93542e3e918985c762e44c2db584dcb0f5b6c47b
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rm_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rd_rn (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397 }
7398
7399 static void
7400 do_rn_rd (void)
7401 {
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404 }
7405
7406 static bfd_boolean
7407 check_obsolete (const arm_feature_set *feature, const char *msg)
7408 {
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421 }
7422
7423 static void
7424 do_rd_rm_rn (void)
7425 {
7426 unsigned Rn = inst.operands[2].reg;
7427 /* Enforce restrictions on SWP instruction. */
7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7440 }
7441
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
7444 inst.instruction |= Rn << 16;
7445 }
7446
7447 static void
7448 do_rd_rn_rm (void)
7449 {
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453 }
7454
7455 static void
7456 do_rm_rd_rn (void)
7457 {
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466 }
7467
7468 static void
7469 do_imm0 (void)
7470 {
7471 inst.instruction |= inst.operands[0].imm;
7472 }
7473
7474 static void
7475 do_rd_cpaddr (void)
7476 {
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
7479 }
7480
7481 /* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
7484
7485 /* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
7487
7488 static void
7489 do_adr (void)
7490 {
7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7492
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7496 inst.reloc.pc_rel = 1;
7497 inst.reloc.exp.X_add_number -= 8;
7498 }
7499
7500 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
7504
7505 static void
7506 do_adrl (void)
7507 {
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7509
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
7515 inst.reloc.exp.X_add_number -= 8;
7516 }
7517
7518 static void
7519 do_arit (void)
7520 {
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526 }
7527
7528 static void
7529 do_barrier (void)
7530 {
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
7536 _("bad barrier type"));
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541 }
7542
7543 static void
7544 do_bfc (void)
7545 {
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553 }
7554
7555 static void
7556 do_bfi (void)
7557 {
7558 unsigned int msb;
7559
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
7564
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
7573 }
7574
7575 static void
7576 do_bfx (void)
7577 {
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584 }
7585
7586 /* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
7591
7592 static void
7593 do_bkpt (void)
7594 {
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7597
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600 }
7601
7602 static void
7603 encode_branch (int default_reloc)
7604 {
7605 if (inst.operands[0].hasreloc)
7606 {
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7613 }
7614 else
7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7616 inst.reloc.pc_rel = 1;
7617 }
7618
7619 static void
7620 do_branch (void)
7621 {
7622 #ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626 #endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628 }
7629
7630 static void
7631 do_bl (void)
7632 {
7633 #ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642 #endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7644 }
7645
7646 /* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7653
7654 static void
7655 do_blx (void)
7656 {
7657 if (inst.operands[0].isreg)
7658 {
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7663
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
7667 {
7668 /* Arg is an address; this instruction cannot be executed
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7673 inst.instruction = 0xfa000000;
7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7675 }
7676 }
7677
7678 static void
7679 do_bx (void)
7680 {
7681 bfd_boolean want_reloc;
7682
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7685
7686 inst.instruction |= inst.operands[0].reg;
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
7693 #ifdef OBJ_ELF
7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7695 #endif
7696 want_reloc = FALSE;
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7700 }
7701
7702
7703 /* ARM v5TEJ. Jump to Jazelle code. */
7704
7705 static void
7706 do_bxj (void)
7707 {
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
7712 }
7713
7714 /* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717 static void
7718 do_cdp (void)
7719 {
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726 }
7727
7728 static void
7729 do_cmp (void)
7730 {
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
7733 }
7734
7735 /* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
7742
7743 struct deprecated_coproc_regs_s
7744 {
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754 };
7755
7756 #define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759 /* Table of all deprecated coprocessor registers. */
7760 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761 {
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777 };
7778
7779 #undef DEPR_ACCESS_V8
7780
7781 static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
7784 static void
7785 do_co_reg (void)
7786 {
7787 unsigned Rd;
7788 size_t i;
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
7825
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
7828 inst.instruction |= Rd << 12;
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832 }
7833
7834 /* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
7839
7840 Two XScale instructions are special cases of these:
7841
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7844
7845 Result unpredictable if Rd or Rn is R15. */
7846
7847 static void
7848 do_co_reg2c (void)
7849 {
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
7870 inst.instruction |= inst.operands[4].reg;
7871 }
7872
7873 static void
7874 do_cpsi (void)
7875 {
7876 inst.instruction |= inst.operands[0].imm << 6;
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
7882 }
7883
7884 static void
7885 do_dbg (void)
7886 {
7887 inst.instruction |= inst.operands[0].imm;
7888 }
7889
7890 static void
7891 do_div (void)
7892 {
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907 }
7908
7909 static void
7910 do_it (void)
7911 {
7912 /* There is no IT instruction in ARM mode. We
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
7917 inst.size = 0;
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
7924 }
7925
7926 /* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928 static int
7929 only_one_reg_in_list (int range)
7930 {
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933 }
7934
7935 static void
7936 encode_ldmstm(int from_push_pop_mnem)
7937 {
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
7940 int one_reg;
7941
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
7944
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
7947
7948 if (inst.operands[0].writeback)
7949 {
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
7953 {
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7971 }
7972 }
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984 }
7985
7986 static void
7987 do_ldmstm (void)
7988 {
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7990 }
7991
7992 /* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
7998 static void
7999 do_ldrd (void)
8000 {
8001 constraint (inst.operands[0].reg % 2 != 0,
8002 _("first transfer register must be even"));
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
8005 _("can only transfer two consecutive registers"));
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
8008
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
8011
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
8015
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
8020
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
8023 /* For an index-register load, the index register must not overlap the
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
8029 }
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8032 }
8033
8034 static void
8035 do_ldrex (void)
8036 {
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
8054
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
8058
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
8064 }
8065
8066 static void
8067 do_ldrexd (void)
8068 {
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8077
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
8080 }
8081
8082 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084 static void
8085 check_ldr_r15_aligned (void)
8086 {
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092 }
8093
8094 static void
8095 do_ldst (void)
8096 {
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8100 return;
8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8102 check_ldr_r15_aligned ();
8103 }
8104
8105 static void
8106 do_ldstt (void)
8107 {
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
8111 {
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
8114 _("this instruction requires a post-indexed address"));
8115
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
8119 }
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122 }
8123
8124 /* Halfword and signed-byte load/store operations. */
8125
8126 static void
8127 do_ldstv4 (void)
8128 {
8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8133 return;
8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8135 }
8136
8137 static void
8138 do_ldsttv4 (void)
8139 {
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
8143 {
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
8146 _("this instruction requires a post-indexed address"));
8147
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
8151 }
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154 }
8155
8156 /* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158 static void
8159 do_lstc (void)
8160 {
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
8164 }
8165
8166 static void
8167 do_mlas (void)
8168 {
8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8170 if (inst.operands[0].reg == inst.operands[1].reg
8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8172 && !(inst.instruction & 0x00400000))
8173 as_tsktsk (_("Rd and Rm should be different in mla"));
8174
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
8179 }
8180
8181 static void
8182 do_mov (void)
8183 {
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186 }
8187
8188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189 static void
8190 do_mov16 (void)
8191 {
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
8208 }
8209
8210 static void do_vfp_nsyn_opcode (const char *);
8211
8212 static int
8213 do_vfp_nsyn_mrs (void)
8214 {
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
8227
8228 return SUCCESS;
8229 }
8230
8231 static int
8232 do_vfp_nsyn_msr (void)
8233 {
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240 }
8241
8242 static void
8243 do_vmrs (void)
8244 {
8245 unsigned Rt = inst.operands[0].reg;
8246
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
8272
8273 inst.instruction |= (Rt << 12);
8274 }
8275
8276 static void
8277 do_vmsr (void)
8278 {
8279 unsigned Rt = inst.operands[1].reg;
8280
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
8299
8300 inst.instruction |= (Rt << 12);
8301 }
8302
8303 static void
8304 do_mrs (void)
8305 {
8306 unsigned br;
8307
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8312 inst.instruction |= inst.operands[0].reg << 12;
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
8330 }
8331
8332 /* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
8335
8336 static void
8337 do_msr (void)
8338 {
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
8346 {
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
8350 }
8351 }
8352
8353 static void
8354 do_mul (void)
8355 {
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
8367 }
8368
8369 /* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
8374
8375 static void
8376 do_mull (void)
8377 {
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
8382
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
8389 || inst.operands[1].reg == inst.operands[2].reg)
8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392 }
8393
8394 static void
8395 do_nop (void)
8396 {
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
8405 }
8406 }
8407
8408 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
8412
8413 static void
8414 do_pkhbt (void)
8415 {
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421 }
8422
8423 /* ARM V6 PKHTB (Argument Parse). */
8424
8425 static void
8426 do_pkhtb (void)
8427 {
8428 if (!inst.operands[3].present)
8429 {
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
8436 }
8437 else
8438 {
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
8443 }
8444 }
8445
8446 /* ARMv5TE: Preload-Cache
8447 MP Extensions: Preload for write
8448
8449 PLD(W) <addr_mode>
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
8452
8453 static void
8454 do_pld (void)
8455 {
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465 }
8466
8467 /* ARMv7: PLI <addr_mode> */
8468 static void
8469 do_pli (void)
8470 {
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481 }
8482
8483 static void
8484 do_push_pop (void)
8485 {
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8492 }
8493
8494 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
8499
8500 static void
8501 do_rfe (void)
8502 {
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506 }
8507
8508 /* ARM V6 ssat (argument parse). */
8509
8510 static void
8511 do_ssat (void)
8512 {
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
8516
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
8519 }
8520
8521 /* ARM V6 usat (argument parse). */
8522
8523 static void
8524 do_usat (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
8529
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
8532 }
8533
8534 /* ARM V6 ssat16 (argument parse). */
8535
8536 static void
8537 do_ssat16 (void)
8538 {
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
8542 }
8543
8544 static void
8545 do_usat16 (void)
8546 {
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550 }
8551
8552 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
8554
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
8557
8558 static void
8559 do_setend (void)
8560 {
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
8567 }
8568
8569 static void
8570 do_shift (void)
8571 {
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
8575
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8579 {
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
8585 }
8586 else
8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8588 }
8589
8590 static void
8591 do_smc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_hvc (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 static void
8605 do_swi (void)
8606 {
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
8609 }
8610
8611 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
8615
8616 static void
8617 do_smla (void)
8618 {
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623 }
8624
8625 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
8629
8630 static void
8631 do_smlal (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
8637
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640 }
8641
8642 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
8645
8646 static void
8647 do_smul (void)
8648 {
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652 }
8653
8654 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
8656
8657 static void
8658 do_srs (void)
8659 {
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
8666 }
8667 else
8668 reg = REG_SP;
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
8673 inst.instruction |= WRITE_BACK;
8674 }
8675
8676 /* ARM V6 strex (argument parse). */
8677
8678 static void
8679 do_strex (void)
8680 {
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
8688
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8691
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
8695
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
8700 }
8701
8702 static void
8703 do_t_strexbh (void)
8704 {
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715 }
8716
8717 static void
8718 do_strexd (void)
8719 {
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8728
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
8733
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
8737 }
8738
8739 /* ARM V8 STRL. */
8740 static void
8741 do_strlex (void)
8742 {
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747 }
8748
8749 static void
8750 do_t_strlex (void)
8751 {
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756 }
8757
8758 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
8766 static void
8767 do_sxtah (void)
8768 {
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773 }
8774
8775 /* ARM V6 SXTH.
8776
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
8780
8781 static void
8782 do_sxth (void)
8783 {
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
8787 }
8788 \f
8789 /* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
8791
8792 static void
8793 do_vfp_sp_monadic (void)
8794 {
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8797 }
8798
8799 static void
8800 do_vfp_sp_dyadic (void)
8801 {
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8805 }
8806
8807 static void
8808 do_vfp_sp_compare_z (void)
8809 {
8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8811 }
8812
8813 static void
8814 do_vfp_dp_sp_cvt (void)
8815 {
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8818 }
8819
8820 static void
8821 do_vfp_sp_dp_cvt (void)
8822 {
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8825 }
8826
8827 static void
8828 do_vfp_reg_from_sp (void)
8829 {
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8832 }
8833
8834 static void
8835 do_vfp_reg2_from_sp2 (void)
8836 {
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8842 }
8843
8844 static void
8845 do_vfp_sp_from_reg (void)
8846 {
8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8848 inst.instruction |= inst.operands[1].reg << 12;
8849 }
8850
8851 static void
8852 do_vfp_sp2_from_reg2 (void)
8853 {
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
8859 }
8860
8861 static void
8862 do_vfp_sp_ldst (void)
8863 {
8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
8866 }
8867
8868 static void
8869 do_vfp_dp_ldst (void)
8870 {
8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
8873 }
8874
8875
8876 static void
8877 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8878 {
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8886 inst.instruction |= inst.operands[1].imm;
8887 }
8888
8889 static void
8890 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8891 {
8892 int count;
8893
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
8899
8900 inst.instruction |= inst.operands[0].reg << 16;
8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8902
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
8906
8907 inst.instruction |= count;
8908 }
8909
8910 static void
8911 do_vfp_sp_ldstmia (void)
8912 {
8913 vfp_sp_ldstm (VFP_LDSTMIA);
8914 }
8915
8916 static void
8917 do_vfp_sp_ldstmdb (void)
8918 {
8919 vfp_sp_ldstm (VFP_LDSTMDB);
8920 }
8921
8922 static void
8923 do_vfp_dp_ldstmia (void)
8924 {
8925 vfp_dp_ldstm (VFP_LDSTMIA);
8926 }
8927
8928 static void
8929 do_vfp_dp_ldstmdb (void)
8930 {
8931 vfp_dp_ldstm (VFP_LDSTMDB);
8932 }
8933
8934 static void
8935 do_vfp_xp_ldstmia (void)
8936 {
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938 }
8939
8940 static void
8941 do_vfp_xp_ldstmdb (void)
8942 {
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
8944 }
8945
8946 static void
8947 do_vfp_dp_rd_rm (void)
8948 {
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951 }
8952
8953 static void
8954 do_vfp_dp_rn_rd (void)
8955 {
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958 }
8959
8960 static void
8961 do_vfp_dp_rd_rn (void)
8962 {
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965 }
8966
8967 static void
8968 do_vfp_dp_rd_rn_rm (void)
8969 {
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973 }
8974
8975 static void
8976 do_vfp_dp_rd (void)
8977 {
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979 }
8980
8981 static void
8982 do_vfp_dp_rm_rd_rn (void)
8983 {
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987 }
8988
8989 /* VFPv3 instructions. */
8990 static void
8991 do_vfp_sp_const (void)
8992 {
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
8996 }
8997
8998 static void
8999 do_vfp_dp_const (void)
9000 {
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
9004 }
9005
9006 static void
9007 vfp_conv (int srcsize)
9008 {
9009 int immbits = srcsize - inst.operands[1].imm;
9010
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028 }
9029
9030 static void
9031 do_vfp_sp_conv_16 (void)
9032 {
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035 }
9036
9037 static void
9038 do_vfp_dp_conv_16 (void)
9039 {
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042 }
9043
9044 static void
9045 do_vfp_sp_conv_32 (void)
9046 {
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049 }
9050
9051 static void
9052 do_vfp_dp_conv_32 (void)
9053 {
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056 }
9057 \f
9058 /* FPA instructions. Also in a logical order. */
9059
9060 static void
9061 do_fpa_cmp (void)
9062 {
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065 }
9066
9067 static void
9068 do_fpa_ldmstm (void)
9069 {
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
9079
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
9089
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9092
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9095
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
9102
9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
9104 }
9105 \f
9106 /* iWMMXt instructions: strictly in alphabetical order. */
9107
9108 static void
9109 do_iwmmxt_tandorc (void)
9110 {
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112 }
9113
9114 static void
9115 do_iwmmxt_textrc (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119 }
9120
9121 static void
9122 do_iwmmxt_textrm (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127 }
9128
9129 static void
9130 do_iwmmxt_tinsr (void)
9131 {
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135 }
9136
9137 static void
9138 do_iwmmxt_tmia (void)
9139 {
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143 }
9144
9145 static void
9146 do_iwmmxt_waligni (void)
9147 {
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152 }
9153
9154 static void
9155 do_iwmmxt_wmerge (void)
9156 {
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161 }
9162
9163 static void
9164 do_iwmmxt_wmov (void)
9165 {
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstbh (void)
9174 {
9175 int reloc;
9176 inst.instruction |= inst.operands[0].reg << 12;
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9182 }
9183
9184 static void
9185 do_iwmmxt_wldstw (void)
9186 {
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
9193
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196 }
9197
9198 static void
9199 do_iwmmxt_wldstd (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
9219 }
9220
9221 static void
9222 do_iwmmxt_wshufh (void)
9223 {
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228 }
9229
9230 static void
9231 do_iwmmxt_wzero (void)
9232 {
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237 }
9238
9239 static void
9240 do_iwmmxt_wrwrwr_or_imm5 (void)
9241 {
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
9255 case 7:
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287 }
9288 \f
9289 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
9291
9292 /* Insns like "foo X,Y,Z". */
9293
9294 static void
9295 do_mav_triple (void)
9296 {
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300 }
9301
9302 /* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9304
9305 static void
9306 do_mav_quad (void)
9307 {
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
9312 }
9313
9314 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315 static void
9316 do_mav_dspsc (void)
9317 {
9318 inst.instruction |= inst.operands[1].reg << 12;
9319 }
9320
9321 /* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9324
9325 static void
9326 do_mav_shift (void)
9327 {
9328 int imm = inst.operands[2].imm;
9329
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
9332
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9337
9338 inst.instruction |= imm;
9339 }
9340 \f
9341 /* XScale instructions. Also sorted arithmetic before move. */
9342
9343 /* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
9347
9348 static void
9349 do_xsc_mia (void)
9350 {
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353 }
9354
9355 /* Xscale move-accumulator-register (argument parse)
9356
9357 MARcc acc0,RdLo,RdHi. */
9358
9359 static void
9360 do_xsc_mar (void)
9361 {
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
9364 }
9365
9366 /* Xscale move-register-accumulator (argument parse)
9367
9368 MRAcc RdLo,RdHi,acc0. */
9369
9370 static void
9371 do_xsc_mra (void)
9372 {
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376 }
9377 \f
9378 /* Encoding functions relevant only to Thumb. */
9379
9380 /* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383 static void
9384 encode_thumb32_shifted_operand (int i)
9385 {
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
9388
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
9395 {
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
9412 }
9413 }
9414
9415
9416 /* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
9422
9423 static void
9424 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425 {
9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9427
9428 constraint (!inst.operands[i].isreg,
9429 _("Instruction does not support =N addresses"));
9430
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
9433 {
9434 constraint (is_pc, BAD_PC_ADDRESSING);
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
9444
9445 inst.instruction |= inst.operands[i].imm;
9446 if (inst.operands[i].shifted)
9447 {
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
9452 _("shift out of range"));
9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9460 constraint (is_t && inst.operands[i].writeback,
9461 _("cannot use writeback with this instruction"));
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
9470 }
9471 else
9472 {
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
9476 }
9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9478 }
9479 else if (inst.operands[i].postind)
9480 {
9481 gas_assert (inst.operands[i].writeback);
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493 }
9494
9495 /* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
9501 #define T16_32_TAB \
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
9580
9581 /* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
9584 #define X(a,b,c) T_MNEM##a
9585 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586 #undef X
9587
9588 #define X(a,b,c) 0x##b
9589 static const unsigned short thumb_op16[] = { T16_32_TAB };
9590 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591 #undef X
9592
9593 #define X(a,b,c) 0x##c
9594 static const unsigned int thumb_op32[] = { T16_32_TAB };
9595 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9597 #undef X
9598 #undef T16_32_TAB
9599
9600 /* Thumb instruction encoders, in alphabetical order. */
9601
9602 /* ADDW or SUBW. */
9603
9604 static void
9605 do_t_add_sub_w (void)
9606 {
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
9618
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621 }
9622
9623 /* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626 static void
9627 do_t_add_sub (void)
9628 {
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
9639 if (unified_syntax)
9640 {
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
9648 narrow = !in_it_block ();
9649 else
9650 narrow = in_it_block ();
9651 if (!inst.operands[2].isreg)
9652 {
9653 int add;
9654
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
9691 if (Rd == REG_PC)
9692 {
9693 constraint (add, BAD_PC);
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
9724 }
9725 }
9726 else
9727 {
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
9739 {
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
9747
9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9749 {
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9755 {
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
9767 }
9768 }
9769
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
9793
9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9795 {
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9804 return;
9805 }
9806
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
9809
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
9812 {
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9830 }
9831 }
9832 }
9833
9834 static void
9835 do_t_adr (void)
9836 {
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
9847 inst.instruction |= Rd << 4;
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
9850 {
9851 /* Generate a 32-bit opcode. */
9852 inst.instruction = THUMB_OP32 (inst.instruction);
9853 inst.instruction |= Rd << 8;
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
9859 /* Generate a 16-bit opcode. */
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
9864
9865 inst.instruction |= Rd << 4;
9866 }
9867 }
9868
9869 /* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
9875 static void
9876 do_t_arit3 (void)
9877 {
9878 int Rd, Rs, Rn;
9879
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
9885
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
9891 if (unified_syntax)
9892 {
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
9905 bfd_boolean narrow;
9906
9907 /* See if we can do this with a 16-bit instruction. */
9908 if (THUMB_SETS_FLAGS (inst.instruction))
9909 narrow = !in_it_block ();
9910 else
9911 narrow = in_it_block ();
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
9928
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
9938 }
9939 else
9940 {
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9945
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
9951
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
9955 }
9956 }
9957
9958 /* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963 static void
9964 do_t_arit3c (void)
9965 {
9966 int Rd, Rs, Rn;
9967
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
9973
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
9978
9979 if (unified_syntax)
9980 {
9981 if (!inst.operands[2].isreg)
9982 {
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9990 }
9991 else
9992 {
9993 bfd_boolean narrow;
9994
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (THUMB_SETS_FLAGS (inst.instruction))
9997 narrow = !in_it_block ();
9998 else
9999 narrow = in_it_block ();
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
10009 {
10010 if (Rd == Rs)
10011 {
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
10016 }
10017 if (Rd == Rn)
10018 {
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
10023 }
10024 }
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
10034 }
10035 }
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10042
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
10057 }
10058
10059 static void
10060 do_t_barrier (void)
10061 {
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
10067 _("bad barrier type"));
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072 }
10073
10074 static void
10075 do_t_bfc (void)
10076 {
10077 unsigned Rd;
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
10088 }
10089
10090 static void
10091 do_t_bfi (void)
10092 {
10093 int Rd, Rn;
10094 unsigned int msb;
10095
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
10108
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
10118 }
10119
10120 static void
10121 do_t_bfx (void)
10122 {
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138 }
10139
10140 /* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
10146
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
10149
10150 static void
10151 do_t_blx (void)
10152 {
10153 set_it_insn_type_last ();
10154
10155 if (inst.operands[0].isreg)
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
10161 else
10162 {
10163 /* No register. This must be BLX(1). */
10164 inst.instruction = 0xf000e800;
10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10166 }
10167 }
10168
10169 static void
10170 do_t_branch (void)
10171 {
10172 int opcode;
10173 int cond;
10174 int reloc;
10175
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
10193 if (unified_syntax
10194 && (inst.size_req == 4
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
10198 {
10199 inst.instruction = THUMB_OP32(opcode);
10200 if (cond == COND_ALWAYS)
10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10202 else
10203 {
10204 gas_assert (cond != 0xF);
10205 inst.instruction |= cond << 22;
10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10207 }
10208 }
10209 else
10210 {
10211 inst.instruction = THUMB_OP16(opcode);
10212 if (cond == COND_ALWAYS)
10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10214 else
10215 {
10216 inst.instruction |= cond << 8;
10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10218 }
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
10222 }
10223 inst.reloc.type = reloc;
10224 inst.reloc.pc_rel = 1;
10225 }
10226
10227 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
10230 static void
10231 do_t_bkpt_hlt1 (int range)
10232 {
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
10235 if (inst.operands[0].present)
10236 {
10237 constraint (inst.operands[0].imm > range,
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
10240 }
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243 }
10244
10245 static void
10246 do_t_hlt (void)
10247 {
10248 do_t_bkpt_hlt1 (63);
10249 }
10250
10251 static void
10252 do_t_bkpt (void)
10253 {
10254 do_t_bkpt_hlt1 (255);
10255 }
10256
10257 static void
10258 do_t_branch23 (void)
10259 {
10260 set_it_insn_type_last ();
10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10262
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10270
10271 #if defined(OBJ_COFF)
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
10282 #endif
10283 }
10284
10285 static void
10286 do_t_bx (void)
10287 {
10288 set_it_insn_type_last ();
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293 }
10294
10295 static void
10296 do_t_bxj (void)
10297 {
10298 int Rm;
10299
10300 set_it_insn_type_last ();
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
10304 }
10305
10306 static void
10307 do_t_clz (void)
10308 {
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
10321 }
10322
10323 static void
10324 do_t_cps (void)
10325 {
10326 set_it_insn_type (OUTSIDE_IT_INSN);
10327 inst.instruction |= inst.operands[0].imm;
10328 }
10329
10330 static void
10331 do_t_cpsi (void)
10332 {
10333 set_it_insn_type (OUTSIDE_IT_INSN);
10334 if (unified_syntax
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10337 {
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
10344 }
10345 else
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
10355 }
10356 }
10357
10358 /* THUMB CPY instruction (argument parse). */
10359
10360 static void
10361 do_t_cpy (void)
10362 {
10363 if (inst.size_req == 4)
10364 {
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
10368 }
10369 else
10370 {
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
10374 }
10375 }
10376
10377 static void
10378 do_t_cbz (void)
10379 {
10380 set_it_insn_type (OUTSIDE_IT_INSN);
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385 }
10386
10387 static void
10388 do_t_dbg (void)
10389 {
10390 inst.instruction |= inst.operands[0].imm;
10391 }
10392
10393 static void
10394 do_t_div (void)
10395 {
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
10410 }
10411
10412 static void
10413 do_t_hint (void)
10414 {
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419 }
10420
10421 static void
10422 do_t_it (void)
10423 {
10424 unsigned int cond = inst.operands[0].imm;
10425
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
10429 now_it.warn_deprecated = FALSE;
10430
10431 /* If the condition is a negative condition, invert the mask. */
10432 if ((cond & 0x1) == 0x0)
10433 {
10434 unsigned int mask = inst.instruction & 0x000f;
10435
10436 if ((mask & 0x7) == 0)
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
10441 else if ((mask & 0x3) == 0)
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
10446 else if ((mask & 0x1) == 0)
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
10451 else
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
10456
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
10459 }
10460
10461 inst.instruction |= cond << 4;
10462 }
10463
10464 /* Helper function used for both push/pop and ldm/stm. */
10465 static void
10466 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467 {
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
10480 if (load)
10481 {
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
10518 mask = ffs (mask) - 1;
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526 }
10527
10528 static void
10529 do_t_ldmstm (void)
10530 {
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
10536
10537 if (unified_syntax)
10538 {
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
10546 && !(inst.operands[1].imm & ~0xff))
10547 {
10548 mask = 1 << inst.operands[0].reg;
10549
10550 if (inst.operands[0].reg <= 7)
10551 {
10552 if (inst.instruction == T_MNEM_stmia
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
10562
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
10582 inst.error =
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
10593 }
10594 else if (inst.operands[0] .reg == REG_SP)
10595 {
10596 if (inst.operands[0].writeback)
10597 {
10598 inst.instruction =
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
10606 inst.instruction =
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
10612 }
10613 }
10614
10615 if (!narrow)
10616 {
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
10619
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
10622 }
10623 }
10624 else
10625 {
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
10631 if (inst.instruction == T_MNEM_stmia)
10632 {
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10637 as_warn (_("value stored for r%d is UNKNOWN"),
10638 inst.operands[0].reg);
10639 }
10640 else
10641 {
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
10648 }
10649
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654 }
10655
10656 static void
10657 do_t_ldrex (void)
10658 {
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
10663 BAD_ADDR_MODE);
10664
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670 }
10671
10672 static void
10673 do_t_ldrexd (void)
10674 {
10675 if (!inst.operands[1].present)
10676 {
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
10681 }
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
10684
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
10688 }
10689
10690 static void
10691 do_t_ldst (void)
10692 {
10693 unsigned long opcode;
10694 int Rn;
10695
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
10701 opcode = inst.instruction;
10702 if (unified_syntax)
10703 {
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
10717 {
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
10723 /* [Rn, Rik] */
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
10765 }
10766 /* Definitely a 32-bit variant. */
10767
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
10783 /* Do some validations regarding addressing modes. */
10784 if (inst.operands[1].immisreg)
10785 reject_bad_reg (inst.operands[1].imm);
10786
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
10791 inst.instruction = THUMB_OP32 (opcode);
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10794 check_ldr_r15_aligned ();
10795 return;
10796 }
10797
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10801 {
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
10810 }
10811
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
10816
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10822 {
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
10830
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
10837
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
10842
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
10852
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
10857
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
10871
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875 }
10876
10877 static void
10878 do_t_ldstd (void)
10879 {
10880 if (!inst.operands[1].present)
10881 {
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
10887 }
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10898 }
10899
10900 static void
10901 do_t_ldstt (void)
10902 {
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905 }
10906
10907 static void
10908 do_t_mla (void)
10909 {
10910 unsigned Rd, Rn, Rm, Ra;
10911
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
10926 }
10927
10928 static void
10929 do_t_mlal (void)
10930 {
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
10947 }
10948
10949 static void
10950 do_t_mov_cmp (void)
10951 {
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
10960 if (unified_syntax)
10961 {
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10964 unsigned long opcode;
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
10968 low_regs = (Rn <= 7 && Rm <= 7);
10969 opcode = inst.instruction;
10970 if (in_it_block ())
10971 narrow = opcode != T_MNEM_movs;
10972 else
10973 narrow = opcode != T_MNEM_movs || low_regs;
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
11037 if (!inst.operands[1].isreg)
11038 {
11039 /* Immediate operand. */
11040 if (!in_it_block () && opcode == T_MNEM_mov)
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
11045 inst.instruction |= Rn << 8;
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11055 inst.instruction |= Rn << r0off;
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
11058 }
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
11066 if (in_it_block ())
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
11077 if (Rn != Rm)
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
11095 abort ();
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
11101 inst.instruction |= Rn;
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
11114 else if (!narrow)
11115 {
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
11122 if (in_it_block ())
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
11148 inst.instruction |= Rn << r0off;
11149 encode_thumb32_shifted_operand (1);
11150 }
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
11156 /* In v4t or v5t a move of two lowregs produces unpredictable
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11164 arm_ext_v6);
11165 }
11166
11167 inst.instruction = T_OPCODE_MOV_HR;
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
11171 break;
11172
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
11179 break;
11180
11181 case T_MNEM_cmp:
11182 if (low_regs)
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
11194 }
11195 break;
11196 }
11197 return;
11198 }
11199
11200 inst.instruction = THUMB_OP16 (inst.instruction);
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
11206 if (inst.operands[1].isreg)
11207 {
11208 if (Rn < 8 && Rm < 8)
11209 {
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
11214 else
11215 inst.instruction = T_OPCODE_CMP_LR;
11216
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
11219 }
11220 else
11221 {
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
11227 }
11228 }
11229 else
11230 {
11231 constraint (Rn > 7,
11232 _("only lo regs allowed with immediate"));
11233 inst.instruction |= Rn << 8;
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236 }
11237
11238 static void
11239 do_t_mov16 (void)
11240 {
11241 unsigned Rd;
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
11269 }
11270
11271 static void
11272 do_t_mvn_tst (void)
11273 {
11274 unsigned Rn, Rm;
11275
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
11295 || Rn > 7 || Rm > 7)
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
11300 narrow = !in_it_block ();
11301 else
11302 narrow = in_it_block ();
11303
11304 if (!inst.operands[1].isreg)
11305 {
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11311 inst.instruction |= Rn << r0off;
11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11313 }
11314 else
11315 {
11316 /* See if we can do this with a 16-bit instruction. */
11317 if (narrow)
11318 {
11319 inst.instruction = THUMB_OP16 (inst.instruction);
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
11322 }
11323 else
11324 {
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
11330 inst.instruction |= Rn << r0off;
11331 encode_thumb32_shifted_operand (1);
11332 }
11333 }
11334 }
11335 else
11336 {
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
11341 constraint (Rn > 7 || Rm > 7,
11342 BAD_HIREG);
11343
11344 inst.instruction = THUMB_OP16 (inst.instruction);
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
11347 }
11348 }
11349
11350 static void
11351 do_t_mrs (void)
11352 {
11353 unsigned Rd;
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
11363 {
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
11371 }
11372 else
11373 {
11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11375
11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
11385 else
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
11390
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
11395 }
11396
11397 static void
11398 do_t_msr (void)
11399 {
11400 int flags;
11401 unsigned Rn;
11402
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11415 {
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
11428 }
11429 else
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
11432
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
11439 inst.instruction |= (flags & 0xff);
11440 inst.instruction |= Rn << 16;
11441 }
11442
11443 static void
11444 do_t_mul (void)
11445 {
11446 bfd_boolean narrow;
11447 unsigned Rd, Rn, Rm;
11448
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
11451
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
11456 if (unified_syntax)
11457 {
11458 if (inst.size_req == 4
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
11465 narrow = !in_it_block ();
11466 else
11467 narrow = in_it_block ();
11468 }
11469 else
11470 {
11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11472 constraint (Rn > 7 || Rm > 7,
11473 BAD_HIREG);
11474 narrow = TRUE;
11475 }
11476
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
11480 inst.instruction = THUMB_OP16 (inst.instruction);
11481 inst.instruction |= Rd;
11482
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
11490 else
11491 {
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
11503 }
11504 }
11505
11506 static void
11507 do_t_mull (void)
11508 {
11509 unsigned RdLo, RdHi, Rn, Rm;
11510
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528 }
11529
11530 static void
11531 do_t_nop (void)
11532 {
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11538 {
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561 }
11562
11563 static void
11564 do_t_neg (void)
11565 {
11566 if (unified_syntax)
11567 {
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
11571 narrow = !in_it_block ();
11572 else
11573 narrow = in_it_block ();
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
11584 }
11585 else
11586 {
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
11590 }
11591 }
11592 else
11593 {
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602 }
11603
11604 static void
11605 do_t_orn (void)
11606 {
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
11629 reject_bad_reg (Rm);
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636 }
11637
11638 static void
11639 do_t_pkhbt (void)
11640 {
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
11661 }
11662 }
11663
11664 static void
11665 do_t_pkhtb (void)
11666 {
11667 if (!inst.operands[3].present)
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
11678 do_t_pkhbt ();
11679 }
11680
11681 static void
11682 do_t_pld (void)
11683 {
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688 }
11689
11690 static void
11691 do_t_push_pop (void)
11692 {
11693 unsigned mask;
11694
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
11699
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11703 else if ((inst.instruction == T_MNEM_push
11704 && (mask & ~0xff) == 1 << REG_LR)
11705 || (inst.instruction == T_MNEM_pop
11706 && (mask & ~0xff) == 1 << REG_PC))
11707 {
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
11710 inst.instruction |= mask & 0xff;
11711 }
11712 else if (unified_syntax)
11713 {
11714 inst.instruction = THUMB_OP32 (inst.instruction);
11715 encode_thumb2_ldmstm (13, mask, TRUE);
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
11722 }
11723
11724 static void
11725 do_t_rbit (void)
11726 {
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
11738 }
11739
11740 static void
11741 do_t_rev (void)
11742 {
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767 }
11768
11769 static void
11770 do_t_rrx (void)
11771 {
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
11779
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782 }
11783
11784 static void
11785 do_t_rsb (void)
11786 {
11787 unsigned Rd, Rs;
11788
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11793
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
11806 narrow = !in_it_block ();
11807 else
11808 narrow = in_it_block ();
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837 }
11838
11839 static void
11840 do_t_setend (void)
11841 {
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
11846 set_it_insn_type (OUTSIDE_IT_INSN);
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849 }
11850
11851 static void
11852 do_t_shift (void)
11853 {
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
11876 narrow = !in_it_block ();
11877 else
11878 narrow = in_it_block ();
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
11892
11893 if (!narrow)
11894 {
11895 if (inst.operands[2].isreg)
11896 {
11897 reject_bad_reg (inst.operands[2].reg);
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
11910 inst.operands[1].shift_kind = shift_kind;
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
11917 }
11918 }
11919 else
11920 {
11921 if (inst.operands[2].isreg)
11922 {
11923 switch (shift_kind)
11924 {
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11929 default: abort ();
11930 }
11931
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
11938 }
11939 else
11940 {
11941 switch (shift_kind)
11942 {
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11946 default: abort ();
11947 }
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
11951 }
11952 }
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11959
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
11965
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
11974
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
11981 }
11982 else
11983 {
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
11995 }
11996 }
11997 }
11998
11999 static void
12000 do_t_simd (void)
12001 {
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
12015 }
12016
12017 static void
12018 do_t_simd2 (void)
12019 {
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033 }
12034
12035 static void
12036 do_t_smc (void)
12037 {
12038 unsigned int value = inst.reloc.exp.X_add_number;
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047 }
12048
12049 static void
12050 do_t_hvc (void)
12051 {
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057 }
12058
12059 static void
12060 do_t_ssat_usat (int bias)
12061 {
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
12071 inst.instruction |= inst.operands[1].imm - bias;
12072 inst.instruction |= Rn << 16;
12073
12074 if (inst.operands[3].present)
12075 {
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
12082
12083 if (shift_amount != 0)
12084 {
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
12093 }
12094 }
12095 }
12096
12097 static void
12098 do_t_ssat (void)
12099 {
12100 do_t_ssat_usat (1);
12101 }
12102
12103 static void
12104 do_t_ssat16 (void)
12105 {
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
12115 inst.instruction |= inst.operands[1].imm - 1;
12116 inst.instruction |= Rn << 16;
12117 }
12118
12119 static void
12120 do_t_strex (void)
12121 {
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
12126 BAD_ADDR_MODE);
12127
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12134 }
12135
12136 static void
12137 do_t_strexd (void)
12138 {
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
12141
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
12144 || inst.operands[0].reg == inst.operands[3].reg,
12145 BAD_OVERLAP);
12146
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
12151 }
12152
12153 static void
12154 do_t_sxtah (void)
12155 {
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
12169 inst.instruction |= inst.operands[3].imm << 4;
12170 }
12171
12172 static void
12173 do_t_sxth (void)
12174 {
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
12185 && Rd <= 7 && Rm <= 7
12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12187 {
12188 inst.instruction = THUMB_OP16 (inst.instruction);
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
12191 }
12192 else if (unified_syntax)
12193 {
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
12198 inst.instruction |= inst.operands[2].imm << 4;
12199 }
12200 else
12201 {
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
12205 }
12206 }
12207
12208 static void
12209 do_t_swi (void)
12210 {
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223 }
12224
12225 static void
12226 do_t_tb (void)
12227 {
12228 unsigned Rn, Rm;
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
12232 set_it_insn_type_last ();
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
12238
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
12244 inst.instruction |= (Rn << 16) | Rm;
12245 }
12246
12247 static void
12248 do_t_usat (void)
12249 {
12250 do_t_ssat_usat (0);
12251 }
12252
12253 static void
12254 do_t_usat16 (void)
12255 {
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
12265 inst.instruction |= inst.operands[1].imm;
12266 inst.instruction |= Rn << 16;
12267 }
12268
12269 /* Neon instruction encoder helpers. */
12270
12271 /* Encodings for the different types for various Neon opcodes. */
12272
12273 /* An "invalid" code for the following tables. */
12274 #define N_INV -1u
12275
12276 struct neon_tab_entry
12277 {
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281 };
12282
12283 /* Map overloaded Neon opcodes to their respective encodings. */
12284 #define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
12297 vcge / vcgt with the operands reversed. */ \
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12345
12346 enum neon_opc
12347 {
12348 #define X(OPC,I,F,S) N_MNEM_##OPC
12349 NEON_ENC_TAB
12350 #undef X
12351 };
12352
12353 static const struct neon_tab_entry neon_enc_tab[] =
12354 {
12355 #define X(OPC,I,F,S) { (I), (F), (S) }
12356 NEON_ENC_TAB
12357 #undef X
12358 };
12359
12360 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12361 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12362 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12363 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12364 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12365 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12366 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12367 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12368 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12369 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12370 #define NEON_ENC_SINGLE_(X) \
12371 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12372 #define NEON_ENC_DOUBLE_(X) \
12373 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12374
12375 #define NEON_ENCODE(type, inst) \
12376 do \
12377 { \
12378 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12379 inst.is_neon = 1; \
12380 } \
12381 while (0)
12382
12383 #define check_neon_suffixes \
12384 do \
12385 { \
12386 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12387 { \
12388 as_bad (_("invalid neon suffix for non neon instruction")); \
12389 return; \
12390 } \
12391 } \
12392 while (0)
12393
12394 /* Define shapes for instruction operands. The following mnemonic characters
12395 are used in this table:
12396
12397 F - VFP S<n> register
12398 D - Neon D<n> register
12399 Q - Neon Q<n> register
12400 I - Immediate
12401 S - Scalar
12402 R - ARM register
12403 L - D<n> register list
12404
12405 This table is used to generate various data:
12406 - enumerations of the form NS_DDR to be used as arguments to
12407 neon_select_shape.
12408 - a table classifying shapes into single, double, quad, mixed.
12409 - a table used to drive neon_select_shape. */
12410
12411 #define NEON_SHAPE_DEF \
12412 X(3, (D, D, D), DOUBLE), \
12413 X(3, (Q, Q, Q), QUAD), \
12414 X(3, (D, D, I), DOUBLE), \
12415 X(3, (Q, Q, I), QUAD), \
12416 X(3, (D, D, S), DOUBLE), \
12417 X(3, (Q, Q, S), QUAD), \
12418 X(2, (D, D), DOUBLE), \
12419 X(2, (Q, Q), QUAD), \
12420 X(2, (D, S), DOUBLE), \
12421 X(2, (Q, S), QUAD), \
12422 X(2, (D, R), DOUBLE), \
12423 X(2, (Q, R), QUAD), \
12424 X(2, (D, I), DOUBLE), \
12425 X(2, (Q, I), QUAD), \
12426 X(3, (D, L, D), DOUBLE), \
12427 X(2, (D, Q), MIXED), \
12428 X(2, (Q, D), MIXED), \
12429 X(3, (D, Q, I), MIXED), \
12430 X(3, (Q, D, I), MIXED), \
12431 X(3, (Q, D, D), MIXED), \
12432 X(3, (D, Q, Q), MIXED), \
12433 X(3, (Q, Q, D), MIXED), \
12434 X(3, (Q, D, S), MIXED), \
12435 X(3, (D, Q, S), MIXED), \
12436 X(4, (D, D, D, I), DOUBLE), \
12437 X(4, (Q, Q, Q, I), QUAD), \
12438 X(2, (F, F), SINGLE), \
12439 X(3, (F, F, F), SINGLE), \
12440 X(2, (F, I), SINGLE), \
12441 X(2, (F, D), MIXED), \
12442 X(2, (D, F), MIXED), \
12443 X(3, (F, F, I), MIXED), \
12444 X(4, (R, R, F, F), SINGLE), \
12445 X(4, (F, F, R, R), SINGLE), \
12446 X(3, (D, R, R), DOUBLE), \
12447 X(3, (R, R, D), DOUBLE), \
12448 X(2, (S, R), SINGLE), \
12449 X(2, (R, S), SINGLE), \
12450 X(2, (F, R), SINGLE), \
12451 X(2, (R, F), SINGLE)
12452
12453 #define S2(A,B) NS_##A##B
12454 #define S3(A,B,C) NS_##A##B##C
12455 #define S4(A,B,C,D) NS_##A##B##C##D
12456
12457 #define X(N, L, C) S##N L
12458
12459 enum neon_shape
12460 {
12461 NEON_SHAPE_DEF,
12462 NS_NULL
12463 };
12464
12465 #undef X
12466 #undef S2
12467 #undef S3
12468 #undef S4
12469
12470 enum neon_shape_class
12471 {
12472 SC_SINGLE,
12473 SC_DOUBLE,
12474 SC_QUAD,
12475 SC_MIXED
12476 };
12477
12478 #define X(N, L, C) SC_##C
12479
12480 static enum neon_shape_class neon_shape_class[] =
12481 {
12482 NEON_SHAPE_DEF
12483 };
12484
12485 #undef X
12486
12487 enum neon_shape_el
12488 {
12489 SE_F,
12490 SE_D,
12491 SE_Q,
12492 SE_I,
12493 SE_S,
12494 SE_R,
12495 SE_L
12496 };
12497
12498 /* Register widths of above. */
12499 static unsigned neon_shape_el_size[] =
12500 {
12501 32,
12502 64,
12503 128,
12504 0,
12505 32,
12506 32,
12507 0
12508 };
12509
12510 struct neon_shape_info
12511 {
12512 unsigned els;
12513 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12514 };
12515
12516 #define S2(A,B) { SE_##A, SE_##B }
12517 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12518 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12519
12520 #define X(N, L, C) { N, S##N L }
12521
12522 static struct neon_shape_info neon_shape_tab[] =
12523 {
12524 NEON_SHAPE_DEF
12525 };
12526
12527 #undef X
12528 #undef S2
12529 #undef S3
12530 #undef S4
12531
12532 /* Bit masks used in type checking given instructions.
12533 'N_EQK' means the type must be the same as (or based on in some way) the key
12534 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12535 set, various other bits can be set as well in order to modify the meaning of
12536 the type constraint. */
12537
12538 enum neon_type_mask
12539 {
12540 N_S8 = 0x0000001,
12541 N_S16 = 0x0000002,
12542 N_S32 = 0x0000004,
12543 N_S64 = 0x0000008,
12544 N_U8 = 0x0000010,
12545 N_U16 = 0x0000020,
12546 N_U32 = 0x0000040,
12547 N_U64 = 0x0000080,
12548 N_I8 = 0x0000100,
12549 N_I16 = 0x0000200,
12550 N_I32 = 0x0000400,
12551 N_I64 = 0x0000800,
12552 N_8 = 0x0001000,
12553 N_16 = 0x0002000,
12554 N_32 = 0x0004000,
12555 N_64 = 0x0008000,
12556 N_P8 = 0x0010000,
12557 N_P16 = 0x0020000,
12558 N_F16 = 0x0040000,
12559 N_F32 = 0x0080000,
12560 N_F64 = 0x0100000,
12561 N_KEY = 0x1000000, /* Key element (main type specifier). */
12562 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12563 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12564 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12565 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12566 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12567 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12568 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12569 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12570 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12571 N_UTYP = 0,
12572 N_MAX_NONSPECIAL = N_F64
12573 };
12574
12575 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12576
12577 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12578 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12579 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12580 #define N_SUF_32 (N_SU_32 | N_F32)
12581 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12582 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12583
12584 /* Pass this as the first type argument to neon_check_type to ignore types
12585 altogether. */
12586 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12587
12588 /* Select a "shape" for the current instruction (describing register types or
12589 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12590 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12591 function of operand parsing, so this function doesn't need to be called.
12592 Shapes should be listed in order of decreasing length. */
12593
12594 static enum neon_shape
12595 neon_select_shape (enum neon_shape shape, ...)
12596 {
12597 va_list ap;
12598 enum neon_shape first_shape = shape;
12599
12600 /* Fix missing optional operands. FIXME: we don't know at this point how
12601 many arguments we should have, so this makes the assumption that we have
12602 > 1. This is true of all current Neon opcodes, I think, but may not be
12603 true in the future. */
12604 if (!inst.operands[1].present)
12605 inst.operands[1] = inst.operands[0];
12606
12607 va_start (ap, shape);
12608
12609 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12610 {
12611 unsigned j;
12612 int matches = 1;
12613
12614 for (j = 0; j < neon_shape_tab[shape].els; j++)
12615 {
12616 if (!inst.operands[j].present)
12617 {
12618 matches = 0;
12619 break;
12620 }
12621
12622 switch (neon_shape_tab[shape].el[j])
12623 {
12624 case SE_F:
12625 if (!(inst.operands[j].isreg
12626 && inst.operands[j].isvec
12627 && inst.operands[j].issingle
12628 && !inst.operands[j].isquad))
12629 matches = 0;
12630 break;
12631
12632 case SE_D:
12633 if (!(inst.operands[j].isreg
12634 && inst.operands[j].isvec
12635 && !inst.operands[j].isquad
12636 && !inst.operands[j].issingle))
12637 matches = 0;
12638 break;
12639
12640 case SE_R:
12641 if (!(inst.operands[j].isreg
12642 && !inst.operands[j].isvec))
12643 matches = 0;
12644 break;
12645
12646 case SE_Q:
12647 if (!(inst.operands[j].isreg
12648 && inst.operands[j].isvec
12649 && inst.operands[j].isquad
12650 && !inst.operands[j].issingle))
12651 matches = 0;
12652 break;
12653
12654 case SE_I:
12655 if (!(!inst.operands[j].isreg
12656 && !inst.operands[j].isscalar))
12657 matches = 0;
12658 break;
12659
12660 case SE_S:
12661 if (!(!inst.operands[j].isreg
12662 && inst.operands[j].isscalar))
12663 matches = 0;
12664 break;
12665
12666 case SE_L:
12667 break;
12668 }
12669 if (!matches)
12670 break;
12671 }
12672 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12673 /* We've matched all the entries in the shape table, and we don't
12674 have any left over operands which have not been matched. */
12675 break;
12676 }
12677
12678 va_end (ap);
12679
12680 if (shape == NS_NULL && first_shape != NS_NULL)
12681 first_error (_("invalid instruction shape"));
12682
12683 return shape;
12684 }
12685
12686 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12687 means the Q bit should be set). */
12688
12689 static int
12690 neon_quad (enum neon_shape shape)
12691 {
12692 return neon_shape_class[shape] == SC_QUAD;
12693 }
12694
12695 static void
12696 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12697 unsigned *g_size)
12698 {
12699 /* Allow modification to be made to types which are constrained to be
12700 based on the key element, based on bits set alongside N_EQK. */
12701 if ((typebits & N_EQK) != 0)
12702 {
12703 if ((typebits & N_HLF) != 0)
12704 *g_size /= 2;
12705 else if ((typebits & N_DBL) != 0)
12706 *g_size *= 2;
12707 if ((typebits & N_SGN) != 0)
12708 *g_type = NT_signed;
12709 else if ((typebits & N_UNS) != 0)
12710 *g_type = NT_unsigned;
12711 else if ((typebits & N_INT) != 0)
12712 *g_type = NT_integer;
12713 else if ((typebits & N_FLT) != 0)
12714 *g_type = NT_float;
12715 else if ((typebits & N_SIZ) != 0)
12716 *g_type = NT_untyped;
12717 }
12718 }
12719
12720 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12721 operand type, i.e. the single type specified in a Neon instruction when it
12722 is the only one given. */
12723
12724 static struct neon_type_el
12725 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12726 {
12727 struct neon_type_el dest = *key;
12728
12729 gas_assert ((thisarg & N_EQK) != 0);
12730
12731 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12732
12733 return dest;
12734 }
12735
12736 /* Convert Neon type and size into compact bitmask representation. */
12737
12738 static enum neon_type_mask
12739 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12740 {
12741 switch (type)
12742 {
12743 case NT_untyped:
12744 switch (size)
12745 {
12746 case 8: return N_8;
12747 case 16: return N_16;
12748 case 32: return N_32;
12749 case 64: return N_64;
12750 default: ;
12751 }
12752 break;
12753
12754 case NT_integer:
12755 switch (size)
12756 {
12757 case 8: return N_I8;
12758 case 16: return N_I16;
12759 case 32: return N_I32;
12760 case 64: return N_I64;
12761 default: ;
12762 }
12763 break;
12764
12765 case NT_float:
12766 switch (size)
12767 {
12768 case 16: return N_F16;
12769 case 32: return N_F32;
12770 case 64: return N_F64;
12771 default: ;
12772 }
12773 break;
12774
12775 case NT_poly:
12776 switch (size)
12777 {
12778 case 8: return N_P8;
12779 case 16: return N_P16;
12780 default: ;
12781 }
12782 break;
12783
12784 case NT_signed:
12785 switch (size)
12786 {
12787 case 8: return N_S8;
12788 case 16: return N_S16;
12789 case 32: return N_S32;
12790 case 64: return N_S64;
12791 default: ;
12792 }
12793 break;
12794
12795 case NT_unsigned:
12796 switch (size)
12797 {
12798 case 8: return N_U8;
12799 case 16: return N_U16;
12800 case 32: return N_U32;
12801 case 64: return N_U64;
12802 default: ;
12803 }
12804 break;
12805
12806 default: ;
12807 }
12808
12809 return N_UTYP;
12810 }
12811
12812 /* Convert compact Neon bitmask type representation to a type and size. Only
12813 handles the case where a single bit is set in the mask. */
12814
12815 static int
12816 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12817 enum neon_type_mask mask)
12818 {
12819 if ((mask & N_EQK) != 0)
12820 return FAIL;
12821
12822 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12823 *size = 8;
12824 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12825 *size = 16;
12826 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12827 *size = 32;
12828 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12829 *size = 64;
12830 else
12831 return FAIL;
12832
12833 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12834 *type = NT_signed;
12835 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12836 *type = NT_unsigned;
12837 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12838 *type = NT_integer;
12839 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12840 *type = NT_untyped;
12841 else if ((mask & (N_P8 | N_P16)) != 0)
12842 *type = NT_poly;
12843 else if ((mask & (N_F32 | N_F64)) != 0)
12844 *type = NT_float;
12845 else
12846 return FAIL;
12847
12848 return SUCCESS;
12849 }
12850
12851 /* Modify a bitmask of allowed types. This is only needed for type
12852 relaxation. */
12853
12854 static unsigned
12855 modify_types_allowed (unsigned allowed, unsigned mods)
12856 {
12857 unsigned size;
12858 enum neon_el_type type;
12859 unsigned destmask;
12860 int i;
12861
12862 destmask = 0;
12863
12864 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12865 {
12866 if (el_type_of_type_chk (&type, &size,
12867 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12868 {
12869 neon_modify_type_size (mods, &type, &size);
12870 destmask |= type_chk_of_el_type (type, size);
12871 }
12872 }
12873
12874 return destmask;
12875 }
12876
12877 /* Check type and return type classification.
12878 The manual states (paraphrase): If one datatype is given, it indicates the
12879 type given in:
12880 - the second operand, if there is one
12881 - the operand, if there is no second operand
12882 - the result, if there are no operands.
12883 This isn't quite good enough though, so we use a concept of a "key" datatype
12884 which is set on a per-instruction basis, which is the one which matters when
12885 only one data type is written.
12886 Note: this function has side-effects (e.g. filling in missing operands). All
12887 Neon instructions should call it before performing bit encoding. */
12888
12889 static struct neon_type_el
12890 neon_check_type (unsigned els, enum neon_shape ns, ...)
12891 {
12892 va_list ap;
12893 unsigned i, pass, key_el = 0;
12894 unsigned types[NEON_MAX_TYPE_ELS];
12895 enum neon_el_type k_type = NT_invtype;
12896 unsigned k_size = -1u;
12897 struct neon_type_el badtype = {NT_invtype, -1};
12898 unsigned key_allowed = 0;
12899
12900 /* Optional registers in Neon instructions are always (not) in operand 1.
12901 Fill in the missing operand here, if it was omitted. */
12902 if (els > 1 && !inst.operands[1].present)
12903 inst.operands[1] = inst.operands[0];
12904
12905 /* Suck up all the varargs. */
12906 va_start (ap, ns);
12907 for (i = 0; i < els; i++)
12908 {
12909 unsigned thisarg = va_arg (ap, unsigned);
12910 if (thisarg == N_IGNORE_TYPE)
12911 {
12912 va_end (ap);
12913 return badtype;
12914 }
12915 types[i] = thisarg;
12916 if ((thisarg & N_KEY) != 0)
12917 key_el = i;
12918 }
12919 va_end (ap);
12920
12921 if (inst.vectype.elems > 0)
12922 for (i = 0; i < els; i++)
12923 if (inst.operands[i].vectype.type != NT_invtype)
12924 {
12925 first_error (_("types specified in both the mnemonic and operands"));
12926 return badtype;
12927 }
12928
12929 /* Duplicate inst.vectype elements here as necessary.
12930 FIXME: No idea if this is exactly the same as the ARM assembler,
12931 particularly when an insn takes one register and one non-register
12932 operand. */
12933 if (inst.vectype.elems == 1 && els > 1)
12934 {
12935 unsigned j;
12936 inst.vectype.elems = els;
12937 inst.vectype.el[key_el] = inst.vectype.el[0];
12938 for (j = 0; j < els; j++)
12939 if (j != key_el)
12940 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12941 types[j]);
12942 }
12943 else if (inst.vectype.elems == 0 && els > 0)
12944 {
12945 unsigned j;
12946 /* No types were given after the mnemonic, so look for types specified
12947 after each operand. We allow some flexibility here; as long as the
12948 "key" operand has a type, we can infer the others. */
12949 for (j = 0; j < els; j++)
12950 if (inst.operands[j].vectype.type != NT_invtype)
12951 inst.vectype.el[j] = inst.operands[j].vectype;
12952
12953 if (inst.operands[key_el].vectype.type != NT_invtype)
12954 {
12955 for (j = 0; j < els; j++)
12956 if (inst.operands[j].vectype.type == NT_invtype)
12957 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12958 types[j]);
12959 }
12960 else
12961 {
12962 first_error (_("operand types can't be inferred"));
12963 return badtype;
12964 }
12965 }
12966 else if (inst.vectype.elems != els)
12967 {
12968 first_error (_("type specifier has the wrong number of parts"));
12969 return badtype;
12970 }
12971
12972 for (pass = 0; pass < 2; pass++)
12973 {
12974 for (i = 0; i < els; i++)
12975 {
12976 unsigned thisarg = types[i];
12977 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12978 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12979 enum neon_el_type g_type = inst.vectype.el[i].type;
12980 unsigned g_size = inst.vectype.el[i].size;
12981
12982 /* Decay more-specific signed & unsigned types to sign-insensitive
12983 integer types if sign-specific variants are unavailable. */
12984 if ((g_type == NT_signed || g_type == NT_unsigned)
12985 && (types_allowed & N_SU_ALL) == 0)
12986 g_type = NT_integer;
12987
12988 /* If only untyped args are allowed, decay any more specific types to
12989 them. Some instructions only care about signs for some element
12990 sizes, so handle that properly. */
12991 if ((g_size == 8 && (types_allowed & N_8) != 0)
12992 || (g_size == 16 && (types_allowed & N_16) != 0)
12993 || (g_size == 32 && (types_allowed & N_32) != 0)
12994 || (g_size == 64 && (types_allowed & N_64) != 0))
12995 g_type = NT_untyped;
12996
12997 if (pass == 0)
12998 {
12999 if ((thisarg & N_KEY) != 0)
13000 {
13001 k_type = g_type;
13002 k_size = g_size;
13003 key_allowed = thisarg & ~N_KEY;
13004 }
13005 }
13006 else
13007 {
13008 if ((thisarg & N_VFP) != 0)
13009 {
13010 enum neon_shape_el regshape;
13011 unsigned regwidth, match;
13012
13013 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13014 if (ns == NS_NULL)
13015 {
13016 first_error (_("invalid instruction shape"));
13017 return badtype;
13018 }
13019 regshape = neon_shape_tab[ns].el[i];
13020 regwidth = neon_shape_el_size[regshape];
13021
13022 /* In VFP mode, operands must match register widths. If we
13023 have a key operand, use its width, else use the width of
13024 the current operand. */
13025 if (k_size != -1u)
13026 match = k_size;
13027 else
13028 match = g_size;
13029
13030 if (regwidth != match)
13031 {
13032 first_error (_("operand size must match register width"));
13033 return badtype;
13034 }
13035 }
13036
13037 if ((thisarg & N_EQK) == 0)
13038 {
13039 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13040
13041 if ((given_type & types_allowed) == 0)
13042 {
13043 first_error (_("bad type in Neon instruction"));
13044 return badtype;
13045 }
13046 }
13047 else
13048 {
13049 enum neon_el_type mod_k_type = k_type;
13050 unsigned mod_k_size = k_size;
13051 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13052 if (g_type != mod_k_type || g_size != mod_k_size)
13053 {
13054 first_error (_("inconsistent types in Neon instruction"));
13055 return badtype;
13056 }
13057 }
13058 }
13059 }
13060 }
13061
13062 return inst.vectype.el[key_el];
13063 }
13064
13065 /* Neon-style VFP instruction forwarding. */
13066
13067 /* Thumb VFP instructions have 0xE in the condition field. */
13068
13069 static void
13070 do_vfp_cond_or_thumb (void)
13071 {
13072 inst.is_neon = 1;
13073
13074 if (thumb_mode)
13075 inst.instruction |= 0xe0000000;
13076 else
13077 inst.instruction |= inst.cond << 28;
13078 }
13079
13080 /* Look up and encode a simple mnemonic, for use as a helper function for the
13081 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13082 etc. It is assumed that operand parsing has already been done, and that the
13083 operands are in the form expected by the given opcode (this isn't necessarily
13084 the same as the form in which they were parsed, hence some massaging must
13085 take place before this function is called).
13086 Checks current arch version against that in the looked-up opcode. */
13087
13088 static void
13089 do_vfp_nsyn_opcode (const char *opname)
13090 {
13091 const struct asm_opcode *opcode;
13092
13093 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13094
13095 if (!opcode)
13096 abort ();
13097
13098 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13099 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13100 _(BAD_FPU));
13101
13102 inst.is_neon = 1;
13103
13104 if (thumb_mode)
13105 {
13106 inst.instruction = opcode->tvalue;
13107 opcode->tencode ();
13108 }
13109 else
13110 {
13111 inst.instruction = (inst.cond << 28) | opcode->avalue;
13112 opcode->aencode ();
13113 }
13114 }
13115
13116 static void
13117 do_vfp_nsyn_add_sub (enum neon_shape rs)
13118 {
13119 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13120
13121 if (rs == NS_FFF)
13122 {
13123 if (is_add)
13124 do_vfp_nsyn_opcode ("fadds");
13125 else
13126 do_vfp_nsyn_opcode ("fsubs");
13127 }
13128 else
13129 {
13130 if (is_add)
13131 do_vfp_nsyn_opcode ("faddd");
13132 else
13133 do_vfp_nsyn_opcode ("fsubd");
13134 }
13135 }
13136
13137 /* Check operand types to see if this is a VFP instruction, and if so call
13138 PFN (). */
13139
13140 static int
13141 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13142 {
13143 enum neon_shape rs;
13144 struct neon_type_el et;
13145
13146 switch (args)
13147 {
13148 case 2:
13149 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13150 et = neon_check_type (2, rs,
13151 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13152 break;
13153
13154 case 3:
13155 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13156 et = neon_check_type (3, rs,
13157 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13158 break;
13159
13160 default:
13161 abort ();
13162 }
13163
13164 if (et.type != NT_invtype)
13165 {
13166 pfn (rs);
13167 return SUCCESS;
13168 }
13169
13170 inst.error = NULL;
13171 return FAIL;
13172 }
13173
13174 static void
13175 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13176 {
13177 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13178
13179 if (rs == NS_FFF)
13180 {
13181 if (is_mla)
13182 do_vfp_nsyn_opcode ("fmacs");
13183 else
13184 do_vfp_nsyn_opcode ("fnmacs");
13185 }
13186 else
13187 {
13188 if (is_mla)
13189 do_vfp_nsyn_opcode ("fmacd");
13190 else
13191 do_vfp_nsyn_opcode ("fnmacd");
13192 }
13193 }
13194
13195 static void
13196 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13197 {
13198 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13199
13200 if (rs == NS_FFF)
13201 {
13202 if (is_fma)
13203 do_vfp_nsyn_opcode ("ffmas");
13204 else
13205 do_vfp_nsyn_opcode ("ffnmas");
13206 }
13207 else
13208 {
13209 if (is_fma)
13210 do_vfp_nsyn_opcode ("ffmad");
13211 else
13212 do_vfp_nsyn_opcode ("ffnmad");
13213 }
13214 }
13215
13216 static void
13217 do_vfp_nsyn_mul (enum neon_shape rs)
13218 {
13219 if (rs == NS_FFF)
13220 do_vfp_nsyn_opcode ("fmuls");
13221 else
13222 do_vfp_nsyn_opcode ("fmuld");
13223 }
13224
13225 static void
13226 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13227 {
13228 int is_neg = (inst.instruction & 0x80) != 0;
13229 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13230
13231 if (rs == NS_FF)
13232 {
13233 if (is_neg)
13234 do_vfp_nsyn_opcode ("fnegs");
13235 else
13236 do_vfp_nsyn_opcode ("fabss");
13237 }
13238 else
13239 {
13240 if (is_neg)
13241 do_vfp_nsyn_opcode ("fnegd");
13242 else
13243 do_vfp_nsyn_opcode ("fabsd");
13244 }
13245 }
13246
13247 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13248 insns belong to Neon, and are handled elsewhere. */
13249
13250 static void
13251 do_vfp_nsyn_ldm_stm (int is_dbmode)
13252 {
13253 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13254 if (is_ldm)
13255 {
13256 if (is_dbmode)
13257 do_vfp_nsyn_opcode ("fldmdbs");
13258 else
13259 do_vfp_nsyn_opcode ("fldmias");
13260 }
13261 else
13262 {
13263 if (is_dbmode)
13264 do_vfp_nsyn_opcode ("fstmdbs");
13265 else
13266 do_vfp_nsyn_opcode ("fstmias");
13267 }
13268 }
13269
13270 static void
13271 do_vfp_nsyn_sqrt (void)
13272 {
13273 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13274 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13275
13276 if (rs == NS_FF)
13277 do_vfp_nsyn_opcode ("fsqrts");
13278 else
13279 do_vfp_nsyn_opcode ("fsqrtd");
13280 }
13281
13282 static void
13283 do_vfp_nsyn_div (void)
13284 {
13285 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13286 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13287 N_F32 | N_F64 | N_KEY | N_VFP);
13288
13289 if (rs == NS_FFF)
13290 do_vfp_nsyn_opcode ("fdivs");
13291 else
13292 do_vfp_nsyn_opcode ("fdivd");
13293 }
13294
13295 static void
13296 do_vfp_nsyn_nmul (void)
13297 {
13298 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13299 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13300 N_F32 | N_F64 | N_KEY | N_VFP);
13301
13302 if (rs == NS_FFF)
13303 {
13304 NEON_ENCODE (SINGLE, inst);
13305 do_vfp_sp_dyadic ();
13306 }
13307 else
13308 {
13309 NEON_ENCODE (DOUBLE, inst);
13310 do_vfp_dp_rd_rn_rm ();
13311 }
13312 do_vfp_cond_or_thumb ();
13313 }
13314
13315 static void
13316 do_vfp_nsyn_cmp (void)
13317 {
13318 if (inst.operands[1].isreg)
13319 {
13320 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13321 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13322
13323 if (rs == NS_FF)
13324 {
13325 NEON_ENCODE (SINGLE, inst);
13326 do_vfp_sp_monadic ();
13327 }
13328 else
13329 {
13330 NEON_ENCODE (DOUBLE, inst);
13331 do_vfp_dp_rd_rm ();
13332 }
13333 }
13334 else
13335 {
13336 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13337 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13338
13339 switch (inst.instruction & 0x0fffffff)
13340 {
13341 case N_MNEM_vcmp:
13342 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13343 break;
13344 case N_MNEM_vcmpe:
13345 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13346 break;
13347 default:
13348 abort ();
13349 }
13350
13351 if (rs == NS_FI)
13352 {
13353 NEON_ENCODE (SINGLE, inst);
13354 do_vfp_sp_compare_z ();
13355 }
13356 else
13357 {
13358 NEON_ENCODE (DOUBLE, inst);
13359 do_vfp_dp_rd ();
13360 }
13361 }
13362 do_vfp_cond_or_thumb ();
13363 }
13364
13365 static void
13366 nsyn_insert_sp (void)
13367 {
13368 inst.operands[1] = inst.operands[0];
13369 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13370 inst.operands[0].reg = REG_SP;
13371 inst.operands[0].isreg = 1;
13372 inst.operands[0].writeback = 1;
13373 inst.operands[0].present = 1;
13374 }
13375
13376 static void
13377 do_vfp_nsyn_push (void)
13378 {
13379 nsyn_insert_sp ();
13380 if (inst.operands[1].issingle)
13381 do_vfp_nsyn_opcode ("fstmdbs");
13382 else
13383 do_vfp_nsyn_opcode ("fstmdbd");
13384 }
13385
13386 static void
13387 do_vfp_nsyn_pop (void)
13388 {
13389 nsyn_insert_sp ();
13390 if (inst.operands[1].issingle)
13391 do_vfp_nsyn_opcode ("fldmias");
13392 else
13393 do_vfp_nsyn_opcode ("fldmiad");
13394 }
13395
13396 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13397 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13398
13399 static void
13400 neon_dp_fixup (struct arm_it* insn)
13401 {
13402 unsigned int i = insn->instruction;
13403 insn->is_neon = 1;
13404
13405 if (thumb_mode)
13406 {
13407 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13408 if (i & (1 << 24))
13409 i |= 1 << 28;
13410
13411 i &= ~(1 << 24);
13412
13413 i |= 0xef000000;
13414 }
13415 else
13416 i |= 0xf2000000;
13417
13418 insn->instruction = i;
13419 }
13420
13421 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13422 (0, 1, 2, 3). */
13423
13424 static unsigned
13425 neon_logbits (unsigned x)
13426 {
13427 return ffs (x) - 4;
13428 }
13429
13430 #define LOW4(R) ((R) & 0xf)
13431 #define HI1(R) (((R) >> 4) & 1)
13432
13433 /* Encode insns with bit pattern:
13434
13435 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13436 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13437
13438 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13439 different meaning for some instruction. */
13440
13441 static void
13442 neon_three_same (int isquad, int ubit, int size)
13443 {
13444 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13445 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13446 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13447 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13448 inst.instruction |= LOW4 (inst.operands[2].reg);
13449 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13450 inst.instruction |= (isquad != 0) << 6;
13451 inst.instruction |= (ubit != 0) << 24;
13452 if (size != -1)
13453 inst.instruction |= neon_logbits (size) << 20;
13454
13455 neon_dp_fixup (&inst);
13456 }
13457
13458 /* Encode instructions of the form:
13459
13460 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13461 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13462
13463 Don't write size if SIZE == -1. */
13464
13465 static void
13466 neon_two_same (int qbit, int ubit, int size)
13467 {
13468 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13469 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13470 inst.instruction |= LOW4 (inst.operands[1].reg);
13471 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13472 inst.instruction |= (qbit != 0) << 6;
13473 inst.instruction |= (ubit != 0) << 24;
13474
13475 if (size != -1)
13476 inst.instruction |= neon_logbits (size) << 18;
13477
13478 neon_dp_fixup (&inst);
13479 }
13480
13481 /* Neon instruction encoders, in approximate order of appearance. */
13482
13483 static void
13484 do_neon_dyadic_i_su (void)
13485 {
13486 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13487 struct neon_type_el et = neon_check_type (3, rs,
13488 N_EQK, N_EQK, N_SU_32 | N_KEY);
13489 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13490 }
13491
13492 static void
13493 do_neon_dyadic_i64_su (void)
13494 {
13495 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13496 struct neon_type_el et = neon_check_type (3, rs,
13497 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13498 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13499 }
13500
13501 static void
13502 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13503 unsigned immbits)
13504 {
13505 unsigned size = et.size >> 3;
13506 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13507 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13508 inst.instruction |= LOW4 (inst.operands[1].reg);
13509 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13510 inst.instruction |= (isquad != 0) << 6;
13511 inst.instruction |= immbits << 16;
13512 inst.instruction |= (size >> 3) << 7;
13513 inst.instruction |= (size & 0x7) << 19;
13514 if (write_ubit)
13515 inst.instruction |= (uval != 0) << 24;
13516
13517 neon_dp_fixup (&inst);
13518 }
13519
13520 static void
13521 do_neon_shl_imm (void)
13522 {
13523 if (!inst.operands[2].isreg)
13524 {
13525 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13526 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13527 NEON_ENCODE (IMMED, inst);
13528 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13529 }
13530 else
13531 {
13532 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13533 struct neon_type_el et = neon_check_type (3, rs,
13534 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13535 unsigned int tmp;
13536
13537 /* VSHL/VQSHL 3-register variants have syntax such as:
13538 vshl.xx Dd, Dm, Dn
13539 whereas other 3-register operations encoded by neon_three_same have
13540 syntax like:
13541 vadd.xx Dd, Dn, Dm
13542 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13543 here. */
13544 tmp = inst.operands[2].reg;
13545 inst.operands[2].reg = inst.operands[1].reg;
13546 inst.operands[1].reg = tmp;
13547 NEON_ENCODE (INTEGER, inst);
13548 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13549 }
13550 }
13551
13552 static void
13553 do_neon_qshl_imm (void)
13554 {
13555 if (!inst.operands[2].isreg)
13556 {
13557 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13558 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13559
13560 NEON_ENCODE (IMMED, inst);
13561 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13562 inst.operands[2].imm);
13563 }
13564 else
13565 {
13566 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13567 struct neon_type_el et = neon_check_type (3, rs,
13568 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13569 unsigned int tmp;
13570
13571 /* See note in do_neon_shl_imm. */
13572 tmp = inst.operands[2].reg;
13573 inst.operands[2].reg = inst.operands[1].reg;
13574 inst.operands[1].reg = tmp;
13575 NEON_ENCODE (INTEGER, inst);
13576 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13577 }
13578 }
13579
13580 static void
13581 do_neon_rshl (void)
13582 {
13583 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13584 struct neon_type_el et = neon_check_type (3, rs,
13585 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13586 unsigned int tmp;
13587
13588 tmp = inst.operands[2].reg;
13589 inst.operands[2].reg = inst.operands[1].reg;
13590 inst.operands[1].reg = tmp;
13591 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13592 }
13593
13594 static int
13595 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13596 {
13597 /* Handle .I8 pseudo-instructions. */
13598 if (size == 8)
13599 {
13600 /* Unfortunately, this will make everything apart from zero out-of-range.
13601 FIXME is this the intended semantics? There doesn't seem much point in
13602 accepting .I8 if so. */
13603 immediate |= immediate << 8;
13604 size = 16;
13605 }
13606
13607 if (size >= 32)
13608 {
13609 if (immediate == (immediate & 0x000000ff))
13610 {
13611 *immbits = immediate;
13612 return 0x1;
13613 }
13614 else if (immediate == (immediate & 0x0000ff00))
13615 {
13616 *immbits = immediate >> 8;
13617 return 0x3;
13618 }
13619 else if (immediate == (immediate & 0x00ff0000))
13620 {
13621 *immbits = immediate >> 16;
13622 return 0x5;
13623 }
13624 else if (immediate == (immediate & 0xff000000))
13625 {
13626 *immbits = immediate >> 24;
13627 return 0x7;
13628 }
13629 if ((immediate & 0xffff) != (immediate >> 16))
13630 goto bad_immediate;
13631 immediate &= 0xffff;
13632 }
13633
13634 if (immediate == (immediate & 0x000000ff))
13635 {
13636 *immbits = immediate;
13637 return 0x9;
13638 }
13639 else if (immediate == (immediate & 0x0000ff00))
13640 {
13641 *immbits = immediate >> 8;
13642 return 0xb;
13643 }
13644
13645 bad_immediate:
13646 first_error (_("immediate value out of range"));
13647 return FAIL;
13648 }
13649
13650 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13651 A, B, C, D. */
13652
13653 static int
13654 neon_bits_same_in_bytes (unsigned imm)
13655 {
13656 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13657 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13658 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13659 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13660 }
13661
13662 /* For immediate of above form, return 0bABCD. */
13663
13664 static unsigned
13665 neon_squash_bits (unsigned imm)
13666 {
13667 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13668 | ((imm & 0x01000000) >> 21);
13669 }
13670
13671 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13672
13673 static unsigned
13674 neon_qfloat_bits (unsigned imm)
13675 {
13676 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13677 }
13678
13679 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13680 the instruction. *OP is passed as the initial value of the op field, and
13681 may be set to a different value depending on the constant (i.e.
13682 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13683 MVN). If the immediate looks like a repeated pattern then also
13684 try smaller element sizes. */
13685
13686 static int
13687 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13688 unsigned *immbits, int *op, int size,
13689 enum neon_el_type type)
13690 {
13691 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13692 float. */
13693 if (type == NT_float && !float_p)
13694 return FAIL;
13695
13696 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13697 {
13698 if (size != 32 || *op == 1)
13699 return FAIL;
13700 *immbits = neon_qfloat_bits (immlo);
13701 return 0xf;
13702 }
13703
13704 if (size == 64)
13705 {
13706 if (neon_bits_same_in_bytes (immhi)
13707 && neon_bits_same_in_bytes (immlo))
13708 {
13709 if (*op == 1)
13710 return FAIL;
13711 *immbits = (neon_squash_bits (immhi) << 4)
13712 | neon_squash_bits (immlo);
13713 *op = 1;
13714 return 0xe;
13715 }
13716
13717 if (immhi != immlo)
13718 return FAIL;
13719 }
13720
13721 if (size >= 32)
13722 {
13723 if (immlo == (immlo & 0x000000ff))
13724 {
13725 *immbits = immlo;
13726 return 0x0;
13727 }
13728 else if (immlo == (immlo & 0x0000ff00))
13729 {
13730 *immbits = immlo >> 8;
13731 return 0x2;
13732 }
13733 else if (immlo == (immlo & 0x00ff0000))
13734 {
13735 *immbits = immlo >> 16;
13736 return 0x4;
13737 }
13738 else if (immlo == (immlo & 0xff000000))
13739 {
13740 *immbits = immlo >> 24;
13741 return 0x6;
13742 }
13743 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13744 {
13745 *immbits = (immlo >> 8) & 0xff;
13746 return 0xc;
13747 }
13748 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13749 {
13750 *immbits = (immlo >> 16) & 0xff;
13751 return 0xd;
13752 }
13753
13754 if ((immlo & 0xffff) != (immlo >> 16))
13755 return FAIL;
13756 immlo &= 0xffff;
13757 }
13758
13759 if (size >= 16)
13760 {
13761 if (immlo == (immlo & 0x000000ff))
13762 {
13763 *immbits = immlo;
13764 return 0x8;
13765 }
13766 else if (immlo == (immlo & 0x0000ff00))
13767 {
13768 *immbits = immlo >> 8;
13769 return 0xa;
13770 }
13771
13772 if ((immlo & 0xff) != (immlo >> 8))
13773 return FAIL;
13774 immlo &= 0xff;
13775 }
13776
13777 if (immlo == (immlo & 0x000000ff))
13778 {
13779 /* Don't allow MVN with 8-bit immediate. */
13780 if (*op == 1)
13781 return FAIL;
13782 *immbits = immlo;
13783 return 0xe;
13784 }
13785
13786 return FAIL;
13787 }
13788
13789 /* Write immediate bits [7:0] to the following locations:
13790
13791 |28/24|23 19|18 16|15 4|3 0|
13792 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13793
13794 This function is used by VMOV/VMVN/VORR/VBIC. */
13795
13796 static void
13797 neon_write_immbits (unsigned immbits)
13798 {
13799 inst.instruction |= immbits & 0xf;
13800 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13801 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13802 }
13803
13804 /* Invert low-order SIZE bits of XHI:XLO. */
13805
13806 static void
13807 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13808 {
13809 unsigned immlo = xlo ? *xlo : 0;
13810 unsigned immhi = xhi ? *xhi : 0;
13811
13812 switch (size)
13813 {
13814 case 8:
13815 immlo = (~immlo) & 0xff;
13816 break;
13817
13818 case 16:
13819 immlo = (~immlo) & 0xffff;
13820 break;
13821
13822 case 64:
13823 immhi = (~immhi) & 0xffffffff;
13824 /* fall through. */
13825
13826 case 32:
13827 immlo = (~immlo) & 0xffffffff;
13828 break;
13829
13830 default:
13831 abort ();
13832 }
13833
13834 if (xlo)
13835 *xlo = immlo;
13836
13837 if (xhi)
13838 *xhi = immhi;
13839 }
13840
13841 static void
13842 do_neon_logic (void)
13843 {
13844 if (inst.operands[2].present && inst.operands[2].isreg)
13845 {
13846 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13847 neon_check_type (3, rs, N_IGNORE_TYPE);
13848 /* U bit and size field were set as part of the bitmask. */
13849 NEON_ENCODE (INTEGER, inst);
13850 neon_three_same (neon_quad (rs), 0, -1);
13851 }
13852 else
13853 {
13854 const int three_ops_form = (inst.operands[2].present
13855 && !inst.operands[2].isreg);
13856 const int immoperand = (three_ops_form ? 2 : 1);
13857 enum neon_shape rs = (three_ops_form
13858 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13859 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13860 struct neon_type_el et = neon_check_type (2, rs,
13861 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13862 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13863 unsigned immbits;
13864 int cmode;
13865
13866 if (et.type == NT_invtype)
13867 return;
13868
13869 if (three_ops_form)
13870 constraint (inst.operands[0].reg != inst.operands[1].reg,
13871 _("first and second operands shall be the same register"));
13872
13873 NEON_ENCODE (IMMED, inst);
13874
13875 immbits = inst.operands[immoperand].imm;
13876 if (et.size == 64)
13877 {
13878 /* .i64 is a pseudo-op, so the immediate must be a repeating
13879 pattern. */
13880 if (immbits != (inst.operands[immoperand].regisimm ?
13881 inst.operands[immoperand].reg : 0))
13882 {
13883 /* Set immbits to an invalid constant. */
13884 immbits = 0xdeadbeef;
13885 }
13886 }
13887
13888 switch (opcode)
13889 {
13890 case N_MNEM_vbic:
13891 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13892 break;
13893
13894 case N_MNEM_vorr:
13895 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13896 break;
13897
13898 case N_MNEM_vand:
13899 /* Pseudo-instruction for VBIC. */
13900 neon_invert_size (&immbits, 0, et.size);
13901 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13902 break;
13903
13904 case N_MNEM_vorn:
13905 /* Pseudo-instruction for VORR. */
13906 neon_invert_size (&immbits, 0, et.size);
13907 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13908 break;
13909
13910 default:
13911 abort ();
13912 }
13913
13914 if (cmode == FAIL)
13915 return;
13916
13917 inst.instruction |= neon_quad (rs) << 6;
13918 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13919 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13920 inst.instruction |= cmode << 8;
13921 neon_write_immbits (immbits);
13922
13923 neon_dp_fixup (&inst);
13924 }
13925 }
13926
13927 static void
13928 do_neon_bitfield (void)
13929 {
13930 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13931 neon_check_type (3, rs, N_IGNORE_TYPE);
13932 neon_three_same (neon_quad (rs), 0, -1);
13933 }
13934
13935 static void
13936 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13937 unsigned destbits)
13938 {
13939 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13940 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13941 types | N_KEY);
13942 if (et.type == NT_float)
13943 {
13944 NEON_ENCODE (FLOAT, inst);
13945 neon_three_same (neon_quad (rs), 0, -1);
13946 }
13947 else
13948 {
13949 NEON_ENCODE (INTEGER, inst);
13950 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13951 }
13952 }
13953
13954 static void
13955 do_neon_dyadic_if_su (void)
13956 {
13957 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13958 }
13959
13960 static void
13961 do_neon_dyadic_if_su_d (void)
13962 {
13963 /* This version only allow D registers, but that constraint is enforced during
13964 operand parsing so we don't need to do anything extra here. */
13965 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13966 }
13967
13968 static void
13969 do_neon_dyadic_if_i_d (void)
13970 {
13971 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13972 affected if we specify unsigned args. */
13973 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13974 }
13975
13976 enum vfp_or_neon_is_neon_bits
13977 {
13978 NEON_CHECK_CC = 1,
13979 NEON_CHECK_ARCH = 2
13980 };
13981
13982 /* Call this function if an instruction which may have belonged to the VFP or
13983 Neon instruction sets, but turned out to be a Neon instruction (due to the
13984 operand types involved, etc.). We have to check and/or fix-up a couple of
13985 things:
13986
13987 - Make sure the user hasn't attempted to make a Neon instruction
13988 conditional.
13989 - Alter the value in the condition code field if necessary.
13990 - Make sure that the arch supports Neon instructions.
13991
13992 Which of these operations take place depends on bits from enum
13993 vfp_or_neon_is_neon_bits.
13994
13995 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13996 current instruction's condition is COND_ALWAYS, the condition field is
13997 changed to inst.uncond_value. This is necessary because instructions shared
13998 between VFP and Neon may be conditional for the VFP variants only, and the
13999 unconditional Neon version must have, e.g., 0xF in the condition field. */
14000
14001 static int
14002 vfp_or_neon_is_neon (unsigned check)
14003 {
14004 /* Conditions are always legal in Thumb mode (IT blocks). */
14005 if (!thumb_mode && (check & NEON_CHECK_CC))
14006 {
14007 if (inst.cond != COND_ALWAYS)
14008 {
14009 first_error (_(BAD_COND));
14010 return FAIL;
14011 }
14012 if (inst.uncond_value != -1)
14013 inst.instruction |= inst.uncond_value << 28;
14014 }
14015
14016 if ((check & NEON_CHECK_ARCH)
14017 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
14018 {
14019 first_error (_(BAD_FPU));
14020 return FAIL;
14021 }
14022
14023 return SUCCESS;
14024 }
14025
14026 static void
14027 do_neon_addsub_if_i (void)
14028 {
14029 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14030 return;
14031
14032 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14033 return;
14034
14035 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14036 affected if we specify unsigned args. */
14037 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14038 }
14039
14040 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14041 result to be:
14042 V<op> A,B (A is operand 0, B is operand 2)
14043 to mean:
14044 V<op> A,B,A
14045 not:
14046 V<op> A,B,B
14047 so handle that case specially. */
14048
14049 static void
14050 neon_exchange_operands (void)
14051 {
14052 void *scratch = alloca (sizeof (inst.operands[0]));
14053 if (inst.operands[1].present)
14054 {
14055 /* Swap operands[1] and operands[2]. */
14056 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14057 inst.operands[1] = inst.operands[2];
14058 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14059 }
14060 else
14061 {
14062 inst.operands[1] = inst.operands[2];
14063 inst.operands[2] = inst.operands[0];
14064 }
14065 }
14066
14067 static void
14068 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14069 {
14070 if (inst.operands[2].isreg)
14071 {
14072 if (invert)
14073 neon_exchange_operands ();
14074 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14075 }
14076 else
14077 {
14078 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14079 struct neon_type_el et = neon_check_type (2, rs,
14080 N_EQK | N_SIZ, immtypes | N_KEY);
14081
14082 NEON_ENCODE (IMMED, inst);
14083 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14084 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14085 inst.instruction |= LOW4 (inst.operands[1].reg);
14086 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14087 inst.instruction |= neon_quad (rs) << 6;
14088 inst.instruction |= (et.type == NT_float) << 10;
14089 inst.instruction |= neon_logbits (et.size) << 18;
14090
14091 neon_dp_fixup (&inst);
14092 }
14093 }
14094
14095 static void
14096 do_neon_cmp (void)
14097 {
14098 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14099 }
14100
14101 static void
14102 do_neon_cmp_inv (void)
14103 {
14104 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14105 }
14106
14107 static void
14108 do_neon_ceq (void)
14109 {
14110 neon_compare (N_IF_32, N_IF_32, FALSE);
14111 }
14112
14113 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14114 scalars, which are encoded in 5 bits, M : Rm.
14115 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14116 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14117 index in M. */
14118
14119 static unsigned
14120 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14121 {
14122 unsigned regno = NEON_SCALAR_REG (scalar);
14123 unsigned elno = NEON_SCALAR_INDEX (scalar);
14124
14125 switch (elsize)
14126 {
14127 case 16:
14128 if (regno > 7 || elno > 3)
14129 goto bad_scalar;
14130 return regno | (elno << 3);
14131
14132 case 32:
14133 if (regno > 15 || elno > 1)
14134 goto bad_scalar;
14135 return regno | (elno << 4);
14136
14137 default:
14138 bad_scalar:
14139 first_error (_("scalar out of range for multiply instruction"));
14140 }
14141
14142 return 0;
14143 }
14144
14145 /* Encode multiply / multiply-accumulate scalar instructions. */
14146
14147 static void
14148 neon_mul_mac (struct neon_type_el et, int ubit)
14149 {
14150 unsigned scalar;
14151
14152 /* Give a more helpful error message if we have an invalid type. */
14153 if (et.type == NT_invtype)
14154 return;
14155
14156 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14157 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14158 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14159 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14160 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14161 inst.instruction |= LOW4 (scalar);
14162 inst.instruction |= HI1 (scalar) << 5;
14163 inst.instruction |= (et.type == NT_float) << 8;
14164 inst.instruction |= neon_logbits (et.size) << 20;
14165 inst.instruction |= (ubit != 0) << 24;
14166
14167 neon_dp_fixup (&inst);
14168 }
14169
14170 static void
14171 do_neon_mac_maybe_scalar (void)
14172 {
14173 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14174 return;
14175
14176 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14177 return;
14178
14179 if (inst.operands[2].isscalar)
14180 {
14181 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14182 struct neon_type_el et = neon_check_type (3, rs,
14183 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14184 NEON_ENCODE (SCALAR, inst);
14185 neon_mul_mac (et, neon_quad (rs));
14186 }
14187 else
14188 {
14189 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14190 affected if we specify unsigned args. */
14191 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14192 }
14193 }
14194
14195 static void
14196 do_neon_fmac (void)
14197 {
14198 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14199 return;
14200
14201 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14202 return;
14203
14204 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14205 }
14206
14207 static void
14208 do_neon_tst (void)
14209 {
14210 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14211 struct neon_type_el et = neon_check_type (3, rs,
14212 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14213 neon_three_same (neon_quad (rs), 0, et.size);
14214 }
14215
14216 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14217 same types as the MAC equivalents. The polynomial type for this instruction
14218 is encoded the same as the integer type. */
14219
14220 static void
14221 do_neon_mul (void)
14222 {
14223 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14224 return;
14225
14226 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14227 return;
14228
14229 if (inst.operands[2].isscalar)
14230 do_neon_mac_maybe_scalar ();
14231 else
14232 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14233 }
14234
14235 static void
14236 do_neon_qdmulh (void)
14237 {
14238 if (inst.operands[2].isscalar)
14239 {
14240 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14241 struct neon_type_el et = neon_check_type (3, rs,
14242 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14243 NEON_ENCODE (SCALAR, inst);
14244 neon_mul_mac (et, neon_quad (rs));
14245 }
14246 else
14247 {
14248 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14249 struct neon_type_el et = neon_check_type (3, rs,
14250 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14251 NEON_ENCODE (INTEGER, inst);
14252 /* The U bit (rounding) comes from bit mask. */
14253 neon_three_same (neon_quad (rs), 0, et.size);
14254 }
14255 }
14256
14257 static void
14258 do_neon_fcmp_absolute (void)
14259 {
14260 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14261 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14262 /* Size field comes from bit mask. */
14263 neon_three_same (neon_quad (rs), 1, -1);
14264 }
14265
14266 static void
14267 do_neon_fcmp_absolute_inv (void)
14268 {
14269 neon_exchange_operands ();
14270 do_neon_fcmp_absolute ();
14271 }
14272
14273 static void
14274 do_neon_step (void)
14275 {
14276 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14277 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14278 neon_three_same (neon_quad (rs), 0, -1);
14279 }
14280
14281 static void
14282 do_neon_abs_neg (void)
14283 {
14284 enum neon_shape rs;
14285 struct neon_type_el et;
14286
14287 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14288 return;
14289
14290 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14291 return;
14292
14293 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14294 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14295
14296 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14297 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14298 inst.instruction |= LOW4 (inst.operands[1].reg);
14299 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14300 inst.instruction |= neon_quad (rs) << 6;
14301 inst.instruction |= (et.type == NT_float) << 10;
14302 inst.instruction |= neon_logbits (et.size) << 18;
14303
14304 neon_dp_fixup (&inst);
14305 }
14306
14307 static void
14308 do_neon_sli (void)
14309 {
14310 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14311 struct neon_type_el et = neon_check_type (2, rs,
14312 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14313 int imm = inst.operands[2].imm;
14314 constraint (imm < 0 || (unsigned)imm >= et.size,
14315 _("immediate out of range for insert"));
14316 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14317 }
14318
14319 static void
14320 do_neon_sri (void)
14321 {
14322 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14323 struct neon_type_el et = neon_check_type (2, rs,
14324 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14325 int imm = inst.operands[2].imm;
14326 constraint (imm < 1 || (unsigned)imm > et.size,
14327 _("immediate out of range for insert"));
14328 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14329 }
14330
14331 static void
14332 do_neon_qshlu_imm (void)
14333 {
14334 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14335 struct neon_type_el et = neon_check_type (2, rs,
14336 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14337 int imm = inst.operands[2].imm;
14338 constraint (imm < 0 || (unsigned)imm >= et.size,
14339 _("immediate out of range for shift"));
14340 /* Only encodes the 'U present' variant of the instruction.
14341 In this case, signed types have OP (bit 8) set to 0.
14342 Unsigned types have OP set to 1. */
14343 inst.instruction |= (et.type == NT_unsigned) << 8;
14344 /* The rest of the bits are the same as other immediate shifts. */
14345 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14346 }
14347
14348 static void
14349 do_neon_qmovn (void)
14350 {
14351 struct neon_type_el et = neon_check_type (2, NS_DQ,
14352 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14353 /* Saturating move where operands can be signed or unsigned, and the
14354 destination has the same signedness. */
14355 NEON_ENCODE (INTEGER, inst);
14356 if (et.type == NT_unsigned)
14357 inst.instruction |= 0xc0;
14358 else
14359 inst.instruction |= 0x80;
14360 neon_two_same (0, 1, et.size / 2);
14361 }
14362
14363 static void
14364 do_neon_qmovun (void)
14365 {
14366 struct neon_type_el et = neon_check_type (2, NS_DQ,
14367 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14368 /* Saturating move with unsigned results. Operands must be signed. */
14369 NEON_ENCODE (INTEGER, inst);
14370 neon_two_same (0, 1, et.size / 2);
14371 }
14372
14373 static void
14374 do_neon_rshift_sat_narrow (void)
14375 {
14376 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14377 or unsigned. If operands are unsigned, results must also be unsigned. */
14378 struct neon_type_el et = neon_check_type (2, NS_DQI,
14379 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14380 int imm = inst.operands[2].imm;
14381 /* This gets the bounds check, size encoding and immediate bits calculation
14382 right. */
14383 et.size /= 2;
14384
14385 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14386 VQMOVN.I<size> <Dd>, <Qm>. */
14387 if (imm == 0)
14388 {
14389 inst.operands[2].present = 0;
14390 inst.instruction = N_MNEM_vqmovn;
14391 do_neon_qmovn ();
14392 return;
14393 }
14394
14395 constraint (imm < 1 || (unsigned)imm > et.size,
14396 _("immediate out of range"));
14397 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14398 }
14399
14400 static void
14401 do_neon_rshift_sat_narrow_u (void)
14402 {
14403 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14404 or unsigned. If operands are unsigned, results must also be unsigned. */
14405 struct neon_type_el et = neon_check_type (2, NS_DQI,
14406 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14407 int imm = inst.operands[2].imm;
14408 /* This gets the bounds check, size encoding and immediate bits calculation
14409 right. */
14410 et.size /= 2;
14411
14412 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14413 VQMOVUN.I<size> <Dd>, <Qm>. */
14414 if (imm == 0)
14415 {
14416 inst.operands[2].present = 0;
14417 inst.instruction = N_MNEM_vqmovun;
14418 do_neon_qmovun ();
14419 return;
14420 }
14421
14422 constraint (imm < 1 || (unsigned)imm > et.size,
14423 _("immediate out of range"));
14424 /* FIXME: The manual is kind of unclear about what value U should have in
14425 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14426 must be 1. */
14427 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14428 }
14429
14430 static void
14431 do_neon_movn (void)
14432 {
14433 struct neon_type_el et = neon_check_type (2, NS_DQ,
14434 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14435 NEON_ENCODE (INTEGER, inst);
14436 neon_two_same (0, 1, et.size / 2);
14437 }
14438
14439 static void
14440 do_neon_rshift_narrow (void)
14441 {
14442 struct neon_type_el et = neon_check_type (2, NS_DQI,
14443 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14444 int imm = inst.operands[2].imm;
14445 /* This gets the bounds check, size encoding and immediate bits calculation
14446 right. */
14447 et.size /= 2;
14448
14449 /* If immediate is zero then we are a pseudo-instruction for
14450 VMOVN.I<size> <Dd>, <Qm> */
14451 if (imm == 0)
14452 {
14453 inst.operands[2].present = 0;
14454 inst.instruction = N_MNEM_vmovn;
14455 do_neon_movn ();
14456 return;
14457 }
14458
14459 constraint (imm < 1 || (unsigned)imm > et.size,
14460 _("immediate out of range for narrowing operation"));
14461 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14462 }
14463
14464 static void
14465 do_neon_shll (void)
14466 {
14467 /* FIXME: Type checking when lengthening. */
14468 struct neon_type_el et = neon_check_type (2, NS_QDI,
14469 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14470 unsigned imm = inst.operands[2].imm;
14471
14472 if (imm == et.size)
14473 {
14474 /* Maximum shift variant. */
14475 NEON_ENCODE (INTEGER, inst);
14476 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14477 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14478 inst.instruction |= LOW4 (inst.operands[1].reg);
14479 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14480 inst.instruction |= neon_logbits (et.size) << 18;
14481
14482 neon_dp_fixup (&inst);
14483 }
14484 else
14485 {
14486 /* A more-specific type check for non-max versions. */
14487 et = neon_check_type (2, NS_QDI,
14488 N_EQK | N_DBL, N_SU_32 | N_KEY);
14489 NEON_ENCODE (IMMED, inst);
14490 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14491 }
14492 }
14493
14494 /* Check the various types for the VCVT instruction, and return which version
14495 the current instruction is. */
14496
14497 static int
14498 neon_cvt_flavour (enum neon_shape rs)
14499 {
14500 #define CVT_VAR(C,X,Y) \
14501 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14502 if (et.type != NT_invtype) \
14503 { \
14504 inst.error = NULL; \
14505 return (C); \
14506 }
14507 struct neon_type_el et;
14508 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14509 || rs == NS_FF) ? N_VFP : 0;
14510 /* The instruction versions which take an immediate take one register
14511 argument, which is extended to the width of the full register. Thus the
14512 "source" and "destination" registers must have the same width. Hack that
14513 here by making the size equal to the key (wider, in this case) operand. */
14514 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14515
14516 CVT_VAR (0, N_S32, N_F32);
14517 CVT_VAR (1, N_U32, N_F32);
14518 CVT_VAR (2, N_F32, N_S32);
14519 CVT_VAR (3, N_F32, N_U32);
14520 /* Half-precision conversions. */
14521 CVT_VAR (4, N_F32, N_F16);
14522 CVT_VAR (5, N_F16, N_F32);
14523
14524 whole_reg = N_VFP;
14525
14526 /* VFP instructions. */
14527 CVT_VAR (6, N_F32, N_F64);
14528 CVT_VAR (7, N_F64, N_F32);
14529 CVT_VAR (8, N_S32, N_F64 | key);
14530 CVT_VAR (9, N_U32, N_F64 | key);
14531 CVT_VAR (10, N_F64 | key, N_S32);
14532 CVT_VAR (11, N_F64 | key, N_U32);
14533 /* VFP instructions with bitshift. */
14534 CVT_VAR (12, N_F32 | key, N_S16);
14535 CVT_VAR (13, N_F32 | key, N_U16);
14536 CVT_VAR (14, N_F64 | key, N_S16);
14537 CVT_VAR (15, N_F64 | key, N_U16);
14538 CVT_VAR (16, N_S16, N_F32 | key);
14539 CVT_VAR (17, N_U16, N_F32 | key);
14540 CVT_VAR (18, N_S16, N_F64 | key);
14541 CVT_VAR (19, N_U16, N_F64 | key);
14542
14543 return -1;
14544 #undef CVT_VAR
14545 }
14546
14547 /* Neon-syntax VFP conversions. */
14548
14549 static void
14550 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14551 {
14552 const char *opname = 0;
14553
14554 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14555 {
14556 /* Conversions with immediate bitshift. */
14557 const char *enc[] =
14558 {
14559 "ftosls",
14560 "ftouls",
14561 "fsltos",
14562 "fultos",
14563 NULL,
14564 NULL,
14565 NULL,
14566 NULL,
14567 "ftosld",
14568 "ftould",
14569 "fsltod",
14570 "fultod",
14571 "fshtos",
14572 "fuhtos",
14573 "fshtod",
14574 "fuhtod",
14575 "ftoshs",
14576 "ftouhs",
14577 "ftoshd",
14578 "ftouhd"
14579 };
14580
14581 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14582 {
14583 opname = enc[flavour];
14584 constraint (inst.operands[0].reg != inst.operands[1].reg,
14585 _("operands 0 and 1 must be the same register"));
14586 inst.operands[1] = inst.operands[2];
14587 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14588 }
14589 }
14590 else
14591 {
14592 /* Conversions without bitshift. */
14593 const char *enc[] =
14594 {
14595 "ftosis",
14596 "ftouis",
14597 "fsitos",
14598 "fuitos",
14599 "NULL",
14600 "NULL",
14601 "fcvtsd",
14602 "fcvtds",
14603 "ftosid",
14604 "ftouid",
14605 "fsitod",
14606 "fuitod"
14607 };
14608
14609 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14610 opname = enc[flavour];
14611 }
14612
14613 if (opname)
14614 do_vfp_nsyn_opcode (opname);
14615 }
14616
14617 static void
14618 do_vfp_nsyn_cvtz (void)
14619 {
14620 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14621 int flavour = neon_cvt_flavour (rs);
14622 const char *enc[] =
14623 {
14624 "ftosizs",
14625 "ftouizs",
14626 NULL,
14627 NULL,
14628 NULL,
14629 NULL,
14630 NULL,
14631 NULL,
14632 "ftosizd",
14633 "ftouizd"
14634 };
14635
14636 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14637 do_vfp_nsyn_opcode (enc[flavour]);
14638 }
14639
14640 static void
14641 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14642 {
14643 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14644 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14645 int flavour = neon_cvt_flavour (rs);
14646
14647 /* PR11109: Handle round-to-zero for VCVT conversions. */
14648 if (round_to_zero
14649 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14650 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14651 && (rs == NS_FD || rs == NS_FF))
14652 {
14653 do_vfp_nsyn_cvtz ();
14654 return;
14655 }
14656
14657 /* VFP rather than Neon conversions. */
14658 if (flavour >= 6)
14659 {
14660 do_vfp_nsyn_cvt (rs, flavour);
14661 return;
14662 }
14663
14664 switch (rs)
14665 {
14666 case NS_DDI:
14667 case NS_QQI:
14668 {
14669 unsigned immbits;
14670 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14671
14672 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14673 return;
14674
14675 /* Fixed-point conversion with #0 immediate is encoded as an
14676 integer conversion. */
14677 if (inst.operands[2].present && inst.operands[2].imm == 0)
14678 goto int_encode;
14679 immbits = 32 - inst.operands[2].imm;
14680 NEON_ENCODE (IMMED, inst);
14681 if (flavour != -1)
14682 inst.instruction |= enctab[flavour];
14683 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14684 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14685 inst.instruction |= LOW4 (inst.operands[1].reg);
14686 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14687 inst.instruction |= neon_quad (rs) << 6;
14688 inst.instruction |= 1 << 21;
14689 inst.instruction |= immbits << 16;
14690
14691 neon_dp_fixup (&inst);
14692 }
14693 break;
14694
14695 case NS_DD:
14696 case NS_QQ:
14697 int_encode:
14698 {
14699 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14700
14701 NEON_ENCODE (INTEGER, inst);
14702
14703 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14704 return;
14705
14706 if (flavour != -1)
14707 inst.instruction |= enctab[flavour];
14708
14709 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14710 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14711 inst.instruction |= LOW4 (inst.operands[1].reg);
14712 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14713 inst.instruction |= neon_quad (rs) << 6;
14714 inst.instruction |= 2 << 18;
14715
14716 neon_dp_fixup (&inst);
14717 }
14718 break;
14719
14720 /* Half-precision conversions for Advanced SIMD -- neon. */
14721 case NS_QD:
14722 case NS_DQ:
14723
14724 if ((rs == NS_DQ)
14725 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14726 {
14727 as_bad (_("operand size must match register width"));
14728 break;
14729 }
14730
14731 if ((rs == NS_QD)
14732 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14733 {
14734 as_bad (_("operand size must match register width"));
14735 break;
14736 }
14737
14738 if (rs == NS_DQ)
14739 inst.instruction = 0x3b60600;
14740 else
14741 inst.instruction = 0x3b60700;
14742
14743 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14744 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14745 inst.instruction |= LOW4 (inst.operands[1].reg);
14746 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14747 neon_dp_fixup (&inst);
14748 break;
14749
14750 default:
14751 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14752 do_vfp_nsyn_cvt (rs, flavour);
14753 }
14754 }
14755
14756 static void
14757 do_neon_cvtr (void)
14758 {
14759 do_neon_cvt_1 (FALSE);
14760 }
14761
14762 static void
14763 do_neon_cvt (void)
14764 {
14765 do_neon_cvt_1 (TRUE);
14766 }
14767
14768 static void
14769 do_neon_cvtb (void)
14770 {
14771 inst.instruction = 0xeb20a40;
14772
14773 /* The sizes are attached to the mnemonic. */
14774 if (inst.vectype.el[0].type != NT_invtype
14775 && inst.vectype.el[0].size == 16)
14776 inst.instruction |= 0x00010000;
14777
14778 /* Programmer's syntax: the sizes are attached to the operands. */
14779 else if (inst.operands[0].vectype.type != NT_invtype
14780 && inst.operands[0].vectype.size == 16)
14781 inst.instruction |= 0x00010000;
14782
14783 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14784 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14785 do_vfp_cond_or_thumb ();
14786 }
14787
14788
14789 static void
14790 do_neon_cvtt (void)
14791 {
14792 do_neon_cvtb ();
14793 inst.instruction |= 0x80;
14794 }
14795
14796 static void
14797 neon_move_immediate (void)
14798 {
14799 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14800 struct neon_type_el et = neon_check_type (2, rs,
14801 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14802 unsigned immlo, immhi = 0, immbits;
14803 int op, cmode, float_p;
14804
14805 constraint (et.type == NT_invtype,
14806 _("operand size must be specified for immediate VMOV"));
14807
14808 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14809 op = (inst.instruction & (1 << 5)) != 0;
14810
14811 immlo = inst.operands[1].imm;
14812 if (inst.operands[1].regisimm)
14813 immhi = inst.operands[1].reg;
14814
14815 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14816 _("immediate has bits set outside the operand size"));
14817
14818 float_p = inst.operands[1].immisfloat;
14819
14820 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14821 et.size, et.type)) == FAIL)
14822 {
14823 /* Invert relevant bits only. */
14824 neon_invert_size (&immlo, &immhi, et.size);
14825 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14826 with one or the other; those cases are caught by
14827 neon_cmode_for_move_imm. */
14828 op = !op;
14829 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14830 &op, et.size, et.type)) == FAIL)
14831 {
14832 first_error (_("immediate out of range"));
14833 return;
14834 }
14835 }
14836
14837 inst.instruction &= ~(1 << 5);
14838 inst.instruction |= op << 5;
14839
14840 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14841 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14842 inst.instruction |= neon_quad (rs) << 6;
14843 inst.instruction |= cmode << 8;
14844
14845 neon_write_immbits (immbits);
14846 }
14847
14848 static void
14849 do_neon_mvn (void)
14850 {
14851 if (inst.operands[1].isreg)
14852 {
14853 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14854
14855 NEON_ENCODE (INTEGER, inst);
14856 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14857 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14858 inst.instruction |= LOW4 (inst.operands[1].reg);
14859 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14860 inst.instruction |= neon_quad (rs) << 6;
14861 }
14862 else
14863 {
14864 NEON_ENCODE (IMMED, inst);
14865 neon_move_immediate ();
14866 }
14867
14868 neon_dp_fixup (&inst);
14869 }
14870
14871 /* Encode instructions of form:
14872
14873 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14874 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14875
14876 static void
14877 neon_mixed_length (struct neon_type_el et, unsigned size)
14878 {
14879 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14880 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14881 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14882 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14883 inst.instruction |= LOW4 (inst.operands[2].reg);
14884 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14885 inst.instruction |= (et.type == NT_unsigned) << 24;
14886 inst.instruction |= neon_logbits (size) << 20;
14887
14888 neon_dp_fixup (&inst);
14889 }
14890
14891 static void
14892 do_neon_dyadic_long (void)
14893 {
14894 /* FIXME: Type checking for lengthening op. */
14895 struct neon_type_el et = neon_check_type (3, NS_QDD,
14896 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14897 neon_mixed_length (et, et.size);
14898 }
14899
14900 static void
14901 do_neon_abal (void)
14902 {
14903 struct neon_type_el et = neon_check_type (3, NS_QDD,
14904 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14905 neon_mixed_length (et, et.size);
14906 }
14907
14908 static void
14909 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14910 {
14911 if (inst.operands[2].isscalar)
14912 {
14913 struct neon_type_el et = neon_check_type (3, NS_QDS,
14914 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14915 NEON_ENCODE (SCALAR, inst);
14916 neon_mul_mac (et, et.type == NT_unsigned);
14917 }
14918 else
14919 {
14920 struct neon_type_el et = neon_check_type (3, NS_QDD,
14921 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14922 NEON_ENCODE (INTEGER, inst);
14923 neon_mixed_length (et, et.size);
14924 }
14925 }
14926
14927 static void
14928 do_neon_mac_maybe_scalar_long (void)
14929 {
14930 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14931 }
14932
14933 static void
14934 do_neon_dyadic_wide (void)
14935 {
14936 struct neon_type_el et = neon_check_type (3, NS_QQD,
14937 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14938 neon_mixed_length (et, et.size);
14939 }
14940
14941 static void
14942 do_neon_dyadic_narrow (void)
14943 {
14944 struct neon_type_el et = neon_check_type (3, NS_QDD,
14945 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14946 /* Operand sign is unimportant, and the U bit is part of the opcode,
14947 so force the operand type to integer. */
14948 et.type = NT_integer;
14949 neon_mixed_length (et, et.size / 2);
14950 }
14951
14952 static void
14953 do_neon_mul_sat_scalar_long (void)
14954 {
14955 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14956 }
14957
14958 static void
14959 do_neon_vmull (void)
14960 {
14961 if (inst.operands[2].isscalar)
14962 do_neon_mac_maybe_scalar_long ();
14963 else
14964 {
14965 struct neon_type_el et = neon_check_type (3, NS_QDD,
14966 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14967 if (et.type == NT_poly)
14968 NEON_ENCODE (POLY, inst);
14969 else
14970 NEON_ENCODE (INTEGER, inst);
14971 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14972 zero. Should be OK as-is. */
14973 neon_mixed_length (et, et.size);
14974 }
14975 }
14976
14977 static void
14978 do_neon_ext (void)
14979 {
14980 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14981 struct neon_type_el et = neon_check_type (3, rs,
14982 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14983 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14984
14985 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14986 _("shift out of range"));
14987 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14988 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14989 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14990 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14991 inst.instruction |= LOW4 (inst.operands[2].reg);
14992 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14993 inst.instruction |= neon_quad (rs) << 6;
14994 inst.instruction |= imm << 8;
14995
14996 neon_dp_fixup (&inst);
14997 }
14998
14999 static void
15000 do_neon_rev (void)
15001 {
15002 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15003 struct neon_type_el et = neon_check_type (2, rs,
15004 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15005 unsigned op = (inst.instruction >> 7) & 3;
15006 /* N (width of reversed regions) is encoded as part of the bitmask. We
15007 extract it here to check the elements to be reversed are smaller.
15008 Otherwise we'd get a reserved instruction. */
15009 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15010 gas_assert (elsize != 0);
15011 constraint (et.size >= elsize,
15012 _("elements must be smaller than reversal region"));
15013 neon_two_same (neon_quad (rs), 1, et.size);
15014 }
15015
15016 static void
15017 do_neon_dup (void)
15018 {
15019 if (inst.operands[1].isscalar)
15020 {
15021 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15022 struct neon_type_el et = neon_check_type (2, rs,
15023 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15024 unsigned sizebits = et.size >> 3;
15025 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15026 int logsize = neon_logbits (et.size);
15027 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15028
15029 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15030 return;
15031
15032 NEON_ENCODE (SCALAR, inst);
15033 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15034 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15035 inst.instruction |= LOW4 (dm);
15036 inst.instruction |= HI1 (dm) << 5;
15037 inst.instruction |= neon_quad (rs) << 6;
15038 inst.instruction |= x << 17;
15039 inst.instruction |= sizebits << 16;
15040
15041 neon_dp_fixup (&inst);
15042 }
15043 else
15044 {
15045 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15046 struct neon_type_el et = neon_check_type (2, rs,
15047 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15048 /* Duplicate ARM register to lanes of vector. */
15049 NEON_ENCODE (ARMREG, inst);
15050 switch (et.size)
15051 {
15052 case 8: inst.instruction |= 0x400000; break;
15053 case 16: inst.instruction |= 0x000020; break;
15054 case 32: inst.instruction |= 0x000000; break;
15055 default: break;
15056 }
15057 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15058 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15059 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15060 inst.instruction |= neon_quad (rs) << 21;
15061 /* The encoding for this instruction is identical for the ARM and Thumb
15062 variants, except for the condition field. */
15063 do_vfp_cond_or_thumb ();
15064 }
15065 }
15066
15067 /* VMOV has particularly many variations. It can be one of:
15068 0. VMOV<c><q> <Qd>, <Qm>
15069 1. VMOV<c><q> <Dd>, <Dm>
15070 (Register operations, which are VORR with Rm = Rn.)
15071 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15072 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15073 (Immediate loads.)
15074 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15075 (ARM register to scalar.)
15076 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15077 (Two ARM registers to vector.)
15078 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15079 (Scalar to ARM register.)
15080 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15081 (Vector to two ARM registers.)
15082 8. VMOV.F32 <Sd>, <Sm>
15083 9. VMOV.F64 <Dd>, <Dm>
15084 (VFP register moves.)
15085 10. VMOV.F32 <Sd>, #imm
15086 11. VMOV.F64 <Dd>, #imm
15087 (VFP float immediate load.)
15088 12. VMOV <Rd>, <Sm>
15089 (VFP single to ARM reg.)
15090 13. VMOV <Sd>, <Rm>
15091 (ARM reg to VFP single.)
15092 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15093 (Two ARM regs to two VFP singles.)
15094 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15095 (Two VFP singles to two ARM regs.)
15096
15097 These cases can be disambiguated using neon_select_shape, except cases 1/9
15098 and 3/11 which depend on the operand type too.
15099
15100 All the encoded bits are hardcoded by this function.
15101
15102 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15103 Cases 5, 7 may be used with VFPv2 and above.
15104
15105 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15106 can specify a type where it doesn't make sense to, and is ignored). */
15107
15108 static void
15109 do_neon_mov (void)
15110 {
15111 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15112 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15113 NS_NULL);
15114 struct neon_type_el et;
15115 const char *ldconst = 0;
15116
15117 switch (rs)
15118 {
15119 case NS_DD: /* case 1/9. */
15120 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15121 /* It is not an error here if no type is given. */
15122 inst.error = NULL;
15123 if (et.type == NT_float && et.size == 64)
15124 {
15125 do_vfp_nsyn_opcode ("fcpyd");
15126 break;
15127 }
15128 /* fall through. */
15129
15130 case NS_QQ: /* case 0/1. */
15131 {
15132 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15133 return;
15134 /* The architecture manual I have doesn't explicitly state which
15135 value the U bit should have for register->register moves, but
15136 the equivalent VORR instruction has U = 0, so do that. */
15137 inst.instruction = 0x0200110;
15138 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15139 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15140 inst.instruction |= LOW4 (inst.operands[1].reg);
15141 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15142 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15143 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15144 inst.instruction |= neon_quad (rs) << 6;
15145
15146 neon_dp_fixup (&inst);
15147 }
15148 break;
15149
15150 case NS_DI: /* case 3/11. */
15151 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15152 inst.error = NULL;
15153 if (et.type == NT_float && et.size == 64)
15154 {
15155 /* case 11 (fconstd). */
15156 ldconst = "fconstd";
15157 goto encode_fconstd;
15158 }
15159 /* fall through. */
15160
15161 case NS_QI: /* case 2/3. */
15162 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15163 return;
15164 inst.instruction = 0x0800010;
15165 neon_move_immediate ();
15166 neon_dp_fixup (&inst);
15167 break;
15168
15169 case NS_SR: /* case 4. */
15170 {
15171 unsigned bcdebits = 0;
15172 int logsize;
15173 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15174 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15175
15176 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15177 logsize = neon_logbits (et.size);
15178
15179 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15180 _(BAD_FPU));
15181 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15182 && et.size != 32, _(BAD_FPU));
15183 constraint (et.type == NT_invtype, _("bad type for scalar"));
15184 constraint (x >= 64 / et.size, _("scalar index out of range"));
15185
15186 switch (et.size)
15187 {
15188 case 8: bcdebits = 0x8; break;
15189 case 16: bcdebits = 0x1; break;
15190 case 32: bcdebits = 0x0; break;
15191 default: ;
15192 }
15193
15194 bcdebits |= x << logsize;
15195
15196 inst.instruction = 0xe000b10;
15197 do_vfp_cond_or_thumb ();
15198 inst.instruction |= LOW4 (dn) << 16;
15199 inst.instruction |= HI1 (dn) << 7;
15200 inst.instruction |= inst.operands[1].reg << 12;
15201 inst.instruction |= (bcdebits & 3) << 5;
15202 inst.instruction |= (bcdebits >> 2) << 21;
15203 }
15204 break;
15205
15206 case NS_DRR: /* case 5 (fmdrr). */
15207 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15208 _(BAD_FPU));
15209
15210 inst.instruction = 0xc400b10;
15211 do_vfp_cond_or_thumb ();
15212 inst.instruction |= LOW4 (inst.operands[0].reg);
15213 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15214 inst.instruction |= inst.operands[1].reg << 12;
15215 inst.instruction |= inst.operands[2].reg << 16;
15216 break;
15217
15218 case NS_RS: /* case 6. */
15219 {
15220 unsigned logsize;
15221 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15222 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15223 unsigned abcdebits = 0;
15224
15225 et = neon_check_type (2, NS_NULL,
15226 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15227 logsize = neon_logbits (et.size);
15228
15229 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15230 _(BAD_FPU));
15231 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15232 && et.size != 32, _(BAD_FPU));
15233 constraint (et.type == NT_invtype, _("bad type for scalar"));
15234 constraint (x >= 64 / et.size, _("scalar index out of range"));
15235
15236 switch (et.size)
15237 {
15238 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15239 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15240 case 32: abcdebits = 0x00; break;
15241 default: ;
15242 }
15243
15244 abcdebits |= x << logsize;
15245 inst.instruction = 0xe100b10;
15246 do_vfp_cond_or_thumb ();
15247 inst.instruction |= LOW4 (dn) << 16;
15248 inst.instruction |= HI1 (dn) << 7;
15249 inst.instruction |= inst.operands[0].reg << 12;
15250 inst.instruction |= (abcdebits & 3) << 5;
15251 inst.instruction |= (abcdebits >> 2) << 21;
15252 }
15253 break;
15254
15255 case NS_RRD: /* case 7 (fmrrd). */
15256 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15257 _(BAD_FPU));
15258
15259 inst.instruction = 0xc500b10;
15260 do_vfp_cond_or_thumb ();
15261 inst.instruction |= inst.operands[0].reg << 12;
15262 inst.instruction |= inst.operands[1].reg << 16;
15263 inst.instruction |= LOW4 (inst.operands[2].reg);
15264 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15265 break;
15266
15267 case NS_FF: /* case 8 (fcpys). */
15268 do_vfp_nsyn_opcode ("fcpys");
15269 break;
15270
15271 case NS_FI: /* case 10 (fconsts). */
15272 ldconst = "fconsts";
15273 encode_fconstd:
15274 if (is_quarter_float (inst.operands[1].imm))
15275 {
15276 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15277 do_vfp_nsyn_opcode (ldconst);
15278 }
15279 else
15280 first_error (_("immediate out of range"));
15281 break;
15282
15283 case NS_RF: /* case 12 (fmrs). */
15284 do_vfp_nsyn_opcode ("fmrs");
15285 break;
15286
15287 case NS_FR: /* case 13 (fmsr). */
15288 do_vfp_nsyn_opcode ("fmsr");
15289 break;
15290
15291 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15292 (one of which is a list), but we have parsed four. Do some fiddling to
15293 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15294 expect. */
15295 case NS_RRFF: /* case 14 (fmrrs). */
15296 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15297 _("VFP registers must be adjacent"));
15298 inst.operands[2].imm = 2;
15299 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15300 do_vfp_nsyn_opcode ("fmrrs");
15301 break;
15302
15303 case NS_FFRR: /* case 15 (fmsrr). */
15304 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15305 _("VFP registers must be adjacent"));
15306 inst.operands[1] = inst.operands[2];
15307 inst.operands[2] = inst.operands[3];
15308 inst.operands[0].imm = 2;
15309 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15310 do_vfp_nsyn_opcode ("fmsrr");
15311 break;
15312
15313 default:
15314 abort ();
15315 }
15316 }
15317
15318 static void
15319 do_neon_rshift_round_imm (void)
15320 {
15321 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15322 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15323 int imm = inst.operands[2].imm;
15324
15325 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15326 if (imm == 0)
15327 {
15328 inst.operands[2].present = 0;
15329 do_neon_mov ();
15330 return;
15331 }
15332
15333 constraint (imm < 1 || (unsigned)imm > et.size,
15334 _("immediate out of range for shift"));
15335 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15336 et.size - imm);
15337 }
15338
15339 static void
15340 do_neon_movl (void)
15341 {
15342 struct neon_type_el et = neon_check_type (2, NS_QD,
15343 N_EQK | N_DBL, N_SU_32 | N_KEY);
15344 unsigned sizebits = et.size >> 3;
15345 inst.instruction |= sizebits << 19;
15346 neon_two_same (0, et.type == NT_unsigned, -1);
15347 }
15348
15349 static void
15350 do_neon_trn (void)
15351 {
15352 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15353 struct neon_type_el et = neon_check_type (2, rs,
15354 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15355 NEON_ENCODE (INTEGER, inst);
15356 neon_two_same (neon_quad (rs), 1, et.size);
15357 }
15358
15359 static void
15360 do_neon_zip_uzp (void)
15361 {
15362 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15363 struct neon_type_el et = neon_check_type (2, rs,
15364 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15365 if (rs == NS_DD && et.size == 32)
15366 {
15367 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15368 inst.instruction = N_MNEM_vtrn;
15369 do_neon_trn ();
15370 return;
15371 }
15372 neon_two_same (neon_quad (rs), 1, et.size);
15373 }
15374
15375 static void
15376 do_neon_sat_abs_neg (void)
15377 {
15378 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15379 struct neon_type_el et = neon_check_type (2, rs,
15380 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15381 neon_two_same (neon_quad (rs), 1, et.size);
15382 }
15383
15384 static void
15385 do_neon_pair_long (void)
15386 {
15387 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15388 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15389 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15390 inst.instruction |= (et.type == NT_unsigned) << 7;
15391 neon_two_same (neon_quad (rs), 1, et.size);
15392 }
15393
15394 static void
15395 do_neon_recip_est (void)
15396 {
15397 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15398 struct neon_type_el et = neon_check_type (2, rs,
15399 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15400 inst.instruction |= (et.type == NT_float) << 8;
15401 neon_two_same (neon_quad (rs), 1, et.size);
15402 }
15403
15404 static void
15405 do_neon_cls (void)
15406 {
15407 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15408 struct neon_type_el et = neon_check_type (2, rs,
15409 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15410 neon_two_same (neon_quad (rs), 1, et.size);
15411 }
15412
15413 static void
15414 do_neon_clz (void)
15415 {
15416 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15417 struct neon_type_el et = neon_check_type (2, rs,
15418 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15419 neon_two_same (neon_quad (rs), 1, et.size);
15420 }
15421
15422 static void
15423 do_neon_cnt (void)
15424 {
15425 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15426 struct neon_type_el et = neon_check_type (2, rs,
15427 N_EQK | N_INT, N_8 | N_KEY);
15428 neon_two_same (neon_quad (rs), 1, et.size);
15429 }
15430
15431 static void
15432 do_neon_swp (void)
15433 {
15434 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15435 neon_two_same (neon_quad (rs), 1, -1);
15436 }
15437
15438 static void
15439 do_neon_tbl_tbx (void)
15440 {
15441 unsigned listlenbits;
15442 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15443
15444 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15445 {
15446 first_error (_("bad list length for table lookup"));
15447 return;
15448 }
15449
15450 listlenbits = inst.operands[1].imm - 1;
15451 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15452 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15453 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15454 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15455 inst.instruction |= LOW4 (inst.operands[2].reg);
15456 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15457 inst.instruction |= listlenbits << 8;
15458
15459 neon_dp_fixup (&inst);
15460 }
15461
15462 static void
15463 do_neon_ldm_stm (void)
15464 {
15465 /* P, U and L bits are part of bitmask. */
15466 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15467 unsigned offsetbits = inst.operands[1].imm * 2;
15468
15469 if (inst.operands[1].issingle)
15470 {
15471 do_vfp_nsyn_ldm_stm (is_dbmode);
15472 return;
15473 }
15474
15475 constraint (is_dbmode && !inst.operands[0].writeback,
15476 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15477
15478 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15479 _("register list must contain at least 1 and at most 16 "
15480 "registers"));
15481
15482 inst.instruction |= inst.operands[0].reg << 16;
15483 inst.instruction |= inst.operands[0].writeback << 21;
15484 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15485 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15486
15487 inst.instruction |= offsetbits;
15488
15489 do_vfp_cond_or_thumb ();
15490 }
15491
15492 static void
15493 do_neon_ldr_str (void)
15494 {
15495 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15496
15497 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15498 And is UNPREDICTABLE in thumb mode. */
15499 if (!is_ldr
15500 && inst.operands[1].reg == REG_PC
15501 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15502 {
15503 if (!thumb_mode && warn_on_deprecated)
15504 as_warn (_("Use of PC here is deprecated"));
15505 else
15506 inst.error = _("Use of PC here is UNPREDICTABLE");
15507 }
15508
15509 if (inst.operands[0].issingle)
15510 {
15511 if (is_ldr)
15512 do_vfp_nsyn_opcode ("flds");
15513 else
15514 do_vfp_nsyn_opcode ("fsts");
15515 }
15516 else
15517 {
15518 if (is_ldr)
15519 do_vfp_nsyn_opcode ("fldd");
15520 else
15521 do_vfp_nsyn_opcode ("fstd");
15522 }
15523 }
15524
15525 /* "interleave" version also handles non-interleaving register VLD1/VST1
15526 instructions. */
15527
15528 static void
15529 do_neon_ld_st_interleave (void)
15530 {
15531 struct neon_type_el et = neon_check_type (1, NS_NULL,
15532 N_8 | N_16 | N_32 | N_64);
15533 unsigned alignbits = 0;
15534 unsigned idx;
15535 /* The bits in this table go:
15536 0: register stride of one (0) or two (1)
15537 1,2: register list length, minus one (1, 2, 3, 4).
15538 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15539 We use -1 for invalid entries. */
15540 const int typetable[] =
15541 {
15542 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15543 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15544 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15545 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15546 };
15547 int typebits;
15548
15549 if (et.type == NT_invtype)
15550 return;
15551
15552 if (inst.operands[1].immisalign)
15553 switch (inst.operands[1].imm >> 8)
15554 {
15555 case 64: alignbits = 1; break;
15556 case 128:
15557 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15558 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15559 goto bad_alignment;
15560 alignbits = 2;
15561 break;
15562 case 256:
15563 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15564 goto bad_alignment;
15565 alignbits = 3;
15566 break;
15567 default:
15568 bad_alignment:
15569 first_error (_("bad alignment"));
15570 return;
15571 }
15572
15573 inst.instruction |= alignbits << 4;
15574 inst.instruction |= neon_logbits (et.size) << 6;
15575
15576 /* Bits [4:6] of the immediate in a list specifier encode register stride
15577 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15578 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15579 up the right value for "type" in a table based on this value and the given
15580 list style, then stick it back. */
15581 idx = ((inst.operands[0].imm >> 4) & 7)
15582 | (((inst.instruction >> 8) & 3) << 3);
15583
15584 typebits = typetable[idx];
15585
15586 constraint (typebits == -1, _("bad list type for instruction"));
15587
15588 inst.instruction &= ~0xf00;
15589 inst.instruction |= typebits << 8;
15590 }
15591
15592 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15593 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15594 otherwise. The variable arguments are a list of pairs of legal (size, align)
15595 values, terminated with -1. */
15596
15597 static int
15598 neon_alignment_bit (int size, int align, int *do_align, ...)
15599 {
15600 va_list ap;
15601 int result = FAIL, thissize, thisalign;
15602
15603 if (!inst.operands[1].immisalign)
15604 {
15605 *do_align = 0;
15606 return SUCCESS;
15607 }
15608
15609 va_start (ap, do_align);
15610
15611 do
15612 {
15613 thissize = va_arg (ap, int);
15614 if (thissize == -1)
15615 break;
15616 thisalign = va_arg (ap, int);
15617
15618 if (size == thissize && align == thisalign)
15619 result = SUCCESS;
15620 }
15621 while (result != SUCCESS);
15622
15623 va_end (ap);
15624
15625 if (result == SUCCESS)
15626 *do_align = 1;
15627 else
15628 first_error (_("unsupported alignment for instruction"));
15629
15630 return result;
15631 }
15632
15633 static void
15634 do_neon_ld_st_lane (void)
15635 {
15636 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15637 int align_good, do_align = 0;
15638 int logsize = neon_logbits (et.size);
15639 int align = inst.operands[1].imm >> 8;
15640 int n = (inst.instruction >> 8) & 3;
15641 int max_el = 64 / et.size;
15642
15643 if (et.type == NT_invtype)
15644 return;
15645
15646 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15647 _("bad list length"));
15648 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15649 _("scalar index out of range"));
15650 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15651 && et.size == 8,
15652 _("stride of 2 unavailable when element size is 8"));
15653
15654 switch (n)
15655 {
15656 case 0: /* VLD1 / VST1. */
15657 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15658 32, 32, -1);
15659 if (align_good == FAIL)
15660 return;
15661 if (do_align)
15662 {
15663 unsigned alignbits = 0;
15664 switch (et.size)
15665 {
15666 case 16: alignbits = 0x1; break;
15667 case 32: alignbits = 0x3; break;
15668 default: ;
15669 }
15670 inst.instruction |= alignbits << 4;
15671 }
15672 break;
15673
15674 case 1: /* VLD2 / VST2. */
15675 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15676 32, 64, -1);
15677 if (align_good == FAIL)
15678 return;
15679 if (do_align)
15680 inst.instruction |= 1 << 4;
15681 break;
15682
15683 case 2: /* VLD3 / VST3. */
15684 constraint (inst.operands[1].immisalign,
15685 _("can't use alignment with this instruction"));
15686 break;
15687
15688 case 3: /* VLD4 / VST4. */
15689 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15690 16, 64, 32, 64, 32, 128, -1);
15691 if (align_good == FAIL)
15692 return;
15693 if (do_align)
15694 {
15695 unsigned alignbits = 0;
15696 switch (et.size)
15697 {
15698 case 8: alignbits = 0x1; break;
15699 case 16: alignbits = 0x1; break;
15700 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15701 default: ;
15702 }
15703 inst.instruction |= alignbits << 4;
15704 }
15705 break;
15706
15707 default: ;
15708 }
15709
15710 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15711 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15712 inst.instruction |= 1 << (4 + logsize);
15713
15714 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15715 inst.instruction |= logsize << 10;
15716 }
15717
15718 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15719
15720 static void
15721 do_neon_ld_dup (void)
15722 {
15723 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15724 int align_good, do_align = 0;
15725
15726 if (et.type == NT_invtype)
15727 return;
15728
15729 switch ((inst.instruction >> 8) & 3)
15730 {
15731 case 0: /* VLD1. */
15732 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15733 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15734 &do_align, 16, 16, 32, 32, -1);
15735 if (align_good == FAIL)
15736 return;
15737 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15738 {
15739 case 1: break;
15740 case 2: inst.instruction |= 1 << 5; break;
15741 default: first_error (_("bad list length")); return;
15742 }
15743 inst.instruction |= neon_logbits (et.size) << 6;
15744 break;
15745
15746 case 1: /* VLD2. */
15747 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15748 &do_align, 8, 16, 16, 32, 32, 64, -1);
15749 if (align_good == FAIL)
15750 return;
15751 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15752 _("bad list length"));
15753 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15754 inst.instruction |= 1 << 5;
15755 inst.instruction |= neon_logbits (et.size) << 6;
15756 break;
15757
15758 case 2: /* VLD3. */
15759 constraint (inst.operands[1].immisalign,
15760 _("can't use alignment with this instruction"));
15761 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15762 _("bad list length"));
15763 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15764 inst.instruction |= 1 << 5;
15765 inst.instruction |= neon_logbits (et.size) << 6;
15766 break;
15767
15768 case 3: /* VLD4. */
15769 {
15770 int align = inst.operands[1].imm >> 8;
15771 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15772 16, 64, 32, 64, 32, 128, -1);
15773 if (align_good == FAIL)
15774 return;
15775 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15776 _("bad list length"));
15777 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15778 inst.instruction |= 1 << 5;
15779 if (et.size == 32 && align == 128)
15780 inst.instruction |= 0x3 << 6;
15781 else
15782 inst.instruction |= neon_logbits (et.size) << 6;
15783 }
15784 break;
15785
15786 default: ;
15787 }
15788
15789 inst.instruction |= do_align << 4;
15790 }
15791
15792 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15793 apart from bits [11:4]. */
15794
15795 static void
15796 do_neon_ldx_stx (void)
15797 {
15798 if (inst.operands[1].isreg)
15799 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15800
15801 switch (NEON_LANE (inst.operands[0].imm))
15802 {
15803 case NEON_INTERLEAVE_LANES:
15804 NEON_ENCODE (INTERLV, inst);
15805 do_neon_ld_st_interleave ();
15806 break;
15807
15808 case NEON_ALL_LANES:
15809 NEON_ENCODE (DUP, inst);
15810 do_neon_ld_dup ();
15811 break;
15812
15813 default:
15814 NEON_ENCODE (LANE, inst);
15815 do_neon_ld_st_lane ();
15816 }
15817
15818 /* L bit comes from bit mask. */
15819 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15820 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15821 inst.instruction |= inst.operands[1].reg << 16;
15822
15823 if (inst.operands[1].postind)
15824 {
15825 int postreg = inst.operands[1].imm & 0xf;
15826 constraint (!inst.operands[1].immisreg,
15827 _("post-index must be a register"));
15828 constraint (postreg == 0xd || postreg == 0xf,
15829 _("bad register for post-index"));
15830 inst.instruction |= postreg;
15831 }
15832 else if (inst.operands[1].writeback)
15833 {
15834 inst.instruction |= 0xd;
15835 }
15836 else
15837 inst.instruction |= 0xf;
15838
15839 if (thumb_mode)
15840 inst.instruction |= 0xf9000000;
15841 else
15842 inst.instruction |= 0xf4000000;
15843 }
15844 \f
15845 /* Overall per-instruction processing. */
15846
15847 /* We need to be able to fix up arbitrary expressions in some statements.
15848 This is so that we can handle symbols that are an arbitrary distance from
15849 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15850 which returns part of an address in a form which will be valid for
15851 a data instruction. We do this by pushing the expression into a symbol
15852 in the expr_section, and creating a fix for that. */
15853
15854 static void
15855 fix_new_arm (fragS * frag,
15856 int where,
15857 short int size,
15858 expressionS * exp,
15859 int pc_rel,
15860 int reloc)
15861 {
15862 fixS * new_fix;
15863
15864 switch (exp->X_op)
15865 {
15866 case O_constant:
15867 if (pc_rel)
15868 {
15869 /* Create an absolute valued symbol, so we have something to
15870 refer to in the object file. Unfortunately for us, gas's
15871 generic expression parsing will already have folded out
15872 any use of .set foo/.type foo %function that may have
15873 been used to set type information of the target location,
15874 that's being specified symbolically. We have to presume
15875 the user knows what they are doing. */
15876 char name[16 + 8];
15877 symbolS *symbol;
15878
15879 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15880
15881 symbol = symbol_find_or_make (name);
15882 S_SET_SEGMENT (symbol, absolute_section);
15883 symbol_set_frag (symbol, &zero_address_frag);
15884 S_SET_VALUE (symbol, exp->X_add_number);
15885 exp->X_op = O_symbol;
15886 exp->X_add_symbol = symbol;
15887 exp->X_add_number = 0;
15888 }
15889 /* FALLTHROUGH */
15890 case O_symbol:
15891 case O_add:
15892 case O_subtract:
15893 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15894 (enum bfd_reloc_code_real) reloc);
15895 break;
15896
15897 default:
15898 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15899 pc_rel, (enum bfd_reloc_code_real) reloc);
15900 break;
15901 }
15902
15903 /* Mark whether the fix is to a THUMB instruction, or an ARM
15904 instruction. */
15905 new_fix->tc_fix_data = thumb_mode;
15906 }
15907
15908 /* Create a frg for an instruction requiring relaxation. */
15909 static void
15910 output_relax_insn (void)
15911 {
15912 char * to;
15913 symbolS *sym;
15914 int offset;
15915
15916 /* The size of the instruction is unknown, so tie the debug info to the
15917 start of the instruction. */
15918 dwarf2_emit_insn (0);
15919
15920 switch (inst.reloc.exp.X_op)
15921 {
15922 case O_symbol:
15923 sym = inst.reloc.exp.X_add_symbol;
15924 offset = inst.reloc.exp.X_add_number;
15925 break;
15926 case O_constant:
15927 sym = NULL;
15928 offset = inst.reloc.exp.X_add_number;
15929 break;
15930 default:
15931 sym = make_expr_symbol (&inst.reloc.exp);
15932 offset = 0;
15933 break;
15934 }
15935 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15936 inst.relax, sym, offset, NULL/*offset, opcode*/);
15937 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15938 }
15939
15940 /* Write a 32-bit thumb instruction to buf. */
15941 static void
15942 put_thumb32_insn (char * buf, unsigned long insn)
15943 {
15944 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15945 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15946 }
15947
15948 static void
15949 output_inst (const char * str)
15950 {
15951 char * to = NULL;
15952
15953 if (inst.error)
15954 {
15955 as_bad ("%s -- `%s'", inst.error, str);
15956 return;
15957 }
15958 if (inst.relax)
15959 {
15960 output_relax_insn ();
15961 return;
15962 }
15963 if (inst.size == 0)
15964 return;
15965
15966 to = frag_more (inst.size);
15967 /* PR 9814: Record the thumb mode into the current frag so that we know
15968 what type of NOP padding to use, if necessary. We override any previous
15969 setting so that if the mode has changed then the NOPS that we use will
15970 match the encoding of the last instruction in the frag. */
15971 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15972
15973 if (thumb_mode && (inst.size > THUMB_SIZE))
15974 {
15975 gas_assert (inst.size == (2 * THUMB_SIZE));
15976 put_thumb32_insn (to, inst.instruction);
15977 }
15978 else if (inst.size > INSN_SIZE)
15979 {
15980 gas_assert (inst.size == (2 * INSN_SIZE));
15981 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15982 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15983 }
15984 else
15985 md_number_to_chars (to, inst.instruction, inst.size);
15986
15987 if (inst.reloc.type != BFD_RELOC_UNUSED)
15988 fix_new_arm (frag_now, to - frag_now->fr_literal,
15989 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15990 inst.reloc.type);
15991
15992 dwarf2_emit_insn (inst.size);
15993 }
15994
15995 static char *
15996 output_it_inst (int cond, int mask, char * to)
15997 {
15998 unsigned long instruction = 0xbf00;
15999
16000 mask &= 0xf;
16001 instruction |= mask;
16002 instruction |= cond << 4;
16003
16004 if (to == NULL)
16005 {
16006 to = frag_more (2);
16007 #ifdef OBJ_ELF
16008 dwarf2_emit_insn (2);
16009 #endif
16010 }
16011
16012 md_number_to_chars (to, instruction, 2);
16013
16014 return to;
16015 }
16016
16017 /* Tag values used in struct asm_opcode's tag field. */
16018 enum opcode_tag
16019 {
16020 OT_unconditional, /* Instruction cannot be conditionalized.
16021 The ARM condition field is still 0xE. */
16022 OT_unconditionalF, /* Instruction cannot be conditionalized
16023 and carries 0xF in its ARM condition field. */
16024 OT_csuffix, /* Instruction takes a conditional suffix. */
16025 OT_csuffixF, /* Some forms of the instruction take a conditional
16026 suffix, others place 0xF where the condition field
16027 would be. */
16028 OT_cinfix3, /* Instruction takes a conditional infix,
16029 beginning at character index 3. (In
16030 unified mode, it becomes a suffix.) */
16031 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16032 tsts, cmps, cmns, and teqs. */
16033 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16034 character index 3, even in unified mode. Used for
16035 legacy instructions where suffix and infix forms
16036 may be ambiguous. */
16037 OT_csuf_or_in3, /* Instruction takes either a conditional
16038 suffix or an infix at character index 3. */
16039 OT_odd_infix_unc, /* This is the unconditional variant of an
16040 instruction that takes a conditional infix
16041 at an unusual position. In unified mode,
16042 this variant will accept a suffix. */
16043 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16044 are the conditional variants of instructions that
16045 take conditional infixes in unusual positions.
16046 The infix appears at character index
16047 (tag - OT_odd_infix_0). These are not accepted
16048 in unified mode. */
16049 };
16050
16051 /* Subroutine of md_assemble, responsible for looking up the primary
16052 opcode from the mnemonic the user wrote. STR points to the
16053 beginning of the mnemonic.
16054
16055 This is not simply a hash table lookup, because of conditional
16056 variants. Most instructions have conditional variants, which are
16057 expressed with a _conditional affix_ to the mnemonic. If we were
16058 to encode each conditional variant as a literal string in the opcode
16059 table, it would have approximately 20,000 entries.
16060
16061 Most mnemonics take this affix as a suffix, and in unified syntax,
16062 'most' is upgraded to 'all'. However, in the divided syntax, some
16063 instructions take the affix as an infix, notably the s-variants of
16064 the arithmetic instructions. Of those instructions, all but six
16065 have the infix appear after the third character of the mnemonic.
16066
16067 Accordingly, the algorithm for looking up primary opcodes given
16068 an identifier is:
16069
16070 1. Look up the identifier in the opcode table.
16071 If we find a match, go to step U.
16072
16073 2. Look up the last two characters of the identifier in the
16074 conditions table. If we find a match, look up the first N-2
16075 characters of the identifier in the opcode table. If we
16076 find a match, go to step CE.
16077
16078 3. Look up the fourth and fifth characters of the identifier in
16079 the conditions table. If we find a match, extract those
16080 characters from the identifier, and look up the remaining
16081 characters in the opcode table. If we find a match, go
16082 to step CM.
16083
16084 4. Fail.
16085
16086 U. Examine the tag field of the opcode structure, in case this is
16087 one of the six instructions with its conditional infix in an
16088 unusual place. If it is, the tag tells us where to find the
16089 infix; look it up in the conditions table and set inst.cond
16090 accordingly. Otherwise, this is an unconditional instruction.
16091 Again set inst.cond accordingly. Return the opcode structure.
16092
16093 CE. Examine the tag field to make sure this is an instruction that
16094 should receive a conditional suffix. If it is not, fail.
16095 Otherwise, set inst.cond from the suffix we already looked up,
16096 and return the opcode structure.
16097
16098 CM. Examine the tag field to make sure this is an instruction that
16099 should receive a conditional infix after the third character.
16100 If it is not, fail. Otherwise, undo the edits to the current
16101 line of input and proceed as for case CE. */
16102
16103 static const struct asm_opcode *
16104 opcode_lookup (char **str)
16105 {
16106 char *end, *base;
16107 char *affix;
16108 const struct asm_opcode *opcode;
16109 const struct asm_cond *cond;
16110 char save[2];
16111
16112 /* Scan up to the end of the mnemonic, which must end in white space,
16113 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16114 for (base = end = *str; *end != '\0'; end++)
16115 if (*end == ' ' || *end == '.')
16116 break;
16117
16118 if (end == base)
16119 return NULL;
16120
16121 /* Handle a possible width suffix and/or Neon type suffix. */
16122 if (end[0] == '.')
16123 {
16124 int offset = 2;
16125
16126 /* The .w and .n suffixes are only valid if the unified syntax is in
16127 use. */
16128 if (unified_syntax && end[1] == 'w')
16129 inst.size_req = 4;
16130 else if (unified_syntax && end[1] == 'n')
16131 inst.size_req = 2;
16132 else
16133 offset = 0;
16134
16135 inst.vectype.elems = 0;
16136
16137 *str = end + offset;
16138
16139 if (end[offset] == '.')
16140 {
16141 /* See if we have a Neon type suffix (possible in either unified or
16142 non-unified ARM syntax mode). */
16143 if (parse_neon_type (&inst.vectype, str) == FAIL)
16144 return NULL;
16145 }
16146 else if (end[offset] != '\0' && end[offset] != ' ')
16147 return NULL;
16148 }
16149 else
16150 *str = end;
16151
16152 /* Look for unaffixed or special-case affixed mnemonic. */
16153 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16154 end - base);
16155 if (opcode)
16156 {
16157 /* step U */
16158 if (opcode->tag < OT_odd_infix_0)
16159 {
16160 inst.cond = COND_ALWAYS;
16161 return opcode;
16162 }
16163
16164 if (warn_on_deprecated && unified_syntax)
16165 as_warn (_("conditional infixes are deprecated in unified syntax"));
16166 affix = base + (opcode->tag - OT_odd_infix_0);
16167 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16168 gas_assert (cond);
16169
16170 inst.cond = cond->value;
16171 return opcode;
16172 }
16173
16174 /* Cannot have a conditional suffix on a mnemonic of less than two
16175 characters. */
16176 if (end - base < 3)
16177 return NULL;
16178
16179 /* Look for suffixed mnemonic. */
16180 affix = end - 2;
16181 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16182 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16183 affix - base);
16184 if (opcode && cond)
16185 {
16186 /* step CE */
16187 switch (opcode->tag)
16188 {
16189 case OT_cinfix3_legacy:
16190 /* Ignore conditional suffixes matched on infix only mnemonics. */
16191 break;
16192
16193 case OT_cinfix3:
16194 case OT_cinfix3_deprecated:
16195 case OT_odd_infix_unc:
16196 if (!unified_syntax)
16197 return 0;
16198 /* else fall through */
16199
16200 case OT_csuffix:
16201 case OT_csuffixF:
16202 case OT_csuf_or_in3:
16203 inst.cond = cond->value;
16204 return opcode;
16205
16206 case OT_unconditional:
16207 case OT_unconditionalF:
16208 if (thumb_mode)
16209 inst.cond = cond->value;
16210 else
16211 {
16212 /* Delayed diagnostic. */
16213 inst.error = BAD_COND;
16214 inst.cond = COND_ALWAYS;
16215 }
16216 return opcode;
16217
16218 default:
16219 return NULL;
16220 }
16221 }
16222
16223 /* Cannot have a usual-position infix on a mnemonic of less than
16224 six characters (five would be a suffix). */
16225 if (end - base < 6)
16226 return NULL;
16227
16228 /* Look for infixed mnemonic in the usual position. */
16229 affix = base + 3;
16230 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16231 if (!cond)
16232 return NULL;
16233
16234 memcpy (save, affix, 2);
16235 memmove (affix, affix + 2, (end - affix) - 2);
16236 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16237 (end - base) - 2);
16238 memmove (affix + 2, affix, (end - affix) - 2);
16239 memcpy (affix, save, 2);
16240
16241 if (opcode
16242 && (opcode->tag == OT_cinfix3
16243 || opcode->tag == OT_cinfix3_deprecated
16244 || opcode->tag == OT_csuf_or_in3
16245 || opcode->tag == OT_cinfix3_legacy))
16246 {
16247 /* Step CM. */
16248 if (warn_on_deprecated && unified_syntax
16249 && (opcode->tag == OT_cinfix3
16250 || opcode->tag == OT_cinfix3_deprecated))
16251 as_warn (_("conditional infixes are deprecated in unified syntax"));
16252
16253 inst.cond = cond->value;
16254 return opcode;
16255 }
16256
16257 return NULL;
16258 }
16259
16260 /* This function generates an initial IT instruction, leaving its block
16261 virtually open for the new instructions. Eventually,
16262 the mask will be updated by now_it_add_mask () each time
16263 a new instruction needs to be included in the IT block.
16264 Finally, the block is closed with close_automatic_it_block ().
16265 The block closure can be requested either from md_assemble (),
16266 a tencode (), or due to a label hook. */
16267
16268 static void
16269 new_automatic_it_block (int cond)
16270 {
16271 now_it.state = AUTOMATIC_IT_BLOCK;
16272 now_it.mask = 0x18;
16273 now_it.cc = cond;
16274 now_it.block_length = 1;
16275 mapping_state (MAP_THUMB);
16276 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16277 now_it.warn_deprecated = FALSE;
16278 now_it.insn_cond = TRUE;
16279 }
16280
16281 /* Close an automatic IT block.
16282 See comments in new_automatic_it_block (). */
16283
16284 static void
16285 close_automatic_it_block (void)
16286 {
16287 now_it.mask = 0x10;
16288 now_it.block_length = 0;
16289 }
16290
16291 /* Update the mask of the current automatically-generated IT
16292 instruction. See comments in new_automatic_it_block (). */
16293
16294 static void
16295 now_it_add_mask (int cond)
16296 {
16297 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16298 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16299 | ((bitvalue) << (nbit)))
16300 const int resulting_bit = (cond & 1);
16301
16302 now_it.mask &= 0xf;
16303 now_it.mask = SET_BIT_VALUE (now_it.mask,
16304 resulting_bit,
16305 (5 - now_it.block_length));
16306 now_it.mask = SET_BIT_VALUE (now_it.mask,
16307 1,
16308 ((5 - now_it.block_length) - 1) );
16309 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16310
16311 #undef CLEAR_BIT
16312 #undef SET_BIT_VALUE
16313 }
16314
16315 /* The IT blocks handling machinery is accessed through the these functions:
16316 it_fsm_pre_encode () from md_assemble ()
16317 set_it_insn_type () optional, from the tencode functions
16318 set_it_insn_type_last () ditto
16319 in_it_block () ditto
16320 it_fsm_post_encode () from md_assemble ()
16321 force_automatic_it_block_close () from label habdling functions
16322
16323 Rationale:
16324 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16325 initializing the IT insn type with a generic initial value depending
16326 on the inst.condition.
16327 2) During the tencode function, two things may happen:
16328 a) The tencode function overrides the IT insn type by
16329 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16330 b) The tencode function queries the IT block state by
16331 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16332
16333 Both set_it_insn_type and in_it_block run the internal FSM state
16334 handling function (handle_it_state), because: a) setting the IT insn
16335 type may incur in an invalid state (exiting the function),
16336 and b) querying the state requires the FSM to be updated.
16337 Specifically we want to avoid creating an IT block for conditional
16338 branches, so it_fsm_pre_encode is actually a guess and we can't
16339 determine whether an IT block is required until the tencode () routine
16340 has decided what type of instruction this actually it.
16341 Because of this, if set_it_insn_type and in_it_block have to be used,
16342 set_it_insn_type has to be called first.
16343
16344 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16345 determines the insn IT type depending on the inst.cond code.
16346 When a tencode () routine encodes an instruction that can be
16347 either outside an IT block, or, in the case of being inside, has to be
16348 the last one, set_it_insn_type_last () will determine the proper
16349 IT instruction type based on the inst.cond code. Otherwise,
16350 set_it_insn_type can be called for overriding that logic or
16351 for covering other cases.
16352
16353 Calling handle_it_state () may not transition the IT block state to
16354 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16355 still queried. Instead, if the FSM determines that the state should
16356 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16357 after the tencode () function: that's what it_fsm_post_encode () does.
16358
16359 Since in_it_block () calls the state handling function to get an
16360 updated state, an error may occur (due to invalid insns combination).
16361 In that case, inst.error is set.
16362 Therefore, inst.error has to be checked after the execution of
16363 the tencode () routine.
16364
16365 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16366 any pending state change (if any) that didn't take place in
16367 handle_it_state () as explained above. */
16368
16369 static void
16370 it_fsm_pre_encode (void)
16371 {
16372 if (inst.cond != COND_ALWAYS)
16373 inst.it_insn_type = INSIDE_IT_INSN;
16374 else
16375 inst.it_insn_type = OUTSIDE_IT_INSN;
16376
16377 now_it.state_handled = 0;
16378 }
16379
16380 /* IT state FSM handling function. */
16381
16382 static int
16383 handle_it_state (void)
16384 {
16385 now_it.state_handled = 1;
16386 now_it.insn_cond = FALSE;
16387
16388 switch (now_it.state)
16389 {
16390 case OUTSIDE_IT_BLOCK:
16391 switch (inst.it_insn_type)
16392 {
16393 case OUTSIDE_IT_INSN:
16394 break;
16395
16396 case INSIDE_IT_INSN:
16397 case INSIDE_IT_LAST_INSN:
16398 if (thumb_mode == 0)
16399 {
16400 if (unified_syntax
16401 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16402 as_tsktsk (_("Warning: conditional outside an IT block"\
16403 " for Thumb."));
16404 }
16405 else
16406 {
16407 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16408 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16409 {
16410 /* Automatically generate the IT instruction. */
16411 new_automatic_it_block (inst.cond);
16412 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16413 close_automatic_it_block ();
16414 }
16415 else
16416 {
16417 inst.error = BAD_OUT_IT;
16418 return FAIL;
16419 }
16420 }
16421 break;
16422
16423 case IF_INSIDE_IT_LAST_INSN:
16424 case NEUTRAL_IT_INSN:
16425 break;
16426
16427 case IT_INSN:
16428 now_it.state = MANUAL_IT_BLOCK;
16429 now_it.block_length = 0;
16430 break;
16431 }
16432 break;
16433
16434 case AUTOMATIC_IT_BLOCK:
16435 /* Three things may happen now:
16436 a) We should increment current it block size;
16437 b) We should close current it block (closing insn or 4 insns);
16438 c) We should close current it block and start a new one (due
16439 to incompatible conditions or
16440 4 insns-length block reached). */
16441
16442 switch (inst.it_insn_type)
16443 {
16444 case OUTSIDE_IT_INSN:
16445 /* The closure of the block shall happen immediatelly,
16446 so any in_it_block () call reports the block as closed. */
16447 force_automatic_it_block_close ();
16448 break;
16449
16450 case INSIDE_IT_INSN:
16451 case INSIDE_IT_LAST_INSN:
16452 case IF_INSIDE_IT_LAST_INSN:
16453 now_it.block_length++;
16454
16455 if (now_it.block_length > 4
16456 || !now_it_compatible (inst.cond))
16457 {
16458 force_automatic_it_block_close ();
16459 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16460 new_automatic_it_block (inst.cond);
16461 }
16462 else
16463 {
16464 now_it.insn_cond = TRUE;
16465 now_it_add_mask (inst.cond);
16466 }
16467
16468 if (now_it.state == AUTOMATIC_IT_BLOCK
16469 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16470 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16471 close_automatic_it_block ();
16472 break;
16473
16474 case NEUTRAL_IT_INSN:
16475 now_it.block_length++;
16476 now_it.insn_cond = TRUE;
16477
16478 if (now_it.block_length > 4)
16479 force_automatic_it_block_close ();
16480 else
16481 now_it_add_mask (now_it.cc & 1);
16482 break;
16483
16484 case IT_INSN:
16485 close_automatic_it_block ();
16486 now_it.state = MANUAL_IT_BLOCK;
16487 break;
16488 }
16489 break;
16490
16491 case MANUAL_IT_BLOCK:
16492 {
16493 /* Check conditional suffixes. */
16494 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16495 int is_last;
16496 now_it.mask <<= 1;
16497 now_it.mask &= 0x1f;
16498 is_last = (now_it.mask == 0x10);
16499 now_it.insn_cond = TRUE;
16500
16501 switch (inst.it_insn_type)
16502 {
16503 case OUTSIDE_IT_INSN:
16504 inst.error = BAD_NOT_IT;
16505 return FAIL;
16506
16507 case INSIDE_IT_INSN:
16508 if (cond != inst.cond)
16509 {
16510 inst.error = BAD_IT_COND;
16511 return FAIL;
16512 }
16513 break;
16514
16515 case INSIDE_IT_LAST_INSN:
16516 case IF_INSIDE_IT_LAST_INSN:
16517 if (cond != inst.cond)
16518 {
16519 inst.error = BAD_IT_COND;
16520 return FAIL;
16521 }
16522 if (!is_last)
16523 {
16524 inst.error = BAD_BRANCH;
16525 return FAIL;
16526 }
16527 break;
16528
16529 case NEUTRAL_IT_INSN:
16530 /* The BKPT instruction is unconditional even in an IT block. */
16531 break;
16532
16533 case IT_INSN:
16534 inst.error = BAD_IT_IT;
16535 return FAIL;
16536 }
16537 }
16538 break;
16539 }
16540
16541 return SUCCESS;
16542 }
16543
16544 struct depr_insn_mask
16545 {
16546 unsigned long pattern;
16547 unsigned long mask;
16548 const char* description;
16549 };
16550
16551 /* List of 16-bit instruction patterns deprecated in an IT block in
16552 ARMv8. */
16553 static const struct depr_insn_mask depr_it_insns[] = {
16554 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16555 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16556 { 0xa000, 0xb800, N_("ADR") },
16557 { 0x4800, 0xf800, N_("Literal loads") },
16558 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16559 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16560 { 0, 0, NULL }
16561 };
16562
16563 static void
16564 it_fsm_post_encode (void)
16565 {
16566 int is_last;
16567
16568 if (!now_it.state_handled)
16569 handle_it_state ();
16570
16571 if (now_it.insn_cond
16572 && !now_it.warn_deprecated
16573 && warn_on_deprecated
16574 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16575 {
16576 if (inst.instruction >= 0x10000)
16577 {
16578 as_warn (_("it blocks containing wide Thumb instructions are "
16579 "deprecated in ARMv8"));
16580 now_it.warn_deprecated = TRUE;
16581 }
16582 else
16583 {
16584 const struct depr_insn_mask *p = depr_it_insns;
16585
16586 while (p->mask != 0)
16587 {
16588 if ((inst.instruction & p->mask) == p->pattern)
16589 {
16590 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16591 "of the following class are deprecated in ARMv8: "
16592 "%s"), p->description);
16593 now_it.warn_deprecated = TRUE;
16594 break;
16595 }
16596
16597 ++p;
16598 }
16599 }
16600
16601 if (now_it.block_length > 1)
16602 {
16603 as_warn (_("it blocks of more than one conditional instruction are "
16604 "deprecated in ARMv8"));
16605 now_it.warn_deprecated = TRUE;
16606 }
16607 }
16608
16609 is_last = (now_it.mask == 0x10);
16610 if (is_last)
16611 {
16612 now_it.state = OUTSIDE_IT_BLOCK;
16613 now_it.mask = 0;
16614 }
16615 }
16616
16617 static void
16618 force_automatic_it_block_close (void)
16619 {
16620 if (now_it.state == AUTOMATIC_IT_BLOCK)
16621 {
16622 close_automatic_it_block ();
16623 now_it.state = OUTSIDE_IT_BLOCK;
16624 now_it.mask = 0;
16625 }
16626 }
16627
16628 static int
16629 in_it_block (void)
16630 {
16631 if (!now_it.state_handled)
16632 handle_it_state ();
16633
16634 return now_it.state != OUTSIDE_IT_BLOCK;
16635 }
16636
16637 void
16638 md_assemble (char *str)
16639 {
16640 char *p = str;
16641 const struct asm_opcode * opcode;
16642
16643 /* Align the previous label if needed. */
16644 if (last_label_seen != NULL)
16645 {
16646 symbol_set_frag (last_label_seen, frag_now);
16647 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16648 S_SET_SEGMENT (last_label_seen, now_seg);
16649 }
16650
16651 memset (&inst, '\0', sizeof (inst));
16652 inst.reloc.type = BFD_RELOC_UNUSED;
16653
16654 opcode = opcode_lookup (&p);
16655 if (!opcode)
16656 {
16657 /* It wasn't an instruction, but it might be a register alias of
16658 the form alias .req reg, or a Neon .dn/.qn directive. */
16659 if (! create_register_alias (str, p)
16660 && ! create_neon_reg_alias (str, p))
16661 as_bad (_("bad instruction `%s'"), str);
16662
16663 return;
16664 }
16665
16666 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16667 as_warn (_("s suffix on comparison instruction is deprecated"));
16668
16669 /* The value which unconditional instructions should have in place of the
16670 condition field. */
16671 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16672
16673 if (thumb_mode)
16674 {
16675 arm_feature_set variant;
16676
16677 variant = cpu_variant;
16678 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16679 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16680 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16681 /* Check that this instruction is supported for this CPU. */
16682 if (!opcode->tvariant
16683 || (thumb_mode == 1
16684 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16685 {
16686 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16687 return;
16688 }
16689 if (inst.cond != COND_ALWAYS && !unified_syntax
16690 && opcode->tencode != do_t_branch)
16691 {
16692 as_bad (_("Thumb does not support conditional execution"));
16693 return;
16694 }
16695
16696 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16697 {
16698 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16699 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16700 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16701 {
16702 /* Two things are addressed here.
16703 1) Implicit require narrow instructions on Thumb-1.
16704 This avoids relaxation accidentally introducing Thumb-2
16705 instructions.
16706 2) Reject wide instructions in non Thumb-2 cores. */
16707 if (inst.size_req == 0)
16708 inst.size_req = 2;
16709 else if (inst.size_req == 4)
16710 {
16711 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16712 return;
16713 }
16714 }
16715 }
16716
16717 inst.instruction = opcode->tvalue;
16718
16719 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16720 {
16721 /* Prepare the it_insn_type for those encodings that don't set
16722 it. */
16723 it_fsm_pre_encode ();
16724
16725 opcode->tencode ();
16726
16727 it_fsm_post_encode ();
16728 }
16729
16730 if (!(inst.error || inst.relax))
16731 {
16732 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16733 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16734 if (inst.size_req && inst.size_req != inst.size)
16735 {
16736 as_bad (_("cannot honor width suffix -- `%s'"), str);
16737 return;
16738 }
16739 }
16740
16741 /* Something has gone badly wrong if we try to relax a fixed size
16742 instruction. */
16743 gas_assert (inst.size_req == 0 || !inst.relax);
16744
16745 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16746 *opcode->tvariant);
16747 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16748 set those bits when Thumb-2 32-bit instructions are seen. ie.
16749 anything other than bl/blx and v6-M instructions.
16750 This is overly pessimistic for relaxable instructions. */
16751 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16752 || inst.relax)
16753 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16754 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16755 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16756 arm_ext_v6t2);
16757
16758 check_neon_suffixes;
16759
16760 if (!inst.error)
16761 {
16762 mapping_state (MAP_THUMB);
16763 }
16764 }
16765 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16766 {
16767 bfd_boolean is_bx;
16768
16769 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16770 is_bx = (opcode->aencode == do_bx);
16771
16772 /* Check that this instruction is supported for this CPU. */
16773 if (!(is_bx && fix_v4bx)
16774 && !(opcode->avariant &&
16775 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16776 {
16777 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16778 return;
16779 }
16780 if (inst.size_req)
16781 {
16782 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16783 return;
16784 }
16785
16786 inst.instruction = opcode->avalue;
16787 if (opcode->tag == OT_unconditionalF)
16788 inst.instruction |= 0xF << 28;
16789 else
16790 inst.instruction |= inst.cond << 28;
16791 inst.size = INSN_SIZE;
16792 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16793 {
16794 it_fsm_pre_encode ();
16795 opcode->aencode ();
16796 it_fsm_post_encode ();
16797 }
16798 /* Arm mode bx is marked as both v4T and v5 because it's still required
16799 on a hypothetical non-thumb v5 core. */
16800 if (is_bx)
16801 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16802 else
16803 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16804 *opcode->avariant);
16805
16806 check_neon_suffixes;
16807
16808 if (!inst.error)
16809 {
16810 mapping_state (MAP_ARM);
16811 }
16812 }
16813 else
16814 {
16815 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16816 "-- `%s'"), str);
16817 return;
16818 }
16819 output_inst (str);
16820 }
16821
16822 static void
16823 check_it_blocks_finished (void)
16824 {
16825 #ifdef OBJ_ELF
16826 asection *sect;
16827
16828 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16829 if (seg_info (sect)->tc_segment_info_data.current_it.state
16830 == MANUAL_IT_BLOCK)
16831 {
16832 as_warn (_("section '%s' finished with an open IT block."),
16833 sect->name);
16834 }
16835 #else
16836 if (now_it.state == MANUAL_IT_BLOCK)
16837 as_warn (_("file finished with an open IT block."));
16838 #endif
16839 }
16840
16841 /* Various frobbings of labels and their addresses. */
16842
16843 void
16844 arm_start_line_hook (void)
16845 {
16846 last_label_seen = NULL;
16847 }
16848
16849 void
16850 arm_frob_label (symbolS * sym)
16851 {
16852 last_label_seen = sym;
16853
16854 ARM_SET_THUMB (sym, thumb_mode);
16855
16856 #if defined OBJ_COFF || defined OBJ_ELF
16857 ARM_SET_INTERWORK (sym, support_interwork);
16858 #endif
16859
16860 force_automatic_it_block_close ();
16861
16862 /* Note - do not allow local symbols (.Lxxx) to be labelled
16863 as Thumb functions. This is because these labels, whilst
16864 they exist inside Thumb code, are not the entry points for
16865 possible ARM->Thumb calls. Also, these labels can be used
16866 as part of a computed goto or switch statement. eg gcc
16867 can generate code that looks like this:
16868
16869 ldr r2, [pc, .Laaa]
16870 lsl r3, r3, #2
16871 ldr r2, [r3, r2]
16872 mov pc, r2
16873
16874 .Lbbb: .word .Lxxx
16875 .Lccc: .word .Lyyy
16876 ..etc...
16877 .Laaa: .word Lbbb
16878
16879 The first instruction loads the address of the jump table.
16880 The second instruction converts a table index into a byte offset.
16881 The third instruction gets the jump address out of the table.
16882 The fourth instruction performs the jump.
16883
16884 If the address stored at .Laaa is that of a symbol which has the
16885 Thumb_Func bit set, then the linker will arrange for this address
16886 to have the bottom bit set, which in turn would mean that the
16887 address computation performed by the third instruction would end
16888 up with the bottom bit set. Since the ARM is capable of unaligned
16889 word loads, the instruction would then load the incorrect address
16890 out of the jump table, and chaos would ensue. */
16891 if (label_is_thumb_function_name
16892 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16893 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16894 {
16895 /* When the address of a Thumb function is taken the bottom
16896 bit of that address should be set. This will allow
16897 interworking between Arm and Thumb functions to work
16898 correctly. */
16899
16900 THUMB_SET_FUNC (sym, 1);
16901
16902 label_is_thumb_function_name = FALSE;
16903 }
16904
16905 dwarf2_emit_label (sym);
16906 }
16907
16908 bfd_boolean
16909 arm_data_in_code (void)
16910 {
16911 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16912 {
16913 *input_line_pointer = '/';
16914 input_line_pointer += 5;
16915 *input_line_pointer = 0;
16916 return TRUE;
16917 }
16918
16919 return FALSE;
16920 }
16921
16922 char *
16923 arm_canonicalize_symbol_name (char * name)
16924 {
16925 int len;
16926
16927 if (thumb_mode && (len = strlen (name)) > 5
16928 && streq (name + len - 5, "/data"))
16929 *(name + len - 5) = 0;
16930
16931 return name;
16932 }
16933 \f
16934 /* Table of all register names defined by default. The user can
16935 define additional names with .req. Note that all register names
16936 should appear in both upper and lowercase variants. Some registers
16937 also have mixed-case names. */
16938
16939 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16940 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16941 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16942 #define REGSET(p,t) \
16943 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16944 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16945 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16946 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16947 #define REGSETH(p,t) \
16948 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16949 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16950 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16951 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16952 #define REGSET2(p,t) \
16953 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16954 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16955 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16956 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16957 #define SPLRBANK(base,bank,t) \
16958 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16959 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16960 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16961 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16962 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16963 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16964
16965 static const struct reg_entry reg_names[] =
16966 {
16967 /* ARM integer registers. */
16968 REGSET(r, RN), REGSET(R, RN),
16969
16970 /* ATPCS synonyms. */
16971 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16972 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16973 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16974
16975 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16976 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16977 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16978
16979 /* Well-known aliases. */
16980 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16981 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16982
16983 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16984 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16985
16986 /* Coprocessor numbers. */
16987 REGSET(p, CP), REGSET(P, CP),
16988
16989 /* Coprocessor register numbers. The "cr" variants are for backward
16990 compatibility. */
16991 REGSET(c, CN), REGSET(C, CN),
16992 REGSET(cr, CN), REGSET(CR, CN),
16993
16994 /* ARM banked registers. */
16995 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16996 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16997 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16998 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16999 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17000 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17001 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17002
17003 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17004 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17005 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17006 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17007 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17008 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17009 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17010 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17011
17012 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17013 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17014 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17015 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17016 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17017 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17018 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17019 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17020 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17021
17022 /* FPA registers. */
17023 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17024 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17025
17026 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17027 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17028
17029 /* VFP SP registers. */
17030 REGSET(s,VFS), REGSET(S,VFS),
17031 REGSETH(s,VFS), REGSETH(S,VFS),
17032
17033 /* VFP DP Registers. */
17034 REGSET(d,VFD), REGSET(D,VFD),
17035 /* Extra Neon DP registers. */
17036 REGSETH(d,VFD), REGSETH(D,VFD),
17037
17038 /* Neon QP registers. */
17039 REGSET2(q,NQ), REGSET2(Q,NQ),
17040
17041 /* VFP control registers. */
17042 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17043 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17044 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17045 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17046 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17047 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17048
17049 /* Maverick DSP coprocessor registers. */
17050 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17051 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17052
17053 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17054 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17055 REGDEF(dspsc,0,DSPSC),
17056
17057 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17058 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17059 REGDEF(DSPSC,0,DSPSC),
17060
17061 /* iWMMXt data registers - p0, c0-15. */
17062 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17063
17064 /* iWMMXt control registers - p1, c0-3. */
17065 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17066 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17067 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17068 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17069
17070 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17071 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17072 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17073 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17074 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17075
17076 /* XScale accumulator registers. */
17077 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17078 };
17079 #undef REGDEF
17080 #undef REGNUM
17081 #undef REGSET
17082
17083 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17084 within psr_required_here. */
17085 static const struct asm_psr psrs[] =
17086 {
17087 /* Backward compatibility notation. Note that "all" is no longer
17088 truly all possible PSR bits. */
17089 {"all", PSR_c | PSR_f},
17090 {"flg", PSR_f},
17091 {"ctl", PSR_c},
17092
17093 /* Individual flags. */
17094 {"f", PSR_f},
17095 {"c", PSR_c},
17096 {"x", PSR_x},
17097 {"s", PSR_s},
17098
17099 /* Combinations of flags. */
17100 {"fs", PSR_f | PSR_s},
17101 {"fx", PSR_f | PSR_x},
17102 {"fc", PSR_f | PSR_c},
17103 {"sf", PSR_s | PSR_f},
17104 {"sx", PSR_s | PSR_x},
17105 {"sc", PSR_s | PSR_c},
17106 {"xf", PSR_x | PSR_f},
17107 {"xs", PSR_x | PSR_s},
17108 {"xc", PSR_x | PSR_c},
17109 {"cf", PSR_c | PSR_f},
17110 {"cs", PSR_c | PSR_s},
17111 {"cx", PSR_c | PSR_x},
17112 {"fsx", PSR_f | PSR_s | PSR_x},
17113 {"fsc", PSR_f | PSR_s | PSR_c},
17114 {"fxs", PSR_f | PSR_x | PSR_s},
17115 {"fxc", PSR_f | PSR_x | PSR_c},
17116 {"fcs", PSR_f | PSR_c | PSR_s},
17117 {"fcx", PSR_f | PSR_c | PSR_x},
17118 {"sfx", PSR_s | PSR_f | PSR_x},
17119 {"sfc", PSR_s | PSR_f | PSR_c},
17120 {"sxf", PSR_s | PSR_x | PSR_f},
17121 {"sxc", PSR_s | PSR_x | PSR_c},
17122 {"scf", PSR_s | PSR_c | PSR_f},
17123 {"scx", PSR_s | PSR_c | PSR_x},
17124 {"xfs", PSR_x | PSR_f | PSR_s},
17125 {"xfc", PSR_x | PSR_f | PSR_c},
17126 {"xsf", PSR_x | PSR_s | PSR_f},
17127 {"xsc", PSR_x | PSR_s | PSR_c},
17128 {"xcf", PSR_x | PSR_c | PSR_f},
17129 {"xcs", PSR_x | PSR_c | PSR_s},
17130 {"cfs", PSR_c | PSR_f | PSR_s},
17131 {"cfx", PSR_c | PSR_f | PSR_x},
17132 {"csf", PSR_c | PSR_s | PSR_f},
17133 {"csx", PSR_c | PSR_s | PSR_x},
17134 {"cxf", PSR_c | PSR_x | PSR_f},
17135 {"cxs", PSR_c | PSR_x | PSR_s},
17136 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17137 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17138 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17139 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17140 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17141 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17142 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17143 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17144 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17145 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17146 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17147 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17148 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17149 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17150 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17151 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17152 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17153 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17154 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17155 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17156 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17157 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17158 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17159 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17160 };
17161
17162 /* Table of V7M psr names. */
17163 static const struct asm_psr v7m_psrs[] =
17164 {
17165 {"apsr", 0 }, {"APSR", 0 },
17166 {"iapsr", 1 }, {"IAPSR", 1 },
17167 {"eapsr", 2 }, {"EAPSR", 2 },
17168 {"psr", 3 }, {"PSR", 3 },
17169 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17170 {"ipsr", 5 }, {"IPSR", 5 },
17171 {"epsr", 6 }, {"EPSR", 6 },
17172 {"iepsr", 7 }, {"IEPSR", 7 },
17173 {"msp", 8 }, {"MSP", 8 },
17174 {"psp", 9 }, {"PSP", 9 },
17175 {"primask", 16}, {"PRIMASK", 16},
17176 {"basepri", 17}, {"BASEPRI", 17},
17177 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17178 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17179 {"faultmask", 19}, {"FAULTMASK", 19},
17180 {"control", 20}, {"CONTROL", 20}
17181 };
17182
17183 /* Table of all shift-in-operand names. */
17184 static const struct asm_shift_name shift_names [] =
17185 {
17186 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17187 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17188 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17189 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17190 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17191 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17192 };
17193
17194 /* Table of all explicit relocation names. */
17195 #ifdef OBJ_ELF
17196 static struct reloc_entry reloc_names[] =
17197 {
17198 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17199 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17200 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17201 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17202 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17203 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17204 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17205 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17206 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17207 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17208 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17209 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17210 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17211 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17212 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17213 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17214 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17215 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17216 };
17217 #endif
17218
17219 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17220 static const struct asm_cond conds[] =
17221 {
17222 {"eq", 0x0},
17223 {"ne", 0x1},
17224 {"cs", 0x2}, {"hs", 0x2},
17225 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17226 {"mi", 0x4},
17227 {"pl", 0x5},
17228 {"vs", 0x6},
17229 {"vc", 0x7},
17230 {"hi", 0x8},
17231 {"ls", 0x9},
17232 {"ge", 0xa},
17233 {"lt", 0xb},
17234 {"gt", 0xc},
17235 {"le", 0xd},
17236 {"al", 0xe}
17237 };
17238
17239 #define UL_BARRIER(L,U,CODE,FEAT) \
17240 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17241 { U, CODE, ARM_FEATURE (FEAT, 0) }
17242
17243 static struct asm_barrier_opt barrier_opt_names[] =
17244 {
17245 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17246 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17247 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17248 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17249 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17250 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17251 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17252 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17253 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17254 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17255 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17256 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17257 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17258 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17259 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17260 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17261 };
17262
17263 #undef UL_BARRIER
17264
17265 /* Table of ARM-format instructions. */
17266
17267 /* Macros for gluing together operand strings. N.B. In all cases
17268 other than OPS0, the trailing OP_stop comes from default
17269 zero-initialization of the unspecified elements of the array. */
17270 #define OPS0() { OP_stop, }
17271 #define OPS1(a) { OP_##a, }
17272 #define OPS2(a,b) { OP_##a,OP_##b, }
17273 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17274 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17275 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17276 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17277
17278 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17279 This is useful when mixing operands for ARM and THUMB, i.e. using the
17280 MIX_ARM_THUMB_OPERANDS macro.
17281 In order to use these macros, prefix the number of operands with _
17282 e.g. _3. */
17283 #define OPS_1(a) { a, }
17284 #define OPS_2(a,b) { a,b, }
17285 #define OPS_3(a,b,c) { a,b,c, }
17286 #define OPS_4(a,b,c,d) { a,b,c,d, }
17287 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17288 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17289
17290 /* These macros abstract out the exact format of the mnemonic table and
17291 save some repeated characters. */
17292
17293 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17294 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17295 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17296 THUMB_VARIANT, do_##ae, do_##te }
17297
17298 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17299 a T_MNEM_xyz enumerator. */
17300 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17301 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17302 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17303 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17304
17305 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17306 infix after the third character. */
17307 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17308 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17309 THUMB_VARIANT, do_##ae, do_##te }
17310 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17311 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17312 THUMB_VARIANT, do_##ae, do_##te }
17313 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17314 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17315 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17316 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17317 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17318 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17319 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17320 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17321
17322 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17323 appear in the condition table. */
17324 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17325 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17326 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17327
17328 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17329 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17330 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17331 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17332 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17333 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17334 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17335 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17336 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17337 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17338 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17339 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17340 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17341 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17342 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17343 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17344 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17345 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17346 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17347 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17348
17349 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17350 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17351 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17352 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17353
17354 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17355 field is still 0xE. Many of the Thumb variants can be executed
17356 conditionally, so this is checked separately. */
17357 #define TUE(mnem, op, top, nops, ops, ae, te) \
17358 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17359 THUMB_VARIANT, do_##ae, do_##te }
17360
17361 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17362 condition code field. */
17363 #define TUF(mnem, op, top, nops, ops, ae, te) \
17364 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17365 THUMB_VARIANT, do_##ae, do_##te }
17366
17367 /* ARM-only variants of all the above. */
17368 #define CE(mnem, op, nops, ops, ae) \
17369 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17370
17371 #define C3(mnem, op, nops, ops, ae) \
17372 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17373
17374 /* Legacy mnemonics that always have conditional infix after the third
17375 character. */
17376 #define CL(mnem, op, nops, ops, ae) \
17377 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17378 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17379
17380 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17381 #define cCE(mnem, op, nops, ops, ae) \
17382 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17383
17384 /* Legacy coprocessor instructions where conditional infix and conditional
17385 suffix are ambiguous. For consistency this includes all FPA instructions,
17386 not just the potentially ambiguous ones. */
17387 #define cCL(mnem, op, nops, ops, ae) \
17388 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17389 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17390
17391 /* Coprocessor, takes either a suffix or a position-3 infix
17392 (for an FPA corner case). */
17393 #define C3E(mnem, op, nops, ops, ae) \
17394 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17395 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17396
17397 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17398 { m1 #m2 m3, OPS##nops ops, \
17399 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17400 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17401
17402 #define CM(m1, m2, op, nops, ops, ae) \
17403 xCM_ (m1, , m2, op, nops, ops, ae), \
17404 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17405 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17406 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17407 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17408 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17409 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17410 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17411 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17412 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17413 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17414 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17415 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17416 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17417 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17418 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17419 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17420 xCM_ (m1, le, m2, op, nops, ops, ae), \
17421 xCM_ (m1, al, m2, op, nops, ops, ae)
17422
17423 #define UE(mnem, op, nops, ops, ae) \
17424 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17425
17426 #define UF(mnem, op, nops, ops, ae) \
17427 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17428
17429 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17430 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17431 use the same encoding function for each. */
17432 #define NUF(mnem, op, nops, ops, enc) \
17433 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17434 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17435
17436 /* Neon data processing, version which indirects through neon_enc_tab for
17437 the various overloaded versions of opcodes. */
17438 #define nUF(mnem, op, nops, ops, enc) \
17439 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17440 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17441
17442 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17443 version. */
17444 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17445 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17446 THUMB_VARIANT, do_##enc, do_##enc }
17447
17448 #define NCE(mnem, op, nops, ops, enc) \
17449 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17450
17451 #define NCEF(mnem, op, nops, ops, enc) \
17452 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17453
17454 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17455 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17456 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17457 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17458
17459 #define nCE(mnem, op, nops, ops, enc) \
17460 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17461
17462 #define nCEF(mnem, op, nops, ops, enc) \
17463 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17464
17465 #define do_0 0
17466
17467 static const struct asm_opcode insns[] =
17468 {
17469 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17470 #define THUMB_VARIANT &arm_ext_v4t
17471 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17472 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17473 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17474 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17475 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17476 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17477 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17478 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17479 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17480 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17481 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17482 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17483 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17484 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17485 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17486 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17487
17488 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17489 for setting PSR flag bits. They are obsolete in V6 and do not
17490 have Thumb equivalents. */
17491 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17492 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17493 CL("tstp", 110f000, 2, (RR, SH), cmp),
17494 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17495 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17496 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17497 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17498 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17499 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17500
17501 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17502 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17503 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17504 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17505
17506 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17507 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17508 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17509 OP_RRnpc),
17510 OP_ADDRGLDR),ldst, t_ldst),
17511 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17512
17513 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17514 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17515 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17516 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17517 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17518 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17519
17520 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17521 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17522 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17523 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17524
17525 /* Pseudo ops. */
17526 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17527 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17528 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17529
17530 /* Thumb-compatibility pseudo ops. */
17531 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17532 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17533 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17534 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17535 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17536 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17537 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17538 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17539 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17540 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17541 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17542 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17543
17544 /* These may simplify to neg. */
17545 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17546 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17547
17548 #undef THUMB_VARIANT
17549 #define THUMB_VARIANT & arm_ext_v6
17550
17551 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17552
17553 /* V1 instructions with no Thumb analogue prior to V6T2. */
17554 #undef THUMB_VARIANT
17555 #define THUMB_VARIANT & arm_ext_v6t2
17556
17557 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17558 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17559 CL("teqp", 130f000, 2, (RR, SH), cmp),
17560
17561 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17562 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17563 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17564 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17565
17566 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17567 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17568
17569 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17570 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17571
17572 /* V1 instructions with no Thumb analogue at all. */
17573 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17574 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17575
17576 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17577 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17578 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17579 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17580 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17581 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17582 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17583 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17584
17585 #undef ARM_VARIANT
17586 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17587 #undef THUMB_VARIANT
17588 #define THUMB_VARIANT & arm_ext_v4t
17589
17590 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17591 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17592
17593 #undef THUMB_VARIANT
17594 #define THUMB_VARIANT & arm_ext_v6t2
17595
17596 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17597 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17598
17599 /* Generic coprocessor instructions. */
17600 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17601 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17602 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17603 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17604 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17605 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17606 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17607
17608 #undef ARM_VARIANT
17609 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17610
17611 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17612 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17613
17614 #undef ARM_VARIANT
17615 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17616 #undef THUMB_VARIANT
17617 #define THUMB_VARIANT & arm_ext_msr
17618
17619 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17620 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17621
17622 #undef ARM_VARIANT
17623 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17624 #undef THUMB_VARIANT
17625 #define THUMB_VARIANT & arm_ext_v6t2
17626
17627 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17628 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17629 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17630 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17631 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17632 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17633 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17634 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17635
17636 #undef ARM_VARIANT
17637 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17638 #undef THUMB_VARIANT
17639 #define THUMB_VARIANT & arm_ext_v4t
17640
17641 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17642 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17643 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17644 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17645 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17646 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17647
17648 #undef ARM_VARIANT
17649 #define ARM_VARIANT & arm_ext_v4t_5
17650
17651 /* ARM Architecture 4T. */
17652 /* Note: bx (and blx) are required on V5, even if the processor does
17653 not support Thumb. */
17654 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17655
17656 #undef ARM_VARIANT
17657 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17658 #undef THUMB_VARIANT
17659 #define THUMB_VARIANT & arm_ext_v5t
17660
17661 /* Note: blx has 2 variants; the .value coded here is for
17662 BLX(2). Only this variant has conditional execution. */
17663 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17664 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17665
17666 #undef THUMB_VARIANT
17667 #define THUMB_VARIANT & arm_ext_v6t2
17668
17669 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17670 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17671 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17672 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17673 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17674 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17675 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17676 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17677
17678 #undef ARM_VARIANT
17679 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17680 #undef THUMB_VARIANT
17681 #define THUMB_VARIANT &arm_ext_v5exp
17682
17683 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17684 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17685 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17686 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17687
17688 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17689 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17690
17691 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17692 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17693 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17694 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17695
17696 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17697 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17698 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17699 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17700
17701 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17702 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17703
17704 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17705 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17706 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17707 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17708
17709 #undef ARM_VARIANT
17710 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17711 #undef THUMB_VARIANT
17712 #define THUMB_VARIANT &arm_ext_v6t2
17713
17714 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17715 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17716 ldrd, t_ldstd),
17717 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17718 ADDRGLDRS), ldrd, t_ldstd),
17719
17720 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17721 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17722
17723 #undef ARM_VARIANT
17724 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17725
17726 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17727
17728 #undef ARM_VARIANT
17729 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17730 #undef THUMB_VARIANT
17731 #define THUMB_VARIANT & arm_ext_v6
17732
17733 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17734 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17735 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17736 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17737 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17738 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17739 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17740 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17741 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17742 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17743
17744 #undef THUMB_VARIANT
17745 #define THUMB_VARIANT & arm_ext_v6t2
17746
17747 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17748 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17749 strex, t_strex),
17750 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17751 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17752
17753 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17754 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17755
17756 /* ARM V6 not included in V7M. */
17757 #undef THUMB_VARIANT
17758 #define THUMB_VARIANT & arm_ext_v6_notm
17759 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17760 UF(rfeib, 9900a00, 1, (RRw), rfe),
17761 UF(rfeda, 8100a00, 1, (RRw), rfe),
17762 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17763 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17764 UF(rfefa, 9900a00, 1, (RRw), rfe),
17765 UF(rfeea, 8100a00, 1, (RRw), rfe),
17766 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17767 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17768 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17769 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17770 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17771
17772 /* ARM V6 not included in V7M (eg. integer SIMD). */
17773 #undef THUMB_VARIANT
17774 #define THUMB_VARIANT & arm_ext_v6_dsp
17775 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17776 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17777 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17778 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17779 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17780 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17781 /* Old name for QASX. */
17782 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17783 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17784 /* Old name for QSAX. */
17785 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17786 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17787 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17788 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17789 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17790 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17791 /* Old name for SASX. */
17792 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17793 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17794 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17795 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17796 /* Old name for SHASX. */
17797 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17798 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17799 /* Old name for SHSAX. */
17800 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17801 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17802 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17803 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17804 /* Old name for SSAX. */
17805 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17806 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17807 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17808 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17809 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17810 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17811 /* Old name for UASX. */
17812 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17813 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17814 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17815 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17816 /* Old name for UHASX. */
17817 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17818 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17819 /* Old name for UHSAX. */
17820 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17821 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17822 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17823 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17824 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17825 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17826 /* Old name for UQASX. */
17827 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17828 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17829 /* Old name for UQSAX. */
17830 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17831 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17832 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17833 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17834 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17835 /* Old name for USAX. */
17836 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17837 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17838 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17839 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17840 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17841 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17842 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17843 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17844 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17845 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17846 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17847 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17848 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17849 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17850 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17851 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17852 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17853 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17854 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17855 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17856 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17857 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17858 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17859 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17860 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17861 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17862 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17863 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17864 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17865 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17866 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17867 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17868 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17869 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17870
17871 #undef ARM_VARIANT
17872 #define ARM_VARIANT & arm_ext_v6k
17873 #undef THUMB_VARIANT
17874 #define THUMB_VARIANT & arm_ext_v6k
17875
17876 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17877 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17878 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17879 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17880
17881 #undef THUMB_VARIANT
17882 #define THUMB_VARIANT & arm_ext_v6_notm
17883 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17884 ldrexd, t_ldrexd),
17885 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17886 RRnpcb), strexd, t_strexd),
17887
17888 #undef THUMB_VARIANT
17889 #define THUMB_VARIANT & arm_ext_v6t2
17890 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17891 rd_rn, rd_rn),
17892 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17893 rd_rn, rd_rn),
17894 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17895 strex, t_strexbh),
17896 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17897 strex, t_strexbh),
17898 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17899
17900 #undef ARM_VARIANT
17901 #define ARM_VARIANT & arm_ext_sec
17902 #undef THUMB_VARIANT
17903 #define THUMB_VARIANT & arm_ext_sec
17904
17905 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17906
17907 #undef ARM_VARIANT
17908 #define ARM_VARIANT & arm_ext_virt
17909 #undef THUMB_VARIANT
17910 #define THUMB_VARIANT & arm_ext_virt
17911
17912 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17913 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17914
17915 #undef ARM_VARIANT
17916 #define ARM_VARIANT & arm_ext_v6t2
17917 #undef THUMB_VARIANT
17918 #define THUMB_VARIANT & arm_ext_v6t2
17919
17920 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17921 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17922 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17923 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17924
17925 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17926 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17927 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17928 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17929
17930 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17931 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17932 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17933 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17934
17935 /* Thumb-only instructions. */
17936 #undef ARM_VARIANT
17937 #define ARM_VARIANT NULL
17938 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17939 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17940
17941 /* ARM does not really have an IT instruction, so always allow it.
17942 The opcode is copied from Thumb in order to allow warnings in
17943 -mimplicit-it=[never | arm] modes. */
17944 #undef ARM_VARIANT
17945 #define ARM_VARIANT & arm_ext_v1
17946
17947 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17948 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17949 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17950 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17951 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17952 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17953 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17954 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17955 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17956 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17957 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17958 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17959 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17960 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17961 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17962 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17963 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17964 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17965
17966 /* Thumb2 only instructions. */
17967 #undef ARM_VARIANT
17968 #define ARM_VARIANT NULL
17969
17970 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17971 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17972 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17973 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17974 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17975 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17976
17977 /* Hardware division instructions. */
17978 #undef ARM_VARIANT
17979 #define ARM_VARIANT & arm_ext_adiv
17980 #undef THUMB_VARIANT
17981 #define THUMB_VARIANT & arm_ext_div
17982
17983 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17984 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17985
17986 /* ARM V6M/V7 instructions. */
17987 #undef ARM_VARIANT
17988 #define ARM_VARIANT & arm_ext_barrier
17989 #undef THUMB_VARIANT
17990 #define THUMB_VARIANT & arm_ext_barrier
17991
17992 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17993 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17994 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17995
17996 /* ARM V7 instructions. */
17997 #undef ARM_VARIANT
17998 #define ARM_VARIANT & arm_ext_v7
17999 #undef THUMB_VARIANT
18000 #define THUMB_VARIANT & arm_ext_v7
18001
18002 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18003 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18004
18005 #undef ARM_VARIANT
18006 #define ARM_VARIANT & arm_ext_mp
18007 #undef THUMB_VARIANT
18008 #define THUMB_VARIANT & arm_ext_mp
18009
18010 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18011
18012 /* AArchv8 instructions. */
18013 #undef ARM_VARIANT
18014 #define ARM_VARIANT & arm_ext_v8
18015 #undef THUMB_VARIANT
18016 #define THUMB_VARIANT & arm_ext_v8
18017
18018 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18019 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18020 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18021 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18022 ldrexd, t_ldrexd),
18023 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18024 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18025 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18026 strlex, t_strlex),
18027 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18028 strexd, t_strexd),
18029 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18030 strlex, t_strlex),
18031 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18032 strlex, t_strlex),
18033 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18034 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18035 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18036 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18037 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18038 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18039
18040 /* ARMv8 T32 only. */
18041 #undef ARM_VARIANT
18042 #define ARM_VARIANT NULL
18043 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18044 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18045 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18046
18047 #undef ARM_VARIANT
18048 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18049 #undef THUMB_VARIANT
18050 #define THUMB_VARIANT NULL
18051
18052 cCE("wfs", e200110, 1, (RR), rd),
18053 cCE("rfs", e300110, 1, (RR), rd),
18054 cCE("wfc", e400110, 1, (RR), rd),
18055 cCE("rfc", e500110, 1, (RR), rd),
18056
18057 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18058 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18059 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18060 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18061
18062 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18063 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18064 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18065 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18066
18067 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18068 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18069 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18070 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18071 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18072 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18073 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18074 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18075 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18076 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18077 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18078 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18079
18080 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18081 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18082 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18083 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18084 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18085 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18086 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18087 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18088 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18089 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18090 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18091 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18092
18093 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18094 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18095 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18096 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18097 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18098 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18099 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18100 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18101 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18102 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18103 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18104 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18105
18106 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18107 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18108 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18109 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18110 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18111 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18112 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18113 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18114 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18115 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18116 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18117 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18118
18119 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18120 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18121 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18122 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18123 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18124 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18125 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18126 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18127 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18128 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18129 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18130 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18131
18132 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18133 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18134 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18135 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18136 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18137 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18138 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18139 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18140 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18141 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18142 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18143 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18144
18145 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18146 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18147 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18148 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18149 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18150 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18151 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18152 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18153 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18154 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18155 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18156 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18157
18158 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18159 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18160 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18161 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18162 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18163 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18164 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18165 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18166 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18167 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18168 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18169 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18170
18171 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18172 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18173 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18174 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18175 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18176 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18177 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18178 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18179 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18180 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18181 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18182 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18183
18184 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18185 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18186 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18187 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18188 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18189 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18190 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18191 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18192 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18193 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18194 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18195 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18196
18197 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18198 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18199 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18200 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18201 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18202 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18203 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18204 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18205 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18206 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18207 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18208 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18209
18210 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18211 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18212 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18213 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18214 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18215 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18216 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18217 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18218 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18219 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18220 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18221 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18222
18223 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18224 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18225 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18226 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18227 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18228 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18229 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18230 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18231 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18232 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18233 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18234 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18235
18236 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18237 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18238 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18239 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18240 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18241 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18242 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18243 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18244 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18245 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18246 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18247 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18248
18249 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18250 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18251 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18252 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18253 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18254 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18255 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18256 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18257 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18258 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18259 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18260 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18261
18262 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18263 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18264 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18265 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18266 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18267 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18268 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18269 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18270 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18271 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18272 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18273 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18274
18275 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18276 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18277 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18278 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18279 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18280 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18281 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18282 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18283 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18284 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18285 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18286 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18287
18288 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18289 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18290 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18291 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18292 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18293 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18294 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18295 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18296 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18297 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18298 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18299 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18300
18301 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18302 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18303 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18304 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18305 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18306 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18307 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18308 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18309 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18310 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18311 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18312 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18313
18314 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18315 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18316 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18317 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18318 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18319 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18320 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18321 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18322 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18323 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18324 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18325 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18326
18327 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18331 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18332 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18333 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18334 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18339
18340 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18344 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18345 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18346 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18347 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18352
18353 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18357 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18358 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18359 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18360 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18365
18366 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18370 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18371 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18372 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18373 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18374 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18375 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18376 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18377 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18378
18379 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18380 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18381 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18382 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18383 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18384 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18385 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18386 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18387 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18388 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18389 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18390 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18391
18392 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18393 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18394 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18395 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18396 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18397 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18398 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18399 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18400 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18401 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18402 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18403 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18404
18405 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18406 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18407 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18408 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18409 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18410 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18411 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18412 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18413 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18414 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18415 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18416 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18417
18418 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18419 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18420 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18421 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18422 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18423 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18424 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18425 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18426 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18427 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18428 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18429 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18430
18431 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18432 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18433 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18434 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18435 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18436 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18437 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18438 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18439 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18440 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18441 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18442 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18443
18444 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18445 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18446 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18447 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18448
18449 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18450 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18451 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18452 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18453 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18454 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18455 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18456 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18457 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18458 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18459 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18460 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18461
18462 /* The implementation of the FIX instruction is broken on some
18463 assemblers, in that it accepts a precision specifier as well as a
18464 rounding specifier, despite the fact that this is meaningless.
18465 To be more compatible, we accept it as well, though of course it
18466 does not set any bits. */
18467 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18468 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18469 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18470 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18471 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18472 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18473 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18474 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18475 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18476 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18477 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18478 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18479 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18480
18481 /* Instructions that were new with the real FPA, call them V2. */
18482 #undef ARM_VARIANT
18483 #define ARM_VARIANT & fpu_fpa_ext_v2
18484
18485 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18486 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18487 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18488 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18489 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18490 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18491
18492 #undef ARM_VARIANT
18493 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18494
18495 /* Moves and type conversions. */
18496 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18497 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18498 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18499 cCE("fmstat", ef1fa10, 0, (), noargs),
18500 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18501 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18502 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18503 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18504 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18505 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18506 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18507 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18508 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18509 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18510
18511 /* Memory operations. */
18512 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18513 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18514 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18515 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18516 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18517 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18518 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18519 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18520 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18521 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18522 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18523 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18524 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18525 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18526 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18527 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18528 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18529 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18530
18531 /* Monadic operations. */
18532 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18533 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18534 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18535
18536 /* Dyadic operations. */
18537 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18538 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18539 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18540 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18541 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18542 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18543 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18544 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18545 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18546
18547 /* Comparisons. */
18548 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18549 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18550 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18551 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18552
18553 /* Double precision load/store are still present on single precision
18554 implementations. */
18555 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18556 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18557 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18558 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18559 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18560 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18561 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18562 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18563 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18564 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18565
18566 #undef ARM_VARIANT
18567 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18568
18569 /* Moves and type conversions. */
18570 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18571 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18572 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18573 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18574 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18575 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18576 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18577 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18578 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18579 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18580 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18581 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18582 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18583
18584 /* Monadic operations. */
18585 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18586 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18587 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18588
18589 /* Dyadic operations. */
18590 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18591 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18592 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18593 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18594 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18595 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18596 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18597 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18598 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18599
18600 /* Comparisons. */
18601 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18602 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18603 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18604 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18605
18606 #undef ARM_VARIANT
18607 #define ARM_VARIANT & fpu_vfp_ext_v2
18608
18609 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18610 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18611 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18612 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18613
18614 /* Instructions which may belong to either the Neon or VFP instruction sets.
18615 Individual encoder functions perform additional architecture checks. */
18616 #undef ARM_VARIANT
18617 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18618 #undef THUMB_VARIANT
18619 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18620
18621 /* These mnemonics are unique to VFP. */
18622 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18623 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18624 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18625 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18626 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18627 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18628 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18629 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18630 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18631 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18632
18633 /* Mnemonics shared by Neon and VFP. */
18634 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18635 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18636 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18637
18638 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18639 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18640
18641 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18642 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18643
18644 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18645 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18646 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18647 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18648 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18649 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18650 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18651 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18652
18653 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18654 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18655 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18656 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18657
18658
18659 /* NOTE: All VMOV encoding is special-cased! */
18660 NCE(vmov, 0, 1, (VMOV), neon_mov),
18661 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18662
18663 #undef THUMB_VARIANT
18664 #define THUMB_VARIANT & fpu_neon_ext_v1
18665 #undef ARM_VARIANT
18666 #define ARM_VARIANT & fpu_neon_ext_v1
18667
18668 /* Data processing with three registers of the same length. */
18669 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18670 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18671 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18672 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18673 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18674 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18675 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18676 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18677 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18678 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18679 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18680 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18681 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18682 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18683 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18684 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18685 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18686 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18687 /* If not immediate, fall back to neon_dyadic_i64_su.
18688 shl_imm should accept I8 I16 I32 I64,
18689 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18690 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18691 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18692 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18693 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18694 /* Logic ops, types optional & ignored. */
18695 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18696 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18697 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18698 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18699 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18700 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18701 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18702 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18703 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18704 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18705 /* Bitfield ops, untyped. */
18706 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18707 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18708 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18709 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18710 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18711 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18712 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18713 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18714 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18715 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18716 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18717 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18718 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18719 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18720 back to neon_dyadic_if_su. */
18721 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18722 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18723 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18724 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18725 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18726 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18727 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18728 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18729 /* Comparison. Type I8 I16 I32 F32. */
18730 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18731 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18732 /* As above, D registers only. */
18733 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18734 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18735 /* Int and float variants, signedness unimportant. */
18736 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18737 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18738 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18739 /* Add/sub take types I8 I16 I32 I64 F32. */
18740 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18741 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18742 /* vtst takes sizes 8, 16, 32. */
18743 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18744 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18745 /* VMUL takes I8 I16 I32 F32 P8. */
18746 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18747 /* VQD{R}MULH takes S16 S32. */
18748 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18749 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18750 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18751 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18752 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18753 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18754 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18755 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18756 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18757 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18758 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18759 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18760 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18761 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18762 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18763 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18764
18765 /* Two address, int/float. Types S8 S16 S32 F32. */
18766 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18767 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18768
18769 /* Data processing with two registers and a shift amount. */
18770 /* Right shifts, and variants with rounding.
18771 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18772 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18773 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18774 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18775 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18776 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18777 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18778 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18779 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18780 /* Shift and insert. Sizes accepted 8 16 32 64. */
18781 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18782 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18783 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18784 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18785 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18786 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18787 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18788 /* Right shift immediate, saturating & narrowing, with rounding variants.
18789 Types accepted S16 S32 S64 U16 U32 U64. */
18790 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18791 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18792 /* As above, unsigned. Types accepted S16 S32 S64. */
18793 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18794 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18795 /* Right shift narrowing. Types accepted I16 I32 I64. */
18796 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18797 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18798 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18799 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18800 /* CVT with optional immediate for fixed-point variant. */
18801 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18802
18803 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18804 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18805
18806 /* Data processing, three registers of different lengths. */
18807 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18808 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18809 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18810 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18811 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18812 /* If not scalar, fall back to neon_dyadic_long.
18813 Vector types as above, scalar types S16 S32 U16 U32. */
18814 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18815 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18816 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18817 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18818 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18819 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18820 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18821 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18822 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18823 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18824 /* Saturating doubling multiplies. Types S16 S32. */
18825 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18826 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18827 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18828 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18829 S16 S32 U16 U32. */
18830 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18831
18832 /* Extract. Size 8. */
18833 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18834 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18835
18836 /* Two registers, miscellaneous. */
18837 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18838 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18839 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18840 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18841 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18842 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18843 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18844 /* Vector replicate. Sizes 8 16 32. */
18845 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18846 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18847 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18848 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18849 /* VMOVN. Types I16 I32 I64. */
18850 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18851 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18852 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18853 /* VQMOVUN. Types S16 S32 S64. */
18854 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18855 /* VZIP / VUZP. Sizes 8 16 32. */
18856 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18857 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18858 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18859 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18860 /* VQABS / VQNEG. Types S8 S16 S32. */
18861 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18862 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18863 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18864 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18865 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18866 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18867 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18868 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18869 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18870 /* Reciprocal estimates. Types U32 F32. */
18871 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18872 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18873 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18874 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18875 /* VCLS. Types S8 S16 S32. */
18876 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18877 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18878 /* VCLZ. Types I8 I16 I32. */
18879 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18880 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18881 /* VCNT. Size 8. */
18882 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18883 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18884 /* Two address, untyped. */
18885 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18886 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18887 /* VTRN. Sizes 8 16 32. */
18888 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18889 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18890
18891 /* Table lookup. Size 8. */
18892 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18893 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18894
18895 #undef THUMB_VARIANT
18896 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18897 #undef ARM_VARIANT
18898 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18899
18900 /* Neon element/structure load/store. */
18901 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18902 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18903 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18904 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18905 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18906 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18907 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18908 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18909
18910 #undef THUMB_VARIANT
18911 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18912 #undef ARM_VARIANT
18913 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18914 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18915 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18916 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18917 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18918 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18919 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18920 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18921 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18922 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18923
18924 #undef THUMB_VARIANT
18925 #define THUMB_VARIANT & fpu_vfp_ext_v3
18926 #undef ARM_VARIANT
18927 #define ARM_VARIANT & fpu_vfp_ext_v3
18928
18929 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18930 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18931 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18932 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18933 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18934 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18935 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18936 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18937 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18938
18939 #undef ARM_VARIANT
18940 #define ARM_VARIANT &fpu_vfp_ext_fma
18941 #undef THUMB_VARIANT
18942 #define THUMB_VARIANT &fpu_vfp_ext_fma
18943 /* Mnemonics shared by Neon and VFP. These are included in the
18944 VFP FMA variant; NEON and VFP FMA always includes the NEON
18945 FMA instructions. */
18946 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18947 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18948 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18949 the v form should always be used. */
18950 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18951 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18952 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18953 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18954 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18955 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18956
18957 #undef THUMB_VARIANT
18958 #undef ARM_VARIANT
18959 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18960
18961 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18962 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18963 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18964 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18965 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18966 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18967 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18968 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18969
18970 #undef ARM_VARIANT
18971 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18972
18973 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18974 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18975 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18976 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18977 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18978 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18979 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18980 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18981 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18982 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18983 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18984 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18985 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18986 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18987 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18988 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18989 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18990 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18991 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18992 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18993 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18994 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18995 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18996 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18997 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18998 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18999 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19000 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19001 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19002 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19003 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19004 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19005 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19006 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19007 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19008 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19009 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19010 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19011 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19012 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19013 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19014 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19015 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19016 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19017 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19018 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19019 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19020 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19021 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19022 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19023 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19024 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19025 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19026 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19027 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19028 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19029 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19030 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19031 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19032 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19033 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19034 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19035 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19036 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19037 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19038 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19039 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19040 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19041 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19042 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19043 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19044 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19045 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19046 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19047 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19048 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19049 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19050 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19051 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19052 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19053 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19054 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19055 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19056 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19057 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19058 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19059 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19060 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19061 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19062 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19064 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19071 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19072 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19073 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19074 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19075 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19076 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19077 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19078 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19079 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19080 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19081 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19082 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19083 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19084 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19085 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19086 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19087 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19088 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19089 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19090 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19091 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19092 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19093 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19094 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19095 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19096 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19097 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19098 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19099 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19100 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19101 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19102 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19103 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19104 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19105 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19106 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19115 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19116 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19117 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19118 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19119 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19120 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19121 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19122 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19123 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19125 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19126 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19127 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19128 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19129 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19130 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19131 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19132 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19133 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19134 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19135
19136 #undef ARM_VARIANT
19137 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19138
19139 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19140 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19141 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19142 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19143 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19144 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19145 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19146 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19147 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19148 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19149 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19150 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19151 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19152 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19153 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19154 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19155 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19156 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19157 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19158 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19159 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19160 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19161 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19162 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19163 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19164 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19165 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19166 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19167 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19168 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19169 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19170 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19171 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19172 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19173 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19174 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19175 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19176 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19177 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19178 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19179 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19180 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19181 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19182 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19183 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19184 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19185 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19186 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19187 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19188 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19189 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19190 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19191 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19192 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19193 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19194 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19195 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19196
19197 #undef ARM_VARIANT
19198 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19199
19200 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19201 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19202 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19203 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19204 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19205 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19206 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19207 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19208 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19209 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19210 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19211 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19212 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19213 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19214 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19215 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19216 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19217 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19218 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19219 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19220 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19221 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19222 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19223 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19224 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19225 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19226 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19227 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19228 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19229 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19230 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19231 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19232 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19233 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19234 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19235 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19236 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19237 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19238 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19239 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19240 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19241 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19242 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19243 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19244 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19245 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19246 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19247 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19248 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19249 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19250 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19251 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19252 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19253 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19254 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19255 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19256 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19257 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19258 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19259 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19260 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19261 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19262 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19263 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19264 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19265 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19266 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19267 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19268 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19269 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19270 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19271 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19272 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19273 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19274 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19275 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19276 };
19277 #undef ARM_VARIANT
19278 #undef THUMB_VARIANT
19279 #undef TCE
19280 #undef TCM
19281 #undef TUE
19282 #undef TUF
19283 #undef TCC
19284 #undef cCE
19285 #undef cCL
19286 #undef C3E
19287 #undef CE
19288 #undef CM
19289 #undef UE
19290 #undef UF
19291 #undef UT
19292 #undef NUF
19293 #undef nUF
19294 #undef NCE
19295 #undef nCE
19296 #undef OPS0
19297 #undef OPS1
19298 #undef OPS2
19299 #undef OPS3
19300 #undef OPS4
19301 #undef OPS5
19302 #undef OPS6
19303 #undef do_0
19304 \f
19305 /* MD interface: bits in the object file. */
19306
19307 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19308 for use in the a.out file, and stores them in the array pointed to by buf.
19309 This knows about the endian-ness of the target machine and does
19310 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19311 2 (short) and 4 (long) Floating numbers are put out as a series of
19312 LITTLENUMS (shorts, here at least). */
19313
19314 void
19315 md_number_to_chars (char * buf, valueT val, int n)
19316 {
19317 if (target_big_endian)
19318 number_to_chars_bigendian (buf, val, n);
19319 else
19320 number_to_chars_littleendian (buf, val, n);
19321 }
19322
19323 static valueT
19324 md_chars_to_number (char * buf, int n)
19325 {
19326 valueT result = 0;
19327 unsigned char * where = (unsigned char *) buf;
19328
19329 if (target_big_endian)
19330 {
19331 while (n--)
19332 {
19333 result <<= 8;
19334 result |= (*where++ & 255);
19335 }
19336 }
19337 else
19338 {
19339 while (n--)
19340 {
19341 result <<= 8;
19342 result |= (where[n] & 255);
19343 }
19344 }
19345
19346 return result;
19347 }
19348
19349 /* MD interface: Sections. */
19350
19351 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19352 that an rs_machine_dependent frag may reach. */
19353
19354 unsigned int
19355 arm_frag_max_var (fragS *fragp)
19356 {
19357 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19358 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19359
19360 Note that we generate relaxable instructions even for cases that don't
19361 really need it, like an immediate that's a trivial constant. So we're
19362 overestimating the instruction size for some of those cases. Rather
19363 than putting more intelligence here, it would probably be better to
19364 avoid generating a relaxation frag in the first place when it can be
19365 determined up front that a short instruction will suffice. */
19366
19367 gas_assert (fragp->fr_type == rs_machine_dependent);
19368 return INSN_SIZE;
19369 }
19370
19371 /* Estimate the size of a frag before relaxing. Assume everything fits in
19372 2 bytes. */
19373
19374 int
19375 md_estimate_size_before_relax (fragS * fragp,
19376 segT segtype ATTRIBUTE_UNUSED)
19377 {
19378 fragp->fr_var = 2;
19379 return 2;
19380 }
19381
19382 /* Convert a machine dependent frag. */
19383
19384 void
19385 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19386 {
19387 unsigned long insn;
19388 unsigned long old_op;
19389 char *buf;
19390 expressionS exp;
19391 fixS *fixp;
19392 int reloc_type;
19393 int pc_rel;
19394 int opcode;
19395
19396 buf = fragp->fr_literal + fragp->fr_fix;
19397
19398 old_op = bfd_get_16(abfd, buf);
19399 if (fragp->fr_symbol)
19400 {
19401 exp.X_op = O_symbol;
19402 exp.X_add_symbol = fragp->fr_symbol;
19403 }
19404 else
19405 {
19406 exp.X_op = O_constant;
19407 }
19408 exp.X_add_number = fragp->fr_offset;
19409 opcode = fragp->fr_subtype;
19410 switch (opcode)
19411 {
19412 case T_MNEM_ldr_pc:
19413 case T_MNEM_ldr_pc2:
19414 case T_MNEM_ldr_sp:
19415 case T_MNEM_str_sp:
19416 case T_MNEM_ldr:
19417 case T_MNEM_ldrb:
19418 case T_MNEM_ldrh:
19419 case T_MNEM_str:
19420 case T_MNEM_strb:
19421 case T_MNEM_strh:
19422 if (fragp->fr_var == 4)
19423 {
19424 insn = THUMB_OP32 (opcode);
19425 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19426 {
19427 insn |= (old_op & 0x700) << 4;
19428 }
19429 else
19430 {
19431 insn |= (old_op & 7) << 12;
19432 insn |= (old_op & 0x38) << 13;
19433 }
19434 insn |= 0x00000c00;
19435 put_thumb32_insn (buf, insn);
19436 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19437 }
19438 else
19439 {
19440 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19441 }
19442 pc_rel = (opcode == T_MNEM_ldr_pc2);
19443 break;
19444 case T_MNEM_adr:
19445 if (fragp->fr_var == 4)
19446 {
19447 insn = THUMB_OP32 (opcode);
19448 insn |= (old_op & 0xf0) << 4;
19449 put_thumb32_insn (buf, insn);
19450 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19451 }
19452 else
19453 {
19454 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19455 exp.X_add_number -= 4;
19456 }
19457 pc_rel = 1;
19458 break;
19459 case T_MNEM_mov:
19460 case T_MNEM_movs:
19461 case T_MNEM_cmp:
19462 case T_MNEM_cmn:
19463 if (fragp->fr_var == 4)
19464 {
19465 int r0off = (opcode == T_MNEM_mov
19466 || opcode == T_MNEM_movs) ? 0 : 8;
19467 insn = THUMB_OP32 (opcode);
19468 insn = (insn & 0xe1ffffff) | 0x10000000;
19469 insn |= (old_op & 0x700) << r0off;
19470 put_thumb32_insn (buf, insn);
19471 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19472 }
19473 else
19474 {
19475 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19476 }
19477 pc_rel = 0;
19478 break;
19479 case T_MNEM_b:
19480 if (fragp->fr_var == 4)
19481 {
19482 insn = THUMB_OP32(opcode);
19483 put_thumb32_insn (buf, insn);
19484 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19485 }
19486 else
19487 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19488 pc_rel = 1;
19489 break;
19490 case T_MNEM_bcond:
19491 if (fragp->fr_var == 4)
19492 {
19493 insn = THUMB_OP32(opcode);
19494 insn |= (old_op & 0xf00) << 14;
19495 put_thumb32_insn (buf, insn);
19496 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19497 }
19498 else
19499 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19500 pc_rel = 1;
19501 break;
19502 case T_MNEM_add_sp:
19503 case T_MNEM_add_pc:
19504 case T_MNEM_inc_sp:
19505 case T_MNEM_dec_sp:
19506 if (fragp->fr_var == 4)
19507 {
19508 /* ??? Choose between add and addw. */
19509 insn = THUMB_OP32 (opcode);
19510 insn |= (old_op & 0xf0) << 4;
19511 put_thumb32_insn (buf, insn);
19512 if (opcode == T_MNEM_add_pc)
19513 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19514 else
19515 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19516 }
19517 else
19518 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19519 pc_rel = 0;
19520 break;
19521
19522 case T_MNEM_addi:
19523 case T_MNEM_addis:
19524 case T_MNEM_subi:
19525 case T_MNEM_subis:
19526 if (fragp->fr_var == 4)
19527 {
19528 insn = THUMB_OP32 (opcode);
19529 insn |= (old_op & 0xf0) << 4;
19530 insn |= (old_op & 0xf) << 16;
19531 put_thumb32_insn (buf, insn);
19532 if (insn & (1 << 20))
19533 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19534 else
19535 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19536 }
19537 else
19538 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19539 pc_rel = 0;
19540 break;
19541 default:
19542 abort ();
19543 }
19544 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19545 (enum bfd_reloc_code_real) reloc_type);
19546 fixp->fx_file = fragp->fr_file;
19547 fixp->fx_line = fragp->fr_line;
19548 fragp->fr_fix += fragp->fr_var;
19549 }
19550
19551 /* Return the size of a relaxable immediate operand instruction.
19552 SHIFT and SIZE specify the form of the allowable immediate. */
19553 static int
19554 relax_immediate (fragS *fragp, int size, int shift)
19555 {
19556 offsetT offset;
19557 offsetT mask;
19558 offsetT low;
19559
19560 /* ??? Should be able to do better than this. */
19561 if (fragp->fr_symbol)
19562 return 4;
19563
19564 low = (1 << shift) - 1;
19565 mask = (1 << (shift + size)) - (1 << shift);
19566 offset = fragp->fr_offset;
19567 /* Force misaligned offsets to 32-bit variant. */
19568 if (offset & low)
19569 return 4;
19570 if (offset & ~mask)
19571 return 4;
19572 return 2;
19573 }
19574
19575 /* Get the address of a symbol during relaxation. */
19576 static addressT
19577 relaxed_symbol_addr (fragS *fragp, long stretch)
19578 {
19579 fragS *sym_frag;
19580 addressT addr;
19581 symbolS *sym;
19582
19583 sym = fragp->fr_symbol;
19584 sym_frag = symbol_get_frag (sym);
19585 know (S_GET_SEGMENT (sym) != absolute_section
19586 || sym_frag == &zero_address_frag);
19587 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19588
19589 /* If frag has yet to be reached on this pass, assume it will
19590 move by STRETCH just as we did. If this is not so, it will
19591 be because some frag between grows, and that will force
19592 another pass. */
19593
19594 if (stretch != 0
19595 && sym_frag->relax_marker != fragp->relax_marker)
19596 {
19597 fragS *f;
19598
19599 /* Adjust stretch for any alignment frag. Note that if have
19600 been expanding the earlier code, the symbol may be
19601 defined in what appears to be an earlier frag. FIXME:
19602 This doesn't handle the fr_subtype field, which specifies
19603 a maximum number of bytes to skip when doing an
19604 alignment. */
19605 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19606 {
19607 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19608 {
19609 if (stretch < 0)
19610 stretch = - ((- stretch)
19611 & ~ ((1 << (int) f->fr_offset) - 1));
19612 else
19613 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19614 if (stretch == 0)
19615 break;
19616 }
19617 }
19618 if (f != NULL)
19619 addr += stretch;
19620 }
19621
19622 return addr;
19623 }
19624
19625 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19626 load. */
19627 static int
19628 relax_adr (fragS *fragp, asection *sec, long stretch)
19629 {
19630 addressT addr;
19631 offsetT val;
19632
19633 /* Assume worst case for symbols not known to be in the same section. */
19634 if (fragp->fr_symbol == NULL
19635 || !S_IS_DEFINED (fragp->fr_symbol)
19636 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19637 || S_IS_WEAK (fragp->fr_symbol))
19638 return 4;
19639
19640 val = relaxed_symbol_addr (fragp, stretch);
19641 addr = fragp->fr_address + fragp->fr_fix;
19642 addr = (addr + 4) & ~3;
19643 /* Force misaligned targets to 32-bit variant. */
19644 if (val & 3)
19645 return 4;
19646 val -= addr;
19647 if (val < 0 || val > 1020)
19648 return 4;
19649 return 2;
19650 }
19651
19652 /* Return the size of a relaxable add/sub immediate instruction. */
19653 static int
19654 relax_addsub (fragS *fragp, asection *sec)
19655 {
19656 char *buf;
19657 int op;
19658
19659 buf = fragp->fr_literal + fragp->fr_fix;
19660 op = bfd_get_16(sec->owner, buf);
19661 if ((op & 0xf) == ((op >> 4) & 0xf))
19662 return relax_immediate (fragp, 8, 0);
19663 else
19664 return relax_immediate (fragp, 3, 0);
19665 }
19666
19667
19668 /* Return the size of a relaxable branch instruction. BITS is the
19669 size of the offset field in the narrow instruction. */
19670
19671 static int
19672 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19673 {
19674 addressT addr;
19675 offsetT val;
19676 offsetT limit;
19677
19678 /* Assume worst case for symbols not known to be in the same section. */
19679 if (!S_IS_DEFINED (fragp->fr_symbol)
19680 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19681 || S_IS_WEAK (fragp->fr_symbol))
19682 return 4;
19683
19684 #ifdef OBJ_ELF
19685 if (S_IS_DEFINED (fragp->fr_symbol)
19686 && ARM_IS_FUNC (fragp->fr_symbol))
19687 return 4;
19688
19689 /* PR 12532. Global symbols with default visibility might
19690 be preempted, so do not relax relocations to them. */
19691 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19692 && (! S_IS_LOCAL (fragp->fr_symbol)))
19693 return 4;
19694 #endif
19695
19696 val = relaxed_symbol_addr (fragp, stretch);
19697 addr = fragp->fr_address + fragp->fr_fix + 4;
19698 val -= addr;
19699
19700 /* Offset is a signed value *2 */
19701 limit = 1 << bits;
19702 if (val >= limit || val < -limit)
19703 return 4;
19704 return 2;
19705 }
19706
19707
19708 /* Relax a machine dependent frag. This returns the amount by which
19709 the current size of the frag should change. */
19710
19711 int
19712 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19713 {
19714 int oldsize;
19715 int newsize;
19716
19717 oldsize = fragp->fr_var;
19718 switch (fragp->fr_subtype)
19719 {
19720 case T_MNEM_ldr_pc2:
19721 newsize = relax_adr (fragp, sec, stretch);
19722 break;
19723 case T_MNEM_ldr_pc:
19724 case T_MNEM_ldr_sp:
19725 case T_MNEM_str_sp:
19726 newsize = relax_immediate (fragp, 8, 2);
19727 break;
19728 case T_MNEM_ldr:
19729 case T_MNEM_str:
19730 newsize = relax_immediate (fragp, 5, 2);
19731 break;
19732 case T_MNEM_ldrh:
19733 case T_MNEM_strh:
19734 newsize = relax_immediate (fragp, 5, 1);
19735 break;
19736 case T_MNEM_ldrb:
19737 case T_MNEM_strb:
19738 newsize = relax_immediate (fragp, 5, 0);
19739 break;
19740 case T_MNEM_adr:
19741 newsize = relax_adr (fragp, sec, stretch);
19742 break;
19743 case T_MNEM_mov:
19744 case T_MNEM_movs:
19745 case T_MNEM_cmp:
19746 case T_MNEM_cmn:
19747 newsize = relax_immediate (fragp, 8, 0);
19748 break;
19749 case T_MNEM_b:
19750 newsize = relax_branch (fragp, sec, 11, stretch);
19751 break;
19752 case T_MNEM_bcond:
19753 newsize = relax_branch (fragp, sec, 8, stretch);
19754 break;
19755 case T_MNEM_add_sp:
19756 case T_MNEM_add_pc:
19757 newsize = relax_immediate (fragp, 8, 2);
19758 break;
19759 case T_MNEM_inc_sp:
19760 case T_MNEM_dec_sp:
19761 newsize = relax_immediate (fragp, 7, 2);
19762 break;
19763 case T_MNEM_addi:
19764 case T_MNEM_addis:
19765 case T_MNEM_subi:
19766 case T_MNEM_subis:
19767 newsize = relax_addsub (fragp, sec);
19768 break;
19769 default:
19770 abort ();
19771 }
19772
19773 fragp->fr_var = newsize;
19774 /* Freeze wide instructions that are at or before the same location as
19775 in the previous pass. This avoids infinite loops.
19776 Don't freeze them unconditionally because targets may be artificially
19777 misaligned by the expansion of preceding frags. */
19778 if (stretch <= 0 && newsize > 2)
19779 {
19780 md_convert_frag (sec->owner, sec, fragp);
19781 frag_wane (fragp);
19782 }
19783
19784 return newsize - oldsize;
19785 }
19786
19787 /* Round up a section size to the appropriate boundary. */
19788
19789 valueT
19790 md_section_align (segT segment ATTRIBUTE_UNUSED,
19791 valueT size)
19792 {
19793 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19794 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19795 {
19796 /* For a.out, force the section size to be aligned. If we don't do
19797 this, BFD will align it for us, but it will not write out the
19798 final bytes of the section. This may be a bug in BFD, but it is
19799 easier to fix it here since that is how the other a.out targets
19800 work. */
19801 int align;
19802
19803 align = bfd_get_section_alignment (stdoutput, segment);
19804 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19805 }
19806 #endif
19807
19808 return size;
19809 }
19810
19811 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19812 of an rs_align_code fragment. */
19813
19814 void
19815 arm_handle_align (fragS * fragP)
19816 {
19817 static char const arm_noop[2][2][4] =
19818 {
19819 { /* ARMv1 */
19820 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19821 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19822 },
19823 { /* ARMv6k */
19824 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19825 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19826 },
19827 };
19828 static char const thumb_noop[2][2][2] =
19829 {
19830 { /* Thumb-1 */
19831 {0xc0, 0x46}, /* LE */
19832 {0x46, 0xc0}, /* BE */
19833 },
19834 { /* Thumb-2 */
19835 {0x00, 0xbf}, /* LE */
19836 {0xbf, 0x00} /* BE */
19837 }
19838 };
19839 static char const wide_thumb_noop[2][4] =
19840 { /* Wide Thumb-2 */
19841 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19842 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19843 };
19844
19845 unsigned bytes, fix, noop_size;
19846 char * p;
19847 const char * noop;
19848 const char *narrow_noop = NULL;
19849 #ifdef OBJ_ELF
19850 enum mstate state;
19851 #endif
19852
19853 if (fragP->fr_type != rs_align_code)
19854 return;
19855
19856 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19857 p = fragP->fr_literal + fragP->fr_fix;
19858 fix = 0;
19859
19860 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19861 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19862
19863 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19864
19865 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19866 {
19867 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19868 {
19869 narrow_noop = thumb_noop[1][target_big_endian];
19870 noop = wide_thumb_noop[target_big_endian];
19871 }
19872 else
19873 noop = thumb_noop[0][target_big_endian];
19874 noop_size = 2;
19875 #ifdef OBJ_ELF
19876 state = MAP_THUMB;
19877 #endif
19878 }
19879 else
19880 {
19881 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19882 [target_big_endian];
19883 noop_size = 4;
19884 #ifdef OBJ_ELF
19885 state = MAP_ARM;
19886 #endif
19887 }
19888
19889 fragP->fr_var = noop_size;
19890
19891 if (bytes & (noop_size - 1))
19892 {
19893 fix = bytes & (noop_size - 1);
19894 #ifdef OBJ_ELF
19895 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19896 #endif
19897 memset (p, 0, fix);
19898 p += fix;
19899 bytes -= fix;
19900 }
19901
19902 if (narrow_noop)
19903 {
19904 if (bytes & noop_size)
19905 {
19906 /* Insert a narrow noop. */
19907 memcpy (p, narrow_noop, noop_size);
19908 p += noop_size;
19909 bytes -= noop_size;
19910 fix += noop_size;
19911 }
19912
19913 /* Use wide noops for the remainder */
19914 noop_size = 4;
19915 }
19916
19917 while (bytes >= noop_size)
19918 {
19919 memcpy (p, noop, noop_size);
19920 p += noop_size;
19921 bytes -= noop_size;
19922 fix += noop_size;
19923 }
19924
19925 fragP->fr_fix += fix;
19926 }
19927
19928 /* Called from md_do_align. Used to create an alignment
19929 frag in a code section. */
19930
19931 void
19932 arm_frag_align_code (int n, int max)
19933 {
19934 char * p;
19935
19936 /* We assume that there will never be a requirement
19937 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19938 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19939 {
19940 char err_msg[128];
19941
19942 sprintf (err_msg,
19943 _("alignments greater than %d bytes not supported in .text sections."),
19944 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19945 as_fatal ("%s", err_msg);
19946 }
19947
19948 p = frag_var (rs_align_code,
19949 MAX_MEM_FOR_RS_ALIGN_CODE,
19950 1,
19951 (relax_substateT) max,
19952 (symbolS *) NULL,
19953 (offsetT) n,
19954 (char *) NULL);
19955 *p = 0;
19956 }
19957
19958 /* Perform target specific initialisation of a frag.
19959 Note - despite the name this initialisation is not done when the frag
19960 is created, but only when its type is assigned. A frag can be created
19961 and used a long time before its type is set, so beware of assuming that
19962 this initialisationis performed first. */
19963
19964 #ifndef OBJ_ELF
19965 void
19966 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19967 {
19968 /* Record whether this frag is in an ARM or a THUMB area. */
19969 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19970 }
19971
19972 #else /* OBJ_ELF is defined. */
19973 void
19974 arm_init_frag (fragS * fragP, int max_chars)
19975 {
19976 /* If the current ARM vs THUMB mode has not already
19977 been recorded into this frag then do so now. */
19978 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19979 {
19980 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19981
19982 /* Record a mapping symbol for alignment frags. We will delete this
19983 later if the alignment ends up empty. */
19984 switch (fragP->fr_type)
19985 {
19986 case rs_align:
19987 case rs_align_test:
19988 case rs_fill:
19989 mapping_state_2 (MAP_DATA, max_chars);
19990 break;
19991 case rs_align_code:
19992 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19993 break;
19994 default:
19995 break;
19996 }
19997 }
19998 }
19999
20000 /* When we change sections we need to issue a new mapping symbol. */
20001
20002 void
20003 arm_elf_change_section (void)
20004 {
20005 /* Link an unlinked unwind index table section to the .text section. */
20006 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20007 && elf_linked_to_section (now_seg) == NULL)
20008 elf_linked_to_section (now_seg) = text_section;
20009 }
20010
20011 int
20012 arm_elf_section_type (const char * str, size_t len)
20013 {
20014 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20015 return SHT_ARM_EXIDX;
20016
20017 return -1;
20018 }
20019 \f
20020 /* Code to deal with unwinding tables. */
20021
20022 static void add_unwind_adjustsp (offsetT);
20023
20024 /* Generate any deferred unwind frame offset. */
20025
20026 static void
20027 flush_pending_unwind (void)
20028 {
20029 offsetT offset;
20030
20031 offset = unwind.pending_offset;
20032 unwind.pending_offset = 0;
20033 if (offset != 0)
20034 add_unwind_adjustsp (offset);
20035 }
20036
20037 /* Add an opcode to this list for this function. Two-byte opcodes should
20038 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20039 order. */
20040
20041 static void
20042 add_unwind_opcode (valueT op, int length)
20043 {
20044 /* Add any deferred stack adjustment. */
20045 if (unwind.pending_offset)
20046 flush_pending_unwind ();
20047
20048 unwind.sp_restored = 0;
20049
20050 if (unwind.opcode_count + length > unwind.opcode_alloc)
20051 {
20052 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20053 if (unwind.opcodes)
20054 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20055 unwind.opcode_alloc);
20056 else
20057 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20058 }
20059 while (length > 0)
20060 {
20061 length--;
20062 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20063 op >>= 8;
20064 unwind.opcode_count++;
20065 }
20066 }
20067
20068 /* Add unwind opcodes to adjust the stack pointer. */
20069
20070 static void
20071 add_unwind_adjustsp (offsetT offset)
20072 {
20073 valueT op;
20074
20075 if (offset > 0x200)
20076 {
20077 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20078 char bytes[5];
20079 int n;
20080 valueT o;
20081
20082 /* Long form: 0xb2, uleb128. */
20083 /* This might not fit in a word so add the individual bytes,
20084 remembering the list is built in reverse order. */
20085 o = (valueT) ((offset - 0x204) >> 2);
20086 if (o == 0)
20087 add_unwind_opcode (0, 1);
20088
20089 /* Calculate the uleb128 encoding of the offset. */
20090 n = 0;
20091 while (o)
20092 {
20093 bytes[n] = o & 0x7f;
20094 o >>= 7;
20095 if (o)
20096 bytes[n] |= 0x80;
20097 n++;
20098 }
20099 /* Add the insn. */
20100 for (; n; n--)
20101 add_unwind_opcode (bytes[n - 1], 1);
20102 add_unwind_opcode (0xb2, 1);
20103 }
20104 else if (offset > 0x100)
20105 {
20106 /* Two short opcodes. */
20107 add_unwind_opcode (0x3f, 1);
20108 op = (offset - 0x104) >> 2;
20109 add_unwind_opcode (op, 1);
20110 }
20111 else if (offset > 0)
20112 {
20113 /* Short opcode. */
20114 op = (offset - 4) >> 2;
20115 add_unwind_opcode (op, 1);
20116 }
20117 else if (offset < 0)
20118 {
20119 offset = -offset;
20120 while (offset > 0x100)
20121 {
20122 add_unwind_opcode (0x7f, 1);
20123 offset -= 0x100;
20124 }
20125 op = ((offset - 4) >> 2) | 0x40;
20126 add_unwind_opcode (op, 1);
20127 }
20128 }
20129
20130 /* Finish the list of unwind opcodes for this function. */
20131 static void
20132 finish_unwind_opcodes (void)
20133 {
20134 valueT op;
20135
20136 if (unwind.fp_used)
20137 {
20138 /* Adjust sp as necessary. */
20139 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20140 flush_pending_unwind ();
20141
20142 /* After restoring sp from the frame pointer. */
20143 op = 0x90 | unwind.fp_reg;
20144 add_unwind_opcode (op, 1);
20145 }
20146 else
20147 flush_pending_unwind ();
20148 }
20149
20150
20151 /* Start an exception table entry. If idx is nonzero this is an index table
20152 entry. */
20153
20154 static void
20155 start_unwind_section (const segT text_seg, int idx)
20156 {
20157 const char * text_name;
20158 const char * prefix;
20159 const char * prefix_once;
20160 const char * group_name;
20161 size_t prefix_len;
20162 size_t text_len;
20163 char * sec_name;
20164 size_t sec_name_len;
20165 int type;
20166 int flags;
20167 int linkonce;
20168
20169 if (idx)
20170 {
20171 prefix = ELF_STRING_ARM_unwind;
20172 prefix_once = ELF_STRING_ARM_unwind_once;
20173 type = SHT_ARM_EXIDX;
20174 }
20175 else
20176 {
20177 prefix = ELF_STRING_ARM_unwind_info;
20178 prefix_once = ELF_STRING_ARM_unwind_info_once;
20179 type = SHT_PROGBITS;
20180 }
20181
20182 text_name = segment_name (text_seg);
20183 if (streq (text_name, ".text"))
20184 text_name = "";
20185
20186 if (strncmp (text_name, ".gnu.linkonce.t.",
20187 strlen (".gnu.linkonce.t.")) == 0)
20188 {
20189 prefix = prefix_once;
20190 text_name += strlen (".gnu.linkonce.t.");
20191 }
20192
20193 prefix_len = strlen (prefix);
20194 text_len = strlen (text_name);
20195 sec_name_len = prefix_len + text_len;
20196 sec_name = (char *) xmalloc (sec_name_len + 1);
20197 memcpy (sec_name, prefix, prefix_len);
20198 memcpy (sec_name + prefix_len, text_name, text_len);
20199 sec_name[prefix_len + text_len] = '\0';
20200
20201 flags = SHF_ALLOC;
20202 linkonce = 0;
20203 group_name = 0;
20204
20205 /* Handle COMDAT group. */
20206 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20207 {
20208 group_name = elf_group_name (text_seg);
20209 if (group_name == NULL)
20210 {
20211 as_bad (_("Group section `%s' has no group signature"),
20212 segment_name (text_seg));
20213 ignore_rest_of_line ();
20214 return;
20215 }
20216 flags |= SHF_GROUP;
20217 linkonce = 1;
20218 }
20219
20220 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20221
20222 /* Set the section link for index tables. */
20223 if (idx)
20224 elf_linked_to_section (now_seg) = text_seg;
20225 }
20226
20227
20228 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20229 personality routine data. Returns zero, or the index table value for
20230 and inline entry. */
20231
20232 static valueT
20233 create_unwind_entry (int have_data)
20234 {
20235 int size;
20236 addressT where;
20237 char *ptr;
20238 /* The current word of data. */
20239 valueT data;
20240 /* The number of bytes left in this word. */
20241 int n;
20242
20243 finish_unwind_opcodes ();
20244
20245 /* Remember the current text section. */
20246 unwind.saved_seg = now_seg;
20247 unwind.saved_subseg = now_subseg;
20248
20249 start_unwind_section (now_seg, 0);
20250
20251 if (unwind.personality_routine == NULL)
20252 {
20253 if (unwind.personality_index == -2)
20254 {
20255 if (have_data)
20256 as_bad (_("handlerdata in cantunwind frame"));
20257 return 1; /* EXIDX_CANTUNWIND. */
20258 }
20259
20260 /* Use a default personality routine if none is specified. */
20261 if (unwind.personality_index == -1)
20262 {
20263 if (unwind.opcode_count > 3)
20264 unwind.personality_index = 1;
20265 else
20266 unwind.personality_index = 0;
20267 }
20268
20269 /* Space for the personality routine entry. */
20270 if (unwind.personality_index == 0)
20271 {
20272 if (unwind.opcode_count > 3)
20273 as_bad (_("too many unwind opcodes for personality routine 0"));
20274
20275 if (!have_data)
20276 {
20277 /* All the data is inline in the index table. */
20278 data = 0x80;
20279 n = 3;
20280 while (unwind.opcode_count > 0)
20281 {
20282 unwind.opcode_count--;
20283 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20284 n--;
20285 }
20286
20287 /* Pad with "finish" opcodes. */
20288 while (n--)
20289 data = (data << 8) | 0xb0;
20290
20291 return data;
20292 }
20293 size = 0;
20294 }
20295 else
20296 /* We get two opcodes "free" in the first word. */
20297 size = unwind.opcode_count - 2;
20298 }
20299 else
20300 {
20301 gas_assert (unwind.personality_index == -1);
20302
20303 /* An extra byte is required for the opcode count. */
20304 size = unwind.opcode_count + 1;
20305 }
20306
20307 size = (size + 3) >> 2;
20308 if (size > 0xff)
20309 as_bad (_("too many unwind opcodes"));
20310
20311 frag_align (2, 0, 0);
20312 record_alignment (now_seg, 2);
20313 unwind.table_entry = expr_build_dot ();
20314
20315 /* Allocate the table entry. */
20316 ptr = frag_more ((size << 2) + 4);
20317 /* PR 13449: Zero the table entries in case some of them are not used. */
20318 memset (ptr, 0, (size << 2) + 4);
20319 where = frag_now_fix () - ((size << 2) + 4);
20320
20321 switch (unwind.personality_index)
20322 {
20323 case -1:
20324 /* ??? Should this be a PLT generating relocation? */
20325 /* Custom personality routine. */
20326 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20327 BFD_RELOC_ARM_PREL31);
20328
20329 where += 4;
20330 ptr += 4;
20331
20332 /* Set the first byte to the number of additional words. */
20333 data = size > 0 ? size - 1 : 0;
20334 n = 3;
20335 break;
20336
20337 /* ABI defined personality routines. */
20338 case 0:
20339 /* Three opcodes bytes are packed into the first word. */
20340 data = 0x80;
20341 n = 3;
20342 break;
20343
20344 case 1:
20345 case 2:
20346 /* The size and first two opcode bytes go in the first word. */
20347 data = ((0x80 + unwind.personality_index) << 8) | size;
20348 n = 2;
20349 break;
20350
20351 default:
20352 /* Should never happen. */
20353 abort ();
20354 }
20355
20356 /* Pack the opcodes into words (MSB first), reversing the list at the same
20357 time. */
20358 while (unwind.opcode_count > 0)
20359 {
20360 if (n == 0)
20361 {
20362 md_number_to_chars (ptr, data, 4);
20363 ptr += 4;
20364 n = 4;
20365 data = 0;
20366 }
20367 unwind.opcode_count--;
20368 n--;
20369 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20370 }
20371
20372 /* Finish off the last word. */
20373 if (n < 4)
20374 {
20375 /* Pad with "finish" opcodes. */
20376 while (n--)
20377 data = (data << 8) | 0xb0;
20378
20379 md_number_to_chars (ptr, data, 4);
20380 }
20381
20382 if (!have_data)
20383 {
20384 /* Add an empty descriptor if there is no user-specified data. */
20385 ptr = frag_more (4);
20386 md_number_to_chars (ptr, 0, 4);
20387 }
20388
20389 return 0;
20390 }
20391
20392
20393 /* Initialize the DWARF-2 unwind information for this procedure. */
20394
20395 void
20396 tc_arm_frame_initial_instructions (void)
20397 {
20398 cfi_add_CFA_def_cfa (REG_SP, 0);
20399 }
20400 #endif /* OBJ_ELF */
20401
20402 /* Convert REGNAME to a DWARF-2 register number. */
20403
20404 int
20405 tc_arm_regname_to_dw2regnum (char *regname)
20406 {
20407 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20408
20409 if (reg == FAIL)
20410 return -1;
20411
20412 return reg;
20413 }
20414
20415 #ifdef TE_PE
20416 void
20417 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20418 {
20419 expressionS exp;
20420
20421 exp.X_op = O_secrel;
20422 exp.X_add_symbol = symbol;
20423 exp.X_add_number = 0;
20424 emit_expr (&exp, size);
20425 }
20426 #endif
20427
20428 /* MD interface: Symbol and relocation handling. */
20429
20430 /* Return the address within the segment that a PC-relative fixup is
20431 relative to. For ARM, PC-relative fixups applied to instructions
20432 are generally relative to the location of the fixup plus 8 bytes.
20433 Thumb branches are offset by 4, and Thumb loads relative to PC
20434 require special handling. */
20435
20436 long
20437 md_pcrel_from_section (fixS * fixP, segT seg)
20438 {
20439 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20440
20441 /* If this is pc-relative and we are going to emit a relocation
20442 then we just want to put out any pipeline compensation that the linker
20443 will need. Otherwise we want to use the calculated base.
20444 For WinCE we skip the bias for externals as well, since this
20445 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20446 if (fixP->fx_pcrel
20447 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20448 || (arm_force_relocation (fixP)
20449 #ifdef TE_WINCE
20450 && !S_IS_EXTERNAL (fixP->fx_addsy)
20451 #endif
20452 )))
20453 base = 0;
20454
20455
20456 switch (fixP->fx_r_type)
20457 {
20458 /* PC relative addressing on the Thumb is slightly odd as the
20459 bottom two bits of the PC are forced to zero for the
20460 calculation. This happens *after* application of the
20461 pipeline offset. However, Thumb adrl already adjusts for
20462 this, so we need not do it again. */
20463 case BFD_RELOC_ARM_THUMB_ADD:
20464 return base & ~3;
20465
20466 case BFD_RELOC_ARM_THUMB_OFFSET:
20467 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20468 case BFD_RELOC_ARM_T32_ADD_PC12:
20469 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20470 return (base + 4) & ~3;
20471
20472 /* Thumb branches are simply offset by +4. */
20473 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20474 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20475 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20476 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20477 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20478 return base + 4;
20479
20480 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20481 if (fixP->fx_addsy
20482 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20483 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20484 && ARM_IS_FUNC (fixP->fx_addsy)
20485 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20486 base = fixP->fx_where + fixP->fx_frag->fr_address;
20487 return base + 4;
20488
20489 /* BLX is like branches above, but forces the low two bits of PC to
20490 zero. */
20491 case BFD_RELOC_THUMB_PCREL_BLX:
20492 if (fixP->fx_addsy
20493 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20494 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20495 && THUMB_IS_FUNC (fixP->fx_addsy)
20496 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20497 base = fixP->fx_where + fixP->fx_frag->fr_address;
20498 return (base + 4) & ~3;
20499
20500 /* ARM mode branches are offset by +8. However, the Windows CE
20501 loader expects the relocation not to take this into account. */
20502 case BFD_RELOC_ARM_PCREL_BLX:
20503 if (fixP->fx_addsy
20504 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20505 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20506 && ARM_IS_FUNC (fixP->fx_addsy)
20507 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20508 base = fixP->fx_where + fixP->fx_frag->fr_address;
20509 return base + 8;
20510
20511 case BFD_RELOC_ARM_PCREL_CALL:
20512 if (fixP->fx_addsy
20513 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20514 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20515 && THUMB_IS_FUNC (fixP->fx_addsy)
20516 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20517 base = fixP->fx_where + fixP->fx_frag->fr_address;
20518 return base + 8;
20519
20520 case BFD_RELOC_ARM_PCREL_BRANCH:
20521 case BFD_RELOC_ARM_PCREL_JUMP:
20522 case BFD_RELOC_ARM_PLT32:
20523 #ifdef TE_WINCE
20524 /* When handling fixups immediately, because we have already
20525 discovered the value of a symbol, or the address of the frag involved
20526 we must account for the offset by +8, as the OS loader will never see the reloc.
20527 see fixup_segment() in write.c
20528 The S_IS_EXTERNAL test handles the case of global symbols.
20529 Those need the calculated base, not just the pipe compensation the linker will need. */
20530 if (fixP->fx_pcrel
20531 && fixP->fx_addsy != NULL
20532 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20533 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20534 return base + 8;
20535 return base;
20536 #else
20537 return base + 8;
20538 #endif
20539
20540
20541 /* ARM mode loads relative to PC are also offset by +8. Unlike
20542 branches, the Windows CE loader *does* expect the relocation
20543 to take this into account. */
20544 case BFD_RELOC_ARM_OFFSET_IMM:
20545 case BFD_RELOC_ARM_OFFSET_IMM8:
20546 case BFD_RELOC_ARM_HWLITERAL:
20547 case BFD_RELOC_ARM_LITERAL:
20548 case BFD_RELOC_ARM_CP_OFF_IMM:
20549 return base + 8;
20550
20551
20552 /* Other PC-relative relocations are un-offset. */
20553 default:
20554 return base;
20555 }
20556 }
20557
20558 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20559 Otherwise we have no need to default values of symbols. */
20560
20561 symbolS *
20562 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20563 {
20564 #ifdef OBJ_ELF
20565 if (name[0] == '_' && name[1] == 'G'
20566 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20567 {
20568 if (!GOT_symbol)
20569 {
20570 if (symbol_find (name))
20571 as_bad (_("GOT already in the symbol table"));
20572
20573 GOT_symbol = symbol_new (name, undefined_section,
20574 (valueT) 0, & zero_address_frag);
20575 }
20576
20577 return GOT_symbol;
20578 }
20579 #endif
20580
20581 return NULL;
20582 }
20583
20584 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20585 computed as two separate immediate values, added together. We
20586 already know that this value cannot be computed by just one ARM
20587 instruction. */
20588
20589 static unsigned int
20590 validate_immediate_twopart (unsigned int val,
20591 unsigned int * highpart)
20592 {
20593 unsigned int a;
20594 unsigned int i;
20595
20596 for (i = 0; i < 32; i += 2)
20597 if (((a = rotate_left (val, i)) & 0xff) != 0)
20598 {
20599 if (a & 0xff00)
20600 {
20601 if (a & ~ 0xffff)
20602 continue;
20603 * highpart = (a >> 8) | ((i + 24) << 7);
20604 }
20605 else if (a & 0xff0000)
20606 {
20607 if (a & 0xff000000)
20608 continue;
20609 * highpart = (a >> 16) | ((i + 16) << 7);
20610 }
20611 else
20612 {
20613 gas_assert (a & 0xff000000);
20614 * highpart = (a >> 24) | ((i + 8) << 7);
20615 }
20616
20617 return (a & 0xff) | (i << 7);
20618 }
20619
20620 return FAIL;
20621 }
20622
20623 static int
20624 validate_offset_imm (unsigned int val, int hwse)
20625 {
20626 if ((hwse && val > 255) || val > 4095)
20627 return FAIL;
20628 return val;
20629 }
20630
20631 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20632 negative immediate constant by altering the instruction. A bit of
20633 a hack really.
20634 MOV <-> MVN
20635 AND <-> BIC
20636 ADC <-> SBC
20637 by inverting the second operand, and
20638 ADD <-> SUB
20639 CMP <-> CMN
20640 by negating the second operand. */
20641
20642 static int
20643 negate_data_op (unsigned long * instruction,
20644 unsigned long value)
20645 {
20646 int op, new_inst;
20647 unsigned long negated, inverted;
20648
20649 negated = encode_arm_immediate (-value);
20650 inverted = encode_arm_immediate (~value);
20651
20652 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20653 switch (op)
20654 {
20655 /* First negates. */
20656 case OPCODE_SUB: /* ADD <-> SUB */
20657 new_inst = OPCODE_ADD;
20658 value = negated;
20659 break;
20660
20661 case OPCODE_ADD:
20662 new_inst = OPCODE_SUB;
20663 value = negated;
20664 break;
20665
20666 case OPCODE_CMP: /* CMP <-> CMN */
20667 new_inst = OPCODE_CMN;
20668 value = negated;
20669 break;
20670
20671 case OPCODE_CMN:
20672 new_inst = OPCODE_CMP;
20673 value = negated;
20674 break;
20675
20676 /* Now Inverted ops. */
20677 case OPCODE_MOV: /* MOV <-> MVN */
20678 new_inst = OPCODE_MVN;
20679 value = inverted;
20680 break;
20681
20682 case OPCODE_MVN:
20683 new_inst = OPCODE_MOV;
20684 value = inverted;
20685 break;
20686
20687 case OPCODE_AND: /* AND <-> BIC */
20688 new_inst = OPCODE_BIC;
20689 value = inverted;
20690 break;
20691
20692 case OPCODE_BIC:
20693 new_inst = OPCODE_AND;
20694 value = inverted;
20695 break;
20696
20697 case OPCODE_ADC: /* ADC <-> SBC */
20698 new_inst = OPCODE_SBC;
20699 value = inverted;
20700 break;
20701
20702 case OPCODE_SBC:
20703 new_inst = OPCODE_ADC;
20704 value = inverted;
20705 break;
20706
20707 /* We cannot do anything. */
20708 default:
20709 return FAIL;
20710 }
20711
20712 if (value == (unsigned) FAIL)
20713 return FAIL;
20714
20715 *instruction &= OPCODE_MASK;
20716 *instruction |= new_inst << DATA_OP_SHIFT;
20717 return value;
20718 }
20719
20720 /* Like negate_data_op, but for Thumb-2. */
20721
20722 static unsigned int
20723 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20724 {
20725 int op, new_inst;
20726 int rd;
20727 unsigned int negated, inverted;
20728
20729 negated = encode_thumb32_immediate (-value);
20730 inverted = encode_thumb32_immediate (~value);
20731
20732 rd = (*instruction >> 8) & 0xf;
20733 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20734 switch (op)
20735 {
20736 /* ADD <-> SUB. Includes CMP <-> CMN. */
20737 case T2_OPCODE_SUB:
20738 new_inst = T2_OPCODE_ADD;
20739 value = negated;
20740 break;
20741
20742 case T2_OPCODE_ADD:
20743 new_inst = T2_OPCODE_SUB;
20744 value = negated;
20745 break;
20746
20747 /* ORR <-> ORN. Includes MOV <-> MVN. */
20748 case T2_OPCODE_ORR:
20749 new_inst = T2_OPCODE_ORN;
20750 value = inverted;
20751 break;
20752
20753 case T2_OPCODE_ORN:
20754 new_inst = T2_OPCODE_ORR;
20755 value = inverted;
20756 break;
20757
20758 /* AND <-> BIC. TST has no inverted equivalent. */
20759 case T2_OPCODE_AND:
20760 new_inst = T2_OPCODE_BIC;
20761 if (rd == 15)
20762 value = FAIL;
20763 else
20764 value = inverted;
20765 break;
20766
20767 case T2_OPCODE_BIC:
20768 new_inst = T2_OPCODE_AND;
20769 value = inverted;
20770 break;
20771
20772 /* ADC <-> SBC */
20773 case T2_OPCODE_ADC:
20774 new_inst = T2_OPCODE_SBC;
20775 value = inverted;
20776 break;
20777
20778 case T2_OPCODE_SBC:
20779 new_inst = T2_OPCODE_ADC;
20780 value = inverted;
20781 break;
20782
20783 /* We cannot do anything. */
20784 default:
20785 return FAIL;
20786 }
20787
20788 if (value == (unsigned int)FAIL)
20789 return FAIL;
20790
20791 *instruction &= T2_OPCODE_MASK;
20792 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20793 return value;
20794 }
20795
20796 /* Read a 32-bit thumb instruction from buf. */
20797 static unsigned long
20798 get_thumb32_insn (char * buf)
20799 {
20800 unsigned long insn;
20801 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20802 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20803
20804 return insn;
20805 }
20806
20807
20808 /* We usually want to set the low bit on the address of thumb function
20809 symbols. In particular .word foo - . should have the low bit set.
20810 Generic code tries to fold the difference of two symbols to
20811 a constant. Prevent this and force a relocation when the first symbols
20812 is a thumb function. */
20813
20814 bfd_boolean
20815 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20816 {
20817 if (op == O_subtract
20818 && l->X_op == O_symbol
20819 && r->X_op == O_symbol
20820 && THUMB_IS_FUNC (l->X_add_symbol))
20821 {
20822 l->X_op = O_subtract;
20823 l->X_op_symbol = r->X_add_symbol;
20824 l->X_add_number -= r->X_add_number;
20825 return TRUE;
20826 }
20827
20828 /* Process as normal. */
20829 return FALSE;
20830 }
20831
20832 /* Encode Thumb2 unconditional branches and calls. The encoding
20833 for the 2 are identical for the immediate values. */
20834
20835 static void
20836 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20837 {
20838 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20839 offsetT newval;
20840 offsetT newval2;
20841 addressT S, I1, I2, lo, hi;
20842
20843 S = (value >> 24) & 0x01;
20844 I1 = (value >> 23) & 0x01;
20845 I2 = (value >> 22) & 0x01;
20846 hi = (value >> 12) & 0x3ff;
20847 lo = (value >> 1) & 0x7ff;
20848 newval = md_chars_to_number (buf, THUMB_SIZE);
20849 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20850 newval |= (S << 10) | hi;
20851 newval2 &= ~T2I1I2MASK;
20852 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20853 md_number_to_chars (buf, newval, THUMB_SIZE);
20854 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20855 }
20856
20857 void
20858 md_apply_fix (fixS * fixP,
20859 valueT * valP,
20860 segT seg)
20861 {
20862 offsetT value = * valP;
20863 offsetT newval;
20864 unsigned int newimm;
20865 unsigned long temp;
20866 int sign;
20867 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20868
20869 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20870
20871 /* Note whether this will delete the relocation. */
20872
20873 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20874 fixP->fx_done = 1;
20875
20876 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20877 consistency with the behaviour on 32-bit hosts. Remember value
20878 for emit_reloc. */
20879 value &= 0xffffffff;
20880 value ^= 0x80000000;
20881 value -= 0x80000000;
20882
20883 *valP = value;
20884 fixP->fx_addnumber = value;
20885
20886 /* Same treatment for fixP->fx_offset. */
20887 fixP->fx_offset &= 0xffffffff;
20888 fixP->fx_offset ^= 0x80000000;
20889 fixP->fx_offset -= 0x80000000;
20890
20891 switch (fixP->fx_r_type)
20892 {
20893 case BFD_RELOC_NONE:
20894 /* This will need to go in the object file. */
20895 fixP->fx_done = 0;
20896 break;
20897
20898 case BFD_RELOC_ARM_IMMEDIATE:
20899 /* We claim that this fixup has been processed here,
20900 even if in fact we generate an error because we do
20901 not have a reloc for it, so tc_gen_reloc will reject it. */
20902 fixP->fx_done = 1;
20903
20904 if (fixP->fx_addsy)
20905 {
20906 const char *msg = 0;
20907
20908 if (! S_IS_DEFINED (fixP->fx_addsy))
20909 msg = _("undefined symbol %s used as an immediate value");
20910 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20911 msg = _("symbol %s is in a different section");
20912 else if (S_IS_WEAK (fixP->fx_addsy))
20913 msg = _("symbol %s is weak and may be overridden later");
20914
20915 if (msg)
20916 {
20917 as_bad_where (fixP->fx_file, fixP->fx_line,
20918 msg, S_GET_NAME (fixP->fx_addsy));
20919 break;
20920 }
20921 }
20922
20923 temp = md_chars_to_number (buf, INSN_SIZE);
20924
20925 /* If the offset is negative, we should use encoding A2 for ADR. */
20926 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20927 newimm = negate_data_op (&temp, value);
20928 else
20929 {
20930 newimm = encode_arm_immediate (value);
20931
20932 /* If the instruction will fail, see if we can fix things up by
20933 changing the opcode. */
20934 if (newimm == (unsigned int) FAIL)
20935 newimm = negate_data_op (&temp, value);
20936 }
20937
20938 if (newimm == (unsigned int) FAIL)
20939 {
20940 as_bad_where (fixP->fx_file, fixP->fx_line,
20941 _("invalid constant (%lx) after fixup"),
20942 (unsigned long) value);
20943 break;
20944 }
20945
20946 newimm |= (temp & 0xfffff000);
20947 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20948 break;
20949
20950 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20951 {
20952 unsigned int highpart = 0;
20953 unsigned int newinsn = 0xe1a00000; /* nop. */
20954
20955 if (fixP->fx_addsy)
20956 {
20957 const char *msg = 0;
20958
20959 if (! S_IS_DEFINED (fixP->fx_addsy))
20960 msg = _("undefined symbol %s used as an immediate value");
20961 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20962 msg = _("symbol %s is in a different section");
20963 else if (S_IS_WEAK (fixP->fx_addsy))
20964 msg = _("symbol %s is weak and may be overridden later");
20965
20966 if (msg)
20967 {
20968 as_bad_where (fixP->fx_file, fixP->fx_line,
20969 msg, S_GET_NAME (fixP->fx_addsy));
20970 break;
20971 }
20972 }
20973
20974 newimm = encode_arm_immediate (value);
20975 temp = md_chars_to_number (buf, INSN_SIZE);
20976
20977 /* If the instruction will fail, see if we can fix things up by
20978 changing the opcode. */
20979 if (newimm == (unsigned int) FAIL
20980 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20981 {
20982 /* No ? OK - try using two ADD instructions to generate
20983 the value. */
20984 newimm = validate_immediate_twopart (value, & highpart);
20985
20986 /* Yes - then make sure that the second instruction is
20987 also an add. */
20988 if (newimm != (unsigned int) FAIL)
20989 newinsn = temp;
20990 /* Still No ? Try using a negated value. */
20991 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20992 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20993 /* Otherwise - give up. */
20994 else
20995 {
20996 as_bad_where (fixP->fx_file, fixP->fx_line,
20997 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20998 (long) value);
20999 break;
21000 }
21001
21002 /* Replace the first operand in the 2nd instruction (which
21003 is the PC) with the destination register. We have
21004 already added in the PC in the first instruction and we
21005 do not want to do it again. */
21006 newinsn &= ~ 0xf0000;
21007 newinsn |= ((newinsn & 0x0f000) << 4);
21008 }
21009
21010 newimm |= (temp & 0xfffff000);
21011 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21012
21013 highpart |= (newinsn & 0xfffff000);
21014 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21015 }
21016 break;
21017
21018 case BFD_RELOC_ARM_OFFSET_IMM:
21019 if (!fixP->fx_done && seg->use_rela_p)
21020 value = 0;
21021
21022 case BFD_RELOC_ARM_LITERAL:
21023 sign = value > 0;
21024
21025 if (value < 0)
21026 value = - value;
21027
21028 if (validate_offset_imm (value, 0) == FAIL)
21029 {
21030 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21031 as_bad_where (fixP->fx_file, fixP->fx_line,
21032 _("invalid literal constant: pool needs to be closer"));
21033 else
21034 as_bad_where (fixP->fx_file, fixP->fx_line,
21035 _("bad immediate value for offset (%ld)"),
21036 (long) value);
21037 break;
21038 }
21039
21040 newval = md_chars_to_number (buf, INSN_SIZE);
21041 if (value == 0)
21042 newval &= 0xfffff000;
21043 else
21044 {
21045 newval &= 0xff7ff000;
21046 newval |= value | (sign ? INDEX_UP : 0);
21047 }
21048 md_number_to_chars (buf, newval, INSN_SIZE);
21049 break;
21050
21051 case BFD_RELOC_ARM_OFFSET_IMM8:
21052 case BFD_RELOC_ARM_HWLITERAL:
21053 sign = value > 0;
21054
21055 if (value < 0)
21056 value = - value;
21057
21058 if (validate_offset_imm (value, 1) == FAIL)
21059 {
21060 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21061 as_bad_where (fixP->fx_file, fixP->fx_line,
21062 _("invalid literal constant: pool needs to be closer"));
21063 else
21064 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21065 (long) value);
21066 break;
21067 }
21068
21069 newval = md_chars_to_number (buf, INSN_SIZE);
21070 if (value == 0)
21071 newval &= 0xfffff0f0;
21072 else
21073 {
21074 newval &= 0xff7ff0f0;
21075 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21076 }
21077 md_number_to_chars (buf, newval, INSN_SIZE);
21078 break;
21079
21080 case BFD_RELOC_ARM_T32_OFFSET_U8:
21081 if (value < 0 || value > 1020 || value % 4 != 0)
21082 as_bad_where (fixP->fx_file, fixP->fx_line,
21083 _("bad immediate value for offset (%ld)"), (long) value);
21084 value /= 4;
21085
21086 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21087 newval |= value;
21088 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21089 break;
21090
21091 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21092 /* This is a complicated relocation used for all varieties of Thumb32
21093 load/store instruction with immediate offset:
21094
21095 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21096 *4, optional writeback(W)
21097 (doubleword load/store)
21098
21099 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21100 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21101 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21102 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21103 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21104
21105 Uppercase letters indicate bits that are already encoded at
21106 this point. Lowercase letters are our problem. For the
21107 second block of instructions, the secondary opcode nybble
21108 (bits 8..11) is present, and bit 23 is zero, even if this is
21109 a PC-relative operation. */
21110 newval = md_chars_to_number (buf, THUMB_SIZE);
21111 newval <<= 16;
21112 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21113
21114 if ((newval & 0xf0000000) == 0xe0000000)
21115 {
21116 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21117 if (value >= 0)
21118 newval |= (1 << 23);
21119 else
21120 value = -value;
21121 if (value % 4 != 0)
21122 {
21123 as_bad_where (fixP->fx_file, fixP->fx_line,
21124 _("offset not a multiple of 4"));
21125 break;
21126 }
21127 value /= 4;
21128 if (value > 0xff)
21129 {
21130 as_bad_where (fixP->fx_file, fixP->fx_line,
21131 _("offset out of range"));
21132 break;
21133 }
21134 newval &= ~0xff;
21135 }
21136 else if ((newval & 0x000f0000) == 0x000f0000)
21137 {
21138 /* PC-relative, 12-bit offset. */
21139 if (value >= 0)
21140 newval |= (1 << 23);
21141 else
21142 value = -value;
21143 if (value > 0xfff)
21144 {
21145 as_bad_where (fixP->fx_file, fixP->fx_line,
21146 _("offset out of range"));
21147 break;
21148 }
21149 newval &= ~0xfff;
21150 }
21151 else if ((newval & 0x00000100) == 0x00000100)
21152 {
21153 /* Writeback: 8-bit, +/- offset. */
21154 if (value >= 0)
21155 newval |= (1 << 9);
21156 else
21157 value = -value;
21158 if (value > 0xff)
21159 {
21160 as_bad_where (fixP->fx_file, fixP->fx_line,
21161 _("offset out of range"));
21162 break;
21163 }
21164 newval &= ~0xff;
21165 }
21166 else if ((newval & 0x00000f00) == 0x00000e00)
21167 {
21168 /* T-instruction: positive 8-bit offset. */
21169 if (value < 0 || value > 0xff)
21170 {
21171 as_bad_where (fixP->fx_file, fixP->fx_line,
21172 _("offset out of range"));
21173 break;
21174 }
21175 newval &= ~0xff;
21176 newval |= value;
21177 }
21178 else
21179 {
21180 /* Positive 12-bit or negative 8-bit offset. */
21181 int limit;
21182 if (value >= 0)
21183 {
21184 newval |= (1 << 23);
21185 limit = 0xfff;
21186 }
21187 else
21188 {
21189 value = -value;
21190 limit = 0xff;
21191 }
21192 if (value > limit)
21193 {
21194 as_bad_where (fixP->fx_file, fixP->fx_line,
21195 _("offset out of range"));
21196 break;
21197 }
21198 newval &= ~limit;
21199 }
21200
21201 newval |= value;
21202 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21203 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21204 break;
21205
21206 case BFD_RELOC_ARM_SHIFT_IMM:
21207 newval = md_chars_to_number (buf, INSN_SIZE);
21208 if (((unsigned long) value) > 32
21209 || (value == 32
21210 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21211 {
21212 as_bad_where (fixP->fx_file, fixP->fx_line,
21213 _("shift expression is too large"));
21214 break;
21215 }
21216
21217 if (value == 0)
21218 /* Shifts of zero must be done as lsl. */
21219 newval &= ~0x60;
21220 else if (value == 32)
21221 value = 0;
21222 newval &= 0xfffff07f;
21223 newval |= (value & 0x1f) << 7;
21224 md_number_to_chars (buf, newval, INSN_SIZE);
21225 break;
21226
21227 case BFD_RELOC_ARM_T32_IMMEDIATE:
21228 case BFD_RELOC_ARM_T32_ADD_IMM:
21229 case BFD_RELOC_ARM_T32_IMM12:
21230 case BFD_RELOC_ARM_T32_ADD_PC12:
21231 /* We claim that this fixup has been processed here,
21232 even if in fact we generate an error because we do
21233 not have a reloc for it, so tc_gen_reloc will reject it. */
21234 fixP->fx_done = 1;
21235
21236 if (fixP->fx_addsy
21237 && ! S_IS_DEFINED (fixP->fx_addsy))
21238 {
21239 as_bad_where (fixP->fx_file, fixP->fx_line,
21240 _("undefined symbol %s used as an immediate value"),
21241 S_GET_NAME (fixP->fx_addsy));
21242 break;
21243 }
21244
21245 newval = md_chars_to_number (buf, THUMB_SIZE);
21246 newval <<= 16;
21247 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21248
21249 newimm = FAIL;
21250 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21251 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21252 {
21253 newimm = encode_thumb32_immediate (value);
21254 if (newimm == (unsigned int) FAIL)
21255 newimm = thumb32_negate_data_op (&newval, value);
21256 }
21257 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21258 && newimm == (unsigned int) FAIL)
21259 {
21260 /* Turn add/sum into addw/subw. */
21261 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21262 newval = (newval & 0xfeffffff) | 0x02000000;
21263 /* No flat 12-bit imm encoding for addsw/subsw. */
21264 if ((newval & 0x00100000) == 0)
21265 {
21266 /* 12 bit immediate for addw/subw. */
21267 if (value < 0)
21268 {
21269 value = -value;
21270 newval ^= 0x00a00000;
21271 }
21272 if (value > 0xfff)
21273 newimm = (unsigned int) FAIL;
21274 else
21275 newimm = value;
21276 }
21277 }
21278
21279 if (newimm == (unsigned int)FAIL)
21280 {
21281 as_bad_where (fixP->fx_file, fixP->fx_line,
21282 _("invalid constant (%lx) after fixup"),
21283 (unsigned long) value);
21284 break;
21285 }
21286
21287 newval |= (newimm & 0x800) << 15;
21288 newval |= (newimm & 0x700) << 4;
21289 newval |= (newimm & 0x0ff);
21290
21291 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21292 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21293 break;
21294
21295 case BFD_RELOC_ARM_SMC:
21296 if (((unsigned long) value) > 0xffff)
21297 as_bad_where (fixP->fx_file, fixP->fx_line,
21298 _("invalid smc expression"));
21299 newval = md_chars_to_number (buf, INSN_SIZE);
21300 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21301 md_number_to_chars (buf, newval, INSN_SIZE);
21302 break;
21303
21304 case BFD_RELOC_ARM_HVC:
21305 if (((unsigned long) value) > 0xffff)
21306 as_bad_where (fixP->fx_file, fixP->fx_line,
21307 _("invalid hvc expression"));
21308 newval = md_chars_to_number (buf, INSN_SIZE);
21309 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21310 md_number_to_chars (buf, newval, INSN_SIZE);
21311 break;
21312
21313 case BFD_RELOC_ARM_SWI:
21314 if (fixP->tc_fix_data != 0)
21315 {
21316 if (((unsigned long) value) > 0xff)
21317 as_bad_where (fixP->fx_file, fixP->fx_line,
21318 _("invalid swi expression"));
21319 newval = md_chars_to_number (buf, THUMB_SIZE);
21320 newval |= value;
21321 md_number_to_chars (buf, newval, THUMB_SIZE);
21322 }
21323 else
21324 {
21325 if (((unsigned long) value) > 0x00ffffff)
21326 as_bad_where (fixP->fx_file, fixP->fx_line,
21327 _("invalid swi expression"));
21328 newval = md_chars_to_number (buf, INSN_SIZE);
21329 newval |= value;
21330 md_number_to_chars (buf, newval, INSN_SIZE);
21331 }
21332 break;
21333
21334 case BFD_RELOC_ARM_MULTI:
21335 if (((unsigned long) value) > 0xffff)
21336 as_bad_where (fixP->fx_file, fixP->fx_line,
21337 _("invalid expression in load/store multiple"));
21338 newval = value | md_chars_to_number (buf, INSN_SIZE);
21339 md_number_to_chars (buf, newval, INSN_SIZE);
21340 break;
21341
21342 #ifdef OBJ_ELF
21343 case BFD_RELOC_ARM_PCREL_CALL:
21344
21345 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21346 && fixP->fx_addsy
21347 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21348 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21349 && THUMB_IS_FUNC (fixP->fx_addsy))
21350 /* Flip the bl to blx. This is a simple flip
21351 bit here because we generate PCREL_CALL for
21352 unconditional bls. */
21353 {
21354 newval = md_chars_to_number (buf, INSN_SIZE);
21355 newval = newval | 0x10000000;
21356 md_number_to_chars (buf, newval, INSN_SIZE);
21357 temp = 1;
21358 fixP->fx_done = 1;
21359 }
21360 else
21361 temp = 3;
21362 goto arm_branch_common;
21363
21364 case BFD_RELOC_ARM_PCREL_JUMP:
21365 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21366 && fixP->fx_addsy
21367 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21368 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21369 && THUMB_IS_FUNC (fixP->fx_addsy))
21370 {
21371 /* This would map to a bl<cond>, b<cond>,
21372 b<always> to a Thumb function. We
21373 need to force a relocation for this particular
21374 case. */
21375 newval = md_chars_to_number (buf, INSN_SIZE);
21376 fixP->fx_done = 0;
21377 }
21378
21379 case BFD_RELOC_ARM_PLT32:
21380 #endif
21381 case BFD_RELOC_ARM_PCREL_BRANCH:
21382 temp = 3;
21383 goto arm_branch_common;
21384
21385 case BFD_RELOC_ARM_PCREL_BLX:
21386
21387 temp = 1;
21388 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21389 && fixP->fx_addsy
21390 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21391 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21392 && ARM_IS_FUNC (fixP->fx_addsy))
21393 {
21394 /* Flip the blx to a bl and warn. */
21395 const char *name = S_GET_NAME (fixP->fx_addsy);
21396 newval = 0xeb000000;
21397 as_warn_where (fixP->fx_file, fixP->fx_line,
21398 _("blx to '%s' an ARM ISA state function changed to bl"),
21399 name);
21400 md_number_to_chars (buf, newval, INSN_SIZE);
21401 temp = 3;
21402 fixP->fx_done = 1;
21403 }
21404
21405 #ifdef OBJ_ELF
21406 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21407 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21408 #endif
21409
21410 arm_branch_common:
21411 /* We are going to store value (shifted right by two) in the
21412 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21413 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21414 also be be clear. */
21415 if (value & temp)
21416 as_bad_where (fixP->fx_file, fixP->fx_line,
21417 _("misaligned branch destination"));
21418 if ((value & (offsetT)0xfe000000) != (offsetT)0
21419 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21420 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21421
21422 if (fixP->fx_done || !seg->use_rela_p)
21423 {
21424 newval = md_chars_to_number (buf, INSN_SIZE);
21425 newval |= (value >> 2) & 0x00ffffff;
21426 /* Set the H bit on BLX instructions. */
21427 if (temp == 1)
21428 {
21429 if (value & 2)
21430 newval |= 0x01000000;
21431 else
21432 newval &= ~0x01000000;
21433 }
21434 md_number_to_chars (buf, newval, INSN_SIZE);
21435 }
21436 break;
21437
21438 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21439 /* CBZ can only branch forward. */
21440
21441 /* Attempts to use CBZ to branch to the next instruction
21442 (which, strictly speaking, are prohibited) will be turned into
21443 no-ops.
21444
21445 FIXME: It may be better to remove the instruction completely and
21446 perform relaxation. */
21447 if (value == -2)
21448 {
21449 newval = md_chars_to_number (buf, THUMB_SIZE);
21450 newval = 0xbf00; /* NOP encoding T1 */
21451 md_number_to_chars (buf, newval, THUMB_SIZE);
21452 }
21453 else
21454 {
21455 if (value & ~0x7e)
21456 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21457
21458 if (fixP->fx_done || !seg->use_rela_p)
21459 {
21460 newval = md_chars_to_number (buf, THUMB_SIZE);
21461 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21462 md_number_to_chars (buf, newval, THUMB_SIZE);
21463 }
21464 }
21465 break;
21466
21467 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21468 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21469 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21470
21471 if (fixP->fx_done || !seg->use_rela_p)
21472 {
21473 newval = md_chars_to_number (buf, THUMB_SIZE);
21474 newval |= (value & 0x1ff) >> 1;
21475 md_number_to_chars (buf, newval, THUMB_SIZE);
21476 }
21477 break;
21478
21479 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21480 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21481 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21482
21483 if (fixP->fx_done || !seg->use_rela_p)
21484 {
21485 newval = md_chars_to_number (buf, THUMB_SIZE);
21486 newval |= (value & 0xfff) >> 1;
21487 md_number_to_chars (buf, newval, THUMB_SIZE);
21488 }
21489 break;
21490
21491 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21492 if (fixP->fx_addsy
21493 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21494 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21495 && ARM_IS_FUNC (fixP->fx_addsy)
21496 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21497 {
21498 /* Force a relocation for a branch 20 bits wide. */
21499 fixP->fx_done = 0;
21500 }
21501 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21502 as_bad_where (fixP->fx_file, fixP->fx_line,
21503 _("conditional branch out of range"));
21504
21505 if (fixP->fx_done || !seg->use_rela_p)
21506 {
21507 offsetT newval2;
21508 addressT S, J1, J2, lo, hi;
21509
21510 S = (value & 0x00100000) >> 20;
21511 J2 = (value & 0x00080000) >> 19;
21512 J1 = (value & 0x00040000) >> 18;
21513 hi = (value & 0x0003f000) >> 12;
21514 lo = (value & 0x00000ffe) >> 1;
21515
21516 newval = md_chars_to_number (buf, THUMB_SIZE);
21517 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21518 newval |= (S << 10) | hi;
21519 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21520 md_number_to_chars (buf, newval, THUMB_SIZE);
21521 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21522 }
21523 break;
21524
21525 case BFD_RELOC_THUMB_PCREL_BLX:
21526 /* If there is a blx from a thumb state function to
21527 another thumb function flip this to a bl and warn
21528 about it. */
21529
21530 if (fixP->fx_addsy
21531 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21532 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21533 && THUMB_IS_FUNC (fixP->fx_addsy))
21534 {
21535 const char *name = S_GET_NAME (fixP->fx_addsy);
21536 as_warn_where (fixP->fx_file, fixP->fx_line,
21537 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21538 name);
21539 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21540 newval = newval | 0x1000;
21541 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21542 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21543 fixP->fx_done = 1;
21544 }
21545
21546
21547 goto thumb_bl_common;
21548
21549 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21550 /* A bl from Thumb state ISA to an internal ARM state function
21551 is converted to a blx. */
21552 if (fixP->fx_addsy
21553 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21554 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21555 && ARM_IS_FUNC (fixP->fx_addsy)
21556 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21557 {
21558 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21559 newval = newval & ~0x1000;
21560 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21561 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21562 fixP->fx_done = 1;
21563 }
21564
21565 thumb_bl_common:
21566
21567 #ifdef OBJ_ELF
21568 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21569 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21570 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21571 #endif
21572
21573 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21574 /* For a BLX instruction, make sure that the relocation is rounded up
21575 to a word boundary. This follows the semantics of the instruction
21576 which specifies that bit 1 of the target address will come from bit
21577 1 of the base address. */
21578 value = (value + 1) & ~ 1;
21579
21580 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21581 {
21582 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21583 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21584 else if ((value & ~0x1ffffff)
21585 && ((value & ~0x1ffffff) != ~0x1ffffff))
21586 as_bad_where (fixP->fx_file, fixP->fx_line,
21587 _("Thumb2 branch out of range"));
21588 }
21589
21590 if (fixP->fx_done || !seg->use_rela_p)
21591 encode_thumb2_b_bl_offset (buf, value);
21592
21593 break;
21594
21595 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21596 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21597 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21598
21599 if (fixP->fx_done || !seg->use_rela_p)
21600 encode_thumb2_b_bl_offset (buf, value);
21601
21602 break;
21603
21604 case BFD_RELOC_8:
21605 if (fixP->fx_done || !seg->use_rela_p)
21606 md_number_to_chars (buf, value, 1);
21607 break;
21608
21609 case BFD_RELOC_16:
21610 if (fixP->fx_done || !seg->use_rela_p)
21611 md_number_to_chars (buf, value, 2);
21612 break;
21613
21614 #ifdef OBJ_ELF
21615 case BFD_RELOC_ARM_TLS_CALL:
21616 case BFD_RELOC_ARM_THM_TLS_CALL:
21617 case BFD_RELOC_ARM_TLS_DESCSEQ:
21618 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21619 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21620 break;
21621
21622 case BFD_RELOC_ARM_TLS_GOTDESC:
21623 case BFD_RELOC_ARM_TLS_GD32:
21624 case BFD_RELOC_ARM_TLS_LE32:
21625 case BFD_RELOC_ARM_TLS_IE32:
21626 case BFD_RELOC_ARM_TLS_LDM32:
21627 case BFD_RELOC_ARM_TLS_LDO32:
21628 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21629 /* fall through */
21630
21631 case BFD_RELOC_ARM_GOT32:
21632 case BFD_RELOC_ARM_GOTOFF:
21633 if (fixP->fx_done || !seg->use_rela_p)
21634 md_number_to_chars (buf, 0, 4);
21635 break;
21636
21637 case BFD_RELOC_ARM_GOT_PREL:
21638 if (fixP->fx_done || !seg->use_rela_p)
21639 md_number_to_chars (buf, value, 4);
21640 break;
21641
21642 case BFD_RELOC_ARM_TARGET2:
21643 /* TARGET2 is not partial-inplace, so we need to write the
21644 addend here for REL targets, because it won't be written out
21645 during reloc processing later. */
21646 if (fixP->fx_done || !seg->use_rela_p)
21647 md_number_to_chars (buf, fixP->fx_offset, 4);
21648 break;
21649 #endif
21650
21651 case BFD_RELOC_RVA:
21652 case BFD_RELOC_32:
21653 case BFD_RELOC_ARM_TARGET1:
21654 case BFD_RELOC_ARM_ROSEGREL32:
21655 case BFD_RELOC_ARM_SBREL32:
21656 case BFD_RELOC_32_PCREL:
21657 #ifdef TE_PE
21658 case BFD_RELOC_32_SECREL:
21659 #endif
21660 if (fixP->fx_done || !seg->use_rela_p)
21661 #ifdef TE_WINCE
21662 /* For WinCE we only do this for pcrel fixups. */
21663 if (fixP->fx_done || fixP->fx_pcrel)
21664 #endif
21665 md_number_to_chars (buf, value, 4);
21666 break;
21667
21668 #ifdef OBJ_ELF
21669 case BFD_RELOC_ARM_PREL31:
21670 if (fixP->fx_done || !seg->use_rela_p)
21671 {
21672 newval = md_chars_to_number (buf, 4) & 0x80000000;
21673 if ((value ^ (value >> 1)) & 0x40000000)
21674 {
21675 as_bad_where (fixP->fx_file, fixP->fx_line,
21676 _("rel31 relocation overflow"));
21677 }
21678 newval |= value & 0x7fffffff;
21679 md_number_to_chars (buf, newval, 4);
21680 }
21681 break;
21682 #endif
21683
21684 case BFD_RELOC_ARM_CP_OFF_IMM:
21685 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21686 if (value < -1023 || value > 1023 || (value & 3))
21687 as_bad_where (fixP->fx_file, fixP->fx_line,
21688 _("co-processor offset out of range"));
21689 cp_off_common:
21690 sign = value > 0;
21691 if (value < 0)
21692 value = -value;
21693 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21694 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21695 newval = md_chars_to_number (buf, INSN_SIZE);
21696 else
21697 newval = get_thumb32_insn (buf);
21698 if (value == 0)
21699 newval &= 0xffffff00;
21700 else
21701 {
21702 newval &= 0xff7fff00;
21703 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21704 }
21705 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21706 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21707 md_number_to_chars (buf, newval, INSN_SIZE);
21708 else
21709 put_thumb32_insn (buf, newval);
21710 break;
21711
21712 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21713 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21714 if (value < -255 || value > 255)
21715 as_bad_where (fixP->fx_file, fixP->fx_line,
21716 _("co-processor offset out of range"));
21717 value *= 4;
21718 goto cp_off_common;
21719
21720 case BFD_RELOC_ARM_THUMB_OFFSET:
21721 newval = md_chars_to_number (buf, THUMB_SIZE);
21722 /* Exactly what ranges, and where the offset is inserted depends
21723 on the type of instruction, we can establish this from the
21724 top 4 bits. */
21725 switch (newval >> 12)
21726 {
21727 case 4: /* PC load. */
21728 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21729 forced to zero for these loads; md_pcrel_from has already
21730 compensated for this. */
21731 if (value & 3)
21732 as_bad_where (fixP->fx_file, fixP->fx_line,
21733 _("invalid offset, target not word aligned (0x%08lX)"),
21734 (((unsigned long) fixP->fx_frag->fr_address
21735 + (unsigned long) fixP->fx_where) & ~3)
21736 + (unsigned long) value);
21737
21738 if (value & ~0x3fc)
21739 as_bad_where (fixP->fx_file, fixP->fx_line,
21740 _("invalid offset, value too big (0x%08lX)"),
21741 (long) value);
21742
21743 newval |= value >> 2;
21744 break;
21745
21746 case 9: /* SP load/store. */
21747 if (value & ~0x3fc)
21748 as_bad_where (fixP->fx_file, fixP->fx_line,
21749 _("invalid offset, value too big (0x%08lX)"),
21750 (long) value);
21751 newval |= value >> 2;
21752 break;
21753
21754 case 6: /* Word load/store. */
21755 if (value & ~0x7c)
21756 as_bad_where (fixP->fx_file, fixP->fx_line,
21757 _("invalid offset, value too big (0x%08lX)"),
21758 (long) value);
21759 newval |= value << 4; /* 6 - 2. */
21760 break;
21761
21762 case 7: /* Byte load/store. */
21763 if (value & ~0x1f)
21764 as_bad_where (fixP->fx_file, fixP->fx_line,
21765 _("invalid offset, value too big (0x%08lX)"),
21766 (long) value);
21767 newval |= value << 6;
21768 break;
21769
21770 case 8: /* Halfword load/store. */
21771 if (value & ~0x3e)
21772 as_bad_where (fixP->fx_file, fixP->fx_line,
21773 _("invalid offset, value too big (0x%08lX)"),
21774 (long) value);
21775 newval |= value << 5; /* 6 - 1. */
21776 break;
21777
21778 default:
21779 as_bad_where (fixP->fx_file, fixP->fx_line,
21780 "Unable to process relocation for thumb opcode: %lx",
21781 (unsigned long) newval);
21782 break;
21783 }
21784 md_number_to_chars (buf, newval, THUMB_SIZE);
21785 break;
21786
21787 case BFD_RELOC_ARM_THUMB_ADD:
21788 /* This is a complicated relocation, since we use it for all of
21789 the following immediate relocations:
21790
21791 3bit ADD/SUB
21792 8bit ADD/SUB
21793 9bit ADD/SUB SP word-aligned
21794 10bit ADD PC/SP word-aligned
21795
21796 The type of instruction being processed is encoded in the
21797 instruction field:
21798
21799 0x8000 SUB
21800 0x00F0 Rd
21801 0x000F Rs
21802 */
21803 newval = md_chars_to_number (buf, THUMB_SIZE);
21804 {
21805 int rd = (newval >> 4) & 0xf;
21806 int rs = newval & 0xf;
21807 int subtract = !!(newval & 0x8000);
21808
21809 /* Check for HI regs, only very restricted cases allowed:
21810 Adjusting SP, and using PC or SP to get an address. */
21811 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21812 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21813 as_bad_where (fixP->fx_file, fixP->fx_line,
21814 _("invalid Hi register with immediate"));
21815
21816 /* If value is negative, choose the opposite instruction. */
21817 if (value < 0)
21818 {
21819 value = -value;
21820 subtract = !subtract;
21821 if (value < 0)
21822 as_bad_where (fixP->fx_file, fixP->fx_line,
21823 _("immediate value out of range"));
21824 }
21825
21826 if (rd == REG_SP)
21827 {
21828 if (value & ~0x1fc)
21829 as_bad_where (fixP->fx_file, fixP->fx_line,
21830 _("invalid immediate for stack address calculation"));
21831 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21832 newval |= value >> 2;
21833 }
21834 else if (rs == REG_PC || rs == REG_SP)
21835 {
21836 if (subtract || value & ~0x3fc)
21837 as_bad_where (fixP->fx_file, fixP->fx_line,
21838 _("invalid immediate for address calculation (value = 0x%08lX)"),
21839 (unsigned long) value);
21840 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21841 newval |= rd << 8;
21842 newval |= value >> 2;
21843 }
21844 else if (rs == rd)
21845 {
21846 if (value & ~0xff)
21847 as_bad_where (fixP->fx_file, fixP->fx_line,
21848 _("immediate value out of range"));
21849 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21850 newval |= (rd << 8) | value;
21851 }
21852 else
21853 {
21854 if (value & ~0x7)
21855 as_bad_where (fixP->fx_file, fixP->fx_line,
21856 _("immediate value out of range"));
21857 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21858 newval |= rd | (rs << 3) | (value << 6);
21859 }
21860 }
21861 md_number_to_chars (buf, newval, THUMB_SIZE);
21862 break;
21863
21864 case BFD_RELOC_ARM_THUMB_IMM:
21865 newval = md_chars_to_number (buf, THUMB_SIZE);
21866 if (value < 0 || value > 255)
21867 as_bad_where (fixP->fx_file, fixP->fx_line,
21868 _("invalid immediate: %ld is out of range"),
21869 (long) value);
21870 newval |= value;
21871 md_number_to_chars (buf, newval, THUMB_SIZE);
21872 break;
21873
21874 case BFD_RELOC_ARM_THUMB_SHIFT:
21875 /* 5bit shift value (0..32). LSL cannot take 32. */
21876 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21877 temp = newval & 0xf800;
21878 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21879 as_bad_where (fixP->fx_file, fixP->fx_line,
21880 _("invalid shift value: %ld"), (long) value);
21881 /* Shifts of zero must be encoded as LSL. */
21882 if (value == 0)
21883 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21884 /* Shifts of 32 are encoded as zero. */
21885 else if (value == 32)
21886 value = 0;
21887 newval |= value << 6;
21888 md_number_to_chars (buf, newval, THUMB_SIZE);
21889 break;
21890
21891 case BFD_RELOC_VTABLE_INHERIT:
21892 case BFD_RELOC_VTABLE_ENTRY:
21893 fixP->fx_done = 0;
21894 return;
21895
21896 case BFD_RELOC_ARM_MOVW:
21897 case BFD_RELOC_ARM_MOVT:
21898 case BFD_RELOC_ARM_THUMB_MOVW:
21899 case BFD_RELOC_ARM_THUMB_MOVT:
21900 if (fixP->fx_done || !seg->use_rela_p)
21901 {
21902 /* REL format relocations are limited to a 16-bit addend. */
21903 if (!fixP->fx_done)
21904 {
21905 if (value < -0x8000 || value > 0x7fff)
21906 as_bad_where (fixP->fx_file, fixP->fx_line,
21907 _("offset out of range"));
21908 }
21909 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21910 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21911 {
21912 value >>= 16;
21913 }
21914
21915 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21916 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21917 {
21918 newval = get_thumb32_insn (buf);
21919 newval &= 0xfbf08f00;
21920 newval |= (value & 0xf000) << 4;
21921 newval |= (value & 0x0800) << 15;
21922 newval |= (value & 0x0700) << 4;
21923 newval |= (value & 0x00ff);
21924 put_thumb32_insn (buf, newval);
21925 }
21926 else
21927 {
21928 newval = md_chars_to_number (buf, 4);
21929 newval &= 0xfff0f000;
21930 newval |= value & 0x0fff;
21931 newval |= (value & 0xf000) << 4;
21932 md_number_to_chars (buf, newval, 4);
21933 }
21934 }
21935 return;
21936
21937 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21938 case BFD_RELOC_ARM_ALU_PC_G0:
21939 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21940 case BFD_RELOC_ARM_ALU_PC_G1:
21941 case BFD_RELOC_ARM_ALU_PC_G2:
21942 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21943 case BFD_RELOC_ARM_ALU_SB_G0:
21944 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21945 case BFD_RELOC_ARM_ALU_SB_G1:
21946 case BFD_RELOC_ARM_ALU_SB_G2:
21947 gas_assert (!fixP->fx_done);
21948 if (!seg->use_rela_p)
21949 {
21950 bfd_vma insn;
21951 bfd_vma encoded_addend;
21952 bfd_vma addend_abs = abs (value);
21953
21954 /* Check that the absolute value of the addend can be
21955 expressed as an 8-bit constant plus a rotation. */
21956 encoded_addend = encode_arm_immediate (addend_abs);
21957 if (encoded_addend == (unsigned int) FAIL)
21958 as_bad_where (fixP->fx_file, fixP->fx_line,
21959 _("the offset 0x%08lX is not representable"),
21960 (unsigned long) addend_abs);
21961
21962 /* Extract the instruction. */
21963 insn = md_chars_to_number (buf, INSN_SIZE);
21964
21965 /* If the addend is positive, use an ADD instruction.
21966 Otherwise use a SUB. Take care not to destroy the S bit. */
21967 insn &= 0xff1fffff;
21968 if (value < 0)
21969 insn |= 1 << 22;
21970 else
21971 insn |= 1 << 23;
21972
21973 /* Place the encoded addend into the first 12 bits of the
21974 instruction. */
21975 insn &= 0xfffff000;
21976 insn |= encoded_addend;
21977
21978 /* Update the instruction. */
21979 md_number_to_chars (buf, insn, INSN_SIZE);
21980 }
21981 break;
21982
21983 case BFD_RELOC_ARM_LDR_PC_G0:
21984 case BFD_RELOC_ARM_LDR_PC_G1:
21985 case BFD_RELOC_ARM_LDR_PC_G2:
21986 case BFD_RELOC_ARM_LDR_SB_G0:
21987 case BFD_RELOC_ARM_LDR_SB_G1:
21988 case BFD_RELOC_ARM_LDR_SB_G2:
21989 gas_assert (!fixP->fx_done);
21990 if (!seg->use_rela_p)
21991 {
21992 bfd_vma insn;
21993 bfd_vma addend_abs = abs (value);
21994
21995 /* Check that the absolute value of the addend can be
21996 encoded in 12 bits. */
21997 if (addend_abs >= 0x1000)
21998 as_bad_where (fixP->fx_file, fixP->fx_line,
21999 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22000 (unsigned long) addend_abs);
22001
22002 /* Extract the instruction. */
22003 insn = md_chars_to_number (buf, INSN_SIZE);
22004
22005 /* If the addend is negative, clear bit 23 of the instruction.
22006 Otherwise set it. */
22007 if (value < 0)
22008 insn &= ~(1 << 23);
22009 else
22010 insn |= 1 << 23;
22011
22012 /* Place the absolute value of the addend into the first 12 bits
22013 of the instruction. */
22014 insn &= 0xfffff000;
22015 insn |= addend_abs;
22016
22017 /* Update the instruction. */
22018 md_number_to_chars (buf, insn, INSN_SIZE);
22019 }
22020 break;
22021
22022 case BFD_RELOC_ARM_LDRS_PC_G0:
22023 case BFD_RELOC_ARM_LDRS_PC_G1:
22024 case BFD_RELOC_ARM_LDRS_PC_G2:
22025 case BFD_RELOC_ARM_LDRS_SB_G0:
22026 case BFD_RELOC_ARM_LDRS_SB_G1:
22027 case BFD_RELOC_ARM_LDRS_SB_G2:
22028 gas_assert (!fixP->fx_done);
22029 if (!seg->use_rela_p)
22030 {
22031 bfd_vma insn;
22032 bfd_vma addend_abs = abs (value);
22033
22034 /* Check that the absolute value of the addend can be
22035 encoded in 8 bits. */
22036 if (addend_abs >= 0x100)
22037 as_bad_where (fixP->fx_file, fixP->fx_line,
22038 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22039 (unsigned long) addend_abs);
22040
22041 /* Extract the instruction. */
22042 insn = md_chars_to_number (buf, INSN_SIZE);
22043
22044 /* If the addend is negative, clear bit 23 of the instruction.
22045 Otherwise set it. */
22046 if (value < 0)
22047 insn &= ~(1 << 23);
22048 else
22049 insn |= 1 << 23;
22050
22051 /* Place the first four bits of the absolute value of the addend
22052 into the first 4 bits of the instruction, and the remaining
22053 four into bits 8 .. 11. */
22054 insn &= 0xfffff0f0;
22055 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22056
22057 /* Update the instruction. */
22058 md_number_to_chars (buf, insn, INSN_SIZE);
22059 }
22060 break;
22061
22062 case BFD_RELOC_ARM_LDC_PC_G0:
22063 case BFD_RELOC_ARM_LDC_PC_G1:
22064 case BFD_RELOC_ARM_LDC_PC_G2:
22065 case BFD_RELOC_ARM_LDC_SB_G0:
22066 case BFD_RELOC_ARM_LDC_SB_G1:
22067 case BFD_RELOC_ARM_LDC_SB_G2:
22068 gas_assert (!fixP->fx_done);
22069 if (!seg->use_rela_p)
22070 {
22071 bfd_vma insn;
22072 bfd_vma addend_abs = abs (value);
22073
22074 /* Check that the absolute value of the addend is a multiple of
22075 four and, when divided by four, fits in 8 bits. */
22076 if (addend_abs & 0x3)
22077 as_bad_where (fixP->fx_file, fixP->fx_line,
22078 _("bad offset 0x%08lX (must be word-aligned)"),
22079 (unsigned long) addend_abs);
22080
22081 if ((addend_abs >> 2) > 0xff)
22082 as_bad_where (fixP->fx_file, fixP->fx_line,
22083 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22084 (unsigned long) addend_abs);
22085
22086 /* Extract the instruction. */
22087 insn = md_chars_to_number (buf, INSN_SIZE);
22088
22089 /* If the addend is negative, clear bit 23 of the instruction.
22090 Otherwise set it. */
22091 if (value < 0)
22092 insn &= ~(1 << 23);
22093 else
22094 insn |= 1 << 23;
22095
22096 /* Place the addend (divided by four) into the first eight
22097 bits of the instruction. */
22098 insn &= 0xfffffff0;
22099 insn |= addend_abs >> 2;
22100
22101 /* Update the instruction. */
22102 md_number_to_chars (buf, insn, INSN_SIZE);
22103 }
22104 break;
22105
22106 case BFD_RELOC_ARM_V4BX:
22107 /* This will need to go in the object file. */
22108 fixP->fx_done = 0;
22109 break;
22110
22111 case BFD_RELOC_UNUSED:
22112 default:
22113 as_bad_where (fixP->fx_file, fixP->fx_line,
22114 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22115 }
22116 }
22117
22118 /* Translate internal representation of relocation info to BFD target
22119 format. */
22120
22121 arelent *
22122 tc_gen_reloc (asection *section, fixS *fixp)
22123 {
22124 arelent * reloc;
22125 bfd_reloc_code_real_type code;
22126
22127 reloc = (arelent *) xmalloc (sizeof (arelent));
22128
22129 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22130 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22131 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22132
22133 if (fixp->fx_pcrel)
22134 {
22135 if (section->use_rela_p)
22136 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22137 else
22138 fixp->fx_offset = reloc->address;
22139 }
22140 reloc->addend = fixp->fx_offset;
22141
22142 switch (fixp->fx_r_type)
22143 {
22144 case BFD_RELOC_8:
22145 if (fixp->fx_pcrel)
22146 {
22147 code = BFD_RELOC_8_PCREL;
22148 break;
22149 }
22150
22151 case BFD_RELOC_16:
22152 if (fixp->fx_pcrel)
22153 {
22154 code = BFD_RELOC_16_PCREL;
22155 break;
22156 }
22157
22158 case BFD_RELOC_32:
22159 if (fixp->fx_pcrel)
22160 {
22161 code = BFD_RELOC_32_PCREL;
22162 break;
22163 }
22164
22165 case BFD_RELOC_ARM_MOVW:
22166 if (fixp->fx_pcrel)
22167 {
22168 code = BFD_RELOC_ARM_MOVW_PCREL;
22169 break;
22170 }
22171
22172 case BFD_RELOC_ARM_MOVT:
22173 if (fixp->fx_pcrel)
22174 {
22175 code = BFD_RELOC_ARM_MOVT_PCREL;
22176 break;
22177 }
22178
22179 case BFD_RELOC_ARM_THUMB_MOVW:
22180 if (fixp->fx_pcrel)
22181 {
22182 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22183 break;
22184 }
22185
22186 case BFD_RELOC_ARM_THUMB_MOVT:
22187 if (fixp->fx_pcrel)
22188 {
22189 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22190 break;
22191 }
22192
22193 case BFD_RELOC_NONE:
22194 case BFD_RELOC_ARM_PCREL_BRANCH:
22195 case BFD_RELOC_ARM_PCREL_BLX:
22196 case BFD_RELOC_RVA:
22197 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22198 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22199 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22200 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22201 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22202 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22203 case BFD_RELOC_VTABLE_ENTRY:
22204 case BFD_RELOC_VTABLE_INHERIT:
22205 #ifdef TE_PE
22206 case BFD_RELOC_32_SECREL:
22207 #endif
22208 code = fixp->fx_r_type;
22209 break;
22210
22211 case BFD_RELOC_THUMB_PCREL_BLX:
22212 #ifdef OBJ_ELF
22213 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22214 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22215 else
22216 #endif
22217 code = BFD_RELOC_THUMB_PCREL_BLX;
22218 break;
22219
22220 case BFD_RELOC_ARM_LITERAL:
22221 case BFD_RELOC_ARM_HWLITERAL:
22222 /* If this is called then the a literal has
22223 been referenced across a section boundary. */
22224 as_bad_where (fixp->fx_file, fixp->fx_line,
22225 _("literal referenced across section boundary"));
22226 return NULL;
22227
22228 #ifdef OBJ_ELF
22229 case BFD_RELOC_ARM_TLS_CALL:
22230 case BFD_RELOC_ARM_THM_TLS_CALL:
22231 case BFD_RELOC_ARM_TLS_DESCSEQ:
22232 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22233 case BFD_RELOC_ARM_GOT32:
22234 case BFD_RELOC_ARM_GOTOFF:
22235 case BFD_RELOC_ARM_GOT_PREL:
22236 case BFD_RELOC_ARM_PLT32:
22237 case BFD_RELOC_ARM_TARGET1:
22238 case BFD_RELOC_ARM_ROSEGREL32:
22239 case BFD_RELOC_ARM_SBREL32:
22240 case BFD_RELOC_ARM_PREL31:
22241 case BFD_RELOC_ARM_TARGET2:
22242 case BFD_RELOC_ARM_TLS_LE32:
22243 case BFD_RELOC_ARM_TLS_LDO32:
22244 case BFD_RELOC_ARM_PCREL_CALL:
22245 case BFD_RELOC_ARM_PCREL_JUMP:
22246 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22247 case BFD_RELOC_ARM_ALU_PC_G0:
22248 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22249 case BFD_RELOC_ARM_ALU_PC_G1:
22250 case BFD_RELOC_ARM_ALU_PC_G2:
22251 case BFD_RELOC_ARM_LDR_PC_G0:
22252 case BFD_RELOC_ARM_LDR_PC_G1:
22253 case BFD_RELOC_ARM_LDR_PC_G2:
22254 case BFD_RELOC_ARM_LDRS_PC_G0:
22255 case BFD_RELOC_ARM_LDRS_PC_G1:
22256 case BFD_RELOC_ARM_LDRS_PC_G2:
22257 case BFD_RELOC_ARM_LDC_PC_G0:
22258 case BFD_RELOC_ARM_LDC_PC_G1:
22259 case BFD_RELOC_ARM_LDC_PC_G2:
22260 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22261 case BFD_RELOC_ARM_ALU_SB_G0:
22262 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22263 case BFD_RELOC_ARM_ALU_SB_G1:
22264 case BFD_RELOC_ARM_ALU_SB_G2:
22265 case BFD_RELOC_ARM_LDR_SB_G0:
22266 case BFD_RELOC_ARM_LDR_SB_G1:
22267 case BFD_RELOC_ARM_LDR_SB_G2:
22268 case BFD_RELOC_ARM_LDRS_SB_G0:
22269 case BFD_RELOC_ARM_LDRS_SB_G1:
22270 case BFD_RELOC_ARM_LDRS_SB_G2:
22271 case BFD_RELOC_ARM_LDC_SB_G0:
22272 case BFD_RELOC_ARM_LDC_SB_G1:
22273 case BFD_RELOC_ARM_LDC_SB_G2:
22274 case BFD_RELOC_ARM_V4BX:
22275 code = fixp->fx_r_type;
22276 break;
22277
22278 case BFD_RELOC_ARM_TLS_GOTDESC:
22279 case BFD_RELOC_ARM_TLS_GD32:
22280 case BFD_RELOC_ARM_TLS_IE32:
22281 case BFD_RELOC_ARM_TLS_LDM32:
22282 /* BFD will include the symbol's address in the addend.
22283 But we don't want that, so subtract it out again here. */
22284 if (!S_IS_COMMON (fixp->fx_addsy))
22285 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22286 code = fixp->fx_r_type;
22287 break;
22288 #endif
22289
22290 case BFD_RELOC_ARM_IMMEDIATE:
22291 as_bad_where (fixp->fx_file, fixp->fx_line,
22292 _("internal relocation (type: IMMEDIATE) not fixed up"));
22293 return NULL;
22294
22295 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22296 as_bad_where (fixp->fx_file, fixp->fx_line,
22297 _("ADRL used for a symbol not defined in the same file"));
22298 return NULL;
22299
22300 case BFD_RELOC_ARM_OFFSET_IMM:
22301 if (section->use_rela_p)
22302 {
22303 code = fixp->fx_r_type;
22304 break;
22305 }
22306
22307 if (fixp->fx_addsy != NULL
22308 && !S_IS_DEFINED (fixp->fx_addsy)
22309 && S_IS_LOCAL (fixp->fx_addsy))
22310 {
22311 as_bad_where (fixp->fx_file, fixp->fx_line,
22312 _("undefined local label `%s'"),
22313 S_GET_NAME (fixp->fx_addsy));
22314 return NULL;
22315 }
22316
22317 as_bad_where (fixp->fx_file, fixp->fx_line,
22318 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22319 return NULL;
22320
22321 default:
22322 {
22323 char * type;
22324
22325 switch (fixp->fx_r_type)
22326 {
22327 case BFD_RELOC_NONE: type = "NONE"; break;
22328 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22329 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22330 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22331 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22332 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22333 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22334 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22335 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22336 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22337 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22338 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22339 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22340 default: type = _("<unknown>"); break;
22341 }
22342 as_bad_where (fixp->fx_file, fixp->fx_line,
22343 _("cannot represent %s relocation in this object file format"),
22344 type);
22345 return NULL;
22346 }
22347 }
22348
22349 #ifdef OBJ_ELF
22350 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22351 && GOT_symbol
22352 && fixp->fx_addsy == GOT_symbol)
22353 {
22354 code = BFD_RELOC_ARM_GOTPC;
22355 reloc->addend = fixp->fx_offset = reloc->address;
22356 }
22357 #endif
22358
22359 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22360
22361 if (reloc->howto == NULL)
22362 {
22363 as_bad_where (fixp->fx_file, fixp->fx_line,
22364 _("cannot represent %s relocation in this object file format"),
22365 bfd_get_reloc_code_name (code));
22366 return NULL;
22367 }
22368
22369 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22370 vtable entry to be used in the relocation's section offset. */
22371 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22372 reloc->address = fixp->fx_offset;
22373
22374 return reloc;
22375 }
22376
22377 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22378
22379 void
22380 cons_fix_new_arm (fragS * frag,
22381 int where,
22382 int size,
22383 expressionS * exp)
22384 {
22385 bfd_reloc_code_real_type type;
22386 int pcrel = 0;
22387
22388 /* Pick a reloc.
22389 FIXME: @@ Should look at CPU word size. */
22390 switch (size)
22391 {
22392 case 1:
22393 type = BFD_RELOC_8;
22394 break;
22395 case 2:
22396 type = BFD_RELOC_16;
22397 break;
22398 case 4:
22399 default:
22400 type = BFD_RELOC_32;
22401 break;
22402 case 8:
22403 type = BFD_RELOC_64;
22404 break;
22405 }
22406
22407 #ifdef TE_PE
22408 if (exp->X_op == O_secrel)
22409 {
22410 exp->X_op = O_symbol;
22411 type = BFD_RELOC_32_SECREL;
22412 }
22413 #endif
22414
22415 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22416 }
22417
22418 #if defined (OBJ_COFF)
22419 void
22420 arm_validate_fix (fixS * fixP)
22421 {
22422 /* If the destination of the branch is a defined symbol which does not have
22423 the THUMB_FUNC attribute, then we must be calling a function which has
22424 the (interfacearm) attribute. We look for the Thumb entry point to that
22425 function and change the branch to refer to that function instead. */
22426 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22427 && fixP->fx_addsy != NULL
22428 && S_IS_DEFINED (fixP->fx_addsy)
22429 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22430 {
22431 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22432 }
22433 }
22434 #endif
22435
22436
22437 int
22438 arm_force_relocation (struct fix * fixp)
22439 {
22440 #if defined (OBJ_COFF) && defined (TE_PE)
22441 if (fixp->fx_r_type == BFD_RELOC_RVA)
22442 return 1;
22443 #endif
22444
22445 /* In case we have a call or a branch to a function in ARM ISA mode from
22446 a thumb function or vice-versa force the relocation. These relocations
22447 are cleared off for some cores that might have blx and simple transformations
22448 are possible. */
22449
22450 #ifdef OBJ_ELF
22451 switch (fixp->fx_r_type)
22452 {
22453 case BFD_RELOC_ARM_PCREL_JUMP:
22454 case BFD_RELOC_ARM_PCREL_CALL:
22455 case BFD_RELOC_THUMB_PCREL_BLX:
22456 if (THUMB_IS_FUNC (fixp->fx_addsy))
22457 return 1;
22458 break;
22459
22460 case BFD_RELOC_ARM_PCREL_BLX:
22461 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22462 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22463 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22464 if (ARM_IS_FUNC (fixp->fx_addsy))
22465 return 1;
22466 break;
22467
22468 default:
22469 break;
22470 }
22471 #endif
22472
22473 /* Resolve these relocations even if the symbol is extern or weak.
22474 Technically this is probably wrong due to symbol preemption.
22475 In practice these relocations do not have enough range to be useful
22476 at dynamic link time, and some code (e.g. in the Linux kernel)
22477 expects these references to be resolved. */
22478 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22479 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22480 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22481 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22482 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22483 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22484 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22485 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22486 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22487 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22488 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22489 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22490 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22491 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22492 return 0;
22493
22494 /* Always leave these relocations for the linker. */
22495 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22496 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22497 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22498 return 1;
22499
22500 /* Always generate relocations against function symbols. */
22501 if (fixp->fx_r_type == BFD_RELOC_32
22502 && fixp->fx_addsy
22503 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22504 return 1;
22505
22506 return generic_force_reloc (fixp);
22507 }
22508
22509 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22510 /* Relocations against function names must be left unadjusted,
22511 so that the linker can use this information to generate interworking
22512 stubs. The MIPS version of this function
22513 also prevents relocations that are mips-16 specific, but I do not
22514 know why it does this.
22515
22516 FIXME:
22517 There is one other problem that ought to be addressed here, but
22518 which currently is not: Taking the address of a label (rather
22519 than a function) and then later jumping to that address. Such
22520 addresses also ought to have their bottom bit set (assuming that
22521 they reside in Thumb code), but at the moment they will not. */
22522
22523 bfd_boolean
22524 arm_fix_adjustable (fixS * fixP)
22525 {
22526 if (fixP->fx_addsy == NULL)
22527 return 1;
22528
22529 /* Preserve relocations against symbols with function type. */
22530 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22531 return FALSE;
22532
22533 if (THUMB_IS_FUNC (fixP->fx_addsy)
22534 && fixP->fx_subsy == NULL)
22535 return FALSE;
22536
22537 /* We need the symbol name for the VTABLE entries. */
22538 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22539 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22540 return FALSE;
22541
22542 /* Don't allow symbols to be discarded on GOT related relocs. */
22543 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22544 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22545 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22546 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22547 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22548 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22549 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22550 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22551 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22552 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22553 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22554 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22555 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22556 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22557 return FALSE;
22558
22559 /* Similarly for group relocations. */
22560 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22561 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22562 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22563 return FALSE;
22564
22565 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22566 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22567 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22568 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22569 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22570 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22571 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22572 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22573 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22574 return FALSE;
22575
22576 return TRUE;
22577 }
22578 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22579
22580 #ifdef OBJ_ELF
22581
22582 const char *
22583 elf32_arm_target_format (void)
22584 {
22585 #ifdef TE_SYMBIAN
22586 return (target_big_endian
22587 ? "elf32-bigarm-symbian"
22588 : "elf32-littlearm-symbian");
22589 #elif defined (TE_VXWORKS)
22590 return (target_big_endian
22591 ? "elf32-bigarm-vxworks"
22592 : "elf32-littlearm-vxworks");
22593 #elif defined (TE_NACL)
22594 return (target_big_endian
22595 ? "elf32-bigarm-nacl"
22596 : "elf32-littlearm-nacl");
22597 #else
22598 if (target_big_endian)
22599 return "elf32-bigarm";
22600 else
22601 return "elf32-littlearm";
22602 #endif
22603 }
22604
22605 void
22606 armelf_frob_symbol (symbolS * symp,
22607 int * puntp)
22608 {
22609 elf_frob_symbol (symp, puntp);
22610 }
22611 #endif
22612
22613 /* MD interface: Finalization. */
22614
22615 void
22616 arm_cleanup (void)
22617 {
22618 literal_pool * pool;
22619
22620 /* Ensure that all the IT blocks are properly closed. */
22621 check_it_blocks_finished ();
22622
22623 for (pool = list_of_pools; pool; pool = pool->next)
22624 {
22625 /* Put it at the end of the relevant section. */
22626 subseg_set (pool->section, pool->sub_section);
22627 #ifdef OBJ_ELF
22628 arm_elf_change_section ();
22629 #endif
22630 s_ltorg (0);
22631 }
22632 }
22633
22634 #ifdef OBJ_ELF
22635 /* Remove any excess mapping symbols generated for alignment frags in
22636 SEC. We may have created a mapping symbol before a zero byte
22637 alignment; remove it if there's a mapping symbol after the
22638 alignment. */
22639 static void
22640 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22641 void *dummy ATTRIBUTE_UNUSED)
22642 {
22643 segment_info_type *seginfo = seg_info (sec);
22644 fragS *fragp;
22645
22646 if (seginfo == NULL || seginfo->frchainP == NULL)
22647 return;
22648
22649 for (fragp = seginfo->frchainP->frch_root;
22650 fragp != NULL;
22651 fragp = fragp->fr_next)
22652 {
22653 symbolS *sym = fragp->tc_frag_data.last_map;
22654 fragS *next = fragp->fr_next;
22655
22656 /* Variable-sized frags have been converted to fixed size by
22657 this point. But if this was variable-sized to start with,
22658 there will be a fixed-size frag after it. So don't handle
22659 next == NULL. */
22660 if (sym == NULL || next == NULL)
22661 continue;
22662
22663 if (S_GET_VALUE (sym) < next->fr_address)
22664 /* Not at the end of this frag. */
22665 continue;
22666 know (S_GET_VALUE (sym) == next->fr_address);
22667
22668 do
22669 {
22670 if (next->tc_frag_data.first_map != NULL)
22671 {
22672 /* Next frag starts with a mapping symbol. Discard this
22673 one. */
22674 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22675 break;
22676 }
22677
22678 if (next->fr_next == NULL)
22679 {
22680 /* This mapping symbol is at the end of the section. Discard
22681 it. */
22682 know (next->fr_fix == 0 && next->fr_var == 0);
22683 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22684 break;
22685 }
22686
22687 /* As long as we have empty frags without any mapping symbols,
22688 keep looking. */
22689 /* If the next frag is non-empty and does not start with a
22690 mapping symbol, then this mapping symbol is required. */
22691 if (next->fr_address != next->fr_next->fr_address)
22692 break;
22693
22694 next = next->fr_next;
22695 }
22696 while (next != NULL);
22697 }
22698 }
22699 #endif
22700
22701 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22702 ARM ones. */
22703
22704 void
22705 arm_adjust_symtab (void)
22706 {
22707 #ifdef OBJ_COFF
22708 symbolS * sym;
22709
22710 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22711 {
22712 if (ARM_IS_THUMB (sym))
22713 {
22714 if (THUMB_IS_FUNC (sym))
22715 {
22716 /* Mark the symbol as a Thumb function. */
22717 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22718 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22719 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22720
22721 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22722 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22723 else
22724 as_bad (_("%s: unexpected function type: %d"),
22725 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22726 }
22727 else switch (S_GET_STORAGE_CLASS (sym))
22728 {
22729 case C_EXT:
22730 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22731 break;
22732 case C_STAT:
22733 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22734 break;
22735 case C_LABEL:
22736 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22737 break;
22738 default:
22739 /* Do nothing. */
22740 break;
22741 }
22742 }
22743
22744 if (ARM_IS_INTERWORK (sym))
22745 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22746 }
22747 #endif
22748 #ifdef OBJ_ELF
22749 symbolS * sym;
22750 char bind;
22751
22752 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22753 {
22754 if (ARM_IS_THUMB (sym))
22755 {
22756 elf_symbol_type * elf_sym;
22757
22758 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22759 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22760
22761 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22762 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22763 {
22764 /* If it's a .thumb_func, declare it as so,
22765 otherwise tag label as .code 16. */
22766 if (THUMB_IS_FUNC (sym))
22767 elf_sym->internal_elf_sym.st_target_internal
22768 = ST_BRANCH_TO_THUMB;
22769 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22770 elf_sym->internal_elf_sym.st_info =
22771 ELF_ST_INFO (bind, STT_ARM_16BIT);
22772 }
22773 }
22774 }
22775
22776 /* Remove any overlapping mapping symbols generated by alignment frags. */
22777 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22778 /* Now do generic ELF adjustments. */
22779 elf_adjust_symtab ();
22780 #endif
22781 }
22782
22783 /* MD interface: Initialization. */
22784
22785 static void
22786 set_constant_flonums (void)
22787 {
22788 int i;
22789
22790 for (i = 0; i < NUM_FLOAT_VALS; i++)
22791 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22792 abort ();
22793 }
22794
22795 /* Auto-select Thumb mode if it's the only available instruction set for the
22796 given architecture. */
22797
22798 static void
22799 autoselect_thumb_from_cpu_variant (void)
22800 {
22801 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22802 opcode_select (16);
22803 }
22804
22805 void
22806 md_begin (void)
22807 {
22808 unsigned mach;
22809 unsigned int i;
22810
22811 if ( (arm_ops_hsh = hash_new ()) == NULL
22812 || (arm_cond_hsh = hash_new ()) == NULL
22813 || (arm_shift_hsh = hash_new ()) == NULL
22814 || (arm_psr_hsh = hash_new ()) == NULL
22815 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22816 || (arm_reg_hsh = hash_new ()) == NULL
22817 || (arm_reloc_hsh = hash_new ()) == NULL
22818 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22819 as_fatal (_("virtual memory exhausted"));
22820
22821 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22822 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22823 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22824 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22825 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22826 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22827 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22828 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22829 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22830 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22831 (void *) (v7m_psrs + i));
22832 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22833 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22834 for (i = 0;
22835 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22836 i++)
22837 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22838 (void *) (barrier_opt_names + i));
22839 #ifdef OBJ_ELF
22840 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22841 {
22842 struct reloc_entry * entry = reloc_names + i;
22843
22844 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22845 /* This makes encode_branch() use the EABI versions of this relocation. */
22846 entry->reloc = BFD_RELOC_UNUSED;
22847
22848 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22849 }
22850 #endif
22851
22852 set_constant_flonums ();
22853
22854 /* Set the cpu variant based on the command-line options. We prefer
22855 -mcpu= over -march= if both are set (as for GCC); and we prefer
22856 -mfpu= over any other way of setting the floating point unit.
22857 Use of legacy options with new options are faulted. */
22858 if (legacy_cpu)
22859 {
22860 if (mcpu_cpu_opt || march_cpu_opt)
22861 as_bad (_("use of old and new-style options to set CPU type"));
22862
22863 mcpu_cpu_opt = legacy_cpu;
22864 }
22865 else if (!mcpu_cpu_opt)
22866 mcpu_cpu_opt = march_cpu_opt;
22867
22868 if (legacy_fpu)
22869 {
22870 if (mfpu_opt)
22871 as_bad (_("use of old and new-style options to set FPU type"));
22872
22873 mfpu_opt = legacy_fpu;
22874 }
22875 else if (!mfpu_opt)
22876 {
22877 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22878 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22879 /* Some environments specify a default FPU. If they don't, infer it
22880 from the processor. */
22881 if (mcpu_fpu_opt)
22882 mfpu_opt = mcpu_fpu_opt;
22883 else
22884 mfpu_opt = march_fpu_opt;
22885 #else
22886 mfpu_opt = &fpu_default;
22887 #endif
22888 }
22889
22890 if (!mfpu_opt)
22891 {
22892 if (mcpu_cpu_opt != NULL)
22893 mfpu_opt = &fpu_default;
22894 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22895 mfpu_opt = &fpu_arch_vfp_v2;
22896 else
22897 mfpu_opt = &fpu_arch_fpa;
22898 }
22899
22900 #ifdef CPU_DEFAULT
22901 if (!mcpu_cpu_opt)
22902 {
22903 mcpu_cpu_opt = &cpu_default;
22904 selected_cpu = cpu_default;
22905 }
22906 #else
22907 if (mcpu_cpu_opt)
22908 selected_cpu = *mcpu_cpu_opt;
22909 else
22910 mcpu_cpu_opt = &arm_arch_any;
22911 #endif
22912
22913 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22914
22915 autoselect_thumb_from_cpu_variant ();
22916
22917 arm_arch_used = thumb_arch_used = arm_arch_none;
22918
22919 #if defined OBJ_COFF || defined OBJ_ELF
22920 {
22921 unsigned int flags = 0;
22922
22923 #if defined OBJ_ELF
22924 flags = meabi_flags;
22925
22926 switch (meabi_flags)
22927 {
22928 case EF_ARM_EABI_UNKNOWN:
22929 #endif
22930 /* Set the flags in the private structure. */
22931 if (uses_apcs_26) flags |= F_APCS26;
22932 if (support_interwork) flags |= F_INTERWORK;
22933 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22934 if (pic_code) flags |= F_PIC;
22935 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22936 flags |= F_SOFT_FLOAT;
22937
22938 switch (mfloat_abi_opt)
22939 {
22940 case ARM_FLOAT_ABI_SOFT:
22941 case ARM_FLOAT_ABI_SOFTFP:
22942 flags |= F_SOFT_FLOAT;
22943 break;
22944
22945 case ARM_FLOAT_ABI_HARD:
22946 if (flags & F_SOFT_FLOAT)
22947 as_bad (_("hard-float conflicts with specified fpu"));
22948 break;
22949 }
22950
22951 /* Using pure-endian doubles (even if soft-float). */
22952 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22953 flags |= F_VFP_FLOAT;
22954
22955 #if defined OBJ_ELF
22956 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22957 flags |= EF_ARM_MAVERICK_FLOAT;
22958 break;
22959
22960 case EF_ARM_EABI_VER4:
22961 case EF_ARM_EABI_VER5:
22962 /* No additional flags to set. */
22963 break;
22964
22965 default:
22966 abort ();
22967 }
22968 #endif
22969 bfd_set_private_flags (stdoutput, flags);
22970
22971 /* We have run out flags in the COFF header to encode the
22972 status of ATPCS support, so instead we create a dummy,
22973 empty, debug section called .arm.atpcs. */
22974 if (atpcs)
22975 {
22976 asection * sec;
22977
22978 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22979
22980 if (sec != NULL)
22981 {
22982 bfd_set_section_flags
22983 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22984 bfd_set_section_size (stdoutput, sec, 0);
22985 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22986 }
22987 }
22988 }
22989 #endif
22990
22991 /* Record the CPU type as well. */
22992 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22993 mach = bfd_mach_arm_iWMMXt2;
22994 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22995 mach = bfd_mach_arm_iWMMXt;
22996 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22997 mach = bfd_mach_arm_XScale;
22998 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22999 mach = bfd_mach_arm_ep9312;
23000 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23001 mach = bfd_mach_arm_5TE;
23002 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23003 {
23004 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23005 mach = bfd_mach_arm_5T;
23006 else
23007 mach = bfd_mach_arm_5;
23008 }
23009 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23010 {
23011 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23012 mach = bfd_mach_arm_4T;
23013 else
23014 mach = bfd_mach_arm_4;
23015 }
23016 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23017 mach = bfd_mach_arm_3M;
23018 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23019 mach = bfd_mach_arm_3;
23020 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23021 mach = bfd_mach_arm_2a;
23022 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23023 mach = bfd_mach_arm_2;
23024 else
23025 mach = bfd_mach_arm_unknown;
23026
23027 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23028 }
23029
23030 /* Command line processing. */
23031
23032 /* md_parse_option
23033 Invocation line includes a switch not recognized by the base assembler.
23034 See if it's a processor-specific option.
23035
23036 This routine is somewhat complicated by the need for backwards
23037 compatibility (since older releases of gcc can't be changed).
23038 The new options try to make the interface as compatible as
23039 possible with GCC.
23040
23041 New options (supported) are:
23042
23043 -mcpu=<cpu name> Assemble for selected processor
23044 -march=<architecture name> Assemble for selected architecture
23045 -mfpu=<fpu architecture> Assemble for selected FPU.
23046 -EB/-mbig-endian Big-endian
23047 -EL/-mlittle-endian Little-endian
23048 -k Generate PIC code
23049 -mthumb Start in Thumb mode
23050 -mthumb-interwork Code supports ARM/Thumb interworking
23051
23052 -m[no-]warn-deprecated Warn about deprecated features
23053
23054 For now we will also provide support for:
23055
23056 -mapcs-32 32-bit Program counter
23057 -mapcs-26 26-bit Program counter
23058 -macps-float Floats passed in FP registers
23059 -mapcs-reentrant Reentrant code
23060 -matpcs
23061 (sometime these will probably be replaced with -mapcs=<list of options>
23062 and -matpcs=<list of options>)
23063
23064 The remaining options are only supported for back-wards compatibility.
23065 Cpu variants, the arm part is optional:
23066 -m[arm]1 Currently not supported.
23067 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23068 -m[arm]3 Arm 3 processor
23069 -m[arm]6[xx], Arm 6 processors
23070 -m[arm]7[xx][t][[d]m] Arm 7 processors
23071 -m[arm]8[10] Arm 8 processors
23072 -m[arm]9[20][tdmi] Arm 9 processors
23073 -mstrongarm[110[0]] StrongARM processors
23074 -mxscale XScale processors
23075 -m[arm]v[2345[t[e]]] Arm architectures
23076 -mall All (except the ARM1)
23077 FP variants:
23078 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23079 -mfpe-old (No float load/store multiples)
23080 -mvfpxd VFP Single precision
23081 -mvfp All VFP
23082 -mno-fpu Disable all floating point instructions
23083
23084 The following CPU names are recognized:
23085 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23086 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23087 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23088 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23089 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23090 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23091 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23092
23093 */
23094
23095 const char * md_shortopts = "m:k";
23096
23097 #ifdef ARM_BI_ENDIAN
23098 #define OPTION_EB (OPTION_MD_BASE + 0)
23099 #define OPTION_EL (OPTION_MD_BASE + 1)
23100 #else
23101 #if TARGET_BYTES_BIG_ENDIAN
23102 #define OPTION_EB (OPTION_MD_BASE + 0)
23103 #else
23104 #define OPTION_EL (OPTION_MD_BASE + 1)
23105 #endif
23106 #endif
23107 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23108
23109 struct option md_longopts[] =
23110 {
23111 #ifdef OPTION_EB
23112 {"EB", no_argument, NULL, OPTION_EB},
23113 #endif
23114 #ifdef OPTION_EL
23115 {"EL", no_argument, NULL, OPTION_EL},
23116 #endif
23117 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23118 {NULL, no_argument, NULL, 0}
23119 };
23120
23121 size_t md_longopts_size = sizeof (md_longopts);
23122
23123 struct arm_option_table
23124 {
23125 char *option; /* Option name to match. */
23126 char *help; /* Help information. */
23127 int *var; /* Variable to change. */
23128 int value; /* What to change it to. */
23129 char *deprecated; /* If non-null, print this message. */
23130 };
23131
23132 struct arm_option_table arm_opts[] =
23133 {
23134 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23135 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23136 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23137 &support_interwork, 1, NULL},
23138 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23139 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23140 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23141 1, NULL},
23142 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23143 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23144 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23145 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23146 NULL},
23147
23148 /* These are recognized by the assembler, but have no affect on code. */
23149 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23150 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23151
23152 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23153 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23154 &warn_on_deprecated, 0, NULL},
23155 {NULL, NULL, NULL, 0, NULL}
23156 };
23157
23158 struct arm_legacy_option_table
23159 {
23160 char *option; /* Option name to match. */
23161 const arm_feature_set **var; /* Variable to change. */
23162 const arm_feature_set value; /* What to change it to. */
23163 char *deprecated; /* If non-null, print this message. */
23164 };
23165
23166 const struct arm_legacy_option_table arm_legacy_opts[] =
23167 {
23168 /* DON'T add any new processors to this list -- we want the whole list
23169 to go away... Add them to the processors table instead. */
23170 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23171 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23172 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23173 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23174 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23175 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23176 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23177 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23178 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23179 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23180 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23181 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23182 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23183 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23184 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23185 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23186 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23187 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23188 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23189 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23190 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23191 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23192 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23193 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23194 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23195 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23196 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23197 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23198 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23199 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23200 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23201 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23202 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23203 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23204 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23205 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23206 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23207 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23208 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23209 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23210 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23211 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23212 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23213 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23214 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23215 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23216 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23217 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23218 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23219 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23220 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23221 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23222 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23223 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23224 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23225 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23226 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23227 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23228 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23229 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23230 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23231 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23232 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23233 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23234 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23235 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23236 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23237 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23238 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23239 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23240 N_("use -mcpu=strongarm110")},
23241 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23242 N_("use -mcpu=strongarm1100")},
23243 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23244 N_("use -mcpu=strongarm1110")},
23245 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23246 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23247 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23248
23249 /* Architecture variants -- don't add any more to this list either. */
23250 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23251 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23252 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23253 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23254 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23255 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23256 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23257 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23258 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23259 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23260 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23261 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23262 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23263 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23264 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23265 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23266 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23267 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23268
23269 /* Floating point variants -- don't add any more to this list either. */
23270 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23271 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23272 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23273 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23274 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23275
23276 {NULL, NULL, ARM_ARCH_NONE, NULL}
23277 };
23278
23279 struct arm_cpu_option_table
23280 {
23281 char *name;
23282 size_t name_len;
23283 const arm_feature_set value;
23284 /* For some CPUs we assume an FPU unless the user explicitly sets
23285 -mfpu=... */
23286 const arm_feature_set default_fpu;
23287 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23288 case. */
23289 const char *canonical_name;
23290 };
23291
23292 /* This list should, at a minimum, contain all the cpu names
23293 recognized by GCC. */
23294 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23295 static const struct arm_cpu_option_table arm_cpus[] =
23296 {
23297 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23298 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23299 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23300 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23301 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23302 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23303 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23304 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23305 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23306 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23307 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23308 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23309 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23310 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23311 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23312 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23313 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23314 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23315 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23316 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23317 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23318 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23319 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23320 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23321 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23322 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23323 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23324 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23325 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23326 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23327 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23328 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23329 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23330 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23331 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23332 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23333 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23334 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23335 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23336 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23337 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23338 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23339 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23340 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23341 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23342 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23343 /* For V5 or later processors we default to using VFP; but the user
23344 should really set the FPU type explicitly. */
23345 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23346 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23347 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23348 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23349 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23350 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23351 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23352 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23353 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23354 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23355 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23356 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23357 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23358 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23359 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23360 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23361 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23362 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23363 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23364 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23365 "ARM1026EJ-S"),
23366 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23367 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23368 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23369 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23370 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23371 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23372 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23373 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23374 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23375 "ARM1136JF-S"),
23376 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23377 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23378 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23379 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23380 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23381 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23382 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23383 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23384 FPU_NONE, "Cortex-A5"),
23385 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23386 FPU_ARCH_NEON_VFP_V4,
23387 "Cortex-A7"),
23388 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23389 ARM_FEATURE (0, FPU_VFP_V3
23390 | FPU_NEON_EXT_V1),
23391 "Cortex-A8"),
23392 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23393 ARM_FEATURE (0, FPU_VFP_V3
23394 | FPU_NEON_EXT_V1),
23395 "Cortex-A9"),
23396 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23397 FPU_ARCH_NEON_VFP_V4,
23398 "Cortex-A15"),
23399 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23400 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23401 "Cortex-R4F"),
23402 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23403 FPU_NONE, "Cortex-R5"),
23404 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23405 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23406 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23407 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23408 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23409 /* ??? XSCALE is really an architecture. */
23410 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23411 /* ??? iwmmxt is not a processor. */
23412 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23413 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23414 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23415 /* Maverick */
23416 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23417 FPU_ARCH_MAVERICK,
23418 "ARM920T"),
23419 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23420 };
23421 #undef ARM_CPU_OPT
23422
23423 struct arm_arch_option_table
23424 {
23425 char *name;
23426 size_t name_len;
23427 const arm_feature_set value;
23428 const arm_feature_set default_fpu;
23429 };
23430
23431 /* This list should, at a minimum, contain all the architecture names
23432 recognized by GCC. */
23433 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23434 static const struct arm_arch_option_table arm_archs[] =
23435 {
23436 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23437 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23438 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23439 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23440 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23441 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23442 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23443 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23444 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23445 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23446 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23447 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23448 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23449 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23450 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23451 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23452 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23453 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23454 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23455 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23456 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23457 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23458 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23459 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23460 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23461 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23462 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23463 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23464 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23465 /* The official spelling of the ARMv7 profile variants is the dashed form.
23466 Accept the non-dashed form for compatibility with old toolchains. */
23467 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23468 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23469 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23470 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23471 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23472 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23473 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23474 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23475 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23476 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23477 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23478 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23479 };
23480 #undef ARM_ARCH_OPT
23481
23482 /* ISA extensions in the co-processor and main instruction set space. */
23483 struct arm_option_extension_value_table
23484 {
23485 char *name;
23486 size_t name_len;
23487 const arm_feature_set value;
23488 const arm_feature_set allowed_archs;
23489 };
23490
23491 /* The following table must be in alphabetical order with a NULL last entry.
23492 */
23493 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23494 static const struct arm_option_extension_value_table arm_extensions[] =
23495 {
23496 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23497 ARM_FEATURE (ARM_EXT_V8, 0)),
23498 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23499 ARM_FEATURE (ARM_EXT_V8, 0)),
23500 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23501 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23502 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23503 ARM_EXT_OPT ("iwmmxt2",
23504 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23505 ARM_EXT_OPT ("maverick",
23506 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23507 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23508 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23509 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23510 ARM_FEATURE (ARM_EXT_V8, 0)),
23511 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23512 ARM_FEATURE (ARM_EXT_V6M, 0)),
23513 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23514 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23515 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23516 | ARM_EXT_DIV, 0),
23517 ARM_FEATURE (ARM_EXT_V7A, 0)),
23518 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23519 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23520 };
23521 #undef ARM_EXT_OPT
23522
23523 /* ISA floating-point and Advanced SIMD extensions. */
23524 struct arm_option_fpu_value_table
23525 {
23526 char *name;
23527 const arm_feature_set value;
23528 };
23529
23530 /* This list should, at a minimum, contain all the fpu names
23531 recognized by GCC. */
23532 static const struct arm_option_fpu_value_table arm_fpus[] =
23533 {
23534 {"softfpa", FPU_NONE},
23535 {"fpe", FPU_ARCH_FPE},
23536 {"fpe2", FPU_ARCH_FPE},
23537 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23538 {"fpa", FPU_ARCH_FPA},
23539 {"fpa10", FPU_ARCH_FPA},
23540 {"fpa11", FPU_ARCH_FPA},
23541 {"arm7500fe", FPU_ARCH_FPA},
23542 {"softvfp", FPU_ARCH_VFP},
23543 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23544 {"vfp", FPU_ARCH_VFP_V2},
23545 {"vfp9", FPU_ARCH_VFP_V2},
23546 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23547 {"vfp10", FPU_ARCH_VFP_V2},
23548 {"vfp10-r0", FPU_ARCH_VFP_V1},
23549 {"vfpxd", FPU_ARCH_VFP_V1xD},
23550 {"vfpv2", FPU_ARCH_VFP_V2},
23551 {"vfpv3", FPU_ARCH_VFP_V3},
23552 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23553 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23554 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23555 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23556 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23557 {"arm1020t", FPU_ARCH_VFP_V1},
23558 {"arm1020e", FPU_ARCH_VFP_V2},
23559 {"arm1136jfs", FPU_ARCH_VFP_V2},
23560 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23561 {"maverick", FPU_ARCH_MAVERICK},
23562 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23563 {"neon-fp16", FPU_ARCH_NEON_FP16},
23564 {"vfpv4", FPU_ARCH_VFP_V4},
23565 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23566 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23567 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23568 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23569 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23570 {"crypto-neon-fp-armv8",
23571 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23572 {NULL, ARM_ARCH_NONE}
23573 };
23574
23575 struct arm_option_value_table
23576 {
23577 char *name;
23578 long value;
23579 };
23580
23581 static const struct arm_option_value_table arm_float_abis[] =
23582 {
23583 {"hard", ARM_FLOAT_ABI_HARD},
23584 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23585 {"soft", ARM_FLOAT_ABI_SOFT},
23586 {NULL, 0}
23587 };
23588
23589 #ifdef OBJ_ELF
23590 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23591 static const struct arm_option_value_table arm_eabis[] =
23592 {
23593 {"gnu", EF_ARM_EABI_UNKNOWN},
23594 {"4", EF_ARM_EABI_VER4},
23595 {"5", EF_ARM_EABI_VER5},
23596 {NULL, 0}
23597 };
23598 #endif
23599
23600 struct arm_long_option_table
23601 {
23602 char * option; /* Substring to match. */
23603 char * help; /* Help information. */
23604 int (* func) (char * subopt); /* Function to decode sub-option. */
23605 char * deprecated; /* If non-null, print this message. */
23606 };
23607
23608 static bfd_boolean
23609 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23610 {
23611 arm_feature_set *ext_set = (arm_feature_set *)
23612 xmalloc (sizeof (arm_feature_set));
23613
23614 /* We insist on extensions being specified in alphabetical order, and with
23615 extensions being added before being removed. We achieve this by having
23616 the global ARM_EXTENSIONS table in alphabetical order, and using the
23617 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23618 or removing it (0) and only allowing it to change in the order
23619 -1 -> 1 -> 0. */
23620 const struct arm_option_extension_value_table * opt = NULL;
23621 int adding_value = -1;
23622
23623 /* Copy the feature set, so that we can modify it. */
23624 *ext_set = **opt_p;
23625 *opt_p = ext_set;
23626
23627 while (str != NULL && *str != 0)
23628 {
23629 char *ext;
23630 size_t len;
23631
23632 if (*str != '+')
23633 {
23634 as_bad (_("invalid architectural extension"));
23635 return FALSE;
23636 }
23637
23638 str++;
23639 ext = strchr (str, '+');
23640
23641 if (ext != NULL)
23642 len = ext - str;
23643 else
23644 len = strlen (str);
23645
23646 if (len >= 2 && strncmp (str, "no", 2) == 0)
23647 {
23648 if (adding_value != 0)
23649 {
23650 adding_value = 0;
23651 opt = arm_extensions;
23652 }
23653
23654 len -= 2;
23655 str += 2;
23656 }
23657 else if (len > 0)
23658 {
23659 if (adding_value == -1)
23660 {
23661 adding_value = 1;
23662 opt = arm_extensions;
23663 }
23664 else if (adding_value != 1)
23665 {
23666 as_bad (_("must specify extensions to add before specifying "
23667 "those to remove"));
23668 return FALSE;
23669 }
23670 }
23671
23672 if (len == 0)
23673 {
23674 as_bad (_("missing architectural extension"));
23675 return FALSE;
23676 }
23677
23678 gas_assert (adding_value != -1);
23679 gas_assert (opt != NULL);
23680
23681 /* Scan over the options table trying to find an exact match. */
23682 for (; opt->name != NULL; opt++)
23683 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23684 {
23685 /* Check we can apply the extension to this architecture. */
23686 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23687 {
23688 as_bad (_("extension does not apply to the base architecture"));
23689 return FALSE;
23690 }
23691
23692 /* Add or remove the extension. */
23693 if (adding_value)
23694 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23695 else
23696 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23697
23698 break;
23699 }
23700
23701 if (opt->name == NULL)
23702 {
23703 /* Did we fail to find an extension because it wasn't specified in
23704 alphabetical order, or because it does not exist? */
23705
23706 for (opt = arm_extensions; opt->name != NULL; opt++)
23707 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23708 break;
23709
23710 if (opt->name == NULL)
23711 as_bad (_("unknown architectural extension `%s'"), str);
23712 else
23713 as_bad (_("architectural extensions must be specified in "
23714 "alphabetical order"));
23715
23716 return FALSE;
23717 }
23718 else
23719 {
23720 /* We should skip the extension we've just matched the next time
23721 round. */
23722 opt++;
23723 }
23724
23725 str = ext;
23726 };
23727
23728 return TRUE;
23729 }
23730
23731 static bfd_boolean
23732 arm_parse_cpu (char *str)
23733 {
23734 const struct arm_cpu_option_table *opt;
23735 char *ext = strchr (str, '+');
23736 size_t len;
23737
23738 if (ext != NULL)
23739 len = ext - str;
23740 else
23741 len = strlen (str);
23742
23743 if (len == 0)
23744 {
23745 as_bad (_("missing cpu name `%s'"), str);
23746 return FALSE;
23747 }
23748
23749 for (opt = arm_cpus; opt->name != NULL; opt++)
23750 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23751 {
23752 mcpu_cpu_opt = &opt->value;
23753 mcpu_fpu_opt = &opt->default_fpu;
23754 if (opt->canonical_name)
23755 strcpy (selected_cpu_name, opt->canonical_name);
23756 else
23757 {
23758 size_t i;
23759
23760 for (i = 0; i < len; i++)
23761 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23762 selected_cpu_name[i] = 0;
23763 }
23764
23765 if (ext != NULL)
23766 return arm_parse_extension (ext, &mcpu_cpu_opt);
23767
23768 return TRUE;
23769 }
23770
23771 as_bad (_("unknown cpu `%s'"), str);
23772 return FALSE;
23773 }
23774
23775 static bfd_boolean
23776 arm_parse_arch (char *str)
23777 {
23778 const struct arm_arch_option_table *opt;
23779 char *ext = strchr (str, '+');
23780 size_t len;
23781
23782 if (ext != NULL)
23783 len = ext - str;
23784 else
23785 len = strlen (str);
23786
23787 if (len == 0)
23788 {
23789 as_bad (_("missing architecture name `%s'"), str);
23790 return FALSE;
23791 }
23792
23793 for (opt = arm_archs; opt->name != NULL; opt++)
23794 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23795 {
23796 march_cpu_opt = &opt->value;
23797 march_fpu_opt = &opt->default_fpu;
23798 strcpy (selected_cpu_name, opt->name);
23799
23800 if (ext != NULL)
23801 return arm_parse_extension (ext, &march_cpu_opt);
23802
23803 return TRUE;
23804 }
23805
23806 as_bad (_("unknown architecture `%s'\n"), str);
23807 return FALSE;
23808 }
23809
23810 static bfd_boolean
23811 arm_parse_fpu (char * str)
23812 {
23813 const struct arm_option_fpu_value_table * opt;
23814
23815 for (opt = arm_fpus; opt->name != NULL; opt++)
23816 if (streq (opt->name, str))
23817 {
23818 mfpu_opt = &opt->value;
23819 return TRUE;
23820 }
23821
23822 as_bad (_("unknown floating point format `%s'\n"), str);
23823 return FALSE;
23824 }
23825
23826 static bfd_boolean
23827 arm_parse_float_abi (char * str)
23828 {
23829 const struct arm_option_value_table * opt;
23830
23831 for (opt = arm_float_abis; opt->name != NULL; opt++)
23832 if (streq (opt->name, str))
23833 {
23834 mfloat_abi_opt = opt->value;
23835 return TRUE;
23836 }
23837
23838 as_bad (_("unknown floating point abi `%s'\n"), str);
23839 return FALSE;
23840 }
23841
23842 #ifdef OBJ_ELF
23843 static bfd_boolean
23844 arm_parse_eabi (char * str)
23845 {
23846 const struct arm_option_value_table *opt;
23847
23848 for (opt = arm_eabis; opt->name != NULL; opt++)
23849 if (streq (opt->name, str))
23850 {
23851 meabi_flags = opt->value;
23852 return TRUE;
23853 }
23854 as_bad (_("unknown EABI `%s'\n"), str);
23855 return FALSE;
23856 }
23857 #endif
23858
23859 static bfd_boolean
23860 arm_parse_it_mode (char * str)
23861 {
23862 bfd_boolean ret = TRUE;
23863
23864 if (streq ("arm", str))
23865 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23866 else if (streq ("thumb", str))
23867 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23868 else if (streq ("always", str))
23869 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23870 else if (streq ("never", str))
23871 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23872 else
23873 {
23874 as_bad (_("unknown implicit IT mode `%s', should be "\
23875 "arm, thumb, always, or never."), str);
23876 ret = FALSE;
23877 }
23878
23879 return ret;
23880 }
23881
23882 struct arm_long_option_table arm_long_opts[] =
23883 {
23884 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23885 arm_parse_cpu, NULL},
23886 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23887 arm_parse_arch, NULL},
23888 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23889 arm_parse_fpu, NULL},
23890 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23891 arm_parse_float_abi, NULL},
23892 #ifdef OBJ_ELF
23893 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23894 arm_parse_eabi, NULL},
23895 #endif
23896 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23897 arm_parse_it_mode, NULL},
23898 {NULL, NULL, 0, NULL}
23899 };
23900
23901 int
23902 md_parse_option (int c, char * arg)
23903 {
23904 struct arm_option_table *opt;
23905 const struct arm_legacy_option_table *fopt;
23906 struct arm_long_option_table *lopt;
23907
23908 switch (c)
23909 {
23910 #ifdef OPTION_EB
23911 case OPTION_EB:
23912 target_big_endian = 1;
23913 break;
23914 #endif
23915
23916 #ifdef OPTION_EL
23917 case OPTION_EL:
23918 target_big_endian = 0;
23919 break;
23920 #endif
23921
23922 case OPTION_FIX_V4BX:
23923 fix_v4bx = TRUE;
23924 break;
23925
23926 case 'a':
23927 /* Listing option. Just ignore these, we don't support additional
23928 ones. */
23929 return 0;
23930
23931 default:
23932 for (opt = arm_opts; opt->option != NULL; opt++)
23933 {
23934 if (c == opt->option[0]
23935 && ((arg == NULL && opt->option[1] == 0)
23936 || streq (arg, opt->option + 1)))
23937 {
23938 /* If the option is deprecated, tell the user. */
23939 if (warn_on_deprecated && opt->deprecated != NULL)
23940 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23941 arg ? arg : "", _(opt->deprecated));
23942
23943 if (opt->var != NULL)
23944 *opt->var = opt->value;
23945
23946 return 1;
23947 }
23948 }
23949
23950 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23951 {
23952 if (c == fopt->option[0]
23953 && ((arg == NULL && fopt->option[1] == 0)
23954 || streq (arg, fopt->option + 1)))
23955 {
23956 /* If the option is deprecated, tell the user. */
23957 if (warn_on_deprecated && fopt->deprecated != NULL)
23958 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23959 arg ? arg : "", _(fopt->deprecated));
23960
23961 if (fopt->var != NULL)
23962 *fopt->var = &fopt->value;
23963
23964 return 1;
23965 }
23966 }
23967
23968 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23969 {
23970 /* These options are expected to have an argument. */
23971 if (c == lopt->option[0]
23972 && arg != NULL
23973 && strncmp (arg, lopt->option + 1,
23974 strlen (lopt->option + 1)) == 0)
23975 {
23976 /* If the option is deprecated, tell the user. */
23977 if (warn_on_deprecated && lopt->deprecated != NULL)
23978 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23979 _(lopt->deprecated));
23980
23981 /* Call the sup-option parser. */
23982 return lopt->func (arg + strlen (lopt->option) - 1);
23983 }
23984 }
23985
23986 return 0;
23987 }
23988
23989 return 1;
23990 }
23991
23992 void
23993 md_show_usage (FILE * fp)
23994 {
23995 struct arm_option_table *opt;
23996 struct arm_long_option_table *lopt;
23997
23998 fprintf (fp, _(" ARM-specific assembler options:\n"));
23999
24000 for (opt = arm_opts; opt->option != NULL; opt++)
24001 if (opt->help != NULL)
24002 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24003
24004 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24005 if (lopt->help != NULL)
24006 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24007
24008 #ifdef OPTION_EB
24009 fprintf (fp, _("\
24010 -EB assemble code for a big-endian cpu\n"));
24011 #endif
24012
24013 #ifdef OPTION_EL
24014 fprintf (fp, _("\
24015 -EL assemble code for a little-endian cpu\n"));
24016 #endif
24017
24018 fprintf (fp, _("\
24019 --fix-v4bx Allow BX in ARMv4 code\n"));
24020 }
24021
24022
24023 #ifdef OBJ_ELF
24024 typedef struct
24025 {
24026 int val;
24027 arm_feature_set flags;
24028 } cpu_arch_ver_table;
24029
24030 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24031 least features first. */
24032 static const cpu_arch_ver_table cpu_arch_ver[] =
24033 {
24034 {1, ARM_ARCH_V4},
24035 {2, ARM_ARCH_V4T},
24036 {3, ARM_ARCH_V5},
24037 {3, ARM_ARCH_V5T},
24038 {4, ARM_ARCH_V5TE},
24039 {5, ARM_ARCH_V5TEJ},
24040 {6, ARM_ARCH_V6},
24041 {9, ARM_ARCH_V6K},
24042 {7, ARM_ARCH_V6Z},
24043 {11, ARM_ARCH_V6M},
24044 {12, ARM_ARCH_V6SM},
24045 {8, ARM_ARCH_V6T2},
24046 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24047 {10, ARM_ARCH_V7R},
24048 {10, ARM_ARCH_V7M},
24049 {14, ARM_ARCH_V8A},
24050 {0, ARM_ARCH_NONE}
24051 };
24052
24053 /* Set an attribute if it has not already been set by the user. */
24054 static void
24055 aeabi_set_attribute_int (int tag, int value)
24056 {
24057 if (tag < 1
24058 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24059 || !attributes_set_explicitly[tag])
24060 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24061 }
24062
24063 static void
24064 aeabi_set_attribute_string (int tag, const char *value)
24065 {
24066 if (tag < 1
24067 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24068 || !attributes_set_explicitly[tag])
24069 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24070 }
24071
24072 /* Set the public EABI object attributes. */
24073 static void
24074 aeabi_set_public_attributes (void)
24075 {
24076 int arch;
24077 char profile;
24078 int virt_sec = 0;
24079 int fp16_optional = 0;
24080 arm_feature_set flags;
24081 arm_feature_set tmp;
24082 const cpu_arch_ver_table *p;
24083
24084 /* Choose the architecture based on the capabilities of the requested cpu
24085 (if any) and/or the instructions actually used. */
24086 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24087 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24088 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24089
24090 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24091 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24092
24093 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24094 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24095
24096 /* Allow the user to override the reported architecture. */
24097 if (object_arch)
24098 {
24099 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24100 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24101 }
24102
24103 /* We need to make sure that the attributes do not identify us as v6S-M
24104 when the only v6S-M feature in use is the Operating System Extensions. */
24105 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24106 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24107 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24108
24109 tmp = flags;
24110 arch = 0;
24111 for (p = cpu_arch_ver; p->val; p++)
24112 {
24113 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24114 {
24115 arch = p->val;
24116 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24117 }
24118 }
24119
24120 /* The table lookup above finds the last architecture to contribute
24121 a new feature. Unfortunately, Tag13 is a subset of the union of
24122 v6T2 and v7-M, so it is never seen as contributing a new feature.
24123 We can not search for the last entry which is entirely used,
24124 because if no CPU is specified we build up only those flags
24125 actually used. Perhaps we should separate out the specified
24126 and implicit cases. Avoid taking this path for -march=all by
24127 checking for contradictory v7-A / v7-M features. */
24128 if (arch == 10
24129 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24130 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24131 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24132 arch = 13;
24133
24134 /* Tag_CPU_name. */
24135 if (selected_cpu_name[0])
24136 {
24137 char *q;
24138
24139 q = selected_cpu_name;
24140 if (strncmp (q, "armv", 4) == 0)
24141 {
24142 int i;
24143
24144 q += 4;
24145 for (i = 0; q[i]; i++)
24146 q[i] = TOUPPER (q[i]);
24147 }
24148 aeabi_set_attribute_string (Tag_CPU_name, q);
24149 }
24150
24151 /* Tag_CPU_arch. */
24152 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24153
24154 /* Tag_CPU_arch_profile. */
24155 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24156 profile = 'A';
24157 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24158 profile = 'R';
24159 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24160 profile = 'M';
24161 else
24162 profile = '\0';
24163
24164 if (profile != '\0')
24165 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24166
24167 /* Tag_ARM_ISA_use. */
24168 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24169 || arch == 0)
24170 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24171
24172 /* Tag_THUMB_ISA_use. */
24173 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24174 || arch == 0)
24175 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24176 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24177
24178 /* Tag_VFP_arch. */
24179 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24180 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24181 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24182 aeabi_set_attribute_int (Tag_VFP_arch,
24183 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24184 ? 5 : 6);
24185 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24186 {
24187 fp16_optional = 1;
24188 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24189 }
24190 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24191 {
24192 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24193 fp16_optional = 1;
24194 }
24195 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24196 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24197 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24198 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24199 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24200
24201 /* Tag_ABI_HardFP_use. */
24202 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24203 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24204 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24205
24206 /* Tag_WMMX_arch. */
24207 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24208 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24209 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24210 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24211
24212 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24213 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24214 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24215 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24216 {
24217 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24218 {
24219 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24220 }
24221 else
24222 {
24223 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24224 fp16_optional = 1;
24225 }
24226 }
24227
24228 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24229 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24230 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24231
24232 /* Tag_DIV_use.
24233
24234 We set Tag_DIV_use to two when integer divide instructions have been used
24235 in ARM state, or when Thumb integer divide instructions have been used,
24236 but we have no architecture profile set, nor have we any ARM instructions.
24237
24238 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24239 architecture.
24240
24241 For new architectures we will have to check these tests. */
24242 gas_assert (arch <= TAG_CPU_ARCH_V8);
24243 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24244 aeabi_set_attribute_int (Tag_DIV_use, 0);
24245 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24246 || (profile == '\0'
24247 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24248 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24249 aeabi_set_attribute_int (Tag_DIV_use, 2);
24250
24251 /* Tag_MP_extension_use. */
24252 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24253 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24254
24255 /* Tag Virtualization_use. */
24256 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24257 virt_sec |= 1;
24258 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24259 virt_sec |= 2;
24260 if (virt_sec != 0)
24261 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24262 }
24263
24264 /* Add the default contents for the .ARM.attributes section. */
24265 void
24266 arm_md_end (void)
24267 {
24268 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24269 return;
24270
24271 aeabi_set_public_attributes ();
24272 }
24273 #endif /* OBJ_ELF */
24274
24275
24276 /* Parse a .cpu directive. */
24277
24278 static void
24279 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24280 {
24281 const struct arm_cpu_option_table *opt;
24282 char *name;
24283 char saved_char;
24284
24285 name = input_line_pointer;
24286 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24287 input_line_pointer++;
24288 saved_char = *input_line_pointer;
24289 *input_line_pointer = 0;
24290
24291 /* Skip the first "all" entry. */
24292 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24293 if (streq (opt->name, name))
24294 {
24295 mcpu_cpu_opt = &opt->value;
24296 selected_cpu = opt->value;
24297 if (opt->canonical_name)
24298 strcpy (selected_cpu_name, opt->canonical_name);
24299 else
24300 {
24301 int i;
24302 for (i = 0; opt->name[i]; i++)
24303 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24304
24305 selected_cpu_name[i] = 0;
24306 }
24307 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24308 *input_line_pointer = saved_char;
24309 demand_empty_rest_of_line ();
24310 return;
24311 }
24312 as_bad (_("unknown cpu `%s'"), name);
24313 *input_line_pointer = saved_char;
24314 ignore_rest_of_line ();
24315 }
24316
24317
24318 /* Parse a .arch directive. */
24319
24320 static void
24321 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24322 {
24323 const struct arm_arch_option_table *opt;
24324 char saved_char;
24325 char *name;
24326
24327 name = input_line_pointer;
24328 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24329 input_line_pointer++;
24330 saved_char = *input_line_pointer;
24331 *input_line_pointer = 0;
24332
24333 /* Skip the first "all" entry. */
24334 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24335 if (streq (opt->name, name))
24336 {
24337 mcpu_cpu_opt = &opt->value;
24338 selected_cpu = opt->value;
24339 strcpy (selected_cpu_name, opt->name);
24340 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24341 *input_line_pointer = saved_char;
24342 demand_empty_rest_of_line ();
24343 return;
24344 }
24345
24346 as_bad (_("unknown architecture `%s'\n"), name);
24347 *input_line_pointer = saved_char;
24348 ignore_rest_of_line ();
24349 }
24350
24351
24352 /* Parse a .object_arch directive. */
24353
24354 static void
24355 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24356 {
24357 const struct arm_arch_option_table *opt;
24358 char saved_char;
24359 char *name;
24360
24361 name = input_line_pointer;
24362 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24363 input_line_pointer++;
24364 saved_char = *input_line_pointer;
24365 *input_line_pointer = 0;
24366
24367 /* Skip the first "all" entry. */
24368 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24369 if (streq (opt->name, name))
24370 {
24371 object_arch = &opt->value;
24372 *input_line_pointer = saved_char;
24373 demand_empty_rest_of_line ();
24374 return;
24375 }
24376
24377 as_bad (_("unknown architecture `%s'\n"), name);
24378 *input_line_pointer = saved_char;
24379 ignore_rest_of_line ();
24380 }
24381
24382 /* Parse a .arch_extension directive. */
24383
24384 static void
24385 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24386 {
24387 const struct arm_option_extension_value_table *opt;
24388 char saved_char;
24389 char *name;
24390 int adding_value = 1;
24391
24392 name = input_line_pointer;
24393 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24394 input_line_pointer++;
24395 saved_char = *input_line_pointer;
24396 *input_line_pointer = 0;
24397
24398 if (strlen (name) >= 2
24399 && strncmp (name, "no", 2) == 0)
24400 {
24401 adding_value = 0;
24402 name += 2;
24403 }
24404
24405 for (opt = arm_extensions; opt->name != NULL; opt++)
24406 if (streq (opt->name, name))
24407 {
24408 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24409 {
24410 as_bad (_("architectural extension `%s' is not allowed for the "
24411 "current base architecture"), name);
24412 break;
24413 }
24414
24415 if (adding_value)
24416 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24417 else
24418 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24419
24420 mcpu_cpu_opt = &selected_cpu;
24421 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24422 *input_line_pointer = saved_char;
24423 demand_empty_rest_of_line ();
24424 return;
24425 }
24426
24427 if (opt->name == NULL)
24428 as_bad (_("unknown architecture `%s'\n"), name);
24429
24430 *input_line_pointer = saved_char;
24431 ignore_rest_of_line ();
24432 }
24433
24434 /* Parse a .fpu directive. */
24435
24436 static void
24437 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24438 {
24439 const struct arm_option_fpu_value_table *opt;
24440 char saved_char;
24441 char *name;
24442
24443 name = input_line_pointer;
24444 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24445 input_line_pointer++;
24446 saved_char = *input_line_pointer;
24447 *input_line_pointer = 0;
24448
24449 for (opt = arm_fpus; opt->name != NULL; opt++)
24450 if (streq (opt->name, name))
24451 {
24452 mfpu_opt = &opt->value;
24453 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24454 *input_line_pointer = saved_char;
24455 demand_empty_rest_of_line ();
24456 return;
24457 }
24458
24459 as_bad (_("unknown floating point format `%s'\n"), name);
24460 *input_line_pointer = saved_char;
24461 ignore_rest_of_line ();
24462 }
24463
24464 /* Copy symbol information. */
24465
24466 void
24467 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24468 {
24469 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24470 }
24471
24472 #ifdef OBJ_ELF
24473 /* Given a symbolic attribute NAME, return the proper integer value.
24474 Returns -1 if the attribute is not known. */
24475
24476 int
24477 arm_convert_symbolic_attribute (const char *name)
24478 {
24479 static const struct
24480 {
24481 const char * name;
24482 const int tag;
24483 }
24484 attribute_table[] =
24485 {
24486 /* When you modify this table you should
24487 also modify the list in doc/c-arm.texi. */
24488 #define T(tag) {#tag, tag}
24489 T (Tag_CPU_raw_name),
24490 T (Tag_CPU_name),
24491 T (Tag_CPU_arch),
24492 T (Tag_CPU_arch_profile),
24493 T (Tag_ARM_ISA_use),
24494 T (Tag_THUMB_ISA_use),
24495 T (Tag_FP_arch),
24496 T (Tag_VFP_arch),
24497 T (Tag_WMMX_arch),
24498 T (Tag_Advanced_SIMD_arch),
24499 T (Tag_PCS_config),
24500 T (Tag_ABI_PCS_R9_use),
24501 T (Tag_ABI_PCS_RW_data),
24502 T (Tag_ABI_PCS_RO_data),
24503 T (Tag_ABI_PCS_GOT_use),
24504 T (Tag_ABI_PCS_wchar_t),
24505 T (Tag_ABI_FP_rounding),
24506 T (Tag_ABI_FP_denormal),
24507 T (Tag_ABI_FP_exceptions),
24508 T (Tag_ABI_FP_user_exceptions),
24509 T (Tag_ABI_FP_number_model),
24510 T (Tag_ABI_align_needed),
24511 T (Tag_ABI_align8_needed),
24512 T (Tag_ABI_align_preserved),
24513 T (Tag_ABI_align8_preserved),
24514 T (Tag_ABI_enum_size),
24515 T (Tag_ABI_HardFP_use),
24516 T (Tag_ABI_VFP_args),
24517 T (Tag_ABI_WMMX_args),
24518 T (Tag_ABI_optimization_goals),
24519 T (Tag_ABI_FP_optimization_goals),
24520 T (Tag_compatibility),
24521 T (Tag_CPU_unaligned_access),
24522 T (Tag_FP_HP_extension),
24523 T (Tag_VFP_HP_extension),
24524 T (Tag_ABI_FP_16bit_format),
24525 T (Tag_MPextension_use),
24526 T (Tag_DIV_use),
24527 T (Tag_nodefaults),
24528 T (Tag_also_compatible_with),
24529 T (Tag_conformance),
24530 T (Tag_T2EE_use),
24531 T (Tag_Virtualization_use),
24532 /* We deliberately do not include Tag_MPextension_use_legacy. */
24533 #undef T
24534 };
24535 unsigned int i;
24536
24537 if (name == NULL)
24538 return -1;
24539
24540 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24541 if (streq (name, attribute_table[i].name))
24542 return attribute_table[i].tag;
24543
24544 return -1;
24545 }
24546
24547
24548 /* Apply sym value for relocations only in the case that
24549 they are for local symbols and you have the respective
24550 architectural feature for blx and simple switches. */
24551 int
24552 arm_apply_sym_value (struct fix * fixP)
24553 {
24554 if (fixP->fx_addsy
24555 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24556 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24557 {
24558 switch (fixP->fx_r_type)
24559 {
24560 case BFD_RELOC_ARM_PCREL_BLX:
24561 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24562 if (ARM_IS_FUNC (fixP->fx_addsy))
24563 return 1;
24564 break;
24565
24566 case BFD_RELOC_ARM_PCREL_CALL:
24567 case BFD_RELOC_THUMB_PCREL_BLX:
24568 if (THUMB_IS_FUNC (fixP->fx_addsy))
24569 return 1;
24570 break;
24571
24572 default:
24573 break;
24574 }
24575
24576 }
24577 return 0;
24578 }
24579 #endif /* OBJ_ELF */