1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
11 This file is part of GAS, the GNU Assembler.
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
32 #include "safe-ctype.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
40 #include "dw2gencfi.h"
43 #include "dwarf2dbg.h"
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
49 /* This structure holds the unwinding state. */
54 symbolS
* table_entry
;
55 symbolS
* personality_routine
;
56 int personality_index
;
57 /* The segment containing the function. */
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes
;
64 /* The number of bytes pushed to the stack. */
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset
;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
74 /* Nonzero if an unwind_setfp directive has been seen. */
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored
:1;
82 /* Results from operand parsing worker functions. */
86 PARSE_OPERAND_SUCCESS
,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result
;
98 /* Types of processor to assemble for. */
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
124 #endif /* ifndef FPU_DEFAULT */
126 #define streq(a, b) (strcmp (a, b) == 0)
128 static arm_feature_set cpu_variant
;
129 static arm_feature_set arm_arch_used
;
130 static arm_feature_set thumb_arch_used
;
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26
= FALSE
;
134 static int atpcs
= FALSE
;
135 static int support_interwork
= FALSE
;
136 static int uses_apcs_float
= FALSE
;
137 static int pic_code
= FALSE
;
138 static int fix_v4bx
= FALSE
;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated
= TRUE
;
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
146 static const arm_feature_set
*legacy_cpu
= NULL
;
147 static const arm_feature_set
*legacy_fpu
= NULL
;
149 static const arm_feature_set
*mcpu_cpu_opt
= NULL
;
150 static const arm_feature_set
*mcpu_fpu_opt
= NULL
;
151 static const arm_feature_set
*march_cpu_opt
= NULL
;
152 static const arm_feature_set
*march_fpu_opt
= NULL
;
153 static const arm_feature_set
*mfpu_opt
= NULL
;
154 static const arm_feature_set
*object_arch
= NULL
;
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default
= FPU_DEFAULT
;
158 static const arm_feature_set fpu_arch_vfp_v1
= FPU_ARCH_VFP_V1
;
159 static const arm_feature_set fpu_arch_vfp_v2
= FPU_ARCH_VFP_V2
;
160 static const arm_feature_set fpu_arch_vfp_v3
= FPU_ARCH_VFP_V3
;
161 static const arm_feature_set fpu_arch_neon_v1
= FPU_ARCH_NEON_V1
;
162 static const arm_feature_set fpu_arch_fpa
= FPU_ARCH_FPA
;
163 static const arm_feature_set fpu_any_hard
= FPU_ANY_HARD
;
164 static const arm_feature_set fpu_arch_maverick
= FPU_ARCH_MAVERICK
;
165 static const arm_feature_set fpu_endian_pure
= FPU_ARCH_ENDIAN_PURE
;
168 static const arm_feature_set cpu_default
= CPU_DEFAULT
;
171 static const arm_feature_set arm_ext_v1
= ARM_FEATURE (ARM_EXT_V1
, 0);
172 static const arm_feature_set arm_ext_v2
= ARM_FEATURE (ARM_EXT_V1
, 0);
173 static const arm_feature_set arm_ext_v2s
= ARM_FEATURE (ARM_EXT_V2S
, 0);
174 static const arm_feature_set arm_ext_v3
= ARM_FEATURE (ARM_EXT_V3
, 0);
175 static const arm_feature_set arm_ext_v3m
= ARM_FEATURE (ARM_EXT_V3M
, 0);
176 static const arm_feature_set arm_ext_v4
= ARM_FEATURE (ARM_EXT_V4
, 0);
177 static const arm_feature_set arm_ext_v4t
= ARM_FEATURE (ARM_EXT_V4T
, 0);
178 static const arm_feature_set arm_ext_v5
= ARM_FEATURE (ARM_EXT_V5
, 0);
179 static const arm_feature_set arm_ext_v4t_5
=
180 ARM_FEATURE (ARM_EXT_V4T
| ARM_EXT_V5
, 0);
181 static const arm_feature_set arm_ext_v5t
= ARM_FEATURE (ARM_EXT_V5T
, 0);
182 static const arm_feature_set arm_ext_v5e
= ARM_FEATURE (ARM_EXT_V5E
, 0);
183 static const arm_feature_set arm_ext_v5exp
= ARM_FEATURE (ARM_EXT_V5ExP
, 0);
184 static const arm_feature_set arm_ext_v5j
= ARM_FEATURE (ARM_EXT_V5J
, 0);
185 static const arm_feature_set arm_ext_v6
= ARM_FEATURE (ARM_EXT_V6
, 0);
186 static const arm_feature_set arm_ext_v6k
= ARM_FEATURE (ARM_EXT_V6K
, 0);
187 static const arm_feature_set arm_ext_v6t2
= ARM_FEATURE (ARM_EXT_V6T2
, 0);
188 static const arm_feature_set arm_ext_v6m
= ARM_FEATURE (ARM_EXT_V6M
, 0);
189 static const arm_feature_set arm_ext_v6_notm
= ARM_FEATURE (ARM_EXT_V6_NOTM
, 0);
190 static const arm_feature_set arm_ext_v6_dsp
= ARM_FEATURE (ARM_EXT_V6_DSP
, 0);
191 static const arm_feature_set arm_ext_barrier
= ARM_FEATURE (ARM_EXT_BARRIER
, 0);
192 static const arm_feature_set arm_ext_msr
= ARM_FEATURE (ARM_EXT_THUMB_MSR
, 0);
193 static const arm_feature_set arm_ext_div
= ARM_FEATURE (ARM_EXT_DIV
, 0);
194 static const arm_feature_set arm_ext_v7
= ARM_FEATURE (ARM_EXT_V7
, 0);
195 static const arm_feature_set arm_ext_v7a
= ARM_FEATURE (ARM_EXT_V7A
, 0);
196 static const arm_feature_set arm_ext_v7r
= ARM_FEATURE (ARM_EXT_V7R
, 0);
197 static const arm_feature_set arm_ext_v7m
= ARM_FEATURE (ARM_EXT_V7M
, 0);
198 static const arm_feature_set arm_ext_v8
= ARM_FEATURE (ARM_EXT_V8
, 0);
199 static const arm_feature_set arm_ext_m
=
200 ARM_FEATURE (ARM_EXT_V6M
| ARM_EXT_OS
| ARM_EXT_V7M
, 0);
201 static const arm_feature_set arm_ext_mp
= ARM_FEATURE (ARM_EXT_MP
, 0);
202 static const arm_feature_set arm_ext_sec
= ARM_FEATURE (ARM_EXT_SEC
, 0);
203 static const arm_feature_set arm_ext_os
= ARM_FEATURE (ARM_EXT_OS
, 0);
204 static const arm_feature_set arm_ext_adiv
= ARM_FEATURE (ARM_EXT_ADIV
, 0);
205 static const arm_feature_set arm_ext_virt
= ARM_FEATURE (ARM_EXT_VIRT
, 0);
207 static const arm_feature_set arm_arch_any
= ARM_ANY
;
208 static const arm_feature_set arm_arch_full
= ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2
= ARM_ARCH_THUMB2
;
210 static const arm_feature_set arm_arch_none
= ARM_ARCH_NONE
;
211 static const arm_feature_set arm_arch_v6m_only
= ARM_ARCH_V6M_ONLY
;
213 static const arm_feature_set arm_cext_iwmmxt2
=
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2
);
215 static const arm_feature_set arm_cext_iwmmxt
=
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT
);
217 static const arm_feature_set arm_cext_xscale
=
218 ARM_FEATURE (0, ARM_CEXT_XSCALE
);
219 static const arm_feature_set arm_cext_maverick
=
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK
);
221 static const arm_feature_set fpu_fpa_ext_v1
= ARM_FEATURE (0, FPU_FPA_EXT_V1
);
222 static const arm_feature_set fpu_fpa_ext_v2
= ARM_FEATURE (0, FPU_FPA_EXT_V2
);
223 static const arm_feature_set fpu_vfp_ext_v1xd
=
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD
);
225 static const arm_feature_set fpu_vfp_ext_v1
= ARM_FEATURE (0, FPU_VFP_EXT_V1
);
226 static const arm_feature_set fpu_vfp_ext_v2
= ARM_FEATURE (0, FPU_VFP_EXT_V2
);
227 static const arm_feature_set fpu_vfp_ext_v3xd
= ARM_FEATURE (0, FPU_VFP_EXT_V3xD
);
228 static const arm_feature_set fpu_vfp_ext_v3
= ARM_FEATURE (0, FPU_VFP_EXT_V3
);
229 static const arm_feature_set fpu_vfp_ext_d32
=
230 ARM_FEATURE (0, FPU_VFP_EXT_D32
);
231 static const arm_feature_set fpu_neon_ext_v1
= ARM_FEATURE (0, FPU_NEON_EXT_V1
);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext
=
233 ARM_FEATURE (0, FPU_NEON_EXT_V1
| FPU_VFP_EXT_V3
);
234 static const arm_feature_set fpu_vfp_fp16
= ARM_FEATURE (0, FPU_VFP_EXT_FP16
);
235 static const arm_feature_set fpu_neon_ext_fma
= ARM_FEATURE (0, FPU_NEON_EXT_FMA
);
236 static const arm_feature_set fpu_vfp_ext_fma
= ARM_FEATURE (0, FPU_VFP_EXT_FMA
);
237 static const arm_feature_set fpu_vfp_ext_armv8
=
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8
);
239 static const arm_feature_set fpu_neon_ext_armv8
=
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8
);
241 static const arm_feature_set fpu_crypto_ext_armv8
=
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8
);
244 static int mfloat_abi_opt
= -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu
= ARM_ARCH_NONE
;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name
[16];
250 /* Return if no cpu was selected on command-line. */
252 no_cpu_selected (void)
254 return selected_cpu
.core
== arm_arch_none
.core
255 && selected_cpu
.coproc
== arm_arch_none
.coproc
;
260 static int meabi_flags
= EABI_DEFAULT
;
262 static int meabi_flags
= EF_ARM_EABI_UNKNOWN
;
265 static int attributes_set_explicitly
[NUM_KNOWN_OBJ_ATTRIBUTES
];
270 return (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
);
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS
* GOT_symbol
;
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
283 static int thumb_mode
= 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
292 IMPLICIT_IT_MODE_NEVER
= 0x00,
293 IMPLICIT_IT_MODE_ARM
= 0x01,
294 IMPLICIT_IT_MODE_THUMB
= 0x02,
295 IMPLICIT_IT_MODE_ALWAYS
= (IMPLICIT_IT_MODE_ARM
| IMPLICIT_IT_MODE_THUMB
)
297 static int implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
311 Important differences from the old Thumb mode:
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
322 static bfd_boolean unified_syntax
= FALSE
;
337 enum neon_el_type type
;
341 #define NEON_MAX_TYPE_ELS 4
345 struct neon_type_el el
[NEON_MAX_TYPE_ELS
];
349 enum it_instruction_type
354 IF_INSIDE_IT_LAST_INSN
, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN
, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN
/* The IT insn has been parsed. */
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
367 unsigned long instruction
;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
375 struct neon_type vectype
;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
384 bfd_reloc_code_real_type type
;
389 enum it_instruction_type it_insn_type
;
395 struct neon_type_el vectype
;
396 unsigned present
: 1; /* Operand present. */
397 unsigned isreg
: 1; /* Operand was a register. */
398 unsigned immisreg
: 1; /* .imm field is a second register. */
399 unsigned isscalar
: 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign
: 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat
: 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm
: 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec
: 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad
: 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle
: 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc
: 1; /* Operand has relocation suffix. */
409 unsigned writeback
: 1; /* Operand has trailing ! */
410 unsigned preind
: 1; /* Preindexed address. */
411 unsigned postind
: 1; /* Postindexed address. */
412 unsigned negative
: 1; /* Index register was negated. */
413 unsigned shifted
: 1; /* Shift applied to operation. */
414 unsigned shift_kind
: 3; /* Shift operation (enum shift_kind). */
415 } operands
[ARM_IT_MAX_OPERANDS
];
418 static struct arm_it inst
;
420 #define NUM_FLOAT_VALS 8
422 const char * fp_const
[] =
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
430 LITTLENUM_TYPE fp_values
[NUM_FLOAT_VALS
][MAX_LITTLENUMS
];
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
446 #define DOUBLE_LOAD_FLAG 0x00000001
450 const char * template_name
;
454 #define COND_ALWAYS 0xE
458 const char * template_name
;
462 struct asm_barrier_opt
464 const char * template_name
;
466 const arm_feature_set arch
;
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
481 bfd_reloc_code_real_type reloc
;
486 VFP_REG_Sd
, VFP_REG_Sm
, VFP_REG_Sn
,
487 VFP_REG_Dd
, VFP_REG_Dm
, VFP_REG_Dn
492 VFP_LDSTMIA
, VFP_LDSTMDB
, VFP_LDSTMIAX
, VFP_LDSTMDBX
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
499 struct neon_typed_alias
501 unsigned char defined
;
503 struct neon_type_el eltype
;
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
543 unsigned char builtin
;
544 struct neon_typed_alias
* neon
;
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs
[] =
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
573 /* Some well known registers that we refer to directly elsewhere. */
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
585 /* Basic string to match. */
586 const char * template_name
;
588 /* Parameters to instruction. */
589 unsigned int operands
[8];
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag
: 4;
594 /* Basic instruction code. */
595 unsigned int avalue
: 28;
597 /* Thumb-format instruction code. */
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set
* avariant
;
602 const arm_feature_set
* tvariant
;
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode
) (void);
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode
) (void);
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
626 #define T2_SUBS_PC_LR 0xf3de8f00
628 #define DATA_OP_SHIFT 21
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
641 /* Codes to distinguish the arithmetic instructions. */
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
721 #define T_OPCODE_BRANCH 0xe000
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
749 static struct hash_control
* arm_ops_hsh
;
750 static struct hash_control
* arm_cond_hsh
;
751 static struct hash_control
* arm_shift_hsh
;
752 static struct hash_control
* arm_psr_hsh
;
753 static struct hash_control
* arm_v7m_psr_hsh
;
754 static struct hash_control
* arm_reg_hsh
;
755 static struct hash_control
* arm_reloc_hsh
;
756 static struct hash_control
* arm_barrier_opt_hsh
;
758 /* Stuff needed to resolve the label ambiguity
767 symbolS
* last_label_seen
;
768 static int label_is_thumb_function_name
= FALSE
;
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
776 expressionS literals
[MAX_LITERAL_POOL_SIZE
];
777 unsigned int next_free_entry
;
783 struct dwarf2_line_info locs
[MAX_LITERAL_POOL_SIZE
];
785 struct literal_pool
* next
;
788 /* Pointer to a linked list of literal pools. */
789 literal_pool
* list_of_pools
= NULL
;
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
794 static struct current_it now_it
;
798 now_it_compatible (int cond
)
800 return (cond
& ~1) == (now_it
.cc
& ~1);
804 conditional_insn (void)
806 return inst
.cond
!= COND_ALWAYS
;
809 static int in_it_block (void);
811 static int handle_it_state (void);
813 static void force_automatic_it_block_close (void);
815 static void it_fsm_post_encode (void);
817 #define set_it_insn_type(type) \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
826 #define set_it_insn_type_nonvoid(type, failret) \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
835 #define set_it_insn_type_last() \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars
[] = "@";
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars
[] = "#";
860 const char line_separator_chars
[] = ";";
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS
[] = "eE";
866 /* Chars that mean this number is a floating point constant. */
870 const char FLT_CHARS
[] = "rRsSfFdDxXeEpP";
872 /* Prefix characters that indicate the start of an immediate
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
876 /* Separator character handling. */
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
881 skip_past_char (char ** str
, char c
)
892 #define skip_past_comma(str) skip_past_char (str, ',')
894 /* Arithmetic expressions (possibly involving symbols). */
896 /* Return TRUE if anything in the expression is a bignum. */
899 walk_no_bignums (symbolS
* sp
)
901 if (symbol_get_value_expression (sp
)->X_op
== O_big
)
904 if (symbol_get_value_expression (sp
)->X_add_symbol
)
906 return (walk_no_bignums (symbol_get_value_expression (sp
)->X_add_symbol
)
907 || (symbol_get_value_expression (sp
)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp
)->X_op_symbol
)));
914 static int in_my_get_expression
= 0;
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
925 my_get_expression (expressionS
* ep
, char ** str
, int prefix_mode
)
930 /* In unified syntax, all prefixes are optional. */
932 prefix_mode
= (prefix_mode
== GE_OPT_PREFIX_BIG
) ? prefix_mode
937 case GE_NO_PREFIX
: break;
939 if (!is_immediate_prefix (**str
))
941 inst
.error
= _("immediate expression requires a # prefix");
947 case GE_OPT_PREFIX_BIG
:
948 if (is_immediate_prefix (**str
))
954 memset (ep
, 0, sizeof (expressionS
));
956 save_in
= input_line_pointer
;
957 input_line_pointer
= *str
;
958 in_my_get_expression
= 1;
959 seg
= expression (ep
);
960 in_my_get_expression
= 0;
962 if (ep
->X_op
== O_illegal
|| ep
->X_op
== O_absent
)
964 /* We found a bad or missing expression in md_operand(). */
965 *str
= input_line_pointer
;
966 input_line_pointer
= save_in
;
967 if (inst
.error
== NULL
)
968 inst
.error
= (ep
->X_op
== O_absent
969 ? _("missing expression") :_("bad expression"));
974 if (seg
!= absolute_section
975 && seg
!= text_section
976 && seg
!= data_section
977 && seg
!= bss_section
978 && seg
!= undefined_section
)
980 inst
.error
= _("bad segment");
981 *str
= input_line_pointer
;
982 input_line_pointer
= save_in
;
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode
!= GE_OPT_PREFIX_BIG
993 && (ep
->X_op
== O_big
995 && (walk_no_bignums (ep
->X_add_symbol
)
997 && walk_no_bignums (ep
->X_op_symbol
))))))
999 inst
.error
= _("invalid constant");
1000 *str
= input_line_pointer
;
1001 input_line_pointer
= save_in
;
1005 *str
= input_line_pointer
;
1006 input_line_pointer
= save_in
;
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1025 md_atof (int type
, char * litP
, int * sizeP
)
1028 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
1060 return _("Unrecognized or unsupported floating point constant");
1063 t
= atof_ieee (input_line_pointer
, type
, words
);
1065 input_line_pointer
= t
;
1066 *sizeP
= prec
* sizeof (LITTLENUM_TYPE
);
1068 if (target_big_endian
)
1070 for (i
= 0; i
< prec
; i
++)
1072 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1073 litP
+= sizeof (LITTLENUM_TYPE
);
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
1079 for (i
= prec
- 1; i
>= 0; i
--)
1081 md_number_to_chars (litP
, (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1082 litP
+= sizeof (LITTLENUM_TYPE
);
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i
= 0; i
< prec
; i
+= 2)
1089 md_number_to_chars (litP
, (valueT
) words
[i
+ 1],
1090 sizeof (LITTLENUM_TYPE
));
1091 md_number_to_chars (litP
+ sizeof (LITTLENUM_TYPE
),
1092 (valueT
) words
[i
], sizeof (LITTLENUM_TYPE
));
1093 litP
+= 2 * sizeof (LITTLENUM_TYPE
);
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1103 md_operand (expressionS
* exp
)
1105 if (in_my_get_expression
)
1106 exp
->X_op
= O_illegal
;
1109 /* Immediate values. */
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1116 immediate_for_directive (int *val
)
1119 exp
.X_op
= O_illegal
;
1121 if (is_immediate_prefix (*input_line_pointer
))
1123 input_line_pointer
++;
1127 if (exp
.X_op
!= O_constant
)
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1133 *val
= exp
.X_add_number
;
1138 /* Register parsing. */
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1145 static struct reg_entry
*
1146 arm_reg_parse_multi (char **ccp
)
1150 struct reg_entry
*reg
;
1152 #ifdef REGISTER_PREFIX
1153 if (*start
!= REGISTER_PREFIX
)
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start
== OPTIONAL_REGISTER_PREFIX
)
1163 if (!ISALPHA (*p
) || !is_name_beginner (*p
))
1168 while (ISALPHA (*p
) || ISDIGIT (*p
) || *p
== '_');
1170 reg
= (struct reg_entry
*) hash_find_n (arm_reg_hsh
, start
, p
- start
);
1180 arm_reg_alt_syntax (char **ccp
, char *start
, struct reg_entry
*reg
,
1181 enum arm_reg_type type
)
1183 /* Alternative syntaxes are accepted for a few register classes. */
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg
&& reg
->type
== REG_TYPE_CN
)
1196 /* For backward compatibility, a bare number is valid here. */
1198 unsigned long processor
= strtoul (start
, ccp
, 10);
1199 if (*ccp
!= start
&& processor
<= 15)
1203 case REG_TYPE_MMXWC
:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg
&& reg
->type
== REG_TYPE_MMXWCG
)
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1221 arm_reg_parse (char **ccp
, enum arm_reg_type type
)
1224 struct reg_entry
*reg
= arm_reg_parse_multi (ccp
);
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg
&& reg
->neon
&& (reg
->neon
->defined
& NTA_HASINDEX
))
1231 if (reg
&& reg
->type
== type
)
1234 if ((ret
= arm_reg_alt_syntax (ccp
, start
, reg
, type
)) != FAIL
)
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1249 Can all be legally parsed by this function.
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1256 parse_neon_type (struct neon_type
*type
, char **str
)
1263 while (type
->elems
< NEON_MAX_TYPE_ELS
)
1265 enum neon_el_type thistype
= NT_untyped
;
1266 unsigned thissize
= -1u;
1273 /* Just a size without an explicit type. */
1277 switch (TOLOWER (*ptr
))
1279 case 'i': thistype
= NT_integer
; break;
1280 case 'f': thistype
= NT_float
; break;
1281 case 'p': thistype
= NT_poly
; break;
1282 case 's': thistype
= NT_signed
; break;
1283 case 'u': thistype
= NT_unsigned
; break;
1285 thistype
= NT_float
;
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr
);
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype
== NT_float
&& !ISDIGIT (*ptr
))
1302 thissize
= strtoul (ptr
, &ptr
, 10);
1304 if (thissize
!= 8 && thissize
!= 16 && thissize
!= 32
1307 as_bad (_("bad size %d in type specifier"), thissize
);
1315 type
->el
[type
->elems
].type
= thistype
;
1316 type
->el
[type
->elems
].size
= thissize
;
1321 /* Empty/missing type is not a successful parse. */
1322 if (type
->elems
== 0)
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1336 first_error (const char *err
)
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1344 parse_neon_operand_type (struct neon_type_el
*vectype
, char **ccp
)
1347 struct neon_type optype
;
1351 if (parse_neon_type (&optype
, &str
) == SUCCESS
)
1353 if (optype
.elems
== 1)
1354 *vectype
= optype
.el
[0];
1357 first_error (_("only one type should be specified for operand"));
1363 first_error (_("vector type expected"));
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1387 parse_typed_reg_or_scalar (char **ccp
, enum arm_reg_type type
,
1388 enum arm_reg_type
*rtype
,
1389 struct neon_typed_alias
*typeinfo
)
1392 struct reg_entry
*reg
= arm_reg_parse_multi (&str
);
1393 struct neon_typed_alias atype
;
1394 struct neon_type_el parsetype
;
1398 atype
.eltype
.type
= NT_invtype
;
1399 atype
.eltype
.size
= -1;
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1405 int altreg
= arm_reg_alt_syntax (&str
, *ccp
, reg
, type
);
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type
== REG_TYPE_NDQ
1415 && (reg
->type
== REG_TYPE_NQ
|| reg
->type
== REG_TYPE_VFD
))
1416 || (type
== REG_TYPE_VFSD
1417 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
))
1418 || (type
== REG_TYPE_NSDQ
1419 && (reg
->type
== REG_TYPE_VFS
|| reg
->type
== REG_TYPE_VFD
1420 || reg
->type
== REG_TYPE_NQ
))
1421 || (type
== REG_TYPE_MMXWC
1422 && (reg
->type
== REG_TYPE_MMXWCG
)))
1423 type
= (enum arm_reg_type
) reg
->type
;
1425 if (type
!= reg
->type
)
1431 if (parse_neon_operand_type (&parsetype
, &str
) == SUCCESS
)
1433 if ((atype
.defined
& NTA_HASTYPE
) != 0)
1435 first_error (_("can't redefine type for operand"));
1438 atype
.defined
|= NTA_HASTYPE
;
1439 atype
.eltype
= parsetype
;
1442 if (skip_past_char (&str
, '[') == SUCCESS
)
1444 if (type
!= REG_TYPE_VFD
)
1446 first_error (_("only D registers may be indexed"));
1450 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1452 first_error (_("can't change index for operand"));
1456 atype
.defined
|= NTA_HASINDEX
;
1458 if (skip_past_char (&str
, ']') == SUCCESS
)
1459 atype
.index
= NEON_ALL_LANES
;
1464 my_get_expression (&exp
, &str
, GE_NO_PREFIX
);
1466 if (exp
.X_op
!= O_constant
)
1468 first_error (_("constant expression required"));
1472 if (skip_past_char (&str
, ']') == FAIL
)
1475 atype
.index
= exp
.X_add_number
;
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1498 arm_typed_reg_parse (char **ccp
, enum arm_reg_type type
,
1499 enum arm_reg_type
*rtype
, struct neon_type_el
*vectype
)
1501 struct neon_typed_alias atype
;
1503 int reg
= parse_typed_reg_or_scalar (&str
, type
, rtype
, &atype
);
1508 /* Do not allow regname(... to parse as a register. */
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype
.defined
& NTA_HASINDEX
) != 0)
1515 first_error (_("register operand expected, but got scalar"));
1520 *vectype
= atype
.eltype
;
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1535 parse_scalar (char **ccp
, int elsize
, struct neon_type_el
*type
)
1539 struct neon_typed_alias atype
;
1541 reg
= parse_typed_reg_or_scalar (&str
, REG_TYPE_VFD
, NULL
, &atype
);
1543 if (reg
== FAIL
|| (atype
.defined
& NTA_HASINDEX
) == 0)
1546 if (atype
.index
== NEON_ALL_LANES
)
1548 first_error (_("scalar must have an index"));
1551 else if (atype
.index
>= 64 / elsize
)
1553 first_error (_("scalar index out of range"));
1558 *type
= atype
.eltype
;
1562 return reg
* 16 + atype
.index
;
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1568 parse_reg_list (char ** strp
)
1570 char * str
= * strp
;
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1589 if ((reg
= arm_reg_parse (&str
, REG_TYPE_RN
)) == FAIL
)
1591 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
1601 first_error (_("bad range in register list"));
1605 for (i
= cur_reg
+ 1; i
< reg
; i
++)
1607 if (range
& (1 << i
))
1609 (_("Warning: duplicated register (r%d) in register list"),
1617 if (range
& (1 << reg
))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1620 else if (reg
<= cur_reg
)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1626 while (skip_past_comma (&str
) != FAIL
1627 || (in_range
= 1, *str
++ == '-'));
1632 first_error (_("missing `}'"));
1640 if (my_get_expression (&exp
, &str
, GE_NO_PREFIX
))
1643 if (exp
.X_op
== O_constant
)
1645 if (exp
.X_add_number
1646 != (exp
.X_add_number
& 0x0000ffff))
1648 inst
.error
= _("invalid register mask");
1652 if ((range
& exp
.X_add_number
) != 0)
1654 int regno
= range
& exp
.X_add_number
;
1657 regno
= (1 << regno
) - 1;
1659 (_("Warning: duplicated register (r%d) in register list"),
1663 range
|= exp
.X_add_number
;
1667 if (inst
.reloc
.type
!= 0)
1669 inst
.error
= _("expression too complex");
1673 memcpy (&inst
.reloc
.exp
, &exp
, sizeof (expressionS
));
1674 inst
.reloc
.type
= BFD_RELOC_ARM_MULTI
;
1675 inst
.reloc
.pc_rel
= 0;
1679 if (*str
== '|' || *str
== '+')
1685 while (another_range
);
1691 /* Types of registers in a list. */
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1716 parse_vfp_reg_list (char **ccp
, unsigned int *pbase
, enum reg_list_els etype
)
1721 enum arm_reg_type regtype
= (enum arm_reg_type
) 0;
1725 unsigned long mask
= 0;
1730 inst
.error
= _("expecting {");
1739 regtype
= REG_TYPE_VFS
;
1744 regtype
= REG_TYPE_VFD
;
1747 case REGLIST_NEON_D
:
1748 regtype
= REG_TYPE_NDQ
;
1752 if (etype
!= REGLIST_VFP_S
)
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
1769 base_reg
= max_regs
;
1773 int setmask
= 1, addregs
= 1;
1775 new_base
= arm_typed_reg_parse (&str
, regtype
, ®type
, NULL
);
1777 if (new_base
== FAIL
)
1779 first_error (_(reg_expected_msgs
[regtype
]));
1783 if (new_base
>= max_regs
)
1785 first_error (_("register out of range in list"));
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype
== REG_TYPE_NQ
)
1796 if (new_base
< base_reg
)
1797 base_reg
= new_base
;
1799 if (mask
& (setmask
<< new_base
))
1801 first_error (_("invalid register list"));
1805 if ((mask
>> new_base
) != 0 && ! warned
)
1807 as_tsktsk (_("register list not in ascending order"));
1811 mask
|= setmask
<< new_base
;
1814 if (*str
== '-') /* We have the start of a range expression */
1820 if ((high_range
= arm_typed_reg_parse (&str
, regtype
, NULL
, NULL
))
1823 inst
.error
= gettext (reg_expected_msgs
[regtype
]);
1827 if (high_range
>= max_regs
)
1829 first_error (_("register out of range in list"));
1833 if (regtype
== REG_TYPE_NQ
)
1834 high_range
= high_range
+ 1;
1836 if (high_range
<= new_base
)
1838 inst
.error
= _("register range not in ascending order");
1842 for (new_base
+= addregs
; new_base
<= high_range
; new_base
+= addregs
)
1844 if (mask
& (setmask
<< new_base
))
1846 inst
.error
= _("invalid register list");
1850 mask
|= setmask
<< new_base
;
1855 while (skip_past_comma (&str
) != FAIL
);
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count
== 0 || count
> max_regs
)
1865 /* Final test -- the registers must be consecutive. */
1867 for (i
= 0; i
< count
; i
++)
1869 if ((mask
& (1u << i
)) == 0)
1871 inst
.error
= _("non-contiguous register range");
1881 /* True if two alias types are the same. */
1884 neon_alias_types_same (struct neon_typed_alias
*a
, struct neon_typed_alias
*b
)
1892 if (a
->defined
!= b
->defined
)
1895 if ((a
->defined
& NTA_HASTYPE
) != 0
1896 && (a
->eltype
.type
!= b
->eltype
.type
1897 || a
->eltype
.size
!= b
->eltype
.size
))
1900 if ((a
->defined
& NTA_HASINDEX
) != 0
1901 && (a
->index
!= b
->index
))
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1920 parse_neon_el_struct_list (char **str
, unsigned *pbase
,
1921 struct neon_type_el
*eltype
)
1928 int leading_brace
= 0;
1929 enum arm_reg_type rtype
= REG_TYPE_NDQ
;
1930 const char *const incr_error
= _("register stride must be 1 or 2");
1931 const char *const type_error
= _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype
;
1934 if (skip_past_char (&ptr
, '{') == SUCCESS
)
1939 struct neon_typed_alias atype
;
1940 int getreg
= parse_typed_reg_or_scalar (&ptr
, rtype
, &rtype
, &atype
);
1944 first_error (_(reg_expected_msgs
[rtype
]));
1951 if (rtype
== REG_TYPE_NQ
)
1957 else if (reg_incr
== -1)
1959 reg_incr
= getreg
- base_reg
;
1960 if (reg_incr
< 1 || reg_incr
> 2)
1962 first_error (_(incr_error
));
1966 else if (getreg
!= base_reg
+ reg_incr
* count
)
1968 first_error (_(incr_error
));
1972 if (! neon_alias_types_same (&atype
, &firsttype
))
1974 first_error (_(type_error
));
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1982 struct neon_typed_alias htype
;
1983 int hireg
, dregs
= (rtype
== REG_TYPE_NQ
) ? 2 : 1;
1985 lane
= NEON_INTERLEAVE_LANES
;
1986 else if (lane
!= NEON_INTERLEAVE_LANES
)
1988 first_error (_(type_error
));
1993 else if (reg_incr
!= 1)
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1999 hireg
= parse_typed_reg_or_scalar (&ptr
, rtype
, NULL
, &htype
);
2002 first_error (_(reg_expected_msgs
[rtype
]));
2005 if (! neon_alias_types_same (&htype
, &firsttype
))
2007 first_error (_(type_error
));
2010 count
+= hireg
+ dregs
- getreg
;
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype
== REG_TYPE_NQ
)
2021 if ((atype
.defined
& NTA_HASINDEX
) != 0)
2025 else if (lane
!= atype
.index
)
2027 first_error (_(type_error
));
2031 else if (lane
== -1)
2032 lane
= NEON_INTERLEAVE_LANES
;
2033 else if (lane
!= NEON_INTERLEAVE_LANES
)
2035 first_error (_(type_error
));
2040 while ((count
!= 1 || leading_brace
) && skip_past_comma (&ptr
) != FAIL
);
2042 /* No lane set by [x]. We must be interleaving structures. */
2044 lane
= NEON_INTERLEAVE_LANES
;
2047 if (lane
== -1 || base_reg
== -1 || count
< 1 || count
> 4
2048 || (count
> 1 && reg_incr
== -1))
2050 first_error (_("error parsing element/structure list"));
2054 if ((count
> 1 || leading_brace
) && skip_past_char (&ptr
, '}') == FAIL
)
2056 first_error (_("expected }"));
2064 *eltype
= firsttype
.eltype
;
2069 return lane
| ((reg_incr
- 1) << 4) | ((count
- 1) << 5);
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2079 parse_reloc (char **str
)
2081 struct reloc_entry
*r
;
2085 return BFD_RELOC_UNUSED
;
2090 while (*q
&& *q
!= ')' && *q
!= ',')
2095 if ((r
= (struct reloc_entry
*)
2096 hash_find_n (arm_reloc_hsh
, p
, q
- p
)) == NULL
)
2103 /* Directives: register aliases. */
2105 static struct reg_entry
*
2106 insert_reg_alias (char *str
, unsigned number
, int type
)
2108 struct reg_entry
*new_reg
;
2111 if ((new_reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, str
)) != 0)
2113 if (new_reg
->builtin
)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str
);
2116 /* Only warn about a redefinition if it's not defined as the
2118 else if (new_reg
->number
!= number
|| new_reg
->type
!= type
)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str
);
2124 name
= xstrdup (str
);
2125 new_reg
= (struct reg_entry
*) xmalloc (sizeof (struct reg_entry
));
2127 new_reg
->name
= name
;
2128 new_reg
->number
= number
;
2129 new_reg
->type
= type
;
2130 new_reg
->builtin
= FALSE
;
2131 new_reg
->neon
= NULL
;
2133 if (hash_insert (arm_reg_hsh
, name
, (void *) new_reg
))
2140 insert_neon_reg_alias (char *str
, int number
, int type
,
2141 struct neon_typed_alias
*atype
)
2143 struct reg_entry
*reg
= insert_reg_alias (str
, number
, type
);
2147 first_error (_("attempt to redefine typed alias"));
2153 reg
->neon
= (struct neon_typed_alias
*)
2154 xmalloc (sizeof (struct neon_typed_alias
));
2155 *reg
->neon
= *atype
;
2159 /* Look for the .req directive. This is of the form:
2161 new_register_name .req existing_register_name
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2167 create_register_alias (char * newname
, char *p
)
2169 struct reg_entry
*old
;
2170 char *oldname
, *nbuf
;
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2176 if (strncmp (oldname
, " .req ", 6) != 0)
2180 if (*oldname
== '\0')
2183 old
= (struct reg_entry
*) hash_find (arm_reg_hsh
, oldname
);
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname
);
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2196 newname
= original_case_string
;
2197 nlen
= strlen (newname
);
2200 nbuf
= (char *) alloca (nlen
+ 1);
2201 memcpy (nbuf
, newname
, nlen
);
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2207 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) != NULL
)
2209 for (p
= nbuf
; *p
; p
++)
2212 if (strncmp (nbuf
, newname
, nlen
))
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2223 if (insert_reg_alias (nbuf
, old
->number
, old
->type
) == NULL
)
2227 for (p
= nbuf
; *p
; p
++)
2230 if (strncmp (nbuf
, newname
, nlen
))
2231 insert_reg_alias (nbuf
, old
->number
, old
->type
);
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2248 create_neon_reg_alias (char *newname
, char *p
)
2250 enum arm_reg_type basetype
;
2251 struct reg_entry
*basereg
;
2252 struct reg_entry mybasereg
;
2253 struct neon_type ntype
;
2254 struct neon_typed_alias typeinfo
;
2255 char *namebuf
, *nameend ATTRIBUTE_UNUSED
;
2258 typeinfo
.defined
= 0;
2259 typeinfo
.eltype
.type
= NT_invtype
;
2260 typeinfo
.eltype
.size
= -1;
2261 typeinfo
.index
= -1;
2265 if (strncmp (p
, " .dn ", 5) == 0)
2266 basetype
= REG_TYPE_VFD
;
2267 else if (strncmp (p
, " .qn ", 5) == 0)
2268 basetype
= REG_TYPE_NQ
;
2277 basereg
= arm_reg_parse_multi (&p
);
2279 if (basereg
&& basereg
->type
!= basetype
)
2281 as_bad (_("bad type for register"));
2285 if (basereg
== NULL
)
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2290 if (exp
.X_op
!= O_constant
)
2292 as_bad (_("expression must be constant"));
2295 basereg
= &mybasereg
;
2296 basereg
->number
= (basetype
== REG_TYPE_NQ
) ? exp
.X_add_number
* 2
2302 typeinfo
= *basereg
->neon
;
2304 if (parse_neon_type (&ntype
, &p
) == SUCCESS
)
2306 /* We got a type. */
2307 if (typeinfo
.defined
& NTA_HASTYPE
)
2309 as_bad (_("can't redefine the type of a register alias"));
2313 typeinfo
.defined
|= NTA_HASTYPE
;
2314 if (ntype
.elems
!= 1)
2316 as_bad (_("you must specify a single type only"));
2319 typeinfo
.eltype
= ntype
.el
[0];
2322 if (skip_past_char (&p
, '[') == SUCCESS
)
2325 /* We got a scalar index. */
2327 if (typeinfo
.defined
& NTA_HASINDEX
)
2329 as_bad (_("can't redefine the index of a scalar alias"));
2333 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
2335 if (exp
.X_op
!= O_constant
)
2337 as_bad (_("scalar index must be constant"));
2341 typeinfo
.defined
|= NTA_HASINDEX
;
2342 typeinfo
.index
= exp
.X_add_number
;
2344 if (skip_past_char (&p
, ']') == FAIL
)
2346 as_bad (_("expecting ]"));
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen
= nameend
- newname
;
2357 newname
= original_case_string
;
2358 namelen
= strlen (newname
);
2361 namebuf
= (char *) alloca (namelen
+ 1);
2362 strncpy (namebuf
, newname
, namelen
);
2363 namebuf
[namelen
] = '\0';
2365 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2366 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2368 /* Insert name in all uppercase. */
2369 for (p
= namebuf
; *p
; p
++)
2372 if (strncmp (namebuf
, newname
, namelen
))
2373 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2374 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2376 /* Insert name in all lowercase. */
2377 for (p
= namebuf
; *p
; p
++)
2380 if (strncmp (namebuf
, newname
, namelen
))
2381 insert_neon_reg_alias (namebuf
, basereg
->number
, basetype
,
2382 typeinfo
.defined
!= 0 ? &typeinfo
: NULL
);
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2391 s_req (int a ATTRIBUTE_UNUSED
)
2393 as_bad (_("invalid syntax for .req directive"));
2397 s_dn (int a ATTRIBUTE_UNUSED
)
2399 as_bad (_("invalid syntax for .dn directive"));
2403 s_qn (int a ATTRIBUTE_UNUSED
)
2405 as_bad (_("invalid syntax for .qn directive"));
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2415 s_unreq (int a ATTRIBUTE_UNUSED
)
2420 name
= input_line_pointer
;
2422 while (*input_line_pointer
!= 0
2423 && *input_line_pointer
!= ' '
2424 && *input_line_pointer
!= '\n')
2425 ++input_line_pointer
;
2427 saved_char
= *input_line_pointer
;
2428 *input_line_pointer
= 0;
2431 as_bad (_("invalid syntax for .unreq directive"));
2434 struct reg_entry
*reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
,
2438 as_bad (_("unknown register alias '%s'"), name
);
2439 else if (reg
->builtin
)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2447 hash_delete (arm_reg_hsh
, name
, FALSE
);
2448 free ((char *) reg
->name
);
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2457 nbuf
= strdup (name
);
2458 for (p
= nbuf
; *p
; p
++)
2460 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2463 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2464 free ((char *) reg
->name
);
2470 for (p
= nbuf
; *p
; p
++)
2472 reg
= (struct reg_entry
*) hash_find (arm_reg_hsh
, nbuf
);
2475 hash_delete (arm_reg_hsh
, nbuf
, FALSE
);
2476 free ((char *) reg
->name
);
2486 *input_line_pointer
= saved_char
;
2487 demand_empty_rest_of_line ();
2490 /* Directives: Instruction set selection. */
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2498 /* Create a new mapping symbol for the transition to STATE. */
2501 make_mapping_symbol (enum mstate state
, valueT value
, fragS
*frag
)
2504 const char * symname
;
2511 type
= BSF_NO_FLAGS
;
2515 type
= BSF_NO_FLAGS
;
2519 type
= BSF_NO_FLAGS
;
2525 symbolP
= symbol_new (symname
, now_seg
, value
, frag
);
2526 symbol_get_bfdsym (symbolP
)->flags
|= type
| BSF_LOCAL
;
2531 THUMB_SET_FUNC (symbolP
, 0);
2532 ARM_SET_THUMB (symbolP
, 0);
2533 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2537 THUMB_SET_FUNC (symbolP
, 1);
2538 ARM_SET_THUMB (symbolP
, 1);
2539 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2558 if (frag
->tc_frag_data
.first_map
!= NULL
)
2560 know (S_GET_VALUE (frag
->tc_frag_data
.first_map
) == 0);
2561 symbol_remove (frag
->tc_frag_data
.first_map
, &symbol_rootP
, &symbol_lastP
);
2563 frag
->tc_frag_data
.first_map
= symbolP
;
2565 if (frag
->tc_frag_data
.last_map
!= NULL
)
2567 know (S_GET_VALUE (frag
->tc_frag_data
.last_map
) <= S_GET_VALUE (symbolP
));
2568 if (S_GET_VALUE (frag
->tc_frag_data
.last_map
) == S_GET_VALUE (symbolP
))
2569 symbol_remove (frag
->tc_frag_data
.last_map
, &symbol_rootP
, &symbol_lastP
);
2571 frag
->tc_frag_data
.last_map
= symbolP
;
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2579 insert_data_mapping_symbol (enum mstate state
,
2580 valueT value
, fragS
*frag
, offsetT bytes
)
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag
->tc_frag_data
.last_map
!= NULL
2584 && S_GET_VALUE (frag
->tc_frag_data
.last_map
) == frag
->fr_address
+ value
)
2586 symbolS
*symp
= frag
->tc_frag_data
.last_map
;
2590 know (frag
->tc_frag_data
.first_map
== symp
);
2591 frag
->tc_frag_data
.first_map
= NULL
;
2593 frag
->tc_frag_data
.last_map
= NULL
;
2594 symbol_remove (symp
, &symbol_rootP
, &symbol_lastP
);
2597 make_mapping_symbol (MAP_DATA
, value
, frag
);
2598 make_mapping_symbol (state
, value
+ bytes
, frag
);
2601 static void mapping_state_2 (enum mstate state
, int max_chars
);
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2607 mapping_state (enum mstate state
)
2609 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2613 if (mapstate
== state
)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2618 if (state
== MAP_ARM
|| state
== MAP_THUMB
)
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2623 When emitting instructions into any section, mark the section
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg
, state
== MAP_ARM
? 2 : 1);
2634 if (TRANSITION (MAP_UNDEFINED
, MAP_DATA
))
2635 /* This case will be evaluated later in the next else. */
2637 else if (TRANSITION (MAP_UNDEFINED
, MAP_ARM
)
2638 || TRANSITION (MAP_UNDEFINED
, MAP_THUMB
))
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag
* const frag_first
= seg_info (now_seg
)->frchainP
->frch_root
;
2645 const int add_symbol
= (frag_now
!= frag_first
) || (frag_now_fix () > 0);
2648 make_mapping_symbol (MAP_DATA
, (valueT
) 0, frag_first
);
2651 mapping_state_2 (state
, 0);
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2659 mapping_state_2 (enum mstate state
, int max_chars
)
2661 enum mstate mapstate
= seg_info (now_seg
)->tc_segment_info_data
.mapstate
;
2663 if (!SEG_NORMAL (now_seg
))
2666 if (mapstate
== state
)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2671 seg_info (now_seg
)->tc_segment_info_data
.mapstate
= state
;
2672 make_mapping_symbol (state
, (valueT
) frag_now_fix () - max_chars
, frag_now
);
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2683 find_real_start (symbolS
* symbolP
)
2686 const char * name
= S_GET_NAME (symbolP
);
2687 symbolS
* new_target
;
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP
) || name
[0] == '.')
2703 real_start
= ACONCAT ((STUB_NAME
, name
, NULL
));
2704 new_target
= symbol_find (real_start
);
2706 if (new_target
== NULL
)
2708 as_warn (_("Failed to find real start of function: %s\n"), name
);
2709 new_target
= symbolP
;
2717 opcode_select (int width
)
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg
, 1);
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2743 frag_align (2, 0, 0);
2745 record_alignment (now_seg
, 1);
2750 as_bad (_("invalid instruction size selected (%d)"), width
);
2755 s_arm (int ignore ATTRIBUTE_UNUSED
)
2758 demand_empty_rest_of_line ();
2762 s_thumb (int ignore ATTRIBUTE_UNUSED
)
2765 demand_empty_rest_of_line ();
2769 s_code (int unused ATTRIBUTE_UNUSED
)
2773 temp
= get_absolute_expression ();
2778 opcode_select (temp
);
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp
);
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED
)
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2797 record_alignment (now_seg
, 1);
2800 demand_empty_rest_of_line ();
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED
)
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name
= TRUE
;
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2817 s_thumb_set (int equiv
)
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2830 name
= input_line_pointer
;
2831 delim
= get_symbol_end ();
2832 end_name
= input_line_pointer
;
2835 if (*input_line_pointer
!= ',')
2838 as_bad (_("expected comma after name \"%s\""), name
);
2840 ignore_rest_of_line ();
2844 input_line_pointer
++;
2847 if (name
[0] == '.' && name
[1] == '\0')
2849 /* XXX - this should not happen to .thumb_set. */
2853 if ((symbolP
= symbol_find (name
)) == NULL
2854 && (symbolP
= md_undefined_symbol (name
)) == NULL
)
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2860 if (listing
& LISTING_SYMBOLS
)
2862 extern struct list_info_struct
* listing_tail
;
2863 fragS
* dummy_frag
= (fragS
* ) xmalloc (sizeof (fragS
));
2865 memset (dummy_frag
, 0, sizeof (fragS
));
2866 dummy_frag
->fr_type
= rs_fill
;
2867 dummy_frag
->line
= listing_tail
;
2868 symbolP
= symbol_new (name
, undefined_section
, 0, dummy_frag
);
2869 dummy_frag
->fr_symbol
= symbolP
;
2873 symbolP
= symbol_new (name
, undefined_section
, 0, &zero_address_frag
);
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP
);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2881 symbol_table_insert (symbolP
);
2886 && S_IS_DEFINED (symbolP
)
2887 && S_GET_SEGMENT (symbolP
) != reg_section
)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP
));
2890 pseudo_set (symbolP
);
2892 demand_empty_rest_of_line ();
2894 /* XXX Now we come to the Thumb specific bit of code. */
2896 THUMB_SET_FUNC (symbolP
, 1);
2897 ARM_SET_THUMB (symbolP
, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP
, support_interwork
);
2903 /* Directives: Mode selection. */
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2909 s_syntax (int unused ATTRIBUTE_UNUSED
)
2913 name
= input_line_pointer
;
2914 delim
= get_symbol_end ();
2916 if (!strcasecmp (name
, "unified"))
2917 unified_syntax
= TRUE
;
2918 else if (!strcasecmp (name
, "divided"))
2919 unified_syntax
= FALSE
;
2922 as_bad (_("unrecognized syntax mode \"%s\""), name
);
2925 *input_line_pointer
= delim
;
2926 demand_empty_rest_of_line ();
2929 /* Directives: sectioning and alignment. */
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2934 s_align (int unused ATTRIBUTE_UNUSED
)
2939 long max_alignment
= 15;
2941 temp
= get_absolute_expression ();
2942 if (temp
> max_alignment
)
2943 as_bad (_("alignment too large: %d assumed"), temp
= max_alignment
);
2946 as_bad (_("alignment negative. 0 assumed."));
2950 if (*input_line_pointer
== ',')
2952 input_line_pointer
++;
2953 temp_fill
= get_absolute_expression ();
2965 /* Only make a frag if we HAVE to. */
2966 if (temp
&& !need_pass_2
)
2968 if (!fill_p
&& subseg_text_p (now_seg
))
2969 frag_align_code (temp
, 0);
2971 frag_align (temp
, (int) temp_fill
, 0);
2973 demand_empty_rest_of_line ();
2975 record_alignment (now_seg
, temp
);
2979 s_bss (int ignore ATTRIBUTE_UNUSED
)
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section
, 0);
2984 demand_empty_rest_of_line ();
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2992 s_even (int ignore ATTRIBUTE_UNUSED
)
2994 /* Never make frag if expect extra pass. */
2996 frag_align (1, 0, 0);
2998 record_alignment (now_seg
, 1);
3000 demand_empty_rest_of_line ();
3003 /* Directives: Literal pools. */
3005 static literal_pool
*
3006 find_literal_pool (void)
3008 literal_pool
* pool
;
3010 for (pool
= list_of_pools
; pool
!= NULL
; pool
= pool
->next
)
3012 if (pool
->section
== now_seg
3013 && pool
->sub_section
== now_subseg
)
3020 static literal_pool
*
3021 find_or_make_literal_pool (void)
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num
= 1;
3025 literal_pool
* pool
;
3027 pool
= find_literal_pool ();
3031 /* Create a new pool. */
3032 pool
= (literal_pool
*) xmalloc (sizeof (* pool
));
3036 pool
->next_free_entry
= 0;
3037 pool
->section
= now_seg
;
3038 pool
->sub_section
= now_subseg
;
3039 pool
->next
= list_of_pools
;
3040 pool
->symbol
= NULL
;
3042 /* Add it to the list. */
3043 list_of_pools
= pool
;
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool
->symbol
== NULL
)
3049 pool
->symbol
= symbol_create (FAKE_LABEL_NAME
, undefined_section
,
3050 (valueT
) 0, &zero_address_frag
);
3051 pool
->id
= latest_pool_num
++;
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3062 add_to_lit_pool (void)
3064 literal_pool
* pool
;
3067 pool
= find_or_make_literal_pool ();
3069 /* Check if this literal value is already in the pool. */
3070 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3072 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
3073 && (inst
.reloc
.exp
.X_op
== O_constant
)
3074 && (pool
->literals
[entry
].X_add_number
3075 == inst
.reloc
.exp
.X_add_number
)
3076 && (pool
->literals
[entry
].X_unsigned
3077 == inst
.reloc
.exp
.X_unsigned
))
3080 if ((pool
->literals
[entry
].X_op
== inst
.reloc
.exp
.X_op
)
3081 && (inst
.reloc
.exp
.X_op
== O_symbol
)
3082 && (pool
->literals
[entry
].X_add_number
3083 == inst
.reloc
.exp
.X_add_number
)
3084 && (pool
->literals
[entry
].X_add_symbol
3085 == inst
.reloc
.exp
.X_add_symbol
)
3086 && (pool
->literals
[entry
].X_op_symbol
3087 == inst
.reloc
.exp
.X_op_symbol
))
3091 /* Do we need to create a new entry? */
3092 if (entry
== pool
->next_free_entry
)
3094 if (entry
>= MAX_LITERAL_POOL_SIZE
)
3096 inst
.error
= _("literal pool overflow");
3100 pool
->literals
[entry
] = inst
.reloc
.exp
;
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type
== DEBUG_DWARF2
)
3107 dwarf2_where (pool
->locs
+ entry
);
3109 pool
->next_free_entry
+= 1;
3112 inst
.reloc
.exp
.X_op
= O_symbol
;
3113 inst
.reloc
.exp
.X_add_number
= ((int) entry
) * 4;
3114 inst
.reloc
.exp
.X_add_symbol
= pool
->symbol
;
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3123 symbol_locate (symbolS
* symbolP
,
3124 const char * name
, /* It is copied, the caller can modify. */
3125 segT segment
, /* Segment identifier (SEG_<something>). */
3126 valueT valu
, /* Symbol value. */
3127 fragS
* frag
) /* Associated fragment. */
3129 unsigned int name_length
;
3130 char * preserved_copy_of_name
;
3132 name_length
= strlen (name
) + 1; /* +1 for \0. */
3133 obstack_grow (¬es
, name
, name_length
);
3134 preserved_copy_of_name
= (char *) obstack_finish (¬es
);
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name
=
3138 tc_canonicalize_symbol_name (preserved_copy_of_name
);
3141 S_SET_NAME (symbolP
, preserved_copy_of_name
);
3143 S_SET_SEGMENT (symbolP
, segment
);
3144 S_SET_VALUE (symbolP
, valu
);
3145 symbol_clear_list_pointers (symbolP
);
3147 symbol_set_frag (symbolP
, frag
);
3149 /* Link to end of symbol chain. */
3151 extern int symbol_table_frozen
;
3153 if (symbol_table_frozen
)
3157 symbol_append (symbolP
, symbol_lastP
, & symbol_rootP
, & symbol_lastP
);
3159 obj_symbol_new_hook (symbolP
);
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP
);
3166 verify_symbol_chain (symbol_rootP
, symbol_lastP
);
3167 #endif /* DEBUG_SYMS */
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED
)
3175 literal_pool
* pool
;
3178 pool
= find_literal_pool ();
3180 || pool
->symbol
== NULL
3181 || pool
->next_free_entry
== 0)
3184 mapping_state (MAP_DATA
);
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3189 frag_align (2, 0, 0);
3191 record_alignment (now_seg
, 2);
3193 sprintf (sym_name
, "$$lit_\002%x", pool
->id
);
3195 symbol_locate (pool
->symbol
, sym_name
, now_seg
,
3196 (valueT
) frag_now_fix (), frag_now
);
3197 symbol_table_insert (pool
->symbol
);
3199 ARM_SET_THUMB (pool
->symbol
, thumb_mode
);
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool
->symbol
, support_interwork
);
3205 for (entry
= 0; entry
< pool
->next_free_entry
; entry
++)
3208 if (debug_type
== DEBUG_DWARF2
)
3209 dwarf2_gen_line_info (frag_now_fix (), pool
->locs
+ entry
);
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool
->literals
[entry
]), 4); /* .word */
3215 /* Mark the pool as empty. */
3216 pool
->next_free_entry
= 0;
3217 pool
->symbol
= NULL
;
3221 /* Forward declarations for functions below, in the MD interface
3223 static void fix_new_arm (fragS
*, int, short, expressionS
*, int, int);
3224 static valueT
create_unwind_entry (int);
3225 static void start_unwind_section (const segT
, int);
3226 static void add_unwind_opcode (valueT
, int);
3227 static void flush_pending_unwind (void);
3229 /* Directives: Data. */
3232 s_arm_elf_cons (int nbytes
)
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3240 if (is_it_end_of_statement ())
3242 demand_empty_rest_of_line ();
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes
);
3250 mapping_state (MAP_DATA
);
3254 char *base
= input_line_pointer
;
3258 if (exp
.X_op
!= O_symbol
)
3259 emit_expr (&exp
, (unsigned int) nbytes
);
3262 char *before_reloc
= input_line_pointer
;
3263 reloc
= parse_reloc (&input_line_pointer
);
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3270 else if (reloc
== BFD_RELOC_UNUSED
)
3271 emit_expr (&exp
, (unsigned int) nbytes
);
3274 reloc_howto_type
*howto
= (reloc_howto_type
*)
3275 bfd_reloc_type_lookup (stdoutput
,
3276 (bfd_reloc_code_real_type
) reloc
);
3277 int size
= bfd_get_reloc_size (howto
);
3279 if (reloc
== BFD_RELOC_ARM_PLT32
)
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc
= BFD_RELOC_UNUSED
;
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto
->name
, nbytes
);
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p
= input_line_pointer
;
3297 char *save_buf
= (char *) alloca (input_line_pointer
- base
);
3298 memcpy (save_buf
, base
, input_line_pointer
- base
);
3299 memmove (base
+ (input_line_pointer
- before_reloc
),
3300 base
, before_reloc
- base
);
3302 input_line_pointer
= base
+ (input_line_pointer
-before_reloc
);
3304 memcpy (base
, save_buf
, p
- base
);
3306 offset
= nbytes
- size
;
3307 p
= frag_more ((int) nbytes
);
3308 fix_new_exp (frag_now
, p
- frag_now
->fr_literal
+ offset
,
3309 size
, &exp
, 0, (enum bfd_reloc_code_real
) reloc
);
3314 while (*input_line_pointer
++ == ',');
3316 /* Put terminator back into stream. */
3317 input_line_pointer
--;
3318 demand_empty_rest_of_line ();
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3325 emit_thumb32_expr (expressionS
* exp
)
3327 expressionS exp_high
= *exp
;
3329 exp_high
.X_add_number
= (unsigned long)exp_high
.X_add_number
>> 16;
3330 emit_expr (& exp_high
, (unsigned int) THUMB_SIZE
);
3331 exp
->X_add_number
&= 0xffff;
3332 emit_expr (exp
, (unsigned int) THUMB_SIZE
);
3335 /* Guess the instruction size based on the opcode. */
3338 thumb_insn_size (int opcode
)
3340 if ((unsigned int) opcode
< 0xe800u
)
3342 else if ((unsigned int) opcode
>= 0xe8000000u
)
3349 emit_insn (expressionS
*exp
, int nbytes
)
3353 if (exp
->X_op
== O_constant
)
3358 size
= thumb_insn_size (exp
->X_add_number
);
3362 if (size
== 2 && (unsigned int)exp
->X_add_number
> 0xffffu
)
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3370 if (now_it
.state
== AUTOMATIC_IT_BLOCK
)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN
, 0);
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN
, 0);
3375 if (thumb_mode
&& (size
> THUMB_SIZE
) && !target_big_endian
)
3376 emit_thumb32_expr (exp
);
3378 emit_expr (exp
, (unsigned int) size
);
3380 it_fsm_post_encode ();
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3388 as_bad (_("constant expression required"));
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3397 s_arm_elf_inst (int nbytes
)
3399 if (is_it_end_of_statement ())
3401 demand_empty_rest_of_line ();
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3409 mapping_state (MAP_THUMB
);
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3421 mapping_state (MAP_ARM
);
3430 if (! emit_insn (& exp
, nbytes
))
3432 ignore_rest_of_line ();
3436 while (*input_line_pointer
++ == ',');
3438 /* Put terminator back into stream. */
3439 input_line_pointer
--;
3440 demand_empty_rest_of_line ();
3443 /* Parse a .rel31 directive. */
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED
)
3453 if (*input_line_pointer
== '1')
3454 highbit
= 0x80000000;
3455 else if (*input_line_pointer
!= '0')
3456 as_bad (_("expected 0 or 1"));
3458 input_line_pointer
++;
3459 if (*input_line_pointer
!= ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer
++;
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3467 #ifdef md_cons_align
3471 mapping_state (MAP_DATA
);
3476 md_number_to_chars (p
, highbit
, 4);
3477 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 1,
3478 BFD_RELOC_ARM_PREL31
);
3480 demand_empty_rest_of_line ();
3483 /* Directives: AEABI stack-unwind tables. */
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED
)
3490 demand_empty_rest_of_line ();
3491 if (unwind
.proc_start
)
3493 as_bad (_("duplicate .fnstart directive"));
3497 /* Mark the start of the function. */
3498 unwind
.proc_start
= expr_build_dot ();
3500 /* Reset the rest of the unwind info. */
3501 unwind
.opcode_count
= 0;
3502 unwind
.table_entry
= NULL
;
3503 unwind
.personality_routine
= NULL
;
3504 unwind
.personality_index
= -1;
3505 unwind
.frame_size
= 0;
3506 unwind
.fp_offset
= 0;
3507 unwind
.fp_reg
= REG_SP
;
3509 unwind
.sp_restored
= 0;
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED
)
3519 demand_empty_rest_of_line ();
3520 if (!unwind
.proc_start
)
3521 as_bad (MISSING_FNSTART
);
3523 if (unwind
.table_entry
)
3524 as_bad (_("duplicate .handlerdata directive"));
3526 create_unwind_entry (1);
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED
)
3537 unsigned int marked_pr_dependency
;
3539 demand_empty_rest_of_line ();
3541 if (!unwind
.proc_start
)
3543 as_bad (_(".fnend directive without .fnstart"));
3547 /* Add eh table entry. */
3548 if (unwind
.table_entry
== NULL
)
3549 val
= create_unwind_entry (0);
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind
.saved_seg
, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg
, 2);
3558 ptr
= frag_more (8);
3560 where
= frag_now_fix () - 8;
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now
, where
, 4, unwind
.proc_start
, 0, 1,
3564 BFD_RELOC_ARM_PREL31
);
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
;
3570 if (unwind
.personality_index
>= 0 && unwind
.personality_index
< 3
3571 && !(marked_pr_dependency
& (1 << unwind
.personality_index
)))
3573 static const char *const name
[] =
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3579 symbolS
*pr
= symbol_find_or_make (name
[unwind
.personality_index
]);
3580 fix_new (frag_now
, where
, 0, pr
, 0, 1, BFD_RELOC_NONE
);
3581 seg_info (now_seg
)->tc_segment_info_data
.marked_pr_dependency
3582 |= 1 << unwind
.personality_index
;
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr
+ 4, val
, 4);
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now
, where
+ 4, 4, unwind
.table_entry
, 0, 1,
3591 BFD_RELOC_ARM_PREL31
);
3593 /* Restore the original section. */
3594 subseg_set (unwind
.saved_seg
, unwind
.saved_subseg
);
3596 unwind
.proc_start
= NULL
;
3600 /* Parse an unwind_cantunwind directive. */
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED
)
3605 demand_empty_rest_of_line ();
3606 if (!unwind
.proc_start
)
3607 as_bad (MISSING_FNSTART
);
3609 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3612 unwind
.personality_index
= -2;
3616 /* Parse a personalityindex directive. */
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED
)
3623 if (!unwind
.proc_start
)
3624 as_bad (MISSING_FNSTART
);
3626 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3631 if (exp
.X_op
!= O_constant
3632 || exp
.X_add_number
< 0 || exp
.X_add_number
> 15)
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3639 unwind
.personality_index
= exp
.X_add_number
;
3641 demand_empty_rest_of_line ();
3645 /* Parse a personality directive. */
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED
)
3652 if (!unwind
.proc_start
)
3653 as_bad (MISSING_FNSTART
);
3655 if (unwind
.personality_routine
|| unwind
.personality_index
!= -1)
3656 as_bad (_("duplicate .personality directive"));
3658 name
= input_line_pointer
;
3659 c
= get_symbol_end ();
3660 p
= input_line_pointer
;
3661 unwind
.personality_routine
= symbol_find_or_make (name
);
3663 demand_empty_rest_of_line ();
3667 /* Parse a directive saving core registers. */
3670 s_arm_unwind_save_core (void)
3676 range
= parse_reg_list (&input_line_pointer
);
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3684 demand_empty_rest_of_line ();
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind
.sp_restored
&& unwind
.fp_reg
== 12
3690 && (range
& 0x3000) == 0x1000)
3692 unwind
.opcode_count
--;
3693 unwind
.sp_restored
= 0;
3694 range
= (range
| 0x2000) & ~0x1000;
3695 unwind
.pending_offset
= 0;
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n
= 0; n
< 8; n
++)
3705 /* Break at the first non-saved register. */
3706 if ((range
& (1 << (n
+ 4))) == 0)
3709 /* See if there are any other bits set. */
3710 if (n
== 0 || (range
& (0xfff0 << n
) & 0xbff0) != 0)
3712 /* Use the long form. */
3713 op
= 0x8000 | ((range
>> 4) & 0xfff);
3714 add_unwind_opcode (op
, 2);
3718 /* Use the short form. */
3720 op
= 0xa8; /* Pop r14. */
3722 op
= 0xa0; /* Do not pop r14. */
3724 add_unwind_opcode (op
, 1);
3731 op
= 0xb100 | (range
& 0xf);
3732 add_unwind_opcode (op
, 2);
3735 /* Record the number of bytes pushed. */
3736 for (n
= 0; n
< 16; n
++)
3738 if (range
& (1 << n
))
3739 unwind
.frame_size
+= 4;
3744 /* Parse a directive saving FPA registers. */
3747 s_arm_unwind_save_fpa (int reg
)
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer
) != FAIL
)
3757 exp
.X_op
= O_illegal
;
3759 if (exp
.X_op
!= O_constant
)
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3766 num_regs
= exp
.X_add_number
;
3768 if (num_regs
< 1 || num_regs
> 4)
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3775 demand_empty_rest_of_line ();
3780 op
= 0xb4 | (num_regs
- 1);
3781 add_unwind_opcode (op
, 1);
3786 op
= 0xc800 | (reg
<< 4) | (num_regs
- 1);
3787 add_unwind_opcode (op
, 2);
3789 unwind
.frame_size
+= num_regs
* 12;
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3796 s_arm_unwind_save_vfp_armv6 (void)
3801 int num_vfpv3_regs
= 0;
3802 int num_regs_below_16
;
3804 count
= parse_vfp_reg_list (&input_line_pointer
, &start
, REGLIST_VFP_D
);
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3812 demand_empty_rest_of_line ();
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3819 num_vfpv3_regs
= count
;
3820 else if (start
+ count
> 16)
3821 num_vfpv3_regs
= start
+ count
- 16;
3823 if (num_vfpv3_regs
> 0)
3825 int start_offset
= start
> 16 ? start
- 16 : 0;
3826 op
= 0xc800 | (start_offset
<< 4) | (num_vfpv3_regs
- 1);
3827 add_unwind_opcode (op
, 2);
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16
= num_vfpv3_regs
> 0 ? 16 - (int) start
: count
;
3832 gas_assert (num_regs_below_16
+ num_vfpv3_regs
== count
);
3833 if (num_regs_below_16
> 0)
3835 op
= 0xc900 | (start
<< 4) | (num_regs_below_16
- 1);
3836 add_unwind_opcode (op
, 2);
3839 unwind
.frame_size
+= count
* 8;
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3846 s_arm_unwind_save_vfp (void)
3852 count
= parse_vfp_reg_list (&input_line_pointer
, ®
, REGLIST_VFP_D
);
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3860 demand_empty_rest_of_line ();
3865 op
= 0xb8 | (count
- 1);
3866 add_unwind_opcode (op
, 1);
3871 op
= 0xb300 | (reg
<< 4) | (count
- 1);
3872 add_unwind_opcode (op
, 2);
3874 unwind
.frame_size
+= count
* 8 + 4;
3878 /* Parse a directive saving iWMMXt data registers. */
3881 s_arm_unwind_save_mmxwr (void)
3889 if (*input_line_pointer
== '{')
3890 input_line_pointer
++;
3894 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3898 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3903 as_tsktsk (_("register list not in ascending order"));
3906 if (*input_line_pointer
== '-')
3908 input_line_pointer
++;
3909 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWR
);
3912 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWR
]));
3915 else if (reg
>= hi_reg
)
3917 as_bad (_("bad register range"));
3920 for (; reg
< hi_reg
; reg
++)
3924 while (skip_past_comma (&input_line_pointer
) != FAIL
);
3926 if (*input_line_pointer
== '}')
3927 input_line_pointer
++;
3929 demand_empty_rest_of_line ();
3931 /* Generate any deferred opcodes because we're going to be looking at
3933 flush_pending_unwind ();
3935 for (i
= 0; i
< 16; i
++)
3937 if (mask
& (1 << i
))
3938 unwind
.frame_size
+= 8;
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3944 if (unwind
.opcode_count
> 0)
3946 i
= unwind
.opcodes
[unwind
.opcode_count
- 1];
3947 if ((i
& 0xf8) == 0xc0)
3950 /* Only merge if the blocks are contiguous. */
3953 if ((mask
& 0xfe00) == (1 << 9))
3955 mask
|= ((1 << (i
+ 11)) - 1) & 0xfc00;
3956 unwind
.opcode_count
--;
3959 else if (i
== 6 && unwind
.opcode_count
>= 2)
3961 i
= unwind
.opcodes
[unwind
.opcode_count
- 2];
3965 op
= 0xffff << (reg
- 1);
3967 && ((mask
& op
) == (1u << (reg
- 1))))
3969 op
= (1 << (reg
+ i
+ 1)) - 1;
3970 op
&= ~((1 << reg
) - 1);
3972 unwind
.opcode_count
-= 2;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg
= 15; reg
>= -1; reg
--)
3983 /* Save registers in blocks. */
3985 || !(mask
& (1 << reg
)))
3987 /* We found an unsaved reg. Generate opcodes to save the
3994 op
= 0xc0 | (hi_reg
- 10);
3995 add_unwind_opcode (op
, 1);
4000 op
= 0xc600 | ((reg
+ 1) << 4) | ((hi_reg
- reg
) - 1);
4001 add_unwind_opcode (op
, 2);
4010 ignore_rest_of_line ();
4014 s_arm_unwind_save_mmxwcg (void)
4021 if (*input_line_pointer
== '{')
4022 input_line_pointer
++;
4026 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4030 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4036 as_tsktsk (_("register list not in ascending order"));
4039 if (*input_line_pointer
== '-')
4041 input_line_pointer
++;
4042 hi_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_MMXWCG
);
4045 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_MMXWCG
]));
4048 else if (reg
>= hi_reg
)
4050 as_bad (_("bad register range"));
4053 for (; reg
< hi_reg
; reg
++)
4057 while (skip_past_comma (&input_line_pointer
) != FAIL
);
4059 if (*input_line_pointer
== '}')
4060 input_line_pointer
++;
4062 demand_empty_rest_of_line ();
4064 /* Generate any deferred opcodes because we're going to be looking at
4066 flush_pending_unwind ();
4068 for (reg
= 0; reg
< 16; reg
++)
4070 if (mask
& (1 << reg
))
4071 unwind
.frame_size
+= 4;
4074 add_unwind_opcode (op
, 2);
4077 ignore_rest_of_line ();
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4085 s_arm_unwind_save (int arch_v6
)
4088 struct reg_entry
*reg
;
4089 bfd_boolean had_brace
= FALSE
;
4091 if (!unwind
.proc_start
)
4092 as_bad (MISSING_FNSTART
);
4094 /* Figure out what sort of save we have. */
4095 peek
= input_line_pointer
;
4103 reg
= arm_reg_parse_multi (&peek
);
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4121 input_line_pointer
= peek
;
4122 s_arm_unwind_save_fpa (reg
->number
);
4125 case REG_TYPE_RN
: s_arm_unwind_save_core (); return;
4128 s_arm_unwind_save_vfp_armv6 ();
4130 s_arm_unwind_save_vfp ();
4132 case REG_TYPE_MMXWR
: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG
: s_arm_unwind_save_mmxwcg (); return;
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4142 /* Parse an unwind_movsp directive. */
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED
)
4151 if (!unwind
.proc_start
)
4152 as_bad (MISSING_FNSTART
);
4154 reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4157 as_bad ("%s", _(reg_expected_msgs
[REG_TYPE_RN
]));
4158 ignore_rest_of_line ();
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4165 if (immediate_for_directive (&offset
) == FAIL
)
4171 demand_empty_rest_of_line ();
4173 if (reg
== REG_SP
|| reg
== REG_PC
)
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4179 if (unwind
.fp_reg
!= REG_SP
)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4182 /* Generate opcode to restore the value. */
4184 add_unwind_opcode (op
, 1);
4186 /* Record the information for later. */
4187 unwind
.fp_reg
= reg
;
4188 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4189 unwind
.sp_restored
= 1;
4192 /* Parse an unwind_pad directive. */
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED
)
4199 if (!unwind
.proc_start
)
4200 as_bad (MISSING_FNSTART
);
4202 if (immediate_for_directive (&offset
) == FAIL
)
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind
.frame_size
+= offset
;
4214 unwind
.pending_offset
+= offset
;
4216 demand_empty_rest_of_line ();
4219 /* Parse an unwind_setfp directive. */
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED
)
4228 if (!unwind
.proc_start
)
4229 as_bad (MISSING_FNSTART
);
4231 fp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4232 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4235 sp_reg
= arm_reg_parse (&input_line_pointer
, REG_TYPE_RN
);
4237 if (fp_reg
== FAIL
|| sp_reg
== FAIL
)
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer
) != FAIL
)
4247 if (immediate_for_directive (&offset
) == FAIL
)
4253 demand_empty_rest_of_line ();
4255 if (sp_reg
!= REG_SP
&& sp_reg
!= unwind
.fp_reg
)
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind
.fp_reg
= fp_reg
;
4265 if (sp_reg
== REG_SP
)
4266 unwind
.fp_offset
= unwind
.frame_size
- offset
;
4268 unwind
.fp_offset
-= offset
;
4271 /* Parse an unwind_raw directive. */
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED
)
4277 /* This is an arbitrary limit. */
4278 unsigned char op
[16];
4281 if (!unwind
.proc_start
)
4282 as_bad (MISSING_FNSTART
);
4285 if (exp
.X_op
== O_constant
4286 && skip_past_comma (&input_line_pointer
) != FAIL
)
4288 unwind
.frame_size
+= exp
.X_add_number
;
4292 exp
.X_op
= O_illegal
;
4294 if (exp
.X_op
!= O_constant
)
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4303 /* Parse the opcode. */
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4311 if (exp
.X_op
!= O_constant
|| exp
.X_add_number
& ~0xff)
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4317 op
[count
++] = exp
.X_add_number
;
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer
) == FAIL
)
4326 /* Add the opcode bytes in reverse order. */
4328 add_unwind_opcode (op
[count
], 1);
4330 demand_empty_rest_of_line ();
4334 /* Parse a .eabi_attribute directive. */
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED
)
4339 int tag
= s_vendor_attribute (OBJ_ATTR_PROC
);
4341 if (tag
< NUM_KNOWN_OBJ_ATTRIBUTES
)
4342 attributes_set_explicitly
[tag
] = 1;
4345 /* Emit a tls fix for the symbol. */
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED
)
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4356 #ifdef md_cons_align
4360 /* Since we're just labelling the code, there's no need to define a
4363 p
= obstack_next_free (&frchain_now
->frch_obstack
);
4364 fix_new_arm (frag_now
, p
- frag_now
->fr_literal
, 4, &exp
, 0,
4365 thumb_mode
? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ
);
4368 #endif /* OBJ_ELF */
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED
)
4386 if (exp
.X_op
== O_symbol
)
4387 exp
.X_op
= O_secrel
;
4389 emit_expr (&exp
, 4);
4391 while (*input_line_pointer
++ == ',');
4393 input_line_pointer
--;
4394 demand_empty_rest_of_line ();
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4404 const pseudo_typeS md_pseudo_table
[] =
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req
, 0 },
4408 /* Following two are likewise never called. */
4411 { "unreq", s_unreq
, 0 },
4412 { "bss", s_bss
, 0 },
4413 { "align", s_align
, 0 },
4414 { "arm", s_arm
, 0 },
4415 { "thumb", s_thumb
, 0 },
4416 { "code", s_code
, 0 },
4417 { "force_thumb", s_force_thumb
, 0 },
4418 { "thumb_func", s_thumb_func
, 0 },
4419 { "thumb_set", s_thumb_set
, 0 },
4420 { "even", s_even
, 0 },
4421 { "ltorg", s_ltorg
, 0 },
4422 { "pool", s_ltorg
, 0 },
4423 { "syntax", s_syntax
, 0 },
4424 { "cpu", s_arm_cpu
, 0 },
4425 { "arch", s_arm_arch
, 0 },
4426 { "object_arch", s_arm_object_arch
, 0 },
4427 { "fpu", s_arm_fpu
, 0 },
4428 { "arch_extension", s_arm_arch_extension
, 0 },
4430 { "word", s_arm_elf_cons
, 4 },
4431 { "long", s_arm_elf_cons
, 4 },
4432 { "inst.n", s_arm_elf_inst
, 2 },
4433 { "inst.w", s_arm_elf_inst
, 4 },
4434 { "inst", s_arm_elf_inst
, 0 },
4435 { "rel31", s_arm_rel31
, 0 },
4436 { "fnstart", s_arm_unwind_fnstart
, 0 },
4437 { "fnend", s_arm_unwind_fnend
, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind
, 0 },
4439 { "personality", s_arm_unwind_personality
, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex
, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata
, 0 },
4442 { "save", s_arm_unwind_save
, 0 },
4443 { "vsave", s_arm_unwind_save
, 1 },
4444 { "movsp", s_arm_unwind_movsp
, 0 },
4445 { "pad", s_arm_unwind_pad
, 0 },
4446 { "setfp", s_arm_unwind_setfp
, 0 },
4447 { "unwind_raw", s_arm_unwind_raw
, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute
, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq
, 0 },
4453 /* These are used for dwarf. */
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file
, 0 },
4459 { "loc", dwarf2_directive_loc
, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels
, 0 },
4462 { "extend", float_cons
, 'x' },
4463 { "ldouble", float_cons
, 'x' },
4464 { "packed", float_cons
, 'p' },
4466 {"secrel32", pe_directive_secrel
, 0},
4471 /* Parser functions used exclusively in instruction operands. */
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4480 parse_immediate (char **str
, int *val
, int min
, int max
,
4481 bfd_boolean prefix_opt
)
4484 my_get_expression (&exp
, str
, prefix_opt
? GE_OPT_PREFIX
: GE_IMM_PREFIX
);
4485 if (exp
.X_op
!= O_constant
)
4487 inst
.error
= _("constant expression required");
4491 if (exp
.X_add_number
< min
|| exp
.X_add_number
> max
)
4493 inst
.error
= _("immediate value out of range");
4497 *val
= exp
.X_add_number
;
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4506 parse_big_immediate (char **str
, int i
)
4511 my_get_expression (&exp
, &ptr
, GE_OPT_PREFIX_BIG
);
4513 if (exp
.X_op
== O_constant
)
4515 inst
.operands
[i
].imm
= exp
.X_add_number
& 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp
.X_add_number
& ~(offsetT
)(0xffffffffU
)) != 0)
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst
.operands
[i
].reg
= ((exp
.X_add_number
>> 16) >> 16) & 0xffffffff;
4523 inst
.operands
[i
].regisimm
= 1;
4526 else if (exp
.X_op
== O_big
4527 && LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 32)
4529 unsigned parts
= 32 / LITTLENUM_NUMBER_OF_BITS
, j
, idx
= 0;
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts
!= 0);
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS
* exp
.X_add_number
> 64)
4542 LITTLENUM_TYPE m
= -1;
4544 if (generic_bignum
[parts
* 2] != 0
4545 && generic_bignum
[parts
* 2] != m
)
4548 for (j
= parts
* 2 + 1; j
< (unsigned) exp
.X_add_number
; j
++)
4549 if (generic_bignum
[j
] != generic_bignum
[j
-1])
4553 inst
.operands
[i
].imm
= 0;
4554 for (j
= 0; j
< parts
; j
++, idx
++)
4555 inst
.operands
[i
].imm
|= generic_bignum
[idx
]
4556 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4557 inst
.operands
[i
].reg
= 0;
4558 for (j
= 0; j
< parts
; j
++, idx
++)
4559 inst
.operands
[i
].reg
|= generic_bignum
[idx
]
4560 << (LITTLENUM_NUMBER_OF_BITS
* j
);
4561 inst
.operands
[i
].regisimm
= 1;
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4575 parse_fpa_immediate (char ** str
)
4577 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4586 for (i
= 0; fp_const
[i
]; i
++)
4588 if (strncmp (*str
, fp_const
[i
], strlen (fp_const
[i
])) == 0)
4592 *str
+= strlen (fp_const
[i
]);
4593 if (is_end_of_line
[(unsigned char) **str
])
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4604 memset (words
, 0, MAX_LITTLENUMS
* sizeof (LITTLENUM_TYPE
));
4606 /* Look for a raw floating point number. */
4607 if ((save_in
= atof_ieee (*str
, 'x', words
)) != NULL
4608 && is_end_of_line
[(unsigned char) *save_in
])
4610 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4612 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4614 if (words
[j
] != fp_values
[i
][j
])
4618 if (j
== MAX_LITTLENUMS
)
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in
= input_line_pointer
;
4629 input_line_pointer
= *str
;
4630 if (expression (&exp
) == absolute_section
4631 && exp
.X_op
== O_big
4632 && exp
.X_add_number
< 0)
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4636 if (gen_to_words (words
, 5, (long) 15) == 0)
4638 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
4640 for (j
= 0; j
< MAX_LITTLENUMS
; j
++)
4642 if (words
[j
] != fp_values
[i
][j
])
4646 if (j
== MAX_LITTLENUMS
)
4648 *str
= input_line_pointer
;
4649 input_line_pointer
= save_in
;
4656 *str
= input_line_pointer
;
4657 input_line_pointer
= save_in
;
4658 inst
.error
= _("invalid FPA immediate expression");
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4666 is_quarter_float (unsigned imm
)
4668 int bs
= (imm
& 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm
& 0x7ffff) == 0 && ((imm
& 0x7e000000) ^ bs
) == 0;
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4679 parse_qfloat_immediate (char **ccp
, int *immed
)
4683 LITTLENUM_TYPE words
[MAX_LITTLENUMS
];
4684 int found_fpchar
= 0;
4686 skip_past_char (&str
, '#');
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4694 skip_whitespace (fpnum
);
4696 if (strncmp (fpnum
, "0x", 2) == 0)
4700 for (; *fpnum
!= '\0' && *fpnum
!= ' ' && *fpnum
!= '\n'; fpnum
++)
4701 if (*fpnum
== '.' || *fpnum
== 'e' || *fpnum
== 'E')
4711 if ((str
= atof_ieee (str
, 's', words
)) != NULL
)
4713 unsigned fpword
= 0;
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i
= 0; i
< 32 / LITTLENUM_NUMBER_OF_BITS
; i
++)
4719 fpword
<<= LITTLENUM_NUMBER_OF_BITS
;
4723 if (is_quarter_float (fpword
) || (fpword
& 0x7fffffff) == 0)
4736 /* Shift operands. */
4739 SHIFT_LSL
, SHIFT_LSR
, SHIFT_ASR
, SHIFT_ROR
, SHIFT_RRX
4742 struct asm_shift_name
4745 enum shift_kind kind
;
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4751 NO_SHIFT_RESTRICT
, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE
, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE
, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE
, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE
, /* Shift must be LSL immediate. */
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4769 parse_shift (char **str
, int i
, enum parse_shift_mode mode
)
4771 const struct asm_shift_name
*shift_name
;
4772 enum shift_kind shift
;
4777 for (p
= *str
; ISALPHA (*p
); p
++)
4782 inst
.error
= _("shift expression expected");
4786 shift_name
= (const struct asm_shift_name
*) hash_find_n (arm_shift_hsh
, *str
,
4789 if (shift_name
== NULL
)
4791 inst
.error
= _("shift expression expected");
4795 shift
= shift_name
->kind
;
4799 case NO_SHIFT_RESTRICT
:
4800 case SHIFT_IMMEDIATE
: break;
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE
:
4803 if (shift
!= SHIFT_LSL
&& shift
!= SHIFT_ASR
)
4805 inst
.error
= _("'LSL' or 'ASR' required");
4810 case SHIFT_LSL_IMMEDIATE
:
4811 if (shift
!= SHIFT_LSL
)
4813 inst
.error
= _("'LSL' required");
4818 case SHIFT_ASR_IMMEDIATE
:
4819 if (shift
!= SHIFT_ASR
)
4821 inst
.error
= _("'ASR' required");
4829 if (shift
!= SHIFT_RRX
)
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p
);
4834 if (mode
== NO_SHIFT_RESTRICT
4835 && (reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
4837 inst
.operands
[i
].imm
= reg
;
4838 inst
.operands
[i
].immisreg
= 1;
4840 else if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
4843 inst
.operands
[i
].shift_kind
= shift
;
4844 inst
.operands
[i
].shifted
= 1;
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4852 #<immediate>, <rotate>
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4861 parse_shifter_operand (char **str
, int i
)
4866 if ((value
= arm_reg_parse (str
, REG_TYPE_RN
)) != FAIL
)
4868 inst
.operands
[i
].reg
= value
;
4869 inst
.operands
[i
].isreg
= 1;
4871 /* parse_shift will override this if appropriate */
4872 inst
.reloc
.exp
.X_op
= O_constant
;
4873 inst
.reloc
.exp
.X_add_number
= 0;
4875 if (skip_past_comma (str
) == FAIL
)
4878 /* Shift operation on register. */
4879 return parse_shift (str
, i
, NO_SHIFT_RESTRICT
);
4882 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_IMM_PREFIX
))
4885 if (skip_past_comma (str
) == SUCCESS
)
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp
, str
, GE_NO_PREFIX
))
4891 if (exp
.X_op
!= O_constant
|| inst
.reloc
.exp
.X_op
!= O_constant
)
4893 inst
.error
= _("constant expression expected");
4897 value
= exp
.X_add_number
;
4898 if (value
< 0 || value
> 30 || value
% 2 != 0)
4900 inst
.error
= _("invalid rotation");
4903 if (inst
.reloc
.exp
.X_add_number
< 0 || inst
.reloc
.exp
.X_add_number
> 255)
4905 inst
.error
= _("invalid constant");
4909 /* Encode as specified. */
4910 inst
.operands
[i
].imm
= inst
.reloc
.exp
.X_add_number
| value
<< 7;
4914 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
4915 inst
.reloc
.pc_rel
= 0;
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4926 struct group_reloc_table_entry
4937 /* Varieties of non-ALU group relocation. */
4944 static struct group_reloc_table_entry group_reloc_table
[] =
4945 { /* Program counter relative: */
4947 BFD_RELOC_ARM_ALU_PC_G0_NC
, /* ALU */
4952 BFD_RELOC_ARM_ALU_PC_G0
, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0
, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0
, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0
}, /* LDC */
4957 BFD_RELOC_ARM_ALU_PC_G1_NC
, /* ALU */
4962 BFD_RELOC_ARM_ALU_PC_G1
, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1
, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1
, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1
}, /* LDC */
4967 BFD_RELOC_ARM_ALU_PC_G2
, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2
, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2
, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2
}, /* LDC */
4971 /* Section base relative */
4973 BFD_RELOC_ARM_ALU_SB_G0_NC
, /* ALU */
4978 BFD_RELOC_ARM_ALU_SB_G0
, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0
, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0
, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0
}, /* LDC */
4983 BFD_RELOC_ARM_ALU_SB_G1_NC
, /* ALU */
4988 BFD_RELOC_ARM_ALU_SB_G1
, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1
, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1
, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1
}, /* LDC */
4993 BFD_RELOC_ARM_ALU_SB_G2
, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2
, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2
, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2
} }; /* LDC */
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5006 find_group_reloc_table_entry (char **str
, struct group_reloc_table_entry
**out
)
5009 for (i
= 0; i
< ARRAY_SIZE (group_reloc_table
); i
++)
5011 int length
= strlen (group_reloc_table
[i
].name
);
5013 if (strncasecmp (group_reloc_table
[i
].name
, *str
, length
) == 0
5014 && (*str
)[length
] == ':')
5016 *out
= &group_reloc_table
[i
];
5017 *str
+= (length
+ 1);
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5037 Everything else is as for parse_shifter_operand. */
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str
, int i
)
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5046 if (((*str
)[0] == '#' && (*str
)[1] == ':')
5047 || (*str
)[0] == ':')
5049 struct group_reloc_table_entry
*entry
;
5051 if ((*str
)[0] == '#')
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str
, &entry
) == FAIL
)
5059 inst
.error
= _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst
.reloc
.exp
, str
, GE_NO_PREFIX
))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->alu_code
;
5070 gas_assert (inst
.reloc
.type
!= 0);
5072 return PARSE_OPERAND_SUCCESS
;
5075 return parse_shifter_operand (str
, i
) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS
: PARSE_OPERAND_FAIL
;
5078 /* Never reached. */
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str
, int i
)
5091 my_get_expression (&exp
, &p
, GE_NO_PREFIX
);
5093 if (exp
.X_op
!= O_constant
)
5095 inst
.error
= _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL
;
5099 inst
.operands
[i
].imm
= exp
.X_add_number
<< 8;
5100 inst
.operands
[i
].immisalign
= 1;
5101 /* Alignments are not pre-indexes. */
5102 inst
.operands
[i
].preind
= 0;
5105 return PARSE_OPERAND_SUCCESS
;
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5111 Preindexed addressing (.preind=1):
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5118 These three may have a trailing ! which causes .writeback to be set also.
5120 Postindexed addressing (.postind=1, .writeback=1):
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5127 Unindexed addressing (.preind=0, .postind=0):
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5140 static parse_operand_result
5141 parse_address_main (char **str
, int i
, int group_relocations
,
5142 group_reloc_type group_type
)
5147 if (skip_past_char (&p
, '[') == FAIL
)
5149 if (skip_past_char (&p
, '=') == FAIL
)
5151 /* Bare address - translate to PC-relative offset. */
5152 inst
.reloc
.pc_rel
= 1;
5153 inst
.operands
[i
].reg
= REG_PC
;
5154 inst
.operands
[i
].isreg
= 1;
5155 inst
.operands
[i
].preind
= 1;
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5159 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5160 return PARSE_OPERAND_FAIL
;
5163 return PARSE_OPERAND_SUCCESS
;
5166 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5168 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5169 return PARSE_OPERAND_FAIL
;
5171 inst
.operands
[i
].reg
= reg
;
5172 inst
.operands
[i
].isreg
= 1;
5174 if (skip_past_comma (&p
) == SUCCESS
)
5176 inst
.operands
[i
].preind
= 1;
5179 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5181 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5183 inst
.operands
[i
].imm
= reg
;
5184 inst
.operands
[i
].immisreg
= 1;
5186 if (skip_past_comma (&p
) == SUCCESS
)
5187 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5188 return PARSE_OPERAND_FAIL
;
5190 else if (skip_past_char (&p
, ':') == SUCCESS
)
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5195 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5197 if (result
!= PARSE_OPERAND_SUCCESS
)
5202 if (inst
.operands
[i
].negative
)
5204 inst
.operands
[i
].negative
= 0;
5208 if (group_relocations
5209 && ((*p
== '#' && *(p
+ 1) == ':') || *p
== ':'))
5211 struct group_reloc_table_entry
*entry
;
5213 /* Skip over the #: or : sequence. */
5219 /* Try to parse a group relocation. Anything else is an
5221 if (find_group_reloc_table_entry (&p
, &entry
) == FAIL
)
5223 inst
.error
= _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5230 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5233 /* Record the relocation type. */
5237 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldr_code
;
5241 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldrs_code
;
5245 inst
.reloc
.type
= (bfd_reloc_code_real_type
) entry
->ldc_code
;
5252 if (inst
.reloc
.type
== 0)
5254 inst
.error
= _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK
;
5261 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
5262 return PARSE_OPERAND_FAIL
;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst
.reloc
.exp
.X_op
== O_constant
5265 && inst
.reloc
.exp
.X_add_number
== 0)
5267 skip_whitespace (q
);
5271 skip_whitespace (q
);
5274 inst
.operands
[i
].negative
= 1;
5279 else if (skip_past_char (&p
, ':') == SUCCESS
)
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result
= parse_neon_alignment (&p
, i
);
5285 if (result
!= PARSE_OPERAND_SUCCESS
)
5289 if (skip_past_char (&p
, ']') == FAIL
)
5291 inst
.error
= _("']' expected");
5292 return PARSE_OPERAND_FAIL
;
5295 if (skip_past_char (&p
, '!') == SUCCESS
)
5296 inst
.operands
[i
].writeback
= 1;
5298 else if (skip_past_comma (&p
) == SUCCESS
)
5300 if (skip_past_char (&p
, '{') == SUCCESS
)
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p
, &inst
.operands
[i
].imm
,
5304 0, 255, TRUE
) == FAIL
)
5305 return PARSE_OPERAND_FAIL
;
5307 if (skip_past_char (&p
, '}') == FAIL
)
5309 inst
.error
= _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL
;
5312 if (inst
.operands
[i
].preind
)
5314 inst
.error
= _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL
;
5318 return PARSE_OPERAND_SUCCESS
;
5322 inst
.operands
[i
].postind
= 1;
5323 inst
.operands
[i
].writeback
= 1;
5325 if (inst
.operands
[i
].preind
)
5327 inst
.error
= _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL
;
5332 else if (*p
== '-') p
++, inst
.operands
[i
].negative
= 1;
5334 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) != FAIL
)
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst
.operands
[i
].immisalign
)
5339 inst
.operands
[i
].imm
|= reg
;
5341 inst
.operands
[i
].imm
= reg
;
5342 inst
.operands
[i
].immisreg
= 1;
5344 if (skip_past_comma (&p
) == SUCCESS
)
5345 if (parse_shift (&p
, i
, SHIFT_IMMEDIATE
) == FAIL
)
5346 return PARSE_OPERAND_FAIL
;
5351 if (inst
.operands
[i
].negative
)
5353 inst
.operands
[i
].negative
= 0;
5356 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_IMM_PREFIX
))
5357 return PARSE_OPERAND_FAIL
;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst
.reloc
.exp
.X_op
== O_constant
5360 && inst
.reloc
.exp
.X_add_number
== 0)
5362 skip_whitespace (q
);
5366 skip_whitespace (q
);
5369 inst
.operands
[i
].negative
= 1;
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst
.operands
[i
].preind
== 0 && inst
.operands
[i
].postind
== 0)
5379 inst
.operands
[i
].preind
= 1;
5380 inst
.reloc
.exp
.X_op
= O_constant
;
5381 inst
.reloc
.exp
.X_add_number
= 0;
5384 return PARSE_OPERAND_SUCCESS
;
5388 parse_address (char **str
, int i
)
5390 return parse_address_main (str
, i
, 0, GROUP_LDR
) == PARSE_OPERAND_SUCCESS
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str
, int i
, group_reloc_type type
)
5397 return parse_address_main (str
, i
, 1, type
);
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5402 parse_half (char **str
)
5407 skip_past_char (&p
, '#');
5408 if (strncasecmp (p
, ":lower16:", 9) == 0)
5409 inst
.reloc
.type
= BFD_RELOC_ARM_MOVW
;
5410 else if (strncasecmp (p
, ":upper16:", 9) == 0)
5411 inst
.reloc
.type
= BFD_RELOC_ARM_MOVT
;
5413 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
5416 skip_whitespace (p
);
5419 if (my_get_expression (&inst
.reloc
.exp
, &p
, GE_NO_PREFIX
))
5422 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
5424 if (inst
.reloc
.exp
.X_op
!= O_constant
)
5426 inst
.error
= _("constant expression expected");
5429 if (inst
.reloc
.exp
.X_add_number
< 0
5430 || inst
.reloc
.exp
.X_add_number
> 0xffff)
5432 inst
.error
= _("immediate value out of range");
5440 /* Miscellaneous. */
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5445 parse_psr (char **str
, bfd_boolean lhs
)
5448 unsigned long psr_field
;
5449 const struct asm_psr
*psr
;
5451 bfd_boolean is_apsr
= FALSE
;
5452 bfd_boolean m_profile
= ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
);
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu
.core
== arm_arch_any
.core
)
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5463 if (strncasecmp (p
, "SPSR", 4) == 0)
5466 goto unsupported_psr
;
5468 psr_field
= SPSR_BIT
;
5470 else if (strncasecmp (p
, "CPSR", 4) == 0)
5473 goto unsupported_psr
;
5477 else if (strncasecmp (p
, "APSR", 4) == 0)
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5489 while (ISALNUM (*p
) || *p
== '_');
5491 if (strncasecmp (start
, "iapsr", 5) == 0
5492 || strncasecmp (start
, "eapsr", 5) == 0
5493 || strncasecmp (start
, "xpsr", 4) == 0
5494 || strncasecmp (start
, "psr", 3) == 0)
5495 p
= start
+ strcspn (start
, "rR") + 1;
5497 psr
= (const struct asm_psr
*) hash_find_n (arm_v7m_psr_hsh
, start
,
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr
->field
<= 3)
5507 psr_field
= psr
->field
;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5517 return psr
->field
| (lhs
? PSR_f
: 0);
5520 goto unsupported_psr
;
5526 /* A suffix follows. */
5532 while (ISALNUM (*p
) || *p
== '_');
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits
= 0;
5538 unsigned int g_bit
= 0;
5541 for (bit
= start
; bit
!= p
; bit
++)
5543 switch (TOLOWER (*bit
))
5546 nzcvq_bits
|= (nzcvq_bits
& 0x01) ? 0x20 : 0x01;
5550 nzcvq_bits
|= (nzcvq_bits
& 0x02) ? 0x20 : 0x02;
5554 nzcvq_bits
|= (nzcvq_bits
& 0x04) ? 0x20 : 0x04;
5558 nzcvq_bits
|= (nzcvq_bits
& 0x08) ? 0x20 : 0x08;
5562 nzcvq_bits
|= (nzcvq_bits
& 0x10) ? 0x20 : 0x10;
5566 g_bit
|= (g_bit
& 0x1) ? 0x2 : 0x1;
5570 inst
.error
= _("unexpected bit specified after APSR");
5575 if (nzcvq_bits
== 0x1f)
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
))
5582 inst
.error
= _("selected processor does not "
5583 "support DSP extension");
5590 if ((nzcvq_bits
& 0x20) != 0
5591 || (nzcvq_bits
!= 0x1f && nzcvq_bits
!= 0)
5592 || (g_bit
& 0x2) != 0)
5594 inst
.error
= _("bad bitmask specified after APSR");
5600 psr
= (const struct asm_psr
*) hash_find_n (arm_psr_hsh
, start
,
5605 psr_field
|= psr
->field
;
5611 goto error
; /* Garbage after "[CS]PSR". */
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5621 else if (!m_profile
)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field
|= (PSR_c
| PSR_f
);
5630 inst
.error
= _("selected processor does not support requested special "
5631 "purpose register");
5635 inst
.error
= _("flag for {c}psr instruction expected");
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5643 parse_cps_flags (char **str
)
5652 case '\0': case ',':
5655 case 'a': case 'A': saw_a_flag
= 1; val
|= 0x4; break;
5656 case 'i': case 'I': saw_a_flag
= 1; val
|= 0x2; break;
5657 case 'f': case 'F': saw_a_flag
= 1; val
|= 0x1; break;
5660 inst
.error
= _("unrecognized CPS flag");
5665 if (saw_a_flag
== 0)
5667 inst
.error
= _("missing CPS flags");
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5679 parse_endian_specifier (char **str
)
5684 if (strncasecmp (s
, "BE", 2))
5686 else if (strncasecmp (s
, "LE", 2))
5690 inst
.error
= _("valid endian specifiers are be or le");
5694 if (ISALNUM (s
[2]) || s
[2] == '_')
5696 inst
.error
= _("valid endian specifiers are be or le");
5701 return little_endian
;
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5709 parse_ror (char **str
)
5714 if (strncasecmp (s
, "ROR", 3) == 0)
5718 inst
.error
= _("missing rotation field after comma");
5722 if (parse_immediate (&s
, &rot
, 0, 24, FALSE
) == FAIL
)
5727 case 0: *str
= s
; return 0x0;
5728 case 8: *str
= s
; return 0x1;
5729 case 16: *str
= s
; return 0x2;
5730 case 24: *str
= s
; return 0x3;
5733 inst
.error
= _("rotation can only be 0, 8, 16, or 24");
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5741 parse_cond (char **str
)
5744 const struct asm_cond
*c
;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5752 while (ISALPHA (*q
) && n
< 3)
5754 cond
[n
] = TOLOWER (*q
);
5759 c
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, cond
, n
);
5762 inst
.error
= _("condition required");
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5773 mark_feature_used (const arm_feature_set
*feature
)
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
5779 /* Add the appropriate architecture feature for the barrier option used.
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, *feature
);
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, *feature
);
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5792 parse_barrier (char **str
)
5795 const struct asm_barrier_opt
*o
;
5798 while (ISALPHA (*q
))
5801 o
= (const struct asm_barrier_opt
*) hash_find_n (arm_barrier_opt_hsh
, p
,
5806 if (!mark_feature_used (&o
->arch
))
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5816 parse_tb (char **str
)
5821 if (skip_past_char (&p
, '[') == FAIL
)
5823 inst
.error
= _("'[' expected");
5827 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5829 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5832 inst
.operands
[0].reg
= reg
;
5834 if (skip_past_comma (&p
) == FAIL
)
5836 inst
.error
= _("',' expected");
5840 if ((reg
= arm_reg_parse (&p
, REG_TYPE_RN
)) == FAIL
)
5842 inst
.error
= _(reg_expected_msgs
[REG_TYPE_RN
]);
5845 inst
.operands
[0].imm
= reg
;
5847 if (skip_past_comma (&p
) == SUCCESS
)
5849 if (parse_shift (&p
, 0, SHIFT_LSL_IMMEDIATE
) == FAIL
)
5851 if (inst
.reloc
.exp
.X_add_number
!= 1)
5853 inst
.error
= _("invalid shift");
5856 inst
.operands
[0].shifted
= 1;
5859 if (skip_past_char (&p
, ']') == FAIL
)
5861 inst
.error
= _("']' expected");
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5876 parse_neon_mov (char **str
, int *which_operand
)
5878 int i
= *which_operand
, val
;
5879 enum arm_reg_type rtype
;
5881 struct neon_type_el optype
;
5883 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst
.operands
[i
].reg
= val
;
5887 inst
.operands
[i
].isscalar
= 1;
5888 inst
.operands
[i
].vectype
= optype
;
5889 inst
.operands
[i
++].present
= 1;
5891 if (skip_past_comma (&ptr
) == FAIL
)
5894 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5897 inst
.operands
[i
].reg
= val
;
5898 inst
.operands
[i
].isreg
= 1;
5899 inst
.operands
[i
].present
= 1;
5901 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
, &optype
))
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr
) == FAIL
)
5908 inst
.operands
[i
].reg
= val
;
5909 inst
.operands
[i
].isreg
= 1;
5910 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5911 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5912 inst
.operands
[i
].isvec
= 1;
5913 inst
.operands
[i
].vectype
= optype
;
5914 inst
.operands
[i
++].present
= 1;
5916 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst
.operands
[i
].reg
= val
;
5921 inst
.operands
[i
].isreg
= 1;
5922 inst
.operands
[i
].present
= 1;
5924 if (rtype
== REG_TYPE_NQ
)
5926 first_error (_("can't use Neon quad register here"));
5929 else if (rtype
!= REG_TYPE_VFS
)
5932 if (skip_past_comma (&ptr
) == FAIL
)
5934 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5936 inst
.operands
[i
].reg
= val
;
5937 inst
.operands
[i
].isreg
= 1;
5938 inst
.operands
[i
].present
= 1;
5941 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_NSDQ
, &rtype
,
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5949 inst
.operands
[i
].reg
= val
;
5950 inst
.operands
[i
].isreg
= 1;
5951 inst
.operands
[i
].isquad
= (rtype
== REG_TYPE_NQ
);
5952 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
5953 inst
.operands
[i
].isvec
= 1;
5954 inst
.operands
[i
].vectype
= optype
;
5955 inst
.operands
[i
].present
= 1;
5957 if (skip_past_comma (&ptr
) == SUCCESS
)
5962 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5965 inst
.operands
[i
].reg
= val
;
5966 inst
.operands
[i
].isreg
= 1;
5967 inst
.operands
[i
++].present
= 1;
5969 if (skip_past_comma (&ptr
) == FAIL
)
5972 if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) == FAIL
)
5975 inst
.operands
[i
].reg
= val
;
5976 inst
.operands
[i
].isreg
= 1;
5977 inst
.operands
[i
].present
= 1;
5980 else if (parse_qfloat_immediate (&ptr
, &inst
.operands
[i
].imm
) == SUCCESS
)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst
.operands
[i
].immisfloat
= 1;
5986 else if (parse_big_immediate (&ptr
, i
) == SUCCESS
)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5996 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
5999 inst
.operands
[i
].reg
= val
;
6000 inst
.operands
[i
].isreg
= 1;
6001 inst
.operands
[i
++].present
= 1;
6003 if (skip_past_comma (&ptr
) == FAIL
)
6006 if ((val
= parse_scalar (&ptr
, 8, &optype
)) != FAIL
)
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst
.operands
[i
].reg
= val
;
6010 inst
.operands
[i
].isscalar
= 1;
6011 inst
.operands
[i
].present
= 1;
6012 inst
.operands
[i
].vectype
= optype
;
6014 else if ((val
= arm_reg_parse (&ptr
, REG_TYPE_RN
)) != FAIL
)
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst
.operands
[i
].reg
= val
;
6018 inst
.operands
[i
].isreg
= 1;
6019 inst
.operands
[i
++].present
= 1;
6021 if (skip_past_comma (&ptr
) == FAIL
)
6024 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFSD
, &rtype
, &optype
))
6027 first_error (_(reg_expected_msgs
[REG_TYPE_VFSD
]));
6031 inst
.operands
[i
].reg
= val
;
6032 inst
.operands
[i
].isreg
= 1;
6033 inst
.operands
[i
].isvec
= 1;
6034 inst
.operands
[i
].issingle
= (rtype
== REG_TYPE_VFS
);
6035 inst
.operands
[i
].vectype
= optype
;
6036 inst
.operands
[i
].present
= 1;
6038 if (rtype
== REG_TYPE_VFS
)
6042 if (skip_past_comma (&ptr
) == FAIL
)
6044 if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
,
6047 first_error (_(reg_expected_msgs
[REG_TYPE_VFS
]));
6050 inst
.operands
[i
].reg
= val
;
6051 inst
.operands
[i
].isreg
= 1;
6052 inst
.operands
[i
].isvec
= 1;
6053 inst
.operands
[i
].issingle
= 1;
6054 inst
.operands
[i
].vectype
= optype
;
6055 inst
.operands
[i
].present
= 1;
6058 else if ((val
= arm_typed_reg_parse (&ptr
, REG_TYPE_VFS
, NULL
, &optype
))
6062 inst
.operands
[i
].reg
= val
;
6063 inst
.operands
[i
].isreg
= 1;
6064 inst
.operands
[i
].isvec
= 1;
6065 inst
.operands
[i
].issingle
= 1;
6066 inst
.operands
[i
].vectype
= optype
;
6067 inst
.operands
[i
].present
= 1;
6072 first_error (_("parse error"));
6076 /* Successfully parsed the operands. Update args. */
6082 first_error (_("expected comma"));
6086 first_error (_(reg_expected_msgs
[REG_TYPE_RN
]));
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6098 OP_stop
, /* end of line */
6100 OP_RR
, /* ARM register */
6101 OP_RRnpc
, /* ARM register, not r15 */
6102 OP_RRnpcsp
, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb
, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw
, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw
, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP
, /* Coprocessor number */
6108 OP_RCN
, /* Coprocessor register */
6109 OP_RF
, /* FPA register */
6110 OP_RVS
, /* VFP single precision register */
6111 OP_RVD
, /* VFP double precision register (0..15) */
6112 OP_RND
, /* Neon double precision register (0..31) */
6113 OP_RNQ
, /* Neon quad precision register */
6114 OP_RVSD
, /* VFP single or double precision register */
6115 OP_RNDQ
, /* Neon double or quad precision register */
6116 OP_RNSDQ
, /* Neon single, double or quad precision register */
6117 OP_RNSC
, /* Neon scalar D[X] */
6118 OP_RVC
, /* VFP control register */
6119 OP_RMF
, /* Maverick F register */
6120 OP_RMD
, /* Maverick D register */
6121 OP_RMFX
, /* Maverick FX register */
6122 OP_RMDX
, /* Maverick DX register */
6123 OP_RMAX
, /* Maverick AX register */
6124 OP_RMDS
, /* Maverick DSPSC register */
6125 OP_RIWR
, /* iWMMXt wR register */
6126 OP_RIWC
, /* iWMMXt wC register */
6127 OP_RIWG
, /* iWMMXt wCG register */
6128 OP_RXA
, /* XScale accumulator register */
6130 OP_REGLST
, /* ARM register list */
6131 OP_VRSLST
, /* VFP single-precision register list */
6132 OP_VRDLST
, /* VFP double-precision register list */
6133 OP_VRSDLST
, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST
, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST
, /* Neon element/structure list */
6137 OP_RNDQ_I0
, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0
, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC
, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC
, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC
, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC
, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV
, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig
, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b
, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z
, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6148 OP_I0
, /* immediate zero */
6149 OP_I7
, /* immediate value 0 .. 7 */
6150 OP_I15
, /* 0 .. 15 */
6151 OP_I16
, /* 1 .. 16 */
6152 OP_I16z
, /* 0 .. 16 */
6153 OP_I31
, /* 0 .. 31 */
6154 OP_I31w
, /* 0 .. 31, optional trailing ! */
6155 OP_I32
, /* 1 .. 32 */
6156 OP_I32z
, /* 0 .. 32 */
6157 OP_I63
, /* 0 .. 63 */
6158 OP_I63s
, /* -64 .. 63 */
6159 OP_I64
, /* 1 .. 64 */
6160 OP_I64z
, /* 0 .. 64 */
6161 OP_I255
, /* 0 .. 255 */
6163 OP_I4b
, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b
, /* 0 .. 7 */
6165 OP_I15b
, /* 0 .. 15 */
6166 OP_I31b
, /* 0 .. 31 */
6168 OP_SH
, /* shifter operand */
6169 OP_SHG
, /* shifter operand with possible group relocation */
6170 OP_ADDR
, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR
, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS
, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC
, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP
, /* arbitrary expression */
6175 OP_EXPi
, /* same, with optional immediate prefix */
6176 OP_EXPr
, /* same, with optional relocation suffix */
6177 OP_HALF
, /* 0 .. 65535 or low/high reloc. */
6179 OP_CPSF
, /* CPS flags */
6180 OP_ENDI
, /* Endianness specifier */
6181 OP_wPSR
, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR
, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND
, /* conditional code */
6184 OP_TB
, /* Table branch. */
6186 OP_APSR_RR
, /* ARM register or "APSR_nzcv". */
6188 OP_RRnpc_I0
, /* ARM register or literal 0 */
6189 OP_RR_EXr
, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi
, /* ARM register or expression with imm prefix */
6191 OP_RF_IF
, /* FPA register or immediate */
6192 OP_RIWR_RIWC
, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG
, /* iWMMXt wC or wCG reg */
6195 /* Optional operands. */
6196 OP_oI7b
, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b
, /* 0 .. 31 */
6198 OP_oI32b
, /* 1 .. 32 */
6199 OP_oI32z
, /* 0 .. 32 */
6200 OP_oIffffb
, /* 0 .. 65535 */
6201 OP_oI255c
, /* curly-brace enclosed, 0 .. 255 */
6203 OP_oRR
, /* ARM register */
6204 OP_oRRnpc
, /* ARM register, not the PC */
6205 OP_oRRnpcsp
, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw
, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND
, /* Optional Neon double precision register */
6208 OP_oRNQ
, /* Optional Neon quad precision register */
6209 OP_oRNDQ
, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ
, /* Optional single, double or quad precision vector register */
6211 OP_oSHll
, /* LSL immediate */
6212 OP_oSHar
, /* ASR immediate */
6213 OP_oSHllar
, /* LSL or ASR immediate */
6214 OP_oROR
, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15
, /* Option argument for a barrier instruction. */
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RR
, OP_RRnpcsp
),
6219 OP_RRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_RRnpc
, OP_RRnpcsp
),
6220 OP_oRRnpc_npcsp
= MIX_ARM_THUMB_OPERANDS (OP_oRRnpc
, OP_oRRnpcsp
),
6222 OP_FIRST_OPTIONAL
= OP_oI7b
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6230 parse_operands (char *str
, const unsigned int *pattern
, bfd_boolean thumb
)
6232 unsigned const int *upat
= pattern
;
6233 char *backtrack_pos
= 0;
6234 const char *backtrack_error
= 0;
6235 int i
, val
= 0, backtrack_index
= 0;
6236 enum arm_reg_type rtype
;
6237 parse_operand_result result
;
6238 unsigned int op_parse_code
;
6240 #define po_char_or_fail(chr) \
6243 if (skip_past_char (&str, chr) == FAIL) \
6248 #define po_reg_or_fail(regtype) \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6255 first_error (_(reg_expected_msgs[regtype])); \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6268 #define po_reg_or_goto(regtype, label) \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6286 #define po_imm_or_fail(min, max, popt) \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6291 inst.operands[i].imm = val; \
6295 #define po_scalar_or_goto(elsz, label) \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6306 #define po_misc_or_fail(expr) \
6314 #define po_misc_or_fail_no_backtrack(expr) \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6325 #define po_barrier_or_imm(str) \
6328 val = parse_barrier (&str); \
6331 if (ISALPHA (*str)) \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6349 skip_whitespace (str
);
6351 for (i
= 0; upat
[i
] != OP_stop
; i
++)
6353 op_parse_code
= upat
[i
];
6354 if (op_parse_code
>= 1<<16)
6355 op_parse_code
= thumb
? (op_parse_code
>> 16)
6356 : (op_parse_code
& ((1<<16)-1));
6358 if (op_parse_code
>= OP_FIRST_OPTIONAL
)
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos
);
6362 backtrack_pos
= str
;
6363 backtrack_error
= inst
.error
;
6364 backtrack_index
= i
;
6367 if (i
> 0 && (i
> 1 || inst
.operands
[0].present
))
6368 po_char_or_fail (',');
6370 switch (op_parse_code
)
6378 case OP_RR
: po_reg_or_fail (REG_TYPE_RN
); break;
6379 case OP_RCP
: po_reg_or_fail (REG_TYPE_CP
); break;
6380 case OP_RCN
: po_reg_or_fail (REG_TYPE_CN
); break;
6381 case OP_RF
: po_reg_or_fail (REG_TYPE_FN
); break;
6382 case OP_RVS
: po_reg_or_fail (REG_TYPE_VFS
); break;
6383 case OP_RVD
: po_reg_or_fail (REG_TYPE_VFD
); break;
6385 case OP_RND
: po_reg_or_fail (REG_TYPE_VFD
); break;
6387 po_reg_or_goto (REG_TYPE_VFC
, coproc_reg
);
6389 /* Also accept generic coprocessor regs for unknown registers. */
6391 po_reg_or_fail (REG_TYPE_CN
);
6393 case OP_RMF
: po_reg_or_fail (REG_TYPE_MVF
); break;
6394 case OP_RMD
: po_reg_or_fail (REG_TYPE_MVD
); break;
6395 case OP_RMFX
: po_reg_or_fail (REG_TYPE_MVFX
); break;
6396 case OP_RMDX
: po_reg_or_fail (REG_TYPE_MVDX
); break;
6397 case OP_RMAX
: po_reg_or_fail (REG_TYPE_MVAX
); break;
6398 case OP_RMDS
: po_reg_or_fail (REG_TYPE_DSPSC
); break;
6399 case OP_RIWR
: po_reg_or_fail (REG_TYPE_MMXWR
); break;
6400 case OP_RIWC
: po_reg_or_fail (REG_TYPE_MMXWC
); break;
6401 case OP_RIWG
: po_reg_or_fail (REG_TYPE_MMXWCG
); break;
6402 case OP_RXA
: po_reg_or_fail (REG_TYPE_XSCALE
); break;
6404 case OP_RNQ
: po_reg_or_fail (REG_TYPE_NQ
); break;
6406 case OP_RNDQ
: po_reg_or_fail (REG_TYPE_NDQ
); break;
6407 case OP_RVSD
: po_reg_or_fail (REG_TYPE_VFSD
); break;
6409 case OP_RNSDQ
: po_reg_or_fail (REG_TYPE_NSDQ
); break;
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC
: po_scalar_or_goto (8, failure
); break;
6417 po_reg_or_goto (REG_TYPE_NDQ
, try_imm0
);
6420 po_imm_or_fail (0, 0, TRUE
);
6425 po_reg_or_goto (REG_TYPE_VFSD
, try_imm0
);
6430 po_scalar_or_goto (8, try_rr
);
6433 po_reg_or_fail (REG_TYPE_RN
);
6439 po_scalar_or_goto (8, try_nsdq
);
6442 po_reg_or_fail (REG_TYPE_NSDQ
);
6448 po_scalar_or_goto (8, try_ndq
);
6451 po_reg_or_fail (REG_TYPE_NDQ
);
6457 po_scalar_or_goto (8, try_vfd
);
6460 po_reg_or_fail (REG_TYPE_VFD
);
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str
, &i
) == FAIL
);
6472 po_reg_or_goto (REG_TYPE_NDQ
, try_immbig
);
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str
, i
) == FAIL
)
6479 inst
.error
= _("immediate value is out of range");
6487 po_reg_or_goto (REG_TYPE_NDQ
, try_shimm
);
6490 po_imm_or_fail (0, 63, TRUE
);
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN
);
6497 po_char_or_fail (']');
6503 po_reg_or_fail (REG_TYPE_RN
);
6504 if (skip_past_char (&str
, '!') == SUCCESS
)
6505 inst
.operands
[i
].writeback
= 1;
6509 case OP_I7
: po_imm_or_fail ( 0, 7, FALSE
); break;
6510 case OP_I15
: po_imm_or_fail ( 0, 15, FALSE
); break;
6511 case OP_I16
: po_imm_or_fail ( 1, 16, FALSE
); break;
6512 case OP_I16z
: po_imm_or_fail ( 0, 16, FALSE
); break;
6513 case OP_I31
: po_imm_or_fail ( 0, 31, FALSE
); break;
6514 case OP_I32
: po_imm_or_fail ( 1, 32, FALSE
); break;
6515 case OP_I32z
: po_imm_or_fail ( 0, 32, FALSE
); break;
6516 case OP_I63s
: po_imm_or_fail (-64, 63, FALSE
); break;
6517 case OP_I63
: po_imm_or_fail ( 0, 63, FALSE
); break;
6518 case OP_I64
: po_imm_or_fail ( 1, 64, FALSE
); break;
6519 case OP_I64z
: po_imm_or_fail ( 0, 64, FALSE
); break;
6520 case OP_I255
: po_imm_or_fail ( 0, 255, FALSE
); break;
6522 case OP_I4b
: po_imm_or_fail ( 1, 4, TRUE
); break;
6524 case OP_I7b
: po_imm_or_fail ( 0, 7, TRUE
); break;
6525 case OP_I15b
: po_imm_or_fail ( 0, 15, TRUE
); break;
6527 case OP_I31b
: po_imm_or_fail ( 0, 31, TRUE
); break;
6528 case OP_oI32b
: po_imm_or_fail ( 1, 32, TRUE
); break;
6529 case OP_oI32z
: po_imm_or_fail ( 0, 32, TRUE
); break;
6530 case OP_oIffffb
: po_imm_or_fail ( 0, 0xffff, TRUE
); break;
6532 /* Immediate variants */
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE
);
6536 po_char_or_fail ('}');
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6544 while (*s
&& *s
!= ',')
6549 inst
.operands
[i
].writeback
= 1;
6551 po_imm_or_fail (0, 31, TRUE
);
6559 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6564 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6569 po_misc_or_fail (my_get_expression (&inst
.reloc
.exp
, &str
,
6571 if (inst
.reloc
.exp
.X_op
== O_symbol
)
6573 val
= parse_reloc (&str
);
6576 inst
.error
= _("unrecognized relocation suffix");
6579 else if (val
!= BFD_RELOC_UNUSED
)
6581 inst
.operands
[i
].imm
= val
;
6582 inst
.operands
[i
].hasreloc
= 1;
6587 /* Operand for MOVW or MOVT. */
6589 po_misc_or_fail (parse_half (&str
));
6592 /* Register or expression. */
6593 case OP_RR_EXr
: po_reg_or_goto (REG_TYPE_RN
, EXPr
); break;
6594 case OP_RR_EXi
: po_reg_or_goto (REG_TYPE_RN
, EXPi
); break;
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0
: po_reg_or_goto (REG_TYPE_RN
, I0
); break;
6598 I0
: po_imm_or_fail (0, 0, FALSE
); break;
6600 case OP_RF_IF
: po_reg_or_goto (REG_TYPE_FN
, IF
); break;
6602 if (!is_immediate_prefix (*str
))
6605 val
= parse_fpa_immediate (&str
);
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst
.operands
[i
].reg
= val
;
6611 inst
.operands
[i
].isreg
= 1;
6614 case OP_RIWR_I32z
: po_reg_or_goto (REG_TYPE_MMXWR
, I32z
); break;
6615 I32z
: po_imm_or_fail (0, 32, FALSE
); break;
6617 /* Two kinds of register. */
6620 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
6622 || (rege
->type
!= REG_TYPE_MMXWR
6623 && rege
->type
!= REG_TYPE_MMXWC
6624 && rege
->type
!= REG_TYPE_MMXWCG
))
6626 inst
.error
= _("iWMMXt data or control register expected");
6629 inst
.operands
[i
].reg
= rege
->number
;
6630 inst
.operands
[i
].isreg
= (rege
->type
== REG_TYPE_MMXWR
);
6636 struct reg_entry
*rege
= arm_reg_parse_multi (&str
);
6638 || (rege
->type
!= REG_TYPE_MMXWC
6639 && rege
->type
!= REG_TYPE_MMXWCG
))
6641 inst
.error
= _("iWMMXt control register expected");
6644 inst
.operands
[i
].reg
= rege
->number
;
6645 inst
.operands
[i
].isreg
= 1;
6650 case OP_CPSF
: val
= parse_cps_flags (&str
); break;
6651 case OP_ENDI
: val
= parse_endian_specifier (&str
); break;
6652 case OP_oROR
: val
= parse_ror (&str
); break;
6653 case OP_COND
: val
= parse_cond (&str
); break;
6654 case OP_oBARRIER_I15
:
6655 po_barrier_or_imm (str
); break;
6657 if (parse_immediate (&str
, &val
, 0, 15, TRUE
) == FAIL
)
6663 po_reg_or_goto (REG_TYPE_RNB
, try_psr
);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_virt
))
6666 inst
.error
= _("Banked registers are not available with this "
6672 val
= parse_psr (&str
, op_parse_code
== OP_wPSR
);
6676 po_reg_or_goto (REG_TYPE_RN
, try_apsr
);
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6681 if (strncasecmp (str
, "APSR_", 5) == 0)
6688 case 'c': found
= (found
& 1) ? 16 : found
| 1; break;
6689 case 'n': found
= (found
& 2) ? 16 : found
| 2; break;
6690 case 'z': found
= (found
& 4) ? 16 : found
| 4; break;
6691 case 'v': found
= (found
& 8) ? 16 : found
| 8; break;
6692 default: found
= 16;
6696 inst
.operands
[i
].isvec
= 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst
.operands
[i
].reg
= REG_PC
;
6705 po_misc_or_fail (parse_tb (&str
));
6708 /* Register lists. */
6710 val
= parse_reg_list (&str
);
6713 inst
.operands
[1].writeback
= 1;
6719 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_S
);
6723 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
, REGLIST_VFP_D
);
6727 /* Allow Q registers too. */
6728 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6733 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6735 inst
.operands
[i
].issingle
= 1;
6740 val
= parse_vfp_reg_list (&str
, &inst
.operands
[i
].reg
,
6745 val
= parse_neon_el_struct_list (&str
, &inst
.operands
[i
].reg
,
6746 &inst
.operands
[i
].vectype
);
6749 /* Addressing modes */
6751 po_misc_or_fail (parse_address (&str
, i
));
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str
, i
, GROUP_LDR
));
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str
, i
, GROUP_LDRS
));
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str
, i
, GROUP_LDC
));
6770 po_misc_or_fail (parse_shifter_operand (&str
, i
));
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str
, i
));
6779 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_IMMEDIATE
));
6783 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_ASR_IMMEDIATE
));
6787 po_misc_or_fail (parse_shift (&str
, i
, SHIFT_LSL_OR_ASR_IMMEDIATE
));
6791 as_fatal (_("unhandled operand code %d"), op_parse_code
);
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code
)
6805 if (inst
.operands
[i
].isreg
&& inst
.operands
[i
].reg
== REG_PC
)
6806 inst
.error
= BAD_PC
;
6811 if (inst
.operands
[i
].isreg
)
6813 if (inst
.operands
[i
].reg
== REG_PC
)
6814 inst
.error
= BAD_PC
;
6815 else if (inst
.operands
[i
].reg
== REG_SP
)
6816 inst
.error
= BAD_SP
;
6821 if (inst
.operands
[i
].isreg
6822 && inst
.operands
[i
].reg
== REG_PC
6823 && (inst
.operands
[i
].writeback
|| thumb
))
6824 inst
.error
= BAD_PC
;
6833 case OP_oBARRIER_I15
:
6842 inst
.operands
[i
].imm
= val
;
6849 /* If we get here, this operand was successfully parsed. */
6850 inst
.operands
[i
].present
= 1;
6854 inst
.error
= BAD_ARGS
;
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6862 inst
.error
= _("syntax error");
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index
== i
&& backtrack_pos
!= str
6871 && upat
[i
+1] == OP_stop
)
6874 inst
.error
= _("syntax error");
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str
= backtrack_pos
;
6880 inst
.error
= backtrack_error
;
6881 inst
.operands
[backtrack_index
].present
= 0;
6882 i
= backtrack_index
;
6886 /* Check that we have parsed all the arguments. */
6887 if (*str
!= '\0' && !inst
.error
)
6888 inst
.error
= _("garbage following instruction");
6890 return inst
.error
? FAIL
: SUCCESS
;
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6917 if (reg == REG_SP || reg == REG_PC) \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6924 /* If REG is R13 (the stack pointer), warn that its use is
6926 #define warn_deprecated_sp(reg) \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6932 /* Functions for operand encoding. ARM, then Thumb. */
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6940 encode_arm_immediate (unsigned int val
)
6944 for (i
= 0; i
< 32; i
+= 2)
6945 if ((a
= rotate_left (val
, i
)) <= 0xff)
6946 return a
| (i
<< 7); /* 12-bit pack: [shift-cnt,const]. */
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6954 encode_thumb32_immediate (unsigned int val
)
6961 for (i
= 1; i
<= 24; i
++)
6964 if ((val
& ~(0xff << i
)) == 0)
6965 return ((val
>> i
) & 0x7f) | ((32 - i
) << 7);
6969 if (val
== ((a
<< 16) | a
))
6971 if (val
== ((a
<< 24) | (a
<< 16) | (a
<< 8) | a
))
6975 if (val
== ((a
<< 16) | a
))
6976 return 0x200 | (a
>> 8);
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6983 encode_arm_vfp_reg (int reg
, enum vfp_reg_pos pos
)
6985 if ((pos
== VFP_REG_Dd
|| pos
== VFP_REG_Dn
|| pos
== VFP_REG_Dm
)
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_d32
))
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
6999 first_error (_("D register out of range for selected VFP version"));
7007 inst
.instruction
|= ((reg
>> 1) << 12) | ((reg
& 1) << 22);
7011 inst
.instruction
|= ((reg
>> 1) << 16) | ((reg
& 1) << 7);
7015 inst
.instruction
|= ((reg
>> 1) << 0) | ((reg
& 1) << 5);
7019 inst
.instruction
|= ((reg
& 15) << 12) | ((reg
>> 4) << 22);
7023 inst
.instruction
|= ((reg
& 15) << 16) | ((reg
>> 4) << 7);
7027 inst
.instruction
|= (reg
& 15) | ((reg
>> 4) << 5);
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7038 encode_arm_shift (int i
)
7040 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
7041 inst
.instruction
|= SHIFT_ROR
<< 5;
7044 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
7045 if (inst
.operands
[i
].immisreg
)
7047 inst
.instruction
|= SHIFT_BY_REG
;
7048 inst
.instruction
|= inst
.operands
[i
].imm
<< 8;
7051 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
7056 encode_arm_shifter_operand (int i
)
7058 if (inst
.operands
[i
].isreg
)
7060 inst
.instruction
|= inst
.operands
[i
].reg
;
7061 encode_arm_shift (i
);
7065 inst
.instruction
|= INST_IMMEDIATE
;
7066 if (inst
.reloc
.type
!= BFD_RELOC_ARM_IMMEDIATE
)
7067 inst
.instruction
|= inst
.operands
[i
].imm
;
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7073 encode_arm_addr_mode_common (int i
, bfd_boolean is_t
)
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst
.operands
[i
].isreg
,
7078 _("Instruction does not support =N addresses"));
7080 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
7082 if (inst
.operands
[i
].preind
)
7086 inst
.error
= _("instruction does not accept preindexed addressing");
7089 inst
.instruction
|= PRE_INDEX
;
7090 if (inst
.operands
[i
].writeback
)
7091 inst
.instruction
|= WRITE_BACK
;
7094 else if (inst
.operands
[i
].postind
)
7096 gas_assert (inst
.operands
[i
].writeback
);
7098 inst
.instruction
|= WRITE_BACK
;
7100 else /* unindexed - only for coprocessor */
7102 inst
.error
= _("instruction does not accept unindexed addressing");
7106 if (((inst
.instruction
& WRITE_BACK
) || !(inst
.instruction
& PRE_INDEX
))
7107 && (((inst
.instruction
& 0x000f0000) >> 16)
7108 == ((inst
.instruction
& 0x0000f000) >> 12)))
7109 as_warn ((inst
.instruction
& LOAD_BIT
)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7119 encode_arm_addr_mode_2 (int i
, bfd_boolean is_t
)
7121 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
7123 encode_arm_addr_mode_common (i
, is_t
);
7125 if (inst
.operands
[i
].immisreg
)
7127 constraint ((inst
.operands
[i
].imm
== REG_PC
7128 || (is_pc
&& inst
.operands
[i
].writeback
)),
7130 inst
.instruction
|= INST_IMMEDIATE
; /* yes, this is backwards */
7131 inst
.instruction
|= inst
.operands
[i
].imm
;
7132 if (!inst
.operands
[i
].negative
)
7133 inst
.instruction
|= INDEX_UP
;
7134 if (inst
.operands
[i
].shifted
)
7136 if (inst
.operands
[i
].shift_kind
== SHIFT_RRX
)
7137 inst
.instruction
|= SHIFT_ROR
<< 5;
7140 inst
.instruction
|= inst
.operands
[i
].shift_kind
<< 5;
7141 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
7145 else /* immediate offset in inst.reloc */
7147 if (is_pc
&& !inst
.reloc
.pc_rel
)
7149 const bfd_boolean is_load
= ((inst
.instruction
& LOAD_BIT
) != 0);
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t
|| inst
.operands
[i
].writeback
),
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7160 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7164 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7166 /* Prefer + for zero encoded value. */
7167 if (!inst
.operands
[i
].negative
)
7168 inst
.instruction
|= INDEX_UP
;
7169 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM
;
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7180 encode_arm_addr_mode_3 (int i
, bfd_boolean is_t
)
7182 if (inst
.operands
[i
].immisreg
&& inst
.operands
[i
].shifted
)
7184 inst
.error
= _("instruction does not accept scaled register index");
7188 encode_arm_addr_mode_common (i
, is_t
);
7190 if (inst
.operands
[i
].immisreg
)
7192 constraint ((inst
.operands
[i
].imm
== REG_PC
7193 || inst
.operands
[i
].reg
== REG_PC
),
7195 inst
.instruction
|= inst
.operands
[i
].imm
;
7196 if (!inst
.operands
[i
].negative
)
7197 inst
.instruction
|= INDEX_UP
;
7199 else /* immediate offset in inst.reloc */
7201 constraint ((inst
.operands
[i
].reg
== REG_PC
&& !inst
.reloc
.pc_rel
7202 && inst
.operands
[i
].writeback
),
7204 inst
.instruction
|= HWOFFSET_IMM
;
7205 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
7207 /* Prefer + for zero encoded value. */
7208 if (!inst
.operands
[i
].negative
)
7209 inst
.instruction
|= INDEX_UP
;
7211 inst
.reloc
.type
= BFD_RELOC_ARM_OFFSET_IMM8
;
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7225 encode_arm_cp_address (int i
, int wb_ok
, int unind_ok
, int reloc_override
)
7227 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
7229 gas_assert (!(inst
.operands
[i
].preind
&& inst
.operands
[i
].postind
));
7231 if (!inst
.operands
[i
].preind
&& !inst
.operands
[i
].postind
) /* unindexed */
7233 gas_assert (!inst
.operands
[i
].writeback
);
7236 inst
.error
= _("instruction does not support unindexed addressing");
7239 inst
.instruction
|= inst
.operands
[i
].imm
;
7240 inst
.instruction
|= INDEX_UP
;
7244 if (inst
.operands
[i
].preind
)
7245 inst
.instruction
|= PRE_INDEX
;
7247 if (inst
.operands
[i
].writeback
)
7249 if (inst
.operands
[i
].reg
== REG_PC
)
7251 inst
.error
= _("pc may not be used with write-back");
7256 inst
.error
= _("instruction does not support writeback");
7259 inst
.instruction
|= WRITE_BACK
;
7263 inst
.reloc
.type
= (bfd_reloc_code_real_type
) reloc_override
;
7264 else if ((inst
.reloc
.type
< BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst
.reloc
.type
> BFD_RELOC_ARM_LDC_SB_G2
)
7266 && inst
.reloc
.type
!= BFD_RELOC_ARM_LDR_PC_G0
)
7269 inst
.reloc
.type
= BFD_RELOC_ARM_T32_CP_OFF_IMM
;
7271 inst
.reloc
.type
= BFD_RELOC_ARM_CP_OFF_IMM
;
7274 /* Prefer + for zero encoded value. */
7275 if (!inst
.operands
[i
].negative
)
7276 inst
.instruction
|= INDEX_UP
;
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7288 inst.operands[i] describes the destination register. */
7291 move_or_literal_pool (int i
, bfd_boolean thumb_p
, bfd_boolean mode_3
)
7296 tbit
= (inst
.instruction
> 0xffff) ? THUMB2_LOAD_BIT
: THUMB_LOAD_BIT
;
7300 if ((inst
.instruction
& tbit
) == 0)
7302 inst
.error
= _("invalid pseudo operation");
7305 if (inst
.reloc
.exp
.X_op
!= O_constant
&& inst
.reloc
.exp
.X_op
!= O_symbol
)
7307 inst
.error
= _("constant expression expected");
7310 if (inst
.reloc
.exp
.X_op
== O_constant
)
7314 if (!unified_syntax
&& (inst
.reloc
.exp
.X_add_number
& ~0xFF) == 0)
7316 /* This can be done with a mov(1) instruction. */
7317 inst
.instruction
= T_OPCODE_MOV_I8
| (inst
.operands
[i
].reg
<< 8);
7318 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
;
7324 int value
= encode_arm_immediate (inst
.reloc
.exp
.X_add_number
);
7327 /* This can be done with a mov instruction. */
7328 inst
.instruction
&= LITERAL_MASK
;
7329 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MOV
<< DATA_OP_SHIFT
);
7330 inst
.instruction
|= value
& 0xfff;
7334 value
= encode_arm_immediate (~inst
.reloc
.exp
.X_add_number
);
7337 /* This can be done with a mvn instruction. */
7338 inst
.instruction
&= LITERAL_MASK
;
7339 inst
.instruction
|= INST_IMMEDIATE
| (OPCODE_MVN
<< DATA_OP_SHIFT
);
7340 inst
.instruction
|= value
& 0xfff;
7346 if (add_to_lit_pool () == FAIL
)
7348 inst
.error
= _("literal pool insertion failed");
7351 inst
.operands
[1].reg
= REG_PC
;
7352 inst
.operands
[1].isreg
= 1;
7353 inst
.operands
[1].preind
= 1;
7354 inst
.reloc
.pc_rel
= 1;
7355 inst
.reloc
.type
= (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL
));
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7375 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7381 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7382 inst
.instruction
|= inst
.operands
[1].reg
;
7388 inst
.instruction
|= inst
.operands
[0].reg
;
7389 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7395 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7396 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7402 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7403 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7407 check_obsolete (const arm_feature_set
*feature
, const char *msg
)
7409 if (ARM_CPU_IS_ANY (cpu_variant
))
7411 as_warn ("%s", msg
);
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, *feature
))
7426 unsigned Rn
= inst
.operands
[2].reg
;
7427 /* Enforce restrictions on SWP instruction. */
7428 if ((inst
.instruction
& 0x0fbfffff) == 0x01000090)
7430 constraint (Rn
== inst
.operands
[0].reg
|| Rn
== inst
.operands
[1].reg
,
7431 _("Rn must not overlap other operands"));
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7435 if (!check_obsolete (&arm_ext_v8
,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7442 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7443 inst
.instruction
|= inst
.operands
[1].reg
;
7444 inst
.instruction
|= Rn
<< 16;
7450 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7451 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7452 inst
.instruction
|= inst
.operands
[2].reg
;
7458 constraint ((inst
.operands
[2].reg
== REG_PC
), BAD_PC
);
7459 constraint (((inst
.reloc
.exp
.X_op
!= O_constant
7460 && inst
.reloc
.exp
.X_op
!= O_illegal
)
7461 || inst
.reloc
.exp
.X_add_number
!= 0),
7463 inst
.instruction
|= inst
.operands
[0].reg
;
7464 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
7465 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
7471 inst
.instruction
|= inst
.operands
[0].imm
;
7477 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7478 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
7481 /* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7485 /* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
7491 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
7496 inst
.reloc
.pc_rel
= 1;
7497 inst
.reloc
.exp
.X_add_number
-= 8;
7500 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
7508 inst
.instruction
|= (inst
.operands
[0].reg
<< 12); /* Rd */
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst
.reloc
.type
= BFD_RELOC_ARM_ADRL_IMMEDIATE
;
7513 inst
.reloc
.pc_rel
= 1;
7514 inst
.size
= INSN_SIZE
* 2;
7515 inst
.reloc
.exp
.X_add_number
-= 8;
7521 if (!inst
.operands
[1].present
)
7522 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
7523 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7524 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
7525 encode_arm_shifter_operand (2);
7531 if (inst
.operands
[0].present
)
7533 constraint ((inst
.instruction
& 0xf0) != 0x40
7534 && inst
.operands
[0].imm
> 0xf
7535 && inst
.operands
[0].imm
< 0x0,
7536 _("bad barrier type"));
7537 inst
.instruction
|= inst
.operands
[0].imm
;
7540 inst
.instruction
|= 0xf;
7546 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
7547 constraint (msb
> 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7551 inst
.instruction
|= inst
.operands
[1].imm
<< 7;
7552 inst
.instruction
|= (msb
- 1) << 16;
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst
.operands
[1].isreg
)
7563 inst
.operands
[1].reg
= REG_PC
;
7565 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
7566 constraint (msb
> 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7570 inst
.instruction
|= inst
.operands
[1].reg
;
7571 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
7572 inst
.instruction
|= (msb
- 1) << 16;
7578 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
7579 _("bit-field extends past end of register"));
7580 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
7581 inst
.instruction
|= inst
.operands
[1].reg
;
7582 inst
.instruction
|= inst
.operands
[2].imm
<< 7;
7583 inst
.instruction
|= (inst
.operands
[3].imm
- 1) << 16;
7586 /* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst
.instruction
|= (inst
.operands
[0].imm
& 0xfff0) << 4;
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst
.instruction
|= inst
.operands
[0].imm
& 0xf;
7603 encode_branch (int default_reloc
)
7605 if (inst
.operands
[0].hasreloc
)
7607 constraint (inst
.operands
[0].imm
!= BFD_RELOC_ARM_PLT32
7608 && inst
.operands
[0].imm
!= BFD_RELOC_ARM_TLS_CALL
,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst
.reloc
.type
= inst
.operands
[0].imm
== BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode
? BFD_RELOC_ARM_THM_TLS_CALL
: BFD_RELOC_ARM_TLS_CALL
;
7615 inst
.reloc
.type
= (bfd_reloc_code_real_type
) default_reloc
;
7616 inst
.reloc
.pc_rel
= 1;
7623 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
7634 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
7636 if (inst
.cond
== COND_ALWAYS
)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL
);
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP
);
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH
);
7646 /* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7657 if (inst
.operands
[0].isreg
)
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst
.operands
[0].reg
== REG_PC
)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7664 inst
.instruction
|= inst
.operands
[0].reg
;
7668 /* Arg is an address; this instruction cannot be executed
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7672 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
7673 inst
.instruction
= 0xfa000000;
7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX
);
7681 bfd_boolean want_reloc
;
7683 if (inst
.operands
[0].reg
== REG_PC
)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7686 inst
.instruction
|= inst
.operands
[0].reg
;
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc
= !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5
);
7690 if (object_arch
&& !ARM_CPU_HAS_FEATURE (*object_arch
, arm_ext_v5
))
7694 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
7699 inst
.reloc
.type
= BFD_RELOC_ARM_V4BX
;
7703 /* ARM v5TEJ. Jump to Jazelle code. */
7708 if (inst
.operands
[0].reg
== REG_PC
)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7711 inst
.instruction
|= inst
.operands
[0].reg
;
7714 /* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7720 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7721 inst
.instruction
|= inst
.operands
[1].imm
<< 20;
7722 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
7723 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7724 inst
.instruction
|= inst
.operands
[4].reg
;
7725 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
7731 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
7732 encode_arm_shifter_operand (1);
7735 /* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7741 No special properties. */
7743 struct deprecated_coproc_regs_s
7750 arm_feature_set deprecated
;
7751 arm_feature_set obsoleted
;
7752 const char *dep_msg
;
7753 const char *obs_msg
;
7756 #define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7759 /* Table of all deprecated coprocessor registers. */
7760 static struct deprecated_coproc_regs_s deprecated_coproc_regs
[] =
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8
, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8
, NULL
},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8
, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8
, NULL
},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8
, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8
, NULL
},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8
, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8
, NULL
},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8
, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8
, NULL
},
7779 #undef DEPR_ACCESS_V8
7781 static const size_t deprecated_coproc_reg_count
=
7782 sizeof (deprecated_coproc_regs
) / sizeof (deprecated_coproc_regs
[0]);
7790 Rd
= inst
.operands
[2].reg
;
7793 if (inst
.instruction
== 0xee000010
7794 || inst
.instruction
== 0xfe000010)
7796 reject_bad_reg (Rd
);
7799 constraint (Rd
== REG_SP
, BAD_SP
);
7804 if (inst
.instruction
== 0xe000010)
7805 constraint (Rd
== REG_PC
, BAD_PC
);
7808 for (i
= 0; i
< deprecated_coproc_reg_count
; ++i
)
7810 const struct deprecated_coproc_regs_s
*r
=
7811 deprecated_coproc_regs
+ i
;
7813 if (inst
.operands
[0].reg
== r
->cp
7814 && inst
.operands
[1].imm
== r
->opc1
7815 && inst
.operands
[3].reg
== r
->crn
7816 && inst
.operands
[4].reg
== r
->crm
7817 && inst
.operands
[5].imm
== r
->opc2
)
7819 if (!check_obsolete (&r
->obsoleted
, r
->obs_msg
)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant
, r
->deprecated
))
7822 as_warn ("%s", r
->dep_msg
);
7826 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7827 inst
.instruction
|= inst
.operands
[1].imm
<< 21;
7828 inst
.instruction
|= Rd
<< 12;
7829 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
7830 inst
.instruction
|= inst
.operands
[4].reg
;
7831 inst
.instruction
|= inst
.operands
[5].imm
<< 5;
7834 /* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7840 Two XScale instructions are special cases of these:
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7845 Result unpredictable if Rd or Rn is R15. */
7852 Rd
= inst
.operands
[2].reg
;
7853 Rn
= inst
.operands
[3].reg
;
7857 reject_bad_reg (Rd
);
7858 reject_bad_reg (Rn
);
7862 constraint (Rd
== REG_PC
, BAD_PC
);
7863 constraint (Rn
== REG_PC
, BAD_PC
);
7866 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
7867 inst
.instruction
|= inst
.operands
[1].imm
<< 4;
7868 inst
.instruction
|= Rd
<< 12;
7869 inst
.instruction
|= Rn
<< 16;
7870 inst
.instruction
|= inst
.operands
[4].reg
;
7876 inst
.instruction
|= inst
.operands
[0].imm
<< 6;
7877 if (inst
.operands
[1].present
)
7879 inst
.instruction
|= CPSI_MMOD
;
7880 inst
.instruction
|= inst
.operands
[1].imm
;
7887 inst
.instruction
|= inst
.operands
[0].imm
;
7893 unsigned Rd
, Rn
, Rm
;
7895 Rd
= inst
.operands
[0].reg
;
7896 Rn
= (inst
.operands
[1].present
7897 ? inst
.operands
[1].reg
: Rd
);
7898 Rm
= inst
.operands
[2].reg
;
7900 constraint ((Rd
== REG_PC
), BAD_PC
);
7901 constraint ((Rn
== REG_PC
), BAD_PC
);
7902 constraint ((Rm
== REG_PC
), BAD_PC
);
7904 inst
.instruction
|= Rd
<< 16;
7905 inst
.instruction
|= Rn
<< 0;
7906 inst
.instruction
|= Rm
<< 8;
7912 /* There is no IT instruction in ARM mode. We
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7920 set_it_insn_type (IT_INSN
);
7921 now_it
.mask
= (inst
.instruction
& 0xf) | 0x10;
7922 now_it
.cc
= inst
.operands
[0].imm
;
7926 /* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7929 only_one_reg_in_list (int range
)
7931 int i
= ffs (range
) - 1;
7932 return (i
> 15 || range
!= (1 << i
)) ? -1 : i
;
7936 encode_ldmstm(int from_push_pop_mnem
)
7938 int base_reg
= inst
.operands
[0].reg
;
7939 int range
= inst
.operands
[1].imm
;
7942 inst
.instruction
|= base_reg
<< 16;
7943 inst
.instruction
|= range
;
7945 if (inst
.operands
[1].writeback
)
7946 inst
.instruction
|= LDM_TYPE_2_OR_3
;
7948 if (inst
.operands
[0].writeback
)
7950 inst
.instruction
|= WRITE_BACK
;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst
.instruction
& LOAD_BIT
)
7954 /* Not allowed in LDM type 2. */
7955 if ((inst
.instruction
& LDM_TYPE_2_OR_3
)
7956 && ((range
& (1 << REG_PC
)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range
& (1 << base_reg
))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7964 /* Not allowed for type 2. */
7965 if (inst
.instruction
& LDM_TYPE_2_OR_3
)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range
& (1 << base_reg
))
7969 && (range
& ((1 << base_reg
) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg
= only_one_reg_in_list (range
);
7976 if (from_push_pop_mnem
&& one_reg
>= 0)
7978 int is_push
= (inst
.instruction
& A_PUSH_POP_OP_MASK
) == A1_OPCODE_PUSH
;
7980 inst
.instruction
&= A_COND_MASK
;
7981 inst
.instruction
|= is_push
? A2_OPCODE_PUSH
: A2_OPCODE_POP
;
7982 inst
.instruction
|= one_reg
<< 12;
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE
);
7992 /* ARMv5TE load-consecutive (argument parse)
8001 constraint (inst
.operands
[0].reg
% 2 != 0,
8002 _("first transfer register must be even"));
8003 constraint (inst
.operands
[1].present
8004 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
8005 _("can only transfer two consecutive registers"));
8006 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
8007 constraint (!inst
.operands
[2].isreg
, _("'[' expected"));
8009 if (!inst
.operands
[1].present
)
8010 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
8016 if (inst
.operands
[2].reg
== inst
.operands
[1].reg
8017 && (inst
.operands
[2].writeback
|| inst
.operands
[2].postind
))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
8021 if (!(inst
.instruction
& V4_STR_BIT
))
8023 /* For an index-register load, the index register must not overlap the
8024 destination (even if not write-back). */
8025 if (inst
.operands
[2].immisreg
8026 && ((unsigned) inst
.operands
[2].imm
== inst
.operands
[0].reg
8027 || (unsigned) inst
.operands
[2].imm
== inst
.operands
[1].reg
))
8028 as_warn (_("index register overlaps transfer register"));
8030 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE
);
8037 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
8038 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
8039 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
8040 || inst
.operands
[1].negative
8041 /* This can arise if the programmer has written
8043 or if they have mistakenly used a register name as the last
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst
.operands
[1].reg
== REG_PC
),
8055 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8056 || inst
.reloc
.exp
.X_add_number
!= 0,
8057 _("offset must be zero in ARM encoding"));
8059 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
8061 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8062 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8063 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8069 constraint (inst
.operands
[0].reg
% 2 != 0,
8070 _("even register required"));
8071 constraint (inst
.operands
[1].present
8072 && inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst
.operands
[0].reg
== REG_LR
, _("r14 not allowed here"));
8078 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8079 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8082 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8085 check_ldr_r15_aligned (void)
8087 constraint (!(inst
.operands
[1].immisreg
)
8088 && (inst
.operands
[0].reg
== REG_PC
8089 && inst
.operands
[1].reg
== REG_PC
8090 && (inst
.reloc
.exp
.X_add_number
& 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8097 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8098 if (!inst
.operands
[1].isreg
)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/FALSE
))
8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE
);
8102 check_ldr_r15_aligned ();
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8110 if (inst
.operands
[1].preind
)
8112 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8113 || inst
.reloc
.exp
.X_add_number
!= 0,
8114 _("this instruction requires a post-indexed address"));
8116 inst
.operands
[1].preind
= 0;
8117 inst
.operands
[1].postind
= 1;
8118 inst
.operands
[1].writeback
= 1;
8120 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE
);
8124 /* Halfword and signed-byte load/store operations. */
8129 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
8130 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8131 if (!inst
.operands
[1].isreg
)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE
, /*mode_3=*/TRUE
))
8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE
);
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8142 if (inst
.operands
[1].preind
)
8144 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8145 || inst
.reloc
.exp
.X_add_number
!= 0,
8146 _("this instruction requires a post-indexed address"));
8148 inst
.operands
[1].preind
= 0;
8149 inst
.operands
[1].postind
= 1;
8150 inst
.operands
[1].writeback
= 1;
8152 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE
);
8156 /* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8161 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
8162 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8163 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8170 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
8171 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
)
8172 && !(inst
.instruction
& 0x00400000))
8173 as_tsktsk (_("Rd and Rm should be different in mla"));
8175 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8176 inst
.instruction
|= inst
.operands
[1].reg
;
8177 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8178 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
8184 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8185 encode_arm_shifter_operand (1);
8188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8195 top
= (inst
.instruction
& 0x00400000) != 0;
8196 constraint (top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top
&& inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
,
8199 _(":upper16: not allowed instruction"));
8200 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8201 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
8203 imm
= inst
.reloc
.exp
.X_add_number
;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst
.instruction
|= (imm
& 0x00000fff);
8206 inst
.instruction
|= (imm
& 0x0000f000) << 4;
8210 static void do_vfp_nsyn_opcode (const char *);
8213 do_vfp_nsyn_mrs (void)
8215 if (inst
.operands
[0].isvec
)
8217 if (inst
.operands
[1].reg
!= 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
8220 memset (&inst
.operands
[1], '\0', sizeof (inst
.operands
[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8223 else if (inst
.operands
[1].isvec
)
8224 do_vfp_nsyn_opcode ("fmrx");
8232 do_vfp_nsyn_msr (void)
8234 if (inst
.operands
[0].isvec
)
8235 do_vfp_nsyn_opcode ("fmxr");
8245 unsigned Rt
= inst
.operands
[0].reg
;
8247 if (thumb_mode
&& inst
.operands
[0].reg
== REG_SP
)
8249 inst
.error
= BAD_SP
;
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst
.operands
[0].isvec
&& inst
.operands
[0].reg
== REG_PC
)
8256 inst
.error
= BAD_PC
;
8260 switch (inst
.operands
[1].reg
)
8267 inst
.instruction
|= (inst
.operands
[1].reg
<< 16);
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8273 inst
.instruction
|= (Rt
<< 12);
8279 unsigned Rt
= inst
.operands
[1].reg
;
8282 reject_bad_reg (Rt
);
8283 else if (Rt
== REG_PC
)
8285 inst
.error
= BAD_PC
;
8289 switch (inst
.operands
[0].reg
)
8294 inst
.instruction
|= (inst
.operands
[0].reg
<< 16);
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8300 inst
.instruction
|= (Rt
<< 12);
8308 if (do_vfp_nsyn_mrs () == SUCCESS
)
8311 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
8312 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8314 if (inst
.operands
[1].isreg
)
8316 br
= inst
.operands
[1].reg
;
8317 if (((br
& 0x200) == 0) && ((br
& 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
))
8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
8326 br
= (15<<16) | (inst
.operands
[1].imm
& SPSR_BIT
);
8329 inst
.instruction
|= br
;
8332 /* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
8339 if (do_vfp_nsyn_msr () == SUCCESS
)
8342 inst
.instruction
|= inst
.operands
[0].imm
;
8343 if (inst
.operands
[1].isreg
)
8344 inst
.instruction
|= inst
.operands
[1].reg
;
8347 inst
.instruction
|= INST_IMMEDIATE
;
8348 inst
.reloc
.type
= BFD_RELOC_ARM_IMMEDIATE
;
8349 inst
.reloc
.pc_rel
= 0;
8356 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
8358 if (!inst
.operands
[2].present
)
8359 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
8360 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8361 inst
.instruction
|= inst
.operands
[1].reg
;
8362 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8364 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
8369 /* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
8378 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8379 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8380 inst
.instruction
|= inst
.operands
[2].reg
;
8381 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
8383 /* rdhi and rdlo must be different. */
8384 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst
.operands
[0].reg
== inst
.operands
[2].reg
8389 || inst
.operands
[1].reg
== inst
.operands
[2].reg
)
8390 && !ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6
))
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8397 if (inst
.operands
[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
))
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst
.instruction
&= 0xf0000000;
8402 inst
.instruction
|= 0x0320f000;
8403 if (inst
.operands
[0].present
)
8404 inst
.instruction
|= inst
.operands
[0].imm
;
8408 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
8416 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8417 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8418 inst
.instruction
|= inst
.operands
[2].reg
;
8419 if (inst
.operands
[3].present
)
8420 encode_arm_shift (3);
8423 /* ARM V6 PKHTB (Argument Parse). */
8428 if (!inst
.operands
[3].present
)
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst
.instruction
&= 0xfff00010;
8433 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8434 inst
.instruction
|= inst
.operands
[1].reg
;
8435 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8439 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8440 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8441 inst
.instruction
|= inst
.operands
[2].reg
;
8442 encode_arm_shift (3);
8446 /* ARMv5TE: Preload-Cache
8447 MP Extensions: Preload for write
8451 Syntactically, like LDR with B=1, W=0, L=1. */
8456 constraint (!inst
.operands
[0].isreg
,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst
.operands
[0].postind
,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst
.operands
[0].writeback
,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst
.operands
[0].preind
,
8463 _("unindexed addressing used in preload instruction"));
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
8467 /* ARMv7: PLI <addr_mode> */
8471 constraint (!inst
.operands
[0].isreg
,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst
.operands
[0].postind
,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst
.operands
[0].writeback
,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst
.operands
[0].preind
,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE
);
8480 inst
.instruction
&= ~PRE_INDEX
;
8486 inst
.operands
[1] = inst
.operands
[0];
8487 memset (&inst
.operands
[0], 0, sizeof inst
.operands
[0]);
8488 inst
.operands
[0].isreg
= 1;
8489 inst
.operands
[0].writeback
= 1;
8490 inst
.operands
[0].reg
= REG_SP
;
8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE
);
8494 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8497 Unconditionally executed.
8498 Error if Rn is R15. */
8503 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8504 if (inst
.operands
[0].writeback
)
8505 inst
.instruction
|= WRITE_BACK
;
8508 /* ARM V6 ssat (argument parse). */
8513 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8514 inst
.instruction
|= (inst
.operands
[1].imm
- 1) << 16;
8515 inst
.instruction
|= inst
.operands
[2].reg
;
8517 if (inst
.operands
[3].present
)
8518 encode_arm_shift (3);
8521 /* ARM V6 usat (argument parse). */
8526 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8527 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
8528 inst
.instruction
|= inst
.operands
[2].reg
;
8530 if (inst
.operands
[3].present
)
8531 encode_arm_shift (3);
8534 /* ARM V6 ssat16 (argument parse). */
8539 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8540 inst
.instruction
|= ((inst
.operands
[1].imm
- 1) << 16);
8541 inst
.instruction
|= inst
.operands
[2].reg
;
8547 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8548 inst
.instruction
|= inst
.operands
[1].imm
<< 16;
8549 inst
.instruction
|= inst
.operands
[2].reg
;
8552 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
8555 setend <endian_specifier>, where <endian_specifier> is either
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8565 if (inst
.operands
[0].imm
)
8566 inst
.instruction
|= 0x200;
8572 unsigned int Rm
= (inst
.operands
[1].present
8573 ? inst
.operands
[1].reg
8574 : inst
.operands
[0].reg
);
8576 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8577 inst
.instruction
|= Rm
;
8578 if (inst
.operands
[2].isreg
) /* Rd, {Rm,} Rs */
8580 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8581 inst
.instruction
|= SHIFT_BY_REG
;
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst
.operands
[2].shifted
,
8584 _("extraneous shift as part of operand to shift insn"));
8587 inst
.reloc
.type
= BFD_RELOC_ARM_SHIFT_IMM
;
8593 inst
.reloc
.type
= BFD_RELOC_ARM_SMC
;
8594 inst
.reloc
.pc_rel
= 0;
8600 inst
.reloc
.type
= BFD_RELOC_ARM_HVC
;
8601 inst
.reloc
.pc_rel
= 0;
8607 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
8608 inst
.reloc
.pc_rel
= 0;
8611 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
8619 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8620 inst
.instruction
|= inst
.operands
[1].reg
;
8621 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8622 inst
.instruction
|= inst
.operands
[3].reg
<< 12;
8625 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
8633 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8634 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8635 inst
.instruction
|= inst
.operands
[2].reg
;
8636 inst
.instruction
|= inst
.operands
[3].reg
<< 8;
8638 if (inst
.operands
[0].reg
== inst
.operands
[1].reg
)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8642 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
8649 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8650 inst
.instruction
|= inst
.operands
[1].reg
;
8651 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
8654 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
8662 if (inst
.operands
[0].present
)
8664 reg
= inst
.operands
[0].reg
;
8665 constraint (reg
!= REG_SP
, _("SRS base register must be r13"));
8670 inst
.instruction
|= reg
<< 16;
8671 inst
.instruction
|= inst
.operands
[1].imm
;
8672 if (inst
.operands
[0].writeback
|| inst
.operands
[1].writeback
)
8673 inst
.instruction
|= WRITE_BACK
;
8676 /* ARM V6 strex (argument parse). */
8681 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
8682 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
8683 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
8684 || inst
.operands
[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst
.operands
[2].reg
== REG_PC
),
8689 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8690 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
8692 constraint (inst
.reloc
.exp
.X_op
!= O_constant
8693 || inst
.reloc
.exp
.X_add_number
!= 0,
8694 _("offset must be zero in ARM encoding"));
8696 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8697 inst
.instruction
|= inst
.operands
[1].reg
;
8698 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8699 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
8705 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
8706 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
8707 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
8708 || inst
.operands
[2].negative
,
8711 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8712 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
8720 constraint (inst
.operands
[1].reg
% 2 != 0,
8721 _("even register required"));
8722 constraint (inst
.operands
[2].present
8723 && inst
.operands
[2].reg
!= inst
.operands
[1].reg
+ 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst
.operands
[1].reg
== REG_LR
, _("r14 not allowed here"));
8729 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8730 || inst
.operands
[0].reg
== inst
.operands
[1].reg
+ 1
8731 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
8734 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8735 inst
.instruction
|= inst
.operands
[1].reg
;
8736 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
8743 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8744 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
8752 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
8753 || inst
.operands
[0].reg
== inst
.operands
[2].reg
, BAD_OVERLAP
);
8758 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8769 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8770 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8771 inst
.instruction
|= inst
.operands
[2].reg
;
8772 inst
.instruction
|= inst
.operands
[3].imm
<< 10;
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
8784 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8785 inst
.instruction
|= inst
.operands
[1].reg
;
8786 inst
.instruction
|= inst
.operands
[2].imm
<< 10;
8789 /* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
8793 do_vfp_sp_monadic (void)
8795 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8796 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
8800 do_vfp_sp_dyadic (void)
8802 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8803 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
8804 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
8808 do_vfp_sp_compare_z (void)
8810 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8814 do_vfp_dp_sp_cvt (void)
8816 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8817 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
8821 do_vfp_sp_dp_cvt (void)
8823 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8824 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
8828 do_vfp_reg_from_sp (void)
8830 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8831 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sn
);
8835 do_vfp_reg2_from_sp2 (void)
8837 constraint (inst
.operands
[2].imm
!= 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
8840 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
8841 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Sm
);
8845 do_vfp_sp_from_reg (void)
8847 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sn
);
8848 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8852 do_vfp_sp2_from_reg2 (void)
8854 constraint (inst
.operands
[0].imm
!= 2,
8855 _("only two consecutive VFP SP registers allowed here"));
8856 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sm
);
8857 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
8858 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
8862 do_vfp_sp_ldst (void)
8864 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8865 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
8869 do_vfp_dp_ldst (void)
8871 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8872 encode_arm_cp_address (1, FALSE
, TRUE
, 0);
8877 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type
)
8879 if (inst
.operands
[0].writeback
)
8880 inst
.instruction
|= WRITE_BACK
;
8882 constraint (ldstm_type
!= VFP_LDSTMIA
,
8883 _("this addressing mode requires base-register writeback"));
8884 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8885 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sd
);
8886 inst
.instruction
|= inst
.operands
[1].imm
;
8890 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type
)
8894 if (inst
.operands
[0].writeback
)
8895 inst
.instruction
|= WRITE_BACK
;
8897 constraint (ldstm_type
!= VFP_LDSTMIA
&& ldstm_type
!= VFP_LDSTMIAX
,
8898 _("this addressing mode requires base-register writeback"));
8900 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
8901 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8903 count
= inst
.operands
[1].imm
<< 1;
8904 if (ldstm_type
== VFP_LDSTMIAX
|| ldstm_type
== VFP_LDSTMDBX
)
8907 inst
.instruction
|= count
;
8911 do_vfp_sp_ldstmia (void)
8913 vfp_sp_ldstm (VFP_LDSTMIA
);
8917 do_vfp_sp_ldstmdb (void)
8919 vfp_sp_ldstm (VFP_LDSTMDB
);
8923 do_vfp_dp_ldstmia (void)
8925 vfp_dp_ldstm (VFP_LDSTMIA
);
8929 do_vfp_dp_ldstmdb (void)
8931 vfp_dp_ldstm (VFP_LDSTMDB
);
8935 do_vfp_xp_ldstmia (void)
8937 vfp_dp_ldstm (VFP_LDSTMIAX
);
8941 do_vfp_xp_ldstmdb (void)
8943 vfp_dp_ldstm (VFP_LDSTMDBX
);
8947 do_vfp_dp_rd_rm (void)
8949 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8950 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dm
);
8954 do_vfp_dp_rn_rd (void)
8956 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dn
);
8957 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8961 do_vfp_dp_rd_rn (void)
8963 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8964 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
8968 do_vfp_dp_rd_rn_rm (void)
8970 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8971 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dn
);
8972 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dm
);
8978 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
8982 do_vfp_dp_rm_rd_rn (void)
8984 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dm
);
8985 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Dd
);
8986 encode_arm_vfp_reg (inst
.operands
[2].reg
, VFP_REG_Dn
);
8989 /* VFPv3 instructions. */
8991 do_vfp_sp_const (void)
8993 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
8994 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
8995 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
8999 do_vfp_dp_const (void)
9001 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
9002 inst
.instruction
|= (inst
.operands
[1].imm
& 0xf0) << 12;
9003 inst
.instruction
|= (inst
.operands
[1].imm
& 0x0f);
9007 vfp_conv (int srcsize
)
9009 int immbits
= srcsize
- inst
.operands
[1].imm
;
9011 if (srcsize
== 16 && !(immbits
>= 0 && immbits
<= srcsize
))
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst
.error
= _("immediate value out of range, expected range [0, 16]");
9018 else if (srcsize
== 32 && !(immbits
>= 0 && immbits
< srcsize
))
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst
.error
= _("immediate value out of range, expected range [1, 32]");
9026 inst
.instruction
|= (immbits
& 1) << 5;
9027 inst
.instruction
|= (immbits
>> 1);
9031 do_vfp_sp_conv_16 (void)
9033 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
9038 do_vfp_dp_conv_16 (void)
9040 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
9045 do_vfp_sp_conv_32 (void)
9047 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
9052 do_vfp_dp_conv_32 (void)
9054 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Dd
);
9058 /* FPA instructions. Also in a logical order. */
9063 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9064 inst
.instruction
|= inst
.operands
[1].reg
;
9068 do_fpa_ldmstm (void)
9070 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9071 switch (inst
.operands
[1].imm
)
9073 case 1: inst
.instruction
|= CP_T_X
; break;
9074 case 2: inst
.instruction
|= CP_T_Y
; break;
9075 case 3: inst
.instruction
|= CP_T_Y
| CP_T_X
; break;
9080 if (inst
.instruction
& (PRE_INDEX
| INDEX_UP
))
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst
.reloc
.exp
.X_op
!= O_constant
9087 || inst
.reloc
.exp
.X_add_number
!= 0,
9088 _("this instruction does not support indexing"));
9090 if ((inst
.instruction
& PRE_INDEX
) || inst
.operands
[2].writeback
)
9091 inst
.reloc
.exp
.X_add_number
= 12 * inst
.operands
[1].imm
;
9093 if (!(inst
.instruction
& INDEX_UP
))
9094 inst
.reloc
.exp
.X_add_number
= -inst
.reloc
.exp
.X_add_number
;
9096 if (!(inst
.instruction
& PRE_INDEX
) && inst
.operands
[2].writeback
)
9098 inst
.operands
[2].preind
= 0;
9099 inst
.operands
[2].postind
= 1;
9103 encode_arm_cp_address (2, TRUE
, TRUE
, 0);
9106 /* iWMMXt instructions: strictly in alphabetical order. */
9109 do_iwmmxt_tandorc (void)
9111 constraint (inst
.operands
[0].reg
!= REG_PC
, _("only r15 allowed here"));
9115 do_iwmmxt_textrc (void)
9117 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9118 inst
.instruction
|= inst
.operands
[1].imm
;
9122 do_iwmmxt_textrm (void)
9124 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9125 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9126 inst
.instruction
|= inst
.operands
[2].imm
;
9130 do_iwmmxt_tinsr (void)
9132 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9133 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9134 inst
.instruction
|= inst
.operands
[2].imm
;
9138 do_iwmmxt_tmia (void)
9140 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
9141 inst
.instruction
|= inst
.operands
[1].reg
;
9142 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9146 do_iwmmxt_waligni (void)
9148 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9149 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9150 inst
.instruction
|= inst
.operands
[2].reg
;
9151 inst
.instruction
|= inst
.operands
[3].imm
<< 20;
9155 do_iwmmxt_wmerge (void)
9157 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9158 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9159 inst
.instruction
|= inst
.operands
[2].reg
;
9160 inst
.instruction
|= inst
.operands
[3].imm
<< 21;
9164 do_iwmmxt_wmov (void)
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9168 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9169 inst
.instruction
|= inst
.operands
[1].reg
;
9173 do_iwmmxt_wldstbh (void)
9176 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9178 reloc
= BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
;
9180 reloc
= BFD_RELOC_ARM_CP_OFF_IMM_S2
;
9181 encode_arm_cp_address (1, TRUE
, FALSE
, reloc
);
9185 do_iwmmxt_wldstw (void)
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst
.operands
[0].isreg
)
9190 constraint (inst
.cond
!= COND_ALWAYS
, BAD_COND
);
9191 inst
.instruction
|= 0xf0000000;
9194 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9195 encode_arm_cp_address (1, TRUE
, TRUE
, 0);
9199 do_iwmmxt_wldstd (void)
9201 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
)
9203 && inst
.operands
[1].immisreg
)
9205 inst
.instruction
&= ~0x1a000ff;
9206 inst
.instruction
|= (0xf << 28);
9207 if (inst
.operands
[1].preind
)
9208 inst
.instruction
|= PRE_INDEX
;
9209 if (!inst
.operands
[1].negative
)
9210 inst
.instruction
|= INDEX_UP
;
9211 if (inst
.operands
[1].writeback
)
9212 inst
.instruction
|= WRITE_BACK
;
9213 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9214 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
9215 inst
.instruction
|= inst
.operands
[1].imm
;
9218 encode_arm_cp_address (1, TRUE
, FALSE
, 0);
9222 do_iwmmxt_wshufh (void)
9224 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9225 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9226 inst
.instruction
|= ((inst
.operands
[2].imm
& 0xf0) << 16);
9227 inst
.instruction
|= (inst
.operands
[2].imm
& 0x0f);
9231 do_iwmmxt_wzero (void)
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst
.instruction
|= inst
.operands
[0].reg
;
9235 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9236 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9240 do_iwmmxt_wrwrwr_or_imm5 (void)
9242 if (inst
.operands
[2].isreg
)
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
),
9246 _("immediate operand requires iWMMXt2"));
9248 if (inst
.operands
[2].imm
== 0)
9250 switch ((inst
.instruction
>> 20) & 0xf)
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst
.operands
[2].imm
= 16;
9258 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0x7 << 20);
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst
.operands
[2].imm
= 32;
9266 inst
.instruction
= (inst
.instruction
& 0xff0fffff) | (0xb << 20);
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9275 wrn
= (inst
.instruction
>> 16) & 0xf;
9276 inst
.instruction
&= 0xff0fff0f;
9277 inst
.instruction
|= wrn
;
9278 /* Bail out here; the instruction is now assembled. */
9283 /* Map 32 -> 0, etc. */
9284 inst
.operands
[2].imm
&= 0x1f;
9285 inst
.instruction
|= (0xf << 28) | ((inst
.operands
[2].imm
& 0x10) << 4) | (inst
.operands
[2].imm
& 0xf);
9289 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
9292 /* Insns like "foo X,Y,Z". */
9295 do_mav_triple (void)
9297 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
9298 inst
.instruction
|= inst
.operands
[1].reg
;
9299 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9302 /* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9308 inst
.instruction
|= inst
.operands
[0].reg
<< 5;
9309 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9310 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9311 inst
.instruction
|= inst
.operands
[3].reg
;
9314 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9318 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9321 /* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9328 int imm
= inst
.operands
[2].imm
;
9330 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9331 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm
= (imm
& 0xf) | ((imm
& 0x70) << 1);
9338 inst
.instruction
|= imm
;
9341 /* XScale instructions. Also sorted arithmetic before move. */
9343 /* Xscale multiply-accumulate (argument parse)
9346 MIAxycc acc0,Rm,Rs. */
9351 inst
.instruction
|= inst
.operands
[1].reg
;
9352 inst
.instruction
|= inst
.operands
[2].reg
<< 12;
9355 /* Xscale move-accumulator-register (argument parse)
9357 MARcc acc0,RdLo,RdHi. */
9362 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
9363 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
9366 /* Xscale move-register-accumulator (argument parse)
9368 MRAcc RdLo,RdHi,acc0. */
9373 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
, BAD_OVERLAP
);
9374 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
9375 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
9378 /* Encoding functions relevant only to Thumb. */
9380 /* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9384 encode_thumb32_shifted_operand (int i
)
9386 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
9387 unsigned int shift
= inst
.operands
[i
].shift_kind
;
9389 constraint (inst
.operands
[i
].immisreg
,
9390 _("shift by register not allowed in thumb mode"));
9391 inst
.instruction
|= inst
.operands
[i
].reg
;
9392 if (shift
== SHIFT_RRX
)
9393 inst
.instruction
|= SHIFT_ROR
<< 4;
9396 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9397 _("expression too complex"));
9399 constraint (value
> 32
9400 || (value
== 32 && (shift
== SHIFT_LSL
9401 || shift
== SHIFT_ROR
)),
9402 _("shift expression is too large"));
9406 else if (value
== 32)
9409 inst
.instruction
|= shift
<< 4;
9410 inst
.instruction
|= (value
& 0x1c) << 10;
9411 inst
.instruction
|= (value
& 0x03) << 6;
9416 /* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
9420 that cannot be used with a D instruction. If it is a store insn,
9424 encode_thumb32_addr_mode (int i
, bfd_boolean is_t
, bfd_boolean is_d
)
9426 const bfd_boolean is_pc
= (inst
.operands
[i
].reg
== REG_PC
);
9428 constraint (!inst
.operands
[i
].isreg
,
9429 _("Instruction does not support =N addresses"));
9431 inst
.instruction
|= inst
.operands
[i
].reg
<< 16;
9432 if (inst
.operands
[i
].immisreg
)
9434 constraint (is_pc
, BAD_PC_ADDRESSING
);
9435 constraint (is_t
|| is_d
, _("cannot use register index with this instruction"));
9436 constraint (inst
.operands
[i
].negative
,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst
.operands
[i
].postind
,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst
.operands
[i
].writeback
,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst
.operands
[i
].shifted
&& inst
.operands
[i
].shift_kind
!= SHIFT_LSL
,
9443 _("Thumb supports only LSL in shifted register indexing"));
9445 inst
.instruction
|= inst
.operands
[i
].imm
;
9446 if (inst
.operands
[i
].shifted
)
9448 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9449 _("expression too complex"));
9450 constraint (inst
.reloc
.exp
.X_add_number
< 0
9451 || inst
.reloc
.exp
.X_add_number
> 3,
9452 _("shift out of range"));
9453 inst
.instruction
|= inst
.reloc
.exp
.X_add_number
<< 4;
9455 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9457 else if (inst
.operands
[i
].preind
)
9459 constraint (is_pc
&& inst
.operands
[i
].writeback
, BAD_PC_WRITEBACK
);
9460 constraint (is_t
&& inst
.operands
[i
].writeback
,
9461 _("cannot use writeback with this instruction"));
9462 constraint (is_pc
&& ((inst
.instruction
& THUMB2_LOAD_BIT
) == 0)
9463 && !inst
.reloc
.pc_rel
, BAD_PC_ADDRESSING
);
9467 inst
.instruction
|= 0x01000000;
9468 if (inst
.operands
[i
].writeback
)
9469 inst
.instruction
|= 0x00200000;
9473 inst
.instruction
|= 0x00000c00;
9474 if (inst
.operands
[i
].writeback
)
9475 inst
.instruction
|= 0x00000100;
9477 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
9479 else if (inst
.operands
[i
].postind
)
9481 gas_assert (inst
.operands
[i
].writeback
);
9482 constraint (is_pc
, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t
, _("cannot use post-indexing with this instruction"));
9486 inst
.instruction
|= 0x00200000;
9488 inst
.instruction
|= 0x00000900;
9489 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
9491 else /* unindexed - only for coprocessor */
9492 inst
.error
= _("instruction does not accept unindexed addressing");
9495 /* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
9500 Also contains several pseudo-instructions used during relaxation. */
9501 #define T16_32_TAB \
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
9581 /* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
9584 #define X(a,b,c) T_MNEM##a
9585 enum t16_32_codes
{ T16_32_OFFSET
= 0xF7FF, T16_32_TAB
};
9588 #define X(a,b,c) 0x##b
9589 static const unsigned short thumb_op16
[] = { T16_32_TAB
};
9590 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9593 #define X(a,b,c) 0x##c
9594 static const unsigned int thumb_op32
[] = { T16_32_TAB
};
9595 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9600 /* Thumb instruction encoders, in alphabetical order. */
9605 do_t_add_sub_w (void)
9609 Rd
= inst
.operands
[0].reg
;
9610 Rn
= inst
.operands
[1].reg
;
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9615 constraint (Rd
== REG_PC
, BAD_PC
);
9617 reject_bad_reg (Rd
);
9619 inst
.instruction
|= (Rn
<< 16) | (Rd
<< 8);
9620 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
9623 /* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9631 Rd
= inst
.operands
[0].reg
;
9632 Rs
= (inst
.operands
[1].present
9633 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9634 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9637 set_it_insn_type_last ();
9645 flags
= (inst
.instruction
== T_MNEM_adds
9646 || inst
.instruction
== T_MNEM_subs
);
9648 narrow
= !in_it_block ();
9650 narrow
= in_it_block ();
9651 if (!inst
.operands
[2].isreg
)
9655 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
9657 add
= (inst
.instruction
== T_MNEM_add
9658 || inst
.instruction
== T_MNEM_adds
);
9660 if (inst
.size_req
!= 4)
9662 /* Attempt to use a narrow opcode, with relaxation if
9664 if (Rd
== REG_SP
&& Rs
== REG_SP
&& !flags
)
9665 opcode
= add
? T_MNEM_inc_sp
: T_MNEM_dec_sp
;
9666 else if (Rd
<= 7 && Rs
== REG_SP
&& add
&& !flags
)
9667 opcode
= T_MNEM_add_sp
;
9668 else if (Rd
<= 7 && Rs
== REG_PC
&& add
&& !flags
)
9669 opcode
= T_MNEM_add_pc
;
9670 else if (Rd
<= 7 && Rs
<= 7 && narrow
)
9673 opcode
= add
? T_MNEM_addis
: T_MNEM_subis
;
9675 opcode
= add
? T_MNEM_addi
: T_MNEM_subi
;
9679 inst
.instruction
= THUMB_OP16(opcode
);
9680 inst
.instruction
|= (Rd
<< 4) | Rs
;
9681 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9682 if (inst
.size_req
!= 2)
9683 inst
.relax
= opcode
;
9686 constraint (inst
.size_req
== 2, BAD_HIREG
);
9688 if (inst
.size_req
== 4
9689 || (inst
.size_req
!= 2 && !opcode
))
9693 constraint (add
, BAD_PC
);
9694 constraint (Rs
!= REG_LR
|| inst
.instruction
!= T_MNEM_subs
,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
9697 _("expression too complex"));
9698 constraint (inst
.reloc
.exp
.X_add_number
< 0
9699 || inst
.reloc
.exp
.X_add_number
> 0xff,
9700 _("immediate value out of range"));
9701 inst
.instruction
= T2_SUBS_PC_LR
9702 | inst
.reloc
.exp
.X_add_number
;
9703 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
9706 else if (Rs
== REG_PC
)
9708 /* Always use addw/subw. */
9709 inst
.instruction
= add
? 0xf20f0000 : 0xf2af0000;
9710 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMM12
;
9714 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9715 inst
.instruction
= (inst
.instruction
& 0xe1ffffff)
9718 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9720 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_IMM
;
9722 inst
.instruction
|= Rd
<< 8;
9723 inst
.instruction
|= Rs
<< 16;
9728 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
9729 unsigned int shift
= inst
.operands
[2].shift_kind
;
9731 Rn
= inst
.operands
[2].reg
;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst
.operands
[2].shifted
&& inst
.size_req
!= 4)
9735 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
9740 inst
.instruction
= ((inst
.instruction
== T_MNEM_adds
9741 || inst
.instruction
== T_MNEM_add
)
9744 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
9748 if (inst
.instruction
== T_MNEM_add
&& (Rd
== Rs
|| Rd
== Rn
))
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd
> 7 || Rn
> 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_msr
))
9761 inst
.instruction
= T_OPCODE_ADD_HI
;
9762 inst
.instruction
|= (Rd
& 8) << 4;
9763 inst
.instruction
|= (Rd
& 7);
9764 inst
.instruction
|= Rn
<< 3;
9770 constraint (Rd
== REG_PC
, BAD_PC
);
9771 constraint (Rd
== REG_SP
&& Rs
!= REG_SP
, BAD_SP
);
9772 constraint (Rs
== REG_PC
, BAD_PC
);
9773 reject_bad_reg (Rn
);
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst
.operands
[2].shifted
&& inst
.operands
[2].immisreg
,
9777 _("shift must be constant"));
9778 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9779 inst
.instruction
|= Rd
<< 8;
9780 inst
.instruction
|= Rs
<< 16;
9781 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& value
> 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd
== REG_SP
&& Rs
== REG_SP
&& shift
!= SHIFT_LSL
,
9784 _("only LSL shift allowed in thumb mode"));
9785 encode_thumb32_shifted_operand (2);
9790 constraint (inst
.instruction
== T_MNEM_adds
9791 || inst
.instruction
== T_MNEM_subs
,
9794 if (!inst
.operands
[2].isreg
) /* Rd, Rs, #imm */
9796 constraint ((Rd
> 7 && (Rd
!= REG_SP
|| Rs
!= REG_SP
))
9797 || (Rs
> 7 && Rs
!= REG_SP
&& Rs
!= REG_PC
),
9800 inst
.instruction
= (inst
.instruction
== T_MNEM_add
9802 inst
.instruction
|= (Rd
<< 4) | Rs
;
9803 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9807 Rn
= inst
.operands
[2].reg
;
9808 constraint (inst
.operands
[2].shifted
, _("unshifted register required"));
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd
> 7 || Rs
> 7 || Rn
> 7)
9813 /* Can't do this for SUB. */
9814 constraint (inst
.instruction
== T_MNEM_sub
, BAD_HIREG
);
9815 inst
.instruction
= T_OPCODE_ADD_HI
;
9816 inst
.instruction
|= (Rd
& 8) << 4;
9817 inst
.instruction
|= (Rd
& 7);
9819 inst
.instruction
|= Rn
<< 3;
9821 inst
.instruction
|= Rs
<< 3;
9823 constraint (1, _("dest must overlap one source register"));
9827 inst
.instruction
= (inst
.instruction
== T_MNEM_add
9828 ? T_OPCODE_ADD_R3
: T_OPCODE_SUB_R3
);
9829 inst
.instruction
|= Rd
| (Rs
<< 3) | (Rn
<< 6);
9839 Rd
= inst
.operands
[0].reg
;
9840 reject_bad_reg (Rd
);
9842 if (unified_syntax
&& inst
.size_req
== 0 && Rd
<= 7)
9844 /* Defer to section relaxation. */
9845 inst
.relax
= inst
.instruction
;
9846 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9847 inst
.instruction
|= Rd
<< 4;
9849 else if (unified_syntax
&& inst
.size_req
!= 2)
9851 /* Generate a 32-bit opcode. */
9852 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9853 inst
.instruction
|= Rd
<< 8;
9854 inst
.reloc
.type
= BFD_RELOC_ARM_T32_ADD_PC12
;
9855 inst
.reloc
.pc_rel
= 1;
9859 /* Generate a 16-bit opcode. */
9860 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9861 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_ADD
;
9862 inst
.reloc
.exp
.X_add_number
-= 4; /* PC relative adjust. */
9863 inst
.reloc
.pc_rel
= 1;
9865 inst
.instruction
|= Rd
<< 4;
9869 /* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
9880 Rd
= inst
.operands
[0].reg
;
9881 Rs
= (inst
.operands
[1].present
9882 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9883 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9884 Rn
= inst
.operands
[2].reg
;
9886 reject_bad_reg (Rd
);
9887 reject_bad_reg (Rs
);
9888 if (inst
.operands
[2].isreg
)
9889 reject_bad_reg (Rn
);
9893 if (!inst
.operands
[2].isreg
)
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9898 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9899 inst
.instruction
|= Rd
<< 8;
9900 inst
.instruction
|= Rs
<< 16;
9901 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9907 /* See if we can do this with a 16-bit instruction. */
9908 if (THUMB_SETS_FLAGS (inst
.instruction
))
9909 narrow
= !in_it_block ();
9911 narrow
= in_it_block ();
9913 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
9915 if (inst
.operands
[2].shifted
)
9917 if (inst
.size_req
== 4)
9923 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9924 inst
.instruction
|= Rd
;
9925 inst
.instruction
|= Rn
<< 3;
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst
.operands
[2].shifted
9931 && inst
.operands
[2].immisreg
,
9932 _("shift must be constant"));
9933 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9934 inst
.instruction
|= Rd
<< 8;
9935 inst
.instruction
|= Rs
<< 16;
9936 encode_thumb32_shifted_operand (2);
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9944 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
9946 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
9947 _("unshifted register required"));
9948 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
9949 constraint (Rd
!= Rs
,
9950 _("dest and source1 must be the same register"));
9952 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
9953 inst
.instruction
|= Rd
;
9954 inst
.instruction
|= Rn
<< 3;
9958 /* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9968 Rd
= inst
.operands
[0].reg
;
9969 Rs
= (inst
.operands
[1].present
9970 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
9971 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
9972 Rn
= inst
.operands
[2].reg
;
9974 reject_bad_reg (Rd
);
9975 reject_bad_reg (Rs
);
9976 if (inst
.operands
[2].isreg
)
9977 reject_bad_reg (Rn
);
9981 if (!inst
.operands
[2].isreg
)
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
9986 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
9987 inst
.instruction
|= Rd
<< 8;
9988 inst
.instruction
|= Rs
<< 16;
9989 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (THUMB_SETS_FLAGS (inst
.instruction
))
9997 narrow
= !in_it_block ();
9999 narrow
= in_it_block ();
10001 if (Rd
> 7 || Rn
> 7 || Rs
> 7)
10003 if (inst
.operands
[2].shifted
)
10005 if (inst
.size_req
== 4)
10012 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10013 inst
.instruction
|= Rd
;
10014 inst
.instruction
|= Rn
<< 3;
10019 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10020 inst
.instruction
|= Rd
;
10021 inst
.instruction
|= Rs
<< 3;
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst
.operands
[2].shifted
10028 && inst
.operands
[2].immisreg
,
10029 _("shift must be constant"));
10030 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10031 inst
.instruction
|= Rd
<< 8;
10032 inst
.instruction
|= Rs
<< 16;
10033 encode_thumb32_shifted_operand (2);
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
10043 constraint (!inst
.operands
[2].isreg
|| inst
.operands
[2].shifted
,
10044 _("unshifted register required"));
10045 constraint (Rd
> 7 || Rs
> 7 || Rn
> 7, BAD_HIREG
);
10047 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10048 inst
.instruction
|= Rd
;
10051 inst
.instruction
|= Rn
<< 3;
10053 inst
.instruction
|= Rs
<< 3;
10055 constraint (1, _("dest must overlap one source register"));
10060 do_t_barrier (void)
10062 if (inst
.operands
[0].present
)
10064 constraint ((inst
.instruction
& 0xf0) != 0x40
10065 && inst
.operands
[0].imm
> 0xf
10066 && inst
.operands
[0].imm
< 0x0,
10067 _("bad barrier type"));
10068 inst
.instruction
|= inst
.operands
[0].imm
;
10071 inst
.instruction
|= 0xf;
10078 unsigned int msb
= inst
.operands
[1].imm
+ inst
.operands
[2].imm
;
10079 constraint (msb
> 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 Rd
= inst
.operands
[0].reg
;
10083 reject_bad_reg (Rd
);
10084 inst
.instruction
|= Rd
<< 8;
10085 inst
.instruction
|= (inst
.operands
[1].imm
& 0x1c) << 10;
10086 inst
.instruction
|= (inst
.operands
[1].imm
& 0x03) << 6;
10087 inst
.instruction
|= msb
- 1;
10096 Rd
= inst
.operands
[0].reg
;
10097 reject_bad_reg (Rd
);
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst
.operands
[1].isreg
)
10105 Rn
= inst
.operands
[1].reg
;
10106 reject_bad_reg (Rn
);
10109 msb
= inst
.operands
[2].imm
+ inst
.operands
[3].imm
;
10110 constraint (msb
> 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
10113 inst
.instruction
|= Rd
<< 8;
10114 inst
.instruction
|= Rn
<< 16;
10115 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
10116 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
10117 inst
.instruction
|= msb
- 1;
10125 Rd
= inst
.operands
[0].reg
;
10126 Rn
= inst
.operands
[1].reg
;
10128 reject_bad_reg (Rd
);
10129 reject_bad_reg (Rn
);
10131 constraint (inst
.operands
[2].imm
+ inst
.operands
[3].imm
> 32,
10132 _("bit-field extends past end of register"));
10133 inst
.instruction
|= Rd
<< 8;
10134 inst
.instruction
|= Rn
<< 16;
10135 inst
.instruction
|= (inst
.operands
[2].imm
& 0x1c) << 10;
10136 inst
.instruction
|= (inst
.operands
[2].imm
& 0x03) << 6;
10137 inst
.instruction
|= inst
.operands
[3].imm
- 1;
10140 /* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
10153 set_it_insn_type_last ();
10155 if (inst
.operands
[0].isreg
)
10157 constraint (inst
.operands
[0].reg
== REG_PC
, BAD_PC
);
10158 /* We have a register, so this is BLX(2). */
10159 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
10163 /* No register. This must be BLX(1). */
10164 inst
.instruction
= 0xf000e800;
10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX
);
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN
);
10179 if (in_it_block ())
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10183 cond
= COND_ALWAYS
;
10188 if (cond
!= COND_ALWAYS
)
10189 opcode
= T_MNEM_bcond
;
10191 opcode
= inst
.instruction
;
10194 && (inst
.size_req
== 4
10195 || (inst
.size_req
!= 2
10196 && (inst
.operands
[0].hasreloc
10197 || inst
.reloc
.exp
.X_op
== O_constant
))))
10199 inst
.instruction
= THUMB_OP32(opcode
);
10200 if (cond
== COND_ALWAYS
)
10201 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
10204 gas_assert (cond
!= 0xF);
10205 inst
.instruction
|= cond
<< 22;
10206 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
10211 inst
.instruction
= THUMB_OP16(opcode
);
10212 if (cond
== COND_ALWAYS
)
10213 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
10216 inst
.instruction
|= cond
<< 8;
10217 reloc
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
10219 /* Allow section relaxation. */
10220 if (unified_syntax
&& inst
.size_req
!= 2)
10221 inst
.relax
= opcode
;
10223 inst
.reloc
.type
= reloc
;
10224 inst
.reloc
.pc_rel
= 1;
10227 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10231 do_t_bkpt_hlt1 (int range
)
10233 constraint (inst
.cond
!= COND_ALWAYS
,
10234 _("instruction is always unconditional"));
10235 if (inst
.operands
[0].present
)
10237 constraint (inst
.operands
[0].imm
> range
,
10238 _("immediate value out of range"));
10239 inst
.instruction
|= inst
.operands
[0].imm
;
10242 set_it_insn_type (NEUTRAL_IT_INSN
);
10248 do_t_bkpt_hlt1 (63);
10254 do_t_bkpt_hlt1 (255);
10258 do_t_branch23 (void)
10260 set_it_insn_type_last ();
10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23
);
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst
.reloc
.type
== BFD_RELOC_ARM_PLT32
)
10269 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
10271 #if defined(OBJ_COFF)
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst
.reloc
.exp
.X_op
== O_symbol
10277 && inst
.reloc
.exp
.X_add_symbol
!= NULL
10278 && S_IS_DEFINED (inst
.reloc
.exp
.X_add_symbol
)
10279 && ! THUMB_IS_FUNC (inst
.reloc
.exp
.X_add_symbol
))
10280 inst
.reloc
.exp
.X_add_symbol
=
10281 find_real_start (inst
.reloc
.exp
.X_add_symbol
);
10288 set_it_insn_type_last ();
10289 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10300 set_it_insn_type_last ();
10301 Rm
= inst
.operands
[0].reg
;
10302 reject_bad_reg (Rm
);
10303 inst
.instruction
|= Rm
<< 16;
10312 Rd
= inst
.operands
[0].reg
;
10313 Rm
= inst
.operands
[1].reg
;
10315 reject_bad_reg (Rd
);
10316 reject_bad_reg (Rm
);
10318 inst
.instruction
|= Rd
<< 8;
10319 inst
.instruction
|= Rm
<< 16;
10320 inst
.instruction
|= Rm
;
10326 set_it_insn_type (OUTSIDE_IT_INSN
);
10327 inst
.instruction
|= inst
.operands
[0].imm
;
10333 set_it_insn_type (OUTSIDE_IT_INSN
);
10335 && (inst
.operands
[1].present
|| inst
.size_req
== 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6_notm
))
10338 unsigned int imod
= (inst
.instruction
& 0x0030) >> 4;
10339 inst
.instruction
= 0xf3af8000;
10340 inst
.instruction
|= imod
<< 9;
10341 inst
.instruction
|= inst
.operands
[0].imm
<< 5;
10342 if (inst
.operands
[1].present
)
10343 inst
.instruction
|= 0x100 | inst
.operands
[1].imm
;
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
)
10348 && (inst
.operands
[0].imm
& 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst
.operands
[1].present
|| inst
.size_req
== 4,
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst
.instruction
|= inst
.operands
[0].imm
;
10358 /* THUMB CPY instruction (argument parse). */
10363 if (inst
.size_req
== 4)
10365 inst
.instruction
= THUMB_OP32 (T_MNEM_mov
);
10366 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10367 inst
.instruction
|= inst
.operands
[1].reg
;
10371 inst
.instruction
|= (inst
.operands
[0].reg
& 0x8) << 4;
10372 inst
.instruction
|= (inst
.operands
[0].reg
& 0x7);
10373 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10380 set_it_insn_type (OUTSIDE_IT_INSN
);
10381 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
10382 inst
.instruction
|= inst
.operands
[0].reg
;
10383 inst
.reloc
.pc_rel
= 1;
10384 inst
.reloc
.type
= BFD_RELOC_THUMB_PCREL_BRANCH7
;
10390 inst
.instruction
|= inst
.operands
[0].imm
;
10396 unsigned Rd
, Rn
, Rm
;
10398 Rd
= inst
.operands
[0].reg
;
10399 Rn
= (inst
.operands
[1].present
10400 ? inst
.operands
[1].reg
: Rd
);
10401 Rm
= inst
.operands
[2].reg
;
10403 reject_bad_reg (Rd
);
10404 reject_bad_reg (Rn
);
10405 reject_bad_reg (Rm
);
10407 inst
.instruction
|= Rd
<< 8;
10408 inst
.instruction
|= Rn
<< 16;
10409 inst
.instruction
|= Rm
;
10415 if (unified_syntax
&& inst
.size_req
== 4)
10416 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10418 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10424 unsigned int cond
= inst
.operands
[0].imm
;
10426 set_it_insn_type (IT_INSN
);
10427 now_it
.mask
= (inst
.instruction
& 0xf) | 0x10;
10429 now_it
.warn_deprecated
= FALSE
;
10431 /* If the condition is a negative condition, invert the mask. */
10432 if ((cond
& 0x1) == 0x0)
10434 unsigned int mask
= inst
.instruction
& 0x000f;
10436 if ((mask
& 0x7) == 0)
10438 /* No conversion needed. */
10439 now_it
.block_length
= 1;
10441 else if ((mask
& 0x3) == 0)
10444 now_it
.block_length
= 2;
10446 else if ((mask
& 0x1) == 0)
10449 now_it
.block_length
= 3;
10454 now_it
.block_length
= 4;
10457 inst
.instruction
&= 0xfff0;
10458 inst
.instruction
|= mask
;
10461 inst
.instruction
|= cond
<< 4;
10464 /* Helper function used for both push/pop and ldm/stm. */
10466 encode_thumb2_ldmstm (int base
, unsigned mask
, bfd_boolean writeback
)
10470 load
= (inst
.instruction
& (1 << 20)) != 0;
10472 if (mask
& (1 << 13))
10473 inst
.error
= _("SP not allowed in register list");
10475 if ((mask
& (1 << base
)) != 0
10477 inst
.error
= _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10482 if (mask
& (1 << 15))
10484 if (mask
& (1 << 14))
10485 inst
.error
= _("LR and PC should not both be in register list");
10487 set_it_insn_type_last ();
10492 if (mask
& (1 << 15))
10493 inst
.error
= _("PC not allowed in register list");
10496 if ((mask
& (mask
- 1)) == 0)
10498 /* Single register transfers implemented as str/ldr. */
10501 if (inst
.instruction
& (1 << 23))
10502 inst
.instruction
= 0x00000b04; /* ia! -> [base], #4 */
10504 inst
.instruction
= 0x00000d04; /* db! -> [base, #-4]! */
10508 if (inst
.instruction
& (1 << 23))
10509 inst
.instruction
= 0x00800000; /* ia -> [base] */
10511 inst
.instruction
= 0x00000c04; /* db -> [base, #-4] */
10514 inst
.instruction
|= 0xf8400000;
10516 inst
.instruction
|= 0x00100000;
10518 mask
= ffs (mask
) - 1;
10521 else if (writeback
)
10522 inst
.instruction
|= WRITE_BACK
;
10524 inst
.instruction
|= mask
;
10525 inst
.instruction
|= base
<< 16;
10531 /* This really doesn't seem worth it. */
10532 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
10533 _("expression too complex"));
10534 constraint (inst
.operands
[1].writeback
,
10535 _("Thumb load/store multiple does not support {reglist}^"));
10537 if (unified_syntax
)
10539 bfd_boolean narrow
;
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst
.instruction
< 0xffff /* not ldmdb/stmdb */
10545 && inst
.size_req
!= 4
10546 && !(inst
.operands
[1].imm
& ~0xff))
10548 mask
= 1 << inst
.operands
[0].reg
;
10550 if (inst
.operands
[0].reg
<= 7)
10552 if (inst
.instruction
== T_MNEM_stmia
10553 ? inst
.operands
[0].writeback
10554 : (inst
.operands
[0].writeback
10555 == !(inst
.operands
[1].imm
& mask
)))
10557 if (inst
.instruction
== T_MNEM_stmia
10558 && (inst
.operands
[1].imm
& mask
)
10559 && (inst
.operands
[1].imm
& (mask
- 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst
.operands
[0].reg
);
10563 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10564 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10565 inst
.instruction
|= inst
.operands
[1].imm
;
10568 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode
;
10579 /* First, record an error for Case 3. */
10580 if (inst
.operands
[1].imm
& mask
10581 && inst
.operands
[0].writeback
)
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
10586 opcode
= (inst
.instruction
== T_MNEM_stmia
? T_MNEM_str
10588 inst
.instruction
= THUMB_OP16 (opcode
);
10589 inst
.instruction
|= inst
.operands
[0].reg
<< 3;
10590 inst
.instruction
|= (ffs (inst
.operands
[1].imm
)-1);
10594 else if (inst
.operands
[0] .reg
== REG_SP
)
10596 if (inst
.operands
[0].writeback
)
10599 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
10600 ? T_MNEM_push
: T_MNEM_pop
);
10601 inst
.instruction
|= inst
.operands
[1].imm
;
10604 else if ((inst
.operands
[1].imm
& (inst
.operands
[1].imm
-1)) == 0)
10607 THUMB_OP16 (inst
.instruction
== T_MNEM_stmia
10608 ? T_MNEM_str_sp
: T_MNEM_ldr_sp
);
10609 inst
.instruction
|= ((ffs (inst
.operands
[1].imm
)-1) << 8);
10617 if (inst
.instruction
< 0xffff)
10618 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
10620 encode_thumb2_ldmstm (inst
.operands
[0].reg
, inst
.operands
[1].imm
,
10621 inst
.operands
[0].writeback
);
10626 constraint (inst
.operands
[0].reg
> 7
10627 || (inst
.operands
[1].imm
& ~0xff), BAD_HIREG
);
10628 constraint (inst
.instruction
!= T_MNEM_ldmia
10629 && inst
.instruction
!= T_MNEM_stmia
,
10630 _("Thumb-2 instruction only valid in unified syntax"));
10631 if (inst
.instruction
== T_MNEM_stmia
)
10633 if (!inst
.operands
[0].writeback
)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
))
10636 && (inst
.operands
[1].imm
& ((1 << inst
.operands
[0].reg
) - 1)))
10637 as_warn (_("value stored for r%d is UNKNOWN"),
10638 inst
.operands
[0].reg
);
10642 if (!inst
.operands
[0].writeback
10643 && !(inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst
.operands
[0].writeback
10646 && (inst
.operands
[1].imm
& (1 << inst
.operands
[0].reg
)))
10647 as_warn (_("this instruction will not write back the base register"));
10650 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10651 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10652 inst
.instruction
|= inst
.operands
[1].imm
;
10659 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].preind
10660 || inst
.operands
[1].postind
|| inst
.operands
[1].writeback
10661 || inst
.operands
[1].immisreg
|| inst
.operands
[1].shifted
10662 || inst
.operands
[1].negative
,
10665 constraint ((inst
.operands
[1].reg
== REG_PC
), BAD_PC
);
10667 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10668 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
10669 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
10675 if (!inst
.operands
[1].present
)
10677 constraint (inst
.operands
[0].reg
== REG_LR
,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
10682 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
,
10685 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10686 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
10687 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
10693 unsigned long opcode
;
10696 if (inst
.operands
[0].isreg
10697 && !inst
.operands
[0].preind
10698 && inst
.operands
[0].reg
== REG_PC
)
10699 set_it_insn_type_last ();
10701 opcode
= inst
.instruction
;
10702 if (unified_syntax
)
10704 if (!inst
.operands
[1].isreg
)
10706 if (opcode
<= 0xffff)
10707 inst
.instruction
= THUMB_OP32 (opcode
);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
10711 if (inst
.operands
[1].isreg
10712 && !inst
.operands
[1].writeback
10713 && !inst
.operands
[1].shifted
&& !inst
.operands
[1].postind
10714 && !inst
.operands
[1].negative
&& inst
.operands
[0].reg
<= 7
10715 && opcode
<= 0xffff
10716 && inst
.size_req
!= 4)
10718 /* Insn may have a 16-bit form. */
10719 Rn
= inst
.operands
[1].reg
;
10720 if (inst
.operands
[1].immisreg
)
10722 inst
.instruction
= THUMB_OP16 (opcode
);
10724 if (Rn
<= 7 && inst
.operands
[1].imm
<= 7)
10726 else if (opcode
!= T_MNEM_ldr
&& opcode
!= T_MNEM_str
)
10727 reject_bad_reg (inst
.operands
[1].imm
);
10729 else if ((Rn
<= 7 && opcode
!= T_MNEM_ldrsh
10730 && opcode
!= T_MNEM_ldrsb
)
10731 || ((Rn
== REG_PC
|| Rn
== REG_SP
) && opcode
== T_MNEM_ldr
)
10732 || (Rn
== REG_SP
&& opcode
== T_MNEM_str
))
10739 if (inst
.reloc
.pc_rel
)
10740 opcode
= T_MNEM_ldr_pc2
;
10742 opcode
= T_MNEM_ldr_pc
;
10746 if (opcode
== T_MNEM_ldr
)
10747 opcode
= T_MNEM_ldr_sp
;
10749 opcode
= T_MNEM_str_sp
;
10751 inst
.instruction
= inst
.operands
[0].reg
<< 8;
10755 inst
.instruction
= inst
.operands
[0].reg
;
10756 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10758 inst
.instruction
|= THUMB_OP16 (opcode
);
10759 if (inst
.size_req
== 2)
10760 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10762 inst
.relax
= opcode
;
10766 /* Definitely a 32-bit variant. */
10768 /* Warning for Erratum 752419. */
10769 if (opcode
== T_MNEM_ldr
10770 && inst
.operands
[0].reg
== REG_SP
10771 && inst
.operands
[1].writeback
== 1
10772 && !inst
.operands
[1].immisreg
)
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7r
)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10783 /* Do some validations regarding addressing modes. */
10784 if (inst
.operands
[1].immisreg
)
10785 reject_bad_reg (inst
.operands
[1].imm
);
10787 constraint (inst
.operands
[1].writeback
== 1
10788 && inst
.operands
[0].reg
== inst
.operands
[1].reg
,
10791 inst
.instruction
= THUMB_OP32 (opcode
);
10792 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
10794 check_ldr_r15_aligned ();
10798 constraint (inst
.operands
[0].reg
> 7, BAD_HIREG
);
10800 if (inst
.instruction
== T_MNEM_ldrsh
|| inst
.instruction
== T_MNEM_ldrsb
)
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst
.operands
[1].reg
> 7 || inst
.operands
[1].imm
> 7, BAD_HIREG
);
10804 constraint (!inst
.operands
[1].isreg
|| !inst
.operands
[1].immisreg
10805 || inst
.operands
[1].postind
|| inst
.operands
[1].shifted
10806 || inst
.operands
[1].negative
,
10807 _("Thumb does not support this addressing mode"));
10808 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10812 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
10813 if (!inst
.operands
[1].isreg
)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE
, /*mode_3=*/FALSE
))
10817 constraint (!inst
.operands
[1].preind
10818 || inst
.operands
[1].shifted
10819 || inst
.operands
[1].writeback
,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst
.operands
[1].reg
== REG_PC
|| inst
.operands
[1].reg
== REG_SP
)
10823 constraint (inst
.instruction
& 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst
.operands
[1].reg
== REG_PC
10826 && !(inst
.instruction
& THUMB_LOAD_BIT
),
10827 _("r15 based store not allowed"));
10828 constraint (inst
.operands
[1].immisreg
,
10829 _("invalid base register for register offset"));
10831 if (inst
.operands
[1].reg
== REG_PC
)
10832 inst
.instruction
= T_OPCODE_LDR_PC
;
10833 else if (inst
.instruction
& THUMB_LOAD_BIT
)
10834 inst
.instruction
= T_OPCODE_LDR_SP
;
10836 inst
.instruction
= T_OPCODE_STR_SP
;
10838 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
10839 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10843 constraint (inst
.operands
[1].reg
> 7, BAD_HIREG
);
10844 if (!inst
.operands
[1].immisreg
)
10846 /* Immediate offset. */
10847 inst
.instruction
|= inst
.operands
[0].reg
;
10848 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10849 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_OFFSET
;
10853 /* Register offset. */
10854 constraint (inst
.operands
[1].imm
> 7, BAD_HIREG
);
10855 constraint (inst
.operands
[1].negative
,
10856 _("Thumb does not support this addressing mode"));
10859 switch (inst
.instruction
)
10861 case T_OPCODE_STR_IW
: inst
.instruction
= T_OPCODE_STR_RW
; break;
10862 case T_OPCODE_STR_IH
: inst
.instruction
= T_OPCODE_STR_RH
; break;
10863 case T_OPCODE_STR_IB
: inst
.instruction
= T_OPCODE_STR_RB
; break;
10864 case T_OPCODE_LDR_IW
: inst
.instruction
= T_OPCODE_LDR_RW
; break;
10865 case T_OPCODE_LDR_IH
: inst
.instruction
= T_OPCODE_LDR_RH
; break;
10866 case T_OPCODE_LDR_IB
: inst
.instruction
= T_OPCODE_LDR_RB
; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10872 inst
.instruction
|= inst
.operands
[0].reg
;
10873 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
10874 inst
.instruction
|= inst
.operands
[1].imm
<< 6;
10880 if (!inst
.operands
[1].present
)
10882 inst
.operands
[1].reg
= inst
.operands
[0].reg
+ 1;
10883 constraint (inst
.operands
[0].reg
== REG_LR
,
10884 _("r14 not allowed here"));
10885 constraint (inst
.operands
[0].reg
== REG_R12
,
10886 _("r12 not allowed here"));
10889 if (inst
.operands
[2].writeback
10890 && (inst
.operands
[0].reg
== inst
.operands
[2].reg
10891 || inst
.operands
[1].reg
== inst
.operands
[2].reg
))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10895 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10896 inst
.instruction
|= inst
.operands
[1].reg
<< 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE
, /*is_d=*/TRUE
);
10903 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE
, /*is_d=*/FALSE
);
10910 unsigned Rd
, Rn
, Rm
, Ra
;
10912 Rd
= inst
.operands
[0].reg
;
10913 Rn
= inst
.operands
[1].reg
;
10914 Rm
= inst
.operands
[2].reg
;
10915 Ra
= inst
.operands
[3].reg
;
10917 reject_bad_reg (Rd
);
10918 reject_bad_reg (Rn
);
10919 reject_bad_reg (Rm
);
10920 reject_bad_reg (Ra
);
10922 inst
.instruction
|= Rd
<< 8;
10923 inst
.instruction
|= Rn
<< 16;
10924 inst
.instruction
|= Rm
;
10925 inst
.instruction
|= Ra
<< 12;
10931 unsigned RdLo
, RdHi
, Rn
, Rm
;
10933 RdLo
= inst
.operands
[0].reg
;
10934 RdHi
= inst
.operands
[1].reg
;
10935 Rn
= inst
.operands
[2].reg
;
10936 Rm
= inst
.operands
[3].reg
;
10938 reject_bad_reg (RdLo
);
10939 reject_bad_reg (RdHi
);
10940 reject_bad_reg (Rn
);
10941 reject_bad_reg (Rm
);
10943 inst
.instruction
|= RdLo
<< 12;
10944 inst
.instruction
|= RdHi
<< 8;
10945 inst
.instruction
|= Rn
<< 16;
10946 inst
.instruction
|= Rm
;
10950 do_t_mov_cmp (void)
10954 Rn
= inst
.operands
[0].reg
;
10955 Rm
= inst
.operands
[1].reg
;
10958 set_it_insn_type_last ();
10960 if (unified_syntax
)
10962 int r0off
= (inst
.instruction
== T_MNEM_mov
10963 || inst
.instruction
== T_MNEM_movs
) ? 8 : 16;
10964 unsigned long opcode
;
10965 bfd_boolean narrow
;
10966 bfd_boolean low_regs
;
10968 low_regs
= (Rn
<= 7 && Rm
<= 7);
10969 opcode
= inst
.instruction
;
10970 if (in_it_block ())
10971 narrow
= opcode
!= T_MNEM_movs
;
10973 narrow
= opcode
!= T_MNEM_movs
|| low_regs
;
10974 if (inst
.size_req
== 4
10975 || inst
.operands
[1].shifted
)
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode
== T_MNEM_movs
&& inst
.operands
[1].isreg
10980 && !inst
.operands
[1].shifted
10984 inst
.instruction
= T2_SUBS_PC_LR
;
10988 if (opcode
== T_MNEM_cmp
)
10990 constraint (Rn
== REG_PC
, BAD_PC
);
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10995 warn_deprecated_sp (Rm
);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm
== REG_PC
, BAD_PC
);
11002 reject_bad_reg (Rm
);
11004 else if (opcode
== T_MNEM_mov
11005 || opcode
== T_MNEM_movs
)
11007 if (inst
.operands
[1].isreg
)
11009 if (opcode
== T_MNEM_movs
)
11011 reject_bad_reg (Rn
);
11012 reject_bad_reg (Rm
);
11016 /* This is mov.n. */
11017 if ((Rn
== REG_SP
|| Rn
== REG_PC
)
11018 && (Rm
== REG_SP
|| Rm
== REG_PC
))
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm
, Rn
);
11027 /* This is mov.w. */
11028 constraint (Rn
== REG_PC
, BAD_PC
);
11029 constraint (Rm
== REG_PC
, BAD_PC
);
11030 constraint (Rn
== REG_SP
&& Rm
== REG_SP
, BAD_SP
);
11034 reject_bad_reg (Rn
);
11037 if (!inst
.operands
[1].isreg
)
11039 /* Immediate operand. */
11040 if (!in_it_block () && opcode
== T_MNEM_mov
)
11042 if (low_regs
&& narrow
)
11044 inst
.instruction
= THUMB_OP16 (opcode
);
11045 inst
.instruction
|= Rn
<< 8;
11046 if (inst
.size_req
== 2)
11047 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
11049 inst
.relax
= opcode
;
11053 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11054 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11055 inst
.instruction
|= Rn
<< r0off
;
11056 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11059 else if (inst
.operands
[1].shifted
&& inst
.operands
[1].immisreg
11060 && (inst
.instruction
== T_MNEM_mov
11061 || inst
.instruction
== T_MNEM_movs
))
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags
= (inst
.instruction
== T_MNEM_movs
);
11066 if (in_it_block ())
11071 if (inst
.size_req
== 4)
11074 if (!low_regs
|| inst
.operands
[1].imm
> 7)
11080 switch (inst
.operands
[1].shift_kind
)
11083 opcode
= narrow
? T_OPCODE_LSL_R
: THUMB_OP32 (T_MNEM_lsl
);
11086 opcode
= narrow
? T_OPCODE_ASR_R
: THUMB_OP32 (T_MNEM_asr
);
11089 opcode
= narrow
? T_OPCODE_LSR_R
: THUMB_OP32 (T_MNEM_lsr
);
11092 opcode
= narrow
? T_OPCODE_ROR_R
: THUMB_OP32 (T_MNEM_ror
);
11098 inst
.instruction
= opcode
;
11101 inst
.instruction
|= Rn
;
11102 inst
.instruction
|= inst
.operands
[1].imm
<< 3;
11107 inst
.instruction
|= CONDS_BIT
;
11109 inst
.instruction
|= Rn
<< 8;
11110 inst
.instruction
|= Rm
<< 16;
11111 inst
.instruction
|= inst
.operands
[1].imm
;
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs
&& inst
.operands
[1].shifted
11119 && (inst
.instruction
== T_MNEM_mov
11120 || inst
.instruction
== T_MNEM_movs
))
11122 if (in_it_block ())
11123 narrow
= (inst
.instruction
== T_MNEM_mov
);
11125 narrow
= (inst
.instruction
== T_MNEM_movs
);
11130 switch (inst
.operands
[1].shift_kind
)
11132 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11133 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11134 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11135 default: narrow
= FALSE
; break;
11141 inst
.instruction
|= Rn
;
11142 inst
.instruction
|= Rm
<< 3;
11143 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11147 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11148 inst
.instruction
|= Rn
<< r0off
;
11149 encode_thumb32_shifted_operand (1);
11153 switch (inst
.instruction
)
11156 /* In v4t or v5t a move of two lowregs produces unpredictable
11157 results. Don't allow this. */
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6
),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
11167 inst
.instruction
= T_OPCODE_MOV_HR
;
11168 inst
.instruction
|= (Rn
& 0x8) << 4;
11169 inst
.instruction
|= (Rn
& 0x7);
11170 inst
.instruction
|= Rm
<< 3;
11174 /* We know we have low registers at this point.
11175 Generate LSLS Rd, Rs, #0. */
11176 inst
.instruction
= T_OPCODE_LSL_I
;
11177 inst
.instruction
|= Rn
;
11178 inst
.instruction
|= Rm
<< 3;
11184 inst
.instruction
= T_OPCODE_CMP_LR
;
11185 inst
.instruction
|= Rn
;
11186 inst
.instruction
|= Rm
<< 3;
11190 inst
.instruction
= T_OPCODE_CMP_HR
;
11191 inst
.instruction
|= (Rn
& 0x8) << 4;
11192 inst
.instruction
|= (Rn
& 0x7);
11193 inst
.instruction
|= Rm
<< 3;
11200 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst
.operands
[1].shifted
,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11206 if (inst
.operands
[1].isreg
)
11208 if (Rn
< 8 && Rm
< 8)
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst
.instruction
== T_OPCODE_MOV_I8
)
11213 inst
.instruction
= T_OPCODE_ADD_I3
;
11215 inst
.instruction
= T_OPCODE_CMP_LR
;
11217 inst
.instruction
|= Rn
;
11218 inst
.instruction
|= Rm
<< 3;
11222 if (inst
.instruction
== T_OPCODE_MOV_I8
)
11223 inst
.instruction
= T_OPCODE_MOV_HR
;
11225 inst
.instruction
= T_OPCODE_CMP_HR
;
11231 constraint (Rn
> 7,
11232 _("only lo regs allowed with immediate"));
11233 inst
.instruction
|= Rn
<< 8;
11234 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_IMM
;
11245 top
= (inst
.instruction
& 0x00800000) != 0;
11246 if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVW
)
11248 constraint (top
, _(":lower16: not allowed this instruction"));
11249 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVW
;
11251 else if (inst
.reloc
.type
== BFD_RELOC_ARM_MOVT
)
11253 constraint (!top
, _(":upper16: not allowed this instruction"));
11254 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_MOVT
;
11257 Rd
= inst
.operands
[0].reg
;
11258 reject_bad_reg (Rd
);
11260 inst
.instruction
|= Rd
<< 8;
11261 if (inst
.reloc
.type
== BFD_RELOC_UNUSED
)
11263 imm
= inst
.reloc
.exp
.X_add_number
;
11264 inst
.instruction
|= (imm
& 0xf000) << 4;
11265 inst
.instruction
|= (imm
& 0x0800) << 15;
11266 inst
.instruction
|= (imm
& 0x0700) << 4;
11267 inst
.instruction
|= (imm
& 0x00ff);
11272 do_t_mvn_tst (void)
11276 Rn
= inst
.operands
[0].reg
;
11277 Rm
= inst
.operands
[1].reg
;
11279 if (inst
.instruction
== T_MNEM_cmp
11280 || inst
.instruction
== T_MNEM_cmn
)
11281 constraint (Rn
== REG_PC
, BAD_PC
);
11283 reject_bad_reg (Rn
);
11284 reject_bad_reg (Rm
);
11286 if (unified_syntax
)
11288 int r0off
= (inst
.instruction
== T_MNEM_mvn
11289 || inst
.instruction
== T_MNEM_mvns
) ? 8 : 16;
11290 bfd_boolean narrow
;
11292 if (inst
.size_req
== 4
11293 || inst
.instruction
> 0xffff
11294 || inst
.operands
[1].shifted
11295 || Rn
> 7 || Rm
> 7)
11297 else if (inst
.instruction
== T_MNEM_cmn
)
11299 else if (THUMB_SETS_FLAGS (inst
.instruction
))
11300 narrow
= !in_it_block ();
11302 narrow
= in_it_block ();
11304 if (!inst
.operands
[1].isreg
)
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst
.instruction
< 0xffff)
11309 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11310 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11311 inst
.instruction
|= Rn
<< r0off
;
11312 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11316 /* See if we can do this with a 16-bit instruction. */
11319 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11320 inst
.instruction
|= Rn
;
11321 inst
.instruction
|= Rm
<< 3;
11325 constraint (inst
.operands
[1].shifted
11326 && inst
.operands
[1].immisreg
,
11327 _("shift must be constant"));
11328 if (inst
.instruction
< 0xffff)
11329 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11330 inst
.instruction
|= Rn
<< r0off
;
11331 encode_thumb32_shifted_operand (1);
11337 constraint (inst
.instruction
> 0xffff
11338 || inst
.instruction
== T_MNEM_mvns
, BAD_THUMB32
);
11339 constraint (!inst
.operands
[1].isreg
|| inst
.operands
[1].shifted
,
11340 _("unshifted register required"));
11341 constraint (Rn
> 7 || Rm
> 7,
11344 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11345 inst
.instruction
|= Rn
;
11346 inst
.instruction
|= Rm
<< 3;
11355 if (do_vfp_nsyn_mrs () == SUCCESS
)
11358 Rd
= inst
.operands
[0].reg
;
11359 reject_bad_reg (Rd
);
11360 inst
.instruction
|= Rd
<< 8;
11362 if (inst
.operands
[1].isreg
)
11364 unsigned br
= inst
.operands
[1].reg
;
11365 if (((br
& 0x200) == 0) && ((br
& 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11368 inst
.instruction
|= br
& (0xf << 16);
11369 inst
.instruction
|= (br
& 0x300) >> 4;
11370 inst
.instruction
|= (br
& SPSR_BIT
) >> 2;
11374 int flags
= inst
.operands
[1].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
11376 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile
= selected_cpu
.core
!= arm_arch_any
.core
;
11382 constraint ((flags
!= 0) && m_profile
, _("selected processor does "
11383 "not support requested special purpose register"));
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11388 constraint ((flags
& ~SPSR_BIT
) != (PSR_c
|PSR_f
),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
11391 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
11392 inst
.instruction
|= inst
.operands
[1].imm
& 0xff;
11393 inst
.instruction
|= 0xf0000;
11403 if (do_vfp_nsyn_msr () == SUCCESS
)
11406 constraint (!inst
.operands
[1].isreg
,
11407 _("Thumb encoding does not support an immediate here"));
11409 if (inst
.operands
[0].isreg
)
11410 flags
= (int)(inst
.operands
[0].reg
);
11412 flags
= inst
.operands
[0].imm
;
11414 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_m
))
11416 int bits
= inst
.operands
[0].imm
& (PSR_c
|PSR_x
|PSR_s
|PSR_f
|SPSR_BIT
);
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile
= selected_cpu
.core
!= arm_arch_any
.core
;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
11423 && (bits
& ~(PSR_s
| PSR_f
)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6_dsp
)
11425 && bits
!= PSR_f
)) && m_profile
,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
11430 constraint ((flags
& 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
11433 Rn
= inst
.operands
[1].reg
;
11434 reject_bad_reg (Rn
);
11436 inst
.instruction
|= (flags
& SPSR_BIT
) >> 2;
11437 inst
.instruction
|= (flags
& 0xf0000) >> 8;
11438 inst
.instruction
|= (flags
& 0x300) >> 4;
11439 inst
.instruction
|= (flags
& 0xff);
11440 inst
.instruction
|= Rn
<< 16;
11446 bfd_boolean narrow
;
11447 unsigned Rd
, Rn
, Rm
;
11449 if (!inst
.operands
[2].present
)
11450 inst
.operands
[2].reg
= inst
.operands
[0].reg
;
11452 Rd
= inst
.operands
[0].reg
;
11453 Rn
= inst
.operands
[1].reg
;
11454 Rm
= inst
.operands
[2].reg
;
11456 if (unified_syntax
)
11458 if (inst
.size_req
== 4
11464 else if (inst
.instruction
== T_MNEM_muls
)
11465 narrow
= !in_it_block ();
11467 narrow
= in_it_block ();
11471 constraint (inst
.instruction
== T_MNEM_muls
, BAD_THUMB32
);
11472 constraint (Rn
> 7 || Rm
> 7,
11479 /* 16-bit MULS/Conditional MUL. */
11480 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11481 inst
.instruction
|= Rd
;
11484 inst
.instruction
|= Rm
<< 3;
11486 inst
.instruction
|= Rn
<< 3;
11488 constraint (1, _("dest must overlap one source register"));
11492 constraint (inst
.instruction
!= T_MNEM_mul
,
11493 _("Thumb-2 MUL must not set flags"));
11495 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11496 inst
.instruction
|= Rd
<< 8;
11497 inst
.instruction
|= Rn
<< 16;
11498 inst
.instruction
|= Rm
<< 0;
11500 reject_bad_reg (Rd
);
11501 reject_bad_reg (Rn
);
11502 reject_bad_reg (Rm
);
11509 unsigned RdLo
, RdHi
, Rn
, Rm
;
11511 RdLo
= inst
.operands
[0].reg
;
11512 RdHi
= inst
.operands
[1].reg
;
11513 Rn
= inst
.operands
[2].reg
;
11514 Rm
= inst
.operands
[3].reg
;
11516 reject_bad_reg (RdLo
);
11517 reject_bad_reg (RdHi
);
11518 reject_bad_reg (Rn
);
11519 reject_bad_reg (Rm
);
11521 inst
.instruction
|= RdLo
<< 12;
11522 inst
.instruction
|= RdHi
<< 8;
11523 inst
.instruction
|= Rn
<< 16;
11524 inst
.instruction
|= Rm
;
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11533 set_it_insn_type (NEUTRAL_IT_INSN
);
11535 if (unified_syntax
)
11537 if (inst
.size_req
== 4 || inst
.operands
[0].imm
> 15)
11539 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11540 inst
.instruction
|= inst
.operands
[0].imm
;
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
11546 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
11548 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11549 inst
.instruction
|= inst
.operands
[0].imm
<< 4;
11552 inst
.instruction
= 0x46c0;
11557 constraint (inst
.operands
[0].present
,
11558 _("Thumb does not support NOP with hints"));
11559 inst
.instruction
= 0x46c0;
11566 if (unified_syntax
)
11568 bfd_boolean narrow
;
11570 if (THUMB_SETS_FLAGS (inst
.instruction
))
11571 narrow
= !in_it_block ();
11573 narrow
= in_it_block ();
11574 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
11576 if (inst
.size_req
== 4)
11581 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11582 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11583 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11587 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11588 inst
.instruction
|= inst
.operands
[0].reg
;
11589 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11594 constraint (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7,
11596 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11598 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11599 inst
.instruction
|= inst
.operands
[0].reg
;
11600 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11609 Rd
= inst
.operands
[0].reg
;
11610 Rn
= inst
.operands
[1].present
? inst
.operands
[1].reg
: Rd
;
11612 reject_bad_reg (Rd
);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn
);
11616 inst
.instruction
|= Rd
<< 8;
11617 inst
.instruction
|= Rn
<< 16;
11619 if (!inst
.operands
[2].isreg
)
11621 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11622 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11628 Rm
= inst
.operands
[2].reg
;
11629 reject_bad_reg (Rm
);
11631 constraint (inst
.operands
[2].shifted
11632 && inst
.operands
[2].immisreg
,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11641 unsigned Rd
, Rn
, Rm
;
11643 Rd
= inst
.operands
[0].reg
;
11644 Rn
= inst
.operands
[1].reg
;
11645 Rm
= inst
.operands
[2].reg
;
11647 reject_bad_reg (Rd
);
11648 reject_bad_reg (Rn
);
11649 reject_bad_reg (Rm
);
11651 inst
.instruction
|= Rd
<< 8;
11652 inst
.instruction
|= Rn
<< 16;
11653 inst
.instruction
|= Rm
;
11654 if (inst
.operands
[3].present
)
11656 unsigned int val
= inst
.reloc
.exp
.X_add_number
;
11657 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
11658 _("expression too complex"));
11659 inst
.instruction
|= (val
& 0x1c) << 10;
11660 inst
.instruction
|= (val
& 0x03) << 6;
11667 if (!inst
.operands
[3].present
)
11671 inst
.instruction
&= ~0x00000020;
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp
= inst
.operands
[1].reg
;
11675 inst
.operands
[1].reg
= inst
.operands
[2].reg
;
11676 inst
.operands
[2].reg
= Rtmp
;
11684 if (inst
.operands
[0].immisreg
)
11685 reject_bad_reg (inst
.operands
[0].imm
);
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE
, /*is_d=*/FALSE
);
11691 do_t_push_pop (void)
11695 constraint (inst
.operands
[0].writeback
,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst
.reloc
.type
!= BFD_RELOC_UNUSED
,
11698 _("expression too complex"));
11700 mask
= inst
.operands
[0].imm
;
11701 if ((mask
& ~0xff) == 0)
11702 inst
.instruction
= THUMB_OP16 (inst
.instruction
) | mask
;
11703 else if ((inst
.instruction
== T_MNEM_push
11704 && (mask
& ~0xff) == 1 << REG_LR
)
11705 || (inst
.instruction
== T_MNEM_pop
11706 && (mask
& ~0xff) == 1 << REG_PC
))
11708 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11709 inst
.instruction
|= THUMB_PP_PC_LR
;
11710 inst
.instruction
|= mask
& 0xff;
11712 else if (unified_syntax
)
11714 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11715 encode_thumb2_ldmstm (13, mask
, TRUE
);
11719 inst
.error
= _("invalid register list to push/pop instruction");
11729 Rd
= inst
.operands
[0].reg
;
11730 Rm
= inst
.operands
[1].reg
;
11732 reject_bad_reg (Rd
);
11733 reject_bad_reg (Rm
);
11735 inst
.instruction
|= Rd
<< 8;
11736 inst
.instruction
|= Rm
<< 16;
11737 inst
.instruction
|= Rm
;
11745 Rd
= inst
.operands
[0].reg
;
11746 Rm
= inst
.operands
[1].reg
;
11748 reject_bad_reg (Rd
);
11749 reject_bad_reg (Rm
);
11751 if (Rd
<= 7 && Rm
<= 7
11752 && inst
.size_req
!= 4)
11754 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
11755 inst
.instruction
|= Rd
;
11756 inst
.instruction
|= Rm
<< 3;
11758 else if (unified_syntax
)
11760 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11761 inst
.instruction
|= Rd
<< 8;
11762 inst
.instruction
|= Rm
<< 16;
11763 inst
.instruction
|= Rm
;
11766 inst
.error
= BAD_HIREG
;
11774 Rd
= inst
.operands
[0].reg
;
11775 Rm
= inst
.operands
[1].reg
;
11777 reject_bad_reg (Rd
);
11778 reject_bad_reg (Rm
);
11780 inst
.instruction
|= Rd
<< 8;
11781 inst
.instruction
|= Rm
;
11789 Rd
= inst
.operands
[0].reg
;
11790 Rs
= (inst
.operands
[1].present
11791 ? inst
.operands
[1].reg
/* Rd, Rs, foo */
11792 : inst
.operands
[0].reg
); /* Rd, foo -> Rd, Rd, foo */
11794 reject_bad_reg (Rd
);
11795 reject_bad_reg (Rs
);
11796 if (inst
.operands
[2].isreg
)
11797 reject_bad_reg (inst
.operands
[2].reg
);
11799 inst
.instruction
|= Rd
<< 8;
11800 inst
.instruction
|= Rs
<< 16;
11801 if (!inst
.operands
[2].isreg
)
11803 bfd_boolean narrow
;
11805 if ((inst
.instruction
& 0x00100000) != 0)
11806 narrow
= !in_it_block ();
11808 narrow
= in_it_block ();
11810 if (Rd
> 7 || Rs
> 7)
11813 if (inst
.size_req
== 4 || !unified_syntax
)
11816 if (inst
.reloc
.exp
.X_op
!= O_constant
11817 || inst
.reloc
.exp
.X_add_number
!= 0)
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11824 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11825 inst
.instruction
= THUMB_OP16 (T_MNEM_negs
);
11826 inst
.instruction
|= Rs
<< 3;
11827 inst
.instruction
|= Rd
;
11831 inst
.instruction
= (inst
.instruction
& 0xe1ffffff) | 0x10000000;
11832 inst
.reloc
.type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
11836 encode_thumb32_shifted_operand (2);
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11846 set_it_insn_type (OUTSIDE_IT_INSN
);
11847 if (inst
.operands
[0].imm
)
11848 inst
.instruction
|= 0x8;
11854 if (!inst
.operands
[1].present
)
11855 inst
.operands
[1].reg
= inst
.operands
[0].reg
;
11857 if (unified_syntax
)
11859 bfd_boolean narrow
;
11862 switch (inst
.instruction
)
11865 case T_MNEM_asrs
: shift_kind
= SHIFT_ASR
; break;
11867 case T_MNEM_lsls
: shift_kind
= SHIFT_LSL
; break;
11869 case T_MNEM_lsrs
: shift_kind
= SHIFT_LSR
; break;
11871 case T_MNEM_rors
: shift_kind
= SHIFT_ROR
; break;
11875 if (THUMB_SETS_FLAGS (inst
.instruction
))
11876 narrow
= !in_it_block ();
11878 narrow
= in_it_block ();
11879 if (inst
.operands
[0].reg
> 7 || inst
.operands
[1].reg
> 7)
11881 if (!inst
.operands
[2].isreg
&& shift_kind
== SHIFT_ROR
)
11883 if (inst
.operands
[2].isreg
11884 && (inst
.operands
[1].reg
!= inst
.operands
[0].reg
11885 || inst
.operands
[2].reg
> 7))
11887 if (inst
.size_req
== 4)
11890 reject_bad_reg (inst
.operands
[0].reg
);
11891 reject_bad_reg (inst
.operands
[1].reg
);
11895 if (inst
.operands
[2].isreg
)
11897 reject_bad_reg (inst
.operands
[2].reg
);
11898 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
11899 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11900 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
11901 inst
.instruction
|= inst
.operands
[2].reg
;
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst
.operands
[2].shifted
,
11905 _("extraneous shift as part of operand to shift insn"));
11909 inst
.operands
[1].shifted
= 1;
11910 inst
.operands
[1].shift_kind
= shift_kind
;
11911 inst
.instruction
= THUMB_OP32 (THUMB_SETS_FLAGS (inst
.instruction
)
11912 ? T_MNEM_movs
: T_MNEM_mov
);
11913 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
11921 if (inst
.operands
[2].isreg
)
11923 switch (shift_kind
)
11925 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_R
; break;
11926 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_R
; break;
11927 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_R
; break;
11928 case SHIFT_ROR
: inst
.instruction
= T_OPCODE_ROR_R
; break;
11932 inst
.instruction
|= inst
.operands
[0].reg
;
11933 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst
.operands
[2].shifted
,
11937 _("extraneous shift as part of operand to shift insn"));
11941 switch (shift_kind
)
11943 case SHIFT_ASR
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11944 case SHIFT_LSL
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11945 case SHIFT_LSR
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11948 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11949 inst
.instruction
|= inst
.operands
[0].reg
;
11950 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
11956 constraint (inst
.operands
[0].reg
> 7
11957 || inst
.operands
[1].reg
> 7, BAD_HIREG
);
11958 constraint (THUMB_SETS_FLAGS (inst
.instruction
), BAD_THUMB32
);
11960 if (inst
.operands
[2].isreg
) /* Rd, {Rs,} Rn */
11962 constraint (inst
.operands
[2].reg
> 7, BAD_HIREG
);
11963 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
11964 _("source1 and dest must be same register"));
11966 switch (inst
.instruction
)
11968 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_R
; break;
11969 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_R
; break;
11970 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_R
; break;
11971 case T_MNEM_ror
: inst
.instruction
= T_OPCODE_ROR_R
; break;
11975 inst
.instruction
|= inst
.operands
[0].reg
;
11976 inst
.instruction
|= inst
.operands
[2].reg
<< 3;
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst
.operands
[2].shifted
,
11980 _("extraneous shift as part of operand to shift insn"));
11984 switch (inst
.instruction
)
11986 case T_MNEM_asr
: inst
.instruction
= T_OPCODE_ASR_I
; break;
11987 case T_MNEM_lsl
: inst
.instruction
= T_OPCODE_LSL_I
; break;
11988 case T_MNEM_lsr
: inst
.instruction
= T_OPCODE_LSR_I
; break;
11989 case T_MNEM_ror
: inst
.error
= _("ror #imm not supported"); return;
11992 inst
.reloc
.type
= BFD_RELOC_ARM_THUMB_SHIFT
;
11993 inst
.instruction
|= inst
.operands
[0].reg
;
11994 inst
.instruction
|= inst
.operands
[1].reg
<< 3;
12002 unsigned Rd
, Rn
, Rm
;
12004 Rd
= inst
.operands
[0].reg
;
12005 Rn
= inst
.operands
[1].reg
;
12006 Rm
= inst
.operands
[2].reg
;
12008 reject_bad_reg (Rd
);
12009 reject_bad_reg (Rn
);
12010 reject_bad_reg (Rm
);
12012 inst
.instruction
|= Rd
<< 8;
12013 inst
.instruction
|= Rn
<< 16;
12014 inst
.instruction
|= Rm
;
12020 unsigned Rd
, Rn
, Rm
;
12022 Rd
= inst
.operands
[0].reg
;
12023 Rm
= inst
.operands
[1].reg
;
12024 Rn
= inst
.operands
[2].reg
;
12026 reject_bad_reg (Rd
);
12027 reject_bad_reg (Rn
);
12028 reject_bad_reg (Rm
);
12030 inst
.instruction
|= Rd
<< 8;
12031 inst
.instruction
|= Rn
<< 16;
12032 inst
.instruction
|= Rm
;
12038 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7a
),
12040 _("SMC is not permitted on this architecture"));
12041 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
12042 _("expression too complex"));
12043 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
12044 inst
.instruction
|= (value
& 0xf000) >> 12;
12045 inst
.instruction
|= (value
& 0x0ff0);
12046 inst
.instruction
|= (value
& 0x000f) << 16;
12052 unsigned int value
= inst
.reloc
.exp
.X_add_number
;
12054 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
12055 inst
.instruction
|= (value
& 0x0fff);
12056 inst
.instruction
|= (value
& 0xf000) << 4;
12060 do_t_ssat_usat (int bias
)
12064 Rd
= inst
.operands
[0].reg
;
12065 Rn
= inst
.operands
[2].reg
;
12067 reject_bad_reg (Rd
);
12068 reject_bad_reg (Rn
);
12070 inst
.instruction
|= Rd
<< 8;
12071 inst
.instruction
|= inst
.operands
[1].imm
- bias
;
12072 inst
.instruction
|= Rn
<< 16;
12074 if (inst
.operands
[3].present
)
12076 offsetT shift_amount
= inst
.reloc
.exp
.X_add_number
;
12078 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
12080 constraint (inst
.reloc
.exp
.X_op
!= O_constant
,
12081 _("expression too complex"));
12083 if (shift_amount
!= 0)
12085 constraint (shift_amount
> 31,
12086 _("shift expression is too large"));
12088 if (inst
.operands
[3].shift_kind
== SHIFT_ASR
)
12089 inst
.instruction
|= 0x00200000; /* sh bit. */
12091 inst
.instruction
|= (shift_amount
& 0x1c) << 10;
12092 inst
.instruction
|= (shift_amount
& 0x03) << 6;
12100 do_t_ssat_usat (1);
12108 Rd
= inst
.operands
[0].reg
;
12109 Rn
= inst
.operands
[2].reg
;
12111 reject_bad_reg (Rd
);
12112 reject_bad_reg (Rn
);
12114 inst
.instruction
|= Rd
<< 8;
12115 inst
.instruction
|= inst
.operands
[1].imm
- 1;
12116 inst
.instruction
|= Rn
<< 16;
12122 constraint (!inst
.operands
[2].isreg
|| !inst
.operands
[2].preind
12123 || inst
.operands
[2].postind
|| inst
.operands
[2].writeback
12124 || inst
.operands
[2].immisreg
|| inst
.operands
[2].shifted
12125 || inst
.operands
[2].negative
,
12128 constraint (inst
.operands
[2].reg
== REG_PC
, BAD_PC
);
12130 inst
.instruction
|= inst
.operands
[0].reg
<< 8;
12131 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
12132 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
12133 inst
.reloc
.type
= BFD_RELOC_ARM_T32_OFFSET_U8
;
12139 if (!inst
.operands
[2].present
)
12140 inst
.operands
[2].reg
= inst
.operands
[1].reg
+ 1;
12142 constraint (inst
.operands
[0].reg
== inst
.operands
[1].reg
12143 || inst
.operands
[0].reg
== inst
.operands
[2].reg
12144 || inst
.operands
[0].reg
== inst
.operands
[3].reg
,
12147 inst
.instruction
|= inst
.operands
[0].reg
;
12148 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
12149 inst
.instruction
|= inst
.operands
[2].reg
<< 8;
12150 inst
.instruction
|= inst
.operands
[3].reg
<< 16;
12156 unsigned Rd
, Rn
, Rm
;
12158 Rd
= inst
.operands
[0].reg
;
12159 Rn
= inst
.operands
[1].reg
;
12160 Rm
= inst
.operands
[2].reg
;
12162 reject_bad_reg (Rd
);
12163 reject_bad_reg (Rn
);
12164 reject_bad_reg (Rm
);
12166 inst
.instruction
|= Rd
<< 8;
12167 inst
.instruction
|= Rn
<< 16;
12168 inst
.instruction
|= Rm
;
12169 inst
.instruction
|= inst
.operands
[3].imm
<< 4;
12177 Rd
= inst
.operands
[0].reg
;
12178 Rm
= inst
.operands
[1].reg
;
12180 reject_bad_reg (Rd
);
12181 reject_bad_reg (Rm
);
12183 if (inst
.instruction
<= 0xffff
12184 && inst
.size_req
!= 4
12185 && Rd
<= 7 && Rm
<= 7
12186 && (!inst
.operands
[2].present
|| inst
.operands
[2].imm
== 0))
12188 inst
.instruction
= THUMB_OP16 (inst
.instruction
);
12189 inst
.instruction
|= Rd
;
12190 inst
.instruction
|= Rm
<< 3;
12192 else if (unified_syntax
)
12194 if (inst
.instruction
<= 0xffff)
12195 inst
.instruction
= THUMB_OP32 (inst
.instruction
);
12196 inst
.instruction
|= Rd
<< 8;
12197 inst
.instruction
|= Rm
;
12198 inst
.instruction
|= inst
.operands
[2].imm
<< 4;
12202 constraint (inst
.operands
[2].present
&& inst
.operands
[2].imm
!= 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG
);
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v6m
))
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_os
)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v7
))
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
, arm_ext_os
);
12222 inst
.reloc
.type
= BFD_RELOC_ARM_SWI
;
12231 half
= (inst
.instruction
& 0x10) != 0;
12232 set_it_insn_type_last ();
12233 constraint (inst
.operands
[0].immisreg
,
12234 _("instruction requires register index"));
12236 Rn
= inst
.operands
[0].reg
;
12237 Rm
= inst
.operands
[0].imm
;
12239 constraint (Rn
== REG_SP
, BAD_SP
);
12240 reject_bad_reg (Rm
);
12242 constraint (!half
&& inst
.operands
[0].shifted
,
12243 _("instruction does not allow shifted index"));
12244 inst
.instruction
|= (Rn
<< 16) | Rm
;
12250 do_t_ssat_usat (0);
12258 Rd
= inst
.operands
[0].reg
;
12259 Rn
= inst
.operands
[2].reg
;
12261 reject_bad_reg (Rd
);
12262 reject_bad_reg (Rn
);
12264 inst
.instruction
|= Rd
<< 8;
12265 inst
.instruction
|= inst
.operands
[1].imm
;
12266 inst
.instruction
|= Rn
<< 16;
12269 /* Neon instruction encoder helpers. */
12271 /* Encodings for the different types for various Neon opcodes. */
12273 /* An "invalid" code for the following tables. */
12276 struct neon_tab_entry
12279 unsigned float_or_poly
;
12280 unsigned scalar_or_imm
;
12283 /* Map overloaded Neon opcodes to their respective encodings. */
12284 #define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
12297 vcge / vcgt with the operands reversed. */ \
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12348 #define X(OPC,I,F,S) N_MNEM_##OPC
12353 static const struct neon_tab_entry neon_enc_tab
[] =
12355 #define X(OPC,I,F,S) { (I), (F), (S) }
12360 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12361 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12362 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12363 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12364 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12365 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12366 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12367 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12368 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12369 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12370 #define NEON_ENC_SINGLE_(X) \
12371 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12372 #define NEON_ENC_DOUBLE_(X) \
12373 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12375 #define NEON_ENCODE(type, inst) \
12378 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12379 inst.is_neon = 1; \
12383 #define check_neon_suffixes \
12386 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12388 as_bad (_("invalid neon suffix for non neon instruction")); \
12394 /* Define shapes for instruction operands. The following mnemonic characters
12395 are used in this table:
12397 F - VFP S<n> register
12398 D - Neon D<n> register
12399 Q - Neon Q<n> register
12403 L - D<n> register list
12405 This table is used to generate various data:
12406 - enumerations of the form NS_DDR to be used as arguments to
12408 - a table classifying shapes into single, double, quad, mixed.
12409 - a table used to drive neon_select_shape. */
12411 #define NEON_SHAPE_DEF \
12412 X(3, (D, D, D), DOUBLE), \
12413 X(3, (Q, Q, Q), QUAD), \
12414 X(3, (D, D, I), DOUBLE), \
12415 X(3, (Q, Q, I), QUAD), \
12416 X(3, (D, D, S), DOUBLE), \
12417 X(3, (Q, Q, S), QUAD), \
12418 X(2, (D, D), DOUBLE), \
12419 X(2, (Q, Q), QUAD), \
12420 X(2, (D, S), DOUBLE), \
12421 X(2, (Q, S), QUAD), \
12422 X(2, (D, R), DOUBLE), \
12423 X(2, (Q, R), QUAD), \
12424 X(2, (D, I), DOUBLE), \
12425 X(2, (Q, I), QUAD), \
12426 X(3, (D, L, D), DOUBLE), \
12427 X(2, (D, Q), MIXED), \
12428 X(2, (Q, D), MIXED), \
12429 X(3, (D, Q, I), MIXED), \
12430 X(3, (Q, D, I), MIXED), \
12431 X(3, (Q, D, D), MIXED), \
12432 X(3, (D, Q, Q), MIXED), \
12433 X(3, (Q, Q, D), MIXED), \
12434 X(3, (Q, D, S), MIXED), \
12435 X(3, (D, Q, S), MIXED), \
12436 X(4, (D, D, D, I), DOUBLE), \
12437 X(4, (Q, Q, Q, I), QUAD), \
12438 X(2, (F, F), SINGLE), \
12439 X(3, (F, F, F), SINGLE), \
12440 X(2, (F, I), SINGLE), \
12441 X(2, (F, D), MIXED), \
12442 X(2, (D, F), MIXED), \
12443 X(3, (F, F, I), MIXED), \
12444 X(4, (R, R, F, F), SINGLE), \
12445 X(4, (F, F, R, R), SINGLE), \
12446 X(3, (D, R, R), DOUBLE), \
12447 X(3, (R, R, D), DOUBLE), \
12448 X(2, (S, R), SINGLE), \
12449 X(2, (R, S), SINGLE), \
12450 X(2, (F, R), SINGLE), \
12451 X(2, (R, F), SINGLE)
12453 #define S2(A,B) NS_##A##B
12454 #define S3(A,B,C) NS_##A##B##C
12455 #define S4(A,B,C,D) NS_##A##B##C##D
12457 #define X(N, L, C) S##N L
12470 enum neon_shape_class
12478 #define X(N, L, C) SC_##C
12480 static enum neon_shape_class neon_shape_class
[] =
12498 /* Register widths of above. */
12499 static unsigned neon_shape_el_size
[] =
12510 struct neon_shape_info
12513 enum neon_shape_el el
[NEON_MAX_TYPE_ELS
];
12516 #define S2(A,B) { SE_##A, SE_##B }
12517 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12518 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12520 #define X(N, L, C) { N, S##N L }
12522 static struct neon_shape_info neon_shape_tab
[] =
12532 /* Bit masks used in type checking given instructions.
12533 'N_EQK' means the type must be the same as (or based on in some way) the key
12534 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12535 set, various other bits can be set as well in order to modify the meaning of
12536 the type constraint. */
12538 enum neon_type_mask
12561 N_KEY
= 0x1000000, /* Key element (main type specifier). */
12562 N_EQK
= 0x2000000, /* Given operand has the same type & size as the key. */
12563 N_VFP
= 0x4000000, /* VFP mode: operand size must match register width. */
12564 N_DBL
= 0x0000001, /* If N_EQK, this operand is twice the size. */
12565 N_HLF
= 0x0000002, /* If N_EQK, this operand is half the size. */
12566 N_SGN
= 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12567 N_UNS
= 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12568 N_INT
= 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12569 N_FLT
= 0x0000020, /* If N_EQK, this operand is forced to be float. */
12570 N_SIZ
= 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12572 N_MAX_NONSPECIAL
= N_F64
12575 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12577 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12578 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12579 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12580 #define N_SUF_32 (N_SU_32 | N_F32)
12581 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12582 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12584 /* Pass this as the first type argument to neon_check_type to ignore types
12586 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12588 /* Select a "shape" for the current instruction (describing register types or
12589 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12590 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12591 function of operand parsing, so this function doesn't need to be called.
12592 Shapes should be listed in order of decreasing length. */
12594 static enum neon_shape
12595 neon_select_shape (enum neon_shape shape
, ...)
12598 enum neon_shape first_shape
= shape
;
12600 /* Fix missing optional operands. FIXME: we don't know at this point how
12601 many arguments we should have, so this makes the assumption that we have
12602 > 1. This is true of all current Neon opcodes, I think, but may not be
12603 true in the future. */
12604 if (!inst
.operands
[1].present
)
12605 inst
.operands
[1] = inst
.operands
[0];
12607 va_start (ap
, shape
);
12609 for (; shape
!= NS_NULL
; shape
= (enum neon_shape
) va_arg (ap
, int))
12614 for (j
= 0; j
< neon_shape_tab
[shape
].els
; j
++)
12616 if (!inst
.operands
[j
].present
)
12622 switch (neon_shape_tab
[shape
].el
[j
])
12625 if (!(inst
.operands
[j
].isreg
12626 && inst
.operands
[j
].isvec
12627 && inst
.operands
[j
].issingle
12628 && !inst
.operands
[j
].isquad
))
12633 if (!(inst
.operands
[j
].isreg
12634 && inst
.operands
[j
].isvec
12635 && !inst
.operands
[j
].isquad
12636 && !inst
.operands
[j
].issingle
))
12641 if (!(inst
.operands
[j
].isreg
12642 && !inst
.operands
[j
].isvec
))
12647 if (!(inst
.operands
[j
].isreg
12648 && inst
.operands
[j
].isvec
12649 && inst
.operands
[j
].isquad
12650 && !inst
.operands
[j
].issingle
))
12655 if (!(!inst
.operands
[j
].isreg
12656 && !inst
.operands
[j
].isscalar
))
12661 if (!(!inst
.operands
[j
].isreg
12662 && inst
.operands
[j
].isscalar
))
12672 if (matches
&& (j
>= ARM_IT_MAX_OPERANDS
|| !inst
.operands
[j
].present
))
12673 /* We've matched all the entries in the shape table, and we don't
12674 have any left over operands which have not been matched. */
12680 if (shape
== NS_NULL
&& first_shape
!= NS_NULL
)
12681 first_error (_("invalid instruction shape"));
12686 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12687 means the Q bit should be set). */
12690 neon_quad (enum neon_shape shape
)
12692 return neon_shape_class
[shape
] == SC_QUAD
;
12696 neon_modify_type_size (unsigned typebits
, enum neon_el_type
*g_type
,
12699 /* Allow modification to be made to types which are constrained to be
12700 based on the key element, based on bits set alongside N_EQK. */
12701 if ((typebits
& N_EQK
) != 0)
12703 if ((typebits
& N_HLF
) != 0)
12705 else if ((typebits
& N_DBL
) != 0)
12707 if ((typebits
& N_SGN
) != 0)
12708 *g_type
= NT_signed
;
12709 else if ((typebits
& N_UNS
) != 0)
12710 *g_type
= NT_unsigned
;
12711 else if ((typebits
& N_INT
) != 0)
12712 *g_type
= NT_integer
;
12713 else if ((typebits
& N_FLT
) != 0)
12714 *g_type
= NT_float
;
12715 else if ((typebits
& N_SIZ
) != 0)
12716 *g_type
= NT_untyped
;
12720 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12721 operand type, i.e. the single type specified in a Neon instruction when it
12722 is the only one given. */
12724 static struct neon_type_el
12725 neon_type_promote (struct neon_type_el
*key
, unsigned thisarg
)
12727 struct neon_type_el dest
= *key
;
12729 gas_assert ((thisarg
& N_EQK
) != 0);
12731 neon_modify_type_size (thisarg
, &dest
.type
, &dest
.size
);
12736 /* Convert Neon type and size into compact bitmask representation. */
12738 static enum neon_type_mask
12739 type_chk_of_el_type (enum neon_el_type type
, unsigned size
)
12746 case 8: return N_8
;
12747 case 16: return N_16
;
12748 case 32: return N_32
;
12749 case 64: return N_64
;
12757 case 8: return N_I8
;
12758 case 16: return N_I16
;
12759 case 32: return N_I32
;
12760 case 64: return N_I64
;
12768 case 16: return N_F16
;
12769 case 32: return N_F32
;
12770 case 64: return N_F64
;
12778 case 8: return N_P8
;
12779 case 16: return N_P16
;
12787 case 8: return N_S8
;
12788 case 16: return N_S16
;
12789 case 32: return N_S32
;
12790 case 64: return N_S64
;
12798 case 8: return N_U8
;
12799 case 16: return N_U16
;
12800 case 32: return N_U32
;
12801 case 64: return N_U64
;
12812 /* Convert compact Neon bitmask type representation to a type and size. Only
12813 handles the case where a single bit is set in the mask. */
12816 el_type_of_type_chk (enum neon_el_type
*type
, unsigned *size
,
12817 enum neon_type_mask mask
)
12819 if ((mask
& N_EQK
) != 0)
12822 if ((mask
& (N_S8
| N_U8
| N_I8
| N_8
| N_P8
)) != 0)
12824 else if ((mask
& (N_S16
| N_U16
| N_I16
| N_16
| N_P16
)) != 0)
12826 else if ((mask
& (N_S32
| N_U32
| N_I32
| N_32
| N_F32
)) != 0)
12828 else if ((mask
& (N_S64
| N_U64
| N_I64
| N_64
| N_F64
)) != 0)
12833 if ((mask
& (N_S8
| N_S16
| N_S32
| N_S64
)) != 0)
12835 else if ((mask
& (N_U8
| N_U16
| N_U32
| N_U64
)) != 0)
12836 *type
= NT_unsigned
;
12837 else if ((mask
& (N_I8
| N_I16
| N_I32
| N_I64
)) != 0)
12838 *type
= NT_integer
;
12839 else if ((mask
& (N_8
| N_16
| N_32
| N_64
)) != 0)
12840 *type
= NT_untyped
;
12841 else if ((mask
& (N_P8
| N_P16
)) != 0)
12843 else if ((mask
& (N_F32
| N_F64
)) != 0)
12851 /* Modify a bitmask of allowed types. This is only needed for type
12855 modify_types_allowed (unsigned allowed
, unsigned mods
)
12858 enum neon_el_type type
;
12864 for (i
= 1; i
<= N_MAX_NONSPECIAL
; i
<<= 1)
12866 if (el_type_of_type_chk (&type
, &size
,
12867 (enum neon_type_mask
) (allowed
& i
)) == SUCCESS
)
12869 neon_modify_type_size (mods
, &type
, &size
);
12870 destmask
|= type_chk_of_el_type (type
, size
);
12877 /* Check type and return type classification.
12878 The manual states (paraphrase): If one datatype is given, it indicates the
12880 - the second operand, if there is one
12881 - the operand, if there is no second operand
12882 - the result, if there are no operands.
12883 This isn't quite good enough though, so we use a concept of a "key" datatype
12884 which is set on a per-instruction basis, which is the one which matters when
12885 only one data type is written.
12886 Note: this function has side-effects (e.g. filling in missing operands). All
12887 Neon instructions should call it before performing bit encoding. */
12889 static struct neon_type_el
12890 neon_check_type (unsigned els
, enum neon_shape ns
, ...)
12893 unsigned i
, pass
, key_el
= 0;
12894 unsigned types
[NEON_MAX_TYPE_ELS
];
12895 enum neon_el_type k_type
= NT_invtype
;
12896 unsigned k_size
= -1u;
12897 struct neon_type_el badtype
= {NT_invtype
, -1};
12898 unsigned key_allowed
= 0;
12900 /* Optional registers in Neon instructions are always (not) in operand 1.
12901 Fill in the missing operand here, if it was omitted. */
12902 if (els
> 1 && !inst
.operands
[1].present
)
12903 inst
.operands
[1] = inst
.operands
[0];
12905 /* Suck up all the varargs. */
12907 for (i
= 0; i
< els
; i
++)
12909 unsigned thisarg
= va_arg (ap
, unsigned);
12910 if (thisarg
== N_IGNORE_TYPE
)
12915 types
[i
] = thisarg
;
12916 if ((thisarg
& N_KEY
) != 0)
12921 if (inst
.vectype
.elems
> 0)
12922 for (i
= 0; i
< els
; i
++)
12923 if (inst
.operands
[i
].vectype
.type
!= NT_invtype
)
12925 first_error (_("types specified in both the mnemonic and operands"));
12929 /* Duplicate inst.vectype elements here as necessary.
12930 FIXME: No idea if this is exactly the same as the ARM assembler,
12931 particularly when an insn takes one register and one non-register
12933 if (inst
.vectype
.elems
== 1 && els
> 1)
12936 inst
.vectype
.elems
= els
;
12937 inst
.vectype
.el
[key_el
] = inst
.vectype
.el
[0];
12938 for (j
= 0; j
< els
; j
++)
12940 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
12943 else if (inst
.vectype
.elems
== 0 && els
> 0)
12946 /* No types were given after the mnemonic, so look for types specified
12947 after each operand. We allow some flexibility here; as long as the
12948 "key" operand has a type, we can infer the others. */
12949 for (j
= 0; j
< els
; j
++)
12950 if (inst
.operands
[j
].vectype
.type
!= NT_invtype
)
12951 inst
.vectype
.el
[j
] = inst
.operands
[j
].vectype
;
12953 if (inst
.operands
[key_el
].vectype
.type
!= NT_invtype
)
12955 for (j
= 0; j
< els
; j
++)
12956 if (inst
.operands
[j
].vectype
.type
== NT_invtype
)
12957 inst
.vectype
.el
[j
] = neon_type_promote (&inst
.vectype
.el
[key_el
],
12962 first_error (_("operand types can't be inferred"));
12966 else if (inst
.vectype
.elems
!= els
)
12968 first_error (_("type specifier has the wrong number of parts"));
12972 for (pass
= 0; pass
< 2; pass
++)
12974 for (i
= 0; i
< els
; i
++)
12976 unsigned thisarg
= types
[i
];
12977 unsigned types_allowed
= ((thisarg
& N_EQK
) != 0 && pass
!= 0)
12978 ? modify_types_allowed (key_allowed
, thisarg
) : thisarg
;
12979 enum neon_el_type g_type
= inst
.vectype
.el
[i
].type
;
12980 unsigned g_size
= inst
.vectype
.el
[i
].size
;
12982 /* Decay more-specific signed & unsigned types to sign-insensitive
12983 integer types if sign-specific variants are unavailable. */
12984 if ((g_type
== NT_signed
|| g_type
== NT_unsigned
)
12985 && (types_allowed
& N_SU_ALL
) == 0)
12986 g_type
= NT_integer
;
12988 /* If only untyped args are allowed, decay any more specific types to
12989 them. Some instructions only care about signs for some element
12990 sizes, so handle that properly. */
12991 if ((g_size
== 8 && (types_allowed
& N_8
) != 0)
12992 || (g_size
== 16 && (types_allowed
& N_16
) != 0)
12993 || (g_size
== 32 && (types_allowed
& N_32
) != 0)
12994 || (g_size
== 64 && (types_allowed
& N_64
) != 0))
12995 g_type
= NT_untyped
;
12999 if ((thisarg
& N_KEY
) != 0)
13003 key_allowed
= thisarg
& ~N_KEY
;
13008 if ((thisarg
& N_VFP
) != 0)
13010 enum neon_shape_el regshape
;
13011 unsigned regwidth
, match
;
13013 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13016 first_error (_("invalid instruction shape"));
13019 regshape
= neon_shape_tab
[ns
].el
[i
];
13020 regwidth
= neon_shape_el_size
[regshape
];
13022 /* In VFP mode, operands must match register widths. If we
13023 have a key operand, use its width, else use the width of
13024 the current operand. */
13030 if (regwidth
!= match
)
13032 first_error (_("operand size must match register width"));
13037 if ((thisarg
& N_EQK
) == 0)
13039 unsigned given_type
= type_chk_of_el_type (g_type
, g_size
);
13041 if ((given_type
& types_allowed
) == 0)
13043 first_error (_("bad type in Neon instruction"));
13049 enum neon_el_type mod_k_type
= k_type
;
13050 unsigned mod_k_size
= k_size
;
13051 neon_modify_type_size (thisarg
, &mod_k_type
, &mod_k_size
);
13052 if (g_type
!= mod_k_type
|| g_size
!= mod_k_size
)
13054 first_error (_("inconsistent types in Neon instruction"));
13062 return inst
.vectype
.el
[key_el
];
13065 /* Neon-style VFP instruction forwarding. */
13067 /* Thumb VFP instructions have 0xE in the condition field. */
13070 do_vfp_cond_or_thumb (void)
13075 inst
.instruction
|= 0xe0000000;
13077 inst
.instruction
|= inst
.cond
<< 28;
13080 /* Look up and encode a simple mnemonic, for use as a helper function for the
13081 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13082 etc. It is assumed that operand parsing has already been done, and that the
13083 operands are in the form expected by the given opcode (this isn't necessarily
13084 the same as the form in which they were parsed, hence some massaging must
13085 take place before this function is called).
13086 Checks current arch version against that in the looked-up opcode. */
13089 do_vfp_nsyn_opcode (const char *opname
)
13091 const struct asm_opcode
*opcode
;
13093 opcode
= (const struct asm_opcode
*) hash_find (arm_ops_hsh
, opname
);
13098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
,
13099 thumb_mode
? *opcode
->tvariant
: *opcode
->avariant
),
13106 inst
.instruction
= opcode
->tvalue
;
13107 opcode
->tencode ();
13111 inst
.instruction
= (inst
.cond
<< 28) | opcode
->avalue
;
13112 opcode
->aencode ();
13117 do_vfp_nsyn_add_sub (enum neon_shape rs
)
13119 int is_add
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vadd
;
13124 do_vfp_nsyn_opcode ("fadds");
13126 do_vfp_nsyn_opcode ("fsubs");
13131 do_vfp_nsyn_opcode ("faddd");
13133 do_vfp_nsyn_opcode ("fsubd");
13137 /* Check operand types to see if this is a VFP instruction, and if so call
13141 try_vfp_nsyn (int args
, void (*pfn
) (enum neon_shape
))
13143 enum neon_shape rs
;
13144 struct neon_type_el et
;
13149 rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
13150 et
= neon_check_type (2, rs
,
13151 N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
13155 rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
13156 et
= neon_check_type (3, rs
,
13157 N_EQK
| N_VFP
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
13164 if (et
.type
!= NT_invtype
)
13175 do_vfp_nsyn_mla_mls (enum neon_shape rs
)
13177 int is_mla
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vmla
;
13182 do_vfp_nsyn_opcode ("fmacs");
13184 do_vfp_nsyn_opcode ("fnmacs");
13189 do_vfp_nsyn_opcode ("fmacd");
13191 do_vfp_nsyn_opcode ("fnmacd");
13196 do_vfp_nsyn_fma_fms (enum neon_shape rs
)
13198 int is_fma
= (inst
.instruction
& 0x0fffffff) == N_MNEM_vfma
;
13203 do_vfp_nsyn_opcode ("ffmas");
13205 do_vfp_nsyn_opcode ("ffnmas");
13210 do_vfp_nsyn_opcode ("ffmad");
13212 do_vfp_nsyn_opcode ("ffnmad");
13217 do_vfp_nsyn_mul (enum neon_shape rs
)
13220 do_vfp_nsyn_opcode ("fmuls");
13222 do_vfp_nsyn_opcode ("fmuld");
13226 do_vfp_nsyn_abs_neg (enum neon_shape rs
)
13228 int is_neg
= (inst
.instruction
& 0x80) != 0;
13229 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_VFP
| N_KEY
);
13234 do_vfp_nsyn_opcode ("fnegs");
13236 do_vfp_nsyn_opcode ("fabss");
13241 do_vfp_nsyn_opcode ("fnegd");
13243 do_vfp_nsyn_opcode ("fabsd");
13247 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13248 insns belong to Neon, and are handled elsewhere. */
13251 do_vfp_nsyn_ldm_stm (int is_dbmode
)
13253 int is_ldm
= (inst
.instruction
& (1 << 20)) != 0;
13257 do_vfp_nsyn_opcode ("fldmdbs");
13259 do_vfp_nsyn_opcode ("fldmias");
13264 do_vfp_nsyn_opcode ("fstmdbs");
13266 do_vfp_nsyn_opcode ("fstmias");
13271 do_vfp_nsyn_sqrt (void)
13273 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
13274 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
13277 do_vfp_nsyn_opcode ("fsqrts");
13279 do_vfp_nsyn_opcode ("fsqrtd");
13283 do_vfp_nsyn_div (void)
13285 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
13286 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
13287 N_F32
| N_F64
| N_KEY
| N_VFP
);
13290 do_vfp_nsyn_opcode ("fdivs");
13292 do_vfp_nsyn_opcode ("fdivd");
13296 do_vfp_nsyn_nmul (void)
13298 enum neon_shape rs
= neon_select_shape (NS_FFF
, NS_DDD
, NS_NULL
);
13299 neon_check_type (3, rs
, N_EQK
| N_VFP
, N_EQK
| N_VFP
,
13300 N_F32
| N_F64
| N_KEY
| N_VFP
);
13304 NEON_ENCODE (SINGLE
, inst
);
13305 do_vfp_sp_dyadic ();
13309 NEON_ENCODE (DOUBLE
, inst
);
13310 do_vfp_dp_rd_rn_rm ();
13312 do_vfp_cond_or_thumb ();
13316 do_vfp_nsyn_cmp (void)
13318 if (inst
.operands
[1].isreg
)
13320 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_DD
, NS_NULL
);
13321 neon_check_type (2, rs
, N_EQK
| N_VFP
, N_F32
| N_F64
| N_KEY
| N_VFP
);
13325 NEON_ENCODE (SINGLE
, inst
);
13326 do_vfp_sp_monadic ();
13330 NEON_ENCODE (DOUBLE
, inst
);
13331 do_vfp_dp_rd_rm ();
13336 enum neon_shape rs
= neon_select_shape (NS_FI
, NS_DI
, NS_NULL
);
13337 neon_check_type (2, rs
, N_F32
| N_F64
| N_KEY
| N_VFP
, N_EQK
);
13339 switch (inst
.instruction
& 0x0fffffff)
13342 inst
.instruction
+= N_MNEM_vcmpz
- N_MNEM_vcmp
;
13345 inst
.instruction
+= N_MNEM_vcmpez
- N_MNEM_vcmpe
;
13353 NEON_ENCODE (SINGLE
, inst
);
13354 do_vfp_sp_compare_z ();
13358 NEON_ENCODE (DOUBLE
, inst
);
13362 do_vfp_cond_or_thumb ();
13366 nsyn_insert_sp (void)
13368 inst
.operands
[1] = inst
.operands
[0];
13369 memset (&inst
.operands
[0], '\0', sizeof (inst
.operands
[0]));
13370 inst
.operands
[0].reg
= REG_SP
;
13371 inst
.operands
[0].isreg
= 1;
13372 inst
.operands
[0].writeback
= 1;
13373 inst
.operands
[0].present
= 1;
13377 do_vfp_nsyn_push (void)
13380 if (inst
.operands
[1].issingle
)
13381 do_vfp_nsyn_opcode ("fstmdbs");
13383 do_vfp_nsyn_opcode ("fstmdbd");
13387 do_vfp_nsyn_pop (void)
13390 if (inst
.operands
[1].issingle
)
13391 do_vfp_nsyn_opcode ("fldmias");
13393 do_vfp_nsyn_opcode ("fldmiad");
13396 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13397 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13400 neon_dp_fixup (struct arm_it
* insn
)
13402 unsigned int i
= insn
->instruction
;
13407 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13418 insn
->instruction
= i
;
13421 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13425 neon_logbits (unsigned x
)
13427 return ffs (x
) - 4;
13430 #define LOW4(R) ((R) & 0xf)
13431 #define HI1(R) (((R) >> 4) & 1)
13433 /* Encode insns with bit pattern:
13435 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13436 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13438 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13439 different meaning for some instruction. */
13442 neon_three_same (int isquad
, int ubit
, int size
)
13444 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13445 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13446 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
13447 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
13448 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
13449 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
13450 inst
.instruction
|= (isquad
!= 0) << 6;
13451 inst
.instruction
|= (ubit
!= 0) << 24;
13453 inst
.instruction
|= neon_logbits (size
) << 20;
13455 neon_dp_fixup (&inst
);
13458 /* Encode instructions of the form:
13460 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13461 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13463 Don't write size if SIZE == -1. */
13466 neon_two_same (int qbit
, int ubit
, int size
)
13468 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13469 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13470 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13471 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13472 inst
.instruction
|= (qbit
!= 0) << 6;
13473 inst
.instruction
|= (ubit
!= 0) << 24;
13476 inst
.instruction
|= neon_logbits (size
) << 18;
13478 neon_dp_fixup (&inst
);
13481 /* Neon instruction encoders, in approximate order of appearance. */
13484 do_neon_dyadic_i_su (void)
13486 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13487 struct neon_type_el et
= neon_check_type (3, rs
,
13488 N_EQK
, N_EQK
, N_SU_32
| N_KEY
);
13489 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13493 do_neon_dyadic_i64_su (void)
13495 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13496 struct neon_type_el et
= neon_check_type (3, rs
,
13497 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
13498 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13502 neon_imm_shift (int write_ubit
, int uval
, int isquad
, struct neon_type_el et
,
13505 unsigned size
= et
.size
>> 3;
13506 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13507 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13508 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
13509 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
13510 inst
.instruction
|= (isquad
!= 0) << 6;
13511 inst
.instruction
|= immbits
<< 16;
13512 inst
.instruction
|= (size
>> 3) << 7;
13513 inst
.instruction
|= (size
& 0x7) << 19;
13515 inst
.instruction
|= (uval
!= 0) << 24;
13517 neon_dp_fixup (&inst
);
13521 do_neon_shl_imm (void)
13523 if (!inst
.operands
[2].isreg
)
13525 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13526 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_KEY
| N_I_ALL
);
13527 NEON_ENCODE (IMMED
, inst
);
13528 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, inst
.operands
[2].imm
);
13532 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13533 struct neon_type_el et
= neon_check_type (3, rs
,
13534 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
13537 /* VSHL/VQSHL 3-register variants have syntax such as:
13539 whereas other 3-register operations encoded by neon_three_same have
13542 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13544 tmp
= inst
.operands
[2].reg
;
13545 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
13546 inst
.operands
[1].reg
= tmp
;
13547 NEON_ENCODE (INTEGER
, inst
);
13548 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13553 do_neon_qshl_imm (void)
13555 if (!inst
.operands
[2].isreg
)
13557 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
13558 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
13560 NEON_ENCODE (IMMED
, inst
);
13561 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
13562 inst
.operands
[2].imm
);
13566 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13567 struct neon_type_el et
= neon_check_type (3, rs
,
13568 N_EQK
, N_SU_ALL
| N_KEY
, N_EQK
| N_SGN
);
13571 /* See note in do_neon_shl_imm. */
13572 tmp
= inst
.operands
[2].reg
;
13573 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
13574 inst
.operands
[1].reg
= tmp
;
13575 NEON_ENCODE (INTEGER
, inst
);
13576 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13581 do_neon_rshl (void)
13583 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13584 struct neon_type_el et
= neon_check_type (3, rs
,
13585 N_EQK
, N_EQK
, N_SU_ALL
| N_KEY
);
13588 tmp
= inst
.operands
[2].reg
;
13589 inst
.operands
[2].reg
= inst
.operands
[1].reg
;
13590 inst
.operands
[1].reg
= tmp
;
13591 neon_three_same (neon_quad (rs
), et
.type
== NT_unsigned
, et
.size
);
13595 neon_cmode_for_logic_imm (unsigned immediate
, unsigned *immbits
, int size
)
13597 /* Handle .I8 pseudo-instructions. */
13600 /* Unfortunately, this will make everything apart from zero out-of-range.
13601 FIXME is this the intended semantics? There doesn't seem much point in
13602 accepting .I8 if so. */
13603 immediate
|= immediate
<< 8;
13609 if (immediate
== (immediate
& 0x000000ff))
13611 *immbits
= immediate
;
13614 else if (immediate
== (immediate
& 0x0000ff00))
13616 *immbits
= immediate
>> 8;
13619 else if (immediate
== (immediate
& 0x00ff0000))
13621 *immbits
= immediate
>> 16;
13624 else if (immediate
== (immediate
& 0xff000000))
13626 *immbits
= immediate
>> 24;
13629 if ((immediate
& 0xffff) != (immediate
>> 16))
13630 goto bad_immediate
;
13631 immediate
&= 0xffff;
13634 if (immediate
== (immediate
& 0x000000ff))
13636 *immbits
= immediate
;
13639 else if (immediate
== (immediate
& 0x0000ff00))
13641 *immbits
= immediate
>> 8;
13646 first_error (_("immediate value out of range"));
13650 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13654 neon_bits_same_in_bytes (unsigned imm
)
13656 return ((imm
& 0x000000ff) == 0 || (imm
& 0x000000ff) == 0x000000ff)
13657 && ((imm
& 0x0000ff00) == 0 || (imm
& 0x0000ff00) == 0x0000ff00)
13658 && ((imm
& 0x00ff0000) == 0 || (imm
& 0x00ff0000) == 0x00ff0000)
13659 && ((imm
& 0xff000000) == 0 || (imm
& 0xff000000) == 0xff000000);
13662 /* For immediate of above form, return 0bABCD. */
13665 neon_squash_bits (unsigned imm
)
13667 return (imm
& 0x01) | ((imm
& 0x0100) >> 7) | ((imm
& 0x010000) >> 14)
13668 | ((imm
& 0x01000000) >> 21);
13671 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13674 neon_qfloat_bits (unsigned imm
)
13676 return ((imm
>> 19) & 0x7f) | ((imm
>> 24) & 0x80);
13679 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13680 the instruction. *OP is passed as the initial value of the op field, and
13681 may be set to a different value depending on the constant (i.e.
13682 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13683 MVN). If the immediate looks like a repeated pattern then also
13684 try smaller element sizes. */
13687 neon_cmode_for_move_imm (unsigned immlo
, unsigned immhi
, int float_p
,
13688 unsigned *immbits
, int *op
, int size
,
13689 enum neon_el_type type
)
13691 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13693 if (type
== NT_float
&& !float_p
)
13696 if (type
== NT_float
&& is_quarter_float (immlo
) && immhi
== 0)
13698 if (size
!= 32 || *op
== 1)
13700 *immbits
= neon_qfloat_bits (immlo
);
13706 if (neon_bits_same_in_bytes (immhi
)
13707 && neon_bits_same_in_bytes (immlo
))
13711 *immbits
= (neon_squash_bits (immhi
) << 4)
13712 | neon_squash_bits (immlo
);
13717 if (immhi
!= immlo
)
13723 if (immlo
== (immlo
& 0x000000ff))
13728 else if (immlo
== (immlo
& 0x0000ff00))
13730 *immbits
= immlo
>> 8;
13733 else if (immlo
== (immlo
& 0x00ff0000))
13735 *immbits
= immlo
>> 16;
13738 else if (immlo
== (immlo
& 0xff000000))
13740 *immbits
= immlo
>> 24;
13743 else if (immlo
== ((immlo
& 0x0000ff00) | 0x000000ff))
13745 *immbits
= (immlo
>> 8) & 0xff;
13748 else if (immlo
== ((immlo
& 0x00ff0000) | 0x0000ffff))
13750 *immbits
= (immlo
>> 16) & 0xff;
13754 if ((immlo
& 0xffff) != (immlo
>> 16))
13761 if (immlo
== (immlo
& 0x000000ff))
13766 else if (immlo
== (immlo
& 0x0000ff00))
13768 *immbits
= immlo
>> 8;
13772 if ((immlo
& 0xff) != (immlo
>> 8))
13777 if (immlo
== (immlo
& 0x000000ff))
13779 /* Don't allow MVN with 8-bit immediate. */
13789 /* Write immediate bits [7:0] to the following locations:
13791 |28/24|23 19|18 16|15 4|3 0|
13792 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13794 This function is used by VMOV/VMVN/VORR/VBIC. */
13797 neon_write_immbits (unsigned immbits
)
13799 inst
.instruction
|= immbits
& 0xf;
13800 inst
.instruction
|= ((immbits
>> 4) & 0x7) << 16;
13801 inst
.instruction
|= ((immbits
>> 7) & 0x1) << 24;
13804 /* Invert low-order SIZE bits of XHI:XLO. */
13807 neon_invert_size (unsigned *xlo
, unsigned *xhi
, int size
)
13809 unsigned immlo
= xlo
? *xlo
: 0;
13810 unsigned immhi
= xhi
? *xhi
: 0;
13815 immlo
= (~immlo
) & 0xff;
13819 immlo
= (~immlo
) & 0xffff;
13823 immhi
= (~immhi
) & 0xffffffff;
13824 /* fall through. */
13827 immlo
= (~immlo
) & 0xffffffff;
13842 do_neon_logic (void)
13844 if (inst
.operands
[2].present
&& inst
.operands
[2].isreg
)
13846 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13847 neon_check_type (3, rs
, N_IGNORE_TYPE
);
13848 /* U bit and size field were set as part of the bitmask. */
13849 NEON_ENCODE (INTEGER
, inst
);
13850 neon_three_same (neon_quad (rs
), 0, -1);
13854 const int three_ops_form
= (inst
.operands
[2].present
13855 && !inst
.operands
[2].isreg
);
13856 const int immoperand
= (three_ops_form
? 2 : 1);
13857 enum neon_shape rs
= (three_ops_form
13858 ? neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
)
13859 : neon_select_shape (NS_DI
, NS_QI
, NS_NULL
));
13860 struct neon_type_el et
= neon_check_type (2, rs
,
13861 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
13862 enum neon_opc opcode
= (enum neon_opc
) inst
.instruction
& 0x0fffffff;
13866 if (et
.type
== NT_invtype
)
13869 if (three_ops_form
)
13870 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
13871 _("first and second operands shall be the same register"));
13873 NEON_ENCODE (IMMED
, inst
);
13875 immbits
= inst
.operands
[immoperand
].imm
;
13878 /* .i64 is a pseudo-op, so the immediate must be a repeating
13880 if (immbits
!= (inst
.operands
[immoperand
].regisimm
?
13881 inst
.operands
[immoperand
].reg
: 0))
13883 /* Set immbits to an invalid constant. */
13884 immbits
= 0xdeadbeef;
13891 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13895 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13899 /* Pseudo-instruction for VBIC. */
13900 neon_invert_size (&immbits
, 0, et
.size
);
13901 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13905 /* Pseudo-instruction for VORR. */
13906 neon_invert_size (&immbits
, 0, et
.size
);
13907 cmode
= neon_cmode_for_logic_imm (immbits
, &immbits
, et
.size
);
13917 inst
.instruction
|= neon_quad (rs
) << 6;
13918 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
13919 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
13920 inst
.instruction
|= cmode
<< 8;
13921 neon_write_immbits (immbits
);
13923 neon_dp_fixup (&inst
);
13928 do_neon_bitfield (void)
13930 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13931 neon_check_type (3, rs
, N_IGNORE_TYPE
);
13932 neon_three_same (neon_quad (rs
), 0, -1);
13936 neon_dyadic_misc (enum neon_el_type ubit_meaning
, unsigned types
,
13939 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
13940 struct neon_type_el et
= neon_check_type (3, rs
, N_EQK
| destbits
, N_EQK
,
13942 if (et
.type
== NT_float
)
13944 NEON_ENCODE (FLOAT
, inst
);
13945 neon_three_same (neon_quad (rs
), 0, -1);
13949 NEON_ENCODE (INTEGER
, inst
);
13950 neon_three_same (neon_quad (rs
), et
.type
== ubit_meaning
, et
.size
);
13955 do_neon_dyadic_if_su (void)
13957 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
13961 do_neon_dyadic_if_su_d (void)
13963 /* This version only allow D registers, but that constraint is enforced during
13964 operand parsing so we don't need to do anything extra here. */
13965 neon_dyadic_misc (NT_unsigned
, N_SUF_32
, 0);
13969 do_neon_dyadic_if_i_d (void)
13971 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13972 affected if we specify unsigned args. */
13973 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
13976 enum vfp_or_neon_is_neon_bits
13979 NEON_CHECK_ARCH
= 2
13982 /* Call this function if an instruction which may have belonged to the VFP or
13983 Neon instruction sets, but turned out to be a Neon instruction (due to the
13984 operand types involved, etc.). We have to check and/or fix-up a couple of
13987 - Make sure the user hasn't attempted to make a Neon instruction
13989 - Alter the value in the condition code field if necessary.
13990 - Make sure that the arch supports Neon instructions.
13992 Which of these operations take place depends on bits from enum
13993 vfp_or_neon_is_neon_bits.
13995 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13996 current instruction's condition is COND_ALWAYS, the condition field is
13997 changed to inst.uncond_value. This is necessary because instructions shared
13998 between VFP and Neon may be conditional for the VFP variants only, and the
13999 unconditional Neon version must have, e.g., 0xF in the condition field. */
14002 vfp_or_neon_is_neon (unsigned check
)
14004 /* Conditions are always legal in Thumb mode (IT blocks). */
14005 if (!thumb_mode
&& (check
& NEON_CHECK_CC
))
14007 if (inst
.cond
!= COND_ALWAYS
)
14009 first_error (_(BAD_COND
));
14012 if (inst
.uncond_value
!= -1)
14013 inst
.instruction
|= inst
.uncond_value
<< 28;
14016 if ((check
& NEON_CHECK_ARCH
)
14017 && !ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
))
14019 first_error (_(BAD_FPU
));
14027 do_neon_addsub_if_i (void)
14029 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub
) == SUCCESS
)
14032 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14035 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14036 affected if we specify unsigned args. */
14037 neon_dyadic_misc (NT_untyped
, N_IF_32
| N_I64
, 0);
14040 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14042 V<op> A,B (A is operand 0, B is operand 2)
14047 so handle that case specially. */
14050 neon_exchange_operands (void)
14052 void *scratch
= alloca (sizeof (inst
.operands
[0]));
14053 if (inst
.operands
[1].present
)
14055 /* Swap operands[1] and operands[2]. */
14056 memcpy (scratch
, &inst
.operands
[1], sizeof (inst
.operands
[0]));
14057 inst
.operands
[1] = inst
.operands
[2];
14058 memcpy (&inst
.operands
[2], scratch
, sizeof (inst
.operands
[0]));
14062 inst
.operands
[1] = inst
.operands
[2];
14063 inst
.operands
[2] = inst
.operands
[0];
14068 neon_compare (unsigned regtypes
, unsigned immtypes
, int invert
)
14070 if (inst
.operands
[2].isreg
)
14073 neon_exchange_operands ();
14074 neon_dyadic_misc (NT_unsigned
, regtypes
, N_SIZ
);
14078 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
14079 struct neon_type_el et
= neon_check_type (2, rs
,
14080 N_EQK
| N_SIZ
, immtypes
| N_KEY
);
14082 NEON_ENCODE (IMMED
, inst
);
14083 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14084 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14085 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14086 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14087 inst
.instruction
|= neon_quad (rs
) << 6;
14088 inst
.instruction
|= (et
.type
== NT_float
) << 10;
14089 inst
.instruction
|= neon_logbits (et
.size
) << 18;
14091 neon_dp_fixup (&inst
);
14098 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, FALSE
);
14102 do_neon_cmp_inv (void)
14104 neon_compare (N_SUF_32
, N_S8
| N_S16
| N_S32
| N_F32
, TRUE
);
14110 neon_compare (N_IF_32
, N_IF_32
, FALSE
);
14113 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14114 scalars, which are encoded in 5 bits, M : Rm.
14115 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14116 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14120 neon_scalar_for_mul (unsigned scalar
, unsigned elsize
)
14122 unsigned regno
= NEON_SCALAR_REG (scalar
);
14123 unsigned elno
= NEON_SCALAR_INDEX (scalar
);
14128 if (regno
> 7 || elno
> 3)
14130 return regno
| (elno
<< 3);
14133 if (regno
> 15 || elno
> 1)
14135 return regno
| (elno
<< 4);
14139 first_error (_("scalar out of range for multiply instruction"));
14145 /* Encode multiply / multiply-accumulate scalar instructions. */
14148 neon_mul_mac (struct neon_type_el et
, int ubit
)
14152 /* Give a more helpful error message if we have an invalid type. */
14153 if (et
.type
== NT_invtype
)
14156 scalar
= neon_scalar_for_mul (inst
.operands
[2].reg
, et
.size
);
14157 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14158 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14159 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14160 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14161 inst
.instruction
|= LOW4 (scalar
);
14162 inst
.instruction
|= HI1 (scalar
) << 5;
14163 inst
.instruction
|= (et
.type
== NT_float
) << 8;
14164 inst
.instruction
|= neon_logbits (et
.size
) << 20;
14165 inst
.instruction
|= (ubit
!= 0) << 24;
14167 neon_dp_fixup (&inst
);
14171 do_neon_mac_maybe_scalar (void)
14173 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls
) == SUCCESS
)
14176 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14179 if (inst
.operands
[2].isscalar
)
14181 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
14182 struct neon_type_el et
= neon_check_type (3, rs
,
14183 N_EQK
, N_EQK
, N_I16
| N_I32
| N_F32
| N_KEY
);
14184 NEON_ENCODE (SCALAR
, inst
);
14185 neon_mul_mac (et
, neon_quad (rs
));
14189 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14190 affected if we specify unsigned args. */
14191 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
14196 do_neon_fmac (void)
14198 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms
) == SUCCESS
)
14201 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14204 neon_dyadic_misc (NT_untyped
, N_IF_32
, 0);
14210 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
14211 struct neon_type_el et
= neon_check_type (3, rs
,
14212 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
14213 neon_three_same (neon_quad (rs
), 0, et
.size
);
14216 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14217 same types as the MAC equivalents. The polynomial type for this instruction
14218 is encoded the same as the integer type. */
14223 if (try_vfp_nsyn (3, do_vfp_nsyn_mul
) == SUCCESS
)
14226 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14229 if (inst
.operands
[2].isscalar
)
14230 do_neon_mac_maybe_scalar ();
14232 neon_dyadic_misc (NT_poly
, N_I8
| N_I16
| N_I32
| N_F32
| N_P8
, 0);
14236 do_neon_qdmulh (void)
14238 if (inst
.operands
[2].isscalar
)
14240 enum neon_shape rs
= neon_select_shape (NS_DDS
, NS_QQS
, NS_NULL
);
14241 struct neon_type_el et
= neon_check_type (3, rs
,
14242 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
14243 NEON_ENCODE (SCALAR
, inst
);
14244 neon_mul_mac (et
, neon_quad (rs
));
14248 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
14249 struct neon_type_el et
= neon_check_type (3, rs
,
14250 N_EQK
, N_EQK
, N_S16
| N_S32
| N_KEY
);
14251 NEON_ENCODE (INTEGER
, inst
);
14252 /* The U bit (rounding) comes from bit mask. */
14253 neon_three_same (neon_quad (rs
), 0, et
.size
);
14258 do_neon_fcmp_absolute (void)
14260 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
14261 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
14262 /* Size field comes from bit mask. */
14263 neon_three_same (neon_quad (rs
), 1, -1);
14267 do_neon_fcmp_absolute_inv (void)
14269 neon_exchange_operands ();
14270 do_neon_fcmp_absolute ();
14274 do_neon_step (void)
14276 enum neon_shape rs
= neon_select_shape (NS_DDD
, NS_QQQ
, NS_NULL
);
14277 neon_check_type (3, rs
, N_EQK
, N_EQK
, N_F32
| N_KEY
);
14278 neon_three_same (neon_quad (rs
), 0, -1);
14282 do_neon_abs_neg (void)
14284 enum neon_shape rs
;
14285 struct neon_type_el et
;
14287 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg
) == SUCCESS
)
14290 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14293 rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14294 et
= neon_check_type (2, rs
, N_EQK
, N_S8
| N_S16
| N_S32
| N_F32
| N_KEY
);
14296 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14297 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14298 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14299 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14300 inst
.instruction
|= neon_quad (rs
) << 6;
14301 inst
.instruction
|= (et
.type
== NT_float
) << 10;
14302 inst
.instruction
|= neon_logbits (et
.size
) << 18;
14304 neon_dp_fixup (&inst
);
14310 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
14311 struct neon_type_el et
= neon_check_type (2, rs
,
14312 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
14313 int imm
= inst
.operands
[2].imm
;
14314 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
14315 _("immediate out of range for insert"));
14316 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
14322 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
14323 struct neon_type_el et
= neon_check_type (2, rs
,
14324 N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
14325 int imm
= inst
.operands
[2].imm
;
14326 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14327 _("immediate out of range for insert"));
14328 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, et
.size
- imm
);
14332 do_neon_qshlu_imm (void)
14334 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
14335 struct neon_type_el et
= neon_check_type (2, rs
,
14336 N_EQK
| N_UNS
, N_S8
| N_S16
| N_S32
| N_S64
| N_KEY
);
14337 int imm
= inst
.operands
[2].imm
;
14338 constraint (imm
< 0 || (unsigned)imm
>= et
.size
,
14339 _("immediate out of range for shift"));
14340 /* Only encodes the 'U present' variant of the instruction.
14341 In this case, signed types have OP (bit 8) set to 0.
14342 Unsigned types have OP set to 1. */
14343 inst
.instruction
|= (et
.type
== NT_unsigned
) << 8;
14344 /* The rest of the bits are the same as other immediate shifts. */
14345 neon_imm_shift (FALSE
, 0, neon_quad (rs
), et
, imm
);
14349 do_neon_qmovn (void)
14351 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
14352 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
14353 /* Saturating move where operands can be signed or unsigned, and the
14354 destination has the same signedness. */
14355 NEON_ENCODE (INTEGER
, inst
);
14356 if (et
.type
== NT_unsigned
)
14357 inst
.instruction
|= 0xc0;
14359 inst
.instruction
|= 0x80;
14360 neon_two_same (0, 1, et
.size
/ 2);
14364 do_neon_qmovun (void)
14366 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
14367 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
14368 /* Saturating move with unsigned results. Operands must be signed. */
14369 NEON_ENCODE (INTEGER
, inst
);
14370 neon_two_same (0, 1, et
.size
/ 2);
14374 do_neon_rshift_sat_narrow (void)
14376 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14377 or unsigned. If operands are unsigned, results must also be unsigned. */
14378 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
14379 N_EQK
| N_HLF
, N_SU_16_64
| N_KEY
);
14380 int imm
= inst
.operands
[2].imm
;
14381 /* This gets the bounds check, size encoding and immediate bits calculation
14385 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14386 VQMOVN.I<size> <Dd>, <Qm>. */
14389 inst
.operands
[2].present
= 0;
14390 inst
.instruction
= N_MNEM_vqmovn
;
14395 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14396 _("immediate out of range"));
14397 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, et
.size
- imm
);
14401 do_neon_rshift_sat_narrow_u (void)
14403 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14404 or unsigned. If operands are unsigned, results must also be unsigned. */
14405 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
14406 N_EQK
| N_HLF
| N_UNS
, N_S16
| N_S32
| N_S64
| N_KEY
);
14407 int imm
= inst
.operands
[2].imm
;
14408 /* This gets the bounds check, size encoding and immediate bits calculation
14412 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14413 VQMOVUN.I<size> <Dd>, <Qm>. */
14416 inst
.operands
[2].present
= 0;
14417 inst
.instruction
= N_MNEM_vqmovun
;
14422 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14423 _("immediate out of range"));
14424 /* FIXME: The manual is kind of unclear about what value U should have in
14425 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14427 neon_imm_shift (TRUE
, 1, 0, et
, et
.size
- imm
);
14431 do_neon_movn (void)
14433 struct neon_type_el et
= neon_check_type (2, NS_DQ
,
14434 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
14435 NEON_ENCODE (INTEGER
, inst
);
14436 neon_two_same (0, 1, et
.size
/ 2);
14440 do_neon_rshift_narrow (void)
14442 struct neon_type_el et
= neon_check_type (2, NS_DQI
,
14443 N_EQK
| N_HLF
, N_I16
| N_I32
| N_I64
| N_KEY
);
14444 int imm
= inst
.operands
[2].imm
;
14445 /* This gets the bounds check, size encoding and immediate bits calculation
14449 /* If immediate is zero then we are a pseudo-instruction for
14450 VMOVN.I<size> <Dd>, <Qm> */
14453 inst
.operands
[2].present
= 0;
14454 inst
.instruction
= N_MNEM_vmovn
;
14459 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
14460 _("immediate out of range for narrowing operation"));
14461 neon_imm_shift (FALSE
, 0, 0, et
, et
.size
- imm
);
14465 do_neon_shll (void)
14467 /* FIXME: Type checking when lengthening. */
14468 struct neon_type_el et
= neon_check_type (2, NS_QDI
,
14469 N_EQK
| N_DBL
, N_I8
| N_I16
| N_I32
| N_KEY
);
14470 unsigned imm
= inst
.operands
[2].imm
;
14472 if (imm
== et
.size
)
14474 /* Maximum shift variant. */
14475 NEON_ENCODE (INTEGER
, inst
);
14476 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14477 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14478 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14479 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14480 inst
.instruction
|= neon_logbits (et
.size
) << 18;
14482 neon_dp_fixup (&inst
);
14486 /* A more-specific type check for non-max versions. */
14487 et
= neon_check_type (2, NS_QDI
,
14488 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14489 NEON_ENCODE (IMMED
, inst
);
14490 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, 0, et
, imm
);
14494 /* Check the various types for the VCVT instruction, and return which version
14495 the current instruction is. */
14498 neon_cvt_flavour (enum neon_shape rs
)
14500 #define CVT_VAR(C,X,Y) \
14501 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14502 if (et.type != NT_invtype) \
14504 inst.error = NULL; \
14507 struct neon_type_el et
;
14508 unsigned whole_reg
= (rs
== NS_FFI
|| rs
== NS_FD
|| rs
== NS_DF
14509 || rs
== NS_FF
) ? N_VFP
: 0;
14510 /* The instruction versions which take an immediate take one register
14511 argument, which is extended to the width of the full register. Thus the
14512 "source" and "destination" registers must have the same width. Hack that
14513 here by making the size equal to the key (wider, in this case) operand. */
14514 unsigned key
= (rs
== NS_QQI
|| rs
== NS_DDI
|| rs
== NS_FFI
) ? N_KEY
: 0;
14516 CVT_VAR (0, N_S32
, N_F32
);
14517 CVT_VAR (1, N_U32
, N_F32
);
14518 CVT_VAR (2, N_F32
, N_S32
);
14519 CVT_VAR (3, N_F32
, N_U32
);
14520 /* Half-precision conversions. */
14521 CVT_VAR (4, N_F32
, N_F16
);
14522 CVT_VAR (5, N_F16
, N_F32
);
14526 /* VFP instructions. */
14527 CVT_VAR (6, N_F32
, N_F64
);
14528 CVT_VAR (7, N_F64
, N_F32
);
14529 CVT_VAR (8, N_S32
, N_F64
| key
);
14530 CVT_VAR (9, N_U32
, N_F64
| key
);
14531 CVT_VAR (10, N_F64
| key
, N_S32
);
14532 CVT_VAR (11, N_F64
| key
, N_U32
);
14533 /* VFP instructions with bitshift. */
14534 CVT_VAR (12, N_F32
| key
, N_S16
);
14535 CVT_VAR (13, N_F32
| key
, N_U16
);
14536 CVT_VAR (14, N_F64
| key
, N_S16
);
14537 CVT_VAR (15, N_F64
| key
, N_U16
);
14538 CVT_VAR (16, N_S16
, N_F32
| key
);
14539 CVT_VAR (17, N_U16
, N_F32
| key
);
14540 CVT_VAR (18, N_S16
, N_F64
| key
);
14541 CVT_VAR (19, N_U16
, N_F64
| key
);
14547 /* Neon-syntax VFP conversions. */
14550 do_vfp_nsyn_cvt (enum neon_shape rs
, int flavour
)
14552 const char *opname
= 0;
14554 if (rs
== NS_DDI
|| rs
== NS_QQI
|| rs
== NS_FFI
)
14556 /* Conversions with immediate bitshift. */
14557 const char *enc
[] =
14581 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
14583 opname
= enc
[flavour
];
14584 constraint (inst
.operands
[0].reg
!= inst
.operands
[1].reg
,
14585 _("operands 0 and 1 must be the same register"));
14586 inst
.operands
[1] = inst
.operands
[2];
14587 memset (&inst
.operands
[2], '\0', sizeof (inst
.operands
[2]));
14592 /* Conversions without bitshift. */
14593 const char *enc
[] =
14609 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
))
14610 opname
= enc
[flavour
];
14614 do_vfp_nsyn_opcode (opname
);
14618 do_vfp_nsyn_cvtz (void)
14620 enum neon_shape rs
= neon_select_shape (NS_FF
, NS_FD
, NS_NULL
);
14621 int flavour
= neon_cvt_flavour (rs
);
14622 const char *enc
[] =
14636 if (flavour
>= 0 && flavour
< (int) ARRAY_SIZE (enc
) && enc
[flavour
])
14637 do_vfp_nsyn_opcode (enc
[flavour
]);
14641 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED
)
14643 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_FFI
, NS_DD
, NS_QQ
,
14644 NS_FD
, NS_DF
, NS_FF
, NS_QD
, NS_DQ
, NS_NULL
);
14645 int flavour
= neon_cvt_flavour (rs
);
14647 /* PR11109: Handle round-to-zero for VCVT conversions. */
14649 && ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_vfp_v2
)
14650 && (flavour
== 0 || flavour
== 1 || flavour
== 8 || flavour
== 9)
14651 && (rs
== NS_FD
|| rs
== NS_FF
))
14653 do_vfp_nsyn_cvtz ();
14657 /* VFP rather than Neon conversions. */
14660 do_vfp_nsyn_cvt (rs
, flavour
);
14670 unsigned enctab
[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14672 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14675 /* Fixed-point conversion with #0 immediate is encoded as an
14676 integer conversion. */
14677 if (inst
.operands
[2].present
&& inst
.operands
[2].imm
== 0)
14679 immbits
= 32 - inst
.operands
[2].imm
;
14680 NEON_ENCODE (IMMED
, inst
);
14682 inst
.instruction
|= enctab
[flavour
];
14683 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14684 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14685 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14686 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14687 inst
.instruction
|= neon_quad (rs
) << 6;
14688 inst
.instruction
|= 1 << 21;
14689 inst
.instruction
|= immbits
<< 16;
14691 neon_dp_fixup (&inst
);
14699 unsigned enctab
[] = { 0x100, 0x180, 0x0, 0x080 };
14701 NEON_ENCODE (INTEGER
, inst
);
14703 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
14707 inst
.instruction
|= enctab
[flavour
];
14709 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14710 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14711 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14712 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14713 inst
.instruction
|= neon_quad (rs
) << 6;
14714 inst
.instruction
|= 2 << 18;
14716 neon_dp_fixup (&inst
);
14720 /* Half-precision conversions for Advanced SIMD -- neon. */
14725 && (inst
.vectype
.el
[0].size
!= 16 || inst
.vectype
.el
[1].size
!= 32))
14727 as_bad (_("operand size must match register width"));
14732 && ((inst
.vectype
.el
[0].size
!= 32 || inst
.vectype
.el
[1].size
!= 16)))
14734 as_bad (_("operand size must match register width"));
14739 inst
.instruction
= 0x3b60600;
14741 inst
.instruction
= 0x3b60700;
14743 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14744 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14745 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14746 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14747 neon_dp_fixup (&inst
);
14751 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14752 do_vfp_nsyn_cvt (rs
, flavour
);
14757 do_neon_cvtr (void)
14759 do_neon_cvt_1 (FALSE
);
14765 do_neon_cvt_1 (TRUE
);
14769 do_neon_cvtb (void)
14771 inst
.instruction
= 0xeb20a40;
14773 /* The sizes are attached to the mnemonic. */
14774 if (inst
.vectype
.el
[0].type
!= NT_invtype
14775 && inst
.vectype
.el
[0].size
== 16)
14776 inst
.instruction
|= 0x00010000;
14778 /* Programmer's syntax: the sizes are attached to the operands. */
14779 else if (inst
.operands
[0].vectype
.type
!= NT_invtype
14780 && inst
.operands
[0].vectype
.size
== 16)
14781 inst
.instruction
|= 0x00010000;
14783 encode_arm_vfp_reg (inst
.operands
[0].reg
, VFP_REG_Sd
);
14784 encode_arm_vfp_reg (inst
.operands
[1].reg
, VFP_REG_Sm
);
14785 do_vfp_cond_or_thumb ();
14790 do_neon_cvtt (void)
14793 inst
.instruction
|= 0x80;
14797 neon_move_immediate (void)
14799 enum neon_shape rs
= neon_select_shape (NS_DI
, NS_QI
, NS_NULL
);
14800 struct neon_type_el et
= neon_check_type (2, rs
,
14801 N_I8
| N_I16
| N_I32
| N_I64
| N_F32
| N_KEY
, N_EQK
);
14802 unsigned immlo
, immhi
= 0, immbits
;
14803 int op
, cmode
, float_p
;
14805 constraint (et
.type
== NT_invtype
,
14806 _("operand size must be specified for immediate VMOV"));
14808 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14809 op
= (inst
.instruction
& (1 << 5)) != 0;
14811 immlo
= inst
.operands
[1].imm
;
14812 if (inst
.operands
[1].regisimm
)
14813 immhi
= inst
.operands
[1].reg
;
14815 constraint (et
.size
< 32 && (immlo
& ~((1 << et
.size
) - 1)) != 0,
14816 _("immediate has bits set outside the operand size"));
14818 float_p
= inst
.operands
[1].immisfloat
;
14820 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
, &op
,
14821 et
.size
, et
.type
)) == FAIL
)
14823 /* Invert relevant bits only. */
14824 neon_invert_size (&immlo
, &immhi
, et
.size
);
14825 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14826 with one or the other; those cases are caught by
14827 neon_cmode_for_move_imm. */
14829 if ((cmode
= neon_cmode_for_move_imm (immlo
, immhi
, float_p
, &immbits
,
14830 &op
, et
.size
, et
.type
)) == FAIL
)
14832 first_error (_("immediate out of range"));
14837 inst
.instruction
&= ~(1 << 5);
14838 inst
.instruction
|= op
<< 5;
14840 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14841 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14842 inst
.instruction
|= neon_quad (rs
) << 6;
14843 inst
.instruction
|= cmode
<< 8;
14845 neon_write_immbits (immbits
);
14851 if (inst
.operands
[1].isreg
)
14853 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
14855 NEON_ENCODE (INTEGER
, inst
);
14856 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14857 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14858 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
14859 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
14860 inst
.instruction
|= neon_quad (rs
) << 6;
14864 NEON_ENCODE (IMMED
, inst
);
14865 neon_move_immediate ();
14868 neon_dp_fixup (&inst
);
14871 /* Encode instructions of form:
14873 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14874 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14877 neon_mixed_length (struct neon_type_el et
, unsigned size
)
14879 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14880 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14881 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14882 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14883 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14884 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14885 inst
.instruction
|= (et
.type
== NT_unsigned
) << 24;
14886 inst
.instruction
|= neon_logbits (size
) << 20;
14888 neon_dp_fixup (&inst
);
14892 do_neon_dyadic_long (void)
14894 /* FIXME: Type checking for lengthening op. */
14895 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14896 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
14897 neon_mixed_length (et
, et
.size
);
14901 do_neon_abal (void)
14903 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14904 N_EQK
| N_INT
| N_DBL
, N_EQK
, N_SU_32
| N_KEY
);
14905 neon_mixed_length (et
, et
.size
);
14909 neon_mac_reg_scalar_long (unsigned regtypes
, unsigned scalartypes
)
14911 if (inst
.operands
[2].isscalar
)
14913 struct neon_type_el et
= neon_check_type (3, NS_QDS
,
14914 N_EQK
| N_DBL
, N_EQK
, regtypes
| N_KEY
);
14915 NEON_ENCODE (SCALAR
, inst
);
14916 neon_mul_mac (et
, et
.type
== NT_unsigned
);
14920 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14921 N_EQK
| N_DBL
, N_EQK
, scalartypes
| N_KEY
);
14922 NEON_ENCODE (INTEGER
, inst
);
14923 neon_mixed_length (et
, et
.size
);
14928 do_neon_mac_maybe_scalar_long (void)
14930 neon_mac_reg_scalar_long (N_S16
| N_S32
| N_U16
| N_U32
, N_SU_32
);
14934 do_neon_dyadic_wide (void)
14936 struct neon_type_el et
= neon_check_type (3, NS_QQD
,
14937 N_EQK
| N_DBL
, N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
14938 neon_mixed_length (et
, et
.size
);
14942 do_neon_dyadic_narrow (void)
14944 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14945 N_EQK
| N_DBL
, N_EQK
, N_I16
| N_I32
| N_I64
| N_KEY
);
14946 /* Operand sign is unimportant, and the U bit is part of the opcode,
14947 so force the operand type to integer. */
14948 et
.type
= NT_integer
;
14949 neon_mixed_length (et
, et
.size
/ 2);
14953 do_neon_mul_sat_scalar_long (void)
14955 neon_mac_reg_scalar_long (N_S16
| N_S32
, N_S16
| N_S32
);
14959 do_neon_vmull (void)
14961 if (inst
.operands
[2].isscalar
)
14962 do_neon_mac_maybe_scalar_long ();
14965 struct neon_type_el et
= neon_check_type (3, NS_QDD
,
14966 N_EQK
| N_DBL
, N_EQK
, N_SU_32
| N_P8
| N_KEY
);
14967 if (et
.type
== NT_poly
)
14968 NEON_ENCODE (POLY
, inst
);
14970 NEON_ENCODE (INTEGER
, inst
);
14971 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14972 zero. Should be OK as-is. */
14973 neon_mixed_length (et
, et
.size
);
14980 enum neon_shape rs
= neon_select_shape (NS_DDDI
, NS_QQQI
, NS_NULL
);
14981 struct neon_type_el et
= neon_check_type (3, rs
,
14982 N_EQK
, N_EQK
, N_8
| N_16
| N_32
| N_64
| N_KEY
);
14983 unsigned imm
= (inst
.operands
[3].imm
* et
.size
) / 8;
14985 constraint (imm
>= (unsigned) (neon_quad (rs
) ? 16 : 8),
14986 _("shift out of range"));
14987 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
14988 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
14989 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
14990 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
14991 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
14992 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
14993 inst
.instruction
|= neon_quad (rs
) << 6;
14994 inst
.instruction
|= imm
<< 8;
14996 neon_dp_fixup (&inst
);
15002 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15003 struct neon_type_el et
= neon_check_type (2, rs
,
15004 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
15005 unsigned op
= (inst
.instruction
>> 7) & 3;
15006 /* N (width of reversed regions) is encoded as part of the bitmask. We
15007 extract it here to check the elements to be reversed are smaller.
15008 Otherwise we'd get a reserved instruction. */
15009 unsigned elsize
= (op
== 2) ? 16 : (op
== 1) ? 32 : (op
== 0) ? 64 : 0;
15010 gas_assert (elsize
!= 0);
15011 constraint (et
.size
>= elsize
,
15012 _("elements must be smaller than reversal region"));
15013 neon_two_same (neon_quad (rs
), 1, et
.size
);
15019 if (inst
.operands
[1].isscalar
)
15021 enum neon_shape rs
= neon_select_shape (NS_DS
, NS_QS
, NS_NULL
);
15022 struct neon_type_el et
= neon_check_type (2, rs
,
15023 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
15024 unsigned sizebits
= et
.size
>> 3;
15025 unsigned dm
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
15026 int logsize
= neon_logbits (et
.size
);
15027 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
) << logsize
;
15029 if (vfp_or_neon_is_neon (NEON_CHECK_CC
) == FAIL
)
15032 NEON_ENCODE (SCALAR
, inst
);
15033 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15034 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15035 inst
.instruction
|= LOW4 (dm
);
15036 inst
.instruction
|= HI1 (dm
) << 5;
15037 inst
.instruction
|= neon_quad (rs
) << 6;
15038 inst
.instruction
|= x
<< 17;
15039 inst
.instruction
|= sizebits
<< 16;
15041 neon_dp_fixup (&inst
);
15045 enum neon_shape rs
= neon_select_shape (NS_DR
, NS_QR
, NS_NULL
);
15046 struct neon_type_el et
= neon_check_type (2, rs
,
15047 N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
15048 /* Duplicate ARM register to lanes of vector. */
15049 NEON_ENCODE (ARMREG
, inst
);
15052 case 8: inst
.instruction
|= 0x400000; break;
15053 case 16: inst
.instruction
|= 0x000020; break;
15054 case 32: inst
.instruction
|= 0x000000; break;
15057 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
15058 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 16;
15059 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 7;
15060 inst
.instruction
|= neon_quad (rs
) << 21;
15061 /* The encoding for this instruction is identical for the ARM and Thumb
15062 variants, except for the condition field. */
15063 do_vfp_cond_or_thumb ();
15067 /* VMOV has particularly many variations. It can be one of:
15068 0. VMOV<c><q> <Qd>, <Qm>
15069 1. VMOV<c><q> <Dd>, <Dm>
15070 (Register operations, which are VORR with Rm = Rn.)
15071 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15072 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15074 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15075 (ARM register to scalar.)
15076 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15077 (Two ARM registers to vector.)
15078 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15079 (Scalar to ARM register.)
15080 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15081 (Vector to two ARM registers.)
15082 8. VMOV.F32 <Sd>, <Sm>
15083 9. VMOV.F64 <Dd>, <Dm>
15084 (VFP register moves.)
15085 10. VMOV.F32 <Sd>, #imm
15086 11. VMOV.F64 <Dd>, #imm
15087 (VFP float immediate load.)
15088 12. VMOV <Rd>, <Sm>
15089 (VFP single to ARM reg.)
15090 13. VMOV <Sd>, <Rm>
15091 (ARM reg to VFP single.)
15092 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15093 (Two ARM regs to two VFP singles.)
15094 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15095 (Two VFP singles to two ARM regs.)
15097 These cases can be disambiguated using neon_select_shape, except cases 1/9
15098 and 3/11 which depend on the operand type too.
15100 All the encoded bits are hardcoded by this function.
15102 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15103 Cases 5, 7 may be used with VFPv2 and above.
15105 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15106 can specify a type where it doesn't make sense to, and is ignored). */
15111 enum neon_shape rs
= neon_select_shape (NS_RRFF
, NS_FFRR
, NS_DRR
, NS_RRD
,
15112 NS_QQ
, NS_DD
, NS_QI
, NS_DI
, NS_SR
, NS_RS
, NS_FF
, NS_FI
, NS_RF
, NS_FR
,
15114 struct neon_type_el et
;
15115 const char *ldconst
= 0;
15119 case NS_DD
: /* case 1/9. */
15120 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
15121 /* It is not an error here if no type is given. */
15123 if (et
.type
== NT_float
&& et
.size
== 64)
15125 do_vfp_nsyn_opcode ("fcpyd");
15128 /* fall through. */
15130 case NS_QQ
: /* case 0/1. */
15132 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
15134 /* The architecture manual I have doesn't explicitly state which
15135 value the U bit should have for register->register moves, but
15136 the equivalent VORR instruction has U = 0, so do that. */
15137 inst
.instruction
= 0x0200110;
15138 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15139 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15140 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
);
15141 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 5;
15142 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15143 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15144 inst
.instruction
|= neon_quad (rs
) << 6;
15146 neon_dp_fixup (&inst
);
15150 case NS_DI
: /* case 3/11. */
15151 et
= neon_check_type (2, rs
, N_EQK
, N_F64
| N_KEY
);
15153 if (et
.type
== NT_float
&& et
.size
== 64)
15155 /* case 11 (fconstd). */
15156 ldconst
= "fconstd";
15157 goto encode_fconstd
;
15159 /* fall through. */
15161 case NS_QI
: /* case 2/3. */
15162 if (vfp_or_neon_is_neon (NEON_CHECK_CC
| NEON_CHECK_ARCH
) == FAIL
)
15164 inst
.instruction
= 0x0800010;
15165 neon_move_immediate ();
15166 neon_dp_fixup (&inst
);
15169 case NS_SR
: /* case 4. */
15171 unsigned bcdebits
= 0;
15173 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[0].reg
);
15174 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[0].reg
);
15176 et
= neon_check_type (2, NS_NULL
, N_8
| N_16
| N_32
| N_KEY
, N_EQK
);
15177 logsize
= neon_logbits (et
.size
);
15179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
15181 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
15182 && et
.size
!= 32, _(BAD_FPU
));
15183 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
15184 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
15188 case 8: bcdebits
= 0x8; break;
15189 case 16: bcdebits
= 0x1; break;
15190 case 32: bcdebits
= 0x0; break;
15194 bcdebits
|= x
<< logsize
;
15196 inst
.instruction
= 0xe000b10;
15197 do_vfp_cond_or_thumb ();
15198 inst
.instruction
|= LOW4 (dn
) << 16;
15199 inst
.instruction
|= HI1 (dn
) << 7;
15200 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
15201 inst
.instruction
|= (bcdebits
& 3) << 5;
15202 inst
.instruction
|= (bcdebits
>> 2) << 21;
15206 case NS_DRR
: /* case 5 (fmdrr). */
15207 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
15210 inst
.instruction
= 0xc400b10;
15211 do_vfp_cond_or_thumb ();
15212 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
);
15213 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 5;
15214 inst
.instruction
|= inst
.operands
[1].reg
<< 12;
15215 inst
.instruction
|= inst
.operands
[2].reg
<< 16;
15218 case NS_RS
: /* case 6. */
15221 unsigned dn
= NEON_SCALAR_REG (inst
.operands
[1].reg
);
15222 unsigned x
= NEON_SCALAR_INDEX (inst
.operands
[1].reg
);
15223 unsigned abcdebits
= 0;
15225 et
= neon_check_type (2, NS_NULL
,
15226 N_EQK
, N_S8
| N_S16
| N_U8
| N_U16
| N_32
| N_KEY
);
15227 logsize
= neon_logbits (et
.size
);
15229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v1
),
15231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_neon_ext_v1
)
15232 && et
.size
!= 32, _(BAD_FPU
));
15233 constraint (et
.type
== NT_invtype
, _("bad type for scalar"));
15234 constraint (x
>= 64 / et
.size
, _("scalar index out of range"));
15238 case 8: abcdebits
= (et
.type
== NT_signed
) ? 0x08 : 0x18; break;
15239 case 16: abcdebits
= (et
.type
== NT_signed
) ? 0x01 : 0x11; break;
15240 case 32: abcdebits
= 0x00; break;
15244 abcdebits
|= x
<< logsize
;
15245 inst
.instruction
= 0xe100b10;
15246 do_vfp_cond_or_thumb ();
15247 inst
.instruction
|= LOW4 (dn
) << 16;
15248 inst
.instruction
|= HI1 (dn
) << 7;
15249 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
15250 inst
.instruction
|= (abcdebits
& 3) << 5;
15251 inst
.instruction
|= (abcdebits
>> 2) << 21;
15255 case NS_RRD
: /* case 7 (fmrrd). */
15256 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_vfp_ext_v2
),
15259 inst
.instruction
= 0xc500b10;
15260 do_vfp_cond_or_thumb ();
15261 inst
.instruction
|= inst
.operands
[0].reg
<< 12;
15262 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
15263 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15264 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15267 case NS_FF
: /* case 8 (fcpys). */
15268 do_vfp_nsyn_opcode ("fcpys");
15271 case NS_FI
: /* case 10 (fconsts). */
15272 ldconst
= "fconsts";
15274 if (is_quarter_float (inst
.operands
[1].imm
))
15276 inst
.operands
[1].imm
= neon_qfloat_bits (inst
.operands
[1].imm
);
15277 do_vfp_nsyn_opcode (ldconst
);
15280 first_error (_("immediate out of range"));
15283 case NS_RF
: /* case 12 (fmrs). */
15284 do_vfp_nsyn_opcode ("fmrs");
15287 case NS_FR
: /* case 13 (fmsr). */
15288 do_vfp_nsyn_opcode ("fmsr");
15291 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15292 (one of which is a list), but we have parsed four. Do some fiddling to
15293 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15295 case NS_RRFF
: /* case 14 (fmrrs). */
15296 constraint (inst
.operands
[3].reg
!= inst
.operands
[2].reg
+ 1,
15297 _("VFP registers must be adjacent"));
15298 inst
.operands
[2].imm
= 2;
15299 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
15300 do_vfp_nsyn_opcode ("fmrrs");
15303 case NS_FFRR
: /* case 15 (fmsrr). */
15304 constraint (inst
.operands
[1].reg
!= inst
.operands
[0].reg
+ 1,
15305 _("VFP registers must be adjacent"));
15306 inst
.operands
[1] = inst
.operands
[2];
15307 inst
.operands
[2] = inst
.operands
[3];
15308 inst
.operands
[0].imm
= 2;
15309 memset (&inst
.operands
[3], '\0', sizeof (inst
.operands
[3]));
15310 do_vfp_nsyn_opcode ("fmsrr");
15319 do_neon_rshift_round_imm (void)
15321 enum neon_shape rs
= neon_select_shape (NS_DDI
, NS_QQI
, NS_NULL
);
15322 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_ALL
| N_KEY
);
15323 int imm
= inst
.operands
[2].imm
;
15325 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15328 inst
.operands
[2].present
= 0;
15333 constraint (imm
< 1 || (unsigned)imm
> et
.size
,
15334 _("immediate out of range for shift"));
15335 neon_imm_shift (TRUE
, et
.type
== NT_unsigned
, neon_quad (rs
), et
,
15340 do_neon_movl (void)
15342 struct neon_type_el et
= neon_check_type (2, NS_QD
,
15343 N_EQK
| N_DBL
, N_SU_32
| N_KEY
);
15344 unsigned sizebits
= et
.size
>> 3;
15345 inst
.instruction
|= sizebits
<< 19;
15346 neon_two_same (0, et
.type
== NT_unsigned
, -1);
15352 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15353 struct neon_type_el et
= neon_check_type (2, rs
,
15354 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
15355 NEON_ENCODE (INTEGER
, inst
);
15356 neon_two_same (neon_quad (rs
), 1, et
.size
);
15360 do_neon_zip_uzp (void)
15362 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15363 struct neon_type_el et
= neon_check_type (2, rs
,
15364 N_EQK
, N_8
| N_16
| N_32
| N_KEY
);
15365 if (rs
== NS_DD
&& et
.size
== 32)
15367 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15368 inst
.instruction
= N_MNEM_vtrn
;
15372 neon_two_same (neon_quad (rs
), 1, et
.size
);
15376 do_neon_sat_abs_neg (void)
15378 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15379 struct neon_type_el et
= neon_check_type (2, rs
,
15380 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
15381 neon_two_same (neon_quad (rs
), 1, et
.size
);
15385 do_neon_pair_long (void)
15387 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15388 struct neon_type_el et
= neon_check_type (2, rs
, N_EQK
, N_SU_32
| N_KEY
);
15389 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15390 inst
.instruction
|= (et
.type
== NT_unsigned
) << 7;
15391 neon_two_same (neon_quad (rs
), 1, et
.size
);
15395 do_neon_recip_est (void)
15397 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15398 struct neon_type_el et
= neon_check_type (2, rs
,
15399 N_EQK
| N_FLT
, N_F32
| N_U32
| N_KEY
);
15400 inst
.instruction
|= (et
.type
== NT_float
) << 8;
15401 neon_two_same (neon_quad (rs
), 1, et
.size
);
15407 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15408 struct neon_type_el et
= neon_check_type (2, rs
,
15409 N_EQK
, N_S8
| N_S16
| N_S32
| N_KEY
);
15410 neon_two_same (neon_quad (rs
), 1, et
.size
);
15416 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15417 struct neon_type_el et
= neon_check_type (2, rs
,
15418 N_EQK
, N_I8
| N_I16
| N_I32
| N_KEY
);
15419 neon_two_same (neon_quad (rs
), 1, et
.size
);
15425 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15426 struct neon_type_el et
= neon_check_type (2, rs
,
15427 N_EQK
| N_INT
, N_8
| N_KEY
);
15428 neon_two_same (neon_quad (rs
), 1, et
.size
);
15434 enum neon_shape rs
= neon_select_shape (NS_DD
, NS_QQ
, NS_NULL
);
15435 neon_two_same (neon_quad (rs
), 1, -1);
15439 do_neon_tbl_tbx (void)
15441 unsigned listlenbits
;
15442 neon_check_type (3, NS_DLD
, N_EQK
, N_EQK
, N_8
| N_KEY
);
15444 if (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 4)
15446 first_error (_("bad list length for table lookup"));
15450 listlenbits
= inst
.operands
[1].imm
- 1;
15451 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15452 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15453 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 16;
15454 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 7;
15455 inst
.instruction
|= LOW4 (inst
.operands
[2].reg
);
15456 inst
.instruction
|= HI1 (inst
.operands
[2].reg
) << 5;
15457 inst
.instruction
|= listlenbits
<< 8;
15459 neon_dp_fixup (&inst
);
15463 do_neon_ldm_stm (void)
15465 /* P, U and L bits are part of bitmask. */
15466 int is_dbmode
= (inst
.instruction
& (1 << 24)) != 0;
15467 unsigned offsetbits
= inst
.operands
[1].imm
* 2;
15469 if (inst
.operands
[1].issingle
)
15471 do_vfp_nsyn_ldm_stm (is_dbmode
);
15475 constraint (is_dbmode
&& !inst
.operands
[0].writeback
,
15476 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15478 constraint (inst
.operands
[1].imm
< 1 || inst
.operands
[1].imm
> 16,
15479 _("register list must contain at least 1 and at most 16 "
15482 inst
.instruction
|= inst
.operands
[0].reg
<< 16;
15483 inst
.instruction
|= inst
.operands
[0].writeback
<< 21;
15484 inst
.instruction
|= LOW4 (inst
.operands
[1].reg
) << 12;
15485 inst
.instruction
|= HI1 (inst
.operands
[1].reg
) << 22;
15487 inst
.instruction
|= offsetbits
;
15489 do_vfp_cond_or_thumb ();
15493 do_neon_ldr_str (void)
15495 int is_ldr
= (inst
.instruction
& (1 << 20)) != 0;
15497 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15498 And is UNPREDICTABLE in thumb mode. */
15500 && inst
.operands
[1].reg
== REG_PC
15501 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v7
))
15503 if (!thumb_mode
&& warn_on_deprecated
)
15504 as_warn (_("Use of PC here is deprecated"));
15506 inst
.error
= _("Use of PC here is UNPREDICTABLE");
15509 if (inst
.operands
[0].issingle
)
15512 do_vfp_nsyn_opcode ("flds");
15514 do_vfp_nsyn_opcode ("fsts");
15519 do_vfp_nsyn_opcode ("fldd");
15521 do_vfp_nsyn_opcode ("fstd");
15525 /* "interleave" version also handles non-interleaving register VLD1/VST1
15529 do_neon_ld_st_interleave (void)
15531 struct neon_type_el et
= neon_check_type (1, NS_NULL
,
15532 N_8
| N_16
| N_32
| N_64
);
15533 unsigned alignbits
= 0;
15535 /* The bits in this table go:
15536 0: register stride of one (0) or two (1)
15537 1,2: register list length, minus one (1, 2, 3, 4).
15538 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15539 We use -1 for invalid entries. */
15540 const int typetable
[] =
15542 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15543 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15544 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15545 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15549 if (et
.type
== NT_invtype
)
15552 if (inst
.operands
[1].immisalign
)
15553 switch (inst
.operands
[1].imm
>> 8)
15555 case 64: alignbits
= 1; break;
15557 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2
15558 && NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
15559 goto bad_alignment
;
15563 if (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4)
15564 goto bad_alignment
;
15569 first_error (_("bad alignment"));
15573 inst
.instruction
|= alignbits
<< 4;
15574 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15576 /* Bits [4:6] of the immediate in a list specifier encode register stride
15577 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15578 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15579 up the right value for "type" in a table based on this value and the given
15580 list style, then stick it back. */
15581 idx
= ((inst
.operands
[0].imm
>> 4) & 7)
15582 | (((inst
.instruction
>> 8) & 3) << 3);
15584 typebits
= typetable
[idx
];
15586 constraint (typebits
== -1, _("bad list type for instruction"));
15588 inst
.instruction
&= ~0xf00;
15589 inst
.instruction
|= typebits
<< 8;
15592 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15593 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15594 otherwise. The variable arguments are a list of pairs of legal (size, align)
15595 values, terminated with -1. */
15598 neon_alignment_bit (int size
, int align
, int *do_align
, ...)
15601 int result
= FAIL
, thissize
, thisalign
;
15603 if (!inst
.operands
[1].immisalign
)
15609 va_start (ap
, do_align
);
15613 thissize
= va_arg (ap
, int);
15614 if (thissize
== -1)
15616 thisalign
= va_arg (ap
, int);
15618 if (size
== thissize
&& align
== thisalign
)
15621 while (result
!= SUCCESS
);
15625 if (result
== SUCCESS
)
15628 first_error (_("unsupported alignment for instruction"));
15634 do_neon_ld_st_lane (void)
15636 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
15637 int align_good
, do_align
= 0;
15638 int logsize
= neon_logbits (et
.size
);
15639 int align
= inst
.operands
[1].imm
>> 8;
15640 int n
= (inst
.instruction
>> 8) & 3;
15641 int max_el
= 64 / et
.size
;
15643 if (et
.type
== NT_invtype
)
15646 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != n
+ 1,
15647 _("bad list length"));
15648 constraint (NEON_LANE (inst
.operands
[0].imm
) >= max_el
,
15649 _("scalar index out of range"));
15650 constraint (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2
15652 _("stride of 2 unavailable when element size is 8"));
15656 case 0: /* VLD1 / VST1. */
15657 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 16, 16,
15659 if (align_good
== FAIL
)
15663 unsigned alignbits
= 0;
15666 case 16: alignbits
= 0x1; break;
15667 case 32: alignbits
= 0x3; break;
15670 inst
.instruction
|= alignbits
<< 4;
15674 case 1: /* VLD2 / VST2. */
15675 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 16, 16, 32,
15677 if (align_good
== FAIL
)
15680 inst
.instruction
|= 1 << 4;
15683 case 2: /* VLD3 / VST3. */
15684 constraint (inst
.operands
[1].immisalign
,
15685 _("can't use alignment with this instruction"));
15688 case 3: /* VLD4 / VST4. */
15689 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
15690 16, 64, 32, 64, 32, 128, -1);
15691 if (align_good
== FAIL
)
15695 unsigned alignbits
= 0;
15698 case 8: alignbits
= 0x1; break;
15699 case 16: alignbits
= 0x1; break;
15700 case 32: alignbits
= (align
== 64) ? 0x1 : 0x2; break;
15703 inst
.instruction
|= alignbits
<< 4;
15710 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15711 if (n
!= 0 && NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15712 inst
.instruction
|= 1 << (4 + logsize
);
15714 inst
.instruction
|= NEON_LANE (inst
.operands
[0].imm
) << (logsize
+ 5);
15715 inst
.instruction
|= logsize
<< 10;
15718 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15721 do_neon_ld_dup (void)
15723 struct neon_type_el et
= neon_check_type (1, NS_NULL
, N_8
| N_16
| N_32
);
15724 int align_good
, do_align
= 0;
15726 if (et
.type
== NT_invtype
)
15729 switch ((inst
.instruction
>> 8) & 3)
15731 case 0: /* VLD1. */
15732 gas_assert (NEON_REG_STRIDE (inst
.operands
[0].imm
) != 2);
15733 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
15734 &do_align
, 16, 16, 32, 32, -1);
15735 if (align_good
== FAIL
)
15737 switch (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
))
15740 case 2: inst
.instruction
|= 1 << 5; break;
15741 default: first_error (_("bad list length")); return;
15743 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15746 case 1: /* VLD2. */
15747 align_good
= neon_alignment_bit (et
.size
, inst
.operands
[1].imm
>> 8,
15748 &do_align
, 8, 16, 16, 32, 32, 64, -1);
15749 if (align_good
== FAIL
)
15751 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 2,
15752 _("bad list length"));
15753 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15754 inst
.instruction
|= 1 << 5;
15755 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15758 case 2: /* VLD3. */
15759 constraint (inst
.operands
[1].immisalign
,
15760 _("can't use alignment with this instruction"));
15761 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 3,
15762 _("bad list length"));
15763 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15764 inst
.instruction
|= 1 << 5;
15765 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15768 case 3: /* VLD4. */
15770 int align
= inst
.operands
[1].imm
>> 8;
15771 align_good
= neon_alignment_bit (et
.size
, align
, &do_align
, 8, 32,
15772 16, 64, 32, 64, 32, 128, -1);
15773 if (align_good
== FAIL
)
15775 constraint (NEON_REGLIST_LENGTH (inst
.operands
[0].imm
) != 4,
15776 _("bad list length"));
15777 if (NEON_REG_STRIDE (inst
.operands
[0].imm
) == 2)
15778 inst
.instruction
|= 1 << 5;
15779 if (et
.size
== 32 && align
== 128)
15780 inst
.instruction
|= 0x3 << 6;
15782 inst
.instruction
|= neon_logbits (et
.size
) << 6;
15789 inst
.instruction
|= do_align
<< 4;
15792 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15793 apart from bits [11:4]. */
15796 do_neon_ldx_stx (void)
15798 if (inst
.operands
[1].isreg
)
15799 constraint (inst
.operands
[1].reg
== REG_PC
, BAD_PC
);
15801 switch (NEON_LANE (inst
.operands
[0].imm
))
15803 case NEON_INTERLEAVE_LANES
:
15804 NEON_ENCODE (INTERLV
, inst
);
15805 do_neon_ld_st_interleave ();
15808 case NEON_ALL_LANES
:
15809 NEON_ENCODE (DUP
, inst
);
15814 NEON_ENCODE (LANE
, inst
);
15815 do_neon_ld_st_lane ();
15818 /* L bit comes from bit mask. */
15819 inst
.instruction
|= LOW4 (inst
.operands
[0].reg
) << 12;
15820 inst
.instruction
|= HI1 (inst
.operands
[0].reg
) << 22;
15821 inst
.instruction
|= inst
.operands
[1].reg
<< 16;
15823 if (inst
.operands
[1].postind
)
15825 int postreg
= inst
.operands
[1].imm
& 0xf;
15826 constraint (!inst
.operands
[1].immisreg
,
15827 _("post-index must be a register"));
15828 constraint (postreg
== 0xd || postreg
== 0xf,
15829 _("bad register for post-index"));
15830 inst
.instruction
|= postreg
;
15832 else if (inst
.operands
[1].writeback
)
15834 inst
.instruction
|= 0xd;
15837 inst
.instruction
|= 0xf;
15840 inst
.instruction
|= 0xf9000000;
15842 inst
.instruction
|= 0xf4000000;
15845 /* Overall per-instruction processing. */
15847 /* We need to be able to fix up arbitrary expressions in some statements.
15848 This is so that we can handle symbols that are an arbitrary distance from
15849 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15850 which returns part of an address in a form which will be valid for
15851 a data instruction. We do this by pushing the expression into a symbol
15852 in the expr_section, and creating a fix for that. */
15855 fix_new_arm (fragS
* frag
,
15869 /* Create an absolute valued symbol, so we have something to
15870 refer to in the object file. Unfortunately for us, gas's
15871 generic expression parsing will already have folded out
15872 any use of .set foo/.type foo %function that may have
15873 been used to set type information of the target location,
15874 that's being specified symbolically. We have to presume
15875 the user knows what they are doing. */
15879 sprintf (name
, "*ABS*0x%lx", (unsigned long)exp
->X_add_number
);
15881 symbol
= symbol_find_or_make (name
);
15882 S_SET_SEGMENT (symbol
, absolute_section
);
15883 symbol_set_frag (symbol
, &zero_address_frag
);
15884 S_SET_VALUE (symbol
, exp
->X_add_number
);
15885 exp
->X_op
= O_symbol
;
15886 exp
->X_add_symbol
= symbol
;
15887 exp
->X_add_number
= 0;
15893 new_fix
= fix_new_exp (frag
, where
, size
, exp
, pc_rel
,
15894 (enum bfd_reloc_code_real
) reloc
);
15898 new_fix
= (fixS
*) fix_new (frag
, where
, size
, make_expr_symbol (exp
), 0,
15899 pc_rel
, (enum bfd_reloc_code_real
) reloc
);
15903 /* Mark whether the fix is to a THUMB instruction, or an ARM
15905 new_fix
->tc_fix_data
= thumb_mode
;
15908 /* Create a frg for an instruction requiring relaxation. */
15910 output_relax_insn (void)
15916 /* The size of the instruction is unknown, so tie the debug info to the
15917 start of the instruction. */
15918 dwarf2_emit_insn (0);
15920 switch (inst
.reloc
.exp
.X_op
)
15923 sym
= inst
.reloc
.exp
.X_add_symbol
;
15924 offset
= inst
.reloc
.exp
.X_add_number
;
15928 offset
= inst
.reloc
.exp
.X_add_number
;
15931 sym
= make_expr_symbol (&inst
.reloc
.exp
);
15935 to
= frag_var (rs_machine_dependent
, INSN_SIZE
, THUMB_SIZE
,
15936 inst
.relax
, sym
, offset
, NULL
/*offset, opcode*/);
15937 md_number_to_chars (to
, inst
.instruction
, THUMB_SIZE
);
15940 /* Write a 32-bit thumb instruction to buf. */
15942 put_thumb32_insn (char * buf
, unsigned long insn
)
15944 md_number_to_chars (buf
, insn
>> 16, THUMB_SIZE
);
15945 md_number_to_chars (buf
+ THUMB_SIZE
, insn
, THUMB_SIZE
);
15949 output_inst (const char * str
)
15955 as_bad ("%s -- `%s'", inst
.error
, str
);
15960 output_relax_insn ();
15963 if (inst
.size
== 0)
15966 to
= frag_more (inst
.size
);
15967 /* PR 9814: Record the thumb mode into the current frag so that we know
15968 what type of NOP padding to use, if necessary. We override any previous
15969 setting so that if the mode has changed then the NOPS that we use will
15970 match the encoding of the last instruction in the frag. */
15971 frag_now
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
15973 if (thumb_mode
&& (inst
.size
> THUMB_SIZE
))
15975 gas_assert (inst
.size
== (2 * THUMB_SIZE
));
15976 put_thumb32_insn (to
, inst
.instruction
);
15978 else if (inst
.size
> INSN_SIZE
)
15980 gas_assert (inst
.size
== (2 * INSN_SIZE
));
15981 md_number_to_chars (to
, inst
.instruction
, INSN_SIZE
);
15982 md_number_to_chars (to
+ INSN_SIZE
, inst
.instruction
, INSN_SIZE
);
15985 md_number_to_chars (to
, inst
.instruction
, inst
.size
);
15987 if (inst
.reloc
.type
!= BFD_RELOC_UNUSED
)
15988 fix_new_arm (frag_now
, to
- frag_now
->fr_literal
,
15989 inst
.size
, & inst
.reloc
.exp
, inst
.reloc
.pc_rel
,
15992 dwarf2_emit_insn (inst
.size
);
15996 output_it_inst (int cond
, int mask
, char * to
)
15998 unsigned long instruction
= 0xbf00;
16001 instruction
|= mask
;
16002 instruction
|= cond
<< 4;
16006 to
= frag_more (2);
16008 dwarf2_emit_insn (2);
16012 md_number_to_chars (to
, instruction
, 2);
16017 /* Tag values used in struct asm_opcode's tag field. */
16020 OT_unconditional
, /* Instruction cannot be conditionalized.
16021 The ARM condition field is still 0xE. */
16022 OT_unconditionalF
, /* Instruction cannot be conditionalized
16023 and carries 0xF in its ARM condition field. */
16024 OT_csuffix
, /* Instruction takes a conditional suffix. */
16025 OT_csuffixF
, /* Some forms of the instruction take a conditional
16026 suffix, others place 0xF where the condition field
16028 OT_cinfix3
, /* Instruction takes a conditional infix,
16029 beginning at character index 3. (In
16030 unified mode, it becomes a suffix.) */
16031 OT_cinfix3_deprecated
, /* The same as OT_cinfix3. This is used for
16032 tsts, cmps, cmns, and teqs. */
16033 OT_cinfix3_legacy
, /* Legacy instruction takes a conditional infix at
16034 character index 3, even in unified mode. Used for
16035 legacy instructions where suffix and infix forms
16036 may be ambiguous. */
16037 OT_csuf_or_in3
, /* Instruction takes either a conditional
16038 suffix or an infix at character index 3. */
16039 OT_odd_infix_unc
, /* This is the unconditional variant of an
16040 instruction that takes a conditional infix
16041 at an unusual position. In unified mode,
16042 this variant will accept a suffix. */
16043 OT_odd_infix_0
/* Values greater than or equal to OT_odd_infix_0
16044 are the conditional variants of instructions that
16045 take conditional infixes in unusual positions.
16046 The infix appears at character index
16047 (tag - OT_odd_infix_0). These are not accepted
16048 in unified mode. */
16051 /* Subroutine of md_assemble, responsible for looking up the primary
16052 opcode from the mnemonic the user wrote. STR points to the
16053 beginning of the mnemonic.
16055 This is not simply a hash table lookup, because of conditional
16056 variants. Most instructions have conditional variants, which are
16057 expressed with a _conditional affix_ to the mnemonic. If we were
16058 to encode each conditional variant as a literal string in the opcode
16059 table, it would have approximately 20,000 entries.
16061 Most mnemonics take this affix as a suffix, and in unified syntax,
16062 'most' is upgraded to 'all'. However, in the divided syntax, some
16063 instructions take the affix as an infix, notably the s-variants of
16064 the arithmetic instructions. Of those instructions, all but six
16065 have the infix appear after the third character of the mnemonic.
16067 Accordingly, the algorithm for looking up primary opcodes given
16070 1. Look up the identifier in the opcode table.
16071 If we find a match, go to step U.
16073 2. Look up the last two characters of the identifier in the
16074 conditions table. If we find a match, look up the first N-2
16075 characters of the identifier in the opcode table. If we
16076 find a match, go to step CE.
16078 3. Look up the fourth and fifth characters of the identifier in
16079 the conditions table. If we find a match, extract those
16080 characters from the identifier, and look up the remaining
16081 characters in the opcode table. If we find a match, go
16086 U. Examine the tag field of the opcode structure, in case this is
16087 one of the six instructions with its conditional infix in an
16088 unusual place. If it is, the tag tells us where to find the
16089 infix; look it up in the conditions table and set inst.cond
16090 accordingly. Otherwise, this is an unconditional instruction.
16091 Again set inst.cond accordingly. Return the opcode structure.
16093 CE. Examine the tag field to make sure this is an instruction that
16094 should receive a conditional suffix. If it is not, fail.
16095 Otherwise, set inst.cond from the suffix we already looked up,
16096 and return the opcode structure.
16098 CM. Examine the tag field to make sure this is an instruction that
16099 should receive a conditional infix after the third character.
16100 If it is not, fail. Otherwise, undo the edits to the current
16101 line of input and proceed as for case CE. */
16103 static const struct asm_opcode
*
16104 opcode_lookup (char **str
)
16108 const struct asm_opcode
*opcode
;
16109 const struct asm_cond
*cond
;
16112 /* Scan up to the end of the mnemonic, which must end in white space,
16113 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16114 for (base
= end
= *str
; *end
!= '\0'; end
++)
16115 if (*end
== ' ' || *end
== '.')
16121 /* Handle a possible width suffix and/or Neon type suffix. */
16126 /* The .w and .n suffixes are only valid if the unified syntax is in
16128 if (unified_syntax
&& end
[1] == 'w')
16130 else if (unified_syntax
&& end
[1] == 'n')
16135 inst
.vectype
.elems
= 0;
16137 *str
= end
+ offset
;
16139 if (end
[offset
] == '.')
16141 /* See if we have a Neon type suffix (possible in either unified or
16142 non-unified ARM syntax mode). */
16143 if (parse_neon_type (&inst
.vectype
, str
) == FAIL
)
16146 else if (end
[offset
] != '\0' && end
[offset
] != ' ')
16152 /* Look for unaffixed or special-case affixed mnemonic. */
16153 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
16158 if (opcode
->tag
< OT_odd_infix_0
)
16160 inst
.cond
= COND_ALWAYS
;
16164 if (warn_on_deprecated
&& unified_syntax
)
16165 as_warn (_("conditional infixes are deprecated in unified syntax"));
16166 affix
= base
+ (opcode
->tag
- OT_odd_infix_0
);
16167 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
16170 inst
.cond
= cond
->value
;
16174 /* Cannot have a conditional suffix on a mnemonic of less than two
16176 if (end
- base
< 3)
16179 /* Look for suffixed mnemonic. */
16181 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
16182 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
16184 if (opcode
&& cond
)
16187 switch (opcode
->tag
)
16189 case OT_cinfix3_legacy
:
16190 /* Ignore conditional suffixes matched on infix only mnemonics. */
16194 case OT_cinfix3_deprecated
:
16195 case OT_odd_infix_unc
:
16196 if (!unified_syntax
)
16198 /* else fall through */
16202 case OT_csuf_or_in3
:
16203 inst
.cond
= cond
->value
;
16206 case OT_unconditional
:
16207 case OT_unconditionalF
:
16209 inst
.cond
= cond
->value
;
16212 /* Delayed diagnostic. */
16213 inst
.error
= BAD_COND
;
16214 inst
.cond
= COND_ALWAYS
;
16223 /* Cannot have a usual-position infix on a mnemonic of less than
16224 six characters (five would be a suffix). */
16225 if (end
- base
< 6)
16228 /* Look for infixed mnemonic in the usual position. */
16230 cond
= (const struct asm_cond
*) hash_find_n (arm_cond_hsh
, affix
, 2);
16234 memcpy (save
, affix
, 2);
16235 memmove (affix
, affix
+ 2, (end
- affix
) - 2);
16236 opcode
= (const struct asm_opcode
*) hash_find_n (arm_ops_hsh
, base
,
16238 memmove (affix
+ 2, affix
, (end
- affix
) - 2);
16239 memcpy (affix
, save
, 2);
16242 && (opcode
->tag
== OT_cinfix3
16243 || opcode
->tag
== OT_cinfix3_deprecated
16244 || opcode
->tag
== OT_csuf_or_in3
16245 || opcode
->tag
== OT_cinfix3_legacy
))
16248 if (warn_on_deprecated
&& unified_syntax
16249 && (opcode
->tag
== OT_cinfix3
16250 || opcode
->tag
== OT_cinfix3_deprecated
))
16251 as_warn (_("conditional infixes are deprecated in unified syntax"));
16253 inst
.cond
= cond
->value
;
16260 /* This function generates an initial IT instruction, leaving its block
16261 virtually open for the new instructions. Eventually,
16262 the mask will be updated by now_it_add_mask () each time
16263 a new instruction needs to be included in the IT block.
16264 Finally, the block is closed with close_automatic_it_block ().
16265 The block closure can be requested either from md_assemble (),
16266 a tencode (), or due to a label hook. */
16269 new_automatic_it_block (int cond
)
16271 now_it
.state
= AUTOMATIC_IT_BLOCK
;
16272 now_it
.mask
= 0x18;
16274 now_it
.block_length
= 1;
16275 mapping_state (MAP_THUMB
);
16276 now_it
.insn
= output_it_inst (cond
, now_it
.mask
, NULL
);
16277 now_it
.warn_deprecated
= FALSE
;
16278 now_it
.insn_cond
= TRUE
;
16281 /* Close an automatic IT block.
16282 See comments in new_automatic_it_block (). */
16285 close_automatic_it_block (void)
16287 now_it
.mask
= 0x10;
16288 now_it
.block_length
= 0;
16291 /* Update the mask of the current automatically-generated IT
16292 instruction. See comments in new_automatic_it_block (). */
16295 now_it_add_mask (int cond
)
16297 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16298 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16299 | ((bitvalue) << (nbit)))
16300 const int resulting_bit
= (cond
& 1);
16302 now_it
.mask
&= 0xf;
16303 now_it
.mask
= SET_BIT_VALUE (now_it
.mask
,
16305 (5 - now_it
.block_length
));
16306 now_it
.mask
= SET_BIT_VALUE (now_it
.mask
,
16308 ((5 - now_it
.block_length
) - 1) );
16309 output_it_inst (now_it
.cc
, now_it
.mask
, now_it
.insn
);
16312 #undef SET_BIT_VALUE
16315 /* The IT blocks handling machinery is accessed through the these functions:
16316 it_fsm_pre_encode () from md_assemble ()
16317 set_it_insn_type () optional, from the tencode functions
16318 set_it_insn_type_last () ditto
16319 in_it_block () ditto
16320 it_fsm_post_encode () from md_assemble ()
16321 force_automatic_it_block_close () from label habdling functions
16324 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16325 initializing the IT insn type with a generic initial value depending
16326 on the inst.condition.
16327 2) During the tencode function, two things may happen:
16328 a) The tencode function overrides the IT insn type by
16329 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16330 b) The tencode function queries the IT block state by
16331 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16333 Both set_it_insn_type and in_it_block run the internal FSM state
16334 handling function (handle_it_state), because: a) setting the IT insn
16335 type may incur in an invalid state (exiting the function),
16336 and b) querying the state requires the FSM to be updated.
16337 Specifically we want to avoid creating an IT block for conditional
16338 branches, so it_fsm_pre_encode is actually a guess and we can't
16339 determine whether an IT block is required until the tencode () routine
16340 has decided what type of instruction this actually it.
16341 Because of this, if set_it_insn_type and in_it_block have to be used,
16342 set_it_insn_type has to be called first.
16344 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16345 determines the insn IT type depending on the inst.cond code.
16346 When a tencode () routine encodes an instruction that can be
16347 either outside an IT block, or, in the case of being inside, has to be
16348 the last one, set_it_insn_type_last () will determine the proper
16349 IT instruction type based on the inst.cond code. Otherwise,
16350 set_it_insn_type can be called for overriding that logic or
16351 for covering other cases.
16353 Calling handle_it_state () may not transition the IT block state to
16354 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16355 still queried. Instead, if the FSM determines that the state should
16356 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16357 after the tencode () function: that's what it_fsm_post_encode () does.
16359 Since in_it_block () calls the state handling function to get an
16360 updated state, an error may occur (due to invalid insns combination).
16361 In that case, inst.error is set.
16362 Therefore, inst.error has to be checked after the execution of
16363 the tencode () routine.
16365 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16366 any pending state change (if any) that didn't take place in
16367 handle_it_state () as explained above. */
16370 it_fsm_pre_encode (void)
16372 if (inst
.cond
!= COND_ALWAYS
)
16373 inst
.it_insn_type
= INSIDE_IT_INSN
;
16375 inst
.it_insn_type
= OUTSIDE_IT_INSN
;
16377 now_it
.state_handled
= 0;
16380 /* IT state FSM handling function. */
16383 handle_it_state (void)
16385 now_it
.state_handled
= 1;
16386 now_it
.insn_cond
= FALSE
;
16388 switch (now_it
.state
)
16390 case OUTSIDE_IT_BLOCK
:
16391 switch (inst
.it_insn_type
)
16393 case OUTSIDE_IT_INSN
:
16396 case INSIDE_IT_INSN
:
16397 case INSIDE_IT_LAST_INSN
:
16398 if (thumb_mode
== 0)
16401 && !(implicit_it_mode
& IMPLICIT_IT_MODE_ARM
))
16402 as_tsktsk (_("Warning: conditional outside an IT block"\
16407 if ((implicit_it_mode
& IMPLICIT_IT_MODE_THUMB
)
16408 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_arch_t2
))
16410 /* Automatically generate the IT instruction. */
16411 new_automatic_it_block (inst
.cond
);
16412 if (inst
.it_insn_type
== INSIDE_IT_LAST_INSN
)
16413 close_automatic_it_block ();
16417 inst
.error
= BAD_OUT_IT
;
16423 case IF_INSIDE_IT_LAST_INSN
:
16424 case NEUTRAL_IT_INSN
:
16428 now_it
.state
= MANUAL_IT_BLOCK
;
16429 now_it
.block_length
= 0;
16434 case AUTOMATIC_IT_BLOCK
:
16435 /* Three things may happen now:
16436 a) We should increment current it block size;
16437 b) We should close current it block (closing insn or 4 insns);
16438 c) We should close current it block and start a new one (due
16439 to incompatible conditions or
16440 4 insns-length block reached). */
16442 switch (inst
.it_insn_type
)
16444 case OUTSIDE_IT_INSN
:
16445 /* The closure of the block shall happen immediatelly,
16446 so any in_it_block () call reports the block as closed. */
16447 force_automatic_it_block_close ();
16450 case INSIDE_IT_INSN
:
16451 case INSIDE_IT_LAST_INSN
:
16452 case IF_INSIDE_IT_LAST_INSN
:
16453 now_it
.block_length
++;
16455 if (now_it
.block_length
> 4
16456 || !now_it_compatible (inst
.cond
))
16458 force_automatic_it_block_close ();
16459 if (inst
.it_insn_type
!= IF_INSIDE_IT_LAST_INSN
)
16460 new_automatic_it_block (inst
.cond
);
16464 now_it
.insn_cond
= TRUE
;
16465 now_it_add_mask (inst
.cond
);
16468 if (now_it
.state
== AUTOMATIC_IT_BLOCK
16469 && (inst
.it_insn_type
== INSIDE_IT_LAST_INSN
16470 || inst
.it_insn_type
== IF_INSIDE_IT_LAST_INSN
))
16471 close_automatic_it_block ();
16474 case NEUTRAL_IT_INSN
:
16475 now_it
.block_length
++;
16476 now_it
.insn_cond
= TRUE
;
16478 if (now_it
.block_length
> 4)
16479 force_automatic_it_block_close ();
16481 now_it_add_mask (now_it
.cc
& 1);
16485 close_automatic_it_block ();
16486 now_it
.state
= MANUAL_IT_BLOCK
;
16491 case MANUAL_IT_BLOCK
:
16493 /* Check conditional suffixes. */
16494 const int cond
= now_it
.cc
^ ((now_it
.mask
>> 4) & 1) ^ 1;
16497 now_it
.mask
&= 0x1f;
16498 is_last
= (now_it
.mask
== 0x10);
16499 now_it
.insn_cond
= TRUE
;
16501 switch (inst
.it_insn_type
)
16503 case OUTSIDE_IT_INSN
:
16504 inst
.error
= BAD_NOT_IT
;
16507 case INSIDE_IT_INSN
:
16508 if (cond
!= inst
.cond
)
16510 inst
.error
= BAD_IT_COND
;
16515 case INSIDE_IT_LAST_INSN
:
16516 case IF_INSIDE_IT_LAST_INSN
:
16517 if (cond
!= inst
.cond
)
16519 inst
.error
= BAD_IT_COND
;
16524 inst
.error
= BAD_BRANCH
;
16529 case NEUTRAL_IT_INSN
:
16530 /* The BKPT instruction is unconditional even in an IT block. */
16534 inst
.error
= BAD_IT_IT
;
16544 struct depr_insn_mask
16546 unsigned long pattern
;
16547 unsigned long mask
;
16548 const char* description
;
16551 /* List of 16-bit instruction patterns deprecated in an IT block in
16553 static const struct depr_insn_mask depr_it_insns
[] = {
16554 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16555 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16556 { 0xa000, 0xb800, N_("ADR") },
16557 { 0x4800, 0xf800, N_("Literal loads") },
16558 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16559 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16564 it_fsm_post_encode (void)
16568 if (!now_it
.state_handled
)
16569 handle_it_state ();
16571 if (now_it
.insn_cond
16572 && !now_it
.warn_deprecated
16573 && warn_on_deprecated
16574 && ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v8
))
16576 if (inst
.instruction
>= 0x10000)
16578 as_warn (_("it blocks containing wide Thumb instructions are "
16579 "deprecated in ARMv8"));
16580 now_it
.warn_deprecated
= TRUE
;
16584 const struct depr_insn_mask
*p
= depr_it_insns
;
16586 while (p
->mask
!= 0)
16588 if ((inst
.instruction
& p
->mask
) == p
->pattern
)
16590 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16591 "of the following class are deprecated in ARMv8: "
16592 "%s"), p
->description
);
16593 now_it
.warn_deprecated
= TRUE
;
16601 if (now_it
.block_length
> 1)
16603 as_warn (_("it blocks of more than one conditional instruction are "
16604 "deprecated in ARMv8"));
16605 now_it
.warn_deprecated
= TRUE
;
16609 is_last
= (now_it
.mask
== 0x10);
16612 now_it
.state
= OUTSIDE_IT_BLOCK
;
16618 force_automatic_it_block_close (void)
16620 if (now_it
.state
== AUTOMATIC_IT_BLOCK
)
16622 close_automatic_it_block ();
16623 now_it
.state
= OUTSIDE_IT_BLOCK
;
16631 if (!now_it
.state_handled
)
16632 handle_it_state ();
16634 return now_it
.state
!= OUTSIDE_IT_BLOCK
;
16638 md_assemble (char *str
)
16641 const struct asm_opcode
* opcode
;
16643 /* Align the previous label if needed. */
16644 if (last_label_seen
!= NULL
)
16646 symbol_set_frag (last_label_seen
, frag_now
);
16647 S_SET_VALUE (last_label_seen
, (valueT
) frag_now_fix ());
16648 S_SET_SEGMENT (last_label_seen
, now_seg
);
16651 memset (&inst
, '\0', sizeof (inst
));
16652 inst
.reloc
.type
= BFD_RELOC_UNUSED
;
16654 opcode
= opcode_lookup (&p
);
16657 /* It wasn't an instruction, but it might be a register alias of
16658 the form alias .req reg, or a Neon .dn/.qn directive. */
16659 if (! create_register_alias (str
, p
)
16660 && ! create_neon_reg_alias (str
, p
))
16661 as_bad (_("bad instruction `%s'"), str
);
16666 if (warn_on_deprecated
&& opcode
->tag
== OT_cinfix3_deprecated
)
16667 as_warn (_("s suffix on comparison instruction is deprecated"));
16669 /* The value which unconditional instructions should have in place of the
16670 condition field. */
16671 inst
.uncond_value
= (opcode
->tag
== OT_csuffixF
) ? 0xf : -1;
16675 arm_feature_set variant
;
16677 variant
= cpu_variant
;
16678 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16679 if (!ARM_CPU_HAS_FEATURE (variant
, arm_arch_t2
))
16680 ARM_CLEAR_FEATURE (variant
, variant
, fpu_any_hard
);
16681 /* Check that this instruction is supported for this CPU. */
16682 if (!opcode
->tvariant
16683 || (thumb_mode
== 1
16684 && !ARM_CPU_HAS_FEATURE (variant
, *opcode
->tvariant
)))
16686 as_bad (_("selected processor does not support Thumb mode `%s'"), str
);
16689 if (inst
.cond
!= COND_ALWAYS
&& !unified_syntax
16690 && opcode
->tencode
!= do_t_branch
)
16692 as_bad (_("Thumb does not support conditional execution"));
16696 if (!ARM_CPU_HAS_FEATURE (variant
, arm_ext_v6t2
))
16698 if (opcode
->tencode
!= do_t_blx
&& opcode
->tencode
!= do_t_branch23
16699 && !(ARM_CPU_HAS_FEATURE(*opcode
->tvariant
, arm_ext_msr
)
16700 || ARM_CPU_HAS_FEATURE(*opcode
->tvariant
, arm_ext_barrier
)))
16702 /* Two things are addressed here.
16703 1) Implicit require narrow instructions on Thumb-1.
16704 This avoids relaxation accidentally introducing Thumb-2
16706 2) Reject wide instructions in non Thumb-2 cores. */
16707 if (inst
.size_req
== 0)
16709 else if (inst
.size_req
== 4)
16711 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str
);
16717 inst
.instruction
= opcode
->tvalue
;
16719 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/TRUE
))
16721 /* Prepare the it_insn_type for those encodings that don't set
16723 it_fsm_pre_encode ();
16725 opcode
->tencode ();
16727 it_fsm_post_encode ();
16730 if (!(inst
.error
|| inst
.relax
))
16732 gas_assert (inst
.instruction
< 0xe800 || inst
.instruction
> 0xffff);
16733 inst
.size
= (inst
.instruction
> 0xffff ? 4 : 2);
16734 if (inst
.size_req
&& inst
.size_req
!= inst
.size
)
16736 as_bad (_("cannot honor width suffix -- `%s'"), str
);
16741 /* Something has gone badly wrong if we try to relax a fixed size
16743 gas_assert (inst
.size_req
== 0 || !inst
.relax
);
16745 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
16746 *opcode
->tvariant
);
16747 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16748 set those bits when Thumb-2 32-bit instructions are seen. ie.
16749 anything other than bl/blx and v6-M instructions.
16750 This is overly pessimistic for relaxable instructions. */
16751 if (((inst
.size
== 4 && (inst
.instruction
& 0xf800e800) != 0xf000e800)
16753 && !(ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_msr
)
16754 || ARM_CPU_HAS_FEATURE (*opcode
->tvariant
, arm_ext_barrier
)))
16755 ARM_MERGE_FEATURE_SETS (thumb_arch_used
, thumb_arch_used
,
16758 check_neon_suffixes
;
16762 mapping_state (MAP_THUMB
);
16765 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
16769 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16770 is_bx
= (opcode
->aencode
== do_bx
);
16772 /* Check that this instruction is supported for this CPU. */
16773 if (!(is_bx
&& fix_v4bx
)
16774 && !(opcode
->avariant
&&
16775 ARM_CPU_HAS_FEATURE (cpu_variant
, *opcode
->avariant
)))
16777 as_bad (_("selected processor does not support ARM mode `%s'"), str
);
16782 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str
);
16786 inst
.instruction
= opcode
->avalue
;
16787 if (opcode
->tag
== OT_unconditionalF
)
16788 inst
.instruction
|= 0xF << 28;
16790 inst
.instruction
|= inst
.cond
<< 28;
16791 inst
.size
= INSN_SIZE
;
16792 if (!parse_operands (p
, opcode
->operands
, /*thumb=*/FALSE
))
16794 it_fsm_pre_encode ();
16795 opcode
->aencode ();
16796 it_fsm_post_encode ();
16798 /* Arm mode bx is marked as both v4T and v5 because it's still required
16799 on a hypothetical non-thumb v5 core. */
16801 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
, arm_ext_v4t
);
16803 ARM_MERGE_FEATURE_SETS (arm_arch_used
, arm_arch_used
,
16804 *opcode
->avariant
);
16806 check_neon_suffixes
;
16810 mapping_state (MAP_ARM
);
16815 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16823 check_it_blocks_finished (void)
16828 for (sect
= stdoutput
->sections
; sect
!= NULL
; sect
= sect
->next
)
16829 if (seg_info (sect
)->tc_segment_info_data
.current_it
.state
16830 == MANUAL_IT_BLOCK
)
16832 as_warn (_("section '%s' finished with an open IT block."),
16836 if (now_it
.state
== MANUAL_IT_BLOCK
)
16837 as_warn (_("file finished with an open IT block."));
16841 /* Various frobbings of labels and their addresses. */
16844 arm_start_line_hook (void)
16846 last_label_seen
= NULL
;
16850 arm_frob_label (symbolS
* sym
)
16852 last_label_seen
= sym
;
16854 ARM_SET_THUMB (sym
, thumb_mode
);
16856 #if defined OBJ_COFF || defined OBJ_ELF
16857 ARM_SET_INTERWORK (sym
, support_interwork
);
16860 force_automatic_it_block_close ();
16862 /* Note - do not allow local symbols (.Lxxx) to be labelled
16863 as Thumb functions. This is because these labels, whilst
16864 they exist inside Thumb code, are not the entry points for
16865 possible ARM->Thumb calls. Also, these labels can be used
16866 as part of a computed goto or switch statement. eg gcc
16867 can generate code that looks like this:
16869 ldr r2, [pc, .Laaa]
16879 The first instruction loads the address of the jump table.
16880 The second instruction converts a table index into a byte offset.
16881 The third instruction gets the jump address out of the table.
16882 The fourth instruction performs the jump.
16884 If the address stored at .Laaa is that of a symbol which has the
16885 Thumb_Func bit set, then the linker will arrange for this address
16886 to have the bottom bit set, which in turn would mean that the
16887 address computation performed by the third instruction would end
16888 up with the bottom bit set. Since the ARM is capable of unaligned
16889 word loads, the instruction would then load the incorrect address
16890 out of the jump table, and chaos would ensue. */
16891 if (label_is_thumb_function_name
16892 && (S_GET_NAME (sym
)[0] != '.' || S_GET_NAME (sym
)[1] != 'L')
16893 && (bfd_get_section_flags (stdoutput
, now_seg
) & SEC_CODE
) != 0)
16895 /* When the address of a Thumb function is taken the bottom
16896 bit of that address should be set. This will allow
16897 interworking between Arm and Thumb functions to work
16900 THUMB_SET_FUNC (sym
, 1);
16902 label_is_thumb_function_name
= FALSE
;
16905 dwarf2_emit_label (sym
);
16909 arm_data_in_code (void)
16911 if (thumb_mode
&& ! strncmp (input_line_pointer
+ 1, "data:", 5))
16913 *input_line_pointer
= '/';
16914 input_line_pointer
+= 5;
16915 *input_line_pointer
= 0;
16923 arm_canonicalize_symbol_name (char * name
)
16927 if (thumb_mode
&& (len
= strlen (name
)) > 5
16928 && streq (name
+ len
- 5, "/data"))
16929 *(name
+ len
- 5) = 0;
16934 /* Table of all register names defined by default. The user can
16935 define additional names with .req. Note that all register names
16936 should appear in both upper and lowercase variants. Some registers
16937 also have mixed-case names. */
16939 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16940 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16941 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16942 #define REGSET(p,t) \
16943 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16944 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16945 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16946 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16947 #define REGSETH(p,t) \
16948 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16949 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16950 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16951 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16952 #define REGSET2(p,t) \
16953 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16954 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16955 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16956 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16957 #define SPLRBANK(base,bank,t) \
16958 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16959 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16960 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16961 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16962 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16963 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16965 static const struct reg_entry reg_names
[] =
16967 /* ARM integer registers. */
16968 REGSET(r
, RN
), REGSET(R
, RN
),
16970 /* ATPCS synonyms. */
16971 REGDEF(a1
,0,RN
), REGDEF(a2
,1,RN
), REGDEF(a3
, 2,RN
), REGDEF(a4
, 3,RN
),
16972 REGDEF(v1
,4,RN
), REGDEF(v2
,5,RN
), REGDEF(v3
, 6,RN
), REGDEF(v4
, 7,RN
),
16973 REGDEF(v5
,8,RN
), REGDEF(v6
,9,RN
), REGDEF(v7
,10,RN
), REGDEF(v8
,11,RN
),
16975 REGDEF(A1
,0,RN
), REGDEF(A2
,1,RN
), REGDEF(A3
, 2,RN
), REGDEF(A4
, 3,RN
),
16976 REGDEF(V1
,4,RN
), REGDEF(V2
,5,RN
), REGDEF(V3
, 6,RN
), REGDEF(V4
, 7,RN
),
16977 REGDEF(V5
,8,RN
), REGDEF(V6
,9,RN
), REGDEF(V7
,10,RN
), REGDEF(V8
,11,RN
),
16979 /* Well-known aliases. */
16980 REGDEF(wr
, 7,RN
), REGDEF(sb
, 9,RN
), REGDEF(sl
,10,RN
), REGDEF(fp
,11,RN
),
16981 REGDEF(ip
,12,RN
), REGDEF(sp
,13,RN
), REGDEF(lr
,14,RN
), REGDEF(pc
,15,RN
),
16983 REGDEF(WR
, 7,RN
), REGDEF(SB
, 9,RN
), REGDEF(SL
,10,RN
), REGDEF(FP
,11,RN
),
16984 REGDEF(IP
,12,RN
), REGDEF(SP
,13,RN
), REGDEF(LR
,14,RN
), REGDEF(PC
,15,RN
),
16986 /* Coprocessor numbers. */
16987 REGSET(p
, CP
), REGSET(P
, CP
),
16989 /* Coprocessor register numbers. The "cr" variants are for backward
16991 REGSET(c
, CN
), REGSET(C
, CN
),
16992 REGSET(cr
, CN
), REGSET(CR
, CN
),
16994 /* ARM banked registers. */
16995 REGDEF(R8_usr
,512|(0<<16),RNB
), REGDEF(r8_usr
,512|(0<<16),RNB
),
16996 REGDEF(R9_usr
,512|(1<<16),RNB
), REGDEF(r9_usr
,512|(1<<16),RNB
),
16997 REGDEF(R10_usr
,512|(2<<16),RNB
), REGDEF(r10_usr
,512|(2<<16),RNB
),
16998 REGDEF(R11_usr
,512|(3<<16),RNB
), REGDEF(r11_usr
,512|(3<<16),RNB
),
16999 REGDEF(R12_usr
,512|(4<<16),RNB
), REGDEF(r12_usr
,512|(4<<16),RNB
),
17000 REGDEF(SP_usr
,512|(5<<16),RNB
), REGDEF(sp_usr
,512|(5<<16),RNB
),
17001 REGDEF(LR_usr
,512|(6<<16),RNB
), REGDEF(lr_usr
,512|(6<<16),RNB
),
17003 REGDEF(R8_fiq
,512|(8<<16),RNB
), REGDEF(r8_fiq
,512|(8<<16),RNB
),
17004 REGDEF(R9_fiq
,512|(9<<16),RNB
), REGDEF(r9_fiq
,512|(9<<16),RNB
),
17005 REGDEF(R10_fiq
,512|(10<<16),RNB
), REGDEF(r10_fiq
,512|(10<<16),RNB
),
17006 REGDEF(R11_fiq
,512|(11<<16),RNB
), REGDEF(r11_fiq
,512|(11<<16),RNB
),
17007 REGDEF(R12_fiq
,512|(12<<16),RNB
), REGDEF(r12_fiq
,512|(12<<16),RNB
),
17008 REGDEF(SP_fiq
,512|(13<<16),RNB
), REGDEF(SP_fiq
,512|(13<<16),RNB
),
17009 REGDEF(LR_fiq
,512|(14<<16),RNB
), REGDEF(lr_fiq
,512|(14<<16),RNB
),
17010 REGDEF(SPSR_fiq
,512|(14<<16)|SPSR_BIT
,RNB
), REGDEF(spsr_fiq
,512|(14<<16)|SPSR_BIT
,RNB
),
17012 SPLRBANK(0,IRQ
,RNB
), SPLRBANK(0,irq
,RNB
),
17013 SPLRBANK(2,SVC
,RNB
), SPLRBANK(2,svc
,RNB
),
17014 SPLRBANK(4,ABT
,RNB
), SPLRBANK(4,abt
,RNB
),
17015 SPLRBANK(6,UND
,RNB
), SPLRBANK(6,und
,RNB
),
17016 SPLRBANK(12,MON
,RNB
), SPLRBANK(12,mon
,RNB
),
17017 REGDEF(elr_hyp
,768|(14<<16),RNB
), REGDEF(ELR_hyp
,768|(14<<16),RNB
),
17018 REGDEF(sp_hyp
,768|(15<<16),RNB
), REGDEF(SP_hyp
,768|(15<<16),RNB
),
17019 REGDEF(spsr_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
17020 REGDEF(SPSR_hyp
,768|(14<<16)|SPSR_BIT
,RNB
),
17022 /* FPA registers. */
17023 REGNUM(f
,0,FN
), REGNUM(f
,1,FN
), REGNUM(f
,2,FN
), REGNUM(f
,3,FN
),
17024 REGNUM(f
,4,FN
), REGNUM(f
,5,FN
), REGNUM(f
,6,FN
), REGNUM(f
,7, FN
),
17026 REGNUM(F
,0,FN
), REGNUM(F
,1,FN
), REGNUM(F
,2,FN
), REGNUM(F
,3,FN
),
17027 REGNUM(F
,4,FN
), REGNUM(F
,5,FN
), REGNUM(F
,6,FN
), REGNUM(F
,7, FN
),
17029 /* VFP SP registers. */
17030 REGSET(s
,VFS
), REGSET(S
,VFS
),
17031 REGSETH(s
,VFS
), REGSETH(S
,VFS
),
17033 /* VFP DP Registers. */
17034 REGSET(d
,VFD
), REGSET(D
,VFD
),
17035 /* Extra Neon DP registers. */
17036 REGSETH(d
,VFD
), REGSETH(D
,VFD
),
17038 /* Neon QP registers. */
17039 REGSET2(q
,NQ
), REGSET2(Q
,NQ
),
17041 /* VFP control registers. */
17042 REGDEF(fpsid
,0,VFC
), REGDEF(fpscr
,1,VFC
), REGDEF(fpexc
,8,VFC
),
17043 REGDEF(FPSID
,0,VFC
), REGDEF(FPSCR
,1,VFC
), REGDEF(FPEXC
,8,VFC
),
17044 REGDEF(fpinst
,9,VFC
), REGDEF(fpinst2
,10,VFC
),
17045 REGDEF(FPINST
,9,VFC
), REGDEF(FPINST2
,10,VFC
),
17046 REGDEF(mvfr0
,7,VFC
), REGDEF(mvfr1
,6,VFC
),
17047 REGDEF(MVFR0
,7,VFC
), REGDEF(MVFR1
,6,VFC
),
17049 /* Maverick DSP coprocessor registers. */
17050 REGSET(mvf
,MVF
), REGSET(mvd
,MVD
), REGSET(mvfx
,MVFX
), REGSET(mvdx
,MVDX
),
17051 REGSET(MVF
,MVF
), REGSET(MVD
,MVD
), REGSET(MVFX
,MVFX
), REGSET(MVDX
,MVDX
),
17053 REGNUM(mvax
,0,MVAX
), REGNUM(mvax
,1,MVAX
),
17054 REGNUM(mvax
,2,MVAX
), REGNUM(mvax
,3,MVAX
),
17055 REGDEF(dspsc
,0,DSPSC
),
17057 REGNUM(MVAX
,0,MVAX
), REGNUM(MVAX
,1,MVAX
),
17058 REGNUM(MVAX
,2,MVAX
), REGNUM(MVAX
,3,MVAX
),
17059 REGDEF(DSPSC
,0,DSPSC
),
17061 /* iWMMXt data registers - p0, c0-15. */
17062 REGSET(wr
,MMXWR
), REGSET(wR
,MMXWR
), REGSET(WR
, MMXWR
),
17064 /* iWMMXt control registers - p1, c0-3. */
17065 REGDEF(wcid
, 0,MMXWC
), REGDEF(wCID
, 0,MMXWC
), REGDEF(WCID
, 0,MMXWC
),
17066 REGDEF(wcon
, 1,MMXWC
), REGDEF(wCon
, 1,MMXWC
), REGDEF(WCON
, 1,MMXWC
),
17067 REGDEF(wcssf
, 2,MMXWC
), REGDEF(wCSSF
, 2,MMXWC
), REGDEF(WCSSF
, 2,MMXWC
),
17068 REGDEF(wcasf
, 3,MMXWC
), REGDEF(wCASF
, 3,MMXWC
), REGDEF(WCASF
, 3,MMXWC
),
17070 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17071 REGDEF(wcgr0
, 8,MMXWCG
), REGDEF(wCGR0
, 8,MMXWCG
), REGDEF(WCGR0
, 8,MMXWCG
),
17072 REGDEF(wcgr1
, 9,MMXWCG
), REGDEF(wCGR1
, 9,MMXWCG
), REGDEF(WCGR1
, 9,MMXWCG
),
17073 REGDEF(wcgr2
,10,MMXWCG
), REGDEF(wCGR2
,10,MMXWCG
), REGDEF(WCGR2
,10,MMXWCG
),
17074 REGDEF(wcgr3
,11,MMXWCG
), REGDEF(wCGR3
,11,MMXWCG
), REGDEF(WCGR3
,11,MMXWCG
),
17076 /* XScale accumulator registers. */
17077 REGNUM(acc
,0,XSCALE
), REGNUM(ACC
,0,XSCALE
),
17083 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17084 within psr_required_here. */
17085 static const struct asm_psr psrs
[] =
17087 /* Backward compatibility notation. Note that "all" is no longer
17088 truly all possible PSR bits. */
17089 {"all", PSR_c
| PSR_f
},
17093 /* Individual flags. */
17099 /* Combinations of flags. */
17100 {"fs", PSR_f
| PSR_s
},
17101 {"fx", PSR_f
| PSR_x
},
17102 {"fc", PSR_f
| PSR_c
},
17103 {"sf", PSR_s
| PSR_f
},
17104 {"sx", PSR_s
| PSR_x
},
17105 {"sc", PSR_s
| PSR_c
},
17106 {"xf", PSR_x
| PSR_f
},
17107 {"xs", PSR_x
| PSR_s
},
17108 {"xc", PSR_x
| PSR_c
},
17109 {"cf", PSR_c
| PSR_f
},
17110 {"cs", PSR_c
| PSR_s
},
17111 {"cx", PSR_c
| PSR_x
},
17112 {"fsx", PSR_f
| PSR_s
| PSR_x
},
17113 {"fsc", PSR_f
| PSR_s
| PSR_c
},
17114 {"fxs", PSR_f
| PSR_x
| PSR_s
},
17115 {"fxc", PSR_f
| PSR_x
| PSR_c
},
17116 {"fcs", PSR_f
| PSR_c
| PSR_s
},
17117 {"fcx", PSR_f
| PSR_c
| PSR_x
},
17118 {"sfx", PSR_s
| PSR_f
| PSR_x
},
17119 {"sfc", PSR_s
| PSR_f
| PSR_c
},
17120 {"sxf", PSR_s
| PSR_x
| PSR_f
},
17121 {"sxc", PSR_s
| PSR_x
| PSR_c
},
17122 {"scf", PSR_s
| PSR_c
| PSR_f
},
17123 {"scx", PSR_s
| PSR_c
| PSR_x
},
17124 {"xfs", PSR_x
| PSR_f
| PSR_s
},
17125 {"xfc", PSR_x
| PSR_f
| PSR_c
},
17126 {"xsf", PSR_x
| PSR_s
| PSR_f
},
17127 {"xsc", PSR_x
| PSR_s
| PSR_c
},
17128 {"xcf", PSR_x
| PSR_c
| PSR_f
},
17129 {"xcs", PSR_x
| PSR_c
| PSR_s
},
17130 {"cfs", PSR_c
| PSR_f
| PSR_s
},
17131 {"cfx", PSR_c
| PSR_f
| PSR_x
},
17132 {"csf", PSR_c
| PSR_s
| PSR_f
},
17133 {"csx", PSR_c
| PSR_s
| PSR_x
},
17134 {"cxf", PSR_c
| PSR_x
| PSR_f
},
17135 {"cxs", PSR_c
| PSR_x
| PSR_s
},
17136 {"fsxc", PSR_f
| PSR_s
| PSR_x
| PSR_c
},
17137 {"fscx", PSR_f
| PSR_s
| PSR_c
| PSR_x
},
17138 {"fxsc", PSR_f
| PSR_x
| PSR_s
| PSR_c
},
17139 {"fxcs", PSR_f
| PSR_x
| PSR_c
| PSR_s
},
17140 {"fcsx", PSR_f
| PSR_c
| PSR_s
| PSR_x
},
17141 {"fcxs", PSR_f
| PSR_c
| PSR_x
| PSR_s
},
17142 {"sfxc", PSR_s
| PSR_f
| PSR_x
| PSR_c
},
17143 {"sfcx", PSR_s
| PSR_f
| PSR_c
| PSR_x
},
17144 {"sxfc", PSR_s
| PSR_x
| PSR_f
| PSR_c
},
17145 {"sxcf", PSR_s
| PSR_x
| PSR_c
| PSR_f
},
17146 {"scfx", PSR_s
| PSR_c
| PSR_f
| PSR_x
},
17147 {"scxf", PSR_s
| PSR_c
| PSR_x
| PSR_f
},
17148 {"xfsc", PSR_x
| PSR_f
| PSR_s
| PSR_c
},
17149 {"xfcs", PSR_x
| PSR_f
| PSR_c
| PSR_s
},
17150 {"xsfc", PSR_x
| PSR_s
| PSR_f
| PSR_c
},
17151 {"xscf", PSR_x
| PSR_s
| PSR_c
| PSR_f
},
17152 {"xcfs", PSR_x
| PSR_c
| PSR_f
| PSR_s
},
17153 {"xcsf", PSR_x
| PSR_c
| PSR_s
| PSR_f
},
17154 {"cfsx", PSR_c
| PSR_f
| PSR_s
| PSR_x
},
17155 {"cfxs", PSR_c
| PSR_f
| PSR_x
| PSR_s
},
17156 {"csfx", PSR_c
| PSR_s
| PSR_f
| PSR_x
},
17157 {"csxf", PSR_c
| PSR_s
| PSR_x
| PSR_f
},
17158 {"cxfs", PSR_c
| PSR_x
| PSR_f
| PSR_s
},
17159 {"cxsf", PSR_c
| PSR_x
| PSR_s
| PSR_f
},
17162 /* Table of V7M psr names. */
17163 static const struct asm_psr v7m_psrs
[] =
17165 {"apsr", 0 }, {"APSR", 0 },
17166 {"iapsr", 1 }, {"IAPSR", 1 },
17167 {"eapsr", 2 }, {"EAPSR", 2 },
17168 {"psr", 3 }, {"PSR", 3 },
17169 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17170 {"ipsr", 5 }, {"IPSR", 5 },
17171 {"epsr", 6 }, {"EPSR", 6 },
17172 {"iepsr", 7 }, {"IEPSR", 7 },
17173 {"msp", 8 }, {"MSP", 8 },
17174 {"psp", 9 }, {"PSP", 9 },
17175 {"primask", 16}, {"PRIMASK", 16},
17176 {"basepri", 17}, {"BASEPRI", 17},
17177 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17178 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17179 {"faultmask", 19}, {"FAULTMASK", 19},
17180 {"control", 20}, {"CONTROL", 20}
17183 /* Table of all shift-in-operand names. */
17184 static const struct asm_shift_name shift_names
[] =
17186 { "asl", SHIFT_LSL
}, { "ASL", SHIFT_LSL
},
17187 { "lsl", SHIFT_LSL
}, { "LSL", SHIFT_LSL
},
17188 { "lsr", SHIFT_LSR
}, { "LSR", SHIFT_LSR
},
17189 { "asr", SHIFT_ASR
}, { "ASR", SHIFT_ASR
},
17190 { "ror", SHIFT_ROR
}, { "ROR", SHIFT_ROR
},
17191 { "rrx", SHIFT_RRX
}, { "RRX", SHIFT_RRX
}
17194 /* Table of all explicit relocation names. */
17196 static struct reloc_entry reloc_names
[] =
17198 { "got", BFD_RELOC_ARM_GOT32
}, { "GOT", BFD_RELOC_ARM_GOT32
},
17199 { "gotoff", BFD_RELOC_ARM_GOTOFF
}, { "GOTOFF", BFD_RELOC_ARM_GOTOFF
},
17200 { "plt", BFD_RELOC_ARM_PLT32
}, { "PLT", BFD_RELOC_ARM_PLT32
},
17201 { "target1", BFD_RELOC_ARM_TARGET1
}, { "TARGET1", BFD_RELOC_ARM_TARGET1
},
17202 { "target2", BFD_RELOC_ARM_TARGET2
}, { "TARGET2", BFD_RELOC_ARM_TARGET2
},
17203 { "sbrel", BFD_RELOC_ARM_SBREL32
}, { "SBREL", BFD_RELOC_ARM_SBREL32
},
17204 { "tlsgd", BFD_RELOC_ARM_TLS_GD32
}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32
},
17205 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32
}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32
},
17206 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32
}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32
},
17207 { "gottpoff",BFD_RELOC_ARM_TLS_IE32
}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32
},
17208 { "tpoff", BFD_RELOC_ARM_TLS_LE32
}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32
},
17209 { "got_prel", BFD_RELOC_ARM_GOT_PREL
}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL
},
17210 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC
},
17211 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC
},
17212 { "tlscall", BFD_RELOC_ARM_TLS_CALL
},
17213 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL
},
17214 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ
},
17215 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ
}
17219 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17220 static const struct asm_cond conds
[] =
17224 {"cs", 0x2}, {"hs", 0x2},
17225 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17239 #define UL_BARRIER(L,U,CODE,FEAT) \
17240 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17241 { U, CODE, ARM_FEATURE (FEAT, 0) }
17243 static struct asm_barrier_opt barrier_opt_names
[] =
17245 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER
),
17246 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER
),
17247 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8
),
17248 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER
),
17249 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER
),
17250 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER
),
17251 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER
),
17252 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8
),
17253 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER
),
17254 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER
),
17255 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER
),
17256 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER
),
17257 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8
),
17258 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER
),
17259 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER
),
17260 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8
)
17265 /* Table of ARM-format instructions. */
17267 /* Macros for gluing together operand strings. N.B. In all cases
17268 other than OPS0, the trailing OP_stop comes from default
17269 zero-initialization of the unspecified elements of the array. */
17270 #define OPS0() { OP_stop, }
17271 #define OPS1(a) { OP_##a, }
17272 #define OPS2(a,b) { OP_##a,OP_##b, }
17273 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17274 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17275 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17276 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17278 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17279 This is useful when mixing operands for ARM and THUMB, i.e. using the
17280 MIX_ARM_THUMB_OPERANDS macro.
17281 In order to use these macros, prefix the number of operands with _
17283 #define OPS_1(a) { a, }
17284 #define OPS_2(a,b) { a,b, }
17285 #define OPS_3(a,b,c) { a,b,c, }
17286 #define OPS_4(a,b,c,d) { a,b,c,d, }
17287 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17288 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17290 /* These macros abstract out the exact format of the mnemonic table and
17291 save some repeated characters. */
17293 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17294 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17295 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17296 THUMB_VARIANT, do_##ae, do_##te }
17298 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17299 a T_MNEM_xyz enumerator. */
17300 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17301 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17302 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17303 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17305 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17306 infix after the third character. */
17307 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17308 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17309 THUMB_VARIANT, do_##ae, do_##te }
17310 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17311 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17312 THUMB_VARIANT, do_##ae, do_##te }
17313 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17314 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17315 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17316 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17317 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17318 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17319 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17320 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17322 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17323 appear in the condition table. */
17324 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17325 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17326 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17328 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17329 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17330 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17331 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17332 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17333 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17334 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17335 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17336 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17337 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17338 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17339 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17340 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17341 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17342 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17343 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17344 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17345 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17346 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17347 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17349 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17350 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17351 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17352 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17354 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17355 field is still 0xE. Many of the Thumb variants can be executed
17356 conditionally, so this is checked separately. */
17357 #define TUE(mnem, op, top, nops, ops, ae, te) \
17358 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17359 THUMB_VARIANT, do_##ae, do_##te }
17361 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17362 condition code field. */
17363 #define TUF(mnem, op, top, nops, ops, ae, te) \
17364 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17365 THUMB_VARIANT, do_##ae, do_##te }
17367 /* ARM-only variants of all the above. */
17368 #define CE(mnem, op, nops, ops, ae) \
17369 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17371 #define C3(mnem, op, nops, ops, ae) \
17372 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17374 /* Legacy mnemonics that always have conditional infix after the third
17376 #define CL(mnem, op, nops, ops, ae) \
17377 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17378 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17380 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17381 #define cCE(mnem, op, nops, ops, ae) \
17382 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17384 /* Legacy coprocessor instructions where conditional infix and conditional
17385 suffix are ambiguous. For consistency this includes all FPA instructions,
17386 not just the potentially ambiguous ones. */
17387 #define cCL(mnem, op, nops, ops, ae) \
17388 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17389 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17391 /* Coprocessor, takes either a suffix or a position-3 infix
17392 (for an FPA corner case). */
17393 #define C3E(mnem, op, nops, ops, ae) \
17394 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17395 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17397 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17398 { m1 #m2 m3, OPS##nops ops, \
17399 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17400 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17402 #define CM(m1, m2, op, nops, ops, ae) \
17403 xCM_ (m1, , m2, op, nops, ops, ae), \
17404 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17405 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17406 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17407 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17408 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17409 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17410 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17411 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17412 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17413 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17414 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17415 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17416 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17417 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17418 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17419 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17420 xCM_ (m1, le, m2, op, nops, ops, ae), \
17421 xCM_ (m1, al, m2, op, nops, ops, ae)
17423 #define UE(mnem, op, nops, ops, ae) \
17424 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17426 #define UF(mnem, op, nops, ops, ae) \
17427 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17429 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17430 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17431 use the same encoding function for each. */
17432 #define NUF(mnem, op, nops, ops, enc) \
17433 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17434 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17436 /* Neon data processing, version which indirects through neon_enc_tab for
17437 the various overloaded versions of opcodes. */
17438 #define nUF(mnem, op, nops, ops, enc) \
17439 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17440 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17442 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17444 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17445 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17446 THUMB_VARIANT, do_##enc, do_##enc }
17448 #define NCE(mnem, op, nops, ops, enc) \
17449 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17451 #define NCEF(mnem, op, nops, ops, enc) \
17452 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17454 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17455 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17456 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17457 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17459 #define nCE(mnem, op, nops, ops, enc) \
17460 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17462 #define nCEF(mnem, op, nops, ops, enc) \
17463 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17467 static const struct asm_opcode insns
[] =
17469 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17470 #define THUMB_VARIANT &arm_ext_v4t
17471 tCE("and", 0000000, _and
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17472 tC3("ands", 0100000, _ands
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17473 tCE("eor", 0200000, _eor
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17474 tC3("eors", 0300000, _eors
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17475 tCE("sub", 0400000, _sub
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
17476 tC3("subs", 0500000, _subs
, 3, (RR
, oRR
, SH
), arit
, t_add_sub
),
17477 tCE("add", 0800000, _add
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
17478 tC3("adds", 0900000, _adds
, 3, (RR
, oRR
, SHG
), arit
, t_add_sub
),
17479 tCE("adc", 0a00000
, _adc
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17480 tC3("adcs", 0b00000, _adcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17481 tCE("sbc", 0c00000
, _sbc
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17482 tC3("sbcs", 0d00000
, _sbcs
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17483 tCE("orr", 1800000, _orr
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17484 tC3("orrs", 1900000, _orrs
, 3, (RR
, oRR
, SH
), arit
, t_arit3c
),
17485 tCE("bic", 1c00000
, _bic
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17486 tC3("bics", 1d00000
, _bics
, 3, (RR
, oRR
, SH
), arit
, t_arit3
),
17488 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17489 for setting PSR flag bits. They are obsolete in V6 and do not
17490 have Thumb equivalents. */
17491 tCE("tst", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17492 tC3w("tsts", 1100000, _tst
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17493 CL("tstp", 110f000
, 2, (RR
, SH
), cmp
),
17494 tCE("cmp", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
17495 tC3w("cmps", 1500000, _cmp
, 2, (RR
, SH
), cmp
, t_mov_cmp
),
17496 CL("cmpp", 150f000
, 2, (RR
, SH
), cmp
),
17497 tCE("cmn", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17498 tC3w("cmns", 1700000, _cmn
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17499 CL("cmnp", 170f000
, 2, (RR
, SH
), cmp
),
17501 tCE("mov", 1a00000
, _mov
, 2, (RR
, SH
), mov
, t_mov_cmp
),
17502 tC3("movs", 1b00000
, _movs
, 2, (RR
, SH
), mov
, t_mov_cmp
),
17503 tCE("mvn", 1e00000
, _mvn
, 2, (RR
, SH
), mov
, t_mvn_tst
),
17504 tC3("mvns", 1f00000
, _mvns
, 2, (RR
, SH
), mov
, t_mvn_tst
),
17506 tCE("ldr", 4100000, _ldr
, 2, (RR
, ADDRGLDR
),ldst
, t_ldst
),
17507 tC3("ldrb", 4500000, _ldrb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
17508 tCE("str", 4000000, _str
, _2
, (MIX_ARM_THUMB_OPERANDS (OP_RR
,
17510 OP_ADDRGLDR
),ldst
, t_ldst
),
17511 tC3("strb", 4400000, _strb
, 2, (RRnpc_npcsp
, ADDRGLDR
),ldst
, t_ldst
),
17513 tCE("stm", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17514 tC3("stmia", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17515 tC3("stmea", 8800000, _stmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17516 tCE("ldm", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17517 tC3("ldmia", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17518 tC3("ldmfd", 8900000, _ldmia
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17520 TCE("swi", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
17521 TCE("svc", f000000
, df00
, 1, (EXPi
), swi
, t_swi
),
17522 tCE("b", a000000
, _b
, 1, (EXPr
), branch
, t_branch
),
17523 TCE("bl", b000000
, f000f800
, 1, (EXPr
), bl
, t_branch23
),
17526 tCE("adr", 28f0000
, _adr
, 2, (RR
, EXP
), adr
, t_adr
),
17527 C3(adrl
, 28f0000
, 2, (RR
, EXP
), adrl
),
17528 tCE("nop", 1a00000
, _nop
, 1, (oI255c
), nop
, t_nop
),
17530 /* Thumb-compatibility pseudo ops. */
17531 tCE("lsl", 1a00000
, _lsl
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17532 tC3("lsls", 1b00000
, _lsls
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17533 tCE("lsr", 1a00020
, _lsr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17534 tC3("lsrs", 1b00020
, _lsrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17535 tCE("asr", 1a00040
, _asr
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17536 tC3("asrs", 1b00040
, _asrs
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17537 tCE("ror", 1a00060
, _ror
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17538 tC3("rors", 1b00060
, _rors
, 3, (RR
, oRR
, SH
), shift
, t_shift
),
17539 tCE("neg", 2600000, _neg
, 2, (RR
, RR
), rd_rn
, t_neg
),
17540 tC3("negs", 2700000, _negs
, 2, (RR
, RR
), rd_rn
, t_neg
),
17541 tCE("push", 92d0000
, _push
, 1, (REGLST
), push_pop
, t_push_pop
),
17542 tCE("pop", 8bd0000
, _pop
, 1, (REGLST
), push_pop
, t_push_pop
),
17544 /* These may simplify to neg. */
17545 TCE("rsb", 0600000, ebc00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
17546 TC3("rsbs", 0700000, ebd00000
, 3, (RR
, oRR
, SH
), arit
, t_rsb
),
17548 #undef THUMB_VARIANT
17549 #define THUMB_VARIANT & arm_ext_v6
17551 TCE("cpy", 1a00000
, 4600, 2, (RR
, RR
), rd_rm
, t_cpy
),
17553 /* V1 instructions with no Thumb analogue prior to V6T2. */
17554 #undef THUMB_VARIANT
17555 #define THUMB_VARIANT & arm_ext_v6t2
17557 TCE("teq", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17558 TC3w("teqs", 1300000, ea900f00
, 2, (RR
, SH
), cmp
, t_mvn_tst
),
17559 CL("teqp", 130f000
, 2, (RR
, SH
), cmp
),
17561 TC3("ldrt", 4300000, f8500e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
17562 TC3("ldrbt", 4700000, f8100e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
17563 TC3("strt", 4200000, f8400e00
, 2, (RR_npcsp
, ADDR
), ldstt
, t_ldstt
),
17564 TC3("strbt", 4600000, f8000e00
, 2, (RRnpc_npcsp
, ADDR
),ldstt
, t_ldstt
),
17566 TC3("stmdb", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17567 TC3("stmfd", 9000000, e9000000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17569 TC3("ldmdb", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17570 TC3("ldmea", 9100000, e9100000
, 2, (RRw
, REGLST
), ldmstm
, t_ldmstm
),
17572 /* V1 instructions with no Thumb analogue at all. */
17573 CE("rsc", 0e00000
, 3, (RR
, oRR
, SH
), arit
),
17574 C3(rscs
, 0f00000
, 3, (RR
, oRR
, SH
), arit
),
17576 C3(stmib
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
17577 C3(stmfa
, 9800000, 2, (RRw
, REGLST
), ldmstm
),
17578 C3(stmda
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
17579 C3(stmed
, 8000000, 2, (RRw
, REGLST
), ldmstm
),
17580 C3(ldmib
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
17581 C3(ldmed
, 9900000, 2, (RRw
, REGLST
), ldmstm
),
17582 C3(ldmda
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
17583 C3(ldmfa
, 8100000, 2, (RRw
, REGLST
), ldmstm
),
17586 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17587 #undef THUMB_VARIANT
17588 #define THUMB_VARIANT & arm_ext_v4t
17590 tCE("mul", 0000090, _mul
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
17591 tC3("muls", 0100090, _muls
, 3, (RRnpc
, RRnpc
, oRR
), mul
, t_mul
),
17593 #undef THUMB_VARIANT
17594 #define THUMB_VARIANT & arm_ext_v6t2
17596 TCE("mla", 0200090, fb000000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
17597 C3(mlas
, 0300090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
),
17599 /* Generic coprocessor instructions. */
17600 TCE("cdp", e000000
, ee000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
17601 TCE("ldc", c100000
, ec100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17602 TC3("ldcl", c500000
, ec500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17603 TCE("stc", c000000
, ec000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17604 TC3("stcl", c400000
, ec400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17605 TCE("mcr", e000010
, ee000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17606 TCE("mrc", e100010
, ee100010
, 6, (RCP
, I7b
, APSR_RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17609 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17611 CE("swp", 1000090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
17612 C3(swpb
, 1400090, 3, (RRnpc
, RRnpc
, RRnpcb
), rd_rm_rn
),
17615 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17616 #undef THUMB_VARIANT
17617 #define THUMB_VARIANT & arm_ext_msr
17619 TCE("mrs", 1000000, f3e08000
, 2, (RRnpc
, rPSR
), mrs
, t_mrs
),
17620 TCE("msr", 120f000
, f3808000
, 2, (wPSR
, RR_EXi
), msr
, t_msr
),
17623 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17624 #undef THUMB_VARIANT
17625 #define THUMB_VARIANT & arm_ext_v6t2
17627 TCE("smull", 0c00090
, fb800000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17628 CM("smull","s", 0d00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17629 TCE("umull", 0800090, fba00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17630 CM("umull","s", 0900090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17631 TCE("smlal", 0e00090
, fbc00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17632 CM("smlal","s", 0f00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17633 TCE("umlal", 0a00090
, fbe00000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
, t_mull
),
17634 CM("umlal","s", 0b00090, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mull
),
17637 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17638 #undef THUMB_VARIANT
17639 #define THUMB_VARIANT & arm_ext_v4t
17641 tC3("ldrh", 01000b0
, _ldrh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17642 tC3("strh", 00000b0
, _strh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17643 tC3("ldrsh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17644 tC3("ldrsb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17645 tCM("ld","sh", 01000f0
, _ldrsh
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17646 tCM("ld","sb", 01000d0
, _ldrsb
, 2, (RRnpc_npcsp
, ADDRGLDRS
), ldstv4
, t_ldst
),
17649 #define ARM_VARIANT & arm_ext_v4t_5
17651 /* ARM Architecture 4T. */
17652 /* Note: bx (and blx) are required on V5, even if the processor does
17653 not support Thumb. */
17654 TCE("bx", 12fff10
, 4700, 1, (RR
), bx
, t_bx
),
17657 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17658 #undef THUMB_VARIANT
17659 #define THUMB_VARIANT & arm_ext_v5t
17661 /* Note: blx has 2 variants; the .value coded here is for
17662 BLX(2). Only this variant has conditional execution. */
17663 TCE("blx", 12fff30
, 4780, 1, (RR_EXr
), blx
, t_blx
),
17664 TUE("bkpt", 1200070, be00
, 1, (oIffffb
), bkpt
, t_bkpt
),
17666 #undef THUMB_VARIANT
17667 #define THUMB_VARIANT & arm_ext_v6t2
17669 TCE("clz", 16f0f10
, fab0f080
, 2, (RRnpc
, RRnpc
), rd_rm
, t_clz
),
17670 TUF("ldc2", c100000
, fc100000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17671 TUF("ldc2l", c500000
, fc500000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17672 TUF("stc2", c000000
, fc000000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17673 TUF("stc2l", c400000
, fc400000
, 3, (RCP
, RCN
, ADDRGLDC
), lstc
, lstc
),
17674 TUF("cdp2", e000000
, fe000000
, 6, (RCP
, I15b
, RCN
, RCN
, RCN
, oI7b
), cdp
, cdp
),
17675 TUF("mcr2", e000010
, fe000010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17676 TUF("mrc2", e100010
, fe100010
, 6, (RCP
, I7b
, RR
, RCN
, RCN
, oI7b
), co_reg
, co_reg
),
17679 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17680 #undef THUMB_VARIANT
17681 #define THUMB_VARIANT &arm_ext_v5exp
17683 TCE("smlabb", 1000080, fb100000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17684 TCE("smlatb", 10000a0
, fb100020
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17685 TCE("smlabt", 10000c0
, fb100010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17686 TCE("smlatt", 10000e0
, fb100030
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17688 TCE("smlawb", 1200080, fb300000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17689 TCE("smlawt", 12000c0
, fb300010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smla
, t_mla
),
17691 TCE("smlalbb", 1400080, fbc00080
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17692 TCE("smlaltb", 14000a0
, fbc000a0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17693 TCE("smlalbt", 14000c0
, fbc00090
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17694 TCE("smlaltt", 14000e0
, fbc000b0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), smlal
, t_mlal
),
17696 TCE("smulbb", 1600080, fb10f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17697 TCE("smultb", 16000a0
, fb10f020
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17698 TCE("smulbt", 16000c0
, fb10f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17699 TCE("smultt", 16000e0
, fb10f030
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17701 TCE("smulwb", 12000a0
, fb30f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17702 TCE("smulwt", 12000e0
, fb30f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17704 TCE("qadd", 1000050, fa80f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17705 TCE("qdadd", 1400050, fa80f090
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17706 TCE("qsub", 1200050, fa80f0a0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17707 TCE("qdsub", 1600050, fa80f0b0
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rm_rn
, t_simd2
),
17710 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17711 #undef THUMB_VARIANT
17712 #define THUMB_VARIANT &arm_ext_v6t2
17714 TUF("pld", 450f000
, f810f000
, 1, (ADDR
), pld
, t_pld
),
17715 TC3("ldrd", 00000d0
, e8500000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, ADDRGLDRS
),
17717 TC3("strd", 00000f0
, e8400000
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
,
17718 ADDRGLDRS
), ldrd
, t_ldstd
),
17720 TCE("mcrr", c400000
, ec400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17721 TCE("mrrc", c500000
, ec500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17724 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17726 TCE("bxj", 12fff20
, f3c08f00
, 1, (RR
), bxj
, t_bxj
),
17729 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17730 #undef THUMB_VARIANT
17731 #define THUMB_VARIANT & arm_ext_v6
17733 TUF("cpsie", 1080000, b660
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
17734 TUF("cpsid", 10c0000
, b670
, 2, (CPSF
, oI31b
), cpsi
, t_cpsi
),
17735 tCE("rev", 6bf0f30
, _rev
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
17736 tCE("rev16", 6bf0fb0
, _rev16
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
17737 tCE("revsh", 6ff0fb0
, _revsh
, 2, (RRnpc
, RRnpc
), rd_rm
, t_rev
),
17738 tCE("sxth", 6bf0070
, _sxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17739 tCE("uxth", 6ff0070
, _uxth
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17740 tCE("sxtb", 6af0070
, _sxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17741 tCE("uxtb", 6ef0070
, _uxtb
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17742 TUF("setend", 1010000, b650
, 1, (ENDI
), setend
, t_setend
),
17744 #undef THUMB_VARIANT
17745 #define THUMB_VARIANT & arm_ext_v6t2
17747 TCE("ldrex", 1900f9f
, e8500f00
, 2, (RRnpc_npcsp
, ADDR
), ldrex
, t_ldrex
),
17748 TCE("strex", 1800f90
, e8400000
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
17750 TUF("mcrr2", c400000
, fc400000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17751 TUF("mrrc2", c500000
, fc500000
, 5, (RCP
, I15b
, RRnpc
, RRnpc
, RCN
), co_reg2c
, co_reg2c
),
17753 TCE("ssat", 6a00010
, f3000000
, 4, (RRnpc
, I32
, RRnpc
, oSHllar
),ssat
, t_ssat
),
17754 TCE("usat", 6e00010
, f3800000
, 4, (RRnpc
, I31
, RRnpc
, oSHllar
),usat
, t_usat
),
17756 /* ARM V6 not included in V7M. */
17757 #undef THUMB_VARIANT
17758 #define THUMB_VARIANT & arm_ext_v6_notm
17759 TUF("rfeia", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
17760 UF(rfeib
, 9900a00
, 1, (RRw
), rfe
),
17761 UF(rfeda
, 8100a00
, 1, (RRw
), rfe
),
17762 TUF("rfedb", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
17763 TUF("rfefd", 8900a00
, e990c000
, 1, (RRw
), rfe
, rfe
),
17764 UF(rfefa
, 9900a00
, 1, (RRw
), rfe
),
17765 UF(rfeea
, 8100a00
, 1, (RRw
), rfe
),
17766 TUF("rfeed", 9100a00
, e810c000
, 1, (RRw
), rfe
, rfe
),
17767 TUF("srsia", 8c00500
, e980c000
, 2, (oRRw
, I31w
), srs
, srs
),
17768 UF(srsib
, 9c00500
, 2, (oRRw
, I31w
), srs
),
17769 UF(srsda
, 8400500, 2, (oRRw
, I31w
), srs
),
17770 TUF("srsdb", 9400500, e800c000
, 2, (oRRw
, I31w
), srs
, srs
),
17772 /* ARM V6 not included in V7M (eg. integer SIMD). */
17773 #undef THUMB_VARIANT
17774 #define THUMB_VARIANT & arm_ext_v6_dsp
17775 TUF("cps", 1020000, f3af8100
, 1, (I31b
), imm0
, t_cps
),
17776 TCE("pkhbt", 6800010, eac00000
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHll
), pkhbt
, t_pkhbt
),
17777 TCE("pkhtb", 6800050, eac00020
, 4, (RRnpc
, RRnpc
, RRnpc
, oSHar
), pkhtb
, t_pkhtb
),
17778 TCE("qadd16", 6200f10
, fa90f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17779 TCE("qadd8", 6200f90
, fa80f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17780 TCE("qasx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17781 /* Old name for QASX. */
17782 TCE("qaddsubx", 6200f30
, faa0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17783 TCE("qsax", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17784 /* Old name for QSAX. */
17785 TCE("qsubaddx", 6200f50
, fae0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17786 TCE("qsub16", 6200f70
, fad0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17787 TCE("qsub8", 6200ff0
, fac0f010
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17788 TCE("sadd16", 6100f10
, fa90f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17789 TCE("sadd8", 6100f90
, fa80f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17790 TCE("sasx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17791 /* Old name for SASX. */
17792 TCE("saddsubx", 6100f30
, faa0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17793 TCE("shadd16", 6300f10
, fa90f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17794 TCE("shadd8", 6300f90
, fa80f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17795 TCE("shasx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17796 /* Old name for SHASX. */
17797 TCE("shaddsubx", 6300f30
, faa0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17798 TCE("shsax", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17799 /* Old name for SHSAX. */
17800 TCE("shsubaddx", 6300f50
, fae0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17801 TCE("shsub16", 6300f70
, fad0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17802 TCE("shsub8", 6300ff0
, fac0f020
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17803 TCE("ssax", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17804 /* Old name for SSAX. */
17805 TCE("ssubaddx", 6100f50
, fae0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17806 TCE("ssub16", 6100f70
, fad0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17807 TCE("ssub8", 6100ff0
, fac0f000
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17808 TCE("uadd16", 6500f10
, fa90f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17809 TCE("uadd8", 6500f90
, fa80f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17810 TCE("uasx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17811 /* Old name for UASX. */
17812 TCE("uaddsubx", 6500f30
, faa0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17813 TCE("uhadd16", 6700f10
, fa90f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17814 TCE("uhadd8", 6700f90
, fa80f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17815 TCE("uhasx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17816 /* Old name for UHASX. */
17817 TCE("uhaddsubx", 6700f30
, faa0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17818 TCE("uhsax", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17819 /* Old name for UHSAX. */
17820 TCE("uhsubaddx", 6700f50
, fae0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17821 TCE("uhsub16", 6700f70
, fad0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17822 TCE("uhsub8", 6700ff0
, fac0f060
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17823 TCE("uqadd16", 6600f10
, fa90f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17824 TCE("uqadd8", 6600f90
, fa80f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17825 TCE("uqasx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17826 /* Old name for UQASX. */
17827 TCE("uqaddsubx", 6600f30
, faa0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17828 TCE("uqsax", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17829 /* Old name for UQSAX. */
17830 TCE("uqsubaddx", 6600f50
, fae0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17831 TCE("uqsub16", 6600f70
, fad0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17832 TCE("uqsub8", 6600ff0
, fac0f050
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17833 TCE("usub16", 6500f70
, fad0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17834 TCE("usax", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17835 /* Old name for USAX. */
17836 TCE("usubaddx", 6500f50
, fae0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17837 TCE("usub8", 6500ff0
, fac0f040
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17838 TCE("sxtah", 6b00070
, fa00f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17839 TCE("sxtab16", 6800070, fa20f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17840 TCE("sxtab", 6a00070
, fa40f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17841 TCE("sxtb16", 68f0070
, fa2ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17842 TCE("uxtah", 6f00070
, fa10f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17843 TCE("uxtab16", 6c00070
, fa30f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17844 TCE("uxtab", 6e00070
, fa50f080
, 4, (RRnpc
, RRnpc
, RRnpc
, oROR
), sxtah
, t_sxtah
),
17845 TCE("uxtb16", 6cf0070
, fa3ff080
, 3, (RRnpc
, RRnpc
, oROR
), sxth
, t_sxth
),
17846 TCE("sel", 6800fb0
, faa0f080
, 3, (RRnpc
, RRnpc
, RRnpc
), rd_rn_rm
, t_simd
),
17847 TCE("smlad", 7000010, fb200000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17848 TCE("smladx", 7000030, fb200010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17849 TCE("smlald", 7400010, fbc000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17850 TCE("smlaldx", 7400030, fbc000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17851 TCE("smlsd", 7000050, fb400000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17852 TCE("smlsdx", 7000070, fb400010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17853 TCE("smlsld", 7400050, fbd000c0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17854 TCE("smlsldx", 7400070, fbd000d0
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
,t_mlal
),
17855 TCE("smmla", 7500010, fb500000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17856 TCE("smmlar", 7500030, fb500010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17857 TCE("smmls", 75000d0
, fb600000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17858 TCE("smmlsr", 75000f0
, fb600010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17859 TCE("smmul", 750f010
, fb50f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17860 TCE("smmulr", 750f030
, fb50f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17861 TCE("smuad", 700f010
, fb20f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17862 TCE("smuadx", 700f030
, fb20f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17863 TCE("smusd", 700f050
, fb40f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17864 TCE("smusdx", 700f070
, fb40f010
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17865 TCE("ssat16", 6a00f30
, f3200000
, 3, (RRnpc
, I16
, RRnpc
), ssat16
, t_ssat16
),
17866 TCE("umaal", 0400090, fbe00060
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smlal
, t_mlal
),
17867 TCE("usad8", 780f010
, fb70f000
, 3, (RRnpc
, RRnpc
, RRnpc
), smul
, t_simd
),
17868 TCE("usada8", 7800010, fb700000
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
),smla
, t_mla
),
17869 TCE("usat16", 6e00f30
, f3a00000
, 3, (RRnpc
, I15
, RRnpc
), usat16
, t_usat16
),
17872 #define ARM_VARIANT & arm_ext_v6k
17873 #undef THUMB_VARIANT
17874 #define THUMB_VARIANT & arm_ext_v6k
17876 tCE("yield", 320f001
, _yield
, 0, (), noargs
, t_hint
),
17877 tCE("wfe", 320f002
, _wfe
, 0, (), noargs
, t_hint
),
17878 tCE("wfi", 320f003
, _wfi
, 0, (), noargs
, t_hint
),
17879 tCE("sev", 320f004
, _sev
, 0, (), noargs
, t_hint
),
17881 #undef THUMB_VARIANT
17882 #define THUMB_VARIANT & arm_ext_v6_notm
17883 TCE("ldrexd", 1b00f9f
, e8d0007f
, 3, (RRnpc_npcsp
, oRRnpc_npcsp
, RRnpcb
),
17885 TCE("strexd", 1a00f90
, e8c00070
, 4, (RRnpc_npcsp
, RRnpc_npcsp
, oRRnpc_npcsp
,
17886 RRnpcb
), strexd
, t_strexd
),
17888 #undef THUMB_VARIANT
17889 #define THUMB_VARIANT & arm_ext_v6t2
17890 TCE("ldrexb", 1d00f9f
, e8d00f4f
, 2, (RRnpc_npcsp
,RRnpcb
),
17892 TCE("ldrexh", 1f00f9f
, e8d00f5f
, 2, (RRnpc_npcsp
, RRnpcb
),
17894 TCE("strexb", 1c00f90
, e8c00f40
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
17896 TCE("strexh", 1e00f90
, e8c00f50
, 3, (RRnpc_npcsp
, RRnpc_npcsp
, ADDR
),
17898 TUF("clrex", 57ff01f
, f3bf8f2f
, 0, (), noargs
, noargs
),
17901 #define ARM_VARIANT & arm_ext_sec
17902 #undef THUMB_VARIANT
17903 #define THUMB_VARIANT & arm_ext_sec
17905 TCE("smc", 1600070, f7f08000
, 1, (EXPi
), smc
, t_smc
),
17908 #define ARM_VARIANT & arm_ext_virt
17909 #undef THUMB_VARIANT
17910 #define THUMB_VARIANT & arm_ext_virt
17912 TCE("hvc", 1400070, f7e08000
, 1, (EXPi
), hvc
, t_hvc
),
17913 TCE("eret", 160006e
, f3de8f00
, 0, (), noargs
, noargs
),
17916 #define ARM_VARIANT & arm_ext_v6t2
17917 #undef THUMB_VARIANT
17918 #define THUMB_VARIANT & arm_ext_v6t2
17920 TCE("bfc", 7c0001f
, f36f0000
, 3, (RRnpc
, I31
, I32
), bfc
, t_bfc
),
17921 TCE("bfi", 7c00010
, f3600000
, 4, (RRnpc
, RRnpc_I0
, I31
, I32
), bfi
, t_bfi
),
17922 TCE("sbfx", 7a00050
, f3400000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
17923 TCE("ubfx", 7e00050
, f3c00000
, 4, (RR
, RR
, I31
, I32
), bfx
, t_bfx
),
17925 TCE("mls", 0600090, fb000010
, 4, (RRnpc
, RRnpc
, RRnpc
, RRnpc
), mlas
, t_mla
),
17926 TCE("movw", 3000000, f2400000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
17927 TCE("movt", 3400000, f2c00000
, 2, (RRnpc
, HALF
), mov16
, t_mov16
),
17928 TCE("rbit", 6ff0f30
, fa90f0a0
, 2, (RR
, RR
), rd_rm
, t_rbit
),
17930 TC3("ldrht", 03000b0
, f8300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17931 TC3("ldrsht", 03000f0
, f9300e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17932 TC3("ldrsbt", 03000d0
, f9100e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17933 TC3("strht", 02000b0
, f8200e00
, 2, (RRnpc_npcsp
, ADDR
), ldsttv4
, t_ldstt
),
17935 /* Thumb-only instructions. */
17937 #define ARM_VARIANT NULL
17938 TUE("cbnz", 0, b900
, 2, (RR
, EXP
), 0, t_cbz
),
17939 TUE("cbz", 0, b100
, 2, (RR
, EXP
), 0, t_cbz
),
17941 /* ARM does not really have an IT instruction, so always allow it.
17942 The opcode is copied from Thumb in order to allow warnings in
17943 -mimplicit-it=[never | arm] modes. */
17945 #define ARM_VARIANT & arm_ext_v1
17947 TUE("it", bf08
, bf08
, 1, (COND
), it
, t_it
),
17948 TUE("itt", bf0c
, bf0c
, 1, (COND
), it
, t_it
),
17949 TUE("ite", bf04
, bf04
, 1, (COND
), it
, t_it
),
17950 TUE("ittt", bf0e
, bf0e
, 1, (COND
), it
, t_it
),
17951 TUE("itet", bf06
, bf06
, 1, (COND
), it
, t_it
),
17952 TUE("itte", bf0a
, bf0a
, 1, (COND
), it
, t_it
),
17953 TUE("itee", bf02
, bf02
, 1, (COND
), it
, t_it
),
17954 TUE("itttt", bf0f
, bf0f
, 1, (COND
), it
, t_it
),
17955 TUE("itett", bf07
, bf07
, 1, (COND
), it
, t_it
),
17956 TUE("ittet", bf0b
, bf0b
, 1, (COND
), it
, t_it
),
17957 TUE("iteet", bf03
, bf03
, 1, (COND
), it
, t_it
),
17958 TUE("ittte", bf0d
, bf0d
, 1, (COND
), it
, t_it
),
17959 TUE("itete", bf05
, bf05
, 1, (COND
), it
, t_it
),
17960 TUE("ittee", bf09
, bf09
, 1, (COND
), it
, t_it
),
17961 TUE("iteee", bf01
, bf01
, 1, (COND
), it
, t_it
),
17962 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17963 TC3("rrx", 01a00060
, ea4f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
17964 TC3("rrxs", 01b00060
, ea5f0030
, 2, (RR
, RR
), rd_rm
, t_rrx
),
17966 /* Thumb2 only instructions. */
17968 #define ARM_VARIANT NULL
17970 TCE("addw", 0, f2000000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
17971 TCE("subw", 0, f2a00000
, 3, (RR
, RR
, EXPi
), 0, t_add_sub_w
),
17972 TCE("orn", 0, ea600000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
17973 TCE("orns", 0, ea700000
, 3, (RR
, oRR
, SH
), 0, t_orn
),
17974 TCE("tbb", 0, e8d0f000
, 1, (TB
), 0, t_tb
),
17975 TCE("tbh", 0, e8d0f010
, 1, (TB
), 0, t_tb
),
17977 /* Hardware division instructions. */
17979 #define ARM_VARIANT & arm_ext_adiv
17980 #undef THUMB_VARIANT
17981 #define THUMB_VARIANT & arm_ext_div
17983 TCE("sdiv", 710f010
, fb90f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
17984 TCE("udiv", 730f010
, fbb0f0f0
, 3, (RR
, oRR
, RR
), div
, t_div
),
17986 /* ARM V6M/V7 instructions. */
17988 #define ARM_VARIANT & arm_ext_barrier
17989 #undef THUMB_VARIANT
17990 #define THUMB_VARIANT & arm_ext_barrier
17992 TUF("dmb", 57ff050
, f3bf8f50
, 1, (oBARRIER_I15
), barrier
, t_barrier
),
17993 TUF("dsb", 57ff040
, f3bf8f40
, 1, (oBARRIER_I15
), barrier
, t_barrier
),
17994 TUF("isb", 57ff060
, f3bf8f60
, 1, (oBARRIER_I15
), barrier
, t_barrier
),
17996 /* ARM V7 instructions. */
17998 #define ARM_VARIANT & arm_ext_v7
17999 #undef THUMB_VARIANT
18000 #define THUMB_VARIANT & arm_ext_v7
18002 TUF("pli", 450f000
, f910f000
, 1, (ADDR
), pli
, t_pld
),
18003 TCE("dbg", 320f0f0
, f3af80f0
, 1, (I15
), dbg
, t_dbg
),
18006 #define ARM_VARIANT & arm_ext_mp
18007 #undef THUMB_VARIANT
18008 #define THUMB_VARIANT & arm_ext_mp
18010 TUF("pldw", 410f000
, f830f000
, 1, (ADDR
), pld
, t_pld
),
18012 /* AArchv8 instructions. */
18014 #define ARM_VARIANT & arm_ext_v8
18015 #undef THUMB_VARIANT
18016 #define THUMB_VARIANT & arm_ext_v8
18018 tCE("sevl", 320f005
, _sevl
, 0, (), noargs
, t_hint
),
18019 TUE("hlt", 1000070, ba80
, 1, (oIffffb
), bkpt
, t_hlt
),
18020 TCE("ldraex", 1900e9f
, e8d00fef
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
18021 TCE("ldraexd", 1b00e9f
, e8d000ff
, 3, (RRnpc
, oRRnpc
, RRnpcb
),
18023 TCE("ldraexb", 1d00e9f
, e8d00fcf
, 2, (RRnpc
,RRnpcb
), rd_rn
, rd_rn
),
18024 TCE("ldraexh", 1f00e9f
, e8d00fdf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
18025 TCE("strlex", 1800e90
, e8c00fe0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
18027 TCE("strlexd", 1a00e90
, e8c000f0
, 4, (RRnpc
, RRnpc
, oRRnpc
, RRnpcb
),
18029 TCE("strlexb", 1c00e90
, e8c00fc0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
18031 TCE("strlexh", 1e00e90
, e8c00fd0
, 3, (RRnpc
, RRnpc
, RRnpcb
),
18033 TCE("ldra", 1900c9f
, e8d00faf
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
18034 TCE("ldrab", 1d00c9f
, e8d00f8f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
18035 TCE("ldrah", 1f00c9f
, e8d00f9f
, 2, (RRnpc
, RRnpcb
), rd_rn
, rd_rn
),
18036 TCE("strl", 180fc90
, e8c00faf
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
18037 TCE("strlb", 1c0fc90
, e8c00f8f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
18038 TCE("strlh", 1e0fc90
, e8c00f9f
, 2, (RRnpc
, RRnpcb
), rm_rn
, rd_rn
),
18040 /* ARMv8 T32 only. */
18042 #define ARM_VARIANT NULL
18043 TUF("dcps1", 0, f78f8001
, 0, (), noargs
, noargs
),
18044 TUF("dcps2", 0, f78f8002
, 0, (), noargs
, noargs
),
18045 TUF("dcps3", 0, f78f8003
, 0, (), noargs
, noargs
),
18048 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18049 #undef THUMB_VARIANT
18050 #define THUMB_VARIANT NULL
18052 cCE("wfs", e200110
, 1, (RR
), rd
),
18053 cCE("rfs", e300110
, 1, (RR
), rd
),
18054 cCE("wfc", e400110
, 1, (RR
), rd
),
18055 cCE("rfc", e500110
, 1, (RR
), rd
),
18057 cCL("ldfs", c100100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18058 cCL("ldfd", c108100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18059 cCL("ldfe", c500100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18060 cCL("ldfp", c508100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18062 cCL("stfs", c000100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18063 cCL("stfd", c008100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18064 cCL("stfe", c400100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18065 cCL("stfp", c408100
, 2, (RF
, ADDRGLDC
), rd_cpaddr
),
18067 cCL("mvfs", e008100
, 2, (RF
, RF_IF
), rd_rm
),
18068 cCL("mvfsp", e008120
, 2, (RF
, RF_IF
), rd_rm
),
18069 cCL("mvfsm", e008140
, 2, (RF
, RF_IF
), rd_rm
),
18070 cCL("mvfsz", e008160
, 2, (RF
, RF_IF
), rd_rm
),
18071 cCL("mvfd", e008180
, 2, (RF
, RF_IF
), rd_rm
),
18072 cCL("mvfdp", e0081a0
, 2, (RF
, RF_IF
), rd_rm
),
18073 cCL("mvfdm", e0081c0
, 2, (RF
, RF_IF
), rd_rm
),
18074 cCL("mvfdz", e0081e0
, 2, (RF
, RF_IF
), rd_rm
),
18075 cCL("mvfe", e088100
, 2, (RF
, RF_IF
), rd_rm
),
18076 cCL("mvfep", e088120
, 2, (RF
, RF_IF
), rd_rm
),
18077 cCL("mvfem", e088140
, 2, (RF
, RF_IF
), rd_rm
),
18078 cCL("mvfez", e088160
, 2, (RF
, RF_IF
), rd_rm
),
18080 cCL("mnfs", e108100
, 2, (RF
, RF_IF
), rd_rm
),
18081 cCL("mnfsp", e108120
, 2, (RF
, RF_IF
), rd_rm
),
18082 cCL("mnfsm", e108140
, 2, (RF
, RF_IF
), rd_rm
),
18083 cCL("mnfsz", e108160
, 2, (RF
, RF_IF
), rd_rm
),
18084 cCL("mnfd", e108180
, 2, (RF
, RF_IF
), rd_rm
),
18085 cCL("mnfdp", e1081a0
, 2, (RF
, RF_IF
), rd_rm
),
18086 cCL("mnfdm", e1081c0
, 2, (RF
, RF_IF
), rd_rm
),
18087 cCL("mnfdz", e1081e0
, 2, (RF
, RF_IF
), rd_rm
),
18088 cCL("mnfe", e188100
, 2, (RF
, RF_IF
), rd_rm
),
18089 cCL("mnfep", e188120
, 2, (RF
, RF_IF
), rd_rm
),
18090 cCL("mnfem", e188140
, 2, (RF
, RF_IF
), rd_rm
),
18091 cCL("mnfez", e188160
, 2, (RF
, RF_IF
), rd_rm
),
18093 cCL("abss", e208100
, 2, (RF
, RF_IF
), rd_rm
),
18094 cCL("abssp", e208120
, 2, (RF
, RF_IF
), rd_rm
),
18095 cCL("abssm", e208140
, 2, (RF
, RF_IF
), rd_rm
),
18096 cCL("abssz", e208160
, 2, (RF
, RF_IF
), rd_rm
),
18097 cCL("absd", e208180
, 2, (RF
, RF_IF
), rd_rm
),
18098 cCL("absdp", e2081a0
, 2, (RF
, RF_IF
), rd_rm
),
18099 cCL("absdm", e2081c0
, 2, (RF
, RF_IF
), rd_rm
),
18100 cCL("absdz", e2081e0
, 2, (RF
, RF_IF
), rd_rm
),
18101 cCL("abse", e288100
, 2, (RF
, RF_IF
), rd_rm
),
18102 cCL("absep", e288120
, 2, (RF
, RF_IF
), rd_rm
),
18103 cCL("absem", e288140
, 2, (RF
, RF_IF
), rd_rm
),
18104 cCL("absez", e288160
, 2, (RF
, RF_IF
), rd_rm
),
18106 cCL("rnds", e308100
, 2, (RF
, RF_IF
), rd_rm
),
18107 cCL("rndsp", e308120
, 2, (RF
, RF_IF
), rd_rm
),
18108 cCL("rndsm", e308140
, 2, (RF
, RF_IF
), rd_rm
),
18109 cCL("rndsz", e308160
, 2, (RF
, RF_IF
), rd_rm
),
18110 cCL("rndd", e308180
, 2, (RF
, RF_IF
), rd_rm
),
18111 cCL("rnddp", e3081a0
, 2, (RF
, RF_IF
), rd_rm
),
18112 cCL("rnddm", e3081c0
, 2, (RF
, RF_IF
), rd_rm
),
18113 cCL("rnddz", e3081e0
, 2, (RF
, RF_IF
), rd_rm
),
18114 cCL("rnde", e388100
, 2, (RF
, RF_IF
), rd_rm
),
18115 cCL("rndep", e388120
, 2, (RF
, RF_IF
), rd_rm
),
18116 cCL("rndem", e388140
, 2, (RF
, RF_IF
), rd_rm
),
18117 cCL("rndez", e388160
, 2, (RF
, RF_IF
), rd_rm
),
18119 cCL("sqts", e408100
, 2, (RF
, RF_IF
), rd_rm
),
18120 cCL("sqtsp", e408120
, 2, (RF
, RF_IF
), rd_rm
),
18121 cCL("sqtsm", e408140
, 2, (RF
, RF_IF
), rd_rm
),
18122 cCL("sqtsz", e408160
, 2, (RF
, RF_IF
), rd_rm
),
18123 cCL("sqtd", e408180
, 2, (RF
, RF_IF
), rd_rm
),
18124 cCL("sqtdp", e4081a0
, 2, (RF
, RF_IF
), rd_rm
),
18125 cCL("sqtdm", e4081c0
, 2, (RF
, RF_IF
), rd_rm
),
18126 cCL("sqtdz", e4081e0
, 2, (RF
, RF_IF
), rd_rm
),
18127 cCL("sqte", e488100
, 2, (RF
, RF_IF
), rd_rm
),
18128 cCL("sqtep", e488120
, 2, (RF
, RF_IF
), rd_rm
),
18129 cCL("sqtem", e488140
, 2, (RF
, RF_IF
), rd_rm
),
18130 cCL("sqtez", e488160
, 2, (RF
, RF_IF
), rd_rm
),
18132 cCL("logs", e508100
, 2, (RF
, RF_IF
), rd_rm
),
18133 cCL("logsp", e508120
, 2, (RF
, RF_IF
), rd_rm
),
18134 cCL("logsm", e508140
, 2, (RF
, RF_IF
), rd_rm
),
18135 cCL("logsz", e508160
, 2, (RF
, RF_IF
), rd_rm
),
18136 cCL("logd", e508180
, 2, (RF
, RF_IF
), rd_rm
),
18137 cCL("logdp", e5081a0
, 2, (RF
, RF_IF
), rd_rm
),
18138 cCL("logdm", e5081c0
, 2, (RF
, RF_IF
), rd_rm
),
18139 cCL("logdz", e5081e0
, 2, (RF
, RF_IF
), rd_rm
),
18140 cCL("loge", e588100
, 2, (RF
, RF_IF
), rd_rm
),
18141 cCL("logep", e588120
, 2, (RF
, RF_IF
), rd_rm
),
18142 cCL("logem", e588140
, 2, (RF
, RF_IF
), rd_rm
),
18143 cCL("logez", e588160
, 2, (RF
, RF_IF
), rd_rm
),
18145 cCL("lgns", e608100
, 2, (RF
, RF_IF
), rd_rm
),
18146 cCL("lgnsp", e608120
, 2, (RF
, RF_IF
), rd_rm
),
18147 cCL("lgnsm", e608140
, 2, (RF
, RF_IF
), rd_rm
),
18148 cCL("lgnsz", e608160
, 2, (RF
, RF_IF
), rd_rm
),
18149 cCL("lgnd", e608180
, 2, (RF
, RF_IF
), rd_rm
),
18150 cCL("lgndp", e6081a0
, 2, (RF
, RF_IF
), rd_rm
),
18151 cCL("lgndm", e6081c0
, 2, (RF
, RF_IF
), rd_rm
),
18152 cCL("lgndz", e6081e0
, 2, (RF
, RF_IF
), rd_rm
),
18153 cCL("lgne", e688100
, 2, (RF
, RF_IF
), rd_rm
),
18154 cCL("lgnep", e688120
, 2, (RF
, RF_IF
), rd_rm
),
18155 cCL("lgnem", e688140
, 2, (RF
, RF_IF
), rd_rm
),
18156 cCL("lgnez", e688160
, 2, (RF
, RF_IF
), rd_rm
),
18158 cCL("exps", e708100
, 2, (RF
, RF_IF
), rd_rm
),
18159 cCL("expsp", e708120
, 2, (RF
, RF_IF
), rd_rm
),
18160 cCL("expsm", e708140
, 2, (RF
, RF_IF
), rd_rm
),
18161 cCL("expsz", e708160
, 2, (RF
, RF_IF
), rd_rm
),
18162 cCL("expd", e708180
, 2, (RF
, RF_IF
), rd_rm
),
18163 cCL("expdp", e7081a0
, 2, (RF
, RF_IF
), rd_rm
),
18164 cCL("expdm", e7081c0
, 2, (RF
, RF_IF
), rd_rm
),
18165 cCL("expdz", e7081e0
, 2, (RF
, RF_IF
), rd_rm
),
18166 cCL("expe", e788100
, 2, (RF
, RF_IF
), rd_rm
),
18167 cCL("expep", e788120
, 2, (RF
, RF_IF
), rd_rm
),
18168 cCL("expem", e788140
, 2, (RF
, RF_IF
), rd_rm
),
18169 cCL("expdz", e788160
, 2, (RF
, RF_IF
), rd_rm
),
18171 cCL("sins", e808100
, 2, (RF
, RF_IF
), rd_rm
),
18172 cCL("sinsp", e808120
, 2, (RF
, RF_IF
), rd_rm
),
18173 cCL("sinsm", e808140
, 2, (RF
, RF_IF
), rd_rm
),
18174 cCL("sinsz", e808160
, 2, (RF
, RF_IF
), rd_rm
),
18175 cCL("sind", e808180
, 2, (RF
, RF_IF
), rd_rm
),
18176 cCL("sindp", e8081a0
, 2, (RF
, RF_IF
), rd_rm
),
18177 cCL("sindm", e8081c0
, 2, (RF
, RF_IF
), rd_rm
),
18178 cCL("sindz", e8081e0
, 2, (RF
, RF_IF
), rd_rm
),
18179 cCL("sine", e888100
, 2, (RF
, RF_IF
), rd_rm
),
18180 cCL("sinep", e888120
, 2, (RF
, RF_IF
), rd_rm
),
18181 cCL("sinem", e888140
, 2, (RF
, RF_IF
), rd_rm
),
18182 cCL("sinez", e888160
, 2, (RF
, RF_IF
), rd_rm
),
18184 cCL("coss", e908100
, 2, (RF
, RF_IF
), rd_rm
),
18185 cCL("cossp", e908120
, 2, (RF
, RF_IF
), rd_rm
),
18186 cCL("cossm", e908140
, 2, (RF
, RF_IF
), rd_rm
),
18187 cCL("cossz", e908160
, 2, (RF
, RF_IF
), rd_rm
),
18188 cCL("cosd", e908180
, 2, (RF
, RF_IF
), rd_rm
),
18189 cCL("cosdp", e9081a0
, 2, (RF
, RF_IF
), rd_rm
),
18190 cCL("cosdm", e9081c0
, 2, (RF
, RF_IF
), rd_rm
),
18191 cCL("cosdz", e9081e0
, 2, (RF
, RF_IF
), rd_rm
),
18192 cCL("cose", e988100
, 2, (RF
, RF_IF
), rd_rm
),
18193 cCL("cosep", e988120
, 2, (RF
, RF_IF
), rd_rm
),
18194 cCL("cosem", e988140
, 2, (RF
, RF_IF
), rd_rm
),
18195 cCL("cosez", e988160
, 2, (RF
, RF_IF
), rd_rm
),
18197 cCL("tans", ea08100
, 2, (RF
, RF_IF
), rd_rm
),
18198 cCL("tansp", ea08120
, 2, (RF
, RF_IF
), rd_rm
),
18199 cCL("tansm", ea08140
, 2, (RF
, RF_IF
), rd_rm
),
18200 cCL("tansz", ea08160
, 2, (RF
, RF_IF
), rd_rm
),
18201 cCL("tand", ea08180
, 2, (RF
, RF_IF
), rd_rm
),
18202 cCL("tandp", ea081a0
, 2, (RF
, RF_IF
), rd_rm
),
18203 cCL("tandm", ea081c0
, 2, (RF
, RF_IF
), rd_rm
),
18204 cCL("tandz", ea081e0
, 2, (RF
, RF_IF
), rd_rm
),
18205 cCL("tane", ea88100
, 2, (RF
, RF_IF
), rd_rm
),
18206 cCL("tanep", ea88120
, 2, (RF
, RF_IF
), rd_rm
),
18207 cCL("tanem", ea88140
, 2, (RF
, RF_IF
), rd_rm
),
18208 cCL("tanez", ea88160
, 2, (RF
, RF_IF
), rd_rm
),
18210 cCL("asns", eb08100
, 2, (RF
, RF_IF
), rd_rm
),
18211 cCL("asnsp", eb08120
, 2, (RF
, RF_IF
), rd_rm
),
18212 cCL("asnsm", eb08140
, 2, (RF
, RF_IF
), rd_rm
),
18213 cCL("asnsz", eb08160
, 2, (RF
, RF_IF
), rd_rm
),
18214 cCL("asnd", eb08180
, 2, (RF
, RF_IF
), rd_rm
),
18215 cCL("asndp", eb081a0
, 2, (RF
, RF_IF
), rd_rm
),
18216 cCL("asndm", eb081c0
, 2, (RF
, RF_IF
), rd_rm
),
18217 cCL("asndz", eb081e0
, 2, (RF
, RF_IF
), rd_rm
),
18218 cCL("asne", eb88100
, 2, (RF
, RF_IF
), rd_rm
),
18219 cCL("asnep", eb88120
, 2, (RF
, RF_IF
), rd_rm
),
18220 cCL("asnem", eb88140
, 2, (RF
, RF_IF
), rd_rm
),
18221 cCL("asnez", eb88160
, 2, (RF
, RF_IF
), rd_rm
),
18223 cCL("acss", ec08100
, 2, (RF
, RF_IF
), rd_rm
),
18224 cCL("acssp", ec08120
, 2, (RF
, RF_IF
), rd_rm
),
18225 cCL("acssm", ec08140
, 2, (RF
, RF_IF
), rd_rm
),
18226 cCL("acssz", ec08160
, 2, (RF
, RF_IF
), rd_rm
),
18227 cCL("acsd", ec08180
, 2, (RF
, RF_IF
), rd_rm
),
18228 cCL("acsdp", ec081a0
, 2, (RF
, RF_IF
), rd_rm
),
18229 cCL("acsdm", ec081c0
, 2, (RF
, RF_IF
), rd_rm
),
18230 cCL("acsdz", ec081e0
, 2, (RF
, RF_IF
), rd_rm
),
18231 cCL("acse", ec88100
, 2, (RF
, RF_IF
), rd_rm
),
18232 cCL("acsep", ec88120
, 2, (RF
, RF_IF
), rd_rm
),
18233 cCL("acsem", ec88140
, 2, (RF
, RF_IF
), rd_rm
),
18234 cCL("acsez", ec88160
, 2, (RF
, RF_IF
), rd_rm
),
18236 cCL("atns", ed08100
, 2, (RF
, RF_IF
), rd_rm
),
18237 cCL("atnsp", ed08120
, 2, (RF
, RF_IF
), rd_rm
),
18238 cCL("atnsm", ed08140
, 2, (RF
, RF_IF
), rd_rm
),
18239 cCL("atnsz", ed08160
, 2, (RF
, RF_IF
), rd_rm
),
18240 cCL("atnd", ed08180
, 2, (RF
, RF_IF
), rd_rm
),
18241 cCL("atndp", ed081a0
, 2, (RF
, RF_IF
), rd_rm
),
18242 cCL("atndm", ed081c0
, 2, (RF
, RF_IF
), rd_rm
),
18243 cCL("atndz", ed081e0
, 2, (RF
, RF_IF
), rd_rm
),
18244 cCL("atne", ed88100
, 2, (RF
, RF_IF
), rd_rm
),
18245 cCL("atnep", ed88120
, 2, (RF
, RF_IF
), rd_rm
),
18246 cCL("atnem", ed88140
, 2, (RF
, RF_IF
), rd_rm
),
18247 cCL("atnez", ed88160
, 2, (RF
, RF_IF
), rd_rm
),
18249 cCL("urds", ee08100
, 2, (RF
, RF_IF
), rd_rm
),
18250 cCL("urdsp", ee08120
, 2, (RF
, RF_IF
), rd_rm
),
18251 cCL("urdsm", ee08140
, 2, (RF
, RF_IF
), rd_rm
),
18252 cCL("urdsz", ee08160
, 2, (RF
, RF_IF
), rd_rm
),
18253 cCL("urdd", ee08180
, 2, (RF
, RF_IF
), rd_rm
),
18254 cCL("urddp", ee081a0
, 2, (RF
, RF_IF
), rd_rm
),
18255 cCL("urddm", ee081c0
, 2, (RF
, RF_IF
), rd_rm
),
18256 cCL("urddz", ee081e0
, 2, (RF
, RF_IF
), rd_rm
),
18257 cCL("urde", ee88100
, 2, (RF
, RF_IF
), rd_rm
),
18258 cCL("urdep", ee88120
, 2, (RF
, RF_IF
), rd_rm
),
18259 cCL("urdem", ee88140
, 2, (RF
, RF_IF
), rd_rm
),
18260 cCL("urdez", ee88160
, 2, (RF
, RF_IF
), rd_rm
),
18262 cCL("nrms", ef08100
, 2, (RF
, RF_IF
), rd_rm
),
18263 cCL("nrmsp", ef08120
, 2, (RF
, RF_IF
), rd_rm
),
18264 cCL("nrmsm", ef08140
, 2, (RF
, RF_IF
), rd_rm
),
18265 cCL("nrmsz", ef08160
, 2, (RF
, RF_IF
), rd_rm
),
18266 cCL("nrmd", ef08180
, 2, (RF
, RF_IF
), rd_rm
),
18267 cCL("nrmdp", ef081a0
, 2, (RF
, RF_IF
), rd_rm
),
18268 cCL("nrmdm", ef081c0
, 2, (RF
, RF_IF
), rd_rm
),
18269 cCL("nrmdz", ef081e0
, 2, (RF
, RF_IF
), rd_rm
),
18270 cCL("nrme", ef88100
, 2, (RF
, RF_IF
), rd_rm
),
18271 cCL("nrmep", ef88120
, 2, (RF
, RF_IF
), rd_rm
),
18272 cCL("nrmem", ef88140
, 2, (RF
, RF_IF
), rd_rm
),
18273 cCL("nrmez", ef88160
, 2, (RF
, RF_IF
), rd_rm
),
18275 cCL("adfs", e000100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18276 cCL("adfsp", e000120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18277 cCL("adfsm", e000140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18278 cCL("adfsz", e000160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18279 cCL("adfd", e000180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18280 cCL("adfdp", e0001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18281 cCL("adfdm", e0001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18282 cCL("adfdz", e0001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18283 cCL("adfe", e080100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18284 cCL("adfep", e080120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18285 cCL("adfem", e080140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18286 cCL("adfez", e080160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18288 cCL("sufs", e200100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18289 cCL("sufsp", e200120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18290 cCL("sufsm", e200140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18291 cCL("sufsz", e200160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18292 cCL("sufd", e200180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18293 cCL("sufdp", e2001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18294 cCL("sufdm", e2001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18295 cCL("sufdz", e2001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18296 cCL("sufe", e280100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18297 cCL("sufep", e280120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18298 cCL("sufem", e280140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18299 cCL("sufez", e280160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18301 cCL("rsfs", e300100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18302 cCL("rsfsp", e300120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18303 cCL("rsfsm", e300140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18304 cCL("rsfsz", e300160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18305 cCL("rsfd", e300180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18306 cCL("rsfdp", e3001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18307 cCL("rsfdm", e3001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18308 cCL("rsfdz", e3001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18309 cCL("rsfe", e380100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18310 cCL("rsfep", e380120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18311 cCL("rsfem", e380140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18312 cCL("rsfez", e380160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18314 cCL("mufs", e100100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18315 cCL("mufsp", e100120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18316 cCL("mufsm", e100140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18317 cCL("mufsz", e100160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18318 cCL("mufd", e100180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18319 cCL("mufdp", e1001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18320 cCL("mufdm", e1001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18321 cCL("mufdz", e1001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18322 cCL("mufe", e180100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18323 cCL("mufep", e180120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18324 cCL("mufem", e180140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18325 cCL("mufez", e180160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18327 cCL("dvfs", e400100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18328 cCL("dvfsp", e400120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18329 cCL("dvfsm", e400140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18330 cCL("dvfsz", e400160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18331 cCL("dvfd", e400180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18332 cCL("dvfdp", e4001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18333 cCL("dvfdm", e4001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18334 cCL("dvfdz", e4001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18335 cCL("dvfe", e480100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18336 cCL("dvfep", e480120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18337 cCL("dvfem", e480140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18338 cCL("dvfez", e480160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18340 cCL("rdfs", e500100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18341 cCL("rdfsp", e500120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18342 cCL("rdfsm", e500140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18343 cCL("rdfsz", e500160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18344 cCL("rdfd", e500180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18345 cCL("rdfdp", e5001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18346 cCL("rdfdm", e5001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18347 cCL("rdfdz", e5001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18348 cCL("rdfe", e580100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18349 cCL("rdfep", e580120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18350 cCL("rdfem", e580140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18351 cCL("rdfez", e580160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18353 cCL("pows", e600100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18354 cCL("powsp", e600120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18355 cCL("powsm", e600140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18356 cCL("powsz", e600160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18357 cCL("powd", e600180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18358 cCL("powdp", e6001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18359 cCL("powdm", e6001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18360 cCL("powdz", e6001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18361 cCL("powe", e680100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18362 cCL("powep", e680120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18363 cCL("powem", e680140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18364 cCL("powez", e680160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18366 cCL("rpws", e700100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18367 cCL("rpwsp", e700120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18368 cCL("rpwsm", e700140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18369 cCL("rpwsz", e700160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18370 cCL("rpwd", e700180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18371 cCL("rpwdp", e7001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18372 cCL("rpwdm", e7001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18373 cCL("rpwdz", e7001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18374 cCL("rpwe", e780100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18375 cCL("rpwep", e780120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18376 cCL("rpwem", e780140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18377 cCL("rpwez", e780160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18379 cCL("rmfs", e800100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18380 cCL("rmfsp", e800120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18381 cCL("rmfsm", e800140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18382 cCL("rmfsz", e800160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18383 cCL("rmfd", e800180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18384 cCL("rmfdp", e8001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18385 cCL("rmfdm", e8001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18386 cCL("rmfdz", e8001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18387 cCL("rmfe", e880100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18388 cCL("rmfep", e880120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18389 cCL("rmfem", e880140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18390 cCL("rmfez", e880160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18392 cCL("fmls", e900100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18393 cCL("fmlsp", e900120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18394 cCL("fmlsm", e900140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18395 cCL("fmlsz", e900160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18396 cCL("fmld", e900180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18397 cCL("fmldp", e9001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18398 cCL("fmldm", e9001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18399 cCL("fmldz", e9001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18400 cCL("fmle", e980100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18401 cCL("fmlep", e980120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18402 cCL("fmlem", e980140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18403 cCL("fmlez", e980160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18405 cCL("fdvs", ea00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18406 cCL("fdvsp", ea00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18407 cCL("fdvsm", ea00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18408 cCL("fdvsz", ea00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18409 cCL("fdvd", ea00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18410 cCL("fdvdp", ea001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18411 cCL("fdvdm", ea001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18412 cCL("fdvdz", ea001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18413 cCL("fdve", ea80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18414 cCL("fdvep", ea80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18415 cCL("fdvem", ea80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18416 cCL("fdvez", ea80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18418 cCL("frds", eb00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18419 cCL("frdsp", eb00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18420 cCL("frdsm", eb00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18421 cCL("frdsz", eb00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18422 cCL("frdd", eb00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18423 cCL("frddp", eb001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18424 cCL("frddm", eb001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18425 cCL("frddz", eb001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18426 cCL("frde", eb80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18427 cCL("frdep", eb80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18428 cCL("frdem", eb80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18429 cCL("frdez", eb80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18431 cCL("pols", ec00100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18432 cCL("polsp", ec00120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18433 cCL("polsm", ec00140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18434 cCL("polsz", ec00160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18435 cCL("pold", ec00180
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18436 cCL("poldp", ec001a0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18437 cCL("poldm", ec001c0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18438 cCL("poldz", ec001e0
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18439 cCL("pole", ec80100
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18440 cCL("polep", ec80120
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18441 cCL("polem", ec80140
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18442 cCL("polez", ec80160
, 3, (RF
, RF
, RF_IF
), rd_rn_rm
),
18444 cCE("cmf", e90f110
, 2, (RF
, RF_IF
), fpa_cmp
),
18445 C3E("cmfe", ed0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
18446 cCE("cnf", eb0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
18447 C3E("cnfe", ef0f110
, 2, (RF
, RF_IF
), fpa_cmp
),
18449 cCL("flts", e000110
, 2, (RF
, RR
), rn_rd
),
18450 cCL("fltsp", e000130
, 2, (RF
, RR
), rn_rd
),
18451 cCL("fltsm", e000150
, 2, (RF
, RR
), rn_rd
),
18452 cCL("fltsz", e000170
, 2, (RF
, RR
), rn_rd
),
18453 cCL("fltd", e000190
, 2, (RF
, RR
), rn_rd
),
18454 cCL("fltdp", e0001b0
, 2, (RF
, RR
), rn_rd
),
18455 cCL("fltdm", e0001d0
, 2, (RF
, RR
), rn_rd
),
18456 cCL("fltdz", e0001f0
, 2, (RF
, RR
), rn_rd
),
18457 cCL("flte", e080110
, 2, (RF
, RR
), rn_rd
),
18458 cCL("fltep", e080130
, 2, (RF
, RR
), rn_rd
),
18459 cCL("fltem", e080150
, 2, (RF
, RR
), rn_rd
),
18460 cCL("fltez", e080170
, 2, (RF
, RR
), rn_rd
),
18462 /* The implementation of the FIX instruction is broken on some
18463 assemblers, in that it accepts a precision specifier as well as a
18464 rounding specifier, despite the fact that this is meaningless.
18465 To be more compatible, we accept it as well, though of course it
18466 does not set any bits. */
18467 cCE("fix", e100110
, 2, (RR
, RF
), rd_rm
),
18468 cCL("fixp", e100130
, 2, (RR
, RF
), rd_rm
),
18469 cCL("fixm", e100150
, 2, (RR
, RF
), rd_rm
),
18470 cCL("fixz", e100170
, 2, (RR
, RF
), rd_rm
),
18471 cCL("fixsp", e100130
, 2, (RR
, RF
), rd_rm
),
18472 cCL("fixsm", e100150
, 2, (RR
, RF
), rd_rm
),
18473 cCL("fixsz", e100170
, 2, (RR
, RF
), rd_rm
),
18474 cCL("fixdp", e100130
, 2, (RR
, RF
), rd_rm
),
18475 cCL("fixdm", e100150
, 2, (RR
, RF
), rd_rm
),
18476 cCL("fixdz", e100170
, 2, (RR
, RF
), rd_rm
),
18477 cCL("fixep", e100130
, 2, (RR
, RF
), rd_rm
),
18478 cCL("fixem", e100150
, 2, (RR
, RF
), rd_rm
),
18479 cCL("fixez", e100170
, 2, (RR
, RF
), rd_rm
),
18481 /* Instructions that were new with the real FPA, call them V2. */
18483 #define ARM_VARIANT & fpu_fpa_ext_v2
18485 cCE("lfm", c100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18486 cCL("lfmfd", c900200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18487 cCL("lfmea", d100200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18488 cCE("sfm", c000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18489 cCL("sfmfd", d000200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18490 cCL("sfmea", c800200
, 3, (RF
, I4b
, ADDR
), fpa_ldmstm
),
18493 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18495 /* Moves and type conversions. */
18496 cCE("fcpys", eb00a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18497 cCE("fmrs", e100a10
, 2, (RR
, RVS
), vfp_reg_from_sp
),
18498 cCE("fmsr", e000a10
, 2, (RVS
, RR
), vfp_sp_from_reg
),
18499 cCE("fmstat", ef1fa10
, 0, (), noargs
),
18500 cCE("vmrs", ef00a10
, 2, (APSR_RR
, RVC
), vmrs
),
18501 cCE("vmsr", ee00a10
, 2, (RVC
, RR
), vmsr
),
18502 cCE("fsitos", eb80ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18503 cCE("fuitos", eb80a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18504 cCE("ftosis", ebd0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18505 cCE("ftosizs", ebd0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18506 cCE("ftouis", ebc0a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18507 cCE("ftouizs", ebc0ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18508 cCE("fmrx", ef00a10
, 2, (RR
, RVC
), rd_rn
),
18509 cCE("fmxr", ee00a10
, 2, (RVC
, RR
), rn_rd
),
18511 /* Memory operations. */
18512 cCE("flds", d100a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
18513 cCE("fsts", d000a00
, 2, (RVS
, ADDRGLDC
), vfp_sp_ldst
),
18514 cCE("fldmias", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18515 cCE("fldmfds", c900a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18516 cCE("fldmdbs", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18517 cCE("fldmeas", d300a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18518 cCE("fldmiax", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18519 cCE("fldmfdx", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18520 cCE("fldmdbx", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18521 cCE("fldmeax", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18522 cCE("fstmias", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18523 cCE("fstmeas", c800a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmia
),
18524 cCE("fstmdbs", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18525 cCE("fstmfds", d200a00
, 2, (RRnpctw
, VRSLST
), vfp_sp_ldstmdb
),
18526 cCE("fstmiax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18527 cCE("fstmeax", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmia
),
18528 cCE("fstmdbx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18529 cCE("fstmfdx", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_xp_ldstmdb
),
18531 /* Monadic operations. */
18532 cCE("fabss", eb00ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18533 cCE("fnegs", eb10a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18534 cCE("fsqrts", eb10ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18536 /* Dyadic operations. */
18537 cCE("fadds", e300a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18538 cCE("fsubs", e300a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18539 cCE("fmuls", e200a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18540 cCE("fdivs", e800a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18541 cCE("fmacs", e000a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18542 cCE("fmscs", e100a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18543 cCE("fnmuls", e200a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18544 cCE("fnmacs", e000a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18545 cCE("fnmscs", e100a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18548 cCE("fcmps", eb40a40
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18549 cCE("fcmpzs", eb50a40
, 1, (RVS
), vfp_sp_compare_z
),
18550 cCE("fcmpes", eb40ac0
, 2, (RVS
, RVS
), vfp_sp_monadic
),
18551 cCE("fcmpezs", eb50ac0
, 1, (RVS
), vfp_sp_compare_z
),
18553 /* Double precision load/store are still present on single precision
18554 implementations. */
18555 cCE("fldd", d100b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
18556 cCE("fstd", d000b00
, 2, (RVD
, ADDRGLDC
), vfp_dp_ldst
),
18557 cCE("fldmiad", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18558 cCE("fldmfdd", c900b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18559 cCE("fldmdbd", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18560 cCE("fldmead", d300b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18561 cCE("fstmiad", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18562 cCE("fstmead", c800b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmia
),
18563 cCE("fstmdbd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18564 cCE("fstmfdd", d200b00
, 2, (RRnpctw
, VRDLST
), vfp_dp_ldstmdb
),
18567 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18569 /* Moves and type conversions. */
18570 cCE("fcpyd", eb00b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18571 cCE("fcvtds", eb70ac0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
18572 cCE("fcvtsd", eb70bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18573 cCE("fmdhr", e200b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
18574 cCE("fmdlr", e000b10
, 2, (RVD
, RR
), vfp_dp_rn_rd
),
18575 cCE("fmrdh", e300b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
18576 cCE("fmrdl", e100b10
, 2, (RR
, RVD
), vfp_dp_rd_rn
),
18577 cCE("fsitod", eb80bc0
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
18578 cCE("fuitod", eb80b40
, 2, (RVD
, RVS
), vfp_dp_sp_cvt
),
18579 cCE("ftosid", ebd0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18580 cCE("ftosizd", ebd0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18581 cCE("ftouid", ebc0b40
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18582 cCE("ftouizd", ebc0bc0
, 2, (RVS
, RVD
), vfp_sp_dp_cvt
),
18584 /* Monadic operations. */
18585 cCE("fabsd", eb00bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18586 cCE("fnegd", eb10b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18587 cCE("fsqrtd", eb10bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18589 /* Dyadic operations. */
18590 cCE("faddd", e300b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18591 cCE("fsubd", e300b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18592 cCE("fmuld", e200b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18593 cCE("fdivd", e800b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18594 cCE("fmacd", e000b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18595 cCE("fmscd", e100b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18596 cCE("fnmuld", e200b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18597 cCE("fnmacd", e000b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18598 cCE("fnmscd", e100b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18601 cCE("fcmpd", eb40b40
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18602 cCE("fcmpzd", eb50b40
, 1, (RVD
), vfp_dp_rd
),
18603 cCE("fcmped", eb40bc0
, 2, (RVD
, RVD
), vfp_dp_rd_rm
),
18604 cCE("fcmpezd", eb50bc0
, 1, (RVD
), vfp_dp_rd
),
18607 #define ARM_VARIANT & fpu_vfp_ext_v2
18609 cCE("fmsrr", c400a10
, 3, (VRSLST
, RR
, RR
), vfp_sp2_from_reg2
),
18610 cCE("fmrrs", c500a10
, 3, (RR
, RR
, VRSLST
), vfp_reg2_from_sp2
),
18611 cCE("fmdrr", c400b10
, 3, (RVD
, RR
, RR
), vfp_dp_rm_rd_rn
),
18612 cCE("fmrrd", c500b10
, 3, (RR
, RR
, RVD
), vfp_dp_rd_rn_rm
),
18614 /* Instructions which may belong to either the Neon or VFP instruction sets.
18615 Individual encoder functions perform additional architecture checks. */
18617 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18618 #undef THUMB_VARIANT
18619 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18621 /* These mnemonics are unique to VFP. */
18622 NCE(vsqrt
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_sqrt
),
18623 NCE(vdiv
, 0, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_div
),
18624 nCE(vnmul
, _vnmul
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18625 nCE(vnmla
, _vnmla
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18626 nCE(vnmls
, _vnmls
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18627 nCE(vcmp
, _vcmp
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
18628 nCE(vcmpe
, _vcmpe
, 2, (RVSD
, RVSD_I0
), vfp_nsyn_cmp
),
18629 NCE(vpush
, 0, 1, (VRSDLST
), vfp_nsyn_push
),
18630 NCE(vpop
, 0, 1, (VRSDLST
), vfp_nsyn_pop
),
18631 NCE(vcvtz
, 0, 2, (RVSD
, RVSD
), vfp_nsyn_cvtz
),
18633 /* Mnemonics shared by Neon and VFP. */
18634 nCEF(vmul
, _vmul
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mul
),
18635 nCEF(vmla
, _vmla
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
18636 nCEF(vmls
, _vmls
, 3, (RNSDQ
, oRNSDQ
, RNSDQ_RNSC
), neon_mac_maybe_scalar
),
18638 nCEF(vadd
, _vadd
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
18639 nCEF(vsub
, _vsub
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_addsub_if_i
),
18641 NCEF(vabs
, 1b10300
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
18642 NCEF(vneg
, 1b10380
, 2, (RNSDQ
, RNSDQ
), neon_abs_neg
),
18644 NCE(vldm
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18645 NCE(vldmia
, c900b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18646 NCE(vldmdb
, d100b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18647 NCE(vstm
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18648 NCE(vstmia
, c800b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18649 NCE(vstmdb
, d000b00
, 2, (RRnpctw
, VRSDLST
), neon_ldm_stm
),
18650 NCE(vldr
, d100b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
18651 NCE(vstr
, d000b00
, 2, (RVSD
, ADDRGLDC
), neon_ldr_str
),
18653 nCEF(vcvt
, _vcvt
, 3, (RNSDQ
, RNSDQ
, oI32z
), neon_cvt
),
18654 nCEF(vcvtr
, _vcvt
, 2, (RNSDQ
, RNSDQ
), neon_cvtr
),
18655 nCEF(vcvtb
, _vcvt
, 2, (RVS
, RVS
), neon_cvtb
),
18656 nCEF(vcvtt
, _vcvt
, 2, (RVS
, RVS
), neon_cvtt
),
18659 /* NOTE: All VMOV encoding is special-cased! */
18660 NCE(vmov
, 0, 1, (VMOV
), neon_mov
),
18661 NCE(vmovq
, 0, 1, (VMOV
), neon_mov
),
18663 #undef THUMB_VARIANT
18664 #define THUMB_VARIANT & fpu_neon_ext_v1
18666 #define ARM_VARIANT & fpu_neon_ext_v1
18668 /* Data processing with three registers of the same length. */
18669 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18670 NUF(vaba
, 0000710, 3, (RNDQ
, RNDQ
, RNDQ
), neon_dyadic_i_su
),
18671 NUF(vabaq
, 0000710, 3, (RNQ
, RNQ
, RNQ
), neon_dyadic_i_su
),
18672 NUF(vhadd
, 0000000, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
18673 NUF(vhaddq
, 0000000, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
18674 NUF(vrhadd
, 0000100, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
18675 NUF(vrhaddq
, 0000100, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
18676 NUF(vhsub
, 0000200, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i_su
),
18677 NUF(vhsubq
, 0000200, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i_su
),
18678 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18679 NUF(vqadd
, 0000010, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
18680 NUF(vqaddq
, 0000010, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
18681 NUF(vqsub
, 0000210, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_i64_su
),
18682 NUF(vqsubq
, 0000210, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_i64_su
),
18683 NUF(vrshl
, 0000500, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
18684 NUF(vrshlq
, 0000500, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
18685 NUF(vqrshl
, 0000510, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_rshl
),
18686 NUF(vqrshlq
, 0000510, 3, (RNQ
, oRNQ
, RNQ
), neon_rshl
),
18687 /* If not immediate, fall back to neon_dyadic_i64_su.
18688 shl_imm should accept I8 I16 I32 I64,
18689 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18690 nUF(vshl
, _vshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_shl_imm
),
18691 nUF(vshlq
, _vshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_shl_imm
),
18692 nUF(vqshl
, _vqshl
, 3, (RNDQ
, oRNDQ
, RNDQ_I63b
), neon_qshl_imm
),
18693 nUF(vqshlq
, _vqshl
, 3, (RNQ
, oRNQ
, RNDQ_I63b
), neon_qshl_imm
),
18694 /* Logic ops, types optional & ignored. */
18695 nUF(vand
, _vand
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18696 nUF(vandq
, _vand
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18697 nUF(vbic
, _vbic
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18698 nUF(vbicq
, _vbic
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18699 nUF(vorr
, _vorr
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18700 nUF(vorrq
, _vorr
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18701 nUF(vorn
, _vorn
, 3, (RNDQ
, oRNDQ
, RNDQ_Ibig
), neon_logic
),
18702 nUF(vornq
, _vorn
, 3, (RNQ
, oRNQ
, RNDQ_Ibig
), neon_logic
),
18703 nUF(veor
, _veor
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_logic
),
18704 nUF(veorq
, _veor
, 3, (RNQ
, oRNQ
, RNQ
), neon_logic
),
18705 /* Bitfield ops, untyped. */
18706 NUF(vbsl
, 1100110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
18707 NUF(vbslq
, 1100110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
18708 NUF(vbit
, 1200110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
18709 NUF(vbitq
, 1200110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
18710 NUF(vbif
, 1300110, 3, (RNDQ
, RNDQ
, RNDQ
), neon_bitfield
),
18711 NUF(vbifq
, 1300110, 3, (RNQ
, RNQ
, RNQ
), neon_bitfield
),
18712 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18713 nUF(vabd
, _vabd
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
18714 nUF(vabdq
, _vabd
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
18715 nUF(vmax
, _vmax
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
18716 nUF(vmaxq
, _vmax
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
18717 nUF(vmin
, _vmin
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_dyadic_if_su
),
18718 nUF(vminq
, _vmin
, 3, (RNQ
, oRNQ
, RNQ
), neon_dyadic_if_su
),
18719 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18720 back to neon_dyadic_if_su. */
18721 nUF(vcge
, _vcge
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
18722 nUF(vcgeq
, _vcge
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
18723 nUF(vcgt
, _vcgt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp
),
18724 nUF(vcgtq
, _vcgt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp
),
18725 nUF(vclt
, _vclt
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
18726 nUF(vcltq
, _vclt
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
18727 nUF(vcle
, _vcle
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_cmp_inv
),
18728 nUF(vcleq
, _vcle
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_cmp_inv
),
18729 /* Comparison. Type I8 I16 I32 F32. */
18730 nUF(vceq
, _vceq
, 3, (RNDQ
, oRNDQ
, RNDQ_I0
), neon_ceq
),
18731 nUF(vceqq
, _vceq
, 3, (RNQ
, oRNQ
, RNDQ_I0
), neon_ceq
),
18732 /* As above, D registers only. */
18733 nUF(vpmax
, _vpmax
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
18734 nUF(vpmin
, _vpmin
, 3, (RND
, oRND
, RND
), neon_dyadic_if_su_d
),
18735 /* Int and float variants, signedness unimportant. */
18736 nUF(vmlaq
, _vmla
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
18737 nUF(vmlsq
, _vmls
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mac_maybe_scalar
),
18738 nUF(vpadd
, _vpadd
, 3, (RND
, oRND
, RND
), neon_dyadic_if_i_d
),
18739 /* Add/sub take types I8 I16 I32 I64 F32. */
18740 nUF(vaddq
, _vadd
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
18741 nUF(vsubq
, _vsub
, 3, (RNQ
, oRNQ
, RNQ
), neon_addsub_if_i
),
18742 /* vtst takes sizes 8, 16, 32. */
18743 NUF(vtst
, 0000810, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_tst
),
18744 NUF(vtstq
, 0000810, 3, (RNQ
, oRNQ
, RNQ
), neon_tst
),
18745 /* VMUL takes I8 I16 I32 F32 P8. */
18746 nUF(vmulq
, _vmul
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_mul
),
18747 /* VQD{R}MULH takes S16 S32. */
18748 nUF(vqdmulh
, _vqdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
18749 nUF(vqdmulhq
, _vqdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
18750 nUF(vqrdmulh
, _vqrdmulh
, 3, (RNDQ
, oRNDQ
, RNDQ_RNSC
), neon_qdmulh
),
18751 nUF(vqrdmulhq
, _vqrdmulh
, 3, (RNQ
, oRNQ
, RNDQ_RNSC
), neon_qdmulh
),
18752 NUF(vacge
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
18753 NUF(vacgeq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
18754 NUF(vacgt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute
),
18755 NUF(vacgtq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute
),
18756 NUF(vaclt
, 0200e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
18757 NUF(vacltq
, 0200e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
18758 NUF(vacle
, 0000e10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_fcmp_absolute_inv
),
18759 NUF(vacleq
, 0000e10
, 3, (RNQ
, oRNQ
, RNQ
), neon_fcmp_absolute_inv
),
18760 NUF(vrecps
, 0000f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
18761 NUF(vrecpsq
, 0000f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
18762 NUF(vrsqrts
, 0200f10
, 3, (RNDQ
, oRNDQ
, RNDQ
), neon_step
),
18763 NUF(vrsqrtsq
, 0200f10
, 3, (RNQ
, oRNQ
, RNQ
), neon_step
),
18765 /* Two address, int/float. Types S8 S16 S32 F32. */
18766 NUF(vabsq
, 1b10300
, 2, (RNQ
, RNQ
), neon_abs_neg
),
18767 NUF(vnegq
, 1b10380
, 2, (RNQ
, RNQ
), neon_abs_neg
),
18769 /* Data processing with two registers and a shift amount. */
18770 /* Right shifts, and variants with rounding.
18771 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18772 NUF(vshr
, 0800010, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
18773 NUF(vshrq
, 0800010, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
18774 NUF(vrshr
, 0800210, 3, (RNDQ
, oRNDQ
, I64z
), neon_rshift_round_imm
),
18775 NUF(vrshrq
, 0800210, 3, (RNQ
, oRNQ
, I64z
), neon_rshift_round_imm
),
18776 NUF(vsra
, 0800110, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
18777 NUF(vsraq
, 0800110, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
18778 NUF(vrsra
, 0800310, 3, (RNDQ
, oRNDQ
, I64
), neon_rshift_round_imm
),
18779 NUF(vrsraq
, 0800310, 3, (RNQ
, oRNQ
, I64
), neon_rshift_round_imm
),
18780 /* Shift and insert. Sizes accepted 8 16 32 64. */
18781 NUF(vsli
, 1800510, 3, (RNDQ
, oRNDQ
, I63
), neon_sli
),
18782 NUF(vsliq
, 1800510, 3, (RNQ
, oRNQ
, I63
), neon_sli
),
18783 NUF(vsri
, 1800410, 3, (RNDQ
, oRNDQ
, I64
), neon_sri
),
18784 NUF(vsriq
, 1800410, 3, (RNQ
, oRNQ
, I64
), neon_sri
),
18785 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18786 NUF(vqshlu
, 1800610, 3, (RNDQ
, oRNDQ
, I63
), neon_qshlu_imm
),
18787 NUF(vqshluq
, 1800610, 3, (RNQ
, oRNQ
, I63
), neon_qshlu_imm
),
18788 /* Right shift immediate, saturating & narrowing, with rounding variants.
18789 Types accepted S16 S32 S64 U16 U32 U64. */
18790 NUF(vqshrn
, 0800910, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
18791 NUF(vqrshrn
, 0800950, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow
),
18792 /* As above, unsigned. Types accepted S16 S32 S64. */
18793 NUF(vqshrun
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
18794 NUF(vqrshrun
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_sat_narrow_u
),
18795 /* Right shift narrowing. Types accepted I16 I32 I64. */
18796 NUF(vshrn
, 0800810, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
18797 NUF(vrshrn
, 0800850, 3, (RND
, RNQ
, I32z
), neon_rshift_narrow
),
18798 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18799 nUF(vshll
, _vshll
, 3, (RNQ
, RND
, I32
), neon_shll
),
18800 /* CVT with optional immediate for fixed-point variant. */
18801 nUF(vcvtq
, _vcvt
, 3, (RNQ
, RNQ
, oI32b
), neon_cvt
),
18803 nUF(vmvn
, _vmvn
, 2, (RNDQ
, RNDQ_Ibig
), neon_mvn
),
18804 nUF(vmvnq
, _vmvn
, 2, (RNQ
, RNDQ_Ibig
), neon_mvn
),
18806 /* Data processing, three registers of different lengths. */
18807 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18808 NUF(vabal
, 0800500, 3, (RNQ
, RND
, RND
), neon_abal
),
18809 NUF(vabdl
, 0800700, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
18810 NUF(vaddl
, 0800000, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
18811 NUF(vsubl
, 0800200, 3, (RNQ
, RND
, RND
), neon_dyadic_long
),
18812 /* If not scalar, fall back to neon_dyadic_long.
18813 Vector types as above, scalar types S16 S32 U16 U32. */
18814 nUF(vmlal
, _vmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
18815 nUF(vmlsl
, _vmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mac_maybe_scalar_long
),
18816 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18817 NUF(vaddw
, 0800100, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
18818 NUF(vsubw
, 0800300, 3, (RNQ
, oRNQ
, RND
), neon_dyadic_wide
),
18819 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18820 NUF(vaddhn
, 0800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18821 NUF(vraddhn
, 1800400, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18822 NUF(vsubhn
, 0800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18823 NUF(vrsubhn
, 1800600, 3, (RND
, RNQ
, RNQ
), neon_dyadic_narrow
),
18824 /* Saturating doubling multiplies. Types S16 S32. */
18825 nUF(vqdmlal
, _vqdmlal
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
18826 nUF(vqdmlsl
, _vqdmlsl
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
18827 nUF(vqdmull
, _vqdmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_mul_sat_scalar_long
),
18828 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18829 S16 S32 U16 U32. */
18830 nUF(vmull
, _vmull
, 3, (RNQ
, RND
, RND_RNSC
), neon_vmull
),
18832 /* Extract. Size 8. */
18833 NUF(vext
, 0b00000, 4, (RNDQ
, oRNDQ
, RNDQ
, I15
), neon_ext
),
18834 NUF(vextq
, 0b00000, 4, (RNQ
, oRNQ
, RNQ
, I15
), neon_ext
),
18836 /* Two registers, miscellaneous. */
18837 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18838 NUF(vrev64
, 1b00000
, 2, (RNDQ
, RNDQ
), neon_rev
),
18839 NUF(vrev64q
, 1b00000
, 2, (RNQ
, RNQ
), neon_rev
),
18840 NUF(vrev32
, 1b00080
, 2, (RNDQ
, RNDQ
), neon_rev
),
18841 NUF(vrev32q
, 1b00080
, 2, (RNQ
, RNQ
), neon_rev
),
18842 NUF(vrev16
, 1b00100
, 2, (RNDQ
, RNDQ
), neon_rev
),
18843 NUF(vrev16q
, 1b00100
, 2, (RNQ
, RNQ
), neon_rev
),
18844 /* Vector replicate. Sizes 8 16 32. */
18845 nCE(vdup
, _vdup
, 2, (RNDQ
, RR_RNSC
), neon_dup
),
18846 nCE(vdupq
, _vdup
, 2, (RNQ
, RR_RNSC
), neon_dup
),
18847 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18848 NUF(vmovl
, 0800a10
, 2, (RNQ
, RND
), neon_movl
),
18849 /* VMOVN. Types I16 I32 I64. */
18850 nUF(vmovn
, _vmovn
, 2, (RND
, RNQ
), neon_movn
),
18851 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18852 nUF(vqmovn
, _vqmovn
, 2, (RND
, RNQ
), neon_qmovn
),
18853 /* VQMOVUN. Types S16 S32 S64. */
18854 nUF(vqmovun
, _vqmovun
, 2, (RND
, RNQ
), neon_qmovun
),
18855 /* VZIP / VUZP. Sizes 8 16 32. */
18856 NUF(vzip
, 1b20180
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
18857 NUF(vzipq
, 1b20180
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
18858 NUF(vuzp
, 1b20100
, 2, (RNDQ
, RNDQ
), neon_zip_uzp
),
18859 NUF(vuzpq
, 1b20100
, 2, (RNQ
, RNQ
), neon_zip_uzp
),
18860 /* VQABS / VQNEG. Types S8 S16 S32. */
18861 NUF(vqabs
, 1b00700
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
18862 NUF(vqabsq
, 1b00700
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
18863 NUF(vqneg
, 1b00780
, 2, (RNDQ
, RNDQ
), neon_sat_abs_neg
),
18864 NUF(vqnegq
, 1b00780
, 2, (RNQ
, RNQ
), neon_sat_abs_neg
),
18865 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18866 NUF(vpadal
, 1b00600
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
18867 NUF(vpadalq
, 1b00600
, 2, (RNQ
, RNQ
), neon_pair_long
),
18868 NUF(vpaddl
, 1b00200
, 2, (RNDQ
, RNDQ
), neon_pair_long
),
18869 NUF(vpaddlq
, 1b00200
, 2, (RNQ
, RNQ
), neon_pair_long
),
18870 /* Reciprocal estimates. Types U32 F32. */
18871 NUF(vrecpe
, 1b30400
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
18872 NUF(vrecpeq
, 1b30400
, 2, (RNQ
, RNQ
), neon_recip_est
),
18873 NUF(vrsqrte
, 1b30480
, 2, (RNDQ
, RNDQ
), neon_recip_est
),
18874 NUF(vrsqrteq
, 1b30480
, 2, (RNQ
, RNQ
), neon_recip_est
),
18875 /* VCLS. Types S8 S16 S32. */
18876 NUF(vcls
, 1b00400
, 2, (RNDQ
, RNDQ
), neon_cls
),
18877 NUF(vclsq
, 1b00400
, 2, (RNQ
, RNQ
), neon_cls
),
18878 /* VCLZ. Types I8 I16 I32. */
18879 NUF(vclz
, 1b00480
, 2, (RNDQ
, RNDQ
), neon_clz
),
18880 NUF(vclzq
, 1b00480
, 2, (RNQ
, RNQ
), neon_clz
),
18881 /* VCNT. Size 8. */
18882 NUF(vcnt
, 1b00500
, 2, (RNDQ
, RNDQ
), neon_cnt
),
18883 NUF(vcntq
, 1b00500
, 2, (RNQ
, RNQ
), neon_cnt
),
18884 /* Two address, untyped. */
18885 NUF(vswp
, 1b20000
, 2, (RNDQ
, RNDQ
), neon_swp
),
18886 NUF(vswpq
, 1b20000
, 2, (RNQ
, RNQ
), neon_swp
),
18887 /* VTRN. Sizes 8 16 32. */
18888 nUF(vtrn
, _vtrn
, 2, (RNDQ
, RNDQ
), neon_trn
),
18889 nUF(vtrnq
, _vtrn
, 2, (RNQ
, RNQ
), neon_trn
),
18891 /* Table lookup. Size 8. */
18892 NUF(vtbl
, 1b00800
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
18893 NUF(vtbx
, 1b00840
, 3, (RND
, NRDLST
, RND
), neon_tbl_tbx
),
18895 #undef THUMB_VARIANT
18896 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18898 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18900 /* Neon element/structure load/store. */
18901 nUF(vld1
, _vld1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18902 nUF(vst1
, _vst1
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18903 nUF(vld2
, _vld2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18904 nUF(vst2
, _vst2
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18905 nUF(vld3
, _vld3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18906 nUF(vst3
, _vst3
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18907 nUF(vld4
, _vld4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18908 nUF(vst4
, _vst4
, 2, (NSTRLST
, ADDR
), neon_ldx_stx
),
18910 #undef THUMB_VARIANT
18911 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18913 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18914 cCE("fconsts", eb00a00
, 2, (RVS
, I255
), vfp_sp_const
),
18915 cCE("fshtos", eba0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18916 cCE("fsltos", eba0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18917 cCE("fuhtos", ebb0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18918 cCE("fultos", ebb0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18919 cCE("ftoshs", ebe0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18920 cCE("ftosls", ebe0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18921 cCE("ftouhs", ebf0a40
, 2, (RVS
, I16z
), vfp_sp_conv_16
),
18922 cCE("ftouls", ebf0ac0
, 2, (RVS
, I32
), vfp_sp_conv_32
),
18924 #undef THUMB_VARIANT
18925 #define THUMB_VARIANT & fpu_vfp_ext_v3
18927 #define ARM_VARIANT & fpu_vfp_ext_v3
18929 cCE("fconstd", eb00b00
, 2, (RVD
, I255
), vfp_dp_const
),
18930 cCE("fshtod", eba0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18931 cCE("fsltod", eba0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18932 cCE("fuhtod", ebb0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18933 cCE("fultod", ebb0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18934 cCE("ftoshd", ebe0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18935 cCE("ftosld", ebe0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18936 cCE("ftouhd", ebf0b40
, 2, (RVD
, I16z
), vfp_dp_conv_16
),
18937 cCE("ftould", ebf0bc0
, 2, (RVD
, I32
), vfp_dp_conv_32
),
18940 #define ARM_VARIANT &fpu_vfp_ext_fma
18941 #undef THUMB_VARIANT
18942 #define THUMB_VARIANT &fpu_vfp_ext_fma
18943 /* Mnemonics shared by Neon and VFP. These are included in the
18944 VFP FMA variant; NEON and VFP FMA always includes the NEON
18945 FMA instructions. */
18946 nCEF(vfma
, _vfma
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
18947 nCEF(vfms
, _vfms
, 3, (RNSDQ
, oRNSDQ
, RNSDQ
), neon_fmac
),
18948 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18949 the v form should always be used. */
18950 cCE("ffmas", ea00a00
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18951 cCE("ffnmas", ea00a40
, 3, (RVS
, RVS
, RVS
), vfp_sp_dyadic
),
18952 cCE("ffmad", ea00b00
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18953 cCE("ffnmad", ea00b40
, 3, (RVD
, RVD
, RVD
), vfp_dp_rd_rn_rm
),
18954 nCE(vfnma
, _vfnma
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18955 nCE(vfnms
, _vfnms
, 3, (RVSD
, RVSD
, RVSD
), vfp_nsyn_nmul
),
18957 #undef THUMB_VARIANT
18959 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18961 cCE("mia", e200010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18962 cCE("miaph", e280010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18963 cCE("miabb", e2c0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18964 cCE("miabt", e2d0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18965 cCE("miatb", e2e0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18966 cCE("miatt", e2f0010
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mia
),
18967 cCE("mar", c400000
, 3, (RXA
, RRnpc
, RRnpc
), xsc_mar
),
18968 cCE("mra", c500000
, 3, (RRnpc
, RRnpc
, RXA
), xsc_mra
),
18971 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18973 cCE("tandcb", e13f130
, 1, (RR
), iwmmxt_tandorc
),
18974 cCE("tandch", e53f130
, 1, (RR
), iwmmxt_tandorc
),
18975 cCE("tandcw", e93f130
, 1, (RR
), iwmmxt_tandorc
),
18976 cCE("tbcstb", e400010
, 2, (RIWR
, RR
), rn_rd
),
18977 cCE("tbcsth", e400050
, 2, (RIWR
, RR
), rn_rd
),
18978 cCE("tbcstw", e400090
, 2, (RIWR
, RR
), rn_rd
),
18979 cCE("textrcb", e130170
, 2, (RR
, I7
), iwmmxt_textrc
),
18980 cCE("textrch", e530170
, 2, (RR
, I7
), iwmmxt_textrc
),
18981 cCE("textrcw", e930170
, 2, (RR
, I7
), iwmmxt_textrc
),
18982 cCE("textrmub", e100070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18983 cCE("textrmuh", e500070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18984 cCE("textrmuw", e900070
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18985 cCE("textrmsb", e100078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18986 cCE("textrmsh", e500078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18987 cCE("textrmsw", e900078
, 3, (RR
, RIWR
, I7
), iwmmxt_textrm
),
18988 cCE("tinsrb", e600010
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
18989 cCE("tinsrh", e600050
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
18990 cCE("tinsrw", e600090
, 3, (RIWR
, RR
, I7
), iwmmxt_tinsr
),
18991 cCE("tmcr", e000110
, 2, (RIWC_RIWG
, RR
), rn_rd
),
18992 cCE("tmcrr", c400000
, 3, (RIWR
, RR
, RR
), rm_rd_rn
),
18993 cCE("tmia", e200010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18994 cCE("tmiaph", e280010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18995 cCE("tmiabb", e2c0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18996 cCE("tmiabt", e2d0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18997 cCE("tmiatb", e2e0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18998 cCE("tmiatt", e2f0010
, 3, (RIWR
, RR
, RR
), iwmmxt_tmia
),
18999 cCE("tmovmskb", e100030
, 2, (RR
, RIWR
), rd_rn
),
19000 cCE("tmovmskh", e500030
, 2, (RR
, RIWR
), rd_rn
),
19001 cCE("tmovmskw", e900030
, 2, (RR
, RIWR
), rd_rn
),
19002 cCE("tmrc", e100110
, 2, (RR
, RIWC_RIWG
), rd_rn
),
19003 cCE("tmrrc", c500000
, 3, (RR
, RR
, RIWR
), rd_rn_rm
),
19004 cCE("torcb", e13f150
, 1, (RR
), iwmmxt_tandorc
),
19005 cCE("torch", e53f150
, 1, (RR
), iwmmxt_tandorc
),
19006 cCE("torcw", e93f150
, 1, (RR
), iwmmxt_tandorc
),
19007 cCE("waccb", e0001c0
, 2, (RIWR
, RIWR
), rd_rn
),
19008 cCE("wacch", e4001c0
, 2, (RIWR
, RIWR
), rd_rn
),
19009 cCE("waccw", e8001c0
, 2, (RIWR
, RIWR
), rd_rn
),
19010 cCE("waddbss", e300180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19011 cCE("waddb", e000180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19012 cCE("waddbus", e100180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19013 cCE("waddhss", e700180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19014 cCE("waddh", e400180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19015 cCE("waddhus", e500180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19016 cCE("waddwss", eb00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19017 cCE("waddw", e800180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19018 cCE("waddwus", e900180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19019 cCE("waligni", e000020
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_waligni
),
19020 cCE("walignr0", e800020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19021 cCE("walignr1", e900020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19022 cCE("walignr2", ea00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19023 cCE("walignr3", eb00020
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19024 cCE("wand", e200000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19025 cCE("wandn", e300000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19026 cCE("wavg2b", e800000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19027 cCE("wavg2br", e900000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19028 cCE("wavg2h", ec00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19029 cCE("wavg2hr", ed00000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19030 cCE("wcmpeqb", e000060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19031 cCE("wcmpeqh", e400060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19032 cCE("wcmpeqw", e800060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19033 cCE("wcmpgtub", e100060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19034 cCE("wcmpgtuh", e500060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19035 cCE("wcmpgtuw", e900060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19036 cCE("wcmpgtsb", e300060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19037 cCE("wcmpgtsh", e700060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19038 cCE("wcmpgtsw", eb00060
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19039 cCE("wldrb", c100000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
19040 cCE("wldrh", c500000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
19041 cCE("wldrw", c100100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
19042 cCE("wldrd", c500100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
19043 cCE("wmacs", e600100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19044 cCE("wmacsz", e700100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19045 cCE("wmacu", e400100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19046 cCE("wmacuz", e500100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19047 cCE("wmadds", ea00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19048 cCE("wmaddu", e800100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19049 cCE("wmaxsb", e200160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19050 cCE("wmaxsh", e600160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19051 cCE("wmaxsw", ea00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19052 cCE("wmaxub", e000160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19053 cCE("wmaxuh", e400160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19054 cCE("wmaxuw", e800160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19055 cCE("wminsb", e300160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19056 cCE("wminsh", e700160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19057 cCE("wminsw", eb00160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19058 cCE("wminub", e100160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19059 cCE("wminuh", e500160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19060 cCE("wminuw", e900160
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19061 cCE("wmov", e000000
, 2, (RIWR
, RIWR
), iwmmxt_wmov
),
19062 cCE("wmulsm", e300100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19063 cCE("wmulsl", e200100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19064 cCE("wmulum", e100100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19065 cCE("wmulul", e000100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19066 cCE("wor", e000000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19067 cCE("wpackhss", e700080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19068 cCE("wpackhus", e500080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19069 cCE("wpackwss", eb00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19070 cCE("wpackwus", e900080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19071 cCE("wpackdss", ef00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19072 cCE("wpackdus", ed00080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19073 cCE("wrorh", e700040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19074 cCE("wrorhg", e700148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19075 cCE("wrorw", eb00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19076 cCE("wrorwg", eb00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19077 cCE("wrord", ef00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19078 cCE("wrordg", ef00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19079 cCE("wsadb", e000120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19080 cCE("wsadbz", e100120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19081 cCE("wsadh", e400120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19082 cCE("wsadhz", e500120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19083 cCE("wshufh", e0001e0
, 3, (RIWR
, RIWR
, I255
), iwmmxt_wshufh
),
19084 cCE("wsllh", e500040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19085 cCE("wsllhg", e500148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19086 cCE("wsllw", e900040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19087 cCE("wsllwg", e900148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19088 cCE("wslld", ed00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19089 cCE("wslldg", ed00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19090 cCE("wsrah", e400040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19091 cCE("wsrahg", e400148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19092 cCE("wsraw", e800040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19093 cCE("wsrawg", e800148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19094 cCE("wsrad", ec00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19095 cCE("wsradg", ec00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19096 cCE("wsrlh", e600040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19097 cCE("wsrlhg", e600148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19098 cCE("wsrlw", ea00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19099 cCE("wsrlwg", ea00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19100 cCE("wsrld", ee00040
, 3, (RIWR
, RIWR
, RIWR_I32z
),iwmmxt_wrwrwr_or_imm5
),
19101 cCE("wsrldg", ee00148
, 3, (RIWR
, RIWR
, RIWG
), rd_rn_rm
),
19102 cCE("wstrb", c000000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
19103 cCE("wstrh", c400000
, 2, (RIWR
, ADDR
), iwmmxt_wldstbh
),
19104 cCE("wstrw", c000100
, 2, (RIWR_RIWC
, ADDR
), iwmmxt_wldstw
),
19105 cCE("wstrd", c400100
, 2, (RIWR
, ADDR
), iwmmxt_wldstd
),
19106 cCE("wsubbss", e3001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19107 cCE("wsubb", e0001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19108 cCE("wsubbus", e1001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19109 cCE("wsubhss", e7001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19110 cCE("wsubh", e4001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19111 cCE("wsubhus", e5001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19112 cCE("wsubwss", eb001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19113 cCE("wsubw", e8001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19114 cCE("wsubwus", e9001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19115 cCE("wunpckehub",e0000c0
, 2, (RIWR
, RIWR
), rd_rn
),
19116 cCE("wunpckehuh",e4000c0
, 2, (RIWR
, RIWR
), rd_rn
),
19117 cCE("wunpckehuw",e8000c0
, 2, (RIWR
, RIWR
), rd_rn
),
19118 cCE("wunpckehsb",e2000c0
, 2, (RIWR
, RIWR
), rd_rn
),
19119 cCE("wunpckehsh",e6000c0
, 2, (RIWR
, RIWR
), rd_rn
),
19120 cCE("wunpckehsw",ea000c0
, 2, (RIWR
, RIWR
), rd_rn
),
19121 cCE("wunpckihb", e1000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19122 cCE("wunpckihh", e5000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19123 cCE("wunpckihw", e9000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19124 cCE("wunpckelub",e0000e0
, 2, (RIWR
, RIWR
), rd_rn
),
19125 cCE("wunpckeluh",e4000e0
, 2, (RIWR
, RIWR
), rd_rn
),
19126 cCE("wunpckeluw",e8000e0
, 2, (RIWR
, RIWR
), rd_rn
),
19127 cCE("wunpckelsb",e2000e0
, 2, (RIWR
, RIWR
), rd_rn
),
19128 cCE("wunpckelsh",e6000e0
, 2, (RIWR
, RIWR
), rd_rn
),
19129 cCE("wunpckelsw",ea000e0
, 2, (RIWR
, RIWR
), rd_rn
),
19130 cCE("wunpckilb", e1000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19131 cCE("wunpckilh", e5000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19132 cCE("wunpckilw", e9000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19133 cCE("wxor", e100000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19134 cCE("wzero", e300000
, 1, (RIWR
), iwmmxt_wzero
),
19137 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19139 cCE("torvscb", e12f190
, 1, (RR
), iwmmxt_tandorc
),
19140 cCE("torvsch", e52f190
, 1, (RR
), iwmmxt_tandorc
),
19141 cCE("torvscw", e92f190
, 1, (RR
), iwmmxt_tandorc
),
19142 cCE("wabsb", e2001c0
, 2, (RIWR
, RIWR
), rd_rn
),
19143 cCE("wabsh", e6001c0
, 2, (RIWR
, RIWR
), rd_rn
),
19144 cCE("wabsw", ea001c0
, 2, (RIWR
, RIWR
), rd_rn
),
19145 cCE("wabsdiffb", e1001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19146 cCE("wabsdiffh", e5001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19147 cCE("wabsdiffw", e9001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19148 cCE("waddbhusl", e2001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19149 cCE("waddbhusm", e6001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19150 cCE("waddhc", e600180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19151 cCE("waddwc", ea00180
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19152 cCE("waddsubhx", ea001a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19153 cCE("wavg4", e400000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19154 cCE("wavg4r", e500000
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19155 cCE("wmaddsn", ee00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19156 cCE("wmaddsx", eb00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19157 cCE("wmaddun", ec00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19158 cCE("wmaddux", e900100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19159 cCE("wmerge", e000080
, 4, (RIWR
, RIWR
, RIWR
, I7
), iwmmxt_wmerge
),
19160 cCE("wmiabb", e0000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19161 cCE("wmiabt", e1000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19162 cCE("wmiatb", e2000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19163 cCE("wmiatt", e3000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19164 cCE("wmiabbn", e4000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19165 cCE("wmiabtn", e5000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19166 cCE("wmiatbn", e6000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19167 cCE("wmiattn", e7000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19168 cCE("wmiawbb", e800120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19169 cCE("wmiawbt", e900120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19170 cCE("wmiawtb", ea00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19171 cCE("wmiawtt", eb00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19172 cCE("wmiawbbn", ec00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19173 cCE("wmiawbtn", ed00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19174 cCE("wmiawtbn", ee00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19175 cCE("wmiawttn", ef00120
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19176 cCE("wmulsmr", ef00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19177 cCE("wmulumr", ed00100
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19178 cCE("wmulwumr", ec000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19179 cCE("wmulwsmr", ee000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19180 cCE("wmulwum", ed000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19181 cCE("wmulwsm", ef000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19182 cCE("wmulwl", eb000c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19183 cCE("wqmiabb", e8000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19184 cCE("wqmiabt", e9000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19185 cCE("wqmiatb", ea000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19186 cCE("wqmiatt", eb000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19187 cCE("wqmiabbn", ec000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19188 cCE("wqmiabtn", ed000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19189 cCE("wqmiatbn", ee000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19190 cCE("wqmiattn", ef000a0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19191 cCE("wqmulm", e100080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19192 cCE("wqmulmr", e300080
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19193 cCE("wqmulwm", ec000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19194 cCE("wqmulwmr", ee000e0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19195 cCE("wsubaddhx", ed001c0
, 3, (RIWR
, RIWR
, RIWR
), rd_rn_rm
),
19198 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19200 cCE("cfldrs", c100400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
19201 cCE("cfldrd", c500400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
19202 cCE("cfldr32", c100500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
19203 cCE("cfldr64", c500500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
19204 cCE("cfstrs", c000400
, 2, (RMF
, ADDRGLDC
), rd_cpaddr
),
19205 cCE("cfstrd", c400400
, 2, (RMD
, ADDRGLDC
), rd_cpaddr
),
19206 cCE("cfstr32", c000500
, 2, (RMFX
, ADDRGLDC
), rd_cpaddr
),
19207 cCE("cfstr64", c400500
, 2, (RMDX
, ADDRGLDC
), rd_cpaddr
),
19208 cCE("cfmvsr", e000450
, 2, (RMF
, RR
), rn_rd
),
19209 cCE("cfmvrs", e100450
, 2, (RR
, RMF
), rd_rn
),
19210 cCE("cfmvdlr", e000410
, 2, (RMD
, RR
), rn_rd
),
19211 cCE("cfmvrdl", e100410
, 2, (RR
, RMD
), rd_rn
),
19212 cCE("cfmvdhr", e000430
, 2, (RMD
, RR
), rn_rd
),
19213 cCE("cfmvrdh", e100430
, 2, (RR
, RMD
), rd_rn
),
19214 cCE("cfmv64lr", e000510
, 2, (RMDX
, RR
), rn_rd
),
19215 cCE("cfmvr64l", e100510
, 2, (RR
, RMDX
), rd_rn
),
19216 cCE("cfmv64hr", e000530
, 2, (RMDX
, RR
), rn_rd
),
19217 cCE("cfmvr64h", e100530
, 2, (RR
, RMDX
), rd_rn
),
19218 cCE("cfmval32", e200440
, 2, (RMAX
, RMFX
), rd_rn
),
19219 cCE("cfmv32al", e100440
, 2, (RMFX
, RMAX
), rd_rn
),
19220 cCE("cfmvam32", e200460
, 2, (RMAX
, RMFX
), rd_rn
),
19221 cCE("cfmv32am", e100460
, 2, (RMFX
, RMAX
), rd_rn
),
19222 cCE("cfmvah32", e200480
, 2, (RMAX
, RMFX
), rd_rn
),
19223 cCE("cfmv32ah", e100480
, 2, (RMFX
, RMAX
), rd_rn
),
19224 cCE("cfmva32", e2004a0
, 2, (RMAX
, RMFX
), rd_rn
),
19225 cCE("cfmv32a", e1004a0
, 2, (RMFX
, RMAX
), rd_rn
),
19226 cCE("cfmva64", e2004c0
, 2, (RMAX
, RMDX
), rd_rn
),
19227 cCE("cfmv64a", e1004c0
, 2, (RMDX
, RMAX
), rd_rn
),
19228 cCE("cfmvsc32", e2004e0
, 2, (RMDS
, RMDX
), mav_dspsc
),
19229 cCE("cfmv32sc", e1004e0
, 2, (RMDX
, RMDS
), rd
),
19230 cCE("cfcpys", e000400
, 2, (RMF
, RMF
), rd_rn
),
19231 cCE("cfcpyd", e000420
, 2, (RMD
, RMD
), rd_rn
),
19232 cCE("cfcvtsd", e000460
, 2, (RMD
, RMF
), rd_rn
),
19233 cCE("cfcvtds", e000440
, 2, (RMF
, RMD
), rd_rn
),
19234 cCE("cfcvt32s", e000480
, 2, (RMF
, RMFX
), rd_rn
),
19235 cCE("cfcvt32d", e0004a0
, 2, (RMD
, RMFX
), rd_rn
),
19236 cCE("cfcvt64s", e0004c0
, 2, (RMF
, RMDX
), rd_rn
),
19237 cCE("cfcvt64d", e0004e0
, 2, (RMD
, RMDX
), rd_rn
),
19238 cCE("cfcvts32", e100580
, 2, (RMFX
, RMF
), rd_rn
),
19239 cCE("cfcvtd32", e1005a0
, 2, (RMFX
, RMD
), rd_rn
),
19240 cCE("cftruncs32",e1005c0
, 2, (RMFX
, RMF
), rd_rn
),
19241 cCE("cftruncd32",e1005e0
, 2, (RMFX
, RMD
), rd_rn
),
19242 cCE("cfrshl32", e000550
, 3, (RMFX
, RMFX
, RR
), mav_triple
),
19243 cCE("cfrshl64", e000570
, 3, (RMDX
, RMDX
, RR
), mav_triple
),
19244 cCE("cfsh32", e000500
, 3, (RMFX
, RMFX
, I63s
), mav_shift
),
19245 cCE("cfsh64", e200500
, 3, (RMDX
, RMDX
, I63s
), mav_shift
),
19246 cCE("cfcmps", e100490
, 3, (RR
, RMF
, RMF
), rd_rn_rm
),
19247 cCE("cfcmpd", e1004b0
, 3, (RR
, RMD
, RMD
), rd_rn_rm
),
19248 cCE("cfcmp32", e100590
, 3, (RR
, RMFX
, RMFX
), rd_rn_rm
),
19249 cCE("cfcmp64", e1005b0
, 3, (RR
, RMDX
, RMDX
), rd_rn_rm
),
19250 cCE("cfabss", e300400
, 2, (RMF
, RMF
), rd_rn
),
19251 cCE("cfabsd", e300420
, 2, (RMD
, RMD
), rd_rn
),
19252 cCE("cfnegs", e300440
, 2, (RMF
, RMF
), rd_rn
),
19253 cCE("cfnegd", e300460
, 2, (RMD
, RMD
), rd_rn
),
19254 cCE("cfadds", e300480
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
19255 cCE("cfaddd", e3004a0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
19256 cCE("cfsubs", e3004c0
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
19257 cCE("cfsubd", e3004e0
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
19258 cCE("cfmuls", e100400
, 3, (RMF
, RMF
, RMF
), rd_rn_rm
),
19259 cCE("cfmuld", e100420
, 3, (RMD
, RMD
, RMD
), rd_rn_rm
),
19260 cCE("cfabs32", e300500
, 2, (RMFX
, RMFX
), rd_rn
),
19261 cCE("cfabs64", e300520
, 2, (RMDX
, RMDX
), rd_rn
),
19262 cCE("cfneg32", e300540
, 2, (RMFX
, RMFX
), rd_rn
),
19263 cCE("cfneg64", e300560
, 2, (RMDX
, RMDX
), rd_rn
),
19264 cCE("cfadd32", e300580
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
19265 cCE("cfadd64", e3005a0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
19266 cCE("cfsub32", e3005c0
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
19267 cCE("cfsub64", e3005e0
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
19268 cCE("cfmul32", e100500
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
19269 cCE("cfmul64", e100520
, 3, (RMDX
, RMDX
, RMDX
), rd_rn_rm
),
19270 cCE("cfmac32", e100540
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
19271 cCE("cfmsc32", e100560
, 3, (RMFX
, RMFX
, RMFX
), rd_rn_rm
),
19272 cCE("cfmadd32", e000600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
19273 cCE("cfmsub32", e100600
, 4, (RMAX
, RMFX
, RMFX
, RMFX
), mav_quad
),
19274 cCE("cfmadda32", e200600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
19275 cCE("cfmsuba32", e300600
, 4, (RMAX
, RMAX
, RMFX
, RMFX
), mav_quad
),
19278 #undef THUMB_VARIANT
19305 /* MD interface: bits in the object file. */
19307 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19308 for use in the a.out file, and stores them in the array pointed to by buf.
19309 This knows about the endian-ness of the target machine and does
19310 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19311 2 (short) and 4 (long) Floating numbers are put out as a series of
19312 LITTLENUMS (shorts, here at least). */
19315 md_number_to_chars (char * buf
, valueT val
, int n
)
19317 if (target_big_endian
)
19318 number_to_chars_bigendian (buf
, val
, n
);
19320 number_to_chars_littleendian (buf
, val
, n
);
19324 md_chars_to_number (char * buf
, int n
)
19327 unsigned char * where
= (unsigned char *) buf
;
19329 if (target_big_endian
)
19334 result
|= (*where
++ & 255);
19342 result
|= (where
[n
] & 255);
19349 /* MD interface: Sections. */
19351 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19352 that an rs_machine_dependent frag may reach. */
19355 arm_frag_max_var (fragS
*fragp
)
19357 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19358 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19360 Note that we generate relaxable instructions even for cases that don't
19361 really need it, like an immediate that's a trivial constant. So we're
19362 overestimating the instruction size for some of those cases. Rather
19363 than putting more intelligence here, it would probably be better to
19364 avoid generating a relaxation frag in the first place when it can be
19365 determined up front that a short instruction will suffice. */
19367 gas_assert (fragp
->fr_type
== rs_machine_dependent
);
19371 /* Estimate the size of a frag before relaxing. Assume everything fits in
19375 md_estimate_size_before_relax (fragS
* fragp
,
19376 segT segtype ATTRIBUTE_UNUSED
)
19382 /* Convert a machine dependent frag. */
19385 md_convert_frag (bfd
*abfd
, segT asec ATTRIBUTE_UNUSED
, fragS
*fragp
)
19387 unsigned long insn
;
19388 unsigned long old_op
;
19396 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
19398 old_op
= bfd_get_16(abfd
, buf
);
19399 if (fragp
->fr_symbol
)
19401 exp
.X_op
= O_symbol
;
19402 exp
.X_add_symbol
= fragp
->fr_symbol
;
19406 exp
.X_op
= O_constant
;
19408 exp
.X_add_number
= fragp
->fr_offset
;
19409 opcode
= fragp
->fr_subtype
;
19412 case T_MNEM_ldr_pc
:
19413 case T_MNEM_ldr_pc2
:
19414 case T_MNEM_ldr_sp
:
19415 case T_MNEM_str_sp
:
19422 if (fragp
->fr_var
== 4)
19424 insn
= THUMB_OP32 (opcode
);
19425 if ((old_op
>> 12) == 4 || (old_op
>> 12) == 9)
19427 insn
|= (old_op
& 0x700) << 4;
19431 insn
|= (old_op
& 7) << 12;
19432 insn
|= (old_op
& 0x38) << 13;
19434 insn
|= 0x00000c00;
19435 put_thumb32_insn (buf
, insn
);
19436 reloc_type
= BFD_RELOC_ARM_T32_OFFSET_IMM
;
19440 reloc_type
= BFD_RELOC_ARM_THUMB_OFFSET
;
19442 pc_rel
= (opcode
== T_MNEM_ldr_pc2
);
19445 if (fragp
->fr_var
== 4)
19447 insn
= THUMB_OP32 (opcode
);
19448 insn
|= (old_op
& 0xf0) << 4;
19449 put_thumb32_insn (buf
, insn
);
19450 reloc_type
= BFD_RELOC_ARM_T32_ADD_PC12
;
19454 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
19455 exp
.X_add_number
-= 4;
19463 if (fragp
->fr_var
== 4)
19465 int r0off
= (opcode
== T_MNEM_mov
19466 || opcode
== T_MNEM_movs
) ? 0 : 8;
19467 insn
= THUMB_OP32 (opcode
);
19468 insn
= (insn
& 0xe1ffffff) | 0x10000000;
19469 insn
|= (old_op
& 0x700) << r0off
;
19470 put_thumb32_insn (buf
, insn
);
19471 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
19475 reloc_type
= BFD_RELOC_ARM_THUMB_IMM
;
19480 if (fragp
->fr_var
== 4)
19482 insn
= THUMB_OP32(opcode
);
19483 put_thumb32_insn (buf
, insn
);
19484 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH25
;
19487 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH12
;
19491 if (fragp
->fr_var
== 4)
19493 insn
= THUMB_OP32(opcode
);
19494 insn
|= (old_op
& 0xf00) << 14;
19495 put_thumb32_insn (buf
, insn
);
19496 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH20
;
19499 reloc_type
= BFD_RELOC_THUMB_PCREL_BRANCH9
;
19502 case T_MNEM_add_sp
:
19503 case T_MNEM_add_pc
:
19504 case T_MNEM_inc_sp
:
19505 case T_MNEM_dec_sp
:
19506 if (fragp
->fr_var
== 4)
19508 /* ??? Choose between add and addw. */
19509 insn
= THUMB_OP32 (opcode
);
19510 insn
|= (old_op
& 0xf0) << 4;
19511 put_thumb32_insn (buf
, insn
);
19512 if (opcode
== T_MNEM_add_pc
)
19513 reloc_type
= BFD_RELOC_ARM_T32_IMM12
;
19515 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
19518 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
19526 if (fragp
->fr_var
== 4)
19528 insn
= THUMB_OP32 (opcode
);
19529 insn
|= (old_op
& 0xf0) << 4;
19530 insn
|= (old_op
& 0xf) << 16;
19531 put_thumb32_insn (buf
, insn
);
19532 if (insn
& (1 << 20))
19533 reloc_type
= BFD_RELOC_ARM_T32_ADD_IMM
;
19535 reloc_type
= BFD_RELOC_ARM_T32_IMMEDIATE
;
19538 reloc_type
= BFD_RELOC_ARM_THUMB_ADD
;
19544 fixp
= fix_new_exp (fragp
, fragp
->fr_fix
, fragp
->fr_var
, &exp
, pc_rel
,
19545 (enum bfd_reloc_code_real
) reloc_type
);
19546 fixp
->fx_file
= fragp
->fr_file
;
19547 fixp
->fx_line
= fragp
->fr_line
;
19548 fragp
->fr_fix
+= fragp
->fr_var
;
19551 /* Return the size of a relaxable immediate operand instruction.
19552 SHIFT and SIZE specify the form of the allowable immediate. */
19554 relax_immediate (fragS
*fragp
, int size
, int shift
)
19560 /* ??? Should be able to do better than this. */
19561 if (fragp
->fr_symbol
)
19564 low
= (1 << shift
) - 1;
19565 mask
= (1 << (shift
+ size
)) - (1 << shift
);
19566 offset
= fragp
->fr_offset
;
19567 /* Force misaligned offsets to 32-bit variant. */
19570 if (offset
& ~mask
)
19575 /* Get the address of a symbol during relaxation. */
19577 relaxed_symbol_addr (fragS
*fragp
, long stretch
)
19583 sym
= fragp
->fr_symbol
;
19584 sym_frag
= symbol_get_frag (sym
);
19585 know (S_GET_SEGMENT (sym
) != absolute_section
19586 || sym_frag
== &zero_address_frag
);
19587 addr
= S_GET_VALUE (sym
) + fragp
->fr_offset
;
19589 /* If frag has yet to be reached on this pass, assume it will
19590 move by STRETCH just as we did. If this is not so, it will
19591 be because some frag between grows, and that will force
19595 && sym_frag
->relax_marker
!= fragp
->relax_marker
)
19599 /* Adjust stretch for any alignment frag. Note that if have
19600 been expanding the earlier code, the symbol may be
19601 defined in what appears to be an earlier frag. FIXME:
19602 This doesn't handle the fr_subtype field, which specifies
19603 a maximum number of bytes to skip when doing an
19605 for (f
= fragp
; f
!= NULL
&& f
!= sym_frag
; f
= f
->fr_next
)
19607 if (f
->fr_type
== rs_align
|| f
->fr_type
== rs_align_code
)
19610 stretch
= - ((- stretch
)
19611 & ~ ((1 << (int) f
->fr_offset
) - 1));
19613 stretch
&= ~ ((1 << (int) f
->fr_offset
) - 1);
19625 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19628 relax_adr (fragS
*fragp
, asection
*sec
, long stretch
)
19633 /* Assume worst case for symbols not known to be in the same section. */
19634 if (fragp
->fr_symbol
== NULL
19635 || !S_IS_DEFINED (fragp
->fr_symbol
)
19636 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
19637 || S_IS_WEAK (fragp
->fr_symbol
))
19640 val
= relaxed_symbol_addr (fragp
, stretch
);
19641 addr
= fragp
->fr_address
+ fragp
->fr_fix
;
19642 addr
= (addr
+ 4) & ~3;
19643 /* Force misaligned targets to 32-bit variant. */
19647 if (val
< 0 || val
> 1020)
19652 /* Return the size of a relaxable add/sub immediate instruction. */
19654 relax_addsub (fragS
*fragp
, asection
*sec
)
19659 buf
= fragp
->fr_literal
+ fragp
->fr_fix
;
19660 op
= bfd_get_16(sec
->owner
, buf
);
19661 if ((op
& 0xf) == ((op
>> 4) & 0xf))
19662 return relax_immediate (fragp
, 8, 0);
19664 return relax_immediate (fragp
, 3, 0);
19668 /* Return the size of a relaxable branch instruction. BITS is the
19669 size of the offset field in the narrow instruction. */
19672 relax_branch (fragS
*fragp
, asection
*sec
, int bits
, long stretch
)
19678 /* Assume worst case for symbols not known to be in the same section. */
19679 if (!S_IS_DEFINED (fragp
->fr_symbol
)
19680 || sec
!= S_GET_SEGMENT (fragp
->fr_symbol
)
19681 || S_IS_WEAK (fragp
->fr_symbol
))
19685 if (S_IS_DEFINED (fragp
->fr_symbol
)
19686 && ARM_IS_FUNC (fragp
->fr_symbol
))
19689 /* PR 12532. Global symbols with default visibility might
19690 be preempted, so do not relax relocations to them. */
19691 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp
->fr_symbol
)) == STV_DEFAULT
)
19692 && (! S_IS_LOCAL (fragp
->fr_symbol
)))
19696 val
= relaxed_symbol_addr (fragp
, stretch
);
19697 addr
= fragp
->fr_address
+ fragp
->fr_fix
+ 4;
19700 /* Offset is a signed value *2 */
19702 if (val
>= limit
|| val
< -limit
)
19708 /* Relax a machine dependent frag. This returns the amount by which
19709 the current size of the frag should change. */
19712 arm_relax_frag (asection
*sec
, fragS
*fragp
, long stretch
)
19717 oldsize
= fragp
->fr_var
;
19718 switch (fragp
->fr_subtype
)
19720 case T_MNEM_ldr_pc2
:
19721 newsize
= relax_adr (fragp
, sec
, stretch
);
19723 case T_MNEM_ldr_pc
:
19724 case T_MNEM_ldr_sp
:
19725 case T_MNEM_str_sp
:
19726 newsize
= relax_immediate (fragp
, 8, 2);
19730 newsize
= relax_immediate (fragp
, 5, 2);
19734 newsize
= relax_immediate (fragp
, 5, 1);
19738 newsize
= relax_immediate (fragp
, 5, 0);
19741 newsize
= relax_adr (fragp
, sec
, stretch
);
19747 newsize
= relax_immediate (fragp
, 8, 0);
19750 newsize
= relax_branch (fragp
, sec
, 11, stretch
);
19753 newsize
= relax_branch (fragp
, sec
, 8, stretch
);
19755 case T_MNEM_add_sp
:
19756 case T_MNEM_add_pc
:
19757 newsize
= relax_immediate (fragp
, 8, 2);
19759 case T_MNEM_inc_sp
:
19760 case T_MNEM_dec_sp
:
19761 newsize
= relax_immediate (fragp
, 7, 2);
19767 newsize
= relax_addsub (fragp
, sec
);
19773 fragp
->fr_var
= newsize
;
19774 /* Freeze wide instructions that are at or before the same location as
19775 in the previous pass. This avoids infinite loops.
19776 Don't freeze them unconditionally because targets may be artificially
19777 misaligned by the expansion of preceding frags. */
19778 if (stretch
<= 0 && newsize
> 2)
19780 md_convert_frag (sec
->owner
, sec
, fragp
);
19784 return newsize
- oldsize
;
19787 /* Round up a section size to the appropriate boundary. */
19790 md_section_align (segT segment ATTRIBUTE_UNUSED
,
19793 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19794 if (OUTPUT_FLAVOR
== bfd_target_aout_flavour
)
19796 /* For a.out, force the section size to be aligned. If we don't do
19797 this, BFD will align it for us, but it will not write out the
19798 final bytes of the section. This may be a bug in BFD, but it is
19799 easier to fix it here since that is how the other a.out targets
19803 align
= bfd_get_section_alignment (stdoutput
, segment
);
19804 size
= ((size
+ (1 << align
) - 1) & ((valueT
) -1 << align
));
19811 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19812 of an rs_align_code fragment. */
19815 arm_handle_align (fragS
* fragP
)
19817 static char const arm_noop
[2][2][4] =
19820 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19821 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19824 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19825 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19828 static char const thumb_noop
[2][2][2] =
19831 {0xc0, 0x46}, /* LE */
19832 {0x46, 0xc0}, /* BE */
19835 {0x00, 0xbf}, /* LE */
19836 {0xbf, 0x00} /* BE */
19839 static char const wide_thumb_noop
[2][4] =
19840 { /* Wide Thumb-2 */
19841 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19842 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19845 unsigned bytes
, fix
, noop_size
;
19848 const char *narrow_noop
= NULL
;
19853 if (fragP
->fr_type
!= rs_align_code
)
19856 bytes
= fragP
->fr_next
->fr_address
- fragP
->fr_address
- fragP
->fr_fix
;
19857 p
= fragP
->fr_literal
+ fragP
->fr_fix
;
19860 if (bytes
> MAX_MEM_FOR_RS_ALIGN_CODE
)
19861 bytes
&= MAX_MEM_FOR_RS_ALIGN_CODE
;
19863 gas_assert ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) != 0);
19865 if (fragP
->tc_frag_data
.thumb_mode
& (~ MODE_RECORDED
))
19867 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6t2
))
19869 narrow_noop
= thumb_noop
[1][target_big_endian
];
19870 noop
= wide_thumb_noop
[target_big_endian
];
19873 noop
= thumb_noop
[0][target_big_endian
];
19881 noop
= arm_noop
[ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v6k
) != 0]
19882 [target_big_endian
];
19889 fragP
->fr_var
= noop_size
;
19891 if (bytes
& (noop_size
- 1))
19893 fix
= bytes
& (noop_size
- 1);
19895 insert_data_mapping_symbol (state
, fragP
->fr_fix
, fragP
, fix
);
19897 memset (p
, 0, fix
);
19904 if (bytes
& noop_size
)
19906 /* Insert a narrow noop. */
19907 memcpy (p
, narrow_noop
, noop_size
);
19909 bytes
-= noop_size
;
19913 /* Use wide noops for the remainder */
19917 while (bytes
>= noop_size
)
19919 memcpy (p
, noop
, noop_size
);
19921 bytes
-= noop_size
;
19925 fragP
->fr_fix
+= fix
;
19928 /* Called from md_do_align. Used to create an alignment
19929 frag in a code section. */
19932 arm_frag_align_code (int n
, int max
)
19936 /* We assume that there will never be a requirement
19937 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19938 if (max
> MAX_MEM_FOR_RS_ALIGN_CODE
)
19943 _("alignments greater than %d bytes not supported in .text sections."),
19944 MAX_MEM_FOR_RS_ALIGN_CODE
+ 1);
19945 as_fatal ("%s", err_msg
);
19948 p
= frag_var (rs_align_code
,
19949 MAX_MEM_FOR_RS_ALIGN_CODE
,
19951 (relax_substateT
) max
,
19958 /* Perform target specific initialisation of a frag.
19959 Note - despite the name this initialisation is not done when the frag
19960 is created, but only when its type is assigned. A frag can be created
19961 and used a long time before its type is set, so beware of assuming that
19962 this initialisationis performed first. */
19966 arm_init_frag (fragS
* fragP
, int max_chars ATTRIBUTE_UNUSED
)
19968 /* Record whether this frag is in an ARM or a THUMB area. */
19969 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
19972 #else /* OBJ_ELF is defined. */
19974 arm_init_frag (fragS
* fragP
, int max_chars
)
19976 /* If the current ARM vs THUMB mode has not already
19977 been recorded into this frag then do so now. */
19978 if ((fragP
->tc_frag_data
.thumb_mode
& MODE_RECORDED
) == 0)
19980 fragP
->tc_frag_data
.thumb_mode
= thumb_mode
| MODE_RECORDED
;
19982 /* Record a mapping symbol for alignment frags. We will delete this
19983 later if the alignment ends up empty. */
19984 switch (fragP
->fr_type
)
19987 case rs_align_test
:
19989 mapping_state_2 (MAP_DATA
, max_chars
);
19991 case rs_align_code
:
19992 mapping_state_2 (thumb_mode
? MAP_THUMB
: MAP_ARM
, max_chars
);
20000 /* When we change sections we need to issue a new mapping symbol. */
20003 arm_elf_change_section (void)
20005 /* Link an unlinked unwind index table section to the .text section. */
20006 if (elf_section_type (now_seg
) == SHT_ARM_EXIDX
20007 && elf_linked_to_section (now_seg
) == NULL
)
20008 elf_linked_to_section (now_seg
) = text_section
;
20012 arm_elf_section_type (const char * str
, size_t len
)
20014 if (len
== 5 && strncmp (str
, "exidx", 5) == 0)
20015 return SHT_ARM_EXIDX
;
20020 /* Code to deal with unwinding tables. */
20022 static void add_unwind_adjustsp (offsetT
);
20024 /* Generate any deferred unwind frame offset. */
20027 flush_pending_unwind (void)
20031 offset
= unwind
.pending_offset
;
20032 unwind
.pending_offset
= 0;
20034 add_unwind_adjustsp (offset
);
20037 /* Add an opcode to this list for this function. Two-byte opcodes should
20038 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20042 add_unwind_opcode (valueT op
, int length
)
20044 /* Add any deferred stack adjustment. */
20045 if (unwind
.pending_offset
)
20046 flush_pending_unwind ();
20048 unwind
.sp_restored
= 0;
20050 if (unwind
.opcode_count
+ length
> unwind
.opcode_alloc
)
20052 unwind
.opcode_alloc
+= ARM_OPCODE_CHUNK_SIZE
;
20053 if (unwind
.opcodes
)
20054 unwind
.opcodes
= (unsigned char *) xrealloc (unwind
.opcodes
,
20055 unwind
.opcode_alloc
);
20057 unwind
.opcodes
= (unsigned char *) xmalloc (unwind
.opcode_alloc
);
20062 unwind
.opcodes
[unwind
.opcode_count
] = op
& 0xff;
20064 unwind
.opcode_count
++;
20068 /* Add unwind opcodes to adjust the stack pointer. */
20071 add_unwind_adjustsp (offsetT offset
)
20075 if (offset
> 0x200)
20077 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20082 /* Long form: 0xb2, uleb128. */
20083 /* This might not fit in a word so add the individual bytes,
20084 remembering the list is built in reverse order. */
20085 o
= (valueT
) ((offset
- 0x204) >> 2);
20087 add_unwind_opcode (0, 1);
20089 /* Calculate the uleb128 encoding of the offset. */
20093 bytes
[n
] = o
& 0x7f;
20099 /* Add the insn. */
20101 add_unwind_opcode (bytes
[n
- 1], 1);
20102 add_unwind_opcode (0xb2, 1);
20104 else if (offset
> 0x100)
20106 /* Two short opcodes. */
20107 add_unwind_opcode (0x3f, 1);
20108 op
= (offset
- 0x104) >> 2;
20109 add_unwind_opcode (op
, 1);
20111 else if (offset
> 0)
20113 /* Short opcode. */
20114 op
= (offset
- 4) >> 2;
20115 add_unwind_opcode (op
, 1);
20117 else if (offset
< 0)
20120 while (offset
> 0x100)
20122 add_unwind_opcode (0x7f, 1);
20125 op
= ((offset
- 4) >> 2) | 0x40;
20126 add_unwind_opcode (op
, 1);
20130 /* Finish the list of unwind opcodes for this function. */
20132 finish_unwind_opcodes (void)
20136 if (unwind
.fp_used
)
20138 /* Adjust sp as necessary. */
20139 unwind
.pending_offset
+= unwind
.fp_offset
- unwind
.frame_size
;
20140 flush_pending_unwind ();
20142 /* After restoring sp from the frame pointer. */
20143 op
= 0x90 | unwind
.fp_reg
;
20144 add_unwind_opcode (op
, 1);
20147 flush_pending_unwind ();
20151 /* Start an exception table entry. If idx is nonzero this is an index table
20155 start_unwind_section (const segT text_seg
, int idx
)
20157 const char * text_name
;
20158 const char * prefix
;
20159 const char * prefix_once
;
20160 const char * group_name
;
20164 size_t sec_name_len
;
20171 prefix
= ELF_STRING_ARM_unwind
;
20172 prefix_once
= ELF_STRING_ARM_unwind_once
;
20173 type
= SHT_ARM_EXIDX
;
20177 prefix
= ELF_STRING_ARM_unwind_info
;
20178 prefix_once
= ELF_STRING_ARM_unwind_info_once
;
20179 type
= SHT_PROGBITS
;
20182 text_name
= segment_name (text_seg
);
20183 if (streq (text_name
, ".text"))
20186 if (strncmp (text_name
, ".gnu.linkonce.t.",
20187 strlen (".gnu.linkonce.t.")) == 0)
20189 prefix
= prefix_once
;
20190 text_name
+= strlen (".gnu.linkonce.t.");
20193 prefix_len
= strlen (prefix
);
20194 text_len
= strlen (text_name
);
20195 sec_name_len
= prefix_len
+ text_len
;
20196 sec_name
= (char *) xmalloc (sec_name_len
+ 1);
20197 memcpy (sec_name
, prefix
, prefix_len
);
20198 memcpy (sec_name
+ prefix_len
, text_name
, text_len
);
20199 sec_name
[prefix_len
+ text_len
] = '\0';
20205 /* Handle COMDAT group. */
20206 if (prefix
!= prefix_once
&& (text_seg
->flags
& SEC_LINK_ONCE
) != 0)
20208 group_name
= elf_group_name (text_seg
);
20209 if (group_name
== NULL
)
20211 as_bad (_("Group section `%s' has no group signature"),
20212 segment_name (text_seg
));
20213 ignore_rest_of_line ();
20216 flags
|= SHF_GROUP
;
20220 obj_elf_change_section (sec_name
, type
, flags
, 0, group_name
, linkonce
, 0);
20222 /* Set the section link for index tables. */
20224 elf_linked_to_section (now_seg
) = text_seg
;
20228 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20229 personality routine data. Returns zero, or the index table value for
20230 and inline entry. */
20233 create_unwind_entry (int have_data
)
20238 /* The current word of data. */
20240 /* The number of bytes left in this word. */
20243 finish_unwind_opcodes ();
20245 /* Remember the current text section. */
20246 unwind
.saved_seg
= now_seg
;
20247 unwind
.saved_subseg
= now_subseg
;
20249 start_unwind_section (now_seg
, 0);
20251 if (unwind
.personality_routine
== NULL
)
20253 if (unwind
.personality_index
== -2)
20256 as_bad (_("handlerdata in cantunwind frame"));
20257 return 1; /* EXIDX_CANTUNWIND. */
20260 /* Use a default personality routine if none is specified. */
20261 if (unwind
.personality_index
== -1)
20263 if (unwind
.opcode_count
> 3)
20264 unwind
.personality_index
= 1;
20266 unwind
.personality_index
= 0;
20269 /* Space for the personality routine entry. */
20270 if (unwind
.personality_index
== 0)
20272 if (unwind
.opcode_count
> 3)
20273 as_bad (_("too many unwind opcodes for personality routine 0"));
20277 /* All the data is inline in the index table. */
20280 while (unwind
.opcode_count
> 0)
20282 unwind
.opcode_count
--;
20283 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
20287 /* Pad with "finish" opcodes. */
20289 data
= (data
<< 8) | 0xb0;
20296 /* We get two opcodes "free" in the first word. */
20297 size
= unwind
.opcode_count
- 2;
20301 gas_assert (unwind
.personality_index
== -1);
20303 /* An extra byte is required for the opcode count. */
20304 size
= unwind
.opcode_count
+ 1;
20307 size
= (size
+ 3) >> 2;
20309 as_bad (_("too many unwind opcodes"));
20311 frag_align (2, 0, 0);
20312 record_alignment (now_seg
, 2);
20313 unwind
.table_entry
= expr_build_dot ();
20315 /* Allocate the table entry. */
20316 ptr
= frag_more ((size
<< 2) + 4);
20317 /* PR 13449: Zero the table entries in case some of them are not used. */
20318 memset (ptr
, 0, (size
<< 2) + 4);
20319 where
= frag_now_fix () - ((size
<< 2) + 4);
20321 switch (unwind
.personality_index
)
20324 /* ??? Should this be a PLT generating relocation? */
20325 /* Custom personality routine. */
20326 fix_new (frag_now
, where
, 4, unwind
.personality_routine
, 0, 1,
20327 BFD_RELOC_ARM_PREL31
);
20332 /* Set the first byte to the number of additional words. */
20333 data
= size
> 0 ? size
- 1 : 0;
20337 /* ABI defined personality routines. */
20339 /* Three opcodes bytes are packed into the first word. */
20346 /* The size and first two opcode bytes go in the first word. */
20347 data
= ((0x80 + unwind
.personality_index
) << 8) | size
;
20352 /* Should never happen. */
20356 /* Pack the opcodes into words (MSB first), reversing the list at the same
20358 while (unwind
.opcode_count
> 0)
20362 md_number_to_chars (ptr
, data
, 4);
20367 unwind
.opcode_count
--;
20369 data
= (data
<< 8) | unwind
.opcodes
[unwind
.opcode_count
];
20372 /* Finish off the last word. */
20375 /* Pad with "finish" opcodes. */
20377 data
= (data
<< 8) | 0xb0;
20379 md_number_to_chars (ptr
, data
, 4);
20384 /* Add an empty descriptor if there is no user-specified data. */
20385 ptr
= frag_more (4);
20386 md_number_to_chars (ptr
, 0, 4);
20393 /* Initialize the DWARF-2 unwind information for this procedure. */
20396 tc_arm_frame_initial_instructions (void)
20398 cfi_add_CFA_def_cfa (REG_SP
, 0);
20400 #endif /* OBJ_ELF */
20402 /* Convert REGNAME to a DWARF-2 register number. */
20405 tc_arm_regname_to_dw2regnum (char *regname
)
20407 int reg
= arm_reg_parse (®name
, REG_TYPE_RN
);
20417 tc_pe_dwarf2_emit_offset (symbolS
*symbol
, unsigned int size
)
20421 exp
.X_op
= O_secrel
;
20422 exp
.X_add_symbol
= symbol
;
20423 exp
.X_add_number
= 0;
20424 emit_expr (&exp
, size
);
20428 /* MD interface: Symbol and relocation handling. */
20430 /* Return the address within the segment that a PC-relative fixup is
20431 relative to. For ARM, PC-relative fixups applied to instructions
20432 are generally relative to the location of the fixup plus 8 bytes.
20433 Thumb branches are offset by 4, and Thumb loads relative to PC
20434 require special handling. */
20437 md_pcrel_from_section (fixS
* fixP
, segT seg
)
20439 offsetT base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
20441 /* If this is pc-relative and we are going to emit a relocation
20442 then we just want to put out any pipeline compensation that the linker
20443 will need. Otherwise we want to use the calculated base.
20444 For WinCE we skip the bias for externals as well, since this
20445 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20447 && ((fixP
->fx_addsy
&& S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
20448 || (arm_force_relocation (fixP
)
20450 && !S_IS_EXTERNAL (fixP
->fx_addsy
)
20456 switch (fixP
->fx_r_type
)
20458 /* PC relative addressing on the Thumb is slightly odd as the
20459 bottom two bits of the PC are forced to zero for the
20460 calculation. This happens *after* application of the
20461 pipeline offset. However, Thumb adrl already adjusts for
20462 this, so we need not do it again. */
20463 case BFD_RELOC_ARM_THUMB_ADD
:
20466 case BFD_RELOC_ARM_THUMB_OFFSET
:
20467 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
20468 case BFD_RELOC_ARM_T32_ADD_PC12
:
20469 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
20470 return (base
+ 4) & ~3;
20472 /* Thumb branches are simply offset by +4. */
20473 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
20474 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
20475 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
20476 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
20477 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
20480 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
20482 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20483 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20484 && ARM_IS_FUNC (fixP
->fx_addsy
)
20485 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20486 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
20489 /* BLX is like branches above, but forces the low two bits of PC to
20491 case BFD_RELOC_THUMB_PCREL_BLX
:
20493 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20494 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20495 && THUMB_IS_FUNC (fixP
->fx_addsy
)
20496 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20497 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
20498 return (base
+ 4) & ~3;
20500 /* ARM mode branches are offset by +8. However, the Windows CE
20501 loader expects the relocation not to take this into account. */
20502 case BFD_RELOC_ARM_PCREL_BLX
:
20504 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20505 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20506 && ARM_IS_FUNC (fixP
->fx_addsy
)
20507 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20508 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
20511 case BFD_RELOC_ARM_PCREL_CALL
:
20513 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20514 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
20515 && THUMB_IS_FUNC (fixP
->fx_addsy
)
20516 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
20517 base
= fixP
->fx_where
+ fixP
->fx_frag
->fr_address
;
20520 case BFD_RELOC_ARM_PCREL_BRANCH
:
20521 case BFD_RELOC_ARM_PCREL_JUMP
:
20522 case BFD_RELOC_ARM_PLT32
:
20524 /* When handling fixups immediately, because we have already
20525 discovered the value of a symbol, or the address of the frag involved
20526 we must account for the offset by +8, as the OS loader will never see the reloc.
20527 see fixup_segment() in write.c
20528 The S_IS_EXTERNAL test handles the case of global symbols.
20529 Those need the calculated base, not just the pipe compensation the linker will need. */
20531 && fixP
->fx_addsy
!= NULL
20532 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
20533 && (S_IS_EXTERNAL (fixP
->fx_addsy
) || !arm_force_relocation (fixP
)))
20541 /* ARM mode loads relative to PC are also offset by +8. Unlike
20542 branches, the Windows CE loader *does* expect the relocation
20543 to take this into account. */
20544 case BFD_RELOC_ARM_OFFSET_IMM
:
20545 case BFD_RELOC_ARM_OFFSET_IMM8
:
20546 case BFD_RELOC_ARM_HWLITERAL
:
20547 case BFD_RELOC_ARM_LITERAL
:
20548 case BFD_RELOC_ARM_CP_OFF_IMM
:
20552 /* Other PC-relative relocations are un-offset. */
20558 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20559 Otherwise we have no need to default values of symbols. */
20562 md_undefined_symbol (char * name ATTRIBUTE_UNUSED
)
20565 if (name
[0] == '_' && name
[1] == 'G'
20566 && streq (name
, GLOBAL_OFFSET_TABLE_NAME
))
20570 if (symbol_find (name
))
20571 as_bad (_("GOT already in the symbol table"));
20573 GOT_symbol
= symbol_new (name
, undefined_section
,
20574 (valueT
) 0, & zero_address_frag
);
20584 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20585 computed as two separate immediate values, added together. We
20586 already know that this value cannot be computed by just one ARM
20589 static unsigned int
20590 validate_immediate_twopart (unsigned int val
,
20591 unsigned int * highpart
)
20596 for (i
= 0; i
< 32; i
+= 2)
20597 if (((a
= rotate_left (val
, i
)) & 0xff) != 0)
20603 * highpart
= (a
>> 8) | ((i
+ 24) << 7);
20605 else if (a
& 0xff0000)
20607 if (a
& 0xff000000)
20609 * highpart
= (a
>> 16) | ((i
+ 16) << 7);
20613 gas_assert (a
& 0xff000000);
20614 * highpart
= (a
>> 24) | ((i
+ 8) << 7);
20617 return (a
& 0xff) | (i
<< 7);
20624 validate_offset_imm (unsigned int val
, int hwse
)
20626 if ((hwse
&& val
> 255) || val
> 4095)
20631 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20632 negative immediate constant by altering the instruction. A bit of
20637 by inverting the second operand, and
20640 by negating the second operand. */
20643 negate_data_op (unsigned long * instruction
,
20644 unsigned long value
)
20647 unsigned long negated
, inverted
;
20649 negated
= encode_arm_immediate (-value
);
20650 inverted
= encode_arm_immediate (~value
);
20652 op
= (*instruction
>> DATA_OP_SHIFT
) & 0xf;
20655 /* First negates. */
20656 case OPCODE_SUB
: /* ADD <-> SUB */
20657 new_inst
= OPCODE_ADD
;
20662 new_inst
= OPCODE_SUB
;
20666 case OPCODE_CMP
: /* CMP <-> CMN */
20667 new_inst
= OPCODE_CMN
;
20672 new_inst
= OPCODE_CMP
;
20676 /* Now Inverted ops. */
20677 case OPCODE_MOV
: /* MOV <-> MVN */
20678 new_inst
= OPCODE_MVN
;
20683 new_inst
= OPCODE_MOV
;
20687 case OPCODE_AND
: /* AND <-> BIC */
20688 new_inst
= OPCODE_BIC
;
20693 new_inst
= OPCODE_AND
;
20697 case OPCODE_ADC
: /* ADC <-> SBC */
20698 new_inst
= OPCODE_SBC
;
20703 new_inst
= OPCODE_ADC
;
20707 /* We cannot do anything. */
20712 if (value
== (unsigned) FAIL
)
20715 *instruction
&= OPCODE_MASK
;
20716 *instruction
|= new_inst
<< DATA_OP_SHIFT
;
20720 /* Like negate_data_op, but for Thumb-2. */
20722 static unsigned int
20723 thumb32_negate_data_op (offsetT
*instruction
, unsigned int value
)
20727 unsigned int negated
, inverted
;
20729 negated
= encode_thumb32_immediate (-value
);
20730 inverted
= encode_thumb32_immediate (~value
);
20732 rd
= (*instruction
>> 8) & 0xf;
20733 op
= (*instruction
>> T2_DATA_OP_SHIFT
) & 0xf;
20736 /* ADD <-> SUB. Includes CMP <-> CMN. */
20737 case T2_OPCODE_SUB
:
20738 new_inst
= T2_OPCODE_ADD
;
20742 case T2_OPCODE_ADD
:
20743 new_inst
= T2_OPCODE_SUB
;
20747 /* ORR <-> ORN. Includes MOV <-> MVN. */
20748 case T2_OPCODE_ORR
:
20749 new_inst
= T2_OPCODE_ORN
;
20753 case T2_OPCODE_ORN
:
20754 new_inst
= T2_OPCODE_ORR
;
20758 /* AND <-> BIC. TST has no inverted equivalent. */
20759 case T2_OPCODE_AND
:
20760 new_inst
= T2_OPCODE_BIC
;
20767 case T2_OPCODE_BIC
:
20768 new_inst
= T2_OPCODE_AND
;
20773 case T2_OPCODE_ADC
:
20774 new_inst
= T2_OPCODE_SBC
;
20778 case T2_OPCODE_SBC
:
20779 new_inst
= T2_OPCODE_ADC
;
20783 /* We cannot do anything. */
20788 if (value
== (unsigned int)FAIL
)
20791 *instruction
&= T2_OPCODE_MASK
;
20792 *instruction
|= new_inst
<< T2_DATA_OP_SHIFT
;
20796 /* Read a 32-bit thumb instruction from buf. */
20797 static unsigned long
20798 get_thumb32_insn (char * buf
)
20800 unsigned long insn
;
20801 insn
= md_chars_to_number (buf
, THUMB_SIZE
) << 16;
20802 insn
|= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20808 /* We usually want to set the low bit on the address of thumb function
20809 symbols. In particular .word foo - . should have the low bit set.
20810 Generic code tries to fold the difference of two symbols to
20811 a constant. Prevent this and force a relocation when the first symbols
20812 is a thumb function. */
20815 arm_optimize_expr (expressionS
*l
, operatorT op
, expressionS
*r
)
20817 if (op
== O_subtract
20818 && l
->X_op
== O_symbol
20819 && r
->X_op
== O_symbol
20820 && THUMB_IS_FUNC (l
->X_add_symbol
))
20822 l
->X_op
= O_subtract
;
20823 l
->X_op_symbol
= r
->X_add_symbol
;
20824 l
->X_add_number
-= r
->X_add_number
;
20828 /* Process as normal. */
20832 /* Encode Thumb2 unconditional branches and calls. The encoding
20833 for the 2 are identical for the immediate values. */
20836 encode_thumb2_b_bl_offset (char * buf
, offsetT value
)
20838 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20841 addressT S
, I1
, I2
, lo
, hi
;
20843 S
= (value
>> 24) & 0x01;
20844 I1
= (value
>> 23) & 0x01;
20845 I2
= (value
>> 22) & 0x01;
20846 hi
= (value
>> 12) & 0x3ff;
20847 lo
= (value
>> 1) & 0x7ff;
20848 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
20849 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
20850 newval
|= (S
<< 10) | hi
;
20851 newval2
&= ~T2I1I2MASK
;
20852 newval2
|= (((I1
^ S
) << 13) | ((I2
^ S
) << 11) | lo
) ^ T2I1I2MASK
;
20853 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
20854 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
20858 md_apply_fix (fixS
* fixP
,
20862 offsetT value
= * valP
;
20864 unsigned int newimm
;
20865 unsigned long temp
;
20867 char * buf
= fixP
->fx_where
+ fixP
->fx_frag
->fr_literal
;
20869 gas_assert (fixP
->fx_r_type
<= BFD_RELOC_UNUSED
);
20871 /* Note whether this will delete the relocation. */
20873 if (fixP
->fx_addsy
== 0 && !fixP
->fx_pcrel
)
20876 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20877 consistency with the behaviour on 32-bit hosts. Remember value
20879 value
&= 0xffffffff;
20880 value
^= 0x80000000;
20881 value
-= 0x80000000;
20884 fixP
->fx_addnumber
= value
;
20886 /* Same treatment for fixP->fx_offset. */
20887 fixP
->fx_offset
&= 0xffffffff;
20888 fixP
->fx_offset
^= 0x80000000;
20889 fixP
->fx_offset
-= 0x80000000;
20891 switch (fixP
->fx_r_type
)
20893 case BFD_RELOC_NONE
:
20894 /* This will need to go in the object file. */
20898 case BFD_RELOC_ARM_IMMEDIATE
:
20899 /* We claim that this fixup has been processed here,
20900 even if in fact we generate an error because we do
20901 not have a reloc for it, so tc_gen_reloc will reject it. */
20904 if (fixP
->fx_addsy
)
20906 const char *msg
= 0;
20908 if (! S_IS_DEFINED (fixP
->fx_addsy
))
20909 msg
= _("undefined symbol %s used as an immediate value");
20910 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
20911 msg
= _("symbol %s is in a different section");
20912 else if (S_IS_WEAK (fixP
->fx_addsy
))
20913 msg
= _("symbol %s is weak and may be overridden later");
20917 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20918 msg
, S_GET_NAME (fixP
->fx_addsy
));
20923 temp
= md_chars_to_number (buf
, INSN_SIZE
);
20925 /* If the offset is negative, we should use encoding A2 for ADR. */
20926 if ((temp
& 0xfff0000) == 0x28f0000 && value
< 0)
20927 newimm
= negate_data_op (&temp
, value
);
20930 newimm
= encode_arm_immediate (value
);
20932 /* If the instruction will fail, see if we can fix things up by
20933 changing the opcode. */
20934 if (newimm
== (unsigned int) FAIL
)
20935 newimm
= negate_data_op (&temp
, value
);
20938 if (newimm
== (unsigned int) FAIL
)
20940 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20941 _("invalid constant (%lx) after fixup"),
20942 (unsigned long) value
);
20946 newimm
|= (temp
& 0xfffff000);
20947 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
20950 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
20952 unsigned int highpart
= 0;
20953 unsigned int newinsn
= 0xe1a00000; /* nop. */
20955 if (fixP
->fx_addsy
)
20957 const char *msg
= 0;
20959 if (! S_IS_DEFINED (fixP
->fx_addsy
))
20960 msg
= _("undefined symbol %s used as an immediate value");
20961 else if (S_GET_SEGMENT (fixP
->fx_addsy
) != seg
)
20962 msg
= _("symbol %s is in a different section");
20963 else if (S_IS_WEAK (fixP
->fx_addsy
))
20964 msg
= _("symbol %s is weak and may be overridden later");
20968 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20969 msg
, S_GET_NAME (fixP
->fx_addsy
));
20974 newimm
= encode_arm_immediate (value
);
20975 temp
= md_chars_to_number (buf
, INSN_SIZE
);
20977 /* If the instruction will fail, see if we can fix things up by
20978 changing the opcode. */
20979 if (newimm
== (unsigned int) FAIL
20980 && (newimm
= negate_data_op (& temp
, value
)) == (unsigned int) FAIL
)
20982 /* No ? OK - try using two ADD instructions to generate
20984 newimm
= validate_immediate_twopart (value
, & highpart
);
20986 /* Yes - then make sure that the second instruction is
20988 if (newimm
!= (unsigned int) FAIL
)
20990 /* Still No ? Try using a negated value. */
20991 else if ((newimm
= validate_immediate_twopart (- value
, & highpart
)) != (unsigned int) FAIL
)
20992 temp
= newinsn
= (temp
& OPCODE_MASK
) | OPCODE_SUB
<< DATA_OP_SHIFT
;
20993 /* Otherwise - give up. */
20996 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
20997 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21002 /* Replace the first operand in the 2nd instruction (which
21003 is the PC) with the destination register. We have
21004 already added in the PC in the first instruction and we
21005 do not want to do it again. */
21006 newinsn
&= ~ 0xf0000;
21007 newinsn
|= ((newinsn
& 0x0f000) << 4);
21010 newimm
|= (temp
& 0xfffff000);
21011 md_number_to_chars (buf
, (valueT
) newimm
, INSN_SIZE
);
21013 highpart
|= (newinsn
& 0xfffff000);
21014 md_number_to_chars (buf
+ INSN_SIZE
, (valueT
) highpart
, INSN_SIZE
);
21018 case BFD_RELOC_ARM_OFFSET_IMM
:
21019 if (!fixP
->fx_done
&& seg
->use_rela_p
)
21022 case BFD_RELOC_ARM_LITERAL
:
21028 if (validate_offset_imm (value
, 0) == FAIL
)
21030 if (fixP
->fx_r_type
== BFD_RELOC_ARM_LITERAL
)
21031 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21032 _("invalid literal constant: pool needs to be closer"));
21034 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21035 _("bad immediate value for offset (%ld)"),
21040 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21042 newval
&= 0xfffff000;
21045 newval
&= 0xff7ff000;
21046 newval
|= value
| (sign
? INDEX_UP
: 0);
21048 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21051 case BFD_RELOC_ARM_OFFSET_IMM8
:
21052 case BFD_RELOC_ARM_HWLITERAL
:
21058 if (validate_offset_imm (value
, 1) == FAIL
)
21060 if (fixP
->fx_r_type
== BFD_RELOC_ARM_HWLITERAL
)
21061 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21062 _("invalid literal constant: pool needs to be closer"));
21064 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21069 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21071 newval
&= 0xfffff0f0;
21074 newval
&= 0xff7ff0f0;
21075 newval
|= ((value
>> 4) << 8) | (value
& 0xf) | (sign
? INDEX_UP
: 0);
21077 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21080 case BFD_RELOC_ARM_T32_OFFSET_U8
:
21081 if (value
< 0 || value
> 1020 || value
% 4 != 0)
21082 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21083 _("bad immediate value for offset (%ld)"), (long) value
);
21086 newval
= md_chars_to_number (buf
+2, THUMB_SIZE
);
21088 md_number_to_chars (buf
+2, newval
, THUMB_SIZE
);
21091 case BFD_RELOC_ARM_T32_OFFSET_IMM
:
21092 /* This is a complicated relocation used for all varieties of Thumb32
21093 load/store instruction with immediate offset:
21095 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21096 *4, optional writeback(W)
21097 (doubleword load/store)
21099 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21100 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21101 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21102 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21103 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21105 Uppercase letters indicate bits that are already encoded at
21106 this point. Lowercase letters are our problem. For the
21107 second block of instructions, the secondary opcode nybble
21108 (bits 8..11) is present, and bit 23 is zero, even if this is
21109 a PC-relative operation. */
21110 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21112 newval
|= md_chars_to_number (buf
+THUMB_SIZE
, THUMB_SIZE
);
21114 if ((newval
& 0xf0000000) == 0xe0000000)
21116 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21118 newval
|= (1 << 23);
21121 if (value
% 4 != 0)
21123 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21124 _("offset not a multiple of 4"));
21130 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21131 _("offset out of range"));
21136 else if ((newval
& 0x000f0000) == 0x000f0000)
21138 /* PC-relative, 12-bit offset. */
21140 newval
|= (1 << 23);
21145 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21146 _("offset out of range"));
21151 else if ((newval
& 0x00000100) == 0x00000100)
21153 /* Writeback: 8-bit, +/- offset. */
21155 newval
|= (1 << 9);
21160 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21161 _("offset out of range"));
21166 else if ((newval
& 0x00000f00) == 0x00000e00)
21168 /* T-instruction: positive 8-bit offset. */
21169 if (value
< 0 || value
> 0xff)
21171 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21172 _("offset out of range"));
21180 /* Positive 12-bit or negative 8-bit offset. */
21184 newval
|= (1 << 23);
21194 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21195 _("offset out of range"));
21202 md_number_to_chars (buf
, (newval
>> 16) & 0xffff, THUMB_SIZE
);
21203 md_number_to_chars (buf
+ THUMB_SIZE
, newval
& 0xffff, THUMB_SIZE
);
21206 case BFD_RELOC_ARM_SHIFT_IMM
:
21207 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21208 if (((unsigned long) value
) > 32
21210 && (((newval
& 0x60) == 0) || (newval
& 0x60) == 0x60)))
21212 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21213 _("shift expression is too large"));
21218 /* Shifts of zero must be done as lsl. */
21220 else if (value
== 32)
21222 newval
&= 0xfffff07f;
21223 newval
|= (value
& 0x1f) << 7;
21224 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21227 case BFD_RELOC_ARM_T32_IMMEDIATE
:
21228 case BFD_RELOC_ARM_T32_ADD_IMM
:
21229 case BFD_RELOC_ARM_T32_IMM12
:
21230 case BFD_RELOC_ARM_T32_ADD_PC12
:
21231 /* We claim that this fixup has been processed here,
21232 even if in fact we generate an error because we do
21233 not have a reloc for it, so tc_gen_reloc will reject it. */
21237 && ! S_IS_DEFINED (fixP
->fx_addsy
))
21239 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21240 _("undefined symbol %s used as an immediate value"),
21241 S_GET_NAME (fixP
->fx_addsy
));
21245 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21247 newval
|= md_chars_to_number (buf
+2, THUMB_SIZE
);
21250 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
21251 || fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
21253 newimm
= encode_thumb32_immediate (value
);
21254 if (newimm
== (unsigned int) FAIL
)
21255 newimm
= thumb32_negate_data_op (&newval
, value
);
21257 if (fixP
->fx_r_type
!= BFD_RELOC_ARM_T32_IMMEDIATE
21258 && newimm
== (unsigned int) FAIL
)
21260 /* Turn add/sum into addw/subw. */
21261 if (fixP
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
)
21262 newval
= (newval
& 0xfeffffff) | 0x02000000;
21263 /* No flat 12-bit imm encoding for addsw/subsw. */
21264 if ((newval
& 0x00100000) == 0)
21266 /* 12 bit immediate for addw/subw. */
21270 newval
^= 0x00a00000;
21273 newimm
= (unsigned int) FAIL
;
21279 if (newimm
== (unsigned int)FAIL
)
21281 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21282 _("invalid constant (%lx) after fixup"),
21283 (unsigned long) value
);
21287 newval
|= (newimm
& 0x800) << 15;
21288 newval
|= (newimm
& 0x700) << 4;
21289 newval
|= (newimm
& 0x0ff);
21291 md_number_to_chars (buf
, (valueT
) ((newval
>> 16) & 0xffff), THUMB_SIZE
);
21292 md_number_to_chars (buf
+2, (valueT
) (newval
& 0xffff), THUMB_SIZE
);
21295 case BFD_RELOC_ARM_SMC
:
21296 if (((unsigned long) value
) > 0xffff)
21297 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21298 _("invalid smc expression"));
21299 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21300 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
21301 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21304 case BFD_RELOC_ARM_HVC
:
21305 if (((unsigned long) value
) > 0xffff)
21306 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21307 _("invalid hvc expression"));
21308 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21309 newval
|= (value
& 0xf) | ((value
& 0xfff0) << 4);
21310 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21313 case BFD_RELOC_ARM_SWI
:
21314 if (fixP
->tc_fix_data
!= 0)
21316 if (((unsigned long) value
) > 0xff)
21317 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21318 _("invalid swi expression"));
21319 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21321 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21325 if (((unsigned long) value
) > 0x00ffffff)
21326 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21327 _("invalid swi expression"));
21328 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21330 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21334 case BFD_RELOC_ARM_MULTI
:
21335 if (((unsigned long) value
) > 0xffff)
21336 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21337 _("invalid expression in load/store multiple"));
21338 newval
= value
| md_chars_to_number (buf
, INSN_SIZE
);
21339 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21343 case BFD_RELOC_ARM_PCREL_CALL
:
21345 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
21347 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21348 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21349 && THUMB_IS_FUNC (fixP
->fx_addsy
))
21350 /* Flip the bl to blx. This is a simple flip
21351 bit here because we generate PCREL_CALL for
21352 unconditional bls. */
21354 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21355 newval
= newval
| 0x10000000;
21356 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21362 goto arm_branch_common
;
21364 case BFD_RELOC_ARM_PCREL_JUMP
:
21365 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
21367 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21368 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21369 && THUMB_IS_FUNC (fixP
->fx_addsy
))
21371 /* This would map to a bl<cond>, b<cond>,
21372 b<always> to a Thumb function. We
21373 need to force a relocation for this particular
21375 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21379 case BFD_RELOC_ARM_PLT32
:
21381 case BFD_RELOC_ARM_PCREL_BRANCH
:
21383 goto arm_branch_common
;
21385 case BFD_RELOC_ARM_PCREL_BLX
:
21388 if (ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
21390 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21391 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21392 && ARM_IS_FUNC (fixP
->fx_addsy
))
21394 /* Flip the blx to a bl and warn. */
21395 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
21396 newval
= 0xeb000000;
21397 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
21398 _("blx to '%s' an ARM ISA state function changed to bl"),
21400 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21406 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
21407 fixP
->fx_r_type
= BFD_RELOC_ARM_PCREL_CALL
;
21411 /* We are going to store value (shifted right by two) in the
21412 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21413 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21414 also be be clear. */
21416 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21417 _("misaligned branch destination"));
21418 if ((value
& (offsetT
)0xfe000000) != (offsetT
)0
21419 && (value
& (offsetT
)0xfe000000) != (offsetT
)0xfe000000)
21420 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
21422 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21424 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21425 newval
|= (value
>> 2) & 0x00ffffff;
21426 /* Set the H bit on BLX instructions. */
21430 newval
|= 0x01000000;
21432 newval
&= ~0x01000000;
21434 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21438 case BFD_RELOC_THUMB_PCREL_BRANCH7
: /* CBZ */
21439 /* CBZ can only branch forward. */
21441 /* Attempts to use CBZ to branch to the next instruction
21442 (which, strictly speaking, are prohibited) will be turned into
21445 FIXME: It may be better to remove the instruction completely and
21446 perform relaxation. */
21449 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21450 newval
= 0xbf00; /* NOP encoding T1 */
21451 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21456 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
21458 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21460 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21461 newval
|= ((value
& 0x3e) << 2) | ((value
& 0x40) << 3);
21462 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21467 case BFD_RELOC_THUMB_PCREL_BRANCH9
: /* Conditional branch. */
21468 if ((value
& ~0xff) && ((value
& ~0xff) != ~0xff))
21469 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
21471 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21473 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21474 newval
|= (value
& 0x1ff) >> 1;
21475 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21479 case BFD_RELOC_THUMB_PCREL_BRANCH12
: /* Unconditional branch. */
21480 if ((value
& ~0x7ff) && ((value
& ~0x7ff) != ~0x7ff))
21481 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
21483 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21485 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21486 newval
|= (value
& 0xfff) >> 1;
21487 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21491 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
21493 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21494 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21495 && ARM_IS_FUNC (fixP
->fx_addsy
)
21496 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
21498 /* Force a relocation for a branch 20 bits wide. */
21501 if ((value
& ~0x1fffff) && ((value
& ~0x0fffff) != ~0x0fffff))
21502 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21503 _("conditional branch out of range"));
21505 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21508 addressT S
, J1
, J2
, lo
, hi
;
21510 S
= (value
& 0x00100000) >> 20;
21511 J2
= (value
& 0x00080000) >> 19;
21512 J1
= (value
& 0x00040000) >> 18;
21513 hi
= (value
& 0x0003f000) >> 12;
21514 lo
= (value
& 0x00000ffe) >> 1;
21516 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21517 newval2
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
21518 newval
|= (S
<< 10) | hi
;
21519 newval2
|= (J1
<< 13) | (J2
<< 11) | lo
;
21520 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21521 md_number_to_chars (buf
+ THUMB_SIZE
, newval2
, THUMB_SIZE
);
21525 case BFD_RELOC_THUMB_PCREL_BLX
:
21526 /* If there is a blx from a thumb state function to
21527 another thumb function flip this to a bl and warn
21531 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21532 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21533 && THUMB_IS_FUNC (fixP
->fx_addsy
))
21535 const char *name
= S_GET_NAME (fixP
->fx_addsy
);
21536 as_warn_where (fixP
->fx_file
, fixP
->fx_line
,
21537 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21539 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
21540 newval
= newval
| 0x1000;
21541 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
21542 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
21547 goto thumb_bl_common
;
21549 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
21550 /* A bl from Thumb state ISA to an internal ARM state function
21551 is converted to a blx. */
21553 && (S_GET_SEGMENT (fixP
->fx_addsy
) == seg
)
21554 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
)
21555 && ARM_IS_FUNC (fixP
->fx_addsy
)
21556 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
))
21558 newval
= md_chars_to_number (buf
+ THUMB_SIZE
, THUMB_SIZE
);
21559 newval
= newval
& ~0x1000;
21560 md_number_to_chars (buf
+THUMB_SIZE
, newval
, THUMB_SIZE
);
21561 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BLX
;
21568 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
21569 && fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
21570 fixP
->fx_r_type
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
21573 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BLX
)
21574 /* For a BLX instruction, make sure that the relocation is rounded up
21575 to a word boundary. This follows the semantics of the instruction
21576 which specifies that bit 1 of the target address will come from bit
21577 1 of the base address. */
21578 value
= (value
+ 1) & ~ 1;
21580 if ((value
& ~0x3fffff) && ((value
& ~0x3fffff) != ~0x3fffff))
21582 if (!(ARM_CPU_HAS_FEATURE (cpu_variant
, arm_arch_t2
)))
21583 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
21584 else if ((value
& ~0x1ffffff)
21585 && ((value
& ~0x1ffffff) != ~0x1ffffff))
21586 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21587 _("Thumb2 branch out of range"));
21590 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21591 encode_thumb2_b_bl_offset (buf
, value
);
21595 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
21596 if ((value
& ~0x0ffffff) && ((value
& ~0x0ffffff) != ~0x0ffffff))
21597 as_bad_where (fixP
->fx_file
, fixP
->fx_line
, BAD_RANGE
);
21599 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21600 encode_thumb2_b_bl_offset (buf
, value
);
21605 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21606 md_number_to_chars (buf
, value
, 1);
21610 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21611 md_number_to_chars (buf
, value
, 2);
21615 case BFD_RELOC_ARM_TLS_CALL
:
21616 case BFD_RELOC_ARM_THM_TLS_CALL
:
21617 case BFD_RELOC_ARM_TLS_DESCSEQ
:
21618 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
21619 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
21622 case BFD_RELOC_ARM_TLS_GOTDESC
:
21623 case BFD_RELOC_ARM_TLS_GD32
:
21624 case BFD_RELOC_ARM_TLS_LE32
:
21625 case BFD_RELOC_ARM_TLS_IE32
:
21626 case BFD_RELOC_ARM_TLS_LDM32
:
21627 case BFD_RELOC_ARM_TLS_LDO32
:
21628 S_SET_THREAD_LOCAL (fixP
->fx_addsy
);
21631 case BFD_RELOC_ARM_GOT32
:
21632 case BFD_RELOC_ARM_GOTOFF
:
21633 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21634 md_number_to_chars (buf
, 0, 4);
21637 case BFD_RELOC_ARM_GOT_PREL
:
21638 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21639 md_number_to_chars (buf
, value
, 4);
21642 case BFD_RELOC_ARM_TARGET2
:
21643 /* TARGET2 is not partial-inplace, so we need to write the
21644 addend here for REL targets, because it won't be written out
21645 during reloc processing later. */
21646 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21647 md_number_to_chars (buf
, fixP
->fx_offset
, 4);
21651 case BFD_RELOC_RVA
:
21653 case BFD_RELOC_ARM_TARGET1
:
21654 case BFD_RELOC_ARM_ROSEGREL32
:
21655 case BFD_RELOC_ARM_SBREL32
:
21656 case BFD_RELOC_32_PCREL
:
21658 case BFD_RELOC_32_SECREL
:
21660 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21662 /* For WinCE we only do this for pcrel fixups. */
21663 if (fixP
->fx_done
|| fixP
->fx_pcrel
)
21665 md_number_to_chars (buf
, value
, 4);
21669 case BFD_RELOC_ARM_PREL31
:
21670 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21672 newval
= md_chars_to_number (buf
, 4) & 0x80000000;
21673 if ((value
^ (value
>> 1)) & 0x40000000)
21675 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21676 _("rel31 relocation overflow"));
21678 newval
|= value
& 0x7fffffff;
21679 md_number_to_chars (buf
, newval
, 4);
21684 case BFD_RELOC_ARM_CP_OFF_IMM
:
21685 case BFD_RELOC_ARM_T32_CP_OFF_IMM
:
21686 if (value
< -1023 || value
> 1023 || (value
& 3))
21687 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21688 _("co-processor offset out of range"));
21693 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
21694 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
21695 newval
= md_chars_to_number (buf
, INSN_SIZE
);
21697 newval
= get_thumb32_insn (buf
);
21699 newval
&= 0xffffff00;
21702 newval
&= 0xff7fff00;
21703 newval
|= (value
>> 2) | (sign
? INDEX_UP
: 0);
21705 if (fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
21706 || fixP
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
)
21707 md_number_to_chars (buf
, newval
, INSN_SIZE
);
21709 put_thumb32_insn (buf
, newval
);
21712 case BFD_RELOC_ARM_CP_OFF_IMM_S2
:
21713 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
:
21714 if (value
< -255 || value
> 255)
21715 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21716 _("co-processor offset out of range"));
21718 goto cp_off_common
;
21720 case BFD_RELOC_ARM_THUMB_OFFSET
:
21721 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21722 /* Exactly what ranges, and where the offset is inserted depends
21723 on the type of instruction, we can establish this from the
21725 switch (newval
>> 12)
21727 case 4: /* PC load. */
21728 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21729 forced to zero for these loads; md_pcrel_from has already
21730 compensated for this. */
21732 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21733 _("invalid offset, target not word aligned (0x%08lX)"),
21734 (((unsigned long) fixP
->fx_frag
->fr_address
21735 + (unsigned long) fixP
->fx_where
) & ~3)
21736 + (unsigned long) value
);
21738 if (value
& ~0x3fc)
21739 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21740 _("invalid offset, value too big (0x%08lX)"),
21743 newval
|= value
>> 2;
21746 case 9: /* SP load/store. */
21747 if (value
& ~0x3fc)
21748 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21749 _("invalid offset, value too big (0x%08lX)"),
21751 newval
|= value
>> 2;
21754 case 6: /* Word load/store. */
21756 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21757 _("invalid offset, value too big (0x%08lX)"),
21759 newval
|= value
<< 4; /* 6 - 2. */
21762 case 7: /* Byte load/store. */
21764 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21765 _("invalid offset, value too big (0x%08lX)"),
21767 newval
|= value
<< 6;
21770 case 8: /* Halfword load/store. */
21772 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21773 _("invalid offset, value too big (0x%08lX)"),
21775 newval
|= value
<< 5; /* 6 - 1. */
21779 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21780 "Unable to process relocation for thumb opcode: %lx",
21781 (unsigned long) newval
);
21784 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21787 case BFD_RELOC_ARM_THUMB_ADD
:
21788 /* This is a complicated relocation, since we use it for all of
21789 the following immediate relocations:
21793 9bit ADD/SUB SP word-aligned
21794 10bit ADD PC/SP word-aligned
21796 The type of instruction being processed is encoded in the
21803 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21805 int rd
= (newval
>> 4) & 0xf;
21806 int rs
= newval
& 0xf;
21807 int subtract
= !!(newval
& 0x8000);
21809 /* Check for HI regs, only very restricted cases allowed:
21810 Adjusting SP, and using PC or SP to get an address. */
21811 if ((rd
> 7 && (rd
!= REG_SP
|| rs
!= REG_SP
))
21812 || (rs
> 7 && rs
!= REG_SP
&& rs
!= REG_PC
))
21813 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21814 _("invalid Hi register with immediate"));
21816 /* If value is negative, choose the opposite instruction. */
21820 subtract
= !subtract
;
21822 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21823 _("immediate value out of range"));
21828 if (value
& ~0x1fc)
21829 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21830 _("invalid immediate for stack address calculation"));
21831 newval
= subtract
? T_OPCODE_SUB_ST
: T_OPCODE_ADD_ST
;
21832 newval
|= value
>> 2;
21834 else if (rs
== REG_PC
|| rs
== REG_SP
)
21836 if (subtract
|| value
& ~0x3fc)
21837 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21838 _("invalid immediate for address calculation (value = 0x%08lX)"),
21839 (unsigned long) value
);
21840 newval
= (rs
== REG_PC
? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP
);
21842 newval
|= value
>> 2;
21847 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21848 _("immediate value out of range"));
21849 newval
= subtract
? T_OPCODE_SUB_I8
: T_OPCODE_ADD_I8
;
21850 newval
|= (rd
<< 8) | value
;
21855 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21856 _("immediate value out of range"));
21857 newval
= subtract
? T_OPCODE_SUB_I3
: T_OPCODE_ADD_I3
;
21858 newval
|= rd
| (rs
<< 3) | (value
<< 6);
21861 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21864 case BFD_RELOC_ARM_THUMB_IMM
:
21865 newval
= md_chars_to_number (buf
, THUMB_SIZE
);
21866 if (value
< 0 || value
> 255)
21867 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21868 _("invalid immediate: %ld is out of range"),
21871 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21874 case BFD_RELOC_ARM_THUMB_SHIFT
:
21875 /* 5bit shift value (0..32). LSL cannot take 32. */
21876 newval
= md_chars_to_number (buf
, THUMB_SIZE
) & 0xf83f;
21877 temp
= newval
& 0xf800;
21878 if (value
< 0 || value
> 32 || (value
== 32 && temp
== T_OPCODE_LSL_I
))
21879 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21880 _("invalid shift value: %ld"), (long) value
);
21881 /* Shifts of zero must be encoded as LSL. */
21883 newval
= (newval
& 0x003f) | T_OPCODE_LSL_I
;
21884 /* Shifts of 32 are encoded as zero. */
21885 else if (value
== 32)
21887 newval
|= value
<< 6;
21888 md_number_to_chars (buf
, newval
, THUMB_SIZE
);
21891 case BFD_RELOC_VTABLE_INHERIT
:
21892 case BFD_RELOC_VTABLE_ENTRY
:
21896 case BFD_RELOC_ARM_MOVW
:
21897 case BFD_RELOC_ARM_MOVT
:
21898 case BFD_RELOC_ARM_THUMB_MOVW
:
21899 case BFD_RELOC_ARM_THUMB_MOVT
:
21900 if (fixP
->fx_done
|| !seg
->use_rela_p
)
21902 /* REL format relocations are limited to a 16-bit addend. */
21903 if (!fixP
->fx_done
)
21905 if (value
< -0x8000 || value
> 0x7fff)
21906 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21907 _("offset out of range"));
21909 else if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
21910 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
21915 if (fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
21916 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
)
21918 newval
= get_thumb32_insn (buf
);
21919 newval
&= 0xfbf08f00;
21920 newval
|= (value
& 0xf000) << 4;
21921 newval
|= (value
& 0x0800) << 15;
21922 newval
|= (value
& 0x0700) << 4;
21923 newval
|= (value
& 0x00ff);
21924 put_thumb32_insn (buf
, newval
);
21928 newval
= md_chars_to_number (buf
, 4);
21929 newval
&= 0xfff0f000;
21930 newval
|= value
& 0x0fff;
21931 newval
|= (value
& 0xf000) << 4;
21932 md_number_to_chars (buf
, newval
, 4);
21937 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
21938 case BFD_RELOC_ARM_ALU_PC_G0
:
21939 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
21940 case BFD_RELOC_ARM_ALU_PC_G1
:
21941 case BFD_RELOC_ARM_ALU_PC_G2
:
21942 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
21943 case BFD_RELOC_ARM_ALU_SB_G0
:
21944 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
21945 case BFD_RELOC_ARM_ALU_SB_G1
:
21946 case BFD_RELOC_ARM_ALU_SB_G2
:
21947 gas_assert (!fixP
->fx_done
);
21948 if (!seg
->use_rela_p
)
21951 bfd_vma encoded_addend
;
21952 bfd_vma addend_abs
= abs (value
);
21954 /* Check that the absolute value of the addend can be
21955 expressed as an 8-bit constant plus a rotation. */
21956 encoded_addend
= encode_arm_immediate (addend_abs
);
21957 if (encoded_addend
== (unsigned int) FAIL
)
21958 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21959 _("the offset 0x%08lX is not representable"),
21960 (unsigned long) addend_abs
);
21962 /* Extract the instruction. */
21963 insn
= md_chars_to_number (buf
, INSN_SIZE
);
21965 /* If the addend is positive, use an ADD instruction.
21966 Otherwise use a SUB. Take care not to destroy the S bit. */
21967 insn
&= 0xff1fffff;
21973 /* Place the encoded addend into the first 12 bits of the
21975 insn
&= 0xfffff000;
21976 insn
|= encoded_addend
;
21978 /* Update the instruction. */
21979 md_number_to_chars (buf
, insn
, INSN_SIZE
);
21983 case BFD_RELOC_ARM_LDR_PC_G0
:
21984 case BFD_RELOC_ARM_LDR_PC_G1
:
21985 case BFD_RELOC_ARM_LDR_PC_G2
:
21986 case BFD_RELOC_ARM_LDR_SB_G0
:
21987 case BFD_RELOC_ARM_LDR_SB_G1
:
21988 case BFD_RELOC_ARM_LDR_SB_G2
:
21989 gas_assert (!fixP
->fx_done
);
21990 if (!seg
->use_rela_p
)
21993 bfd_vma addend_abs
= abs (value
);
21995 /* Check that the absolute value of the addend can be
21996 encoded in 12 bits. */
21997 if (addend_abs
>= 0x1000)
21998 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
21999 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22000 (unsigned long) addend_abs
);
22002 /* Extract the instruction. */
22003 insn
= md_chars_to_number (buf
, INSN_SIZE
);
22005 /* If the addend is negative, clear bit 23 of the instruction.
22006 Otherwise set it. */
22008 insn
&= ~(1 << 23);
22012 /* Place the absolute value of the addend into the first 12 bits
22013 of the instruction. */
22014 insn
&= 0xfffff000;
22015 insn
|= addend_abs
;
22017 /* Update the instruction. */
22018 md_number_to_chars (buf
, insn
, INSN_SIZE
);
22022 case BFD_RELOC_ARM_LDRS_PC_G0
:
22023 case BFD_RELOC_ARM_LDRS_PC_G1
:
22024 case BFD_RELOC_ARM_LDRS_PC_G2
:
22025 case BFD_RELOC_ARM_LDRS_SB_G0
:
22026 case BFD_RELOC_ARM_LDRS_SB_G1
:
22027 case BFD_RELOC_ARM_LDRS_SB_G2
:
22028 gas_assert (!fixP
->fx_done
);
22029 if (!seg
->use_rela_p
)
22032 bfd_vma addend_abs
= abs (value
);
22034 /* Check that the absolute value of the addend can be
22035 encoded in 8 bits. */
22036 if (addend_abs
>= 0x100)
22037 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
22038 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22039 (unsigned long) addend_abs
);
22041 /* Extract the instruction. */
22042 insn
= md_chars_to_number (buf
, INSN_SIZE
);
22044 /* If the addend is negative, clear bit 23 of the instruction.
22045 Otherwise set it. */
22047 insn
&= ~(1 << 23);
22051 /* Place the first four bits of the absolute value of the addend
22052 into the first 4 bits of the instruction, and the remaining
22053 four into bits 8 .. 11. */
22054 insn
&= 0xfffff0f0;
22055 insn
|= (addend_abs
& 0xf) | ((addend_abs
& 0xf0) << 4);
22057 /* Update the instruction. */
22058 md_number_to_chars (buf
, insn
, INSN_SIZE
);
22062 case BFD_RELOC_ARM_LDC_PC_G0
:
22063 case BFD_RELOC_ARM_LDC_PC_G1
:
22064 case BFD_RELOC_ARM_LDC_PC_G2
:
22065 case BFD_RELOC_ARM_LDC_SB_G0
:
22066 case BFD_RELOC_ARM_LDC_SB_G1
:
22067 case BFD_RELOC_ARM_LDC_SB_G2
:
22068 gas_assert (!fixP
->fx_done
);
22069 if (!seg
->use_rela_p
)
22072 bfd_vma addend_abs
= abs (value
);
22074 /* Check that the absolute value of the addend is a multiple of
22075 four and, when divided by four, fits in 8 bits. */
22076 if (addend_abs
& 0x3)
22077 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
22078 _("bad offset 0x%08lX (must be word-aligned)"),
22079 (unsigned long) addend_abs
);
22081 if ((addend_abs
>> 2) > 0xff)
22082 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
22083 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22084 (unsigned long) addend_abs
);
22086 /* Extract the instruction. */
22087 insn
= md_chars_to_number (buf
, INSN_SIZE
);
22089 /* If the addend is negative, clear bit 23 of the instruction.
22090 Otherwise set it. */
22092 insn
&= ~(1 << 23);
22096 /* Place the addend (divided by four) into the first eight
22097 bits of the instruction. */
22098 insn
&= 0xfffffff0;
22099 insn
|= addend_abs
>> 2;
22101 /* Update the instruction. */
22102 md_number_to_chars (buf
, insn
, INSN_SIZE
);
22106 case BFD_RELOC_ARM_V4BX
:
22107 /* This will need to go in the object file. */
22111 case BFD_RELOC_UNUSED
:
22113 as_bad_where (fixP
->fx_file
, fixP
->fx_line
,
22114 _("bad relocation fixup type (%d)"), fixP
->fx_r_type
);
22118 /* Translate internal representation of relocation info to BFD target
22122 tc_gen_reloc (asection
*section
, fixS
*fixp
)
22125 bfd_reloc_code_real_type code
;
22127 reloc
= (arelent
*) xmalloc (sizeof (arelent
));
22129 reloc
->sym_ptr_ptr
= (asymbol
**) xmalloc (sizeof (asymbol
*));
22130 *reloc
->sym_ptr_ptr
= symbol_get_bfdsym (fixp
->fx_addsy
);
22131 reloc
->address
= fixp
->fx_frag
->fr_address
+ fixp
->fx_where
;
22133 if (fixp
->fx_pcrel
)
22135 if (section
->use_rela_p
)
22136 fixp
->fx_offset
-= md_pcrel_from_section (fixp
, section
);
22138 fixp
->fx_offset
= reloc
->address
;
22140 reloc
->addend
= fixp
->fx_offset
;
22142 switch (fixp
->fx_r_type
)
22145 if (fixp
->fx_pcrel
)
22147 code
= BFD_RELOC_8_PCREL
;
22152 if (fixp
->fx_pcrel
)
22154 code
= BFD_RELOC_16_PCREL
;
22159 if (fixp
->fx_pcrel
)
22161 code
= BFD_RELOC_32_PCREL
;
22165 case BFD_RELOC_ARM_MOVW
:
22166 if (fixp
->fx_pcrel
)
22168 code
= BFD_RELOC_ARM_MOVW_PCREL
;
22172 case BFD_RELOC_ARM_MOVT
:
22173 if (fixp
->fx_pcrel
)
22175 code
= BFD_RELOC_ARM_MOVT_PCREL
;
22179 case BFD_RELOC_ARM_THUMB_MOVW
:
22180 if (fixp
->fx_pcrel
)
22182 code
= BFD_RELOC_ARM_THUMB_MOVW_PCREL
;
22186 case BFD_RELOC_ARM_THUMB_MOVT
:
22187 if (fixp
->fx_pcrel
)
22189 code
= BFD_RELOC_ARM_THUMB_MOVT_PCREL
;
22193 case BFD_RELOC_NONE
:
22194 case BFD_RELOC_ARM_PCREL_BRANCH
:
22195 case BFD_RELOC_ARM_PCREL_BLX
:
22196 case BFD_RELOC_RVA
:
22197 case BFD_RELOC_THUMB_PCREL_BRANCH7
:
22198 case BFD_RELOC_THUMB_PCREL_BRANCH9
:
22199 case BFD_RELOC_THUMB_PCREL_BRANCH12
:
22200 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
22201 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
22202 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
22203 case BFD_RELOC_VTABLE_ENTRY
:
22204 case BFD_RELOC_VTABLE_INHERIT
:
22206 case BFD_RELOC_32_SECREL
:
22208 code
= fixp
->fx_r_type
;
22211 case BFD_RELOC_THUMB_PCREL_BLX
:
22213 if (EF_ARM_EABI_VERSION (meabi_flags
) >= EF_ARM_EABI_VER4
)
22214 code
= BFD_RELOC_THUMB_PCREL_BRANCH23
;
22217 code
= BFD_RELOC_THUMB_PCREL_BLX
;
22220 case BFD_RELOC_ARM_LITERAL
:
22221 case BFD_RELOC_ARM_HWLITERAL
:
22222 /* If this is called then the a literal has
22223 been referenced across a section boundary. */
22224 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22225 _("literal referenced across section boundary"));
22229 case BFD_RELOC_ARM_TLS_CALL
:
22230 case BFD_RELOC_ARM_THM_TLS_CALL
:
22231 case BFD_RELOC_ARM_TLS_DESCSEQ
:
22232 case BFD_RELOC_ARM_THM_TLS_DESCSEQ
:
22233 case BFD_RELOC_ARM_GOT32
:
22234 case BFD_RELOC_ARM_GOTOFF
:
22235 case BFD_RELOC_ARM_GOT_PREL
:
22236 case BFD_RELOC_ARM_PLT32
:
22237 case BFD_RELOC_ARM_TARGET1
:
22238 case BFD_RELOC_ARM_ROSEGREL32
:
22239 case BFD_RELOC_ARM_SBREL32
:
22240 case BFD_RELOC_ARM_PREL31
:
22241 case BFD_RELOC_ARM_TARGET2
:
22242 case BFD_RELOC_ARM_TLS_LE32
:
22243 case BFD_RELOC_ARM_TLS_LDO32
:
22244 case BFD_RELOC_ARM_PCREL_CALL
:
22245 case BFD_RELOC_ARM_PCREL_JUMP
:
22246 case BFD_RELOC_ARM_ALU_PC_G0_NC
:
22247 case BFD_RELOC_ARM_ALU_PC_G0
:
22248 case BFD_RELOC_ARM_ALU_PC_G1_NC
:
22249 case BFD_RELOC_ARM_ALU_PC_G1
:
22250 case BFD_RELOC_ARM_ALU_PC_G2
:
22251 case BFD_RELOC_ARM_LDR_PC_G0
:
22252 case BFD_RELOC_ARM_LDR_PC_G1
:
22253 case BFD_RELOC_ARM_LDR_PC_G2
:
22254 case BFD_RELOC_ARM_LDRS_PC_G0
:
22255 case BFD_RELOC_ARM_LDRS_PC_G1
:
22256 case BFD_RELOC_ARM_LDRS_PC_G2
:
22257 case BFD_RELOC_ARM_LDC_PC_G0
:
22258 case BFD_RELOC_ARM_LDC_PC_G1
:
22259 case BFD_RELOC_ARM_LDC_PC_G2
:
22260 case BFD_RELOC_ARM_ALU_SB_G0_NC
:
22261 case BFD_RELOC_ARM_ALU_SB_G0
:
22262 case BFD_RELOC_ARM_ALU_SB_G1_NC
:
22263 case BFD_RELOC_ARM_ALU_SB_G1
:
22264 case BFD_RELOC_ARM_ALU_SB_G2
:
22265 case BFD_RELOC_ARM_LDR_SB_G0
:
22266 case BFD_RELOC_ARM_LDR_SB_G1
:
22267 case BFD_RELOC_ARM_LDR_SB_G2
:
22268 case BFD_RELOC_ARM_LDRS_SB_G0
:
22269 case BFD_RELOC_ARM_LDRS_SB_G1
:
22270 case BFD_RELOC_ARM_LDRS_SB_G2
:
22271 case BFD_RELOC_ARM_LDC_SB_G0
:
22272 case BFD_RELOC_ARM_LDC_SB_G1
:
22273 case BFD_RELOC_ARM_LDC_SB_G2
:
22274 case BFD_RELOC_ARM_V4BX
:
22275 code
= fixp
->fx_r_type
;
22278 case BFD_RELOC_ARM_TLS_GOTDESC
:
22279 case BFD_RELOC_ARM_TLS_GD32
:
22280 case BFD_RELOC_ARM_TLS_IE32
:
22281 case BFD_RELOC_ARM_TLS_LDM32
:
22282 /* BFD will include the symbol's address in the addend.
22283 But we don't want that, so subtract it out again here. */
22284 if (!S_IS_COMMON (fixp
->fx_addsy
))
22285 reloc
->addend
-= (*reloc
->sym_ptr_ptr
)->value
;
22286 code
= fixp
->fx_r_type
;
22290 case BFD_RELOC_ARM_IMMEDIATE
:
22291 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22292 _("internal relocation (type: IMMEDIATE) not fixed up"));
22295 case BFD_RELOC_ARM_ADRL_IMMEDIATE
:
22296 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22297 _("ADRL used for a symbol not defined in the same file"));
22300 case BFD_RELOC_ARM_OFFSET_IMM
:
22301 if (section
->use_rela_p
)
22303 code
= fixp
->fx_r_type
;
22307 if (fixp
->fx_addsy
!= NULL
22308 && !S_IS_DEFINED (fixp
->fx_addsy
)
22309 && S_IS_LOCAL (fixp
->fx_addsy
))
22311 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22312 _("undefined local label `%s'"),
22313 S_GET_NAME (fixp
->fx_addsy
));
22317 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22318 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22325 switch (fixp
->fx_r_type
)
22327 case BFD_RELOC_NONE
: type
= "NONE"; break;
22328 case BFD_RELOC_ARM_OFFSET_IMM8
: type
= "OFFSET_IMM8"; break;
22329 case BFD_RELOC_ARM_SHIFT_IMM
: type
= "SHIFT_IMM"; break;
22330 case BFD_RELOC_ARM_SMC
: type
= "SMC"; break;
22331 case BFD_RELOC_ARM_SWI
: type
= "SWI"; break;
22332 case BFD_RELOC_ARM_MULTI
: type
= "MULTI"; break;
22333 case BFD_RELOC_ARM_CP_OFF_IMM
: type
= "CP_OFF_IMM"; break;
22334 case BFD_RELOC_ARM_T32_OFFSET_IMM
: type
= "T32_OFFSET_IMM"; break;
22335 case BFD_RELOC_ARM_T32_CP_OFF_IMM
: type
= "T32_CP_OFF_IMM"; break;
22336 case BFD_RELOC_ARM_THUMB_ADD
: type
= "THUMB_ADD"; break;
22337 case BFD_RELOC_ARM_THUMB_SHIFT
: type
= "THUMB_SHIFT"; break;
22338 case BFD_RELOC_ARM_THUMB_IMM
: type
= "THUMB_IMM"; break;
22339 case BFD_RELOC_ARM_THUMB_OFFSET
: type
= "THUMB_OFFSET"; break;
22340 default: type
= _("<unknown>"); break;
22342 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22343 _("cannot represent %s relocation in this object file format"),
22350 if ((code
== BFD_RELOC_32_PCREL
|| code
== BFD_RELOC_32
)
22352 && fixp
->fx_addsy
== GOT_symbol
)
22354 code
= BFD_RELOC_ARM_GOTPC
;
22355 reloc
->addend
= fixp
->fx_offset
= reloc
->address
;
22359 reloc
->howto
= bfd_reloc_type_lookup (stdoutput
, code
);
22361 if (reloc
->howto
== NULL
)
22363 as_bad_where (fixp
->fx_file
, fixp
->fx_line
,
22364 _("cannot represent %s relocation in this object file format"),
22365 bfd_get_reloc_code_name (code
));
22369 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22370 vtable entry to be used in the relocation's section offset. */
22371 if (fixp
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
22372 reloc
->address
= fixp
->fx_offset
;
22377 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22380 cons_fix_new_arm (fragS
* frag
,
22385 bfd_reloc_code_real_type type
;
22389 FIXME: @@ Should look at CPU word size. */
22393 type
= BFD_RELOC_8
;
22396 type
= BFD_RELOC_16
;
22400 type
= BFD_RELOC_32
;
22403 type
= BFD_RELOC_64
;
22408 if (exp
->X_op
== O_secrel
)
22410 exp
->X_op
= O_symbol
;
22411 type
= BFD_RELOC_32_SECREL
;
22415 fix_new_exp (frag
, where
, (int) size
, exp
, pcrel
, type
);
22418 #if defined (OBJ_COFF)
22420 arm_validate_fix (fixS
* fixP
)
22422 /* If the destination of the branch is a defined symbol which does not have
22423 the THUMB_FUNC attribute, then we must be calling a function which has
22424 the (interfacearm) attribute. We look for the Thumb entry point to that
22425 function and change the branch to refer to that function instead. */
22426 if (fixP
->fx_r_type
== BFD_RELOC_THUMB_PCREL_BRANCH23
22427 && fixP
->fx_addsy
!= NULL
22428 && S_IS_DEFINED (fixP
->fx_addsy
)
22429 && ! THUMB_IS_FUNC (fixP
->fx_addsy
))
22431 fixP
->fx_addsy
= find_real_start (fixP
->fx_addsy
);
22438 arm_force_relocation (struct fix
* fixp
)
22440 #if defined (OBJ_COFF) && defined (TE_PE)
22441 if (fixp
->fx_r_type
== BFD_RELOC_RVA
)
22445 /* In case we have a call or a branch to a function in ARM ISA mode from
22446 a thumb function or vice-versa force the relocation. These relocations
22447 are cleared off for some cores that might have blx and simple transformations
22451 switch (fixp
->fx_r_type
)
22453 case BFD_RELOC_ARM_PCREL_JUMP
:
22454 case BFD_RELOC_ARM_PCREL_CALL
:
22455 case BFD_RELOC_THUMB_PCREL_BLX
:
22456 if (THUMB_IS_FUNC (fixp
->fx_addsy
))
22460 case BFD_RELOC_ARM_PCREL_BLX
:
22461 case BFD_RELOC_THUMB_PCREL_BRANCH25
:
22462 case BFD_RELOC_THUMB_PCREL_BRANCH20
:
22463 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
22464 if (ARM_IS_FUNC (fixp
->fx_addsy
))
22473 /* Resolve these relocations even if the symbol is extern or weak.
22474 Technically this is probably wrong due to symbol preemption.
22475 In practice these relocations do not have enough range to be useful
22476 at dynamic link time, and some code (e.g. in the Linux kernel)
22477 expects these references to be resolved. */
22478 if (fixp
->fx_r_type
== BFD_RELOC_ARM_IMMEDIATE
22479 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM
22480 || fixp
->fx_r_type
== BFD_RELOC_ARM_OFFSET_IMM8
22481 || fixp
->fx_r_type
== BFD_RELOC_ARM_ADRL_IMMEDIATE
22482 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM
22483 || fixp
->fx_r_type
== BFD_RELOC_ARM_CP_OFF_IMM_S2
22484 || fixp
->fx_r_type
== BFD_RELOC_ARM_THUMB_OFFSET
22485 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_IMM
22486 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMMEDIATE
22487 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_IMM12
22488 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_OFFSET_IMM
22489 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_ADD_PC12
22490 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM
22491 || fixp
->fx_r_type
== BFD_RELOC_ARM_T32_CP_OFF_IMM_S2
)
22494 /* Always leave these relocations for the linker. */
22495 if ((fixp
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
22496 && fixp
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
22497 || fixp
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
22500 /* Always generate relocations against function symbols. */
22501 if (fixp
->fx_r_type
== BFD_RELOC_32
22503 && (symbol_get_bfdsym (fixp
->fx_addsy
)->flags
& BSF_FUNCTION
))
22506 return generic_force_reloc (fixp
);
22509 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22510 /* Relocations against function names must be left unadjusted,
22511 so that the linker can use this information to generate interworking
22512 stubs. The MIPS version of this function
22513 also prevents relocations that are mips-16 specific, but I do not
22514 know why it does this.
22517 There is one other problem that ought to be addressed here, but
22518 which currently is not: Taking the address of a label (rather
22519 than a function) and then later jumping to that address. Such
22520 addresses also ought to have their bottom bit set (assuming that
22521 they reside in Thumb code), but at the moment they will not. */
22524 arm_fix_adjustable (fixS
* fixP
)
22526 if (fixP
->fx_addsy
== NULL
)
22529 /* Preserve relocations against symbols with function type. */
22530 if (symbol_get_bfdsym (fixP
->fx_addsy
)->flags
& BSF_FUNCTION
)
22533 if (THUMB_IS_FUNC (fixP
->fx_addsy
)
22534 && fixP
->fx_subsy
== NULL
)
22537 /* We need the symbol name for the VTABLE entries. */
22538 if ( fixP
->fx_r_type
== BFD_RELOC_VTABLE_INHERIT
22539 || fixP
->fx_r_type
== BFD_RELOC_VTABLE_ENTRY
)
22542 /* Don't allow symbols to be discarded on GOT related relocs. */
22543 if (fixP
->fx_r_type
== BFD_RELOC_ARM_PLT32
22544 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOT32
22545 || fixP
->fx_r_type
== BFD_RELOC_ARM_GOTOFF
22546 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GD32
22547 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LE32
22548 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_IE32
22549 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDM32
22550 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_LDO32
22551 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_GOTDESC
22552 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_CALL
22553 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_CALL
22554 || fixP
->fx_r_type
== BFD_RELOC_ARM_TLS_DESCSEQ
22555 || fixP
->fx_r_type
== BFD_RELOC_ARM_THM_TLS_DESCSEQ
22556 || fixP
->fx_r_type
== BFD_RELOC_ARM_TARGET2
)
22559 /* Similarly for group relocations. */
22560 if ((fixP
->fx_r_type
>= BFD_RELOC_ARM_ALU_PC_G0_NC
22561 && fixP
->fx_r_type
<= BFD_RELOC_ARM_LDC_SB_G2
)
22562 || fixP
->fx_r_type
== BFD_RELOC_ARM_LDR_PC_G0
)
22565 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22566 if (fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW
22567 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT
22568 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVW_PCREL
22569 || fixP
->fx_r_type
== BFD_RELOC_ARM_MOVT_PCREL
22570 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW
22571 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT
22572 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVW_PCREL
22573 || fixP
->fx_r_type
== BFD_RELOC_ARM_THUMB_MOVT_PCREL
)
22578 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22583 elf32_arm_target_format (void)
22586 return (target_big_endian
22587 ? "elf32-bigarm-symbian"
22588 : "elf32-littlearm-symbian");
22589 #elif defined (TE_VXWORKS)
22590 return (target_big_endian
22591 ? "elf32-bigarm-vxworks"
22592 : "elf32-littlearm-vxworks");
22593 #elif defined (TE_NACL)
22594 return (target_big_endian
22595 ? "elf32-bigarm-nacl"
22596 : "elf32-littlearm-nacl");
22598 if (target_big_endian
)
22599 return "elf32-bigarm";
22601 return "elf32-littlearm";
22606 armelf_frob_symbol (symbolS
* symp
,
22609 elf_frob_symbol (symp
, puntp
);
22613 /* MD interface: Finalization. */
22618 literal_pool
* pool
;
22620 /* Ensure that all the IT blocks are properly closed. */
22621 check_it_blocks_finished ();
22623 for (pool
= list_of_pools
; pool
; pool
= pool
->next
)
22625 /* Put it at the end of the relevant section. */
22626 subseg_set (pool
->section
, pool
->sub_section
);
22628 arm_elf_change_section ();
22635 /* Remove any excess mapping symbols generated for alignment frags in
22636 SEC. We may have created a mapping symbol before a zero byte
22637 alignment; remove it if there's a mapping symbol after the
22640 check_mapping_symbols (bfd
*abfd ATTRIBUTE_UNUSED
, asection
*sec
,
22641 void *dummy ATTRIBUTE_UNUSED
)
22643 segment_info_type
*seginfo
= seg_info (sec
);
22646 if (seginfo
== NULL
|| seginfo
->frchainP
== NULL
)
22649 for (fragp
= seginfo
->frchainP
->frch_root
;
22651 fragp
= fragp
->fr_next
)
22653 symbolS
*sym
= fragp
->tc_frag_data
.last_map
;
22654 fragS
*next
= fragp
->fr_next
;
22656 /* Variable-sized frags have been converted to fixed size by
22657 this point. But if this was variable-sized to start with,
22658 there will be a fixed-size frag after it. So don't handle
22660 if (sym
== NULL
|| next
== NULL
)
22663 if (S_GET_VALUE (sym
) < next
->fr_address
)
22664 /* Not at the end of this frag. */
22666 know (S_GET_VALUE (sym
) == next
->fr_address
);
22670 if (next
->tc_frag_data
.first_map
!= NULL
)
22672 /* Next frag starts with a mapping symbol. Discard this
22674 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
22678 if (next
->fr_next
== NULL
)
22680 /* This mapping symbol is at the end of the section. Discard
22682 know (next
->fr_fix
== 0 && next
->fr_var
== 0);
22683 symbol_remove (sym
, &symbol_rootP
, &symbol_lastP
);
22687 /* As long as we have empty frags without any mapping symbols,
22689 /* If the next frag is non-empty and does not start with a
22690 mapping symbol, then this mapping symbol is required. */
22691 if (next
->fr_address
!= next
->fr_next
->fr_address
)
22694 next
= next
->fr_next
;
22696 while (next
!= NULL
);
22701 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22705 arm_adjust_symtab (void)
22710 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
22712 if (ARM_IS_THUMB (sym
))
22714 if (THUMB_IS_FUNC (sym
))
22716 /* Mark the symbol as a Thumb function. */
22717 if ( S_GET_STORAGE_CLASS (sym
) == C_STAT
22718 || S_GET_STORAGE_CLASS (sym
) == C_LABEL
) /* This can happen! */
22719 S_SET_STORAGE_CLASS (sym
, C_THUMBSTATFUNC
);
22721 else if (S_GET_STORAGE_CLASS (sym
) == C_EXT
)
22722 S_SET_STORAGE_CLASS (sym
, C_THUMBEXTFUNC
);
22724 as_bad (_("%s: unexpected function type: %d"),
22725 S_GET_NAME (sym
), S_GET_STORAGE_CLASS (sym
));
22727 else switch (S_GET_STORAGE_CLASS (sym
))
22730 S_SET_STORAGE_CLASS (sym
, C_THUMBEXT
);
22733 S_SET_STORAGE_CLASS (sym
, C_THUMBSTAT
);
22736 S_SET_STORAGE_CLASS (sym
, C_THUMBLABEL
);
22744 if (ARM_IS_INTERWORK (sym
))
22745 coffsymbol (symbol_get_bfdsym (sym
))->native
->u
.syment
.n_flags
= 0xFF;
22752 for (sym
= symbol_rootP
; sym
!= NULL
; sym
= symbol_next (sym
))
22754 if (ARM_IS_THUMB (sym
))
22756 elf_symbol_type
* elf_sym
;
22758 elf_sym
= elf_symbol (symbol_get_bfdsym (sym
));
22759 bind
= ELF_ST_BIND (elf_sym
->internal_elf_sym
.st_info
);
22761 if (! bfd_is_arm_special_symbol_name (elf_sym
->symbol
.name
,
22762 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
22764 /* If it's a .thumb_func, declare it as so,
22765 otherwise tag label as .code 16. */
22766 if (THUMB_IS_FUNC (sym
))
22767 elf_sym
->internal_elf_sym
.st_target_internal
22768 = ST_BRANCH_TO_THUMB
;
22769 else if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
22770 elf_sym
->internal_elf_sym
.st_info
=
22771 ELF_ST_INFO (bind
, STT_ARM_16BIT
);
22776 /* Remove any overlapping mapping symbols generated by alignment frags. */
22777 bfd_map_over_sections (stdoutput
, check_mapping_symbols
, (char *) 0);
22778 /* Now do generic ELF adjustments. */
22779 elf_adjust_symtab ();
22783 /* MD interface: Initialization. */
22786 set_constant_flonums (void)
22790 for (i
= 0; i
< NUM_FLOAT_VALS
; i
++)
22791 if (atof_ieee ((char *) fp_const
[i
], 'x', fp_values
[i
]) == NULL
)
22795 /* Auto-select Thumb mode if it's the only available instruction set for the
22796 given architecture. */
22799 autoselect_thumb_from_cpu_variant (void)
22801 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v1
))
22802 opcode_select (16);
22811 if ( (arm_ops_hsh
= hash_new ()) == NULL
22812 || (arm_cond_hsh
= hash_new ()) == NULL
22813 || (arm_shift_hsh
= hash_new ()) == NULL
22814 || (arm_psr_hsh
= hash_new ()) == NULL
22815 || (arm_v7m_psr_hsh
= hash_new ()) == NULL
22816 || (arm_reg_hsh
= hash_new ()) == NULL
22817 || (arm_reloc_hsh
= hash_new ()) == NULL
22818 || (arm_barrier_opt_hsh
= hash_new ()) == NULL
)
22819 as_fatal (_("virtual memory exhausted"));
22821 for (i
= 0; i
< sizeof (insns
) / sizeof (struct asm_opcode
); i
++)
22822 hash_insert (arm_ops_hsh
, insns
[i
].template_name
, (void *) (insns
+ i
));
22823 for (i
= 0; i
< sizeof (conds
) / sizeof (struct asm_cond
); i
++)
22824 hash_insert (arm_cond_hsh
, conds
[i
].template_name
, (void *) (conds
+ i
));
22825 for (i
= 0; i
< sizeof (shift_names
) / sizeof (struct asm_shift_name
); i
++)
22826 hash_insert (arm_shift_hsh
, shift_names
[i
].name
, (void *) (shift_names
+ i
));
22827 for (i
= 0; i
< sizeof (psrs
) / sizeof (struct asm_psr
); i
++)
22828 hash_insert (arm_psr_hsh
, psrs
[i
].template_name
, (void *) (psrs
+ i
));
22829 for (i
= 0; i
< sizeof (v7m_psrs
) / sizeof (struct asm_psr
); i
++)
22830 hash_insert (arm_v7m_psr_hsh
, v7m_psrs
[i
].template_name
,
22831 (void *) (v7m_psrs
+ i
));
22832 for (i
= 0; i
< sizeof (reg_names
) / sizeof (struct reg_entry
); i
++)
22833 hash_insert (arm_reg_hsh
, reg_names
[i
].name
, (void *) (reg_names
+ i
));
22835 i
< sizeof (barrier_opt_names
) / sizeof (struct asm_barrier_opt
);
22837 hash_insert (arm_barrier_opt_hsh
, barrier_opt_names
[i
].template_name
,
22838 (void *) (barrier_opt_names
+ i
));
22840 for (i
= 0; i
< ARRAY_SIZE (reloc_names
); i
++)
22842 struct reloc_entry
* entry
= reloc_names
+ i
;
22844 if (arm_is_eabi() && entry
->reloc
== BFD_RELOC_ARM_PLT32
)
22845 /* This makes encode_branch() use the EABI versions of this relocation. */
22846 entry
->reloc
= BFD_RELOC_UNUSED
;
22848 hash_insert (arm_reloc_hsh
, entry
->name
, (void *) entry
);
22852 set_constant_flonums ();
22854 /* Set the cpu variant based on the command-line options. We prefer
22855 -mcpu= over -march= if both are set (as for GCC); and we prefer
22856 -mfpu= over any other way of setting the floating point unit.
22857 Use of legacy options with new options are faulted. */
22860 if (mcpu_cpu_opt
|| march_cpu_opt
)
22861 as_bad (_("use of old and new-style options to set CPU type"));
22863 mcpu_cpu_opt
= legacy_cpu
;
22865 else if (!mcpu_cpu_opt
)
22866 mcpu_cpu_opt
= march_cpu_opt
;
22871 as_bad (_("use of old and new-style options to set FPU type"));
22873 mfpu_opt
= legacy_fpu
;
22875 else if (!mfpu_opt
)
22877 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22878 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22879 /* Some environments specify a default FPU. If they don't, infer it
22880 from the processor. */
22882 mfpu_opt
= mcpu_fpu_opt
;
22884 mfpu_opt
= march_fpu_opt
;
22886 mfpu_opt
= &fpu_default
;
22892 if (mcpu_cpu_opt
!= NULL
)
22893 mfpu_opt
= &fpu_default
;
22894 else if (mcpu_fpu_opt
!= NULL
&& ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt
, arm_ext_v5
))
22895 mfpu_opt
= &fpu_arch_vfp_v2
;
22897 mfpu_opt
= &fpu_arch_fpa
;
22903 mcpu_cpu_opt
= &cpu_default
;
22904 selected_cpu
= cpu_default
;
22908 selected_cpu
= *mcpu_cpu_opt
;
22910 mcpu_cpu_opt
= &arm_arch_any
;
22913 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
22915 autoselect_thumb_from_cpu_variant ();
22917 arm_arch_used
= thumb_arch_used
= arm_arch_none
;
22919 #if defined OBJ_COFF || defined OBJ_ELF
22921 unsigned int flags
= 0;
22923 #if defined OBJ_ELF
22924 flags
= meabi_flags
;
22926 switch (meabi_flags
)
22928 case EF_ARM_EABI_UNKNOWN
:
22930 /* Set the flags in the private structure. */
22931 if (uses_apcs_26
) flags
|= F_APCS26
;
22932 if (support_interwork
) flags
|= F_INTERWORK
;
22933 if (uses_apcs_float
) flags
|= F_APCS_FLOAT
;
22934 if (pic_code
) flags
|= F_PIC
;
22935 if (!ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_any_hard
))
22936 flags
|= F_SOFT_FLOAT
;
22938 switch (mfloat_abi_opt
)
22940 case ARM_FLOAT_ABI_SOFT
:
22941 case ARM_FLOAT_ABI_SOFTFP
:
22942 flags
|= F_SOFT_FLOAT
;
22945 case ARM_FLOAT_ABI_HARD
:
22946 if (flags
& F_SOFT_FLOAT
)
22947 as_bad (_("hard-float conflicts with specified fpu"));
22951 /* Using pure-endian doubles (even if soft-float). */
22952 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_endian_pure
))
22953 flags
|= F_VFP_FLOAT
;
22955 #if defined OBJ_ELF
22956 if (ARM_CPU_HAS_FEATURE (cpu_variant
, fpu_arch_maverick
))
22957 flags
|= EF_ARM_MAVERICK_FLOAT
;
22960 case EF_ARM_EABI_VER4
:
22961 case EF_ARM_EABI_VER5
:
22962 /* No additional flags to set. */
22969 bfd_set_private_flags (stdoutput
, flags
);
22971 /* We have run out flags in the COFF header to encode the
22972 status of ATPCS support, so instead we create a dummy,
22973 empty, debug section called .arm.atpcs. */
22978 sec
= bfd_make_section (stdoutput
, ".arm.atpcs");
22982 bfd_set_section_flags
22983 (stdoutput
, sec
, SEC_READONLY
| SEC_DEBUGGING
/* | SEC_HAS_CONTENTS */);
22984 bfd_set_section_size (stdoutput
, sec
, 0);
22985 bfd_set_section_contents (stdoutput
, sec
, NULL
, 0, 0);
22991 /* Record the CPU type as well. */
22992 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt2
))
22993 mach
= bfd_mach_arm_iWMMXt2
;
22994 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_iwmmxt
))
22995 mach
= bfd_mach_arm_iWMMXt
;
22996 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_xscale
))
22997 mach
= bfd_mach_arm_XScale
;
22998 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_cext_maverick
))
22999 mach
= bfd_mach_arm_ep9312
;
23000 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5e
))
23001 mach
= bfd_mach_arm_5TE
;
23002 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v5
))
23004 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
23005 mach
= bfd_mach_arm_5T
;
23007 mach
= bfd_mach_arm_5
;
23009 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4
))
23011 if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v4t
))
23012 mach
= bfd_mach_arm_4T
;
23014 mach
= bfd_mach_arm_4
;
23016 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3m
))
23017 mach
= bfd_mach_arm_3M
;
23018 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v3
))
23019 mach
= bfd_mach_arm_3
;
23020 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2s
))
23021 mach
= bfd_mach_arm_2a
;
23022 else if (ARM_CPU_HAS_FEATURE (cpu_variant
, arm_ext_v2
))
23023 mach
= bfd_mach_arm_2
;
23025 mach
= bfd_mach_arm_unknown
;
23027 bfd_set_arch_mach (stdoutput
, TARGET_ARCH
, mach
);
23030 /* Command line processing. */
23033 Invocation line includes a switch not recognized by the base assembler.
23034 See if it's a processor-specific option.
23036 This routine is somewhat complicated by the need for backwards
23037 compatibility (since older releases of gcc can't be changed).
23038 The new options try to make the interface as compatible as
23041 New options (supported) are:
23043 -mcpu=<cpu name> Assemble for selected processor
23044 -march=<architecture name> Assemble for selected architecture
23045 -mfpu=<fpu architecture> Assemble for selected FPU.
23046 -EB/-mbig-endian Big-endian
23047 -EL/-mlittle-endian Little-endian
23048 -k Generate PIC code
23049 -mthumb Start in Thumb mode
23050 -mthumb-interwork Code supports ARM/Thumb interworking
23052 -m[no-]warn-deprecated Warn about deprecated features
23054 For now we will also provide support for:
23056 -mapcs-32 32-bit Program counter
23057 -mapcs-26 26-bit Program counter
23058 -macps-float Floats passed in FP registers
23059 -mapcs-reentrant Reentrant code
23061 (sometime these will probably be replaced with -mapcs=<list of options>
23062 and -matpcs=<list of options>)
23064 The remaining options are only supported for back-wards compatibility.
23065 Cpu variants, the arm part is optional:
23066 -m[arm]1 Currently not supported.
23067 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23068 -m[arm]3 Arm 3 processor
23069 -m[arm]6[xx], Arm 6 processors
23070 -m[arm]7[xx][t][[d]m] Arm 7 processors
23071 -m[arm]8[10] Arm 8 processors
23072 -m[arm]9[20][tdmi] Arm 9 processors
23073 -mstrongarm[110[0]] StrongARM processors
23074 -mxscale XScale processors
23075 -m[arm]v[2345[t[e]]] Arm architectures
23076 -mall All (except the ARM1)
23078 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23079 -mfpe-old (No float load/store multiples)
23080 -mvfpxd VFP Single precision
23082 -mno-fpu Disable all floating point instructions
23084 The following CPU names are recognized:
23085 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23086 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23087 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23088 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23089 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23090 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23091 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23095 const char * md_shortopts
= "m:k";
23097 #ifdef ARM_BI_ENDIAN
23098 #define OPTION_EB (OPTION_MD_BASE + 0)
23099 #define OPTION_EL (OPTION_MD_BASE + 1)
23101 #if TARGET_BYTES_BIG_ENDIAN
23102 #define OPTION_EB (OPTION_MD_BASE + 0)
23104 #define OPTION_EL (OPTION_MD_BASE + 1)
23107 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23109 struct option md_longopts
[] =
23112 {"EB", no_argument
, NULL
, OPTION_EB
},
23115 {"EL", no_argument
, NULL
, OPTION_EL
},
23117 {"fix-v4bx", no_argument
, NULL
, OPTION_FIX_V4BX
},
23118 {NULL
, no_argument
, NULL
, 0}
23121 size_t md_longopts_size
= sizeof (md_longopts
);
23123 struct arm_option_table
23125 char *option
; /* Option name to match. */
23126 char *help
; /* Help information. */
23127 int *var
; /* Variable to change. */
23128 int value
; /* What to change it to. */
23129 char *deprecated
; /* If non-null, print this message. */
23132 struct arm_option_table arm_opts
[] =
23134 {"k", N_("generate PIC code"), &pic_code
, 1, NULL
},
23135 {"mthumb", N_("assemble Thumb code"), &thumb_mode
, 1, NULL
},
23136 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23137 &support_interwork
, 1, NULL
},
23138 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26
, 0, NULL
},
23139 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26
, 1, NULL
},
23140 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float
,
23142 {"mapcs-reentrant", N_("re-entrant code"), &pic_code
, 1, NULL
},
23143 {"matpcs", N_("code is ATPCS conformant"), &atpcs
, 1, NULL
},
23144 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian
, 1, NULL
},
23145 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian
, 0,
23148 /* These are recognized by the assembler, but have no affect on code. */
23149 {"mapcs-frame", N_("use frame pointer"), NULL
, 0, NULL
},
23150 {"mapcs-stack-check", N_("use stack size checking"), NULL
, 0, NULL
},
23152 {"mwarn-deprecated", NULL
, &warn_on_deprecated
, 1, NULL
},
23153 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23154 &warn_on_deprecated
, 0, NULL
},
23155 {NULL
, NULL
, NULL
, 0, NULL
}
23158 struct arm_legacy_option_table
23160 char *option
; /* Option name to match. */
23161 const arm_feature_set
**var
; /* Variable to change. */
23162 const arm_feature_set value
; /* What to change it to. */
23163 char *deprecated
; /* If non-null, print this message. */
23166 const struct arm_legacy_option_table arm_legacy_opts
[] =
23168 /* DON'T add any new processors to this list -- we want the whole list
23169 to go away... Add them to the processors table instead. */
23170 {"marm1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
23171 {"m1", &legacy_cpu
, ARM_ARCH_V1
, N_("use -mcpu=arm1")},
23172 {"marm2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
23173 {"m2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -mcpu=arm2")},
23174 {"marm250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
23175 {"m250", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm250")},
23176 {"marm3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
23177 {"m3", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -mcpu=arm3")},
23178 {"marm6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
23179 {"m6", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm6")},
23180 {"marm600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
23181 {"m600", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm600")},
23182 {"marm610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
23183 {"m610", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm610")},
23184 {"marm620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
23185 {"m620", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm620")},
23186 {"marm7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
23187 {"m7", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7")},
23188 {"marm70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
23189 {"m70", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm70")},
23190 {"marm700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
23191 {"m700", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700")},
23192 {"marm700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
23193 {"m700i", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm700i")},
23194 {"marm710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
23195 {"m710", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710")},
23196 {"marm710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
23197 {"m710c", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm710c")},
23198 {"marm720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
23199 {"m720", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm720")},
23200 {"marm7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
23201 {"m7d", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7d")},
23202 {"marm7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
23203 {"m7di", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7di")},
23204 {"marm7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
23205 {"m7m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7m")},
23206 {"marm7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
23207 {"m7dm", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dm")},
23208 {"marm7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
23209 {"m7dmi", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -mcpu=arm7dmi")},
23210 {"marm7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
23211 {"m7100", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7100")},
23212 {"marm7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
23213 {"m7500", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500")},
23214 {"marm7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
23215 {"m7500fe", &legacy_cpu
, ARM_ARCH_V3
, N_("use -mcpu=arm7500fe")},
23216 {"marm7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
23217 {"m7t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
23218 {"marm7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
23219 {"m7tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm7tdmi")},
23220 {"marm710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
23221 {"m710t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm710t")},
23222 {"marm720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
23223 {"m720t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm720t")},
23224 {"marm740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
23225 {"m740t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm740t")},
23226 {"marm8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
23227 {"m8", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm8")},
23228 {"marm810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
23229 {"m810", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=arm810")},
23230 {"marm9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
23231 {"m9", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9")},
23232 {"marm9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
23233 {"m9tdmi", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm9tdmi")},
23234 {"marm920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
23235 {"m920", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm920")},
23236 {"marm940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
23237 {"m940", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -mcpu=arm940")},
23238 {"mstrongarm", &legacy_cpu
, ARM_ARCH_V4
, N_("use -mcpu=strongarm")},
23239 {"mstrongarm110", &legacy_cpu
, ARM_ARCH_V4
,
23240 N_("use -mcpu=strongarm110")},
23241 {"mstrongarm1100", &legacy_cpu
, ARM_ARCH_V4
,
23242 N_("use -mcpu=strongarm1100")},
23243 {"mstrongarm1110", &legacy_cpu
, ARM_ARCH_V4
,
23244 N_("use -mcpu=strongarm1110")},
23245 {"mxscale", &legacy_cpu
, ARM_ARCH_XSCALE
, N_("use -mcpu=xscale")},
23246 {"miwmmxt", &legacy_cpu
, ARM_ARCH_IWMMXT
, N_("use -mcpu=iwmmxt")},
23247 {"mall", &legacy_cpu
, ARM_ANY
, N_("use -mcpu=all")},
23249 /* Architecture variants -- don't add any more to this list either. */
23250 {"mv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
23251 {"marmv2", &legacy_cpu
, ARM_ARCH_V2
, N_("use -march=armv2")},
23252 {"mv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
23253 {"marmv2a", &legacy_cpu
, ARM_ARCH_V2S
, N_("use -march=armv2a")},
23254 {"mv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
23255 {"marmv3", &legacy_cpu
, ARM_ARCH_V3
, N_("use -march=armv3")},
23256 {"mv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
23257 {"marmv3m", &legacy_cpu
, ARM_ARCH_V3M
, N_("use -march=armv3m")},
23258 {"mv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
23259 {"marmv4", &legacy_cpu
, ARM_ARCH_V4
, N_("use -march=armv4")},
23260 {"mv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
23261 {"marmv4t", &legacy_cpu
, ARM_ARCH_V4T
, N_("use -march=armv4t")},
23262 {"mv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
23263 {"marmv5", &legacy_cpu
, ARM_ARCH_V5
, N_("use -march=armv5")},
23264 {"mv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
23265 {"marmv5t", &legacy_cpu
, ARM_ARCH_V5T
, N_("use -march=armv5t")},
23266 {"mv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
23267 {"marmv5e", &legacy_cpu
, ARM_ARCH_V5TE
, N_("use -march=armv5te")},
23269 /* Floating point variants -- don't add any more to this list either. */
23270 {"mfpe-old", &legacy_fpu
, FPU_ARCH_FPE
, N_("use -mfpu=fpe")},
23271 {"mfpa10", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa10")},
23272 {"mfpa11", &legacy_fpu
, FPU_ARCH_FPA
, N_("use -mfpu=fpa11")},
23273 {"mno-fpu", &legacy_fpu
, ARM_ARCH_NONE
,
23274 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23276 {NULL
, NULL
, ARM_ARCH_NONE
, NULL
}
23279 struct arm_cpu_option_table
23283 const arm_feature_set value
;
23284 /* For some CPUs we assume an FPU unless the user explicitly sets
23286 const arm_feature_set default_fpu
;
23287 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23289 const char *canonical_name
;
23292 /* This list should, at a minimum, contain all the cpu names
23293 recognized by GCC. */
23294 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23295 static const struct arm_cpu_option_table arm_cpus
[] =
23297 ARM_CPU_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
, NULL
),
23298 ARM_CPU_OPT ("arm1", ARM_ARCH_V1
, FPU_ARCH_FPA
, NULL
),
23299 ARM_CPU_OPT ("arm2", ARM_ARCH_V2
, FPU_ARCH_FPA
, NULL
),
23300 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
),
23301 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S
, FPU_ARCH_FPA
, NULL
),
23302 ARM_CPU_OPT ("arm6", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23303 ARM_CPU_OPT ("arm60", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23304 ARM_CPU_OPT ("arm600", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23305 ARM_CPU_OPT ("arm610", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23306 ARM_CPU_OPT ("arm620", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23307 ARM_CPU_OPT ("arm7", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23308 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
),
23309 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23310 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
),
23311 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23312 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M
, FPU_ARCH_FPA
, NULL
),
23313 ARM_CPU_OPT ("arm70", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23314 ARM_CPU_OPT ("arm700", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23315 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23316 ARM_CPU_OPT ("arm710", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23317 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23318 ARM_CPU_OPT ("arm720", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23319 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23320 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23321 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23322 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23323 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23324 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3
, FPU_ARCH_FPA
, NULL
),
23325 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23326 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23327 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23328 ARM_CPU_OPT ("arm8", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23329 ARM_CPU_OPT ("arm810", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23330 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23331 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23332 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23333 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23334 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23335 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23336 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T
, FPU_ARCH_FPA
, "ARM920T"),
23337 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23338 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23339 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23340 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T
, FPU_ARCH_FPA
, NULL
),
23341 ARM_CPU_OPT ("fa526", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23342 ARM_CPU_OPT ("fa626", ARM_ARCH_V4
, FPU_ARCH_FPA
, NULL
),
23343 /* For V5 or later processors we default to using VFP; but the user
23344 should really set the FPU type explicitly. */
23345 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
),
23346 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23347 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"),
23348 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, "ARM926EJ-S"),
23349 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
),
23350 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
),
23351 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM946E-S"),
23352 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23353 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP
, FPU_ARCH_VFP_V2
, NULL
),
23354 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM966E-S"),
23355 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23356 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23357 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
),
23358 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
),
23359 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23360 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, "ARM1020E"),
23361 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T
, FPU_ARCH_VFP_V1
, NULL
),
23362 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23363 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23364 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
,
23366 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP_V2
, NULL
),
23367 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23368 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23369 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23370 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23371 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE
, FPU_ARCH_VFP_V2
, NULL
),
23372 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6
, FPU_NONE
, "ARM1136J-S"),
23373 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6
, FPU_NONE
, NULL
),
23374 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
,
23376 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6
, FPU_ARCH_VFP_V2
, NULL
),
23377 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K
, FPU_ARCH_VFP_V2
, "MPCore"),
23378 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K
, FPU_NONE
, "MPCore"),
23379 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2
, FPU_NONE
, NULL
),
23380 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2
, FPU_ARCH_VFP_V2
, NULL
),
23381 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK
, FPU_NONE
, NULL
),
23382 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK
, FPU_ARCH_VFP_V2
, NULL
),
23383 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC
,
23384 FPU_NONE
, "Cortex-A5"),
23385 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT
,
23386 FPU_ARCH_NEON_VFP_V4
,
23388 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC
,
23389 ARM_FEATURE (0, FPU_VFP_V3
23390 | FPU_NEON_EXT_V1
),
23392 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC
,
23393 ARM_FEATURE (0, FPU_VFP_V3
23394 | FPU_NEON_EXT_V1
),
23396 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT
,
23397 FPU_ARCH_NEON_VFP_V4
,
23399 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R
, FPU_NONE
, "Cortex-R4"),
23400 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R
, FPU_ARCH_VFP_V3D16
,
23402 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV
,
23403 FPU_NONE
, "Cortex-R5"),
23404 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM
, FPU_NONE
, "Cortex-M4"),
23405 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M
, FPU_NONE
, "Cortex-M3"),
23406 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM
, FPU_NONE
, "Cortex-M1"),
23407 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM
, FPU_NONE
, "Cortex-M0"),
23408 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM
, FPU_NONE
, "Cortex-M0+"),
23409 /* ??? XSCALE is really an architecture. */
23410 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
),
23411 /* ??? iwmmxt is not a processor. */
23412 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP_V2
, NULL
),
23413 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP_V2
, NULL
),
23414 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE
, FPU_ARCH_VFP_V2
, NULL
),
23416 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T
, ARM_CEXT_MAVERICK
),
23419 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
, NULL
}
23423 struct arm_arch_option_table
23427 const arm_feature_set value
;
23428 const arm_feature_set default_fpu
;
23431 /* This list should, at a minimum, contain all the architecture names
23432 recognized by GCC. */
23433 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23434 static const struct arm_arch_option_table arm_archs
[] =
23436 ARM_ARCH_OPT ("all", ARM_ANY
, FPU_ARCH_FPA
),
23437 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1
, FPU_ARCH_FPA
),
23438 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2
, FPU_ARCH_FPA
),
23439 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
23440 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S
, FPU_ARCH_FPA
),
23441 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3
, FPU_ARCH_FPA
),
23442 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M
, FPU_ARCH_FPA
),
23443 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4
, FPU_ARCH_FPA
),
23444 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM
, FPU_ARCH_FPA
),
23445 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T
, FPU_ARCH_FPA
),
23446 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM
, FPU_ARCH_FPA
),
23447 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5
, FPU_ARCH_VFP
),
23448 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T
, FPU_ARCH_VFP
),
23449 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM
, FPU_ARCH_VFP
),
23450 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE
, FPU_ARCH_VFP
),
23451 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP
, FPU_ARCH_VFP
),
23452 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ
, FPU_ARCH_VFP
),
23453 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6
, FPU_ARCH_VFP
),
23454 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6
, FPU_ARCH_VFP
),
23455 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K
, FPU_ARCH_VFP
),
23456 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z
, FPU_ARCH_VFP
),
23457 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK
, FPU_ARCH_VFP
),
23458 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2
, FPU_ARCH_VFP
),
23459 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2
, FPU_ARCH_VFP
),
23460 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2
, FPU_ARCH_VFP
),
23461 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2
, FPU_ARCH_VFP
),
23462 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M
, FPU_ARCH_VFP
),
23463 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM
, FPU_ARCH_VFP
),
23464 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7
, FPU_ARCH_VFP
),
23465 /* The official spelling of the ARMv7 profile variants is the dashed form.
23466 Accept the non-dashed form for compatibility with old toolchains. */
23467 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A
, FPU_ARCH_VFP
),
23468 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R
, FPU_ARCH_VFP
),
23469 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
23470 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A
, FPU_ARCH_VFP
),
23471 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R
, FPU_ARCH_VFP
),
23472 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M
, FPU_ARCH_VFP
),
23473 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM
, FPU_ARCH_VFP
),
23474 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A
, FPU_ARCH_VFP
),
23475 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE
, FPU_ARCH_VFP
),
23476 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT
, FPU_ARCH_VFP
),
23477 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2
,FPU_ARCH_VFP
),
23478 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
23480 #undef ARM_ARCH_OPT
23482 /* ISA extensions in the co-processor and main instruction set space. */
23483 struct arm_option_extension_value_table
23487 const arm_feature_set value
;
23488 const arm_feature_set allowed_archs
;
23491 /* The following table must be in alphabetical order with a NULL last entry.
23493 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23494 static const struct arm_option_extension_value_table arm_extensions
[] =
23496 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
,
23497 ARM_FEATURE (ARM_EXT_V8
, 0)),
23498 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8
,
23499 ARM_FEATURE (ARM_EXT_V8
, 0)),
23500 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV
| ARM_EXT_DIV
, 0),
23501 ARM_FEATURE (ARM_EXT_V7A
| ARM_EXT_V7R
, 0)),
23502 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT
), ARM_ANY
),
23503 ARM_EXT_OPT ("iwmmxt2",
23504 ARM_FEATURE (0, ARM_CEXT_IWMMXT2
), ARM_ANY
),
23505 ARM_EXT_OPT ("maverick",
23506 ARM_FEATURE (0, ARM_CEXT_MAVERICK
), ARM_ANY
),
23507 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP
, 0),
23508 ARM_FEATURE (ARM_EXT_V7A
| ARM_EXT_V7R
, 0)),
23509 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8
,
23510 ARM_FEATURE (ARM_EXT_V8
, 0)),
23511 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS
, 0),
23512 ARM_FEATURE (ARM_EXT_V6M
, 0)),
23513 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC
, 0),
23514 ARM_FEATURE (ARM_EXT_V6K
| ARM_EXT_V7A
, 0)),
23515 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT
| ARM_EXT_ADIV
23517 ARM_FEATURE (ARM_EXT_V7A
, 0)),
23518 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE
), ARM_ANY
),
23519 { NULL
, 0, ARM_ARCH_NONE
, ARM_ARCH_NONE
}
23523 /* ISA floating-point and Advanced SIMD extensions. */
23524 struct arm_option_fpu_value_table
23527 const arm_feature_set value
;
23530 /* This list should, at a minimum, contain all the fpu names
23531 recognized by GCC. */
23532 static const struct arm_option_fpu_value_table arm_fpus
[] =
23534 {"softfpa", FPU_NONE
},
23535 {"fpe", FPU_ARCH_FPE
},
23536 {"fpe2", FPU_ARCH_FPE
},
23537 {"fpe3", FPU_ARCH_FPA
}, /* Third release supports LFM/SFM. */
23538 {"fpa", FPU_ARCH_FPA
},
23539 {"fpa10", FPU_ARCH_FPA
},
23540 {"fpa11", FPU_ARCH_FPA
},
23541 {"arm7500fe", FPU_ARCH_FPA
},
23542 {"softvfp", FPU_ARCH_VFP
},
23543 {"softvfp+vfp", FPU_ARCH_VFP_V2
},
23544 {"vfp", FPU_ARCH_VFP_V2
},
23545 {"vfp9", FPU_ARCH_VFP_V2
},
23546 {"vfp3", FPU_ARCH_VFP_V3
}, /* For backwards compatbility. */
23547 {"vfp10", FPU_ARCH_VFP_V2
},
23548 {"vfp10-r0", FPU_ARCH_VFP_V1
},
23549 {"vfpxd", FPU_ARCH_VFP_V1xD
},
23550 {"vfpv2", FPU_ARCH_VFP_V2
},
23551 {"vfpv3", FPU_ARCH_VFP_V3
},
23552 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16
},
23553 {"vfpv3-d16", FPU_ARCH_VFP_V3D16
},
23554 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16
},
23555 {"vfpv3xd", FPU_ARCH_VFP_V3xD
},
23556 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16
},
23557 {"arm1020t", FPU_ARCH_VFP_V1
},
23558 {"arm1020e", FPU_ARCH_VFP_V2
},
23559 {"arm1136jfs", FPU_ARCH_VFP_V2
},
23560 {"arm1136jf-s", FPU_ARCH_VFP_V2
},
23561 {"maverick", FPU_ARCH_MAVERICK
},
23562 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1
},
23563 {"neon-fp16", FPU_ARCH_NEON_FP16
},
23564 {"vfpv4", FPU_ARCH_VFP_V4
},
23565 {"vfpv4-d16", FPU_ARCH_VFP_V4D16
},
23566 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16
},
23567 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4
},
23568 {"fp-armv8", FPU_ARCH_VFP_ARMV8
},
23569 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8
},
23570 {"crypto-neon-fp-armv8",
23571 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8
},
23572 {NULL
, ARM_ARCH_NONE
}
23575 struct arm_option_value_table
23581 static const struct arm_option_value_table arm_float_abis
[] =
23583 {"hard", ARM_FLOAT_ABI_HARD
},
23584 {"softfp", ARM_FLOAT_ABI_SOFTFP
},
23585 {"soft", ARM_FLOAT_ABI_SOFT
},
23590 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23591 static const struct arm_option_value_table arm_eabis
[] =
23593 {"gnu", EF_ARM_EABI_UNKNOWN
},
23594 {"4", EF_ARM_EABI_VER4
},
23595 {"5", EF_ARM_EABI_VER5
},
23600 struct arm_long_option_table
23602 char * option
; /* Substring to match. */
23603 char * help
; /* Help information. */
23604 int (* func
) (char * subopt
); /* Function to decode sub-option. */
23605 char * deprecated
; /* If non-null, print this message. */
23609 arm_parse_extension (char *str
, const arm_feature_set
**opt_p
)
23611 arm_feature_set
*ext_set
= (arm_feature_set
*)
23612 xmalloc (sizeof (arm_feature_set
));
23614 /* We insist on extensions being specified in alphabetical order, and with
23615 extensions being added before being removed. We achieve this by having
23616 the global ARM_EXTENSIONS table in alphabetical order, and using the
23617 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23618 or removing it (0) and only allowing it to change in the order
23620 const struct arm_option_extension_value_table
* opt
= NULL
;
23621 int adding_value
= -1;
23623 /* Copy the feature set, so that we can modify it. */
23624 *ext_set
= **opt_p
;
23627 while (str
!= NULL
&& *str
!= 0)
23634 as_bad (_("invalid architectural extension"));
23639 ext
= strchr (str
, '+');
23644 len
= strlen (str
);
23646 if (len
>= 2 && strncmp (str
, "no", 2) == 0)
23648 if (adding_value
!= 0)
23651 opt
= arm_extensions
;
23659 if (adding_value
== -1)
23662 opt
= arm_extensions
;
23664 else if (adding_value
!= 1)
23666 as_bad (_("must specify extensions to add before specifying "
23667 "those to remove"));
23674 as_bad (_("missing architectural extension"));
23678 gas_assert (adding_value
!= -1);
23679 gas_assert (opt
!= NULL
);
23681 /* Scan over the options table trying to find an exact match. */
23682 for (; opt
->name
!= NULL
; opt
++)
23683 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
23685 /* Check we can apply the extension to this architecture. */
23686 if (!ARM_CPU_HAS_FEATURE (*ext_set
, opt
->allowed_archs
))
23688 as_bad (_("extension does not apply to the base architecture"));
23692 /* Add or remove the extension. */
23694 ARM_MERGE_FEATURE_SETS (*ext_set
, *ext_set
, opt
->value
);
23696 ARM_CLEAR_FEATURE (*ext_set
, *ext_set
, opt
->value
);
23701 if (opt
->name
== NULL
)
23703 /* Did we fail to find an extension because it wasn't specified in
23704 alphabetical order, or because it does not exist? */
23706 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
23707 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
23710 if (opt
->name
== NULL
)
23711 as_bad (_("unknown architectural extension `%s'"), str
);
23713 as_bad (_("architectural extensions must be specified in "
23714 "alphabetical order"));
23720 /* We should skip the extension we've just matched the next time
23732 arm_parse_cpu (char *str
)
23734 const struct arm_cpu_option_table
*opt
;
23735 char *ext
= strchr (str
, '+');
23741 len
= strlen (str
);
23745 as_bad (_("missing cpu name `%s'"), str
);
23749 for (opt
= arm_cpus
; opt
->name
!= NULL
; opt
++)
23750 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
23752 mcpu_cpu_opt
= &opt
->value
;
23753 mcpu_fpu_opt
= &opt
->default_fpu
;
23754 if (opt
->canonical_name
)
23755 strcpy (selected_cpu_name
, opt
->canonical_name
);
23760 for (i
= 0; i
< len
; i
++)
23761 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
23762 selected_cpu_name
[i
] = 0;
23766 return arm_parse_extension (ext
, &mcpu_cpu_opt
);
23771 as_bad (_("unknown cpu `%s'"), str
);
23776 arm_parse_arch (char *str
)
23778 const struct arm_arch_option_table
*opt
;
23779 char *ext
= strchr (str
, '+');
23785 len
= strlen (str
);
23789 as_bad (_("missing architecture name `%s'"), str
);
23793 for (opt
= arm_archs
; opt
->name
!= NULL
; opt
++)
23794 if (opt
->name_len
== len
&& strncmp (opt
->name
, str
, len
) == 0)
23796 march_cpu_opt
= &opt
->value
;
23797 march_fpu_opt
= &opt
->default_fpu
;
23798 strcpy (selected_cpu_name
, opt
->name
);
23801 return arm_parse_extension (ext
, &march_cpu_opt
);
23806 as_bad (_("unknown architecture `%s'\n"), str
);
23811 arm_parse_fpu (char * str
)
23813 const struct arm_option_fpu_value_table
* opt
;
23815 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
23816 if (streq (opt
->name
, str
))
23818 mfpu_opt
= &opt
->value
;
23822 as_bad (_("unknown floating point format `%s'\n"), str
);
23827 arm_parse_float_abi (char * str
)
23829 const struct arm_option_value_table
* opt
;
23831 for (opt
= arm_float_abis
; opt
->name
!= NULL
; opt
++)
23832 if (streq (opt
->name
, str
))
23834 mfloat_abi_opt
= opt
->value
;
23838 as_bad (_("unknown floating point abi `%s'\n"), str
);
23844 arm_parse_eabi (char * str
)
23846 const struct arm_option_value_table
*opt
;
23848 for (opt
= arm_eabis
; opt
->name
!= NULL
; opt
++)
23849 if (streq (opt
->name
, str
))
23851 meabi_flags
= opt
->value
;
23854 as_bad (_("unknown EABI `%s'\n"), str
);
23860 arm_parse_it_mode (char * str
)
23862 bfd_boolean ret
= TRUE
;
23864 if (streq ("arm", str
))
23865 implicit_it_mode
= IMPLICIT_IT_MODE_ARM
;
23866 else if (streq ("thumb", str
))
23867 implicit_it_mode
= IMPLICIT_IT_MODE_THUMB
;
23868 else if (streq ("always", str
))
23869 implicit_it_mode
= IMPLICIT_IT_MODE_ALWAYS
;
23870 else if (streq ("never", str
))
23871 implicit_it_mode
= IMPLICIT_IT_MODE_NEVER
;
23874 as_bad (_("unknown implicit IT mode `%s', should be "\
23875 "arm, thumb, always, or never."), str
);
23882 struct arm_long_option_table arm_long_opts
[] =
23884 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23885 arm_parse_cpu
, NULL
},
23886 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23887 arm_parse_arch
, NULL
},
23888 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23889 arm_parse_fpu
, NULL
},
23890 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23891 arm_parse_float_abi
, NULL
},
23893 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23894 arm_parse_eabi
, NULL
},
23896 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23897 arm_parse_it_mode
, NULL
},
23898 {NULL
, NULL
, 0, NULL
}
23902 md_parse_option (int c
, char * arg
)
23904 struct arm_option_table
*opt
;
23905 const struct arm_legacy_option_table
*fopt
;
23906 struct arm_long_option_table
*lopt
;
23912 target_big_endian
= 1;
23918 target_big_endian
= 0;
23922 case OPTION_FIX_V4BX
:
23927 /* Listing option. Just ignore these, we don't support additional
23932 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
23934 if (c
== opt
->option
[0]
23935 && ((arg
== NULL
&& opt
->option
[1] == 0)
23936 || streq (arg
, opt
->option
+ 1)))
23938 /* If the option is deprecated, tell the user. */
23939 if (warn_on_deprecated
&& opt
->deprecated
!= NULL
)
23940 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
23941 arg
? arg
: "", _(opt
->deprecated
));
23943 if (opt
->var
!= NULL
)
23944 *opt
->var
= opt
->value
;
23950 for (fopt
= arm_legacy_opts
; fopt
->option
!= NULL
; fopt
++)
23952 if (c
== fopt
->option
[0]
23953 && ((arg
== NULL
&& fopt
->option
[1] == 0)
23954 || streq (arg
, fopt
->option
+ 1)))
23956 /* If the option is deprecated, tell the user. */
23957 if (warn_on_deprecated
&& fopt
->deprecated
!= NULL
)
23958 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
,
23959 arg
? arg
: "", _(fopt
->deprecated
));
23961 if (fopt
->var
!= NULL
)
23962 *fopt
->var
= &fopt
->value
;
23968 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
23970 /* These options are expected to have an argument. */
23971 if (c
== lopt
->option
[0]
23973 && strncmp (arg
, lopt
->option
+ 1,
23974 strlen (lopt
->option
+ 1)) == 0)
23976 /* If the option is deprecated, tell the user. */
23977 if (warn_on_deprecated
&& lopt
->deprecated
!= NULL
)
23978 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c
, arg
,
23979 _(lopt
->deprecated
));
23981 /* Call the sup-option parser. */
23982 return lopt
->func (arg
+ strlen (lopt
->option
) - 1);
23993 md_show_usage (FILE * fp
)
23995 struct arm_option_table
*opt
;
23996 struct arm_long_option_table
*lopt
;
23998 fprintf (fp
, _(" ARM-specific assembler options:\n"));
24000 for (opt
= arm_opts
; opt
->option
!= NULL
; opt
++)
24001 if (opt
->help
!= NULL
)
24002 fprintf (fp
, " -%-23s%s\n", opt
->option
, _(opt
->help
));
24004 for (lopt
= arm_long_opts
; lopt
->option
!= NULL
; lopt
++)
24005 if (lopt
->help
!= NULL
)
24006 fprintf (fp
, " -%s%s\n", lopt
->option
, _(lopt
->help
));
24010 -EB assemble code for a big-endian cpu\n"));
24015 -EL assemble code for a little-endian cpu\n"));
24019 --fix-v4bx Allow BX in ARMv4 code\n"));
24027 arm_feature_set flags
;
24028 } cpu_arch_ver_table
;
24030 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24031 least features first. */
24032 static const cpu_arch_ver_table cpu_arch_ver
[] =
24038 {4, ARM_ARCH_V5TE
},
24039 {5, ARM_ARCH_V5TEJ
},
24043 {11, ARM_ARCH_V6M
},
24044 {12, ARM_ARCH_V6SM
},
24045 {8, ARM_ARCH_V6T2
},
24046 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT
},
24047 {10, ARM_ARCH_V7R
},
24048 {10, ARM_ARCH_V7M
},
24049 {14, ARM_ARCH_V8A
},
24053 /* Set an attribute if it has not already been set by the user. */
24055 aeabi_set_attribute_int (int tag
, int value
)
24058 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
24059 || !attributes_set_explicitly
[tag
])
24060 bfd_elf_add_proc_attr_int (stdoutput
, tag
, value
);
24064 aeabi_set_attribute_string (int tag
, const char *value
)
24067 || tag
>= NUM_KNOWN_OBJ_ATTRIBUTES
24068 || !attributes_set_explicitly
[tag
])
24069 bfd_elf_add_proc_attr_string (stdoutput
, tag
, value
);
24072 /* Set the public EABI object attributes. */
24074 aeabi_set_public_attributes (void)
24079 int fp16_optional
= 0;
24080 arm_feature_set flags
;
24081 arm_feature_set tmp
;
24082 const cpu_arch_ver_table
*p
;
24084 /* Choose the architecture based on the capabilities of the requested cpu
24085 (if any) and/or the instructions actually used. */
24086 ARM_MERGE_FEATURE_SETS (flags
, arm_arch_used
, thumb_arch_used
);
24087 ARM_MERGE_FEATURE_SETS (flags
, flags
, *mfpu_opt
);
24088 ARM_MERGE_FEATURE_SETS (flags
, flags
, selected_cpu
);
24090 if (ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
))
24091 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v1
);
24093 if (ARM_CPU_HAS_FEATURE (thumb_arch_used
, arm_arch_any
))
24094 ARM_MERGE_FEATURE_SETS (flags
, flags
, arm_ext_v4t
);
24096 /* Allow the user to override the reported architecture. */
24099 ARM_CLEAR_FEATURE (flags
, flags
, arm_arch_any
);
24100 ARM_MERGE_FEATURE_SETS (flags
, flags
, *object_arch
);
24103 /* We need to make sure that the attributes do not identify us as v6S-M
24104 when the only v6S-M feature in use is the Operating System Extensions. */
24105 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_os
))
24106 if (!ARM_CPU_HAS_FEATURE (flags
, arm_arch_v6m_only
))
24107 ARM_CLEAR_FEATURE (flags
, flags
, arm_ext_os
);
24111 for (p
= cpu_arch_ver
; p
->val
; p
++)
24113 if (ARM_CPU_HAS_FEATURE (tmp
, p
->flags
))
24116 ARM_CLEAR_FEATURE (tmp
, tmp
, p
->flags
);
24120 /* The table lookup above finds the last architecture to contribute
24121 a new feature. Unfortunately, Tag13 is a subset of the union of
24122 v6T2 and v7-M, so it is never seen as contributing a new feature.
24123 We can not search for the last entry which is entirely used,
24124 because if no CPU is specified we build up only those flags
24125 actually used. Perhaps we should separate out the specified
24126 and implicit cases. Avoid taking this path for -march=all by
24127 checking for contradictory v7-A / v7-M features. */
24129 && !ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
)
24130 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7m
)
24131 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_v6_dsp
))
24134 /* Tag_CPU_name. */
24135 if (selected_cpu_name
[0])
24139 q
= selected_cpu_name
;
24140 if (strncmp (q
, "armv", 4) == 0)
24145 for (i
= 0; q
[i
]; i
++)
24146 q
[i
] = TOUPPER (q
[i
]);
24148 aeabi_set_attribute_string (Tag_CPU_name
, q
);
24151 /* Tag_CPU_arch. */
24152 aeabi_set_attribute_int (Tag_CPU_arch
, arch
);
24154 /* Tag_CPU_arch_profile. */
24155 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7a
))
24157 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v7r
))
24159 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_m
))
24164 if (profile
!= '\0')
24165 aeabi_set_attribute_int (Tag_CPU_arch_profile
, profile
);
24167 /* Tag_ARM_ISA_use. */
24168 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v1
)
24170 aeabi_set_attribute_int (Tag_ARM_ISA_use
, 1);
24172 /* Tag_THUMB_ISA_use. */
24173 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v4t
)
24175 aeabi_set_attribute_int (Tag_THUMB_ISA_use
,
24176 ARM_CPU_HAS_FEATURE (flags
, arm_arch_t2
) ? 2 : 1);
24178 /* Tag_VFP_arch. */
24179 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_armv8
))
24180 aeabi_set_attribute_int (Tag_VFP_arch
, 7);
24181 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_fma
))
24182 aeabi_set_attribute_int (Tag_VFP_arch
,
24183 ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
)
24185 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_d32
))
24188 aeabi_set_attribute_int (Tag_VFP_arch
, 3);
24190 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v3xd
))
24192 aeabi_set_attribute_int (Tag_VFP_arch
, 4);
24195 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v2
))
24196 aeabi_set_attribute_int (Tag_VFP_arch
, 2);
24197 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
)
24198 || ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
))
24199 aeabi_set_attribute_int (Tag_VFP_arch
, 1);
24201 /* Tag_ABI_HardFP_use. */
24202 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1xd
)
24203 && !ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_ext_v1
))
24204 aeabi_set_attribute_int (Tag_ABI_HardFP_use
, 1);
24206 /* Tag_WMMX_arch. */
24207 if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt2
))
24208 aeabi_set_attribute_int (Tag_WMMX_arch
, 2);
24209 else if (ARM_CPU_HAS_FEATURE (flags
, arm_cext_iwmmxt
))
24210 aeabi_set_attribute_int (Tag_WMMX_arch
, 1);
24212 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24213 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_armv8
))
24214 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 3);
24215 else if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_v1
))
24217 if (ARM_CPU_HAS_FEATURE (flags
, fpu_neon_ext_fma
))
24219 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 2);
24223 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch
, 1);
24228 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24229 if (ARM_CPU_HAS_FEATURE (flags
, fpu_vfp_fp16
) && fp16_optional
)
24230 aeabi_set_attribute_int (Tag_VFP_HP_extension
, 1);
24234 We set Tag_DIV_use to two when integer divide instructions have been used
24235 in ARM state, or when Thumb integer divide instructions have been used,
24236 but we have no architecture profile set, nor have we any ARM instructions.
24238 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24241 For new architectures we will have to check these tests. */
24242 gas_assert (arch
<= TAG_CPU_ARCH_V8
);
24243 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_v8
))
24244 aeabi_set_attribute_int (Tag_DIV_use
, 0);
24245 else if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_adiv
)
24246 || (profile
== '\0'
24247 && ARM_CPU_HAS_FEATURE (flags
, arm_ext_div
)
24248 && !ARM_CPU_HAS_FEATURE (arm_arch_used
, arm_arch_any
)))
24249 aeabi_set_attribute_int (Tag_DIV_use
, 2);
24251 /* Tag_MP_extension_use. */
24252 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_mp
))
24253 aeabi_set_attribute_int (Tag_MPextension_use
, 1);
24255 /* Tag Virtualization_use. */
24256 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_sec
))
24258 if (ARM_CPU_HAS_FEATURE (flags
, arm_ext_virt
))
24261 aeabi_set_attribute_int (Tag_Virtualization_use
, virt_sec
);
24264 /* Add the default contents for the .ARM.attributes section. */
24268 if (EF_ARM_EABI_VERSION (meabi_flags
) < EF_ARM_EABI_VER4
)
24271 aeabi_set_public_attributes ();
24273 #endif /* OBJ_ELF */
24276 /* Parse a .cpu directive. */
24279 s_arm_cpu (int ignored ATTRIBUTE_UNUSED
)
24281 const struct arm_cpu_option_table
*opt
;
24285 name
= input_line_pointer
;
24286 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
24287 input_line_pointer
++;
24288 saved_char
= *input_line_pointer
;
24289 *input_line_pointer
= 0;
24291 /* Skip the first "all" entry. */
24292 for (opt
= arm_cpus
+ 1; opt
->name
!= NULL
; opt
++)
24293 if (streq (opt
->name
, name
))
24295 mcpu_cpu_opt
= &opt
->value
;
24296 selected_cpu
= opt
->value
;
24297 if (opt
->canonical_name
)
24298 strcpy (selected_cpu_name
, opt
->canonical_name
);
24302 for (i
= 0; opt
->name
[i
]; i
++)
24303 selected_cpu_name
[i
] = TOUPPER (opt
->name
[i
]);
24305 selected_cpu_name
[i
] = 0;
24307 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
24308 *input_line_pointer
= saved_char
;
24309 demand_empty_rest_of_line ();
24312 as_bad (_("unknown cpu `%s'"), name
);
24313 *input_line_pointer
= saved_char
;
24314 ignore_rest_of_line ();
24318 /* Parse a .arch directive. */
24321 s_arm_arch (int ignored ATTRIBUTE_UNUSED
)
24323 const struct arm_arch_option_table
*opt
;
24327 name
= input_line_pointer
;
24328 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
24329 input_line_pointer
++;
24330 saved_char
= *input_line_pointer
;
24331 *input_line_pointer
= 0;
24333 /* Skip the first "all" entry. */
24334 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
24335 if (streq (opt
->name
, name
))
24337 mcpu_cpu_opt
= &opt
->value
;
24338 selected_cpu
= opt
->value
;
24339 strcpy (selected_cpu_name
, opt
->name
);
24340 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
24341 *input_line_pointer
= saved_char
;
24342 demand_empty_rest_of_line ();
24346 as_bad (_("unknown architecture `%s'\n"), name
);
24347 *input_line_pointer
= saved_char
;
24348 ignore_rest_of_line ();
24352 /* Parse a .object_arch directive. */
24355 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED
)
24357 const struct arm_arch_option_table
*opt
;
24361 name
= input_line_pointer
;
24362 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
24363 input_line_pointer
++;
24364 saved_char
= *input_line_pointer
;
24365 *input_line_pointer
= 0;
24367 /* Skip the first "all" entry. */
24368 for (opt
= arm_archs
+ 1; opt
->name
!= NULL
; opt
++)
24369 if (streq (opt
->name
, name
))
24371 object_arch
= &opt
->value
;
24372 *input_line_pointer
= saved_char
;
24373 demand_empty_rest_of_line ();
24377 as_bad (_("unknown architecture `%s'\n"), name
);
24378 *input_line_pointer
= saved_char
;
24379 ignore_rest_of_line ();
24382 /* Parse a .arch_extension directive. */
24385 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED
)
24387 const struct arm_option_extension_value_table
*opt
;
24390 int adding_value
= 1;
24392 name
= input_line_pointer
;
24393 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
24394 input_line_pointer
++;
24395 saved_char
= *input_line_pointer
;
24396 *input_line_pointer
= 0;
24398 if (strlen (name
) >= 2
24399 && strncmp (name
, "no", 2) == 0)
24405 for (opt
= arm_extensions
; opt
->name
!= NULL
; opt
++)
24406 if (streq (opt
->name
, name
))
24408 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt
, opt
->allowed_archs
))
24410 as_bad (_("architectural extension `%s' is not allowed for the "
24411 "current base architecture"), name
);
24416 ARM_MERGE_FEATURE_SETS (selected_cpu
, selected_cpu
, opt
->value
);
24418 ARM_CLEAR_FEATURE (selected_cpu
, selected_cpu
, opt
->value
);
24420 mcpu_cpu_opt
= &selected_cpu
;
24421 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
24422 *input_line_pointer
= saved_char
;
24423 demand_empty_rest_of_line ();
24427 if (opt
->name
== NULL
)
24428 as_bad (_("unknown architecture `%s'\n"), name
);
24430 *input_line_pointer
= saved_char
;
24431 ignore_rest_of_line ();
24434 /* Parse a .fpu directive. */
24437 s_arm_fpu (int ignored ATTRIBUTE_UNUSED
)
24439 const struct arm_option_fpu_value_table
*opt
;
24443 name
= input_line_pointer
;
24444 while (*input_line_pointer
&& !ISSPACE (*input_line_pointer
))
24445 input_line_pointer
++;
24446 saved_char
= *input_line_pointer
;
24447 *input_line_pointer
= 0;
24449 for (opt
= arm_fpus
; opt
->name
!= NULL
; opt
++)
24450 if (streq (opt
->name
, name
))
24452 mfpu_opt
= &opt
->value
;
24453 ARM_MERGE_FEATURE_SETS (cpu_variant
, *mcpu_cpu_opt
, *mfpu_opt
);
24454 *input_line_pointer
= saved_char
;
24455 demand_empty_rest_of_line ();
24459 as_bad (_("unknown floating point format `%s'\n"), name
);
24460 *input_line_pointer
= saved_char
;
24461 ignore_rest_of_line ();
24464 /* Copy symbol information. */
24467 arm_copy_symbol_attributes (symbolS
*dest
, symbolS
*src
)
24469 ARM_GET_FLAG (dest
) = ARM_GET_FLAG (src
);
24473 /* Given a symbolic attribute NAME, return the proper integer value.
24474 Returns -1 if the attribute is not known. */
24477 arm_convert_symbolic_attribute (const char *name
)
24479 static const struct
24484 attribute_table
[] =
24486 /* When you modify this table you should
24487 also modify the list in doc/c-arm.texi. */
24488 #define T(tag) {#tag, tag}
24489 T (Tag_CPU_raw_name
),
24492 T (Tag_CPU_arch_profile
),
24493 T (Tag_ARM_ISA_use
),
24494 T (Tag_THUMB_ISA_use
),
24498 T (Tag_Advanced_SIMD_arch
),
24499 T (Tag_PCS_config
),
24500 T (Tag_ABI_PCS_R9_use
),
24501 T (Tag_ABI_PCS_RW_data
),
24502 T (Tag_ABI_PCS_RO_data
),
24503 T (Tag_ABI_PCS_GOT_use
),
24504 T (Tag_ABI_PCS_wchar_t
),
24505 T (Tag_ABI_FP_rounding
),
24506 T (Tag_ABI_FP_denormal
),
24507 T (Tag_ABI_FP_exceptions
),
24508 T (Tag_ABI_FP_user_exceptions
),
24509 T (Tag_ABI_FP_number_model
),
24510 T (Tag_ABI_align_needed
),
24511 T (Tag_ABI_align8_needed
),
24512 T (Tag_ABI_align_preserved
),
24513 T (Tag_ABI_align8_preserved
),
24514 T (Tag_ABI_enum_size
),
24515 T (Tag_ABI_HardFP_use
),
24516 T (Tag_ABI_VFP_args
),
24517 T (Tag_ABI_WMMX_args
),
24518 T (Tag_ABI_optimization_goals
),
24519 T (Tag_ABI_FP_optimization_goals
),
24520 T (Tag_compatibility
),
24521 T (Tag_CPU_unaligned_access
),
24522 T (Tag_FP_HP_extension
),
24523 T (Tag_VFP_HP_extension
),
24524 T (Tag_ABI_FP_16bit_format
),
24525 T (Tag_MPextension_use
),
24527 T (Tag_nodefaults
),
24528 T (Tag_also_compatible_with
),
24529 T (Tag_conformance
),
24531 T (Tag_Virtualization_use
),
24532 /* We deliberately do not include Tag_MPextension_use_legacy. */
24540 for (i
= 0; i
< ARRAY_SIZE (attribute_table
); i
++)
24541 if (streq (name
, attribute_table
[i
].name
))
24542 return attribute_table
[i
].tag
;
24548 /* Apply sym value for relocations only in the case that
24549 they are for local symbols and you have the respective
24550 architectural feature for blx and simple switches. */
24552 arm_apply_sym_value (struct fix
* fixP
)
24555 && ARM_CPU_HAS_FEATURE (selected_cpu
, arm_ext_v5t
)
24556 && !S_FORCE_RELOC (fixP
->fx_addsy
, TRUE
))
24558 switch (fixP
->fx_r_type
)
24560 case BFD_RELOC_ARM_PCREL_BLX
:
24561 case BFD_RELOC_THUMB_PCREL_BRANCH23
:
24562 if (ARM_IS_FUNC (fixP
->fx_addsy
))
24566 case BFD_RELOC_ARM_PCREL_CALL
:
24567 case BFD_RELOC_THUMB_PCREL_BLX
:
24568 if (THUMB_IS_FUNC (fixP
->fx_addsy
))
24579 #endif /* OBJ_ELF */