst.instruction |= inst.operands[0].reg << 8;
9277 inst.instruction |= inst.operands[1].imm;
9278 }
9279 }
9280
9281 static void
9282 do_t_ldrex (void)
9283 {
9284 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9285 || inst.operands[1].postind || inst.operands[1].writeback
9286 || inst.operands[1].immisreg || inst.operands[1].shifted
9287 || inst.operands[1].negative,
9288 BAD_ADDR_MODE);
9289
9290 inst.instruction |= inst.operands[0].reg << 12;
9291 inst.instruction |= inst.operands[1].reg << 16;
9292 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9293 }
9294
9295 static void
9296 do_t_ldrexd (void)
9297 {
9298 if (!inst.operands[1].present)
9299 {
9300 constraint (inst.operands[0].reg == REG_LR,
9301 _("r14 not allowed as first register "
9302 "when second register is omitted"));
9303 inst.operands[1].reg = inst.operands[0].reg + 1;
9304 }
9305 constraint (inst.operands[0].reg == inst.operands[1].reg,
9306 BAD_OVERLAP);
9307
9308 inst.instruction |= inst.operands[0].reg << 12;
9309 inst.instruction |= inst.operands[1].reg << 8;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 }
9312
9313 static void
9314 do_t_ldst (void)
9315 {
9316 unsigned long opcode;
9317 int Rn;
9318
9319 opcode = inst.instruction;
9320 if (unified_syntax)
9321 {
9322 if (!inst.operands[1].isreg)
9323 {
9324 if (opcode <= 0xffff)
9325 inst.instruction = THUMB_OP32 (opcode);
9326 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9327 return;
9328 }
9329 if (inst.operands[1].isreg
9330 && !inst.operands[1].writeback
9331 && !inst.operands[1].shifted && !inst.operands[1].postind
9332 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9333 && opcode <= 0xffff
9334 && inst.size_req != 4)
9335 {
9336 /* Insn may have a 16-bit form. */
9337 Rn = inst.operands[1].reg;
9338 if (inst.operands[1].immisreg)
9339 {
9340 inst.instruction = THUMB_OP16 (opcode);
9341 /* [Rn, Rik] */
9342 if (Rn <= 7 && inst.operands[1].imm <= 7)
9343 goto op16;
9344 }
9345 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9346 && opcode != T_MNEM_ldrsb)
9347 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9348 || (Rn == REG_SP && opcode == T_MNEM_str))
9349 {
9350 /* [Rn, #const] */
9351 if (Rn > 7)
9352 {
9353 if (Rn == REG_PC)
9354 {
9355 if (inst.reloc.pc_rel)
9356 opcode = T_MNEM_ldr_pc2;
9357 else
9358 opcode = T_MNEM_ldr_pc;
9359 }
9360 else
9361 {
9362 if (opcode == T_MNEM_ldr)
9363 opcode = T_MNEM_ldr_sp;
9364 else
9365 opcode = T_MNEM_str_sp;
9366 }
9367 inst.instruction = inst.operands[0].reg << 8;
9368 }
9369 else
9370 {
9371 inst.instruction = inst.operands[0].reg;
9372 inst.instruction |= inst.operands[1].reg << 3;
9373 }
9374 inst.instruction |= THUMB_OP16 (opcode);
9375 if (inst.size_req == 2)
9376 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9377 else
9378 inst.relax = opcode;
9379 return;
9380 }
9381 }
9382 /* Definitely a 32-bit variant. */
9383 inst.instruction = THUMB_OP32 (opcode);
9384 inst.instruction |= inst.operands[0].reg << 12;
9385 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9386 return;
9387 }
9388
9389 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9390
9391 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9392 {
9393 /* Only [Rn,Rm] is acceptable. */
9394 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9395 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9396 || inst.operands[1].postind || inst.operands[1].shifted
9397 || inst.operands[1].negative,
9398 _("Thumb does not support this addressing mode"));
9399 inst.instruction = THUMB_OP16 (inst.instruction);
9400 goto op16;
9401 }
9402
9403 inst.instruction = THUMB_OP16 (inst.instruction);
9404 if (!inst.operands[1].isreg)
9405 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9406 return;
9407
9408 constraint (!inst.operands[1].preind
9409 || inst.operands[1].shifted
9410 || inst.operands[1].writeback,
9411 _("Thumb does not support this addressing mode"));
9412 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9413 {
9414 constraint (inst.instruction & 0x0600,
9415 _("byte or halfword not valid for base register"));
9416 constraint (inst.operands[1].reg == REG_PC
9417 && !(inst.instruction & THUMB_LOAD_BIT),
9418 _("r15 based store not allowed"));
9419 constraint (inst.operands[1].immisreg,
9420 _("invalid base register for register offset"));
9421
9422 if (inst.operands[1].reg == REG_PC)
9423 inst.instruction = T_OPCODE_LDR_PC;
9424 else if (inst.instruction & THUMB_LOAD_BIT)
9425 inst.instruction = T_OPCODE_LDR_SP;
9426 else
9427 inst.instruction = T_OPCODE_STR_SP;
9428
9429 inst.instruction |= inst.operands[0].reg << 8;
9430 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9431 return;
9432 }
9433
9434 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9435 if (!inst.operands[1].immisreg)
9436 {
9437 /* Immediate offset. */
9438 inst.instruction |= inst.operands[0].reg;
9439 inst.instruction |= inst.operands[1].reg << 3;
9440 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9441 return;
9442 }
9443
9444 /* Register offset. */
9445 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9446 constraint (inst.operands[1].negative,
9447 _("Thumb does not support this addressing mode"));
9448
9449 op16:
9450 switch (inst.instruction)
9451 {
9452 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9453 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9454 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9455 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9456 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9457 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9458 case 0x5600 /* ldrsb */:
9459 case 0x5e00 /* ldrsh */: break;
9460 default: abort ();
9461 }
9462
9463 inst.instruction |= inst.operands[0].reg;
9464 inst.instruction |= inst.operands[1].reg << 3;
9465 inst.instruction |= inst.operands[1].imm << 6;
9466 }
9467
9468 static void
9469 do_t_ldstd (void)
9470 {
9471 if (!inst.operands[1].present)
9472 {
9473 inst.operands[1].reg = inst.operands[0].reg + 1;
9474 constraint (inst.operands[0].reg == REG_LR,
9475 _("r14 not allowed here"));
9476 }
9477 inst.instruction |= inst.operands[0].reg << 12;
9478 inst.instruction |= inst.operands[1].reg << 8;
9479 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9480 }
9481
9482 static void
9483 do_t_ldstt (void)
9484 {
9485 inst.instruction |= inst.operands[0].reg << 12;
9486 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9487 }
9488
9489 static void
9490 do_t_mla (void)
9491 {
9492 inst.instruction |= inst.operands[0].reg << 8;
9493 inst.instruction |= inst.operands[1].reg << 16;
9494 inst.instruction |= inst.operands[2].reg;
9495 inst.instruction |= inst.operands[3].reg << 12;
9496 }
9497
9498 static void
9499 do_t_mlal (void)
9500 {
9501 inst.instruction |= inst.operands[0].reg << 12;
9502 inst.instruction |= inst.operands[1].reg << 8;
9503 inst.instruction |= inst.operands[2].reg << 16;
9504 inst.instruction |= inst.operands[3].reg;
9505 }
9506
9507 static void
9508 do_t_mov_cmp (void)
9509 {
9510 if (unified_syntax)
9511 {
9512 int r0off = (inst.instruction == T_MNEM_mov
9513 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9514 unsigned long opcode;
9515 bfd_boolean narrow;
9516 bfd_boolean low_regs;
9517
9518 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9519 opcode = inst.instruction;
9520 if (current_it_mask)
9521 narrow = opcode != T_MNEM_movs;
9522 else
9523 narrow = opcode != T_MNEM_movs || low_regs;
9524 if (inst.size_req == 4
9525 || inst.operands[1].shifted)
9526 narrow = FALSE;
9527
9528 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9529 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9530 && !inst.operands[1].shifted
9531 && inst.operands[0].reg == REG_PC
9532 && inst.operands[1].reg == REG_LR)
9533 {
9534 inst.instruction = T2_SUBS_PC_LR;
9535 return;
9536 }
9537
9538 if (!inst.operands[1].isreg)
9539 {
9540 /* Immediate operand. */
9541 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9542 narrow = 0;
9543 if (low_regs && narrow)
9544 {
9545 inst.instruction = THUMB_OP16 (opcode);
9546 inst.instruction |= inst.operands[0].reg << 8;
9547 if (inst.size_req == 2)
9548 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9549 else
9550 inst.relax = opcode;
9551 }
9552 else
9553 {
9554 inst.instruction = THUMB_OP32 (inst.instruction);
9555 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9556 inst.instruction |= inst.operands[0].reg << r0off;
9557 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9558 }
9559 }
9560 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9561 && (inst.instruction == T_MNEM_mov
9562 || inst.instruction == T_MNEM_movs))
9563 {
9564 /* Register shifts are encoded as separate shift instructions. */
9565 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9566
9567 if (current_it_mask)
9568 narrow = !flags;
9569 else
9570 narrow = flags;
9571
9572 if (inst.size_req == 4)
9573 narrow = FALSE;
9574
9575 if (!low_regs || inst.operands[1].imm > 7)
9576 narrow = FALSE;
9577
9578 if (inst.operands[0].reg != inst.operands[1].reg)
9579 narrow = FALSE;
9580
9581 switch (inst.operands[1].shift_kind)
9582 {
9583 case SHIFT_LSL:
9584 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9585 break;
9586 case SHIFT_ASR:
9587 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9588 break;
9589 case SHIFT_LSR:
9590 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9591 break;
9592 case SHIFT_ROR:
9593 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9594 break;
9595 default:
9596 abort ();
9597 }
9598
9599 inst.instruction = opcode;
9600 if (narrow)
9601 {
9602 inst.instruction |= inst.operands[0].reg;
9603 inst.instruction |= inst.operands[1].imm << 3;
9604 }
9605 else
9606 {
9607 if (flags)
9608 inst.instruction |= CONDS_BIT;
9609
9610 inst.instruction |= inst.operands[0].reg << 8;
9611 inst.instruction |= inst.operands[1].reg << 16;
9612 inst.instruction |= inst.operands[1].imm;
9613 }
9614 }
9615 else if (!narrow)
9616 {
9617 /* Some mov with immediate shift have narrow variants.
9618 Register shifts are handled above. */
9619 if (low_regs && inst.operands[1].shifted
9620 && (inst.instruction == T_MNEM_mov
9621 || inst.instruction == T_MNEM_movs))
9622 {
9623 if (current_it_mask)
9624 narrow = (inst.instruction == T_MNEM_mov);
9625 else
9626 narrow = (inst.instruction == T_MNEM_movs);
9627 }
9628
9629 if (narrow)
9630 {
9631 switch (inst.operands[1].shift_kind)
9632 {
9633 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9634 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9635 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9636 default: narrow = FALSE; break;
9637 }
9638 }
9639
9640 if (narrow)
9641 {
9642 inst.instruction |= inst.operands[0].reg;
9643 inst.instruction |= inst.operands[1].reg << 3;
9644 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9645 }
9646 else
9647 {
9648 inst.instruction = THUMB_OP32 (inst.instruction);
9649 inst.instruction |= inst.operands[0].reg << r0off;
9650 encode_thumb32_shifted_operand (1);
9651 }
9652 }
9653 else
9654 switch (inst.instruction)
9655 {
9656 case T_MNEM_mov:
9657 inst.instruction = T_OPCODE_MOV_HR;
9658 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9659 inst.instruction |= (inst.operands[0].reg & 0x7);
9660 inst.instruction |= inst.operands[1].reg << 3;
9661 break;
9662
9663 case T_MNEM_movs:
9664 /* We know we have low registers at this point.
9665 Generate ADD Rd, Rs, #0. */
9666 inst.instruction = T_OPCODE_ADD_I3;
9667 inst.instruction |= inst.operands[0].reg;
9668 inst.instruction |= inst.operands[1].reg << 3;
9669 break;
9670
9671 case T_MNEM_cmp:
9672 if (low_regs)
9673 {
9674 inst.instruction = T_OPCODE_CMP_LR;
9675 inst.instruction |= inst.operands[0].reg;
9676 inst.instruction |= inst.operands[1].reg << 3;
9677 }
9678 else
9679 {
9680 inst.instruction = T_OPCODE_CMP_HR;
9681 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9682 inst.instruction |= (inst.operands[0].reg & 0x7);
9683 inst.instruction |= inst.operands[1].reg << 3;
9684 }
9685 break;
9686 }
9687 return;
9688 }
9689
9690 inst.instruction = THUMB_OP16 (inst.instruction);
9691 if (inst.operands[1].isreg)
9692 {
9693 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9694 {
9695 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9696 since a MOV instruction produces unpredictable results. */
9697 if (inst.instruction == T_OPCODE_MOV_I8)
9698 inst.instruction = T_OPCODE_ADD_I3;
9699 else
9700 inst.instruction = T_OPCODE_CMP_LR;
9701
9702 inst.instruction |= inst.operands[0].reg;
9703 inst.instruction |= inst.operands[1].reg << 3;
9704 }
9705 else
9706 {
9707 if (inst.instruction == T_OPCODE_MOV_I8)
9708 inst.instruction = T_OPCODE_MOV_HR;
9709 else
9710 inst.instruction = T_OPCODE_CMP_HR;
9711 do_t_cpy ();
9712 }
9713 }
9714 else
9715 {
9716 constraint (inst.operands[0].reg > 7,
9717 _("only lo regs allowed with immediate"));
9718 inst.instruction |= inst.operands[0].reg << 8;
9719 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9720 }
9721 }
9722
9723 static void
9724 do_t_mov16 (void)
9725 {
9726 bfd_vma imm;
9727 bfd_boolean top;
9728
9729 top = (inst.instruction & 0x00800000) != 0;
9730 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9731 {
9732 constraint (top, _(":lower16: not allowed this instruction"));
9733 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9734 }
9735 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9736 {
9737 constraint (!top, _(":upper16: not allowed this instruction"));
9738 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9739 }
9740
9741 inst.instruction |= inst.operands[0].reg << 8;
9742 if (inst.reloc.type == BFD_RELOC_UNUSED)
9743 {
9744 imm = inst.reloc.exp.X_add_number;
9745 inst.instruction |= (imm & 0xf000) << 4;
9746 inst.instruction |= (imm & 0x0800) << 15;
9747 inst.instruction |= (imm & 0x0700) << 4;
9748 inst.instruction |= (imm & 0x00ff);
9749 }
9750 }
9751
9752 static void
9753 do_t_mvn_tst (void)
9754 {
9755 if (unified_syntax)
9756 {
9757 int r0off = (inst.instruction == T_MNEM_mvn
9758 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9759 bfd_boolean narrow;
9760
9761 if (inst.size_req == 4
9762 || inst.instruction > 0xffff
9763 || inst.operands[1].shifted
9764 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9765 narrow = FALSE;
9766 else if (inst.instruction == T_MNEM_cmn)
9767 narrow = TRUE;
9768 else if (THUMB_SETS_FLAGS (inst.instruction))
9769 narrow = (current_it_mask == 0);
9770 else
9771 narrow = (current_it_mask != 0);
9772
9773 if (!inst.operands[1].isreg)
9774 {
9775 /* For an immediate, we always generate a 32-bit opcode;
9776 section relaxation will shrink it later if possible. */
9777 if (inst.instruction < 0xffff)
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9780 inst.instruction |= inst.operands[0].reg << r0off;
9781 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9782 }
9783 else
9784 {
9785 /* See if we can do this with a 16-bit instruction. */
9786 if (narrow)
9787 {
9788 inst.instruction = THUMB_OP16 (inst.instruction);
9789 inst.instruction |= inst.operands[0].reg;
9790 inst.instruction |= inst.operands[1].reg << 3;
9791 }
9792 else
9793 {
9794 constraint (inst.operands[1].shifted
9795 && inst.operands[1].immisreg,
9796 _("shift must be constant"));
9797 if (inst.instruction < 0xffff)
9798 inst.instruction = THUMB_OP32 (inst.instruction);
9799 inst.instruction |= inst.operands[0].reg << r0off;
9800 encode_thumb32_shifted_operand (1);
9801 }
9802 }
9803 }
9804 else
9805 {
9806 constraint (inst.instruction > 0xffff
9807 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9808 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9809 _("unshifted register required"));
9810 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9811 BAD_HIREG);
9812
9813 inst.instruction = THUMB_OP16 (inst.instruction);
9814 inst.instruction |= inst.operands[0].reg;
9815 inst.instruction |= inst.operands[1].reg << 3;
9816 }
9817 }
9818
9819 static void
9820 do_t_mrs (void)
9821 {
9822 int flags;
9823
9824 if (do_vfp_nsyn_mrs () == SUCCESS)
9825 return;
9826
9827 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9828 if (flags == 0)
9829 {
9830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
9831 _("selected processor does not support "
9832 "requested special purpose register"));
9833 }
9834 else
9835 {
9836 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9837 _("selected processor does not support "
9838 "requested special purpose register"));
9839 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9840 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9841 _("'CPSR' or 'SPSR' expected"));
9842 }
9843
9844 inst.instruction |= inst.operands[0].reg << 8;
9845 inst.instruction |= (flags & SPSR_BIT) >> 2;
9846 inst.instruction |= inst.operands[1].imm & 0xff;
9847 }
9848
9849 static void
9850 do_t_msr (void)
9851 {
9852 int flags;
9853
9854 if (do_vfp_nsyn_msr () == SUCCESS)
9855 return;
9856
9857 constraint (!inst.operands[1].isreg,
9858 _("Thumb encoding does not support an immediate here"));
9859 flags = inst.operands[0].imm;
9860 if (flags & ~0xff)
9861 {
9862 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9863 _("selected processor does not support "
9864 "requested special purpose register"));
9865 }
9866 else
9867 {
9868 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m),
9869 _("selected processor does not support "
9870 "requested special purpose register"));
9871 flags |= PSR_f;
9872 }
9873 inst.instruction |= (flags & SPSR_BIT) >> 2;
9874 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9875 inst.instruction |= (flags & 0xff);
9876 inst.instruction |= inst.operands[1].reg << 16;
9877 }
9878
9879 static void
9880 do_t_mul (void)
9881 {
9882 bfd_boolean narrow;
9883
9884 if (!inst.operands[2].present)
9885 inst.operands[2].reg = inst.operands[0].reg;
9886
9887 if (unified_syntax)
9888 {
9889 if (inst.size_req == 4
9890 || (inst.operands[0].reg != inst.operands[1].reg
9891 && inst.operands[0].reg != inst.operands[2].reg)
9892 || inst.operands[1].reg > 7
9893 || inst.operands[2].reg > 7)
9894 narrow = FALSE;
9895 else if (inst.instruction == T_MNEM_muls)
9896 narrow = (current_it_mask == 0);
9897 else
9898 narrow = (current_it_mask != 0);
9899 }
9900 else
9901 {
9902 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
9903 constraint (inst.operands[1].reg > 7 || inst.operands[2].reg > 7,
9904 BAD_HIREG);
9905 narrow = TRUE;
9906 }
9907
9908 if (narrow)
9909 {
9910 /* 16-bit MULS/Conditional MUL. */
9911 inst.instruction = THUMB_OP16 (inst.instruction);
9912 inst.instruction |= inst.operands[0].reg;
9913
9914 if (inst.operands[0].reg == inst.operands[1].reg)
9915 inst.instruction |= inst.operands[2].reg << 3;
9916 else if (inst.operands[0].reg == inst.operands[2].reg)
9917 inst.instruction |= inst.operands[1].reg << 3;
9918 else
9919 constraint (1, _("dest must overlap one source register"));
9920 }
9921 else
9922 {
9923 constraint(inst.instruction != T_MNEM_mul,
9924 _("Thumb-2 MUL must not set flags"));
9925 /* 32-bit MUL. */
9926 inst.instruction = THUMB_OP32 (inst.instruction);
9927 inst.instruction |= inst.operands[0].reg << 8;
9928 inst.instruction |= inst.operands[1].reg << 16;
9929 inst.instruction |= inst.operands[2].reg << 0;
9930 }
9931 }
9932
9933 static void
9934 do_t_mull (void)
9935 {
9936 inst.instruction |= inst.operands[0].reg << 12;
9937 inst.instruction |= inst.operands[1].reg << 8;
9938 inst.instruction |= inst.operands[2].reg << 16;
9939 inst.instruction |= inst.operands[3].reg;
9940
9941 if (inst.operands[0].reg == inst.operands[1].reg)
9942 as_tsktsk (_("rdhi and rdlo must be different"));
9943 }
9944
9945 static void
9946 do_t_nop (void)
9947 {
9948 if (unified_syntax)
9949 {
9950 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9951 {
9952 inst.instruction = THUMB_OP32 (inst.instruction);
9953 inst.instruction |= inst.operands[0].imm;
9954 }
9955 else
9956 {
9957 /* PR9722: Check for Thumb2 availability before
9958 generating a thumb2 nop instruction. */
9959 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
9960 {
9961 inst.instruction = THUMB_OP16 (inst.instruction);
9962 inst.instruction |= inst.operands[0].imm << 4;
9963 }
9964 else
9965 inst.instruction = 0x46c0;
9966 }
9967 }
9968 else
9969 {
9970 constraint (inst.operands[0].present,
9971 _("Thumb does not support NOP with hints"));
9972 inst.instruction = 0x46c0;
9973 }
9974 }
9975
9976 static void
9977 do_t_neg (void)
9978 {
9979 if (unified_syntax)
9980 {
9981 bfd_boolean narrow;
9982
9983 if (THUMB_SETS_FLAGS (inst.instruction))
9984 narrow = (current_it_mask == 0);
9985 else
9986 narrow = (current_it_mask != 0);
9987 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9988 narrow = FALSE;
9989 if (inst.size_req == 4)
9990 narrow = FALSE;
9991
9992 if (!narrow)
9993 {
9994 inst.instruction = THUMB_OP32 (inst.instruction);
9995 inst.instruction |= inst.operands[0].reg << 8;
9996 inst.instruction |= inst.operands[1].reg << 16;
9997 }
9998 else
9999 {
10000 inst.instruction = THUMB_OP16 (inst.instruction);
10001 inst.instruction |= inst.operands[0].reg;
10002 inst.instruction |= inst.operands[1].reg << 3;
10003 }
10004 }
10005 else
10006 {
10007 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
10008 BAD_HIREG);
10009 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10010
10011 inst.instruction = THUMB_OP16 (inst.instruction);
10012 inst.instruction |= inst.operands[0].reg;
10013 inst.instruction |= inst.operands[1].reg << 3;
10014 }
10015 }
10016
10017 static void
10018 do_t_pkhbt (void)
10019 {
10020 inst.instruction |= inst.operands[0].reg << 8;
10021 inst.instruction |= inst.operands[1].reg << 16;
10022 inst.instruction |= inst.operands[2].reg;
10023 if (inst.operands[3].present)
10024 {
10025 unsigned int val = inst.reloc.exp.X_add_number;
10026 constraint (inst.reloc.exp.X_op != O_constant,
10027 _("expression too complex"));
10028 inst.instruction |= (val & 0x1c) << 10;
10029 inst.instruction |= (val & 0x03) << 6;
10030 }
10031 }
10032
10033 static void
10034 do_t_pkhtb (void)
10035 {
10036 if (!inst.operands[3].present)
10037 inst.instruction &= ~0x00000020;
10038 do_t_pkhbt ();
10039 }
10040
10041 static void
10042 do_t_pld (void)
10043 {
10044 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
10045 }
10046
10047 static void
10048 do_t_push_pop (void)
10049 {
10050 unsigned mask;
10051
10052 constraint (inst.operands[0].writeback,
10053 _("push/pop do not support {reglist}^"));
10054 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10055 _("expression too complex"));
10056
10057 mask = inst.operands[0].imm;
10058 if ((mask & ~0xff) == 0)
10059 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
10060 else if ((inst.instruction == T_MNEM_push
10061 && (mask & ~0xff) == 1 << REG_LR)
10062 || (inst.instruction == T_MNEM_pop
10063 && (mask & ~0xff) == 1 << REG_PC))
10064 {
10065 inst.instruction = THUMB_OP16 (inst.instruction);
10066 inst.instruction |= THUMB_PP_PC_LR;
10067 inst.instruction |= mask & 0xff;
10068 }
10069 else if (unified_syntax)
10070 {
10071 inst.instruction = THUMB_OP32 (inst.instruction);
10072 encode_thumb2_ldmstm (13, mask, TRUE);
10073 }
10074 else
10075 {
10076 inst.error = _("invalid register list to push/pop instruction");
10077 return;
10078 }
10079 }
10080
10081 static void
10082 do_t_rbit (void)
10083 {
10084 inst.instruction |= inst.operands[0].reg << 8;
10085 inst.instruction |= inst.operands[1].reg << 16;
10086 inst.instruction |= inst.operands[1].reg;
10087 }
10088
10089 static void
10090 do_t_rev (void)
10091 {
10092 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10093 && inst.size_req != 4)
10094 {
10095 inst.instruction = THUMB_OP16 (inst.instruction);
10096 inst.instruction |= inst.operands[0].reg;
10097 inst.instruction |= inst.operands[1].reg << 3;
10098 }
10099 else if (unified_syntax)
10100 {
10101 inst.instruction = THUMB_OP32 (inst.instruction);
10102 inst.instruction |= inst.operands[0].reg << 8;
10103 inst.instruction |= inst.operands[1].reg << 16;
10104 inst.instruction |= inst.operands[1].reg;
10105 }
10106 else
10107 inst.error = BAD_HIREG;
10108 }
10109
10110 static void
10111 do_t_rsb (void)
10112 {
10113 int Rd, Rs;
10114
10115 Rd = inst.operands[0].reg;
10116 Rs = (inst.operands[1].present
10117 ? inst.operands[1].reg /* Rd, Rs, foo */
10118 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10119
10120 inst.instruction |= Rd << 8;
10121 inst.instruction |= Rs << 16;
10122 if (!inst.operands[2].isreg)
10123 {
10124 bfd_boolean narrow;
10125
10126 if ((inst.instruction & 0x00100000) != 0)
10127 narrow = (current_it_mask == 0);
10128 else
10129 narrow = (current_it_mask != 0);
10130
10131 if (Rd > 7 || Rs > 7)
10132 narrow = FALSE;
10133
10134 if (inst.size_req == 4 || !unified_syntax)
10135 narrow = FALSE;
10136
10137 if (inst.reloc.exp.X_op != O_constant
10138 || inst.reloc.exp.X_add_number != 0)
10139 narrow = FALSE;
10140
10141 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10142 relaxation, but it doesn't seem worth the hassle. */
10143 if (narrow)
10144 {
10145 inst.reloc.type = BFD_RELOC_UNUSED;
10146 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10147 inst.instruction |= Rs << 3;
10148 inst.instruction |= Rd;
10149 }
10150 else
10151 {
10152 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10153 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10154 }
10155 }
10156 else
10157 encode_thumb32_shifted_operand (2);
10158 }
10159
10160 static void
10161 do_t_setend (void)
10162 {
10163 constraint (current_it_mask, BAD_NOT_IT);
10164 if (inst.operands[0].imm)
10165 inst.instruction |= 0x8;
10166 }
10167
10168 static void
10169 do_t_shift (void)
10170 {
10171 if (!inst.operands[1].present)
10172 inst.operands[1].reg = inst.operands[0].reg;
10173
10174 if (unified_syntax)
10175 {
10176 bfd_boolean narrow;
10177 int shift_kind;
10178
10179 switch (inst.instruction)
10180 {
10181 case T_MNEM_asr:
10182 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10183 case T_MNEM_lsl:
10184 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10185 case T_MNEM_lsr:
10186 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10187 case T_MNEM_ror:
10188 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10189 default: abort ();
10190 }
10191
10192 if (THUMB_SETS_FLAGS (inst.instruction))
10193 narrow = (current_it_mask == 0);
10194 else
10195 narrow = (current_it_mask != 0);
10196 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10197 narrow = FALSE;
10198 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10199 narrow = FALSE;
10200 if (inst.operands[2].isreg
10201 && (inst.operands[1].reg != inst.operands[0].reg
10202 || inst.operands[2].reg > 7))
10203 narrow = FALSE;
10204 if (inst.size_req == 4)
10205 narrow = FALSE;
10206
10207 if (!narrow)
10208 {
10209 if (inst.operands[2].isreg)
10210 {
10211 inst.instruction = THUMB_OP32 (inst.instruction);
10212 inst.instruction |= inst.operands[0].reg << 8;
10213 inst.instruction |= inst.operands[1].reg << 16;
10214 inst.instruction |= inst.operands[2].reg;
10215 }
10216 else
10217 {
10218 inst.operands[1].shifted = 1;
10219 inst.operands[1].shift_kind = shift_kind;
10220 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10221 ? T_MNEM_movs : T_MNEM_mov);
10222 inst.instruction |= inst.operands[0].reg << 8;
10223 encode_thumb32_shifted_operand (1);
10224 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10225 inst.reloc.type = BFD_RELOC_UNUSED;
10226 }
10227 }
10228 else
10229 {
10230 if (inst.operands[2].isreg)
10231 {
10232 switch (shift_kind)
10233 {
10234 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10235 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10236 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10237 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10238 default: abort ();
10239 }
10240
10241 inst.instruction |= inst.operands[0].reg;
10242 inst.instruction |= inst.operands[2].reg << 3;
10243 }
10244 else
10245 {
10246 switch (shift_kind)
10247 {
10248 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10249 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10250 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10251 default: abort ();
10252 }
10253 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10254 inst.instruction |= inst.operands[0].reg;
10255 inst.instruction |= inst.operands[1].reg << 3;
10256 }
10257 }
10258 }
10259 else
10260 {
10261 constraint (inst.operands[0].reg > 7
10262 || inst.operands[1].reg > 7, BAD_HIREG);
10263 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10264
10265 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10266 {
10267 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10268 constraint (inst.operands[0].reg != inst.operands[1].reg,
10269 _("source1 and dest must be same register"));
10270
10271 switch (inst.instruction)
10272 {
10273 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10274 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10275 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10276 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10277 default: abort ();
10278 }
10279
10280 inst.instruction |= inst.operands[0].reg;
10281 inst.instruction |= inst.operands[2].reg << 3;
10282 }
10283 else
10284 {
10285 switch (inst.instruction)
10286 {
10287 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10288 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10289 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10290 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10291 default: abort ();
10292 }
10293 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10294 inst.instruction |= inst.operands[0].reg;
10295 inst.instruction |= inst.operands[1].reg << 3;
10296 }
10297 }
10298 }
10299
10300 static void
10301 do_t_simd (void)
10302 {
10303 inst.instruction |= inst.operands[0].reg << 8;
10304 inst.instruction |= inst.operands[1].reg << 16;
10305 inst.instruction |= inst.operands[2].reg;
10306 }
10307
10308 static void
10309 do_t_smc (void)
10310 {
10311 unsigned int value = inst.reloc.exp.X_add_number;
10312 constraint (inst.reloc.exp.X_op != O_constant,
10313 _("expression too complex"));
10314 inst.reloc.type = BFD_RELOC_UNUSED;
10315 inst.instruction |= (value & 0xf000) >> 12;
10316 inst.instruction |= (value & 0x0ff0);
10317 inst.instruction |= (value & 0x000f) << 16;
10318 }
10319
10320 static void
10321 do_t_ssat (void)
10322 {
10323 inst.instruction |= inst.operands[0].reg << 8;
10324 inst.instruction |= inst.operands[1].imm - 1;
10325 inst.instruction |= inst.operands[2].reg << 16;
10326
10327 if (inst.operands[3].present)
10328 {
10329 constraint (inst.reloc.exp.X_op != O_constant,
10330 _("expression too complex"));
10331
10332 if (inst.reloc.exp.X_add_number != 0)
10333 {
10334 if (inst.operands[3].shift_kind == SHIFT_ASR)
10335 inst.instruction |= 0x00200000; /* sh bit */
10336 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10337 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10338 }
10339 inst.reloc.type = BFD_RELOC_UNUSED;
10340 }
10341 }
10342
10343 static void
10344 do_t_ssat16 (void)
10345 {
10346 inst.instruction |= inst.operands[0].reg << 8;
10347 inst.instruction |= inst.operands[1].imm - 1;
10348 inst.instruction |= inst.operands[2].reg << 16;
10349 }
10350
10351 static void
10352 do_t_strex (void)
10353 {
10354 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10355 || inst.operands[2].postind || inst.operands[2].writeback
10356 || inst.operands[2].immisreg || inst.operands[2].shifted
10357 || inst.operands[2].negative,
10358 BAD_ADDR_MODE);
10359
10360 inst.instruction |= inst.operands[0].reg << 8;
10361 inst.instruction |= inst.operands[1].reg << 12;
10362 inst.instruction |= inst.operands[2].reg << 16;
10363 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10364 }
10365
10366 static void
10367 do_t_strexd (void)
10368 {
10369 if (!inst.operands[2].present)
10370 inst.operands[2].reg = inst.operands[1].reg + 1;
10371
10372 constraint (inst.operands[0].reg == inst.operands[1].reg
10373 || inst.operands[0].reg == inst.operands[2].reg
10374 || inst.operands[0].reg == inst.operands[3].reg
10375 || inst.operands[1].reg == inst.operands[2].reg,
10376 BAD_OVERLAP);
10377
10378 inst.instruction |= inst.operands[0].reg;
10379 inst.instruction |= inst.operands[1].reg << 12;
10380 inst.instruction |= inst.operands[2].reg << 8;
10381 inst.instruction |= inst.operands[3].reg << 16;
10382 }
10383
10384 static void
10385 do_t_sxtah (void)
10386 {
10387 inst.instruction |= inst.operands[0].reg << 8;
10388 inst.instruction |= inst.operands[1].reg << 16;
10389 inst.instruction |= inst.operands[2].reg;
10390 inst.instruction |= inst.operands[3].imm << 4;
10391 }
10392
10393 static void
10394 do_t_sxth (void)
10395 {
10396 if (inst.instruction <= 0xffff && inst.size_req != 4
10397 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10398 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10399 {
10400 inst.instruction = THUMB_OP16 (inst.instruction);
10401 inst.instruction |= inst.operands[0].reg;
10402 inst.instruction |= inst.operands[1].reg << 3;
10403 }
10404 else if (unified_syntax)
10405 {
10406 if (inst.instruction <= 0xffff)
10407 inst.instruction = THUMB_OP32 (inst.instruction);
10408 inst.instruction |= inst.operands[0].reg << 8;
10409 inst.instruction |= inst.operands[1].reg;
10410 inst.instruction |= inst.operands[2].imm << 4;
10411 }
10412 else
10413 {
10414 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10415 _("Thumb encoding does not support rotation"));
10416 constraint (1, BAD_HIREG);
10417 }
10418 }
10419
10420 static void
10421 do_t_swi (void)
10422 {
10423 inst.reloc.type = BFD_RELOC_ARM_SWI;
10424 }
10425
10426 static void
10427 do_t_tb (void)
10428 {
10429 int half;
10430
10431 half = (inst.instruction & 0x10) != 0;
10432 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10433 constraint (inst.operands[0].immisreg,
10434 _("instruction requires register index"));
10435 constraint (inst.operands[0].imm == 15,
10436 _("PC is not a valid index register"));
10437 constraint (!half && inst.operands[0].shifted,
10438 _("instruction does not allow shifted index"));
10439 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10440 }
10441
10442 static void
10443 do_t_usat (void)
10444 {
10445 inst.instruction |= inst.operands[0].reg << 8;
10446 inst.instruction |= inst.operands[1].imm;
10447 inst.instruction |= inst.operands[2].reg << 16;
10448
10449 if (inst.operands[3].present)
10450 {
10451 constraint (inst.reloc.exp.X_op != O_constant,
10452 _("expression too complex"));
10453 if (inst.reloc.exp.X_add_number != 0)
10454 {
10455 if (inst.operands[3].shift_kind == SHIFT_ASR)
10456 inst.instruction |= 0x00200000; /* sh bit */
10457
10458 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10459 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10460 }
10461 inst.reloc.type = BFD_RELOC_UNUSED;
10462 }
10463 }
10464
10465 static void
10466 do_t_usat16 (void)
10467 {
10468 inst.instruction |= inst.operands[0].reg << 8;
10469 inst.instruction |= inst.operands[1].imm;
10470 inst.instruction |= inst.operands[2].reg << 16;
10471 }
10472
10473 /* Neon instruction encoder helpers. */
10474
10475 /* Encodings for the different types for various Neon opcodes. */
10476
10477 /* An "invalid" code for the following tables. */
10478 #define N_INV -1u
10479
10480 struct neon_tab_entry
10481 {
10482 unsigned integer;
10483 unsigned float_or_poly;
10484 unsigned scalar_or_imm;
10485 };
10486
10487 /* Map overloaded Neon opcodes to their respective encodings. */
10488 #define NEON_ENC_TAB \
10489 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10490 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10491 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10492 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10493 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10494 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10495 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10496 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10497 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10498 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10499 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10500 /* Register variants of the following two instructions are encoded as
10501 vcge / vcgt with the operands reversed. */ \
10502 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10503 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10504 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10505 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10506 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10507 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10508 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10509 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10510 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10511 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10512 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10513 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10514 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10515 X(vshl, 0x0000400, N_INV, 0x0800510), \
10516 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10517 X(vand, 0x0000110, N_INV, 0x0800030), \
10518 X(vbic, 0x0100110, N_INV, 0x0800030), \
10519 X(veor, 0x1000110, N_INV, N_INV), \
10520 X(vorn, 0x0300110, N_INV, 0x0800010), \
10521 X(vorr, 0x0200110, N_INV, 0x0800010), \
10522 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10523 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10524 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10525 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10526 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10527 X(vst1, 0x0000000, 0x0800000, N_INV), \
10528 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10529 X(vst2, 0x0000100, 0x0800100, N_INV), \
10530 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10531 X(vst3, 0x0000200, 0x0800200, N_INV), \
10532 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10533 X(vst4, 0x0000300, 0x0800300, N_INV), \
10534 X(vmovn, 0x1b20200, N_INV, N_INV), \
10535 X(vtrn, 0x1b20080, N_INV, N_INV), \
10536 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10537 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10538 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10539 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10540 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10541 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10542 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10543 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10544 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10545
10546 enum neon_opc
10547 {
10548 #define X(OPC,I,F,S) N_MNEM_##OPC
10549 NEON_ENC_TAB
10550 #undef X
10551 };
10552
10553 static const struct neon_tab_entry neon_enc_tab[] =
10554 {
10555 #define X(OPC,I,F,S) { (I), (F), (S) }
10556 NEON_ENC_TAB
10557 #undef X
10558 };
10559
10560 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10561 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10562 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10563 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10564 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10565 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10566 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10567 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10568 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10569 #define NEON_ENC_SINGLE(X) \
10570 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10571 #define NEON_ENC_DOUBLE(X) \
10572 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10573
10574 /* Define shapes for instruction operands. The following mnemonic characters
10575 are used in this table:
10576
10577 F - VFP S<n> register
10578 D - Neon D<n> register
10579 Q - Neon Q<n> register
10580 I - Immediate
10581 S - Scalar
10582 R - ARM register
10583 L - D<n> register list
10584
10585 This table is used to generate various data:
10586 - enumerations of the form NS_DDR to be used as arguments to
10587 neon_select_shape.
10588 - a table classifying shapes into single, double, quad, mixed.
10589 - a table used to drive neon_select_shape. */
10590
10591 #define NEON_SHAPE_DEF \
10592 X(3, (D, D, D), DOUBLE), \
10593 X(3, (Q, Q, Q), QUAD), \
10594 X(3, (D, D, I), DOUBLE), \
10595 X(3, (Q, Q, I), QUAD), \
10596 X(3, (D, D, S), DOUBLE), \
10597 X(3, (Q, Q, S), QUAD), \
10598 X(2, (D, D), DOUBLE), \
10599 X(2, (Q, Q), QUAD), \
10600 X(2, (D, S), DOUBLE), \
10601 X(2, (Q, S), QUAD), \
10602 X(2, (D, R), DOUBLE), \
10603 X(2, (Q, R), QUAD), \
10604 X(2, (D, I), DOUBLE), \
10605 X(2, (Q, I), QUAD), \
10606 X(3, (D, L, D), DOUBLE), \
10607 X(2, (D, Q), MIXED), \
10608 X(2, (Q, D), MIXED), \
10609 X(3, (D, Q, I), MIXED), \
10610 X(3, (Q, D, I), MIXED), \
10611 X(3, (Q, D, D), MIXED), \
10612 X(3, (D, Q, Q), MIXED), \
10613 X(3, (Q, Q, D), MIXED), \
10614 X(3, (Q, D, S), MIXED), \
10615 X(3, (D, Q, S), MIXED), \
10616 X(4, (D, D, D, I), DOUBLE), \
10617 X(4, (Q, Q, Q, I), QUAD), \
10618 X(2, (F, F), SINGLE), \
10619 X(3, (F, F, F), SINGLE), \
10620 X(2, (F, I), SINGLE), \
10621 X(2, (F, D), MIXED), \
10622 X(2, (D, F), MIXED), \
10623 X(3, (F, F, I), MIXED), \
10624 X(4, (R, R, F, F), SINGLE), \
10625 X(4, (F, F, R, R), SINGLE), \
10626 X(3, (D, R, R), DOUBLE), \
10627 X(3, (R, R, D), DOUBLE), \
10628 X(2, (S, R), SINGLE), \
10629 X(2, (R, S), SINGLE), \
10630 X(2, (F, R), SINGLE), \
10631 X(2, (R, F), SINGLE)
10632
10633 #define S2(A,B) NS_##A##B
10634 #define S3(A,B,C) NS_##A##B##C
10635 #define S4(A,B,C,D) NS_##A##B##C##D
10636
10637 #define X(N, L, C) S##N L
10638
10639 enum neon_shape
10640 {
10641 NEON_SHAPE_DEF,
10642 NS_NULL
10643 };
10644
10645 #undef X
10646 #undef S2
10647 #undef S3
10648 #undef S4
10649
10650 enum neon_shape_class
10651 {
10652 SC_SINGLE,
10653 SC_DOUBLE,
10654 SC_QUAD,
10655 SC_MIXED
10656 };
10657
10658 #define X(N, L, C) SC_##C
10659
10660 static enum neon_shape_class neon_shape_class[] =
10661 {
10662 NEON_SHAPE_DEF
10663 };
10664
10665 #undef X
10666
10667 enum neon_shape_el
10668 {
10669 SE_F,
10670 SE_D,
10671 SE_Q,
10672 SE_I,
10673 SE_S,
10674 SE_R,
10675 SE_L
10676 };
10677
10678 /* Register widths of above. */
10679 static unsigned neon_shape_el_size[] =
10680 {
10681 32,
10682 64,
10683 128,
10684 0,
10685 32,
10686 32,
10687 0
10688 };
10689
10690 struct neon_shape_info
10691 {
10692 unsigned els;
10693 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10694 };
10695
10696 #define S2(A,B) { SE_##A, SE_##B }
10697 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10698 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10699
10700 #define X(N, L, C) { N, S##N L }
10701
10702 static struct neon_shape_info neon_shape_tab[] =
10703 {
10704 NEON_SHAPE_DEF
10705 };
10706
10707 #undef X
10708 #undef S2
10709 #undef S3
10710 #undef S4
10711
10712 /* Bit masks used in type checking given instructions.
10713 'N_EQK' means the type must be the same as (or based on in some way) the key
10714 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10715 set, various other bits can be set as well in order to modify the meaning of
10716 the type constraint. */
10717
10718 enum neon_type_mask
10719 {
10720 N_S8 = 0x0000001,
10721 N_S16 = 0x0000002,
10722 N_S32 = 0x0000004,
10723 N_S64 = 0x0000008,
10724 N_U8 = 0x0000010,
10725 N_U16 = 0x0000020,
10726 N_U32 = 0x0000040,
10727 N_U64 = 0x0000080,
10728 N_I8 = 0x0000100,
10729 N_I16 = 0x0000200,
10730 N_I32 = 0x0000400,
10731 N_I64 = 0x0000800,
10732 N_8 = 0x0001000,
10733 N_16 = 0x0002000,
10734 N_32 = 0x0004000,
10735 N_64 = 0x0008000,
10736 N_P8 = 0x0010000,
10737 N_P16 = 0x0020000,
10738 N_F16 = 0x0040000,
10739 N_F32 = 0x0080000,
10740 N_F64 = 0x0100000,
10741 N_KEY = 0x1000000, /* key element (main type specifier). */
10742 N_EQK = 0x2000000, /* given operand has the same type & size as the key. */
10743 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
10744 N_DBL = 0x0000001, /* if N_EQK, this operand is twice the size. */
10745 N_HLF = 0x0000002, /* if N_EQK, this operand is half the size. */
10746 N_SGN = 0x0000004, /* if N_EQK, this operand is forced to be signed. */
10747 N_UNS = 0x0000008, /* if N_EQK, this operand is forced to be unsigned. */
10748 N_INT = 0x0000010, /* if N_EQK, this operand is forced to be integer. */
10749 N_FLT = 0x0000020, /* if N_EQK, this operand is forced to be float. */
10750 N_SIZ = 0x0000040, /* if N_EQK, this operand is forced to be size-only. */
10751 N_UTYP = 0,
10752 N_MAX_NONSPECIAL = N_F64
10753 };
10754
10755 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10756
10757 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10758 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10759 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10760 #define N_SUF_32 (N_SU_32 | N_F32)
10761 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10762 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10763
10764 /* Pass this as the first type argument to neon_check_type to ignore types
10765 altogether. */
10766 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10767
10768 /* Select a "shape" for the current instruction (describing register types or
10769 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10770 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10771 function of operand parsing, so this function doesn't need to be called.
10772 Shapes should be listed in order of decreasing length. */
10773
10774 static enum neon_shape
10775 neon_select_shape (enum neon_shape shape, ...)
10776 {
10777 va_list ap;
10778 enum neon_shape first_shape = shape;
10779
10780 /* Fix missing optional operands. FIXME: we don't know at this point how
10781 many arguments we should have, so this makes the assumption that we have
10782 > 1. This is true of all current Neon opcodes, I think, but may not be
10783 true in the future. */
10784 if (!inst.operands[1].present)
10785 inst.operands[1] = inst.operands[0];
10786
10787 va_start (ap, shape);
10788
10789 for (; shape != NS_NULL; shape = va_arg (ap, int))
10790 {
10791 unsigned j;
10792 int matches = 1;
10793
10794 for (j = 0; j < neon_shape_tab[shape].els; j++)
10795 {
10796 if (!inst.operands[j].present)
10797 {
10798 matches = 0;
10799 break;
10800 }
10801
10802 switch (neon_shape_tab[shape].el[j])
10803 {
10804 case SE_F:
10805 if (!(inst.operands[j].isreg
10806 && inst.operands[j].isvec
10807 && inst.operands[j].issingle
10808 && !inst.operands[j].isquad))
10809 matches = 0;
10810 break;
10811
10812 case SE_D:
10813 if (!(inst.operands[j].isreg
10814 && inst.operands[j].isvec
10815 && !inst.operands[j].isquad
10816 && !inst.operands[j].issingle))
10817 matches = 0;
10818 break;
10819
10820 case SE_R:
10821 if (!(inst.operands[j].isreg
10822 && !inst.operands[j].isvec))
10823 matches = 0;
10824 break;
10825
10826 case SE_Q:
10827 if (!(inst.operands[j].isreg
10828 && inst.operands[j].isvec
10829 && inst.operands[j].isquad
10830 && !inst.operands[j].issingle))
10831 matches = 0;
10832 break;
10833
10834 case SE_I:
10835 if (!(!inst.operands[j].isreg
10836 && !inst.operands[j].isscalar))
10837 matches = 0;
10838 break;
10839
10840 case SE_S:
10841 if (!(!inst.operands[j].isreg
10842 && inst.operands[j].isscalar))
10843 matches = 0;
10844 break;
10845
10846 case SE_L:
10847 break;
10848 }
10849 }
10850 if (matches)
10851 break;
10852 }
10853
10854 va_end (ap);
10855
10856 if (shape == NS_NULL && first_shape != NS_NULL)
10857 first_error (_("invalid instruction shape"));
10858
10859 return shape;
10860 }
10861
10862 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10863 means the Q bit should be set). */
10864
10865 static int
10866 neon_quad (enum neon_shape shape)
10867 {
10868 return neon_shape_class[shape] == SC_QUAD;
10869 }
10870
10871 static void
10872 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10873 unsigned *g_size)
10874 {
10875 /* Allow modification to be made to types which are constrained to be
10876 based on the key element, based on bits set alongside N_EQK. */
10877 if ((typebits & N_EQK) != 0)
10878 {
10879 if ((typebits & N_HLF) != 0)
10880 *g_size /= 2;
10881 else if ((typebits & N_DBL) != 0)
10882 *g_size *= 2;
10883 if ((typebits & N_SGN) != 0)
10884 *g_type = NT_signed;
10885 else if ((typebits & N_UNS) != 0)
10886 *g_type = NT_unsigned;
10887 else if ((typebits & N_INT) != 0)
10888 *g_type = NT_integer;
10889 else if ((typebits & N_FLT) != 0)
10890 *g_type = NT_float;
10891 else if ((typebits & N_SIZ) != 0)
10892 *g_type = NT_untyped;
10893 }
10894 }
10895
10896 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10897 operand type, i.e. the single type specified in a Neon instruction when it
10898 is the only one given. */
10899
10900 static struct neon_type_el
10901 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10902 {
10903 struct neon_type_el dest = *key;
10904
10905 assert ((thisarg & N_EQK) != 0);
10906
10907 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10908
10909 return dest;
10910 }
10911
10912 /* Convert Neon type and size into compact bitmask representation. */
10913
10914 static enum neon_type_mask
10915 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10916 {
10917 switch (type)
10918 {
10919 case NT_untyped:
10920 switch (size)
10921 {
10922 case 8: return N_8;
10923 case 16: return N_16;
10924 case 32: return N_32;
10925 case 64: return N_64;
10926 default: ;
10927 }
10928 break;
10929
10930 case NT_integer:
10931 switch (size)
10932 {
10933 case 8: return N_I8;
10934 case 16: return N_I16;
10935 case 32: return N_I32;
10936 case 64: return N_I64;
10937 default: ;
10938 }
10939 break;
10940
10941 case NT_float:
10942 switch (size)
10943 {
10944 case 16: return N_F16;
10945 case 32: return N_F32;
10946 case 64: return N_F64;
10947 default: ;
10948 }
10949 break;
10950
10951 case NT_poly:
10952 switch (size)
10953 {
10954 case 8: return N_P8;
10955 case 16: return N_P16;
10956 default: ;
10957 }
10958 break;
10959
10960 case NT_signed:
10961 switch (size)
10962 {
10963 case 8: return N_S8;
10964 case 16: return N_S16;
10965 case 32: return N_S32;
10966 case 64: return N_S64;
10967 default: ;
10968 }
10969 break;
10970
10971 case NT_unsigned:
10972 switch (size)
10973 {
10974 case 8: return N_U8;
10975 case 16: return N_U16;
10976 case 32: return N_U32;
10977 case 64: return N_U64;
10978 default: ;
10979 }
10980 break;
10981
10982 default: ;
10983 }
10984
10985 return N_UTYP;
10986 }
10987
10988 /* Convert compact Neon bitmask type representation to a type and size. Only
10989 handles the case where a single bit is set in the mask. */
10990
10991 static int
10992 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10993 enum neon_type_mask mask)
10994 {
10995 if ((mask & N_EQK) != 0)
10996 return FAIL;
10997
10998 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10999 *size = 8;
11000 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
11001 *size = 16;
11002 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
11003 *size = 32;
11004 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
11005 *size = 64;
11006 else
11007 return FAIL;
11008
11009 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
11010 *type = NT_signed;
11011 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
11012 *type = NT_unsigned;
11013 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
11014 *type = NT_integer;
11015 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
11016 *type = NT_untyped;
11017 else if ((mask & (N_P8 | N_P16)) != 0)
11018 *type = NT_poly;
11019 else if ((mask & (N_F32 | N_F64)) != 0)
11020 *type = NT_float;
11021 else
11022 return FAIL;
11023
11024 return SUCCESS;
11025 }
11026
11027 /* Modify a bitmask of allowed types. This is only needed for type
11028 relaxation. */
11029
11030 static unsigned
11031 modify_types_allowed (unsigned allowed, unsigned mods)
11032 {
11033 unsigned size;
11034 enum neon_el_type type;
11035 unsigned destmask;
11036 int i;
11037
11038 destmask = 0;
11039
11040 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
11041 {
11042 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
11043 {
11044 neon_modify_type_size (mods, &type, &size);
11045 destmask |= type_chk_of_el_type (type, size);
11046 }
11047 }
11048
11049 return destmask;
11050 }
11051
11052 /* Check type and return type classification.
11053 The manual states (paraphrase): If one datatype is given, it indicates the
11054 type given in:
11055 - the second operand, if there is one
11056 - the operand, if there is no second operand
11057 - the result, if there are no operands.
11058 This isn't quite good enough though, so we use a concept of a "key" datatype
11059 which is set on a per-instruction basis, which is the one which matters when
11060 only one data type is written.
11061 Note: this function has side-effects (e.g. filling in missing operands). All
11062 Neon instructions should call it before performing bit encoding. */
11063
11064 static struct neon_type_el
11065 neon_check_type (unsigned els, enum neon_shape ns, ...)
11066 {
11067 va_list ap;
11068 unsigned i, pass, key_el = 0;
11069 unsigned types[NEON_MAX_TYPE_ELS];
11070 enum neon_el_type k_type = NT_invtype;
11071 unsigned k_size = -1u;
11072 struct neon_type_el badtype = {NT_invtype, -1};
11073 unsigned key_allowed = 0;
11074
11075 /* Optional registers in Neon instructions are always (not) in operand 1.
11076 Fill in the missing operand here, if it was omitted. */
11077 if (els > 1 && !inst.operands[1].present)
11078 inst.operands[1] = inst.operands[0];
11079
11080 /* Suck up all the varargs. */
11081 va_start (ap, ns);
11082 for (i = 0; i < els; i++)
11083 {
11084 unsigned thisarg = va_arg (ap, unsigned);
11085 if (thisarg == N_IGNORE_TYPE)
11086 {
11087 va_end (ap);
11088 return badtype;
11089 }
11090 types[i] = thisarg;
11091 if ((thisarg & N_KEY) != 0)
11092 key_el = i;
11093 }
11094 va_end (ap);
11095
11096 if (inst.vectype.elems > 0)
11097 for (i = 0; i < els; i++)
11098 if (inst.operands[i].vectype.type != NT_invtype)
11099 {
11100 first_error (_("types specified in both the mnemonic and operands"));
11101 return badtype;
11102 }
11103
11104 /* Duplicate inst.vectype elements here as necessary.
11105 FIXME: No idea if this is exactly the same as the ARM assembler,
11106 particularly when an insn takes one register and one non-register
11107 operand. */
11108 if (inst.vectype.elems == 1 && els > 1)
11109 {
11110 unsigned j;
11111 inst.vectype.elems = els;
11112 inst.vectype.el[key_el] = inst.vectype.el[0];
11113 for (j = 0; j < els; j++)
11114 if (j != key_el)
11115 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11116 types[j]);
11117 }
11118 else if (inst.vectype.elems == 0 && els > 0)
11119 {
11120 unsigned j;
11121 /* No types were given after the mnemonic, so look for types specified
11122 after each operand. We allow some flexibility here; as long as the
11123 "key" operand has a type, we can infer the others. */
11124 for (j = 0; j < els; j++)
11125 if (inst.operands[j].vectype.type != NT_invtype)
11126 inst.vectype.el[j] = inst.operands[j].vectype;
11127
11128 if (inst.operands[key_el].vectype.type != NT_invtype)
11129 {
11130 for (j = 0; j < els; j++)
11131 if (inst.operands[j].vectype.type == NT_invtype)
11132 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11133 types[j]);
11134 }
11135 else
11136 {
11137 first_error (_("operand types can't be inferred"));
11138 return badtype;
11139 }
11140 }
11141 else if (inst.vectype.elems != els)
11142 {
11143 first_error (_("type specifier has the wrong number of parts"));
11144 return badtype;
11145 }
11146
11147 for (pass = 0; pass < 2; pass++)
11148 {
11149 for (i = 0; i < els; i++)
11150 {
11151 unsigned thisarg = types[i];
11152 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11153 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11154 enum neon_el_type g_type = inst.vectype.el[i].type;
11155 unsigned g_size = inst.vectype.el[i].size;
11156
11157 /* Decay more-specific signed & unsigned types to sign-insensitive
11158 integer types if sign-specific variants are unavailable. */
11159 if ((g_type == NT_signed || g_type == NT_unsigned)
11160 && (types_allowed & N_SU_ALL) == 0)
11161 g_type = NT_integer;
11162
11163 /* If only untyped args are allowed, decay any more specific types to
11164 them. Some instructions only care about signs for some element
11165 sizes, so handle that properly. */
11166 if ((g_size == 8 && (types_allowed & N_8) != 0)
11167 || (g_size == 16 && (types_allowed & N_16) != 0)
11168 || (g_size == 32 && (types_allowed & N_32) != 0)
11169 || (g_size == 64 && (types_allowed & N_64) != 0))
11170 g_type = NT_untyped;
11171
11172 if (pass == 0)
11173 {
11174 if ((thisarg & N_KEY) != 0)
11175 {
11176 k_type = g_type;
11177 k_size = g_size;
11178 key_allowed = thisarg & ~N_KEY;
11179 }
11180 }
11181 else
11182 {
11183 if ((thisarg & N_VFP) != 0)
11184 {
11185 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11186 unsigned regwidth = neon_shape_el_size[regshape], match;
11187
11188 /* In VFP mode, operands must match register widths. If we
11189 have a key operand, use its width, else use the width of
11190 the current operand. */
11191 if (k_size != -1u)
11192 match = k_size;
11193 else
11194 match = g_size;
11195
11196 if (regwidth != match)
11197 {
11198 first_error (_("operand size must match register width"));
11199 return badtype;
11200 }
11201 }
11202
11203 if ((thisarg & N_EQK) == 0)
11204 {
11205 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11206
11207 if ((given_type & types_allowed) == 0)
11208 {
11209 first_error (_("bad type in Neon instruction"));
11210 return badtype;
11211 }
11212 }
11213 else
11214 {
11215 enum neon_el_type mod_k_type = k_type;
11216 unsigned mod_k_size = k_size;
11217 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11218 if (g_type != mod_k_type || g_size != mod_k_size)
11219 {
11220 first_error (_("inconsistent types in Neon instruction"));
11221 return badtype;
11222 }
11223 }
11224 }
11225 }
11226 }
11227
11228 return inst.vectype.el[key_el];
11229 }
11230
11231 /* Neon-style VFP instruction forwarding. */
11232
11233 /* Thumb VFP instructions have 0xE in the condition field. */
11234
11235 static void
11236 do_vfp_cond_or_thumb (void)
11237 {
11238 if (thumb_mode)
11239 inst.instruction |= 0xe0000000;
11240 else
11241 inst.instruction |= inst.cond << 28;
11242 }
11243
11244 /* Look up and encode a simple mnemonic, for use as a helper function for the
11245 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11246 etc. It is assumed that operand parsing has already been done, and that the
11247 operands are in the form expected by the given opcode (this isn't necessarily
11248 the same as the form in which they were parsed, hence some massaging must
11249 take place before this function is called).
11250 Checks current arch version against that in the looked-up opcode. */
11251
11252 static void
11253 do_vfp_nsyn_opcode (const char *opname)
11254 {
11255 const struct asm_opcode *opcode;
11256
11257 opcode = hash_find (arm_ops_hsh, opname);
11258
11259 if (!opcode)
11260 abort ();
11261
11262 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11263 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11264 _(BAD_FPU));
11265
11266 if (thumb_mode)
11267 {
11268 inst.instruction = opcode->tvalue;
11269 opcode->tencode ();
11270 }
11271 else
11272 {
11273 inst.instruction = (inst.cond << 28) | opcode->avalue;
11274 opcode->aencode ();
11275 }
11276 }
11277
11278 static void
11279 do_vfp_nsyn_add_sub (enum neon_shape rs)
11280 {
11281 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11282
11283 if (rs == NS_FFF)
11284 {
11285 if (is_add)
11286 do_vfp_nsyn_opcode ("fadds");
11287 else
11288 do_vfp_nsyn_opcode ("fsubs");
11289 }
11290 else
11291 {
11292 if (is_add)
11293 do_vfp_nsyn_opcode ("faddd");
11294 else
11295 do_vfp_nsyn_opcode ("fsubd");
11296 }
11297 }
11298
11299 /* Check operand types to see if this is a VFP instruction, and if so call
11300 PFN (). */
11301
11302 static int
11303 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11304 {
11305 enum neon_shape rs;
11306 struct neon_type_el et;
11307
11308 switch (args)
11309 {
11310 case 2:
11311 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11312 et = neon_check_type (2, rs,
11313 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11314 break;
11315
11316 case 3:
11317 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11318 et = neon_check_type (3, rs,
11319 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11320 break;
11321
11322 default:
11323 abort ();
11324 }
11325
11326 if (et.type != NT_invtype)
11327 {
11328 pfn (rs);
11329 return SUCCESS;
11330 }
11331 else
11332 inst.error = NULL;
11333
11334 return FAIL;
11335 }
11336
11337 static void
11338 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11339 {
11340 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11341
11342 if (rs == NS_FFF)
11343 {
11344 if (is_mla)
11345 do_vfp_nsyn_opcode ("fmacs");
11346 else
11347 do_vfp_nsyn_opcode ("fmscs");
11348 }
11349 else
11350 {
11351 if (is_mla)
11352 do_vfp_nsyn_opcode ("fmacd");
11353 else
11354 do_vfp_nsyn_opcode ("fmscd");
11355 }
11356 }
11357
11358 static void
11359 do_vfp_nsyn_mul (enum neon_shape rs)
11360 {
11361 if (rs == NS_FFF)
11362 do_vfp_nsyn_opcode ("fmuls");
11363 else
11364 do_vfp_nsyn_opcode ("fmuld");
11365 }
11366
11367 static void
11368 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11369 {
11370 int is_neg = (inst.instruction & 0x80) != 0;
11371 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11372
11373 if (rs == NS_FF)
11374 {
11375 if (is_neg)
11376 do_vfp_nsyn_opcode ("fnegs");
11377 else
11378 do_vfp_nsyn_opcode ("fabss");
11379 }
11380 else
11381 {
11382 if (is_neg)
11383 do_vfp_nsyn_opcode ("fnegd");
11384 else
11385 do_vfp_nsyn_opcode ("fabsd");
11386 }
11387 }
11388
11389 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11390 insns belong to Neon, and are handled elsewhere. */
11391
11392 static void
11393 do_vfp_nsyn_ldm_stm (int is_dbmode)
11394 {
11395 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11396 if (is_ldm)
11397 {
11398 if (is_dbmode)
11399 do_vfp_nsyn_opcode ("fldmdbs");
11400 else
11401 do_vfp_nsyn_opcode ("fldmias");
11402 }
11403 else
11404 {
11405 if (is_dbmode)
11406 do_vfp_nsyn_opcode ("fstmdbs");
11407 else
11408 do_vfp_nsyn_opcode ("fstmias");
11409 }
11410 }
11411
11412 static void
11413 do_vfp_nsyn_sqrt (void)
11414 {
11415 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11416 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11417
11418 if (rs == NS_FF)
11419 do_vfp_nsyn_opcode ("fsqrts");
11420 else
11421 do_vfp_nsyn_opcode ("fsqrtd");
11422 }
11423
11424 static void
11425 do_vfp_nsyn_div (void)
11426 {
11427 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11428 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11429 N_F32 | N_F64 | N_KEY | N_VFP);
11430
11431 if (rs == NS_FFF)
11432 do_vfp_nsyn_opcode ("fdivs");
11433 else
11434 do_vfp_nsyn_opcode ("fdivd");
11435 }
11436
11437 static void
11438 do_vfp_nsyn_nmul (void)
11439 {
11440 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11441 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11442 N_F32 | N_F64 | N_KEY | N_VFP);
11443
11444 if (rs == NS_FFF)
11445 {
11446 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11447 do_vfp_sp_dyadic ();
11448 }
11449 else
11450 {
11451 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11452 do_vfp_dp_rd_rn_rm ();
11453 }
11454 do_vfp_cond_or_thumb ();
11455 }
11456
11457 static void
11458 do_vfp_nsyn_cmp (void)
11459 {
11460 if (inst.operands[1].isreg)
11461 {
11462 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11463 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11464
11465 if (rs == NS_FF)
11466 {
11467 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11468 do_vfp_sp_monadic ();
11469 }
11470 else
11471 {
11472 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11473 do_vfp_dp_rd_rm ();
11474 }
11475 }
11476 else
11477 {
11478 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11479 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11480
11481 switch (inst.instruction & 0x0fffffff)
11482 {
11483 case N_MNEM_vcmp:
11484 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11485 break;
11486 case N_MNEM_vcmpe:
11487 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11488 break;
11489 default:
11490 abort ();
11491 }
11492
11493 if (rs == NS_FI)
11494 {
11495 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11496 do_vfp_sp_compare_z ();
11497 }
11498 else
11499 {
11500 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11501 do_vfp_dp_rd ();
11502 }
11503 }
11504 do_vfp_cond_or_thumb ();
11505 }
11506
11507 static void
11508 nsyn_insert_sp (void)
11509 {
11510 inst.operands[1] = inst.operands[0];
11511 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11512 inst.operands[0].reg = 13;
11513 inst.operands[0].isreg = 1;
11514 inst.operands[0].writeback = 1;
11515 inst.operands[0].present = 1;
11516 }
11517
11518 static void
11519 do_vfp_nsyn_push (void)
11520 {
11521 nsyn_insert_sp ();
11522 if (inst.operands[1].issingle)
11523 do_vfp_nsyn_opcode ("fstmdbs");
11524 else
11525 do_vfp_nsyn_opcode ("fstmdbd");
11526 }
11527
11528 static void
11529 do_vfp_nsyn_pop (void)
11530 {
11531 nsyn_insert_sp ();
11532 if (inst.operands[1].issingle)
11533 do_vfp_nsyn_opcode ("fldmias");
11534 else
11535 do_vfp_nsyn_opcode ("fldmiad");
11536 }
11537
11538 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11539 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11540
11541 static unsigned
11542 neon_dp_fixup (unsigned i)
11543 {
11544 if (thumb_mode)
11545 {
11546 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11547 if (i & (1 << 24))
11548 i |= 1 << 28;
11549
11550 i &= ~(1 << 24);
11551
11552 i |= 0xef000000;
11553 }
11554 else
11555 i |= 0xf2000000;
11556
11557 return i;
11558 }
11559
11560 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11561 (0, 1, 2, 3). */
11562
11563 static unsigned
11564 neon_logbits (unsigned x)
11565 {
11566 return ffs (x) - 4;
11567 }
11568
11569 #define LOW4(R) ((R) & 0xf)
11570 #define HI1(R) (((R) >> 4) & 1)
11571
11572 /* Encode insns with bit pattern:
11573
11574 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11575 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11576
11577 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11578 different meaning for some instruction. */
11579
11580 static void
11581 neon_three_same (int isquad, int ubit, int size)
11582 {
11583 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11584 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11585 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11586 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11587 inst.instruction |= LOW4 (inst.operands[2].reg);
11588 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11589 inst.instruction |= (isquad != 0) << 6;
11590 inst.instruction |= (ubit != 0) << 24;
11591 if (size != -1)
11592 inst.instruction |= neon_logbits (size) << 20;
11593
11594 inst.instruction = neon_dp_fixup (inst.instruction);
11595 }
11596
11597 /* Encode instructions of the form:
11598
11599 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11600 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11601
11602 Don't write size if SIZE == -1. */
11603
11604 static void
11605 neon_two_same (int qbit, int ubit, int size)
11606 {
11607 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11608 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11609 inst.instruction |= LOW4 (inst.operands[1].reg);
11610 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11611 inst.instruction |= (qbit != 0) << 6;
11612 inst.instruction |= (ubit != 0) << 24;
11613
11614 if (size != -1)
11615 inst.instruction |= neon_logbits (size) << 18;
11616
11617 inst.instruction = neon_dp_fixup (inst.instruction);
11618 }
11619
11620 /* Neon instruction encoders, in approximate order of appearance. */
11621
11622 static void
11623 do_neon_dyadic_i_su (void)
11624 {
11625 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11626 struct neon_type_el et = neon_check_type (3, rs,
11627 N_EQK, N_EQK, N_SU_32 | N_KEY);
11628 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11629 }
11630
11631 static void
11632 do_neon_dyadic_i64_su (void)
11633 {
11634 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11635 struct neon_type_el et = neon_check_type (3, rs,
11636 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11637 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11638 }
11639
11640 static void
11641 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11642 unsigned immbits)
11643 {
11644 unsigned size = et.size >> 3;
11645 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11646 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11647 inst.instruction |= LOW4 (inst.operands[1].reg);
11648 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11649 inst.instruction |= (isquad != 0) << 6;
11650 inst.instruction |= immbits << 16;
11651 inst.instruction |= (size >> 3) << 7;
11652 inst.instruction |= (size & 0x7) << 19;
11653 if (write_ubit)
11654 inst.instruction |= (uval != 0) << 24;
11655
11656 inst.instruction = neon_dp_fixup (inst.instruction);
11657 }
11658
11659 static void
11660 do_neon_shl_imm (void)
11661 {
11662 if (!inst.operands[2].isreg)
11663 {
11664 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11665 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11666 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11667 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11668 }
11669 else
11670 {
11671 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11672 struct neon_type_el et = neon_check_type (3, rs,
11673 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11674 unsigned int tmp;
11675
11676 /* VSHL/VQSHL 3-register variants have syntax such as:
11677 vshl.xx Dd, Dm, Dn
11678 whereas other 3-register operations encoded by neon_three_same have
11679 syntax like:
11680 vadd.xx Dd, Dn, Dm
11681 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11682 here. */
11683 tmp = inst.operands[2].reg;
11684 inst.operands[2].reg = inst.operands[1].reg;
11685 inst.operands[1].reg = tmp;
11686 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11687 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11688 }
11689 }
11690
11691 static void
11692 do_neon_qshl_imm (void)
11693 {
11694 if (!inst.operands[2].isreg)
11695 {
11696 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11697 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11698
11699 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11700 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11701 inst.operands[2].imm);
11702 }
11703 else
11704 {
11705 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11706 struct neon_type_el et = neon_check_type (3, rs,
11707 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11708 unsigned int tmp;
11709
11710 /* See note in do_neon_shl_imm. */
11711 tmp = inst.operands[2].reg;
11712 inst.operands[2].reg = inst.operands[1].reg;
11713 inst.operands[1].reg = tmp;
11714 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11715 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11716 }
11717 }
11718
11719 static void
11720 do_neon_rshl (void)
11721 {
11722 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11723 struct neon_type_el et = neon_check_type (3, rs,
11724 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11725 unsigned int tmp;
11726
11727 tmp = inst.operands[2].reg;
11728 inst.operands[2].reg = inst.operands[1].reg;
11729 inst.operands[1].reg = tmp;
11730 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11731 }
11732
11733 static int
11734 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11735 {
11736 /* Handle .I8 pseudo-instructions. */
11737 if (size == 8)
11738 {
11739 /* Unfortunately, this will make everything apart from zero out-of-range.
11740 FIXME is this the intended semantics? There doesn't seem much point in
11741 accepting .I8 if so. */
11742 immediate |= immediate << 8;
11743 size = 16;
11744 }
11745
11746 if (size >= 32)
11747 {
11748 if (immediate == (immediate & 0x000000ff))
11749 {
11750 *immbits = immediate;
11751 return 0x1;
11752 }
11753 else if (immediate == (immediate & 0x0000ff00))
11754 {
11755 *immbits = immediate >> 8;
11756 return 0x3;
11757 }
11758 else if (immediate == (immediate & 0x00ff0000))
11759 {
11760 *immbits = immediate >> 16;
11761 return 0x5;
11762 }
11763 else if (immediate == (immediate & 0xff000000))
11764 {
11765 *immbits = immediate >> 24;
11766 return 0x7;
11767 }
11768 if ((immediate & 0xffff) != (immediate >> 16))
11769 goto bad_immediate;
11770 immediate &= 0xffff;
11771 }
11772
11773 if (immediate == (immediate & 0x000000ff))
11774 {
11775 *immbits = immediate;
11776 return 0x9;
11777 }
11778 else if (immediate == (immediate & 0x0000ff00))
11779 {
11780 *immbits = immediate >> 8;
11781 return 0xb;
11782 }
11783
11784 bad_immediate:
11785 first_error (_("immediate value out of range"));
11786 return FAIL;
11787 }
11788
11789 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11790 A, B, C, D. */
11791
11792 static int
11793 neon_bits_same_in_bytes (unsigned imm)
11794 {
11795 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11796 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11797 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11798 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11799 }
11800
11801 /* For immediate of above form, return 0bABCD. */
11802
11803 static unsigned
11804 neon_squash_bits (unsigned imm)
11805 {
11806 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11807 | ((imm & 0x01000000) >> 21);
11808 }
11809
11810 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11811
11812 static unsigned
11813 neon_qfloat_bits (unsigned imm)
11814 {
11815 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11816 }
11817
11818 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11819 the instruction. *OP is passed as the initial value of the op field, and
11820 may be set to a different value depending on the constant (i.e.
11821 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11822 MVN). If the immediate looks like a repeated pattern then also
11823 try smaller element sizes. */
11824
11825 static int
11826 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11827 unsigned *immbits, int *op, int size,
11828 enum neon_el_type type)
11829 {
11830 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11831 float. */
11832 if (type == NT_float && !float_p)
11833 return FAIL;
11834
11835 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11836 {
11837 if (size != 32 || *op == 1)
11838 return FAIL;
11839 *immbits = neon_qfloat_bits (immlo);
11840 return 0xf;
11841 }
11842
11843 if (size == 64)
11844 {
11845 if (neon_bits_same_in_bytes (immhi)
11846 && neon_bits_same_in_bytes (immlo))
11847 {
11848 if (*op == 1)
11849 return FAIL;
11850 *immbits = (neon_squash_bits (immhi) << 4)
11851 | neon_squash_bits (immlo);
11852 *op = 1;
11853 return 0xe;
11854 }
11855
11856 if (immhi != immlo)
11857 return FAIL;
11858 }
11859
11860 if (size >= 32)
11861 {
11862 if (immlo == (immlo & 0x000000ff))
11863 {
11864 *immbits = immlo;
11865 return 0x0;
11866 }
11867 else if (immlo == (immlo & 0x0000ff00))
11868 {
11869 *immbits = immlo >> 8;
11870 return 0x2;
11871 }
11872 else if (immlo == (immlo & 0x00ff0000))
11873 {
11874 *immbits = immlo >> 16;
11875 return 0x4;
11876 }
11877 else if (immlo == (immlo & 0xff000000))
11878 {
11879 *immbits = immlo >> 24;
11880 return 0x6;
11881 }
11882 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11883 {
11884 *immbits = (immlo >> 8) & 0xff;
11885 return 0xc;
11886 }
11887 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11888 {
11889 *immbits = (immlo >> 16) & 0xff;
11890 return 0xd;
11891 }
11892
11893 if ((immlo & 0xffff) != (immlo >> 16))
11894 return FAIL;
11895 immlo &= 0xffff;
11896 }
11897
11898 if (size >= 16)
11899 {
11900 if (immlo == (immlo & 0x000000ff))
11901 {
11902 *immbits = immlo;
11903 return 0x8;
11904 }
11905 else if (immlo == (immlo & 0x0000ff00))
11906 {
11907 *immbits = immlo >> 8;
11908 return 0xa;
11909 }
11910
11911 if ((immlo & 0xff) != (immlo >> 8))
11912 return FAIL;
11913 immlo &= 0xff;
11914 }
11915
11916 if (immlo == (immlo & 0x000000ff))
11917 {
11918 /* Don't allow MVN with 8-bit immediate. */
11919 if (*op == 1)
11920 return FAIL;
11921 *immbits = immlo;
11922 return 0xe;
11923 }
11924
11925 return FAIL;
11926 }
11927
11928 /* Write immediate bits [7:0] to the following locations:
11929
11930 |28/24|23 19|18 16|15 4|3 0|
11931 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11932
11933 This function is used by VMOV/VMVN/VORR/VBIC. */
11934
11935 static void
11936 neon_write_immbits (unsigned immbits)
11937 {
11938 inst.instruction |= immbits & 0xf;
11939 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11940 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11941 }
11942
11943 /* Invert low-order SIZE bits of XHI:XLO. */
11944
11945 static void
11946 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11947 {
11948 unsigned immlo = xlo ? *xlo : 0;
11949 unsigned immhi = xhi ? *xhi : 0;
11950
11951 switch (size)
11952 {
11953 case 8:
11954 immlo = (~immlo) & 0xff;
11955 break;
11956
11957 case 16:
11958 immlo = (~immlo) & 0xffff;
11959 break;
11960
11961 case 64:
11962 immhi = (~immhi) & 0xffffffff;
11963 /* fall through. */
11964
11965 case 32:
11966 immlo = (~immlo) & 0xffffffff;
11967 break;
11968
11969 default:
11970 abort ();
11971 }
11972
11973 if (xlo)
11974 *xlo = immlo;
11975
11976 if (xhi)
11977 *xhi = immhi;
11978 }
11979
11980 static void
11981 do_neon_logic (void)
11982 {
11983 if (inst.operands[2].present && inst.operands[2].isreg)
11984 {
11985 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11986 neon_check_type (3, rs, N_IGNORE_TYPE);
11987 /* U bit and size field were set as part of the bitmask. */
11988 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11989 neon_three_same (neon_quad (rs), 0, -1);
11990 }
11991 else
11992 {
11993 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11994 struct neon_type_el et = neon_check_type (2, rs,
11995 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11996 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11997 unsigned immbits;
11998 int cmode;
11999
12000 if (et.type == NT_invtype)
12001 return;
12002
12003 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12004
12005 immbits = inst.operands[1].imm;
12006 if (et.size == 64)
12007 {
12008 /* .i64 is a pseudo-op, so the immediate must be a repeating
12009 pattern. */
12010 if (immbits != (inst.operands[1].regisimm ?
12011 inst.operands[1].reg : 0))
12012 {
12013 /* Set immbits to an invalid constant. */
12014 immbits = 0xdeadbeef;
12015 }
12016 }
12017
12018 switch (opcode)
12019 {
12020 case N_MNEM_vbic:
12021 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12022 break;
12023
12024 case N_MNEM_vorr:
12025 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12026 break;
12027
12028 case N_MNEM_vand:
12029 /* Pseudo-instruction for VBIC. */
12030 neon_invert_size (&immbits, 0, et.size);
12031 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12032 break;
12033
12034 case N_MNEM_vorn:
12035 /* Pseudo-instruction for VORR. */
12036 neon_invert_size (&immbits, 0, et.size);
12037 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
12038 break;
12039
12040 default:
12041 abort ();
12042 }
12043
12044 if (cmode == FAIL)
12045 return;
12046
12047 inst.instruction |= neon_quad (rs) << 6;
12048 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12049 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12050 inst.instruction |= cmode << 8;
12051 neon_write_immbits (immbits);
12052
12053 inst.instruction = neon_dp_fixup (inst.instruction);
12054 }
12055 }
12056
12057 static void
12058 do_neon_bitfield (void)
12059 {
12060 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12061 neon_check_type (3, rs, N_IGNORE_TYPE);
12062 neon_three_same (neon_quad (rs), 0, -1);
12063 }
12064
12065 static void
12066 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
12067 unsigned destbits)
12068 {
12069 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12070 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12071 types | N_KEY);
12072 if (et.type == NT_float)
12073 {
12074 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12075 neon_three_same (neon_quad (rs), 0, -1);
12076 }
12077 else
12078 {
12079 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12080 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12081 }
12082 }
12083
12084 static void
12085 do_neon_dyadic_if_su (void)
12086 {
12087 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12088 }
12089
12090 static void
12091 do_neon_dyadic_if_su_d (void)
12092 {
12093 /* This version only allow D registers, but that constraint is enforced during
12094 operand parsing so we don't need to do anything extra here. */
12095 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12096 }
12097
12098 static void
12099 do_neon_dyadic_if_i_d (void)
12100 {
12101 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12102 affected if we specify unsigned args. */
12103 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12104 }
12105
12106 enum vfp_or_neon_is_neon_bits
12107 {
12108 NEON_CHECK_CC = 1,
12109 NEON_CHECK_ARCH = 2
12110 };
12111
12112 /* Call this function if an instruction which may have belonged to the VFP or
12113 Neon instruction sets, but turned out to be a Neon instruction (due to the
12114 operand types involved, etc.). We have to check and/or fix-up a couple of
12115 things:
12116
12117 - Make sure the user hasn't attempted to make a Neon instruction
12118 conditional.
12119 - Alter the value in the condition code field if necessary.
12120 - Make sure that the arch supports Neon instructions.
12121
12122 Which of these operations take place depends on bits from enum
12123 vfp_or_neon_is_neon_bits.
12124
12125 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12126 current instruction's condition is COND_ALWAYS, the condition field is
12127 changed to inst.uncond_value. This is necessary because instructions shared
12128 between VFP and Neon may be conditional for the VFP variants only, and the
12129 unconditional Neon version must have, e.g., 0xF in the condition field. */
12130
12131 static int
12132 vfp_or_neon_is_neon (unsigned check)
12133 {
12134 /* Conditions are always legal in Thumb mode (IT blocks). */
12135 if (!thumb_mode && (check & NEON_CHECK_CC))
12136 {
12137 if (inst.cond != COND_ALWAYS)
12138 {
12139 first_error (_(BAD_COND));
12140 return FAIL;
12141 }
12142 if (inst.uncond_value != -1)
12143 inst.instruction |= inst.uncond_value << 28;
12144 }
12145
12146 if ((check & NEON_CHECK_ARCH)
12147 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12148 {
12149 first_error (_(BAD_FPU));
12150 return FAIL;
12151 }
12152
12153 return SUCCESS;
12154 }
12155
12156 static void
12157 do_neon_addsub_if_i (void)
12158 {
12159 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12160 return;
12161
12162 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12163 return;
12164
12165 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12166 affected if we specify unsigned args. */
12167 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12168 }
12169
12170 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12171 result to be:
12172 V<op> A,B (A is operand 0, B is operand 2)
12173 to mean:
12174 V<op> A,B,A
12175 not:
12176 V<op> A,B,B
12177 so handle that case specially. */
12178
12179 static void
12180 neon_exchange_operands (void)
12181 {
12182 void *scratch = alloca (sizeof (inst.operands[0]));
12183 if (inst.operands[1].present)
12184 {
12185 /* Swap operands[1] and operands[2]. */
12186 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12187 inst.operands[1] = inst.operands[2];
12188 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12189 }
12190 else
12191 {
12192 inst.operands[1] = inst.operands[2];
12193 inst.operands[2] = inst.operands[0];
12194 }
12195 }
12196
12197 static void
12198 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12199 {
12200 if (inst.operands[2].isreg)
12201 {
12202 if (invert)
12203 neon_exchange_operands ();
12204 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12205 }
12206 else
12207 {
12208 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12209 struct neon_type_el et = neon_check_type (2, rs,
12210 N_EQK | N_SIZ, immtypes | N_KEY);
12211
12212 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12213 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12214 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12215 inst.instruction |= LOW4 (inst.operands[1].reg);
12216 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12217 inst.instruction |= neon_quad (rs) << 6;
12218 inst.instruction |= (et.type == NT_float) << 10;
12219 inst.instruction |= neon_logbits (et.size) << 18;
12220
12221 inst.instruction = neon_dp_fixup (inst.instruction);
12222 }
12223 }
12224
12225 static void
12226 do_neon_cmp (void)
12227 {
12228 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12229 }
12230
12231 static void
12232 do_neon_cmp_inv (void)
12233 {
12234 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12235 }
12236
12237 static void
12238 do_neon_ceq (void)
12239 {
12240 neon_compare (N_IF_32, N_IF_32, FALSE);
12241 }
12242
12243 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12244 scalars, which are encoded in 5 bits, M : Rm.
12245 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12246 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12247 index in M. */
12248
12249 static unsigned
12250 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12251 {
12252 unsigned regno = NEON_SCALAR_REG (scalar);
12253 unsigned elno = NEON_SCALAR_INDEX (scalar);
12254
12255 switch (elsize)
12256 {
12257 case 16:
12258 if (regno > 7 || elno > 3)
12259 goto bad_scalar;
12260 return regno | (elno << 3);
12261
12262 case 32:
12263 if (regno > 15 || elno > 1)
12264 goto bad_scalar;
12265 return regno | (elno << 4);
12266
12267 default:
12268 bad_scalar:
12269 first_error (_("scalar out of range for multiply instruction"));
12270 }
12271
12272 return 0;
12273 }
12274
12275 /* Encode multiply / multiply-accumulate scalar instructions. */
12276
12277 static void
12278 neon_mul_mac (struct neon_type_el et, int ubit)
12279 {
12280 unsigned scalar;
12281
12282 /* Give a more helpful error message if we have an invalid type. */
12283 if (et.type == NT_invtype)
12284 return;
12285
12286 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12287 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12288 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12289 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12290 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12291 inst.instruction |= LOW4 (scalar);
12292 inst.instruction |= HI1 (scalar) << 5;
12293 inst.instruction |= (et.type == NT_float) << 8;
12294 inst.instruction |= neon_logbits (et.size) << 20;
12295 inst.instruction |= (ubit != 0) << 24;
12296
12297 inst.instruction = neon_dp_fixup (inst.instruction);
12298 }
12299
12300 static void
12301 do_neon_mac_maybe_scalar (void)
12302 {
12303 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12304 return;
12305
12306 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12307 return;
12308
12309 if (inst.operands[2].isscalar)
12310 {
12311 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12312 struct neon_type_el et = neon_check_type (3, rs,
12313 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12314 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12315 neon_mul_mac (et, neon_quad (rs));
12316 }
12317 else
12318 {
12319 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12320 affected if we specify unsigned args. */
12321 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12322 }
12323 }
12324
12325 static void
12326 do_neon_tst (void)
12327 {
12328 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12329 struct neon_type_el et = neon_check_type (3, rs,
12330 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12331 neon_three_same (neon_quad (rs), 0, et.size);
12332 }
12333
12334 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12335 same types as the MAC equivalents. The polynomial type for this instruction
12336 is encoded the same as the integer type. */
12337
12338 static void
12339 do_neon_mul (void)
12340 {
12341 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12342 return;
12343
12344 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12345 return;
12346
12347 if (inst.operands[2].isscalar)
12348 do_neon_mac_maybe_scalar ();
12349 else
12350 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12351 }
12352
12353 static void
12354 do_neon_qdmulh (void)
12355 {
12356 if (inst.operands[2].isscalar)
12357 {
12358 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12359 struct neon_type_el et = neon_check_type (3, rs,
12360 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12361 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12362 neon_mul_mac (et, neon_quad (rs));
12363 }
12364 else
12365 {
12366 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12367 struct neon_type_el et = neon_check_type (3, rs,
12368 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12369 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12370 /* The U bit (rounding) comes from bit mask. */
12371 neon_three_same (neon_quad (rs), 0, et.size);
12372 }
12373 }
12374
12375 static void
12376 do_neon_fcmp_absolute (void)
12377 {
12378 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12379 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12380 /* Size field comes from bit mask. */
12381 neon_three_same (neon_quad (rs), 1, -1);
12382 }
12383
12384 static void
12385 do_neon_fcmp_absolute_inv (void)
12386 {
12387 neon_exchange_operands ();
12388 do_neon_fcmp_absolute ();
12389 }
12390
12391 static void
12392 do_neon_step (void)
12393 {
12394 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12395 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12396 neon_three_same (neon_quad (rs), 0, -1);
12397 }
12398
12399 static void
12400 do_neon_abs_neg (void)
12401 {
12402 enum neon_shape rs;
12403 struct neon_type_el et;
12404
12405 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12406 return;
12407
12408 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12409 return;
12410
12411 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12412 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12413
12414 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12415 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12416 inst.instruction |= LOW4 (inst.operands[1].reg);
12417 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12418 inst.instruction |= neon_quad (rs) << 6;
12419 inst.instruction |= (et.type == NT_float) << 10;
12420 inst.instruction |= neon_logbits (et.size) << 18;
12421
12422 inst.instruction = neon_dp_fixup (inst.instruction);
12423 }
12424
12425 static void
12426 do_neon_sli (void)
12427 {
12428 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12429 struct neon_type_el et = neon_check_type (2, rs,
12430 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12431 int imm = inst.operands[2].imm;
12432 constraint (imm < 0 || (unsigned)imm >= et.size,
12433 _("immediate out of range for insert"));
12434 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12435 }
12436
12437 static void
12438 do_neon_sri (void)
12439 {
12440 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12441 struct neon_type_el et = neon_check_type (2, rs,
12442 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12443 int imm = inst.operands[2].imm;
12444 constraint (imm < 1 || (unsigned)imm > et.size,
12445 _("immediate out of range for insert"));
12446 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12447 }
12448
12449 static void
12450 do_neon_qshlu_imm (void)
12451 {
12452 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12453 struct neon_type_el et = neon_check_type (2, rs,
12454 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12455 int imm = inst.operands[2].imm;
12456 constraint (imm < 0 || (unsigned)imm >= et.size,
12457 _("immediate out of range for shift"));
12458 /* Only encodes the 'U present' variant of the instruction.
12459 In this case, signed types have OP (bit 8) set to 0.
12460 Unsigned types have OP set to 1. */
12461 inst.instruction |= (et.type == NT_unsigned) << 8;
12462 /* The rest of the bits are the same as other immediate shifts. */
12463 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12464 }
12465
12466 static void
12467 do_neon_qmovn (void)
12468 {
12469 struct neon_type_el et = neon_check_type (2, NS_DQ,
12470 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12471 /* Saturating move where operands can be signed or unsigned, and the
12472 destination has the same signedness. */
12473 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12474 if (et.type == NT_unsigned)
12475 inst.instruction |= 0xc0;
12476 else
12477 inst.instruction |= 0x80;
12478 neon_two_same (0, 1, et.size / 2);
12479 }
12480
12481 static void
12482 do_neon_qmovun (void)
12483 {
12484 struct neon_type_el et = neon_check_type (2, NS_DQ,
12485 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12486 /* Saturating move with unsigned results. Operands must be signed. */
12487 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12488 neon_two_same (0, 1, et.size / 2);
12489 }
12490
12491 static void
12492 do_neon_rshift_sat_narrow (void)
12493 {
12494 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12495 or unsigned. If operands are unsigned, results must also be unsigned. */
12496 struct neon_type_el et = neon_check_type (2, NS_DQI,
12497 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12498 int imm = inst.operands[2].imm;
12499 /* This gets the bounds check, size encoding and immediate bits calculation
12500 right. */
12501 et.size /= 2;
12502
12503 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12504 VQMOVN.I<size> <Dd>, <Qm>. */
12505 if (imm == 0)
12506 {
12507 inst.operands[2].present = 0;
12508 inst.instruction = N_MNEM_vqmovn;
12509 do_neon_qmovn ();
12510 return;
12511 }
12512
12513 constraint (imm < 1 || (unsigned)imm > et.size,
12514 _("immediate out of range"));
12515 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12516 }
12517
12518 static void
12519 do_neon_rshift_sat_narrow_u (void)
12520 {
12521 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12522 or unsigned. If operands are unsigned, results must also be unsigned. */
12523 struct neon_type_el et = neon_check_type (2, NS_DQI,
12524 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12525 int imm = inst.operands[2].imm;
12526 /* This gets the bounds check, size encoding and immediate bits calculation
12527 right. */
12528 et.size /= 2;
12529
12530 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12531 VQMOVUN.I<size> <Dd>, <Qm>. */
12532 if (imm == 0)
12533 {
12534 inst.operands[2].present = 0;
12535 inst.instruction = N_MNEM_vqmovun;
12536 do_neon_qmovun ();
12537 return;
12538 }
12539
12540 constraint (imm < 1 || (unsigned)imm > et.size,
12541 _("immediate out of range"));
12542 /* FIXME: The manual is kind of unclear about what value U should have in
12543 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12544 must be 1. */
12545 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12546 }
12547
12548 static void
12549 do_neon_movn (void)
12550 {
12551 struct neon_type_el et = neon_check_type (2, NS_DQ,
12552 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12553 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12554 neon_two_same (0, 1, et.size / 2);
12555 }
12556
12557 static void
12558 do_neon_rshift_narrow (void)
12559 {
12560 struct neon_type_el et = neon_check_type (2, NS_DQI,
12561 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12562 int imm = inst.operands[2].imm;
12563 /* This gets the bounds check, size encoding and immediate bits calculation
12564 right. */
12565 et.size /= 2;
12566
12567 /* If immediate is zero then we are a pseudo-instruction for
12568 VMOVN.I<size> <Dd>, <Qm> */
12569 if (imm == 0)
12570 {
12571 inst.operands[2].present = 0;
12572 inst.instruction = N_MNEM_vmovn;
12573 do_neon_movn ();
12574 return;
12575 }
12576
12577 constraint (imm < 1 || (unsigned)imm > et.size,
12578 _("immediate out of range for narrowing operation"));
12579 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12580 }
12581
12582 static void
12583 do_neon_shll (void)
12584 {
12585 /* FIXME: Type checking when lengthening. */
12586 struct neon_type_el et = neon_check_type (2, NS_QDI,
12587 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12588 unsigned imm = inst.operands[2].imm;
12589
12590 if (imm == et.size)
12591 {
12592 /* Maximum shift variant. */
12593 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12594 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12595 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12596 inst.instruction |= LOW4 (inst.operands[1].reg);
12597 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12598 inst.instruction |= neon_logbits (et.size) << 18;
12599
12600 inst.instruction = neon_dp_fixup (inst.instruction);
12601 }
12602 else
12603 {
12604 /* A more-specific type check for non-max versions. */
12605 et = neon_check_type (2, NS_QDI,
12606 N_EQK | N_DBL, N_SU_32 | N_KEY);
12607 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12608 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12609 }
12610 }
12611
12612 /* Check the various types for the VCVT instruction, and return which version
12613 the current instruction is. */
12614
12615 static int
12616 neon_cvt_flavour (enum neon_shape rs)
12617 {
12618 #define CVT_VAR(C,X,Y) \
12619 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12620 if (et.type != NT_invtype) \
12621 { \
12622 inst.error = NULL; \
12623 return (C); \
12624 }
12625 struct neon_type_el et;
12626 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12627 || rs == NS_FF) ? N_VFP : 0;
12628 /* The instruction versions which take an immediate take one register
12629 argument, which is extended to the width of the full register. Thus the
12630 "source" and "destination" registers must have the same width. Hack that
12631 here by making the size equal to the key (wider, in this case) operand. */
12632 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12633
12634 CVT_VAR (0, N_S32, N_F32);
12635 CVT_VAR (1, N_U32, N_F32);
12636 CVT_VAR (2, N_F32, N_S32);
12637 CVT_VAR (3, N_F32, N_U32);
12638 /* Half-precision conversions. */
12639 CVT_VAR (4, N_F32, N_F16);
12640 CVT_VAR (5, N_F16, N_F32);
12641
12642 whole_reg = N_VFP;
12643
12644 /* VFP instructions. */
12645 CVT_VAR (6, N_F32, N_F64);
12646 CVT_VAR (7, N_F64, N_F32);
12647 CVT_VAR (8, N_S32, N_F64 | key);
12648 CVT_VAR (9, N_U32, N_F64 | key);
12649 CVT_VAR (10, N_F64 | key, N_S32);
12650 CVT_VAR (11, N_F64 | key, N_U32);
12651 /* VFP instructions with bitshift. */
12652 CVT_VAR (12, N_F32 | key, N_S16);
12653 CVT_VAR (13, N_F32 | key, N_U16);
12654 CVT_VAR (14, N_F64 | key, N_S16);
12655 CVT_VAR (15, N_F64 | key, N_U16);
12656 CVT_VAR (16, N_S16, N_F32 | key);
12657 CVT_VAR (17, N_U16, N_F32 | key);
12658 CVT_VAR (18, N_S16, N_F64 | key);
12659 CVT_VAR (19, N_U16, N_F64 | key);
12660
12661 return -1;
12662 #undef CVT_VAR
12663 }
12664
12665 /* Neon-syntax VFP conversions. */
12666
12667 static void
12668 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12669 {
12670 const char *opname = 0;
12671
12672 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12673 {
12674 /* Conversions with immediate bitshift. */
12675 const char *enc[] =
12676 {
12677 "ftosls",
12678 "ftouls",
12679 "fsltos",
12680 "fultos",
12681 NULL,
12682 NULL,
12683 NULL,
12684 NULL,
12685 "ftosld",
12686 "ftould",
12687 "fsltod",
12688 "fultod",
12689 "fshtos",
12690 "fuhtos",
12691 "fshtod",
12692 "fuhtod",
12693 "ftoshs",
12694 "ftouhs",
12695 "ftoshd",
12696 "ftouhd"
12697 };
12698
12699 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12700 {
12701 opname = enc[flavour];
12702 constraint (inst.operands[0].reg != inst.operands[1].reg,
12703 _("operands 0 and 1 must be the same register"));
12704 inst.operands[1] = inst.operands[2];
12705 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12706 }
12707 }
12708 else
12709 {
12710 /* Conversions without bitshift. */
12711 const char *enc[] =
12712 {
12713 "ftosis",
12714 "ftouis",
12715 "fsitos",
12716 "fuitos",
12717 "NULL",
12718 "NULL",
12719 "fcvtsd",
12720 "fcvtds",
12721 "ftosid",
12722 "ftouid",
12723 "fsitod",
12724 "fuitod"
12725 };
12726
12727 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12728 opname = enc[flavour];
12729 }
12730
12731 if (opname)
12732 do_vfp_nsyn_opcode (opname);
12733 }
12734
12735 static void
12736 do_vfp_nsyn_cvtz (void)
12737 {
12738 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12739 int flavour = neon_cvt_flavour (rs);
12740 const char *enc[] =
12741 {
12742 "ftosizs",
12743 "ftouizs",
12744 NULL,
12745 NULL,
12746 NULL,
12747 NULL,
12748 NULL,
12749 NULL,
12750 "ftosizd",
12751 "ftouizd"
12752 };
12753
12754 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12755 do_vfp_nsyn_opcode (enc[flavour]);
12756 }
12757
12758 static void
12759 do_neon_cvt (void)
12760 {
12761 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12762 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
12763 int flavour = neon_cvt_flavour (rs);
12764
12765 /* VFP rather than Neon conversions. */
12766 if (flavour >= 6)
12767 {
12768 do_vfp_nsyn_cvt (rs, flavour);
12769 return;
12770 }
12771
12772 switch (rs)
12773 {
12774 case NS_DDI:
12775 case NS_QQI:
12776 {
12777 unsigned immbits;
12778 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12779
12780 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12781 return;
12782
12783 /* Fixed-point conversion with #0 immediate is encoded as an
12784 integer conversion. */
12785 if (inst.operands[2].present && inst.operands[2].imm == 0)
12786 goto int_encode;
12787 immbits = 32 - inst.operands[2].imm;
12788 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12789 if (flavour != -1)
12790 inst.instruction |= enctab[flavour];
12791 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12792 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12793 inst.instruction |= LOW4 (inst.operands[1].reg);
12794 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12795 inst.instruction |= neon_quad (rs) << 6;
12796 inst.instruction |= 1 << 21;
12797 inst.instruction |= immbits << 16;
12798
12799 inst.instruction = neon_dp_fixup (inst.instruction);
12800 }
12801 break;
12802
12803 case NS_DD:
12804 case NS_QQ:
12805 int_encode:
12806 {
12807 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12808
12809 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12810
12811 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12812 return;
12813
12814 if (flavour != -1)
12815 inst.instruction |= enctab[flavour];
12816
12817 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12818 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12819 inst.instruction |= LOW4 (inst.operands[1].reg);
12820 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12821 inst.instruction |= neon_quad (rs) << 6;
12822 inst.instruction |= 2 << 18;
12823
12824 inst.instruction = neon_dp_fixup (inst.instruction);
12825 }
12826 break;
12827
12828 /* Half-precision conversions for Advanced SIMD -- neon. */
12829 case NS_QD:
12830 case NS_DQ:
12831
12832 if ((rs == NS_DQ)
12833 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
12834 {
12835 as_bad (_("operand size must match register width"));
12836 break;
12837 }
12838
12839 if ((rs == NS_QD)
12840 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
12841 {
12842 as_bad (_("operand size must match register width"));
12843 break;
12844 }
12845
12846 if (rs == NS_DQ)
12847 inst.instruction = 0x3b60600;
12848 else
12849 inst.instruction = 0x3b60700;
12850
12851 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12852 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12853 inst.instruction |= LOW4 (inst.operands[1].reg);
12854 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12855 inst.instruction = neon_dp_fixup (inst.instruction);
12856 break;
12857
12858 default:
12859 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12860 do_vfp_nsyn_cvt (rs, flavour);
12861 }
12862 }
12863
12864 static void
12865 do_neon_cvtb (void)
12866 {
12867 inst.instruction = 0xeb20a40;
12868
12869 /* The sizes are attached to the mnemonic. */
12870 if (inst.vectype.el[0].type != NT_invtype
12871 && inst.vectype.el[0].size == 16)
12872 inst.instruction |= 0x00010000;
12873
12874 /* Programmer's syntax: the sizes are attached to the operands. */
12875 else if (inst.operands[0].vectype.type != NT_invtype
12876 && inst.operands[0].vectype.size == 16)
12877 inst.instruction |= 0x00010000;
12878
12879 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
12880 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
12881 do_vfp_cond_or_thumb ();
12882 }
12883
12884
12885 static void
12886 do_neon_cvtt (void)
12887 {
12888 do_neon_cvtb ();
12889 inst.instruction |= 0x80;
12890 }
12891
12892 static void
12893 neon_move_immediate (void)
12894 {
12895 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12896 struct neon_type_el et = neon_check_type (2, rs,
12897 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12898 unsigned immlo, immhi = 0, immbits;
12899 int op, cmode, float_p;
12900
12901 constraint (et.type == NT_invtype,
12902 _("operand size must be specified for immediate VMOV"));
12903
12904 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12905 op = (inst.instruction & (1 << 5)) != 0;
12906
12907 immlo = inst.operands[1].imm;
12908 if (inst.operands[1].regisimm)
12909 immhi = inst.operands[1].reg;
12910
12911 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12912 _("immediate has bits set outside the operand size"));
12913
12914 float_p = inst.operands[1].immisfloat;
12915
12916 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
12917 et.size, et.type)) == FAIL)
12918 {
12919 /* Invert relevant bits only. */
12920 neon_invert_size (&immlo, &immhi, et.size);
12921 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12922 with one or the other; those cases are caught by
12923 neon_cmode_for_move_imm. */
12924 op = !op;
12925 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12926 &op, et.size, et.type)) == FAIL)
12927 {
12928 first_error (_("immediate out of range"));
12929 return;
12930 }
12931 }
12932
12933 inst.instruction &= ~(1 << 5);
12934 inst.instruction |= op << 5;
12935
12936 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12937 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12938 inst.instruction |= neon_quad (rs) << 6;
12939 inst.instruction |= cmode << 8;
12940
12941 neon_write_immbits (immbits);
12942 }
12943
12944 static void
12945 do_neon_mvn (void)
12946 {
12947 if (inst.operands[1].isreg)
12948 {
12949 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12950
12951 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12952 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12953 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12954 inst.instruction |= LOW4 (inst.operands[1].reg);
12955 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12956 inst.instruction |= neon_quad (rs) << 6;
12957 }
12958 else
12959 {
12960 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12961 neon_move_immediate ();
12962 }
12963
12964 inst.instruction = neon_dp_fixup (inst.instruction);
12965 }
12966
12967 /* Encode instructions of form:
12968
12969 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12970 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
12971
12972 static void
12973 neon_mixed_length (struct neon_type_el et, unsigned size)
12974 {
12975 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12976 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12977 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12978 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12979 inst.instruction |= LOW4 (inst.operands[2].reg);
12980 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12981 inst.instruction |= (et.type == NT_unsigned) << 24;
12982 inst.instruction |= neon_logbits (size) << 20;
12983
12984 inst.instruction = neon_dp_fixup (inst.instruction);
12985 }
12986
12987 static void
12988 do_neon_dyadic_long (void)
12989 {
12990 /* FIXME: Type checking for lengthening op. */
12991 struct neon_type_el et = neon_check_type (3, NS_QDD,
12992 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12993 neon_mixed_length (et, et.size);
12994 }
12995
12996 static void
12997 do_neon_abal (void)
12998 {
12999 struct neon_type_el et = neon_check_type (3, NS_QDD,
13000 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
13001 neon_mixed_length (et, et.size);
13002 }
13003
13004 static void
13005 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
13006 {
13007 if (inst.operands[2].isscalar)
13008 {
13009 struct neon_type_el et = neon_check_type (3, NS_QDS,
13010 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
13011 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13012 neon_mul_mac (et, et.type == NT_unsigned);
13013 }
13014 else
13015 {
13016 struct neon_type_el et = neon_check_type (3, NS_QDD,
13017 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
13018 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13019 neon_mixed_length (et, et.size);
13020 }
13021 }
13022
13023 static void
13024 do_neon_mac_maybe_scalar_long (void)
13025 {
13026 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
13027 }
13028
13029 static void
13030 do_neon_dyadic_wide (void)
13031 {
13032 struct neon_type_el et = neon_check_type (3, NS_QQD,
13033 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
13034 neon_mixed_length (et, et.size);
13035 }
13036
13037 static void
13038 do_neon_dyadic_narrow (void)
13039 {
13040 struct neon_type_el et = neon_check_type (3, NS_QDD,
13041 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
13042 /* Operand sign is unimportant, and the U bit is part of the opcode,
13043 so force the operand type to integer. */
13044 et.type = NT_integer;
13045 neon_mixed_length (et, et.size / 2);
13046 }
13047
13048 static void
13049 do_neon_mul_sat_scalar_long (void)
13050 {
13051 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
13052 }
13053
13054 static void
13055 do_neon_vmull (void)
13056 {
13057 if (inst.operands[2].isscalar)
13058 do_neon_mac_maybe_scalar_long ();
13059 else
13060 {
13061 struct neon_type_el et = neon_check_type (3, NS_QDD,
13062 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
13063 if (et.type == NT_poly)
13064 inst.instruction = NEON_ENC_POLY (inst.instruction);
13065 else
13066 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13067 /* For polynomial encoding, size field must be 0b00 and the U bit must be
13068 zero. Should be OK as-is. */
13069 neon_mixed_length (et, et.size);
13070 }
13071 }
13072
13073 static void
13074 do_neon_ext (void)
13075 {
13076 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
13077 struct neon_type_el et = neon_check_type (3, rs,
13078 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
13079 unsigned imm = (inst.operands[3].imm * et.size) / 8;
13080
13081 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
13082 _("shift out of range"));
13083 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13084 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13085 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13086 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13087 inst.instruction |= LOW4 (inst.operands[2].reg);
13088 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13089 inst.instruction |= neon_quad (rs) << 6;
13090 inst.instruction |= imm << 8;
13091
13092 inst.instruction = neon_dp_fixup (inst.instruction);
13093 }
13094
13095 static void
13096 do_neon_rev (void)
13097 {
13098 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13099 struct neon_type_el et = neon_check_type (2, rs,
13100 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13101 unsigned op = (inst.instruction >> 7) & 3;
13102 /* N (width of reversed regions) is encoded as part of the bitmask. We
13103 extract it here to check the elements to be reversed are smaller.
13104 Otherwise we'd get a reserved instruction. */
13105 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
13106 assert (elsize != 0);
13107 constraint (et.size >= elsize,
13108 _("elements must be smaller than reversal region"));
13109 neon_two_same (neon_quad (rs), 1, et.size);
13110 }
13111
13112 static void
13113 do_neon_dup (void)
13114 {
13115 if (inst.operands[1].isscalar)
13116 {
13117 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
13118 struct neon_type_el et = neon_check_type (2, rs,
13119 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13120 unsigned sizebits = et.size >> 3;
13121 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
13122 int logsize = neon_logbits (et.size);
13123 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
13124
13125 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
13126 return;
13127
13128 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
13129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13131 inst.instruction |= LOW4 (dm);
13132 inst.instruction |= HI1 (dm) << 5;
13133 inst.instruction |= neon_quad (rs) << 6;
13134 inst.instruction |= x << 17;
13135 inst.instruction |= sizebits << 16;
13136
13137 inst.instruction = neon_dp_fixup (inst.instruction);
13138 }
13139 else
13140 {
13141 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13142 struct neon_type_el et = neon_check_type (2, rs,
13143 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13144 /* Duplicate ARM register to lanes of vector. */
13145 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13146 switch (et.size)
13147 {
13148 case 8: inst.instruction |= 0x400000; break;
13149 case 16: inst.instruction |= 0x000020; break;
13150 case 32: inst.instruction |= 0x000000; break;
13151 default: break;
13152 }
13153 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13154 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13155 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13156 inst.instruction |= neon_quad (rs) << 21;
13157 /* The encoding for this instruction is identical for the ARM and Thumb
13158 variants, except for the condition field. */
13159 do_vfp_cond_or_thumb ();
13160 }
13161 }
13162
13163 /* VMOV has particularly many variations. It can be one of:
13164 0. VMOV<c><q> <Qd>, <Qm>
13165 1. VMOV<c><q> <Dd>, <Dm>
13166 (Register operations, which are VORR with Rm = Rn.)
13167 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13168 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13169 (Immediate loads.)
13170 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13171 (ARM register to scalar.)
13172 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13173 (Two ARM registers to vector.)
13174 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13175 (Scalar to ARM register.)
13176 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13177 (Vector to two ARM registers.)
13178 8. VMOV.F32 <Sd>, <Sm>
13179 9. VMOV.F64 <Dd>, <Dm>
13180 (VFP register moves.)
13181 10. VMOV.F32 <Sd>, #imm
13182 11. VMOV.F64 <Dd>, #imm
13183 (VFP float immediate load.)
13184 12. VMOV <Rd>, <Sm>
13185 (VFP single to ARM reg.)
13186 13. VMOV <Sd>, <Rm>
13187 (ARM reg to VFP single.)
13188 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13189 (Two ARM regs to two VFP singles.)
13190 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13191 (Two VFP singles to two ARM regs.)
13192
13193 These cases can be disambiguated using neon_select_shape, except cases 1/9
13194 and 3/11 which depend on the operand type too.
13195
13196 All the encoded bits are hardcoded by this function.
13197
13198 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13199 Cases 5, 7 may be used with VFPv2 and above.
13200
13201 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13202 can specify a type where it doesn't make sense to, and is ignored). */
13203
13204 static void
13205 do_neon_mov (void)
13206 {
13207 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13208 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13209 NS_NULL);
13210 struct neon_type_el et;
13211 const char *ldconst = 0;
13212
13213 switch (rs)
13214 {
13215 case NS_DD: /* case 1/9. */
13216 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13217 /* It is not an error here if no type is given. */
13218 inst.error = NULL;
13219 if (et.type == NT_float && et.size == 64)
13220 {
13221 do_vfp_nsyn_opcode ("fcpyd");
13222 break;
13223 }
13224 /* fall through. */
13225
13226 case NS_QQ: /* case 0/1. */
13227 {
13228 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13229 return;
13230 /* The architecture manual I have doesn't explicitly state which
13231 value the U bit should have for register->register moves, but
13232 the equivalent VORR instruction has U = 0, so do that. */
13233 inst.instruction = 0x0200110;
13234 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13235 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13236 inst.instruction |= LOW4 (inst.operands[1].reg);
13237 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13238 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13239 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13240 inst.instruction |= neon_quad (rs) << 6;
13241
13242 inst.instruction = neon_dp_fixup (inst.instruction);
13243 }
13244 break;
13245
13246 case NS_DI: /* case 3/11. */
13247 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13248 inst.error = NULL;
13249 if (et.type == NT_float && et.size == 64)
13250 {
13251 /* case 11 (fconstd). */
13252 ldconst = "fconstd";
13253 goto encode_fconstd;
13254 }
13255 /* fall through. */
13256
13257 case NS_QI: /* case 2/3. */
13258 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13259 return;
13260 inst.instruction = 0x0800010;
13261 neon_move_immediate ();
13262 inst.instruction = neon_dp_fixup (inst.instruction);
13263 break;
13264
13265 case NS_SR: /* case 4. */
13266 {
13267 unsigned bcdebits = 0;
13268 struct neon_type_el et = neon_check_type (2, NS_NULL,
13269 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13270 int logsize = neon_logbits (et.size);
13271 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13272 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13273
13274 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13275 _(BAD_FPU));
13276 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13277 && et.size != 32, _(BAD_FPU));
13278 constraint (et.type == NT_invtype, _("bad type for scalar"));
13279 constraint (x >= 64 / et.size, _("scalar index out of range"));
13280
13281 switch (et.size)
13282 {
13283 case 8: bcdebits = 0x8; break;
13284 case 16: bcdebits = 0x1; break;
13285 case 32: bcdebits = 0x0; break;
13286 default: ;
13287 }
13288
13289 bcdebits |= x << logsize;
13290
13291 inst.instruction = 0xe000b10;
13292 do_vfp_cond_or_thumb ();
13293 inst.instruction |= LOW4 (dn) << 16;
13294 inst.instruction |= HI1 (dn) << 7;
13295 inst.instruction |= inst.operands[1].reg << 12;
13296 inst.instruction |= (bcdebits & 3) << 5;
13297 inst.instruction |= (bcdebits >> 2) << 21;
13298 }
13299 break;
13300
13301 case NS_DRR: /* case 5 (fmdrr). */
13302 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13303 _(BAD_FPU));
13304
13305 inst.instruction = 0xc400b10;
13306 do_vfp_cond_or_thumb ();
13307 inst.instruction |= LOW4 (inst.operands[0].reg);
13308 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13309 inst.instruction |= inst.operands[1].reg << 12;
13310 inst.instruction |= inst.operands[2].reg << 16;
13311 break;
13312
13313 case NS_RS: /* case 6. */
13314 {
13315 struct neon_type_el et = neon_check_type (2, NS_NULL,
13316 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13317 unsigned logsize = neon_logbits (et.size);
13318 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13319 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13320 unsigned abcdebits = 0;
13321
13322 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13323 _(BAD_FPU));
13324 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13325 && et.size != 32, _(BAD_FPU));
13326 constraint (et.type == NT_invtype, _("bad type for scalar"));
13327 constraint (x >= 64 / et.size, _("scalar index out of range"));
13328
13329 switch (et.size)
13330 {
13331 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13332 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13333 case 32: abcdebits = 0x00; break;
13334 default: ;
13335 }
13336
13337 abcdebits |= x << logsize;
13338 inst.instruction = 0xe100b10;
13339 do_vfp_cond_or_thumb ();
13340 inst.instruction |= LOW4 (dn) << 16;
13341 inst.instruction |= HI1 (dn) << 7;
13342 inst.instruction |= inst.operands[0].reg << 12;
13343 inst.instruction |= (abcdebits & 3) << 5;
13344 inst.instruction |= (abcdebits >> 2) << 21;
13345 }
13346 break;
13347
13348 case NS_RRD: /* case 7 (fmrrd). */
13349 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13350 _(BAD_FPU));
13351
13352 inst.instruction = 0xc500b10;
13353 do_vfp_cond_or_thumb ();
13354 inst.instruction |= inst.operands[0].reg << 12;
13355 inst.instruction |= inst.operands[1].reg << 16;
13356 inst.instruction |= LOW4 (inst.operands[2].reg);
13357 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13358 break;
13359
13360 case NS_FF: /* case 8 (fcpys). */
13361 do_vfp_nsyn_opcode ("fcpys");
13362 break;
13363
13364 case NS_FI: /* case 10 (fconsts). */
13365 ldconst = "fconsts";
13366 encode_fconstd:
13367 if (is_quarter_float (inst.operands[1].imm))
13368 {
13369 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13370 do_vfp_nsyn_opcode (ldconst);
13371 }
13372 else
13373 first_error (_("immediate out of range"));
13374 break;
13375
13376 case NS_RF: /* case 12 (fmrs). */
13377 do_vfp_nsyn_opcode ("fmrs");
13378 break;
13379
13380 case NS_FR: /* case 13 (fmsr). */
13381 do_vfp_nsyn_opcode ("fmsr");
13382 break;
13383
13384 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13385 (one of which is a list), but we have parsed four. Do some fiddling to
13386 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13387 expect. */
13388 case NS_RRFF: /* case 14 (fmrrs). */
13389 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13390 _("VFP registers must be adjacent"));
13391 inst.operands[2].imm = 2;
13392 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13393 do_vfp_nsyn_opcode ("fmrrs");
13394 break;
13395
13396 case NS_FFRR: /* case 15 (fmsrr). */
13397 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13398 _("VFP registers must be adjacent"));
13399 inst.operands[1] = inst.operands[2];
13400 inst.operands[2] = inst.operands[3];
13401 inst.operands[0].imm = 2;
13402 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13403 do_vfp_nsyn_opcode ("fmsrr");
13404 break;
13405
13406 default:
13407 abort ();
13408 }
13409 }
13410
13411 static void
13412 do_neon_rshift_round_imm (void)
13413 {
13414 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13415 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13416 int imm = inst.operands[2].imm;
13417
13418 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13419 if (imm == 0)
13420 {
13421 inst.operands[2].present = 0;
13422 do_neon_mov ();
13423 return;
13424 }
13425
13426 constraint (imm < 1 || (unsigned)imm > et.size,
13427 _("immediate out of range for shift"));
13428 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13429 et.size - imm);
13430 }
13431
13432 static void
13433 do_neon_movl (void)
13434 {
13435 struct neon_type_el et = neon_check_type (2, NS_QD,
13436 N_EQK | N_DBL, N_SU_32 | N_KEY);
13437 unsigned sizebits = et.size >> 3;
13438 inst.instruction |= sizebits << 19;
13439 neon_two_same (0, et.type == NT_unsigned, -1);
13440 }
13441
13442 static void
13443 do_neon_trn (void)
13444 {
13445 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13446 struct neon_type_el et = neon_check_type (2, rs,
13447 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13448 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13449 neon_two_same (neon_quad (rs), 1, et.size);
13450 }
13451
13452 static void
13453 do_neon_zip_uzp (void)
13454 {
13455 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13456 struct neon_type_el et = neon_check_type (2, rs,
13457 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13458 if (rs == NS_DD && et.size == 32)
13459 {
13460 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13461 inst.instruction = N_MNEM_vtrn;
13462 do_neon_trn ();
13463 return;
13464 }
13465 neon_two_same (neon_quad (rs), 1, et.size);
13466 }
13467
13468 static void
13469 do_neon_sat_abs_neg (void)
13470 {
13471 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13472 struct neon_type_el et = neon_check_type (2, rs,
13473 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13474 neon_two_same (neon_quad (rs), 1, et.size);
13475 }
13476
13477 static void
13478 do_neon_pair_long (void)
13479 {
13480 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13481 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13482 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13483 inst.instruction |= (et.type == NT_unsigned) << 7;
13484 neon_two_same (neon_quad (rs), 1, et.size);
13485 }
13486
13487 static void
13488 do_neon_recip_est (void)
13489 {
13490 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13491 struct neon_type_el et = neon_check_type (2, rs,
13492 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13493 inst.instruction |= (et.type == NT_float) << 8;
13494 neon_two_same (neon_quad (rs), 1, et.size);
13495 }
13496
13497 static void
13498 do_neon_cls (void)
13499 {
13500 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13501 struct neon_type_el et = neon_check_type (2, rs,
13502 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13503 neon_two_same (neon_quad (rs), 1, et.size);
13504 }
13505
13506 static void
13507 do_neon_clz (void)
13508 {
13509 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13510 struct neon_type_el et = neon_check_type (2, rs,
13511 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13512 neon_two_same (neon_quad (rs), 1, et.size);
13513 }
13514
13515 static void
13516 do_neon_cnt (void)
13517 {
13518 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13519 struct neon_type_el et = neon_check_type (2, rs,
13520 N_EQK | N_INT, N_8 | N_KEY);
13521 neon_two_same (neon_quad (rs), 1, et.size);
13522 }
13523
13524 static void
13525 do_neon_swp (void)
13526 {
13527 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13528 neon_two_same (neon_quad (rs), 1, -1);
13529 }
13530
13531 static void
13532 do_neon_tbl_tbx (void)
13533 {
13534 unsigned listlenbits;
13535 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13536
13537 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13538 {
13539 first_error (_("bad list length for table lookup"));
13540 return;
13541 }
13542
13543 listlenbits = inst.operands[1].imm - 1;
13544 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13545 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13546 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13547 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13548 inst.instruction |= LOW4 (inst.operands[2].reg);
13549 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13550 inst.instruction |= listlenbits << 8;
13551
13552 inst.instruction = neon_dp_fixup (inst.instruction);
13553 }
13554
13555 static void
13556 do_neon_ldm_stm (void)
13557 {
13558 /* P, U and L bits are part of bitmask. */
13559 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13560 unsigned offsetbits = inst.operands[1].imm * 2;
13561
13562 if (inst.operands[1].issingle)
13563 {
13564 do_vfp_nsyn_ldm_stm (is_dbmode);
13565 return;
13566 }
13567
13568 constraint (is_dbmode && !inst.operands[0].writeback,
13569 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13570
13571 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13572 _("register list must contain at least 1 and at most 16 "
13573 "registers"));
13574
13575 inst.instruction |= inst.operands[0].reg << 16;
13576 inst.instruction |= inst.operands[0].writeback << 21;
13577 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13578 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13579
13580 inst.instruction |= offsetbits;
13581
13582 do_vfp_cond_or_thumb ();
13583 }
13584
13585 static void
13586 do_neon_ldr_str (void)
13587 {
13588 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13589
13590 if (inst.operands[0].issingle)
13591 {
13592 if (is_ldr)
13593 do_vfp_nsyn_opcode ("flds");
13594 else
13595 do_vfp_nsyn_opcode ("fsts");
13596 }
13597 else
13598 {
13599 if (is_ldr)
13600 do_vfp_nsyn_opcode ("fldd");
13601 else
13602 do_vfp_nsyn_opcode ("fstd");
13603 }
13604 }
13605
13606 /* "interleave" version also handles non-interleaving register VLD1/VST1
13607 instructions. */
13608
13609 static void
13610 do_neon_ld_st_interleave (void)
13611 {
13612 struct neon_type_el et = neon_check_type (1, NS_NULL,
13613 N_8 | N_16 | N_32 | N_64);
13614 unsigned alignbits = 0;
13615 unsigned idx;
13616 /* The bits in this table go:
13617 0: register stride of one (0) or two (1)
13618 1,2: register list length, minus one (1, 2, 3, 4).
13619 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13620 We use -1 for invalid entries. */
13621 const int typetable[] =
13622 {
13623 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13624 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13625 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13626 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13627 };
13628 int typebits;
13629
13630 if (et.type == NT_invtype)
13631 return;
13632
13633 if (inst.operands[1].immisalign)
13634 switch (inst.operands[1].imm >> 8)
13635 {
13636 case 64: alignbits = 1; break;
13637 case 128:
13638 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13639 goto bad_alignment;
13640 alignbits = 2;
13641 break;
13642 case 256:
13643 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13644 goto bad_alignment;
13645 alignbits = 3;
13646 break;
13647 default:
13648 bad_alignment:
13649 first_error (_("bad alignment"));
13650 return;
13651 }
13652
13653 inst.instruction |= alignbits << 4;
13654 inst.instruction |= neon_logbits (et.size) << 6;
13655
13656 /* Bits [4:6] of the immediate in a list specifier encode register stride
13657 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13658 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13659 up the right value for "type" in a table based on this value and the given
13660 list style, then stick it back. */
13661 idx = ((inst.operands[0].imm >> 4) & 7)
13662 | (((inst.instruction >> 8) & 3) << 3);
13663
13664 typebits = typetable[idx];
13665
13666 constraint (typebits == -1, _("bad list type for instruction"));
13667
13668 inst.instruction &= ~0xf00;
13669 inst.instruction |= typebits << 8;
13670 }
13671
13672 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13673 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13674 otherwise. The variable arguments are a list of pairs of legal (size, align)
13675 values, terminated with -1. */
13676
13677 static int
13678 neon_alignment_bit (int size, int align, int *do_align, ...)
13679 {
13680 va_list ap;
13681 int result = FAIL, thissize, thisalign;
13682
13683 if (!inst.operands[1].immisalign)
13684 {
13685 *do_align = 0;
13686 return SUCCESS;
13687 }
13688
13689 va_start (ap, do_align);
13690
13691 do
13692 {
13693 thissize = va_arg (ap, int);
13694 if (thissize == -1)
13695 break;
13696 thisalign = va_arg (ap, int);
13697
13698 if (size == thissize && align == thisalign)
13699 result = SUCCESS;
13700 }
13701 while (result != SUCCESS);
13702
13703 va_end (ap);
13704
13705 if (result == SUCCESS)
13706 *do_align = 1;
13707 else
13708 first_error (_("unsupported alignment for instruction"));
13709
13710 return result;
13711 }
13712
13713 static void
13714 do_neon_ld_st_lane (void)
13715 {
13716 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13717 int align_good, do_align = 0;
13718 int logsize = neon_logbits (et.size);
13719 int align = inst.operands[1].imm >> 8;
13720 int n = (inst.instruction >> 8) & 3;
13721 int max_el = 64 / et.size;
13722
13723 if (et.type == NT_invtype)
13724 return;
13725
13726 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13727 _("bad list length"));
13728 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13729 _("scalar index out of range"));
13730 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13731 && et.size == 8,
13732 _("stride of 2 unavailable when element size is 8"));
13733
13734 switch (n)
13735 {
13736 case 0: /* VLD1 / VST1. */
13737 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13738 32, 32, -1);
13739 if (align_good == FAIL)
13740 return;
13741 if (do_align)
13742 {
13743 unsigned alignbits = 0;
13744 switch (et.size)
13745 {
13746 case 16: alignbits = 0x1; break;
13747 case 32: alignbits = 0x3; break;
13748 default: ;
13749 }
13750 inst.instruction |= alignbits << 4;
13751 }
13752 break;
13753
13754 case 1: /* VLD2 / VST2. */
13755 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13756 32, 64, -1);
13757 if (align_good == FAIL)
13758 return;
13759 if (do_align)
13760 inst.instruction |= 1 << 4;
13761 break;
13762
13763 case 2: /* VLD3 / VST3. */
13764 constraint (inst.operands[1].immisalign,
13765 _("can't use alignment with this instruction"));
13766 break;
13767
13768 case 3: /* VLD4 / VST4. */
13769 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13770 16, 64, 32, 64, 32, 128, -1);
13771 if (align_good == FAIL)
13772 return;
13773 if (do_align)
13774 {
13775 unsigned alignbits = 0;
13776 switch (et.size)
13777 {
13778 case 8: alignbits = 0x1; break;
13779 case 16: alignbits = 0x1; break;
13780 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13781 default: ;
13782 }
13783 inst.instruction |= alignbits << 4;
13784 }
13785 break;
13786
13787 default: ;
13788 }
13789
13790 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13791 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13792 inst.instruction |= 1 << (4 + logsize);
13793
13794 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13795 inst.instruction |= logsize << 10;
13796 }
13797
13798 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13799
13800 static void
13801 do_neon_ld_dup (void)
13802 {
13803 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13804 int align_good, do_align = 0;
13805
13806 if (et.type == NT_invtype)
13807 return;
13808
13809 switch ((inst.instruction >> 8) & 3)
13810 {
13811 case 0: /* VLD1. */
13812 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13813 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13814 &do_align, 16, 16, 32, 32, -1);
13815 if (align_good == FAIL)
13816 return;
13817 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13818 {
13819 case 1: break;
13820 case 2: inst.instruction |= 1 << 5; break;
13821 default: first_error (_("bad list length")); return;
13822 }
13823 inst.instruction |= neon_logbits (et.size) << 6;
13824 break;
13825
13826 case 1: /* VLD2. */
13827 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13828 &do_align, 8, 16, 16, 32, 32, 64, -1);
13829 if (align_good == FAIL)
13830 return;
13831 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13832 _("bad list length"));
13833 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13834 inst.instruction |= 1 << 5;
13835 inst.instruction |= neon_logbits (et.size) << 6;
13836 break;
13837
13838 case 2: /* VLD3. */
13839 constraint (inst.operands[1].immisalign,
13840 _("can't use alignment with this instruction"));
13841 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13842 _("bad list length"));
13843 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13844 inst.instruction |= 1 << 5;
13845 inst.instruction |= neon_logbits (et.size) << 6;
13846 break;
13847
13848 case 3: /* VLD4. */
13849 {
13850 int align = inst.operands[1].imm >> 8;
13851 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13852 16, 64, 32, 64, 32, 128, -1);
13853 if (align_good == FAIL)
13854 return;
13855 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13856 _("bad list length"));
13857 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13858 inst.instruction |= 1 << 5;
13859 if (et.size == 32 && align == 128)
13860 inst.instruction |= 0x3 << 6;
13861 else
13862 inst.instruction |= neon_logbits (et.size) << 6;
13863 }
13864 break;
13865
13866 default: ;
13867 }
13868
13869 inst.instruction |= do_align << 4;
13870 }
13871
13872 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13873 apart from bits [11:4]. */
13874
13875 static void
13876 do_neon_ldx_stx (void)
13877 {
13878 switch (NEON_LANE (inst.operands[0].imm))
13879 {
13880 case NEON_INTERLEAVE_LANES:
13881 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13882 do_neon_ld_st_interleave ();
13883 break;
13884
13885 case NEON_ALL_LANES:
13886 inst.instruction = NEON_ENC_DUP (inst.instruction);
13887 do_neon_ld_dup ();
13888 break;
13889
13890 default:
13891 inst.instruction = NEON_ENC_LANE (inst.instruction);
13892 do_neon_ld_st_lane ();
13893 }
13894
13895 /* L bit comes from bit mask. */
13896 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13897 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13898 inst.instruction |= inst.operands[1].reg << 16;
13899
13900 if (inst.operands[1].postind)
13901 {
13902 int postreg = inst.operands[1].imm & 0xf;
13903 constraint (!inst.operands[1].immisreg,
13904 _("post-index must be a register"));
13905 constraint (postreg == 0xd || postreg == 0xf,
13906 _("bad register for post-index"));
13907 inst.instruction |= postreg;
13908 }
13909 else if (inst.operands[1].writeback)
13910 {
13911 inst.instruction |= 0xd;
13912 }
13913 else
13914 inst.instruction |= 0xf;
13915
13916 if (thumb_mode)
13917 inst.instruction |= 0xf9000000;
13918 else
13919 inst.instruction |= 0xf4000000;
13920 }
13921 \f
13922 /* Overall per-instruction processing. */
13923
13924 /* We need to be able to fix up arbitrary expressions in some statements.
13925 This is so that we can handle symbols that are an arbitrary distance from
13926 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13927 which returns part of an address in a form which will be valid for
13928 a data instruction. We do this by pushing the expression into a symbol
13929 in the expr_section, and creating a fix for that. */
13930
13931 static void
13932 fix_new_arm (fragS * frag,
13933 int where,
13934 short int size,
13935 expressionS * exp,
13936 int pc_rel,
13937 int reloc)
13938 {
13939 fixS * new_fix;
13940
13941 switch (exp->X_op)
13942 {
13943 case O_constant:
13944 case O_symbol:
13945 case O_add:
13946 case O_subtract:
13947 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13948 break;
13949
13950 default:
13951 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13952 pc_rel, reloc);
13953 break;
13954 }
13955
13956 /* Mark whether the fix is to a THUMB instruction, or an ARM
13957 instruction. */
13958 new_fix->tc_fix_data = thumb_mode;
13959 }
13960
13961 /* Create a frg for an instruction requiring relaxation. */
13962 static void
13963 output_relax_insn (void)
13964 {
13965 char * to;
13966 symbolS *sym;
13967 int offset;
13968
13969 /* The size of the instruction is unknown, so tie the debug info to the
13970 start of the instruction. */
13971 dwarf2_emit_insn (0);
13972
13973 switch (inst.reloc.exp.X_op)
13974 {
13975 case O_symbol:
13976 sym = inst.reloc.exp.X_add_symbol;
13977 offset = inst.reloc.exp.X_add_number;
13978 break;
13979 case O_constant:
13980 sym = NULL;
13981 offset = inst.reloc.exp.X_add_number;
13982 break;
13983 default:
13984 sym = make_expr_symbol (&inst.reloc.exp);
13985 offset = 0;
13986 break;
13987 }
13988 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13989 inst.relax, sym, offset, NULL/*offset, opcode*/);
13990 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13991 }
13992
13993 /* Write a 32-bit thumb instruction to buf. */
13994 static void
13995 put_thumb32_insn (char * buf, unsigned long insn)
13996 {
13997 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13998 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13999 }
14000
14001 static void
14002 output_inst (const char * str)
14003 {
14004 char * to = NULL;
14005
14006 if (inst.error)
14007 {
14008 as_bad ("%s -- `%s'", inst.error, str);
14009 return;
14010 }
14011 if (inst.relax)
14012 {
14013 output_relax_insn ();
14014 return;
14015 }
14016 if (inst.size == 0)
14017 return;
14018
14019 to = frag_more (inst.size);
14020
14021 if (thumb_mode && (inst.size > THUMB_SIZE))
14022 {
14023 assert (inst.size == (2 * THUMB_SIZE));
14024 put_thumb32_insn (to, inst.instruction);
14025 }
14026 else if (inst.size > INSN_SIZE)
14027 {
14028 assert (inst.size == (2 * INSN_SIZE));
14029 md_number_to_chars (to, inst.instruction, INSN_SIZE);
14030 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
14031 }
14032 else
14033 md_number_to_chars (to, inst.instruction, inst.size);
14034
14035 if (inst.reloc.type != BFD_RELOC_UNUSED)
14036 fix_new_arm (frag_now, to - frag_now->fr_literal,
14037 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
14038 inst.reloc.type);
14039
14040 dwarf2_emit_insn (inst.size);
14041 }
14042
14043 /* Tag values used in struct asm_opcode's tag field. */
14044 enum opcode_tag
14045 {
14046 OT_unconditional, /* Instruction cannot be conditionalized.
14047 The ARM condition field is still 0xE. */
14048 OT_unconditionalF, /* Instruction cannot be conditionalized
14049 and carries 0xF in its ARM condition field. */
14050 OT_csuffix, /* Instruction takes a conditional suffix. */
14051 OT_csuffixF, /* Some forms of the instruction take a conditional
14052 suffix, others place 0xF where the condition field
14053 would be. */
14054 OT_cinfix3, /* Instruction takes a conditional infix,
14055 beginning at character index 3. (In
14056 unified mode, it becomes a suffix.) */
14057 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
14058 tsts, cmps, cmns, and teqs. */
14059 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
14060 character index 3, even in unified mode. Used for
14061 legacy instructions where suffix and infix forms
14062 may be ambiguous. */
14063 OT_csuf_or_in3, /* Instruction takes either a conditional
14064 suffix or an infix at character index 3. */
14065 OT_odd_infix_unc, /* This is the unconditional variant of an
14066 instruction that takes a conditional infix
14067 at an unusual position. In unified mode,
14068 this variant will accept a suffix. */
14069 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
14070 are the conditional variants of instructions that
14071 take conditional infixes in unusual positions.
14072 The infix appears at character index
14073 (tag - OT_odd_infix_0). These are not accepted
14074 in unified mode. */
14075 };
14076
14077 /* Subroutine of md_assemble, responsible for looking up the primary
14078 opcode from the mnemonic the user wrote. STR points to the
14079 beginning of the mnemonic.
14080
14081 This is not simply a hash table lookup, because of conditional
14082 variants. Most instructions have conditional variants, which are
14083 expressed with a _conditional affix_ to the mnemonic. If we were
14084 to encode each conditional variant as a literal string in the opcode
14085 table, it would have approximately 20,000 entries.
14086
14087 Most mnemonics take this affix as a suffix, and in unified syntax,
14088 'most' is upgraded to 'all'. However, in the divided syntax, some
14089 instructions take the affix as an infix, notably the s-variants of
14090 the arithmetic instructions. Of those instructions, all but six
14091 have the infix appear after the third character of the mnemonic.
14092
14093 Accordingly, the algorithm for looking up primary opcodes given
14094 an identifier is:
14095
14096 1. Look up the identifier in the opcode table.
14097 If we find a match, go to step U.
14098
14099 2. Look up the last two characters of the identifier in the
14100 conditions table. If we find a match, look up the first N-2
14101 characters of the identifier in the opcode table. If we
14102 find a match, go to step CE.
14103
14104 3. Look up the fourth and fifth characters of the identifier in
14105 the conditions table. If we find a match, extract those
14106 characters from the identifier, and look up the remaining
14107 characters in the opcode table. If we find a match, go
14108 to step CM.
14109
14110 4. Fail.
14111
14112 U. Examine the tag field of the opcode structure, in case this is
14113 one of the six instructions with its conditional infix in an
14114 unusual place. If it is, the tag tells us where to find the
14115 infix; look it up in the conditions table and set inst.cond
14116 accordingly. Otherwise, this is an unconditional instruction.
14117 Again set inst.cond accordingly. Return the opcode structure.
14118
14119 CE. Examine the tag field to make sure this is an instruction that
14120 should receive a conditional suffix. If it is not, fail.
14121 Otherwise, set inst.cond from the suffix we already looked up,
14122 and return the opcode structure.
14123
14124 CM. Examine the tag field to make sure this is an instruction that
14125 should receive a conditional infix after the third character.
14126 If it is not, fail. Otherwise, undo the edits to the current
14127 line of input and proceed as for case CE. */
14128
14129 static const struct asm_opcode *
14130 opcode_lookup (char **str)
14131 {
14132 char *end, *base;
14133 char *affix;
14134 const struct asm_opcode *opcode;
14135 const struct asm_cond *cond;
14136 char save[2];
14137 bfd_boolean neon_supported;
14138
14139 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14140
14141 /* Scan up to the end of the mnemonic, which must end in white space,
14142 '.' (in unified mode, or for Neon instructions), or end of string. */
14143 for (base = end = *str; *end != '\0'; end++)
14144 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14145 break;
14146
14147 if (end == base)
14148 return 0;
14149
14150 /* Handle a possible width suffix and/or Neon type suffix. */
14151 if (end[0] == '.')
14152 {
14153 int offset = 2;
14154
14155 /* The .w and .n suffixes are only valid if the unified syntax is in
14156 use. */
14157 if (unified_syntax && end[1] == 'w')
14158 inst.size_req = 4;
14159 else if (unified_syntax && end[1] == 'n')
14160 inst.size_req = 2;
14161 else
14162 offset = 0;
14163
14164 inst.vectype.elems = 0;
14165
14166 *str = end + offset;
14167
14168 if (end[offset] == '.')
14169 {
14170 /* See if we have a Neon type suffix (possible in either unified or
14171 non-unified ARM syntax mode). */
14172 if (parse_neon_type (&inst.vectype, str) == FAIL)
14173 return 0;
14174 }
14175 else if (end[offset] != '\0' && end[offset] != ' ')
14176 return 0;
14177 }
14178 else
14179 *str = end;
14180
14181 /* Look for unaffixed or special-case affixed mnemonic. */
14182 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14183 if (opcode)
14184 {
14185 /* step U */
14186 if (opcode->tag < OT_odd_infix_0)
14187 {
14188 inst.cond = COND_ALWAYS;
14189 return opcode;
14190 }
14191
14192 if (warn_on_deprecated && unified_syntax)
14193 as_warn (_("conditional infixes are deprecated in unified syntax"));
14194 affix = base + (opcode->tag - OT_odd_infix_0);
14195 cond = hash_find_n (arm_cond_hsh, affix, 2);
14196 assert (cond);
14197
14198 inst.cond = cond->value;
14199 return opcode;
14200 }
14201
14202 /* Cannot have a conditional suffix on a mnemonic of less than two
14203 characters. */
14204 if (end - base < 3)
14205 return 0;
14206
14207 /* Look for suffixed mnemonic. */
14208 affix = end - 2;
14209 cond = hash_find_n (arm_cond_hsh, affix, 2);
14210 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14211 if (opcode && cond)
14212 {
14213 /* step CE */
14214 switch (opcode->tag)
14215 {
14216 case OT_cinfix3_legacy:
14217 /* Ignore conditional suffixes matched on infix only mnemonics. */
14218 break;
14219
14220 case OT_cinfix3:
14221 case OT_cinfix3_deprecated:
14222 case OT_odd_infix_unc:
14223 if (!unified_syntax)
14224 return 0;
14225 /* else fall through */
14226
14227 case OT_csuffix:
14228 case OT_csuffixF:
14229 case OT_csuf_or_in3:
14230 inst.cond = cond->value;
14231 return opcode;
14232
14233 case OT_unconditional:
14234 case OT_unconditionalF:
14235 if (thumb_mode)
14236 {
14237 inst.cond = cond->value;
14238 }
14239 else
14240 {
14241 /* delayed diagnostic */
14242 inst.error = BAD_COND;
14243 inst.cond = COND_ALWAYS;
14244 }
14245 return opcode;
14246
14247 default:
14248 return 0;
14249 }
14250 }
14251
14252 /* Cannot have a usual-position infix on a mnemonic of less than
14253 six characters (five would be a suffix). */
14254 if (end - base < 6)
14255 return 0;
14256
14257 /* Look for infixed mnemonic in the usual position. */
14258 affix = base + 3;
14259 cond = hash_find_n (arm_cond_hsh, affix, 2);
14260 if (!cond)
14261 return 0;
14262
14263 memcpy (save, affix, 2);
14264 memmove (affix, affix + 2, (end - affix) - 2);
14265 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14266 memmove (affix + 2, affix, (end - affix) - 2);
14267 memcpy (affix, save, 2);
14268
14269 if (opcode
14270 && (opcode->tag == OT_cinfix3
14271 || opcode->tag == OT_cinfix3_deprecated
14272 || opcode->tag == OT_csuf_or_in3
14273 || opcode->tag == OT_cinfix3_legacy))
14274 {
14275 /* step CM */
14276 if (warn_on_deprecated && unified_syntax
14277 && (opcode->tag == OT_cinfix3
14278 || opcode->tag == OT_cinfix3_deprecated))
14279 as_warn (_("conditional infixes are deprecated in unified syntax"));
14280
14281 inst.cond = cond->value;
14282 return opcode;
14283 }
14284
14285 return 0;
14286 }
14287
14288 void
14289 md_assemble (char *str)
14290 {
14291 char *p = str;
14292 const struct asm_opcode * opcode;
14293
14294 /* Align the previous label if needed. */
14295 if (last_label_seen != NULL)
14296 {
14297 symbol_set_frag (last_label_seen, frag_now);
14298 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14299 S_SET_SEGMENT (last_label_seen, now_seg);
14300 }
14301
14302 memset (&inst, '\0', sizeof (inst));
14303 inst.reloc.type = BFD_RELOC_UNUSED;
14304
14305 opcode = opcode_lookup (&p);
14306 if (!opcode)
14307 {
14308 /* It wasn't an instruction, but it might be a register alias of
14309 the form alias .req reg, or a Neon .dn/.qn directive. */
14310 if (!create_register_alias (str, p)
14311 && !create_neon_reg_alias (str, p))
14312 as_bad (_("bad instruction `%s'"), str);
14313
14314 return;
14315 }
14316
14317 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
14318 as_warn (_("s suffix on comparison instruction is deprecated"));
14319
14320 /* The value which unconditional instructions should have in place of the
14321 condition field. */
14322 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14323
14324 if (thumb_mode)
14325 {
14326 arm_feature_set variant;
14327
14328 variant = cpu_variant;
14329 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14330 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14331 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14332 /* Check that this instruction is supported for this CPU. */
14333 if (!opcode->tvariant
14334 || (thumb_mode == 1
14335 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14336 {
14337 as_bad (_("selected processor does not support `%s'"), str);
14338 return;
14339 }
14340 if (inst.cond != COND_ALWAYS && !unified_syntax
14341 && opcode->tencode != do_t_branch)
14342 {
14343 as_bad (_("Thumb does not support conditional execution"));
14344 return;
14345 }
14346
14347 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14348 {
14349 /* Implicit require narrow instructions on Thumb-1. This avoids
14350 relaxation accidentally introducing Thumb-2 instructions. */
14351 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
14352 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
14353 inst.size_req = 2;
14354 }
14355
14356 /* Check conditional suffixes. */
14357 if (current_it_mask)
14358 {
14359 int cond;
14360 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14361 current_it_mask <<= 1;
14362 current_it_mask &= 0x1f;
14363 /* The BKPT instruction is unconditional even in an IT block. */
14364 if (!inst.error
14365 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14366 {
14367 as_bad (_("incorrect condition in IT block"));
14368 return;
14369 }
14370 }
14371 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14372 {
14373 as_bad (_("thumb conditional instruction not in IT block"));
14374 return;
14375 }
14376
14377 mapping_state (MAP_THUMB);
14378 inst.instruction = opcode->tvalue;
14379
14380 if (!parse_operands (p, opcode->operands))
14381 opcode->tencode ();
14382
14383 /* Clear current_it_mask at the end of an IT block. */
14384 if (current_it_mask == 0x10)
14385 current_it_mask = 0;
14386
14387 if (!(inst.error || inst.relax))
14388 {
14389 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14390 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14391 if (inst.size_req && inst.size_req != inst.size)
14392 {
14393 as_bad (_("cannot honor width suffix -- `%s'"), str);
14394 return;
14395 }
14396 }
14397
14398 /* Something has gone badly wrong if we try to relax a fixed size
14399 instruction. */
14400 assert (inst.size_req == 0 || !inst.relax);
14401
14402 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14403 *opcode->tvariant);
14404 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14405 set those bits when Thumb-2 32-bit instructions are seen. ie.
14406 anything other than bl/blx and v6-M instructions.
14407 This is overly pessimistic for relaxable instructions. */
14408 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14409 || inst.relax)
14410 && !ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr))
14411 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14412 arm_ext_v6t2);
14413 }
14414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14415 {
14416 bfd_boolean is_bx;
14417
14418 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
14419 is_bx = (opcode->aencode == do_bx);
14420
14421 /* Check that this instruction is supported for this CPU. */
14422 if (!(is_bx && fix_v4bx)
14423 && !(opcode->avariant &&
14424 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
14425 {
14426 as_bad (_("selected processor does not support `%s'"), str);
14427 return;
14428 }
14429 if (inst.size_req)
14430 {
14431 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14432 return;
14433 }
14434
14435 mapping_state (MAP_ARM);
14436 inst.instruction = opcode->avalue;
14437 if (opcode->tag == OT_unconditionalF)
14438 inst.instruction |= 0xF << 28;
14439 else
14440 inst.instruction |= inst.cond << 28;
14441 inst.size = INSN_SIZE;
14442 if (!parse_operands (p, opcode->operands))
14443 opcode->aencode ();
14444 /* Arm mode bx is marked as both v4T and v5 because it's still required
14445 on a hypothetical non-thumb v5 core. */
14446 if (is_bx)
14447 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14448 else
14449 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14450 *opcode->avariant);
14451 }
14452 else
14453 {
14454 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14455 "-- `%s'"), str);
14456 return;
14457 }
14458 output_inst (str);
14459 }
14460
14461 /* Various frobbings of labels and their addresses. */
14462
14463 void
14464 arm_start_line_hook (void)
14465 {
14466 last_label_seen = NULL;
14467 }
14468
14469 void
14470 arm_frob_label (symbolS * sym)
14471 {
14472 last_label_seen = sym;
14473
14474 ARM_SET_THUMB (sym, thumb_mode);
14475
14476 #if defined OBJ_COFF || defined OBJ_ELF
14477 ARM_SET_INTERWORK (sym, support_interwork);
14478 #endif
14479
14480 /* Note - do not allow local symbols (.Lxxx) to be labelled
14481 as Thumb functions. This is because these labels, whilst
14482 they exist inside Thumb code, are not the entry points for
14483 possible ARM->Thumb calls. Also, these labels can be used
14484 as part of a computed goto or switch statement. eg gcc
14485 can generate code that looks like this:
14486
14487 ldr r2, [pc, .Laaa]
14488 lsl r3, r3, #2
14489 ldr r2, [r3, r2]
14490 mov pc, r2
14491
14492 .Lbbb: .word .Lxxx
14493 .Lccc: .word .Lyyy
14494 ..etc...
14495 .Laaa: .word Lbbb
14496
14497 The first instruction loads the address of the jump table.
14498 The second instruction converts a table index into a byte offset.
14499 The third instruction gets the jump address out of the table.
14500 The fourth instruction performs the jump.
14501
14502 If the address stored at .Laaa is that of a symbol which has the
14503 Thumb_Func bit set, then the linker will arrange for this address
14504 to have the bottom bit set, which in turn would mean that the
14505 address computation performed by the third instruction would end
14506 up with the bottom bit set. Since the ARM is capable of unaligned
14507 word loads, the instruction would then load the incorrect address
14508 out of the jump table, and chaos would ensue. */
14509 if (label_is_thumb_function_name
14510 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14511 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14512 {
14513 /* When the address of a Thumb function is taken the bottom
14514 bit of that address should be set. This will allow
14515 interworking between Arm and Thumb functions to work
14516 correctly. */
14517
14518 THUMB_SET_FUNC (sym, 1);
14519
14520 label_is_thumb_function_name = FALSE;
14521 }
14522
14523 dwarf2_emit_label (sym);
14524 }
14525
14526 int
14527 arm_data_in_code (void)
14528 {
14529 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14530 {
14531 *input_line_pointer = '/';
14532 input_line_pointer += 5;
14533 *input_line_pointer = 0;
14534 return 1;
14535 }
14536
14537 return 0;
14538 }
14539
14540 char *
14541 arm_canonicalize_symbol_name (char * name)
14542 {
14543 int len;
14544
14545 if (thumb_mode && (len = strlen (name)) > 5
14546 && streq (name + len - 5, "/data"))
14547 *(name + len - 5) = 0;
14548
14549 return name;
14550 }
14551 \f
14552 /* Table of all register names defined by default. The user can
14553 define additional names with .req. Note that all register names
14554 should appear in both upper and lowercase variants. Some registers
14555 also have mixed-case names. */
14556
14557 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14558 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14559 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14560 #define REGSET(p,t) \
14561 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14562 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14563 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14564 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14565 #define REGSETH(p,t) \
14566 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14567 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14568 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14569 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14570 #define REGSET2(p,t) \
14571 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14572 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14573 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14574 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14575
14576 static const struct reg_entry reg_names[] =
14577 {
14578 /* ARM integer registers. */
14579 REGSET(r, RN), REGSET(R, RN),
14580
14581 /* ATPCS synonyms. */
14582 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14583 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14584 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14585
14586 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14587 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14588 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14589
14590 /* Well-known aliases. */
14591 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14592 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14593
14594 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14595 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14596
14597 /* Coprocessor numbers. */
14598 REGSET(p, CP), REGSET(P, CP),
14599
14600 /* Coprocessor register numbers. The "cr" variants are for backward
14601 compatibility. */
14602 REGSET(c, CN), REGSET(C, CN),
14603 REGSET(cr, CN), REGSET(CR, CN),
14604
14605 /* FPA registers. */
14606 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14607 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14608
14609 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14610 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14611
14612 /* VFP SP registers. */
14613 REGSET(s,VFS), REGSET(S,VFS),
14614 REGSETH(s,VFS), REGSETH(S,VFS),
14615
14616 /* VFP DP Registers. */
14617 REGSET(d,VFD), REGSET(D,VFD),
14618 /* Extra Neon DP registers. */
14619 REGSETH(d,VFD), REGSETH(D,VFD),
14620
14621 /* Neon QP registers. */
14622 REGSET2(q,NQ), REGSET2(Q,NQ),
14623
14624 /* VFP control registers. */
14625 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14626 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14627 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14628 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14629 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14630 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
14631
14632 /* Maverick DSP coprocessor registers. */
14633 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14634 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14635
14636 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14637 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14638 REGDEF(dspsc,0,DSPSC),
14639
14640 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14641 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14642 REGDEF(DSPSC,0,DSPSC),
14643
14644 /* iWMMXt data registers - p0, c0-15. */
14645 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14646
14647 /* iWMMXt control registers - p1, c0-3. */
14648 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14649 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14650 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14651 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14652
14653 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14654 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14655 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14656 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14657 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14658
14659 /* XScale accumulator registers. */
14660 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14661 };
14662 #undef REGDEF
14663 #undef REGNUM
14664 #undef REGSET
14665
14666 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14667 within psr_required_here. */
14668 static const struct asm_psr psrs[] =
14669 {
14670 /* Backward compatibility notation. Note that "all" is no longer
14671 truly all possible PSR bits. */
14672 {"all", PSR_c | PSR_f},
14673 {"flg", PSR_f},
14674 {"ctl", PSR_c},
14675
14676 /* Individual flags. */
14677 {"f", PSR_f},
14678 {"c", PSR_c},
14679 {"x", PSR_x},
14680 {"s", PSR_s},
14681 /* Combinations of flags. */
14682 {"fs", PSR_f | PSR_s},
14683 {"fx", PSR_f | PSR_x},
14684 {"fc", PSR_f | PSR_c},
14685 {"sf", PSR_s | PSR_f},
14686 {"sx", PSR_s | PSR_x},
14687 {"sc", PSR_s | PSR_c},
14688 {"xf", PSR_x | PSR_f},
14689 {"xs", PSR_x | PSR_s},
14690 {"xc", PSR_x | PSR_c},
14691 {"cf", PSR_c | PSR_f},
14692 {"cs", PSR_c | PSR_s},
14693 {"cx", PSR_c | PSR_x},
14694 {"fsx", PSR_f | PSR_s | PSR_x},
14695 {"fsc", PSR_f | PSR_s | PSR_c},
14696 {"fxs", PSR_f | PSR_x | PSR_s},
14697 {"fxc", PSR_f | PSR_x | PSR_c},
14698 {"fcs", PSR_f | PSR_c | PSR_s},
14699 {"fcx", PSR_f | PSR_c | PSR_x},
14700 {"sfx", PSR_s | PSR_f | PSR_x},
14701 {"sfc", PSR_s | PSR_f | PSR_c},
14702 {"sxf", PSR_s | PSR_x | PSR_f},
14703 {"sxc", PSR_s | PSR_x | PSR_c},
14704 {"scf", PSR_s | PSR_c | PSR_f},
14705 {"scx", PSR_s | PSR_c | PSR_x},
14706 {"xfs", PSR_x | PSR_f | PSR_s},
14707 {"xfc", PSR_x | PSR_f | PSR_c},
14708 {"xsf", PSR_x | PSR_s | PSR_f},
14709 {"xsc", PSR_x | PSR_s | PSR_c},
14710 {"xcf", PSR_x | PSR_c | PSR_f},
14711 {"xcs", PSR_x | PSR_c | PSR_s},
14712 {"cfs", PSR_c | PSR_f | PSR_s},
14713 {"cfx", PSR_c | PSR_f | PSR_x},
14714 {"csf", PSR_c | PSR_s | PSR_f},
14715 {"csx", PSR_c | PSR_s | PSR_x},
14716 {"cxf", PSR_c | PSR_x | PSR_f},
14717 {"cxs", PSR_c | PSR_x | PSR_s},
14718 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14719 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14720 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14721 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14722 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14723 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14724 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14725 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14726 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14727 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14728 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14729 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14730 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14731 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14732 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14733 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14734 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14735 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14736 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14737 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14738 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14739 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14740 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14741 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14742 };
14743
14744 /* Table of V7M psr names. */
14745 static const struct asm_psr v7m_psrs[] =
14746 {
14747 {"apsr", 0 }, {"APSR", 0 },
14748 {"iapsr", 1 }, {"IAPSR", 1 },
14749 {"eapsr", 2 }, {"EAPSR", 2 },
14750 {"psr", 3 }, {"PSR", 3 },
14751 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14752 {"ipsr", 5 }, {"IPSR", 5 },
14753 {"epsr", 6 }, {"EPSR", 6 },
14754 {"iepsr", 7 }, {"IEPSR", 7 },
14755 {"msp", 8 }, {"MSP", 8 },
14756 {"psp", 9 }, {"PSP", 9 },
14757 {"primask", 16}, {"PRIMASK", 16},
14758 {"basepri", 17}, {"BASEPRI", 17},
14759 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14760 {"faultmask", 19}, {"FAULTMASK", 19},
14761 {"control", 20}, {"CONTROL", 20}
14762 };
14763
14764 /* Table of all shift-in-operand names. */
14765 static const struct asm_shift_name shift_names [] =
14766 {
14767 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14768 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14769 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14770 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14771 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14772 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14773 };
14774
14775 /* Table of all explicit relocation names. */
14776 #ifdef OBJ_ELF
14777 static struct reloc_entry reloc_names[] =
14778 {
14779 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14780 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14781 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14782 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14783 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14784 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14785 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14786 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14787 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14788 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14789 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14790 };
14791 #endif
14792
14793 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14794 static const struct asm_cond conds[] =
14795 {
14796 {"eq", 0x0},
14797 {"ne", 0x1},
14798 {"cs", 0x2}, {"hs", 0x2},
14799 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14800 {"mi", 0x4},
14801 {"pl", 0x5},
14802 {"vs", 0x6},
14803 {"vc", 0x7},
14804 {"hi", 0x8},
14805 {"ls", 0x9},
14806 {"ge", 0xa},
14807 {"lt", 0xb},
14808 {"gt", 0xc},
14809 {"le", 0xd},
14810 {"al", 0xe}
14811 };
14812
14813 static struct asm_barrier_opt barrier_opt_names[] =
14814 {
14815 { "sy", 0xf },
14816 { "un", 0x7 },
14817 { "st", 0xe },
14818 { "unst", 0x6 }
14819 };
14820
14821 /* Table of ARM-format instructions. */
14822
14823 /* Macros for gluing together operand strings. N.B. In all cases
14824 other than OPS0, the trailing OP_stop comes from default
14825 zero-initialization of the unspecified elements of the array. */
14826 #define OPS0() { OP_stop, }
14827 #define OPS1(a) { OP_##a, }
14828 #define OPS2(a,b) { OP_##a,OP_##b, }
14829 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14830 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14831 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14832 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14833
14834 /* These macros abstract out the exact format of the mnemonic table and
14835 save some repeated characters. */
14836
14837 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14838 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14839 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14840 THUMB_VARIANT, do_##ae, do_##te }
14841
14842 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14843 a T_MNEM_xyz enumerator. */
14844 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14845 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14846 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14847 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14848
14849 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14850 infix after the third character. */
14851 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14852 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14853 THUMB_VARIANT, do_##ae, do_##te }
14854 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14855 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14856 THUMB_VARIANT, do_##ae, do_##te }
14857 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14858 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14859 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14860 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14861 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14862 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14863 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14864 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14865
14866 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14867 appear in the condition table. */
14868 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14869 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14870 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14871
14872 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14873 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14874 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14875 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14876 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14877 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14878 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14879 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14880 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14881 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14882 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14883 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14884 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14885 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14886 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14887 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14888 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14889 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14890 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14891 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14892
14893 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14894 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14895 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14896 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14897
14898 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14899 field is still 0xE. Many of the Thumb variants can be executed
14900 conditionally, so this is checked separately. */
14901 #define TUE(mnem, op, top, nops, ops, ae, te) \
14902 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14903 THUMB_VARIANT, do_##ae, do_##te }
14904
14905 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14906 condition code field. */
14907 #define TUF(mnem, op, top, nops, ops, ae, te) \
14908 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14909 THUMB_VARIANT, do_##ae, do_##te }
14910
14911 /* ARM-only variants of all the above. */
14912 #define CE(mnem, op, nops, ops, ae) \
14913 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14914
14915 #define C3(mnem, op, nops, ops, ae) \
14916 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14917
14918 /* Legacy mnemonics that always have conditional infix after the third
14919 character. */
14920 #define CL(mnem, op, nops, ops, ae) \
14921 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14922 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14923
14924 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14925 #define cCE(mnem, op, nops, ops, ae) \
14926 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14927
14928 /* Legacy coprocessor instructions where conditional infix and conditional
14929 suffix are ambiguous. For consistency this includes all FPA instructions,
14930 not just the potentially ambiguous ones. */
14931 #define cCL(mnem, op, nops, ops, ae) \
14932 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14933 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14934
14935 /* Coprocessor, takes either a suffix or a position-3 infix
14936 (for an FPA corner case). */
14937 #define C3E(mnem, op, nops, ops, ae) \
14938 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14939 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14940
14941 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14942 { #m1 #m2 #m3, OPS##nops ops, \
14943 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14944 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14945
14946 #define CM(m1, m2, op, nops, ops, ae) \
14947 xCM_(m1, , m2, op, nops, ops, ae), \
14948 xCM_(m1, eq, m2, op, nops, ops, ae), \
14949 xCM_(m1, ne, m2, op, nops, ops, ae), \
14950 xCM_(m1, cs, m2, op, nops, ops, ae), \
14951 xCM_(m1, hs, m2, op, nops, ops, ae), \
14952 xCM_(m1, cc, m2, op, nops, ops, ae), \
14953 xCM_(m1, ul, m2, op, nops, ops, ae), \
14954 xCM_(m1, lo, m2, op, nops, ops, ae), \
14955 xCM_(m1, mi, m2, op, nops, ops, ae), \
14956 xCM_(m1, pl, m2, op, nops, ops, ae), \
14957 xCM_(m1, vs, m2, op, nops, ops, ae), \
14958 xCM_(m1, vc, m2, op, nops, ops, ae), \
14959 xCM_(m1, hi, m2, op, nops, ops, ae), \
14960 xCM_(m1, ls, m2, op, nops, ops, ae), \
14961 xCM_(m1, ge, m2, op, nops, ops, ae), \
14962 xCM_(m1, lt, m2, op, nops, ops, ae), \
14963 xCM_(m1, gt, m2, op, nops, ops, ae), \
14964 xCM_(m1, le, m2, op, nops, ops, ae), \
14965 xCM_(m1, al, m2, op, nops, ops, ae)
14966
14967 #define UE(mnem, op, nops, ops, ae) \
14968 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14969
14970 #define UF(mnem, op, nops, ops, ae) \
14971 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14972
14973 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14974 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14975 use the same encoding function for each. */
14976 #define NUF(mnem, op, nops, ops, enc) \
14977 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14978 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14979
14980 /* Neon data processing, version which indirects through neon_enc_tab for
14981 the various overloaded versions of opcodes. */
14982 #define nUF(mnem, op, nops, ops, enc) \
14983 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14984 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14985
14986 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14987 version. */
14988 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14989 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14990 THUMB_VARIANT, do_##enc, do_##enc }
14991
14992 #define NCE(mnem, op, nops, ops, enc) \
14993 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14994
14995 #define NCEF(mnem, op, nops, ops, enc) \
14996 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14997
14998 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14999 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
15000 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
15001 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
15002
15003 #define nCE(mnem, op, nops, ops, enc) \
15004 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
15005
15006 #define nCEF(mnem, op, nops, ops, enc) \
15007 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
15008
15009 #define do_0 0
15010
15011 /* Thumb-only, unconditional. */
15012 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
15013
15014 static const struct asm_opcode insns[] =
15015 {
15016 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
15017 #define THUMB_VARIANT &arm_ext_v4t
15018 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
15019 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
15020 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
15021 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
15022 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
15023 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
15024 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
15025 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
15026 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
15027 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
15028 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
15029 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
15030 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
15031 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
15032 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
15033 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
15034
15035 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
15036 for setting PSR flag bits. They are obsolete in V6 and do not
15037 have Thumb equivalents. */
15038 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15039 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
15040 CL(tstp, 110f000, 2, (RR, SH), cmp),
15041 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15042 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
15043 CL(cmpp, 150f000, 2, (RR, SH), cmp),
15044 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15045 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
15046 CL(cmnp, 170f000, 2, (RR, SH), cmp),
15047
15048 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
15049 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
15050 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
15051 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
15052
15053 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
15054 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15055 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
15056 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
15057
15058 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15059 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15060 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15061 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15062 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15063 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15064
15065 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
15066 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
15067 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
15068 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
15069
15070 /* Pseudo ops. */
15071 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
15072 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
15073 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
15074
15075 /* Thumb-compatibility pseudo ops. */
15076 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
15077 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
15078 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
15079 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
15080 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
15081 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
15082 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
15083 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
15084 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
15085 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
15086 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
15087 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
15088
15089 /* These may simplify to neg. */
15090 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
15091 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
15092
15093 #undef THUMB_VARIANT
15094 #define THUMB_VARIANT &arm_ext_v6
15095 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
15096
15097 /* V1 instructions with no Thumb analogue prior to V6T2. */
15098 #undef THUMB_VARIANT
15099 #define THUMB_VARIANT &arm_ext_v6t2
15100 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15101 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
15102 CL(teqp, 130f000, 2, (RR, SH), cmp),
15103
15104 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
15105 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
15106 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
15107 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
15108
15109 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15110 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15111
15112 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15113 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
15114
15115 /* V1 instructions with no Thumb analogue at all. */
15116 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
15117 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
15118
15119 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
15120 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
15121 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
15122 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
15123 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
15124 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
15125 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
15126 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
15127
15128 #undef ARM_VARIANT
15129 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
15130 #undef THUMB_VARIANT
15131 #define THUMB_VARIANT &arm_ext_v4t
15132 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15133 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
15134
15135 #undef THUMB_VARIANT
15136 #define THUMB_VARIANT &arm_ext_v6t2
15137 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15138 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
15139
15140 /* Generic coprocessor instructions. */
15141 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15142 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15143 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15144 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15145 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15146 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15147 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15148
15149 #undef ARM_VARIANT
15150 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15151 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15152 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15153
15154 #undef ARM_VARIANT
15155 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15156 #undef THUMB_VARIANT
15157 #define THUMB_VARIANT &arm_ext_msr
15158 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15159 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15160
15161 #undef ARM_VARIANT
15162 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15163 #undef THUMB_VARIANT
15164 #define THUMB_VARIANT &arm_ext_v6t2
15165 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15166 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15167 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15168 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15169 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15170 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15171 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15172 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15173
15174 #undef ARM_VARIANT
15175 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15176 #undef THUMB_VARIANT
15177 #define THUMB_VARIANT &arm_ext_v4t
15178 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15179 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15180 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15181 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15182 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15183 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15184
15185 #undef ARM_VARIANT
15186 #define ARM_VARIANT &arm_ext_v4t_5
15187 /* ARM Architecture 4T. */
15188 /* Note: bx (and blx) are required on V5, even if the processor does
15189 not support Thumb. */
15190 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15191
15192 #undef ARM_VARIANT
15193 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15194 #undef THUMB_VARIANT
15195 #define THUMB_VARIANT &arm_ext_v5t
15196 /* Note: blx has 2 variants; the .value coded here is for
15197 BLX(2). Only this variant has conditional execution. */
15198 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15199 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15200
15201 #undef THUMB_VARIANT
15202 #define THUMB_VARIANT &arm_ext_v6t2
15203 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15204 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15205 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15206 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15207 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15208 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15209 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15210 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15211
15212 #undef ARM_VARIANT
15213 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15214 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15215 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15216 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15217 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15218
15219 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15220 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15221
15222 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15223 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15224 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15225 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15226
15227 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15228 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15229 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15230 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15231
15232 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15233 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15234
15235 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15236 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15237 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15238 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd),
15239
15240 #undef ARM_VARIANT
15241 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15242 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15243 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15244 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15245
15246 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15247 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15248
15249 #undef ARM_VARIANT
15250 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15251 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15252
15253 #undef ARM_VARIANT
15254 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15255 #undef THUMB_VARIANT
15256 #define THUMB_VARIANT &arm_ext_v6
15257 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15258 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15259 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15260 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15261 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15262 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15263 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15264 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15265 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15266 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15267
15268 #undef THUMB_VARIANT
15269 #define THUMB_VARIANT &arm_ext_v6t2
15270 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15271 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15272 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15273 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15274
15275 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15276 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15277
15278 /* ARM V6 not included in V7M (eg. integer SIMD). */
15279 #undef THUMB_VARIANT
15280 #define THUMB_VARIANT &arm_ext_v6_notm
15281 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15282 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15283 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15284 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15285 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15286 TCE(qasx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15287 /* Old name for QASX. */
15288 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15289 TCE(qsax, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15290 /* Old name for QSAX. */
15291 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15292 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15293 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15294 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15295 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15296 TCE(sasx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15297 /* Old name for SASX. */
15298 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15299 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15300 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15301 TCE(shasx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15302 /* Old name for SHASX. */
15303 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15304 TCE(shsax, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15305 /* Old name for SHSAX. */
15306 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15307 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15308 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15309 TCE(ssax, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15310 /* Old name for SSAX. */
15311 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15312 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15313 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15314 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15315 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15316 TCE(uasx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15317 /* Old name for UASX. */
15318 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15319 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15320 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15321 TCE(uhasx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15322 /* Old name for UHASX. */
15323 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15324 TCE(uhsax, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15325 /* Old name for UHSAX. */
15326 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15327 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15328 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15329 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15330 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15331 TCE(uqasx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15332 /* Old name for UQASX. */
15333 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15334 TCE(uqsax, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15335 /* Old name for UQSAX. */
15336 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15337 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15338 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15339 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15340 TCE(usax, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15341 /* Old name for USAX. */
15342 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15343 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15344 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15345 UF(rfeib, 9900a00, 1, (RRw), rfe),
15346 UF(rfeda, 8100a00, 1, (RRw), rfe),
15347 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15348 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15349 UF(rfefa, 9900a00, 1, (RRw), rfe),
15350 UF(rfeea, 8100a00, 1, (RRw), rfe),
15351 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15352 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15353 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15354 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15355 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15356 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15357 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15358 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15359 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15360 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15361 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15362 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15363 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15364 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15365 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15366 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15367 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15368 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15369 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15370 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15371 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15372 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15373 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15374 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15375 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15376 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15377 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15378 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15379 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15380 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15381 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15382 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15383 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15384 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15385 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15386 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15387 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15388
15389 #undef ARM_VARIANT
15390 #define ARM_VARIANT &arm_ext_v6k
15391 #undef THUMB_VARIANT
15392 #define THUMB_VARIANT &arm_ext_v6k
15393 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15394 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15395 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15396 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15397
15398 #undef THUMB_VARIANT
15399 #define THUMB_VARIANT &arm_ext_v6_notm
15400 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15401 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15402
15403 #undef THUMB_VARIANT
15404 #define THUMB_VARIANT &arm_ext_v6t2
15405 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15406 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15407 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15408 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15409 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15410
15411 #undef ARM_VARIANT
15412 #define ARM_VARIANT &arm_ext_v6z
15413 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15414
15415 #undef ARM_VARIANT
15416 #define ARM_VARIANT &arm_ext_v6t2
15417 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15418 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15419 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15420 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15421
15422 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15423 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15424 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15425 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15426
15427 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15428 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15429 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15430 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15431
15432 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15433 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15434 /* ARM does not really have an IT instruction, so always allow it. */
15435 #undef ARM_VARIANT
15436 #define ARM_VARIANT &arm_ext_v1
15437 TUE(it, 0, bf08, 1, (COND), it, t_it),
15438 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15439 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15440 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15441 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15442 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15443 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15444 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15445 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15446 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15447 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15448 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15449 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15450 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15451 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15452
15453 /* Thumb2 only instructions. */
15454 #undef ARM_VARIANT
15455 #define ARM_VARIANT NULL
15456
15457 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15458 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15459 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15460 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15461
15462 /* Thumb-2 hardware division instructions (R and M profiles only). */
15463 #undef THUMB_VARIANT
15464 #define THUMB_VARIANT &arm_ext_div
15465 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15466 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15467
15468 /* ARM V6M/V7 instructions. */
15469 #undef ARM_VARIANT
15470 #define ARM_VARIANT &arm_ext_barrier
15471 #undef THUMB_VARIANT
15472 #define THUMB_VARIANT &arm_ext_barrier
15473 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15474 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15475 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15476
15477 /* ARM V7 instructions. */
15478 #undef ARM_VARIANT
15479 #define ARM_VARIANT &arm_ext_v7
15480 #undef THUMB_VARIANT
15481 #define THUMB_VARIANT &arm_ext_v7
15482 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15483 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15484
15485 #undef ARM_VARIANT
15486 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15487 cCE(wfs, e200110, 1, (RR), rd),
15488 cCE(rfs, e300110, 1, (RR), rd),
15489 cCE(wfc, e400110, 1, (RR), rd),
15490 cCE(rfc, e500110, 1, (RR), rd),
15491
15492 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15493 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15494 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15495 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15496
15497 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15498 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15499 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15500 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15501
15502 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15503 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15504 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15505 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15506 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15507 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15508 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15509 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15510 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15511 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15512 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15513 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15514
15515 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15516 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15517 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15518 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15519 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15520 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15521 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15522 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15523 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15524 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15525 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15526 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15527
15528 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15529 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15530 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15531 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15532 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15533 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15534 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15535 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15536 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15537 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15538 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15539 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15540
15541 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15542 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15543 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15544 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15545 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15546 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15547 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15548 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15549 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15550 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15551 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15552 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15553
15554 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15555 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15556 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15557 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15558 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15559 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15560 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15561 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15562 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15563 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15564 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15565 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15566
15567 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15568 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15569 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15570 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15571 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15572 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15573 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15574 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15575 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15576 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15577 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15578 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15579
15580 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15581 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15582 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15583 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15584 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15585 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15586 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15587 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15588 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15589 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15590 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15591 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15592
15593 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15594 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15595 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15596 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15597 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15598 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15599 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15600 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15601 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15602 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15603 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15604 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15605
15606 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15607 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15608 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15609 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15610 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15611 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15612 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15613 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15614 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15615 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15616 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15617 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15618
15619 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15620 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15621 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15622 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15623 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15624 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15625 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15626 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15627 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15628 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15629 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15630 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15631
15632 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15633 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15634 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15635 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15636 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15637 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15638 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15639 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15640 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15641 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15642 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15643 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15644
15645 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15646 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15647 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15648 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15649 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15650 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15651 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15652 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15653 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15654 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15655 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15656 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15657
15658 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15659 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15660 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15661 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15662 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15663 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15664 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15665 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15666 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15667 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15668 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15669 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15670
15671 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15672 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15673 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15674 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15675 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15676 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15677 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15678 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15679 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15680 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15681 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15682 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15683
15684 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15685 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15686 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15687 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15688 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15689 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15690 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15691 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15692 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15693 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15694 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15695 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15696
15697 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15698 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15699 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15700 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15701 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15702 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15703 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15704 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15705 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15706 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15707 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15708 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15709
15710 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15711 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15712 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15713 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15714 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15715 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15716 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15717 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15718 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15719 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15720 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15721 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15722
15723 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15724 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15725 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15726 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15727 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15728 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15729 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15730 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15731 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15732 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15733 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15734 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15735
15736 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15737 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15738 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15739 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15740 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15741 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15742 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15743 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15744 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15745 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15746 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15747 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15748
15749 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15750 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15751 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15752 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15753 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15754 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15755 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15756 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15757 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15758 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15759 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15760 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15761
15762 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15763 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15764 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15765 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15766 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15767 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15768 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15769 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15770 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15771 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15772 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15773 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15774
15775 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15776 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15777 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15778 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15779 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15780 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15781 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15782 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15783 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15784 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15785 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15786 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15787
15788 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15789 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15790 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15791 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15792 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15793 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15794 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15795 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15796 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15797 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15798 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15799 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15800
15801 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15802 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15803 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15804 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15805 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15806 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15807 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15808 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15809 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15810 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15811 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15812 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15813
15814 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15815 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15816 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15817 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15818 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15819 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15820 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15821 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15822 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15823 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15824 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15825 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15826
15827 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15828 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15829 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15830 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15831 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15832 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15833 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15834 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15835 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15836 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15837 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15838 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15839
15840 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15841 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15842 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15843 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15844 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15845 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15846 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15847 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15848 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15849 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15850 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15851 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15852
15853 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15854 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15855 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15856 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15857 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15858 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15859 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15860 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15861 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15862 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15863 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15864 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15865
15866 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15867 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15868 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15869 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15870 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15871 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15872 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15873 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15874 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15875 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15876 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15877 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15878
15879 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15880 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15881 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15882 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15883
15884 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15885 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15886 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15887 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15888 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15889 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15890 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15891 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15892 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15893 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15894 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15895 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15896
15897 /* The implementation of the FIX instruction is broken on some
15898 assemblers, in that it accepts a precision specifier as well as a
15899 rounding specifier, despite the fact that this is meaningless.
15900 To be more compatible, we accept it as well, though of course it
15901 does not set any bits. */
15902 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15903 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15904 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15905 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15906 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15907 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15908 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15909 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15910 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15911 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15912 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15913 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15914 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15915
15916 /* Instructions that were new with the real FPA, call them V2. */
15917 #undef ARM_VARIANT
15918 #define ARM_VARIANT &fpu_fpa_ext_v2
15919 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15920 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15921 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15922 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15923 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15924 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15925
15926 #undef ARM_VARIANT
15927 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15928 /* Moves and type conversions. */
15929 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15930 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15931 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15932 cCE(fmstat, ef1fa10, 0, (), noargs),
15933 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15934 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15935 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15936 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15937 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15938 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15939 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15940 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15941
15942 /* Memory operations. */
15943 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15944 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15945 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15946 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15947 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15948 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15949 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15950 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15951 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15952 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15953 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15954 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15955 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15956 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15957 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15958 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15959 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15960 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15961
15962 /* Monadic operations. */
15963 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15964 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15965 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15966
15967 /* Dyadic operations. */
15968 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15969 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15970 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15971 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15972 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15973 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15974 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15975 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15976 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15977
15978 /* Comparisons. */
15979 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15980 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15981 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15982 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15983
15984 #undef ARM_VARIANT
15985 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15986 /* Moves and type conversions. */
15987 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15988 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15989 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15990 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15991 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15992 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15993 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15994 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15995 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15996 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15997 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15998 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15999 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
16000
16001 /* Memory operations. */
16002 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16003 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
16004 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16005 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16006 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16007 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16008 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16009 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
16010 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16011 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
16012
16013 /* Monadic operations. */
16014 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16015 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16016 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16017
16018 /* Dyadic operations. */
16019 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16020 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16021 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16022 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16023 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16024 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16025 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16026 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16027 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
16028
16029 /* Comparisons. */
16030 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
16031 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
16032 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
16033 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
16034
16035 #undef ARM_VARIANT
16036 #define ARM_VARIANT &fpu_vfp_ext_v2
16037 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
16038 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
16039 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
16040 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
16041
16042 /* Instructions which may belong to either the Neon or VFP instruction sets.
16043 Individual encoder functions perform additional architecture checks. */
16044 #undef ARM_VARIANT
16045 #define ARM_VARIANT &fpu_vfp_ext_v1xd
16046 #undef THUMB_VARIANT
16047 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
16048 /* These mnemonics are unique to VFP. */
16049 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
16050 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
16051 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16052 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16053 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
16054 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16055 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
16056 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
16057 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
16058 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
16059
16060 /* Mnemonics shared by Neon and VFP. */
16061 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
16062 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16063 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
16064
16065 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16066 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
16067
16068 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16069 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
16070
16071 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16072 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16073 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16074 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16075 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16076 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
16077 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16078 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
16079
16080 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
16081 nCEF(vcvtb, vcvt, 2, (RVS, RVS), neon_cvtb),
16082 nCEF(vcvtt, vcvt, 2, (RVS, RVS), neon_cvtt),
16083
16084
16085 /* NOTE: All VMOV encoding is special-cased! */
16086 NCE(vmov, 0, 1, (VMOV), neon_mov),
16087 NCE(vmovq, 0, 1, (VMOV), neon_mov),
16088
16089 #undef THUMB_VARIANT
16090 #define THUMB_VARIANT &fpu_neon_ext_v1
16091 #undef ARM_VARIANT
16092 #define ARM_VARIANT &fpu_neon_ext_v1
16093 /* Data processing with three registers of the same length. */
16094 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
16095 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
16096 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
16097 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16098 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16099 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16100 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16101 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
16102 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
16103 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
16104 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16105 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16106 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
16107 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
16108 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16109 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16110 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
16111 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
16112 /* If not immediate, fall back to neon_dyadic_i64_su.
16113 shl_imm should accept I8 I16 I32 I64,
16114 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
16115 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
16116 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
16117 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
16118 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
16119 /* Logic ops, types optional & ignored. */
16120 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
16121 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
16122 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
16123 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
16124 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
16125 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
16126 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
16127 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
16128 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
16129 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
16130 /* Bitfield ops, untyped. */
16131 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16132 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16133 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16134 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16135 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
16136 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
16137 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
16138 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16139 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16140 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16141 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16142 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
16143 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
16144 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
16145 back to neon_dyadic_if_su. */
16146 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16147 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16148 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
16149 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
16150 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16151 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16152 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
16153 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
16154 /* Comparison. Type I8 I16 I32 F32. */
16155 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
16156 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
16157 /* As above, D registers only. */
16158 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16159 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
16160 /* Int and float variants, signedness unimportant. */
16161 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16162 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
16163 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
16164 /* Add/sub take types I8 I16 I32 I64 F32. */
16165 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16166 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
16167 /* vtst takes sizes 8, 16, 32. */
16168 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
16169 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
16170 /* VMUL takes I8 I16 I32 F32 P8. */
16171 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
16172 /* VQD{R}MULH takes S16 S32. */
16173 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16174 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16175 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
16176 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
16177 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16178 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16179 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
16180 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
16181 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16182 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16183 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16184 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16185 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16186 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16187 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16188 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16189
16190 /* Two address, int/float. Types S8 S16 S32 F32. */
16191 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16192 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16193
16194 /* Data processing with two registers and a shift amount. */
16195 /* Right shifts, and variants with rounding.
16196 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16197 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16198 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16199 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16200 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16201 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16202 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16203 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16204 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16205 /* Shift and insert. Sizes accepted 8 16 32 64. */
16206 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16207 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16208 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16209 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16210 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16211 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16212 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16213 /* Right shift immediate, saturating & narrowing, with rounding variants.
16214 Types accepted S16 S32 S64 U16 U32 U64. */
16215 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16216 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16217 /* As above, unsigned. Types accepted S16 S32 S64. */
16218 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16219 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16220 /* Right shift narrowing. Types accepted I16 I32 I64. */
16221 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16222 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16223 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16224 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16225 /* CVT with optional immediate for fixed-point variant. */
16226 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16227
16228 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16229 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16230
16231 /* Data processing, three registers of different lengths. */
16232 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16233 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16234 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16235 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16236 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16237 /* If not scalar, fall back to neon_dyadic_long.
16238 Vector types as above, scalar types S16 S32 U16 U32. */
16239 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16240 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16241 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16242 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16243 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16244 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16245 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16246 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16247 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16248 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16249 /* Saturating doubling multiplies. Types S16 S32. */
16250 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16251 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16252 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16253 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16254 S16 S32 U16 U32. */
16255 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16256
16257 /* Extract. Size 8. */
16258 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16259 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16260
16261 /* Two registers, miscellaneous. */
16262 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16263 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16264 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16265 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16266 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16267 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16268 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16269 /* Vector replicate. Sizes 8 16 32. */
16270 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16271 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16272 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16273 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16274 /* VMOVN. Types I16 I32 I64. */
16275 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16276 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16277 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16278 /* VQMOVUN. Types S16 S32 S64. */
16279 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16280 /* VZIP / VUZP. Sizes 8 16 32. */
16281 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16282 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16283 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16284 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16285 /* VQABS / VQNEG. Types S8 S16 S32. */
16286 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16287 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16288 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16289 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16290 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16291 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16292 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16293 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16294 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16295 /* Reciprocal estimates. Types U32 F32. */
16296 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16297 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16298 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16299 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16300 /* VCLS. Types S8 S16 S32. */
16301 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16302 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16303 /* VCLZ. Types I8 I16 I32. */
16304 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16305 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16306 /* VCNT. Size 8. */
16307 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16308 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16309 /* Two address, untyped. */
16310 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16311 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16312 /* VTRN. Sizes 8 16 32. */
16313 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16314 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16315
16316 /* Table lookup. Size 8. */
16317 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16318 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16319
16320 #undef THUMB_VARIANT
16321 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16322 #undef ARM_VARIANT
16323 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16324 /* Neon element/structure load/store. */
16325 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16326 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16327 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16328 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16329 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16330 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16331 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16332 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16333
16334 #undef THUMB_VARIANT
16335 #define THUMB_VARIANT &fpu_vfp_ext_v3
16336 #undef ARM_VARIANT
16337 #define ARM_VARIANT &fpu_vfp_ext_v3
16338 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16339 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16340 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16341 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16342 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16343 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16344 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16345 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16346 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16347 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16348 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16349 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16350 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16351 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16352 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16353 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16354 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16355 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16356
16357 #undef THUMB_VARIANT
16358 #undef ARM_VARIANT
16359 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16360 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16361 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16362 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16363 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16364 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16365 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16366 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16367 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16368
16369 #undef ARM_VARIANT
16370 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16371 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16372 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16373 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16374 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16375 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16376 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16377 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16378 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16379 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16380 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16381 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16382 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16383 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16384 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16385 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16386 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16387 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16388 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16389 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16390 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16391 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16392 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16393 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16394 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16395 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16396 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16397 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16398 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16399 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16400 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16401 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16402 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16403 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16404 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16405 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16406 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16407 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16408 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16410 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16411 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16412 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16413 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16414 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16415 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16416 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16417 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16418 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16419 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16420 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16421 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16422 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16423 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16424 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16425 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16426 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16427 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16428 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16429 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16430 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16431 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16432 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16433 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16434 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16435 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16436 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16437 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16438 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16439 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16440 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16441 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16442 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16443 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16444 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16445 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16446 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16447 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16448 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16449 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16450 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16451 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16452 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16453 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16454 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16455 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16456 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16457 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16458 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16459 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16460 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16461 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16462 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16463 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16464 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16465 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16466 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16467 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16468 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16469 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16470 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16471 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16472 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16473 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16474 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16475 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16476 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16477 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16478 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16479 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16480 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16481 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16482 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16483 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16484 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16485 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16486 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16487 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16488 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16489 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16490 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16491 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16492 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16493 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16494 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16495 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16496 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16497 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16498 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16499 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16500 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16501 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16502 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16503 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16504 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16505 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16506 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16507 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16508 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16509 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16510 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16511 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16512 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16513 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16514 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16515 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16516 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16517 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16518 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16519 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16520 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16521 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16522 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16523 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16524 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16525 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16526 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16527 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16528 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16529 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16530 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16531 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16532 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16533
16534 #undef ARM_VARIANT
16535 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16536 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16537 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16538 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16539 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16540 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16541 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16542 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16543 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16544 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16545 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16546 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16547 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16548 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16549 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16550 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16551 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16552 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16553 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16554 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16555 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16556 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16557 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16558 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16559 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16560 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16561 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16562 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16563 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16564 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16565 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16566 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16567 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16568 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16569 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16570 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16571 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16572 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16573 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16574 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16575 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16576 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16577 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16578 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16579 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16580 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16581 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16582 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16583 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16584 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16585 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16586 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16587 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16588 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16589 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16590 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16591 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16592 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16593
16594 #undef ARM_VARIANT
16595 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16596 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16597 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16598 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16599 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16600 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16601 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16602 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16603 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16604 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16605 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16606 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16607 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16608 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16609 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16610 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16611 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16612 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16613 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16614 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16615 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16616 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16617 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16618 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16619 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16620 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16621 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16622 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16623 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16624 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16625 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16626 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16627 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16628 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16629 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16630 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16631 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16632 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16633 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16634 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16635 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16636 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16637 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16638 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16639 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16640 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16641 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16642 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16643 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16644 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16645 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16646 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16647 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16648 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16649 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16650 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16651 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16652 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16653 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16654 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16655 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16656 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16657 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16658 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16659 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16660 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16661 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16662 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16663 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16664 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16665 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16666 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16667 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16668 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16669 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16670 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16671 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16672 };
16673 #undef ARM_VARIANT
16674 #undef THUMB_VARIANT
16675 #undef TCE
16676 #undef TCM
16677 #undef TUE
16678 #undef TUF
16679 #undef TCC
16680 #undef cCE
16681 #undef cCL
16682 #undef C3E
16683 #undef CE
16684 #undef CM
16685 #undef UE
16686 #undef UF
16687 #undef UT
16688 #undef NUF
16689 #undef nUF
16690 #undef NCE
16691 #undef nCE
16692 #undef OPS0
16693 #undef OPS1
16694 #undef OPS2
16695 #undef OPS3
16696 #undef OPS4
16697 #undef OPS5
16698 #undef OPS6
16699 #undef do_0
16700 \f
16701 /* MD interface: bits in the object file. */
16702
16703 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16704 for use in the a.out file, and stores them in the array pointed to by buf.
16705 This knows about the endian-ness of the target machine and does
16706 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16707 2 (short) and 4 (long) Floating numbers are put out as a series of
16708 LITTLENUMS (shorts, here at least). */
16709
16710 void
16711 md_number_to_chars (char * buf, valueT val, int n)
16712 {
16713 if (target_big_endian)
16714 number_to_chars_bigendian (buf, val, n);
16715 else
16716 number_to_chars_littleendian (buf, val, n);
16717 }
16718
16719 static valueT
16720 md_chars_to_number (char * buf, int n)
16721 {
16722 valueT result = 0;
16723 unsigned char * where = (unsigned char *) buf;
16724
16725 if (target_big_endian)
16726 {
16727 while (n--)
16728 {
16729 result <<= 8;
16730 result |= (*where++ & 255);
16731 }
16732 }
16733 else
16734 {
16735 while (n--)
16736 {
16737 result <<= 8;
16738 result |= (where[n] & 255);
16739 }
16740 }
16741
16742 return result;
16743 }
16744
16745 /* MD interface: Sections. */
16746
16747 /* Estimate the size of a frag before relaxing. Assume everything fits in
16748 2 bytes. */
16749
16750 int
16751 md_estimate_size_before_relax (fragS * fragp,
16752 segT segtype ATTRIBUTE_UNUSED)
16753 {
16754 fragp->fr_var = 2;
16755 return 2;
16756 }
16757
16758 /* Convert a machine dependent frag. */
16759
16760 void
16761 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16762 {
16763 unsigned long insn;
16764 unsigned long old_op;
16765 char *buf;
16766 expressionS exp;
16767 fixS *fixp;
16768 int reloc_type;
16769 int pc_rel;
16770 int opcode;
16771
16772 buf = fragp->fr_literal + fragp->fr_fix;
16773
16774 old_op = bfd_get_16(abfd, buf);
16775 if (fragp->fr_symbol)
16776 {
16777 exp.X_op = O_symbol;
16778 exp.X_add_symbol = fragp->fr_symbol;
16779 }
16780 else
16781 {
16782 exp.X_op = O_constant;
16783 }
16784 exp.X_add_number = fragp->fr_offset;
16785 opcode = fragp->fr_subtype;
16786 switch (opcode)
16787 {
16788 case T_MNEM_ldr_pc:
16789 case T_MNEM_ldr_pc2:
16790 case T_MNEM_ldr_sp:
16791 case T_MNEM_str_sp:
16792 case T_MNEM_ldr:
16793 case T_MNEM_ldrb:
16794 case T_MNEM_ldrh:
16795 case T_MNEM_str:
16796 case T_MNEM_strb:
16797 case T_MNEM_strh:
16798 if (fragp->fr_var == 4)
16799 {
16800 insn = THUMB_OP32 (opcode);
16801 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16802 {
16803 insn |= (old_op & 0x700) << 4;
16804 }
16805 else
16806 {
16807 insn |= (old_op & 7) << 12;
16808 insn |= (old_op & 0x38) << 13;
16809 }
16810 insn |= 0x00000c00;
16811 put_thumb32_insn (buf, insn);
16812 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16813 }
16814 else
16815 {
16816 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16817 }
16818 pc_rel = (opcode == T_MNEM_ldr_pc2);
16819 break;
16820 case T_MNEM_adr:
16821 if (fragp->fr_var == 4)
16822 {
16823 insn = THUMB_OP32 (opcode);
16824 insn |= (old_op & 0xf0) << 4;
16825 put_thumb32_insn (buf, insn);
16826 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16827 }
16828 else
16829 {
16830 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16831 exp.X_add_number -= 4;
16832 }
16833 pc_rel = 1;
16834 break;
16835 case T_MNEM_mov:
16836 case T_MNEM_movs:
16837 case T_MNEM_cmp:
16838 case T_MNEM_cmn:
16839 if (fragp->fr_var == 4)
16840 {
16841 int r0off = (opcode == T_MNEM_mov
16842 || opcode == T_MNEM_movs) ? 0 : 8;
16843 insn = THUMB_OP32 (opcode);
16844 insn = (insn & 0xe1ffffff) | 0x10000000;
16845 insn |= (old_op & 0x700) << r0off;
16846 put_thumb32_insn (buf, insn);
16847 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16848 }
16849 else
16850 {
16851 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16852 }
16853 pc_rel = 0;
16854 break;
16855 case T_MNEM_b:
16856 if (fragp->fr_var == 4)
16857 {
16858 insn = THUMB_OP32(opcode);
16859 put_thumb32_insn (buf, insn);
16860 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16861 }
16862 else
16863 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16864 pc_rel = 1;
16865 break;
16866 case T_MNEM_bcond:
16867 if (fragp->fr_var == 4)
16868 {
16869 insn = THUMB_OP32(opcode);
16870 insn |= (old_op & 0xf00) << 14;
16871 put_thumb32_insn (buf, insn);
16872 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16873 }
16874 else
16875 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16876 pc_rel = 1;
16877 break;
16878 case T_MNEM_add_sp:
16879 case T_MNEM_add_pc:
16880 case T_MNEM_inc_sp:
16881 case T_MNEM_dec_sp:
16882 if (fragp->fr_var == 4)
16883 {
16884 /* ??? Choose between add and addw. */
16885 insn = THUMB_OP32 (opcode);
16886 insn |= (old_op & 0xf0) << 4;
16887 put_thumb32_insn (buf, insn);
16888 if (opcode == T_MNEM_add_pc)
16889 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16890 else
16891 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16892 }
16893 else
16894 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16895 pc_rel = 0;
16896 break;
16897
16898 case T_MNEM_addi:
16899 case T_MNEM_addis:
16900 case T_MNEM_subi:
16901 case T_MNEM_subis:
16902 if (fragp->fr_var == 4)
16903 {
16904 insn = THUMB_OP32 (opcode);
16905 insn |= (old_op & 0xf0) << 4;
16906 insn |= (old_op & 0xf) << 16;
16907 put_thumb32_insn (buf, insn);
16908 if (insn & (1 << 20))
16909 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16910 else
16911 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16912 }
16913 else
16914 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16915 pc_rel = 0;
16916 break;
16917 default:
16918 abort ();
16919 }
16920 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16921 reloc_type);
16922 fixp->fx_file = fragp->fr_file;
16923 fixp->fx_line = fragp->fr_line;
16924 fragp->fr_fix += fragp->fr_var;
16925 }
16926
16927 /* Return the size of a relaxable immediate operand instruction.
16928 SHIFT and SIZE specify the form of the allowable immediate. */
16929 static int
16930 relax_immediate (fragS *fragp, int size, int shift)
16931 {
16932 offsetT offset;
16933 offsetT mask;
16934 offsetT low;
16935
16936 /* ??? Should be able to do better than this. */
16937 if (fragp->fr_symbol)
16938 return 4;
16939
16940 low = (1 << shift) - 1;
16941 mask = (1 << (shift + size)) - (1 << shift);
16942 offset = fragp->fr_offset;
16943 /* Force misaligned offsets to 32-bit variant. */
16944 if (offset & low)
16945 return 4;
16946 if (offset & ~mask)
16947 return 4;
16948 return 2;
16949 }
16950
16951 /* Get the address of a symbol during relaxation. */
16952 static addressT
16953 relaxed_symbol_addr (fragS *fragp, long stretch)
16954 {
16955 fragS *sym_frag;
16956 addressT addr;
16957 symbolS *sym;
16958
16959 sym = fragp->fr_symbol;
16960 sym_frag = symbol_get_frag (sym);
16961 know (S_GET_SEGMENT (sym) != absolute_section
16962 || sym_frag == &zero_address_frag);
16963 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16964
16965 /* If frag has yet to be reached on this pass, assume it will
16966 move by STRETCH just as we did. If this is not so, it will
16967 be because some frag between grows, and that will force
16968 another pass. */
16969
16970 if (stretch != 0
16971 && sym_frag->relax_marker != fragp->relax_marker)
16972 {
16973 fragS *f;
16974
16975 /* Adjust stretch for any alignment frag. Note that if have
16976 been expanding the earlier code, the symbol may be
16977 defined in what appears to be an earlier frag. FIXME:
16978 This doesn't handle the fr_subtype field, which specifies
16979 a maximum number of bytes to skip when doing an
16980 alignment. */
16981 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16982 {
16983 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16984 {
16985 if (stretch < 0)
16986 stretch = - ((- stretch)
16987 & ~ ((1 << (int) f->fr_offset) - 1));
16988 else
16989 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16990 if (stretch == 0)
16991 break;
16992 }
16993 }
16994 if (f != NULL)
16995 addr += stretch;
16996 }
16997
16998 return addr;
16999 }
17000
17001 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
17002 load. */
17003 static int
17004 relax_adr (fragS *fragp, asection *sec, long stretch)
17005 {
17006 addressT addr;
17007 offsetT val;
17008
17009 /* Assume worst case for symbols not known to be in the same section. */
17010 if (!S_IS_DEFINED (fragp->fr_symbol)
17011 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17012 return 4;
17013
17014 val = relaxed_symbol_addr (fragp, stretch);
17015 addr = fragp->fr_address + fragp->fr_fix;
17016 addr = (addr + 4) & ~3;
17017 /* Force misaligned targets to 32-bit variant. */
17018 if (val & 3)
17019 return 4;
17020 val -= addr;
17021 if (val < 0 || val > 1020)
17022 return 4;
17023 return 2;
17024 }
17025
17026 /* Return the size of a relaxable add/sub immediate instruction. */
17027 static int
17028 relax_addsub (fragS *fragp, asection *sec)
17029 {
17030 char *buf;
17031 int op;
17032
17033 buf = fragp->fr_literal + fragp->fr_fix;
17034 op = bfd_get_16(sec->owner, buf);
17035 if ((op & 0xf) == ((op >> 4) & 0xf))
17036 return relax_immediate (fragp, 8, 0);
17037 else
17038 return relax_immediate (fragp, 3, 0);
17039 }
17040
17041
17042 /* Return the size of a relaxable branch instruction. BITS is the
17043 size of the offset field in the narrow instruction. */
17044
17045 static int
17046 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
17047 {
17048 addressT addr;
17049 offsetT val;
17050 offsetT limit;
17051
17052 /* Assume worst case for symbols not known to be in the same section. */
17053 if (!S_IS_DEFINED (fragp->fr_symbol)
17054 || sec != S_GET_SEGMENT (fragp->fr_symbol))
17055 return 4;
17056
17057 val = relaxed_symbol_addr (fragp, stretch);
17058 addr = fragp->fr_address + fragp->fr_fix + 4;
17059 val -= addr;
17060
17061 /* Offset is a signed value *2 */
17062 limit = 1 << bits;
17063 if (val >= limit || val < -limit)
17064 return 4;
17065 return 2;
17066 }
17067
17068
17069 /* Relax a machine dependent frag. This returns the amount by which
17070 the current size of the frag should change. */
17071
17072 int
17073 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
17074 {
17075 int oldsize;
17076 int newsize;
17077
17078 oldsize = fragp->fr_var;
17079 switch (fragp->fr_subtype)
17080 {
17081 case T_MNEM_ldr_pc2:
17082 newsize = relax_adr (fragp, sec, stretch);
17083 break;
17084 case T_MNEM_ldr_pc:
17085 case T_MNEM_ldr_sp:
17086 case T_MNEM_str_sp:
17087 newsize = relax_immediate (fragp, 8, 2);
17088 break;
17089 case T_MNEM_ldr:
17090 case T_MNEM_str:
17091 newsize = relax_immediate (fragp, 5, 2);
17092 break;
17093 case T_MNEM_ldrh:
17094 case T_MNEM_strh:
17095 newsize = relax_immediate (fragp, 5, 1);
17096 break;
17097 case T_MNEM_ldrb:
17098 case T_MNEM_strb:
17099 newsize = relax_immediate (fragp, 5, 0);
17100 break;
17101 case T_MNEM_adr:
17102 newsize = relax_adr (fragp, sec, stretch);
17103 break;
17104 case T_MNEM_mov:
17105 case T_MNEM_movs:
17106 case T_MNEM_cmp:
17107 case T_MNEM_cmn:
17108 newsize = relax_immediate (fragp, 8, 0);
17109 break;
17110 case T_MNEM_b:
17111 newsize = relax_branch (fragp, sec, 11, stretch);
17112 break;
17113 case T_MNEM_bcond:
17114 newsize = relax_branch (fragp, sec, 8, stretch);
17115 break;
17116 case T_MNEM_add_sp:
17117 case T_MNEM_add_pc:
17118 newsize = relax_immediate (fragp, 8, 2);
17119 break;
17120 case T_MNEM_inc_sp:
17121 case T_MNEM_dec_sp:
17122 newsize = relax_immediate (fragp, 7, 2);
17123 break;
17124 case T_MNEM_addi:
17125 case T_MNEM_addis:
17126 case T_MNEM_subi:
17127 case T_MNEM_subis:
17128 newsize = relax_addsub (fragp, sec);
17129 break;
17130 default:
17131 abort ();
17132 }
17133
17134 fragp->fr_var = newsize;
17135 /* Freeze wide instructions that are at or before the same location as
17136 in the previous pass. This avoids infinite loops.
17137 Don't freeze them unconditionally because targets may be artificially
17138 misaligned by the expansion of preceding frags. */
17139 if (stretch <= 0 && newsize > 2)
17140 {
17141 md_convert_frag (sec->owner, sec, fragp);
17142 frag_wane (fragp);
17143 }
17144
17145 return newsize - oldsize;
17146 }
17147
17148 /* Round up a section size to the appropriate boundary. */
17149
17150 valueT
17151 md_section_align (segT segment ATTRIBUTE_UNUSED,
17152 valueT size)
17153 {
17154 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
17155 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
17156 {
17157 /* For a.out, force the section size to be aligned. If we don't do
17158 this, BFD will align it for us, but it will not write out the
17159 final bytes of the section. This may be a bug in BFD, but it is
17160 easier to fix it here since that is how the other a.out targets
17161 work. */
17162 int align;
17163
17164 align = bfd_get_section_alignment (stdoutput, segment);
17165 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
17166 }
17167 #endif
17168
17169 return size;
17170 }
17171
17172 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
17173 of an rs_align_code fragment. */
17174
17175 void
17176 arm_handle_align (fragS * fragP)
17177 {
17178 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
17179 static char const thumb_noop[2] = { 0xc0, 0x46 };
17180 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
17181 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
17182
17183 int bytes, fix, noop_size;
17184 char * p;
17185 const char * noop;
17186
17187 if (fragP->fr_type != rs_align_code)
17188 return;
17189
17190 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17191 p = fragP->fr_literal + fragP->fr_fix;
17192 fix = 0;
17193
17194 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17195 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17196
17197 if (fragP->tc_frag_data)
17198 {
17199 if (target_big_endian)
17200 noop = thumb_bigend_noop;
17201 else
17202 noop = thumb_noop;
17203 noop_size = sizeof (thumb_noop);
17204 }
17205 else
17206 {
17207 if (target_big_endian)
17208 noop = arm_bigend_noop;
17209 else
17210 noop = arm_noop;
17211 noop_size = sizeof (arm_noop);
17212 }
17213
17214 if (bytes & (noop_size - 1))
17215 {
17216 fix = bytes & (noop_size - 1);
17217 memset (p, 0, fix);
17218 p += fix;
17219 bytes -= fix;
17220 }
17221
17222 while (bytes >= noop_size)
17223 {
17224 memcpy (p, noop, noop_size);
17225 p += noop_size;
17226 bytes -= noop_size;
17227 fix += noop_size;
17228 }
17229
17230 fragP->fr_fix += fix;
17231 fragP->fr_var = noop_size;
17232 }
17233
17234 /* Called from md_do_align. Used to create an alignment
17235 frag in a code section. */
17236
17237 void
17238 arm_frag_align_code (int n, int max)
17239 {
17240 char * p;
17241
17242 /* We assume that there will never be a requirement
17243 to support alignments greater than 32 bytes. */
17244 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17245 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17246
17247 p = frag_var (rs_align_code,
17248 MAX_MEM_FOR_RS_ALIGN_CODE,
17249 1,
17250 (relax_substateT) max,
17251 (symbolS *) NULL,
17252 (offsetT) n,
17253 (char *) NULL);
17254 *p = 0;
17255 }
17256
17257 /* Perform target specific initialisation of a frag. */
17258
17259 void
17260 arm_init_frag (fragS * fragP)
17261 {
17262 /* Record whether this frag is in an ARM or a THUMB area. */
17263 fragP->tc_frag_data = thumb_mode;
17264 }
17265
17266 #ifdef OBJ_ELF
17267 /* When we change sections we need to issue a new mapping symbol. */
17268
17269 void
17270 arm_elf_change_section (void)
17271 {
17272 flagword flags;
17273 segment_info_type *seginfo;
17274
17275 /* Link an unlinked unwind index table section to the .text section. */
17276 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17277 && elf_linked_to_section (now_seg) == NULL)
17278 elf_linked_to_section (now_seg) = text_section;
17279
17280 if (!SEG_NORMAL (now_seg))
17281 return;
17282
17283 flags = bfd_get_section_flags (stdoutput, now_seg);
17284
17285 /* We can ignore sections that only contain debug info. */
17286 if ((flags & SEC_ALLOC) == 0)
17287 return;
17288
17289 seginfo = seg_info (now_seg);
17290 mapstate = seginfo->tc_segment_info_data.mapstate;
17291 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17292 }
17293
17294 int
17295 arm_elf_section_type (const char * str, size_t len)
17296 {
17297 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17298 return SHT_ARM_EXIDX;
17299
17300 return -1;
17301 }
17302 \f
17303 /* Code to deal with unwinding tables. */
17304
17305 static void add_unwind_adjustsp (offsetT);
17306
17307 /* Generate any deferred unwind frame offset. */
17308
17309 static void
17310 flush_pending_unwind (void)
17311 {
17312 offsetT offset;
17313
17314 offset = unwind.pending_offset;
17315 unwind.pending_offset = 0;
17316 if (offset != 0)
17317 add_unwind_adjustsp (offset);
17318 }
17319
17320 /* Add an opcode to this list for this function. Two-byte opcodes should
17321 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17322 order. */
17323
17324 static void
17325 add_unwind_opcode (valueT op, int length)
17326 {
17327 /* Add any deferred stack adjustment. */
17328 if (unwind.pending_offset)
17329 flush_pending_unwind ();
17330
17331 unwind.sp_restored = 0;
17332
17333 if (unwind.opcode_count + length > unwind.opcode_alloc)
17334 {
17335 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17336 if (unwind.opcodes)
17337 unwind.opcodes = xrealloc (unwind.opcodes,
17338 unwind.opcode_alloc);
17339 else
17340 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17341 }
17342 while (length > 0)
17343 {
17344 length--;
17345 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17346 op >>= 8;
17347 unwind.opcode_count++;
17348 }
17349 }
17350
17351 /* Add unwind opcodes to adjust the stack pointer. */
17352
17353 static void
17354 add_unwind_adjustsp (offsetT offset)
17355 {
17356 valueT op;
17357
17358 if (offset > 0x200)
17359 {
17360 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17361 char bytes[5];
17362 int n;
17363 valueT o;
17364
17365 /* Long form: 0xb2, uleb128. */
17366 /* This might not fit in a word so add the individual bytes,
17367 remembering the list is built in reverse order. */
17368 o = (valueT) ((offset - 0x204) >> 2);
17369 if (o == 0)
17370 add_unwind_opcode (0, 1);
17371
17372 /* Calculate the uleb128 encoding of the offset. */
17373 n = 0;
17374 while (o)
17375 {
17376 bytes[n] = o & 0x7f;
17377 o >>= 7;
17378 if (o)
17379 bytes[n] |= 0x80;
17380 n++;
17381 }
17382 /* Add the insn. */
17383 for (; n; n--)
17384 add_unwind_opcode (bytes[n - 1], 1);
17385 add_unwind_opcode (0xb2, 1);
17386 }
17387 else if (offset > 0x100)
17388 {
17389 /* Two short opcodes. */
17390 add_unwind_opcode (0x3f, 1);
17391 op = (offset - 0x104) >> 2;
17392 add_unwind_opcode (op, 1);
17393 }
17394 else if (offset > 0)
17395 {
17396 /* Short opcode. */
17397 op = (offset - 4) >> 2;
17398 add_unwind_opcode (op, 1);
17399 }
17400 else if (offset < 0)
17401 {
17402 offset = -offset;
17403 while (offset > 0x100)
17404 {
17405 add_unwind_opcode (0x7f, 1);
17406 offset -= 0x100;
17407 }
17408 op = ((offset - 4) >> 2) | 0x40;
17409 add_unwind_opcode (op, 1);
17410 }
17411 }
17412
17413 /* Finish the list of unwind opcodes for this function. */
17414 static void
17415 finish_unwind_opcodes (void)
17416 {
17417 valueT op;
17418
17419 if (unwind.fp_used)
17420 {
17421 /* Adjust sp as necessary. */
17422 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17423 flush_pending_unwind ();
17424
17425 /* After restoring sp from the frame pointer. */
17426 op = 0x90 | unwind.fp_reg;
17427 add_unwind_opcode (op, 1);
17428 }
17429 else
17430 flush_pending_unwind ();
17431 }
17432
17433
17434 /* Start an exception table entry. If idx is nonzero this is an index table
17435 entry. */
17436
17437 static void
17438 start_unwind_section (const segT text_seg, int idx)
17439 {
17440 const char * text_name;
17441 const char * prefix;
17442 const char * prefix_once;
17443 const char * group_name;
17444 size_t prefix_len;
17445 size_t text_len;
17446 char * sec_name;
17447 size_t sec_name_len;
17448 int type;
17449 int flags;
17450 int linkonce;
17451
17452 if (idx)
17453 {
17454 prefix = ELF_STRING_ARM_unwind;
17455 prefix_once = ELF_STRING_ARM_unwind_once;
17456 type = SHT_ARM_EXIDX;
17457 }
17458 else
17459 {
17460 prefix = ELF_STRING_ARM_unwind_info;
17461 prefix_once = ELF_STRING_ARM_unwind_info_once;
17462 type = SHT_PROGBITS;
17463 }
17464
17465 text_name = segment_name (text_seg);
17466 if (streq (text_name, ".text"))
17467 text_name = "";
17468
17469 if (strncmp (text_name, ".gnu.linkonce.t.",
17470 strlen (".gnu.linkonce.t.")) == 0)
17471 {
17472 prefix = prefix_once;
17473 text_name += strlen (".gnu.linkonce.t.");
17474 }
17475
17476 prefix_len = strlen (prefix);
17477 text_len = strlen (text_name);
17478 sec_name_len = prefix_len + text_len;
17479 sec_name = xmalloc (sec_name_len + 1);
17480 memcpy (sec_name, prefix, prefix_len);
17481 memcpy (sec_name + prefix_len, text_name, text_len);
17482 sec_name[prefix_len + text_len] = '\0';
17483
17484 flags = SHF_ALLOC;
17485 linkonce = 0;
17486 group_name = 0;
17487
17488 /* Handle COMDAT group. */
17489 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17490 {
17491 group_name = elf_group_name (text_seg);
17492 if (group_name == NULL)
17493 {
17494 as_bad (_("Group section `%s' has no group signature"),
17495 segment_name (text_seg));
17496 ignore_rest_of_line ();
17497 return;
17498 }
17499 flags |= SHF_GROUP;
17500 linkonce = 1;
17501 }
17502
17503 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17504
17505 /* Set the section link for index tables. */
17506 if (idx)
17507 elf_linked_to_section (now_seg) = text_seg;
17508 }
17509
17510
17511 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17512 personality routine data. Returns zero, or the index table value for
17513 and inline entry. */
17514
17515 static valueT
17516 create_unwind_entry (int have_data)
17517 {
17518 int size;
17519 addressT where;
17520 char *ptr;
17521 /* The current word of data. */
17522 valueT data;
17523 /* The number of bytes left in this word. */
17524 int n;
17525
17526 finish_unwind_opcodes ();
17527
17528 /* Remember the current text section. */
17529 unwind.saved_seg = now_seg;
17530 unwind.saved_subseg = now_subseg;
17531
17532 start_unwind_section (now_seg, 0);
17533
17534 if (unwind.personality_routine == NULL)
17535 {
17536 if (unwind.personality_index == -2)
17537 {
17538 if (have_data)
17539 as_bad (_("handlerdata in cantunwind frame"));
17540 return 1; /* EXIDX_CANTUNWIND. */
17541 }
17542
17543 /* Use a default personality routine if none is specified. */
17544 if (unwind.personality_index == -1)
17545 {
17546 if (unwind.opcode_count > 3)
17547 unwind.personality_index = 1;
17548 else
17549 unwind.personality_index = 0;
17550 }
17551
17552 /* Space for the personality routine entry. */
17553 if (unwind.personality_index == 0)
17554 {
17555 if (unwind.opcode_count > 3)
17556 as_bad (_("too many unwind opcodes for personality routine 0"));
17557
17558 if (!have_data)
17559 {
17560 /* All the data is inline in the index table. */
17561 data = 0x80;
17562 n = 3;
17563 while (unwind.opcode_count > 0)
17564 {
17565 unwind.opcode_count--;
17566 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17567 n--;
17568 }
17569
17570 /* Pad with "finish" opcodes. */
17571 while (n--)
17572 data = (data << 8) | 0xb0;
17573
17574 return data;
17575 }
17576 size = 0;
17577 }
17578 else
17579 /* We get two opcodes "free" in the first word. */
17580 size = unwind.opcode_count - 2;
17581 }
17582 else
17583 /* An extra byte is required for the opcode count. */
17584 size = unwind.opcode_count + 1;
17585
17586 size = (size + 3) >> 2;
17587 if (size > 0xff)
17588 as_bad (_("too many unwind opcodes"));
17589
17590 frag_align (2, 0, 0);
17591 record_alignment (now_seg, 2);
17592 unwind.table_entry = expr_build_dot ();
17593
17594 /* Allocate the table entry. */
17595 ptr = frag_more ((size << 2) + 4);
17596 where = frag_now_fix () - ((size << 2) + 4);
17597
17598 switch (unwind.personality_index)
17599 {
17600 case -1:
17601 /* ??? Should this be a PLT generating relocation? */
17602 /* Custom personality routine. */
17603 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17604 BFD_RELOC_ARM_PREL31);
17605
17606 where += 4;
17607 ptr += 4;
17608
17609 /* Set the first byte to the number of additional words. */
17610 data = size - 1;
17611 n = 3;
17612 break;
17613
17614 /* ABI defined personality routines. */
17615 case 0:
17616 /* Three opcodes bytes are packed into the first word. */
17617 data = 0x80;
17618 n = 3;
17619 break;
17620
17621 case 1:
17622 case 2:
17623 /* The size and first two opcode bytes go in the first word. */
17624 data = ((0x80 + unwind.personality_index) << 8) | size;
17625 n = 2;
17626 break;
17627
17628 default:
17629 /* Should never happen. */
17630 abort ();
17631 }
17632
17633 /* Pack the opcodes into words (MSB first), reversing the list at the same
17634 time. */
17635 while (unwind.opcode_count > 0)
17636 {
17637 if (n == 0)
17638 {
17639 md_number_to_chars (ptr, data, 4);
17640 ptr += 4;
17641 n = 4;
17642 data = 0;
17643 }
17644 unwind.opcode_count--;
17645 n--;
17646 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17647 }
17648
17649 /* Finish off the last word. */
17650 if (n < 4)
17651 {
17652 /* Pad with "finish" opcodes. */
17653 while (n--)
17654 data = (data << 8) | 0xb0;
17655
17656 md_number_to_chars (ptr, data, 4);
17657 }
17658
17659 if (!have_data)
17660 {
17661 /* Add an empty descriptor if there is no user-specified data. */
17662 ptr = frag_more (4);
17663 md_number_to_chars (ptr, 0, 4);
17664 }
17665
17666 return 0;
17667 }
17668
17669
17670 /* Initialize the DWARF-2 unwind information for this procedure. */
17671
17672 void
17673 tc_arm_frame_initial_instructions (void)
17674 {
17675 cfi_add_CFA_def_cfa (REG_SP, 0);
17676 }
17677 #endif /* OBJ_ELF */
17678
17679 /* Convert REGNAME to a DWARF-2 register number. */
17680
17681 int
17682 tc_arm_regname_to_dw2regnum (char *regname)
17683 {
17684 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
17685
17686 if (reg == FAIL)
17687 return -1;
17688
17689 return reg;
17690 }
17691
17692 #ifdef TE_PE
17693 void
17694 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17695 {
17696 expressionS expr;
17697
17698 expr.X_op = O_secrel;
17699 expr.X_add_symbol = symbol;
17700 expr.X_add_number = 0;
17701 emit_expr (&expr, size);
17702 }
17703 #endif
17704
17705 /* MD interface: Symbol and relocation handling. */
17706
17707 /* Return the address within the segment that a PC-relative fixup is
17708 relative to. For ARM, PC-relative fixups applied to instructions
17709 are generally relative to the location of the fixup plus 8 bytes.
17710 Thumb branches are offset by 4, and Thumb loads relative to PC
17711 require special handling. */
17712
17713 long
17714 md_pcrel_from_section (fixS * fixP, segT seg)
17715 {
17716 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17717
17718 /* If this is pc-relative and we are going to emit a relocation
17719 then we just want to put out any pipeline compensation that the linker
17720 will need. Otherwise we want to use the calculated base.
17721 For WinCE we skip the bias for externals as well, since this
17722 is how the MS ARM-CE assembler behaves and we want to be compatible. */
17723 if (fixP->fx_pcrel
17724 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17725 || (arm_force_relocation (fixP)
17726 #ifdef TE_WINCE
17727 && !S_IS_EXTERNAL (fixP->fx_addsy)
17728 #endif
17729 )))
17730 base = 0;
17731
17732 switch (fixP->fx_r_type)
17733 {
17734 /* PC relative addressing on the Thumb is slightly odd as the
17735 bottom two bits of the PC are forced to zero for the
17736 calculation. This happens *after* application of the
17737 pipeline offset. However, Thumb adrl already adjusts for
17738 this, so we need not do it again. */
17739 case BFD_RELOC_ARM_THUMB_ADD:
17740 return base & ~3;
17741
17742 case BFD_RELOC_ARM_THUMB_OFFSET:
17743 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17744 case BFD_RELOC_ARM_T32_ADD_PC12:
17745 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17746 return (base + 4) & ~3;
17747
17748 /* Thumb branches are simply offset by +4. */
17749 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17750 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17751 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17752 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17753 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17754 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17755 case BFD_RELOC_THUMB_PCREL_BLX:
17756 return base + 4;
17757
17758 /* ARM mode branches are offset by +8. However, the Windows CE
17759 loader expects the relocation not to take this into account. */
17760 case BFD_RELOC_ARM_PCREL_BRANCH:
17761 case BFD_RELOC_ARM_PCREL_CALL:
17762 case BFD_RELOC_ARM_PCREL_JUMP:
17763 case BFD_RELOC_ARM_PCREL_BLX:
17764 case BFD_RELOC_ARM_PLT32:
17765 #ifdef TE_WINCE
17766 /* When handling fixups immediately, because we have already
17767 discovered the value of a symbol, or the address of the frag involved
17768 we must account for the offset by +8, as the OS loader will never see the reloc.
17769 see fixup_segment() in write.c
17770 The S_IS_EXTERNAL test handles the case of global symbols.
17771 Those need the calculated base, not just the pipe compensation the linker will need. */
17772 if (fixP->fx_pcrel
17773 && fixP->fx_addsy != NULL
17774 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17775 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17776 return base + 8;
17777 return base;
17778 #else
17779 return base + 8;
17780 #endif
17781
17782 /* ARM mode loads relative to PC are also offset by +8. Unlike
17783 branches, the Windows CE loader *does* expect the relocation
17784 to take this into account. */
17785 case BFD_RELOC_ARM_OFFSET_IMM:
17786 case BFD_RELOC_ARM_OFFSET_IMM8:
17787 case BFD_RELOC_ARM_HWLITERAL:
17788 case BFD_RELOC_ARM_LITERAL:
17789 case BFD_RELOC_ARM_CP_OFF_IMM:
17790 return base + 8;
17791
17792
17793 /* Other PC-relative relocations are un-offset. */
17794 default:
17795 return base;
17796 }
17797 }
17798
17799 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17800 Otherwise we have no need to default values of symbols. */
17801
17802 symbolS *
17803 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17804 {
17805 #ifdef OBJ_ELF
17806 if (name[0] == '_' && name[1] == 'G'
17807 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17808 {
17809 if (!GOT_symbol)
17810 {
17811 if (symbol_find (name))
17812 as_bad (_("GOT already in the symbol table"));
17813
17814 GOT_symbol = symbol_new (name, undefined_section,
17815 (valueT) 0, & zero_address_frag);
17816 }
17817
17818 return GOT_symbol;
17819 }
17820 #endif
17821
17822 return 0;
17823 }
17824
17825 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17826 computed as two separate immediate values, added together. We
17827 already know that this value cannot be computed by just one ARM
17828 instruction. */
17829
17830 static unsigned int
17831 validate_immediate_twopart (unsigned int val,
17832 unsigned int * highpart)
17833 {
17834 unsigned int a;
17835 unsigned int i;
17836
17837 for (i = 0; i < 32; i += 2)
17838 if (((a = rotate_left (val, i)) & 0xff) != 0)
17839 {
17840 if (a & 0xff00)
17841 {
17842 if (a & ~ 0xffff)
17843 continue;
17844 * highpart = (a >> 8) | ((i + 24) << 7);
17845 }
17846 else if (a & 0xff0000)
17847 {
17848 if (a & 0xff000000)
17849 continue;
17850 * highpart = (a >> 16) | ((i + 16) << 7);
17851 }
17852 else
17853 {
17854 assert (a & 0xff000000);
17855 * highpart = (a >> 24) | ((i + 8) << 7);
17856 }
17857
17858 return (a & 0xff) | (i << 7);
17859 }
17860
17861 return FAIL;
17862 }
17863
17864 static int
17865 validate_offset_imm (unsigned int val, int hwse)
17866 {
17867 if ((hwse && val > 255) || val > 4095)
17868 return FAIL;
17869 return val;
17870 }
17871
17872 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17873 negative immediate constant by altering the instruction. A bit of
17874 a hack really.
17875 MOV <-> MVN
17876 AND <-> BIC
17877 ADC <-> SBC
17878 by inverting the second operand, and
17879 ADD <-> SUB
17880 CMP <-> CMN
17881 by negating the second operand. */
17882
17883 static int
17884 negate_data_op (unsigned long * instruction,
17885 unsigned long value)
17886 {
17887 int op, new_inst;
17888 unsigned long negated, inverted;
17889
17890 negated = encode_arm_immediate (-value);
17891 inverted = encode_arm_immediate (~value);
17892
17893 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17894 switch (op)
17895 {
17896 /* First negates. */
17897 case OPCODE_SUB: /* ADD <-> SUB */
17898 new_inst = OPCODE_ADD;
17899 value = negated;
17900 break;
17901
17902 case OPCODE_ADD:
17903 new_inst = OPCODE_SUB;
17904 value = negated;
17905 break;
17906
17907 case OPCODE_CMP: /* CMP <-> CMN */
17908 new_inst = OPCODE_CMN;
17909 value = negated;
17910 break;
17911
17912 case OPCODE_CMN:
17913 new_inst = OPCODE_CMP;
17914 value = negated;
17915 break;
17916
17917 /* Now Inverted ops. */
17918 case OPCODE_MOV: /* MOV <-> MVN */
17919 new_inst = OPCODE_MVN;
17920 value = inverted;
17921 break;
17922
17923 case OPCODE_MVN:
17924 new_inst = OPCODE_MOV;
17925 value = inverted;
17926 break;
17927
17928 case OPCODE_AND: /* AND <-> BIC */
17929 new_inst = OPCODE_BIC;
17930 value = inverted;
17931 break;
17932
17933 case OPCODE_BIC:
17934 new_inst = OPCODE_AND;
17935 value = inverted;
17936 break;
17937
17938 case OPCODE_ADC: /* ADC <-> SBC */
17939 new_inst = OPCODE_SBC;
17940 value = inverted;
17941 break;
17942
17943 case OPCODE_SBC:
17944 new_inst = OPCODE_ADC;
17945 value = inverted;
17946 break;
17947
17948 /* We cannot do anything. */
17949 default:
17950 return FAIL;
17951 }
17952
17953 if (value == (unsigned) FAIL)
17954 return FAIL;
17955
17956 *instruction &= OPCODE_MASK;
17957 *instruction |= new_inst << DATA_OP_SHIFT;
17958 return value;
17959 }
17960
17961 /* Like negate_data_op, but for Thumb-2. */
17962
17963 static unsigned int
17964 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
17965 {
17966 int op, new_inst;
17967 int rd;
17968 unsigned int negated, inverted;
17969
17970 negated = encode_thumb32_immediate (-value);
17971 inverted = encode_thumb32_immediate (~value);
17972
17973 rd = (*instruction >> 8) & 0xf;
17974 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17975 switch (op)
17976 {
17977 /* ADD <-> SUB. Includes CMP <-> CMN. */
17978 case T2_OPCODE_SUB:
17979 new_inst = T2_OPCODE_ADD;
17980 value = negated;
17981 break;
17982
17983 case T2_OPCODE_ADD:
17984 new_inst = T2_OPCODE_SUB;
17985 value = negated;
17986 break;
17987
17988 /* ORR <-> ORN. Includes MOV <-> MVN. */
17989 case T2_OPCODE_ORR:
17990 new_inst = T2_OPCODE_ORN;
17991 value = inverted;
17992 break;
17993
17994 case T2_OPCODE_ORN:
17995 new_inst = T2_OPCODE_ORR;
17996 value = inverted;
17997 break;
17998
17999 /* AND <-> BIC. TST has no inverted equivalent. */
18000 case T2_OPCODE_AND:
18001 new_inst = T2_OPCODE_BIC;
18002 if (rd == 15)
18003 value = FAIL;
18004 else
18005 value = inverted;
18006 break;
18007
18008 case T2_OPCODE_BIC:
18009 new_inst = T2_OPCODE_AND;
18010 value = inverted;
18011 break;
18012
18013 /* ADC <-> SBC */
18014 case T2_OPCODE_ADC:
18015 new_inst = T2_OPCODE_SBC;
18016 value = inverted;
18017 break;
18018
18019 case T2_OPCODE_SBC:
18020 new_inst = T2_OPCODE_ADC;
18021 value = inverted;
18022 break;
18023
18024 /* We cannot do anything. */
18025 default:
18026 return FAIL;
18027 }
18028
18029 if (value == (unsigned int)FAIL)
18030 return FAIL;
18031
18032 *instruction &= T2_OPCODE_MASK;
18033 *instruction |= new_inst << T2_DATA_OP_SHIFT;
18034 return value;
18035 }
18036
18037 /* Read a 32-bit thumb instruction from buf. */
18038 static unsigned long
18039 get_thumb32_insn (char * buf)
18040 {
18041 unsigned long insn;
18042 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
18043 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18044
18045 return insn;
18046 }
18047
18048
18049 /* We usually want to set the low bit on the address of thumb function
18050 symbols. In particular .word foo - . should have the low bit set.
18051 Generic code tries to fold the difference of two symbols to
18052 a constant. Prevent this and force a relocation when the first symbols
18053 is a thumb function. */
18054 int
18055 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
18056 {
18057 if (op == O_subtract
18058 && l->X_op == O_symbol
18059 && r->X_op == O_symbol
18060 && THUMB_IS_FUNC (l->X_add_symbol))
18061 {
18062 l->X_op = O_subtract;
18063 l->X_op_symbol = r->X_add_symbol;
18064 l->X_add_number -= r->X_add_number;
18065 return 1;
18066 }
18067 /* Process as normal. */
18068 return 0;
18069 }
18070
18071 void
18072 md_apply_fix (fixS * fixP,
18073 valueT * valP,
18074 segT seg)
18075 {
18076 offsetT value = * valP;
18077 offsetT newval;
18078 unsigned int newimm;
18079 unsigned long temp;
18080 int sign;
18081 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
18082
18083 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
18084
18085 /* Note whether this will delete the relocation. */
18086
18087 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
18088 fixP->fx_done = 1;
18089
18090 /* On a 64-bit host, silently truncate 'value' to 32 bits for
18091 consistency with the behaviour on 32-bit hosts. Remember value
18092 for emit_reloc. */
18093 value &= 0xffffffff;
18094 value ^= 0x80000000;
18095 value -= 0x80000000;
18096
18097 *valP = value;
18098 fixP->fx_addnumber = value;
18099
18100 /* Same treatment for fixP->fx_offset. */
18101 fixP->fx_offset &= 0xffffffff;
18102 fixP->fx_offset ^= 0x80000000;
18103 fixP->fx_offset -= 0x80000000;
18104
18105 switch (fixP->fx_r_type)
18106 {
18107 case BFD_RELOC_NONE:
18108 /* This will need to go in the object file. */
18109 fixP->fx_done = 0;
18110 break;
18111
18112 case BFD_RELOC_ARM_IMMEDIATE:
18113 /* We claim that this fixup has been processed here,
18114 even if in fact we generate an error because we do
18115 not have a reloc for it, so tc_gen_reloc will reject it. */
18116 fixP->fx_done = 1;
18117
18118 if (fixP->fx_addsy
18119 && ! S_IS_DEFINED (fixP->fx_addsy))
18120 {
18121 as_bad_where (fixP->fx_file, fixP->fx_line,
18122 _("undefined symbol %s used as an immediate value"),
18123 S_GET_NAME (fixP->fx_addsy));
18124 break;
18125 }
18126
18127 newimm = encode_arm_immediate (value);
18128 temp = md_chars_to_number (buf, INSN_SIZE);
18129
18130 /* If the instruction will fail, see if we can fix things up by
18131 changing the opcode. */
18132 if (newimm == (unsigned int) FAIL
18133 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
18134 {
18135 as_bad_where (fixP->fx_file, fixP->fx_line,
18136 _("invalid constant (%lx) after fixup"),
18137 (unsigned long) value);
18138 break;
18139 }
18140
18141 newimm |= (temp & 0xfffff000);
18142 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18143 break;
18144
18145 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18146 {
18147 unsigned int highpart = 0;
18148 unsigned int newinsn = 0xe1a00000; /* nop. */
18149
18150 newimm = encode_arm_immediate (value);
18151 temp = md_chars_to_number (buf, INSN_SIZE);
18152
18153 /* If the instruction will fail, see if we can fix things up by
18154 changing the opcode. */
18155 if (newimm == (unsigned int) FAIL
18156 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
18157 {
18158 /* No ? OK - try using two ADD instructions to generate
18159 the value. */
18160 newimm = validate_immediate_twopart (value, & highpart);
18161
18162 /* Yes - then make sure that the second instruction is
18163 also an add. */
18164 if (newimm != (unsigned int) FAIL)
18165 newinsn = temp;
18166 /* Still No ? Try using a negated value. */
18167 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
18168 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
18169 /* Otherwise - give up. */
18170 else
18171 {
18172 as_bad_where (fixP->fx_file, fixP->fx_line,
18173 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
18174 (long) value);
18175 break;
18176 }
18177
18178 /* Replace the first operand in the 2nd instruction (which
18179 is the PC) with the destination register. We have
18180 already added in the PC in the first instruction and we
18181 do not want to do it again. */
18182 newinsn &= ~ 0xf0000;
18183 newinsn |= ((newinsn & 0x0f000) << 4);
18184 }
18185
18186 newimm |= (temp & 0xfffff000);
18187 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18188
18189 highpart |= (newinsn & 0xfffff000);
18190 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18191 }
18192 break;
18193
18194 case BFD_RELOC_ARM_OFFSET_IMM:
18195 if (!fixP->fx_done && seg->use_rela_p)
18196 value = 0;
18197
18198 case BFD_RELOC_ARM_LITERAL:
18199 sign = value >= 0;
18200
18201 if (value < 0)
18202 value = - value;
18203
18204 if (validate_offset_imm (value, 0) == FAIL)
18205 {
18206 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18207 as_bad_where (fixP->fx_file, fixP->fx_line,
18208 _("invalid literal constant: pool needs to be closer"));
18209 else
18210 as_bad_where (fixP->fx_file, fixP->fx_line,
18211 _("bad immediate value for offset (%ld)"),
18212 (long) value);
18213 break;
18214 }
18215
18216 newval = md_chars_to_number (buf, INSN_SIZE);
18217 newval &= 0xff7ff000;
18218 newval |= value | (sign ? INDEX_UP : 0);
18219 md_number_to_chars (buf, newval, INSN_SIZE);
18220 break;
18221
18222 case BFD_RELOC_ARM_OFFSET_IMM8:
18223 case BFD_RELOC_ARM_HWLITERAL:
18224 sign = value >= 0;
18225
18226 if (value < 0)
18227 value = - value;
18228
18229 if (validate_offset_imm (value, 1) == FAIL)
18230 {
18231 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18232 as_bad_where (fixP->fx_file, fixP->fx_line,
18233 _("invalid literal constant: pool needs to be closer"));
18234 else
18235 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18236 (long) value);
18237 break;
18238 }
18239
18240 newval = md_chars_to_number (buf, INSN_SIZE);
18241 newval &= 0xff7ff0f0;
18242 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18243 md_number_to_chars (buf, newval, INSN_SIZE);
18244 break;
18245
18246 case BFD_RELOC_ARM_T32_OFFSET_U8:
18247 if (value < 0 || value > 1020 || value % 4 != 0)
18248 as_bad_where (fixP->fx_file, fixP->fx_line,
18249 _("bad immediate value for offset (%ld)"), (long) value);
18250 value /= 4;
18251
18252 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18253 newval |= value;
18254 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18255 break;
18256
18257 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18258 /* This is a complicated relocation used for all varieties of Thumb32
18259 load/store instruction with immediate offset:
18260
18261 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18262 *4, optional writeback(W)
18263 (doubleword load/store)
18264
18265 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18266 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18267 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18268 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18269 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18270
18271 Uppercase letters indicate bits that are already encoded at
18272 this point. Lowercase letters are our problem. For the
18273 second block of instructions, the secondary opcode nybble
18274 (bits 8..11) is present, and bit 23 is zero, even if this is
18275 a PC-relative operation. */
18276 newval = md_chars_to_number (buf, THUMB_SIZE);
18277 newval <<= 16;
18278 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18279
18280 if ((newval & 0xf0000000) == 0xe0000000)
18281 {
18282 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18283 if (value >= 0)
18284 newval |= (1 << 23);
18285 else
18286 value = -value;
18287 if (value % 4 != 0)
18288 {
18289 as_bad_where (fixP->fx_file, fixP->fx_line,
18290 _("offset not a multiple of 4"));
18291 break;
18292 }
18293 value /= 4;
18294 if (value > 0xff)
18295 {
18296 as_bad_where (fixP->fx_file, fixP->fx_line,
18297 _("offset out of range"));
18298 break;
18299 }
18300 newval &= ~0xff;
18301 }
18302 else if ((newval & 0x000f0000) == 0x000f0000)
18303 {
18304 /* PC-relative, 12-bit offset. */
18305 if (value >= 0)
18306 newval |= (1 << 23);
18307 else
18308 value = -value;
18309 if (value > 0xfff)
18310 {
18311 as_bad_where (fixP->fx_file, fixP->fx_line,
18312 _("offset out of range"));
18313 break;
18314 }
18315 newval &= ~0xfff;
18316 }
18317 else if ((newval & 0x00000100) == 0x00000100)
18318 {
18319 /* Writeback: 8-bit, +/- offset. */
18320 if (value >= 0)
18321 newval |= (1 << 9);
18322 else
18323 value = -value;
18324 if (value > 0xff)
18325 {
18326 as_bad_where (fixP->fx_file, fixP->fx_line,
18327 _("offset out of range"));
18328 break;
18329 }
18330 newval &= ~0xff;
18331 }
18332 else if ((newval & 0x00000f00) == 0x00000e00)
18333 {
18334 /* T-instruction: positive 8-bit offset. */
18335 if (value < 0 || value > 0xff)
18336 {
18337 as_bad_where (fixP->fx_file, fixP->fx_line,
18338 _("offset out of range"));
18339 break;
18340 }
18341 newval &= ~0xff;
18342 newval |= value;
18343 }
18344 else
18345 {
18346 /* Positive 12-bit or negative 8-bit offset. */
18347 int limit;
18348 if (value >= 0)
18349 {
18350 newval |= (1 << 23);
18351 limit = 0xfff;
18352 }
18353 else
18354 {
18355 value = -value;
18356 limit = 0xff;
18357 }
18358 if (value > limit)
18359 {
18360 as_bad_where (fixP->fx_file, fixP->fx_line,
18361 _("offset out of range"));
18362 break;
18363 }
18364 newval &= ~limit;
18365 }
18366
18367 newval |= value;
18368 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18369 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18370 break;
18371
18372 case BFD_RELOC_ARM_SHIFT_IMM:
18373 newval = md_chars_to_number (buf, INSN_SIZE);
18374 if (((unsigned long) value) > 32
18375 || (value == 32
18376 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18377 {
18378 as_bad_where (fixP->fx_file, fixP->fx_line,
18379 _("shift expression is too large"));
18380 break;
18381 }
18382
18383 if (value == 0)
18384 /* Shifts of zero must be done as lsl. */
18385 newval &= ~0x60;
18386 else if (value == 32)
18387 value = 0;
18388 newval &= 0xfffff07f;
18389 newval |= (value & 0x1f) << 7;
18390 md_number_to_chars (buf, newval, INSN_SIZE);
18391 break;
18392
18393 case BFD_RELOC_ARM_T32_IMMEDIATE:
18394 case BFD_RELOC_ARM_T32_ADD_IMM:
18395 case BFD_RELOC_ARM_T32_IMM12:
18396 case BFD_RELOC_ARM_T32_ADD_PC12:
18397 /* We claim that this fixup has been processed here,
18398 even if in fact we generate an error because we do
18399 not have a reloc for it, so tc_gen_reloc will reject it. */
18400 fixP->fx_done = 1;
18401
18402 if (fixP->fx_addsy
18403 && ! S_IS_DEFINED (fixP->fx_addsy))
18404 {
18405 as_bad_where (fixP->fx_file, fixP->fx_line,
18406 _("undefined symbol %s used as an immediate value"),
18407 S_GET_NAME (fixP->fx_addsy));
18408 break;
18409 }
18410
18411 newval = md_chars_to_number (buf, THUMB_SIZE);
18412 newval <<= 16;
18413 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18414
18415 newimm = FAIL;
18416 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18417 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18418 {
18419 newimm = encode_thumb32_immediate (value);
18420 if (newimm == (unsigned int) FAIL)
18421 newimm = thumb32_negate_data_op (&newval, value);
18422 }
18423 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18424 && newimm == (unsigned int) FAIL)
18425 {
18426 /* Turn add/sum into addw/subw. */
18427 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18428 newval = (newval & 0xfeffffff) | 0x02000000;
18429
18430 /* 12 bit immediate for addw/subw. */
18431 if (value < 0)
18432 {
18433 value = -value;
18434 newval ^= 0x00a00000;
18435 }
18436 if (value > 0xfff)
18437 newimm = (unsigned int) FAIL;
18438 else
18439 newimm = value;
18440 }
18441
18442 if (newimm == (unsigned int)FAIL)
18443 {
18444 as_bad_where (fixP->fx_file, fixP->fx_line,
18445 _("invalid constant (%lx) after fixup"),
18446 (unsigned long) value);
18447 break;
18448 }
18449
18450 newval |= (newimm & 0x800) << 15;
18451 newval |= (newimm & 0x700) << 4;
18452 newval |= (newimm & 0x0ff);
18453
18454 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18455 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18456 break;
18457
18458 case BFD_RELOC_ARM_SMC:
18459 if (((unsigned long) value) > 0xffff)
18460 as_bad_where (fixP->fx_file, fixP->fx_line,
18461 _("invalid smc expression"));
18462 newval = md_chars_to_number (buf, INSN_SIZE);
18463 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18464 md_number_to_chars (buf, newval, INSN_SIZE);
18465 break;
18466
18467 case BFD_RELOC_ARM_SWI:
18468 if (fixP->tc_fix_data != 0)
18469 {
18470 if (((unsigned long) value) > 0xff)
18471 as_bad_where (fixP->fx_file, fixP->fx_line,
18472 _("invalid swi expression"));
18473 newval = md_chars_to_number (buf, THUMB_SIZE);
18474 newval |= value;
18475 md_number_to_chars (buf, newval, THUMB_SIZE);
18476 }
18477 else
18478 {
18479 if (((unsigned long) value) > 0x00ffffff)
18480 as_bad_where (fixP->fx_file, fixP->fx_line,
18481 _("invalid swi expression"));
18482 newval = md_chars_to_number (buf, INSN_SIZE);
18483 newval |= value;
18484 md_number_to_chars (buf, newval, INSN_SIZE);
18485 }
18486 break;
18487
18488 case BFD_RELOC_ARM_MULTI:
18489 if (((unsigned long) value) > 0xffff)
18490 as_bad_where (fixP->fx_file, fixP->fx_line,
18491 _("invalid expression in load/store multiple"));
18492 newval = value | md_chars_to_number (buf, INSN_SIZE);
18493 md_number_to_chars (buf, newval, INSN_SIZE);
18494 break;
18495
18496 #ifdef OBJ_ELF
18497 case BFD_RELOC_ARM_PCREL_CALL:
18498 newval = md_chars_to_number (buf, INSN_SIZE);
18499 if ((newval & 0xf0000000) == 0xf0000000)
18500 temp = 1;
18501 else
18502 temp = 3;
18503 goto arm_branch_common;
18504
18505 case BFD_RELOC_ARM_PCREL_JUMP:
18506 case BFD_RELOC_ARM_PLT32:
18507 #endif
18508 case BFD_RELOC_ARM_PCREL_BRANCH:
18509 temp = 3;
18510 goto arm_branch_common;
18511
18512 case BFD_RELOC_ARM_PCREL_BLX:
18513 temp = 1;
18514 arm_branch_common:
18515 /* We are going to store value (shifted right by two) in the
18516 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18517 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18518 also be be clear. */
18519 if (value & temp)
18520 as_bad_where (fixP->fx_file, fixP->fx_line,
18521 _("misaligned branch destination"));
18522 if ((value & (offsetT)0xfe000000) != (offsetT)0
18523 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18524 as_bad_where (fixP->fx_file, fixP->fx_line,
18525 _("branch out of range"));
18526
18527 if (fixP->fx_done || !seg->use_rela_p)
18528 {
18529 newval = md_chars_to_number (buf, INSN_SIZE);
18530 newval |= (value >> 2) & 0x00ffffff;
18531 /* Set the H bit on BLX instructions. */
18532 if (temp == 1)
18533 {
18534 if (value & 2)
18535 newval |= 0x01000000;
18536 else
18537 newval &= ~0x01000000;
18538 }
18539 md_number_to_chars (buf, newval, INSN_SIZE);
18540 }
18541 break;
18542
18543 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18544 /* CBZ can only branch forward. */
18545
18546 /* Attempts to use CBZ to branch to the next instruction
18547 (which, strictly speaking, are prohibited) will be turned into
18548 no-ops.
18549
18550 FIXME: It may be better to remove the instruction completely and
18551 perform relaxation. */
18552 if (value == -2)
18553 {
18554 newval = md_chars_to_number (buf, THUMB_SIZE);
18555 newval = 0xbf00; /* NOP encoding T1 */
18556 md_number_to_chars (buf, newval, THUMB_SIZE);
18557 }
18558 else
18559 {
18560 if (value & ~0x7e)
18561 as_bad_where (fixP->fx_file, fixP->fx_line,
18562 _("branch out of range"));
18563
18564 if (fixP->fx_done || !seg->use_rela_p)
18565 {
18566 newval = md_chars_to_number (buf, THUMB_SIZE);
18567 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18568 md_number_to_chars (buf, newval, THUMB_SIZE);
18569 }
18570 }
18571 break;
18572
18573 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
18574 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18575 as_bad_where (fixP->fx_file, fixP->fx_line,
18576 _("branch out of range"));
18577
18578 if (fixP->fx_done || !seg->use_rela_p)
18579 {
18580 newval = md_chars_to_number (buf, THUMB_SIZE);
18581 newval |= (value & 0x1ff) >> 1;
18582 md_number_to_chars (buf, newval, THUMB_SIZE);
18583 }
18584 break;
18585
18586 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
18587 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18588 as_bad_where (fixP->fx_file, fixP->fx_line,
18589 _("branch out of range"));
18590
18591 if (fixP->fx_done || !seg->use_rela_p)
18592 {
18593 newval = md_chars_to_number (buf, THUMB_SIZE);
18594 newval |= (value & 0xfff) >> 1;
18595 md_number_to_chars (buf, newval, THUMB_SIZE);
18596 }
18597 break;
18598
18599 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18600 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18601 as_bad_where (fixP->fx_file, fixP->fx_line,
18602 _("conditional branch out of range"));
18603
18604 if (fixP->fx_done || !seg->use_rela_p)
18605 {
18606 offsetT newval2;
18607 addressT S, J1, J2, lo, hi;
18608
18609 S = (value & 0x00100000) >> 20;
18610 J2 = (value & 0x00080000) >> 19;
18611 J1 = (value & 0x00040000) >> 18;
18612 hi = (value & 0x0003f000) >> 12;
18613 lo = (value & 0x00000ffe) >> 1;
18614
18615 newval = md_chars_to_number (buf, THUMB_SIZE);
18616 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18617 newval |= (S << 10) | hi;
18618 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18619 md_number_to_chars (buf, newval, THUMB_SIZE);
18620 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18621 }
18622 break;
18623
18624 case BFD_RELOC_THUMB_PCREL_BLX:
18625 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18626 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18627 as_bad_where (fixP->fx_file, fixP->fx_line,
18628 _("branch out of range"));
18629
18630 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18631 /* For a BLX instruction, make sure that the relocation is rounded up
18632 to a word boundary. This follows the semantics of the instruction
18633 which specifies that bit 1 of the target address will come from bit
18634 1 of the base address. */
18635 value = (value + 1) & ~ 1;
18636
18637 if (fixP->fx_done || !seg->use_rela_p)
18638 {
18639 offsetT newval2;
18640
18641 newval = md_chars_to_number (buf, THUMB_SIZE);
18642 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18643 newval |= (value & 0x7fffff) >> 12;
18644 newval2 |= (value & 0xfff) >> 1;
18645 md_number_to_chars (buf, newval, THUMB_SIZE);
18646 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18647 }
18648 break;
18649
18650 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18651 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18652 as_bad_where (fixP->fx_file, fixP->fx_line,
18653 _("branch out of range"));
18654
18655 if (fixP->fx_done || !seg->use_rela_p)
18656 {
18657 offsetT newval2;
18658 addressT S, I1, I2, lo, hi;
18659
18660 S = (value & 0x01000000) >> 24;
18661 I1 = (value & 0x00800000) >> 23;
18662 I2 = (value & 0x00400000) >> 22;
18663 hi = (value & 0x003ff000) >> 12;
18664 lo = (value & 0x00000ffe) >> 1;
18665
18666 I1 = !(I1 ^ S);
18667 I2 = !(I2 ^ S);
18668
18669 newval = md_chars_to_number (buf, THUMB_SIZE);
18670 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18671 newval |= (S << 10) | hi;
18672 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18673 md_number_to_chars (buf, newval, THUMB_SIZE);
18674 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18675 }
18676 break;
18677
18678 case BFD_RELOC_8:
18679 if (fixP->fx_done || !seg->use_rela_p)
18680 md_number_to_chars (buf, value, 1);
18681 break;
18682
18683 case BFD_RELOC_16:
18684 if (fixP->fx_done || !seg->use_rela_p)
18685 md_number_to_chars (buf, value, 2);
18686 break;
18687
18688 #ifdef OBJ_ELF
18689 case BFD_RELOC_ARM_TLS_GD32:
18690 case BFD_RELOC_ARM_TLS_LE32:
18691 case BFD_RELOC_ARM_TLS_IE32:
18692 case BFD_RELOC_ARM_TLS_LDM32:
18693 case BFD_RELOC_ARM_TLS_LDO32:
18694 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18695 /* fall through */
18696
18697 case BFD_RELOC_ARM_GOT32:
18698 case BFD_RELOC_ARM_GOTOFF:
18699 case BFD_RELOC_ARM_TARGET2:
18700 if (fixP->fx_done || !seg->use_rela_p)
18701 md_number_to_chars (buf, 0, 4);
18702 break;
18703 #endif
18704
18705 case BFD_RELOC_RVA:
18706 case BFD_RELOC_32:
18707 case BFD_RELOC_ARM_TARGET1:
18708 case BFD_RELOC_ARM_ROSEGREL32:
18709 case BFD_RELOC_ARM_SBREL32:
18710 case BFD_RELOC_32_PCREL:
18711 #ifdef TE_PE
18712 case BFD_RELOC_32_SECREL:
18713 #endif
18714 if (fixP->fx_done || !seg->use_rela_p)
18715 #ifdef TE_WINCE
18716 /* For WinCE we only do this for pcrel fixups. */
18717 if (fixP->fx_done || fixP->fx_pcrel)
18718 #endif
18719 md_number_to_chars (buf, value, 4);
18720 break;
18721
18722 #ifdef OBJ_ELF
18723 case BFD_RELOC_ARM_PREL31:
18724 if (fixP->fx_done || !seg->use_rela_p)
18725 {
18726 newval = md_chars_to_number (buf, 4) & 0x80000000;
18727 if ((value ^ (value >> 1)) & 0x40000000)
18728 {
18729 as_bad_where (fixP->fx_file, fixP->fx_line,
18730 _("rel31 relocation overflow"));
18731 }
18732 newval |= value & 0x7fffffff;
18733 md_number_to_chars (buf, newval, 4);
18734 }
18735 break;
18736 #endif
18737
18738 case BFD_RELOC_ARM_CP_OFF_IMM:
18739 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18740 if (value < -1023 || value > 1023 || (value & 3))
18741 as_bad_where (fixP->fx_file, fixP->fx_line,
18742 _("co-processor offset out of range"));
18743 cp_off_common:
18744 sign = value >= 0;
18745 if (value < 0)
18746 value = -value;
18747 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18748 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18749 newval = md_chars_to_number (buf, INSN_SIZE);
18750 else
18751 newval = get_thumb32_insn (buf);
18752 newval &= 0xff7fff00;
18753 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18754 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18755 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18756 md_number_to_chars (buf, newval, INSN_SIZE);
18757 else
18758 put_thumb32_insn (buf, newval);
18759 break;
18760
18761 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18762 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18763 if (value < -255 || value > 255)
18764 as_bad_where (fixP->fx_file, fixP->fx_line,
18765 _("co-processor offset out of range"));
18766 value *= 4;
18767 goto cp_off_common;
18768
18769 case BFD_RELOC_ARM_THUMB_OFFSET:
18770 newval = md_chars_to_number (buf, THUMB_SIZE);
18771 /* Exactly what ranges, and where the offset is inserted depends
18772 on the type of instruction, we can establish this from the
18773 top 4 bits. */
18774 switch (newval >> 12)
18775 {
18776 case 4: /* PC load. */
18777 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18778 forced to zero for these loads; md_pcrel_from has already
18779 compensated for this. */
18780 if (value & 3)
18781 as_bad_where (fixP->fx_file, fixP->fx_line,
18782 _("invalid offset, target not word aligned (0x%08lX)"),
18783 (((unsigned long) fixP->fx_frag->fr_address
18784 + (unsigned long) fixP->fx_where) & ~3)
18785 + (unsigned long) value);
18786
18787 if (value & ~0x3fc)
18788 as_bad_where (fixP->fx_file, fixP->fx_line,
18789 _("invalid offset, value too big (0x%08lX)"),
18790 (long) value);
18791
18792 newval |= value >> 2;
18793 break;
18794
18795 case 9: /* SP load/store. */
18796 if (value & ~0x3fc)
18797 as_bad_where (fixP->fx_file, fixP->fx_line,
18798 _("invalid offset, value too big (0x%08lX)"),
18799 (long) value);
18800 newval |= value >> 2;
18801 break;
18802
18803 case 6: /* Word load/store. */
18804 if (value & ~0x7c)
18805 as_bad_where (fixP->fx_file, fixP->fx_line,
18806 _("invalid offset, value too big (0x%08lX)"),
18807 (long) value);
18808 newval |= value << 4; /* 6 - 2. */
18809 break;
18810
18811 case 7: /* Byte load/store. */
18812 if (value & ~0x1f)
18813 as_bad_where (fixP->fx_file, fixP->fx_line,
18814 _("invalid offset, value too big (0x%08lX)"),
18815 (long) value);
18816 newval |= value << 6;
18817 break;
18818
18819 case 8: /* Halfword load/store. */
18820 if (value & ~0x3e)
18821 as_bad_where (fixP->fx_file, fixP->fx_line,
18822 _("invalid offset, value too big (0x%08lX)"),
18823 (long) value);
18824 newval |= value << 5; /* 6 - 1. */
18825 break;
18826
18827 default:
18828 as_bad_where (fixP->fx_file, fixP->fx_line,
18829 "Unable to process relocation for thumb opcode: %lx",
18830 (unsigned long) newval);
18831 break;
18832 }
18833 md_number_to_chars (buf, newval, THUMB_SIZE);
18834 break;
18835
18836 case BFD_RELOC_ARM_THUMB_ADD:
18837 /* This is a complicated relocation, since we use it for all of
18838 the following immediate relocations:
18839
18840 3bit ADD/SUB
18841 8bit ADD/SUB
18842 9bit ADD/SUB SP word-aligned
18843 10bit ADD PC/SP word-aligned
18844
18845 The type of instruction being processed is encoded in the
18846 instruction field:
18847
18848 0x8000 SUB
18849 0x00F0 Rd
18850 0x000F Rs
18851 */
18852 newval = md_chars_to_number (buf, THUMB_SIZE);
18853 {
18854 int rd = (newval >> 4) & 0xf;
18855 int rs = newval & 0xf;
18856 int subtract = !!(newval & 0x8000);
18857
18858 /* Check for HI regs, only very restricted cases allowed:
18859 Adjusting SP, and using PC or SP to get an address. */
18860 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18861 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18862 as_bad_where (fixP->fx_file, fixP->fx_line,
18863 _("invalid Hi register with immediate"));
18864
18865 /* If value is negative, choose the opposite instruction. */
18866 if (value < 0)
18867 {
18868 value = -value;
18869 subtract = !subtract;
18870 if (value < 0)
18871 as_bad_where (fixP->fx_file, fixP->fx_line,
18872 _("immediate value out of range"));
18873 }
18874
18875 if (rd == REG_SP)
18876 {
18877 if (value & ~0x1fc)
18878 as_bad_where (fixP->fx_file, fixP->fx_line,
18879 _("invalid immediate for stack address calculation"));
18880 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18881 newval |= value >> 2;
18882 }
18883 else if (rs == REG_PC || rs == REG_SP)
18884 {
18885 if (subtract || value & ~0x3fc)
18886 as_bad_where (fixP->fx_file, fixP->fx_line,
18887 _("invalid immediate for address calculation (value = 0x%08lX)"),
18888 (unsigned long) value);
18889 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18890 newval |= rd << 8;
18891 newval |= value >> 2;
18892 }
18893 else if (rs == rd)
18894 {
18895 if (value & ~0xff)
18896 as_bad_where (fixP->fx_file, fixP->fx_line,
18897 _("immediate value out of range"));
18898 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18899 newval |= (rd << 8) | value;
18900 }
18901 else
18902 {
18903 if (value & ~0x7)
18904 as_bad_where (fixP->fx_file, fixP->fx_line,
18905 _("immediate value out of range"));
18906 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18907 newval |= rd | (rs << 3) | (value << 6);
18908 }
18909 }
18910 md_number_to_chars (buf, newval, THUMB_SIZE);
18911 break;
18912
18913 case BFD_RELOC_ARM_THUMB_IMM:
18914 newval = md_chars_to_number (buf, THUMB_SIZE);
18915 if (value < 0 || value > 255)
18916 as_bad_where (fixP->fx_file, fixP->fx_line,
18917 _("invalid immediate: %ld is out of range"),
18918 (long) value);
18919 newval |= value;
18920 md_number_to_chars (buf, newval, THUMB_SIZE);
18921 break;
18922
18923 case BFD_RELOC_ARM_THUMB_SHIFT:
18924 /* 5bit shift value (0..32). LSL cannot take 32. */
18925 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18926 temp = newval & 0xf800;
18927 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18928 as_bad_where (fixP->fx_file, fixP->fx_line,
18929 _("invalid shift value: %ld"), (long) value);
18930 /* Shifts of zero must be encoded as LSL. */
18931 if (value == 0)
18932 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18933 /* Shifts of 32 are encoded as zero. */
18934 else if (value == 32)
18935 value = 0;
18936 newval |= value << 6;
18937 md_number_to_chars (buf, newval, THUMB_SIZE);
18938 break;
18939
18940 case BFD_RELOC_VTABLE_INHERIT:
18941 case BFD_RELOC_VTABLE_ENTRY:
18942 fixP->fx_done = 0;
18943 return;
18944
18945 case BFD_RELOC_ARM_MOVW:
18946 case BFD_RELOC_ARM_MOVT:
18947 case BFD_RELOC_ARM_THUMB_MOVW:
18948 case BFD_RELOC_ARM_THUMB_MOVT:
18949 if (fixP->fx_done || !seg->use_rela_p)
18950 {
18951 /* REL format relocations are limited to a 16-bit addend. */
18952 if (!fixP->fx_done)
18953 {
18954 if (value < -0x8000 || value > 0x7fff)
18955 as_bad_where (fixP->fx_file, fixP->fx_line,
18956 _("offset out of range"));
18957 }
18958 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18959 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18960 {
18961 value >>= 16;
18962 }
18963
18964 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18965 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18966 {
18967 newval = get_thumb32_insn (buf);
18968 newval &= 0xfbf08f00;
18969 newval |= (value & 0xf000) << 4;
18970 newval |= (value & 0x0800) << 15;
18971 newval |= (value & 0x0700) << 4;
18972 newval |= (value & 0x00ff);
18973 put_thumb32_insn (buf, newval);
18974 }
18975 else
18976 {
18977 newval = md_chars_to_number (buf, 4);
18978 newval &= 0xfff0f000;
18979 newval |= value & 0x0fff;
18980 newval |= (value & 0xf000) << 4;
18981 md_number_to_chars (buf, newval, 4);
18982 }
18983 }
18984 return;
18985
18986 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18987 case BFD_RELOC_ARM_ALU_PC_G0:
18988 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18989 case BFD_RELOC_ARM_ALU_PC_G1:
18990 case BFD_RELOC_ARM_ALU_PC_G2:
18991 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18992 case BFD_RELOC_ARM_ALU_SB_G0:
18993 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18994 case BFD_RELOC_ARM_ALU_SB_G1:
18995 case BFD_RELOC_ARM_ALU_SB_G2:
18996 assert (!fixP->fx_done);
18997 if (!seg->use_rela_p)
18998 {
18999 bfd_vma insn;
19000 bfd_vma encoded_addend;
19001 bfd_vma addend_abs = abs (value);
19002
19003 /* Check that the absolute value of the addend can be
19004 expressed as an 8-bit constant plus a rotation. */
19005 encoded_addend = encode_arm_immediate (addend_abs);
19006 if (encoded_addend == (unsigned int) FAIL)
19007 as_bad_where (fixP->fx_file, fixP->fx_line,
19008 _("the offset 0x%08lX is not representable"),
19009 (unsigned long) addend_abs);
19010
19011 /* Extract the instruction. */
19012 insn = md_chars_to_number (buf, INSN_SIZE);
19013
19014 /* If the addend is positive, use an ADD instruction.
19015 Otherwise use a SUB. Take care not to destroy the S bit. */
19016 insn &= 0xff1fffff;
19017 if (value < 0)
19018 insn |= 1 << 22;
19019 else
19020 insn |= 1 << 23;
19021
19022 /* Place the encoded addend into the first 12 bits of the
19023 instruction. */
19024 insn &= 0xfffff000;
19025 insn |= encoded_addend;
19026
19027 /* Update the instruction. */
19028 md_number_to_chars (buf, insn, INSN_SIZE);
19029 }
19030 break;
19031
19032 case BFD_RELOC_ARM_LDR_PC_G0:
19033 case BFD_RELOC_ARM_LDR_PC_G1:
19034 case BFD_RELOC_ARM_LDR_PC_G2:
19035 case BFD_RELOC_ARM_LDR_SB_G0:
19036 case BFD_RELOC_ARM_LDR_SB_G1:
19037 case BFD_RELOC_ARM_LDR_SB_G2:
19038 assert (!fixP->fx_done);
19039 if (!seg->use_rela_p)
19040 {
19041 bfd_vma insn;
19042 bfd_vma addend_abs = abs (value);
19043
19044 /* Check that the absolute value of the addend can be
19045 encoded in 12 bits. */
19046 if (addend_abs >= 0x1000)
19047 as_bad_where (fixP->fx_file, fixP->fx_line,
19048 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
19049 (unsigned long) addend_abs);
19050
19051 /* Extract the instruction. */
19052 insn = md_chars_to_number (buf, INSN_SIZE);
19053
19054 /* If the addend is negative, clear bit 23 of the instruction.
19055 Otherwise set it. */
19056 if (value < 0)
19057 insn &= ~(1 << 23);
19058 else
19059 insn |= 1 << 23;
19060
19061 /* Place the absolute value of the addend into the first 12 bits
19062 of the instruction. */
19063 insn &= 0xfffff000;
19064 insn |= addend_abs;
19065
19066 /* Update the instruction. */
19067 md_number_to_chars (buf, insn, INSN_SIZE);
19068 }
19069 break;
19070
19071 case BFD_RELOC_ARM_LDRS_PC_G0:
19072 case BFD_RELOC_ARM_LDRS_PC_G1:
19073 case BFD_RELOC_ARM_LDRS_PC_G2:
19074 case BFD_RELOC_ARM_LDRS_SB_G0:
19075 case BFD_RELOC_ARM_LDRS_SB_G1:
19076 case BFD_RELOC_ARM_LDRS_SB_G2:
19077 assert (!fixP->fx_done);
19078 if (!seg->use_rela_p)
19079 {
19080 bfd_vma insn;
19081 bfd_vma addend_abs = abs (value);
19082
19083 /* Check that the absolute value of the addend can be
19084 encoded in 8 bits. */
19085 if (addend_abs >= 0x100)
19086 as_bad_where (fixP->fx_file, fixP->fx_line,
19087 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
19088 (unsigned long) addend_abs);
19089
19090 /* Extract the instruction. */
19091 insn = md_chars_to_number (buf, INSN_SIZE);
19092
19093 /* If the addend is negative, clear bit 23 of the instruction.
19094 Otherwise set it. */
19095 if (value < 0)
19096 insn &= ~(1 << 23);
19097 else
19098 insn |= 1 << 23;
19099
19100 /* Place the first four bits of the absolute value of the addend
19101 into the first 4 bits of the instruction, and the remaining
19102 four into bits 8 .. 11. */
19103 insn &= 0xfffff0f0;
19104 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
19105
19106 /* Update the instruction. */
19107 md_number_to_chars (buf, insn, INSN_SIZE);
19108 }
19109 break;
19110
19111 case BFD_RELOC_ARM_LDC_PC_G0:
19112 case BFD_RELOC_ARM_LDC_PC_G1:
19113 case BFD_RELOC_ARM_LDC_PC_G2:
19114 case BFD_RELOC_ARM_LDC_SB_G0:
19115 case BFD_RELOC_ARM_LDC_SB_G1:
19116 case BFD_RELOC_ARM_LDC_SB_G2:
19117 assert (!fixP->fx_done);
19118 if (!seg->use_rela_p)
19119 {
19120 bfd_vma insn;
19121 bfd_vma addend_abs = abs (value);
19122
19123 /* Check that the absolute value of the addend is a multiple of
19124 four and, when divided by four, fits in 8 bits. */
19125 if (addend_abs & 0x3)
19126 as_bad_where (fixP->fx_file, fixP->fx_line,
19127 _("bad offset 0x%08lX (must be word-aligned)"),
19128 (unsigned long) addend_abs);
19129
19130 if ((addend_abs >> 2) > 0xff)
19131 as_bad_where (fixP->fx_file, fixP->fx_line,
19132 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
19133 (unsigned long) addend_abs);
19134
19135 /* Extract the instruction. */
19136 insn = md_chars_to_number (buf, INSN_SIZE);
19137
19138 /* If the addend is negative, clear bit 23 of the instruction.
19139 Otherwise set it. */
19140 if (value < 0)
19141 insn &= ~(1 << 23);
19142 else
19143 insn |= 1 << 23;
19144
19145 /* Place the addend (divided by four) into the first eight
19146 bits of the instruction. */
19147 insn &= 0xfffffff0;
19148 insn |= addend_abs >> 2;
19149
19150 /* Update the instruction. */
19151 md_number_to_chars (buf, insn, INSN_SIZE);
19152 }
19153 break;
19154
19155 case BFD_RELOC_ARM_V4BX:
19156 /* This will need to go in the object file. */
19157 fixP->fx_done = 0;
19158 break;
19159
19160 case BFD_RELOC_UNUSED:
19161 default:
19162 as_bad_where (fixP->fx_file, fixP->fx_line,
19163 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
19164 }
19165 }
19166
19167 /* Translate internal representation of relocation info to BFD target
19168 format. */
19169
19170 arelent *
19171 tc_gen_reloc (asection *section, fixS *fixp)
19172 {
19173 arelent * reloc;
19174 bfd_reloc_code_real_type code;
19175
19176 reloc = xmalloc (sizeof (arelent));
19177
19178 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
19179 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
19180 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
19181
19182 if (fixp->fx_pcrel)
19183 {
19184 if (section->use_rela_p)
19185 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
19186 else
19187 fixp->fx_offset = reloc->address;
19188 }
19189 reloc->addend = fixp->fx_offset;
19190
19191 switch (fixp->fx_r_type)
19192 {
19193 case BFD_RELOC_8:
19194 if (fixp->fx_pcrel)
19195 {
19196 code = BFD_RELOC_8_PCREL;
19197 break;
19198 }
19199
19200 case BFD_RELOC_16:
19201 if (fixp->fx_pcrel)
19202 {
19203 code = BFD_RELOC_16_PCREL;
19204 break;
19205 }
19206
19207 case BFD_RELOC_32:
19208 if (fixp->fx_pcrel)
19209 {
19210 code = BFD_RELOC_32_PCREL;
19211 break;
19212 }
19213
19214 case BFD_RELOC_ARM_MOVW:
19215 if (fixp->fx_pcrel)
19216 {
19217 code = BFD_RELOC_ARM_MOVW_PCREL;
19218 break;
19219 }
19220
19221 case BFD_RELOC_ARM_MOVT:
19222 if (fixp->fx_pcrel)
19223 {
19224 code = BFD_RELOC_ARM_MOVT_PCREL;
19225 break;
19226 }
19227
19228 case BFD_RELOC_ARM_THUMB_MOVW:
19229 if (fixp->fx_pcrel)
19230 {
19231 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19232 break;
19233 }
19234
19235 case BFD_RELOC_ARM_THUMB_MOVT:
19236 if (fixp->fx_pcrel)
19237 {
19238 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19239 break;
19240 }
19241
19242 case BFD_RELOC_NONE:
19243 case BFD_RELOC_ARM_PCREL_BRANCH:
19244 case BFD_RELOC_ARM_PCREL_BLX:
19245 case BFD_RELOC_RVA:
19246 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19247 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19248 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19249 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19250 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19251 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19252 case BFD_RELOC_THUMB_PCREL_BLX:
19253 case BFD_RELOC_VTABLE_ENTRY:
19254 case BFD_RELOC_VTABLE_INHERIT:
19255 #ifdef TE_PE
19256 case BFD_RELOC_32_SECREL:
19257 #endif
19258 code = fixp->fx_r_type;
19259 break;
19260
19261 case BFD_RELOC_ARM_LITERAL:
19262 case BFD_RELOC_ARM_HWLITERAL:
19263 /* If this is called then the a literal has
19264 been referenced across a section boundary. */
19265 as_bad_where (fixp->fx_file, fixp->fx_line,
19266 _("literal referenced across section boundary"));
19267 return NULL;
19268
19269 #ifdef OBJ_ELF
19270 case BFD_RELOC_ARM_GOT32:
19271 case BFD_RELOC_ARM_GOTOFF:
19272 case BFD_RELOC_ARM_PLT32:
19273 case BFD_RELOC_ARM_TARGET1:
19274 case BFD_RELOC_ARM_ROSEGREL32:
19275 case BFD_RELOC_ARM_SBREL32:
19276 case BFD_RELOC_ARM_PREL31:
19277 case BFD_RELOC_ARM_TARGET2:
19278 case BFD_RELOC_ARM_TLS_LE32:
19279 case BFD_RELOC_ARM_TLS_LDO32:
19280 case BFD_RELOC_ARM_PCREL_CALL:
19281 case BFD_RELOC_ARM_PCREL_JUMP:
19282 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19283 case BFD_RELOC_ARM_ALU_PC_G0:
19284 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19285 case BFD_RELOC_ARM_ALU_PC_G1:
19286 case BFD_RELOC_ARM_ALU_PC_G2:
19287 case BFD_RELOC_ARM_LDR_PC_G0:
19288 case BFD_RELOC_ARM_LDR_PC_G1:
19289 case BFD_RELOC_ARM_LDR_PC_G2:
19290 case BFD_RELOC_ARM_LDRS_PC_G0:
19291 case BFD_RELOC_ARM_LDRS_PC_G1:
19292 case BFD_RELOC_ARM_LDRS_PC_G2:
19293 case BFD_RELOC_ARM_LDC_PC_G0:
19294 case BFD_RELOC_ARM_LDC_PC_G1:
19295 case BFD_RELOC_ARM_LDC_PC_G2:
19296 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19297 case BFD_RELOC_ARM_ALU_SB_G0:
19298 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19299 case BFD_RELOC_ARM_ALU_SB_G1:
19300 case BFD_RELOC_ARM_ALU_SB_G2:
19301 case BFD_RELOC_ARM_LDR_SB_G0:
19302 case BFD_RELOC_ARM_LDR_SB_G1:
19303 case BFD_RELOC_ARM_LDR_SB_G2:
19304 case BFD_RELOC_ARM_LDRS_SB_G0:
19305 case BFD_RELOC_ARM_LDRS_SB_G1:
19306 case BFD_RELOC_ARM_LDRS_SB_G2:
19307 case BFD_RELOC_ARM_LDC_SB_G0:
19308 case BFD_RELOC_ARM_LDC_SB_G1:
19309 case BFD_RELOC_ARM_LDC_SB_G2:
19310 case BFD_RELOC_ARM_V4BX:
19311 code = fixp->fx_r_type;
19312 break;
19313
19314 case BFD_RELOC_ARM_TLS_GD32:
19315 case BFD_RELOC_ARM_TLS_IE32:
19316 case BFD_RELOC_ARM_TLS_LDM32:
19317 /* BFD will include the symbol's address in the addend.
19318 But we don't want that, so subtract it out again here. */
19319 if (!S_IS_COMMON (fixp->fx_addsy))
19320 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19321 code = fixp->fx_r_type;
19322 break;
19323 #endif
19324
19325 case BFD_RELOC_ARM_IMMEDIATE:
19326 as_bad_where (fixp->fx_file, fixp->fx_line,
19327 _("internal relocation (type: IMMEDIATE) not fixed up"));
19328 return NULL;
19329
19330 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19331 as_bad_where (fixp->fx_file, fixp->fx_line,
19332 _("ADRL used for a symbol not defined in the same file"));
19333 return NULL;
19334
19335 case BFD_RELOC_ARM_OFFSET_IMM:
19336 if (section->use_rela_p)
19337 {
19338 code = fixp->fx_r_type;
19339 break;
19340 }
19341
19342 if (fixp->fx_addsy != NULL
19343 && !S_IS_DEFINED (fixp->fx_addsy)
19344 && S_IS_LOCAL (fixp->fx_addsy))
19345 {
19346 as_bad_where (fixp->fx_file, fixp->fx_line,
19347 _("undefined local label `%s'"),
19348 S_GET_NAME (fixp->fx_addsy));
19349 return NULL;
19350 }
19351
19352 as_bad_where (fixp->fx_file, fixp->fx_line,
19353 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19354 return NULL;
19355
19356 default:
19357 {
19358 char * type;
19359
19360 switch (fixp->fx_r_type)
19361 {
19362 case BFD_RELOC_NONE: type = "NONE"; break;
19363 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19364 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19365 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19366 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19367 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19368 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19369 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19370 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19371 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19372 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19373 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19374 default: type = _("<unknown>"); break;
19375 }
19376 as_bad_where (fixp->fx_file, fixp->fx_line,
19377 _("cannot represent %s relocation in this object file format"),
19378 type);
19379 return NULL;
19380 }
19381 }
19382
19383 #ifdef OBJ_ELF
19384 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19385 && GOT_symbol
19386 && fixp->fx_addsy == GOT_symbol)
19387 {
19388 code = BFD_RELOC_ARM_GOTPC;
19389 reloc->addend = fixp->fx_offset = reloc->address;
19390 }
19391 #endif
19392
19393 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19394
19395 if (reloc->howto == NULL)
19396 {
19397 as_bad_where (fixp->fx_file, fixp->fx_line,
19398 _("cannot represent %s relocation in this object file format"),
19399 bfd_get_reloc_code_name (code));
19400 return NULL;
19401 }
19402
19403 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19404 vtable entry to be used in the relocation's section offset. */
19405 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19406 reloc->address = fixp->fx_offset;
19407
19408 return reloc;
19409 }
19410
19411 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19412
19413 void
19414 cons_fix_new_arm (fragS * frag,
19415 int where,
19416 int size,
19417 expressionS * exp)
19418 {
19419 bfd_reloc_code_real_type type;
19420 int pcrel = 0;
19421
19422 /* Pick a reloc.
19423 FIXME: @@ Should look at CPU word size. */
19424 switch (size)
19425 {
19426 case 1:
19427 type = BFD_RELOC_8;
19428 break;
19429 case 2:
19430 type = BFD_RELOC_16;
19431 break;
19432 case 4:
19433 default:
19434 type = BFD_RELOC_32;
19435 break;
19436 case 8:
19437 type = BFD_RELOC_64;
19438 break;
19439 }
19440
19441 #ifdef TE_PE
19442 if (exp->X_op == O_secrel)
19443 {
19444 exp->X_op = O_symbol;
19445 type = BFD_RELOC_32_SECREL;
19446 }
19447 #endif
19448
19449 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19450 }
19451
19452 #if defined OBJ_COFF || defined OBJ_ELF
19453 void
19454 arm_validate_fix (fixS * fixP)
19455 {
19456 /* If the destination of the branch is a defined symbol which does not have
19457 the THUMB_FUNC attribute, then we must be calling a function which has
19458 the (interfacearm) attribute. We look for the Thumb entry point to that
19459 function and change the branch to refer to that function instead. */
19460 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19461 && fixP->fx_addsy != NULL
19462 && S_IS_DEFINED (fixP->fx_addsy)
19463 && ! THUMB_IS_FUNC (fixP->fx_addsy))
19464 {
19465 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19466 }
19467 }
19468 #endif
19469
19470 int
19471 arm_force_relocation (struct fix * fixp)
19472 {
19473 #if defined (OBJ_COFF) && defined (TE_PE)
19474 if (fixp->fx_r_type == BFD_RELOC_RVA)
19475 return 1;
19476 #endif
19477
19478 /* Resolve these relocations even if the symbol is extern or weak. */
19479 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19480 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19481 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19482 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19483 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19484 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19485 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19486 return 0;
19487
19488 /* Always leave these relocations for the linker. */
19489 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19490 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19491 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19492 return 1;
19493
19494 /* Always generate relocations against function symbols. */
19495 if (fixp->fx_r_type == BFD_RELOC_32
19496 && fixp->fx_addsy
19497 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19498 return 1;
19499
19500 return generic_force_reloc (fixp);
19501 }
19502
19503 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19504 /* Relocations against function names must be left unadjusted,
19505 so that the linker can use this information to generate interworking
19506 stubs. The MIPS version of this function
19507 also prevents relocations that are mips-16 specific, but I do not
19508 know why it does this.
19509
19510 FIXME:
19511 There is one other problem that ought to be addressed here, but
19512 which currently is not: Taking the address of a label (rather
19513 than a function) and then later jumping to that address. Such
19514 addresses also ought to have their bottom bit set (assuming that
19515 they reside in Thumb code), but at the moment they will not. */
19516
19517 bfd_boolean
19518 arm_fix_adjustable (fixS * fixP)
19519 {
19520 if (fixP->fx_addsy == NULL)
19521 return 1;
19522
19523 /* Preserve relocations against symbols with function type. */
19524 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19525 return 0;
19526
19527 if (THUMB_IS_FUNC (fixP->fx_addsy)
19528 && fixP->fx_subsy == NULL)
19529 return 0;
19530
19531 /* We need the symbol name for the VTABLE entries. */
19532 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19533 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19534 return 0;
19535
19536 /* Don't allow symbols to be discarded on GOT related relocs. */
19537 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19538 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19539 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19540 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19541 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19542 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19543 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19544 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19545 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19546 return 0;
19547
19548 /* Similarly for group relocations. */
19549 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19550 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19551 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19552 return 0;
19553
19554 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
19555 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
19556 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
19557 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
19558 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
19559 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
19560 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
19561 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
19562 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
19563 return 0;
19564
19565 return 1;
19566 }
19567 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19568
19569 #ifdef OBJ_ELF
19570
19571 const char *
19572 elf32_arm_target_format (void)
19573 {
19574 #ifdef TE_SYMBIAN
19575 return (target_big_endian
19576 ? "elf32-bigarm-symbian"
19577 : "elf32-littlearm-symbian");
19578 #elif defined (TE_VXWORKS)
19579 return (target_big_endian
19580 ? "elf32-bigarm-vxworks"
19581 : "elf32-littlearm-vxworks");
19582 #else
19583 if (target_big_endian)
19584 return "elf32-bigarm";
19585 else
19586 return "elf32-littlearm";
19587 #endif
19588 }
19589
19590 void
19591 armelf_frob_symbol (symbolS * symp,
19592 int * puntp)
19593 {
19594 elf_frob_symbol (symp, puntp);
19595 }
19596 #endif
19597
19598 /* MD interface: Finalization. */
19599
19600 /* A good place to do this, although this was probably not intended
19601 for this kind of use. We need to dump the literal pool before
19602 references are made to a null symbol pointer. */
19603
19604 void
19605 arm_cleanup (void)
19606 {
19607 literal_pool * pool;
19608
19609 for (pool = list_of_pools; pool; pool = pool->next)
19610 {
19611 /* Put it at the end of the relevant section. */
19612 subseg_set (pool->section, pool->sub_section);
19613 #ifdef OBJ_ELF
19614 arm_elf_change_section ();
19615 #endif
19616 s_ltorg (0);
19617 }
19618 }
19619
19620 /* Adjust the symbol table. This marks Thumb symbols as distinct from
19621 ARM ones. */
19622
19623 void
19624 arm_adjust_symtab (void)
19625 {
19626 #ifdef OBJ_COFF
19627 symbolS * sym;
19628
19629 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19630 {
19631 if (ARM_IS_THUMB (sym))
19632 {
19633 if (THUMB_IS_FUNC (sym))
19634 {
19635 /* Mark the symbol as a Thumb function. */
19636 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19637 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19638 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
19639
19640 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19641 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19642 else
19643 as_bad (_("%s: unexpected function type: %d"),
19644 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19645 }
19646 else switch (S_GET_STORAGE_CLASS (sym))
19647 {
19648 case C_EXT:
19649 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19650 break;
19651 case C_STAT:
19652 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19653 break;
19654 case C_LABEL:
19655 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19656 break;
19657 default:
19658 /* Do nothing. */
19659 break;
19660 }
19661 }
19662
19663 if (ARM_IS_INTERWORK (sym))
19664 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
19665 }
19666 #endif
19667 #ifdef OBJ_ELF
19668 symbolS * sym;
19669 char bind;
19670
19671 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19672 {
19673 if (ARM_IS_THUMB (sym))
19674 {
19675 elf_symbol_type * elf_sym;
19676
19677 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19678 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
19679
19680 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19681 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
19682 {
19683 /* If it's a .thumb_func, declare it as so,
19684 otherwise tag label as .code 16. */
19685 if (THUMB_IS_FUNC (sym))
19686 elf_sym->internal_elf_sym.st_info =
19687 ELF_ST_INFO (bind, STT_ARM_TFUNC);
19688 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19689 elf_sym->internal_elf_sym.st_info =
19690 ELF_ST_INFO (bind, STT_ARM_16BIT);
19691 }
19692 }
19693 }
19694 #endif
19695 }
19696
19697 /* MD interface: Initialization. */
19698
19699 static void
19700 set_constant_flonums (void)
19701 {
19702 int i;
19703
19704 for (i = 0; i < NUM_FLOAT_VALS; i++)
19705 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19706 abort ();
19707 }
19708
19709 /* Auto-select Thumb mode if it's the only available instruction set for the
19710 given architecture. */
19711
19712 static void
19713 autoselect_thumb_from_cpu_variant (void)
19714 {
19715 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19716 opcode_select (16);
19717 }
19718
19719 void
19720 md_begin (void)
19721 {
19722 unsigned mach;
19723 unsigned int i;
19724
19725 if ( (arm_ops_hsh = hash_new ()) == NULL
19726 || (arm_cond_hsh = hash_new ()) == NULL
19727 || (arm_shift_hsh = hash_new ()) == NULL
19728 || (arm_psr_hsh = hash_new ()) == NULL
19729 || (arm_v7m_psr_hsh = hash_new ()) == NULL
19730 || (arm_reg_hsh = hash_new ()) == NULL
19731 || (arm_reloc_hsh = hash_new ()) == NULL
19732 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
19733 as_fatal (_("virtual memory exhausted"));
19734
19735 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19736 hash_insert (arm_ops_hsh, insns[i].template, (void *) (insns + i));
19737 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19738 hash_insert (arm_cond_hsh, conds[i].template, (void *) (conds + i));
19739 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19740 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
19741 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19742 hash_insert (arm_psr_hsh, psrs[i].template, (void *) (psrs + i));
19743 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19744 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (void *) (v7m_psrs + i));
19745 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19746 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
19747 for (i = 0;
19748 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19749 i++)
19750 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19751 (void *) (barrier_opt_names + i));
19752 #ifdef OBJ_ELF
19753 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19754 hash_insert (arm_reloc_hsh, reloc_names[i].name, (void *) (reloc_names + i));
19755 #endif
19756
19757 set_constant_flonums ();
19758
19759 /* Set the cpu variant based on the command-line options. We prefer
19760 -mcpu= over -march= if both are set (as for GCC); and we prefer
19761 -mfpu= over any other way of setting the floating point unit.
19762 Use of legacy options with new options are faulted. */
19763 if (legacy_cpu)
19764 {
19765 if (mcpu_cpu_opt || march_cpu_opt)
19766 as_bad (_("use of old and new-style options to set CPU type"));
19767
19768 mcpu_cpu_opt = legacy_cpu;
19769 }
19770 else if (!mcpu_cpu_opt)
19771 mcpu_cpu_opt = march_cpu_opt;
19772
19773 if (legacy_fpu)
19774 {
19775 if (mfpu_opt)
19776 as_bad (_("use of old and new-style options to set FPU type"));
19777
19778 mfpu_opt = legacy_fpu;
19779 }
19780 else if (!mfpu_opt)
19781 {
19782 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19783 /* Some environments specify a default FPU. If they don't, infer it
19784 from the processor. */
19785 if (mcpu_fpu_opt)
19786 mfpu_opt = mcpu_fpu_opt;
19787 else
19788 mfpu_opt = march_fpu_opt;
19789 #else
19790 mfpu_opt = &fpu_default;
19791 #endif
19792 }
19793
19794 if (!mfpu_opt)
19795 {
19796 if (mcpu_cpu_opt != NULL)
19797 mfpu_opt = &fpu_default;
19798 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19799 mfpu_opt = &fpu_arch_vfp_v2;
19800 else
19801 mfpu_opt = &fpu_arch_fpa;
19802 }
19803
19804 #ifdef CPU_DEFAULT
19805 if (!mcpu_cpu_opt)
19806 {
19807 mcpu_cpu_opt = &cpu_default;
19808 selected_cpu = cpu_default;
19809 }
19810 #else
19811 if (mcpu_cpu_opt)
19812 selected_cpu = *mcpu_cpu_opt;
19813 else
19814 mcpu_cpu_opt = &arm_arch_any;
19815 #endif
19816
19817 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19818
19819 autoselect_thumb_from_cpu_variant ();
19820
19821 arm_arch_used = thumb_arch_used = arm_arch_none;
19822
19823 #if defined OBJ_COFF || defined OBJ_ELF
19824 {
19825 unsigned int flags = 0;
19826
19827 #if defined OBJ_ELF
19828 flags = meabi_flags;
19829
19830 switch (meabi_flags)
19831 {
19832 case EF_ARM_EABI_UNKNOWN:
19833 #endif
19834 /* Set the flags in the private structure. */
19835 if (uses_apcs_26) flags |= F_APCS26;
19836 if (support_interwork) flags |= F_INTERWORK;
19837 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19838 if (pic_code) flags |= F_PIC;
19839 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19840 flags |= F_SOFT_FLOAT;
19841
19842 switch (mfloat_abi_opt)
19843 {
19844 case ARM_FLOAT_ABI_SOFT:
19845 case ARM_FLOAT_ABI_SOFTFP:
19846 flags |= F_SOFT_FLOAT;
19847 break;
19848
19849 case ARM_FLOAT_ABI_HARD:
19850 if (flags & F_SOFT_FLOAT)
19851 as_bad (_("hard-float conflicts with specified fpu"));
19852 break;
19853 }
19854
19855 /* Using pure-endian doubles (even if soft-float). */
19856 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19857 flags |= F_VFP_FLOAT;
19858
19859 #if defined OBJ_ELF
19860 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19861 flags |= EF_ARM_MAVERICK_FLOAT;
19862 break;
19863
19864 case EF_ARM_EABI_VER4:
19865 case EF_ARM_EABI_VER5:
19866 /* No additional flags to set. */
19867 break;
19868
19869 default:
19870 abort ();
19871 }
19872 #endif
19873 bfd_set_private_flags (stdoutput, flags);
19874
19875 /* We have run out flags in the COFF header to encode the
19876 status of ATPCS support, so instead we create a dummy,
19877 empty, debug section called .arm.atpcs. */
19878 if (atpcs)
19879 {
19880 asection * sec;
19881
19882 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19883
19884 if (sec != NULL)
19885 {
19886 bfd_set_section_flags
19887 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19888 bfd_set_section_size (stdoutput, sec, 0);
19889 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19890 }
19891 }
19892 }
19893 #endif
19894
19895 /* Record the CPU type as well. */
19896 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19897 mach = bfd_mach_arm_iWMMXt2;
19898 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19899 mach = bfd_mach_arm_iWMMXt;
19900 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19901 mach = bfd_mach_arm_XScale;
19902 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19903 mach = bfd_mach_arm_ep9312;
19904 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19905 mach = bfd_mach_arm_5TE;
19906 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19907 {
19908 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19909 mach = bfd_mach_arm_5T;
19910 else
19911 mach = bfd_mach_arm_5;
19912 }
19913 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19914 {
19915 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19916 mach = bfd_mach_arm_4T;
19917 else
19918 mach = bfd_mach_arm_4;
19919 }
19920 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19921 mach = bfd_mach_arm_3M;
19922 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19923 mach = bfd_mach_arm_3;
19924 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19925 mach = bfd_mach_arm_2a;
19926 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19927 mach = bfd_mach_arm_2;
19928 else
19929 mach = bfd_mach_arm_unknown;
19930
19931 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19932 }
19933
19934 /* Command line processing. */
19935
19936 /* md_parse_option
19937 Invocation line includes a switch not recognized by the base assembler.
19938 See if it's a processor-specific option.
19939
19940 This routine is somewhat complicated by the need for backwards
19941 compatibility (since older releases of gcc can't be changed).
19942 The new options try to make the interface as compatible as
19943 possible with GCC.
19944
19945 New options (supported) are:
19946
19947 -mcpu=<cpu name> Assemble for selected processor
19948 -march=<architecture name> Assemble for selected architecture
19949 -mfpu=<fpu architecture> Assemble for selected FPU.
19950 -EB/-mbig-endian Big-endian
19951 -EL/-mlittle-endian Little-endian
19952 -k Generate PIC code
19953 -mthumb Start in Thumb mode
19954 -mthumb-interwork Code supports ARM/Thumb interworking
19955
19956 -m[no-]warn-deprecated Warn about deprecated features
19957
19958 For now we will also provide support for:
19959
19960 -mapcs-32 32-bit Program counter
19961 -mapcs-26 26-bit Program counter
19962 -macps-float Floats passed in FP registers
19963 -mapcs-reentrant Reentrant code
19964 -matpcs
19965 (sometime these will probably be replaced with -mapcs=<list of options>
19966 and -matpcs=<list of options>)
19967
19968 The remaining options are only supported for back-wards compatibility.
19969 Cpu variants, the arm part is optional:
19970 -m[arm]1 Currently not supported.
19971 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19972 -m[arm]3 Arm 3 processor
19973 -m[arm]6[xx], Arm 6 processors
19974 -m[arm]7[xx][t][[d]m] Arm 7 processors
19975 -m[arm]8[10] Arm 8 processors
19976 -m[arm]9[20][tdmi] Arm 9 processors
19977 -mstrongarm[110[0]] StrongARM processors
19978 -mxscale XScale processors
19979 -m[arm]v[2345[t[e]]] Arm architectures
19980 -mall All (except the ARM1)
19981 FP variants:
19982 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19983 -mfpe-old (No float load/store multiples)
19984 -mvfpxd VFP Single precision
19985 -mvfp All VFP
19986 -mno-fpu Disable all floating point instructions
19987
19988 The following CPU names are recognized:
19989 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19990 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19991 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19992 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19993 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19994 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19995 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19996
19997 */
19998
19999 const char * md_shortopts = "m:k";
20000
20001 #ifdef ARM_BI_ENDIAN
20002 #define OPTION_EB (OPTION_MD_BASE + 0)
20003 #define OPTION_EL (OPTION_MD_BASE + 1)
20004 #else
20005 #if TARGET_BYTES_BIG_ENDIAN
20006 #define OPTION_EB (OPTION_MD_BASE + 0)
20007 #else
20008 #define OPTION_EL (OPTION_MD_BASE + 1)
20009 #endif
20010 #endif
20011 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
20012
20013 struct option md_longopts[] =
20014 {
20015 #ifdef OPTION_EB
20016 {"EB", no_argument, NULL, OPTION_EB},
20017 #endif
20018 #ifdef OPTION_EL
20019 {"EL", no_argument, NULL, OPTION_EL},
20020 #endif
20021 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
20022 {NULL, no_argument, NULL, 0}
20023 };
20024
20025 size_t md_longopts_size = sizeof (md_longopts);
20026
20027 struct arm_option_table
20028 {
20029 char *option; /* Option name to match. */
20030 char *help; /* Help information. */
20031 int *var; /* Variable to change. */
20032 int value; /* What to change it to. */
20033 char *deprecated; /* If non-null, print this message. */
20034 };
20035
20036 struct arm_option_table arm_opts[] =
20037 {
20038 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
20039 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
20040 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
20041 &support_interwork, 1, NULL},
20042 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
20043 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
20044 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
20045 1, NULL},
20046 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
20047 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
20048 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
20049 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
20050 NULL},
20051
20052 /* These are recognized by the assembler, but have no affect on code. */
20053 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
20054 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
20055
20056 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
20057 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
20058 &warn_on_deprecated, 0, NULL},
20059 {NULL, NULL, NULL, 0, NULL}
20060 };
20061
20062 struct arm_legacy_option_table
20063 {
20064 char *option; /* Option name to match. */
20065 const arm_feature_set **var; /* Variable to change. */
20066 const arm_feature_set value; /* What to change it to. */
20067 char *deprecated; /* If non-null, print this message. */
20068 };
20069
20070 const struct arm_legacy_option_table arm_legacy_opts[] =
20071 {
20072 /* DON'T add any new processors to this list -- we want the whole list
20073 to go away... Add them to the processors table instead. */
20074 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20075 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
20076 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20077 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
20078 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20079 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
20080 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20081 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
20082 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20083 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
20084 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20085 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
20086 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20087 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
20088 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20089 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
20090 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20091 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
20092 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20093 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
20094 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20095 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
20096 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20097 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
20098 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20099 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
20100 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20101 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
20102 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20103 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
20104 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20105 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
20106 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20107 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
20108 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20109 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
20110 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20111 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
20112 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20113 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
20114 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20115 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
20116 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20117 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
20118 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20119 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
20120 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20121 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20122 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20123 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
20124 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20125 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
20126 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20127 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
20128 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20129 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
20130 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20131 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
20132 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20133 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
20134 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20135 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
20136 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20137 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
20138 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20139 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
20140 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20141 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
20142 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
20143 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
20144 N_("use -mcpu=strongarm110")},
20145 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
20146 N_("use -mcpu=strongarm1100")},
20147 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
20148 N_("use -mcpu=strongarm1110")},
20149 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
20150 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
20151 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
20152
20153 /* Architecture variants -- don't add any more to this list either. */
20154 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20155 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
20156 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20157 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
20158 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20159 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
20160 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20161 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
20162 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20163 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
20164 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20165 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
20166 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20167 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
20168 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20169 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
20170 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20171 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
20172
20173 /* Floating point variants -- don't add any more to this list either. */
20174 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
20175 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
20176 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
20177 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
20178 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
20179
20180 {NULL, NULL, ARM_ARCH_NONE, NULL}
20181 };
20182
20183 struct arm_cpu_option_table
20184 {
20185 char *name;
20186 const arm_feature_set value;
20187 /* For some CPUs we assume an FPU unless the user explicitly sets
20188 -mfpu=... */
20189 const arm_feature_set default_fpu;
20190 /* The canonical name of the CPU, or NULL to use NAME converted to upper
20191 case. */
20192 const char *canonical_name;
20193 };
20194
20195 /* This list should, at a minimum, contain all the cpu names
20196 recognized by GCC. */
20197 static const struct arm_cpu_option_table arm_cpus[] =
20198 {
20199 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
20200 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
20201 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
20202 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20203 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
20204 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20205 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20206 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20207 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20208 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20209 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20210 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20211 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20212 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20213 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20214 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20215 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20216 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20217 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20218 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20219 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20220 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20221 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20222 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20223 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20224 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20225 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20226 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20227 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20228 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20229 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20230 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20231 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20232 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20233 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20234 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20235 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20236 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20237 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20238 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20239 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20240 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20241 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20242 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20243 {"fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20244 {"fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20245 /* For V5 or later processors we default to using VFP; but the user
20246 should really set the FPU type explicitly. */
20247 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20248 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20249 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20250 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20251 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20252 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20253 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20254 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20255 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20256 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20257 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20258 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20259 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20260 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20261 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20262 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20263 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20264 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20265 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20266 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20267 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20268 {"fa626te", ARM_ARCH_V5TE, FPU_NONE, NULL},
20269 {"fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20270 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20271 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20272 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20273 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20274 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20275 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20276 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20277 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20278 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20279 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20280 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20281 | FPU_NEON_EXT_V1),
20282 NULL},
20283 {"cortex-a9", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20284 | FPU_NEON_EXT_V1),
20285 NULL},
20286 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20287 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20288 {"cortex-m1", ARM_ARCH_V6M, FPU_NONE, NULL},
20289 /* ??? XSCALE is really an architecture. */
20290 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20291 /* ??? iwmmxt is not a processor. */
20292 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20293 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20294 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20295 /* Maverick */
20296 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20297 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20298 };
20299
20300 struct arm_arch_option_table
20301 {
20302 char *name;
20303 const arm_feature_set value;
20304 const arm_feature_set default_fpu;
20305 };
20306
20307 /* This list should, at a minimum, contain all the architecture names
20308 recognized by GCC. */
20309 static const struct arm_arch_option_table arm_archs[] =
20310 {
20311 {"all", ARM_ANY, FPU_ARCH_FPA},
20312 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20313 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20314 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20315 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20316 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20317 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20318 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20319 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20320 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20321 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20322 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20323 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20324 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20325 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20326 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20327 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20328 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20329 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20330 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20331 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20332 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20333 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20334 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20335 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20336 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20337 {"armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP},
20338 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20339 /* The official spelling of the ARMv7 profile variants is the dashed form.
20340 Accept the non-dashed form for compatibility with old toolchains. */
20341 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20342 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20343 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20344 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20345 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20346 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20347 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20348 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20349 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20350 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
20351 };
20352
20353 /* ISA extensions in the co-processor space. */
20354 struct arm_option_cpu_value_table
20355 {
20356 char *name;
20357 const arm_feature_set value;
20358 };
20359
20360 static const struct arm_option_cpu_value_table arm_extensions[] =
20361 {
20362 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20363 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20364 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20365 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20366 {NULL, ARM_ARCH_NONE}
20367 };
20368
20369 /* This list should, at a minimum, contain all the fpu names
20370 recognized by GCC. */
20371 static const struct arm_option_cpu_value_table arm_fpus[] =
20372 {
20373 {"softfpa", FPU_NONE},
20374 {"fpe", FPU_ARCH_FPE},
20375 {"fpe2", FPU_ARCH_FPE},
20376 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20377 {"fpa", FPU_ARCH_FPA},
20378 {"fpa10", FPU_ARCH_FPA},
20379 {"fpa11", FPU_ARCH_FPA},
20380 {"arm7500fe", FPU_ARCH_FPA},
20381 {"softvfp", FPU_ARCH_VFP},
20382 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20383 {"vfp", FPU_ARCH_VFP_V2},
20384 {"vfp9", FPU_ARCH_VFP_V2},
20385 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
20386 {"vfp10", FPU_ARCH_VFP_V2},
20387 {"vfp10-r0", FPU_ARCH_VFP_V1},
20388 {"vfpxd", FPU_ARCH_VFP_V1xD},
20389 {"vfpv2", FPU_ARCH_VFP_V2},
20390 {"vfpv3", FPU_ARCH_VFP_V3},
20391 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
20392 {"arm1020t", FPU_ARCH_VFP_V1},
20393 {"arm1020e", FPU_ARCH_VFP_V2},
20394 {"arm1136jfs", FPU_ARCH_VFP_V2},
20395 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20396 {"maverick", FPU_ARCH_MAVERICK},
20397 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20398 {"neon-fp16", FPU_ARCH_NEON_FP16},
20399 {NULL, ARM_ARCH_NONE}
20400 };
20401
20402 struct arm_option_value_table
20403 {
20404 char *name;
20405 long value;
20406 };
20407
20408 static const struct arm_option_value_table arm_float_abis[] =
20409 {
20410 {"hard", ARM_FLOAT_ABI_HARD},
20411 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20412 {"soft", ARM_FLOAT_ABI_SOFT},
20413 {NULL, 0}
20414 };
20415
20416 #ifdef OBJ_ELF
20417 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20418 static const struct arm_option_value_table arm_eabis[] =
20419 {
20420 {"gnu", EF_ARM_EABI_UNKNOWN},
20421 {"4", EF_ARM_EABI_VER4},
20422 {"5", EF_ARM_EABI_VER5},
20423 {NULL, 0}
20424 };
20425 #endif
20426
20427 struct arm_long_option_table
20428 {
20429 char * option; /* Substring to match. */
20430 char * help; /* Help information. */
20431 int (* func) (char * subopt); /* Function to decode sub-option. */
20432 char * deprecated; /* If non-null, print this message. */
20433 };
20434
20435 static int
20436 arm_parse_extension (char * str, const arm_feature_set **opt_p)
20437 {
20438 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20439
20440 /* Copy the feature set, so that we can modify it. */
20441 *ext_set = **opt_p;
20442 *opt_p = ext_set;
20443
20444 while (str != NULL && *str != 0)
20445 {
20446 const struct arm_option_cpu_value_table * opt;
20447 char * ext;
20448 int optlen;
20449
20450 if (*str != '+')
20451 {
20452 as_bad (_("invalid architectural extension"));
20453 return 0;
20454 }
20455
20456 str++;
20457 ext = strchr (str, '+');
20458
20459 if (ext != NULL)
20460 optlen = ext - str;
20461 else
20462 optlen = strlen (str);
20463
20464 if (optlen == 0)
20465 {
20466 as_bad (_("missing architectural extension"));
20467 return 0;
20468 }
20469
20470 for (opt = arm_extensions; opt->name != NULL; opt++)
20471 if (strncmp (opt->name, str, optlen) == 0)
20472 {
20473 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20474 break;
20475 }
20476
20477 if (opt->name == NULL)
20478 {
20479 as_bad (_("unknown architectural extension `%s'"), str);
20480 return 0;
20481 }
20482
20483 str = ext;
20484 };
20485
20486 return 1;
20487 }
20488
20489 static int
20490 arm_parse_cpu (char * str)
20491 {
20492 const struct arm_cpu_option_table * opt;
20493 char * ext = strchr (str, '+');
20494 int optlen;
20495
20496 if (ext != NULL)
20497 optlen = ext - str;
20498 else
20499 optlen = strlen (str);
20500
20501 if (optlen == 0)
20502 {
20503 as_bad (_("missing cpu name `%s'"), str);
20504 return 0;
20505 }
20506
20507 for (opt = arm_cpus; opt->name != NULL; opt++)
20508 if (strncmp (opt->name, str, optlen) == 0)
20509 {
20510 mcpu_cpu_opt = &opt->value;
20511 mcpu_fpu_opt = &opt->default_fpu;
20512 if (opt->canonical_name)
20513 strcpy (selected_cpu_name, opt->canonical_name);
20514 else
20515 {
20516 int i;
20517 for (i = 0; i < optlen; i++)
20518 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20519 selected_cpu_name[i] = 0;
20520 }
20521
20522 if (ext != NULL)
20523 return arm_parse_extension (ext, &mcpu_cpu_opt);
20524
20525 return 1;
20526 }
20527
20528 as_bad (_("unknown cpu `%s'"), str);
20529 return 0;
20530 }
20531
20532 static int
20533 arm_parse_arch (char * str)
20534 {
20535 const struct arm_arch_option_table *opt;
20536 char *ext = strchr (str, '+');
20537 int optlen;
20538
20539 if (ext != NULL)
20540 optlen = ext - str;
20541 else
20542 optlen = strlen (str);
20543
20544 if (optlen == 0)
20545 {
20546 as_bad (_("missing architecture name `%s'"), str);
20547 return 0;
20548 }
20549
20550 for (opt = arm_archs; opt->name != NULL; opt++)
20551 if (streq (opt->name, str))
20552 {
20553 march_cpu_opt = &opt->value;
20554 march_fpu_opt = &opt->default_fpu;
20555 strcpy (selected_cpu_name, opt->name);
20556
20557 if (ext != NULL)
20558 return arm_parse_extension (ext, &march_cpu_opt);
20559
20560 return 1;
20561 }
20562
20563 as_bad (_("unknown architecture `%s'\n"), str);
20564 return 0;
20565 }
20566
20567 static int
20568 arm_parse_fpu (char * str)
20569 {
20570 const struct arm_option_cpu_value_table * opt;
20571
20572 for (opt = arm_fpus; opt->name != NULL; opt++)
20573 if (streq (opt->name, str))
20574 {
20575 mfpu_opt = &opt->value;
20576 return 1;
20577 }
20578
20579 as_bad (_("unknown floating point format `%s'\n"), str);
20580 return 0;
20581 }
20582
20583 static int
20584 arm_parse_float_abi (char * str)
20585 {
20586 const struct arm_option_value_table * opt;
20587
20588 for (opt = arm_float_abis; opt->name != NULL; opt++)
20589 if (streq (opt->name, str))
20590 {
20591 mfloat_abi_opt = opt->value;
20592 return 1;
20593 }
20594
20595 as_bad (_("unknown floating point abi `%s'\n"), str);
20596 return 0;
20597 }
20598
20599 #ifdef OBJ_ELF
20600 static int
20601 arm_parse_eabi (char * str)
20602 {
20603 const struct arm_option_value_table *opt;
20604
20605 for (opt = arm_eabis; opt->name != NULL; opt++)
20606 if (streq (opt->name, str))
20607 {
20608 meabi_flags = opt->value;
20609 return 1;
20610 }
20611 as_bad (_("unknown EABI `%s'\n"), str);
20612 return 0;
20613 }
20614 #endif
20615
20616 struct arm_long_option_table arm_long_opts[] =
20617 {
20618 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20619 arm_parse_cpu, NULL},
20620 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20621 arm_parse_arch, NULL},
20622 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20623 arm_parse_fpu, NULL},
20624 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20625 arm_parse_float_abi, NULL},
20626 #ifdef OBJ_ELF
20627 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
20628 arm_parse_eabi, NULL},
20629 #endif
20630 {NULL, NULL, 0, NULL}
20631 };
20632
20633 int
20634 md_parse_option (int c, char * arg)
20635 {
20636 struct arm_option_table *opt;
20637 const struct arm_legacy_option_table *fopt;
20638 struct arm_long_option_table *lopt;
20639
20640 switch (c)
20641 {
20642 #ifdef OPTION_EB
20643 case OPTION_EB:
20644 target_big_endian = 1;
20645 break;
20646 #endif
20647
20648 #ifdef OPTION_EL
20649 case OPTION_EL:
20650 target_big_endian = 0;
20651 break;
20652 #endif
20653
20654 case OPTION_FIX_V4BX:
20655 fix_v4bx = TRUE;
20656 break;
20657
20658 case 'a':
20659 /* Listing option. Just ignore these, we don't support additional
20660 ones. */
20661 return 0;
20662
20663 default:
20664 for (opt = arm_opts; opt->option != NULL; opt++)
20665 {
20666 if (c == opt->option[0]
20667 && ((arg == NULL && opt->option[1] == 0)
20668 || streq (arg, opt->option + 1)))
20669 {
20670 /* If the option is deprecated, tell the user. */
20671 if (warn_on_deprecated && opt->deprecated != NULL)
20672 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20673 arg ? arg : "", _(opt->deprecated));
20674
20675 if (opt->var != NULL)
20676 *opt->var = opt->value;
20677
20678 return 1;
20679 }
20680 }
20681
20682 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20683 {
20684 if (c == fopt->option[0]
20685 && ((arg == NULL && fopt->option[1] == 0)
20686 || streq (arg, fopt->option + 1)))
20687 {
20688 /* If the option is deprecated, tell the user. */
20689 if (warn_on_deprecated && fopt->deprecated != NULL)
20690 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20691 arg ? arg : "", _(fopt->deprecated));
20692
20693 if (fopt->var != NULL)
20694 *fopt->var = &fopt->value;
20695
20696 return 1;
20697 }
20698 }
20699
20700 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20701 {
20702 /* These options are expected to have an argument. */
20703 if (c == lopt->option[0]
20704 && arg != NULL
20705 && strncmp (arg, lopt->option + 1,
20706 strlen (lopt->option + 1)) == 0)
20707 {
20708 /* If the option is deprecated, tell the user. */
20709 if (warn_on_deprecated && lopt->deprecated != NULL)
20710 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20711 _(lopt->deprecated));
20712
20713 /* Call the sup-option parser. */
20714 return lopt->func (arg + strlen (lopt->option) - 1);
20715 }
20716 }
20717
20718 return 0;
20719 }
20720
20721 return 1;
20722 }
20723
20724 void
20725 md_show_usage (FILE * fp)
20726 {
20727 struct arm_option_table *opt;
20728 struct arm_long_option_table *lopt;
20729
20730 fprintf (fp, _(" ARM-specific assembler options:\n"));
20731
20732 for (opt = arm_opts; opt->option != NULL; opt++)
20733 if (opt->help != NULL)
20734 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
20735
20736 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20737 if (lopt->help != NULL)
20738 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
20739
20740 #ifdef OPTION_EB
20741 fprintf (fp, _("\
20742 -EB assemble code for a big-endian cpu\n"));
20743 #endif
20744
20745 #ifdef OPTION_EL
20746 fprintf (fp, _("\
20747 -EL assemble code for a little-endian cpu\n"));
20748 #endif
20749
20750 fprintf (fp, _("\
20751 --fix-v4bx Allow BX in ARMv4 code\n"));
20752 }
20753
20754
20755 #ifdef OBJ_ELF
20756 typedef struct
20757 {
20758 int val;
20759 arm_feature_set flags;
20760 } cpu_arch_ver_table;
20761
20762 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20763 least features first. */
20764 static const cpu_arch_ver_table cpu_arch_ver[] =
20765 {
20766 {1, ARM_ARCH_V4},
20767 {2, ARM_ARCH_V4T},
20768 {3, ARM_ARCH_V5},
20769 {3, ARM_ARCH_V5T},
20770 {4, ARM_ARCH_V5TE},
20771 {5, ARM_ARCH_V5TEJ},
20772 {6, ARM_ARCH_V6},
20773 {7, ARM_ARCH_V6Z},
20774 {9, ARM_ARCH_V6K},
20775 {11, ARM_ARCH_V6M},
20776 {8, ARM_ARCH_V6T2},
20777 {10, ARM_ARCH_V7A},
20778 {10, ARM_ARCH_V7R},
20779 {10, ARM_ARCH_V7M},
20780 {0, ARM_ARCH_NONE}
20781 };
20782
20783 /* Set an attribute if it has not already been set by the user. */
20784 static void
20785 aeabi_set_attribute_int (int tag, int value)
20786 {
20787 if (tag < 1
20788 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
20789 || !attributes_set_explicitly[tag])
20790 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
20791 }
20792
20793 static void
20794 aeabi_set_attribute_string (int tag, const char *value)
20795 {
20796 if (tag < 1
20797 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
20798 || !attributes_set_explicitly[tag])
20799 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
20800 }
20801
20802 /* Set the public EABI object attributes. */
20803 static void
20804 aeabi_set_public_attributes (void)
20805 {
20806 int arch;
20807 arm_feature_set flags;
20808 arm_feature_set tmp;
20809 const cpu_arch_ver_table *p;
20810
20811 /* Choose the architecture based on the capabilities of the requested cpu
20812 (if any) and/or the instructions actually used. */
20813 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20814 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20815 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20816 /*Allow the user to override the reported architecture. */
20817 if (object_arch)
20818 {
20819 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20820 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20821 }
20822
20823 tmp = flags;
20824 arch = 0;
20825 for (p = cpu_arch_ver; p->val; p++)
20826 {
20827 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20828 {
20829 arch = p->val;
20830 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20831 }
20832 }
20833
20834 /* Tag_CPU_name. */
20835 if (selected_cpu_name[0])
20836 {
20837 char *p;
20838
20839 p = selected_cpu_name;
20840 if (strncmp (p, "armv", 4) == 0)
20841 {
20842 int i;
20843
20844 p += 4;
20845 for (i = 0; p[i]; i++)
20846 p[i] = TOUPPER (p[i]);
20847 }
20848 aeabi_set_attribute_string (Tag_CPU_name, p);
20849 }
20850 /* Tag_CPU_arch. */
20851 aeabi_set_attribute_int (Tag_CPU_arch, arch);
20852 /* Tag_CPU_arch_profile. */
20853 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20854 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'A');
20855 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20856 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'R');
20857 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
20858 aeabi_set_attribute_int (Tag_CPU_arch_profile, 'M');
20859 /* Tag_ARM_ISA_use. */
20860 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
20861 || arch == 0)
20862 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
20863 /* Tag_THUMB_ISA_use. */
20864 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
20865 || arch == 0)
20866 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
20867 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
20868 /* Tag_VFP_arch. */
20869 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
20870 aeabi_set_attribute_int (Tag_VFP_arch, 3);
20871 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3))
20872 aeabi_set_attribute_int (Tag_VFP_arch, 4);
20873 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
20874 aeabi_set_attribute_int (Tag_VFP_arch, 2);
20875 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
20876 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
20877 aeabi_set_attribute_int (Tag_VFP_arch, 1);
20878 /* Tag_WMMX_arch. */
20879 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
20880 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
20881 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
20882 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
20883 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
20884 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
20885 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
20886 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
20887 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_fp16))
20888 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
20889 }
20890
20891 /* Add the default contents for the .ARM.attributes section. */
20892 void
20893 arm_md_end (void)
20894 {
20895 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20896 return;
20897
20898 aeabi_set_public_attributes ();
20899 }
20900 #endif /* OBJ_ELF */
20901
20902
20903 /* Parse a .cpu directive. */
20904
20905 static void
20906 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20907 {
20908 const struct arm_cpu_option_table *opt;
20909 char *name;
20910 char saved_char;
20911
20912 name = input_line_pointer;
20913 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20914 input_line_pointer++;
20915 saved_char = *input_line_pointer;
20916 *input_line_pointer = 0;
20917
20918 /* Skip the first "all" entry. */
20919 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20920 if (streq (opt->name, name))
20921 {
20922 mcpu_cpu_opt = &opt->value;
20923 selected_cpu = opt->value;
20924 if (opt->canonical_name)
20925 strcpy (selected_cpu_name, opt->canonical_name);
20926 else
20927 {
20928 int i;
20929 for (i = 0; opt->name[i]; i++)
20930 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20931 selected_cpu_name[i] = 0;
20932 }
20933 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20934 *input_line_pointer = saved_char;
20935 demand_empty_rest_of_line ();
20936 return;
20937 }
20938 as_bad (_("unknown cpu `%s'"), name);
20939 *input_line_pointer = saved_char;
20940 ignore_rest_of_line ();
20941 }
20942
20943
20944 /* Parse a .arch directive. */
20945
20946 static void
20947 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20948 {
20949 const struct arm_arch_option_table *opt;
20950 char saved_char;
20951 char *name;
20952
20953 name = input_line_pointer;
20954 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20955 input_line_pointer++;
20956 saved_char = *input_line_pointer;
20957 *input_line_pointer = 0;
20958
20959 /* Skip the first "all" entry. */
20960 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20961 if (streq (opt->name, name))
20962 {
20963 mcpu_cpu_opt = &opt->value;
20964 selected_cpu = opt->value;
20965 strcpy (selected_cpu_name, opt->name);
20966 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20967 *input_line_pointer = saved_char;
20968 demand_empty_rest_of_line ();
20969 return;
20970 }
20971
20972 as_bad (_("unknown architecture `%s'\n"), name);
20973 *input_line_pointer = saved_char;
20974 ignore_rest_of_line ();
20975 }
20976
20977
20978 /* Parse a .object_arch directive. */
20979
20980 static void
20981 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20982 {
20983 const struct arm_arch_option_table *opt;
20984 char saved_char;
20985 char *name;
20986
20987 name = input_line_pointer;
20988 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20989 input_line_pointer++;
20990 saved_char = *input_line_pointer;
20991 *input_line_pointer = 0;
20992
20993 /* Skip the first "all" entry. */
20994 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20995 if (streq (opt->name, name))
20996 {
20997 object_arch = &opt->value;
20998 *input_line_pointer = saved_char;
20999 demand_empty_rest_of_line ();
21000 return;
21001 }
21002
21003 as_bad (_("unknown architecture `%s'\n"), name);
21004 *input_line_pointer = saved_char;
21005 ignore_rest_of_line ();
21006 }
21007
21008 /* Parse a .fpu directive. */
21009
21010 static void
21011 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
21012 {
21013 const struct arm_option_cpu_value_table *opt;
21014 char saved_char;
21015 char *name;
21016
21017 name = input_line_pointer;
21018 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
21019 input_line_pointer++;
21020 saved_char = *input_line_pointer;
21021 *input_line_pointer = 0;
21022
21023 for (opt = arm_fpus; opt->name != NULL; opt++)
21024 if (streq (opt->name, name))
21025 {
21026 mfpu_opt = &opt->value;
21027 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
21028 *input_line_pointer = saved_char;
21029 demand_empty_rest_of_line ();
21030 return;
21031 }
21032
21033 as_bad (_("unknown floating point format `%s'\n"), name);
21034 *input_line_pointer = saved_char;
21035 ignore_rest_of_line ();
21036 }
21037
21038 /* Copy symbol information. */
21039
21040 void
21041 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
21042 {
21043 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
21044 }
21045
21046 #ifdef OBJ_ELF
21047 /* Given a symbolic attribute NAME, return the proper integer value.
21048 Returns -1 if the attribute is not known. */
21049
21050 int
21051 arm_convert_symbolic_attribute (const char *name)
21052 {
21053 static const struct
21054 {
21055 const char * name;
21056 const int tag;
21057 }
21058 attribute_table[] =
21059 {
21060 /* When you modify this table you should
21061 also modify the list in doc/c-arm.texi. */
21062 #define T(tag) {#tag, tag}
21063 T (Tag_CPU_raw_name),
21064 T (Tag_CPU_name),
21065 T (Tag_CPU_arch),
21066 T (Tag_CPU_arch_profile),
21067 T (Tag_ARM_ISA_use),
21068 T (Tag_THUMB_ISA_use),
21069 T (Tag_VFP_arch),
21070 T (Tag_WMMX_arch),
21071 T (Tag_Advanced_SIMD_arch),
21072 T (Tag_PCS_config),
21073 T (Tag_ABI_PCS_R9_use),
21074 T (Tag_ABI_PCS_RW_data),
21075 T (Tag_ABI_PCS_RO_data),
21076 T (Tag_ABI_PCS_GOT_use),
21077 T (Tag_ABI_PCS_wchar_t),
21078 T (Tag_ABI_FP_rounding),
21079 T (Tag_ABI_FP_denormal),
21080 T (Tag_ABI_FP_exceptions),
21081 T (Tag_ABI_FP_user_exceptions),
21082 T (Tag_ABI_FP_number_model),
21083 T (Tag_ABI_align8_needed),
21084 T (Tag_ABI_align8_preserved),
21085 T (Tag_ABI_enum_size),
21086 T (Tag_ABI_HardFP_use),
21087 T (Tag_ABI_VFP_args),
21088 T (Tag_ABI_WMMX_args),
21089 T (Tag_ABI_optimization_goals),
21090 T (Tag_ABI_FP_optimization_goals),
21091 T (Tag_compatibility),
21092 T (Tag_CPU_unaligned_access),
21093 T (Tag_VFP_HP_extension),
21094 T (Tag_ABI_FP_16bit_format),
21095 T (Tag_nodefaults),
21096 T (Tag_also_compatible_with),
21097 T (Tag_conformance),
21098 T (Tag_T2EE_use),
21099 T (Tag_Virtualization_use),
21100 T (Tag_MPextension_use)
21101 #undef T
21102 };
21103 unsigned int i;
21104
21105 if (name == NULL)
21106 return -1;
21107
21108 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
21109 if (strcmp (name, attribute_table[i].name) == 0)
21110 return attribute_table[i].tag;
21111
21112 return -1;
21113 }
21114 #endif /* OBJ_ELF */