2007-11-06 Paul Brook <paul@codesourcery.com>
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #define WARN_DEPRECATED 1
46
47 #ifdef OBJ_ELF
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
50
51 /* This structure holds the unwinding state. */
52
53 static struct
54 {
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
59 /* The segment containing the function. */
60 segT saved_seg;
61 subsegT saved_subseg;
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
64 int opcode_count;
65 int opcode_alloc;
66 /* The number of bytes pushed to the stack. */
67 offsetT frame_size;
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
76 /* Nonzero if an unwind_setfp directive has been seen. */
77 unsigned fp_used:1;
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored:1;
80 } unwind;
81
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency = 0;
86
87 #endif /* OBJ_ELF */
88
89 /* Results from operand parsing worker functions. */
90
91 typedef enum
92 {
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result;
97
98 enum arm_float_abi
99 {
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103 };
104
105 /* Types of processor to assemble for. */
106 #ifndef CPU_DEFAULT
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
109 #else
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
112 #endif
113 #endif
114 #endif
115
116 #ifndef FPU_DEFAULT
117 # ifdef TE_LINUX
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
120 # ifdef OBJ_ELF
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122 # else
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125 # endif
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
128 # else
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
131 # endif
132 #endif /* ifndef FPU_DEFAULT */
133
134 #define streq(a, b) (strcmp (a, b) == 0)
135
136 static arm_feature_set cpu_variant;
137 static arm_feature_set arm_arch_used;
138 static arm_feature_set thumb_arch_used;
139
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26 = FALSE;
142 static int atpcs = FALSE;
143 static int support_interwork = FALSE;
144 static int uses_apcs_float = FALSE;
145 static int pic_code = FALSE;
146
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
150 static const arm_feature_set *legacy_cpu = NULL;
151 static const arm_feature_set *legacy_fpu = NULL;
152
153 static const arm_feature_set *mcpu_cpu_opt = NULL;
154 static const arm_feature_set *mcpu_fpu_opt = NULL;
155 static const arm_feature_set *march_cpu_opt = NULL;
156 static const arm_feature_set *march_fpu_opt = NULL;
157 static const arm_feature_set *mfpu_opt = NULL;
158 static const arm_feature_set *object_arch = NULL;
159
160 /* Constants for known architecture features. */
161 static const arm_feature_set fpu_default = FPU_DEFAULT;
162 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
163 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
164 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
165 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
166 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
167 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
168 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
169 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
170
171 #ifdef CPU_DEFAULT
172 static const arm_feature_set cpu_default = CPU_DEFAULT;
173 #endif
174
175 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
176 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
177 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
178 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
179 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
180 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
181 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
182 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
183 static const arm_feature_set arm_ext_v4t_5 =
184 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
185 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
186 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
187 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
188 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
189 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
190 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
191 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
192 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
193 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
194 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
195 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
196 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
197 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
198 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
199
200 static const arm_feature_set arm_arch_any = ARM_ANY;
201 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
202 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
203 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
204
205 static const arm_feature_set arm_cext_iwmmxt2 =
206 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
207 static const arm_feature_set arm_cext_iwmmxt =
208 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
209 static const arm_feature_set arm_cext_xscale =
210 ARM_FEATURE (0, ARM_CEXT_XSCALE);
211 static const arm_feature_set arm_cext_maverick =
212 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
213 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
214 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
215 static const arm_feature_set fpu_vfp_ext_v1xd =
216 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
217 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
218 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
219 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
220 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
221 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
222 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
223
224 static int mfloat_abi_opt = -1;
225 /* Record user cpu selection for object attributes. */
226 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
227 /* Must be long enough to hold any of the names in arm_cpus. */
228 static char selected_cpu_name[16];
229 #ifdef OBJ_ELF
230 # ifdef EABI_DEFAULT
231 static int meabi_flags = EABI_DEFAULT;
232 # else
233 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
234 # endif
235
236 bfd_boolean
237 arm_is_eabi (void)
238 {
239 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
240 }
241 #endif
242
243 #ifdef OBJ_ELF
244 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
245 symbolS * GOT_symbol;
246 #endif
247
248 /* 0: assemble for ARM,
249 1: assemble for Thumb,
250 2: assemble for Thumb even though target CPU does not support thumb
251 instructions. */
252 static int thumb_mode = 0;
253
254 /* If unified_syntax is true, we are processing the new unified
255 ARM/Thumb syntax. Important differences from the old ARM mode:
256
257 - Immediate operands do not require a # prefix.
258 - Conditional affixes always appear at the end of the
259 instruction. (For backward compatibility, those instructions
260 that formerly had them in the middle, continue to accept them
261 there.)
262 - The IT instruction may appear, and if it does is validated
263 against subsequent conditional affixes. It does not generate
264 machine code.
265
266 Important differences from the old Thumb mode:
267
268 - Immediate operands do not require a # prefix.
269 - Most of the V6T2 instructions are only available in unified mode.
270 - The .N and .W suffixes are recognized and honored (it is an error
271 if they cannot be honored).
272 - All instructions set the flags if and only if they have an 's' affix.
273 - Conditional affixes may be used. They are validated against
274 preceding IT instructions. Unlike ARM mode, you cannot use a
275 conditional affix except in the scope of an IT instruction. */
276
277 static bfd_boolean unified_syntax = FALSE;
278
279 enum neon_el_type
280 {
281 NT_invtype,
282 NT_untyped,
283 NT_integer,
284 NT_float,
285 NT_poly,
286 NT_signed,
287 NT_unsigned
288 };
289
290 struct neon_type_el
291 {
292 enum neon_el_type type;
293 unsigned size;
294 };
295
296 #define NEON_MAX_TYPE_ELS 4
297
298 struct neon_type
299 {
300 struct neon_type_el el[NEON_MAX_TYPE_ELS];
301 unsigned elems;
302 };
303
304 struct arm_it
305 {
306 const char * error;
307 unsigned long instruction;
308 int size;
309 int size_req;
310 int cond;
311 /* "uncond_value" is set to the value in place of the conditional field in
312 unconditional versions of the instruction, or -1 if nothing is
313 appropriate. */
314 int uncond_value;
315 struct neon_type vectype;
316 /* Set to the opcode if the instruction needs relaxation.
317 Zero if the instruction is not relaxed. */
318 unsigned long relax;
319 struct
320 {
321 bfd_reloc_code_real_type type;
322 expressionS exp;
323 int pc_rel;
324 } reloc;
325
326 struct
327 {
328 unsigned reg;
329 signed int imm;
330 struct neon_type_el vectype;
331 unsigned present : 1; /* Operand present. */
332 unsigned isreg : 1; /* Operand was a register. */
333 unsigned immisreg : 1; /* .imm field is a second register. */
334 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
335 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
336 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
337 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
338 instructions. This allows us to disambiguate ARM <-> vector insns. */
339 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
340 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
341 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
342 unsigned issingle : 1; /* Operand is VFP single-precision register. */
343 unsigned hasreloc : 1; /* Operand has relocation suffix. */
344 unsigned writeback : 1; /* Operand has trailing ! */
345 unsigned preind : 1; /* Preindexed address. */
346 unsigned postind : 1; /* Postindexed address. */
347 unsigned negative : 1; /* Index register was negated. */
348 unsigned shifted : 1; /* Shift applied to operation. */
349 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
350 } operands[6];
351 };
352
353 static struct arm_it inst;
354
355 #define NUM_FLOAT_VALS 8
356
357 const char * fp_const[] =
358 {
359 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
360 };
361
362 /* Number of littlenums required to hold an extended precision number. */
363 #define MAX_LITTLENUMS 6
364
365 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
366
367 #define FAIL (-1)
368 #define SUCCESS (0)
369
370 #define SUFF_S 1
371 #define SUFF_D 2
372 #define SUFF_E 3
373 #define SUFF_P 4
374
375 #define CP_T_X 0x00008000
376 #define CP_T_Y 0x00400000
377
378 #define CONDS_BIT 0x00100000
379 #define LOAD_BIT 0x00100000
380
381 #define DOUBLE_LOAD_FLAG 0x00000001
382
383 struct asm_cond
384 {
385 const char * template;
386 unsigned long value;
387 };
388
389 #define COND_ALWAYS 0xE
390
391 struct asm_psr
392 {
393 const char *template;
394 unsigned long field;
395 };
396
397 struct asm_barrier_opt
398 {
399 const char *template;
400 unsigned long value;
401 };
402
403 /* The bit that distinguishes CPSR and SPSR. */
404 #define SPSR_BIT (1 << 22)
405
406 /* The individual PSR flag bits. */
407 #define PSR_c (1 << 16)
408 #define PSR_x (1 << 17)
409 #define PSR_s (1 << 18)
410 #define PSR_f (1 << 19)
411
412 struct reloc_entry
413 {
414 char *name;
415 bfd_reloc_code_real_type reloc;
416 };
417
418 enum vfp_reg_pos
419 {
420 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
421 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
422 };
423
424 enum vfp_ldstm_type
425 {
426 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
427 };
428
429 /* Bits for DEFINED field in neon_typed_alias. */
430 #define NTA_HASTYPE 1
431 #define NTA_HASINDEX 2
432
433 struct neon_typed_alias
434 {
435 unsigned char defined;
436 unsigned char index;
437 struct neon_type_el eltype;
438 };
439
440 /* ARM register categories. This includes coprocessor numbers and various
441 architecture extensions' registers. */
442 enum arm_reg_type
443 {
444 REG_TYPE_RN,
445 REG_TYPE_CP,
446 REG_TYPE_CN,
447 REG_TYPE_FN,
448 REG_TYPE_VFS,
449 REG_TYPE_VFD,
450 REG_TYPE_NQ,
451 REG_TYPE_VFSD,
452 REG_TYPE_NDQ,
453 REG_TYPE_NSDQ,
454 REG_TYPE_VFC,
455 REG_TYPE_MVF,
456 REG_TYPE_MVD,
457 REG_TYPE_MVFX,
458 REG_TYPE_MVDX,
459 REG_TYPE_MVAX,
460 REG_TYPE_DSPSC,
461 REG_TYPE_MMXWR,
462 REG_TYPE_MMXWC,
463 REG_TYPE_MMXWCG,
464 REG_TYPE_XSCALE,
465 };
466
467 /* Structure for a hash table entry for a register.
468 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
469 information which states whether a vector type or index is specified (for a
470 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
471 struct reg_entry
472 {
473 const char *name;
474 unsigned char number;
475 unsigned char type;
476 unsigned char builtin;
477 struct neon_typed_alias *neon;
478 };
479
480 /* Diagnostics used when we don't get a register of the expected type. */
481 const char *const reg_expected_msgs[] =
482 {
483 N_("ARM register expected"),
484 N_("bad or missing co-processor number"),
485 N_("co-processor register expected"),
486 N_("FPA register expected"),
487 N_("VFP single precision register expected"),
488 N_("VFP/Neon double precision register expected"),
489 N_("Neon quad precision register expected"),
490 N_("VFP single or double precision register expected"),
491 N_("Neon double or quad precision register expected"),
492 N_("VFP single, double or Neon quad precision register expected"),
493 N_("VFP system register expected"),
494 N_("Maverick MVF register expected"),
495 N_("Maverick MVD register expected"),
496 N_("Maverick MVFX register expected"),
497 N_("Maverick MVDX register expected"),
498 N_("Maverick MVAX register expected"),
499 N_("Maverick DSPSC register expected"),
500 N_("iWMMXt data register expected"),
501 N_("iWMMXt control register expected"),
502 N_("iWMMXt scalar register expected"),
503 N_("XScale accumulator register expected"),
504 };
505
506 /* Some well known registers that we refer to directly elsewhere. */
507 #define REG_SP 13
508 #define REG_LR 14
509 #define REG_PC 15
510
511 /* ARM instructions take 4bytes in the object file, Thumb instructions
512 take 2: */
513 #define INSN_SIZE 4
514
515 struct asm_opcode
516 {
517 /* Basic string to match. */
518 const char *template;
519
520 /* Parameters to instruction. */
521 unsigned char operands[8];
522
523 /* Conditional tag - see opcode_lookup. */
524 unsigned int tag : 4;
525
526 /* Basic instruction code. */
527 unsigned int avalue : 28;
528
529 /* Thumb-format instruction code. */
530 unsigned int tvalue;
531
532 /* Which architecture variant provides this instruction. */
533 const arm_feature_set *avariant;
534 const arm_feature_set *tvariant;
535
536 /* Function to call to encode instruction in ARM format. */
537 void (* aencode) (void);
538
539 /* Function to call to encode instruction in Thumb format. */
540 void (* tencode) (void);
541 };
542
543 /* Defines for various bits that we will want to toggle. */
544 #define INST_IMMEDIATE 0x02000000
545 #define OFFSET_REG 0x02000000
546 #define HWOFFSET_IMM 0x00400000
547 #define SHIFT_BY_REG 0x00000010
548 #define PRE_INDEX 0x01000000
549 #define INDEX_UP 0x00800000
550 #define WRITE_BACK 0x00200000
551 #define LDM_TYPE_2_OR_3 0x00400000
552 #define CPSI_MMOD 0x00020000
553
554 #define LITERAL_MASK 0xf000f000
555 #define OPCODE_MASK 0xfe1fffff
556 #define V4_STR_BIT 0x00000020
557
558 #define T2_SUBS_PC_LR 0xf3de8f00
559
560 #define DATA_OP_SHIFT 21
561
562 #define T2_OPCODE_MASK 0xfe1fffff
563 #define T2_DATA_OP_SHIFT 21
564
565 /* Codes to distinguish the arithmetic instructions. */
566 #define OPCODE_AND 0
567 #define OPCODE_EOR 1
568 #define OPCODE_SUB 2
569 #define OPCODE_RSB 3
570 #define OPCODE_ADD 4
571 #define OPCODE_ADC 5
572 #define OPCODE_SBC 6
573 #define OPCODE_RSC 7
574 #define OPCODE_TST 8
575 #define OPCODE_TEQ 9
576 #define OPCODE_CMP 10
577 #define OPCODE_CMN 11
578 #define OPCODE_ORR 12
579 #define OPCODE_MOV 13
580 #define OPCODE_BIC 14
581 #define OPCODE_MVN 15
582
583 #define T2_OPCODE_AND 0
584 #define T2_OPCODE_BIC 1
585 #define T2_OPCODE_ORR 2
586 #define T2_OPCODE_ORN 3
587 #define T2_OPCODE_EOR 4
588 #define T2_OPCODE_ADD 8
589 #define T2_OPCODE_ADC 10
590 #define T2_OPCODE_SBC 11
591 #define T2_OPCODE_SUB 13
592 #define T2_OPCODE_RSB 14
593
594 #define T_OPCODE_MUL 0x4340
595 #define T_OPCODE_TST 0x4200
596 #define T_OPCODE_CMN 0x42c0
597 #define T_OPCODE_NEG 0x4240
598 #define T_OPCODE_MVN 0x43c0
599
600 #define T_OPCODE_ADD_R3 0x1800
601 #define T_OPCODE_SUB_R3 0x1a00
602 #define T_OPCODE_ADD_HI 0x4400
603 #define T_OPCODE_ADD_ST 0xb000
604 #define T_OPCODE_SUB_ST 0xb080
605 #define T_OPCODE_ADD_SP 0xa800
606 #define T_OPCODE_ADD_PC 0xa000
607 #define T_OPCODE_ADD_I8 0x3000
608 #define T_OPCODE_SUB_I8 0x3800
609 #define T_OPCODE_ADD_I3 0x1c00
610 #define T_OPCODE_SUB_I3 0x1e00
611
612 #define T_OPCODE_ASR_R 0x4100
613 #define T_OPCODE_LSL_R 0x4080
614 #define T_OPCODE_LSR_R 0x40c0
615 #define T_OPCODE_ROR_R 0x41c0
616 #define T_OPCODE_ASR_I 0x1000
617 #define T_OPCODE_LSL_I 0x0000
618 #define T_OPCODE_LSR_I 0x0800
619
620 #define T_OPCODE_MOV_I8 0x2000
621 #define T_OPCODE_CMP_I8 0x2800
622 #define T_OPCODE_CMP_LR 0x4280
623 #define T_OPCODE_MOV_HR 0x4600
624 #define T_OPCODE_CMP_HR 0x4500
625
626 #define T_OPCODE_LDR_PC 0x4800
627 #define T_OPCODE_LDR_SP 0x9800
628 #define T_OPCODE_STR_SP 0x9000
629 #define T_OPCODE_LDR_IW 0x6800
630 #define T_OPCODE_STR_IW 0x6000
631 #define T_OPCODE_LDR_IH 0x8800
632 #define T_OPCODE_STR_IH 0x8000
633 #define T_OPCODE_LDR_IB 0x7800
634 #define T_OPCODE_STR_IB 0x7000
635 #define T_OPCODE_LDR_RW 0x5800
636 #define T_OPCODE_STR_RW 0x5000
637 #define T_OPCODE_LDR_RH 0x5a00
638 #define T_OPCODE_STR_RH 0x5200
639 #define T_OPCODE_LDR_RB 0x5c00
640 #define T_OPCODE_STR_RB 0x5400
641
642 #define T_OPCODE_PUSH 0xb400
643 #define T_OPCODE_POP 0xbc00
644
645 #define T_OPCODE_BRANCH 0xe000
646
647 #define THUMB_SIZE 2 /* Size of thumb instruction. */
648 #define THUMB_PP_PC_LR 0x0100
649 #define THUMB_LOAD_BIT 0x0800
650 #define THUMB2_LOAD_BIT 0x00100000
651
652 #define BAD_ARGS _("bad arguments to instruction")
653 #define BAD_PC _("r15 not allowed here")
654 #define BAD_COND _("instruction cannot be conditional")
655 #define BAD_OVERLAP _("registers may not be the same")
656 #define BAD_HIREG _("lo register required")
657 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
658 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
659 #define BAD_BRANCH _("branch must be last instruction in IT block")
660 #define BAD_NOT_IT _("instruction not allowed in IT block")
661 #define BAD_FPU _("selected FPU does not support instruction")
662
663 static struct hash_control *arm_ops_hsh;
664 static struct hash_control *arm_cond_hsh;
665 static struct hash_control *arm_shift_hsh;
666 static struct hash_control *arm_psr_hsh;
667 static struct hash_control *arm_v7m_psr_hsh;
668 static struct hash_control *arm_reg_hsh;
669 static struct hash_control *arm_reloc_hsh;
670 static struct hash_control *arm_barrier_opt_hsh;
671
672 /* Stuff needed to resolve the label ambiguity
673 As:
674 ...
675 label: <insn>
676 may differ from:
677 ...
678 label:
679 <insn> */
680
681 symbolS * last_label_seen;
682 static int label_is_thumb_function_name = FALSE;
683 \f
684 /* Literal pool structure. Held on a per-section
685 and per-sub-section basis. */
686
687 #define MAX_LITERAL_POOL_SIZE 1024
688 typedef struct literal_pool
689 {
690 expressionS literals [MAX_LITERAL_POOL_SIZE];
691 unsigned int next_free_entry;
692 unsigned int id;
693 symbolS * symbol;
694 segT section;
695 subsegT sub_section;
696 struct literal_pool * next;
697 } literal_pool;
698
699 /* Pointer to a linked list of literal pools. */
700 literal_pool * list_of_pools = NULL;
701
702 /* State variables for IT block handling. */
703 static bfd_boolean current_it_mask = 0;
704 static int current_cc;
705 \f
706 /* Pure syntax. */
707
708 /* This array holds the chars that always start a comment. If the
709 pre-processor is disabled, these aren't very useful. */
710 const char comment_chars[] = "@";
711
712 /* This array holds the chars that only start a comment at the beginning of
713 a line. If the line seems to have the form '# 123 filename'
714 .line and .file directives will appear in the pre-processed output. */
715 /* Note that input_file.c hand checks for '#' at the beginning of the
716 first line of the input file. This is because the compiler outputs
717 #NO_APP at the beginning of its output. */
718 /* Also note that comments like this one will always work. */
719 const char line_comment_chars[] = "#";
720
721 const char line_separator_chars[] = ";";
722
723 /* Chars that can be used to separate mant
724 from exp in floating point numbers. */
725 const char EXP_CHARS[] = "eE";
726
727 /* Chars that mean this number is a floating point constant. */
728 /* As in 0f12.456 */
729 /* or 0d1.2345e12 */
730
731 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
732
733 /* Prefix characters that indicate the start of an immediate
734 value. */
735 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
736
737 /* Separator character handling. */
738
739 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
740
741 static inline int
742 skip_past_char (char ** str, char c)
743 {
744 if (**str == c)
745 {
746 (*str)++;
747 return SUCCESS;
748 }
749 else
750 return FAIL;
751 }
752 #define skip_past_comma(str) skip_past_char (str, ',')
753
754 /* Arithmetic expressions (possibly involving symbols). */
755
756 /* Return TRUE if anything in the expression is a bignum. */
757
758 static int
759 walk_no_bignums (symbolS * sp)
760 {
761 if (symbol_get_value_expression (sp)->X_op == O_big)
762 return 1;
763
764 if (symbol_get_value_expression (sp)->X_add_symbol)
765 {
766 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
767 || (symbol_get_value_expression (sp)->X_op_symbol
768 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
769 }
770
771 return 0;
772 }
773
774 static int in_my_get_expression = 0;
775
776 /* Third argument to my_get_expression. */
777 #define GE_NO_PREFIX 0
778 #define GE_IMM_PREFIX 1
779 #define GE_OPT_PREFIX 2
780 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
781 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
782 #define GE_OPT_PREFIX_BIG 3
783
784 static int
785 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
786 {
787 char * save_in;
788 segT seg;
789
790 /* In unified syntax, all prefixes are optional. */
791 if (unified_syntax)
792 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
793 : GE_OPT_PREFIX;
794
795 switch (prefix_mode)
796 {
797 case GE_NO_PREFIX: break;
798 case GE_IMM_PREFIX:
799 if (!is_immediate_prefix (**str))
800 {
801 inst.error = _("immediate expression requires a # prefix");
802 return FAIL;
803 }
804 (*str)++;
805 break;
806 case GE_OPT_PREFIX:
807 case GE_OPT_PREFIX_BIG:
808 if (is_immediate_prefix (**str))
809 (*str)++;
810 break;
811 default: abort ();
812 }
813
814 memset (ep, 0, sizeof (expressionS));
815
816 save_in = input_line_pointer;
817 input_line_pointer = *str;
818 in_my_get_expression = 1;
819 seg = expression (ep);
820 in_my_get_expression = 0;
821
822 if (ep->X_op == O_illegal)
823 {
824 /* We found a bad expression in md_operand(). */
825 *str = input_line_pointer;
826 input_line_pointer = save_in;
827 if (inst.error == NULL)
828 inst.error = _("bad expression");
829 return 1;
830 }
831
832 #ifdef OBJ_AOUT
833 if (seg != absolute_section
834 && seg != text_section
835 && seg != data_section
836 && seg != bss_section
837 && seg != undefined_section)
838 {
839 inst.error = _("bad segment");
840 *str = input_line_pointer;
841 input_line_pointer = save_in;
842 return 1;
843 }
844 #endif
845
846 /* Get rid of any bignums now, so that we don't generate an error for which
847 we can't establish a line number later on. Big numbers are never valid
848 in instructions, which is where this routine is always called. */
849 if (prefix_mode != GE_OPT_PREFIX_BIG
850 && (ep->X_op == O_big
851 || (ep->X_add_symbol
852 && (walk_no_bignums (ep->X_add_symbol)
853 || (ep->X_op_symbol
854 && walk_no_bignums (ep->X_op_symbol))))))
855 {
856 inst.error = _("invalid constant");
857 *str = input_line_pointer;
858 input_line_pointer = save_in;
859 return 1;
860 }
861
862 *str = input_line_pointer;
863 input_line_pointer = save_in;
864 return 0;
865 }
866
867 /* Turn a string in input_line_pointer into a floating point constant
868 of type TYPE, and store the appropriate bytes in *LITP. The number
869 of LITTLENUMS emitted is stored in *SIZEP. An error message is
870 returned, or NULL on OK.
871
872 Note that fp constants aren't represent in the normal way on the ARM.
873 In big endian mode, things are as expected. However, in little endian
874 mode fp constants are big-endian word-wise, and little-endian byte-wise
875 within the words. For example, (double) 1.1 in big endian mode is
876 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
877 the byte sequence 99 99 f1 3f 9a 99 99 99.
878
879 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
880
881 char *
882 md_atof (int type, char * litP, int * sizeP)
883 {
884 int prec;
885 LITTLENUM_TYPE words[MAX_LITTLENUMS];
886 char *t;
887 int i;
888
889 switch (type)
890 {
891 case 'f':
892 case 'F':
893 case 's':
894 case 'S':
895 prec = 2;
896 break;
897
898 case 'd':
899 case 'D':
900 case 'r':
901 case 'R':
902 prec = 4;
903 break;
904
905 case 'x':
906 case 'X':
907 prec = 5;
908 break;
909
910 case 'p':
911 case 'P':
912 prec = 5;
913 break;
914
915 default:
916 *sizeP = 0;
917 return _("Unrecognized or unsupported floating point constant");
918 }
919
920 t = atof_ieee (input_line_pointer, type, words);
921 if (t)
922 input_line_pointer = t;
923 *sizeP = prec * sizeof (LITTLENUM_TYPE);
924
925 if (target_big_endian)
926 {
927 for (i = 0; i < prec; i++)
928 {
929 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
930 litP += sizeof (LITTLENUM_TYPE);
931 }
932 }
933 else
934 {
935 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
936 for (i = prec - 1; i >= 0; i--)
937 {
938 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
939 litP += sizeof (LITTLENUM_TYPE);
940 }
941 else
942 /* For a 4 byte float the order of elements in `words' is 1 0.
943 For an 8 byte float the order is 1 0 3 2. */
944 for (i = 0; i < prec; i += 2)
945 {
946 md_number_to_chars (litP, (valueT) words[i + 1],
947 sizeof (LITTLENUM_TYPE));
948 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
949 (valueT) words[i], sizeof (LITTLENUM_TYPE));
950 litP += 2 * sizeof (LITTLENUM_TYPE);
951 }
952 }
953
954 return NULL;
955 }
956
957 /* We handle all bad expressions here, so that we can report the faulty
958 instruction in the error message. */
959 void
960 md_operand (expressionS * expr)
961 {
962 if (in_my_get_expression)
963 expr->X_op = O_illegal;
964 }
965
966 /* Immediate values. */
967
968 /* Generic immediate-value read function for use in directives.
969 Accepts anything that 'expression' can fold to a constant.
970 *val receives the number. */
971 #ifdef OBJ_ELF
972 static int
973 immediate_for_directive (int *val)
974 {
975 expressionS exp;
976 exp.X_op = O_illegal;
977
978 if (is_immediate_prefix (*input_line_pointer))
979 {
980 input_line_pointer++;
981 expression (&exp);
982 }
983
984 if (exp.X_op != O_constant)
985 {
986 as_bad (_("expected #constant"));
987 ignore_rest_of_line ();
988 return FAIL;
989 }
990 *val = exp.X_add_number;
991 return SUCCESS;
992 }
993 #endif
994
995 /* Register parsing. */
996
997 /* Generic register parser. CCP points to what should be the
998 beginning of a register name. If it is indeed a valid register
999 name, advance CCP over it and return the reg_entry structure;
1000 otherwise return NULL. Does not issue diagnostics. */
1001
1002 static struct reg_entry *
1003 arm_reg_parse_multi (char **ccp)
1004 {
1005 char *start = *ccp;
1006 char *p;
1007 struct reg_entry *reg;
1008
1009 #ifdef REGISTER_PREFIX
1010 if (*start != REGISTER_PREFIX)
1011 return NULL;
1012 start++;
1013 #endif
1014 #ifdef OPTIONAL_REGISTER_PREFIX
1015 if (*start == OPTIONAL_REGISTER_PREFIX)
1016 start++;
1017 #endif
1018
1019 p = start;
1020 if (!ISALPHA (*p) || !is_name_beginner (*p))
1021 return NULL;
1022
1023 do
1024 p++;
1025 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1026
1027 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1028
1029 if (!reg)
1030 return NULL;
1031
1032 *ccp = p;
1033 return reg;
1034 }
1035
1036 static int
1037 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1038 enum arm_reg_type type)
1039 {
1040 /* Alternative syntaxes are accepted for a few register classes. */
1041 switch (type)
1042 {
1043 case REG_TYPE_MVF:
1044 case REG_TYPE_MVD:
1045 case REG_TYPE_MVFX:
1046 case REG_TYPE_MVDX:
1047 /* Generic coprocessor register names are allowed for these. */
1048 if (reg && reg->type == REG_TYPE_CN)
1049 return reg->number;
1050 break;
1051
1052 case REG_TYPE_CP:
1053 /* For backward compatibility, a bare number is valid here. */
1054 {
1055 unsigned long processor = strtoul (start, ccp, 10);
1056 if (*ccp != start && processor <= 15)
1057 return processor;
1058 }
1059
1060 case REG_TYPE_MMXWC:
1061 /* WC includes WCG. ??? I'm not sure this is true for all
1062 instructions that take WC registers. */
1063 if (reg && reg->type == REG_TYPE_MMXWCG)
1064 return reg->number;
1065 break;
1066
1067 default:
1068 break;
1069 }
1070
1071 return FAIL;
1072 }
1073
1074 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1075 return value is the register number or FAIL. */
1076
1077 static int
1078 arm_reg_parse (char **ccp, enum arm_reg_type type)
1079 {
1080 char *start = *ccp;
1081 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1082 int ret;
1083
1084 /* Do not allow a scalar (reg+index) to parse as a register. */
1085 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1086 return FAIL;
1087
1088 if (reg && reg->type == type)
1089 return reg->number;
1090
1091 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1092 return ret;
1093
1094 *ccp = start;
1095 return FAIL;
1096 }
1097
1098 /* Parse a Neon type specifier. *STR should point at the leading '.'
1099 character. Does no verification at this stage that the type fits the opcode
1100 properly. E.g.,
1101
1102 .i32.i32.s16
1103 .s32.f32
1104 .u16
1105
1106 Can all be legally parsed by this function.
1107
1108 Fills in neon_type struct pointer with parsed information, and updates STR
1109 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1110 type, FAIL if not. */
1111
1112 static int
1113 parse_neon_type (struct neon_type *type, char **str)
1114 {
1115 char *ptr = *str;
1116
1117 if (type)
1118 type->elems = 0;
1119
1120 while (type->elems < NEON_MAX_TYPE_ELS)
1121 {
1122 enum neon_el_type thistype = NT_untyped;
1123 unsigned thissize = -1u;
1124
1125 if (*ptr != '.')
1126 break;
1127
1128 ptr++;
1129
1130 /* Just a size without an explicit type. */
1131 if (ISDIGIT (*ptr))
1132 goto parsesize;
1133
1134 switch (TOLOWER (*ptr))
1135 {
1136 case 'i': thistype = NT_integer; break;
1137 case 'f': thistype = NT_float; break;
1138 case 'p': thistype = NT_poly; break;
1139 case 's': thistype = NT_signed; break;
1140 case 'u': thistype = NT_unsigned; break;
1141 case 'd':
1142 thistype = NT_float;
1143 thissize = 64;
1144 ptr++;
1145 goto done;
1146 default:
1147 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1148 return FAIL;
1149 }
1150
1151 ptr++;
1152
1153 /* .f is an abbreviation for .f32. */
1154 if (thistype == NT_float && !ISDIGIT (*ptr))
1155 thissize = 32;
1156 else
1157 {
1158 parsesize:
1159 thissize = strtoul (ptr, &ptr, 10);
1160
1161 if (thissize != 8 && thissize != 16 && thissize != 32
1162 && thissize != 64)
1163 {
1164 as_bad (_("bad size %d in type specifier"), thissize);
1165 return FAIL;
1166 }
1167 }
1168
1169 done:
1170 if (type)
1171 {
1172 type->el[type->elems].type = thistype;
1173 type->el[type->elems].size = thissize;
1174 type->elems++;
1175 }
1176 }
1177
1178 /* Empty/missing type is not a successful parse. */
1179 if (type->elems == 0)
1180 return FAIL;
1181
1182 *str = ptr;
1183
1184 return SUCCESS;
1185 }
1186
1187 /* Errors may be set multiple times during parsing or bit encoding
1188 (particularly in the Neon bits), but usually the earliest error which is set
1189 will be the most meaningful. Avoid overwriting it with later (cascading)
1190 errors by calling this function. */
1191
1192 static void
1193 first_error (const char *err)
1194 {
1195 if (!inst.error)
1196 inst.error = err;
1197 }
1198
1199 /* Parse a single type, e.g. ".s32", leading period included. */
1200 static int
1201 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1202 {
1203 char *str = *ccp;
1204 struct neon_type optype;
1205
1206 if (*str == '.')
1207 {
1208 if (parse_neon_type (&optype, &str) == SUCCESS)
1209 {
1210 if (optype.elems == 1)
1211 *vectype = optype.el[0];
1212 else
1213 {
1214 first_error (_("only one type should be specified for operand"));
1215 return FAIL;
1216 }
1217 }
1218 else
1219 {
1220 first_error (_("vector type expected"));
1221 return FAIL;
1222 }
1223 }
1224 else
1225 return FAIL;
1226
1227 *ccp = str;
1228
1229 return SUCCESS;
1230 }
1231
1232 /* Special meanings for indices (which have a range of 0-7), which will fit into
1233 a 4-bit integer. */
1234
1235 #define NEON_ALL_LANES 15
1236 #define NEON_INTERLEAVE_LANES 14
1237
1238 /* Parse either a register or a scalar, with an optional type. Return the
1239 register number, and optionally fill in the actual type of the register
1240 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1241 type/index information in *TYPEINFO. */
1242
1243 static int
1244 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1245 enum arm_reg_type *rtype,
1246 struct neon_typed_alias *typeinfo)
1247 {
1248 char *str = *ccp;
1249 struct reg_entry *reg = arm_reg_parse_multi (&str);
1250 struct neon_typed_alias atype;
1251 struct neon_type_el parsetype;
1252
1253 atype.defined = 0;
1254 atype.index = -1;
1255 atype.eltype.type = NT_invtype;
1256 atype.eltype.size = -1;
1257
1258 /* Try alternate syntax for some types of register. Note these are mutually
1259 exclusive with the Neon syntax extensions. */
1260 if (reg == NULL)
1261 {
1262 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1263 if (altreg != FAIL)
1264 *ccp = str;
1265 if (typeinfo)
1266 *typeinfo = atype;
1267 return altreg;
1268 }
1269
1270 /* Undo polymorphism when a set of register types may be accepted. */
1271 if ((type == REG_TYPE_NDQ
1272 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1273 || (type == REG_TYPE_VFSD
1274 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1275 || (type == REG_TYPE_NSDQ
1276 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1277 || reg->type == REG_TYPE_NQ))
1278 || (type == REG_TYPE_MMXWC
1279 && (reg->type == REG_TYPE_MMXWCG)))
1280 type = reg->type;
1281
1282 if (type != reg->type)
1283 return FAIL;
1284
1285 if (reg->neon)
1286 atype = *reg->neon;
1287
1288 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1289 {
1290 if ((atype.defined & NTA_HASTYPE) != 0)
1291 {
1292 first_error (_("can't redefine type for operand"));
1293 return FAIL;
1294 }
1295 atype.defined |= NTA_HASTYPE;
1296 atype.eltype = parsetype;
1297 }
1298
1299 if (skip_past_char (&str, '[') == SUCCESS)
1300 {
1301 if (type != REG_TYPE_VFD)
1302 {
1303 first_error (_("only D registers may be indexed"));
1304 return FAIL;
1305 }
1306
1307 if ((atype.defined & NTA_HASINDEX) != 0)
1308 {
1309 first_error (_("can't change index for operand"));
1310 return FAIL;
1311 }
1312
1313 atype.defined |= NTA_HASINDEX;
1314
1315 if (skip_past_char (&str, ']') == SUCCESS)
1316 atype.index = NEON_ALL_LANES;
1317 else
1318 {
1319 expressionS exp;
1320
1321 my_get_expression (&exp, &str, GE_NO_PREFIX);
1322
1323 if (exp.X_op != O_constant)
1324 {
1325 first_error (_("constant expression required"));
1326 return FAIL;
1327 }
1328
1329 if (skip_past_char (&str, ']') == FAIL)
1330 return FAIL;
1331
1332 atype.index = exp.X_add_number;
1333 }
1334 }
1335
1336 if (typeinfo)
1337 *typeinfo = atype;
1338
1339 if (rtype)
1340 *rtype = type;
1341
1342 *ccp = str;
1343
1344 return reg->number;
1345 }
1346
1347 /* Like arm_reg_parse, but allow allow the following extra features:
1348 - If RTYPE is non-zero, return the (possibly restricted) type of the
1349 register (e.g. Neon double or quad reg when either has been requested).
1350 - If this is a Neon vector type with additional type information, fill
1351 in the struct pointed to by VECTYPE (if non-NULL).
1352 This function will fault on encountering a scalar. */
1353
1354 static int
1355 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1356 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1357 {
1358 struct neon_typed_alias atype;
1359 char *str = *ccp;
1360 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1361
1362 if (reg == FAIL)
1363 return FAIL;
1364
1365 /* Do not allow a scalar (reg+index) to parse as a register. */
1366 if ((atype.defined & NTA_HASINDEX) != 0)
1367 {
1368 first_error (_("register operand expected, but got scalar"));
1369 return FAIL;
1370 }
1371
1372 if (vectype)
1373 *vectype = atype.eltype;
1374
1375 *ccp = str;
1376
1377 return reg;
1378 }
1379
1380 #define NEON_SCALAR_REG(X) ((X) >> 4)
1381 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1382
1383 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1384 have enough information to be able to do a good job bounds-checking. So, we
1385 just do easy checks here, and do further checks later. */
1386
1387 static int
1388 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1389 {
1390 int reg;
1391 char *str = *ccp;
1392 struct neon_typed_alias atype;
1393
1394 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1395
1396 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1397 return FAIL;
1398
1399 if (atype.index == NEON_ALL_LANES)
1400 {
1401 first_error (_("scalar must have an index"));
1402 return FAIL;
1403 }
1404 else if (atype.index >= 64 / elsize)
1405 {
1406 first_error (_("scalar index out of range"));
1407 return FAIL;
1408 }
1409
1410 if (type)
1411 *type = atype.eltype;
1412
1413 *ccp = str;
1414
1415 return reg * 16 + atype.index;
1416 }
1417
1418 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1419 static long
1420 parse_reg_list (char ** strp)
1421 {
1422 char * str = * strp;
1423 long range = 0;
1424 int another_range;
1425
1426 /* We come back here if we get ranges concatenated by '+' or '|'. */
1427 do
1428 {
1429 another_range = 0;
1430
1431 if (*str == '{')
1432 {
1433 int in_range = 0;
1434 int cur_reg = -1;
1435
1436 str++;
1437 do
1438 {
1439 int reg;
1440
1441 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1442 {
1443 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1444 return FAIL;
1445 }
1446
1447 if (in_range)
1448 {
1449 int i;
1450
1451 if (reg <= cur_reg)
1452 {
1453 first_error (_("bad range in register list"));
1454 return FAIL;
1455 }
1456
1457 for (i = cur_reg + 1; i < reg; i++)
1458 {
1459 if (range & (1 << i))
1460 as_tsktsk
1461 (_("Warning: duplicated register (r%d) in register list"),
1462 i);
1463 else
1464 range |= 1 << i;
1465 }
1466 in_range = 0;
1467 }
1468
1469 if (range & (1 << reg))
1470 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1471 reg);
1472 else if (reg <= cur_reg)
1473 as_tsktsk (_("Warning: register range not in ascending order"));
1474
1475 range |= 1 << reg;
1476 cur_reg = reg;
1477 }
1478 while (skip_past_comma (&str) != FAIL
1479 || (in_range = 1, *str++ == '-'));
1480 str--;
1481
1482 if (*str++ != '}')
1483 {
1484 first_error (_("missing `}'"));
1485 return FAIL;
1486 }
1487 }
1488 else
1489 {
1490 expressionS expr;
1491
1492 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1493 return FAIL;
1494
1495 if (expr.X_op == O_constant)
1496 {
1497 if (expr.X_add_number
1498 != (expr.X_add_number & 0x0000ffff))
1499 {
1500 inst.error = _("invalid register mask");
1501 return FAIL;
1502 }
1503
1504 if ((range & expr.X_add_number) != 0)
1505 {
1506 int regno = range & expr.X_add_number;
1507
1508 regno &= -regno;
1509 regno = (1 << regno) - 1;
1510 as_tsktsk
1511 (_("Warning: duplicated register (r%d) in register list"),
1512 regno);
1513 }
1514
1515 range |= expr.X_add_number;
1516 }
1517 else
1518 {
1519 if (inst.reloc.type != 0)
1520 {
1521 inst.error = _("expression too complex");
1522 return FAIL;
1523 }
1524
1525 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1526 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1527 inst.reloc.pc_rel = 0;
1528 }
1529 }
1530
1531 if (*str == '|' || *str == '+')
1532 {
1533 str++;
1534 another_range = 1;
1535 }
1536 }
1537 while (another_range);
1538
1539 *strp = str;
1540 return range;
1541 }
1542
1543 /* Types of registers in a list. */
1544
1545 enum reg_list_els
1546 {
1547 REGLIST_VFP_S,
1548 REGLIST_VFP_D,
1549 REGLIST_NEON_D
1550 };
1551
1552 /* Parse a VFP register list. If the string is invalid return FAIL.
1553 Otherwise return the number of registers, and set PBASE to the first
1554 register. Parses registers of type ETYPE.
1555 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1556 - Q registers can be used to specify pairs of D registers
1557 - { } can be omitted from around a singleton register list
1558 FIXME: This is not implemented, as it would require backtracking in
1559 some cases, e.g.:
1560 vtbl.8 d3,d4,d5
1561 This could be done (the meaning isn't really ambiguous), but doesn't
1562 fit in well with the current parsing framework.
1563 - 32 D registers may be used (also true for VFPv3).
1564 FIXME: Types are ignored in these register lists, which is probably a
1565 bug. */
1566
1567 static int
1568 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1569 {
1570 char *str = *ccp;
1571 int base_reg;
1572 int new_base;
1573 enum arm_reg_type regtype = 0;
1574 int max_regs = 0;
1575 int count = 0;
1576 int warned = 0;
1577 unsigned long mask = 0;
1578 int i;
1579
1580 if (*str != '{')
1581 {
1582 inst.error = _("expecting {");
1583 return FAIL;
1584 }
1585
1586 str++;
1587
1588 switch (etype)
1589 {
1590 case REGLIST_VFP_S:
1591 regtype = REG_TYPE_VFS;
1592 max_regs = 32;
1593 break;
1594
1595 case REGLIST_VFP_D:
1596 regtype = REG_TYPE_VFD;
1597 break;
1598
1599 case REGLIST_NEON_D:
1600 regtype = REG_TYPE_NDQ;
1601 break;
1602 }
1603
1604 if (etype != REGLIST_VFP_S)
1605 {
1606 /* VFPv3 allows 32 D registers. */
1607 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1608 {
1609 max_regs = 32;
1610 if (thumb_mode)
1611 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1612 fpu_vfp_ext_v3);
1613 else
1614 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1615 fpu_vfp_ext_v3);
1616 }
1617 else
1618 max_regs = 16;
1619 }
1620
1621 base_reg = max_regs;
1622
1623 do
1624 {
1625 int setmask = 1, addregs = 1;
1626
1627 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1628
1629 if (new_base == FAIL)
1630 {
1631 first_error (_(reg_expected_msgs[regtype]));
1632 return FAIL;
1633 }
1634
1635 if (new_base >= max_regs)
1636 {
1637 first_error (_("register out of range in list"));
1638 return FAIL;
1639 }
1640
1641 /* Note: a value of 2 * n is returned for the register Q<n>. */
1642 if (regtype == REG_TYPE_NQ)
1643 {
1644 setmask = 3;
1645 addregs = 2;
1646 }
1647
1648 if (new_base < base_reg)
1649 base_reg = new_base;
1650
1651 if (mask & (setmask << new_base))
1652 {
1653 first_error (_("invalid register list"));
1654 return FAIL;
1655 }
1656
1657 if ((mask >> new_base) != 0 && ! warned)
1658 {
1659 as_tsktsk (_("register list not in ascending order"));
1660 warned = 1;
1661 }
1662
1663 mask |= setmask << new_base;
1664 count += addregs;
1665
1666 if (*str == '-') /* We have the start of a range expression */
1667 {
1668 int high_range;
1669
1670 str++;
1671
1672 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1673 == FAIL)
1674 {
1675 inst.error = gettext (reg_expected_msgs[regtype]);
1676 return FAIL;
1677 }
1678
1679 if (high_range >= max_regs)
1680 {
1681 first_error (_("register out of range in list"));
1682 return FAIL;
1683 }
1684
1685 if (regtype == REG_TYPE_NQ)
1686 high_range = high_range + 1;
1687
1688 if (high_range <= new_base)
1689 {
1690 inst.error = _("register range not in ascending order");
1691 return FAIL;
1692 }
1693
1694 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1695 {
1696 if (mask & (setmask << new_base))
1697 {
1698 inst.error = _("invalid register list");
1699 return FAIL;
1700 }
1701
1702 mask |= setmask << new_base;
1703 count += addregs;
1704 }
1705 }
1706 }
1707 while (skip_past_comma (&str) != FAIL);
1708
1709 str++;
1710
1711 /* Sanity check -- should have raised a parse error above. */
1712 if (count == 0 || count > max_regs)
1713 abort ();
1714
1715 *pbase = base_reg;
1716
1717 /* Final test -- the registers must be consecutive. */
1718 mask >>= base_reg;
1719 for (i = 0; i < count; i++)
1720 {
1721 if ((mask & (1u << i)) == 0)
1722 {
1723 inst.error = _("non-contiguous register range");
1724 return FAIL;
1725 }
1726 }
1727
1728 *ccp = str;
1729
1730 return count;
1731 }
1732
1733 /* True if two alias types are the same. */
1734
1735 static int
1736 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1737 {
1738 if (!a && !b)
1739 return 1;
1740
1741 if (!a || !b)
1742 return 0;
1743
1744 if (a->defined != b->defined)
1745 return 0;
1746
1747 if ((a->defined & NTA_HASTYPE) != 0
1748 && (a->eltype.type != b->eltype.type
1749 || a->eltype.size != b->eltype.size))
1750 return 0;
1751
1752 if ((a->defined & NTA_HASINDEX) != 0
1753 && (a->index != b->index))
1754 return 0;
1755
1756 return 1;
1757 }
1758
1759 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1760 The base register is put in *PBASE.
1761 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1762 the return value.
1763 The register stride (minus one) is put in bit 4 of the return value.
1764 Bits [6:5] encode the list length (minus one).
1765 The type of the list elements is put in *ELTYPE, if non-NULL. */
1766
1767 #define NEON_LANE(X) ((X) & 0xf)
1768 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1769 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1770
1771 static int
1772 parse_neon_el_struct_list (char **str, unsigned *pbase,
1773 struct neon_type_el *eltype)
1774 {
1775 char *ptr = *str;
1776 int base_reg = -1;
1777 int reg_incr = -1;
1778 int count = 0;
1779 int lane = -1;
1780 int leading_brace = 0;
1781 enum arm_reg_type rtype = REG_TYPE_NDQ;
1782 int addregs = 1;
1783 const char *const incr_error = "register stride must be 1 or 2";
1784 const char *const type_error = "mismatched element/structure types in list";
1785 struct neon_typed_alias firsttype;
1786
1787 if (skip_past_char (&ptr, '{') == SUCCESS)
1788 leading_brace = 1;
1789
1790 do
1791 {
1792 struct neon_typed_alias atype;
1793 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1794
1795 if (getreg == FAIL)
1796 {
1797 first_error (_(reg_expected_msgs[rtype]));
1798 return FAIL;
1799 }
1800
1801 if (base_reg == -1)
1802 {
1803 base_reg = getreg;
1804 if (rtype == REG_TYPE_NQ)
1805 {
1806 reg_incr = 1;
1807 addregs = 2;
1808 }
1809 firsttype = atype;
1810 }
1811 else if (reg_incr == -1)
1812 {
1813 reg_incr = getreg - base_reg;
1814 if (reg_incr < 1 || reg_incr > 2)
1815 {
1816 first_error (_(incr_error));
1817 return FAIL;
1818 }
1819 }
1820 else if (getreg != base_reg + reg_incr * count)
1821 {
1822 first_error (_(incr_error));
1823 return FAIL;
1824 }
1825
1826 if (!neon_alias_types_same (&atype, &firsttype))
1827 {
1828 first_error (_(type_error));
1829 return FAIL;
1830 }
1831
1832 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1833 modes. */
1834 if (ptr[0] == '-')
1835 {
1836 struct neon_typed_alias htype;
1837 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1838 if (lane == -1)
1839 lane = NEON_INTERLEAVE_LANES;
1840 else if (lane != NEON_INTERLEAVE_LANES)
1841 {
1842 first_error (_(type_error));
1843 return FAIL;
1844 }
1845 if (reg_incr == -1)
1846 reg_incr = 1;
1847 else if (reg_incr != 1)
1848 {
1849 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1850 return FAIL;
1851 }
1852 ptr++;
1853 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1854 if (hireg == FAIL)
1855 {
1856 first_error (_(reg_expected_msgs[rtype]));
1857 return FAIL;
1858 }
1859 if (!neon_alias_types_same (&htype, &firsttype))
1860 {
1861 first_error (_(type_error));
1862 return FAIL;
1863 }
1864 count += hireg + dregs - getreg;
1865 continue;
1866 }
1867
1868 /* If we're using Q registers, we can't use [] or [n] syntax. */
1869 if (rtype == REG_TYPE_NQ)
1870 {
1871 count += 2;
1872 continue;
1873 }
1874
1875 if ((atype.defined & NTA_HASINDEX) != 0)
1876 {
1877 if (lane == -1)
1878 lane = atype.index;
1879 else if (lane != atype.index)
1880 {
1881 first_error (_(type_error));
1882 return FAIL;
1883 }
1884 }
1885 else if (lane == -1)
1886 lane = NEON_INTERLEAVE_LANES;
1887 else if (lane != NEON_INTERLEAVE_LANES)
1888 {
1889 first_error (_(type_error));
1890 return FAIL;
1891 }
1892 count++;
1893 }
1894 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1895
1896 /* No lane set by [x]. We must be interleaving structures. */
1897 if (lane == -1)
1898 lane = NEON_INTERLEAVE_LANES;
1899
1900 /* Sanity check. */
1901 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1902 || (count > 1 && reg_incr == -1))
1903 {
1904 first_error (_("error parsing element/structure list"));
1905 return FAIL;
1906 }
1907
1908 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1909 {
1910 first_error (_("expected }"));
1911 return FAIL;
1912 }
1913
1914 if (reg_incr == -1)
1915 reg_incr = 1;
1916
1917 if (eltype)
1918 *eltype = firsttype.eltype;
1919
1920 *pbase = base_reg;
1921 *str = ptr;
1922
1923 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1924 }
1925
1926 /* Parse an explicit relocation suffix on an expression. This is
1927 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1928 arm_reloc_hsh contains no entries, so this function can only
1929 succeed if there is no () after the word. Returns -1 on error,
1930 BFD_RELOC_UNUSED if there wasn't any suffix. */
1931 static int
1932 parse_reloc (char **str)
1933 {
1934 struct reloc_entry *r;
1935 char *p, *q;
1936
1937 if (**str != '(')
1938 return BFD_RELOC_UNUSED;
1939
1940 p = *str + 1;
1941 q = p;
1942
1943 while (*q && *q != ')' && *q != ',')
1944 q++;
1945 if (*q != ')')
1946 return -1;
1947
1948 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1949 return -1;
1950
1951 *str = q + 1;
1952 return r->reloc;
1953 }
1954
1955 /* Directives: register aliases. */
1956
1957 static struct reg_entry *
1958 insert_reg_alias (char *str, int number, int type)
1959 {
1960 struct reg_entry *new;
1961 const char *name;
1962
1963 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1964 {
1965 if (new->builtin)
1966 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1967
1968 /* Only warn about a redefinition if it's not defined as the
1969 same register. */
1970 else if (new->number != number || new->type != type)
1971 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1972
1973 return NULL;
1974 }
1975
1976 name = xstrdup (str);
1977 new = xmalloc (sizeof (struct reg_entry));
1978
1979 new->name = name;
1980 new->number = number;
1981 new->type = type;
1982 new->builtin = FALSE;
1983 new->neon = NULL;
1984
1985 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1986 abort ();
1987
1988 return new;
1989 }
1990
1991 static void
1992 insert_neon_reg_alias (char *str, int number, int type,
1993 struct neon_typed_alias *atype)
1994 {
1995 struct reg_entry *reg = insert_reg_alias (str, number, type);
1996
1997 if (!reg)
1998 {
1999 first_error (_("attempt to redefine typed alias"));
2000 return;
2001 }
2002
2003 if (atype)
2004 {
2005 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
2006 *reg->neon = *atype;
2007 }
2008 }
2009
2010 /* Look for the .req directive. This is of the form:
2011
2012 new_register_name .req existing_register_name
2013
2014 If we find one, or if it looks sufficiently like one that we want to
2015 handle any error here, return TRUE. Otherwise return FALSE. */
2016
2017 static bfd_boolean
2018 create_register_alias (char * newname, char *p)
2019 {
2020 struct reg_entry *old;
2021 char *oldname, *nbuf;
2022 size_t nlen;
2023
2024 /* The input scrubber ensures that whitespace after the mnemonic is
2025 collapsed to single spaces. */
2026 oldname = p;
2027 if (strncmp (oldname, " .req ", 6) != 0)
2028 return FALSE;
2029
2030 oldname += 6;
2031 if (*oldname == '\0')
2032 return FALSE;
2033
2034 old = hash_find (arm_reg_hsh, oldname);
2035 if (!old)
2036 {
2037 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2038 return TRUE;
2039 }
2040
2041 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2042 the desired alias name, and p points to its end. If not, then
2043 the desired alias name is in the global original_case_string. */
2044 #ifdef TC_CASE_SENSITIVE
2045 nlen = p - newname;
2046 #else
2047 newname = original_case_string;
2048 nlen = strlen (newname);
2049 #endif
2050
2051 nbuf = alloca (nlen + 1);
2052 memcpy (nbuf, newname, nlen);
2053 nbuf[nlen] = '\0';
2054
2055 /* Create aliases under the new name as stated; an all-lowercase
2056 version of the new name; and an all-uppercase version of the new
2057 name. */
2058 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2059 {
2060 for (p = nbuf; *p; p++)
2061 *p = TOUPPER (*p);
2062
2063 if (strncmp (nbuf, newname, nlen))
2064 {
2065 /* If this attempt to create an additional alias fails, do not bother
2066 trying to create the all-lower case alias. We will fail and issue
2067 a second, duplicate error message. This situation arises when the
2068 programmer does something like:
2069 foo .req r0
2070 Foo .req r1
2071 The second .req creates the "Foo" alias but then fails to create
2072 the artificial FOO alias because it has already been created by the
2073 first .req. */
2074 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2075 return TRUE;
2076 }
2077
2078 for (p = nbuf; *p; p++)
2079 *p = TOLOWER (*p);
2080
2081 if (strncmp (nbuf, newname, nlen))
2082 insert_reg_alias (nbuf, old->number, old->type);
2083 }
2084
2085 return TRUE;
2086 }
2087
2088 /* Create a Neon typed/indexed register alias using directives, e.g.:
2089 X .dn d5.s32[1]
2090 Y .qn 6.s16
2091 Z .dn d7
2092 T .dn Z[0]
2093 These typed registers can be used instead of the types specified after the
2094 Neon mnemonic, so long as all operands given have types. Types can also be
2095 specified directly, e.g.:
2096 vadd d0.s32, d1.s32, d2.s32 */
2097
2098 static int
2099 create_neon_reg_alias (char *newname, char *p)
2100 {
2101 enum arm_reg_type basetype;
2102 struct reg_entry *basereg;
2103 struct reg_entry mybasereg;
2104 struct neon_type ntype;
2105 struct neon_typed_alias typeinfo;
2106 char *namebuf, *nameend;
2107 int namelen;
2108
2109 typeinfo.defined = 0;
2110 typeinfo.eltype.type = NT_invtype;
2111 typeinfo.eltype.size = -1;
2112 typeinfo.index = -1;
2113
2114 nameend = p;
2115
2116 if (strncmp (p, " .dn ", 5) == 0)
2117 basetype = REG_TYPE_VFD;
2118 else if (strncmp (p, " .qn ", 5) == 0)
2119 basetype = REG_TYPE_NQ;
2120 else
2121 return 0;
2122
2123 p += 5;
2124
2125 if (*p == '\0')
2126 return 0;
2127
2128 basereg = arm_reg_parse_multi (&p);
2129
2130 if (basereg && basereg->type != basetype)
2131 {
2132 as_bad (_("bad type for register"));
2133 return 0;
2134 }
2135
2136 if (basereg == NULL)
2137 {
2138 expressionS exp;
2139 /* Try parsing as an integer. */
2140 my_get_expression (&exp, &p, GE_NO_PREFIX);
2141 if (exp.X_op != O_constant)
2142 {
2143 as_bad (_("expression must be constant"));
2144 return 0;
2145 }
2146 basereg = &mybasereg;
2147 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2148 : exp.X_add_number;
2149 basereg->neon = 0;
2150 }
2151
2152 if (basereg->neon)
2153 typeinfo = *basereg->neon;
2154
2155 if (parse_neon_type (&ntype, &p) == SUCCESS)
2156 {
2157 /* We got a type. */
2158 if (typeinfo.defined & NTA_HASTYPE)
2159 {
2160 as_bad (_("can't redefine the type of a register alias"));
2161 return 0;
2162 }
2163
2164 typeinfo.defined |= NTA_HASTYPE;
2165 if (ntype.elems != 1)
2166 {
2167 as_bad (_("you must specify a single type only"));
2168 return 0;
2169 }
2170 typeinfo.eltype = ntype.el[0];
2171 }
2172
2173 if (skip_past_char (&p, '[') == SUCCESS)
2174 {
2175 expressionS exp;
2176 /* We got a scalar index. */
2177
2178 if (typeinfo.defined & NTA_HASINDEX)
2179 {
2180 as_bad (_("can't redefine the index of a scalar alias"));
2181 return 0;
2182 }
2183
2184 my_get_expression (&exp, &p, GE_NO_PREFIX);
2185
2186 if (exp.X_op != O_constant)
2187 {
2188 as_bad (_("scalar index must be constant"));
2189 return 0;
2190 }
2191
2192 typeinfo.defined |= NTA_HASINDEX;
2193 typeinfo.index = exp.X_add_number;
2194
2195 if (skip_past_char (&p, ']') == FAIL)
2196 {
2197 as_bad (_("expecting ]"));
2198 return 0;
2199 }
2200 }
2201
2202 namelen = nameend - newname;
2203 namebuf = alloca (namelen + 1);
2204 strncpy (namebuf, newname, namelen);
2205 namebuf[namelen] = '\0';
2206
2207 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2208 typeinfo.defined != 0 ? &typeinfo : NULL);
2209
2210 /* Insert name in all uppercase. */
2211 for (p = namebuf; *p; p++)
2212 *p = TOUPPER (*p);
2213
2214 if (strncmp (namebuf, newname, namelen))
2215 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2216 typeinfo.defined != 0 ? &typeinfo : NULL);
2217
2218 /* Insert name in all lowercase. */
2219 for (p = namebuf; *p; p++)
2220 *p = TOLOWER (*p);
2221
2222 if (strncmp (namebuf, newname, namelen))
2223 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2224 typeinfo.defined != 0 ? &typeinfo : NULL);
2225
2226 return 1;
2227 }
2228
2229 /* Should never be called, as .req goes between the alias and the
2230 register name, not at the beginning of the line. */
2231 static void
2232 s_req (int a ATTRIBUTE_UNUSED)
2233 {
2234 as_bad (_("invalid syntax for .req directive"));
2235 }
2236
2237 static void
2238 s_dn (int a ATTRIBUTE_UNUSED)
2239 {
2240 as_bad (_("invalid syntax for .dn directive"));
2241 }
2242
2243 static void
2244 s_qn (int a ATTRIBUTE_UNUSED)
2245 {
2246 as_bad (_("invalid syntax for .qn directive"));
2247 }
2248
2249 /* The .unreq directive deletes an alias which was previously defined
2250 by .req. For example:
2251
2252 my_alias .req r11
2253 .unreq my_alias */
2254
2255 static void
2256 s_unreq (int a ATTRIBUTE_UNUSED)
2257 {
2258 char * name;
2259 char saved_char;
2260
2261 name = input_line_pointer;
2262
2263 while (*input_line_pointer != 0
2264 && *input_line_pointer != ' '
2265 && *input_line_pointer != '\n')
2266 ++input_line_pointer;
2267
2268 saved_char = *input_line_pointer;
2269 *input_line_pointer = 0;
2270
2271 if (!*name)
2272 as_bad (_("invalid syntax for .unreq directive"));
2273 else
2274 {
2275 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2276
2277 if (!reg)
2278 as_bad (_("unknown register alias '%s'"), name);
2279 else if (reg->builtin)
2280 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2281 name);
2282 else
2283 {
2284 char * p;
2285 char * nbuf;
2286
2287 hash_delete (arm_reg_hsh, name);
2288 free ((char *) reg->name);
2289 if (reg->neon)
2290 free (reg->neon);
2291 free (reg);
2292
2293 /* Also locate the all upper case and all lower case versions.
2294 Do not complain if we cannot find one or the other as it
2295 was probably deleted above. */
2296
2297 nbuf = strdup (name);
2298 for (p = nbuf; *p; p++)
2299 *p = TOUPPER (*p);
2300 reg = hash_find (arm_reg_hsh, nbuf);
2301 if (reg)
2302 {
2303 hash_delete (arm_reg_hsh, nbuf);
2304 free ((char *) reg->name);
2305 if (reg->neon)
2306 free (reg->neon);
2307 free (reg);
2308 }
2309
2310 for (p = nbuf; *p; p++)
2311 *p = TOLOWER (*p);
2312 reg = hash_find (arm_reg_hsh, nbuf);
2313 if (reg)
2314 {
2315 hash_delete (arm_reg_hsh, nbuf);
2316 free ((char *) reg->name);
2317 if (reg->neon)
2318 free (reg->neon);
2319 free (reg);
2320 }
2321
2322 free (nbuf);
2323 }
2324 }
2325
2326 *input_line_pointer = saved_char;
2327 demand_empty_rest_of_line ();
2328 }
2329
2330 /* Directives: Instruction set selection. */
2331
2332 #ifdef OBJ_ELF
2333 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2334 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2335 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2336 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2337
2338 static enum mstate mapstate = MAP_UNDEFINED;
2339
2340 void
2341 mapping_state (enum mstate state)
2342 {
2343 symbolS * symbolP;
2344 const char * symname;
2345 int type;
2346
2347 if (mapstate == state)
2348 /* The mapping symbol has already been emitted.
2349 There is nothing else to do. */
2350 return;
2351
2352 mapstate = state;
2353
2354 switch (state)
2355 {
2356 case MAP_DATA:
2357 symname = "$d";
2358 type = BSF_NO_FLAGS;
2359 break;
2360 case MAP_ARM:
2361 symname = "$a";
2362 type = BSF_NO_FLAGS;
2363 break;
2364 case MAP_THUMB:
2365 symname = "$t";
2366 type = BSF_NO_FLAGS;
2367 break;
2368 case MAP_UNDEFINED:
2369 return;
2370 default:
2371 abort ();
2372 }
2373
2374 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2375
2376 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2377 symbol_table_insert (symbolP);
2378 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2379
2380 switch (state)
2381 {
2382 case MAP_ARM:
2383 THUMB_SET_FUNC (symbolP, 0);
2384 ARM_SET_THUMB (symbolP, 0);
2385 ARM_SET_INTERWORK (symbolP, support_interwork);
2386 break;
2387
2388 case MAP_THUMB:
2389 THUMB_SET_FUNC (symbolP, 1);
2390 ARM_SET_THUMB (symbolP, 1);
2391 ARM_SET_INTERWORK (symbolP, support_interwork);
2392 break;
2393
2394 case MAP_DATA:
2395 default:
2396 return;
2397 }
2398 }
2399 #else
2400 #define mapping_state(x) /* nothing */
2401 #endif
2402
2403 /* Find the real, Thumb encoded start of a Thumb function. */
2404
2405 static symbolS *
2406 find_real_start (symbolS * symbolP)
2407 {
2408 char * real_start;
2409 const char * name = S_GET_NAME (symbolP);
2410 symbolS * new_target;
2411
2412 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2413 #define STUB_NAME ".real_start_of"
2414
2415 if (name == NULL)
2416 abort ();
2417
2418 /* The compiler may generate BL instructions to local labels because
2419 it needs to perform a branch to a far away location. These labels
2420 do not have a corresponding ".real_start_of" label. We check
2421 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2422 the ".real_start_of" convention for nonlocal branches. */
2423 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2424 return symbolP;
2425
2426 real_start = ACONCAT ((STUB_NAME, name, NULL));
2427 new_target = symbol_find (real_start);
2428
2429 if (new_target == NULL)
2430 {
2431 as_warn (_("Failed to find real start of function: %s\n"), name);
2432 new_target = symbolP;
2433 }
2434
2435 return new_target;
2436 }
2437
2438 static void
2439 opcode_select (int width)
2440 {
2441 switch (width)
2442 {
2443 case 16:
2444 if (! thumb_mode)
2445 {
2446 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2447 as_bad (_("selected processor does not support THUMB opcodes"));
2448
2449 thumb_mode = 1;
2450 /* No need to force the alignment, since we will have been
2451 coming from ARM mode, which is word-aligned. */
2452 record_alignment (now_seg, 1);
2453 }
2454 mapping_state (MAP_THUMB);
2455 break;
2456
2457 case 32:
2458 if (thumb_mode)
2459 {
2460 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2461 as_bad (_("selected processor does not support ARM opcodes"));
2462
2463 thumb_mode = 0;
2464
2465 if (!need_pass_2)
2466 frag_align (2, 0, 0);
2467
2468 record_alignment (now_seg, 1);
2469 }
2470 mapping_state (MAP_ARM);
2471 break;
2472
2473 default:
2474 as_bad (_("invalid instruction size selected (%d)"), width);
2475 }
2476 }
2477
2478 static void
2479 s_arm (int ignore ATTRIBUTE_UNUSED)
2480 {
2481 opcode_select (32);
2482 demand_empty_rest_of_line ();
2483 }
2484
2485 static void
2486 s_thumb (int ignore ATTRIBUTE_UNUSED)
2487 {
2488 opcode_select (16);
2489 demand_empty_rest_of_line ();
2490 }
2491
2492 static void
2493 s_code (int unused ATTRIBUTE_UNUSED)
2494 {
2495 int temp;
2496
2497 temp = get_absolute_expression ();
2498 switch (temp)
2499 {
2500 case 16:
2501 case 32:
2502 opcode_select (temp);
2503 break;
2504
2505 default:
2506 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2507 }
2508 }
2509
2510 static void
2511 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2512 {
2513 /* If we are not already in thumb mode go into it, EVEN if
2514 the target processor does not support thumb instructions.
2515 This is used by gcc/config/arm/lib1funcs.asm for example
2516 to compile interworking support functions even if the
2517 target processor should not support interworking. */
2518 if (! thumb_mode)
2519 {
2520 thumb_mode = 2;
2521 record_alignment (now_seg, 1);
2522 }
2523
2524 demand_empty_rest_of_line ();
2525 }
2526
2527 static void
2528 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2529 {
2530 s_thumb (0);
2531
2532 /* The following label is the name/address of the start of a Thumb function.
2533 We need to know this for the interworking support. */
2534 label_is_thumb_function_name = TRUE;
2535 }
2536
2537 /* Perform a .set directive, but also mark the alias as
2538 being a thumb function. */
2539
2540 static void
2541 s_thumb_set (int equiv)
2542 {
2543 /* XXX the following is a duplicate of the code for s_set() in read.c
2544 We cannot just call that code as we need to get at the symbol that
2545 is created. */
2546 char * name;
2547 char delim;
2548 char * end_name;
2549 symbolS * symbolP;
2550
2551 /* Especial apologies for the random logic:
2552 This just grew, and could be parsed much more simply!
2553 Dean - in haste. */
2554 name = input_line_pointer;
2555 delim = get_symbol_end ();
2556 end_name = input_line_pointer;
2557 *end_name = delim;
2558
2559 if (*input_line_pointer != ',')
2560 {
2561 *end_name = 0;
2562 as_bad (_("expected comma after name \"%s\""), name);
2563 *end_name = delim;
2564 ignore_rest_of_line ();
2565 return;
2566 }
2567
2568 input_line_pointer++;
2569 *end_name = 0;
2570
2571 if (name[0] == '.' && name[1] == '\0')
2572 {
2573 /* XXX - this should not happen to .thumb_set. */
2574 abort ();
2575 }
2576
2577 if ((symbolP = symbol_find (name)) == NULL
2578 && (symbolP = md_undefined_symbol (name)) == NULL)
2579 {
2580 #ifndef NO_LISTING
2581 /* When doing symbol listings, play games with dummy fragments living
2582 outside the normal fragment chain to record the file and line info
2583 for this symbol. */
2584 if (listing & LISTING_SYMBOLS)
2585 {
2586 extern struct list_info_struct * listing_tail;
2587 fragS * dummy_frag = xmalloc (sizeof (fragS));
2588
2589 memset (dummy_frag, 0, sizeof (fragS));
2590 dummy_frag->fr_type = rs_fill;
2591 dummy_frag->line = listing_tail;
2592 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2593 dummy_frag->fr_symbol = symbolP;
2594 }
2595 else
2596 #endif
2597 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2598
2599 #ifdef OBJ_COFF
2600 /* "set" symbols are local unless otherwise specified. */
2601 SF_SET_LOCAL (symbolP);
2602 #endif /* OBJ_COFF */
2603 } /* Make a new symbol. */
2604
2605 symbol_table_insert (symbolP);
2606
2607 * end_name = delim;
2608
2609 if (equiv
2610 && S_IS_DEFINED (symbolP)
2611 && S_GET_SEGMENT (symbolP) != reg_section)
2612 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2613
2614 pseudo_set (symbolP);
2615
2616 demand_empty_rest_of_line ();
2617
2618 /* XXX Now we come to the Thumb specific bit of code. */
2619
2620 THUMB_SET_FUNC (symbolP, 1);
2621 ARM_SET_THUMB (symbolP, 1);
2622 #if defined OBJ_ELF || defined OBJ_COFF
2623 ARM_SET_INTERWORK (symbolP, support_interwork);
2624 #endif
2625 }
2626
2627 /* Directives: Mode selection. */
2628
2629 /* .syntax [unified|divided] - choose the new unified syntax
2630 (same for Arm and Thumb encoding, modulo slight differences in what
2631 can be represented) or the old divergent syntax for each mode. */
2632 static void
2633 s_syntax (int unused ATTRIBUTE_UNUSED)
2634 {
2635 char *name, delim;
2636
2637 name = input_line_pointer;
2638 delim = get_symbol_end ();
2639
2640 if (!strcasecmp (name, "unified"))
2641 unified_syntax = TRUE;
2642 else if (!strcasecmp (name, "divided"))
2643 unified_syntax = FALSE;
2644 else
2645 {
2646 as_bad (_("unrecognized syntax mode \"%s\""), name);
2647 return;
2648 }
2649 *input_line_pointer = delim;
2650 demand_empty_rest_of_line ();
2651 }
2652
2653 /* Directives: sectioning and alignment. */
2654
2655 /* Same as s_align_ptwo but align 0 => align 2. */
2656
2657 static void
2658 s_align (int unused ATTRIBUTE_UNUSED)
2659 {
2660 int temp;
2661 bfd_boolean fill_p;
2662 long temp_fill;
2663 long max_alignment = 15;
2664
2665 temp = get_absolute_expression ();
2666 if (temp > max_alignment)
2667 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2668 else if (temp < 0)
2669 {
2670 as_bad (_("alignment negative. 0 assumed."));
2671 temp = 0;
2672 }
2673
2674 if (*input_line_pointer == ',')
2675 {
2676 input_line_pointer++;
2677 temp_fill = get_absolute_expression ();
2678 fill_p = TRUE;
2679 }
2680 else
2681 {
2682 fill_p = FALSE;
2683 temp_fill = 0;
2684 }
2685
2686 if (!temp)
2687 temp = 2;
2688
2689 /* Only make a frag if we HAVE to. */
2690 if (temp && !need_pass_2)
2691 {
2692 if (!fill_p && subseg_text_p (now_seg))
2693 frag_align_code (temp, 0);
2694 else
2695 frag_align (temp, (int) temp_fill, 0);
2696 }
2697 demand_empty_rest_of_line ();
2698
2699 record_alignment (now_seg, temp);
2700 }
2701
2702 static void
2703 s_bss (int ignore ATTRIBUTE_UNUSED)
2704 {
2705 /* We don't support putting frags in the BSS segment, we fake it by
2706 marking in_bss, then looking at s_skip for clues. */
2707 subseg_set (bss_section, 0);
2708 demand_empty_rest_of_line ();
2709 mapping_state (MAP_DATA);
2710 }
2711
2712 static void
2713 s_even (int ignore ATTRIBUTE_UNUSED)
2714 {
2715 /* Never make frag if expect extra pass. */
2716 if (!need_pass_2)
2717 frag_align (1, 0, 0);
2718
2719 record_alignment (now_seg, 1);
2720
2721 demand_empty_rest_of_line ();
2722 }
2723
2724 /* Directives: Literal pools. */
2725
2726 static literal_pool *
2727 find_literal_pool (void)
2728 {
2729 literal_pool * pool;
2730
2731 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2732 {
2733 if (pool->section == now_seg
2734 && pool->sub_section == now_subseg)
2735 break;
2736 }
2737
2738 return pool;
2739 }
2740
2741 static literal_pool *
2742 find_or_make_literal_pool (void)
2743 {
2744 /* Next literal pool ID number. */
2745 static unsigned int latest_pool_num = 1;
2746 literal_pool * pool;
2747
2748 pool = find_literal_pool ();
2749
2750 if (pool == NULL)
2751 {
2752 /* Create a new pool. */
2753 pool = xmalloc (sizeof (* pool));
2754 if (! pool)
2755 return NULL;
2756
2757 pool->next_free_entry = 0;
2758 pool->section = now_seg;
2759 pool->sub_section = now_subseg;
2760 pool->next = list_of_pools;
2761 pool->symbol = NULL;
2762
2763 /* Add it to the list. */
2764 list_of_pools = pool;
2765 }
2766
2767 /* New pools, and emptied pools, will have a NULL symbol. */
2768 if (pool->symbol == NULL)
2769 {
2770 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2771 (valueT) 0, &zero_address_frag);
2772 pool->id = latest_pool_num ++;
2773 }
2774
2775 /* Done. */
2776 return pool;
2777 }
2778
2779 /* Add the literal in the global 'inst'
2780 structure to the relevant literal pool. */
2781
2782 static int
2783 add_to_lit_pool (void)
2784 {
2785 literal_pool * pool;
2786 unsigned int entry;
2787
2788 pool = find_or_make_literal_pool ();
2789
2790 /* Check if this literal value is already in the pool. */
2791 for (entry = 0; entry < pool->next_free_entry; entry ++)
2792 {
2793 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2794 && (inst.reloc.exp.X_op == O_constant)
2795 && (pool->literals[entry].X_add_number
2796 == inst.reloc.exp.X_add_number)
2797 && (pool->literals[entry].X_unsigned
2798 == inst.reloc.exp.X_unsigned))
2799 break;
2800
2801 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2802 && (inst.reloc.exp.X_op == O_symbol)
2803 && (pool->literals[entry].X_add_number
2804 == inst.reloc.exp.X_add_number)
2805 && (pool->literals[entry].X_add_symbol
2806 == inst.reloc.exp.X_add_symbol)
2807 && (pool->literals[entry].X_op_symbol
2808 == inst.reloc.exp.X_op_symbol))
2809 break;
2810 }
2811
2812 /* Do we need to create a new entry? */
2813 if (entry == pool->next_free_entry)
2814 {
2815 if (entry >= MAX_LITERAL_POOL_SIZE)
2816 {
2817 inst.error = _("literal pool overflow");
2818 return FAIL;
2819 }
2820
2821 pool->literals[entry] = inst.reloc.exp;
2822 pool->next_free_entry += 1;
2823 }
2824
2825 inst.reloc.exp.X_op = O_symbol;
2826 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2827 inst.reloc.exp.X_add_symbol = pool->symbol;
2828
2829 return SUCCESS;
2830 }
2831
2832 /* Can't use symbol_new here, so have to create a symbol and then at
2833 a later date assign it a value. Thats what these functions do. */
2834
2835 static void
2836 symbol_locate (symbolS * symbolP,
2837 const char * name, /* It is copied, the caller can modify. */
2838 segT segment, /* Segment identifier (SEG_<something>). */
2839 valueT valu, /* Symbol value. */
2840 fragS * frag) /* Associated fragment. */
2841 {
2842 unsigned int name_length;
2843 char * preserved_copy_of_name;
2844
2845 name_length = strlen (name) + 1; /* +1 for \0. */
2846 obstack_grow (&notes, name, name_length);
2847 preserved_copy_of_name = obstack_finish (&notes);
2848
2849 #ifdef tc_canonicalize_symbol_name
2850 preserved_copy_of_name =
2851 tc_canonicalize_symbol_name (preserved_copy_of_name);
2852 #endif
2853
2854 S_SET_NAME (symbolP, preserved_copy_of_name);
2855
2856 S_SET_SEGMENT (symbolP, segment);
2857 S_SET_VALUE (symbolP, valu);
2858 symbol_clear_list_pointers (symbolP);
2859
2860 symbol_set_frag (symbolP, frag);
2861
2862 /* Link to end of symbol chain. */
2863 {
2864 extern int symbol_table_frozen;
2865
2866 if (symbol_table_frozen)
2867 abort ();
2868 }
2869
2870 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2871
2872 obj_symbol_new_hook (symbolP);
2873
2874 #ifdef tc_symbol_new_hook
2875 tc_symbol_new_hook (symbolP);
2876 #endif
2877
2878 #ifdef DEBUG_SYMS
2879 verify_symbol_chain (symbol_rootP, symbol_lastP);
2880 #endif /* DEBUG_SYMS */
2881 }
2882
2883
2884 static void
2885 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2886 {
2887 unsigned int entry;
2888 literal_pool * pool;
2889 char sym_name[20];
2890
2891 pool = find_literal_pool ();
2892 if (pool == NULL
2893 || pool->symbol == NULL
2894 || pool->next_free_entry == 0)
2895 return;
2896
2897 mapping_state (MAP_DATA);
2898
2899 /* Align pool as you have word accesses.
2900 Only make a frag if we have to. */
2901 if (!need_pass_2)
2902 frag_align (2, 0, 0);
2903
2904 record_alignment (now_seg, 2);
2905
2906 sprintf (sym_name, "$$lit_\002%x", pool->id);
2907
2908 symbol_locate (pool->symbol, sym_name, now_seg,
2909 (valueT) frag_now_fix (), frag_now);
2910 symbol_table_insert (pool->symbol);
2911
2912 ARM_SET_THUMB (pool->symbol, thumb_mode);
2913
2914 #if defined OBJ_COFF || defined OBJ_ELF
2915 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2916 #endif
2917
2918 for (entry = 0; entry < pool->next_free_entry; entry ++)
2919 /* First output the expression in the instruction to the pool. */
2920 emit_expr (&(pool->literals[entry]), 4); /* .word */
2921
2922 /* Mark the pool as empty. */
2923 pool->next_free_entry = 0;
2924 pool->symbol = NULL;
2925 }
2926
2927 #ifdef OBJ_ELF
2928 /* Forward declarations for functions below, in the MD interface
2929 section. */
2930 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2931 static valueT create_unwind_entry (int);
2932 static void start_unwind_section (const segT, int);
2933 static void add_unwind_opcode (valueT, int);
2934 static void flush_pending_unwind (void);
2935
2936 /* Directives: Data. */
2937
2938 static void
2939 s_arm_elf_cons (int nbytes)
2940 {
2941 expressionS exp;
2942
2943 #ifdef md_flush_pending_output
2944 md_flush_pending_output ();
2945 #endif
2946
2947 if (is_it_end_of_statement ())
2948 {
2949 demand_empty_rest_of_line ();
2950 return;
2951 }
2952
2953 #ifdef md_cons_align
2954 md_cons_align (nbytes);
2955 #endif
2956
2957 mapping_state (MAP_DATA);
2958 do
2959 {
2960 int reloc;
2961 char *base = input_line_pointer;
2962
2963 expression (& exp);
2964
2965 if (exp.X_op != O_symbol)
2966 emit_expr (&exp, (unsigned int) nbytes);
2967 else
2968 {
2969 char *before_reloc = input_line_pointer;
2970 reloc = parse_reloc (&input_line_pointer);
2971 if (reloc == -1)
2972 {
2973 as_bad (_("unrecognized relocation suffix"));
2974 ignore_rest_of_line ();
2975 return;
2976 }
2977 else if (reloc == BFD_RELOC_UNUSED)
2978 emit_expr (&exp, (unsigned int) nbytes);
2979 else
2980 {
2981 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2982 int size = bfd_get_reloc_size (howto);
2983
2984 if (reloc == BFD_RELOC_ARM_PLT32)
2985 {
2986 as_bad (_("(plt) is only valid on branch targets"));
2987 reloc = BFD_RELOC_UNUSED;
2988 size = 0;
2989 }
2990
2991 if (size > nbytes)
2992 as_bad (_("%s relocations do not fit in %d bytes"),
2993 howto->name, nbytes);
2994 else
2995 {
2996 /* We've parsed an expression stopping at O_symbol.
2997 But there may be more expression left now that we
2998 have parsed the relocation marker. Parse it again.
2999 XXX Surely there is a cleaner way to do this. */
3000 char *p = input_line_pointer;
3001 int offset;
3002 char *save_buf = alloca (input_line_pointer - base);
3003 memcpy (save_buf, base, input_line_pointer - base);
3004 memmove (base + (input_line_pointer - before_reloc),
3005 base, before_reloc - base);
3006
3007 input_line_pointer = base + (input_line_pointer-before_reloc);
3008 expression (&exp);
3009 memcpy (base, save_buf, p - base);
3010
3011 offset = nbytes - size;
3012 p = frag_more ((int) nbytes);
3013 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3014 size, &exp, 0, reloc);
3015 }
3016 }
3017 }
3018 }
3019 while (*input_line_pointer++ == ',');
3020
3021 /* Put terminator back into stream. */
3022 input_line_pointer --;
3023 demand_empty_rest_of_line ();
3024 }
3025
3026
3027 /* Parse a .rel31 directive. */
3028
3029 static void
3030 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3031 {
3032 expressionS exp;
3033 char *p;
3034 valueT highbit;
3035
3036 highbit = 0;
3037 if (*input_line_pointer == '1')
3038 highbit = 0x80000000;
3039 else if (*input_line_pointer != '0')
3040 as_bad (_("expected 0 or 1"));
3041
3042 input_line_pointer++;
3043 if (*input_line_pointer != ',')
3044 as_bad (_("missing comma"));
3045 input_line_pointer++;
3046
3047 #ifdef md_flush_pending_output
3048 md_flush_pending_output ();
3049 #endif
3050
3051 #ifdef md_cons_align
3052 md_cons_align (4);
3053 #endif
3054
3055 mapping_state (MAP_DATA);
3056
3057 expression (&exp);
3058
3059 p = frag_more (4);
3060 md_number_to_chars (p, highbit, 4);
3061 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3062 BFD_RELOC_ARM_PREL31);
3063
3064 demand_empty_rest_of_line ();
3065 }
3066
3067 /* Directives: AEABI stack-unwind tables. */
3068
3069 /* Parse an unwind_fnstart directive. Simply records the current location. */
3070
3071 static void
3072 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3073 {
3074 demand_empty_rest_of_line ();
3075 /* Mark the start of the function. */
3076 unwind.proc_start = expr_build_dot ();
3077
3078 /* Reset the rest of the unwind info. */
3079 unwind.opcode_count = 0;
3080 unwind.table_entry = NULL;
3081 unwind.personality_routine = NULL;
3082 unwind.personality_index = -1;
3083 unwind.frame_size = 0;
3084 unwind.fp_offset = 0;
3085 unwind.fp_reg = 13;
3086 unwind.fp_used = 0;
3087 unwind.sp_restored = 0;
3088 }
3089
3090
3091 /* Parse a handlerdata directive. Creates the exception handling table entry
3092 for the function. */
3093
3094 static void
3095 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3096 {
3097 demand_empty_rest_of_line ();
3098 if (unwind.table_entry)
3099 as_bad (_("duplicate .handlerdata directive"));
3100
3101 create_unwind_entry (1);
3102 }
3103
3104 /* Parse an unwind_fnend directive. Generates the index table entry. */
3105
3106 static void
3107 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3108 {
3109 long where;
3110 char *ptr;
3111 valueT val;
3112
3113 demand_empty_rest_of_line ();
3114
3115 /* Add eh table entry. */
3116 if (unwind.table_entry == NULL)
3117 val = create_unwind_entry (0);
3118 else
3119 val = 0;
3120
3121 /* Add index table entry. This is two words. */
3122 start_unwind_section (unwind.saved_seg, 1);
3123 frag_align (2, 0, 0);
3124 record_alignment (now_seg, 2);
3125
3126 ptr = frag_more (8);
3127 where = frag_now_fix () - 8;
3128
3129 /* Self relative offset of the function start. */
3130 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3131 BFD_RELOC_ARM_PREL31);
3132
3133 /* Indicate dependency on EHABI-defined personality routines to the
3134 linker, if it hasn't been done already. */
3135 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3136 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3137 {
3138 static const char *const name[] =
3139 {
3140 "__aeabi_unwind_cpp_pr0",
3141 "__aeabi_unwind_cpp_pr1",
3142 "__aeabi_unwind_cpp_pr2"
3143 };
3144 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3145 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3146 marked_pr_dependency |= 1 << unwind.personality_index;
3147 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3148 = marked_pr_dependency;
3149 }
3150
3151 if (val)
3152 /* Inline exception table entry. */
3153 md_number_to_chars (ptr + 4, val, 4);
3154 else
3155 /* Self relative offset of the table entry. */
3156 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3157 BFD_RELOC_ARM_PREL31);
3158
3159 /* Restore the original section. */
3160 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3161 }
3162
3163
3164 /* Parse an unwind_cantunwind directive. */
3165
3166 static void
3167 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3168 {
3169 demand_empty_rest_of_line ();
3170 if (unwind.personality_routine || unwind.personality_index != -1)
3171 as_bad (_("personality routine specified for cantunwind frame"));
3172
3173 unwind.personality_index = -2;
3174 }
3175
3176
3177 /* Parse a personalityindex directive. */
3178
3179 static void
3180 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3181 {
3182 expressionS exp;
3183
3184 if (unwind.personality_routine || unwind.personality_index != -1)
3185 as_bad (_("duplicate .personalityindex directive"));
3186
3187 expression (&exp);
3188
3189 if (exp.X_op != O_constant
3190 || exp.X_add_number < 0 || exp.X_add_number > 15)
3191 {
3192 as_bad (_("bad personality routine number"));
3193 ignore_rest_of_line ();
3194 return;
3195 }
3196
3197 unwind.personality_index = exp.X_add_number;
3198
3199 demand_empty_rest_of_line ();
3200 }
3201
3202
3203 /* Parse a personality directive. */
3204
3205 static void
3206 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3207 {
3208 char *name, *p, c;
3209
3210 if (unwind.personality_routine || unwind.personality_index != -1)
3211 as_bad (_("duplicate .personality directive"));
3212
3213 name = input_line_pointer;
3214 c = get_symbol_end ();
3215 p = input_line_pointer;
3216 unwind.personality_routine = symbol_find_or_make (name);
3217 *p = c;
3218 demand_empty_rest_of_line ();
3219 }
3220
3221
3222 /* Parse a directive saving core registers. */
3223
3224 static void
3225 s_arm_unwind_save_core (void)
3226 {
3227 valueT op;
3228 long range;
3229 int n;
3230
3231 range = parse_reg_list (&input_line_pointer);
3232 if (range == FAIL)
3233 {
3234 as_bad (_("expected register list"));
3235 ignore_rest_of_line ();
3236 return;
3237 }
3238
3239 demand_empty_rest_of_line ();
3240
3241 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3242 into .unwind_save {..., sp...}. We aren't bothered about the value of
3243 ip because it is clobbered by calls. */
3244 if (unwind.sp_restored && unwind.fp_reg == 12
3245 && (range & 0x3000) == 0x1000)
3246 {
3247 unwind.opcode_count--;
3248 unwind.sp_restored = 0;
3249 range = (range | 0x2000) & ~0x1000;
3250 unwind.pending_offset = 0;
3251 }
3252
3253 /* Pop r4-r15. */
3254 if (range & 0xfff0)
3255 {
3256 /* See if we can use the short opcodes. These pop a block of up to 8
3257 registers starting with r4, plus maybe r14. */
3258 for (n = 0; n < 8; n++)
3259 {
3260 /* Break at the first non-saved register. */
3261 if ((range & (1 << (n + 4))) == 0)
3262 break;
3263 }
3264 /* See if there are any other bits set. */
3265 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3266 {
3267 /* Use the long form. */
3268 op = 0x8000 | ((range >> 4) & 0xfff);
3269 add_unwind_opcode (op, 2);
3270 }
3271 else
3272 {
3273 /* Use the short form. */
3274 if (range & 0x4000)
3275 op = 0xa8; /* Pop r14. */
3276 else
3277 op = 0xa0; /* Do not pop r14. */
3278 op |= (n - 1);
3279 add_unwind_opcode (op, 1);
3280 }
3281 }
3282
3283 /* Pop r0-r3. */
3284 if (range & 0xf)
3285 {
3286 op = 0xb100 | (range & 0xf);
3287 add_unwind_opcode (op, 2);
3288 }
3289
3290 /* Record the number of bytes pushed. */
3291 for (n = 0; n < 16; n++)
3292 {
3293 if (range & (1 << n))
3294 unwind.frame_size += 4;
3295 }
3296 }
3297
3298
3299 /* Parse a directive saving FPA registers. */
3300
3301 static void
3302 s_arm_unwind_save_fpa (int reg)
3303 {
3304 expressionS exp;
3305 int num_regs;
3306 valueT op;
3307
3308 /* Get Number of registers to transfer. */
3309 if (skip_past_comma (&input_line_pointer) != FAIL)
3310 expression (&exp);
3311 else
3312 exp.X_op = O_illegal;
3313
3314 if (exp.X_op != O_constant)
3315 {
3316 as_bad (_("expected , <constant>"));
3317 ignore_rest_of_line ();
3318 return;
3319 }
3320
3321 num_regs = exp.X_add_number;
3322
3323 if (num_regs < 1 || num_regs > 4)
3324 {
3325 as_bad (_("number of registers must be in the range [1:4]"));
3326 ignore_rest_of_line ();
3327 return;
3328 }
3329
3330 demand_empty_rest_of_line ();
3331
3332 if (reg == 4)
3333 {
3334 /* Short form. */
3335 op = 0xb4 | (num_regs - 1);
3336 add_unwind_opcode (op, 1);
3337 }
3338 else
3339 {
3340 /* Long form. */
3341 op = 0xc800 | (reg << 4) | (num_regs - 1);
3342 add_unwind_opcode (op, 2);
3343 }
3344 unwind.frame_size += num_regs * 12;
3345 }
3346
3347
3348 /* Parse a directive saving VFP registers for ARMv6 and above. */
3349
3350 static void
3351 s_arm_unwind_save_vfp_armv6 (void)
3352 {
3353 int count;
3354 unsigned int start;
3355 valueT op;
3356 int num_vfpv3_regs = 0;
3357 int num_regs_below_16;
3358
3359 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3360 if (count == FAIL)
3361 {
3362 as_bad (_("expected register list"));
3363 ignore_rest_of_line ();
3364 return;
3365 }
3366
3367 demand_empty_rest_of_line ();
3368
3369 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3370 than FSTMX/FLDMX-style ones). */
3371
3372 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3373 if (start >= 16)
3374 num_vfpv3_regs = count;
3375 else if (start + count > 16)
3376 num_vfpv3_regs = start + count - 16;
3377
3378 if (num_vfpv3_regs > 0)
3379 {
3380 int start_offset = start > 16 ? start - 16 : 0;
3381 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3382 add_unwind_opcode (op, 2);
3383 }
3384
3385 /* Generate opcode for registers numbered in the range 0 .. 15. */
3386 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3387 assert (num_regs_below_16 + num_vfpv3_regs == count);
3388 if (num_regs_below_16 > 0)
3389 {
3390 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3391 add_unwind_opcode (op, 2);
3392 }
3393
3394 unwind.frame_size += count * 8;
3395 }
3396
3397
3398 /* Parse a directive saving VFP registers for pre-ARMv6. */
3399
3400 static void
3401 s_arm_unwind_save_vfp (void)
3402 {
3403 int count;
3404 unsigned int reg;
3405 valueT op;
3406
3407 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3408 if (count == FAIL)
3409 {
3410 as_bad (_("expected register list"));
3411 ignore_rest_of_line ();
3412 return;
3413 }
3414
3415 demand_empty_rest_of_line ();
3416
3417 if (reg == 8)
3418 {
3419 /* Short form. */
3420 op = 0xb8 | (count - 1);
3421 add_unwind_opcode (op, 1);
3422 }
3423 else
3424 {
3425 /* Long form. */
3426 op = 0xb300 | (reg << 4) | (count - 1);
3427 add_unwind_opcode (op, 2);
3428 }
3429 unwind.frame_size += count * 8 + 4;
3430 }
3431
3432
3433 /* Parse a directive saving iWMMXt data registers. */
3434
3435 static void
3436 s_arm_unwind_save_mmxwr (void)
3437 {
3438 int reg;
3439 int hi_reg;
3440 int i;
3441 unsigned mask = 0;
3442 valueT op;
3443
3444 if (*input_line_pointer == '{')
3445 input_line_pointer++;
3446
3447 do
3448 {
3449 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3450
3451 if (reg == FAIL)
3452 {
3453 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3454 goto error;
3455 }
3456
3457 if (mask >> reg)
3458 as_tsktsk (_("register list not in ascending order"));
3459 mask |= 1 << reg;
3460
3461 if (*input_line_pointer == '-')
3462 {
3463 input_line_pointer++;
3464 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3465 if (hi_reg == FAIL)
3466 {
3467 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3468 goto error;
3469 }
3470 else if (reg >= hi_reg)
3471 {
3472 as_bad (_("bad register range"));
3473 goto error;
3474 }
3475 for (; reg < hi_reg; reg++)
3476 mask |= 1 << reg;
3477 }
3478 }
3479 while (skip_past_comma (&input_line_pointer) != FAIL);
3480
3481 if (*input_line_pointer == '}')
3482 input_line_pointer++;
3483
3484 demand_empty_rest_of_line ();
3485
3486 /* Generate any deferred opcodes because we're going to be looking at
3487 the list. */
3488 flush_pending_unwind ();
3489
3490 for (i = 0; i < 16; i++)
3491 {
3492 if (mask & (1 << i))
3493 unwind.frame_size += 8;
3494 }
3495
3496 /* Attempt to combine with a previous opcode. We do this because gcc
3497 likes to output separate unwind directives for a single block of
3498 registers. */
3499 if (unwind.opcode_count > 0)
3500 {
3501 i = unwind.opcodes[unwind.opcode_count - 1];
3502 if ((i & 0xf8) == 0xc0)
3503 {
3504 i &= 7;
3505 /* Only merge if the blocks are contiguous. */
3506 if (i < 6)
3507 {
3508 if ((mask & 0xfe00) == (1 << 9))
3509 {
3510 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3511 unwind.opcode_count--;
3512 }
3513 }
3514 else if (i == 6 && unwind.opcode_count >= 2)
3515 {
3516 i = unwind.opcodes[unwind.opcode_count - 2];
3517 reg = i >> 4;
3518 i &= 0xf;
3519
3520 op = 0xffff << (reg - 1);
3521 if (reg > 0
3522 && ((mask & op) == (1u << (reg - 1))))
3523 {
3524 op = (1 << (reg + i + 1)) - 1;
3525 op &= ~((1 << reg) - 1);
3526 mask |= op;
3527 unwind.opcode_count -= 2;
3528 }
3529 }
3530 }
3531 }
3532
3533 hi_reg = 15;
3534 /* We want to generate opcodes in the order the registers have been
3535 saved, ie. descending order. */
3536 for (reg = 15; reg >= -1; reg--)
3537 {
3538 /* Save registers in blocks. */
3539 if (reg < 0
3540 || !(mask & (1 << reg)))
3541 {
3542 /* We found an unsaved reg. Generate opcodes to save the
3543 preceding block. */
3544 if (reg != hi_reg)
3545 {
3546 if (reg == 9)
3547 {
3548 /* Short form. */
3549 op = 0xc0 | (hi_reg - 10);
3550 add_unwind_opcode (op, 1);
3551 }
3552 else
3553 {
3554 /* Long form. */
3555 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3556 add_unwind_opcode (op, 2);
3557 }
3558 }
3559 hi_reg = reg - 1;
3560 }
3561 }
3562
3563 return;
3564 error:
3565 ignore_rest_of_line ();
3566 }
3567
3568 static void
3569 s_arm_unwind_save_mmxwcg (void)
3570 {
3571 int reg;
3572 int hi_reg;
3573 unsigned mask = 0;
3574 valueT op;
3575
3576 if (*input_line_pointer == '{')
3577 input_line_pointer++;
3578
3579 do
3580 {
3581 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3582
3583 if (reg == FAIL)
3584 {
3585 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3586 goto error;
3587 }
3588
3589 reg -= 8;
3590 if (mask >> reg)
3591 as_tsktsk (_("register list not in ascending order"));
3592 mask |= 1 << reg;
3593
3594 if (*input_line_pointer == '-')
3595 {
3596 input_line_pointer++;
3597 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3598 if (hi_reg == FAIL)
3599 {
3600 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3601 goto error;
3602 }
3603 else if (reg >= hi_reg)
3604 {
3605 as_bad (_("bad register range"));
3606 goto error;
3607 }
3608 for (; reg < hi_reg; reg++)
3609 mask |= 1 << reg;
3610 }
3611 }
3612 while (skip_past_comma (&input_line_pointer) != FAIL);
3613
3614 if (*input_line_pointer == '}')
3615 input_line_pointer++;
3616
3617 demand_empty_rest_of_line ();
3618
3619 /* Generate any deferred opcodes because we're going to be looking at
3620 the list. */
3621 flush_pending_unwind ();
3622
3623 for (reg = 0; reg < 16; reg++)
3624 {
3625 if (mask & (1 << reg))
3626 unwind.frame_size += 4;
3627 }
3628 op = 0xc700 | mask;
3629 add_unwind_opcode (op, 2);
3630 return;
3631 error:
3632 ignore_rest_of_line ();
3633 }
3634
3635
3636 /* Parse an unwind_save directive.
3637 If the argument is non-zero, this is a .vsave directive. */
3638
3639 static void
3640 s_arm_unwind_save (int arch_v6)
3641 {
3642 char *peek;
3643 struct reg_entry *reg;
3644 bfd_boolean had_brace = FALSE;
3645
3646 /* Figure out what sort of save we have. */
3647 peek = input_line_pointer;
3648
3649 if (*peek == '{')
3650 {
3651 had_brace = TRUE;
3652 peek++;
3653 }
3654
3655 reg = arm_reg_parse_multi (&peek);
3656
3657 if (!reg)
3658 {
3659 as_bad (_("register expected"));
3660 ignore_rest_of_line ();
3661 return;
3662 }
3663
3664 switch (reg->type)
3665 {
3666 case REG_TYPE_FN:
3667 if (had_brace)
3668 {
3669 as_bad (_("FPA .unwind_save does not take a register list"));
3670 ignore_rest_of_line ();
3671 return;
3672 }
3673 s_arm_unwind_save_fpa (reg->number);
3674 return;
3675
3676 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3677 case REG_TYPE_VFD:
3678 if (arch_v6)
3679 s_arm_unwind_save_vfp_armv6 ();
3680 else
3681 s_arm_unwind_save_vfp ();
3682 return;
3683 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3684 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3685
3686 default:
3687 as_bad (_(".unwind_save does not support this kind of register"));
3688 ignore_rest_of_line ();
3689 }
3690 }
3691
3692
3693 /* Parse an unwind_movsp directive. */
3694
3695 static void
3696 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3697 {
3698 int reg;
3699 valueT op;
3700 int offset;
3701
3702 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3703 if (reg == FAIL)
3704 {
3705 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3706 ignore_rest_of_line ();
3707 return;
3708 }
3709
3710 /* Optional constant. */
3711 if (skip_past_comma (&input_line_pointer) != FAIL)
3712 {
3713 if (immediate_for_directive (&offset) == FAIL)
3714 return;
3715 }
3716 else
3717 offset = 0;
3718
3719 demand_empty_rest_of_line ();
3720
3721 if (reg == REG_SP || reg == REG_PC)
3722 {
3723 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3724 return;
3725 }
3726
3727 if (unwind.fp_reg != REG_SP)
3728 as_bad (_("unexpected .unwind_movsp directive"));
3729
3730 /* Generate opcode to restore the value. */
3731 op = 0x90 | reg;
3732 add_unwind_opcode (op, 1);
3733
3734 /* Record the information for later. */
3735 unwind.fp_reg = reg;
3736 unwind.fp_offset = unwind.frame_size - offset;
3737 unwind.sp_restored = 1;
3738 }
3739
3740 /* Parse an unwind_pad directive. */
3741
3742 static void
3743 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3744 {
3745 int offset;
3746
3747 if (immediate_for_directive (&offset) == FAIL)
3748 return;
3749
3750 if (offset & 3)
3751 {
3752 as_bad (_("stack increment must be multiple of 4"));
3753 ignore_rest_of_line ();
3754 return;
3755 }
3756
3757 /* Don't generate any opcodes, just record the details for later. */
3758 unwind.frame_size += offset;
3759 unwind.pending_offset += offset;
3760
3761 demand_empty_rest_of_line ();
3762 }
3763
3764 /* Parse an unwind_setfp directive. */
3765
3766 static void
3767 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3768 {
3769 int sp_reg;
3770 int fp_reg;
3771 int offset;
3772
3773 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3774 if (skip_past_comma (&input_line_pointer) == FAIL)
3775 sp_reg = FAIL;
3776 else
3777 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3778
3779 if (fp_reg == FAIL || sp_reg == FAIL)
3780 {
3781 as_bad (_("expected <reg>, <reg>"));
3782 ignore_rest_of_line ();
3783 return;
3784 }
3785
3786 /* Optional constant. */
3787 if (skip_past_comma (&input_line_pointer) != FAIL)
3788 {
3789 if (immediate_for_directive (&offset) == FAIL)
3790 return;
3791 }
3792 else
3793 offset = 0;
3794
3795 demand_empty_rest_of_line ();
3796
3797 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3798 {
3799 as_bad (_("register must be either sp or set by a previous"
3800 "unwind_movsp directive"));
3801 return;
3802 }
3803
3804 /* Don't generate any opcodes, just record the information for later. */
3805 unwind.fp_reg = fp_reg;
3806 unwind.fp_used = 1;
3807 if (sp_reg == 13)
3808 unwind.fp_offset = unwind.frame_size - offset;
3809 else
3810 unwind.fp_offset -= offset;
3811 }
3812
3813 /* Parse an unwind_raw directive. */
3814
3815 static void
3816 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3817 {
3818 expressionS exp;
3819 /* This is an arbitrary limit. */
3820 unsigned char op[16];
3821 int count;
3822
3823 expression (&exp);
3824 if (exp.X_op == O_constant
3825 && skip_past_comma (&input_line_pointer) != FAIL)
3826 {
3827 unwind.frame_size += exp.X_add_number;
3828 expression (&exp);
3829 }
3830 else
3831 exp.X_op = O_illegal;
3832
3833 if (exp.X_op != O_constant)
3834 {
3835 as_bad (_("expected <offset>, <opcode>"));
3836 ignore_rest_of_line ();
3837 return;
3838 }
3839
3840 count = 0;
3841
3842 /* Parse the opcode. */
3843 for (;;)
3844 {
3845 if (count >= 16)
3846 {
3847 as_bad (_("unwind opcode too long"));
3848 ignore_rest_of_line ();
3849 }
3850 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3851 {
3852 as_bad (_("invalid unwind opcode"));
3853 ignore_rest_of_line ();
3854 return;
3855 }
3856 op[count++] = exp.X_add_number;
3857
3858 /* Parse the next byte. */
3859 if (skip_past_comma (&input_line_pointer) == FAIL)
3860 break;
3861
3862 expression (&exp);
3863 }
3864
3865 /* Add the opcode bytes in reverse order. */
3866 while (count--)
3867 add_unwind_opcode (op[count], 1);
3868
3869 demand_empty_rest_of_line ();
3870 }
3871
3872
3873 /* Parse a .eabi_attribute directive. */
3874
3875 static void
3876 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3877 {
3878 s_vendor_attribute (OBJ_ATTR_PROC);
3879 }
3880 #endif /* OBJ_ELF */
3881
3882 static void s_arm_arch (int);
3883 static void s_arm_object_arch (int);
3884 static void s_arm_cpu (int);
3885 static void s_arm_fpu (int);
3886
3887 #ifdef TE_PE
3888
3889 static void
3890 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3891 {
3892 expressionS exp;
3893
3894 do
3895 {
3896 expression (&exp);
3897 if (exp.X_op == O_symbol)
3898 exp.X_op = O_secrel;
3899
3900 emit_expr (&exp, 4);
3901 }
3902 while (*input_line_pointer++ == ',');
3903
3904 input_line_pointer--;
3905 demand_empty_rest_of_line ();
3906 }
3907 #endif /* TE_PE */
3908
3909 /* This table describes all the machine specific pseudo-ops the assembler
3910 has to support. The fields are:
3911 pseudo-op name without dot
3912 function to call to execute this pseudo-op
3913 Integer arg to pass to the function. */
3914
3915 const pseudo_typeS md_pseudo_table[] =
3916 {
3917 /* Never called because '.req' does not start a line. */
3918 { "req", s_req, 0 },
3919 /* Following two are likewise never called. */
3920 { "dn", s_dn, 0 },
3921 { "qn", s_qn, 0 },
3922 { "unreq", s_unreq, 0 },
3923 { "bss", s_bss, 0 },
3924 { "align", s_align, 0 },
3925 { "arm", s_arm, 0 },
3926 { "thumb", s_thumb, 0 },
3927 { "code", s_code, 0 },
3928 { "force_thumb", s_force_thumb, 0 },
3929 { "thumb_func", s_thumb_func, 0 },
3930 { "thumb_set", s_thumb_set, 0 },
3931 { "even", s_even, 0 },
3932 { "ltorg", s_ltorg, 0 },
3933 { "pool", s_ltorg, 0 },
3934 { "syntax", s_syntax, 0 },
3935 { "cpu", s_arm_cpu, 0 },
3936 { "arch", s_arm_arch, 0 },
3937 { "object_arch", s_arm_object_arch, 0 },
3938 { "fpu", s_arm_fpu, 0 },
3939 #ifdef OBJ_ELF
3940 { "word", s_arm_elf_cons, 4 },
3941 { "long", s_arm_elf_cons, 4 },
3942 { "rel31", s_arm_rel31, 0 },
3943 { "fnstart", s_arm_unwind_fnstart, 0 },
3944 { "fnend", s_arm_unwind_fnend, 0 },
3945 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3946 { "personality", s_arm_unwind_personality, 0 },
3947 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3948 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3949 { "save", s_arm_unwind_save, 0 },
3950 { "vsave", s_arm_unwind_save, 1 },
3951 { "movsp", s_arm_unwind_movsp, 0 },
3952 { "pad", s_arm_unwind_pad, 0 },
3953 { "setfp", s_arm_unwind_setfp, 0 },
3954 { "unwind_raw", s_arm_unwind_raw, 0 },
3955 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3956 #else
3957 { "word", cons, 4},
3958
3959 /* These are used for dwarf. */
3960 {"2byte", cons, 2},
3961 {"4byte", cons, 4},
3962 {"8byte", cons, 8},
3963 /* These are used for dwarf2. */
3964 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3965 { "loc", dwarf2_directive_loc, 0 },
3966 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3967 #endif
3968 { "extend", float_cons, 'x' },
3969 { "ldouble", float_cons, 'x' },
3970 { "packed", float_cons, 'p' },
3971 #ifdef TE_PE
3972 {"secrel32", pe_directive_secrel, 0},
3973 #endif
3974 { 0, 0, 0 }
3975 };
3976 \f
3977 /* Parser functions used exclusively in instruction operands. */
3978
3979 /* Generic immediate-value read function for use in insn parsing.
3980 STR points to the beginning of the immediate (the leading #);
3981 VAL receives the value; if the value is outside [MIN, MAX]
3982 issue an error. PREFIX_OPT is true if the immediate prefix is
3983 optional. */
3984
3985 static int
3986 parse_immediate (char **str, int *val, int min, int max,
3987 bfd_boolean prefix_opt)
3988 {
3989 expressionS exp;
3990 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3991 if (exp.X_op != O_constant)
3992 {
3993 inst.error = _("constant expression required");
3994 return FAIL;
3995 }
3996
3997 if (exp.X_add_number < min || exp.X_add_number > max)
3998 {
3999 inst.error = _("immediate value out of range");
4000 return FAIL;
4001 }
4002
4003 *val = exp.X_add_number;
4004 return SUCCESS;
4005 }
4006
4007 /* Less-generic immediate-value read function with the possibility of loading a
4008 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4009 instructions. Puts the result directly in inst.operands[i]. */
4010
4011 static int
4012 parse_big_immediate (char **str, int i)
4013 {
4014 expressionS exp;
4015 char *ptr = *str;
4016
4017 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4018
4019 if (exp.X_op == O_constant)
4020 {
4021 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4022 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4023 O_constant. We have to be careful not to break compilation for
4024 32-bit X_add_number, though. */
4025 if ((exp.X_add_number & ~0xffffffffl) != 0)
4026 {
4027 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4028 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4029 inst.operands[i].regisimm = 1;
4030 }
4031 }
4032 else if (exp.X_op == O_big
4033 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4034 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4035 {
4036 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4037 /* Bignums have their least significant bits in
4038 generic_bignum[0]. Make sure we put 32 bits in imm and
4039 32 bits in reg, in a (hopefully) portable way. */
4040 assert (parts != 0);
4041 inst.operands[i].imm = 0;
4042 for (j = 0; j < parts; j++, idx++)
4043 inst.operands[i].imm |= generic_bignum[idx]
4044 << (LITTLENUM_NUMBER_OF_BITS * j);
4045 inst.operands[i].reg = 0;
4046 for (j = 0; j < parts; j++, idx++)
4047 inst.operands[i].reg |= generic_bignum[idx]
4048 << (LITTLENUM_NUMBER_OF_BITS * j);
4049 inst.operands[i].regisimm = 1;
4050 }
4051 else
4052 return FAIL;
4053
4054 *str = ptr;
4055
4056 return SUCCESS;
4057 }
4058
4059 /* Returns the pseudo-register number of an FPA immediate constant,
4060 or FAIL if there isn't a valid constant here. */
4061
4062 static int
4063 parse_fpa_immediate (char ** str)
4064 {
4065 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4066 char * save_in;
4067 expressionS exp;
4068 int i;
4069 int j;
4070
4071 /* First try and match exact strings, this is to guarantee
4072 that some formats will work even for cross assembly. */
4073
4074 for (i = 0; fp_const[i]; i++)
4075 {
4076 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4077 {
4078 char *start = *str;
4079
4080 *str += strlen (fp_const[i]);
4081 if (is_end_of_line[(unsigned char) **str])
4082 return i + 8;
4083 *str = start;
4084 }
4085 }
4086
4087 /* Just because we didn't get a match doesn't mean that the constant
4088 isn't valid, just that it is in a format that we don't
4089 automatically recognize. Try parsing it with the standard
4090 expression routines. */
4091
4092 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4093
4094 /* Look for a raw floating point number. */
4095 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4096 && is_end_of_line[(unsigned char) *save_in])
4097 {
4098 for (i = 0; i < NUM_FLOAT_VALS; i++)
4099 {
4100 for (j = 0; j < MAX_LITTLENUMS; j++)
4101 {
4102 if (words[j] != fp_values[i][j])
4103 break;
4104 }
4105
4106 if (j == MAX_LITTLENUMS)
4107 {
4108 *str = save_in;
4109 return i + 8;
4110 }
4111 }
4112 }
4113
4114 /* Try and parse a more complex expression, this will probably fail
4115 unless the code uses a floating point prefix (eg "0f"). */
4116 save_in = input_line_pointer;
4117 input_line_pointer = *str;
4118 if (expression (&exp) == absolute_section
4119 && exp.X_op == O_big
4120 && exp.X_add_number < 0)
4121 {
4122 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4123 Ditto for 15. */
4124 if (gen_to_words (words, 5, (long) 15) == 0)
4125 {
4126 for (i = 0; i < NUM_FLOAT_VALS; i++)
4127 {
4128 for (j = 0; j < MAX_LITTLENUMS; j++)
4129 {
4130 if (words[j] != fp_values[i][j])
4131 break;
4132 }
4133
4134 if (j == MAX_LITTLENUMS)
4135 {
4136 *str = input_line_pointer;
4137 input_line_pointer = save_in;
4138 return i + 8;
4139 }
4140 }
4141 }
4142 }
4143
4144 *str = input_line_pointer;
4145 input_line_pointer = save_in;
4146 inst.error = _("invalid FPA immediate expression");
4147 return FAIL;
4148 }
4149
4150 /* Returns 1 if a number has "quarter-precision" float format
4151 0baBbbbbbc defgh000 00000000 00000000. */
4152
4153 static int
4154 is_quarter_float (unsigned imm)
4155 {
4156 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4157 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4158 }
4159
4160 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4161 0baBbbbbbc defgh000 00000000 00000000.
4162 The zero and minus-zero cases need special handling, since they can't be
4163 encoded in the "quarter-precision" float format, but can nonetheless be
4164 loaded as integer constants. */
4165
4166 static unsigned
4167 parse_qfloat_immediate (char **ccp, int *immed)
4168 {
4169 char *str = *ccp;
4170 char *fpnum;
4171 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4172 int found_fpchar = 0;
4173
4174 skip_past_char (&str, '#');
4175
4176 /* We must not accidentally parse an integer as a floating-point number. Make
4177 sure that the value we parse is not an integer by checking for special
4178 characters '.' or 'e'.
4179 FIXME: This is a horrible hack, but doing better is tricky because type
4180 information isn't in a very usable state at parse time. */
4181 fpnum = str;
4182 skip_whitespace (fpnum);
4183
4184 if (strncmp (fpnum, "0x", 2) == 0)
4185 return FAIL;
4186 else
4187 {
4188 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4189 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4190 {
4191 found_fpchar = 1;
4192 break;
4193 }
4194
4195 if (!found_fpchar)
4196 return FAIL;
4197 }
4198
4199 if ((str = atof_ieee (str, 's', words)) != NULL)
4200 {
4201 unsigned fpword = 0;
4202 int i;
4203
4204 /* Our FP word must be 32 bits (single-precision FP). */
4205 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4206 {
4207 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4208 fpword |= words[i];
4209 }
4210
4211 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4212 *immed = fpword;
4213 else
4214 return FAIL;
4215
4216 *ccp = str;
4217
4218 return SUCCESS;
4219 }
4220
4221 return FAIL;
4222 }
4223
4224 /* Shift operands. */
4225 enum shift_kind
4226 {
4227 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4228 };
4229
4230 struct asm_shift_name
4231 {
4232 const char *name;
4233 enum shift_kind kind;
4234 };
4235
4236 /* Third argument to parse_shift. */
4237 enum parse_shift_mode
4238 {
4239 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4240 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4241 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4242 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4243 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4244 };
4245
4246 /* Parse a <shift> specifier on an ARM data processing instruction.
4247 This has three forms:
4248
4249 (LSL|LSR|ASL|ASR|ROR) Rs
4250 (LSL|LSR|ASL|ASR|ROR) #imm
4251 RRX
4252
4253 Note that ASL is assimilated to LSL in the instruction encoding, and
4254 RRX to ROR #0 (which cannot be written as such). */
4255
4256 static int
4257 parse_shift (char **str, int i, enum parse_shift_mode mode)
4258 {
4259 const struct asm_shift_name *shift_name;
4260 enum shift_kind shift;
4261 char *s = *str;
4262 char *p = s;
4263 int reg;
4264
4265 for (p = *str; ISALPHA (*p); p++)
4266 ;
4267
4268 if (p == *str)
4269 {
4270 inst.error = _("shift expression expected");
4271 return FAIL;
4272 }
4273
4274 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4275
4276 if (shift_name == NULL)
4277 {
4278 inst.error = _("shift expression expected");
4279 return FAIL;
4280 }
4281
4282 shift = shift_name->kind;
4283
4284 switch (mode)
4285 {
4286 case NO_SHIFT_RESTRICT:
4287 case SHIFT_IMMEDIATE: break;
4288
4289 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4290 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4291 {
4292 inst.error = _("'LSL' or 'ASR' required");
4293 return FAIL;
4294 }
4295 break;
4296
4297 case SHIFT_LSL_IMMEDIATE:
4298 if (shift != SHIFT_LSL)
4299 {
4300 inst.error = _("'LSL' required");
4301 return FAIL;
4302 }
4303 break;
4304
4305 case SHIFT_ASR_IMMEDIATE:
4306 if (shift != SHIFT_ASR)
4307 {
4308 inst.error = _("'ASR' required");
4309 return FAIL;
4310 }
4311 break;
4312
4313 default: abort ();
4314 }
4315
4316 if (shift != SHIFT_RRX)
4317 {
4318 /* Whitespace can appear here if the next thing is a bare digit. */
4319 skip_whitespace (p);
4320
4321 if (mode == NO_SHIFT_RESTRICT
4322 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4323 {
4324 inst.operands[i].imm = reg;
4325 inst.operands[i].immisreg = 1;
4326 }
4327 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4328 return FAIL;
4329 }
4330 inst.operands[i].shift_kind = shift;
4331 inst.operands[i].shifted = 1;
4332 *str = p;
4333 return SUCCESS;
4334 }
4335
4336 /* Parse a <shifter_operand> for an ARM data processing instruction:
4337
4338 #<immediate>
4339 #<immediate>, <rotate>
4340 <Rm>
4341 <Rm>, <shift>
4342
4343 where <shift> is defined by parse_shift above, and <rotate> is a
4344 multiple of 2 between 0 and 30. Validation of immediate operands
4345 is deferred to md_apply_fix. */
4346
4347 static int
4348 parse_shifter_operand (char **str, int i)
4349 {
4350 int value;
4351 expressionS expr;
4352
4353 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4354 {
4355 inst.operands[i].reg = value;
4356 inst.operands[i].isreg = 1;
4357
4358 /* parse_shift will override this if appropriate */
4359 inst.reloc.exp.X_op = O_constant;
4360 inst.reloc.exp.X_add_number = 0;
4361
4362 if (skip_past_comma (str) == FAIL)
4363 return SUCCESS;
4364
4365 /* Shift operation on register. */
4366 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4367 }
4368
4369 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4370 return FAIL;
4371
4372 if (skip_past_comma (str) == SUCCESS)
4373 {
4374 /* #x, y -- ie explicit rotation by Y. */
4375 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4376 return FAIL;
4377
4378 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4379 {
4380 inst.error = _("constant expression expected");
4381 return FAIL;
4382 }
4383
4384 value = expr.X_add_number;
4385 if (value < 0 || value > 30 || value % 2 != 0)
4386 {
4387 inst.error = _("invalid rotation");
4388 return FAIL;
4389 }
4390 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4391 {
4392 inst.error = _("invalid constant");
4393 return FAIL;
4394 }
4395
4396 /* Convert to decoded value. md_apply_fix will put it back. */
4397 inst.reloc.exp.X_add_number
4398 = (((inst.reloc.exp.X_add_number << (32 - value))
4399 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4400 }
4401
4402 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4403 inst.reloc.pc_rel = 0;
4404 return SUCCESS;
4405 }
4406
4407 /* Group relocation information. Each entry in the table contains the
4408 textual name of the relocation as may appear in assembler source
4409 and must end with a colon.
4410 Along with this textual name are the relocation codes to be used if
4411 the corresponding instruction is an ALU instruction (ADD or SUB only),
4412 an LDR, an LDRS, or an LDC. */
4413
4414 struct group_reloc_table_entry
4415 {
4416 const char *name;
4417 int alu_code;
4418 int ldr_code;
4419 int ldrs_code;
4420 int ldc_code;
4421 };
4422
4423 typedef enum
4424 {
4425 /* Varieties of non-ALU group relocation. */
4426
4427 GROUP_LDR,
4428 GROUP_LDRS,
4429 GROUP_LDC
4430 } group_reloc_type;
4431
4432 static struct group_reloc_table_entry group_reloc_table[] =
4433 { /* Program counter relative: */
4434 { "pc_g0_nc",
4435 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4436 0, /* LDR */
4437 0, /* LDRS */
4438 0 }, /* LDC */
4439 { "pc_g0",
4440 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4441 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4442 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4443 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4444 { "pc_g1_nc",
4445 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4446 0, /* LDR */
4447 0, /* LDRS */
4448 0 }, /* LDC */
4449 { "pc_g1",
4450 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4451 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4452 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4453 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4454 { "pc_g2",
4455 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4456 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4457 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4458 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4459 /* Section base relative */
4460 { "sb_g0_nc",
4461 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4462 0, /* LDR */
4463 0, /* LDRS */
4464 0 }, /* LDC */
4465 { "sb_g0",
4466 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4467 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4468 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4469 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4470 { "sb_g1_nc",
4471 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4472 0, /* LDR */
4473 0, /* LDRS */
4474 0 }, /* LDC */
4475 { "sb_g1",
4476 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4477 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4478 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4479 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4480 { "sb_g2",
4481 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4482 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4483 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4484 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4485
4486 /* Given the address of a pointer pointing to the textual name of a group
4487 relocation as may appear in assembler source, attempt to find its details
4488 in group_reloc_table. The pointer will be updated to the character after
4489 the trailing colon. On failure, FAIL will be returned; SUCCESS
4490 otherwise. On success, *entry will be updated to point at the relevant
4491 group_reloc_table entry. */
4492
4493 static int
4494 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4495 {
4496 unsigned int i;
4497 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4498 {
4499 int length = strlen (group_reloc_table[i].name);
4500
4501 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
4502 && (*str)[length] == ':')
4503 {
4504 *out = &group_reloc_table[i];
4505 *str += (length + 1);
4506 return SUCCESS;
4507 }
4508 }
4509
4510 return FAIL;
4511 }
4512
4513 /* Parse a <shifter_operand> for an ARM data processing instruction
4514 (as for parse_shifter_operand) where group relocations are allowed:
4515
4516 #<immediate>
4517 #<immediate>, <rotate>
4518 #:<group_reloc>:<expression>
4519 <Rm>
4520 <Rm>, <shift>
4521
4522 where <group_reloc> is one of the strings defined in group_reloc_table.
4523 The hashes are optional.
4524
4525 Everything else is as for parse_shifter_operand. */
4526
4527 static parse_operand_result
4528 parse_shifter_operand_group_reloc (char **str, int i)
4529 {
4530 /* Determine if we have the sequence of characters #: or just :
4531 coming next. If we do, then we check for a group relocation.
4532 If we don't, punt the whole lot to parse_shifter_operand. */
4533
4534 if (((*str)[0] == '#' && (*str)[1] == ':')
4535 || (*str)[0] == ':')
4536 {
4537 struct group_reloc_table_entry *entry;
4538
4539 if ((*str)[0] == '#')
4540 (*str) += 2;
4541 else
4542 (*str)++;
4543
4544 /* Try to parse a group relocation. Anything else is an error. */
4545 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4546 {
4547 inst.error = _("unknown group relocation");
4548 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4549 }
4550
4551 /* We now have the group relocation table entry corresponding to
4552 the name in the assembler source. Next, we parse the expression. */
4553 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4554 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4555
4556 /* Record the relocation type (always the ALU variant here). */
4557 inst.reloc.type = entry->alu_code;
4558 assert (inst.reloc.type != 0);
4559
4560 return PARSE_OPERAND_SUCCESS;
4561 }
4562 else
4563 return parse_shifter_operand (str, i) == SUCCESS
4564 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4565
4566 /* Never reached. */
4567 }
4568
4569 /* Parse all forms of an ARM address expression. Information is written
4570 to inst.operands[i] and/or inst.reloc.
4571
4572 Preindexed addressing (.preind=1):
4573
4574 [Rn, #offset] .reg=Rn .reloc.exp=offset
4575 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4576 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4577 .shift_kind=shift .reloc.exp=shift_imm
4578
4579 These three may have a trailing ! which causes .writeback to be set also.
4580
4581 Postindexed addressing (.postind=1, .writeback=1):
4582
4583 [Rn], #offset .reg=Rn .reloc.exp=offset
4584 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4585 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4586 .shift_kind=shift .reloc.exp=shift_imm
4587
4588 Unindexed addressing (.preind=0, .postind=0):
4589
4590 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4591
4592 Other:
4593
4594 [Rn]{!} shorthand for [Rn,#0]{!}
4595 =immediate .isreg=0 .reloc.exp=immediate
4596 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4597
4598 It is the caller's responsibility to check for addressing modes not
4599 supported by the instruction, and to set inst.reloc.type. */
4600
4601 static parse_operand_result
4602 parse_address_main (char **str, int i, int group_relocations,
4603 group_reloc_type group_type)
4604 {
4605 char *p = *str;
4606 int reg;
4607
4608 if (skip_past_char (&p, '[') == FAIL)
4609 {
4610 if (skip_past_char (&p, '=') == FAIL)
4611 {
4612 /* bare address - translate to PC-relative offset */
4613 inst.reloc.pc_rel = 1;
4614 inst.operands[i].reg = REG_PC;
4615 inst.operands[i].isreg = 1;
4616 inst.operands[i].preind = 1;
4617 }
4618 /* else a load-constant pseudo op, no special treatment needed here */
4619
4620 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4621 return PARSE_OPERAND_FAIL;
4622
4623 *str = p;
4624 return PARSE_OPERAND_SUCCESS;
4625 }
4626
4627 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4628 {
4629 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4630 return PARSE_OPERAND_FAIL;
4631 }
4632 inst.operands[i].reg = reg;
4633 inst.operands[i].isreg = 1;
4634
4635 if (skip_past_comma (&p) == SUCCESS)
4636 {
4637 inst.operands[i].preind = 1;
4638
4639 if (*p == '+') p++;
4640 else if (*p == '-') p++, inst.operands[i].negative = 1;
4641
4642 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4643 {
4644 inst.operands[i].imm = reg;
4645 inst.operands[i].immisreg = 1;
4646
4647 if (skip_past_comma (&p) == SUCCESS)
4648 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4649 return PARSE_OPERAND_FAIL;
4650 }
4651 else if (skip_past_char (&p, ':') == SUCCESS)
4652 {
4653 /* FIXME: '@' should be used here, but it's filtered out by generic
4654 code before we get to see it here. This may be subject to
4655 change. */
4656 expressionS exp;
4657 my_get_expression (&exp, &p, GE_NO_PREFIX);
4658 if (exp.X_op != O_constant)
4659 {
4660 inst.error = _("alignment must be constant");
4661 return PARSE_OPERAND_FAIL;
4662 }
4663 inst.operands[i].imm = exp.X_add_number << 8;
4664 inst.operands[i].immisalign = 1;
4665 /* Alignments are not pre-indexes. */
4666 inst.operands[i].preind = 0;
4667 }
4668 else
4669 {
4670 if (inst.operands[i].negative)
4671 {
4672 inst.operands[i].negative = 0;
4673 p--;
4674 }
4675
4676 if (group_relocations
4677 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4678 {
4679 struct group_reloc_table_entry *entry;
4680
4681 /* Skip over the #: or : sequence. */
4682 if (*p == '#')
4683 p += 2;
4684 else
4685 p++;
4686
4687 /* Try to parse a group relocation. Anything else is an
4688 error. */
4689 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4690 {
4691 inst.error = _("unknown group relocation");
4692 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4693 }
4694
4695 /* We now have the group relocation table entry corresponding to
4696 the name in the assembler source. Next, we parse the
4697 expression. */
4698 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4699 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4700
4701 /* Record the relocation type. */
4702 switch (group_type)
4703 {
4704 case GROUP_LDR:
4705 inst.reloc.type = entry->ldr_code;
4706 break;
4707
4708 case GROUP_LDRS:
4709 inst.reloc.type = entry->ldrs_code;
4710 break;
4711
4712 case GROUP_LDC:
4713 inst.reloc.type = entry->ldc_code;
4714 break;
4715
4716 default:
4717 assert (0);
4718 }
4719
4720 if (inst.reloc.type == 0)
4721 {
4722 inst.error = _("this group relocation is not allowed on this instruction");
4723 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4724 }
4725 }
4726 else
4727 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4728 return PARSE_OPERAND_FAIL;
4729 }
4730 }
4731
4732 if (skip_past_char (&p, ']') == FAIL)
4733 {
4734 inst.error = _("']' expected");
4735 return PARSE_OPERAND_FAIL;
4736 }
4737
4738 if (skip_past_char (&p, '!') == SUCCESS)
4739 inst.operands[i].writeback = 1;
4740
4741 else if (skip_past_comma (&p) == SUCCESS)
4742 {
4743 if (skip_past_char (&p, '{') == SUCCESS)
4744 {
4745 /* [Rn], {expr} - unindexed, with option */
4746 if (parse_immediate (&p, &inst.operands[i].imm,
4747 0, 255, TRUE) == FAIL)
4748 return PARSE_OPERAND_FAIL;
4749
4750 if (skip_past_char (&p, '}') == FAIL)
4751 {
4752 inst.error = _("'}' expected at end of 'option' field");
4753 return PARSE_OPERAND_FAIL;
4754 }
4755 if (inst.operands[i].preind)
4756 {
4757 inst.error = _("cannot combine index with option");
4758 return PARSE_OPERAND_FAIL;
4759 }
4760 *str = p;
4761 return PARSE_OPERAND_SUCCESS;
4762 }
4763 else
4764 {
4765 inst.operands[i].postind = 1;
4766 inst.operands[i].writeback = 1;
4767
4768 if (inst.operands[i].preind)
4769 {
4770 inst.error = _("cannot combine pre- and post-indexing");
4771 return PARSE_OPERAND_FAIL;
4772 }
4773
4774 if (*p == '+') p++;
4775 else if (*p == '-') p++, inst.operands[i].negative = 1;
4776
4777 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4778 {
4779 /* We might be using the immediate for alignment already. If we
4780 are, OR the register number into the low-order bits. */
4781 if (inst.operands[i].immisalign)
4782 inst.operands[i].imm |= reg;
4783 else
4784 inst.operands[i].imm = reg;
4785 inst.operands[i].immisreg = 1;
4786
4787 if (skip_past_comma (&p) == SUCCESS)
4788 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4789 return PARSE_OPERAND_FAIL;
4790 }
4791 else
4792 {
4793 if (inst.operands[i].negative)
4794 {
4795 inst.operands[i].negative = 0;
4796 p--;
4797 }
4798 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4799 return PARSE_OPERAND_FAIL;
4800 }
4801 }
4802 }
4803
4804 /* If at this point neither .preind nor .postind is set, we have a
4805 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4806 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4807 {
4808 inst.operands[i].preind = 1;
4809 inst.reloc.exp.X_op = O_constant;
4810 inst.reloc.exp.X_add_number = 0;
4811 }
4812 *str = p;
4813 return PARSE_OPERAND_SUCCESS;
4814 }
4815
4816 static int
4817 parse_address (char **str, int i)
4818 {
4819 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4820 ? SUCCESS : FAIL;
4821 }
4822
4823 static parse_operand_result
4824 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4825 {
4826 return parse_address_main (str, i, 1, type);
4827 }
4828
4829 /* Parse an operand for a MOVW or MOVT instruction. */
4830 static int
4831 parse_half (char **str)
4832 {
4833 char * p;
4834
4835 p = *str;
4836 skip_past_char (&p, '#');
4837 if (strncasecmp (p, ":lower16:", 9) == 0)
4838 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4839 else if (strncasecmp (p, ":upper16:", 9) == 0)
4840 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4841
4842 if (inst.reloc.type != BFD_RELOC_UNUSED)
4843 {
4844 p += 9;
4845 skip_whitespace (p);
4846 }
4847
4848 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4849 return FAIL;
4850
4851 if (inst.reloc.type == BFD_RELOC_UNUSED)
4852 {
4853 if (inst.reloc.exp.X_op != O_constant)
4854 {
4855 inst.error = _("constant expression expected");
4856 return FAIL;
4857 }
4858 if (inst.reloc.exp.X_add_number < 0
4859 || inst.reloc.exp.X_add_number > 0xffff)
4860 {
4861 inst.error = _("immediate value out of range");
4862 return FAIL;
4863 }
4864 }
4865 *str = p;
4866 return SUCCESS;
4867 }
4868
4869 /* Miscellaneous. */
4870
4871 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4872 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4873 static int
4874 parse_psr (char **str)
4875 {
4876 char *p;
4877 unsigned long psr_field;
4878 const struct asm_psr *psr;
4879 char *start;
4880
4881 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4882 feature for ease of use and backwards compatibility. */
4883 p = *str;
4884 if (strncasecmp (p, "SPSR", 4) == 0)
4885 psr_field = SPSR_BIT;
4886 else if (strncasecmp (p, "CPSR", 4) == 0)
4887 psr_field = 0;
4888 else
4889 {
4890 start = p;
4891 do
4892 p++;
4893 while (ISALNUM (*p) || *p == '_');
4894
4895 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4896 if (!psr)
4897 return FAIL;
4898
4899 *str = p;
4900 return psr->field;
4901 }
4902
4903 p += 4;
4904 if (*p == '_')
4905 {
4906 /* A suffix follows. */
4907 p++;
4908 start = p;
4909
4910 do
4911 p++;
4912 while (ISALNUM (*p) || *p == '_');
4913
4914 psr = hash_find_n (arm_psr_hsh, start, p - start);
4915 if (!psr)
4916 goto error;
4917
4918 psr_field |= psr->field;
4919 }
4920 else
4921 {
4922 if (ISALNUM (*p))
4923 goto error; /* Garbage after "[CS]PSR". */
4924
4925 psr_field |= (PSR_c | PSR_f);
4926 }
4927 *str = p;
4928 return psr_field;
4929
4930 error:
4931 inst.error = _("flag for {c}psr instruction expected");
4932 return FAIL;
4933 }
4934
4935 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4936 value suitable for splatting into the AIF field of the instruction. */
4937
4938 static int
4939 parse_cps_flags (char **str)
4940 {
4941 int val = 0;
4942 int saw_a_flag = 0;
4943 char *s = *str;
4944
4945 for (;;)
4946 switch (*s++)
4947 {
4948 case '\0': case ',':
4949 goto done;
4950
4951 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4952 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4953 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4954
4955 default:
4956 inst.error = _("unrecognized CPS flag");
4957 return FAIL;
4958 }
4959
4960 done:
4961 if (saw_a_flag == 0)
4962 {
4963 inst.error = _("missing CPS flags");
4964 return FAIL;
4965 }
4966
4967 *str = s - 1;
4968 return val;
4969 }
4970
4971 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4972 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4973
4974 static int
4975 parse_endian_specifier (char **str)
4976 {
4977 int little_endian;
4978 char *s = *str;
4979
4980 if (strncasecmp (s, "BE", 2))
4981 little_endian = 0;
4982 else if (strncasecmp (s, "LE", 2))
4983 little_endian = 1;
4984 else
4985 {
4986 inst.error = _("valid endian specifiers are be or le");
4987 return FAIL;
4988 }
4989
4990 if (ISALNUM (s[2]) || s[2] == '_')
4991 {
4992 inst.error = _("valid endian specifiers are be or le");
4993 return FAIL;
4994 }
4995
4996 *str = s + 2;
4997 return little_endian;
4998 }
4999
5000 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5001 value suitable for poking into the rotate field of an sxt or sxta
5002 instruction, or FAIL on error. */
5003
5004 static int
5005 parse_ror (char **str)
5006 {
5007 int rot;
5008 char *s = *str;
5009
5010 if (strncasecmp (s, "ROR", 3) == 0)
5011 s += 3;
5012 else
5013 {
5014 inst.error = _("missing rotation field after comma");
5015 return FAIL;
5016 }
5017
5018 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5019 return FAIL;
5020
5021 switch (rot)
5022 {
5023 case 0: *str = s; return 0x0;
5024 case 8: *str = s; return 0x1;
5025 case 16: *str = s; return 0x2;
5026 case 24: *str = s; return 0x3;
5027
5028 default:
5029 inst.error = _("rotation can only be 0, 8, 16, or 24");
5030 return FAIL;
5031 }
5032 }
5033
5034 /* Parse a conditional code (from conds[] below). The value returned is in the
5035 range 0 .. 14, or FAIL. */
5036 static int
5037 parse_cond (char **str)
5038 {
5039 char *p, *q;
5040 const struct asm_cond *c;
5041
5042 p = q = *str;
5043 while (ISALPHA (*q))
5044 q++;
5045
5046 c = hash_find_n (arm_cond_hsh, p, q - p);
5047 if (!c)
5048 {
5049 inst.error = _("condition required");
5050 return FAIL;
5051 }
5052
5053 *str = q;
5054 return c->value;
5055 }
5056
5057 /* Parse an option for a barrier instruction. Returns the encoding for the
5058 option, or FAIL. */
5059 static int
5060 parse_barrier (char **str)
5061 {
5062 char *p, *q;
5063 const struct asm_barrier_opt *o;
5064
5065 p = q = *str;
5066 while (ISALPHA (*q))
5067 q++;
5068
5069 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5070 if (!o)
5071 return FAIL;
5072
5073 *str = q;
5074 return o->value;
5075 }
5076
5077 /* Parse the operands of a table branch instruction. Similar to a memory
5078 operand. */
5079 static int
5080 parse_tb (char **str)
5081 {
5082 char * p = *str;
5083 int reg;
5084
5085 if (skip_past_char (&p, '[') == FAIL)
5086 {
5087 inst.error = _("'[' expected");
5088 return FAIL;
5089 }
5090
5091 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5092 {
5093 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5094 return FAIL;
5095 }
5096 inst.operands[0].reg = reg;
5097
5098 if (skip_past_comma (&p) == FAIL)
5099 {
5100 inst.error = _("',' expected");
5101 return FAIL;
5102 }
5103
5104 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5105 {
5106 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5107 return FAIL;
5108 }
5109 inst.operands[0].imm = reg;
5110
5111 if (skip_past_comma (&p) == SUCCESS)
5112 {
5113 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5114 return FAIL;
5115 if (inst.reloc.exp.X_add_number != 1)
5116 {
5117 inst.error = _("invalid shift");
5118 return FAIL;
5119 }
5120 inst.operands[0].shifted = 1;
5121 }
5122
5123 if (skip_past_char (&p, ']') == FAIL)
5124 {
5125 inst.error = _("']' expected");
5126 return FAIL;
5127 }
5128 *str = p;
5129 return SUCCESS;
5130 }
5131
5132 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5133 information on the types the operands can take and how they are encoded.
5134 Up to four operands may be read; this function handles setting the
5135 ".present" field for each read operand itself.
5136 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5137 else returns FAIL. */
5138
5139 static int
5140 parse_neon_mov (char **str, int *which_operand)
5141 {
5142 int i = *which_operand, val;
5143 enum arm_reg_type rtype;
5144 char *ptr = *str;
5145 struct neon_type_el optype;
5146
5147 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5148 {
5149 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5150 inst.operands[i].reg = val;
5151 inst.operands[i].isscalar = 1;
5152 inst.operands[i].vectype = optype;
5153 inst.operands[i++].present = 1;
5154
5155 if (skip_past_comma (&ptr) == FAIL)
5156 goto wanted_comma;
5157
5158 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5159 goto wanted_arm;
5160
5161 inst.operands[i].reg = val;
5162 inst.operands[i].isreg = 1;
5163 inst.operands[i].present = 1;
5164 }
5165 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5166 != FAIL)
5167 {
5168 /* Cases 0, 1, 2, 3, 5 (D only). */
5169 if (skip_past_comma (&ptr) == FAIL)
5170 goto wanted_comma;
5171
5172 inst.operands[i].reg = val;
5173 inst.operands[i].isreg = 1;
5174 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5175 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5176 inst.operands[i].isvec = 1;
5177 inst.operands[i].vectype = optype;
5178 inst.operands[i++].present = 1;
5179
5180 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5181 {
5182 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5183 Case 13: VMOV <Sd>, <Rm> */
5184 inst.operands[i].reg = val;
5185 inst.operands[i].isreg = 1;
5186 inst.operands[i].present = 1;
5187
5188 if (rtype == REG_TYPE_NQ)
5189 {
5190 first_error (_("can't use Neon quad register here"));
5191 return FAIL;
5192 }
5193 else if (rtype != REG_TYPE_VFS)
5194 {
5195 i++;
5196 if (skip_past_comma (&ptr) == FAIL)
5197 goto wanted_comma;
5198 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5199 goto wanted_arm;
5200 inst.operands[i].reg = val;
5201 inst.operands[i].isreg = 1;
5202 inst.operands[i].present = 1;
5203 }
5204 }
5205 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5206 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5207 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5208 Case 10: VMOV.F32 <Sd>, #<imm>
5209 Case 11: VMOV.F64 <Dd>, #<imm> */
5210 inst.operands[i].immisfloat = 1;
5211 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5212 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5213 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5214 ;
5215 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5216 &optype)) != FAIL)
5217 {
5218 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5219 Case 1: VMOV<c><q> <Dd>, <Dm>
5220 Case 8: VMOV.F32 <Sd>, <Sm>
5221 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5222
5223 inst.operands[i].reg = val;
5224 inst.operands[i].isreg = 1;
5225 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5226 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5227 inst.operands[i].isvec = 1;
5228 inst.operands[i].vectype = optype;
5229 inst.operands[i].present = 1;
5230
5231 if (skip_past_comma (&ptr) == SUCCESS)
5232 {
5233 /* Case 15. */
5234 i++;
5235
5236 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5237 goto wanted_arm;
5238
5239 inst.operands[i].reg = val;
5240 inst.operands[i].isreg = 1;
5241 inst.operands[i++].present = 1;
5242
5243 if (skip_past_comma (&ptr) == FAIL)
5244 goto wanted_comma;
5245
5246 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5247 goto wanted_arm;
5248
5249 inst.operands[i].reg = val;
5250 inst.operands[i].isreg = 1;
5251 inst.operands[i++].present = 1;
5252 }
5253 }
5254 else
5255 {
5256 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5257 return FAIL;
5258 }
5259 }
5260 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5261 {
5262 /* Cases 6, 7. */
5263 inst.operands[i].reg = val;
5264 inst.operands[i].isreg = 1;
5265 inst.operands[i++].present = 1;
5266
5267 if (skip_past_comma (&ptr) == FAIL)
5268 goto wanted_comma;
5269
5270 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5271 {
5272 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5273 inst.operands[i].reg = val;
5274 inst.operands[i].isscalar = 1;
5275 inst.operands[i].present = 1;
5276 inst.operands[i].vectype = optype;
5277 }
5278 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5279 {
5280 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5281 inst.operands[i].reg = val;
5282 inst.operands[i].isreg = 1;
5283 inst.operands[i++].present = 1;
5284
5285 if (skip_past_comma (&ptr) == FAIL)
5286 goto wanted_comma;
5287
5288 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5289 == FAIL)
5290 {
5291 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5292 return FAIL;
5293 }
5294
5295 inst.operands[i].reg = val;
5296 inst.operands[i].isreg = 1;
5297 inst.operands[i].isvec = 1;
5298 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5299 inst.operands[i].vectype = optype;
5300 inst.operands[i].present = 1;
5301
5302 if (rtype == REG_TYPE_VFS)
5303 {
5304 /* Case 14. */
5305 i++;
5306 if (skip_past_comma (&ptr) == FAIL)
5307 goto wanted_comma;
5308 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5309 &optype)) == FAIL)
5310 {
5311 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5312 return FAIL;
5313 }
5314 inst.operands[i].reg = val;
5315 inst.operands[i].isreg = 1;
5316 inst.operands[i].isvec = 1;
5317 inst.operands[i].issingle = 1;
5318 inst.operands[i].vectype = optype;
5319 inst.operands[i].present = 1;
5320 }
5321 }
5322 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5323 != FAIL)
5324 {
5325 /* Case 13. */
5326 inst.operands[i].reg = val;
5327 inst.operands[i].isreg = 1;
5328 inst.operands[i].isvec = 1;
5329 inst.operands[i].issingle = 1;
5330 inst.operands[i].vectype = optype;
5331 inst.operands[i++].present = 1;
5332 }
5333 }
5334 else
5335 {
5336 first_error (_("parse error"));
5337 return FAIL;
5338 }
5339
5340 /* Successfully parsed the operands. Update args. */
5341 *which_operand = i;
5342 *str = ptr;
5343 return SUCCESS;
5344
5345 wanted_comma:
5346 first_error (_("expected comma"));
5347 return FAIL;
5348
5349 wanted_arm:
5350 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5351 return FAIL;
5352 }
5353
5354 /* Matcher codes for parse_operands. */
5355 enum operand_parse_code
5356 {
5357 OP_stop, /* end of line */
5358
5359 OP_RR, /* ARM register */
5360 OP_RRnpc, /* ARM register, not r15 */
5361 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5362 OP_RRw, /* ARM register, not r15, optional trailing ! */
5363 OP_RCP, /* Coprocessor number */
5364 OP_RCN, /* Coprocessor register */
5365 OP_RF, /* FPA register */
5366 OP_RVS, /* VFP single precision register */
5367 OP_RVD, /* VFP double precision register (0..15) */
5368 OP_RND, /* Neon double precision register (0..31) */
5369 OP_RNQ, /* Neon quad precision register */
5370 OP_RVSD, /* VFP single or double precision register */
5371 OP_RNDQ, /* Neon double or quad precision register */
5372 OP_RNSDQ, /* Neon single, double or quad precision register */
5373 OP_RNSC, /* Neon scalar D[X] */
5374 OP_RVC, /* VFP control register */
5375 OP_RMF, /* Maverick F register */
5376 OP_RMD, /* Maverick D register */
5377 OP_RMFX, /* Maverick FX register */
5378 OP_RMDX, /* Maverick DX register */
5379 OP_RMAX, /* Maverick AX register */
5380 OP_RMDS, /* Maverick DSPSC register */
5381 OP_RIWR, /* iWMMXt wR register */
5382 OP_RIWC, /* iWMMXt wC register */
5383 OP_RIWG, /* iWMMXt wCG register */
5384 OP_RXA, /* XScale accumulator register */
5385
5386 OP_REGLST, /* ARM register list */
5387 OP_VRSLST, /* VFP single-precision register list */
5388 OP_VRDLST, /* VFP double-precision register list */
5389 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5390 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5391 OP_NSTRLST, /* Neon element/structure list */
5392
5393 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5394 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5395 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5396 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5397 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5398 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5399 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5400 OP_VMOV, /* Neon VMOV operands. */
5401 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5402 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5403 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
5404
5405 OP_I0, /* immediate zero */
5406 OP_I7, /* immediate value 0 .. 7 */
5407 OP_I15, /* 0 .. 15 */
5408 OP_I16, /* 1 .. 16 */
5409 OP_I16z, /* 0 .. 16 */
5410 OP_I31, /* 0 .. 31 */
5411 OP_I31w, /* 0 .. 31, optional trailing ! */
5412 OP_I32, /* 1 .. 32 */
5413 OP_I32z, /* 0 .. 32 */
5414 OP_I63, /* 0 .. 63 */
5415 OP_I63s, /* -64 .. 63 */
5416 OP_I64, /* 1 .. 64 */
5417 OP_I64z, /* 0 .. 64 */
5418 OP_I255, /* 0 .. 255 */
5419
5420 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5421 OP_I7b, /* 0 .. 7 */
5422 OP_I15b, /* 0 .. 15 */
5423 OP_I31b, /* 0 .. 31 */
5424
5425 OP_SH, /* shifter operand */
5426 OP_SHG, /* shifter operand with possible group relocation */
5427 OP_ADDR, /* Memory address expression (any mode) */
5428 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5429 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5430 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5431 OP_EXP, /* arbitrary expression */
5432 OP_EXPi, /* same, with optional immediate prefix */
5433 OP_EXPr, /* same, with optional relocation suffix */
5434 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5435
5436 OP_CPSF, /* CPS flags */
5437 OP_ENDI, /* Endianness specifier */
5438 OP_PSR, /* CPSR/SPSR mask for msr */
5439 OP_COND, /* conditional code */
5440 OP_TB, /* Table branch. */
5441
5442 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5443 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5444
5445 OP_RRnpc_I0, /* ARM register or literal 0 */
5446 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5447 OP_RR_EXi, /* ARM register or expression with imm prefix */
5448 OP_RF_IF, /* FPA register or immediate */
5449 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5450 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5451
5452 /* Optional operands. */
5453 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5454 OP_oI31b, /* 0 .. 31 */
5455 OP_oI32b, /* 1 .. 32 */
5456 OP_oIffffb, /* 0 .. 65535 */
5457 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5458
5459 OP_oRR, /* ARM register */
5460 OP_oRRnpc, /* ARM register, not the PC */
5461 OP_oRRw, /* ARM register, not r15, optional trailing ! */
5462 OP_oRND, /* Optional Neon double precision register */
5463 OP_oRNQ, /* Optional Neon quad precision register */
5464 OP_oRNDQ, /* Optional Neon double or quad precision register */
5465 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5466 OP_oSHll, /* LSL immediate */
5467 OP_oSHar, /* ASR immediate */
5468 OP_oSHllar, /* LSL or ASR immediate */
5469 OP_oROR, /* ROR 0/8/16/24 */
5470 OP_oBARRIER, /* Option argument for a barrier instruction. */
5471
5472 OP_FIRST_OPTIONAL = OP_oI7b
5473 };
5474
5475 /* Generic instruction operand parser. This does no encoding and no
5476 semantic validation; it merely squirrels values away in the inst
5477 structure. Returns SUCCESS or FAIL depending on whether the
5478 specified grammar matched. */
5479 static int
5480 parse_operands (char *str, const unsigned char *pattern)
5481 {
5482 unsigned const char *upat = pattern;
5483 char *backtrack_pos = 0;
5484 const char *backtrack_error = 0;
5485 int i, val, backtrack_index = 0;
5486 enum arm_reg_type rtype;
5487 parse_operand_result result;
5488
5489 #define po_char_or_fail(chr) do { \
5490 if (skip_past_char (&str, chr) == FAIL) \
5491 goto bad_args; \
5492 } while (0)
5493
5494 #define po_reg_or_fail(regtype) do { \
5495 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5496 &inst.operands[i].vectype); \
5497 if (val == FAIL) \
5498 { \
5499 first_error (_(reg_expected_msgs[regtype])); \
5500 goto failure; \
5501 } \
5502 inst.operands[i].reg = val; \
5503 inst.operands[i].isreg = 1; \
5504 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5505 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5506 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5507 || rtype == REG_TYPE_VFD \
5508 || rtype == REG_TYPE_NQ); \
5509 } while (0)
5510
5511 #define po_reg_or_goto(regtype, label) do { \
5512 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5513 &inst.operands[i].vectype); \
5514 if (val == FAIL) \
5515 goto label; \
5516 \
5517 inst.operands[i].reg = val; \
5518 inst.operands[i].isreg = 1; \
5519 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5520 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5521 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5522 || rtype == REG_TYPE_VFD \
5523 || rtype == REG_TYPE_NQ); \
5524 } while (0)
5525
5526 #define po_imm_or_fail(min, max, popt) do { \
5527 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5528 goto failure; \
5529 inst.operands[i].imm = val; \
5530 } while (0)
5531
5532 #define po_scalar_or_goto(elsz, label) do { \
5533 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5534 if (val == FAIL) \
5535 goto label; \
5536 inst.operands[i].reg = val; \
5537 inst.operands[i].isscalar = 1; \
5538 } while (0)
5539
5540 #define po_misc_or_fail(expr) do { \
5541 if (expr) \
5542 goto failure; \
5543 } while (0)
5544
5545 #define po_misc_or_fail_no_backtrack(expr) do { \
5546 result = expr; \
5547 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5548 backtrack_pos = 0; \
5549 if (result != PARSE_OPERAND_SUCCESS) \
5550 goto failure; \
5551 } while (0)
5552
5553 skip_whitespace (str);
5554
5555 for (i = 0; upat[i] != OP_stop; i++)
5556 {
5557 if (upat[i] >= OP_FIRST_OPTIONAL)
5558 {
5559 /* Remember where we are in case we need to backtrack. */
5560 assert (!backtrack_pos);
5561 backtrack_pos = str;
5562 backtrack_error = inst.error;
5563 backtrack_index = i;
5564 }
5565
5566 if (i > 0 && (i > 1 || inst.operands[0].present))
5567 po_char_or_fail (',');
5568
5569 switch (upat[i])
5570 {
5571 /* Registers */
5572 case OP_oRRnpc:
5573 case OP_RRnpc:
5574 case OP_oRR:
5575 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5576 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5577 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5578 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5579 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5580 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5581 case OP_oRND:
5582 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5583 case OP_RVC:
5584 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
5585 break;
5586 /* Also accept generic coprocessor regs for unknown registers. */
5587 coproc_reg:
5588 po_reg_or_fail (REG_TYPE_CN);
5589 break;
5590 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5591 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5592 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5593 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5594 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5595 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5596 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5597 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5598 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5599 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5600 case OP_oRNQ:
5601 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5602 case OP_oRNDQ:
5603 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5604 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5605 case OP_oRNSDQ:
5606 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5607
5608 /* Neon scalar. Using an element size of 8 means that some invalid
5609 scalars are accepted here, so deal with those in later code. */
5610 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5611
5612 /* WARNING: We can expand to two operands here. This has the potential
5613 to totally confuse the backtracking mechanism! It will be OK at
5614 least as long as we don't try to use optional args as well,
5615 though. */
5616 case OP_NILO:
5617 {
5618 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5619 inst.operands[i].present = 1;
5620 i++;
5621 skip_past_comma (&str);
5622 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5623 break;
5624 one_reg_only:
5625 /* Optional register operand was omitted. Unfortunately, it's in
5626 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5627 here (this is a bit grotty). */
5628 inst.operands[i] = inst.operands[i-1];
5629 inst.operands[i-1].present = 0;
5630 break;
5631 try_imm:
5632 /* There's a possibility of getting a 64-bit immediate here, so
5633 we need special handling. */
5634 if (parse_big_immediate (&str, i) == FAIL)
5635 {
5636 inst.error = _("immediate value is out of range");
5637 goto failure;
5638 }
5639 }
5640 break;
5641
5642 case OP_RNDQ_I0:
5643 {
5644 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5645 break;
5646 try_imm0:
5647 po_imm_or_fail (0, 0, TRUE);
5648 }
5649 break;
5650
5651 case OP_RVSD_I0:
5652 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5653 break;
5654
5655 case OP_RR_RNSC:
5656 {
5657 po_scalar_or_goto (8, try_rr);
5658 break;
5659 try_rr:
5660 po_reg_or_fail (REG_TYPE_RN);
5661 }
5662 break;
5663
5664 case OP_RNSDQ_RNSC:
5665 {
5666 po_scalar_or_goto (8, try_nsdq);
5667 break;
5668 try_nsdq:
5669 po_reg_or_fail (REG_TYPE_NSDQ);
5670 }
5671 break;
5672
5673 case OP_RNDQ_RNSC:
5674 {
5675 po_scalar_or_goto (8, try_ndq);
5676 break;
5677 try_ndq:
5678 po_reg_or_fail (REG_TYPE_NDQ);
5679 }
5680 break;
5681
5682 case OP_RND_RNSC:
5683 {
5684 po_scalar_or_goto (8, try_vfd);
5685 break;
5686 try_vfd:
5687 po_reg_or_fail (REG_TYPE_VFD);
5688 }
5689 break;
5690
5691 case OP_VMOV:
5692 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5693 not careful then bad things might happen. */
5694 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5695 break;
5696
5697 case OP_RNDQ_IMVNb:
5698 {
5699 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5700 break;
5701 try_mvnimm:
5702 /* There's a possibility of getting a 64-bit immediate here, so
5703 we need special handling. */
5704 if (parse_big_immediate (&str, i) == FAIL)
5705 {
5706 inst.error = _("immediate value is out of range");
5707 goto failure;
5708 }
5709 }
5710 break;
5711
5712 case OP_RNDQ_I63b:
5713 {
5714 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5715 break;
5716 try_shimm:
5717 po_imm_or_fail (0, 63, TRUE);
5718 }
5719 break;
5720
5721 case OP_RRnpcb:
5722 po_char_or_fail ('[');
5723 po_reg_or_fail (REG_TYPE_RN);
5724 po_char_or_fail (']');
5725 break;
5726
5727 case OP_RRw:
5728 case OP_oRRw:
5729 po_reg_or_fail (REG_TYPE_RN);
5730 if (skip_past_char (&str, '!') == SUCCESS)
5731 inst.operands[i].writeback = 1;
5732 break;
5733
5734 /* Immediates */
5735 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5736 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5737 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5738 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5739 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5740 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5741 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5742 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5743 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5744 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5745 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5746 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5747
5748 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5749 case OP_oI7b:
5750 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5751 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5752 case OP_oI31b:
5753 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5754 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5755 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5756
5757 /* Immediate variants */
5758 case OP_oI255c:
5759 po_char_or_fail ('{');
5760 po_imm_or_fail (0, 255, TRUE);
5761 po_char_or_fail ('}');
5762 break;
5763
5764 case OP_I31w:
5765 /* The expression parser chokes on a trailing !, so we have
5766 to find it first and zap it. */
5767 {
5768 char *s = str;
5769 while (*s && *s != ',')
5770 s++;
5771 if (s[-1] == '!')
5772 {
5773 s[-1] = '\0';
5774 inst.operands[i].writeback = 1;
5775 }
5776 po_imm_or_fail (0, 31, TRUE);
5777 if (str == s - 1)
5778 str = s;
5779 }
5780 break;
5781
5782 /* Expressions */
5783 case OP_EXPi: EXPi:
5784 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5785 GE_OPT_PREFIX));
5786 break;
5787
5788 case OP_EXP:
5789 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5790 GE_NO_PREFIX));
5791 break;
5792
5793 case OP_EXPr: EXPr:
5794 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5795 GE_NO_PREFIX));
5796 if (inst.reloc.exp.X_op == O_symbol)
5797 {
5798 val = parse_reloc (&str);
5799 if (val == -1)
5800 {
5801 inst.error = _("unrecognized relocation suffix");
5802 goto failure;
5803 }
5804 else if (val != BFD_RELOC_UNUSED)
5805 {
5806 inst.operands[i].imm = val;
5807 inst.operands[i].hasreloc = 1;
5808 }
5809 }
5810 break;
5811
5812 /* Operand for MOVW or MOVT. */
5813 case OP_HALF:
5814 po_misc_or_fail (parse_half (&str));
5815 break;
5816
5817 /* Register or expression */
5818 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5819 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5820
5821 /* Register or immediate */
5822 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5823 I0: po_imm_or_fail (0, 0, FALSE); break;
5824
5825 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5826 IF:
5827 if (!is_immediate_prefix (*str))
5828 goto bad_args;
5829 str++;
5830 val = parse_fpa_immediate (&str);
5831 if (val == FAIL)
5832 goto failure;
5833 /* FPA immediates are encoded as registers 8-15.
5834 parse_fpa_immediate has already applied the offset. */
5835 inst.operands[i].reg = val;
5836 inst.operands[i].isreg = 1;
5837 break;
5838
5839 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
5840 I32z: po_imm_or_fail (0, 32, FALSE); break;
5841
5842 /* Two kinds of register */
5843 case OP_RIWR_RIWC:
5844 {
5845 struct reg_entry *rege = arm_reg_parse_multi (&str);
5846 if (!rege
5847 || (rege->type != REG_TYPE_MMXWR
5848 && rege->type != REG_TYPE_MMXWC
5849 && rege->type != REG_TYPE_MMXWCG))
5850 {
5851 inst.error = _("iWMMXt data or control register expected");
5852 goto failure;
5853 }
5854 inst.operands[i].reg = rege->number;
5855 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5856 }
5857 break;
5858
5859 case OP_RIWC_RIWG:
5860 {
5861 struct reg_entry *rege = arm_reg_parse_multi (&str);
5862 if (!rege
5863 || (rege->type != REG_TYPE_MMXWC
5864 && rege->type != REG_TYPE_MMXWCG))
5865 {
5866 inst.error = _("iWMMXt control register expected");
5867 goto failure;
5868 }
5869 inst.operands[i].reg = rege->number;
5870 inst.operands[i].isreg = 1;
5871 }
5872 break;
5873
5874 /* Misc */
5875 case OP_CPSF: val = parse_cps_flags (&str); break;
5876 case OP_ENDI: val = parse_endian_specifier (&str); break;
5877 case OP_oROR: val = parse_ror (&str); break;
5878 case OP_PSR: val = parse_psr (&str); break;
5879 case OP_COND: val = parse_cond (&str); break;
5880 case OP_oBARRIER:val = parse_barrier (&str); break;
5881
5882 case OP_RVC_PSR:
5883 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5884 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5885 break;
5886 try_psr:
5887 val = parse_psr (&str);
5888 break;
5889
5890 case OP_APSR_RR:
5891 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5892 break;
5893 try_apsr:
5894 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5895 instruction). */
5896 if (strncasecmp (str, "APSR_", 5) == 0)
5897 {
5898 unsigned found = 0;
5899 str += 5;
5900 while (found < 15)
5901 switch (*str++)
5902 {
5903 case 'c': found = (found & 1) ? 16 : found | 1; break;
5904 case 'n': found = (found & 2) ? 16 : found | 2; break;
5905 case 'z': found = (found & 4) ? 16 : found | 4; break;
5906 case 'v': found = (found & 8) ? 16 : found | 8; break;
5907 default: found = 16;
5908 }
5909 if (found != 15)
5910 goto failure;
5911 inst.operands[i].isvec = 1;
5912 }
5913 else
5914 goto failure;
5915 break;
5916
5917 case OP_TB:
5918 po_misc_or_fail (parse_tb (&str));
5919 break;
5920
5921 /* Register lists */
5922 case OP_REGLST:
5923 val = parse_reg_list (&str);
5924 if (*str == '^')
5925 {
5926 inst.operands[1].writeback = 1;
5927 str++;
5928 }
5929 break;
5930
5931 case OP_VRSLST:
5932 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5933 break;
5934
5935 case OP_VRDLST:
5936 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5937 break;
5938
5939 case OP_VRSDLST:
5940 /* Allow Q registers too. */
5941 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5942 REGLIST_NEON_D);
5943 if (val == FAIL)
5944 {
5945 inst.error = NULL;
5946 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5947 REGLIST_VFP_S);
5948 inst.operands[i].issingle = 1;
5949 }
5950 break;
5951
5952 case OP_NRDLST:
5953 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5954 REGLIST_NEON_D);
5955 break;
5956
5957 case OP_NSTRLST:
5958 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5959 &inst.operands[i].vectype);
5960 break;
5961
5962 /* Addressing modes */
5963 case OP_ADDR:
5964 po_misc_or_fail (parse_address (&str, i));
5965 break;
5966
5967 case OP_ADDRGLDR:
5968 po_misc_or_fail_no_backtrack (
5969 parse_address_group_reloc (&str, i, GROUP_LDR));
5970 break;
5971
5972 case OP_ADDRGLDRS:
5973 po_misc_or_fail_no_backtrack (
5974 parse_address_group_reloc (&str, i, GROUP_LDRS));
5975 break;
5976
5977 case OP_ADDRGLDC:
5978 po_misc_or_fail_no_backtrack (
5979 parse_address_group_reloc (&str, i, GROUP_LDC));
5980 break;
5981
5982 case OP_SH:
5983 po_misc_or_fail (parse_shifter_operand (&str, i));
5984 break;
5985
5986 case OP_SHG:
5987 po_misc_or_fail_no_backtrack (
5988 parse_shifter_operand_group_reloc (&str, i));
5989 break;
5990
5991 case OP_oSHll:
5992 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5993 break;
5994
5995 case OP_oSHar:
5996 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5997 break;
5998
5999 case OP_oSHllar:
6000 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6001 break;
6002
6003 default:
6004 as_fatal (_("unhandled operand code %d"), upat[i]);
6005 }
6006
6007 /* Various value-based sanity checks and shared operations. We
6008 do not signal immediate failures for the register constraints;
6009 this allows a syntax error to take precedence. */
6010 switch (upat[i])
6011 {
6012 case OP_oRRnpc:
6013 case OP_RRnpc:
6014 case OP_RRnpcb:
6015 case OP_RRw:
6016 case OP_oRRw:
6017 case OP_RRnpc_I0:
6018 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6019 inst.error = BAD_PC;
6020 break;
6021
6022 case OP_CPSF:
6023 case OP_ENDI:
6024 case OP_oROR:
6025 case OP_PSR:
6026 case OP_RVC_PSR:
6027 case OP_COND:
6028 case OP_oBARRIER:
6029 case OP_REGLST:
6030 case OP_VRSLST:
6031 case OP_VRDLST:
6032 case OP_VRSDLST:
6033 case OP_NRDLST:
6034 case OP_NSTRLST:
6035 if (val == FAIL)
6036 goto failure;
6037 inst.operands[i].imm = val;
6038 break;
6039
6040 default:
6041 break;
6042 }
6043
6044 /* If we get here, this operand was successfully parsed. */
6045 inst.operands[i].present = 1;
6046 continue;
6047
6048 bad_args:
6049 inst.error = BAD_ARGS;
6050
6051 failure:
6052 if (!backtrack_pos)
6053 {
6054 /* The parse routine should already have set inst.error, but set a
6055 default here just in case. */
6056 if (!inst.error)
6057 inst.error = _("syntax error");
6058 return FAIL;
6059 }
6060
6061 /* Do not backtrack over a trailing optional argument that
6062 absorbed some text. We will only fail again, with the
6063 'garbage following instruction' error message, which is
6064 probably less helpful than the current one. */
6065 if (backtrack_index == i && backtrack_pos != str
6066 && upat[i+1] == OP_stop)
6067 {
6068 if (!inst.error)
6069 inst.error = _("syntax error");
6070 return FAIL;
6071 }
6072
6073 /* Try again, skipping the optional argument at backtrack_pos. */
6074 str = backtrack_pos;
6075 inst.error = backtrack_error;
6076 inst.operands[backtrack_index].present = 0;
6077 i = backtrack_index;
6078 backtrack_pos = 0;
6079 }
6080
6081 /* Check that we have parsed all the arguments. */
6082 if (*str != '\0' && !inst.error)
6083 inst.error = _("garbage following instruction");
6084
6085 return inst.error ? FAIL : SUCCESS;
6086 }
6087
6088 #undef po_char_or_fail
6089 #undef po_reg_or_fail
6090 #undef po_reg_or_goto
6091 #undef po_imm_or_fail
6092 #undef po_scalar_or_fail
6093 \f
6094 /* Shorthand macro for instruction encoding functions issuing errors. */
6095 #define constraint(expr, err) do { \
6096 if (expr) \
6097 { \
6098 inst.error = err; \
6099 return; \
6100 } \
6101 } while (0)
6102
6103 /* Functions for operand encoding. ARM, then Thumb. */
6104
6105 #define rotate_left(v, n) (v << n | v >> (32 - n))
6106
6107 /* If VAL can be encoded in the immediate field of an ARM instruction,
6108 return the encoded form. Otherwise, return FAIL. */
6109
6110 static unsigned int
6111 encode_arm_immediate (unsigned int val)
6112 {
6113 unsigned int a, i;
6114
6115 for (i = 0; i < 32; i += 2)
6116 if ((a = rotate_left (val, i)) <= 0xff)
6117 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6118
6119 return FAIL;
6120 }
6121
6122 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6123 return the encoded form. Otherwise, return FAIL. */
6124 static unsigned int
6125 encode_thumb32_immediate (unsigned int val)
6126 {
6127 unsigned int a, i;
6128
6129 if (val <= 0xff)
6130 return val;
6131
6132 for (i = 1; i <= 24; i++)
6133 {
6134 a = val >> i;
6135 if ((val & ~(0xff << i)) == 0)
6136 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6137 }
6138
6139 a = val & 0xff;
6140 if (val == ((a << 16) | a))
6141 return 0x100 | a;
6142 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6143 return 0x300 | a;
6144
6145 a = val & 0xff00;
6146 if (val == ((a << 16) | a))
6147 return 0x200 | (a >> 8);
6148
6149 return FAIL;
6150 }
6151 /* Encode a VFP SP or DP register number into inst.instruction. */
6152
6153 static void
6154 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6155 {
6156 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6157 && reg > 15)
6158 {
6159 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6160 {
6161 if (thumb_mode)
6162 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6163 fpu_vfp_ext_v3);
6164 else
6165 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6166 fpu_vfp_ext_v3);
6167 }
6168 else
6169 {
6170 first_error (_("D register out of range for selected VFP version"));
6171 return;
6172 }
6173 }
6174
6175 switch (pos)
6176 {
6177 case VFP_REG_Sd:
6178 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6179 break;
6180
6181 case VFP_REG_Sn:
6182 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6183 break;
6184
6185 case VFP_REG_Sm:
6186 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6187 break;
6188
6189 case VFP_REG_Dd:
6190 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6191 break;
6192
6193 case VFP_REG_Dn:
6194 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6195 break;
6196
6197 case VFP_REG_Dm:
6198 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6199 break;
6200
6201 default:
6202 abort ();
6203 }
6204 }
6205
6206 /* Encode a <shift> in an ARM-format instruction. The immediate,
6207 if any, is handled by md_apply_fix. */
6208 static void
6209 encode_arm_shift (int i)
6210 {
6211 if (inst.operands[i].shift_kind == SHIFT_RRX)
6212 inst.instruction |= SHIFT_ROR << 5;
6213 else
6214 {
6215 inst.instruction |= inst.operands[i].shift_kind << 5;
6216 if (inst.operands[i].immisreg)
6217 {
6218 inst.instruction |= SHIFT_BY_REG;
6219 inst.instruction |= inst.operands[i].imm << 8;
6220 }
6221 else
6222 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6223 }
6224 }
6225
6226 static void
6227 encode_arm_shifter_operand (int i)
6228 {
6229 if (inst.operands[i].isreg)
6230 {
6231 inst.instruction |= inst.operands[i].reg;
6232 encode_arm_shift (i);
6233 }
6234 else
6235 inst.instruction |= INST_IMMEDIATE;
6236 }
6237
6238 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6239 static void
6240 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6241 {
6242 assert (inst.operands[i].isreg);
6243 inst.instruction |= inst.operands[i].reg << 16;
6244
6245 if (inst.operands[i].preind)
6246 {
6247 if (is_t)
6248 {
6249 inst.error = _("instruction does not accept preindexed addressing");
6250 return;
6251 }
6252 inst.instruction |= PRE_INDEX;
6253 if (inst.operands[i].writeback)
6254 inst.instruction |= WRITE_BACK;
6255
6256 }
6257 else if (inst.operands[i].postind)
6258 {
6259 assert (inst.operands[i].writeback);
6260 if (is_t)
6261 inst.instruction |= WRITE_BACK;
6262 }
6263 else /* unindexed - only for coprocessor */
6264 {
6265 inst.error = _("instruction does not accept unindexed addressing");
6266 return;
6267 }
6268
6269 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6270 && (((inst.instruction & 0x000f0000) >> 16)
6271 == ((inst.instruction & 0x0000f000) >> 12)))
6272 as_warn ((inst.instruction & LOAD_BIT)
6273 ? _("destination register same as write-back base")
6274 : _("source register same as write-back base"));
6275 }
6276
6277 /* inst.operands[i] was set up by parse_address. Encode it into an
6278 ARM-format mode 2 load or store instruction. If is_t is true,
6279 reject forms that cannot be used with a T instruction (i.e. not
6280 post-indexed). */
6281 static void
6282 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6283 {
6284 encode_arm_addr_mode_common (i, is_t);
6285
6286 if (inst.operands[i].immisreg)
6287 {
6288 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6289 inst.instruction |= inst.operands[i].imm;
6290 if (!inst.operands[i].negative)
6291 inst.instruction |= INDEX_UP;
6292 if (inst.operands[i].shifted)
6293 {
6294 if (inst.operands[i].shift_kind == SHIFT_RRX)
6295 inst.instruction |= SHIFT_ROR << 5;
6296 else
6297 {
6298 inst.instruction |= inst.operands[i].shift_kind << 5;
6299 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6300 }
6301 }
6302 }
6303 else /* immediate offset in inst.reloc */
6304 {
6305 if (inst.reloc.type == BFD_RELOC_UNUSED)
6306 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6307 }
6308 }
6309
6310 /* inst.operands[i] was set up by parse_address. Encode it into an
6311 ARM-format mode 3 load or store instruction. Reject forms that
6312 cannot be used with such instructions. If is_t is true, reject
6313 forms that cannot be used with a T instruction (i.e. not
6314 post-indexed). */
6315 static void
6316 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6317 {
6318 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6319 {
6320 inst.error = _("instruction does not accept scaled register index");
6321 return;
6322 }
6323
6324 encode_arm_addr_mode_common (i, is_t);
6325
6326 if (inst.operands[i].immisreg)
6327 {
6328 inst.instruction |= inst.operands[i].imm;
6329 if (!inst.operands[i].negative)
6330 inst.instruction |= INDEX_UP;
6331 }
6332 else /* immediate offset in inst.reloc */
6333 {
6334 inst.instruction |= HWOFFSET_IMM;
6335 if (inst.reloc.type == BFD_RELOC_UNUSED)
6336 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6337 }
6338 }
6339
6340 /* inst.operands[i] was set up by parse_address. Encode it into an
6341 ARM-format instruction. Reject all forms which cannot be encoded
6342 into a coprocessor load/store instruction. If wb_ok is false,
6343 reject use of writeback; if unind_ok is false, reject use of
6344 unindexed addressing. If reloc_override is not 0, use it instead
6345 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6346 (in which case it is preserved). */
6347
6348 static int
6349 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6350 {
6351 inst.instruction |= inst.operands[i].reg << 16;
6352
6353 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6354
6355 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6356 {
6357 assert (!inst.operands[i].writeback);
6358 if (!unind_ok)
6359 {
6360 inst.error = _("instruction does not support unindexed addressing");
6361 return FAIL;
6362 }
6363 inst.instruction |= inst.operands[i].imm;
6364 inst.instruction |= INDEX_UP;
6365 return SUCCESS;
6366 }
6367
6368 if (inst.operands[i].preind)
6369 inst.instruction |= PRE_INDEX;
6370
6371 if (inst.operands[i].writeback)
6372 {
6373 if (inst.operands[i].reg == REG_PC)
6374 {
6375 inst.error = _("pc may not be used with write-back");
6376 return FAIL;
6377 }
6378 if (!wb_ok)
6379 {
6380 inst.error = _("instruction does not support writeback");
6381 return FAIL;
6382 }
6383 inst.instruction |= WRITE_BACK;
6384 }
6385
6386 if (reloc_override)
6387 inst.reloc.type = reloc_override;
6388 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6389 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6390 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6391 {
6392 if (thumb_mode)
6393 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6394 else
6395 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6396 }
6397
6398 return SUCCESS;
6399 }
6400
6401 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6402 Determine whether it can be performed with a move instruction; if
6403 it can, convert inst.instruction to that move instruction and
6404 return 1; if it can't, convert inst.instruction to a literal-pool
6405 load and return 0. If this is not a valid thing to do in the
6406 current context, set inst.error and return 1.
6407
6408 inst.operands[i] describes the destination register. */
6409
6410 static int
6411 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6412 {
6413 unsigned long tbit;
6414
6415 if (thumb_p)
6416 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6417 else
6418 tbit = LOAD_BIT;
6419
6420 if ((inst.instruction & tbit) == 0)
6421 {
6422 inst.error = _("invalid pseudo operation");
6423 return 1;
6424 }
6425 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6426 {
6427 inst.error = _("constant expression expected");
6428 return 1;
6429 }
6430 if (inst.reloc.exp.X_op == O_constant)
6431 {
6432 if (thumb_p)
6433 {
6434 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6435 {
6436 /* This can be done with a mov(1) instruction. */
6437 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6438 inst.instruction |= inst.reloc.exp.X_add_number;
6439 return 1;
6440 }
6441 }
6442 else
6443 {
6444 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6445 if (value != FAIL)
6446 {
6447 /* This can be done with a mov instruction. */
6448 inst.instruction &= LITERAL_MASK;
6449 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6450 inst.instruction |= value & 0xfff;
6451 return 1;
6452 }
6453
6454 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6455 if (value != FAIL)
6456 {
6457 /* This can be done with a mvn instruction. */
6458 inst.instruction &= LITERAL_MASK;
6459 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6460 inst.instruction |= value & 0xfff;
6461 return 1;
6462 }
6463 }
6464 }
6465
6466 if (add_to_lit_pool () == FAIL)
6467 {
6468 inst.error = _("literal pool insertion failed");
6469 return 1;
6470 }
6471 inst.operands[1].reg = REG_PC;
6472 inst.operands[1].isreg = 1;
6473 inst.operands[1].preind = 1;
6474 inst.reloc.pc_rel = 1;
6475 inst.reloc.type = (thumb_p
6476 ? BFD_RELOC_ARM_THUMB_OFFSET
6477 : (mode_3
6478 ? BFD_RELOC_ARM_HWLITERAL
6479 : BFD_RELOC_ARM_LITERAL));
6480 return 0;
6481 }
6482
6483 /* Functions for instruction encoding, sorted by sub-architecture.
6484 First some generics; their names are taken from the conventional
6485 bit positions for register arguments in ARM format instructions. */
6486
6487 static void
6488 do_noargs (void)
6489 {
6490 }
6491
6492 static void
6493 do_rd (void)
6494 {
6495 inst.instruction |= inst.operands[0].reg << 12;
6496 }
6497
6498 static void
6499 do_rd_rm (void)
6500 {
6501 inst.instruction |= inst.operands[0].reg << 12;
6502 inst.instruction |= inst.operands[1].reg;
6503 }
6504
6505 static void
6506 do_rd_rn (void)
6507 {
6508 inst.instruction |= inst.operands[0].reg << 12;
6509 inst.instruction |= inst.operands[1].reg << 16;
6510 }
6511
6512 static void
6513 do_rn_rd (void)
6514 {
6515 inst.instruction |= inst.operands[0].reg << 16;
6516 inst.instruction |= inst.operands[1].reg << 12;
6517 }
6518
6519 static void
6520 do_rd_rm_rn (void)
6521 {
6522 unsigned Rn = inst.operands[2].reg;
6523 /* Enforce restrictions on SWP instruction. */
6524 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6525 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6526 _("Rn must not overlap other operands"));
6527 inst.instruction |= inst.operands[0].reg << 12;
6528 inst.instruction |= inst.operands[1].reg;
6529 inst.instruction |= Rn << 16;
6530 }
6531
6532 static void
6533 do_rd_rn_rm (void)
6534 {
6535 inst.instruction |= inst.operands[0].reg << 12;
6536 inst.instruction |= inst.operands[1].reg << 16;
6537 inst.instruction |= inst.operands[2].reg;
6538 }
6539
6540 static void
6541 do_rm_rd_rn (void)
6542 {
6543 inst.instruction |= inst.operands[0].reg;
6544 inst.instruction |= inst.operands[1].reg << 12;
6545 inst.instruction |= inst.operands[2].reg << 16;
6546 }
6547
6548 static void
6549 do_imm0 (void)
6550 {
6551 inst.instruction |= inst.operands[0].imm;
6552 }
6553
6554 static void
6555 do_rd_cpaddr (void)
6556 {
6557 inst.instruction |= inst.operands[0].reg << 12;
6558 encode_arm_cp_address (1, TRUE, TRUE, 0);
6559 }
6560
6561 /* ARM instructions, in alphabetical order by function name (except
6562 that wrapper functions appear immediately after the function they
6563 wrap). */
6564
6565 /* This is a pseudo-op of the form "adr rd, label" to be converted
6566 into a relative address of the form "add rd, pc, #label-.-8". */
6567
6568 static void
6569 do_adr (void)
6570 {
6571 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6572
6573 /* Frag hacking will turn this into a sub instruction if the offset turns
6574 out to be negative. */
6575 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6576 inst.reloc.pc_rel = 1;
6577 inst.reloc.exp.X_add_number -= 8;
6578 }
6579
6580 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6581 into a relative address of the form:
6582 add rd, pc, #low(label-.-8)"
6583 add rd, rd, #high(label-.-8)" */
6584
6585 static void
6586 do_adrl (void)
6587 {
6588 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6589
6590 /* Frag hacking will turn this into a sub instruction if the offset turns
6591 out to be negative. */
6592 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6593 inst.reloc.pc_rel = 1;
6594 inst.size = INSN_SIZE * 2;
6595 inst.reloc.exp.X_add_number -= 8;
6596 }
6597
6598 static void
6599 do_arit (void)
6600 {
6601 if (!inst.operands[1].present)
6602 inst.operands[1].reg = inst.operands[0].reg;
6603 inst.instruction |= inst.operands[0].reg << 12;
6604 inst.instruction |= inst.operands[1].reg << 16;
6605 encode_arm_shifter_operand (2);
6606 }
6607
6608 static void
6609 do_barrier (void)
6610 {
6611 if (inst.operands[0].present)
6612 {
6613 constraint ((inst.instruction & 0xf0) != 0x40
6614 && inst.operands[0].imm != 0xf,
6615 _("bad barrier type"));
6616 inst.instruction |= inst.operands[0].imm;
6617 }
6618 else
6619 inst.instruction |= 0xf;
6620 }
6621
6622 static void
6623 do_bfc (void)
6624 {
6625 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6626 constraint (msb > 32, _("bit-field extends past end of register"));
6627 /* The instruction encoding stores the LSB and MSB,
6628 not the LSB and width. */
6629 inst.instruction |= inst.operands[0].reg << 12;
6630 inst.instruction |= inst.operands[1].imm << 7;
6631 inst.instruction |= (msb - 1) << 16;
6632 }
6633
6634 static void
6635 do_bfi (void)
6636 {
6637 unsigned int msb;
6638
6639 /* #0 in second position is alternative syntax for bfc, which is
6640 the same instruction but with REG_PC in the Rm field. */
6641 if (!inst.operands[1].isreg)
6642 inst.operands[1].reg = REG_PC;
6643
6644 msb = inst.operands[2].imm + inst.operands[3].imm;
6645 constraint (msb > 32, _("bit-field extends past end of register"));
6646 /* The instruction encoding stores the LSB and MSB,
6647 not the LSB and width. */
6648 inst.instruction |= inst.operands[0].reg << 12;
6649 inst.instruction |= inst.operands[1].reg;
6650 inst.instruction |= inst.operands[2].imm << 7;
6651 inst.instruction |= (msb - 1) << 16;
6652 }
6653
6654 static void
6655 do_bfx (void)
6656 {
6657 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6658 _("bit-field extends past end of register"));
6659 inst.instruction |= inst.operands[0].reg << 12;
6660 inst.instruction |= inst.operands[1].reg;
6661 inst.instruction |= inst.operands[2].imm << 7;
6662 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6663 }
6664
6665 /* ARM V5 breakpoint instruction (argument parse)
6666 BKPT <16 bit unsigned immediate>
6667 Instruction is not conditional.
6668 The bit pattern given in insns[] has the COND_ALWAYS condition,
6669 and it is an error if the caller tried to override that. */
6670
6671 static void
6672 do_bkpt (void)
6673 {
6674 /* Top 12 of 16 bits to bits 19:8. */
6675 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6676
6677 /* Bottom 4 of 16 bits to bits 3:0. */
6678 inst.instruction |= inst.operands[0].imm & 0xf;
6679 }
6680
6681 static void
6682 encode_branch (int default_reloc)
6683 {
6684 if (inst.operands[0].hasreloc)
6685 {
6686 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6687 _("the only suffix valid here is '(plt)'"));
6688 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6689 }
6690 else
6691 {
6692 inst.reloc.type = default_reloc;
6693 }
6694 inst.reloc.pc_rel = 1;
6695 }
6696
6697 static void
6698 do_branch (void)
6699 {
6700 #ifdef OBJ_ELF
6701 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6702 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6703 else
6704 #endif
6705 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6706 }
6707
6708 static void
6709 do_bl (void)
6710 {
6711 #ifdef OBJ_ELF
6712 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6713 {
6714 if (inst.cond == COND_ALWAYS)
6715 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6716 else
6717 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6718 }
6719 else
6720 #endif
6721 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6722 }
6723
6724 /* ARM V5 branch-link-exchange instruction (argument parse)
6725 BLX <target_addr> ie BLX(1)
6726 BLX{<condition>} <Rm> ie BLX(2)
6727 Unfortunately, there are two different opcodes for this mnemonic.
6728 So, the insns[].value is not used, and the code here zaps values
6729 into inst.instruction.
6730 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6731
6732 static void
6733 do_blx (void)
6734 {
6735 if (inst.operands[0].isreg)
6736 {
6737 /* Arg is a register; the opcode provided by insns[] is correct.
6738 It is not illegal to do "blx pc", just useless. */
6739 if (inst.operands[0].reg == REG_PC)
6740 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6741
6742 inst.instruction |= inst.operands[0].reg;
6743 }
6744 else
6745 {
6746 /* Arg is an address; this instruction cannot be executed
6747 conditionally, and the opcode must be adjusted. */
6748 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6749 inst.instruction = 0xfa000000;
6750 #ifdef OBJ_ELF
6751 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6752 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6753 else
6754 #endif
6755 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6756 }
6757 }
6758
6759 static void
6760 do_bx (void)
6761 {
6762 if (inst.operands[0].reg == REG_PC)
6763 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6764
6765 inst.instruction |= inst.operands[0].reg;
6766 }
6767
6768
6769 /* ARM v5TEJ. Jump to Jazelle code. */
6770
6771 static void
6772 do_bxj (void)
6773 {
6774 if (inst.operands[0].reg == REG_PC)
6775 as_tsktsk (_("use of r15 in bxj is not really useful"));
6776
6777 inst.instruction |= inst.operands[0].reg;
6778 }
6779
6780 /* Co-processor data operation:
6781 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6782 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6783 static void
6784 do_cdp (void)
6785 {
6786 inst.instruction |= inst.operands[0].reg << 8;
6787 inst.instruction |= inst.operands[1].imm << 20;
6788 inst.instruction |= inst.operands[2].reg << 12;
6789 inst.instruction |= inst.operands[3].reg << 16;
6790 inst.instruction |= inst.operands[4].reg;
6791 inst.instruction |= inst.operands[5].imm << 5;
6792 }
6793
6794 static void
6795 do_cmp (void)
6796 {
6797 inst.instruction |= inst.operands[0].reg << 16;
6798 encode_arm_shifter_operand (1);
6799 }
6800
6801 /* Transfer between coprocessor and ARM registers.
6802 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6803 MRC2
6804 MCR{cond}
6805 MCR2
6806
6807 No special properties. */
6808
6809 static void
6810 do_co_reg (void)
6811 {
6812 inst.instruction |= inst.operands[0].reg << 8;
6813 inst.instruction |= inst.operands[1].imm << 21;
6814 inst.instruction |= inst.operands[2].reg << 12;
6815 inst.instruction |= inst.operands[3].reg << 16;
6816 inst.instruction |= inst.operands[4].reg;
6817 inst.instruction |= inst.operands[5].imm << 5;
6818 }
6819
6820 /* Transfer between coprocessor register and pair of ARM registers.
6821 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6822 MCRR2
6823 MRRC{cond}
6824 MRRC2
6825
6826 Two XScale instructions are special cases of these:
6827
6828 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6829 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6830
6831 Result unpredictable if Rd or Rn is R15. */
6832
6833 static void
6834 do_co_reg2c (void)
6835 {
6836 inst.instruction |= inst.operands[0].reg << 8;
6837 inst.instruction |= inst.operands[1].imm << 4;
6838 inst.instruction |= inst.operands[2].reg << 12;
6839 inst.instruction |= inst.operands[3].reg << 16;
6840 inst.instruction |= inst.operands[4].reg;
6841 }
6842
6843 static void
6844 do_cpsi (void)
6845 {
6846 inst.instruction |= inst.operands[0].imm << 6;
6847 if (inst.operands[1].present)
6848 {
6849 inst.instruction |= CPSI_MMOD;
6850 inst.instruction |= inst.operands[1].imm;
6851 }
6852 }
6853
6854 static void
6855 do_dbg (void)
6856 {
6857 inst.instruction |= inst.operands[0].imm;
6858 }
6859
6860 static void
6861 do_it (void)
6862 {
6863 /* There is no IT instruction in ARM mode. We
6864 process it but do not generate code for it. */
6865 inst.size = 0;
6866 }
6867
6868 static void
6869 do_ldmstm (void)
6870 {
6871 int base_reg = inst.operands[0].reg;
6872 int range = inst.operands[1].imm;
6873
6874 inst.instruction |= base_reg << 16;
6875 inst.instruction |= range;
6876
6877 if (inst.operands[1].writeback)
6878 inst.instruction |= LDM_TYPE_2_OR_3;
6879
6880 if (inst.operands[0].writeback)
6881 {
6882 inst.instruction |= WRITE_BACK;
6883 /* Check for unpredictable uses of writeback. */
6884 if (inst.instruction & LOAD_BIT)
6885 {
6886 /* Not allowed in LDM type 2. */
6887 if ((inst.instruction & LDM_TYPE_2_OR_3)
6888 && ((range & (1 << REG_PC)) == 0))
6889 as_warn (_("writeback of base register is UNPREDICTABLE"));
6890 /* Only allowed if base reg not in list for other types. */
6891 else if (range & (1 << base_reg))
6892 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6893 }
6894 else /* STM. */
6895 {
6896 /* Not allowed for type 2. */
6897 if (inst.instruction & LDM_TYPE_2_OR_3)
6898 as_warn (_("writeback of base register is UNPREDICTABLE"));
6899 /* Only allowed if base reg not in list, or first in list. */
6900 else if ((range & (1 << base_reg))
6901 && (range & ((1 << base_reg) - 1)))
6902 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6903 }
6904 }
6905 }
6906
6907 /* ARMv5TE load-consecutive (argument parse)
6908 Mode is like LDRH.
6909
6910 LDRccD R, mode
6911 STRccD R, mode. */
6912
6913 static void
6914 do_ldrd (void)
6915 {
6916 constraint (inst.operands[0].reg % 2 != 0,
6917 _("first destination register must be even"));
6918 constraint (inst.operands[1].present
6919 && inst.operands[1].reg != inst.operands[0].reg + 1,
6920 _("can only load two consecutive registers"));
6921 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6922 constraint (!inst.operands[2].isreg, _("'[' expected"));
6923
6924 if (!inst.operands[1].present)
6925 inst.operands[1].reg = inst.operands[0].reg + 1;
6926
6927 if (inst.instruction & LOAD_BIT)
6928 {
6929 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6930 register and the first register written; we have to diagnose
6931 overlap between the base and the second register written here. */
6932
6933 if (inst.operands[2].reg == inst.operands[1].reg
6934 && (inst.operands[2].writeback || inst.operands[2].postind))
6935 as_warn (_("base register written back, and overlaps "
6936 "second destination register"));
6937
6938 /* For an index-register load, the index register must not overlap the
6939 destination (even if not write-back). */
6940 else if (inst.operands[2].immisreg
6941 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6942 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6943 as_warn (_("index register overlaps destination register"));
6944 }
6945
6946 inst.instruction |= inst.operands[0].reg << 12;
6947 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6948 }
6949
6950 static void
6951 do_ldrex (void)
6952 {
6953 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6954 || inst.operands[1].postind || inst.operands[1].writeback
6955 || inst.operands[1].immisreg || inst.operands[1].shifted
6956 || inst.operands[1].negative
6957 /* This can arise if the programmer has written
6958 strex rN, rM, foo
6959 or if they have mistakenly used a register name as the last
6960 operand, eg:
6961 strex rN, rM, rX
6962 It is very difficult to distinguish between these two cases
6963 because "rX" might actually be a label. ie the register
6964 name has been occluded by a symbol of the same name. So we
6965 just generate a general 'bad addressing mode' type error
6966 message and leave it up to the programmer to discover the
6967 true cause and fix their mistake. */
6968 || (inst.operands[1].reg == REG_PC),
6969 BAD_ADDR_MODE);
6970
6971 constraint (inst.reloc.exp.X_op != O_constant
6972 || inst.reloc.exp.X_add_number != 0,
6973 _("offset must be zero in ARM encoding"));
6974
6975 inst.instruction |= inst.operands[0].reg << 12;
6976 inst.instruction |= inst.operands[1].reg << 16;
6977 inst.reloc.type = BFD_RELOC_UNUSED;
6978 }
6979
6980 static void
6981 do_ldrexd (void)
6982 {
6983 constraint (inst.operands[0].reg % 2 != 0,
6984 _("even register required"));
6985 constraint (inst.operands[1].present
6986 && inst.operands[1].reg != inst.operands[0].reg + 1,
6987 _("can only load two consecutive registers"));
6988 /* If op 1 were present and equal to PC, this function wouldn't
6989 have been called in the first place. */
6990 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6991
6992 inst.instruction |= inst.operands[0].reg << 12;
6993 inst.instruction |= inst.operands[2].reg << 16;
6994 }
6995
6996 static void
6997 do_ldst (void)
6998 {
6999 inst.instruction |= inst.operands[0].reg << 12;
7000 if (!inst.operands[1].isreg)
7001 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
7002 return;
7003 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
7004 }
7005
7006 static void
7007 do_ldstt (void)
7008 {
7009 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7010 reject [Rn,...]. */
7011 if (inst.operands[1].preind)
7012 {
7013 constraint (inst.reloc.exp.X_op != O_constant
7014 || inst.reloc.exp.X_add_number != 0,
7015 _("this instruction requires a post-indexed address"));
7016
7017 inst.operands[1].preind = 0;
7018 inst.operands[1].postind = 1;
7019 inst.operands[1].writeback = 1;
7020 }
7021 inst.instruction |= inst.operands[0].reg << 12;
7022 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
7023 }
7024
7025 /* Halfword and signed-byte load/store operations. */
7026
7027 static void
7028 do_ldstv4 (void)
7029 {
7030 inst.instruction |= inst.operands[0].reg << 12;
7031 if (!inst.operands[1].isreg)
7032 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
7033 return;
7034 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
7035 }
7036
7037 static void
7038 do_ldsttv4 (void)
7039 {
7040 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
7041 reject [Rn,...]. */
7042 if (inst.operands[1].preind)
7043 {
7044 constraint (inst.reloc.exp.X_op != O_constant
7045 || inst.reloc.exp.X_add_number != 0,
7046 _("this instruction requires a post-indexed address"));
7047
7048 inst.operands[1].preind = 0;
7049 inst.operands[1].postind = 1;
7050 inst.operands[1].writeback = 1;
7051 }
7052 inst.instruction |= inst.operands[0].reg << 12;
7053 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
7054 }
7055
7056 /* Co-processor register load/store.
7057 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
7058 static void
7059 do_lstc (void)
7060 {
7061 inst.instruction |= inst.operands[0].reg << 8;
7062 inst.instruction |= inst.operands[1].reg << 12;
7063 encode_arm_cp_address (2, TRUE, TRUE, 0);
7064 }
7065
7066 static void
7067 do_mlas (void)
7068 {
7069 /* This restriction does not apply to mls (nor to mla in v6 or later). */
7070 if (inst.operands[0].reg == inst.operands[1].reg
7071 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
7072 && !(inst.instruction & 0x00400000))
7073 as_tsktsk (_("Rd and Rm should be different in mla"));
7074
7075 inst.instruction |= inst.operands[0].reg << 16;
7076 inst.instruction |= inst.operands[1].reg;
7077 inst.instruction |= inst.operands[2].reg << 8;
7078 inst.instruction |= inst.operands[3].reg << 12;
7079 }
7080
7081 static void
7082 do_mov (void)
7083 {
7084 inst.instruction |= inst.operands[0].reg << 12;
7085 encode_arm_shifter_operand (1);
7086 }
7087
7088 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7089 static void
7090 do_mov16 (void)
7091 {
7092 bfd_vma imm;
7093 bfd_boolean top;
7094
7095 top = (inst.instruction & 0x00400000) != 0;
7096 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7097 _(":lower16: not allowed this instruction"));
7098 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7099 _(":upper16: not allowed instruction"));
7100 inst.instruction |= inst.operands[0].reg << 12;
7101 if (inst.reloc.type == BFD_RELOC_UNUSED)
7102 {
7103 imm = inst.reloc.exp.X_add_number;
7104 /* The value is in two pieces: 0:11, 16:19. */
7105 inst.instruction |= (imm & 0x00000fff);
7106 inst.instruction |= (imm & 0x0000f000) << 4;
7107 }
7108 }
7109
7110 static void do_vfp_nsyn_opcode (const char *);
7111
7112 static int
7113 do_vfp_nsyn_mrs (void)
7114 {
7115 if (inst.operands[0].isvec)
7116 {
7117 if (inst.operands[1].reg != 1)
7118 first_error (_("operand 1 must be FPSCR"));
7119 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7120 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7121 do_vfp_nsyn_opcode ("fmstat");
7122 }
7123 else if (inst.operands[1].isvec)
7124 do_vfp_nsyn_opcode ("fmrx");
7125 else
7126 return FAIL;
7127
7128 return SUCCESS;
7129 }
7130
7131 static int
7132 do_vfp_nsyn_msr (void)
7133 {
7134 if (inst.operands[0].isvec)
7135 do_vfp_nsyn_opcode ("fmxr");
7136 else
7137 return FAIL;
7138
7139 return SUCCESS;
7140 }
7141
7142 static void
7143 do_mrs (void)
7144 {
7145 if (do_vfp_nsyn_mrs () == SUCCESS)
7146 return;
7147
7148 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7149 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7150 != (PSR_c|PSR_f),
7151 _("'CPSR' or 'SPSR' expected"));
7152 inst.instruction |= inst.operands[0].reg << 12;
7153 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7154 }
7155
7156 /* Two possible forms:
7157 "{C|S}PSR_<field>, Rm",
7158 "{C|S}PSR_f, #expression". */
7159
7160 static void
7161 do_msr (void)
7162 {
7163 if (do_vfp_nsyn_msr () == SUCCESS)
7164 return;
7165
7166 inst.instruction |= inst.operands[0].imm;
7167 if (inst.operands[1].isreg)
7168 inst.instruction |= inst.operands[1].reg;
7169 else
7170 {
7171 inst.instruction |= INST_IMMEDIATE;
7172 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7173 inst.reloc.pc_rel = 0;
7174 }
7175 }
7176
7177 static void
7178 do_mul (void)
7179 {
7180 if (!inst.operands[2].present)
7181 inst.operands[2].reg = inst.operands[0].reg;
7182 inst.instruction |= inst.operands[0].reg << 16;
7183 inst.instruction |= inst.operands[1].reg;
7184 inst.instruction |= inst.operands[2].reg << 8;
7185
7186 if (inst.operands[0].reg == inst.operands[1].reg
7187 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7188 as_tsktsk (_("Rd and Rm should be different in mul"));
7189 }
7190
7191 /* Long Multiply Parser
7192 UMULL RdLo, RdHi, Rm, Rs
7193 SMULL RdLo, RdHi, Rm, Rs
7194 UMLAL RdLo, RdHi, Rm, Rs
7195 SMLAL RdLo, RdHi, Rm, Rs. */
7196
7197 static void
7198 do_mull (void)
7199 {
7200 inst.instruction |= inst.operands[0].reg << 12;
7201 inst.instruction |= inst.operands[1].reg << 16;
7202 inst.instruction |= inst.operands[2].reg;
7203 inst.instruction |= inst.operands[3].reg << 8;
7204
7205 /* rdhi and rdlo must be different. */
7206 if (inst.operands[0].reg == inst.operands[1].reg)
7207 as_tsktsk (_("rdhi and rdlo must be different"));
7208
7209 /* rdhi, rdlo and rm must all be different before armv6. */
7210 if ((inst.operands[0].reg == inst.operands[2].reg
7211 || inst.operands[1].reg == inst.operands[2].reg)
7212 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
7213 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7214 }
7215
7216 static void
7217 do_nop (void)
7218 {
7219 if (inst.operands[0].present)
7220 {
7221 /* Architectural NOP hints are CPSR sets with no bits selected. */
7222 inst.instruction &= 0xf0000000;
7223 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7224 }
7225 }
7226
7227 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7228 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7229 Condition defaults to COND_ALWAYS.
7230 Error if Rd, Rn or Rm are R15. */
7231
7232 static void
7233 do_pkhbt (void)
7234 {
7235 inst.instruction |= inst.operands[0].reg << 12;
7236 inst.instruction |= inst.operands[1].reg << 16;
7237 inst.instruction |= inst.operands[2].reg;
7238 if (inst.operands[3].present)
7239 encode_arm_shift (3);
7240 }
7241
7242 /* ARM V6 PKHTB (Argument Parse). */
7243
7244 static void
7245 do_pkhtb (void)
7246 {
7247 if (!inst.operands[3].present)
7248 {
7249 /* If the shift specifier is omitted, turn the instruction
7250 into pkhbt rd, rm, rn. */
7251 inst.instruction &= 0xfff00010;
7252 inst.instruction |= inst.operands[0].reg << 12;
7253 inst.instruction |= inst.operands[1].reg;
7254 inst.instruction |= inst.operands[2].reg << 16;
7255 }
7256 else
7257 {
7258 inst.instruction |= inst.operands[0].reg << 12;
7259 inst.instruction |= inst.operands[1].reg << 16;
7260 inst.instruction |= inst.operands[2].reg;
7261 encode_arm_shift (3);
7262 }
7263 }
7264
7265 /* ARMv5TE: Preload-Cache
7266
7267 PLD <addr_mode>
7268
7269 Syntactically, like LDR with B=1, W=0, L=1. */
7270
7271 static void
7272 do_pld (void)
7273 {
7274 constraint (!inst.operands[0].isreg,
7275 _("'[' expected after PLD mnemonic"));
7276 constraint (inst.operands[0].postind,
7277 _("post-indexed expression used in preload instruction"));
7278 constraint (inst.operands[0].writeback,
7279 _("writeback used in preload instruction"));
7280 constraint (!inst.operands[0].preind,
7281 _("unindexed addressing used in preload instruction"));
7282 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7283 }
7284
7285 /* ARMv7: PLI <addr_mode> */
7286 static void
7287 do_pli (void)
7288 {
7289 constraint (!inst.operands[0].isreg,
7290 _("'[' expected after PLI mnemonic"));
7291 constraint (inst.operands[0].postind,
7292 _("post-indexed expression used in preload instruction"));
7293 constraint (inst.operands[0].writeback,
7294 _("writeback used in preload instruction"));
7295 constraint (!inst.operands[0].preind,
7296 _("unindexed addressing used in preload instruction"));
7297 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7298 inst.instruction &= ~PRE_INDEX;
7299 }
7300
7301 static void
7302 do_push_pop (void)
7303 {
7304 inst.operands[1] = inst.operands[0];
7305 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7306 inst.operands[0].isreg = 1;
7307 inst.operands[0].writeback = 1;
7308 inst.operands[0].reg = REG_SP;
7309 do_ldmstm ();
7310 }
7311
7312 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7313 word at the specified address and the following word
7314 respectively.
7315 Unconditionally executed.
7316 Error if Rn is R15. */
7317
7318 static void
7319 do_rfe (void)
7320 {
7321 inst.instruction |= inst.operands[0].reg << 16;
7322 if (inst.operands[0].writeback)
7323 inst.instruction |= WRITE_BACK;
7324 }
7325
7326 /* ARM V6 ssat (argument parse). */
7327
7328 static void
7329 do_ssat (void)
7330 {
7331 inst.instruction |= inst.operands[0].reg << 12;
7332 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7333 inst.instruction |= inst.operands[2].reg;
7334
7335 if (inst.operands[3].present)
7336 encode_arm_shift (3);
7337 }
7338
7339 /* ARM V6 usat (argument parse). */
7340
7341 static void
7342 do_usat (void)
7343 {
7344 inst.instruction |= inst.operands[0].reg << 12;
7345 inst.instruction |= inst.operands[1].imm << 16;
7346 inst.instruction |= inst.operands[2].reg;
7347
7348 if (inst.operands[3].present)
7349 encode_arm_shift (3);
7350 }
7351
7352 /* ARM V6 ssat16 (argument parse). */
7353
7354 static void
7355 do_ssat16 (void)
7356 {
7357 inst.instruction |= inst.operands[0].reg << 12;
7358 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7359 inst.instruction |= inst.operands[2].reg;
7360 }
7361
7362 static void
7363 do_usat16 (void)
7364 {
7365 inst.instruction |= inst.operands[0].reg << 12;
7366 inst.instruction |= inst.operands[1].imm << 16;
7367 inst.instruction |= inst.operands[2].reg;
7368 }
7369
7370 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7371 preserving the other bits.
7372
7373 setend <endian_specifier>, where <endian_specifier> is either
7374 BE or LE. */
7375
7376 static void
7377 do_setend (void)
7378 {
7379 if (inst.operands[0].imm)
7380 inst.instruction |= 0x200;
7381 }
7382
7383 static void
7384 do_shift (void)
7385 {
7386 unsigned int Rm = (inst.operands[1].present
7387 ? inst.operands[1].reg
7388 : inst.operands[0].reg);
7389
7390 inst.instruction |= inst.operands[0].reg << 12;
7391 inst.instruction |= Rm;
7392 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7393 {
7394 inst.instruction |= inst.operands[2].reg << 8;
7395 inst.instruction |= SHIFT_BY_REG;
7396 }
7397 else
7398 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7399 }
7400
7401 static void
7402 do_smc (void)
7403 {
7404 inst.reloc.type = BFD_RELOC_ARM_SMC;
7405 inst.reloc.pc_rel = 0;
7406 }
7407
7408 static void
7409 do_swi (void)
7410 {
7411 inst.reloc.type = BFD_RELOC_ARM_SWI;
7412 inst.reloc.pc_rel = 0;
7413 }
7414
7415 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7416 SMLAxy{cond} Rd,Rm,Rs,Rn
7417 SMLAWy{cond} Rd,Rm,Rs,Rn
7418 Error if any register is R15. */
7419
7420 static void
7421 do_smla (void)
7422 {
7423 inst.instruction |= inst.operands[0].reg << 16;
7424 inst.instruction |= inst.operands[1].reg;
7425 inst.instruction |= inst.operands[2].reg << 8;
7426 inst.instruction |= inst.operands[3].reg << 12;
7427 }
7428
7429 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7430 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7431 Error if any register is R15.
7432 Warning if Rdlo == Rdhi. */
7433
7434 static void
7435 do_smlal (void)
7436 {
7437 inst.instruction |= inst.operands[0].reg << 12;
7438 inst.instruction |= inst.operands[1].reg << 16;
7439 inst.instruction |= inst.operands[2].reg;
7440 inst.instruction |= inst.operands[3].reg << 8;
7441
7442 if (inst.operands[0].reg == inst.operands[1].reg)
7443 as_tsktsk (_("rdhi and rdlo must be different"));
7444 }
7445
7446 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7447 SMULxy{cond} Rd,Rm,Rs
7448 Error if any register is R15. */
7449
7450 static void
7451 do_smul (void)
7452 {
7453 inst.instruction |= inst.operands[0].reg << 16;
7454 inst.instruction |= inst.operands[1].reg;
7455 inst.instruction |= inst.operands[2].reg << 8;
7456 }
7457
7458 /* ARM V6 srs (argument parse). The variable fields in the encoding are
7459 the same for both ARM and Thumb-2. */
7460
7461 static void
7462 do_srs (void)
7463 {
7464 int reg;
7465
7466 if (inst.operands[0].present)
7467 {
7468 reg = inst.operands[0].reg;
7469 constraint (reg != 13, _("SRS base register must be r13"));
7470 }
7471 else
7472 reg = 13;
7473
7474 inst.instruction |= reg << 16;
7475 inst.instruction |= inst.operands[1].imm;
7476 if (inst.operands[0].writeback || inst.operands[1].writeback)
7477 inst.instruction |= WRITE_BACK;
7478 }
7479
7480 /* ARM V6 strex (argument parse). */
7481
7482 static void
7483 do_strex (void)
7484 {
7485 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7486 || inst.operands[2].postind || inst.operands[2].writeback
7487 || inst.operands[2].immisreg || inst.operands[2].shifted
7488 || inst.operands[2].negative
7489 /* See comment in do_ldrex(). */
7490 || (inst.operands[2].reg == REG_PC),
7491 BAD_ADDR_MODE);
7492
7493 constraint (inst.operands[0].reg == inst.operands[1].reg
7494 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7495
7496 constraint (inst.reloc.exp.X_op != O_constant
7497 || inst.reloc.exp.X_add_number != 0,
7498 _("offset must be zero in ARM encoding"));
7499
7500 inst.instruction |= inst.operands[0].reg << 12;
7501 inst.instruction |= inst.operands[1].reg;
7502 inst.instruction |= inst.operands[2].reg << 16;
7503 inst.reloc.type = BFD_RELOC_UNUSED;
7504 }
7505
7506 static void
7507 do_strexd (void)
7508 {
7509 constraint (inst.operands[1].reg % 2 != 0,
7510 _("even register required"));
7511 constraint (inst.operands[2].present
7512 && inst.operands[2].reg != inst.operands[1].reg + 1,
7513 _("can only store two consecutive registers"));
7514 /* If op 2 were present and equal to PC, this function wouldn't
7515 have been called in the first place. */
7516 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7517
7518 constraint (inst.operands[0].reg == inst.operands[1].reg
7519 || inst.operands[0].reg == inst.operands[1].reg + 1
7520 || inst.operands[0].reg == inst.operands[3].reg,
7521 BAD_OVERLAP);
7522
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg;
7525 inst.instruction |= inst.operands[3].reg << 16;
7526 }
7527
7528 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7529 extends it to 32-bits, and adds the result to a value in another
7530 register. You can specify a rotation by 0, 8, 16, or 24 bits
7531 before extracting the 16-bit value.
7532 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7533 Condition defaults to COND_ALWAYS.
7534 Error if any register uses R15. */
7535
7536 static void
7537 do_sxtah (void)
7538 {
7539 inst.instruction |= inst.operands[0].reg << 12;
7540 inst.instruction |= inst.operands[1].reg << 16;
7541 inst.instruction |= inst.operands[2].reg;
7542 inst.instruction |= inst.operands[3].imm << 10;
7543 }
7544
7545 /* ARM V6 SXTH.
7546
7547 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7548 Condition defaults to COND_ALWAYS.
7549 Error if any register uses R15. */
7550
7551 static void
7552 do_sxth (void)
7553 {
7554 inst.instruction |= inst.operands[0].reg << 12;
7555 inst.instruction |= inst.operands[1].reg;
7556 inst.instruction |= inst.operands[2].imm << 10;
7557 }
7558 \f
7559 /* VFP instructions. In a logical order: SP variant first, monad
7560 before dyad, arithmetic then move then load/store. */
7561
7562 static void
7563 do_vfp_sp_monadic (void)
7564 {
7565 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7566 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7567 }
7568
7569 static void
7570 do_vfp_sp_dyadic (void)
7571 {
7572 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7573 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7574 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7575 }
7576
7577 static void
7578 do_vfp_sp_compare_z (void)
7579 {
7580 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7581 }
7582
7583 static void
7584 do_vfp_dp_sp_cvt (void)
7585 {
7586 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7587 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7588 }
7589
7590 static void
7591 do_vfp_sp_dp_cvt (void)
7592 {
7593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7594 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7595 }
7596
7597 static void
7598 do_vfp_reg_from_sp (void)
7599 {
7600 inst.instruction |= inst.operands[0].reg << 12;
7601 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7602 }
7603
7604 static void
7605 do_vfp_reg2_from_sp2 (void)
7606 {
7607 constraint (inst.operands[2].imm != 2,
7608 _("only two consecutive VFP SP registers allowed here"));
7609 inst.instruction |= inst.operands[0].reg << 12;
7610 inst.instruction |= inst.operands[1].reg << 16;
7611 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7612 }
7613
7614 static void
7615 do_vfp_sp_from_reg (void)
7616 {
7617 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7618 inst.instruction |= inst.operands[1].reg << 12;
7619 }
7620
7621 static void
7622 do_vfp_sp2_from_reg2 (void)
7623 {
7624 constraint (inst.operands[0].imm != 2,
7625 _("only two consecutive VFP SP registers allowed here"));
7626 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7627 inst.instruction |= inst.operands[1].reg << 12;
7628 inst.instruction |= inst.operands[2].reg << 16;
7629 }
7630
7631 static void
7632 do_vfp_sp_ldst (void)
7633 {
7634 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7635 encode_arm_cp_address (1, FALSE, TRUE, 0);
7636 }
7637
7638 static void
7639 do_vfp_dp_ldst (void)
7640 {
7641 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7642 encode_arm_cp_address (1, FALSE, TRUE, 0);
7643 }
7644
7645
7646 static void
7647 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7648 {
7649 if (inst.operands[0].writeback)
7650 inst.instruction |= WRITE_BACK;
7651 else
7652 constraint (ldstm_type != VFP_LDSTMIA,
7653 _("this addressing mode requires base-register writeback"));
7654 inst.instruction |= inst.operands[0].reg << 16;
7655 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7656 inst.instruction |= inst.operands[1].imm;
7657 }
7658
7659 static void
7660 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7661 {
7662 int count;
7663
7664 if (inst.operands[0].writeback)
7665 inst.instruction |= WRITE_BACK;
7666 else
7667 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7668 _("this addressing mode requires base-register writeback"));
7669
7670 inst.instruction |= inst.operands[0].reg << 16;
7671 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7672
7673 count = inst.operands[1].imm << 1;
7674 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7675 count += 1;
7676
7677 inst.instruction |= count;
7678 }
7679
7680 static void
7681 do_vfp_sp_ldstmia (void)
7682 {
7683 vfp_sp_ldstm (VFP_LDSTMIA);
7684 }
7685
7686 static void
7687 do_vfp_sp_ldstmdb (void)
7688 {
7689 vfp_sp_ldstm (VFP_LDSTMDB);
7690 }
7691
7692 static void
7693 do_vfp_dp_ldstmia (void)
7694 {
7695 vfp_dp_ldstm (VFP_LDSTMIA);
7696 }
7697
7698 static void
7699 do_vfp_dp_ldstmdb (void)
7700 {
7701 vfp_dp_ldstm (VFP_LDSTMDB);
7702 }
7703
7704 static void
7705 do_vfp_xp_ldstmia (void)
7706 {
7707 vfp_dp_ldstm (VFP_LDSTMIAX);
7708 }
7709
7710 static void
7711 do_vfp_xp_ldstmdb (void)
7712 {
7713 vfp_dp_ldstm (VFP_LDSTMDBX);
7714 }
7715
7716 static void
7717 do_vfp_dp_rd_rm (void)
7718 {
7719 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7720 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7721 }
7722
7723 static void
7724 do_vfp_dp_rn_rd (void)
7725 {
7726 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7727 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7728 }
7729
7730 static void
7731 do_vfp_dp_rd_rn (void)
7732 {
7733 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7734 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7735 }
7736
7737 static void
7738 do_vfp_dp_rd_rn_rm (void)
7739 {
7740 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7741 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7742 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7743 }
7744
7745 static void
7746 do_vfp_dp_rd (void)
7747 {
7748 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7749 }
7750
7751 static void
7752 do_vfp_dp_rm_rd_rn (void)
7753 {
7754 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7755 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7756 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7757 }
7758
7759 /* VFPv3 instructions. */
7760 static void
7761 do_vfp_sp_const (void)
7762 {
7763 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7764 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7765 inst.instruction |= (inst.operands[1].imm & 0x0f);
7766 }
7767
7768 static void
7769 do_vfp_dp_const (void)
7770 {
7771 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7772 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
7773 inst.instruction |= (inst.operands[1].imm & 0x0f);
7774 }
7775
7776 static void
7777 vfp_conv (int srcsize)
7778 {
7779 unsigned immbits = srcsize - inst.operands[1].imm;
7780 inst.instruction |= (immbits & 1) << 5;
7781 inst.instruction |= (immbits >> 1);
7782 }
7783
7784 static void
7785 do_vfp_sp_conv_16 (void)
7786 {
7787 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7788 vfp_conv (16);
7789 }
7790
7791 static void
7792 do_vfp_dp_conv_16 (void)
7793 {
7794 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7795 vfp_conv (16);
7796 }
7797
7798 static void
7799 do_vfp_sp_conv_32 (void)
7800 {
7801 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7802 vfp_conv (32);
7803 }
7804
7805 static void
7806 do_vfp_dp_conv_32 (void)
7807 {
7808 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7809 vfp_conv (32);
7810 }
7811 \f
7812 /* FPA instructions. Also in a logical order. */
7813
7814 static void
7815 do_fpa_cmp (void)
7816 {
7817 inst.instruction |= inst.operands[0].reg << 16;
7818 inst.instruction |= inst.operands[1].reg;
7819 }
7820
7821 static void
7822 do_fpa_ldmstm (void)
7823 {
7824 inst.instruction |= inst.operands[0].reg << 12;
7825 switch (inst.operands[1].imm)
7826 {
7827 case 1: inst.instruction |= CP_T_X; break;
7828 case 2: inst.instruction |= CP_T_Y; break;
7829 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7830 case 4: break;
7831 default: abort ();
7832 }
7833
7834 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7835 {
7836 /* The instruction specified "ea" or "fd", so we can only accept
7837 [Rn]{!}. The instruction does not really support stacking or
7838 unstacking, so we have to emulate these by setting appropriate
7839 bits and offsets. */
7840 constraint (inst.reloc.exp.X_op != O_constant
7841 || inst.reloc.exp.X_add_number != 0,
7842 _("this instruction does not support indexing"));
7843
7844 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7845 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7846
7847 if (!(inst.instruction & INDEX_UP))
7848 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7849
7850 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7851 {
7852 inst.operands[2].preind = 0;
7853 inst.operands[2].postind = 1;
7854 }
7855 }
7856
7857 encode_arm_cp_address (2, TRUE, TRUE, 0);
7858 }
7859 \f
7860 /* iWMMXt instructions: strictly in alphabetical order. */
7861
7862 static void
7863 do_iwmmxt_tandorc (void)
7864 {
7865 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7866 }
7867
7868 static void
7869 do_iwmmxt_textrc (void)
7870 {
7871 inst.instruction |= inst.operands[0].reg << 12;
7872 inst.instruction |= inst.operands[1].imm;
7873 }
7874
7875 static void
7876 do_iwmmxt_textrm (void)
7877 {
7878 inst.instruction |= inst.operands[0].reg << 12;
7879 inst.instruction |= inst.operands[1].reg << 16;
7880 inst.instruction |= inst.operands[2].imm;
7881 }
7882
7883 static void
7884 do_iwmmxt_tinsr (void)
7885 {
7886 inst.instruction |= inst.operands[0].reg << 16;
7887 inst.instruction |= inst.operands[1].reg << 12;
7888 inst.instruction |= inst.operands[2].imm;
7889 }
7890
7891 static void
7892 do_iwmmxt_tmia (void)
7893 {
7894 inst.instruction |= inst.operands[0].reg << 5;
7895 inst.instruction |= inst.operands[1].reg;
7896 inst.instruction |= inst.operands[2].reg << 12;
7897 }
7898
7899 static void
7900 do_iwmmxt_waligni (void)
7901 {
7902 inst.instruction |= inst.operands[0].reg << 12;
7903 inst.instruction |= inst.operands[1].reg << 16;
7904 inst.instruction |= inst.operands[2].reg;
7905 inst.instruction |= inst.operands[3].imm << 20;
7906 }
7907
7908 static void
7909 do_iwmmxt_wmerge (void)
7910 {
7911 inst.instruction |= inst.operands[0].reg << 12;
7912 inst.instruction |= inst.operands[1].reg << 16;
7913 inst.instruction |= inst.operands[2].reg;
7914 inst.instruction |= inst.operands[3].imm << 21;
7915 }
7916
7917 static void
7918 do_iwmmxt_wmov (void)
7919 {
7920 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7921 inst.instruction |= inst.operands[0].reg << 12;
7922 inst.instruction |= inst.operands[1].reg << 16;
7923 inst.instruction |= inst.operands[1].reg;
7924 }
7925
7926 static void
7927 do_iwmmxt_wldstbh (void)
7928 {
7929 int reloc;
7930 inst.instruction |= inst.operands[0].reg << 12;
7931 if (thumb_mode)
7932 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7933 else
7934 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7935 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7936 }
7937
7938 static void
7939 do_iwmmxt_wldstw (void)
7940 {
7941 /* RIWR_RIWC clears .isreg for a control register. */
7942 if (!inst.operands[0].isreg)
7943 {
7944 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7945 inst.instruction |= 0xf0000000;
7946 }
7947
7948 inst.instruction |= inst.operands[0].reg << 12;
7949 encode_arm_cp_address (1, TRUE, TRUE, 0);
7950 }
7951
7952 static void
7953 do_iwmmxt_wldstd (void)
7954 {
7955 inst.instruction |= inst.operands[0].reg << 12;
7956 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
7957 && inst.operands[1].immisreg)
7958 {
7959 inst.instruction &= ~0x1a000ff;
7960 inst.instruction |= (0xf << 28);
7961 if (inst.operands[1].preind)
7962 inst.instruction |= PRE_INDEX;
7963 if (!inst.operands[1].negative)
7964 inst.instruction |= INDEX_UP;
7965 if (inst.operands[1].writeback)
7966 inst.instruction |= WRITE_BACK;
7967 inst.instruction |= inst.operands[1].reg << 16;
7968 inst.instruction |= inst.reloc.exp.X_add_number << 4;
7969 inst.instruction |= inst.operands[1].imm;
7970 }
7971 else
7972 encode_arm_cp_address (1, TRUE, FALSE, 0);
7973 }
7974
7975 static void
7976 do_iwmmxt_wshufh (void)
7977 {
7978 inst.instruction |= inst.operands[0].reg << 12;
7979 inst.instruction |= inst.operands[1].reg << 16;
7980 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7981 inst.instruction |= (inst.operands[2].imm & 0x0f);
7982 }
7983
7984 static void
7985 do_iwmmxt_wzero (void)
7986 {
7987 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7988 inst.instruction |= inst.operands[0].reg;
7989 inst.instruction |= inst.operands[0].reg << 12;
7990 inst.instruction |= inst.operands[0].reg << 16;
7991 }
7992
7993 static void
7994 do_iwmmxt_wrwrwr_or_imm5 (void)
7995 {
7996 if (inst.operands[2].isreg)
7997 do_rd_rn_rm ();
7998 else {
7999 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
8000 _("immediate operand requires iWMMXt2"));
8001 do_rd_rn ();
8002 if (inst.operands[2].imm == 0)
8003 {
8004 switch ((inst.instruction >> 20) & 0xf)
8005 {
8006 case 4:
8007 case 5:
8008 case 6:
8009 case 7:
8010 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
8011 inst.operands[2].imm = 16;
8012 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
8013 break;
8014 case 8:
8015 case 9:
8016 case 10:
8017 case 11:
8018 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
8019 inst.operands[2].imm = 32;
8020 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
8021 break;
8022 case 12:
8023 case 13:
8024 case 14:
8025 case 15:
8026 {
8027 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
8028 unsigned long wrn;
8029 wrn = (inst.instruction >> 16) & 0xf;
8030 inst.instruction &= 0xff0fff0f;
8031 inst.instruction |= wrn;
8032 /* Bail out here; the instruction is now assembled. */
8033 return;
8034 }
8035 }
8036 }
8037 /* Map 32 -> 0, etc. */
8038 inst.operands[2].imm &= 0x1f;
8039 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
8040 }
8041 }
8042 \f
8043 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
8044 operations first, then control, shift, and load/store. */
8045
8046 /* Insns like "foo X,Y,Z". */
8047
8048 static void
8049 do_mav_triple (void)
8050 {
8051 inst.instruction |= inst.operands[0].reg << 16;
8052 inst.instruction |= inst.operands[1].reg;
8053 inst.instruction |= inst.operands[2].reg << 12;
8054 }
8055
8056 /* Insns like "foo W,X,Y,Z".
8057 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
8058
8059 static void
8060 do_mav_quad (void)
8061 {
8062 inst.instruction |= inst.operands[0].reg << 5;
8063 inst.instruction |= inst.operands[1].reg << 12;
8064 inst.instruction |= inst.operands[2].reg << 16;
8065 inst.instruction |= inst.operands[3].reg;
8066 }
8067
8068 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
8069 static void
8070 do_mav_dspsc (void)
8071 {
8072 inst.instruction |= inst.operands[1].reg << 12;
8073 }
8074
8075 /* Maverick shift immediate instructions.
8076 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
8077 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
8078
8079 static void
8080 do_mav_shift (void)
8081 {
8082 int imm = inst.operands[2].imm;
8083
8084 inst.instruction |= inst.operands[0].reg << 12;
8085 inst.instruction |= inst.operands[1].reg << 16;
8086
8087 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
8088 Bits 5-7 of the insn should have bits 4-6 of the immediate.
8089 Bit 4 should be 0. */
8090 imm = (imm & 0xf) | ((imm & 0x70) << 1);
8091
8092 inst.instruction |= imm;
8093 }
8094 \f
8095 /* XScale instructions. Also sorted arithmetic before move. */
8096
8097 /* Xscale multiply-accumulate (argument parse)
8098 MIAcc acc0,Rm,Rs
8099 MIAPHcc acc0,Rm,Rs
8100 MIAxycc acc0,Rm,Rs. */
8101
8102 static void
8103 do_xsc_mia (void)
8104 {
8105 inst.instruction |= inst.operands[1].reg;
8106 inst.instruction |= inst.operands[2].reg << 12;
8107 }
8108
8109 /* Xscale move-accumulator-register (argument parse)
8110
8111 MARcc acc0,RdLo,RdHi. */
8112
8113 static void
8114 do_xsc_mar (void)
8115 {
8116 inst.instruction |= inst.operands[1].reg << 12;
8117 inst.instruction |= inst.operands[2].reg << 16;
8118 }
8119
8120 /* Xscale move-register-accumulator (argument parse)
8121
8122 MRAcc RdLo,RdHi,acc0. */
8123
8124 static void
8125 do_xsc_mra (void)
8126 {
8127 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
8128 inst.instruction |= inst.operands[0].reg << 12;
8129 inst.instruction |= inst.operands[1].reg << 16;
8130 }
8131 \f
8132 /* Encoding functions relevant only to Thumb. */
8133
8134 /* inst.operands[i] is a shifted-register operand; encode
8135 it into inst.instruction in the format used by Thumb32. */
8136
8137 static void
8138 encode_thumb32_shifted_operand (int i)
8139 {
8140 unsigned int value = inst.reloc.exp.X_add_number;
8141 unsigned int shift = inst.operands[i].shift_kind;
8142
8143 constraint (inst.operands[i].immisreg,
8144 _("shift by register not allowed in thumb mode"));
8145 inst.instruction |= inst.operands[i].reg;
8146 if (shift == SHIFT_RRX)
8147 inst.instruction |= SHIFT_ROR << 4;
8148 else
8149 {
8150 constraint (inst.reloc.exp.X_op != O_constant,
8151 _("expression too complex"));
8152
8153 constraint (value > 32
8154 || (value == 32 && (shift == SHIFT_LSL
8155 || shift == SHIFT_ROR)),
8156 _("shift expression is too large"));
8157
8158 if (value == 0)
8159 shift = SHIFT_LSL;
8160 else if (value == 32)
8161 value = 0;
8162
8163 inst.instruction |= shift << 4;
8164 inst.instruction |= (value & 0x1c) << 10;
8165 inst.instruction |= (value & 0x03) << 6;
8166 }
8167 }
8168
8169
8170 /* inst.operands[i] was set up by parse_address. Encode it into a
8171 Thumb32 format load or store instruction. Reject forms that cannot
8172 be used with such instructions. If is_t is true, reject forms that
8173 cannot be used with a T instruction; if is_d is true, reject forms
8174 that cannot be used with a D instruction. */
8175
8176 static void
8177 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8178 {
8179 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8180
8181 constraint (!inst.operands[i].isreg,
8182 _("Instruction does not support =N addresses"));
8183
8184 inst.instruction |= inst.operands[i].reg << 16;
8185 if (inst.operands[i].immisreg)
8186 {
8187 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8188 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8189 constraint (inst.operands[i].negative,
8190 _("Thumb does not support negative register indexing"));
8191 constraint (inst.operands[i].postind,
8192 _("Thumb does not support register post-indexing"));
8193 constraint (inst.operands[i].writeback,
8194 _("Thumb does not support register indexing with writeback"));
8195 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8196 _("Thumb supports only LSL in shifted register indexing"));
8197
8198 inst.instruction |= inst.operands[i].imm;
8199 if (inst.operands[i].shifted)
8200 {
8201 constraint (inst.reloc.exp.X_op != O_constant,
8202 _("expression too complex"));
8203 constraint (inst.reloc.exp.X_add_number < 0
8204 || inst.reloc.exp.X_add_number > 3,
8205 _("shift out of range"));
8206 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8207 }
8208 inst.reloc.type = BFD_RELOC_UNUSED;
8209 }
8210 else if (inst.operands[i].preind)
8211 {
8212 constraint (is_pc && inst.operands[i].writeback,
8213 _("cannot use writeback with PC-relative addressing"));
8214 constraint (is_t && inst.operands[i].writeback,
8215 _("cannot use writeback with this instruction"));
8216
8217 if (is_d)
8218 {
8219 inst.instruction |= 0x01000000;
8220 if (inst.operands[i].writeback)
8221 inst.instruction |= 0x00200000;
8222 }
8223 else
8224 {
8225 inst.instruction |= 0x00000c00;
8226 if (inst.operands[i].writeback)
8227 inst.instruction |= 0x00000100;
8228 }
8229 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8230 }
8231 else if (inst.operands[i].postind)
8232 {
8233 assert (inst.operands[i].writeback);
8234 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8235 constraint (is_t, _("cannot use post-indexing with this instruction"));
8236
8237 if (is_d)
8238 inst.instruction |= 0x00200000;
8239 else
8240 inst.instruction |= 0x00000900;
8241 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8242 }
8243 else /* unindexed - only for coprocessor */
8244 inst.error = _("instruction does not accept unindexed addressing");
8245 }
8246
8247 /* Table of Thumb instructions which exist in both 16- and 32-bit
8248 encodings (the latter only in post-V6T2 cores). The index is the
8249 value used in the insns table below. When there is more than one
8250 possible 16-bit encoding for the instruction, this table always
8251 holds variant (1).
8252 Also contains several pseudo-instructions used during relaxation. */
8253 #define T16_32_TAB \
8254 X(adc, 4140, eb400000), \
8255 X(adcs, 4140, eb500000), \
8256 X(add, 1c00, eb000000), \
8257 X(adds, 1c00, eb100000), \
8258 X(addi, 0000, f1000000), \
8259 X(addis, 0000, f1100000), \
8260 X(add_pc,000f, f20f0000), \
8261 X(add_sp,000d, f10d0000), \
8262 X(adr, 000f, f20f0000), \
8263 X(and, 4000, ea000000), \
8264 X(ands, 4000, ea100000), \
8265 X(asr, 1000, fa40f000), \
8266 X(asrs, 1000, fa50f000), \
8267 X(b, e000, f000b000), \
8268 X(bcond, d000, f0008000), \
8269 X(bic, 4380, ea200000), \
8270 X(bics, 4380, ea300000), \
8271 X(cmn, 42c0, eb100f00), \
8272 X(cmp, 2800, ebb00f00), \
8273 X(cpsie, b660, f3af8400), \
8274 X(cpsid, b670, f3af8600), \
8275 X(cpy, 4600, ea4f0000), \
8276 X(dec_sp,80dd, f1ad0d00), \
8277 X(eor, 4040, ea800000), \
8278 X(eors, 4040, ea900000), \
8279 X(inc_sp,00dd, f10d0d00), \
8280 X(ldmia, c800, e8900000), \
8281 X(ldr, 6800, f8500000), \
8282 X(ldrb, 7800, f8100000), \
8283 X(ldrh, 8800, f8300000), \
8284 X(ldrsb, 5600, f9100000), \
8285 X(ldrsh, 5e00, f9300000), \
8286 X(ldr_pc,4800, f85f0000), \
8287 X(ldr_pc2,4800, f85f0000), \
8288 X(ldr_sp,9800, f85d0000), \
8289 X(lsl, 0000, fa00f000), \
8290 X(lsls, 0000, fa10f000), \
8291 X(lsr, 0800, fa20f000), \
8292 X(lsrs, 0800, fa30f000), \
8293 X(mov, 2000, ea4f0000), \
8294 X(movs, 2000, ea5f0000), \
8295 X(mul, 4340, fb00f000), \
8296 X(muls, 4340, ffffffff), /* no 32b muls */ \
8297 X(mvn, 43c0, ea6f0000), \
8298 X(mvns, 43c0, ea7f0000), \
8299 X(neg, 4240, f1c00000), /* rsb #0 */ \
8300 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8301 X(orr, 4300, ea400000), \
8302 X(orrs, 4300, ea500000), \
8303 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8304 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8305 X(rev, ba00, fa90f080), \
8306 X(rev16, ba40, fa90f090), \
8307 X(revsh, bac0, fa90f0b0), \
8308 X(ror, 41c0, fa60f000), \
8309 X(rors, 41c0, fa70f000), \
8310 X(sbc, 4180, eb600000), \
8311 X(sbcs, 4180, eb700000), \
8312 X(stmia, c000, e8800000), \
8313 X(str, 6000, f8400000), \
8314 X(strb, 7000, f8000000), \
8315 X(strh, 8000, f8200000), \
8316 X(str_sp,9000, f84d0000), \
8317 X(sub, 1e00, eba00000), \
8318 X(subs, 1e00, ebb00000), \
8319 X(subi, 8000, f1a00000), \
8320 X(subis, 8000, f1b00000), \
8321 X(sxtb, b240, fa4ff080), \
8322 X(sxth, b200, fa0ff080), \
8323 X(tst, 4200, ea100f00), \
8324 X(uxtb, b2c0, fa5ff080), \
8325 X(uxth, b280, fa1ff080), \
8326 X(nop, bf00, f3af8000), \
8327 X(yield, bf10, f3af8001), \
8328 X(wfe, bf20, f3af8002), \
8329 X(wfi, bf30, f3af8003), \
8330 X(sev, bf40, f3af9004), /* typo, 8004? */
8331
8332 /* To catch errors in encoding functions, the codes are all offset by
8333 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8334 as 16-bit instructions. */
8335 #define X(a,b,c) T_MNEM_##a
8336 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8337 #undef X
8338
8339 #define X(a,b,c) 0x##b
8340 static const unsigned short thumb_op16[] = { T16_32_TAB };
8341 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8342 #undef X
8343
8344 #define X(a,b,c) 0x##c
8345 static const unsigned int thumb_op32[] = { T16_32_TAB };
8346 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8347 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8348 #undef X
8349 #undef T16_32_TAB
8350
8351 /* Thumb instruction encoders, in alphabetical order. */
8352
8353 /* ADDW or SUBW. */
8354 static void
8355 do_t_add_sub_w (void)
8356 {
8357 int Rd, Rn;
8358
8359 Rd = inst.operands[0].reg;
8360 Rn = inst.operands[1].reg;
8361
8362 constraint (Rd == 15, _("PC not allowed as destination"));
8363 inst.instruction |= (Rn << 16) | (Rd << 8);
8364 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8365 }
8366
8367 /* Parse an add or subtract instruction. We get here with inst.instruction
8368 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8369
8370 static void
8371 do_t_add_sub (void)
8372 {
8373 int Rd, Rs, Rn;
8374
8375 Rd = inst.operands[0].reg;
8376 Rs = (inst.operands[1].present
8377 ? inst.operands[1].reg /* Rd, Rs, foo */
8378 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8379
8380 if (unified_syntax)
8381 {
8382 bfd_boolean flags;
8383 bfd_boolean narrow;
8384 int opcode;
8385
8386 flags = (inst.instruction == T_MNEM_adds
8387 || inst.instruction == T_MNEM_subs);
8388 if (flags)
8389 narrow = (current_it_mask == 0);
8390 else
8391 narrow = (current_it_mask != 0);
8392 if (!inst.operands[2].isreg)
8393 {
8394 int add;
8395
8396 add = (inst.instruction == T_MNEM_add
8397 || inst.instruction == T_MNEM_adds);
8398 opcode = 0;
8399 if (inst.size_req != 4)
8400 {
8401 /* Attempt to use a narrow opcode, with relaxation if
8402 appropriate. */
8403 if (Rd == REG_SP && Rs == REG_SP && !flags)
8404 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8405 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8406 opcode = T_MNEM_add_sp;
8407 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8408 opcode = T_MNEM_add_pc;
8409 else if (Rd <= 7 && Rs <= 7 && narrow)
8410 {
8411 if (flags)
8412 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8413 else
8414 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8415 }
8416 if (opcode)
8417 {
8418 inst.instruction = THUMB_OP16(opcode);
8419 inst.instruction |= (Rd << 4) | Rs;
8420 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8421 if (inst.size_req != 2)
8422 inst.relax = opcode;
8423 }
8424 else
8425 constraint (inst.size_req == 2, BAD_HIREG);
8426 }
8427 if (inst.size_req == 4
8428 || (inst.size_req != 2 && !opcode))
8429 {
8430 if (Rd == REG_PC)
8431 {
8432 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
8433 _("only SUBS PC, LR, #const allowed"));
8434 constraint (inst.reloc.exp.X_op != O_constant,
8435 _("expression too complex"));
8436 constraint (inst.reloc.exp.X_add_number < 0
8437 || inst.reloc.exp.X_add_number > 0xff,
8438 _("immediate value out of range"));
8439 inst.instruction = T2_SUBS_PC_LR
8440 | inst.reloc.exp.X_add_number;
8441 inst.reloc.type = BFD_RELOC_UNUSED;
8442 return;
8443 }
8444 else if (Rs == REG_PC)
8445 {
8446 /* Always use addw/subw. */
8447 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8448 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8449 }
8450 else
8451 {
8452 inst.instruction = THUMB_OP32 (inst.instruction);
8453 inst.instruction = (inst.instruction & 0xe1ffffff)
8454 | 0x10000000;
8455 if (flags)
8456 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8457 else
8458 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8459 }
8460 inst.instruction |= Rd << 8;
8461 inst.instruction |= Rs << 16;
8462 }
8463 }
8464 else
8465 {
8466 Rn = inst.operands[2].reg;
8467 /* See if we can do this with a 16-bit instruction. */
8468 if (!inst.operands[2].shifted && inst.size_req != 4)
8469 {
8470 if (Rd > 7 || Rs > 7 || Rn > 7)
8471 narrow = FALSE;
8472
8473 if (narrow)
8474 {
8475 inst.instruction = ((inst.instruction == T_MNEM_adds
8476 || inst.instruction == T_MNEM_add)
8477 ? T_OPCODE_ADD_R3
8478 : T_OPCODE_SUB_R3);
8479 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8480 return;
8481 }
8482
8483 if (inst.instruction == T_MNEM_add)
8484 {
8485 if (Rd == Rs)
8486 {
8487 inst.instruction = T_OPCODE_ADD_HI;
8488 inst.instruction |= (Rd & 8) << 4;
8489 inst.instruction |= (Rd & 7);
8490 inst.instruction |= Rn << 3;
8491 return;
8492 }
8493 /* ... because addition is commutative! */
8494 else if (Rd == Rn)
8495 {
8496 inst.instruction = T_OPCODE_ADD_HI;
8497 inst.instruction |= (Rd & 8) << 4;
8498 inst.instruction |= (Rd & 7);
8499 inst.instruction |= Rs << 3;
8500 return;
8501 }
8502 }
8503 }
8504 /* If we get here, it can't be done in 16 bits. */
8505 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8506 _("shift must be constant"));
8507 inst.instruction = THUMB_OP32 (inst.instruction);
8508 inst.instruction |= Rd << 8;
8509 inst.instruction |= Rs << 16;
8510 encode_thumb32_shifted_operand (2);
8511 }
8512 }
8513 else
8514 {
8515 constraint (inst.instruction == T_MNEM_adds
8516 || inst.instruction == T_MNEM_subs,
8517 BAD_THUMB32);
8518
8519 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8520 {
8521 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8522 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8523 BAD_HIREG);
8524
8525 inst.instruction = (inst.instruction == T_MNEM_add
8526 ? 0x0000 : 0x8000);
8527 inst.instruction |= (Rd << 4) | Rs;
8528 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8529 return;
8530 }
8531
8532 Rn = inst.operands[2].reg;
8533 constraint (inst.operands[2].shifted, _("unshifted register required"));
8534
8535 /* We now have Rd, Rs, and Rn set to registers. */
8536 if (Rd > 7 || Rs > 7 || Rn > 7)
8537 {
8538 /* Can't do this for SUB. */
8539 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8540 inst.instruction = T_OPCODE_ADD_HI;
8541 inst.instruction |= (Rd & 8) << 4;
8542 inst.instruction |= (Rd & 7);
8543 if (Rs == Rd)
8544 inst.instruction |= Rn << 3;
8545 else if (Rn == Rd)
8546 inst.instruction |= Rs << 3;
8547 else
8548 constraint (1, _("dest must overlap one source register"));
8549 }
8550 else
8551 {
8552 inst.instruction = (inst.instruction == T_MNEM_add
8553 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8554 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8555 }
8556 }
8557 }
8558
8559 static void
8560 do_t_adr (void)
8561 {
8562 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8563 {
8564 /* Defer to section relaxation. */
8565 inst.relax = inst.instruction;
8566 inst.instruction = THUMB_OP16 (inst.instruction);
8567 inst.instruction |= inst.operands[0].reg << 4;
8568 }
8569 else if (unified_syntax && inst.size_req != 2)
8570 {
8571 /* Generate a 32-bit opcode. */
8572 inst.instruction = THUMB_OP32 (inst.instruction);
8573 inst.instruction |= inst.operands[0].reg << 8;
8574 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8575 inst.reloc.pc_rel = 1;
8576 }
8577 else
8578 {
8579 /* Generate a 16-bit opcode. */
8580 inst.instruction = THUMB_OP16 (inst.instruction);
8581 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8582 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8583 inst.reloc.pc_rel = 1;
8584
8585 inst.instruction |= inst.operands[0].reg << 4;
8586 }
8587 }
8588
8589 /* Arithmetic instructions for which there is just one 16-bit
8590 instruction encoding, and it allows only two low registers.
8591 For maximal compatibility with ARM syntax, we allow three register
8592 operands even when Thumb-32 instructions are not available, as long
8593 as the first two are identical. For instance, both "sbc r0,r1" and
8594 "sbc r0,r0,r1" are allowed. */
8595 static void
8596 do_t_arit3 (void)
8597 {
8598 int Rd, Rs, Rn;
8599
8600 Rd = inst.operands[0].reg;
8601 Rs = (inst.operands[1].present
8602 ? inst.operands[1].reg /* Rd, Rs, foo */
8603 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8604 Rn = inst.operands[2].reg;
8605
8606 if (unified_syntax)
8607 {
8608 if (!inst.operands[2].isreg)
8609 {
8610 /* For an immediate, we always generate a 32-bit opcode;
8611 section relaxation will shrink it later if possible. */
8612 inst.instruction = THUMB_OP32 (inst.instruction);
8613 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8614 inst.instruction |= Rd << 8;
8615 inst.instruction |= Rs << 16;
8616 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8617 }
8618 else
8619 {
8620 bfd_boolean narrow;
8621
8622 /* See if we can do this with a 16-bit instruction. */
8623 if (THUMB_SETS_FLAGS (inst.instruction))
8624 narrow = current_it_mask == 0;
8625 else
8626 narrow = current_it_mask != 0;
8627
8628 if (Rd > 7 || Rn > 7 || Rs > 7)
8629 narrow = FALSE;
8630 if (inst.operands[2].shifted)
8631 narrow = FALSE;
8632 if (inst.size_req == 4)
8633 narrow = FALSE;
8634
8635 if (narrow
8636 && Rd == Rs)
8637 {
8638 inst.instruction = THUMB_OP16 (inst.instruction);
8639 inst.instruction |= Rd;
8640 inst.instruction |= Rn << 3;
8641 return;
8642 }
8643
8644 /* If we get here, it can't be done in 16 bits. */
8645 constraint (inst.operands[2].shifted
8646 && inst.operands[2].immisreg,
8647 _("shift must be constant"));
8648 inst.instruction = THUMB_OP32 (inst.instruction);
8649 inst.instruction |= Rd << 8;
8650 inst.instruction |= Rs << 16;
8651 encode_thumb32_shifted_operand (2);
8652 }
8653 }
8654 else
8655 {
8656 /* On its face this is a lie - the instruction does set the
8657 flags. However, the only supported mnemonic in this mode
8658 says it doesn't. */
8659 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8660
8661 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8662 _("unshifted register required"));
8663 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8664 constraint (Rd != Rs,
8665 _("dest and source1 must be the same register"));
8666
8667 inst.instruction = THUMB_OP16 (inst.instruction);
8668 inst.instruction |= Rd;
8669 inst.instruction |= Rn << 3;
8670 }
8671 }
8672
8673 /* Similarly, but for instructions where the arithmetic operation is
8674 commutative, so we can allow either of them to be different from
8675 the destination operand in a 16-bit instruction. For instance, all
8676 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8677 accepted. */
8678 static void
8679 do_t_arit3c (void)
8680 {
8681 int Rd, Rs, Rn;
8682
8683 Rd = inst.operands[0].reg;
8684 Rs = (inst.operands[1].present
8685 ? inst.operands[1].reg /* Rd, Rs, foo */
8686 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8687 Rn = inst.operands[2].reg;
8688
8689 if (unified_syntax)
8690 {
8691 if (!inst.operands[2].isreg)
8692 {
8693 /* For an immediate, we always generate a 32-bit opcode;
8694 section relaxation will shrink it later if possible. */
8695 inst.instruction = THUMB_OP32 (inst.instruction);
8696 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8697 inst.instruction |= Rd << 8;
8698 inst.instruction |= Rs << 16;
8699 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8700 }
8701 else
8702 {
8703 bfd_boolean narrow;
8704
8705 /* See if we can do this with a 16-bit instruction. */
8706 if (THUMB_SETS_FLAGS (inst.instruction))
8707 narrow = current_it_mask == 0;
8708 else
8709 narrow = current_it_mask != 0;
8710
8711 if (Rd > 7 || Rn > 7 || Rs > 7)
8712 narrow = FALSE;
8713 if (inst.operands[2].shifted)
8714 narrow = FALSE;
8715 if (inst.size_req == 4)
8716 narrow = FALSE;
8717
8718 if (narrow)
8719 {
8720 if (Rd == Rs)
8721 {
8722 inst.instruction = THUMB_OP16 (inst.instruction);
8723 inst.instruction |= Rd;
8724 inst.instruction |= Rn << 3;
8725 return;
8726 }
8727 if (Rd == Rn)
8728 {
8729 inst.instruction = THUMB_OP16 (inst.instruction);
8730 inst.instruction |= Rd;
8731 inst.instruction |= Rs << 3;
8732 return;
8733 }
8734 }
8735
8736 /* If we get here, it can't be done in 16 bits. */
8737 constraint (inst.operands[2].shifted
8738 && inst.operands[2].immisreg,
8739 _("shift must be constant"));
8740 inst.instruction = THUMB_OP32 (inst.instruction);
8741 inst.instruction |= Rd << 8;
8742 inst.instruction |= Rs << 16;
8743 encode_thumb32_shifted_operand (2);
8744 }
8745 }
8746 else
8747 {
8748 /* On its face this is a lie - the instruction does set the
8749 flags. However, the only supported mnemonic in this mode
8750 says it doesn't. */
8751 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8752
8753 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8754 _("unshifted register required"));
8755 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8756
8757 inst.instruction = THUMB_OP16 (inst.instruction);
8758 inst.instruction |= Rd;
8759
8760 if (Rd == Rs)
8761 inst.instruction |= Rn << 3;
8762 else if (Rd == Rn)
8763 inst.instruction |= Rs << 3;
8764 else
8765 constraint (1, _("dest must overlap one source register"));
8766 }
8767 }
8768
8769 static void
8770 do_t_barrier (void)
8771 {
8772 if (inst.operands[0].present)
8773 {
8774 constraint ((inst.instruction & 0xf0) != 0x40
8775 && inst.operands[0].imm != 0xf,
8776 _("bad barrier type"));
8777 inst.instruction |= inst.operands[0].imm;
8778 }
8779 else
8780 inst.instruction |= 0xf;
8781 }
8782
8783 static void
8784 do_t_bfc (void)
8785 {
8786 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8787 constraint (msb > 32, _("bit-field extends past end of register"));
8788 /* The instruction encoding stores the LSB and MSB,
8789 not the LSB and width. */
8790 inst.instruction |= inst.operands[0].reg << 8;
8791 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8792 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8793 inst.instruction |= msb - 1;
8794 }
8795
8796 static void
8797 do_t_bfi (void)
8798 {
8799 unsigned int msb;
8800
8801 /* #0 in second position is alternative syntax for bfc, which is
8802 the same instruction but with REG_PC in the Rm field. */
8803 if (!inst.operands[1].isreg)
8804 inst.operands[1].reg = REG_PC;
8805
8806 msb = inst.operands[2].imm + inst.operands[3].imm;
8807 constraint (msb > 32, _("bit-field extends past end of register"));
8808 /* The instruction encoding stores the LSB and MSB,
8809 not the LSB and width. */
8810 inst.instruction |= inst.operands[0].reg << 8;
8811 inst.instruction |= inst.operands[1].reg << 16;
8812 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8813 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8814 inst.instruction |= msb - 1;
8815 }
8816
8817 static void
8818 do_t_bfx (void)
8819 {
8820 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8821 _("bit-field extends past end of register"));
8822 inst.instruction |= inst.operands[0].reg << 8;
8823 inst.instruction |= inst.operands[1].reg << 16;
8824 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8825 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8826 inst.instruction |= inst.operands[3].imm - 1;
8827 }
8828
8829 /* ARM V5 Thumb BLX (argument parse)
8830 BLX <target_addr> which is BLX(1)
8831 BLX <Rm> which is BLX(2)
8832 Unfortunately, there are two different opcodes for this mnemonic.
8833 So, the insns[].value is not used, and the code here zaps values
8834 into inst.instruction.
8835
8836 ??? How to take advantage of the additional two bits of displacement
8837 available in Thumb32 mode? Need new relocation? */
8838
8839 static void
8840 do_t_blx (void)
8841 {
8842 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8843 if (inst.operands[0].isreg)
8844 /* We have a register, so this is BLX(2). */
8845 inst.instruction |= inst.operands[0].reg << 3;
8846 else
8847 {
8848 /* No register. This must be BLX(1). */
8849 inst.instruction = 0xf000e800;
8850 #ifdef OBJ_ELF
8851 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8852 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8853 else
8854 #endif
8855 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8856 inst.reloc.pc_rel = 1;
8857 }
8858 }
8859
8860 static void
8861 do_t_branch (void)
8862 {
8863 int opcode;
8864 int cond;
8865
8866 if (current_it_mask)
8867 {
8868 /* Conditional branches inside IT blocks are encoded as unconditional
8869 branches. */
8870 cond = COND_ALWAYS;
8871 /* A branch must be the last instruction in an IT block. */
8872 constraint (current_it_mask != 0x10, BAD_BRANCH);
8873 }
8874 else
8875 cond = inst.cond;
8876
8877 if (cond != COND_ALWAYS)
8878 opcode = T_MNEM_bcond;
8879 else
8880 opcode = inst.instruction;
8881
8882 if (unified_syntax && inst.size_req == 4)
8883 {
8884 inst.instruction = THUMB_OP32(opcode);
8885 if (cond == COND_ALWAYS)
8886 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8887 else
8888 {
8889 assert (cond != 0xF);
8890 inst.instruction |= cond << 22;
8891 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8892 }
8893 }
8894 else
8895 {
8896 inst.instruction = THUMB_OP16(opcode);
8897 if (cond == COND_ALWAYS)
8898 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8899 else
8900 {
8901 inst.instruction |= cond << 8;
8902 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8903 }
8904 /* Allow section relaxation. */
8905 if (unified_syntax && inst.size_req != 2)
8906 inst.relax = opcode;
8907 }
8908
8909 inst.reloc.pc_rel = 1;
8910 }
8911
8912 static void
8913 do_t_bkpt (void)
8914 {
8915 constraint (inst.cond != COND_ALWAYS,
8916 _("instruction is always unconditional"));
8917 if (inst.operands[0].present)
8918 {
8919 constraint (inst.operands[0].imm > 255,
8920 _("immediate value out of range"));
8921 inst.instruction |= inst.operands[0].imm;
8922 }
8923 }
8924
8925 static void
8926 do_t_branch23 (void)
8927 {
8928 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8929 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8930 inst.reloc.pc_rel = 1;
8931
8932 /* If the destination of the branch is a defined symbol which does not have
8933 the THUMB_FUNC attribute, then we must be calling a function which has
8934 the (interfacearm) attribute. We look for the Thumb entry point to that
8935 function and change the branch to refer to that function instead. */
8936 if ( inst.reloc.exp.X_op == O_symbol
8937 && inst.reloc.exp.X_add_symbol != NULL
8938 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8939 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8940 inst.reloc.exp.X_add_symbol =
8941 find_real_start (inst.reloc.exp.X_add_symbol);
8942 }
8943
8944 static void
8945 do_t_bx (void)
8946 {
8947 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8948 inst.instruction |= inst.operands[0].reg << 3;
8949 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8950 should cause the alignment to be checked once it is known. This is
8951 because BX PC only works if the instruction is word aligned. */
8952 }
8953
8954 static void
8955 do_t_bxj (void)
8956 {
8957 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8958 if (inst.operands[0].reg == REG_PC)
8959 as_tsktsk (_("use of r15 in bxj is not really useful"));
8960
8961 inst.instruction |= inst.operands[0].reg << 16;
8962 }
8963
8964 static void
8965 do_t_clz (void)
8966 {
8967 inst.instruction |= inst.operands[0].reg << 8;
8968 inst.instruction |= inst.operands[1].reg << 16;
8969 inst.instruction |= inst.operands[1].reg;
8970 }
8971
8972 static void
8973 do_t_cps (void)
8974 {
8975 constraint (current_it_mask, BAD_NOT_IT);
8976 inst.instruction |= inst.operands[0].imm;
8977 }
8978
8979 static void
8980 do_t_cpsi (void)
8981 {
8982 constraint (current_it_mask, BAD_NOT_IT);
8983 if (unified_syntax
8984 && (inst.operands[1].present || inst.size_req == 4)
8985 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
8986 {
8987 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8988 inst.instruction = 0xf3af8000;
8989 inst.instruction |= imod << 9;
8990 inst.instruction |= inst.operands[0].imm << 5;
8991 if (inst.operands[1].present)
8992 inst.instruction |= 0x100 | inst.operands[1].imm;
8993 }
8994 else
8995 {
8996 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8997 && (inst.operands[0].imm & 4),
8998 _("selected processor does not support 'A' form "
8999 "of this instruction"));
9000 constraint (inst.operands[1].present || inst.size_req == 4,
9001 _("Thumb does not support the 2-argument "
9002 "form of this instruction"));
9003 inst.instruction |= inst.operands[0].imm;
9004 }
9005 }
9006
9007 /* THUMB CPY instruction (argument parse). */
9008
9009 static void
9010 do_t_cpy (void)
9011 {
9012 if (inst.size_req == 4)
9013 {
9014 inst.instruction = THUMB_OP32 (T_MNEM_mov);
9015 inst.instruction |= inst.operands[0].reg << 8;
9016 inst.instruction |= inst.operands[1].reg;
9017 }
9018 else
9019 {
9020 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9021 inst.instruction |= (inst.operands[0].reg & 0x7);
9022 inst.instruction |= inst.operands[1].reg << 3;
9023 }
9024 }
9025
9026 static void
9027 do_t_cbz (void)
9028 {
9029 constraint (current_it_mask, BAD_NOT_IT);
9030 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9031 inst.instruction |= inst.operands[0].reg;
9032 inst.reloc.pc_rel = 1;
9033 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
9034 }
9035
9036 static void
9037 do_t_dbg (void)
9038 {
9039 inst.instruction |= inst.operands[0].imm;
9040 }
9041
9042 static void
9043 do_t_div (void)
9044 {
9045 if (!inst.operands[1].present)
9046 inst.operands[1].reg = inst.operands[0].reg;
9047 inst.instruction |= inst.operands[0].reg << 8;
9048 inst.instruction |= inst.operands[1].reg << 16;
9049 inst.instruction |= inst.operands[2].reg;
9050 }
9051
9052 static void
9053 do_t_hint (void)
9054 {
9055 if (unified_syntax && inst.size_req == 4)
9056 inst.instruction = THUMB_OP32 (inst.instruction);
9057 else
9058 inst.instruction = THUMB_OP16 (inst.instruction);
9059 }
9060
9061 static void
9062 do_t_it (void)
9063 {
9064 unsigned int cond = inst.operands[0].imm;
9065
9066 constraint (current_it_mask, BAD_NOT_IT);
9067 current_it_mask = (inst.instruction & 0xf) | 0x10;
9068 current_cc = cond;
9069
9070 /* If the condition is a negative condition, invert the mask. */
9071 if ((cond & 0x1) == 0x0)
9072 {
9073 unsigned int mask = inst.instruction & 0x000f;
9074
9075 if ((mask & 0x7) == 0)
9076 /* no conversion needed */;
9077 else if ((mask & 0x3) == 0)
9078 mask ^= 0x8;
9079 else if ((mask & 0x1) == 0)
9080 mask ^= 0xC;
9081 else
9082 mask ^= 0xE;
9083
9084 inst.instruction &= 0xfff0;
9085 inst.instruction |= mask;
9086 }
9087
9088 inst.instruction |= cond << 4;
9089 }
9090
9091 /* Helper function used for both push/pop and ldm/stm. */
9092 static void
9093 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
9094 {
9095 bfd_boolean load;
9096
9097 load = (inst.instruction & (1 << 20)) != 0;
9098
9099 if (mask & (1 << 13))
9100 inst.error = _("SP not allowed in register list");
9101 if (load)
9102 {
9103 if (mask & (1 << 14)
9104 && mask & (1 << 15))
9105 inst.error = _("LR and PC should not both be in register list");
9106
9107 if ((mask & (1 << base)) != 0
9108 && writeback)
9109 as_warn (_("base register should not be in register list "
9110 "when written back"));
9111 }
9112 else
9113 {
9114 if (mask & (1 << 15))
9115 inst.error = _("PC not allowed in register list");
9116
9117 if (mask & (1 << base))
9118 as_warn (_("value stored for r%d is UNPREDICTABLE"), base);
9119 }
9120
9121 if ((mask & (mask - 1)) == 0)
9122 {
9123 /* Single register transfers implemented as str/ldr. */
9124 if (writeback)
9125 {
9126 if (inst.instruction & (1 << 23))
9127 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
9128 else
9129 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
9130 }
9131 else
9132 {
9133 if (inst.instruction & (1 << 23))
9134 inst.instruction = 0x00800000; /* ia -> [base] */
9135 else
9136 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
9137 }
9138
9139 inst.instruction |= 0xf8400000;
9140 if (load)
9141 inst.instruction |= 0x00100000;
9142
9143 mask = ffs (mask) - 1;
9144 mask <<= 12;
9145 }
9146 else if (writeback)
9147 inst.instruction |= WRITE_BACK;
9148
9149 inst.instruction |= mask;
9150 inst.instruction |= base << 16;
9151 }
9152
9153 static void
9154 do_t_ldmstm (void)
9155 {
9156 /* This really doesn't seem worth it. */
9157 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9158 _("expression too complex"));
9159 constraint (inst.operands[1].writeback,
9160 _("Thumb load/store multiple does not support {reglist}^"));
9161
9162 if (unified_syntax)
9163 {
9164 bfd_boolean narrow;
9165 unsigned mask;
9166
9167 narrow = FALSE;
9168 /* See if we can use a 16-bit instruction. */
9169 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
9170 && inst.size_req != 4
9171 && !(inst.operands[1].imm & ~0xff))
9172 {
9173 mask = 1 << inst.operands[0].reg;
9174
9175 if (inst.operands[0].reg <= 7
9176 && (inst.instruction == T_MNEM_stmia
9177 ? inst.operands[0].writeback
9178 : (inst.operands[0].writeback
9179 == !(inst.operands[1].imm & mask))))
9180 {
9181 if (inst.instruction == T_MNEM_stmia
9182 && (inst.operands[1].imm & mask)
9183 && (inst.operands[1].imm & (mask - 1)))
9184 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9185 inst.operands[0].reg);
9186
9187 inst.instruction = THUMB_OP16 (inst.instruction);
9188 inst.instruction |= inst.operands[0].reg << 8;
9189 inst.instruction |= inst.operands[1].imm;
9190 narrow = TRUE;
9191 }
9192 else if (inst.operands[0] .reg == REG_SP
9193 && inst.operands[0].writeback)
9194 {
9195 inst.instruction = THUMB_OP16 (inst.instruction == T_MNEM_stmia
9196 ? T_MNEM_push : T_MNEM_pop);
9197 inst.instruction |= inst.operands[1].imm;
9198 narrow = TRUE;
9199 }
9200 }
9201
9202 if (!narrow)
9203 {
9204 if (inst.instruction < 0xffff)
9205 inst.instruction = THUMB_OP32 (inst.instruction);
9206
9207 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
9208 inst.operands[0].writeback);
9209 }
9210 }
9211 else
9212 {
9213 constraint (inst.operands[0].reg > 7
9214 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
9215 constraint (inst.instruction != T_MNEM_ldmia
9216 && inst.instruction != T_MNEM_stmia,
9217 _("Thumb-2 instruction only valid in unified syntax"));
9218 if (inst.instruction == T_MNEM_stmia)
9219 {
9220 if (!inst.operands[0].writeback)
9221 as_warn (_("this instruction will write back the base register"));
9222 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
9223 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
9224 as_warn (_("value stored for r%d is UNPREDICTABLE"),
9225 inst.operands[0].reg);
9226 }
9227 else
9228 {
9229 if (!inst.operands[0].writeback
9230 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9231 as_warn (_("this instruction will write back the base register"));
9232 else if (inst.operands[0].writeback
9233 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9234 as_warn (_("this instruction will not write back the base register"));
9235 }
9236
9237 inst.instruction = THUMB_OP16 (inst.instruction);
9238 inst.instruction |= inst.operands[0].reg << 8;
9239 inst.instruction |= inst.operands[1].imm;
9240 }
9241 }
9242
9243 static void
9244 do_t_ldrex (void)
9245 {
9246 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9247 || inst.operands[1].postind || inst.operands[1].writeback
9248 || inst.operands[1].immisreg || inst.operands[1].shifted
9249 || inst.operands[1].negative,
9250 BAD_ADDR_MODE);
9251
9252 inst.instruction |= inst.operands[0].reg << 12;
9253 inst.instruction |= inst.operands[1].reg << 16;
9254 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9255 }
9256
9257 static void
9258 do_t_ldrexd (void)
9259 {
9260 if (!inst.operands[1].present)
9261 {
9262 constraint (inst.operands[0].reg == REG_LR,
9263 _("r14 not allowed as first register "
9264 "when second register is omitted"));
9265 inst.operands[1].reg = inst.operands[0].reg + 1;
9266 }
9267 constraint (inst.operands[0].reg == inst.operands[1].reg,
9268 BAD_OVERLAP);
9269
9270 inst.instruction |= inst.operands[0].reg << 12;
9271 inst.instruction |= inst.operands[1].reg << 8;
9272 inst.instruction |= inst.operands[2].reg << 16;
9273 }
9274
9275 static void
9276 do_t_ldst (void)
9277 {
9278 unsigned long opcode;
9279 int Rn;
9280
9281 opcode = inst.instruction;
9282 if (unified_syntax)
9283 {
9284 if (!inst.operands[1].isreg)
9285 {
9286 if (opcode <= 0xffff)
9287 inst.instruction = THUMB_OP32 (opcode);
9288 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9289 return;
9290 }
9291 if (inst.operands[1].isreg
9292 && !inst.operands[1].writeback
9293 && !inst.operands[1].shifted && !inst.operands[1].postind
9294 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9295 && opcode <= 0xffff
9296 && inst.size_req != 4)
9297 {
9298 /* Insn may have a 16-bit form. */
9299 Rn = inst.operands[1].reg;
9300 if (inst.operands[1].immisreg)
9301 {
9302 inst.instruction = THUMB_OP16 (opcode);
9303 /* [Rn, Rik] */
9304 if (Rn <= 7 && inst.operands[1].imm <= 7)
9305 goto op16;
9306 }
9307 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9308 && opcode != T_MNEM_ldrsb)
9309 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9310 || (Rn == REG_SP && opcode == T_MNEM_str))
9311 {
9312 /* [Rn, #const] */
9313 if (Rn > 7)
9314 {
9315 if (Rn == REG_PC)
9316 {
9317 if (inst.reloc.pc_rel)
9318 opcode = T_MNEM_ldr_pc2;
9319 else
9320 opcode = T_MNEM_ldr_pc;
9321 }
9322 else
9323 {
9324 if (opcode == T_MNEM_ldr)
9325 opcode = T_MNEM_ldr_sp;
9326 else
9327 opcode = T_MNEM_str_sp;
9328 }
9329 inst.instruction = inst.operands[0].reg << 8;
9330 }
9331 else
9332 {
9333 inst.instruction = inst.operands[0].reg;
9334 inst.instruction |= inst.operands[1].reg << 3;
9335 }
9336 inst.instruction |= THUMB_OP16 (opcode);
9337 if (inst.size_req == 2)
9338 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9339 else
9340 inst.relax = opcode;
9341 return;
9342 }
9343 }
9344 /* Definitely a 32-bit variant. */
9345 inst.instruction = THUMB_OP32 (opcode);
9346 inst.instruction |= inst.operands[0].reg << 12;
9347 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9348 return;
9349 }
9350
9351 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9352
9353 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9354 {
9355 /* Only [Rn,Rm] is acceptable. */
9356 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9357 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9358 || inst.operands[1].postind || inst.operands[1].shifted
9359 || inst.operands[1].negative,
9360 _("Thumb does not support this addressing mode"));
9361 inst.instruction = THUMB_OP16 (inst.instruction);
9362 goto op16;
9363 }
9364
9365 inst.instruction = THUMB_OP16 (inst.instruction);
9366 if (!inst.operands[1].isreg)
9367 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9368 return;
9369
9370 constraint (!inst.operands[1].preind
9371 || inst.operands[1].shifted
9372 || inst.operands[1].writeback,
9373 _("Thumb does not support this addressing mode"));
9374 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9375 {
9376 constraint (inst.instruction & 0x0600,
9377 _("byte or halfword not valid for base register"));
9378 constraint (inst.operands[1].reg == REG_PC
9379 && !(inst.instruction & THUMB_LOAD_BIT),
9380 _("r15 based store not allowed"));
9381 constraint (inst.operands[1].immisreg,
9382 _("invalid base register for register offset"));
9383
9384 if (inst.operands[1].reg == REG_PC)
9385 inst.instruction = T_OPCODE_LDR_PC;
9386 else if (inst.instruction & THUMB_LOAD_BIT)
9387 inst.instruction = T_OPCODE_LDR_SP;
9388 else
9389 inst.instruction = T_OPCODE_STR_SP;
9390
9391 inst.instruction |= inst.operands[0].reg << 8;
9392 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9393 return;
9394 }
9395
9396 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9397 if (!inst.operands[1].immisreg)
9398 {
9399 /* Immediate offset. */
9400 inst.instruction |= inst.operands[0].reg;
9401 inst.instruction |= inst.operands[1].reg << 3;
9402 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9403 return;
9404 }
9405
9406 /* Register offset. */
9407 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9408 constraint (inst.operands[1].negative,
9409 _("Thumb does not support this addressing mode"));
9410
9411 op16:
9412 switch (inst.instruction)
9413 {
9414 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9415 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9416 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9417 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9418 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9419 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9420 case 0x5600 /* ldrsb */:
9421 case 0x5e00 /* ldrsh */: break;
9422 default: abort ();
9423 }
9424
9425 inst.instruction |= inst.operands[0].reg;
9426 inst.instruction |= inst.operands[1].reg << 3;
9427 inst.instruction |= inst.operands[1].imm << 6;
9428 }
9429
9430 static void
9431 do_t_ldstd (void)
9432 {
9433 if (!inst.operands[1].present)
9434 {
9435 inst.operands[1].reg = inst.operands[0].reg + 1;
9436 constraint (inst.operands[0].reg == REG_LR,
9437 _("r14 not allowed here"));
9438 }
9439 inst.instruction |= inst.operands[0].reg << 12;
9440 inst.instruction |= inst.operands[1].reg << 8;
9441 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9442 }
9443
9444 static void
9445 do_t_ldstt (void)
9446 {
9447 inst.instruction |= inst.operands[0].reg << 12;
9448 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9449 }
9450
9451 static void
9452 do_t_mla (void)
9453 {
9454 inst.instruction |= inst.operands[0].reg << 8;
9455 inst.instruction |= inst.operands[1].reg << 16;
9456 inst.instruction |= inst.operands[2].reg;
9457 inst.instruction |= inst.operands[3].reg << 12;
9458 }
9459
9460 static void
9461 do_t_mlal (void)
9462 {
9463 inst.instruction |= inst.operands[0].reg << 12;
9464 inst.instruction |= inst.operands[1].reg << 8;
9465 inst.instruction |= inst.operands[2].reg << 16;
9466 inst.instruction |= inst.operands[3].reg;
9467 }
9468
9469 static void
9470 do_t_mov_cmp (void)
9471 {
9472 if (unified_syntax)
9473 {
9474 int r0off = (inst.instruction == T_MNEM_mov
9475 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9476 unsigned long opcode;
9477 bfd_boolean narrow;
9478 bfd_boolean low_regs;
9479
9480 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9481 opcode = inst.instruction;
9482 if (current_it_mask)
9483 narrow = opcode != T_MNEM_movs;
9484 else
9485 narrow = opcode != T_MNEM_movs || low_regs;
9486 if (inst.size_req == 4
9487 || inst.operands[1].shifted)
9488 narrow = FALSE;
9489
9490 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
9491 if (opcode == T_MNEM_movs && inst.operands[1].isreg
9492 && !inst.operands[1].shifted
9493 && inst.operands[0].reg == REG_PC
9494 && inst.operands[1].reg == REG_LR)
9495 {
9496 inst.instruction = T2_SUBS_PC_LR;
9497 return;
9498 }
9499
9500 if (!inst.operands[1].isreg)
9501 {
9502 /* Immediate operand. */
9503 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9504 narrow = 0;
9505 if (low_regs && narrow)
9506 {
9507 inst.instruction = THUMB_OP16 (opcode);
9508 inst.instruction |= inst.operands[0].reg << 8;
9509 if (inst.size_req == 2)
9510 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9511 else
9512 inst.relax = opcode;
9513 }
9514 else
9515 {
9516 inst.instruction = THUMB_OP32 (inst.instruction);
9517 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9518 inst.instruction |= inst.operands[0].reg << r0off;
9519 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9520 }
9521 }
9522 else if (inst.operands[1].shifted && inst.operands[1].immisreg
9523 && (inst.instruction == T_MNEM_mov
9524 || inst.instruction == T_MNEM_movs))
9525 {
9526 /* Register shifts are encoded as separate shift instructions. */
9527 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
9528
9529 if (current_it_mask)
9530 narrow = !flags;
9531 else
9532 narrow = flags;
9533
9534 if (inst.size_req == 4)
9535 narrow = FALSE;
9536
9537 if (!low_regs || inst.operands[1].imm > 7)
9538 narrow = FALSE;
9539
9540 if (inst.operands[0].reg != inst.operands[1].reg)
9541 narrow = FALSE;
9542
9543 switch (inst.operands[1].shift_kind)
9544 {
9545 case SHIFT_LSL:
9546 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
9547 break;
9548 case SHIFT_ASR:
9549 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
9550 break;
9551 case SHIFT_LSR:
9552 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
9553 break;
9554 case SHIFT_ROR:
9555 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
9556 break;
9557 default:
9558 abort ();
9559 }
9560
9561 inst.instruction = opcode;
9562 if (narrow)
9563 {
9564 inst.instruction |= inst.operands[0].reg;
9565 inst.instruction |= inst.operands[1].imm << 3;
9566 }
9567 else
9568 {
9569 if (flags)
9570 inst.instruction |= CONDS_BIT;
9571
9572 inst.instruction |= inst.operands[0].reg << 8;
9573 inst.instruction |= inst.operands[1].reg << 16;
9574 inst.instruction |= inst.operands[1].imm;
9575 }
9576 }
9577 else if (!narrow)
9578 {
9579 /* Some mov with immediate shift have narrow variants.
9580 Register shifts are handled above. */
9581 if (low_regs && inst.operands[1].shifted
9582 && (inst.instruction == T_MNEM_mov
9583 || inst.instruction == T_MNEM_movs))
9584 {
9585 if (current_it_mask)
9586 narrow = (inst.instruction == T_MNEM_mov);
9587 else
9588 narrow = (inst.instruction == T_MNEM_movs);
9589 }
9590
9591 if (narrow)
9592 {
9593 switch (inst.operands[1].shift_kind)
9594 {
9595 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9596 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9597 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9598 default: narrow = FALSE; break;
9599 }
9600 }
9601
9602 if (narrow)
9603 {
9604 inst.instruction |= inst.operands[0].reg;
9605 inst.instruction |= inst.operands[1].reg << 3;
9606 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9607 }
9608 else
9609 {
9610 inst.instruction = THUMB_OP32 (inst.instruction);
9611 inst.instruction |= inst.operands[0].reg << r0off;
9612 encode_thumb32_shifted_operand (1);
9613 }
9614 }
9615 else
9616 switch (inst.instruction)
9617 {
9618 case T_MNEM_mov:
9619 inst.instruction = T_OPCODE_MOV_HR;
9620 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9621 inst.instruction |= (inst.operands[0].reg & 0x7);
9622 inst.instruction |= inst.operands[1].reg << 3;
9623 break;
9624
9625 case T_MNEM_movs:
9626 /* We know we have low registers at this point.
9627 Generate ADD Rd, Rs, #0. */
9628 inst.instruction = T_OPCODE_ADD_I3;
9629 inst.instruction |= inst.operands[0].reg;
9630 inst.instruction |= inst.operands[1].reg << 3;
9631 break;
9632
9633 case T_MNEM_cmp:
9634 if (low_regs)
9635 {
9636 inst.instruction = T_OPCODE_CMP_LR;
9637 inst.instruction |= inst.operands[0].reg;
9638 inst.instruction |= inst.operands[1].reg << 3;
9639 }
9640 else
9641 {
9642 inst.instruction = T_OPCODE_CMP_HR;
9643 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9644 inst.instruction |= (inst.operands[0].reg & 0x7);
9645 inst.instruction |= inst.operands[1].reg << 3;
9646 }
9647 break;
9648 }
9649 return;
9650 }
9651
9652 inst.instruction = THUMB_OP16 (inst.instruction);
9653 if (inst.operands[1].isreg)
9654 {
9655 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9656 {
9657 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9658 since a MOV instruction produces unpredictable results. */
9659 if (inst.instruction == T_OPCODE_MOV_I8)
9660 inst.instruction = T_OPCODE_ADD_I3;
9661 else
9662 inst.instruction = T_OPCODE_CMP_LR;
9663
9664 inst.instruction |= inst.operands[0].reg;
9665 inst.instruction |= inst.operands[1].reg << 3;
9666 }
9667 else
9668 {
9669 if (inst.instruction == T_OPCODE_MOV_I8)
9670 inst.instruction = T_OPCODE_MOV_HR;
9671 else
9672 inst.instruction = T_OPCODE_CMP_HR;
9673 do_t_cpy ();
9674 }
9675 }
9676 else
9677 {
9678 constraint (inst.operands[0].reg > 7,
9679 _("only lo regs allowed with immediate"));
9680 inst.instruction |= inst.operands[0].reg << 8;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9682 }
9683 }
9684
9685 static void
9686 do_t_mov16 (void)
9687 {
9688 bfd_vma imm;
9689 bfd_boolean top;
9690
9691 top = (inst.instruction & 0x00800000) != 0;
9692 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9693 {
9694 constraint (top, _(":lower16: not allowed this instruction"));
9695 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9696 }
9697 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9698 {
9699 constraint (!top, _(":upper16: not allowed this instruction"));
9700 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9701 }
9702
9703 inst.instruction |= inst.operands[0].reg << 8;
9704 if (inst.reloc.type == BFD_RELOC_UNUSED)
9705 {
9706 imm = inst.reloc.exp.X_add_number;
9707 inst.instruction |= (imm & 0xf000) << 4;
9708 inst.instruction |= (imm & 0x0800) << 15;
9709 inst.instruction |= (imm & 0x0700) << 4;
9710 inst.instruction |= (imm & 0x00ff);
9711 }
9712 }
9713
9714 static void
9715 do_t_mvn_tst (void)
9716 {
9717 if (unified_syntax)
9718 {
9719 int r0off = (inst.instruction == T_MNEM_mvn
9720 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9721 bfd_boolean narrow;
9722
9723 if (inst.size_req == 4
9724 || inst.instruction > 0xffff
9725 || inst.operands[1].shifted
9726 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9727 narrow = FALSE;
9728 else if (inst.instruction == T_MNEM_cmn)
9729 narrow = TRUE;
9730 else if (THUMB_SETS_FLAGS (inst.instruction))
9731 narrow = (current_it_mask == 0);
9732 else
9733 narrow = (current_it_mask != 0);
9734
9735 if (!inst.operands[1].isreg)
9736 {
9737 /* For an immediate, we always generate a 32-bit opcode;
9738 section relaxation will shrink it later if possible. */
9739 if (inst.instruction < 0xffff)
9740 inst.instruction = THUMB_OP32 (inst.instruction);
9741 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9742 inst.instruction |= inst.operands[0].reg << r0off;
9743 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9744 }
9745 else
9746 {
9747 /* See if we can do this with a 16-bit instruction. */
9748 if (narrow)
9749 {
9750 inst.instruction = THUMB_OP16 (inst.instruction);
9751 inst.instruction |= inst.operands[0].reg;
9752 inst.instruction |= inst.operands[1].reg << 3;
9753 }
9754 else
9755 {
9756 constraint (inst.operands[1].shifted
9757 && inst.operands[1].immisreg,
9758 _("shift must be constant"));
9759 if (inst.instruction < 0xffff)
9760 inst.instruction = THUMB_OP32 (inst.instruction);
9761 inst.instruction |= inst.operands[0].reg << r0off;
9762 encode_thumb32_shifted_operand (1);
9763 }
9764 }
9765 }
9766 else
9767 {
9768 constraint (inst.instruction > 0xffff
9769 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9770 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9771 _("unshifted register required"));
9772 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9773 BAD_HIREG);
9774
9775 inst.instruction = THUMB_OP16 (inst.instruction);
9776 inst.instruction |= inst.operands[0].reg;
9777 inst.instruction |= inst.operands[1].reg << 3;
9778 }
9779 }
9780
9781 static void
9782 do_t_mrs (void)
9783 {
9784 int flags;
9785
9786 if (do_vfp_nsyn_mrs () == SUCCESS)
9787 return;
9788
9789 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9790 if (flags == 0)
9791 {
9792 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9793 _("selected processor does not support "
9794 "requested special purpose register"));
9795 }
9796 else
9797 {
9798 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9799 _("selected processor does not support "
9800 "requested special purpose register %x"));
9801 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9802 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9803 _("'CPSR' or 'SPSR' expected"));
9804 }
9805
9806 inst.instruction |= inst.operands[0].reg << 8;
9807 inst.instruction |= (flags & SPSR_BIT) >> 2;
9808 inst.instruction |= inst.operands[1].imm & 0xff;
9809 }
9810
9811 static void
9812 do_t_msr (void)
9813 {
9814 int flags;
9815
9816 if (do_vfp_nsyn_msr () == SUCCESS)
9817 return;
9818
9819 constraint (!inst.operands[1].isreg,
9820 _("Thumb encoding does not support an immediate here"));
9821 flags = inst.operands[0].imm;
9822 if (flags & ~0xff)
9823 {
9824 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9825 _("selected processor does not support "
9826 "requested special purpose register"));
9827 }
9828 else
9829 {
9830 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9831 _("selected processor does not support "
9832 "requested special purpose register"));
9833 flags |= PSR_f;
9834 }
9835 inst.instruction |= (flags & SPSR_BIT) >> 2;
9836 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9837 inst.instruction |= (flags & 0xff);
9838 inst.instruction |= inst.operands[1].reg << 16;
9839 }
9840
9841 static void
9842 do_t_mul (void)
9843 {
9844 if (!inst.operands[2].present)
9845 inst.operands[2].reg = inst.operands[0].reg;
9846
9847 /* There is no 32-bit MULS and no 16-bit MUL. */
9848 if (unified_syntax && inst.instruction == T_MNEM_mul)
9849 {
9850 inst.instruction = THUMB_OP32 (inst.instruction);
9851 inst.instruction |= inst.operands[0].reg << 8;
9852 inst.instruction |= inst.operands[1].reg << 16;
9853 inst.instruction |= inst.operands[2].reg << 0;
9854 }
9855 else
9856 {
9857 constraint (!unified_syntax
9858 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9859 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9860 BAD_HIREG);
9861
9862 inst.instruction = THUMB_OP16 (inst.instruction);
9863 inst.instruction |= inst.operands[0].reg;
9864
9865 if (inst.operands[0].reg == inst.operands[1].reg)
9866 inst.instruction |= inst.operands[2].reg << 3;
9867 else if (inst.operands[0].reg == inst.operands[2].reg)
9868 inst.instruction |= inst.operands[1].reg << 3;
9869 else
9870 constraint (1, _("dest must overlap one source register"));
9871 }
9872 }
9873
9874 static void
9875 do_t_mull (void)
9876 {
9877 inst.instruction |= inst.operands[0].reg << 12;
9878 inst.instruction |= inst.operands[1].reg << 8;
9879 inst.instruction |= inst.operands[2].reg << 16;
9880 inst.instruction |= inst.operands[3].reg;
9881
9882 if (inst.operands[0].reg == inst.operands[1].reg)
9883 as_tsktsk (_("rdhi and rdlo must be different"));
9884 }
9885
9886 static void
9887 do_t_nop (void)
9888 {
9889 if (unified_syntax)
9890 {
9891 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9892 {
9893 inst.instruction = THUMB_OP32 (inst.instruction);
9894 inst.instruction |= inst.operands[0].imm;
9895 }
9896 else
9897 {
9898 inst.instruction = THUMB_OP16 (inst.instruction);
9899 inst.instruction |= inst.operands[0].imm << 4;
9900 }
9901 }
9902 else
9903 {
9904 constraint (inst.operands[0].present,
9905 _("Thumb does not support NOP with hints"));
9906 inst.instruction = 0x46c0;
9907 }
9908 }
9909
9910 static void
9911 do_t_neg (void)
9912 {
9913 if (unified_syntax)
9914 {
9915 bfd_boolean narrow;
9916
9917 if (THUMB_SETS_FLAGS (inst.instruction))
9918 narrow = (current_it_mask == 0);
9919 else
9920 narrow = (current_it_mask != 0);
9921 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9922 narrow = FALSE;
9923 if (inst.size_req == 4)
9924 narrow = FALSE;
9925
9926 if (!narrow)
9927 {
9928 inst.instruction = THUMB_OP32 (inst.instruction);
9929 inst.instruction |= inst.operands[0].reg << 8;
9930 inst.instruction |= inst.operands[1].reg << 16;
9931 }
9932 else
9933 {
9934 inst.instruction = THUMB_OP16 (inst.instruction);
9935 inst.instruction |= inst.operands[0].reg;
9936 inst.instruction |= inst.operands[1].reg << 3;
9937 }
9938 }
9939 else
9940 {
9941 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9942 BAD_HIREG);
9943 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9944
9945 inst.instruction = THUMB_OP16 (inst.instruction);
9946 inst.instruction |= inst.operands[0].reg;
9947 inst.instruction |= inst.operands[1].reg << 3;
9948 }
9949 }
9950
9951 static void
9952 do_t_pkhbt (void)
9953 {
9954 inst.instruction |= inst.operands[0].reg << 8;
9955 inst.instruction |= inst.operands[1].reg << 16;
9956 inst.instruction |= inst.operands[2].reg;
9957 if (inst.operands[3].present)
9958 {
9959 unsigned int val = inst.reloc.exp.X_add_number;
9960 constraint (inst.reloc.exp.X_op != O_constant,
9961 _("expression too complex"));
9962 inst.instruction |= (val & 0x1c) << 10;
9963 inst.instruction |= (val & 0x03) << 6;
9964 }
9965 }
9966
9967 static void
9968 do_t_pkhtb (void)
9969 {
9970 if (!inst.operands[3].present)
9971 inst.instruction &= ~0x00000020;
9972 do_t_pkhbt ();
9973 }
9974
9975 static void
9976 do_t_pld (void)
9977 {
9978 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9979 }
9980
9981 static void
9982 do_t_push_pop (void)
9983 {
9984 unsigned mask;
9985
9986 constraint (inst.operands[0].writeback,
9987 _("push/pop do not support {reglist}^"));
9988 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9989 _("expression too complex"));
9990
9991 mask = inst.operands[0].imm;
9992 if ((mask & ~0xff) == 0)
9993 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
9994 else if ((inst.instruction == T_MNEM_push
9995 && (mask & ~0xff) == 1 << REG_LR)
9996 || (inst.instruction == T_MNEM_pop
9997 && (mask & ~0xff) == 1 << REG_PC))
9998 {
9999 inst.instruction = THUMB_OP16 (inst.instruction);
10000 inst.instruction |= THUMB_PP_PC_LR;
10001 inst.instruction |= mask & 0xff;
10002 }
10003 else if (unified_syntax)
10004 {
10005 inst.instruction = THUMB_OP32 (inst.instruction);
10006 encode_thumb2_ldmstm (13, mask, TRUE);
10007 }
10008 else
10009 {
10010 inst.error = _("invalid register list to push/pop instruction");
10011 return;
10012 }
10013 }
10014
10015 static void
10016 do_t_rbit (void)
10017 {
10018 inst.instruction |= inst.operands[0].reg << 8;
10019 inst.instruction |= inst.operands[1].reg << 16;
10020 }
10021
10022 static void
10023 do_t_rev (void)
10024 {
10025 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10026 && inst.size_req != 4)
10027 {
10028 inst.instruction = THUMB_OP16 (inst.instruction);
10029 inst.instruction |= inst.operands[0].reg;
10030 inst.instruction |= inst.operands[1].reg << 3;
10031 }
10032 else if (unified_syntax)
10033 {
10034 inst.instruction = THUMB_OP32 (inst.instruction);
10035 inst.instruction |= inst.operands[0].reg << 8;
10036 inst.instruction |= inst.operands[1].reg << 16;
10037 inst.instruction |= inst.operands[1].reg;
10038 }
10039 else
10040 inst.error = BAD_HIREG;
10041 }
10042
10043 static void
10044 do_t_rsb (void)
10045 {
10046 int Rd, Rs;
10047
10048 Rd = inst.operands[0].reg;
10049 Rs = (inst.operands[1].present
10050 ? inst.operands[1].reg /* Rd, Rs, foo */
10051 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
10052
10053 inst.instruction |= Rd << 8;
10054 inst.instruction |= Rs << 16;
10055 if (!inst.operands[2].isreg)
10056 {
10057 bfd_boolean narrow;
10058
10059 if ((inst.instruction & 0x00100000) != 0)
10060 narrow = (current_it_mask == 0);
10061 else
10062 narrow = (current_it_mask != 0);
10063
10064 if (Rd > 7 || Rs > 7)
10065 narrow = FALSE;
10066
10067 if (inst.size_req == 4 || !unified_syntax)
10068 narrow = FALSE;
10069
10070 if (inst.reloc.exp.X_op != O_constant
10071 || inst.reloc.exp.X_add_number != 0)
10072 narrow = FALSE;
10073
10074 /* Turn rsb #0 into 16-bit neg. We should probably do this via
10075 relaxation, but it doesn't seem worth the hassle. */
10076 if (narrow)
10077 {
10078 inst.reloc.type = BFD_RELOC_UNUSED;
10079 inst.instruction = THUMB_OP16 (T_MNEM_negs);
10080 inst.instruction |= Rs << 3;
10081 inst.instruction |= Rd;
10082 }
10083 else
10084 {
10085 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
10086 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
10087 }
10088 }
10089 else
10090 encode_thumb32_shifted_operand (2);
10091 }
10092
10093 static void
10094 do_t_setend (void)
10095 {
10096 constraint (current_it_mask, BAD_NOT_IT);
10097 if (inst.operands[0].imm)
10098 inst.instruction |= 0x8;
10099 }
10100
10101 static void
10102 do_t_shift (void)
10103 {
10104 if (!inst.operands[1].present)
10105 inst.operands[1].reg = inst.operands[0].reg;
10106
10107 if (unified_syntax)
10108 {
10109 bfd_boolean narrow;
10110 int shift_kind;
10111
10112 switch (inst.instruction)
10113 {
10114 case T_MNEM_asr:
10115 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
10116 case T_MNEM_lsl:
10117 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
10118 case T_MNEM_lsr:
10119 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
10120 case T_MNEM_ror:
10121 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
10122 default: abort ();
10123 }
10124
10125 if (THUMB_SETS_FLAGS (inst.instruction))
10126 narrow = (current_it_mask == 0);
10127 else
10128 narrow = (current_it_mask != 0);
10129 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
10130 narrow = FALSE;
10131 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
10132 narrow = FALSE;
10133 if (inst.operands[2].isreg
10134 && (inst.operands[1].reg != inst.operands[0].reg
10135 || inst.operands[2].reg > 7))
10136 narrow = FALSE;
10137 if (inst.size_req == 4)
10138 narrow = FALSE;
10139
10140 if (!narrow)
10141 {
10142 if (inst.operands[2].isreg)
10143 {
10144 inst.instruction = THUMB_OP32 (inst.instruction);
10145 inst.instruction |= inst.operands[0].reg << 8;
10146 inst.instruction |= inst.operands[1].reg << 16;
10147 inst.instruction |= inst.operands[2].reg;
10148 }
10149 else
10150 {
10151 inst.operands[1].shifted = 1;
10152 inst.operands[1].shift_kind = shift_kind;
10153 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
10154 ? T_MNEM_movs : T_MNEM_mov);
10155 inst.instruction |= inst.operands[0].reg << 8;
10156 encode_thumb32_shifted_operand (1);
10157 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
10158 inst.reloc.type = BFD_RELOC_UNUSED;
10159 }
10160 }
10161 else
10162 {
10163 if (inst.operands[2].isreg)
10164 {
10165 switch (shift_kind)
10166 {
10167 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
10168 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
10169 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
10170 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
10171 default: abort ();
10172 }
10173
10174 inst.instruction |= inst.operands[0].reg;
10175 inst.instruction |= inst.operands[2].reg << 3;
10176 }
10177 else
10178 {
10179 switch (shift_kind)
10180 {
10181 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
10182 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
10183 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
10184 default: abort ();
10185 }
10186 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10187 inst.instruction |= inst.operands[0].reg;
10188 inst.instruction |= inst.operands[1].reg << 3;
10189 }
10190 }
10191 }
10192 else
10193 {
10194 constraint (inst.operands[0].reg > 7
10195 || inst.operands[1].reg > 7, BAD_HIREG);
10196 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10197
10198 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
10199 {
10200 constraint (inst.operands[2].reg > 7, BAD_HIREG);
10201 constraint (inst.operands[0].reg != inst.operands[1].reg,
10202 _("source1 and dest must be same register"));
10203
10204 switch (inst.instruction)
10205 {
10206 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
10207 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
10208 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
10209 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
10210 default: abort ();
10211 }
10212
10213 inst.instruction |= inst.operands[0].reg;
10214 inst.instruction |= inst.operands[2].reg << 3;
10215 }
10216 else
10217 {
10218 switch (inst.instruction)
10219 {
10220 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
10221 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
10222 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
10223 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
10224 default: abort ();
10225 }
10226 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
10227 inst.instruction |= inst.operands[0].reg;
10228 inst.instruction |= inst.operands[1].reg << 3;
10229 }
10230 }
10231 }
10232
10233 static void
10234 do_t_simd (void)
10235 {
10236 inst.instruction |= inst.operands[0].reg << 8;
10237 inst.instruction |= inst.operands[1].reg << 16;
10238 inst.instruction |= inst.operands[2].reg;
10239 }
10240
10241 static void
10242 do_t_smc (void)
10243 {
10244 unsigned int value = inst.reloc.exp.X_add_number;
10245 constraint (inst.reloc.exp.X_op != O_constant,
10246 _("expression too complex"));
10247 inst.reloc.type = BFD_RELOC_UNUSED;
10248 inst.instruction |= (value & 0xf000) >> 12;
10249 inst.instruction |= (value & 0x0ff0);
10250 inst.instruction |= (value & 0x000f) << 16;
10251 }
10252
10253 static void
10254 do_t_ssat (void)
10255 {
10256 inst.instruction |= inst.operands[0].reg << 8;
10257 inst.instruction |= inst.operands[1].imm - 1;
10258 inst.instruction |= inst.operands[2].reg << 16;
10259
10260 if (inst.operands[3].present)
10261 {
10262 constraint (inst.reloc.exp.X_op != O_constant,
10263 _("expression too complex"));
10264
10265 if (inst.reloc.exp.X_add_number != 0)
10266 {
10267 if (inst.operands[3].shift_kind == SHIFT_ASR)
10268 inst.instruction |= 0x00200000; /* sh bit */
10269 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10270 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10271 }
10272 inst.reloc.type = BFD_RELOC_UNUSED;
10273 }
10274 }
10275
10276 static void
10277 do_t_ssat16 (void)
10278 {
10279 inst.instruction |= inst.operands[0].reg << 8;
10280 inst.instruction |= inst.operands[1].imm - 1;
10281 inst.instruction |= inst.operands[2].reg << 16;
10282 }
10283
10284 static void
10285 do_t_strex (void)
10286 {
10287 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10288 || inst.operands[2].postind || inst.operands[2].writeback
10289 || inst.operands[2].immisreg || inst.operands[2].shifted
10290 || inst.operands[2].negative,
10291 BAD_ADDR_MODE);
10292
10293 inst.instruction |= inst.operands[0].reg << 8;
10294 inst.instruction |= inst.operands[1].reg << 12;
10295 inst.instruction |= inst.operands[2].reg << 16;
10296 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10297 }
10298
10299 static void
10300 do_t_strexd (void)
10301 {
10302 if (!inst.operands[2].present)
10303 inst.operands[2].reg = inst.operands[1].reg + 1;
10304
10305 constraint (inst.operands[0].reg == inst.operands[1].reg
10306 || inst.operands[0].reg == inst.operands[2].reg
10307 || inst.operands[0].reg == inst.operands[3].reg
10308 || inst.operands[1].reg == inst.operands[2].reg,
10309 BAD_OVERLAP);
10310
10311 inst.instruction |= inst.operands[0].reg;
10312 inst.instruction |= inst.operands[1].reg << 12;
10313 inst.instruction |= inst.operands[2].reg << 8;
10314 inst.instruction |= inst.operands[3].reg << 16;
10315 }
10316
10317 static void
10318 do_t_sxtah (void)
10319 {
10320 inst.instruction |= inst.operands[0].reg << 8;
10321 inst.instruction |= inst.operands[1].reg << 16;
10322 inst.instruction |= inst.operands[2].reg;
10323 inst.instruction |= inst.operands[3].imm << 4;
10324 }
10325
10326 static void
10327 do_t_sxth (void)
10328 {
10329 if (inst.instruction <= 0xffff && inst.size_req != 4
10330 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10331 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10332 {
10333 inst.instruction = THUMB_OP16 (inst.instruction);
10334 inst.instruction |= inst.operands[0].reg;
10335 inst.instruction |= inst.operands[1].reg << 3;
10336 }
10337 else if (unified_syntax)
10338 {
10339 if (inst.instruction <= 0xffff)
10340 inst.instruction = THUMB_OP32 (inst.instruction);
10341 inst.instruction |= inst.operands[0].reg << 8;
10342 inst.instruction |= inst.operands[1].reg;
10343 inst.instruction |= inst.operands[2].imm << 4;
10344 }
10345 else
10346 {
10347 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10348 _("Thumb encoding does not support rotation"));
10349 constraint (1, BAD_HIREG);
10350 }
10351 }
10352
10353 static void
10354 do_t_swi (void)
10355 {
10356 inst.reloc.type = BFD_RELOC_ARM_SWI;
10357 }
10358
10359 static void
10360 do_t_tb (void)
10361 {
10362 int half;
10363
10364 half = (inst.instruction & 0x10) != 0;
10365 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10366 constraint (inst.operands[0].immisreg,
10367 _("instruction requires register index"));
10368 constraint (inst.operands[0].imm == 15,
10369 _("PC is not a valid index register"));
10370 constraint (!half && inst.operands[0].shifted,
10371 _("instruction does not allow shifted index"));
10372 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10373 }
10374
10375 static void
10376 do_t_usat (void)
10377 {
10378 inst.instruction |= inst.operands[0].reg << 8;
10379 inst.instruction |= inst.operands[1].imm;
10380 inst.instruction |= inst.operands[2].reg << 16;
10381
10382 if (inst.operands[3].present)
10383 {
10384 constraint (inst.reloc.exp.X_op != O_constant,
10385 _("expression too complex"));
10386 if (inst.reloc.exp.X_add_number != 0)
10387 {
10388 if (inst.operands[3].shift_kind == SHIFT_ASR)
10389 inst.instruction |= 0x00200000; /* sh bit */
10390
10391 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10392 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10393 }
10394 inst.reloc.type = BFD_RELOC_UNUSED;
10395 }
10396 }
10397
10398 static void
10399 do_t_usat16 (void)
10400 {
10401 inst.instruction |= inst.operands[0].reg << 8;
10402 inst.instruction |= inst.operands[1].imm;
10403 inst.instruction |= inst.operands[2].reg << 16;
10404 }
10405
10406 /* Neon instruction encoder helpers. */
10407
10408 /* Encodings for the different types for various Neon opcodes. */
10409
10410 /* An "invalid" code for the following tables. */
10411 #define N_INV -1u
10412
10413 struct neon_tab_entry
10414 {
10415 unsigned integer;
10416 unsigned float_or_poly;
10417 unsigned scalar_or_imm;
10418 };
10419
10420 /* Map overloaded Neon opcodes to their respective encodings. */
10421 #define NEON_ENC_TAB \
10422 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10423 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10424 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10425 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10426 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10427 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10428 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10429 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10430 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10431 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10432 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10433 /* Register variants of the following two instructions are encoded as
10434 vcge / vcgt with the operands reversed. */ \
10435 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
10436 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
10437 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10438 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10439 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10440 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10441 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10442 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10443 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10444 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10445 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10446 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10447 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10448 X(vshl, 0x0000400, N_INV, 0x0800510), \
10449 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10450 X(vand, 0x0000110, N_INV, 0x0800030), \
10451 X(vbic, 0x0100110, N_INV, 0x0800030), \
10452 X(veor, 0x1000110, N_INV, N_INV), \
10453 X(vorn, 0x0300110, N_INV, 0x0800010), \
10454 X(vorr, 0x0200110, N_INV, 0x0800010), \
10455 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10456 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10457 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10458 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10459 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10460 X(vst1, 0x0000000, 0x0800000, N_INV), \
10461 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10462 X(vst2, 0x0000100, 0x0800100, N_INV), \
10463 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10464 X(vst3, 0x0000200, 0x0800200, N_INV), \
10465 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10466 X(vst4, 0x0000300, 0x0800300, N_INV), \
10467 X(vmovn, 0x1b20200, N_INV, N_INV), \
10468 X(vtrn, 0x1b20080, N_INV, N_INV), \
10469 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10470 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10471 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10472 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10473 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10474 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10475 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10476 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10477 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10478
10479 enum neon_opc
10480 {
10481 #define X(OPC,I,F,S) N_MNEM_##OPC
10482 NEON_ENC_TAB
10483 #undef X
10484 };
10485
10486 static const struct neon_tab_entry neon_enc_tab[] =
10487 {
10488 #define X(OPC,I,F,S) { (I), (F), (S) }
10489 NEON_ENC_TAB
10490 #undef X
10491 };
10492
10493 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10494 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10495 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10496 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10497 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10498 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10499 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10500 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10501 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10502 #define NEON_ENC_SINGLE(X) \
10503 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10504 #define NEON_ENC_DOUBLE(X) \
10505 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10506
10507 /* Define shapes for instruction operands. The following mnemonic characters
10508 are used in this table:
10509
10510 F - VFP S<n> register
10511 D - Neon D<n> register
10512 Q - Neon Q<n> register
10513 I - Immediate
10514 S - Scalar
10515 R - ARM register
10516 L - D<n> register list
10517
10518 This table is used to generate various data:
10519 - enumerations of the form NS_DDR to be used as arguments to
10520 neon_select_shape.
10521 - a table classifying shapes into single, double, quad, mixed.
10522 - a table used to drive neon_select_shape. */
10523
10524 #define NEON_SHAPE_DEF \
10525 X(3, (D, D, D), DOUBLE), \
10526 X(3, (Q, Q, Q), QUAD), \
10527 X(3, (D, D, I), DOUBLE), \
10528 X(3, (Q, Q, I), QUAD), \
10529 X(3, (D, D, S), DOUBLE), \
10530 X(3, (Q, Q, S), QUAD), \
10531 X(2, (D, D), DOUBLE), \
10532 X(2, (Q, Q), QUAD), \
10533 X(2, (D, S), DOUBLE), \
10534 X(2, (Q, S), QUAD), \
10535 X(2, (D, R), DOUBLE), \
10536 X(2, (Q, R), QUAD), \
10537 X(2, (D, I), DOUBLE), \
10538 X(2, (Q, I), QUAD), \
10539 X(3, (D, L, D), DOUBLE), \
10540 X(2, (D, Q), MIXED), \
10541 X(2, (Q, D), MIXED), \
10542 X(3, (D, Q, I), MIXED), \
10543 X(3, (Q, D, I), MIXED), \
10544 X(3, (Q, D, D), MIXED), \
10545 X(3, (D, Q, Q), MIXED), \
10546 X(3, (Q, Q, D), MIXED), \
10547 X(3, (Q, D, S), MIXED), \
10548 X(3, (D, Q, S), MIXED), \
10549 X(4, (D, D, D, I), DOUBLE), \
10550 X(4, (Q, Q, Q, I), QUAD), \
10551 X(2, (F, F), SINGLE), \
10552 X(3, (F, F, F), SINGLE), \
10553 X(2, (F, I), SINGLE), \
10554 X(2, (F, D), MIXED), \
10555 X(2, (D, F), MIXED), \
10556 X(3, (F, F, I), MIXED), \
10557 X(4, (R, R, F, F), SINGLE), \
10558 X(4, (F, F, R, R), SINGLE), \
10559 X(3, (D, R, R), DOUBLE), \
10560 X(3, (R, R, D), DOUBLE), \
10561 X(2, (S, R), SINGLE), \
10562 X(2, (R, S), SINGLE), \
10563 X(2, (F, R), SINGLE), \
10564 X(2, (R, F), SINGLE)
10565
10566 #define S2(A,B) NS_##A##B
10567 #define S3(A,B,C) NS_##A##B##C
10568 #define S4(A,B,C,D) NS_##A##B##C##D
10569
10570 #define X(N, L, C) S##N L
10571
10572 enum neon_shape
10573 {
10574 NEON_SHAPE_DEF,
10575 NS_NULL
10576 };
10577
10578 #undef X
10579 #undef S2
10580 #undef S3
10581 #undef S4
10582
10583 enum neon_shape_class
10584 {
10585 SC_SINGLE,
10586 SC_DOUBLE,
10587 SC_QUAD,
10588 SC_MIXED
10589 };
10590
10591 #define X(N, L, C) SC_##C
10592
10593 static enum neon_shape_class neon_shape_class[] =
10594 {
10595 NEON_SHAPE_DEF
10596 };
10597
10598 #undef X
10599
10600 enum neon_shape_el
10601 {
10602 SE_F,
10603 SE_D,
10604 SE_Q,
10605 SE_I,
10606 SE_S,
10607 SE_R,
10608 SE_L
10609 };
10610
10611 /* Register widths of above. */
10612 static unsigned neon_shape_el_size[] =
10613 {
10614 32,
10615 64,
10616 128,
10617 0,
10618 32,
10619 32,
10620 0
10621 };
10622
10623 struct neon_shape_info
10624 {
10625 unsigned els;
10626 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10627 };
10628
10629 #define S2(A,B) { SE_##A, SE_##B }
10630 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10631 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10632
10633 #define X(N, L, C) { N, S##N L }
10634
10635 static struct neon_shape_info neon_shape_tab[] =
10636 {
10637 NEON_SHAPE_DEF
10638 };
10639
10640 #undef X
10641 #undef S2
10642 #undef S3
10643 #undef S4
10644
10645 /* Bit masks used in type checking given instructions.
10646 'N_EQK' means the type must be the same as (or based on in some way) the key
10647 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10648 set, various other bits can be set as well in order to modify the meaning of
10649 the type constraint. */
10650
10651 enum neon_type_mask
10652 {
10653 N_S8 = 0x000001,
10654 N_S16 = 0x000002,
10655 N_S32 = 0x000004,
10656 N_S64 = 0x000008,
10657 N_U8 = 0x000010,
10658 N_U16 = 0x000020,
10659 N_U32 = 0x000040,
10660 N_U64 = 0x000080,
10661 N_I8 = 0x000100,
10662 N_I16 = 0x000200,
10663 N_I32 = 0x000400,
10664 N_I64 = 0x000800,
10665 N_8 = 0x001000,
10666 N_16 = 0x002000,
10667 N_32 = 0x004000,
10668 N_64 = 0x008000,
10669 N_P8 = 0x010000,
10670 N_P16 = 0x020000,
10671 N_F32 = 0x040000,
10672 N_F64 = 0x080000,
10673 N_KEY = 0x100000, /* key element (main type specifier). */
10674 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10675 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
10676 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10677 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10678 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10679 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10680 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10681 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
10682 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10683 N_UTYP = 0,
10684 N_MAX_NONSPECIAL = N_F64
10685 };
10686
10687 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10688
10689 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10690 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10691 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10692 #define N_SUF_32 (N_SU_32 | N_F32)
10693 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10694 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10695
10696 /* Pass this as the first type argument to neon_check_type to ignore types
10697 altogether. */
10698 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10699
10700 /* Select a "shape" for the current instruction (describing register types or
10701 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10702 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10703 function of operand parsing, so this function doesn't need to be called.
10704 Shapes should be listed in order of decreasing length. */
10705
10706 static enum neon_shape
10707 neon_select_shape (enum neon_shape shape, ...)
10708 {
10709 va_list ap;
10710 enum neon_shape first_shape = shape;
10711
10712 /* Fix missing optional operands. FIXME: we don't know at this point how
10713 many arguments we should have, so this makes the assumption that we have
10714 > 1. This is true of all current Neon opcodes, I think, but may not be
10715 true in the future. */
10716 if (!inst.operands[1].present)
10717 inst.operands[1] = inst.operands[0];
10718
10719 va_start (ap, shape);
10720
10721 for (; shape != NS_NULL; shape = va_arg (ap, int))
10722 {
10723 unsigned j;
10724 int matches = 1;
10725
10726 for (j = 0; j < neon_shape_tab[shape].els; j++)
10727 {
10728 if (!inst.operands[j].present)
10729 {
10730 matches = 0;
10731 break;
10732 }
10733
10734 switch (neon_shape_tab[shape].el[j])
10735 {
10736 case SE_F:
10737 if (!(inst.operands[j].isreg
10738 && inst.operands[j].isvec
10739 && inst.operands[j].issingle
10740 && !inst.operands[j].isquad))
10741 matches = 0;
10742 break;
10743
10744 case SE_D:
10745 if (!(inst.operands[j].isreg
10746 && inst.operands[j].isvec
10747 && !inst.operands[j].isquad
10748 && !inst.operands[j].issingle))
10749 matches = 0;
10750 break;
10751
10752 case SE_R:
10753 if (!(inst.operands[j].isreg
10754 && !inst.operands[j].isvec))
10755 matches = 0;
10756 break;
10757
10758 case SE_Q:
10759 if (!(inst.operands[j].isreg
10760 && inst.operands[j].isvec
10761 && inst.operands[j].isquad
10762 && !inst.operands[j].issingle))
10763 matches = 0;
10764 break;
10765
10766 case SE_I:
10767 if (!(!inst.operands[j].isreg
10768 && !inst.operands[j].isscalar))
10769 matches = 0;
10770 break;
10771
10772 case SE_S:
10773 if (!(!inst.operands[j].isreg
10774 && inst.operands[j].isscalar))
10775 matches = 0;
10776 break;
10777
10778 case SE_L:
10779 break;
10780 }
10781 }
10782 if (matches)
10783 break;
10784 }
10785
10786 va_end (ap);
10787
10788 if (shape == NS_NULL && first_shape != NS_NULL)
10789 first_error (_("invalid instruction shape"));
10790
10791 return shape;
10792 }
10793
10794 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10795 means the Q bit should be set). */
10796
10797 static int
10798 neon_quad (enum neon_shape shape)
10799 {
10800 return neon_shape_class[shape] == SC_QUAD;
10801 }
10802
10803 static void
10804 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10805 unsigned *g_size)
10806 {
10807 /* Allow modification to be made to types which are constrained to be
10808 based on the key element, based on bits set alongside N_EQK. */
10809 if ((typebits & N_EQK) != 0)
10810 {
10811 if ((typebits & N_HLF) != 0)
10812 *g_size /= 2;
10813 else if ((typebits & N_DBL) != 0)
10814 *g_size *= 2;
10815 if ((typebits & N_SGN) != 0)
10816 *g_type = NT_signed;
10817 else if ((typebits & N_UNS) != 0)
10818 *g_type = NT_unsigned;
10819 else if ((typebits & N_INT) != 0)
10820 *g_type = NT_integer;
10821 else if ((typebits & N_FLT) != 0)
10822 *g_type = NT_float;
10823 else if ((typebits & N_SIZ) != 0)
10824 *g_type = NT_untyped;
10825 }
10826 }
10827
10828 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10829 operand type, i.e. the single type specified in a Neon instruction when it
10830 is the only one given. */
10831
10832 static struct neon_type_el
10833 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10834 {
10835 struct neon_type_el dest = *key;
10836
10837 assert ((thisarg & N_EQK) != 0);
10838
10839 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10840
10841 return dest;
10842 }
10843
10844 /* Convert Neon type and size into compact bitmask representation. */
10845
10846 static enum neon_type_mask
10847 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10848 {
10849 switch (type)
10850 {
10851 case NT_untyped:
10852 switch (size)
10853 {
10854 case 8: return N_8;
10855 case 16: return N_16;
10856 case 32: return N_32;
10857 case 64: return N_64;
10858 default: ;
10859 }
10860 break;
10861
10862 case NT_integer:
10863 switch (size)
10864 {
10865 case 8: return N_I8;
10866 case 16: return N_I16;
10867 case 32: return N_I32;
10868 case 64: return N_I64;
10869 default: ;
10870 }
10871 break;
10872
10873 case NT_float:
10874 switch (size)
10875 {
10876 case 32: return N_F32;
10877 case 64: return N_F64;
10878 default: ;
10879 }
10880 break;
10881
10882 case NT_poly:
10883 switch (size)
10884 {
10885 case 8: return N_P8;
10886 case 16: return N_P16;
10887 default: ;
10888 }
10889 break;
10890
10891 case NT_signed:
10892 switch (size)
10893 {
10894 case 8: return N_S8;
10895 case 16: return N_S16;
10896 case 32: return N_S32;
10897 case 64: return N_S64;
10898 default: ;
10899 }
10900 break;
10901
10902 case NT_unsigned:
10903 switch (size)
10904 {
10905 case 8: return N_U8;
10906 case 16: return N_U16;
10907 case 32: return N_U32;
10908 case 64: return N_U64;
10909 default: ;
10910 }
10911 break;
10912
10913 default: ;
10914 }
10915
10916 return N_UTYP;
10917 }
10918
10919 /* Convert compact Neon bitmask type representation to a type and size. Only
10920 handles the case where a single bit is set in the mask. */
10921
10922 static int
10923 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10924 enum neon_type_mask mask)
10925 {
10926 if ((mask & N_EQK) != 0)
10927 return FAIL;
10928
10929 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10930 *size = 8;
10931 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10932 *size = 16;
10933 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10934 *size = 32;
10935 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10936 *size = 64;
10937 else
10938 return FAIL;
10939
10940 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10941 *type = NT_signed;
10942 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10943 *type = NT_unsigned;
10944 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10945 *type = NT_integer;
10946 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10947 *type = NT_untyped;
10948 else if ((mask & (N_P8 | N_P16)) != 0)
10949 *type = NT_poly;
10950 else if ((mask & (N_F32 | N_F64)) != 0)
10951 *type = NT_float;
10952 else
10953 return FAIL;
10954
10955 return SUCCESS;
10956 }
10957
10958 /* Modify a bitmask of allowed types. This is only needed for type
10959 relaxation. */
10960
10961 static unsigned
10962 modify_types_allowed (unsigned allowed, unsigned mods)
10963 {
10964 unsigned size;
10965 enum neon_el_type type;
10966 unsigned destmask;
10967 int i;
10968
10969 destmask = 0;
10970
10971 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10972 {
10973 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10974 {
10975 neon_modify_type_size (mods, &type, &size);
10976 destmask |= type_chk_of_el_type (type, size);
10977 }
10978 }
10979
10980 return destmask;
10981 }
10982
10983 /* Check type and return type classification.
10984 The manual states (paraphrase): If one datatype is given, it indicates the
10985 type given in:
10986 - the second operand, if there is one
10987 - the operand, if there is no second operand
10988 - the result, if there are no operands.
10989 This isn't quite good enough though, so we use a concept of a "key" datatype
10990 which is set on a per-instruction basis, which is the one which matters when
10991 only one data type is written.
10992 Note: this function has side-effects (e.g. filling in missing operands). All
10993 Neon instructions should call it before performing bit encoding. */
10994
10995 static struct neon_type_el
10996 neon_check_type (unsigned els, enum neon_shape ns, ...)
10997 {
10998 va_list ap;
10999 unsigned i, pass, key_el = 0;
11000 unsigned types[NEON_MAX_TYPE_ELS];
11001 enum neon_el_type k_type = NT_invtype;
11002 unsigned k_size = -1u;
11003 struct neon_type_el badtype = {NT_invtype, -1};
11004 unsigned key_allowed = 0;
11005
11006 /* Optional registers in Neon instructions are always (not) in operand 1.
11007 Fill in the missing operand here, if it was omitted. */
11008 if (els > 1 && !inst.operands[1].present)
11009 inst.operands[1] = inst.operands[0];
11010
11011 /* Suck up all the varargs. */
11012 va_start (ap, ns);
11013 for (i = 0; i < els; i++)
11014 {
11015 unsigned thisarg = va_arg (ap, unsigned);
11016 if (thisarg == N_IGNORE_TYPE)
11017 {
11018 va_end (ap);
11019 return badtype;
11020 }
11021 types[i] = thisarg;
11022 if ((thisarg & N_KEY) != 0)
11023 key_el = i;
11024 }
11025 va_end (ap);
11026
11027 if (inst.vectype.elems > 0)
11028 for (i = 0; i < els; i++)
11029 if (inst.operands[i].vectype.type != NT_invtype)
11030 {
11031 first_error (_("types specified in both the mnemonic and operands"));
11032 return badtype;
11033 }
11034
11035 /* Duplicate inst.vectype elements here as necessary.
11036 FIXME: No idea if this is exactly the same as the ARM assembler,
11037 particularly when an insn takes one register and one non-register
11038 operand. */
11039 if (inst.vectype.elems == 1 && els > 1)
11040 {
11041 unsigned j;
11042 inst.vectype.elems = els;
11043 inst.vectype.el[key_el] = inst.vectype.el[0];
11044 for (j = 0; j < els; j++)
11045 if (j != key_el)
11046 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11047 types[j]);
11048 }
11049 else if (inst.vectype.elems == 0 && els > 0)
11050 {
11051 unsigned j;
11052 /* No types were given after the mnemonic, so look for types specified
11053 after each operand. We allow some flexibility here; as long as the
11054 "key" operand has a type, we can infer the others. */
11055 for (j = 0; j < els; j++)
11056 if (inst.operands[j].vectype.type != NT_invtype)
11057 inst.vectype.el[j] = inst.operands[j].vectype;
11058
11059 if (inst.operands[key_el].vectype.type != NT_invtype)
11060 {
11061 for (j = 0; j < els; j++)
11062 if (inst.operands[j].vectype.type == NT_invtype)
11063 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
11064 types[j]);
11065 }
11066 else
11067 {
11068 first_error (_("operand types can't be inferred"));
11069 return badtype;
11070 }
11071 }
11072 else if (inst.vectype.elems != els)
11073 {
11074 first_error (_("type specifier has the wrong number of parts"));
11075 return badtype;
11076 }
11077
11078 for (pass = 0; pass < 2; pass++)
11079 {
11080 for (i = 0; i < els; i++)
11081 {
11082 unsigned thisarg = types[i];
11083 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
11084 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
11085 enum neon_el_type g_type = inst.vectype.el[i].type;
11086 unsigned g_size = inst.vectype.el[i].size;
11087
11088 /* Decay more-specific signed & unsigned types to sign-insensitive
11089 integer types if sign-specific variants are unavailable. */
11090 if ((g_type == NT_signed || g_type == NT_unsigned)
11091 && (types_allowed & N_SU_ALL) == 0)
11092 g_type = NT_integer;
11093
11094 /* If only untyped args are allowed, decay any more specific types to
11095 them. Some instructions only care about signs for some element
11096 sizes, so handle that properly. */
11097 if ((g_size == 8 && (types_allowed & N_8) != 0)
11098 || (g_size == 16 && (types_allowed & N_16) != 0)
11099 || (g_size == 32 && (types_allowed & N_32) != 0)
11100 || (g_size == 64 && (types_allowed & N_64) != 0))
11101 g_type = NT_untyped;
11102
11103 if (pass == 0)
11104 {
11105 if ((thisarg & N_KEY) != 0)
11106 {
11107 k_type = g_type;
11108 k_size = g_size;
11109 key_allowed = thisarg & ~N_KEY;
11110 }
11111 }
11112 else
11113 {
11114 if ((thisarg & N_VFP) != 0)
11115 {
11116 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
11117 unsigned regwidth = neon_shape_el_size[regshape], match;
11118
11119 /* In VFP mode, operands must match register widths. If we
11120 have a key operand, use its width, else use the width of
11121 the current operand. */
11122 if (k_size != -1u)
11123 match = k_size;
11124 else
11125 match = g_size;
11126
11127 if (regwidth != match)
11128 {
11129 first_error (_("operand size must match register width"));
11130 return badtype;
11131 }
11132 }
11133
11134 if ((thisarg & N_EQK) == 0)
11135 {
11136 unsigned given_type = type_chk_of_el_type (g_type, g_size);
11137
11138 if ((given_type & types_allowed) == 0)
11139 {
11140 first_error (_("bad type in Neon instruction"));
11141 return badtype;
11142 }
11143 }
11144 else
11145 {
11146 enum neon_el_type mod_k_type = k_type;
11147 unsigned mod_k_size = k_size;
11148 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
11149 if (g_type != mod_k_type || g_size != mod_k_size)
11150 {
11151 first_error (_("inconsistent types in Neon instruction"));
11152 return badtype;
11153 }
11154 }
11155 }
11156 }
11157 }
11158
11159 return inst.vectype.el[key_el];
11160 }
11161
11162 /* Neon-style VFP instruction forwarding. */
11163
11164 /* Thumb VFP instructions have 0xE in the condition field. */
11165
11166 static void
11167 do_vfp_cond_or_thumb (void)
11168 {
11169 if (thumb_mode)
11170 inst.instruction |= 0xe0000000;
11171 else
11172 inst.instruction |= inst.cond << 28;
11173 }
11174
11175 /* Look up and encode a simple mnemonic, for use as a helper function for the
11176 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
11177 etc. It is assumed that operand parsing has already been done, and that the
11178 operands are in the form expected by the given opcode (this isn't necessarily
11179 the same as the form in which they were parsed, hence some massaging must
11180 take place before this function is called).
11181 Checks current arch version against that in the looked-up opcode. */
11182
11183 static void
11184 do_vfp_nsyn_opcode (const char *opname)
11185 {
11186 const struct asm_opcode *opcode;
11187
11188 opcode = hash_find (arm_ops_hsh, opname);
11189
11190 if (!opcode)
11191 abort ();
11192
11193 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
11194 thumb_mode ? *opcode->tvariant : *opcode->avariant),
11195 _(BAD_FPU));
11196
11197 if (thumb_mode)
11198 {
11199 inst.instruction = opcode->tvalue;
11200 opcode->tencode ();
11201 }
11202 else
11203 {
11204 inst.instruction = (inst.cond << 28) | opcode->avalue;
11205 opcode->aencode ();
11206 }
11207 }
11208
11209 static void
11210 do_vfp_nsyn_add_sub (enum neon_shape rs)
11211 {
11212 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
11213
11214 if (rs == NS_FFF)
11215 {
11216 if (is_add)
11217 do_vfp_nsyn_opcode ("fadds");
11218 else
11219 do_vfp_nsyn_opcode ("fsubs");
11220 }
11221 else
11222 {
11223 if (is_add)
11224 do_vfp_nsyn_opcode ("faddd");
11225 else
11226 do_vfp_nsyn_opcode ("fsubd");
11227 }
11228 }
11229
11230 /* Check operand types to see if this is a VFP instruction, and if so call
11231 PFN (). */
11232
11233 static int
11234 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
11235 {
11236 enum neon_shape rs;
11237 struct neon_type_el et;
11238
11239 switch (args)
11240 {
11241 case 2:
11242 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11243 et = neon_check_type (2, rs,
11244 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11245 break;
11246
11247 case 3:
11248 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11249 et = neon_check_type (3, rs,
11250 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11251 break;
11252
11253 default:
11254 abort ();
11255 }
11256
11257 if (et.type != NT_invtype)
11258 {
11259 pfn (rs);
11260 return SUCCESS;
11261 }
11262 else
11263 inst.error = NULL;
11264
11265 return FAIL;
11266 }
11267
11268 static void
11269 do_vfp_nsyn_mla_mls (enum neon_shape rs)
11270 {
11271 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
11272
11273 if (rs == NS_FFF)
11274 {
11275 if (is_mla)
11276 do_vfp_nsyn_opcode ("fmacs");
11277 else
11278 do_vfp_nsyn_opcode ("fmscs");
11279 }
11280 else
11281 {
11282 if (is_mla)
11283 do_vfp_nsyn_opcode ("fmacd");
11284 else
11285 do_vfp_nsyn_opcode ("fmscd");
11286 }
11287 }
11288
11289 static void
11290 do_vfp_nsyn_mul (enum neon_shape rs)
11291 {
11292 if (rs == NS_FFF)
11293 do_vfp_nsyn_opcode ("fmuls");
11294 else
11295 do_vfp_nsyn_opcode ("fmuld");
11296 }
11297
11298 static void
11299 do_vfp_nsyn_abs_neg (enum neon_shape rs)
11300 {
11301 int is_neg = (inst.instruction & 0x80) != 0;
11302 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
11303
11304 if (rs == NS_FF)
11305 {
11306 if (is_neg)
11307 do_vfp_nsyn_opcode ("fnegs");
11308 else
11309 do_vfp_nsyn_opcode ("fabss");
11310 }
11311 else
11312 {
11313 if (is_neg)
11314 do_vfp_nsyn_opcode ("fnegd");
11315 else
11316 do_vfp_nsyn_opcode ("fabsd");
11317 }
11318 }
11319
11320 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
11321 insns belong to Neon, and are handled elsewhere. */
11322
11323 static void
11324 do_vfp_nsyn_ldm_stm (int is_dbmode)
11325 {
11326 int is_ldm = (inst.instruction & (1 << 20)) != 0;
11327 if (is_ldm)
11328 {
11329 if (is_dbmode)
11330 do_vfp_nsyn_opcode ("fldmdbs");
11331 else
11332 do_vfp_nsyn_opcode ("fldmias");
11333 }
11334 else
11335 {
11336 if (is_dbmode)
11337 do_vfp_nsyn_opcode ("fstmdbs");
11338 else
11339 do_vfp_nsyn_opcode ("fstmias");
11340 }
11341 }
11342
11343 static void
11344 do_vfp_nsyn_sqrt (void)
11345 {
11346 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11347 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11348
11349 if (rs == NS_FF)
11350 do_vfp_nsyn_opcode ("fsqrts");
11351 else
11352 do_vfp_nsyn_opcode ("fsqrtd");
11353 }
11354
11355 static void
11356 do_vfp_nsyn_div (void)
11357 {
11358 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11359 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11360 N_F32 | N_F64 | N_KEY | N_VFP);
11361
11362 if (rs == NS_FFF)
11363 do_vfp_nsyn_opcode ("fdivs");
11364 else
11365 do_vfp_nsyn_opcode ("fdivd");
11366 }
11367
11368 static void
11369 do_vfp_nsyn_nmul (void)
11370 {
11371 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11372 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11373 N_F32 | N_F64 | N_KEY | N_VFP);
11374
11375 if (rs == NS_FFF)
11376 {
11377 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11378 do_vfp_sp_dyadic ();
11379 }
11380 else
11381 {
11382 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11383 do_vfp_dp_rd_rn_rm ();
11384 }
11385 do_vfp_cond_or_thumb ();
11386 }
11387
11388 static void
11389 do_vfp_nsyn_cmp (void)
11390 {
11391 if (inst.operands[1].isreg)
11392 {
11393 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11394 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11395
11396 if (rs == NS_FF)
11397 {
11398 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11399 do_vfp_sp_monadic ();
11400 }
11401 else
11402 {
11403 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11404 do_vfp_dp_rd_rm ();
11405 }
11406 }
11407 else
11408 {
11409 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11410 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11411
11412 switch (inst.instruction & 0x0fffffff)
11413 {
11414 case N_MNEM_vcmp:
11415 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11416 break;
11417 case N_MNEM_vcmpe:
11418 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11419 break;
11420 default:
11421 abort ();
11422 }
11423
11424 if (rs == NS_FI)
11425 {
11426 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11427 do_vfp_sp_compare_z ();
11428 }
11429 else
11430 {
11431 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11432 do_vfp_dp_rd ();
11433 }
11434 }
11435 do_vfp_cond_or_thumb ();
11436 }
11437
11438 static void
11439 nsyn_insert_sp (void)
11440 {
11441 inst.operands[1] = inst.operands[0];
11442 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11443 inst.operands[0].reg = 13;
11444 inst.operands[0].isreg = 1;
11445 inst.operands[0].writeback = 1;
11446 inst.operands[0].present = 1;
11447 }
11448
11449 static void
11450 do_vfp_nsyn_push (void)
11451 {
11452 nsyn_insert_sp ();
11453 if (inst.operands[1].issingle)
11454 do_vfp_nsyn_opcode ("fstmdbs");
11455 else
11456 do_vfp_nsyn_opcode ("fstmdbd");
11457 }
11458
11459 static void
11460 do_vfp_nsyn_pop (void)
11461 {
11462 nsyn_insert_sp ();
11463 if (inst.operands[1].issingle)
11464 do_vfp_nsyn_opcode ("fldmias");
11465 else
11466 do_vfp_nsyn_opcode ("fldmiad");
11467 }
11468
11469 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11470 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11471
11472 static unsigned
11473 neon_dp_fixup (unsigned i)
11474 {
11475 if (thumb_mode)
11476 {
11477 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11478 if (i & (1 << 24))
11479 i |= 1 << 28;
11480
11481 i &= ~(1 << 24);
11482
11483 i |= 0xef000000;
11484 }
11485 else
11486 i |= 0xf2000000;
11487
11488 return i;
11489 }
11490
11491 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11492 (0, 1, 2, 3). */
11493
11494 static unsigned
11495 neon_logbits (unsigned x)
11496 {
11497 return ffs (x) - 4;
11498 }
11499
11500 #define LOW4(R) ((R) & 0xf)
11501 #define HI1(R) (((R) >> 4) & 1)
11502
11503 /* Encode insns with bit pattern:
11504
11505 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11506 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11507
11508 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11509 different meaning for some instruction. */
11510
11511 static void
11512 neon_three_same (int isquad, int ubit, int size)
11513 {
11514 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11515 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11516 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11517 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11518 inst.instruction |= LOW4 (inst.operands[2].reg);
11519 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11520 inst.instruction |= (isquad != 0) << 6;
11521 inst.instruction |= (ubit != 0) << 24;
11522 if (size != -1)
11523 inst.instruction |= neon_logbits (size) << 20;
11524
11525 inst.instruction = neon_dp_fixup (inst.instruction);
11526 }
11527
11528 /* Encode instructions of the form:
11529
11530 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11531 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11532
11533 Don't write size if SIZE == -1. */
11534
11535 static void
11536 neon_two_same (int qbit, int ubit, int size)
11537 {
11538 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11539 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11540 inst.instruction |= LOW4 (inst.operands[1].reg);
11541 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11542 inst.instruction |= (qbit != 0) << 6;
11543 inst.instruction |= (ubit != 0) << 24;
11544
11545 if (size != -1)
11546 inst.instruction |= neon_logbits (size) << 18;
11547
11548 inst.instruction = neon_dp_fixup (inst.instruction);
11549 }
11550
11551 /* Neon instruction encoders, in approximate order of appearance. */
11552
11553 static void
11554 do_neon_dyadic_i_su (void)
11555 {
11556 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11557 struct neon_type_el et = neon_check_type (3, rs,
11558 N_EQK, N_EQK, N_SU_32 | N_KEY);
11559 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11560 }
11561
11562 static void
11563 do_neon_dyadic_i64_su (void)
11564 {
11565 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11566 struct neon_type_el et = neon_check_type (3, rs,
11567 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11568 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11569 }
11570
11571 static void
11572 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11573 unsigned immbits)
11574 {
11575 unsigned size = et.size >> 3;
11576 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11577 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11578 inst.instruction |= LOW4 (inst.operands[1].reg);
11579 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11580 inst.instruction |= (isquad != 0) << 6;
11581 inst.instruction |= immbits << 16;
11582 inst.instruction |= (size >> 3) << 7;
11583 inst.instruction |= (size & 0x7) << 19;
11584 if (write_ubit)
11585 inst.instruction |= (uval != 0) << 24;
11586
11587 inst.instruction = neon_dp_fixup (inst.instruction);
11588 }
11589
11590 static void
11591 do_neon_shl_imm (void)
11592 {
11593 if (!inst.operands[2].isreg)
11594 {
11595 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11596 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11597 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11598 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11599 }
11600 else
11601 {
11602 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11603 struct neon_type_el et = neon_check_type (3, rs,
11604 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11605 unsigned int tmp;
11606
11607 /* VSHL/VQSHL 3-register variants have syntax such as:
11608 vshl.xx Dd, Dm, Dn
11609 whereas other 3-register operations encoded by neon_three_same have
11610 syntax like:
11611 vadd.xx Dd, Dn, Dm
11612 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
11613 here. */
11614 tmp = inst.operands[2].reg;
11615 inst.operands[2].reg = inst.operands[1].reg;
11616 inst.operands[1].reg = tmp;
11617 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11618 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11619 }
11620 }
11621
11622 static void
11623 do_neon_qshl_imm (void)
11624 {
11625 if (!inst.operands[2].isreg)
11626 {
11627 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11628 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11629
11630 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11631 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11632 inst.operands[2].imm);
11633 }
11634 else
11635 {
11636 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11637 struct neon_type_el et = neon_check_type (3, rs,
11638 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11639 unsigned int tmp;
11640
11641 /* See note in do_neon_shl_imm. */
11642 tmp = inst.operands[2].reg;
11643 inst.operands[2].reg = inst.operands[1].reg;
11644 inst.operands[1].reg = tmp;
11645 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11646 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11647 }
11648 }
11649
11650 static void
11651 do_neon_rshl (void)
11652 {
11653 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11654 struct neon_type_el et = neon_check_type (3, rs,
11655 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11656 unsigned int tmp;
11657
11658 tmp = inst.operands[2].reg;
11659 inst.operands[2].reg = inst.operands[1].reg;
11660 inst.operands[1].reg = tmp;
11661 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11662 }
11663
11664 static int
11665 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11666 {
11667 /* Handle .I8 pseudo-instructions. */
11668 if (size == 8)
11669 {
11670 /* Unfortunately, this will make everything apart from zero out-of-range.
11671 FIXME is this the intended semantics? There doesn't seem much point in
11672 accepting .I8 if so. */
11673 immediate |= immediate << 8;
11674 size = 16;
11675 }
11676
11677 if (size >= 32)
11678 {
11679 if (immediate == (immediate & 0x000000ff))
11680 {
11681 *immbits = immediate;
11682 return 0x1;
11683 }
11684 else if (immediate == (immediate & 0x0000ff00))
11685 {
11686 *immbits = immediate >> 8;
11687 return 0x3;
11688 }
11689 else if (immediate == (immediate & 0x00ff0000))
11690 {
11691 *immbits = immediate >> 16;
11692 return 0x5;
11693 }
11694 else if (immediate == (immediate & 0xff000000))
11695 {
11696 *immbits = immediate >> 24;
11697 return 0x7;
11698 }
11699 if ((immediate & 0xffff) != (immediate >> 16))
11700 goto bad_immediate;
11701 immediate &= 0xffff;
11702 }
11703
11704 if (immediate == (immediate & 0x000000ff))
11705 {
11706 *immbits = immediate;
11707 return 0x9;
11708 }
11709 else if (immediate == (immediate & 0x0000ff00))
11710 {
11711 *immbits = immediate >> 8;
11712 return 0xb;
11713 }
11714
11715 bad_immediate:
11716 first_error (_("immediate value out of range"));
11717 return FAIL;
11718 }
11719
11720 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11721 A, B, C, D. */
11722
11723 static int
11724 neon_bits_same_in_bytes (unsigned imm)
11725 {
11726 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11727 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11728 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11729 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11730 }
11731
11732 /* For immediate of above form, return 0bABCD. */
11733
11734 static unsigned
11735 neon_squash_bits (unsigned imm)
11736 {
11737 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11738 | ((imm & 0x01000000) >> 21);
11739 }
11740
11741 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11742
11743 static unsigned
11744 neon_qfloat_bits (unsigned imm)
11745 {
11746 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11747 }
11748
11749 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11750 the instruction. *OP is passed as the initial value of the op field, and
11751 may be set to a different value depending on the constant (i.e.
11752 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11753 MVN). If the immediate looks like a repeated pattern then also
11754 try smaller element sizes. */
11755
11756 static int
11757 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
11758 unsigned *immbits, int *op, int size,
11759 enum neon_el_type type)
11760 {
11761 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
11762 float. */
11763 if (type == NT_float && !float_p)
11764 return FAIL;
11765
11766 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11767 {
11768 if (size != 32 || *op == 1)
11769 return FAIL;
11770 *immbits = neon_qfloat_bits (immlo);
11771 return 0xf;
11772 }
11773
11774 if (size == 64)
11775 {
11776 if (neon_bits_same_in_bytes (immhi)
11777 && neon_bits_same_in_bytes (immlo))
11778 {
11779 if (*op == 1)
11780 return FAIL;
11781 *immbits = (neon_squash_bits (immhi) << 4)
11782 | neon_squash_bits (immlo);
11783 *op = 1;
11784 return 0xe;
11785 }
11786
11787 if (immhi != immlo)
11788 return FAIL;
11789 }
11790
11791 if (size >= 32)
11792 {
11793 if (immlo == (immlo & 0x000000ff))
11794 {
11795 *immbits = immlo;
11796 return 0x0;
11797 }
11798 else if (immlo == (immlo & 0x0000ff00))
11799 {
11800 *immbits = immlo >> 8;
11801 return 0x2;
11802 }
11803 else if (immlo == (immlo & 0x00ff0000))
11804 {
11805 *immbits = immlo >> 16;
11806 return 0x4;
11807 }
11808 else if (immlo == (immlo & 0xff000000))
11809 {
11810 *immbits = immlo >> 24;
11811 return 0x6;
11812 }
11813 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11814 {
11815 *immbits = (immlo >> 8) & 0xff;
11816 return 0xc;
11817 }
11818 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11819 {
11820 *immbits = (immlo >> 16) & 0xff;
11821 return 0xd;
11822 }
11823
11824 if ((immlo & 0xffff) != (immlo >> 16))
11825 return FAIL;
11826 immlo &= 0xffff;
11827 }
11828
11829 if (size >= 16)
11830 {
11831 if (immlo == (immlo & 0x000000ff))
11832 {
11833 *immbits = immlo;
11834 return 0x8;
11835 }
11836 else if (immlo == (immlo & 0x0000ff00))
11837 {
11838 *immbits = immlo >> 8;
11839 return 0xa;
11840 }
11841
11842 if ((immlo & 0xff) != (immlo >> 8))
11843 return FAIL;
11844 immlo &= 0xff;
11845 }
11846
11847 if (immlo == (immlo & 0x000000ff))
11848 {
11849 /* Don't allow MVN with 8-bit immediate. */
11850 if (*op == 1)
11851 return FAIL;
11852 *immbits = immlo;
11853 return 0xe;
11854 }
11855
11856 return FAIL;
11857 }
11858
11859 /* Write immediate bits [7:0] to the following locations:
11860
11861 |28/24|23 19|18 16|15 4|3 0|
11862 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11863
11864 This function is used by VMOV/VMVN/VORR/VBIC. */
11865
11866 static void
11867 neon_write_immbits (unsigned immbits)
11868 {
11869 inst.instruction |= immbits & 0xf;
11870 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11871 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11872 }
11873
11874 /* Invert low-order SIZE bits of XHI:XLO. */
11875
11876 static void
11877 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11878 {
11879 unsigned immlo = xlo ? *xlo : 0;
11880 unsigned immhi = xhi ? *xhi : 0;
11881
11882 switch (size)
11883 {
11884 case 8:
11885 immlo = (~immlo) & 0xff;
11886 break;
11887
11888 case 16:
11889 immlo = (~immlo) & 0xffff;
11890 break;
11891
11892 case 64:
11893 immhi = (~immhi) & 0xffffffff;
11894 /* fall through. */
11895
11896 case 32:
11897 immlo = (~immlo) & 0xffffffff;
11898 break;
11899
11900 default:
11901 abort ();
11902 }
11903
11904 if (xlo)
11905 *xlo = immlo;
11906
11907 if (xhi)
11908 *xhi = immhi;
11909 }
11910
11911 static void
11912 do_neon_logic (void)
11913 {
11914 if (inst.operands[2].present && inst.operands[2].isreg)
11915 {
11916 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11917 neon_check_type (3, rs, N_IGNORE_TYPE);
11918 /* U bit and size field were set as part of the bitmask. */
11919 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11920 neon_three_same (neon_quad (rs), 0, -1);
11921 }
11922 else
11923 {
11924 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11925 struct neon_type_el et = neon_check_type (2, rs,
11926 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11927 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11928 unsigned immbits;
11929 int cmode;
11930
11931 if (et.type == NT_invtype)
11932 return;
11933
11934 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11935
11936 immbits = inst.operands[1].imm;
11937 if (et.size == 64)
11938 {
11939 /* .i64 is a pseudo-op, so the immediate must be a repeating
11940 pattern. */
11941 if (immbits != (inst.operands[1].regisimm ?
11942 inst.operands[1].reg : 0))
11943 {
11944 /* Set immbits to an invalid constant. */
11945 immbits = 0xdeadbeef;
11946 }
11947 }
11948
11949 switch (opcode)
11950 {
11951 case N_MNEM_vbic:
11952 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11953 break;
11954
11955 case N_MNEM_vorr:
11956 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11957 break;
11958
11959 case N_MNEM_vand:
11960 /* Pseudo-instruction for VBIC. */
11961 neon_invert_size (&immbits, 0, et.size);
11962 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11963 break;
11964
11965 case N_MNEM_vorn:
11966 /* Pseudo-instruction for VORR. */
11967 neon_invert_size (&immbits, 0, et.size);
11968 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11969 break;
11970
11971 default:
11972 abort ();
11973 }
11974
11975 if (cmode == FAIL)
11976 return;
11977
11978 inst.instruction |= neon_quad (rs) << 6;
11979 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11980 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11981 inst.instruction |= cmode << 8;
11982 neon_write_immbits (immbits);
11983
11984 inst.instruction = neon_dp_fixup (inst.instruction);
11985 }
11986 }
11987
11988 static void
11989 do_neon_bitfield (void)
11990 {
11991 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11992 neon_check_type (3, rs, N_IGNORE_TYPE);
11993 neon_three_same (neon_quad (rs), 0, -1);
11994 }
11995
11996 static void
11997 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11998 unsigned destbits)
11999 {
12000 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12001 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
12002 types | N_KEY);
12003 if (et.type == NT_float)
12004 {
12005 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
12006 neon_three_same (neon_quad (rs), 0, -1);
12007 }
12008 else
12009 {
12010 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12011 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
12012 }
12013 }
12014
12015 static void
12016 do_neon_dyadic_if_su (void)
12017 {
12018 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12019 }
12020
12021 static void
12022 do_neon_dyadic_if_su_d (void)
12023 {
12024 /* This version only allow D registers, but that constraint is enforced during
12025 operand parsing so we don't need to do anything extra here. */
12026 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
12027 }
12028
12029 static void
12030 do_neon_dyadic_if_i_d (void)
12031 {
12032 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12033 affected if we specify unsigned args. */
12034 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12035 }
12036
12037 enum vfp_or_neon_is_neon_bits
12038 {
12039 NEON_CHECK_CC = 1,
12040 NEON_CHECK_ARCH = 2
12041 };
12042
12043 /* Call this function if an instruction which may have belonged to the VFP or
12044 Neon instruction sets, but turned out to be a Neon instruction (due to the
12045 operand types involved, etc.). We have to check and/or fix-up a couple of
12046 things:
12047
12048 - Make sure the user hasn't attempted to make a Neon instruction
12049 conditional.
12050 - Alter the value in the condition code field if necessary.
12051 - Make sure that the arch supports Neon instructions.
12052
12053 Which of these operations take place depends on bits from enum
12054 vfp_or_neon_is_neon_bits.
12055
12056 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
12057 current instruction's condition is COND_ALWAYS, the condition field is
12058 changed to inst.uncond_value. This is necessary because instructions shared
12059 between VFP and Neon may be conditional for the VFP variants only, and the
12060 unconditional Neon version must have, e.g., 0xF in the condition field. */
12061
12062 static int
12063 vfp_or_neon_is_neon (unsigned check)
12064 {
12065 /* Conditions are always legal in Thumb mode (IT blocks). */
12066 if (!thumb_mode && (check & NEON_CHECK_CC))
12067 {
12068 if (inst.cond != COND_ALWAYS)
12069 {
12070 first_error (_(BAD_COND));
12071 return FAIL;
12072 }
12073 if (inst.uncond_value != -1)
12074 inst.instruction |= inst.uncond_value << 28;
12075 }
12076
12077 if ((check & NEON_CHECK_ARCH)
12078 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
12079 {
12080 first_error (_(BAD_FPU));
12081 return FAIL;
12082 }
12083
12084 return SUCCESS;
12085 }
12086
12087 static void
12088 do_neon_addsub_if_i (void)
12089 {
12090 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
12091 return;
12092
12093 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12094 return;
12095
12096 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12097 affected if we specify unsigned args. */
12098 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
12099 }
12100
12101 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
12102 result to be:
12103 V<op> A,B (A is operand 0, B is operand 2)
12104 to mean:
12105 V<op> A,B,A
12106 not:
12107 V<op> A,B,B
12108 so handle that case specially. */
12109
12110 static void
12111 neon_exchange_operands (void)
12112 {
12113 void *scratch = alloca (sizeof (inst.operands[0]));
12114 if (inst.operands[1].present)
12115 {
12116 /* Swap operands[1] and operands[2]. */
12117 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
12118 inst.operands[1] = inst.operands[2];
12119 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
12120 }
12121 else
12122 {
12123 inst.operands[1] = inst.operands[2];
12124 inst.operands[2] = inst.operands[0];
12125 }
12126 }
12127
12128 static void
12129 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
12130 {
12131 if (inst.operands[2].isreg)
12132 {
12133 if (invert)
12134 neon_exchange_operands ();
12135 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
12136 }
12137 else
12138 {
12139 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12140 struct neon_type_el et = neon_check_type (2, rs,
12141 N_EQK | N_SIZ, immtypes | N_KEY);
12142
12143 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12145 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12146 inst.instruction |= LOW4 (inst.operands[1].reg);
12147 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12148 inst.instruction |= neon_quad (rs) << 6;
12149 inst.instruction |= (et.type == NT_float) << 10;
12150 inst.instruction |= neon_logbits (et.size) << 18;
12151
12152 inst.instruction = neon_dp_fixup (inst.instruction);
12153 }
12154 }
12155
12156 static void
12157 do_neon_cmp (void)
12158 {
12159 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
12160 }
12161
12162 static void
12163 do_neon_cmp_inv (void)
12164 {
12165 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
12166 }
12167
12168 static void
12169 do_neon_ceq (void)
12170 {
12171 neon_compare (N_IF_32, N_IF_32, FALSE);
12172 }
12173
12174 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
12175 scalars, which are encoded in 5 bits, M : Rm.
12176 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
12177 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
12178 index in M. */
12179
12180 static unsigned
12181 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
12182 {
12183 unsigned regno = NEON_SCALAR_REG (scalar);
12184 unsigned elno = NEON_SCALAR_INDEX (scalar);
12185
12186 switch (elsize)
12187 {
12188 case 16:
12189 if (regno > 7 || elno > 3)
12190 goto bad_scalar;
12191 return regno | (elno << 3);
12192
12193 case 32:
12194 if (regno > 15 || elno > 1)
12195 goto bad_scalar;
12196 return regno | (elno << 4);
12197
12198 default:
12199 bad_scalar:
12200 first_error (_("scalar out of range for multiply instruction"));
12201 }
12202
12203 return 0;
12204 }
12205
12206 /* Encode multiply / multiply-accumulate scalar instructions. */
12207
12208 static void
12209 neon_mul_mac (struct neon_type_el et, int ubit)
12210 {
12211 unsigned scalar;
12212
12213 /* Give a more helpful error message if we have an invalid type. */
12214 if (et.type == NT_invtype)
12215 return;
12216
12217 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
12218 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12219 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12220 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12221 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12222 inst.instruction |= LOW4 (scalar);
12223 inst.instruction |= HI1 (scalar) << 5;
12224 inst.instruction |= (et.type == NT_float) << 8;
12225 inst.instruction |= neon_logbits (et.size) << 20;
12226 inst.instruction |= (ubit != 0) << 24;
12227
12228 inst.instruction = neon_dp_fixup (inst.instruction);
12229 }
12230
12231 static void
12232 do_neon_mac_maybe_scalar (void)
12233 {
12234 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
12235 return;
12236
12237 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12238 return;
12239
12240 if (inst.operands[2].isscalar)
12241 {
12242 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12243 struct neon_type_el et = neon_check_type (3, rs,
12244 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
12245 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12246 neon_mul_mac (et, neon_quad (rs));
12247 }
12248 else
12249 {
12250 /* The "untyped" case can't happen. Do this to stop the "U" bit being
12251 affected if we specify unsigned args. */
12252 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
12253 }
12254 }
12255
12256 static void
12257 do_neon_tst (void)
12258 {
12259 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12260 struct neon_type_el et = neon_check_type (3, rs,
12261 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
12262 neon_three_same (neon_quad (rs), 0, et.size);
12263 }
12264
12265 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
12266 same types as the MAC equivalents. The polynomial type for this instruction
12267 is encoded the same as the integer type. */
12268
12269 static void
12270 do_neon_mul (void)
12271 {
12272 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
12273 return;
12274
12275 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12276 return;
12277
12278 if (inst.operands[2].isscalar)
12279 do_neon_mac_maybe_scalar ();
12280 else
12281 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
12282 }
12283
12284 static void
12285 do_neon_qdmulh (void)
12286 {
12287 if (inst.operands[2].isscalar)
12288 {
12289 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
12290 struct neon_type_el et = neon_check_type (3, rs,
12291 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12292 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12293 neon_mul_mac (et, neon_quad (rs));
12294 }
12295 else
12296 {
12297 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12298 struct neon_type_el et = neon_check_type (3, rs,
12299 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
12300 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12301 /* The U bit (rounding) comes from bit mask. */
12302 neon_three_same (neon_quad (rs), 0, et.size);
12303 }
12304 }
12305
12306 static void
12307 do_neon_fcmp_absolute (void)
12308 {
12309 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12310 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12311 /* Size field comes from bit mask. */
12312 neon_three_same (neon_quad (rs), 1, -1);
12313 }
12314
12315 static void
12316 do_neon_fcmp_absolute_inv (void)
12317 {
12318 neon_exchange_operands ();
12319 do_neon_fcmp_absolute ();
12320 }
12321
12322 static void
12323 do_neon_step (void)
12324 {
12325 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
12326 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
12327 neon_three_same (neon_quad (rs), 0, -1);
12328 }
12329
12330 static void
12331 do_neon_abs_neg (void)
12332 {
12333 enum neon_shape rs;
12334 struct neon_type_el et;
12335
12336 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
12337 return;
12338
12339 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12340 return;
12341
12342 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12343 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
12344
12345 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12346 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12347 inst.instruction |= LOW4 (inst.operands[1].reg);
12348 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12349 inst.instruction |= neon_quad (rs) << 6;
12350 inst.instruction |= (et.type == NT_float) << 10;
12351 inst.instruction |= neon_logbits (et.size) << 18;
12352
12353 inst.instruction = neon_dp_fixup (inst.instruction);
12354 }
12355
12356 static void
12357 do_neon_sli (void)
12358 {
12359 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12360 struct neon_type_el et = neon_check_type (2, rs,
12361 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12362 int imm = inst.operands[2].imm;
12363 constraint (imm < 0 || (unsigned)imm >= et.size,
12364 _("immediate out of range for insert"));
12365 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12366 }
12367
12368 static void
12369 do_neon_sri (void)
12370 {
12371 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12372 struct neon_type_el et = neon_check_type (2, rs,
12373 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12374 int imm = inst.operands[2].imm;
12375 constraint (imm < 1 || (unsigned)imm > et.size,
12376 _("immediate out of range for insert"));
12377 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
12378 }
12379
12380 static void
12381 do_neon_qshlu_imm (void)
12382 {
12383 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12384 struct neon_type_el et = neon_check_type (2, rs,
12385 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
12386 int imm = inst.operands[2].imm;
12387 constraint (imm < 0 || (unsigned)imm >= et.size,
12388 _("immediate out of range for shift"));
12389 /* Only encodes the 'U present' variant of the instruction.
12390 In this case, signed types have OP (bit 8) set to 0.
12391 Unsigned types have OP set to 1. */
12392 inst.instruction |= (et.type == NT_unsigned) << 8;
12393 /* The rest of the bits are the same as other immediate shifts. */
12394 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
12395 }
12396
12397 static void
12398 do_neon_qmovn (void)
12399 {
12400 struct neon_type_el et = neon_check_type (2, NS_DQ,
12401 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12402 /* Saturating move where operands can be signed or unsigned, and the
12403 destination has the same signedness. */
12404 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12405 if (et.type == NT_unsigned)
12406 inst.instruction |= 0xc0;
12407 else
12408 inst.instruction |= 0x80;
12409 neon_two_same (0, 1, et.size / 2);
12410 }
12411
12412 static void
12413 do_neon_qmovun (void)
12414 {
12415 struct neon_type_el et = neon_check_type (2, NS_DQ,
12416 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12417 /* Saturating move with unsigned results. Operands must be signed. */
12418 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12419 neon_two_same (0, 1, et.size / 2);
12420 }
12421
12422 static void
12423 do_neon_rshift_sat_narrow (void)
12424 {
12425 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12426 or unsigned. If operands are unsigned, results must also be unsigned. */
12427 struct neon_type_el et = neon_check_type (2, NS_DQI,
12428 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12429 int imm = inst.operands[2].imm;
12430 /* This gets the bounds check, size encoding and immediate bits calculation
12431 right. */
12432 et.size /= 2;
12433
12434 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12435 VQMOVN.I<size> <Dd>, <Qm>. */
12436 if (imm == 0)
12437 {
12438 inst.operands[2].present = 0;
12439 inst.instruction = N_MNEM_vqmovn;
12440 do_neon_qmovn ();
12441 return;
12442 }
12443
12444 constraint (imm < 1 || (unsigned)imm > et.size,
12445 _("immediate out of range"));
12446 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12447 }
12448
12449 static void
12450 do_neon_rshift_sat_narrow_u (void)
12451 {
12452 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12453 or unsigned. If operands are unsigned, results must also be unsigned. */
12454 struct neon_type_el et = neon_check_type (2, NS_DQI,
12455 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12456 int imm = inst.operands[2].imm;
12457 /* This gets the bounds check, size encoding and immediate bits calculation
12458 right. */
12459 et.size /= 2;
12460
12461 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12462 VQMOVUN.I<size> <Dd>, <Qm>. */
12463 if (imm == 0)
12464 {
12465 inst.operands[2].present = 0;
12466 inst.instruction = N_MNEM_vqmovun;
12467 do_neon_qmovun ();
12468 return;
12469 }
12470
12471 constraint (imm < 1 || (unsigned)imm > et.size,
12472 _("immediate out of range"));
12473 /* FIXME: The manual is kind of unclear about what value U should have in
12474 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12475 must be 1. */
12476 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12477 }
12478
12479 static void
12480 do_neon_movn (void)
12481 {
12482 struct neon_type_el et = neon_check_type (2, NS_DQ,
12483 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12484 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12485 neon_two_same (0, 1, et.size / 2);
12486 }
12487
12488 static void
12489 do_neon_rshift_narrow (void)
12490 {
12491 struct neon_type_el et = neon_check_type (2, NS_DQI,
12492 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12493 int imm = inst.operands[2].imm;
12494 /* This gets the bounds check, size encoding and immediate bits calculation
12495 right. */
12496 et.size /= 2;
12497
12498 /* If immediate is zero then we are a pseudo-instruction for
12499 VMOVN.I<size> <Dd>, <Qm> */
12500 if (imm == 0)
12501 {
12502 inst.operands[2].present = 0;
12503 inst.instruction = N_MNEM_vmovn;
12504 do_neon_movn ();
12505 return;
12506 }
12507
12508 constraint (imm < 1 || (unsigned)imm > et.size,
12509 _("immediate out of range for narrowing operation"));
12510 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12511 }
12512
12513 static void
12514 do_neon_shll (void)
12515 {
12516 /* FIXME: Type checking when lengthening. */
12517 struct neon_type_el et = neon_check_type (2, NS_QDI,
12518 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12519 unsigned imm = inst.operands[2].imm;
12520
12521 if (imm == et.size)
12522 {
12523 /* Maximum shift variant. */
12524 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12525 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12526 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12527 inst.instruction |= LOW4 (inst.operands[1].reg);
12528 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12529 inst.instruction |= neon_logbits (et.size) << 18;
12530
12531 inst.instruction = neon_dp_fixup (inst.instruction);
12532 }
12533 else
12534 {
12535 /* A more-specific type check for non-max versions. */
12536 et = neon_check_type (2, NS_QDI,
12537 N_EQK | N_DBL, N_SU_32 | N_KEY);
12538 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12539 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12540 }
12541 }
12542
12543 /* Check the various types for the VCVT instruction, and return which version
12544 the current instruction is. */
12545
12546 static int
12547 neon_cvt_flavour (enum neon_shape rs)
12548 {
12549 #define CVT_VAR(C,X,Y) \
12550 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12551 if (et.type != NT_invtype) \
12552 { \
12553 inst.error = NULL; \
12554 return (C); \
12555 }
12556 struct neon_type_el et;
12557 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12558 || rs == NS_FF) ? N_VFP : 0;
12559 /* The instruction versions which take an immediate take one register
12560 argument, which is extended to the width of the full register. Thus the
12561 "source" and "destination" registers must have the same width. Hack that
12562 here by making the size equal to the key (wider, in this case) operand. */
12563 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12564
12565 CVT_VAR (0, N_S32, N_F32);
12566 CVT_VAR (1, N_U32, N_F32);
12567 CVT_VAR (2, N_F32, N_S32);
12568 CVT_VAR (3, N_F32, N_U32);
12569
12570 whole_reg = N_VFP;
12571
12572 /* VFP instructions. */
12573 CVT_VAR (4, N_F32, N_F64);
12574 CVT_VAR (5, N_F64, N_F32);
12575 CVT_VAR (6, N_S32, N_F64 | key);
12576 CVT_VAR (7, N_U32, N_F64 | key);
12577 CVT_VAR (8, N_F64 | key, N_S32);
12578 CVT_VAR (9, N_F64 | key, N_U32);
12579 /* VFP instructions with bitshift. */
12580 CVT_VAR (10, N_F32 | key, N_S16);
12581 CVT_VAR (11, N_F32 | key, N_U16);
12582 CVT_VAR (12, N_F64 | key, N_S16);
12583 CVT_VAR (13, N_F64 | key, N_U16);
12584 CVT_VAR (14, N_S16, N_F32 | key);
12585 CVT_VAR (15, N_U16, N_F32 | key);
12586 CVT_VAR (16, N_S16, N_F64 | key);
12587 CVT_VAR (17, N_U16, N_F64 | key);
12588
12589 return -1;
12590 #undef CVT_VAR
12591 }
12592
12593 /* Neon-syntax VFP conversions. */
12594
12595 static void
12596 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12597 {
12598 const char *opname = 0;
12599
12600 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12601 {
12602 /* Conversions with immediate bitshift. */
12603 const char *enc[] =
12604 {
12605 "ftosls",
12606 "ftouls",
12607 "fsltos",
12608 "fultos",
12609 NULL,
12610 NULL,
12611 "ftosld",
12612 "ftould",
12613 "fsltod",
12614 "fultod",
12615 "fshtos",
12616 "fuhtos",
12617 "fshtod",
12618 "fuhtod",
12619 "ftoshs",
12620 "ftouhs",
12621 "ftoshd",
12622 "ftouhd"
12623 };
12624
12625 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12626 {
12627 opname = enc[flavour];
12628 constraint (inst.operands[0].reg != inst.operands[1].reg,
12629 _("operands 0 and 1 must be the same register"));
12630 inst.operands[1] = inst.operands[2];
12631 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12632 }
12633 }
12634 else
12635 {
12636 /* Conversions without bitshift. */
12637 const char *enc[] =
12638 {
12639 "ftosis",
12640 "ftouis",
12641 "fsitos",
12642 "fuitos",
12643 "fcvtsd",
12644 "fcvtds",
12645 "ftosid",
12646 "ftouid",
12647 "fsitod",
12648 "fuitod"
12649 };
12650
12651 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12652 opname = enc[flavour];
12653 }
12654
12655 if (opname)
12656 do_vfp_nsyn_opcode (opname);
12657 }
12658
12659 static void
12660 do_vfp_nsyn_cvtz (void)
12661 {
12662 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12663 int flavour = neon_cvt_flavour (rs);
12664 const char *enc[] =
12665 {
12666 "ftosizs",
12667 "ftouizs",
12668 NULL,
12669 NULL,
12670 NULL,
12671 NULL,
12672 "ftosizd",
12673 "ftouizd"
12674 };
12675
12676 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12677 do_vfp_nsyn_opcode (enc[flavour]);
12678 }
12679
12680 static void
12681 do_neon_cvt (void)
12682 {
12683 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12684 NS_FD, NS_DF, NS_FF, NS_NULL);
12685 int flavour = neon_cvt_flavour (rs);
12686
12687 /* VFP rather than Neon conversions. */
12688 if (flavour >= 4)
12689 {
12690 do_vfp_nsyn_cvt (rs, flavour);
12691 return;
12692 }
12693
12694 switch (rs)
12695 {
12696 case NS_DDI:
12697 case NS_QQI:
12698 {
12699 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12700 return;
12701
12702 /* Fixed-point conversion with #0 immediate is encoded as an
12703 integer conversion. */
12704 if (inst.operands[2].present && inst.operands[2].imm == 0)
12705 goto int_encode;
12706 unsigned immbits = 32 - inst.operands[2].imm;
12707 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12708 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12709 if (flavour != -1)
12710 inst.instruction |= enctab[flavour];
12711 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12712 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12713 inst.instruction |= LOW4 (inst.operands[1].reg);
12714 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12715 inst.instruction |= neon_quad (rs) << 6;
12716 inst.instruction |= 1 << 21;
12717 inst.instruction |= immbits << 16;
12718
12719 inst.instruction = neon_dp_fixup (inst.instruction);
12720 }
12721 break;
12722
12723 case NS_DD:
12724 case NS_QQ:
12725 int_encode:
12726 {
12727 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12728
12729 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12730
12731 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12732 return;
12733
12734 if (flavour != -1)
12735 inst.instruction |= enctab[flavour];
12736
12737 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12738 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12739 inst.instruction |= LOW4 (inst.operands[1].reg);
12740 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12741 inst.instruction |= neon_quad (rs) << 6;
12742 inst.instruction |= 2 << 18;
12743
12744 inst.instruction = neon_dp_fixup (inst.instruction);
12745 }
12746 break;
12747
12748 default:
12749 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12750 do_vfp_nsyn_cvt (rs, flavour);
12751 }
12752 }
12753
12754 static void
12755 neon_move_immediate (void)
12756 {
12757 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12758 struct neon_type_el et = neon_check_type (2, rs,
12759 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12760 unsigned immlo, immhi = 0, immbits;
12761 int op, cmode, float_p;
12762
12763 constraint (et.type == NT_invtype,
12764 _("operand size must be specified for immediate VMOV"));
12765
12766 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12767 op = (inst.instruction & (1 << 5)) != 0;
12768
12769 immlo = inst.operands[1].imm;
12770 if (inst.operands[1].regisimm)
12771 immhi = inst.operands[1].reg;
12772
12773 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12774 _("immediate has bits set outside the operand size"));
12775
12776 float_p = inst.operands[1].immisfloat;
12777
12778 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
12779 et.size, et.type)) == FAIL)
12780 {
12781 /* Invert relevant bits only. */
12782 neon_invert_size (&immlo, &immhi, et.size);
12783 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12784 with one or the other; those cases are caught by
12785 neon_cmode_for_move_imm. */
12786 op = !op;
12787 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
12788 &op, et.size, et.type)) == FAIL)
12789 {
12790 first_error (_("immediate out of range"));
12791 return;
12792 }
12793 }
12794
12795 inst.instruction &= ~(1 << 5);
12796 inst.instruction |= op << 5;
12797
12798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12800 inst.instruction |= neon_quad (rs) << 6;
12801 inst.instruction |= cmode << 8;
12802
12803 neon_write_immbits (immbits);
12804 }
12805
12806 static void
12807 do_neon_mvn (void)
12808 {
12809 if (inst.operands[1].isreg)
12810 {
12811 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12812
12813 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12816 inst.instruction |= LOW4 (inst.operands[1].reg);
12817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12818 inst.instruction |= neon_quad (rs) << 6;
12819 }
12820 else
12821 {
12822 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12823 neon_move_immediate ();
12824 }
12825
12826 inst.instruction = neon_dp_fixup (inst.instruction);
12827 }
12828
12829 /* Encode instructions of form:
12830
12831 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12832 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
12833
12834 static void
12835 neon_mixed_length (struct neon_type_el et, unsigned size)
12836 {
12837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12839 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12840 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12841 inst.instruction |= LOW4 (inst.operands[2].reg);
12842 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12843 inst.instruction |= (et.type == NT_unsigned) << 24;
12844 inst.instruction |= neon_logbits (size) << 20;
12845
12846 inst.instruction = neon_dp_fixup (inst.instruction);
12847 }
12848
12849 static void
12850 do_neon_dyadic_long (void)
12851 {
12852 /* FIXME: Type checking for lengthening op. */
12853 struct neon_type_el et = neon_check_type (3, NS_QDD,
12854 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12855 neon_mixed_length (et, et.size);
12856 }
12857
12858 static void
12859 do_neon_abal (void)
12860 {
12861 struct neon_type_el et = neon_check_type (3, NS_QDD,
12862 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12863 neon_mixed_length (et, et.size);
12864 }
12865
12866 static void
12867 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12868 {
12869 if (inst.operands[2].isscalar)
12870 {
12871 struct neon_type_el et = neon_check_type (3, NS_QDS,
12872 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12873 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12874 neon_mul_mac (et, et.type == NT_unsigned);
12875 }
12876 else
12877 {
12878 struct neon_type_el et = neon_check_type (3, NS_QDD,
12879 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12880 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12881 neon_mixed_length (et, et.size);
12882 }
12883 }
12884
12885 static void
12886 do_neon_mac_maybe_scalar_long (void)
12887 {
12888 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12889 }
12890
12891 static void
12892 do_neon_dyadic_wide (void)
12893 {
12894 struct neon_type_el et = neon_check_type (3, NS_QQD,
12895 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12896 neon_mixed_length (et, et.size);
12897 }
12898
12899 static void
12900 do_neon_dyadic_narrow (void)
12901 {
12902 struct neon_type_el et = neon_check_type (3, NS_QDD,
12903 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12904 /* Operand sign is unimportant, and the U bit is part of the opcode,
12905 so force the operand type to integer. */
12906 et.type = NT_integer;
12907 neon_mixed_length (et, et.size / 2);
12908 }
12909
12910 static void
12911 do_neon_mul_sat_scalar_long (void)
12912 {
12913 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12914 }
12915
12916 static void
12917 do_neon_vmull (void)
12918 {
12919 if (inst.operands[2].isscalar)
12920 do_neon_mac_maybe_scalar_long ();
12921 else
12922 {
12923 struct neon_type_el et = neon_check_type (3, NS_QDD,
12924 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12925 if (et.type == NT_poly)
12926 inst.instruction = NEON_ENC_POLY (inst.instruction);
12927 else
12928 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12929 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12930 zero. Should be OK as-is. */
12931 neon_mixed_length (et, et.size);
12932 }
12933 }
12934
12935 static void
12936 do_neon_ext (void)
12937 {
12938 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12939 struct neon_type_el et = neon_check_type (3, rs,
12940 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12941 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12942 constraint (imm >= (neon_quad (rs) ? 16 : 8), _("shift out of range"));
12943 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12944 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12945 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12946 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12947 inst.instruction |= LOW4 (inst.operands[2].reg);
12948 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12949 inst.instruction |= neon_quad (rs) << 6;
12950 inst.instruction |= imm << 8;
12951
12952 inst.instruction = neon_dp_fixup (inst.instruction);
12953 }
12954
12955 static void
12956 do_neon_rev (void)
12957 {
12958 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12959 struct neon_type_el et = neon_check_type (2, rs,
12960 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12961 unsigned op = (inst.instruction >> 7) & 3;
12962 /* N (width of reversed regions) is encoded as part of the bitmask. We
12963 extract it here to check the elements to be reversed are smaller.
12964 Otherwise we'd get a reserved instruction. */
12965 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12966 assert (elsize != 0);
12967 constraint (et.size >= elsize,
12968 _("elements must be smaller than reversal region"));
12969 neon_two_same (neon_quad (rs), 1, et.size);
12970 }
12971
12972 static void
12973 do_neon_dup (void)
12974 {
12975 if (inst.operands[1].isscalar)
12976 {
12977 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
12978 struct neon_type_el et = neon_check_type (2, rs,
12979 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12980 unsigned sizebits = et.size >> 3;
12981 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
12982 int logsize = neon_logbits (et.size);
12983 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
12984
12985 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12986 return;
12987
12988 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12989 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12990 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12991 inst.instruction |= LOW4 (dm);
12992 inst.instruction |= HI1 (dm) << 5;
12993 inst.instruction |= neon_quad (rs) << 6;
12994 inst.instruction |= x << 17;
12995 inst.instruction |= sizebits << 16;
12996
12997 inst.instruction = neon_dp_fixup (inst.instruction);
12998 }
12999 else
13000 {
13001 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
13002 struct neon_type_el et = neon_check_type (2, rs,
13003 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13004 /* Duplicate ARM register to lanes of vector. */
13005 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
13006 switch (et.size)
13007 {
13008 case 8: inst.instruction |= 0x400000; break;
13009 case 16: inst.instruction |= 0x000020; break;
13010 case 32: inst.instruction |= 0x000000; break;
13011 default: break;
13012 }
13013 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13014 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
13015 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
13016 inst.instruction |= neon_quad (rs) << 21;
13017 /* The encoding for this instruction is identical for the ARM and Thumb
13018 variants, except for the condition field. */
13019 do_vfp_cond_or_thumb ();
13020 }
13021 }
13022
13023 /* VMOV has particularly many variations. It can be one of:
13024 0. VMOV<c><q> <Qd>, <Qm>
13025 1. VMOV<c><q> <Dd>, <Dm>
13026 (Register operations, which are VORR with Rm = Rn.)
13027 2. VMOV<c><q>.<dt> <Qd>, #<imm>
13028 3. VMOV<c><q>.<dt> <Dd>, #<imm>
13029 (Immediate loads.)
13030 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
13031 (ARM register to scalar.)
13032 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
13033 (Two ARM registers to vector.)
13034 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
13035 (Scalar to ARM register.)
13036 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
13037 (Vector to two ARM registers.)
13038 8. VMOV.F32 <Sd>, <Sm>
13039 9. VMOV.F64 <Dd>, <Dm>
13040 (VFP register moves.)
13041 10. VMOV.F32 <Sd>, #imm
13042 11. VMOV.F64 <Dd>, #imm
13043 (VFP float immediate load.)
13044 12. VMOV <Rd>, <Sm>
13045 (VFP single to ARM reg.)
13046 13. VMOV <Sd>, <Rm>
13047 (ARM reg to VFP single.)
13048 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
13049 (Two ARM regs to two VFP singles.)
13050 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
13051 (Two VFP singles to two ARM regs.)
13052
13053 These cases can be disambiguated using neon_select_shape, except cases 1/9
13054 and 3/11 which depend on the operand type too.
13055
13056 All the encoded bits are hardcoded by this function.
13057
13058 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
13059 Cases 5, 7 may be used with VFPv2 and above.
13060
13061 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
13062 can specify a type where it doesn't make sense to, and is ignored). */
13063
13064 static void
13065 do_neon_mov (void)
13066 {
13067 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
13068 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
13069 NS_NULL);
13070 struct neon_type_el et;
13071 const char *ldconst = 0;
13072
13073 switch (rs)
13074 {
13075 case NS_DD: /* case 1/9. */
13076 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13077 /* It is not an error here if no type is given. */
13078 inst.error = NULL;
13079 if (et.type == NT_float && et.size == 64)
13080 {
13081 do_vfp_nsyn_opcode ("fcpyd");
13082 break;
13083 }
13084 /* fall through. */
13085
13086 case NS_QQ: /* case 0/1. */
13087 {
13088 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13089 return;
13090 /* The architecture manual I have doesn't explicitly state which
13091 value the U bit should have for register->register moves, but
13092 the equivalent VORR instruction has U = 0, so do that. */
13093 inst.instruction = 0x0200110;
13094 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13095 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13096 inst.instruction |= LOW4 (inst.operands[1].reg);
13097 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13098 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13099 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13100 inst.instruction |= neon_quad (rs) << 6;
13101
13102 inst.instruction = neon_dp_fixup (inst.instruction);
13103 }
13104 break;
13105
13106 case NS_DI: /* case 3/11. */
13107 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
13108 inst.error = NULL;
13109 if (et.type == NT_float && et.size == 64)
13110 {
13111 /* case 11 (fconstd). */
13112 ldconst = "fconstd";
13113 goto encode_fconstd;
13114 }
13115 /* fall through. */
13116
13117 case NS_QI: /* case 2/3. */
13118 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13119 return;
13120 inst.instruction = 0x0800010;
13121 neon_move_immediate ();
13122 inst.instruction = neon_dp_fixup (inst.instruction);
13123 break;
13124
13125 case NS_SR: /* case 4. */
13126 {
13127 unsigned bcdebits = 0;
13128 struct neon_type_el et = neon_check_type (2, NS_NULL,
13129 N_8 | N_16 | N_32 | N_KEY, N_EQK);
13130 int logsize = neon_logbits (et.size);
13131 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
13132 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
13133
13134 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13135 _(BAD_FPU));
13136 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13137 && et.size != 32, _(BAD_FPU));
13138 constraint (et.type == NT_invtype, _("bad type for scalar"));
13139 constraint (x >= 64 / et.size, _("scalar index out of range"));
13140
13141 switch (et.size)
13142 {
13143 case 8: bcdebits = 0x8; break;
13144 case 16: bcdebits = 0x1; break;
13145 case 32: bcdebits = 0x0; break;
13146 default: ;
13147 }
13148
13149 bcdebits |= x << logsize;
13150
13151 inst.instruction = 0xe000b10;
13152 do_vfp_cond_or_thumb ();
13153 inst.instruction |= LOW4 (dn) << 16;
13154 inst.instruction |= HI1 (dn) << 7;
13155 inst.instruction |= inst.operands[1].reg << 12;
13156 inst.instruction |= (bcdebits & 3) << 5;
13157 inst.instruction |= (bcdebits >> 2) << 21;
13158 }
13159 break;
13160
13161 case NS_DRR: /* case 5 (fmdrr). */
13162 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13163 _(BAD_FPU));
13164
13165 inst.instruction = 0xc400b10;
13166 do_vfp_cond_or_thumb ();
13167 inst.instruction |= LOW4 (inst.operands[0].reg);
13168 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
13169 inst.instruction |= inst.operands[1].reg << 12;
13170 inst.instruction |= inst.operands[2].reg << 16;
13171 break;
13172
13173 case NS_RS: /* case 6. */
13174 {
13175 struct neon_type_el et = neon_check_type (2, NS_NULL,
13176 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
13177 unsigned logsize = neon_logbits (et.size);
13178 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
13179 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
13180 unsigned abcdebits = 0;
13181
13182 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
13183 _(BAD_FPU));
13184 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
13185 && et.size != 32, _(BAD_FPU));
13186 constraint (et.type == NT_invtype, _("bad type for scalar"));
13187 constraint (x >= 64 / et.size, _("scalar index out of range"));
13188
13189 switch (et.size)
13190 {
13191 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
13192 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
13193 case 32: abcdebits = 0x00; break;
13194 default: ;
13195 }
13196
13197 abcdebits |= x << logsize;
13198 inst.instruction = 0xe100b10;
13199 do_vfp_cond_or_thumb ();
13200 inst.instruction |= LOW4 (dn) << 16;
13201 inst.instruction |= HI1 (dn) << 7;
13202 inst.instruction |= inst.operands[0].reg << 12;
13203 inst.instruction |= (abcdebits & 3) << 5;
13204 inst.instruction |= (abcdebits >> 2) << 21;
13205 }
13206 break;
13207
13208 case NS_RRD: /* case 7 (fmrrd). */
13209 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
13210 _(BAD_FPU));
13211
13212 inst.instruction = 0xc500b10;
13213 do_vfp_cond_or_thumb ();
13214 inst.instruction |= inst.operands[0].reg << 12;
13215 inst.instruction |= inst.operands[1].reg << 16;
13216 inst.instruction |= LOW4 (inst.operands[2].reg);
13217 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13218 break;
13219
13220 case NS_FF: /* case 8 (fcpys). */
13221 do_vfp_nsyn_opcode ("fcpys");
13222 break;
13223
13224 case NS_FI: /* case 10 (fconsts). */
13225 ldconst = "fconsts";
13226 encode_fconstd:
13227 if (is_quarter_float (inst.operands[1].imm))
13228 {
13229 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
13230 do_vfp_nsyn_opcode (ldconst);
13231 }
13232 else
13233 first_error (_("immediate out of range"));
13234 break;
13235
13236 case NS_RF: /* case 12 (fmrs). */
13237 do_vfp_nsyn_opcode ("fmrs");
13238 break;
13239
13240 case NS_FR: /* case 13 (fmsr). */
13241 do_vfp_nsyn_opcode ("fmsr");
13242 break;
13243
13244 /* The encoders for the fmrrs and fmsrr instructions expect three operands
13245 (one of which is a list), but we have parsed four. Do some fiddling to
13246 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
13247 expect. */
13248 case NS_RRFF: /* case 14 (fmrrs). */
13249 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
13250 _("VFP registers must be adjacent"));
13251 inst.operands[2].imm = 2;
13252 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13253 do_vfp_nsyn_opcode ("fmrrs");
13254 break;
13255
13256 case NS_FFRR: /* case 15 (fmsrr). */
13257 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
13258 _("VFP registers must be adjacent"));
13259 inst.operands[1] = inst.operands[2];
13260 inst.operands[2] = inst.operands[3];
13261 inst.operands[0].imm = 2;
13262 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
13263 do_vfp_nsyn_opcode ("fmsrr");
13264 break;
13265
13266 default:
13267 abort ();
13268 }
13269 }
13270
13271 static void
13272 do_neon_rshift_round_imm (void)
13273 {
13274 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13275 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13276 int imm = inst.operands[2].imm;
13277
13278 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
13279 if (imm == 0)
13280 {
13281 inst.operands[2].present = 0;
13282 do_neon_mov ();
13283 return;
13284 }
13285
13286 constraint (imm < 1 || (unsigned)imm > et.size,
13287 _("immediate out of range for shift"));
13288 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13289 et.size - imm);
13290 }
13291
13292 static void
13293 do_neon_movl (void)
13294 {
13295 struct neon_type_el et = neon_check_type (2, NS_QD,
13296 N_EQK | N_DBL, N_SU_32 | N_KEY);
13297 unsigned sizebits = et.size >> 3;
13298 inst.instruction |= sizebits << 19;
13299 neon_two_same (0, et.type == NT_unsigned, -1);
13300 }
13301
13302 static void
13303 do_neon_trn (void)
13304 {
13305 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13306 struct neon_type_el et = neon_check_type (2, rs,
13307 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13308 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
13309 neon_two_same (neon_quad (rs), 1, et.size);
13310 }
13311
13312 static void
13313 do_neon_zip_uzp (void)
13314 {
13315 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13316 struct neon_type_el et = neon_check_type (2, rs,
13317 N_EQK, N_8 | N_16 | N_32 | N_KEY);
13318 if (rs == NS_DD && et.size == 32)
13319 {
13320 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
13321 inst.instruction = N_MNEM_vtrn;
13322 do_neon_trn ();
13323 return;
13324 }
13325 neon_two_same (neon_quad (rs), 1, et.size);
13326 }
13327
13328 static void
13329 do_neon_sat_abs_neg (void)
13330 {
13331 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13332 struct neon_type_el et = neon_check_type (2, rs,
13333 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13334 neon_two_same (neon_quad (rs), 1, et.size);
13335 }
13336
13337 static void
13338 do_neon_pair_long (void)
13339 {
13340 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13341 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
13342 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
13343 inst.instruction |= (et.type == NT_unsigned) << 7;
13344 neon_two_same (neon_quad (rs), 1, et.size);
13345 }
13346
13347 static void
13348 do_neon_recip_est (void)
13349 {
13350 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13351 struct neon_type_el et = neon_check_type (2, rs,
13352 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
13353 inst.instruction |= (et.type == NT_float) << 8;
13354 neon_two_same (neon_quad (rs), 1, et.size);
13355 }
13356
13357 static void
13358 do_neon_cls (void)
13359 {
13360 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13361 struct neon_type_el et = neon_check_type (2, rs,
13362 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
13363 neon_two_same (neon_quad (rs), 1, et.size);
13364 }
13365
13366 static void
13367 do_neon_clz (void)
13368 {
13369 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13370 struct neon_type_el et = neon_check_type (2, rs,
13371 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
13372 neon_two_same (neon_quad (rs), 1, et.size);
13373 }
13374
13375 static void
13376 do_neon_cnt (void)
13377 {
13378 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13379 struct neon_type_el et = neon_check_type (2, rs,
13380 N_EQK | N_INT, N_8 | N_KEY);
13381 neon_two_same (neon_quad (rs), 1, et.size);
13382 }
13383
13384 static void
13385 do_neon_swp (void)
13386 {
13387 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
13388 neon_two_same (neon_quad (rs), 1, -1);
13389 }
13390
13391 static void
13392 do_neon_tbl_tbx (void)
13393 {
13394 unsigned listlenbits;
13395 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
13396
13397 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
13398 {
13399 first_error (_("bad list length for table lookup"));
13400 return;
13401 }
13402
13403 listlenbits = inst.operands[1].imm - 1;
13404 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13405 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13406 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13407 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13408 inst.instruction |= LOW4 (inst.operands[2].reg);
13409 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13410 inst.instruction |= listlenbits << 8;
13411
13412 inst.instruction = neon_dp_fixup (inst.instruction);
13413 }
13414
13415 static void
13416 do_neon_ldm_stm (void)
13417 {
13418 /* P, U and L bits are part of bitmask. */
13419 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13420 unsigned offsetbits = inst.operands[1].imm * 2;
13421
13422 if (inst.operands[1].issingle)
13423 {
13424 do_vfp_nsyn_ldm_stm (is_dbmode);
13425 return;
13426 }
13427
13428 constraint (is_dbmode && !inst.operands[0].writeback,
13429 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13430
13431 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13432 _("register list must contain at least 1 and at most 16 "
13433 "registers"));
13434
13435 inst.instruction |= inst.operands[0].reg << 16;
13436 inst.instruction |= inst.operands[0].writeback << 21;
13437 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13438 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13439
13440 inst.instruction |= offsetbits;
13441
13442 do_vfp_cond_or_thumb ();
13443 }
13444
13445 static void
13446 do_neon_ldr_str (void)
13447 {
13448 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13449
13450 if (inst.operands[0].issingle)
13451 {
13452 if (is_ldr)
13453 do_vfp_nsyn_opcode ("flds");
13454 else
13455 do_vfp_nsyn_opcode ("fsts");
13456 }
13457 else
13458 {
13459 if (is_ldr)
13460 do_vfp_nsyn_opcode ("fldd");
13461 else
13462 do_vfp_nsyn_opcode ("fstd");
13463 }
13464 }
13465
13466 /* "interleave" version also handles non-interleaving register VLD1/VST1
13467 instructions. */
13468
13469 static void
13470 do_neon_ld_st_interleave (void)
13471 {
13472 struct neon_type_el et = neon_check_type (1, NS_NULL,
13473 N_8 | N_16 | N_32 | N_64);
13474 unsigned alignbits = 0;
13475 unsigned idx;
13476 /* The bits in this table go:
13477 0: register stride of one (0) or two (1)
13478 1,2: register list length, minus one (1, 2, 3, 4).
13479 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13480 We use -1 for invalid entries. */
13481 const int typetable[] =
13482 {
13483 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13484 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13485 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13486 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13487 };
13488 int typebits;
13489
13490 if (et.type == NT_invtype)
13491 return;
13492
13493 if (inst.operands[1].immisalign)
13494 switch (inst.operands[1].imm >> 8)
13495 {
13496 case 64: alignbits = 1; break;
13497 case 128:
13498 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13499 goto bad_alignment;
13500 alignbits = 2;
13501 break;
13502 case 256:
13503 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13504 goto bad_alignment;
13505 alignbits = 3;
13506 break;
13507 default:
13508 bad_alignment:
13509 first_error (_("bad alignment"));
13510 return;
13511 }
13512
13513 inst.instruction |= alignbits << 4;
13514 inst.instruction |= neon_logbits (et.size) << 6;
13515
13516 /* Bits [4:6] of the immediate in a list specifier encode register stride
13517 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13518 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13519 up the right value for "type" in a table based on this value and the given
13520 list style, then stick it back. */
13521 idx = ((inst.operands[0].imm >> 4) & 7)
13522 | (((inst.instruction >> 8) & 3) << 3);
13523
13524 typebits = typetable[idx];
13525
13526 constraint (typebits == -1, _("bad list type for instruction"));
13527
13528 inst.instruction &= ~0xf00;
13529 inst.instruction |= typebits << 8;
13530 }
13531
13532 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13533 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13534 otherwise. The variable arguments are a list of pairs of legal (size, align)
13535 values, terminated with -1. */
13536
13537 static int
13538 neon_alignment_bit (int size, int align, int *do_align, ...)
13539 {
13540 va_list ap;
13541 int result = FAIL, thissize, thisalign;
13542
13543 if (!inst.operands[1].immisalign)
13544 {
13545 *do_align = 0;
13546 return SUCCESS;
13547 }
13548
13549 va_start (ap, do_align);
13550
13551 do
13552 {
13553 thissize = va_arg (ap, int);
13554 if (thissize == -1)
13555 break;
13556 thisalign = va_arg (ap, int);
13557
13558 if (size == thissize && align == thisalign)
13559 result = SUCCESS;
13560 }
13561 while (result != SUCCESS);
13562
13563 va_end (ap);
13564
13565 if (result == SUCCESS)
13566 *do_align = 1;
13567 else
13568 first_error (_("unsupported alignment for instruction"));
13569
13570 return result;
13571 }
13572
13573 static void
13574 do_neon_ld_st_lane (void)
13575 {
13576 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13577 int align_good, do_align = 0;
13578 int logsize = neon_logbits (et.size);
13579 int align = inst.operands[1].imm >> 8;
13580 int n = (inst.instruction >> 8) & 3;
13581 int max_el = 64 / et.size;
13582
13583 if (et.type == NT_invtype)
13584 return;
13585
13586 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13587 _("bad list length"));
13588 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13589 _("scalar index out of range"));
13590 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13591 && et.size == 8,
13592 _("stride of 2 unavailable when element size is 8"));
13593
13594 switch (n)
13595 {
13596 case 0: /* VLD1 / VST1. */
13597 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13598 32, 32, -1);
13599 if (align_good == FAIL)
13600 return;
13601 if (do_align)
13602 {
13603 unsigned alignbits = 0;
13604 switch (et.size)
13605 {
13606 case 16: alignbits = 0x1; break;
13607 case 32: alignbits = 0x3; break;
13608 default: ;
13609 }
13610 inst.instruction |= alignbits << 4;
13611 }
13612 break;
13613
13614 case 1: /* VLD2 / VST2. */
13615 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13616 32, 64, -1);
13617 if (align_good == FAIL)
13618 return;
13619 if (do_align)
13620 inst.instruction |= 1 << 4;
13621 break;
13622
13623 case 2: /* VLD3 / VST3. */
13624 constraint (inst.operands[1].immisalign,
13625 _("can't use alignment with this instruction"));
13626 break;
13627
13628 case 3: /* VLD4 / VST4. */
13629 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13630 16, 64, 32, 64, 32, 128, -1);
13631 if (align_good == FAIL)
13632 return;
13633 if (do_align)
13634 {
13635 unsigned alignbits = 0;
13636 switch (et.size)
13637 {
13638 case 8: alignbits = 0x1; break;
13639 case 16: alignbits = 0x1; break;
13640 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13641 default: ;
13642 }
13643 inst.instruction |= alignbits << 4;
13644 }
13645 break;
13646
13647 default: ;
13648 }
13649
13650 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13651 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13652 inst.instruction |= 1 << (4 + logsize);
13653
13654 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13655 inst.instruction |= logsize << 10;
13656 }
13657
13658 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13659
13660 static void
13661 do_neon_ld_dup (void)
13662 {
13663 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13664 int align_good, do_align = 0;
13665
13666 if (et.type == NT_invtype)
13667 return;
13668
13669 switch ((inst.instruction >> 8) & 3)
13670 {
13671 case 0: /* VLD1. */
13672 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13673 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13674 &do_align, 16, 16, 32, 32, -1);
13675 if (align_good == FAIL)
13676 return;
13677 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13678 {
13679 case 1: break;
13680 case 2: inst.instruction |= 1 << 5; break;
13681 default: first_error (_("bad list length")); return;
13682 }
13683 inst.instruction |= neon_logbits (et.size) << 6;
13684 break;
13685
13686 case 1: /* VLD2. */
13687 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13688 &do_align, 8, 16, 16, 32, 32, 64, -1);
13689 if (align_good == FAIL)
13690 return;
13691 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13692 _("bad list length"));
13693 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13694 inst.instruction |= 1 << 5;
13695 inst.instruction |= neon_logbits (et.size) << 6;
13696 break;
13697
13698 case 2: /* VLD3. */
13699 constraint (inst.operands[1].immisalign,
13700 _("can't use alignment with this instruction"));
13701 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13702 _("bad list length"));
13703 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13704 inst.instruction |= 1 << 5;
13705 inst.instruction |= neon_logbits (et.size) << 6;
13706 break;
13707
13708 case 3: /* VLD4. */
13709 {
13710 int align = inst.operands[1].imm >> 8;
13711 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13712 16, 64, 32, 64, 32, 128, -1);
13713 if (align_good == FAIL)
13714 return;
13715 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13716 _("bad list length"));
13717 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13718 inst.instruction |= 1 << 5;
13719 if (et.size == 32 && align == 128)
13720 inst.instruction |= 0x3 << 6;
13721 else
13722 inst.instruction |= neon_logbits (et.size) << 6;
13723 }
13724 break;
13725
13726 default: ;
13727 }
13728
13729 inst.instruction |= do_align << 4;
13730 }
13731
13732 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13733 apart from bits [11:4]. */
13734
13735 static void
13736 do_neon_ldx_stx (void)
13737 {
13738 switch (NEON_LANE (inst.operands[0].imm))
13739 {
13740 case NEON_INTERLEAVE_LANES:
13741 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13742 do_neon_ld_st_interleave ();
13743 break;
13744
13745 case NEON_ALL_LANES:
13746 inst.instruction = NEON_ENC_DUP (inst.instruction);
13747 do_neon_ld_dup ();
13748 break;
13749
13750 default:
13751 inst.instruction = NEON_ENC_LANE (inst.instruction);
13752 do_neon_ld_st_lane ();
13753 }
13754
13755 /* L bit comes from bit mask. */
13756 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13757 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13758 inst.instruction |= inst.operands[1].reg << 16;
13759
13760 if (inst.operands[1].postind)
13761 {
13762 int postreg = inst.operands[1].imm & 0xf;
13763 constraint (!inst.operands[1].immisreg,
13764 _("post-index must be a register"));
13765 constraint (postreg == 0xd || postreg == 0xf,
13766 _("bad register for post-index"));
13767 inst.instruction |= postreg;
13768 }
13769 else if (inst.operands[1].writeback)
13770 {
13771 inst.instruction |= 0xd;
13772 }
13773 else
13774 inst.instruction |= 0xf;
13775
13776 if (thumb_mode)
13777 inst.instruction |= 0xf9000000;
13778 else
13779 inst.instruction |= 0xf4000000;
13780 }
13781 \f
13782 /* Overall per-instruction processing. */
13783
13784 /* We need to be able to fix up arbitrary expressions in some statements.
13785 This is so that we can handle symbols that are an arbitrary distance from
13786 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13787 which returns part of an address in a form which will be valid for
13788 a data instruction. We do this by pushing the expression into a symbol
13789 in the expr_section, and creating a fix for that. */
13790
13791 static void
13792 fix_new_arm (fragS * frag,
13793 int where,
13794 short int size,
13795 expressionS * exp,
13796 int pc_rel,
13797 int reloc)
13798 {
13799 fixS * new_fix;
13800
13801 switch (exp->X_op)
13802 {
13803 case O_constant:
13804 case O_symbol:
13805 case O_add:
13806 case O_subtract:
13807 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13808 break;
13809
13810 default:
13811 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13812 pc_rel, reloc);
13813 break;
13814 }
13815
13816 /* Mark whether the fix is to a THUMB instruction, or an ARM
13817 instruction. */
13818 new_fix->tc_fix_data = thumb_mode;
13819 }
13820
13821 /* Create a frg for an instruction requiring relaxation. */
13822 static void
13823 output_relax_insn (void)
13824 {
13825 char * to;
13826 symbolS *sym;
13827 int offset;
13828
13829 /* The size of the instruction is unknown, so tie the debug info to the
13830 start of the instruction. */
13831 dwarf2_emit_insn (0);
13832
13833 switch (inst.reloc.exp.X_op)
13834 {
13835 case O_symbol:
13836 sym = inst.reloc.exp.X_add_symbol;
13837 offset = inst.reloc.exp.X_add_number;
13838 break;
13839 case O_constant:
13840 sym = NULL;
13841 offset = inst.reloc.exp.X_add_number;
13842 break;
13843 default:
13844 sym = make_expr_symbol (&inst.reloc.exp);
13845 offset = 0;
13846 break;
13847 }
13848 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13849 inst.relax, sym, offset, NULL/*offset, opcode*/);
13850 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13851 }
13852
13853 /* Write a 32-bit thumb instruction to buf. */
13854 static void
13855 put_thumb32_insn (char * buf, unsigned long insn)
13856 {
13857 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13858 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13859 }
13860
13861 static void
13862 output_inst (const char * str)
13863 {
13864 char * to = NULL;
13865
13866 if (inst.error)
13867 {
13868 as_bad ("%s -- `%s'", inst.error, str);
13869 return;
13870 }
13871 if (inst.relax)
13872 {
13873 output_relax_insn ();
13874 return;
13875 }
13876 if (inst.size == 0)
13877 return;
13878
13879 to = frag_more (inst.size);
13880
13881 if (thumb_mode && (inst.size > THUMB_SIZE))
13882 {
13883 assert (inst.size == (2 * THUMB_SIZE));
13884 put_thumb32_insn (to, inst.instruction);
13885 }
13886 else if (inst.size > INSN_SIZE)
13887 {
13888 assert (inst.size == (2 * INSN_SIZE));
13889 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13890 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13891 }
13892 else
13893 md_number_to_chars (to, inst.instruction, inst.size);
13894
13895 if (inst.reloc.type != BFD_RELOC_UNUSED)
13896 fix_new_arm (frag_now, to - frag_now->fr_literal,
13897 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13898 inst.reloc.type);
13899
13900 dwarf2_emit_insn (inst.size);
13901 }
13902
13903 /* Tag values used in struct asm_opcode's tag field. */
13904 enum opcode_tag
13905 {
13906 OT_unconditional, /* Instruction cannot be conditionalized.
13907 The ARM condition field is still 0xE. */
13908 OT_unconditionalF, /* Instruction cannot be conditionalized
13909 and carries 0xF in its ARM condition field. */
13910 OT_csuffix, /* Instruction takes a conditional suffix. */
13911 OT_csuffixF, /* Some forms of the instruction take a conditional
13912 suffix, others place 0xF where the condition field
13913 would be. */
13914 OT_cinfix3, /* Instruction takes a conditional infix,
13915 beginning at character index 3. (In
13916 unified mode, it becomes a suffix.) */
13917 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13918 tsts, cmps, cmns, and teqs. */
13919 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13920 character index 3, even in unified mode. Used for
13921 legacy instructions where suffix and infix forms
13922 may be ambiguous. */
13923 OT_csuf_or_in3, /* Instruction takes either a conditional
13924 suffix or an infix at character index 3. */
13925 OT_odd_infix_unc, /* This is the unconditional variant of an
13926 instruction that takes a conditional infix
13927 at an unusual position. In unified mode,
13928 this variant will accept a suffix. */
13929 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13930 are the conditional variants of instructions that
13931 take conditional infixes in unusual positions.
13932 The infix appears at character index
13933 (tag - OT_odd_infix_0). These are not accepted
13934 in unified mode. */
13935 };
13936
13937 /* Subroutine of md_assemble, responsible for looking up the primary
13938 opcode from the mnemonic the user wrote. STR points to the
13939 beginning of the mnemonic.
13940
13941 This is not simply a hash table lookup, because of conditional
13942 variants. Most instructions have conditional variants, which are
13943 expressed with a _conditional affix_ to the mnemonic. If we were
13944 to encode each conditional variant as a literal string in the opcode
13945 table, it would have approximately 20,000 entries.
13946
13947 Most mnemonics take this affix as a suffix, and in unified syntax,
13948 'most' is upgraded to 'all'. However, in the divided syntax, some
13949 instructions take the affix as an infix, notably the s-variants of
13950 the arithmetic instructions. Of those instructions, all but six
13951 have the infix appear after the third character of the mnemonic.
13952
13953 Accordingly, the algorithm for looking up primary opcodes given
13954 an identifier is:
13955
13956 1. Look up the identifier in the opcode table.
13957 If we find a match, go to step U.
13958
13959 2. Look up the last two characters of the identifier in the
13960 conditions table. If we find a match, look up the first N-2
13961 characters of the identifier in the opcode table. If we
13962 find a match, go to step CE.
13963
13964 3. Look up the fourth and fifth characters of the identifier in
13965 the conditions table. If we find a match, extract those
13966 characters from the identifier, and look up the remaining
13967 characters in the opcode table. If we find a match, go
13968 to step CM.
13969
13970 4. Fail.
13971
13972 U. Examine the tag field of the opcode structure, in case this is
13973 one of the six instructions with its conditional infix in an
13974 unusual place. If it is, the tag tells us where to find the
13975 infix; look it up in the conditions table and set inst.cond
13976 accordingly. Otherwise, this is an unconditional instruction.
13977 Again set inst.cond accordingly. Return the opcode structure.
13978
13979 CE. Examine the tag field to make sure this is an instruction that
13980 should receive a conditional suffix. If it is not, fail.
13981 Otherwise, set inst.cond from the suffix we already looked up,
13982 and return the opcode structure.
13983
13984 CM. Examine the tag field to make sure this is an instruction that
13985 should receive a conditional infix after the third character.
13986 If it is not, fail. Otherwise, undo the edits to the current
13987 line of input and proceed as for case CE. */
13988
13989 static const struct asm_opcode *
13990 opcode_lookup (char **str)
13991 {
13992 char *end, *base;
13993 char *affix;
13994 const struct asm_opcode *opcode;
13995 const struct asm_cond *cond;
13996 char save[2];
13997 bfd_boolean neon_supported;
13998
13999 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
14000
14001 /* Scan up to the end of the mnemonic, which must end in white space,
14002 '.' (in unified mode, or for Neon instructions), or end of string. */
14003 for (base = end = *str; *end != '\0'; end++)
14004 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
14005 break;
14006
14007 if (end == base)
14008 return 0;
14009
14010 /* Handle a possible width suffix and/or Neon type suffix. */
14011 if (end[0] == '.')
14012 {
14013 int offset = 2;
14014
14015 /* The .w and .n suffixes are only valid if the unified syntax is in
14016 use. */
14017 if (unified_syntax && end[1] == 'w')
14018 inst.size_req = 4;
14019 else if (unified_syntax && end[1] == 'n')
14020 inst.size_req = 2;
14021 else
14022 offset = 0;
14023
14024 inst.vectype.elems = 0;
14025
14026 *str = end + offset;
14027
14028 if (end[offset] == '.')
14029 {
14030 /* See if we have a Neon type suffix (possible in either unified or
14031 non-unified ARM syntax mode). */
14032 if (parse_neon_type (&inst.vectype, str) == FAIL)
14033 return 0;
14034 }
14035 else if (end[offset] != '\0' && end[offset] != ' ')
14036 return 0;
14037 }
14038 else
14039 *str = end;
14040
14041 /* Look for unaffixed or special-case affixed mnemonic. */
14042 opcode = hash_find_n (arm_ops_hsh, base, end - base);
14043 if (opcode)
14044 {
14045 /* step U */
14046 if (opcode->tag < OT_odd_infix_0)
14047 {
14048 inst.cond = COND_ALWAYS;
14049 return opcode;
14050 }
14051
14052 if (unified_syntax)
14053 as_warn (_("conditional infixes are deprecated in unified syntax"));
14054 affix = base + (opcode->tag - OT_odd_infix_0);
14055 cond = hash_find_n (arm_cond_hsh, affix, 2);
14056 assert (cond);
14057
14058 inst.cond = cond->value;
14059 return opcode;
14060 }
14061
14062 /* Cannot have a conditional suffix on a mnemonic of less than two
14063 characters. */
14064 if (end - base < 3)
14065 return 0;
14066
14067 /* Look for suffixed mnemonic. */
14068 affix = end - 2;
14069 cond = hash_find_n (arm_cond_hsh, affix, 2);
14070 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
14071 if (opcode && cond)
14072 {
14073 /* step CE */
14074 switch (opcode->tag)
14075 {
14076 case OT_cinfix3_legacy:
14077 /* Ignore conditional suffixes matched on infix only mnemonics. */
14078 break;
14079
14080 case OT_cinfix3:
14081 case OT_cinfix3_deprecated:
14082 case OT_odd_infix_unc:
14083 if (!unified_syntax)
14084 return 0;
14085 /* else fall through */
14086
14087 case OT_csuffix:
14088 case OT_csuffixF:
14089 case OT_csuf_or_in3:
14090 inst.cond = cond->value;
14091 return opcode;
14092
14093 case OT_unconditional:
14094 case OT_unconditionalF:
14095 if (thumb_mode)
14096 {
14097 inst.cond = cond->value;
14098 }
14099 else
14100 {
14101 /* delayed diagnostic */
14102 inst.error = BAD_COND;
14103 inst.cond = COND_ALWAYS;
14104 }
14105 return opcode;
14106
14107 default:
14108 return 0;
14109 }
14110 }
14111
14112 /* Cannot have a usual-position infix on a mnemonic of less than
14113 six characters (five would be a suffix). */
14114 if (end - base < 6)
14115 return 0;
14116
14117 /* Look for infixed mnemonic in the usual position. */
14118 affix = base + 3;
14119 cond = hash_find_n (arm_cond_hsh, affix, 2);
14120 if (!cond)
14121 return 0;
14122
14123 memcpy (save, affix, 2);
14124 memmove (affix, affix + 2, (end - affix) - 2);
14125 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
14126 memmove (affix + 2, affix, (end - affix) - 2);
14127 memcpy (affix, save, 2);
14128
14129 if (opcode
14130 && (opcode->tag == OT_cinfix3
14131 || opcode->tag == OT_cinfix3_deprecated
14132 || opcode->tag == OT_csuf_or_in3
14133 || opcode->tag == OT_cinfix3_legacy))
14134 {
14135 /* step CM */
14136 if (unified_syntax
14137 && (opcode->tag == OT_cinfix3
14138 || opcode->tag == OT_cinfix3_deprecated))
14139 as_warn (_("conditional infixes are deprecated in unified syntax"));
14140
14141 inst.cond = cond->value;
14142 return opcode;
14143 }
14144
14145 return 0;
14146 }
14147
14148 void
14149 md_assemble (char *str)
14150 {
14151 char *p = str;
14152 const struct asm_opcode * opcode;
14153
14154 /* Align the previous label if needed. */
14155 if (last_label_seen != NULL)
14156 {
14157 symbol_set_frag (last_label_seen, frag_now);
14158 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
14159 S_SET_SEGMENT (last_label_seen, now_seg);
14160 }
14161
14162 memset (&inst, '\0', sizeof (inst));
14163 inst.reloc.type = BFD_RELOC_UNUSED;
14164
14165 opcode = opcode_lookup (&p);
14166 if (!opcode)
14167 {
14168 /* It wasn't an instruction, but it might be a register alias of
14169 the form alias .req reg, or a Neon .dn/.qn directive. */
14170 if (!create_register_alias (str, p)
14171 && !create_neon_reg_alias (str, p))
14172 as_bad (_("bad instruction `%s'"), str);
14173
14174 return;
14175 }
14176
14177 if (opcode->tag == OT_cinfix3_deprecated)
14178 as_warn (_("s suffix on comparison instruction is deprecated"));
14179
14180 /* The value which unconditional instructions should have in place of the
14181 condition field. */
14182 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
14183
14184 if (thumb_mode)
14185 {
14186 arm_feature_set variant;
14187
14188 variant = cpu_variant;
14189 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
14190 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
14191 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
14192 /* Check that this instruction is supported for this CPU. */
14193 if (!opcode->tvariant
14194 || (thumb_mode == 1
14195 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
14196 {
14197 as_bad (_("selected processor does not support `%s'"), str);
14198 return;
14199 }
14200 if (inst.cond != COND_ALWAYS && !unified_syntax
14201 && opcode->tencode != do_t_branch)
14202 {
14203 as_bad (_("Thumb does not support conditional execution"));
14204 return;
14205 }
14206
14207 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2) && !inst.size_req)
14208 {
14209 /* Implicit require narrow instructions on Thumb-1. This avoids
14210 relaxation accidentally introducing Thumb-2 instructions. */
14211 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23)
14212 inst.size_req = 2;
14213 }
14214
14215 /* Check conditional suffixes. */
14216 if (current_it_mask)
14217 {
14218 int cond;
14219 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
14220 current_it_mask <<= 1;
14221 current_it_mask &= 0x1f;
14222 /* The BKPT instruction is unconditional even in an IT block. */
14223 if (!inst.error
14224 && cond != inst.cond && opcode->tencode != do_t_bkpt)
14225 {
14226 as_bad (_("incorrect condition in IT block"));
14227 return;
14228 }
14229 }
14230 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
14231 {
14232 as_bad (_("thumb conditional instruction not in IT block"));
14233 return;
14234 }
14235
14236 mapping_state (MAP_THUMB);
14237 inst.instruction = opcode->tvalue;
14238
14239 if (!parse_operands (p, opcode->operands))
14240 opcode->tencode ();
14241
14242 /* Clear current_it_mask at the end of an IT block. */
14243 if (current_it_mask == 0x10)
14244 current_it_mask = 0;
14245
14246 if (!(inst.error || inst.relax))
14247 {
14248 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
14249 inst.size = (inst.instruction > 0xffff ? 4 : 2);
14250 if (inst.size_req && inst.size_req != inst.size)
14251 {
14252 as_bad (_("cannot honor width suffix -- `%s'"), str);
14253 return;
14254 }
14255 }
14256
14257 /* Something has gone badly wrong if we try to relax a fixed size
14258 instruction. */
14259 assert (inst.size_req == 0 || !inst.relax);
14260
14261 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14262 *opcode->tvariant);
14263 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
14264 set those bits when Thumb-2 32-bit instructions are seen. ie.
14265 anything other than bl/blx.
14266 This is overly pessimistic for relaxable instructions. */
14267 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
14268 || inst.relax)
14269 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
14270 arm_ext_v6t2);
14271 }
14272 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
14273 {
14274 /* Check that this instruction is supported for this CPU. */
14275 if (!opcode->avariant ||
14276 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
14277 {
14278 as_bad (_("selected processor does not support `%s'"), str);
14279 return;
14280 }
14281 if (inst.size_req)
14282 {
14283 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
14284 return;
14285 }
14286
14287 mapping_state (MAP_ARM);
14288 inst.instruction = opcode->avalue;
14289 if (opcode->tag == OT_unconditionalF)
14290 inst.instruction |= 0xF << 28;
14291 else
14292 inst.instruction |= inst.cond << 28;
14293 inst.size = INSN_SIZE;
14294 if (!parse_operands (p, opcode->operands))
14295 opcode->aencode ();
14296 /* Arm mode bx is marked as both v4T and v5 because it's still required
14297 on a hypothetical non-thumb v5 core. */
14298 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
14299 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
14300 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
14301 else
14302 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
14303 *opcode->avariant);
14304 }
14305 else
14306 {
14307 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
14308 "-- `%s'"), str);
14309 return;
14310 }
14311 output_inst (str);
14312 }
14313
14314 /* Various frobbings of labels and their addresses. */
14315
14316 void
14317 arm_start_line_hook (void)
14318 {
14319 last_label_seen = NULL;
14320 }
14321
14322 void
14323 arm_frob_label (symbolS * sym)
14324 {
14325 last_label_seen = sym;
14326
14327 ARM_SET_THUMB (sym, thumb_mode);
14328
14329 #if defined OBJ_COFF || defined OBJ_ELF
14330 ARM_SET_INTERWORK (sym, support_interwork);
14331 #endif
14332
14333 /* Note - do not allow local symbols (.Lxxx) to be labelled
14334 as Thumb functions. This is because these labels, whilst
14335 they exist inside Thumb code, are not the entry points for
14336 possible ARM->Thumb calls. Also, these labels can be used
14337 as part of a computed goto or switch statement. eg gcc
14338 can generate code that looks like this:
14339
14340 ldr r2, [pc, .Laaa]
14341 lsl r3, r3, #2
14342 ldr r2, [r3, r2]
14343 mov pc, r2
14344
14345 .Lbbb: .word .Lxxx
14346 .Lccc: .word .Lyyy
14347 ..etc...
14348 .Laaa: .word Lbbb
14349
14350 The first instruction loads the address of the jump table.
14351 The second instruction converts a table index into a byte offset.
14352 The third instruction gets the jump address out of the table.
14353 The fourth instruction performs the jump.
14354
14355 If the address stored at .Laaa is that of a symbol which has the
14356 Thumb_Func bit set, then the linker will arrange for this address
14357 to have the bottom bit set, which in turn would mean that the
14358 address computation performed by the third instruction would end
14359 up with the bottom bit set. Since the ARM is capable of unaligned
14360 word loads, the instruction would then load the incorrect address
14361 out of the jump table, and chaos would ensue. */
14362 if (label_is_thumb_function_name
14363 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
14364 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
14365 {
14366 /* When the address of a Thumb function is taken the bottom
14367 bit of that address should be set. This will allow
14368 interworking between Arm and Thumb functions to work
14369 correctly. */
14370
14371 THUMB_SET_FUNC (sym, 1);
14372
14373 label_is_thumb_function_name = FALSE;
14374 }
14375
14376 dwarf2_emit_label (sym);
14377 }
14378
14379 int
14380 arm_data_in_code (void)
14381 {
14382 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
14383 {
14384 *input_line_pointer = '/';
14385 input_line_pointer += 5;
14386 *input_line_pointer = 0;
14387 return 1;
14388 }
14389
14390 return 0;
14391 }
14392
14393 char *
14394 arm_canonicalize_symbol_name (char * name)
14395 {
14396 int len;
14397
14398 if (thumb_mode && (len = strlen (name)) > 5
14399 && streq (name + len - 5, "/data"))
14400 *(name + len - 5) = 0;
14401
14402 return name;
14403 }
14404 \f
14405 /* Table of all register names defined by default. The user can
14406 define additional names with .req. Note that all register names
14407 should appear in both upper and lowercase variants. Some registers
14408 also have mixed-case names. */
14409
14410 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
14411 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
14412 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
14413 #define REGSET(p,t) \
14414 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
14415 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
14416 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
14417 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
14418 #define REGSETH(p,t) \
14419 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
14420 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
14421 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
14422 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
14423 #define REGSET2(p,t) \
14424 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
14425 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
14426 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
14427 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
14428
14429 static const struct reg_entry reg_names[] =
14430 {
14431 /* ARM integer registers. */
14432 REGSET(r, RN), REGSET(R, RN),
14433
14434 /* ATPCS synonyms. */
14435 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14436 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14437 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14438
14439 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14440 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14441 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14442
14443 /* Well-known aliases. */
14444 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14445 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14446
14447 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14448 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14449
14450 /* Coprocessor numbers. */
14451 REGSET(p, CP), REGSET(P, CP),
14452
14453 /* Coprocessor register numbers. The "cr" variants are for backward
14454 compatibility. */
14455 REGSET(c, CN), REGSET(C, CN),
14456 REGSET(cr, CN), REGSET(CR, CN),
14457
14458 /* FPA registers. */
14459 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14460 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14461
14462 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14463 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14464
14465 /* VFP SP registers. */
14466 REGSET(s,VFS), REGSET(S,VFS),
14467 REGSETH(s,VFS), REGSETH(S,VFS),
14468
14469 /* VFP DP Registers. */
14470 REGSET(d,VFD), REGSET(D,VFD),
14471 /* Extra Neon DP registers. */
14472 REGSETH(d,VFD), REGSETH(D,VFD),
14473
14474 /* Neon QP registers. */
14475 REGSET2(q,NQ), REGSET2(Q,NQ),
14476
14477 /* VFP control registers. */
14478 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14479 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14480 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
14481 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
14482 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
14483 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
14484
14485 /* Maverick DSP coprocessor registers. */
14486 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14487 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14488
14489 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14490 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14491 REGDEF(dspsc,0,DSPSC),
14492
14493 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14494 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14495 REGDEF(DSPSC,0,DSPSC),
14496
14497 /* iWMMXt data registers - p0, c0-15. */
14498 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14499
14500 /* iWMMXt control registers - p1, c0-3. */
14501 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14502 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14503 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14504 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14505
14506 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14507 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14508 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14509 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14510 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14511
14512 /* XScale accumulator registers. */
14513 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14514 };
14515 #undef REGDEF
14516 #undef REGNUM
14517 #undef REGSET
14518
14519 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14520 within psr_required_here. */
14521 static const struct asm_psr psrs[] =
14522 {
14523 /* Backward compatibility notation. Note that "all" is no longer
14524 truly all possible PSR bits. */
14525 {"all", PSR_c | PSR_f},
14526 {"flg", PSR_f},
14527 {"ctl", PSR_c},
14528
14529 /* Individual flags. */
14530 {"f", PSR_f},
14531 {"c", PSR_c},
14532 {"x", PSR_x},
14533 {"s", PSR_s},
14534 /* Combinations of flags. */
14535 {"fs", PSR_f | PSR_s},
14536 {"fx", PSR_f | PSR_x},
14537 {"fc", PSR_f | PSR_c},
14538 {"sf", PSR_s | PSR_f},
14539 {"sx", PSR_s | PSR_x},
14540 {"sc", PSR_s | PSR_c},
14541 {"xf", PSR_x | PSR_f},
14542 {"xs", PSR_x | PSR_s},
14543 {"xc", PSR_x | PSR_c},
14544 {"cf", PSR_c | PSR_f},
14545 {"cs", PSR_c | PSR_s},
14546 {"cx", PSR_c | PSR_x},
14547 {"fsx", PSR_f | PSR_s | PSR_x},
14548 {"fsc", PSR_f | PSR_s | PSR_c},
14549 {"fxs", PSR_f | PSR_x | PSR_s},
14550 {"fxc", PSR_f | PSR_x | PSR_c},
14551 {"fcs", PSR_f | PSR_c | PSR_s},
14552 {"fcx", PSR_f | PSR_c | PSR_x},
14553 {"sfx", PSR_s | PSR_f | PSR_x},
14554 {"sfc", PSR_s | PSR_f | PSR_c},
14555 {"sxf", PSR_s | PSR_x | PSR_f},
14556 {"sxc", PSR_s | PSR_x | PSR_c},
14557 {"scf", PSR_s | PSR_c | PSR_f},
14558 {"scx", PSR_s | PSR_c | PSR_x},
14559 {"xfs", PSR_x | PSR_f | PSR_s},
14560 {"xfc", PSR_x | PSR_f | PSR_c},
14561 {"xsf", PSR_x | PSR_s | PSR_f},
14562 {"xsc", PSR_x | PSR_s | PSR_c},
14563 {"xcf", PSR_x | PSR_c | PSR_f},
14564 {"xcs", PSR_x | PSR_c | PSR_s},
14565 {"cfs", PSR_c | PSR_f | PSR_s},
14566 {"cfx", PSR_c | PSR_f | PSR_x},
14567 {"csf", PSR_c | PSR_s | PSR_f},
14568 {"csx", PSR_c | PSR_s | PSR_x},
14569 {"cxf", PSR_c | PSR_x | PSR_f},
14570 {"cxs", PSR_c | PSR_x | PSR_s},
14571 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14572 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14573 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14574 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14575 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14576 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14577 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14578 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14579 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14580 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14581 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14582 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14583 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14584 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14585 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14586 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14587 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14588 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14589 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14590 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14591 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14592 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14593 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14594 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14595 };
14596
14597 /* Table of V7M psr names. */
14598 static const struct asm_psr v7m_psrs[] =
14599 {
14600 {"apsr", 0 }, {"APSR", 0 },
14601 {"iapsr", 1 }, {"IAPSR", 1 },
14602 {"eapsr", 2 }, {"EAPSR", 2 },
14603 {"psr", 3 }, {"PSR", 3 },
14604 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
14605 {"ipsr", 5 }, {"IPSR", 5 },
14606 {"epsr", 6 }, {"EPSR", 6 },
14607 {"iepsr", 7 }, {"IEPSR", 7 },
14608 {"msp", 8 }, {"MSP", 8 },
14609 {"psp", 9 }, {"PSP", 9 },
14610 {"primask", 16}, {"PRIMASK", 16},
14611 {"basepri", 17}, {"BASEPRI", 17},
14612 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
14613 {"faultmask", 19}, {"FAULTMASK", 19},
14614 {"control", 20}, {"CONTROL", 20}
14615 };
14616
14617 /* Table of all shift-in-operand names. */
14618 static const struct asm_shift_name shift_names [] =
14619 {
14620 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14621 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14622 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14623 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14624 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14625 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14626 };
14627
14628 /* Table of all explicit relocation names. */
14629 #ifdef OBJ_ELF
14630 static struct reloc_entry reloc_names[] =
14631 {
14632 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14633 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14634 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14635 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14636 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14637 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14638 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14639 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14640 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14641 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14642 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14643 };
14644 #endif
14645
14646 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14647 static const struct asm_cond conds[] =
14648 {
14649 {"eq", 0x0},
14650 {"ne", 0x1},
14651 {"cs", 0x2}, {"hs", 0x2},
14652 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14653 {"mi", 0x4},
14654 {"pl", 0x5},
14655 {"vs", 0x6},
14656 {"vc", 0x7},
14657 {"hi", 0x8},
14658 {"ls", 0x9},
14659 {"ge", 0xa},
14660 {"lt", 0xb},
14661 {"gt", 0xc},
14662 {"le", 0xd},
14663 {"al", 0xe}
14664 };
14665
14666 static struct asm_barrier_opt barrier_opt_names[] =
14667 {
14668 { "sy", 0xf },
14669 { "un", 0x7 },
14670 { "st", 0xe },
14671 { "unst", 0x6 }
14672 };
14673
14674 /* Table of ARM-format instructions. */
14675
14676 /* Macros for gluing together operand strings. N.B. In all cases
14677 other than OPS0, the trailing OP_stop comes from default
14678 zero-initialization of the unspecified elements of the array. */
14679 #define OPS0() { OP_stop, }
14680 #define OPS1(a) { OP_##a, }
14681 #define OPS2(a,b) { OP_##a,OP_##b, }
14682 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14683 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14684 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14685 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14686
14687 /* These macros abstract out the exact format of the mnemonic table and
14688 save some repeated characters. */
14689
14690 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14691 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14692 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14693 THUMB_VARIANT, do_##ae, do_##te }
14694
14695 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14696 a T_MNEM_xyz enumerator. */
14697 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14698 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14699 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14700 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14701
14702 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14703 infix after the third character. */
14704 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14705 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14706 THUMB_VARIANT, do_##ae, do_##te }
14707 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14708 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14709 THUMB_VARIANT, do_##ae, do_##te }
14710 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14711 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14712 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14713 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14714 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14715 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14716 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14717 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14718
14719 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14720 appear in the condition table. */
14721 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14722 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14723 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14724
14725 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14726 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14727 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14728 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14729 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14730 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14731 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14732 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14733 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14734 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14735 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14736 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14737 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14738 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14739 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14740 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14741 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14742 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14743 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14744 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14745
14746 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14747 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14748 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14749 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14750
14751 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14752 field is still 0xE. Many of the Thumb variants can be executed
14753 conditionally, so this is checked separately. */
14754 #define TUE(mnem, op, top, nops, ops, ae, te) \
14755 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14756 THUMB_VARIANT, do_##ae, do_##te }
14757
14758 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14759 condition code field. */
14760 #define TUF(mnem, op, top, nops, ops, ae, te) \
14761 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14762 THUMB_VARIANT, do_##ae, do_##te }
14763
14764 /* ARM-only variants of all the above. */
14765 #define CE(mnem, op, nops, ops, ae) \
14766 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14767
14768 #define C3(mnem, op, nops, ops, ae) \
14769 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14770
14771 /* Legacy mnemonics that always have conditional infix after the third
14772 character. */
14773 #define CL(mnem, op, nops, ops, ae) \
14774 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14775 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14776
14777 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14778 #define cCE(mnem, op, nops, ops, ae) \
14779 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14780
14781 /* Legacy coprocessor instructions where conditional infix and conditional
14782 suffix are ambiguous. For consistency this includes all FPA instructions,
14783 not just the potentially ambiguous ones. */
14784 #define cCL(mnem, op, nops, ops, ae) \
14785 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14786 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14787
14788 /* Coprocessor, takes either a suffix or a position-3 infix
14789 (for an FPA corner case). */
14790 #define C3E(mnem, op, nops, ops, ae) \
14791 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14792 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14793
14794 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14795 { #m1 #m2 #m3, OPS##nops ops, \
14796 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14797 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14798
14799 #define CM(m1, m2, op, nops, ops, ae) \
14800 xCM_(m1, , m2, op, nops, ops, ae), \
14801 xCM_(m1, eq, m2, op, nops, ops, ae), \
14802 xCM_(m1, ne, m2, op, nops, ops, ae), \
14803 xCM_(m1, cs, m2, op, nops, ops, ae), \
14804 xCM_(m1, hs, m2, op, nops, ops, ae), \
14805 xCM_(m1, cc, m2, op, nops, ops, ae), \
14806 xCM_(m1, ul, m2, op, nops, ops, ae), \
14807 xCM_(m1, lo, m2, op, nops, ops, ae), \
14808 xCM_(m1, mi, m2, op, nops, ops, ae), \
14809 xCM_(m1, pl, m2, op, nops, ops, ae), \
14810 xCM_(m1, vs, m2, op, nops, ops, ae), \
14811 xCM_(m1, vc, m2, op, nops, ops, ae), \
14812 xCM_(m1, hi, m2, op, nops, ops, ae), \
14813 xCM_(m1, ls, m2, op, nops, ops, ae), \
14814 xCM_(m1, ge, m2, op, nops, ops, ae), \
14815 xCM_(m1, lt, m2, op, nops, ops, ae), \
14816 xCM_(m1, gt, m2, op, nops, ops, ae), \
14817 xCM_(m1, le, m2, op, nops, ops, ae), \
14818 xCM_(m1, al, m2, op, nops, ops, ae)
14819
14820 #define UE(mnem, op, nops, ops, ae) \
14821 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14822
14823 #define UF(mnem, op, nops, ops, ae) \
14824 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14825
14826 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14827 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14828 use the same encoding function for each. */
14829 #define NUF(mnem, op, nops, ops, enc) \
14830 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14831 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14832
14833 /* Neon data processing, version which indirects through neon_enc_tab for
14834 the various overloaded versions of opcodes. */
14835 #define nUF(mnem, op, nops, ops, enc) \
14836 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14837 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14838
14839 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14840 version. */
14841 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14842 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14843 THUMB_VARIANT, do_##enc, do_##enc }
14844
14845 #define NCE(mnem, op, nops, ops, enc) \
14846 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14847
14848 #define NCEF(mnem, op, nops, ops, enc) \
14849 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14850
14851 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14852 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14853 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14854 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14855
14856 #define nCE(mnem, op, nops, ops, enc) \
14857 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14858
14859 #define nCEF(mnem, op, nops, ops, enc) \
14860 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14861
14862 #define do_0 0
14863
14864 /* Thumb-only, unconditional. */
14865 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14866
14867 static const struct asm_opcode insns[] =
14868 {
14869 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14870 #define THUMB_VARIANT &arm_ext_v4t
14871 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14872 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14873 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14874 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14875 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14876 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
14877 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14878 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
14879 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14880 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14881 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14882 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14883 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14884 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14885 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14886 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14887
14888 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14889 for setting PSR flag bits. They are obsolete in V6 and do not
14890 have Thumb equivalents. */
14891 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14892 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14893 CL(tstp, 110f000, 2, (RR, SH), cmp),
14894 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14895 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14896 CL(cmpp, 150f000, 2, (RR, SH), cmp),
14897 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14898 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14899 CL(cmnp, 170f000, 2, (RR, SH), cmp),
14900
14901 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14902 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14903 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14904 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14905
14906 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14907 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14908 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14909 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14910
14911 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14912 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14913 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14914 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14915 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14916 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14917
14918 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
14919 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
14920 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
14921 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
14922
14923 /* Pseudo ops. */
14924 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
14925 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14926 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
14927
14928 /* Thumb-compatibility pseudo ops. */
14929 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14930 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14931 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14932 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14933 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
14934 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
14935 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14936 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14937 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14938 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14939 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14940 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14941
14942 /* These may simplify to neg. */
14943 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14944 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14945
14946 #undef THUMB_VARIANT
14947 #define THUMB_VARIANT &arm_ext_v6
14948 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
14949
14950 /* V1 instructions with no Thumb analogue prior to V6T2. */
14951 #undef THUMB_VARIANT
14952 #define THUMB_VARIANT &arm_ext_v6t2
14953 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14954 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14955 CL(teqp, 130f000, 2, (RR, SH), cmp),
14956
14957 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
14958 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
14959 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
14960 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
14961
14962 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14963 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14964
14965 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14966 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14967
14968 /* V1 instructions with no Thumb analogue at all. */
14969 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14970 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14971
14972 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14973 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14974 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14975 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14976 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14977 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14978 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14979 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14980
14981 #undef ARM_VARIANT
14982 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14983 #undef THUMB_VARIANT
14984 #define THUMB_VARIANT &arm_ext_v4t
14985 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14986 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14987
14988 #undef THUMB_VARIANT
14989 #define THUMB_VARIANT &arm_ext_v6t2
14990 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14991 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14992
14993 /* Generic coprocessor instructions. */
14994 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14995 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14996 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14997 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14998 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14999 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15000 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15001
15002 #undef ARM_VARIANT
15003 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
15004 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15005 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
15006
15007 #undef ARM_VARIANT
15008 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
15009 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
15010 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
15011
15012 #undef ARM_VARIANT
15013 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
15014 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15015 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15016 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15017 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15018 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15019 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15020 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
15021 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
15022
15023 #undef ARM_VARIANT
15024 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
15025 #undef THUMB_VARIANT
15026 #define THUMB_VARIANT &arm_ext_v4t
15027 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15028 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15029 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15030 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15031 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15032 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
15033
15034 #undef ARM_VARIANT
15035 #define ARM_VARIANT &arm_ext_v4t_5
15036 /* ARM Architecture 4T. */
15037 /* Note: bx (and blx) are required on V5, even if the processor does
15038 not support Thumb. */
15039 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
15040
15041 #undef ARM_VARIANT
15042 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
15043 #undef THUMB_VARIANT
15044 #define THUMB_VARIANT &arm_ext_v5t
15045 /* Note: blx has 2 variants; the .value coded here is for
15046 BLX(2). Only this variant has conditional execution. */
15047 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
15048 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
15049
15050 #undef THUMB_VARIANT
15051 #define THUMB_VARIANT &arm_ext_v6t2
15052 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
15053 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15054 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15055 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15056 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
15057 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
15058 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15059 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
15060
15061 #undef ARM_VARIANT
15062 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
15063 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15064 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15065 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15066 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15067
15068 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15069 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
15070
15071 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15072 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15073 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15074 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
15075
15076 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15077 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15078 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15079 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15080
15081 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15082 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15083
15084 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15085 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15086 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15087 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
15088
15089 #undef ARM_VARIANT
15090 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
15091 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
15092 TC3(ldrd, 00000d0, e8500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15093 TC3(strd, 00000f0, e8400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
15094
15095 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15096 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15097
15098 #undef ARM_VARIANT
15099 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
15100 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
15101
15102 #undef ARM_VARIANT
15103 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
15104 #undef THUMB_VARIANT
15105 #define THUMB_VARIANT &arm_ext_v6
15106 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
15107 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
15108 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15109 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15110 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
15111 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15112 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15113 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15114 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15115 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
15116
15117 #undef THUMB_VARIANT
15118 #define THUMB_VARIANT &arm_ext_v6t2
15119 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
15120 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
15121 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15122 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
15123
15124 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
15125 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
15126
15127 /* ARM V6 not included in V7M (eg. integer SIMD). */
15128 #undef THUMB_VARIANT
15129 #define THUMB_VARIANT &arm_ext_v6_notm
15130 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
15131 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
15132 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
15133 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15134 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15135 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15136 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15137 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15138 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15139 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15140 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15141 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15142 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15143 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15144 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15145 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15146 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15147 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15148 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15149 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15150 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15151 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15152 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15153 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15154 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15155 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15156 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15157 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15158 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15159 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15160 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15161 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15162 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15163 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15164 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15165 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15166 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15167 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15168 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15169 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15170 UF(rfeib, 9900a00, 1, (RRw), rfe),
15171 UF(rfeda, 8100a00, 1, (RRw), rfe),
15172 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15173 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
15174 UF(rfefa, 9900a00, 1, (RRw), rfe),
15175 UF(rfeea, 8100a00, 1, (RRw), rfe),
15176 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
15177 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15178 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15179 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15180 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15181 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15182 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15183 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
15184 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
15185 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
15186 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15187 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15188 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15189 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15190 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15191 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15192 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15193 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
15194 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15195 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15196 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15197 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15198 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15199 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15200 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15201 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15202 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15203 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15204 TUF(srsia, 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
15205 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
15206 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
15207 TUF(srsdb, 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
15208 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
15209 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
15210 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
15211 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
15212 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
15213
15214 #undef ARM_VARIANT
15215 #define ARM_VARIANT &arm_ext_v6k
15216 #undef THUMB_VARIANT
15217 #define THUMB_VARIANT &arm_ext_v6k
15218 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
15219 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
15220 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
15221 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
15222
15223 #undef THUMB_VARIANT
15224 #define THUMB_VARIANT &arm_ext_v6_notm
15225 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
15226 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
15227
15228 #undef THUMB_VARIANT
15229 #define THUMB_VARIANT &arm_ext_v6t2
15230 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15231 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
15232 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15233 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
15234 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
15235
15236 #undef ARM_VARIANT
15237 #define ARM_VARIANT &arm_ext_v6z
15238 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
15239
15240 #undef ARM_VARIANT
15241 #define ARM_VARIANT &arm_ext_v6t2
15242 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
15243 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
15244 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15245 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
15246
15247 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
15248 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
15249 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
15250 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
15251
15252 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15253 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15254 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15255 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
15256
15257 UT(cbnz, b900, 2, (RR, EXP), t_cbz),
15258 UT(cbz, b100, 2, (RR, EXP), t_cbz),
15259 /* ARM does not really have an IT instruction, so always allow it. */
15260 #undef ARM_VARIANT
15261 #define ARM_VARIANT &arm_ext_v1
15262 TUE(it, 0, bf08, 1, (COND), it, t_it),
15263 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
15264 TUE(ite, 0, bf04, 1, (COND), it, t_it),
15265 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
15266 TUE(itet, 0, bf06, 1, (COND), it, t_it),
15267 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
15268 TUE(itee, 0, bf02, 1, (COND), it, t_it),
15269 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
15270 TUE(itett, 0, bf07, 1, (COND), it, t_it),
15271 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
15272 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
15273 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
15274 TUE(itete, 0, bf05, 1, (COND), it, t_it),
15275 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
15276 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
15277
15278 /* Thumb2 only instructions. */
15279 #undef ARM_VARIANT
15280 #define ARM_VARIANT NULL
15281
15282 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15283 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
15284 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
15285 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
15286
15287 /* Thumb-2 hardware division instructions (R and M profiles only). */
15288 #undef THUMB_VARIANT
15289 #define THUMB_VARIANT &arm_ext_div
15290 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
15291 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
15292
15293 /* ARM V7 instructions. */
15294 #undef ARM_VARIANT
15295 #define ARM_VARIANT &arm_ext_v7
15296 #undef THUMB_VARIANT
15297 #define THUMB_VARIANT &arm_ext_v7
15298 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
15299 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
15300 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
15301 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
15302 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
15303
15304 #undef ARM_VARIANT
15305 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
15306 cCE(wfs, e200110, 1, (RR), rd),
15307 cCE(rfs, e300110, 1, (RR), rd),
15308 cCE(wfc, e400110, 1, (RR), rd),
15309 cCE(rfc, e500110, 1, (RR), rd),
15310
15311 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
15312 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
15313 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
15314 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
15315
15316 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
15317 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
15318 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
15319 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
15320
15321 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
15322 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
15323 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
15324 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
15325 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
15326 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
15327 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
15328 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
15329 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
15330 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
15331 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
15332 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
15333
15334 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
15335 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
15336 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
15337 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
15338 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
15339 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
15340 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
15341 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
15342 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
15343 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
15344 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
15345 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
15346
15347 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
15348 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
15349 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
15350 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
15351 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
15352 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
15353 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
15354 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
15355 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
15356 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
15357 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
15358 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
15359
15360 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
15361 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
15362 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
15363 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
15364 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
15365 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
15366 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
15367 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
15368 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
15369 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
15370 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
15371 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
15372
15373 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
15374 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
15375 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
15376 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
15377 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
15378 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
15379 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
15380 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
15381 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
15382 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
15383 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
15384 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
15385
15386 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
15387 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
15388 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
15389 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
15390 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
15391 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
15392 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
15393 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
15394 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
15395 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
15396 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
15397 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
15398
15399 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
15400 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
15401 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
15402 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
15403 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
15404 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
15405 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
15406 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
15407 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
15408 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
15409 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
15410 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
15411
15412 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
15413 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
15414 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
15415 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
15416 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
15417 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
15418 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
15419 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
15420 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
15421 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
15422 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
15423 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
15424
15425 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
15426 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
15427 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
15428 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
15429 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
15430 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
15431 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
15432 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
15433 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
15434 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
15435 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
15436 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
15437
15438 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
15439 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15440 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15441 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15442 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15443 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15444 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15445 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15446 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15447 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15448 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15449 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15450
15451 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15452 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15453 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15454 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15455 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15456 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15457 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15458 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15459 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15460 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15461 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15462 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15463
15464 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15465 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15466 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15467 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15468 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15469 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15470 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15471 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15472 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15473 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15474 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15475 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15476
15477 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15478 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15479 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15480 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15481 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15482 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15483 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15484 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15485 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15486 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15487 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15488 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15489
15490 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15491 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15492 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15493 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15494 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15495 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15496 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15497 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15498 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15499 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15500 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15501 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15502
15503 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15504 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15505 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15506 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15507 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15508 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15509 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15510 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15511 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15512 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15513 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15514 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15515
15516 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15517 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15518 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15519 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15520 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15521 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15522 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15523 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15524 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15525 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15526 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15527 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15528
15529 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15530 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15531 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15532 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15533 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15534 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15535 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15536 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15537 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15538 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15539 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15540 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15541
15542 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15543 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15544 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15545 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15546 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15547 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15548 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15549 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15550 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15551 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15552 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15553 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15554
15555 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15556 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15557 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15558 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15559 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15560 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15561 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15562 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15563 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15564 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15565 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15566 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15567
15568 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15569 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15570 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15571 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15572 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15573 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15574 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15575 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15576 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15577 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15578 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15579 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15580
15581 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15582 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15583 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15584 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15585 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15586 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15587 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15588 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15589 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15590 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15591 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15592 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15593
15594 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15595 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15596 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15597 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15598 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15599 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15600 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15601 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15602 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15603 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15604 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15605 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15606
15607 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15608 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15609 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15610 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15611 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15612 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15613 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15614 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15615 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15616 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15617 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15618 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15619
15620 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15621 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15622 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15623 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15624 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15625 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15626 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15627 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15628 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15629 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15630 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15631 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15632
15633 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15634 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15635 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15636 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15637 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15638 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15639 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15640 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15641 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15642 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15643 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15644 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15645
15646 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15647 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15648 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15649 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15650 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15651 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15652 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15653 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15654 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15655 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15656 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15657 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15658
15659 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15660 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15661 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15662 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15663 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15664 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15665 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15666 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15667 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15668 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15669 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15670 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15671
15672 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15673 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15674 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15675 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15676 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15677 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15678 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15679 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15680 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15681 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15682 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15683 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15684
15685 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15686 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15687 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15688 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15689 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15690 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15691 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15692 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15693 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15694 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15695 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15696 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15697
15698 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15699 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15700 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15701 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15702
15703 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15704 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15705 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15706 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15707 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15708 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15709 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15710 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15711 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15712 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15713 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15714 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15715
15716 /* The implementation of the FIX instruction is broken on some
15717 assemblers, in that it accepts a precision specifier as well as a
15718 rounding specifier, despite the fact that this is meaningless.
15719 To be more compatible, we accept it as well, though of course it
15720 does not set any bits. */
15721 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15722 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15723 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15724 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15725 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15726 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15727 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15728 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15729 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15730 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15731 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15732 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15733 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15734
15735 /* Instructions that were new with the real FPA, call them V2. */
15736 #undef ARM_VARIANT
15737 #define ARM_VARIANT &fpu_fpa_ext_v2
15738 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15739 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15740 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15741 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15742 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15743 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15744
15745 #undef ARM_VARIANT
15746 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15747 /* Moves and type conversions. */
15748 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15749 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15750 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15751 cCE(fmstat, ef1fa10, 0, (), noargs),
15752 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15753 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15754 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15755 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15756 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15757 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15758 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15759 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15760
15761 /* Memory operations. */
15762 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15763 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15764 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15765 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15766 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15767 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15768 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15769 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15770 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15771 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15772 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15773 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15774 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15775 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15776 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15777 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15778 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15779 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15780
15781 /* Monadic operations. */
15782 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15783 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15784 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15785
15786 /* Dyadic operations. */
15787 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15788 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15789 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15790 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15791 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15792 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15793 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15794 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15795 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15796
15797 /* Comparisons. */
15798 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15799 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15800 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15801 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15802
15803 #undef ARM_VARIANT
15804 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15805 /* Moves and type conversions. */
15806 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15807 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15808 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15809 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15810 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15811 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15812 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15813 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15814 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15815 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15816 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15817 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15818 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15819
15820 /* Memory operations. */
15821 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15822 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15823 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15824 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15825 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15826 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15827 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15828 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15829 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15830 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15831
15832 /* Monadic operations. */
15833 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15834 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15835 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15836
15837 /* Dyadic operations. */
15838 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15839 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15840 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15841 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15842 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15843 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15844 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15845 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15846 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15847
15848 /* Comparisons. */
15849 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15850 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15851 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15852 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15853
15854 #undef ARM_VARIANT
15855 #define ARM_VARIANT &fpu_vfp_ext_v2
15856 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15857 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15858 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15859 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15860
15861 /* Instructions which may belong to either the Neon or VFP instruction sets.
15862 Individual encoder functions perform additional architecture checks. */
15863 #undef ARM_VARIANT
15864 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15865 #undef THUMB_VARIANT
15866 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15867 /* These mnemonics are unique to VFP. */
15868 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15869 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15870 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15871 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15872 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15873 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15874 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15875 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15876 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15877 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15878
15879 /* Mnemonics shared by Neon and VFP. */
15880 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15881 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15882 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15883
15884 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15885 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15886
15887 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15888 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15889
15890 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15891 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15892 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15893 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15894 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15895 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15896 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15897 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15898
15899 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15900
15901 /* NOTE: All VMOV encoding is special-cased! */
15902 NCE(vmov, 0, 1, (VMOV), neon_mov),
15903 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15904
15905 #undef THUMB_VARIANT
15906 #define THUMB_VARIANT &fpu_neon_ext_v1
15907 #undef ARM_VARIANT
15908 #define ARM_VARIANT &fpu_neon_ext_v1
15909 /* Data processing with three registers of the same length. */
15910 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15911 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15912 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15913 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15914 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15915 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15916 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15917 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15918 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15919 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15920 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15921 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15922 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15923 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15924 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15925 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15926 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
15927 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
15928 /* If not immediate, fall back to neon_dyadic_i64_su.
15929 shl_imm should accept I8 I16 I32 I64,
15930 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15931 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15932 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15933 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15934 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15935 /* Logic ops, types optional & ignored. */
15936 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15937 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15938 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15939 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15940 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15941 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15942 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15943 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15944 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15945 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15946 /* Bitfield ops, untyped. */
15947 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15948 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15949 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15950 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15951 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15952 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15953 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15954 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15955 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15956 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15957 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15958 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15959 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15960 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15961 back to neon_dyadic_if_su. */
15962 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15963 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15964 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15965 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15966 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15967 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15968 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15969 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15970 /* Comparison. Type I8 I16 I32 F32. */
15971 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15972 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15973 /* As above, D registers only. */
15974 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15975 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15976 /* Int and float variants, signedness unimportant. */
15977 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15978 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15979 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15980 /* Add/sub take types I8 I16 I32 I64 F32. */
15981 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15982 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15983 /* vtst takes sizes 8, 16, 32. */
15984 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15985 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15986 /* VMUL takes I8 I16 I32 F32 P8. */
15987 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
15988 /* VQD{R}MULH takes S16 S32. */
15989 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15990 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15991 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15992 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15993 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15994 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15995 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15996 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15997 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15998 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15999 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
16000 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
16001 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16002 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16003 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
16004 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
16005
16006 /* Two address, int/float. Types S8 S16 S32 F32. */
16007 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
16008 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
16009
16010 /* Data processing with two registers and a shift amount. */
16011 /* Right shifts, and variants with rounding.
16012 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
16013 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16014 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16015 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
16016 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
16017 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16018 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16019 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
16020 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
16021 /* Shift and insert. Sizes accepted 8 16 32 64. */
16022 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
16023 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
16024 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
16025 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
16026 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
16027 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
16028 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
16029 /* Right shift immediate, saturating & narrowing, with rounding variants.
16030 Types accepted S16 S32 S64 U16 U32 U64. */
16031 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16032 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
16033 /* As above, unsigned. Types accepted S16 S32 S64. */
16034 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16035 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
16036 /* Right shift narrowing. Types accepted I16 I32 I64. */
16037 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16038 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
16039 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
16040 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
16041 /* CVT with optional immediate for fixed-point variant. */
16042 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
16043
16044 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
16045 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
16046
16047 /* Data processing, three registers of different lengths. */
16048 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
16049 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
16050 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
16051 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
16052 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
16053 /* If not scalar, fall back to neon_dyadic_long.
16054 Vector types as above, scalar types S16 S32 U16 U32. */
16055 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16056 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
16057 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
16058 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16059 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
16060 /* Dyadic, narrowing insns. Types I16 I32 I64. */
16061 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16062 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16063 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16064 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
16065 /* Saturating doubling multiplies. Types S16 S32. */
16066 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16067 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16068 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
16069 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
16070 S16 S32 U16 U32. */
16071 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
16072
16073 /* Extract. Size 8. */
16074 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
16075 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
16076
16077 /* Two registers, miscellaneous. */
16078 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
16079 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
16080 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
16081 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
16082 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
16083 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
16084 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
16085 /* Vector replicate. Sizes 8 16 32. */
16086 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
16087 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
16088 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
16089 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
16090 /* VMOVN. Types I16 I32 I64. */
16091 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
16092 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
16093 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
16094 /* VQMOVUN. Types S16 S32 S64. */
16095 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
16096 /* VZIP / VUZP. Sizes 8 16 32. */
16097 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
16098 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
16099 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
16100 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
16101 /* VQABS / VQNEG. Types S8 S16 S32. */
16102 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16103 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
16104 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
16105 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
16106 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
16107 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
16108 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
16109 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
16110 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
16111 /* Reciprocal estimates. Types U32 F32. */
16112 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
16113 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
16114 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
16115 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
16116 /* VCLS. Types S8 S16 S32. */
16117 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
16118 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
16119 /* VCLZ. Types I8 I16 I32. */
16120 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
16121 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
16122 /* VCNT. Size 8. */
16123 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
16124 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
16125 /* Two address, untyped. */
16126 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
16127 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
16128 /* VTRN. Sizes 8 16 32. */
16129 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
16130 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
16131
16132 /* Table lookup. Size 8. */
16133 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16134 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
16135
16136 #undef THUMB_VARIANT
16137 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
16138 #undef ARM_VARIANT
16139 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
16140 /* Neon element/structure load/store. */
16141 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16142 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
16143 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16144 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
16145 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16146 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
16147 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16148 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
16149
16150 #undef THUMB_VARIANT
16151 #define THUMB_VARIANT &fpu_vfp_ext_v3
16152 #undef ARM_VARIANT
16153 #define ARM_VARIANT &fpu_vfp_ext_v3
16154 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
16155 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
16156 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16157 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16158 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16159 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16160 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16161 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16162 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16163 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16164 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16165 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16166 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16167 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16168 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
16169 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
16170 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
16171 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
16172
16173 #undef THUMB_VARIANT
16174 #undef ARM_VARIANT
16175 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
16176 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16177 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16178 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16179 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16180 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16181 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
16182 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
16183 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
16184
16185 #undef ARM_VARIANT
16186 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
16187 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
16188 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
16189 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
16190 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
16191 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
16192 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
16193 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
16194 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
16195 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
16196 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16197 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16198 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
16199 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16200 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16201 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
16202 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16203 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16204 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
16205 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
16206 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
16207 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16208 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16209 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16210 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16211 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16212 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
16213 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
16214 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
16215 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
16216 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
16217 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
16218 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
16219 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
16220 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
16221 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
16222 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
16223 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
16224 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16225 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16226 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16227 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16228 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16229 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16230 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16231 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16232 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16233 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
16234 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16235 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16236 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16237 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16238 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16239 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16240 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16241 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16242 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16243 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16244 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16245 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16246 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16247 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16248 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16249 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16250 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16251 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16252 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16253 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16254 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16255 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16256 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16257 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16258 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16259 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16260 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16261 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16262 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16263 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16264 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16265 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16266 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16267 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16268 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16269 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16270 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16271 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16272 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16273 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16274 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16275 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
16276 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16277 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16278 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16279 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16280 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16281 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16282 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16283 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16284 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16285 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16286 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16287 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16288 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16289 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16290 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16291 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16292 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16293 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16294 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16295 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16296 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16297 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
16298 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16299 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16300 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16301 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16302 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16303 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16304 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16305 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16306 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16307 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16308 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16309 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16310 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16311 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16312 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16313 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16314 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
16315 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
16316 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16317 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
16318 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
16319 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
16320 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16321 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16322 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16323 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16324 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16325 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16326 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16327 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16328 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16329 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
16330 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
16331 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
16332 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
16333 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
16334 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
16335 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16336 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16337 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16338 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
16339 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
16340 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
16341 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
16342 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
16343 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
16344 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16345 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16346 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16347 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16348 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
16349
16350 #undef ARM_VARIANT
16351 #define ARM_VARIANT &arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
16352 cCE(torvscb, e13f190, 1, (RR), iwmmxt_tandorc),
16353 cCE(torvsch, e53f190, 1, (RR), iwmmxt_tandorc),
16354 cCE(torvscw, e93f190, 1, (RR), iwmmxt_tandorc),
16355 cCE(wabsb, e2001c0, 2, (RIWR, RIWR), rd_rn),
16356 cCE(wabsh, e6001c0, 2, (RIWR, RIWR), rd_rn),
16357 cCE(wabsw, ea001c0, 2, (RIWR, RIWR), rd_rn),
16358 cCE(wabsdiffb, e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16359 cCE(wabsdiffh, e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16360 cCE(wabsdiffw, e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16361 cCE(waddbhusl, e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16362 cCE(waddbhusm, e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16363 cCE(waddhc, e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16364 cCE(waddwc, ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16365 cCE(waddsubhx, ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16366 cCE(wavg4, e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16367 cCE(wavg4r, e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16368 cCE(wmaddsn, ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16369 cCE(wmaddsx, eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16370 cCE(wmaddun, ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16371 cCE(wmaddux, e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16372 cCE(wmerge, e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
16373 cCE(wmiabb, e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16374 cCE(wmiabt, e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16375 cCE(wmiatb, e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16376 cCE(wmiatt, e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16377 cCE(wmiabbn, e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16378 cCE(wmiabtn, e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16379 cCE(wmiatbn, e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16380 cCE(wmiattn, e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16381 cCE(wmiawbb, e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16382 cCE(wmiawbt, e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16383 cCE(wmiawtb, ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16384 cCE(wmiawtt, eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16385 cCE(wmiawbbn, ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16386 cCE(wmiawbtn, ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16387 cCE(wmiawtbn, ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16388 cCE(wmiawttn, ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16389 cCE(wmulsmr, ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16390 cCE(wmulumr, ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16391 cCE(wmulwumr, ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16392 cCE(wmulwsmr, ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16393 cCE(wmulwum, ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16394 cCE(wmulwsm, ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16395 cCE(wmulwl, eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16396 cCE(wqmiabb, e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16397 cCE(wqmiabt, e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16398 cCE(wqmiatb, ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16399 cCE(wqmiatt, eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16400 cCE(wqmiabbn, ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16401 cCE(wqmiabtn, ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16402 cCE(wqmiatbn, ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16403 cCE(wqmiattn, ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16404 cCE(wqmulm, e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16405 cCE(wqmulmr, e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16406 cCE(wqmulwm, ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16407 cCE(wqmulwmr, ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16408 cCE(wsubaddhx, ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
16409
16410 #undef ARM_VARIANT
16411 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
16412 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16413 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16414 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16415 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16416 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
16417 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
16418 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
16419 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
16420 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
16421 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
16422 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
16423 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
16424 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
16425 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
16426 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
16427 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
16428 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
16429 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
16430 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
16431 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
16432 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
16433 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
16434 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
16435 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
16436 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
16437 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
16438 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
16439 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
16440 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
16441 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
16442 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
16443 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
16444 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
16445 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
16446 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
16447 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
16448 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
16449 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
16450 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
16451 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
16452 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
16453 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
16454 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
16455 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
16456 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
16457 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
16458 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
16459 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
16460 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
16461 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
16462 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
16463 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
16464 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
16465 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
16466 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
16467 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
16468 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
16469 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
16470 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
16471 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
16472 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
16473 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
16474 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
16475 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
16476 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16477 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16478 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16479 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16480 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16481 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
16482 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16483 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
16484 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16485 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
16486 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16487 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
16488 };
16489 #undef ARM_VARIANT
16490 #undef THUMB_VARIANT
16491 #undef TCE
16492 #undef TCM
16493 #undef TUE
16494 #undef TUF
16495 #undef TCC
16496 #undef cCE
16497 #undef cCL
16498 #undef C3E
16499 #undef CE
16500 #undef CM
16501 #undef UE
16502 #undef UF
16503 #undef UT
16504 #undef NUF
16505 #undef nUF
16506 #undef NCE
16507 #undef nCE
16508 #undef OPS0
16509 #undef OPS1
16510 #undef OPS2
16511 #undef OPS3
16512 #undef OPS4
16513 #undef OPS5
16514 #undef OPS6
16515 #undef do_0
16516 \f
16517 /* MD interface: bits in the object file. */
16518
16519 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16520 for use in the a.out file, and stores them in the array pointed to by buf.
16521 This knows about the endian-ness of the target machine and does
16522 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16523 2 (short) and 4 (long) Floating numbers are put out as a series of
16524 LITTLENUMS (shorts, here at least). */
16525
16526 void
16527 md_number_to_chars (char * buf, valueT val, int n)
16528 {
16529 if (target_big_endian)
16530 number_to_chars_bigendian (buf, val, n);
16531 else
16532 number_to_chars_littleendian (buf, val, n);
16533 }
16534
16535 static valueT
16536 md_chars_to_number (char * buf, int n)
16537 {
16538 valueT result = 0;
16539 unsigned char * where = (unsigned char *) buf;
16540
16541 if (target_big_endian)
16542 {
16543 while (n--)
16544 {
16545 result <<= 8;
16546 result |= (*where++ & 255);
16547 }
16548 }
16549 else
16550 {
16551 while (n--)
16552 {
16553 result <<= 8;
16554 result |= (where[n] & 255);
16555 }
16556 }
16557
16558 return result;
16559 }
16560
16561 /* MD interface: Sections. */
16562
16563 /* Estimate the size of a frag before relaxing. Assume everything fits in
16564 2 bytes. */
16565
16566 int
16567 md_estimate_size_before_relax (fragS * fragp,
16568 segT segtype ATTRIBUTE_UNUSED)
16569 {
16570 fragp->fr_var = 2;
16571 return 2;
16572 }
16573
16574 /* Convert a machine dependent frag. */
16575
16576 void
16577 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16578 {
16579 unsigned long insn;
16580 unsigned long old_op;
16581 char *buf;
16582 expressionS exp;
16583 fixS *fixp;
16584 int reloc_type;
16585 int pc_rel;
16586 int opcode;
16587
16588 buf = fragp->fr_literal + fragp->fr_fix;
16589
16590 old_op = bfd_get_16(abfd, buf);
16591 if (fragp->fr_symbol)
16592 {
16593 exp.X_op = O_symbol;
16594 exp.X_add_symbol = fragp->fr_symbol;
16595 }
16596 else
16597 {
16598 exp.X_op = O_constant;
16599 }
16600 exp.X_add_number = fragp->fr_offset;
16601 opcode = fragp->fr_subtype;
16602 switch (opcode)
16603 {
16604 case T_MNEM_ldr_pc:
16605 case T_MNEM_ldr_pc2:
16606 case T_MNEM_ldr_sp:
16607 case T_MNEM_str_sp:
16608 case T_MNEM_ldr:
16609 case T_MNEM_ldrb:
16610 case T_MNEM_ldrh:
16611 case T_MNEM_str:
16612 case T_MNEM_strb:
16613 case T_MNEM_strh:
16614 if (fragp->fr_var == 4)
16615 {
16616 insn = THUMB_OP32 (opcode);
16617 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16618 {
16619 insn |= (old_op & 0x700) << 4;
16620 }
16621 else
16622 {
16623 insn |= (old_op & 7) << 12;
16624 insn |= (old_op & 0x38) << 13;
16625 }
16626 insn |= 0x00000c00;
16627 put_thumb32_insn (buf, insn);
16628 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16629 }
16630 else
16631 {
16632 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16633 }
16634 pc_rel = (opcode == T_MNEM_ldr_pc2);
16635 break;
16636 case T_MNEM_adr:
16637 if (fragp->fr_var == 4)
16638 {
16639 insn = THUMB_OP32 (opcode);
16640 insn |= (old_op & 0xf0) << 4;
16641 put_thumb32_insn (buf, insn);
16642 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16643 }
16644 else
16645 {
16646 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16647 exp.X_add_number -= 4;
16648 }
16649 pc_rel = 1;
16650 break;
16651 case T_MNEM_mov:
16652 case T_MNEM_movs:
16653 case T_MNEM_cmp:
16654 case T_MNEM_cmn:
16655 if (fragp->fr_var == 4)
16656 {
16657 int r0off = (opcode == T_MNEM_mov
16658 || opcode == T_MNEM_movs) ? 0 : 8;
16659 insn = THUMB_OP32 (opcode);
16660 insn = (insn & 0xe1ffffff) | 0x10000000;
16661 insn |= (old_op & 0x700) << r0off;
16662 put_thumb32_insn (buf, insn);
16663 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16664 }
16665 else
16666 {
16667 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16668 }
16669 pc_rel = 0;
16670 break;
16671 case T_MNEM_b:
16672 if (fragp->fr_var == 4)
16673 {
16674 insn = THUMB_OP32(opcode);
16675 put_thumb32_insn (buf, insn);
16676 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16677 }
16678 else
16679 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16680 pc_rel = 1;
16681 break;
16682 case T_MNEM_bcond:
16683 if (fragp->fr_var == 4)
16684 {
16685 insn = THUMB_OP32(opcode);
16686 insn |= (old_op & 0xf00) << 14;
16687 put_thumb32_insn (buf, insn);
16688 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16689 }
16690 else
16691 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16692 pc_rel = 1;
16693 break;
16694 case T_MNEM_add_sp:
16695 case T_MNEM_add_pc:
16696 case T_MNEM_inc_sp:
16697 case T_MNEM_dec_sp:
16698 if (fragp->fr_var == 4)
16699 {
16700 /* ??? Choose between add and addw. */
16701 insn = THUMB_OP32 (opcode);
16702 insn |= (old_op & 0xf0) << 4;
16703 put_thumb32_insn (buf, insn);
16704 if (opcode == T_MNEM_add_pc)
16705 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16706 else
16707 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16708 }
16709 else
16710 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16711 pc_rel = 0;
16712 break;
16713
16714 case T_MNEM_addi:
16715 case T_MNEM_addis:
16716 case T_MNEM_subi:
16717 case T_MNEM_subis:
16718 if (fragp->fr_var == 4)
16719 {
16720 insn = THUMB_OP32 (opcode);
16721 insn |= (old_op & 0xf0) << 4;
16722 insn |= (old_op & 0xf) << 16;
16723 put_thumb32_insn (buf, insn);
16724 if (insn & (1 << 20))
16725 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16726 else
16727 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16728 }
16729 else
16730 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16731 pc_rel = 0;
16732 break;
16733 default:
16734 abort ();
16735 }
16736 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16737 reloc_type);
16738 fixp->fx_file = fragp->fr_file;
16739 fixp->fx_line = fragp->fr_line;
16740 fragp->fr_fix += fragp->fr_var;
16741 }
16742
16743 /* Return the size of a relaxable immediate operand instruction.
16744 SHIFT and SIZE specify the form of the allowable immediate. */
16745 static int
16746 relax_immediate (fragS *fragp, int size, int shift)
16747 {
16748 offsetT offset;
16749 offsetT mask;
16750 offsetT low;
16751
16752 /* ??? Should be able to do better than this. */
16753 if (fragp->fr_symbol)
16754 return 4;
16755
16756 low = (1 << shift) - 1;
16757 mask = (1 << (shift + size)) - (1 << shift);
16758 offset = fragp->fr_offset;
16759 /* Force misaligned offsets to 32-bit variant. */
16760 if (offset & low)
16761 return 4;
16762 if (offset & ~mask)
16763 return 4;
16764 return 2;
16765 }
16766
16767 /* Get the address of a symbol during relaxation. */
16768 static addressT
16769 relaxed_symbol_addr (fragS *fragp, long stretch)
16770 {
16771 fragS *sym_frag;
16772 addressT addr;
16773 symbolS *sym;
16774
16775 sym = fragp->fr_symbol;
16776 sym_frag = symbol_get_frag (sym);
16777 know (S_GET_SEGMENT (sym) != absolute_section
16778 || sym_frag == &zero_address_frag);
16779 addr = S_GET_VALUE (sym) + fragp->fr_offset;
16780
16781 /* If frag has yet to be reached on this pass, assume it will
16782 move by STRETCH just as we did. If this is not so, it will
16783 be because some frag between grows, and that will force
16784 another pass. */
16785
16786 if (stretch != 0
16787 && sym_frag->relax_marker != fragp->relax_marker)
16788 {
16789 fragS *f;
16790
16791 /* Adjust stretch for any alignment frag. Note that if have
16792 been expanding the earlier code, the symbol may be
16793 defined in what appears to be an earlier frag. FIXME:
16794 This doesn't handle the fr_subtype field, which specifies
16795 a maximum number of bytes to skip when doing an
16796 alignment. */
16797 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16798 {
16799 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16800 {
16801 if (stretch < 0)
16802 stretch = - ((- stretch)
16803 & ~ ((1 << (int) f->fr_offset) - 1));
16804 else
16805 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16806 if (stretch == 0)
16807 break;
16808 }
16809 }
16810 if (f != NULL)
16811 addr += stretch;
16812 }
16813
16814 return addr;
16815 }
16816
16817 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16818 load. */
16819 static int
16820 relax_adr (fragS *fragp, asection *sec, long stretch)
16821 {
16822 addressT addr;
16823 offsetT val;
16824
16825 /* Assume worst case for symbols not known to be in the same section. */
16826 if (!S_IS_DEFINED (fragp->fr_symbol)
16827 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16828 return 4;
16829
16830 val = relaxed_symbol_addr (fragp, stretch);
16831 addr = fragp->fr_address + fragp->fr_fix;
16832 addr = (addr + 4) & ~3;
16833 /* Force misaligned targets to 32-bit variant. */
16834 if (val & 3)
16835 return 4;
16836 val -= addr;
16837 if (val < 0 || val > 1020)
16838 return 4;
16839 return 2;
16840 }
16841
16842 /* Return the size of a relaxable add/sub immediate instruction. */
16843 static int
16844 relax_addsub (fragS *fragp, asection *sec)
16845 {
16846 char *buf;
16847 int op;
16848
16849 buf = fragp->fr_literal + fragp->fr_fix;
16850 op = bfd_get_16(sec->owner, buf);
16851 if ((op & 0xf) == ((op >> 4) & 0xf))
16852 return relax_immediate (fragp, 8, 0);
16853 else
16854 return relax_immediate (fragp, 3, 0);
16855 }
16856
16857
16858 /* Return the size of a relaxable branch instruction. BITS is the
16859 size of the offset field in the narrow instruction. */
16860
16861 static int
16862 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
16863 {
16864 addressT addr;
16865 offsetT val;
16866 offsetT limit;
16867
16868 /* Assume worst case for symbols not known to be in the same section. */
16869 if (!S_IS_DEFINED (fragp->fr_symbol)
16870 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16871 return 4;
16872
16873 val = relaxed_symbol_addr (fragp, stretch);
16874 addr = fragp->fr_address + fragp->fr_fix + 4;
16875 val -= addr;
16876
16877 /* Offset is a signed value *2 */
16878 limit = 1 << bits;
16879 if (val >= limit || val < -limit)
16880 return 4;
16881 return 2;
16882 }
16883
16884
16885 /* Relax a machine dependent frag. This returns the amount by which
16886 the current size of the frag should change. */
16887
16888 int
16889 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
16890 {
16891 int oldsize;
16892 int newsize;
16893
16894 oldsize = fragp->fr_var;
16895 switch (fragp->fr_subtype)
16896 {
16897 case T_MNEM_ldr_pc2:
16898 newsize = relax_adr (fragp, sec, stretch);
16899 break;
16900 case T_MNEM_ldr_pc:
16901 case T_MNEM_ldr_sp:
16902 case T_MNEM_str_sp:
16903 newsize = relax_immediate (fragp, 8, 2);
16904 break;
16905 case T_MNEM_ldr:
16906 case T_MNEM_str:
16907 newsize = relax_immediate (fragp, 5, 2);
16908 break;
16909 case T_MNEM_ldrh:
16910 case T_MNEM_strh:
16911 newsize = relax_immediate (fragp, 5, 1);
16912 break;
16913 case T_MNEM_ldrb:
16914 case T_MNEM_strb:
16915 newsize = relax_immediate (fragp, 5, 0);
16916 break;
16917 case T_MNEM_adr:
16918 newsize = relax_adr (fragp, sec, stretch);
16919 break;
16920 case T_MNEM_mov:
16921 case T_MNEM_movs:
16922 case T_MNEM_cmp:
16923 case T_MNEM_cmn:
16924 newsize = relax_immediate (fragp, 8, 0);
16925 break;
16926 case T_MNEM_b:
16927 newsize = relax_branch (fragp, sec, 11, stretch);
16928 break;
16929 case T_MNEM_bcond:
16930 newsize = relax_branch (fragp, sec, 8, stretch);
16931 break;
16932 case T_MNEM_add_sp:
16933 case T_MNEM_add_pc:
16934 newsize = relax_immediate (fragp, 8, 2);
16935 break;
16936 case T_MNEM_inc_sp:
16937 case T_MNEM_dec_sp:
16938 newsize = relax_immediate (fragp, 7, 2);
16939 break;
16940 case T_MNEM_addi:
16941 case T_MNEM_addis:
16942 case T_MNEM_subi:
16943 case T_MNEM_subis:
16944 newsize = relax_addsub (fragp, sec);
16945 break;
16946 default:
16947 abort ();
16948 }
16949
16950 fragp->fr_var = newsize;
16951 /* Freeze wide instructions that are at or before the same location as
16952 in the previous pass. This avoids infinite loops.
16953 Don't freeze them unconditionally because targets may be artificially
16954 misaligned by the expansion of preceding frags. */
16955 if (stretch <= 0 && newsize > 2)
16956 {
16957 md_convert_frag (sec->owner, sec, fragp);
16958 frag_wane (fragp);
16959 }
16960
16961 return newsize - oldsize;
16962 }
16963
16964 /* Round up a section size to the appropriate boundary. */
16965
16966 valueT
16967 md_section_align (segT segment ATTRIBUTE_UNUSED,
16968 valueT size)
16969 {
16970 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16971 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16972 {
16973 /* For a.out, force the section size to be aligned. If we don't do
16974 this, BFD will align it for us, but it will not write out the
16975 final bytes of the section. This may be a bug in BFD, but it is
16976 easier to fix it here since that is how the other a.out targets
16977 work. */
16978 int align;
16979
16980 align = bfd_get_section_alignment (stdoutput, segment);
16981 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16982 }
16983 #endif
16984
16985 return size;
16986 }
16987
16988 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16989 of an rs_align_code fragment. */
16990
16991 void
16992 arm_handle_align (fragS * fragP)
16993 {
16994 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16995 static char const thumb_noop[2] = { 0xc0, 0x46 };
16996 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16997 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16998
16999 int bytes, fix, noop_size;
17000 char * p;
17001 const char * noop;
17002
17003 if (fragP->fr_type != rs_align_code)
17004 return;
17005
17006 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
17007 p = fragP->fr_literal + fragP->fr_fix;
17008 fix = 0;
17009
17010 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
17011 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
17012
17013 if (fragP->tc_frag_data)
17014 {
17015 if (target_big_endian)
17016 noop = thumb_bigend_noop;
17017 else
17018 noop = thumb_noop;
17019 noop_size = sizeof (thumb_noop);
17020 }
17021 else
17022 {
17023 if (target_big_endian)
17024 noop = arm_bigend_noop;
17025 else
17026 noop = arm_noop;
17027 noop_size = sizeof (arm_noop);
17028 }
17029
17030 if (bytes & (noop_size - 1))
17031 {
17032 fix = bytes & (noop_size - 1);
17033 memset (p, 0, fix);
17034 p += fix;
17035 bytes -= fix;
17036 }
17037
17038 while (bytes >= noop_size)
17039 {
17040 memcpy (p, noop, noop_size);
17041 p += noop_size;
17042 bytes -= noop_size;
17043 fix += noop_size;
17044 }
17045
17046 fragP->fr_fix += fix;
17047 fragP->fr_var = noop_size;
17048 }
17049
17050 /* Called from md_do_align. Used to create an alignment
17051 frag in a code section. */
17052
17053 void
17054 arm_frag_align_code (int n, int max)
17055 {
17056 char * p;
17057
17058 /* We assume that there will never be a requirement
17059 to support alignments greater than 32 bytes. */
17060 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
17061 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
17062
17063 p = frag_var (rs_align_code,
17064 MAX_MEM_FOR_RS_ALIGN_CODE,
17065 1,
17066 (relax_substateT) max,
17067 (symbolS *) NULL,
17068 (offsetT) n,
17069 (char *) NULL);
17070 *p = 0;
17071 }
17072
17073 /* Perform target specific initialisation of a frag. */
17074
17075 void
17076 arm_init_frag (fragS * fragP)
17077 {
17078 /* Record whether this frag is in an ARM or a THUMB area. */
17079 fragP->tc_frag_data = thumb_mode;
17080 }
17081
17082 #ifdef OBJ_ELF
17083 /* When we change sections we need to issue a new mapping symbol. */
17084
17085 void
17086 arm_elf_change_section (void)
17087 {
17088 flagword flags;
17089 segment_info_type *seginfo;
17090
17091 /* Link an unlinked unwind index table section to the .text section. */
17092 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
17093 && elf_linked_to_section (now_seg) == NULL)
17094 elf_linked_to_section (now_seg) = text_section;
17095
17096 if (!SEG_NORMAL (now_seg))
17097 return;
17098
17099 flags = bfd_get_section_flags (stdoutput, now_seg);
17100
17101 /* We can ignore sections that only contain debug info. */
17102 if ((flags & SEC_ALLOC) == 0)
17103 return;
17104
17105 seginfo = seg_info (now_seg);
17106 mapstate = seginfo->tc_segment_info_data.mapstate;
17107 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
17108 }
17109
17110 int
17111 arm_elf_section_type (const char * str, size_t len)
17112 {
17113 if (len == 5 && strncmp (str, "exidx", 5) == 0)
17114 return SHT_ARM_EXIDX;
17115
17116 return -1;
17117 }
17118 \f
17119 /* Code to deal with unwinding tables. */
17120
17121 static void add_unwind_adjustsp (offsetT);
17122
17123 /* Generate any deferred unwind frame offset. */
17124
17125 static void
17126 flush_pending_unwind (void)
17127 {
17128 offsetT offset;
17129
17130 offset = unwind.pending_offset;
17131 unwind.pending_offset = 0;
17132 if (offset != 0)
17133 add_unwind_adjustsp (offset);
17134 }
17135
17136 /* Add an opcode to this list for this function. Two-byte opcodes should
17137 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
17138 order. */
17139
17140 static void
17141 add_unwind_opcode (valueT op, int length)
17142 {
17143 /* Add any deferred stack adjustment. */
17144 if (unwind.pending_offset)
17145 flush_pending_unwind ();
17146
17147 unwind.sp_restored = 0;
17148
17149 if (unwind.opcode_count + length > unwind.opcode_alloc)
17150 {
17151 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
17152 if (unwind.opcodes)
17153 unwind.opcodes = xrealloc (unwind.opcodes,
17154 unwind.opcode_alloc);
17155 else
17156 unwind.opcodes = xmalloc (unwind.opcode_alloc);
17157 }
17158 while (length > 0)
17159 {
17160 length--;
17161 unwind.opcodes[unwind.opcode_count] = op & 0xff;
17162 op >>= 8;
17163 unwind.opcode_count++;
17164 }
17165 }
17166
17167 /* Add unwind opcodes to adjust the stack pointer. */
17168
17169 static void
17170 add_unwind_adjustsp (offsetT offset)
17171 {
17172 valueT op;
17173
17174 if (offset > 0x200)
17175 {
17176 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
17177 char bytes[5];
17178 int n;
17179 valueT o;
17180
17181 /* Long form: 0xb2, uleb128. */
17182 /* This might not fit in a word so add the individual bytes,
17183 remembering the list is built in reverse order. */
17184 o = (valueT) ((offset - 0x204) >> 2);
17185 if (o == 0)
17186 add_unwind_opcode (0, 1);
17187
17188 /* Calculate the uleb128 encoding of the offset. */
17189 n = 0;
17190 while (o)
17191 {
17192 bytes[n] = o & 0x7f;
17193 o >>= 7;
17194 if (o)
17195 bytes[n] |= 0x80;
17196 n++;
17197 }
17198 /* Add the insn. */
17199 for (; n; n--)
17200 add_unwind_opcode (bytes[n - 1], 1);
17201 add_unwind_opcode (0xb2, 1);
17202 }
17203 else if (offset > 0x100)
17204 {
17205 /* Two short opcodes. */
17206 add_unwind_opcode (0x3f, 1);
17207 op = (offset - 0x104) >> 2;
17208 add_unwind_opcode (op, 1);
17209 }
17210 else if (offset > 0)
17211 {
17212 /* Short opcode. */
17213 op = (offset - 4) >> 2;
17214 add_unwind_opcode (op, 1);
17215 }
17216 else if (offset < 0)
17217 {
17218 offset = -offset;
17219 while (offset > 0x100)
17220 {
17221 add_unwind_opcode (0x7f, 1);
17222 offset -= 0x100;
17223 }
17224 op = ((offset - 4) >> 2) | 0x40;
17225 add_unwind_opcode (op, 1);
17226 }
17227 }
17228
17229 /* Finish the list of unwind opcodes for this function. */
17230 static void
17231 finish_unwind_opcodes (void)
17232 {
17233 valueT op;
17234
17235 if (unwind.fp_used)
17236 {
17237 /* Adjust sp as necessary. */
17238 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
17239 flush_pending_unwind ();
17240
17241 /* After restoring sp from the frame pointer. */
17242 op = 0x90 | unwind.fp_reg;
17243 add_unwind_opcode (op, 1);
17244 }
17245 else
17246 flush_pending_unwind ();
17247 }
17248
17249
17250 /* Start an exception table entry. If idx is nonzero this is an index table
17251 entry. */
17252
17253 static void
17254 start_unwind_section (const segT text_seg, int idx)
17255 {
17256 const char * text_name;
17257 const char * prefix;
17258 const char * prefix_once;
17259 const char * group_name;
17260 size_t prefix_len;
17261 size_t text_len;
17262 char * sec_name;
17263 size_t sec_name_len;
17264 int type;
17265 int flags;
17266 int linkonce;
17267
17268 if (idx)
17269 {
17270 prefix = ELF_STRING_ARM_unwind;
17271 prefix_once = ELF_STRING_ARM_unwind_once;
17272 type = SHT_ARM_EXIDX;
17273 }
17274 else
17275 {
17276 prefix = ELF_STRING_ARM_unwind_info;
17277 prefix_once = ELF_STRING_ARM_unwind_info_once;
17278 type = SHT_PROGBITS;
17279 }
17280
17281 text_name = segment_name (text_seg);
17282 if (streq (text_name, ".text"))
17283 text_name = "";
17284
17285 if (strncmp (text_name, ".gnu.linkonce.t.",
17286 strlen (".gnu.linkonce.t.")) == 0)
17287 {
17288 prefix = prefix_once;
17289 text_name += strlen (".gnu.linkonce.t.");
17290 }
17291
17292 prefix_len = strlen (prefix);
17293 text_len = strlen (text_name);
17294 sec_name_len = prefix_len + text_len;
17295 sec_name = xmalloc (sec_name_len + 1);
17296 memcpy (sec_name, prefix, prefix_len);
17297 memcpy (sec_name + prefix_len, text_name, text_len);
17298 sec_name[prefix_len + text_len] = '\0';
17299
17300 flags = SHF_ALLOC;
17301 linkonce = 0;
17302 group_name = 0;
17303
17304 /* Handle COMDAT group. */
17305 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
17306 {
17307 group_name = elf_group_name (text_seg);
17308 if (group_name == NULL)
17309 {
17310 as_bad (_("Group section `%s' has no group signature"),
17311 segment_name (text_seg));
17312 ignore_rest_of_line ();
17313 return;
17314 }
17315 flags |= SHF_GROUP;
17316 linkonce = 1;
17317 }
17318
17319 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
17320
17321 /* Set the section link for index tables. */
17322 if (idx)
17323 elf_linked_to_section (now_seg) = text_seg;
17324 }
17325
17326
17327 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
17328 personality routine data. Returns zero, or the index table value for
17329 and inline entry. */
17330
17331 static valueT
17332 create_unwind_entry (int have_data)
17333 {
17334 int size;
17335 addressT where;
17336 char *ptr;
17337 /* The current word of data. */
17338 valueT data;
17339 /* The number of bytes left in this word. */
17340 int n;
17341
17342 finish_unwind_opcodes ();
17343
17344 /* Remember the current text section. */
17345 unwind.saved_seg = now_seg;
17346 unwind.saved_subseg = now_subseg;
17347
17348 start_unwind_section (now_seg, 0);
17349
17350 if (unwind.personality_routine == NULL)
17351 {
17352 if (unwind.personality_index == -2)
17353 {
17354 if (have_data)
17355 as_bad (_("handlerdata in cantunwind frame"));
17356 return 1; /* EXIDX_CANTUNWIND. */
17357 }
17358
17359 /* Use a default personality routine if none is specified. */
17360 if (unwind.personality_index == -1)
17361 {
17362 if (unwind.opcode_count > 3)
17363 unwind.personality_index = 1;
17364 else
17365 unwind.personality_index = 0;
17366 }
17367
17368 /* Space for the personality routine entry. */
17369 if (unwind.personality_index == 0)
17370 {
17371 if (unwind.opcode_count > 3)
17372 as_bad (_("too many unwind opcodes for personality routine 0"));
17373
17374 if (!have_data)
17375 {
17376 /* All the data is inline in the index table. */
17377 data = 0x80;
17378 n = 3;
17379 while (unwind.opcode_count > 0)
17380 {
17381 unwind.opcode_count--;
17382 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17383 n--;
17384 }
17385
17386 /* Pad with "finish" opcodes. */
17387 while (n--)
17388 data = (data << 8) | 0xb0;
17389
17390 return data;
17391 }
17392 size = 0;
17393 }
17394 else
17395 /* We get two opcodes "free" in the first word. */
17396 size = unwind.opcode_count - 2;
17397 }
17398 else
17399 /* An extra byte is required for the opcode count. */
17400 size = unwind.opcode_count + 1;
17401
17402 size = (size + 3) >> 2;
17403 if (size > 0xff)
17404 as_bad (_("too many unwind opcodes"));
17405
17406 frag_align (2, 0, 0);
17407 record_alignment (now_seg, 2);
17408 unwind.table_entry = expr_build_dot ();
17409
17410 /* Allocate the table entry. */
17411 ptr = frag_more ((size << 2) + 4);
17412 where = frag_now_fix () - ((size << 2) + 4);
17413
17414 switch (unwind.personality_index)
17415 {
17416 case -1:
17417 /* ??? Should this be a PLT generating relocation? */
17418 /* Custom personality routine. */
17419 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
17420 BFD_RELOC_ARM_PREL31);
17421
17422 where += 4;
17423 ptr += 4;
17424
17425 /* Set the first byte to the number of additional words. */
17426 data = size - 1;
17427 n = 3;
17428 break;
17429
17430 /* ABI defined personality routines. */
17431 case 0:
17432 /* Three opcodes bytes are packed into the first word. */
17433 data = 0x80;
17434 n = 3;
17435 break;
17436
17437 case 1:
17438 case 2:
17439 /* The size and first two opcode bytes go in the first word. */
17440 data = ((0x80 + unwind.personality_index) << 8) | size;
17441 n = 2;
17442 break;
17443
17444 default:
17445 /* Should never happen. */
17446 abort ();
17447 }
17448
17449 /* Pack the opcodes into words (MSB first), reversing the list at the same
17450 time. */
17451 while (unwind.opcode_count > 0)
17452 {
17453 if (n == 0)
17454 {
17455 md_number_to_chars (ptr, data, 4);
17456 ptr += 4;
17457 n = 4;
17458 data = 0;
17459 }
17460 unwind.opcode_count--;
17461 n--;
17462 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
17463 }
17464
17465 /* Finish off the last word. */
17466 if (n < 4)
17467 {
17468 /* Pad with "finish" opcodes. */
17469 while (n--)
17470 data = (data << 8) | 0xb0;
17471
17472 md_number_to_chars (ptr, data, 4);
17473 }
17474
17475 if (!have_data)
17476 {
17477 /* Add an empty descriptor if there is no user-specified data. */
17478 ptr = frag_more (4);
17479 md_number_to_chars (ptr, 0, 4);
17480 }
17481
17482 return 0;
17483 }
17484
17485
17486 /* Initialize the DWARF-2 unwind information for this procedure. */
17487
17488 void
17489 tc_arm_frame_initial_instructions (void)
17490 {
17491 cfi_add_CFA_def_cfa (REG_SP, 0);
17492 }
17493 #endif /* OBJ_ELF */
17494
17495 /* Convert REGNAME to a DWARF-2 register number. */
17496
17497 int
17498 tc_arm_regname_to_dw2regnum (char *regname)
17499 {
17500 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
17501
17502 if (reg == FAIL)
17503 return -1;
17504
17505 return reg;
17506 }
17507
17508 #ifdef TE_PE
17509 void
17510 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
17511 {
17512 expressionS expr;
17513
17514 expr.X_op = O_secrel;
17515 expr.X_add_symbol = symbol;
17516 expr.X_add_number = 0;
17517 emit_expr (&expr, size);
17518 }
17519 #endif
17520
17521 /* MD interface: Symbol and relocation handling. */
17522
17523 /* Return the address within the segment that a PC-relative fixup is
17524 relative to. For ARM, PC-relative fixups applied to instructions
17525 are generally relative to the location of the fixup plus 8 bytes.
17526 Thumb branches are offset by 4, and Thumb loads relative to PC
17527 require special handling. */
17528
17529 long
17530 md_pcrel_from_section (fixS * fixP, segT seg)
17531 {
17532 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
17533
17534 /* If this is pc-relative and we are going to emit a relocation
17535 then we just want to put out any pipeline compensation that the linker
17536 will need. Otherwise we want to use the calculated base.
17537 For WinCE we skip the bias for externals as well, since this
17538 is how the MS ARM-CE assembler behaves and we want to be compatible. */
17539 if (fixP->fx_pcrel
17540 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
17541 || (arm_force_relocation (fixP)
17542 #ifdef TE_WINCE
17543 && !S_IS_EXTERNAL (fixP->fx_addsy)
17544 #endif
17545 )))
17546 base = 0;
17547
17548 switch (fixP->fx_r_type)
17549 {
17550 /* PC relative addressing on the Thumb is slightly odd as the
17551 bottom two bits of the PC are forced to zero for the
17552 calculation. This happens *after* application of the
17553 pipeline offset. However, Thumb adrl already adjusts for
17554 this, so we need not do it again. */
17555 case BFD_RELOC_ARM_THUMB_ADD:
17556 return base & ~3;
17557
17558 case BFD_RELOC_ARM_THUMB_OFFSET:
17559 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17560 case BFD_RELOC_ARM_T32_ADD_PC12:
17561 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17562 return (base + 4) & ~3;
17563
17564 /* Thumb branches are simply offset by +4. */
17565 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17566 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17567 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17568 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17569 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17570 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17571 case BFD_RELOC_THUMB_PCREL_BLX:
17572 return base + 4;
17573
17574 /* ARM mode branches are offset by +8. However, the Windows CE
17575 loader expects the relocation not to take this into account. */
17576 case BFD_RELOC_ARM_PCREL_BRANCH:
17577 case BFD_RELOC_ARM_PCREL_CALL:
17578 case BFD_RELOC_ARM_PCREL_JUMP:
17579 case BFD_RELOC_ARM_PCREL_BLX:
17580 case BFD_RELOC_ARM_PLT32:
17581 #ifdef TE_WINCE
17582 /* When handling fixups immediately, because we have already
17583 discovered the value of a symbol, or the address of the frag involved
17584 we must account for the offset by +8, as the OS loader will never see the reloc.
17585 see fixup_segment() in write.c
17586 The S_IS_EXTERNAL test handles the case of global symbols.
17587 Those need the calculated base, not just the pipe compensation the linker will need. */
17588 if (fixP->fx_pcrel
17589 && fixP->fx_addsy != NULL
17590 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17591 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17592 return base + 8;
17593 return base;
17594 #else
17595 return base + 8;
17596 #endif
17597
17598 /* ARM mode loads relative to PC are also offset by +8. Unlike
17599 branches, the Windows CE loader *does* expect the relocation
17600 to take this into account. */
17601 case BFD_RELOC_ARM_OFFSET_IMM:
17602 case BFD_RELOC_ARM_OFFSET_IMM8:
17603 case BFD_RELOC_ARM_HWLITERAL:
17604 case BFD_RELOC_ARM_LITERAL:
17605 case BFD_RELOC_ARM_CP_OFF_IMM:
17606 return base + 8;
17607
17608
17609 /* Other PC-relative relocations are un-offset. */
17610 default:
17611 return base;
17612 }
17613 }
17614
17615 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17616 Otherwise we have no need to default values of symbols. */
17617
17618 symbolS *
17619 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17620 {
17621 #ifdef OBJ_ELF
17622 if (name[0] == '_' && name[1] == 'G'
17623 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17624 {
17625 if (!GOT_symbol)
17626 {
17627 if (symbol_find (name))
17628 as_bad (_("GOT already in the symbol table"));
17629
17630 GOT_symbol = symbol_new (name, undefined_section,
17631 (valueT) 0, & zero_address_frag);
17632 }
17633
17634 return GOT_symbol;
17635 }
17636 #endif
17637
17638 return 0;
17639 }
17640
17641 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17642 computed as two separate immediate values, added together. We
17643 already know that this value cannot be computed by just one ARM
17644 instruction. */
17645
17646 static unsigned int
17647 validate_immediate_twopart (unsigned int val,
17648 unsigned int * highpart)
17649 {
17650 unsigned int a;
17651 unsigned int i;
17652
17653 for (i = 0; i < 32; i += 2)
17654 if (((a = rotate_left (val, i)) & 0xff) != 0)
17655 {
17656 if (a & 0xff00)
17657 {
17658 if (a & ~ 0xffff)
17659 continue;
17660 * highpart = (a >> 8) | ((i + 24) << 7);
17661 }
17662 else if (a & 0xff0000)
17663 {
17664 if (a & 0xff000000)
17665 continue;
17666 * highpart = (a >> 16) | ((i + 16) << 7);
17667 }
17668 else
17669 {
17670 assert (a & 0xff000000);
17671 * highpart = (a >> 24) | ((i + 8) << 7);
17672 }
17673
17674 return (a & 0xff) | (i << 7);
17675 }
17676
17677 return FAIL;
17678 }
17679
17680 static int
17681 validate_offset_imm (unsigned int val, int hwse)
17682 {
17683 if ((hwse && val > 255) || val > 4095)
17684 return FAIL;
17685 return val;
17686 }
17687
17688 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17689 negative immediate constant by altering the instruction. A bit of
17690 a hack really.
17691 MOV <-> MVN
17692 AND <-> BIC
17693 ADC <-> SBC
17694 by inverting the second operand, and
17695 ADD <-> SUB
17696 CMP <-> CMN
17697 by negating the second operand. */
17698
17699 static int
17700 negate_data_op (unsigned long * instruction,
17701 unsigned long value)
17702 {
17703 int op, new_inst;
17704 unsigned long negated, inverted;
17705
17706 negated = encode_arm_immediate (-value);
17707 inverted = encode_arm_immediate (~value);
17708
17709 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17710 switch (op)
17711 {
17712 /* First negates. */
17713 case OPCODE_SUB: /* ADD <-> SUB */
17714 new_inst = OPCODE_ADD;
17715 value = negated;
17716 break;
17717
17718 case OPCODE_ADD:
17719 new_inst = OPCODE_SUB;
17720 value = negated;
17721 break;
17722
17723 case OPCODE_CMP: /* CMP <-> CMN */
17724 new_inst = OPCODE_CMN;
17725 value = negated;
17726 break;
17727
17728 case OPCODE_CMN:
17729 new_inst = OPCODE_CMP;
17730 value = negated;
17731 break;
17732
17733 /* Now Inverted ops. */
17734 case OPCODE_MOV: /* MOV <-> MVN */
17735 new_inst = OPCODE_MVN;
17736 value = inverted;
17737 break;
17738
17739 case OPCODE_MVN:
17740 new_inst = OPCODE_MOV;
17741 value = inverted;
17742 break;
17743
17744 case OPCODE_AND: /* AND <-> BIC */
17745 new_inst = OPCODE_BIC;
17746 value = inverted;
17747 break;
17748
17749 case OPCODE_BIC:
17750 new_inst = OPCODE_AND;
17751 value = inverted;
17752 break;
17753
17754 case OPCODE_ADC: /* ADC <-> SBC */
17755 new_inst = OPCODE_SBC;
17756 value = inverted;
17757 break;
17758
17759 case OPCODE_SBC:
17760 new_inst = OPCODE_ADC;
17761 value = inverted;
17762 break;
17763
17764 /* We cannot do anything. */
17765 default:
17766 return FAIL;
17767 }
17768
17769 if (value == (unsigned) FAIL)
17770 return FAIL;
17771
17772 *instruction &= OPCODE_MASK;
17773 *instruction |= new_inst << DATA_OP_SHIFT;
17774 return value;
17775 }
17776
17777 /* Like negate_data_op, but for Thumb-2. */
17778
17779 static unsigned int
17780 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
17781 {
17782 int op, new_inst;
17783 int rd;
17784 unsigned int negated, inverted;
17785
17786 negated = encode_thumb32_immediate (-value);
17787 inverted = encode_thumb32_immediate (~value);
17788
17789 rd = (*instruction >> 8) & 0xf;
17790 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17791 switch (op)
17792 {
17793 /* ADD <-> SUB. Includes CMP <-> CMN. */
17794 case T2_OPCODE_SUB:
17795 new_inst = T2_OPCODE_ADD;
17796 value = negated;
17797 break;
17798
17799 case T2_OPCODE_ADD:
17800 new_inst = T2_OPCODE_SUB;
17801 value = negated;
17802 break;
17803
17804 /* ORR <-> ORN. Includes MOV <-> MVN. */
17805 case T2_OPCODE_ORR:
17806 new_inst = T2_OPCODE_ORN;
17807 value = inverted;
17808 break;
17809
17810 case T2_OPCODE_ORN:
17811 new_inst = T2_OPCODE_ORR;
17812 value = inverted;
17813 break;
17814
17815 /* AND <-> BIC. TST has no inverted equivalent. */
17816 case T2_OPCODE_AND:
17817 new_inst = T2_OPCODE_BIC;
17818 if (rd == 15)
17819 value = FAIL;
17820 else
17821 value = inverted;
17822 break;
17823
17824 case T2_OPCODE_BIC:
17825 new_inst = T2_OPCODE_AND;
17826 value = inverted;
17827 break;
17828
17829 /* ADC <-> SBC */
17830 case T2_OPCODE_ADC:
17831 new_inst = T2_OPCODE_SBC;
17832 value = inverted;
17833 break;
17834
17835 case T2_OPCODE_SBC:
17836 new_inst = T2_OPCODE_ADC;
17837 value = inverted;
17838 break;
17839
17840 /* We cannot do anything. */
17841 default:
17842 return FAIL;
17843 }
17844
17845 if (value == (unsigned int)FAIL)
17846 return FAIL;
17847
17848 *instruction &= T2_OPCODE_MASK;
17849 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17850 return value;
17851 }
17852
17853 /* Read a 32-bit thumb instruction from buf. */
17854 static unsigned long
17855 get_thumb32_insn (char * buf)
17856 {
17857 unsigned long insn;
17858 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17859 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17860
17861 return insn;
17862 }
17863
17864
17865 /* We usually want to set the low bit on the address of thumb function
17866 symbols. In particular .word foo - . should have the low bit set.
17867 Generic code tries to fold the difference of two symbols to
17868 a constant. Prevent this and force a relocation when the first symbols
17869 is a thumb function. */
17870 int
17871 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17872 {
17873 if (op == O_subtract
17874 && l->X_op == O_symbol
17875 && r->X_op == O_symbol
17876 && THUMB_IS_FUNC (l->X_add_symbol))
17877 {
17878 l->X_op = O_subtract;
17879 l->X_op_symbol = r->X_add_symbol;
17880 l->X_add_number -= r->X_add_number;
17881 return 1;
17882 }
17883 /* Process as normal. */
17884 return 0;
17885 }
17886
17887 void
17888 md_apply_fix (fixS * fixP,
17889 valueT * valP,
17890 segT seg)
17891 {
17892 offsetT value = * valP;
17893 offsetT newval;
17894 unsigned int newimm;
17895 unsigned long temp;
17896 int sign;
17897 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17898
17899 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17900
17901 /* Note whether this will delete the relocation. */
17902
17903 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17904 fixP->fx_done = 1;
17905
17906 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17907 consistency with the behaviour on 32-bit hosts. Remember value
17908 for emit_reloc. */
17909 value &= 0xffffffff;
17910 value ^= 0x80000000;
17911 value -= 0x80000000;
17912
17913 *valP = value;
17914 fixP->fx_addnumber = value;
17915
17916 /* Same treatment for fixP->fx_offset. */
17917 fixP->fx_offset &= 0xffffffff;
17918 fixP->fx_offset ^= 0x80000000;
17919 fixP->fx_offset -= 0x80000000;
17920
17921 switch (fixP->fx_r_type)
17922 {
17923 case BFD_RELOC_NONE:
17924 /* This will need to go in the object file. */
17925 fixP->fx_done = 0;
17926 break;
17927
17928 case BFD_RELOC_ARM_IMMEDIATE:
17929 /* We claim that this fixup has been processed here,
17930 even if in fact we generate an error because we do
17931 not have a reloc for it, so tc_gen_reloc will reject it. */
17932 fixP->fx_done = 1;
17933
17934 if (fixP->fx_addsy
17935 && ! S_IS_DEFINED (fixP->fx_addsy))
17936 {
17937 as_bad_where (fixP->fx_file, fixP->fx_line,
17938 _("undefined symbol %s used as an immediate value"),
17939 S_GET_NAME (fixP->fx_addsy));
17940 break;
17941 }
17942
17943 newimm = encode_arm_immediate (value);
17944 temp = md_chars_to_number (buf, INSN_SIZE);
17945
17946 /* If the instruction will fail, see if we can fix things up by
17947 changing the opcode. */
17948 if (newimm == (unsigned int) FAIL
17949 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17950 {
17951 as_bad_where (fixP->fx_file, fixP->fx_line,
17952 _("invalid constant (%lx) after fixup"),
17953 (unsigned long) value);
17954 break;
17955 }
17956
17957 newimm |= (temp & 0xfffff000);
17958 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17959 break;
17960
17961 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17962 {
17963 unsigned int highpart = 0;
17964 unsigned int newinsn = 0xe1a00000; /* nop. */
17965
17966 newimm = encode_arm_immediate (value);
17967 temp = md_chars_to_number (buf, INSN_SIZE);
17968
17969 /* If the instruction will fail, see if we can fix things up by
17970 changing the opcode. */
17971 if (newimm == (unsigned int) FAIL
17972 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17973 {
17974 /* No ? OK - try using two ADD instructions to generate
17975 the value. */
17976 newimm = validate_immediate_twopart (value, & highpart);
17977
17978 /* Yes - then make sure that the second instruction is
17979 also an add. */
17980 if (newimm != (unsigned int) FAIL)
17981 newinsn = temp;
17982 /* Still No ? Try using a negated value. */
17983 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17984 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17985 /* Otherwise - give up. */
17986 else
17987 {
17988 as_bad_where (fixP->fx_file, fixP->fx_line,
17989 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17990 (long) value);
17991 break;
17992 }
17993
17994 /* Replace the first operand in the 2nd instruction (which
17995 is the PC) with the destination register. We have
17996 already added in the PC in the first instruction and we
17997 do not want to do it again. */
17998 newinsn &= ~ 0xf0000;
17999 newinsn |= ((newinsn & 0x0f000) << 4);
18000 }
18001
18002 newimm |= (temp & 0xfffff000);
18003 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
18004
18005 highpart |= (newinsn & 0xfffff000);
18006 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
18007 }
18008 break;
18009
18010 case BFD_RELOC_ARM_OFFSET_IMM:
18011 if (!fixP->fx_done && seg->use_rela_p)
18012 value = 0;
18013
18014 case BFD_RELOC_ARM_LITERAL:
18015 sign = value >= 0;
18016
18017 if (value < 0)
18018 value = - value;
18019
18020 if (validate_offset_imm (value, 0) == FAIL)
18021 {
18022 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
18023 as_bad_where (fixP->fx_file, fixP->fx_line,
18024 _("invalid literal constant: pool needs to be closer"));
18025 else
18026 as_bad_where (fixP->fx_file, fixP->fx_line,
18027 _("bad immediate value for offset (%ld)"),
18028 (long) value);
18029 break;
18030 }
18031
18032 newval = md_chars_to_number (buf, INSN_SIZE);
18033 newval &= 0xff7ff000;
18034 newval |= value | (sign ? INDEX_UP : 0);
18035 md_number_to_chars (buf, newval, INSN_SIZE);
18036 break;
18037
18038 case BFD_RELOC_ARM_OFFSET_IMM8:
18039 case BFD_RELOC_ARM_HWLITERAL:
18040 sign = value >= 0;
18041
18042 if (value < 0)
18043 value = - value;
18044
18045 if (validate_offset_imm (value, 1) == FAIL)
18046 {
18047 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
18048 as_bad_where (fixP->fx_file, fixP->fx_line,
18049 _("invalid literal constant: pool needs to be closer"));
18050 else
18051 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
18052 (long) value);
18053 break;
18054 }
18055
18056 newval = md_chars_to_number (buf, INSN_SIZE);
18057 newval &= 0xff7ff0f0;
18058 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
18059 md_number_to_chars (buf, newval, INSN_SIZE);
18060 break;
18061
18062 case BFD_RELOC_ARM_T32_OFFSET_U8:
18063 if (value < 0 || value > 1020 || value % 4 != 0)
18064 as_bad_where (fixP->fx_file, fixP->fx_line,
18065 _("bad immediate value for offset (%ld)"), (long) value);
18066 value /= 4;
18067
18068 newval = md_chars_to_number (buf+2, THUMB_SIZE);
18069 newval |= value;
18070 md_number_to_chars (buf+2, newval, THUMB_SIZE);
18071 break;
18072
18073 case BFD_RELOC_ARM_T32_OFFSET_IMM:
18074 /* This is a complicated relocation used for all varieties of Thumb32
18075 load/store instruction with immediate offset:
18076
18077 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
18078 *4, optional writeback(W)
18079 (doubleword load/store)
18080
18081 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
18082 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
18083 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
18084 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
18085 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
18086
18087 Uppercase letters indicate bits that are already encoded at
18088 this point. Lowercase letters are our problem. For the
18089 second block of instructions, the secondary opcode nybble
18090 (bits 8..11) is present, and bit 23 is zero, even if this is
18091 a PC-relative operation. */
18092 newval = md_chars_to_number (buf, THUMB_SIZE);
18093 newval <<= 16;
18094 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
18095
18096 if ((newval & 0xf0000000) == 0xe0000000)
18097 {
18098 /* Doubleword load/store: 8-bit offset, scaled by 4. */
18099 if (value >= 0)
18100 newval |= (1 << 23);
18101 else
18102 value = -value;
18103 if (value % 4 != 0)
18104 {
18105 as_bad_where (fixP->fx_file, fixP->fx_line,
18106 _("offset not a multiple of 4"));
18107 break;
18108 }
18109 value /= 4;
18110 if (value > 0xff)
18111 {
18112 as_bad_where (fixP->fx_file, fixP->fx_line,
18113 _("offset out of range"));
18114 break;
18115 }
18116 newval &= ~0xff;
18117 }
18118 else if ((newval & 0x000f0000) == 0x000f0000)
18119 {
18120 /* PC-relative, 12-bit offset. */
18121 if (value >= 0)
18122 newval |= (1 << 23);
18123 else
18124 value = -value;
18125 if (value > 0xfff)
18126 {
18127 as_bad_where (fixP->fx_file, fixP->fx_line,
18128 _("offset out of range"));
18129 break;
18130 }
18131 newval &= ~0xfff;
18132 }
18133 else if ((newval & 0x00000100) == 0x00000100)
18134 {
18135 /* Writeback: 8-bit, +/- offset. */
18136 if (value >= 0)
18137 newval |= (1 << 9);
18138 else
18139 value = -value;
18140 if (value > 0xff)
18141 {
18142 as_bad_where (fixP->fx_file, fixP->fx_line,
18143 _("offset out of range"));
18144 break;
18145 }
18146 newval &= ~0xff;
18147 }
18148 else if ((newval & 0x00000f00) == 0x00000e00)
18149 {
18150 /* T-instruction: positive 8-bit offset. */
18151 if (value < 0 || value > 0xff)
18152 {
18153 as_bad_where (fixP->fx_file, fixP->fx_line,
18154 _("offset out of range"));
18155 break;
18156 }
18157 newval &= ~0xff;
18158 newval |= value;
18159 }
18160 else
18161 {
18162 /* Positive 12-bit or negative 8-bit offset. */
18163 int limit;
18164 if (value >= 0)
18165 {
18166 newval |= (1 << 23);
18167 limit = 0xfff;
18168 }
18169 else
18170 {
18171 value = -value;
18172 limit = 0xff;
18173 }
18174 if (value > limit)
18175 {
18176 as_bad_where (fixP->fx_file, fixP->fx_line,
18177 _("offset out of range"));
18178 break;
18179 }
18180 newval &= ~limit;
18181 }
18182
18183 newval |= value;
18184 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
18185 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
18186 break;
18187
18188 case BFD_RELOC_ARM_SHIFT_IMM:
18189 newval = md_chars_to_number (buf, INSN_SIZE);
18190 if (((unsigned long) value) > 32
18191 || (value == 32
18192 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
18193 {
18194 as_bad_where (fixP->fx_file, fixP->fx_line,
18195 _("shift expression is too large"));
18196 break;
18197 }
18198
18199 if (value == 0)
18200 /* Shifts of zero must be done as lsl. */
18201 newval &= ~0x60;
18202 else if (value == 32)
18203 value = 0;
18204 newval &= 0xfffff07f;
18205 newval |= (value & 0x1f) << 7;
18206 md_number_to_chars (buf, newval, INSN_SIZE);
18207 break;
18208
18209 case BFD_RELOC_ARM_T32_IMMEDIATE:
18210 case BFD_RELOC_ARM_T32_ADD_IMM:
18211 case BFD_RELOC_ARM_T32_IMM12:
18212 case BFD_RELOC_ARM_T32_ADD_PC12:
18213 /* We claim that this fixup has been processed here,
18214 even if in fact we generate an error because we do
18215 not have a reloc for it, so tc_gen_reloc will reject it. */
18216 fixP->fx_done = 1;
18217
18218 if (fixP->fx_addsy
18219 && ! S_IS_DEFINED (fixP->fx_addsy))
18220 {
18221 as_bad_where (fixP->fx_file, fixP->fx_line,
18222 _("undefined symbol %s used as an immediate value"),
18223 S_GET_NAME (fixP->fx_addsy));
18224 break;
18225 }
18226
18227 newval = md_chars_to_number (buf, THUMB_SIZE);
18228 newval <<= 16;
18229 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
18230
18231 newimm = FAIL;
18232 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18233 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18234 {
18235 newimm = encode_thumb32_immediate (value);
18236 if (newimm == (unsigned int) FAIL)
18237 newimm = thumb32_negate_data_op (&newval, value);
18238 }
18239 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
18240 && newimm == (unsigned int) FAIL)
18241 {
18242 /* Turn add/sum into addw/subw. */
18243 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
18244 newval = (newval & 0xfeffffff) | 0x02000000;
18245
18246 /* 12 bit immediate for addw/subw. */
18247 if (value < 0)
18248 {
18249 value = -value;
18250 newval ^= 0x00a00000;
18251 }
18252 if (value > 0xfff)
18253 newimm = (unsigned int) FAIL;
18254 else
18255 newimm = value;
18256 }
18257
18258 if (newimm == (unsigned int)FAIL)
18259 {
18260 as_bad_where (fixP->fx_file, fixP->fx_line,
18261 _("invalid constant (%lx) after fixup"),
18262 (unsigned long) value);
18263 break;
18264 }
18265
18266 newval |= (newimm & 0x800) << 15;
18267 newval |= (newimm & 0x700) << 4;
18268 newval |= (newimm & 0x0ff);
18269
18270 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
18271 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
18272 break;
18273
18274 case BFD_RELOC_ARM_SMC:
18275 if (((unsigned long) value) > 0xffff)
18276 as_bad_where (fixP->fx_file, fixP->fx_line,
18277 _("invalid smc expression"));
18278 newval = md_chars_to_number (buf, INSN_SIZE);
18279 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
18280 md_number_to_chars (buf, newval, INSN_SIZE);
18281 break;
18282
18283 case BFD_RELOC_ARM_SWI:
18284 if (fixP->tc_fix_data != 0)
18285 {
18286 if (((unsigned long) value) > 0xff)
18287 as_bad_where (fixP->fx_file, fixP->fx_line,
18288 _("invalid swi expression"));
18289 newval = md_chars_to_number (buf, THUMB_SIZE);
18290 newval |= value;
18291 md_number_to_chars (buf, newval, THUMB_SIZE);
18292 }
18293 else
18294 {
18295 if (((unsigned long) value) > 0x00ffffff)
18296 as_bad_where (fixP->fx_file, fixP->fx_line,
18297 _("invalid swi expression"));
18298 newval = md_chars_to_number (buf, INSN_SIZE);
18299 newval |= value;
18300 md_number_to_chars (buf, newval, INSN_SIZE);
18301 }
18302 break;
18303
18304 case BFD_RELOC_ARM_MULTI:
18305 if (((unsigned long) value) > 0xffff)
18306 as_bad_where (fixP->fx_file, fixP->fx_line,
18307 _("invalid expression in load/store multiple"));
18308 newval = value | md_chars_to_number (buf, INSN_SIZE);
18309 md_number_to_chars (buf, newval, INSN_SIZE);
18310 break;
18311
18312 #ifdef OBJ_ELF
18313 case BFD_RELOC_ARM_PCREL_CALL:
18314 newval = md_chars_to_number (buf, INSN_SIZE);
18315 if ((newval & 0xf0000000) == 0xf0000000)
18316 temp = 1;
18317 else
18318 temp = 3;
18319 goto arm_branch_common;
18320
18321 case BFD_RELOC_ARM_PCREL_JUMP:
18322 case BFD_RELOC_ARM_PLT32:
18323 #endif
18324 case BFD_RELOC_ARM_PCREL_BRANCH:
18325 temp = 3;
18326 goto arm_branch_common;
18327
18328 case BFD_RELOC_ARM_PCREL_BLX:
18329 temp = 1;
18330 arm_branch_common:
18331 /* We are going to store value (shifted right by two) in the
18332 instruction, in a 24 bit, signed field. Bits 26 through 32 either
18333 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
18334 also be be clear. */
18335 if (value & temp)
18336 as_bad_where (fixP->fx_file, fixP->fx_line,
18337 _("misaligned branch destination"));
18338 if ((value & (offsetT)0xfe000000) != (offsetT)0
18339 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
18340 as_bad_where (fixP->fx_file, fixP->fx_line,
18341 _("branch out of range"));
18342
18343 if (fixP->fx_done || !seg->use_rela_p)
18344 {
18345 newval = md_chars_to_number (buf, INSN_SIZE);
18346 newval |= (value >> 2) & 0x00ffffff;
18347 /* Set the H bit on BLX instructions. */
18348 if (temp == 1)
18349 {
18350 if (value & 2)
18351 newval |= 0x01000000;
18352 else
18353 newval &= ~0x01000000;
18354 }
18355 md_number_to_chars (buf, newval, INSN_SIZE);
18356 }
18357 break;
18358
18359 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
18360 /* CBZ can only branch forward. */
18361
18362 /* Attempts to use CBZ to branch to the next instruction
18363 (which, strictly speaking, are prohibited) will be turned into
18364 no-ops.
18365
18366 FIXME: It may be better to remove the instruction completely and
18367 perform relaxation. */
18368 if (value == -2)
18369 {
18370 newval = md_chars_to_number (buf, THUMB_SIZE);
18371 newval = 0xbf00; /* NOP encoding T1 */
18372 md_number_to_chars (buf, newval, THUMB_SIZE);
18373 }
18374 else
18375 {
18376 if (value & ~0x7e)
18377 as_bad_where (fixP->fx_file, fixP->fx_line,
18378 _("branch out of range"));
18379
18380 if (fixP->fx_done || !seg->use_rela_p)
18381 {
18382 newval = md_chars_to_number (buf, THUMB_SIZE);
18383 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
18384 md_number_to_chars (buf, newval, THUMB_SIZE);
18385 }
18386 }
18387 break;
18388
18389 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
18390 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
18391 as_bad_where (fixP->fx_file, fixP->fx_line,
18392 _("branch out of range"));
18393
18394 if (fixP->fx_done || !seg->use_rela_p)
18395 {
18396 newval = md_chars_to_number (buf, THUMB_SIZE);
18397 newval |= (value & 0x1ff) >> 1;
18398 md_number_to_chars (buf, newval, THUMB_SIZE);
18399 }
18400 break;
18401
18402 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
18403 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
18404 as_bad_where (fixP->fx_file, fixP->fx_line,
18405 _("branch out of range"));
18406
18407 if (fixP->fx_done || !seg->use_rela_p)
18408 {
18409 newval = md_chars_to_number (buf, THUMB_SIZE);
18410 newval |= (value & 0xfff) >> 1;
18411 md_number_to_chars (buf, newval, THUMB_SIZE);
18412 }
18413 break;
18414
18415 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18416 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
18417 as_bad_where (fixP->fx_file, fixP->fx_line,
18418 _("conditional branch out of range"));
18419
18420 if (fixP->fx_done || !seg->use_rela_p)
18421 {
18422 offsetT newval2;
18423 addressT S, J1, J2, lo, hi;
18424
18425 S = (value & 0x00100000) >> 20;
18426 J2 = (value & 0x00080000) >> 19;
18427 J1 = (value & 0x00040000) >> 18;
18428 hi = (value & 0x0003f000) >> 12;
18429 lo = (value & 0x00000ffe) >> 1;
18430
18431 newval = md_chars_to_number (buf, THUMB_SIZE);
18432 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18433 newval |= (S << 10) | hi;
18434 newval2 |= (J1 << 13) | (J2 << 11) | lo;
18435 md_number_to_chars (buf, newval, THUMB_SIZE);
18436 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18437 }
18438 break;
18439
18440 case BFD_RELOC_THUMB_PCREL_BLX:
18441 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18442 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
18443 as_bad_where (fixP->fx_file, fixP->fx_line,
18444 _("branch out of range"));
18445
18446 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
18447 /* For a BLX instruction, make sure that the relocation is rounded up
18448 to a word boundary. This follows the semantics of the instruction
18449 which specifies that bit 1 of the target address will come from bit
18450 1 of the base address. */
18451 value = (value + 1) & ~ 1;
18452
18453 if (fixP->fx_done || !seg->use_rela_p)
18454 {
18455 offsetT newval2;
18456
18457 newval = md_chars_to_number (buf, THUMB_SIZE);
18458 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18459 newval |= (value & 0x7fffff) >> 12;
18460 newval2 |= (value & 0xfff) >> 1;
18461 md_number_to_chars (buf, newval, THUMB_SIZE);
18462 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18463 }
18464 break;
18465
18466 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18467 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
18468 as_bad_where (fixP->fx_file, fixP->fx_line,
18469 _("branch out of range"));
18470
18471 if (fixP->fx_done || !seg->use_rela_p)
18472 {
18473 offsetT newval2;
18474 addressT S, I1, I2, lo, hi;
18475
18476 S = (value & 0x01000000) >> 24;
18477 I1 = (value & 0x00800000) >> 23;
18478 I2 = (value & 0x00400000) >> 22;
18479 hi = (value & 0x003ff000) >> 12;
18480 lo = (value & 0x00000ffe) >> 1;
18481
18482 I1 = !(I1 ^ S);
18483 I2 = !(I2 ^ S);
18484
18485 newval = md_chars_to_number (buf, THUMB_SIZE);
18486 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
18487 newval |= (S << 10) | hi;
18488 newval2 |= (I1 << 13) | (I2 << 11) | lo;
18489 md_number_to_chars (buf, newval, THUMB_SIZE);
18490 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
18491 }
18492 break;
18493
18494 case BFD_RELOC_8:
18495 if (fixP->fx_done || !seg->use_rela_p)
18496 md_number_to_chars (buf, value, 1);
18497 break;
18498
18499 case BFD_RELOC_16:
18500 if (fixP->fx_done || !seg->use_rela_p)
18501 md_number_to_chars (buf, value, 2);
18502 break;
18503
18504 #ifdef OBJ_ELF
18505 case BFD_RELOC_ARM_TLS_GD32:
18506 case BFD_RELOC_ARM_TLS_LE32:
18507 case BFD_RELOC_ARM_TLS_IE32:
18508 case BFD_RELOC_ARM_TLS_LDM32:
18509 case BFD_RELOC_ARM_TLS_LDO32:
18510 S_SET_THREAD_LOCAL (fixP->fx_addsy);
18511 /* fall through */
18512
18513 case BFD_RELOC_ARM_GOT32:
18514 case BFD_RELOC_ARM_GOTOFF:
18515 case BFD_RELOC_ARM_TARGET2:
18516 if (fixP->fx_done || !seg->use_rela_p)
18517 md_number_to_chars (buf, 0, 4);
18518 break;
18519 #endif
18520
18521 case BFD_RELOC_RVA:
18522 case BFD_RELOC_32:
18523 case BFD_RELOC_ARM_TARGET1:
18524 case BFD_RELOC_ARM_ROSEGREL32:
18525 case BFD_RELOC_ARM_SBREL32:
18526 case BFD_RELOC_32_PCREL:
18527 #ifdef TE_PE
18528 case BFD_RELOC_32_SECREL:
18529 #endif
18530 if (fixP->fx_done || !seg->use_rela_p)
18531 #ifdef TE_WINCE
18532 /* For WinCE we only do this for pcrel fixups. */
18533 if (fixP->fx_done || fixP->fx_pcrel)
18534 #endif
18535 md_number_to_chars (buf, value, 4);
18536 break;
18537
18538 #ifdef OBJ_ELF
18539 case BFD_RELOC_ARM_PREL31:
18540 if (fixP->fx_done || !seg->use_rela_p)
18541 {
18542 newval = md_chars_to_number (buf, 4) & 0x80000000;
18543 if ((value ^ (value >> 1)) & 0x40000000)
18544 {
18545 as_bad_where (fixP->fx_file, fixP->fx_line,
18546 _("rel31 relocation overflow"));
18547 }
18548 newval |= value & 0x7fffffff;
18549 md_number_to_chars (buf, newval, 4);
18550 }
18551 break;
18552 #endif
18553
18554 case BFD_RELOC_ARM_CP_OFF_IMM:
18555 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
18556 if (value < -1023 || value > 1023 || (value & 3))
18557 as_bad_where (fixP->fx_file, fixP->fx_line,
18558 _("co-processor offset out of range"));
18559 cp_off_common:
18560 sign = value >= 0;
18561 if (value < 0)
18562 value = -value;
18563 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18564 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18565 newval = md_chars_to_number (buf, INSN_SIZE);
18566 else
18567 newval = get_thumb32_insn (buf);
18568 newval &= 0xff7fff00;
18569 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18570 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18571 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18572 md_number_to_chars (buf, newval, INSN_SIZE);
18573 else
18574 put_thumb32_insn (buf, newval);
18575 break;
18576
18577 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18578 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18579 if (value < -255 || value > 255)
18580 as_bad_where (fixP->fx_file, fixP->fx_line,
18581 _("co-processor offset out of range"));
18582 value *= 4;
18583 goto cp_off_common;
18584
18585 case BFD_RELOC_ARM_THUMB_OFFSET:
18586 newval = md_chars_to_number (buf, THUMB_SIZE);
18587 /* Exactly what ranges, and where the offset is inserted depends
18588 on the type of instruction, we can establish this from the
18589 top 4 bits. */
18590 switch (newval >> 12)
18591 {
18592 case 4: /* PC load. */
18593 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18594 forced to zero for these loads; md_pcrel_from has already
18595 compensated for this. */
18596 if (value & 3)
18597 as_bad_where (fixP->fx_file, fixP->fx_line,
18598 _("invalid offset, target not word aligned (0x%08lX)"),
18599 (((unsigned long) fixP->fx_frag->fr_address
18600 + (unsigned long) fixP->fx_where) & ~3)
18601 + (unsigned long) value);
18602
18603 if (value & ~0x3fc)
18604 as_bad_where (fixP->fx_file, fixP->fx_line,
18605 _("invalid offset, value too big (0x%08lX)"),
18606 (long) value);
18607
18608 newval |= value >> 2;
18609 break;
18610
18611 case 9: /* SP load/store. */
18612 if (value & ~0x3fc)
18613 as_bad_where (fixP->fx_file, fixP->fx_line,
18614 _("invalid offset, value too big (0x%08lX)"),
18615 (long) value);
18616 newval |= value >> 2;
18617 break;
18618
18619 case 6: /* Word load/store. */
18620 if (value & ~0x7c)
18621 as_bad_where (fixP->fx_file, fixP->fx_line,
18622 _("invalid offset, value too big (0x%08lX)"),
18623 (long) value);
18624 newval |= value << 4; /* 6 - 2. */
18625 break;
18626
18627 case 7: /* Byte load/store. */
18628 if (value & ~0x1f)
18629 as_bad_where (fixP->fx_file, fixP->fx_line,
18630 _("invalid offset, value too big (0x%08lX)"),
18631 (long) value);
18632 newval |= value << 6;
18633 break;
18634
18635 case 8: /* Halfword load/store. */
18636 if (value & ~0x3e)
18637 as_bad_where (fixP->fx_file, fixP->fx_line,
18638 _("invalid offset, value too big (0x%08lX)"),
18639 (long) value);
18640 newval |= value << 5; /* 6 - 1. */
18641 break;
18642
18643 default:
18644 as_bad_where (fixP->fx_file, fixP->fx_line,
18645 "Unable to process relocation for thumb opcode: %lx",
18646 (unsigned long) newval);
18647 break;
18648 }
18649 md_number_to_chars (buf, newval, THUMB_SIZE);
18650 break;
18651
18652 case BFD_RELOC_ARM_THUMB_ADD:
18653 /* This is a complicated relocation, since we use it for all of
18654 the following immediate relocations:
18655
18656 3bit ADD/SUB
18657 8bit ADD/SUB
18658 9bit ADD/SUB SP word-aligned
18659 10bit ADD PC/SP word-aligned
18660
18661 The type of instruction being processed is encoded in the
18662 instruction field:
18663
18664 0x8000 SUB
18665 0x00F0 Rd
18666 0x000F Rs
18667 */
18668 newval = md_chars_to_number (buf, THUMB_SIZE);
18669 {
18670 int rd = (newval >> 4) & 0xf;
18671 int rs = newval & 0xf;
18672 int subtract = !!(newval & 0x8000);
18673
18674 /* Check for HI regs, only very restricted cases allowed:
18675 Adjusting SP, and using PC or SP to get an address. */
18676 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18677 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18678 as_bad_where (fixP->fx_file, fixP->fx_line,
18679 _("invalid Hi register with immediate"));
18680
18681 /* If value is negative, choose the opposite instruction. */
18682 if (value < 0)
18683 {
18684 value = -value;
18685 subtract = !subtract;
18686 if (value < 0)
18687 as_bad_where (fixP->fx_file, fixP->fx_line,
18688 _("immediate value out of range"));
18689 }
18690
18691 if (rd == REG_SP)
18692 {
18693 if (value & ~0x1fc)
18694 as_bad_where (fixP->fx_file, fixP->fx_line,
18695 _("invalid immediate for stack address calculation"));
18696 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18697 newval |= value >> 2;
18698 }
18699 else if (rs == REG_PC || rs == REG_SP)
18700 {
18701 if (subtract || value & ~0x3fc)
18702 as_bad_where (fixP->fx_file, fixP->fx_line,
18703 _("invalid immediate for address calculation (value = 0x%08lX)"),
18704 (unsigned long) value);
18705 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18706 newval |= rd << 8;
18707 newval |= value >> 2;
18708 }
18709 else if (rs == rd)
18710 {
18711 if (value & ~0xff)
18712 as_bad_where (fixP->fx_file, fixP->fx_line,
18713 _("immediate value out of range"));
18714 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18715 newval |= (rd << 8) | value;
18716 }
18717 else
18718 {
18719 if (value & ~0x7)
18720 as_bad_where (fixP->fx_file, fixP->fx_line,
18721 _("immediate value out of range"));
18722 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18723 newval |= rd | (rs << 3) | (value << 6);
18724 }
18725 }
18726 md_number_to_chars (buf, newval, THUMB_SIZE);
18727 break;
18728
18729 case BFD_RELOC_ARM_THUMB_IMM:
18730 newval = md_chars_to_number (buf, THUMB_SIZE);
18731 if (value < 0 || value > 255)
18732 as_bad_where (fixP->fx_file, fixP->fx_line,
18733 _("invalid immediate: %ld is out of range"),
18734 (long) value);
18735 newval |= value;
18736 md_number_to_chars (buf, newval, THUMB_SIZE);
18737 break;
18738
18739 case BFD_RELOC_ARM_THUMB_SHIFT:
18740 /* 5bit shift value (0..32). LSL cannot take 32. */
18741 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18742 temp = newval & 0xf800;
18743 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18744 as_bad_where (fixP->fx_file, fixP->fx_line,
18745 _("invalid shift value: %ld"), (long) value);
18746 /* Shifts of zero must be encoded as LSL. */
18747 if (value == 0)
18748 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18749 /* Shifts of 32 are encoded as zero. */
18750 else if (value == 32)
18751 value = 0;
18752 newval |= value << 6;
18753 md_number_to_chars (buf, newval, THUMB_SIZE);
18754 break;
18755
18756 case BFD_RELOC_VTABLE_INHERIT:
18757 case BFD_RELOC_VTABLE_ENTRY:
18758 fixP->fx_done = 0;
18759 return;
18760
18761 case BFD_RELOC_ARM_MOVW:
18762 case BFD_RELOC_ARM_MOVT:
18763 case BFD_RELOC_ARM_THUMB_MOVW:
18764 case BFD_RELOC_ARM_THUMB_MOVT:
18765 if (fixP->fx_done || !seg->use_rela_p)
18766 {
18767 /* REL format relocations are limited to a 16-bit addend. */
18768 if (!fixP->fx_done)
18769 {
18770 if (value < -0x1000 || value > 0xffff)
18771 as_bad_where (fixP->fx_file, fixP->fx_line,
18772 _("offset out of range"));
18773 }
18774 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18775 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18776 {
18777 value >>= 16;
18778 }
18779
18780 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18781 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18782 {
18783 newval = get_thumb32_insn (buf);
18784 newval &= 0xfbf08f00;
18785 newval |= (value & 0xf000) << 4;
18786 newval |= (value & 0x0800) << 15;
18787 newval |= (value & 0x0700) << 4;
18788 newval |= (value & 0x00ff);
18789 put_thumb32_insn (buf, newval);
18790 }
18791 else
18792 {
18793 newval = md_chars_to_number (buf, 4);
18794 newval &= 0xfff0f000;
18795 newval |= value & 0x0fff;
18796 newval |= (value & 0xf000) << 4;
18797 md_number_to_chars (buf, newval, 4);
18798 }
18799 }
18800 return;
18801
18802 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18803 case BFD_RELOC_ARM_ALU_PC_G0:
18804 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18805 case BFD_RELOC_ARM_ALU_PC_G1:
18806 case BFD_RELOC_ARM_ALU_PC_G2:
18807 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18808 case BFD_RELOC_ARM_ALU_SB_G0:
18809 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18810 case BFD_RELOC_ARM_ALU_SB_G1:
18811 case BFD_RELOC_ARM_ALU_SB_G2:
18812 assert (!fixP->fx_done);
18813 if (!seg->use_rela_p)
18814 {
18815 bfd_vma insn;
18816 bfd_vma encoded_addend;
18817 bfd_vma addend_abs = abs (value);
18818
18819 /* Check that the absolute value of the addend can be
18820 expressed as an 8-bit constant plus a rotation. */
18821 encoded_addend = encode_arm_immediate (addend_abs);
18822 if (encoded_addend == (unsigned int) FAIL)
18823 as_bad_where (fixP->fx_file, fixP->fx_line,
18824 _("the offset 0x%08lX is not representable"),
18825 (unsigned long) addend_abs);
18826
18827 /* Extract the instruction. */
18828 insn = md_chars_to_number (buf, INSN_SIZE);
18829
18830 /* If the addend is positive, use an ADD instruction.
18831 Otherwise use a SUB. Take care not to destroy the S bit. */
18832 insn &= 0xff1fffff;
18833 if (value < 0)
18834 insn |= 1 << 22;
18835 else
18836 insn |= 1 << 23;
18837
18838 /* Place the encoded addend into the first 12 bits of the
18839 instruction. */
18840 insn &= 0xfffff000;
18841 insn |= encoded_addend;
18842
18843 /* Update the instruction. */
18844 md_number_to_chars (buf, insn, INSN_SIZE);
18845 }
18846 break;
18847
18848 case BFD_RELOC_ARM_LDR_PC_G0:
18849 case BFD_RELOC_ARM_LDR_PC_G1:
18850 case BFD_RELOC_ARM_LDR_PC_G2:
18851 case BFD_RELOC_ARM_LDR_SB_G0:
18852 case BFD_RELOC_ARM_LDR_SB_G1:
18853 case BFD_RELOC_ARM_LDR_SB_G2:
18854 assert (!fixP->fx_done);
18855 if (!seg->use_rela_p)
18856 {
18857 bfd_vma insn;
18858 bfd_vma addend_abs = abs (value);
18859
18860 /* Check that the absolute value of the addend can be
18861 encoded in 12 bits. */
18862 if (addend_abs >= 0x1000)
18863 as_bad_where (fixP->fx_file, fixP->fx_line,
18864 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18865 (unsigned long) addend_abs);
18866
18867 /* Extract the instruction. */
18868 insn = md_chars_to_number (buf, INSN_SIZE);
18869
18870 /* If the addend is negative, clear bit 23 of the instruction.
18871 Otherwise set it. */
18872 if (value < 0)
18873 insn &= ~(1 << 23);
18874 else
18875 insn |= 1 << 23;
18876
18877 /* Place the absolute value of the addend into the first 12 bits
18878 of the instruction. */
18879 insn &= 0xfffff000;
18880 insn |= addend_abs;
18881
18882 /* Update the instruction. */
18883 md_number_to_chars (buf, insn, INSN_SIZE);
18884 }
18885 break;
18886
18887 case BFD_RELOC_ARM_LDRS_PC_G0:
18888 case BFD_RELOC_ARM_LDRS_PC_G1:
18889 case BFD_RELOC_ARM_LDRS_PC_G2:
18890 case BFD_RELOC_ARM_LDRS_SB_G0:
18891 case BFD_RELOC_ARM_LDRS_SB_G1:
18892 case BFD_RELOC_ARM_LDRS_SB_G2:
18893 assert (!fixP->fx_done);
18894 if (!seg->use_rela_p)
18895 {
18896 bfd_vma insn;
18897 bfd_vma addend_abs = abs (value);
18898
18899 /* Check that the absolute value of the addend can be
18900 encoded in 8 bits. */
18901 if (addend_abs >= 0x100)
18902 as_bad_where (fixP->fx_file, fixP->fx_line,
18903 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18904 (unsigned long) addend_abs);
18905
18906 /* Extract the instruction. */
18907 insn = md_chars_to_number (buf, INSN_SIZE);
18908
18909 /* If the addend is negative, clear bit 23 of the instruction.
18910 Otherwise set it. */
18911 if (value < 0)
18912 insn &= ~(1 << 23);
18913 else
18914 insn |= 1 << 23;
18915
18916 /* Place the first four bits of the absolute value of the addend
18917 into the first 4 bits of the instruction, and the remaining
18918 four into bits 8 .. 11. */
18919 insn &= 0xfffff0f0;
18920 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18921
18922 /* Update the instruction. */
18923 md_number_to_chars (buf, insn, INSN_SIZE);
18924 }
18925 break;
18926
18927 case BFD_RELOC_ARM_LDC_PC_G0:
18928 case BFD_RELOC_ARM_LDC_PC_G1:
18929 case BFD_RELOC_ARM_LDC_PC_G2:
18930 case BFD_RELOC_ARM_LDC_SB_G0:
18931 case BFD_RELOC_ARM_LDC_SB_G1:
18932 case BFD_RELOC_ARM_LDC_SB_G2:
18933 assert (!fixP->fx_done);
18934 if (!seg->use_rela_p)
18935 {
18936 bfd_vma insn;
18937 bfd_vma addend_abs = abs (value);
18938
18939 /* Check that the absolute value of the addend is a multiple of
18940 four and, when divided by four, fits in 8 bits. */
18941 if (addend_abs & 0x3)
18942 as_bad_where (fixP->fx_file, fixP->fx_line,
18943 _("bad offset 0x%08lX (must be word-aligned)"),
18944 (unsigned long) addend_abs);
18945
18946 if ((addend_abs >> 2) > 0xff)
18947 as_bad_where (fixP->fx_file, fixP->fx_line,
18948 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18949 (unsigned long) addend_abs);
18950
18951 /* Extract the instruction. */
18952 insn = md_chars_to_number (buf, INSN_SIZE);
18953
18954 /* If the addend is negative, clear bit 23 of the instruction.
18955 Otherwise set it. */
18956 if (value < 0)
18957 insn &= ~(1 << 23);
18958 else
18959 insn |= 1 << 23;
18960
18961 /* Place the addend (divided by four) into the first eight
18962 bits of the instruction. */
18963 insn &= 0xfffffff0;
18964 insn |= addend_abs >> 2;
18965
18966 /* Update the instruction. */
18967 md_number_to_chars (buf, insn, INSN_SIZE);
18968 }
18969 break;
18970
18971 case BFD_RELOC_UNUSED:
18972 default:
18973 as_bad_where (fixP->fx_file, fixP->fx_line,
18974 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18975 }
18976 }
18977
18978 /* Translate internal representation of relocation info to BFD target
18979 format. */
18980
18981 arelent *
18982 tc_gen_reloc (asection *section, fixS *fixp)
18983 {
18984 arelent * reloc;
18985 bfd_reloc_code_real_type code;
18986
18987 reloc = xmalloc (sizeof (arelent));
18988
18989 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18990 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18991 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18992
18993 if (fixp->fx_pcrel)
18994 {
18995 if (section->use_rela_p)
18996 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18997 else
18998 fixp->fx_offset = reloc->address;
18999 }
19000 reloc->addend = fixp->fx_offset;
19001
19002 switch (fixp->fx_r_type)
19003 {
19004 case BFD_RELOC_8:
19005 if (fixp->fx_pcrel)
19006 {
19007 code = BFD_RELOC_8_PCREL;
19008 break;
19009 }
19010
19011 case BFD_RELOC_16:
19012 if (fixp->fx_pcrel)
19013 {
19014 code = BFD_RELOC_16_PCREL;
19015 break;
19016 }
19017
19018 case BFD_RELOC_32:
19019 if (fixp->fx_pcrel)
19020 {
19021 code = BFD_RELOC_32_PCREL;
19022 break;
19023 }
19024
19025 case BFD_RELOC_ARM_MOVW:
19026 if (fixp->fx_pcrel)
19027 {
19028 code = BFD_RELOC_ARM_MOVW_PCREL;
19029 break;
19030 }
19031
19032 case BFD_RELOC_ARM_MOVT:
19033 if (fixp->fx_pcrel)
19034 {
19035 code = BFD_RELOC_ARM_MOVT_PCREL;
19036 break;
19037 }
19038
19039 case BFD_RELOC_ARM_THUMB_MOVW:
19040 if (fixp->fx_pcrel)
19041 {
19042 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
19043 break;
19044 }
19045
19046 case BFD_RELOC_ARM_THUMB_MOVT:
19047 if (fixp->fx_pcrel)
19048 {
19049 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
19050 break;
19051 }
19052
19053 case BFD_RELOC_NONE:
19054 case BFD_RELOC_ARM_PCREL_BRANCH:
19055 case BFD_RELOC_ARM_PCREL_BLX:
19056 case BFD_RELOC_RVA:
19057 case BFD_RELOC_THUMB_PCREL_BRANCH7:
19058 case BFD_RELOC_THUMB_PCREL_BRANCH9:
19059 case BFD_RELOC_THUMB_PCREL_BRANCH12:
19060 case BFD_RELOC_THUMB_PCREL_BRANCH20:
19061 case BFD_RELOC_THUMB_PCREL_BRANCH23:
19062 case BFD_RELOC_THUMB_PCREL_BRANCH25:
19063 case BFD_RELOC_THUMB_PCREL_BLX:
19064 case BFD_RELOC_VTABLE_ENTRY:
19065 case BFD_RELOC_VTABLE_INHERIT:
19066 #ifdef TE_PE
19067 case BFD_RELOC_32_SECREL:
19068 #endif
19069 code = fixp->fx_r_type;
19070 break;
19071
19072 case BFD_RELOC_ARM_LITERAL:
19073 case BFD_RELOC_ARM_HWLITERAL:
19074 /* If this is called then the a literal has
19075 been referenced across a section boundary. */
19076 as_bad_where (fixp->fx_file, fixp->fx_line,
19077 _("literal referenced across section boundary"));
19078 return NULL;
19079
19080 #ifdef OBJ_ELF
19081 case BFD_RELOC_ARM_GOT32:
19082 case BFD_RELOC_ARM_GOTOFF:
19083 case BFD_RELOC_ARM_PLT32:
19084 case BFD_RELOC_ARM_TARGET1:
19085 case BFD_RELOC_ARM_ROSEGREL32:
19086 case BFD_RELOC_ARM_SBREL32:
19087 case BFD_RELOC_ARM_PREL31:
19088 case BFD_RELOC_ARM_TARGET2:
19089 case BFD_RELOC_ARM_TLS_LE32:
19090 case BFD_RELOC_ARM_TLS_LDO32:
19091 case BFD_RELOC_ARM_PCREL_CALL:
19092 case BFD_RELOC_ARM_PCREL_JUMP:
19093 case BFD_RELOC_ARM_ALU_PC_G0_NC:
19094 case BFD_RELOC_ARM_ALU_PC_G0:
19095 case BFD_RELOC_ARM_ALU_PC_G1_NC:
19096 case BFD_RELOC_ARM_ALU_PC_G1:
19097 case BFD_RELOC_ARM_ALU_PC_G2:
19098 case BFD_RELOC_ARM_LDR_PC_G0:
19099 case BFD_RELOC_ARM_LDR_PC_G1:
19100 case BFD_RELOC_ARM_LDR_PC_G2:
19101 case BFD_RELOC_ARM_LDRS_PC_G0:
19102 case BFD_RELOC_ARM_LDRS_PC_G1:
19103 case BFD_RELOC_ARM_LDRS_PC_G2:
19104 case BFD_RELOC_ARM_LDC_PC_G0:
19105 case BFD_RELOC_ARM_LDC_PC_G1:
19106 case BFD_RELOC_ARM_LDC_PC_G2:
19107 case BFD_RELOC_ARM_ALU_SB_G0_NC:
19108 case BFD_RELOC_ARM_ALU_SB_G0:
19109 case BFD_RELOC_ARM_ALU_SB_G1_NC:
19110 case BFD_RELOC_ARM_ALU_SB_G1:
19111 case BFD_RELOC_ARM_ALU_SB_G2:
19112 case BFD_RELOC_ARM_LDR_SB_G0:
19113 case BFD_RELOC_ARM_LDR_SB_G1:
19114 case BFD_RELOC_ARM_LDR_SB_G2:
19115 case BFD_RELOC_ARM_LDRS_SB_G0:
19116 case BFD_RELOC_ARM_LDRS_SB_G1:
19117 case BFD_RELOC_ARM_LDRS_SB_G2:
19118 case BFD_RELOC_ARM_LDC_SB_G0:
19119 case BFD_RELOC_ARM_LDC_SB_G1:
19120 case BFD_RELOC_ARM_LDC_SB_G2:
19121 code = fixp->fx_r_type;
19122 break;
19123
19124 case BFD_RELOC_ARM_TLS_GD32:
19125 case BFD_RELOC_ARM_TLS_IE32:
19126 case BFD_RELOC_ARM_TLS_LDM32:
19127 /* BFD will include the symbol's address in the addend.
19128 But we don't want that, so subtract it out again here. */
19129 if (!S_IS_COMMON (fixp->fx_addsy))
19130 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
19131 code = fixp->fx_r_type;
19132 break;
19133 #endif
19134
19135 case BFD_RELOC_ARM_IMMEDIATE:
19136 as_bad_where (fixp->fx_file, fixp->fx_line,
19137 _("internal relocation (type: IMMEDIATE) not fixed up"));
19138 return NULL;
19139
19140 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
19141 as_bad_where (fixp->fx_file, fixp->fx_line,
19142 _("ADRL used for a symbol not defined in the same file"));
19143 return NULL;
19144
19145 case BFD_RELOC_ARM_OFFSET_IMM:
19146 if (section->use_rela_p)
19147 {
19148 code = fixp->fx_r_type;
19149 break;
19150 }
19151
19152 if (fixp->fx_addsy != NULL
19153 && !S_IS_DEFINED (fixp->fx_addsy)
19154 && S_IS_LOCAL (fixp->fx_addsy))
19155 {
19156 as_bad_where (fixp->fx_file, fixp->fx_line,
19157 _("undefined local label `%s'"),
19158 S_GET_NAME (fixp->fx_addsy));
19159 return NULL;
19160 }
19161
19162 as_bad_where (fixp->fx_file, fixp->fx_line,
19163 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
19164 return NULL;
19165
19166 default:
19167 {
19168 char * type;
19169
19170 switch (fixp->fx_r_type)
19171 {
19172 case BFD_RELOC_NONE: type = "NONE"; break;
19173 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
19174 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
19175 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
19176 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
19177 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
19178 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
19179 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
19180 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
19181 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
19182 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
19183 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
19184 default: type = _("<unknown>"); break;
19185 }
19186 as_bad_where (fixp->fx_file, fixp->fx_line,
19187 _("cannot represent %s relocation in this object file format"),
19188 type);
19189 return NULL;
19190 }
19191 }
19192
19193 #ifdef OBJ_ELF
19194 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
19195 && GOT_symbol
19196 && fixp->fx_addsy == GOT_symbol)
19197 {
19198 code = BFD_RELOC_ARM_GOTPC;
19199 reloc->addend = fixp->fx_offset = reloc->address;
19200 }
19201 #endif
19202
19203 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
19204
19205 if (reloc->howto == NULL)
19206 {
19207 as_bad_where (fixp->fx_file, fixp->fx_line,
19208 _("cannot represent %s relocation in this object file format"),
19209 bfd_get_reloc_code_name (code));
19210 return NULL;
19211 }
19212
19213 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
19214 vtable entry to be used in the relocation's section offset. */
19215 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19216 reloc->address = fixp->fx_offset;
19217
19218 return reloc;
19219 }
19220
19221 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
19222
19223 void
19224 cons_fix_new_arm (fragS * frag,
19225 int where,
19226 int size,
19227 expressionS * exp)
19228 {
19229 bfd_reloc_code_real_type type;
19230 int pcrel = 0;
19231
19232 /* Pick a reloc.
19233 FIXME: @@ Should look at CPU word size. */
19234 switch (size)
19235 {
19236 case 1:
19237 type = BFD_RELOC_8;
19238 break;
19239 case 2:
19240 type = BFD_RELOC_16;
19241 break;
19242 case 4:
19243 default:
19244 type = BFD_RELOC_32;
19245 break;
19246 case 8:
19247 type = BFD_RELOC_64;
19248 break;
19249 }
19250
19251 #ifdef TE_PE
19252 if (exp->X_op == O_secrel)
19253 {
19254 exp->X_op = O_symbol;
19255 type = BFD_RELOC_32_SECREL;
19256 }
19257 #endif
19258
19259 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
19260 }
19261
19262 #if defined OBJ_COFF || defined OBJ_ELF
19263 void
19264 arm_validate_fix (fixS * fixP)
19265 {
19266 /* If the destination of the branch is a defined symbol which does not have
19267 the THUMB_FUNC attribute, then we must be calling a function which has
19268 the (interfacearm) attribute. We look for the Thumb entry point to that
19269 function and change the branch to refer to that function instead. */
19270 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
19271 && fixP->fx_addsy != NULL
19272 && S_IS_DEFINED (fixP->fx_addsy)
19273 && ! THUMB_IS_FUNC (fixP->fx_addsy))
19274 {
19275 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
19276 }
19277 }
19278 #endif
19279
19280 int
19281 arm_force_relocation (struct fix * fixp)
19282 {
19283 #if defined (OBJ_COFF) && defined (TE_PE)
19284 if (fixp->fx_r_type == BFD_RELOC_RVA)
19285 return 1;
19286 #endif
19287
19288 /* Resolve these relocations even if the symbol is extern or weak. */
19289 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
19290 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
19291 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
19292 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
19293 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
19294 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
19295 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
19296 return 0;
19297
19298 /* Always leave these relocations for the linker. */
19299 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19300 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19301 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19302 return 1;
19303
19304 /* Always generate relocations against function symbols. */
19305 if (fixp->fx_r_type == BFD_RELOC_32
19306 && fixp->fx_addsy
19307 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
19308 return 1;
19309
19310 return generic_force_reloc (fixp);
19311 }
19312
19313 #if defined (OBJ_ELF) || defined (OBJ_COFF)
19314 /* Relocations against function names must be left unadjusted,
19315 so that the linker can use this information to generate interworking
19316 stubs. The MIPS version of this function
19317 also prevents relocations that are mips-16 specific, but I do not
19318 know why it does this.
19319
19320 FIXME:
19321 There is one other problem that ought to be addressed here, but
19322 which currently is not: Taking the address of a label (rather
19323 than a function) and then later jumping to that address. Such
19324 addresses also ought to have their bottom bit set (assuming that
19325 they reside in Thumb code), but at the moment they will not. */
19326
19327 bfd_boolean
19328 arm_fix_adjustable (fixS * fixP)
19329 {
19330 if (fixP->fx_addsy == NULL)
19331 return 1;
19332
19333 /* Preserve relocations against symbols with function type. */
19334 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
19335 return 0;
19336
19337 if (THUMB_IS_FUNC (fixP->fx_addsy)
19338 && fixP->fx_subsy == NULL)
19339 return 0;
19340
19341 /* We need the symbol name for the VTABLE entries. */
19342 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
19343 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
19344 return 0;
19345
19346 /* Don't allow symbols to be discarded on GOT related relocs. */
19347 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
19348 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
19349 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
19350 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
19351 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
19352 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
19353 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
19354 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
19355 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
19356 return 0;
19357
19358 /* Similarly for group relocations. */
19359 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
19360 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
19361 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
19362 return 0;
19363
19364 return 1;
19365 }
19366 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
19367
19368 #ifdef OBJ_ELF
19369
19370 const char *
19371 elf32_arm_target_format (void)
19372 {
19373 #ifdef TE_SYMBIAN
19374 return (target_big_endian
19375 ? "elf32-bigarm-symbian"
19376 : "elf32-littlearm-symbian");
19377 #elif defined (TE_VXWORKS)
19378 return (target_big_endian
19379 ? "elf32-bigarm-vxworks"
19380 : "elf32-littlearm-vxworks");
19381 #else
19382 if (target_big_endian)
19383 return "elf32-bigarm";
19384 else
19385 return "elf32-littlearm";
19386 #endif
19387 }
19388
19389 void
19390 armelf_frob_symbol (symbolS * symp,
19391 int * puntp)
19392 {
19393 elf_frob_symbol (symp, puntp);
19394 }
19395 #endif
19396
19397 /* MD interface: Finalization. */
19398
19399 /* A good place to do this, although this was probably not intended
19400 for this kind of use. We need to dump the literal pool before
19401 references are made to a null symbol pointer. */
19402
19403 void
19404 arm_cleanup (void)
19405 {
19406 literal_pool * pool;
19407
19408 for (pool = list_of_pools; pool; pool = pool->next)
19409 {
19410 /* Put it at the end of the relevant section. */
19411 subseg_set (pool->section, pool->sub_section);
19412 #ifdef OBJ_ELF
19413 arm_elf_change_section ();
19414 #endif
19415 s_ltorg (0);
19416 }
19417 }
19418
19419 /* Adjust the symbol table. This marks Thumb symbols as distinct from
19420 ARM ones. */
19421
19422 void
19423 arm_adjust_symtab (void)
19424 {
19425 #ifdef OBJ_COFF
19426 symbolS * sym;
19427
19428 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19429 {
19430 if (ARM_IS_THUMB (sym))
19431 {
19432 if (THUMB_IS_FUNC (sym))
19433 {
19434 /* Mark the symbol as a Thumb function. */
19435 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
19436 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
19437 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
19438
19439 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
19440 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
19441 else
19442 as_bad (_("%s: unexpected function type: %d"),
19443 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
19444 }
19445 else switch (S_GET_STORAGE_CLASS (sym))
19446 {
19447 case C_EXT:
19448 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
19449 break;
19450 case C_STAT:
19451 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
19452 break;
19453 case C_LABEL:
19454 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
19455 break;
19456 default:
19457 /* Do nothing. */
19458 break;
19459 }
19460 }
19461
19462 if (ARM_IS_INTERWORK (sym))
19463 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
19464 }
19465 #endif
19466 #ifdef OBJ_ELF
19467 symbolS * sym;
19468 char bind;
19469
19470 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
19471 {
19472 if (ARM_IS_THUMB (sym))
19473 {
19474 elf_symbol_type * elf_sym;
19475
19476 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
19477 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
19478
19479 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
19480 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
19481 {
19482 /* If it's a .thumb_func, declare it as so,
19483 otherwise tag label as .code 16. */
19484 if (THUMB_IS_FUNC (sym))
19485 elf_sym->internal_elf_sym.st_info =
19486 ELF_ST_INFO (bind, STT_ARM_TFUNC);
19487 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
19488 elf_sym->internal_elf_sym.st_info =
19489 ELF_ST_INFO (bind, STT_ARM_16BIT);
19490 }
19491 }
19492 }
19493 #endif
19494 }
19495
19496 /* MD interface: Initialization. */
19497
19498 static void
19499 set_constant_flonums (void)
19500 {
19501 int i;
19502
19503 for (i = 0; i < NUM_FLOAT_VALS; i++)
19504 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
19505 abort ();
19506 }
19507
19508 /* Auto-select Thumb mode if it's the only available instruction set for the
19509 given architecture. */
19510
19511 static void
19512 autoselect_thumb_from_cpu_variant (void)
19513 {
19514 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
19515 opcode_select (16);
19516 }
19517
19518 void
19519 md_begin (void)
19520 {
19521 unsigned mach;
19522 unsigned int i;
19523
19524 if ( (arm_ops_hsh = hash_new ()) == NULL
19525 || (arm_cond_hsh = hash_new ()) == NULL
19526 || (arm_shift_hsh = hash_new ()) == NULL
19527 || (arm_psr_hsh = hash_new ()) == NULL
19528 || (arm_v7m_psr_hsh = hash_new ()) == NULL
19529 || (arm_reg_hsh = hash_new ()) == NULL
19530 || (arm_reloc_hsh = hash_new ()) == NULL
19531 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
19532 as_fatal (_("virtual memory exhausted"));
19533
19534 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
19535 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
19536 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
19537 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
19538 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
19539 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
19540 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
19541 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
19542 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
19543 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
19544 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
19545 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
19546 for (i = 0;
19547 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
19548 i++)
19549 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
19550 (PTR) (barrier_opt_names + i));
19551 #ifdef OBJ_ELF
19552 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
19553 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
19554 #endif
19555
19556 set_constant_flonums ();
19557
19558 /* Set the cpu variant based on the command-line options. We prefer
19559 -mcpu= over -march= if both are set (as for GCC); and we prefer
19560 -mfpu= over any other way of setting the floating point unit.
19561 Use of legacy options with new options are faulted. */
19562 if (legacy_cpu)
19563 {
19564 if (mcpu_cpu_opt || march_cpu_opt)
19565 as_bad (_("use of old and new-style options to set CPU type"));
19566
19567 mcpu_cpu_opt = legacy_cpu;
19568 }
19569 else if (!mcpu_cpu_opt)
19570 mcpu_cpu_opt = march_cpu_opt;
19571
19572 if (legacy_fpu)
19573 {
19574 if (mfpu_opt)
19575 as_bad (_("use of old and new-style options to set FPU type"));
19576
19577 mfpu_opt = legacy_fpu;
19578 }
19579 else if (!mfpu_opt)
19580 {
19581 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19582 /* Some environments specify a default FPU. If they don't, infer it
19583 from the processor. */
19584 if (mcpu_fpu_opt)
19585 mfpu_opt = mcpu_fpu_opt;
19586 else
19587 mfpu_opt = march_fpu_opt;
19588 #else
19589 mfpu_opt = &fpu_default;
19590 #endif
19591 }
19592
19593 if (!mfpu_opt)
19594 {
19595 if (mcpu_cpu_opt != NULL)
19596 mfpu_opt = &fpu_default;
19597 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19598 mfpu_opt = &fpu_arch_vfp_v2;
19599 else
19600 mfpu_opt = &fpu_arch_fpa;
19601 }
19602
19603 #ifdef CPU_DEFAULT
19604 if (!mcpu_cpu_opt)
19605 {
19606 mcpu_cpu_opt = &cpu_default;
19607 selected_cpu = cpu_default;
19608 }
19609 #else
19610 if (mcpu_cpu_opt)
19611 selected_cpu = *mcpu_cpu_opt;
19612 else
19613 mcpu_cpu_opt = &arm_arch_any;
19614 #endif
19615
19616 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19617
19618 autoselect_thumb_from_cpu_variant ();
19619
19620 arm_arch_used = thumb_arch_used = arm_arch_none;
19621
19622 #if defined OBJ_COFF || defined OBJ_ELF
19623 {
19624 unsigned int flags = 0;
19625
19626 #if defined OBJ_ELF
19627 flags = meabi_flags;
19628
19629 switch (meabi_flags)
19630 {
19631 case EF_ARM_EABI_UNKNOWN:
19632 #endif
19633 /* Set the flags in the private structure. */
19634 if (uses_apcs_26) flags |= F_APCS26;
19635 if (support_interwork) flags |= F_INTERWORK;
19636 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19637 if (pic_code) flags |= F_PIC;
19638 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19639 flags |= F_SOFT_FLOAT;
19640
19641 switch (mfloat_abi_opt)
19642 {
19643 case ARM_FLOAT_ABI_SOFT:
19644 case ARM_FLOAT_ABI_SOFTFP:
19645 flags |= F_SOFT_FLOAT;
19646 break;
19647
19648 case ARM_FLOAT_ABI_HARD:
19649 if (flags & F_SOFT_FLOAT)
19650 as_bad (_("hard-float conflicts with specified fpu"));
19651 break;
19652 }
19653
19654 /* Using pure-endian doubles (even if soft-float). */
19655 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19656 flags |= F_VFP_FLOAT;
19657
19658 #if defined OBJ_ELF
19659 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19660 flags |= EF_ARM_MAVERICK_FLOAT;
19661 break;
19662
19663 case EF_ARM_EABI_VER4:
19664 case EF_ARM_EABI_VER5:
19665 /* No additional flags to set. */
19666 break;
19667
19668 default:
19669 abort ();
19670 }
19671 #endif
19672 bfd_set_private_flags (stdoutput, flags);
19673
19674 /* We have run out flags in the COFF header to encode the
19675 status of ATPCS support, so instead we create a dummy,
19676 empty, debug section called .arm.atpcs. */
19677 if (atpcs)
19678 {
19679 asection * sec;
19680
19681 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19682
19683 if (sec != NULL)
19684 {
19685 bfd_set_section_flags
19686 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19687 bfd_set_section_size (stdoutput, sec, 0);
19688 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19689 }
19690 }
19691 }
19692 #endif
19693
19694 /* Record the CPU type as well. */
19695 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
19696 mach = bfd_mach_arm_iWMMXt2;
19697 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19698 mach = bfd_mach_arm_iWMMXt;
19699 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19700 mach = bfd_mach_arm_XScale;
19701 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19702 mach = bfd_mach_arm_ep9312;
19703 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19704 mach = bfd_mach_arm_5TE;
19705 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19706 {
19707 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19708 mach = bfd_mach_arm_5T;
19709 else
19710 mach = bfd_mach_arm_5;
19711 }
19712 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19713 {
19714 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19715 mach = bfd_mach_arm_4T;
19716 else
19717 mach = bfd_mach_arm_4;
19718 }
19719 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19720 mach = bfd_mach_arm_3M;
19721 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19722 mach = bfd_mach_arm_3;
19723 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19724 mach = bfd_mach_arm_2a;
19725 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19726 mach = bfd_mach_arm_2;
19727 else
19728 mach = bfd_mach_arm_unknown;
19729
19730 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19731 }
19732
19733 /* Command line processing. */
19734
19735 /* md_parse_option
19736 Invocation line includes a switch not recognized by the base assembler.
19737 See if it's a processor-specific option.
19738
19739 This routine is somewhat complicated by the need for backwards
19740 compatibility (since older releases of gcc can't be changed).
19741 The new options try to make the interface as compatible as
19742 possible with GCC.
19743
19744 New options (supported) are:
19745
19746 -mcpu=<cpu name> Assemble for selected processor
19747 -march=<architecture name> Assemble for selected architecture
19748 -mfpu=<fpu architecture> Assemble for selected FPU.
19749 -EB/-mbig-endian Big-endian
19750 -EL/-mlittle-endian Little-endian
19751 -k Generate PIC code
19752 -mthumb Start in Thumb mode
19753 -mthumb-interwork Code supports ARM/Thumb interworking
19754
19755 For now we will also provide support for:
19756
19757 -mapcs-32 32-bit Program counter
19758 -mapcs-26 26-bit Program counter
19759 -macps-float Floats passed in FP registers
19760 -mapcs-reentrant Reentrant code
19761 -matpcs
19762 (sometime these will probably be replaced with -mapcs=<list of options>
19763 and -matpcs=<list of options>)
19764
19765 The remaining options are only supported for back-wards compatibility.
19766 Cpu variants, the arm part is optional:
19767 -m[arm]1 Currently not supported.
19768 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19769 -m[arm]3 Arm 3 processor
19770 -m[arm]6[xx], Arm 6 processors
19771 -m[arm]7[xx][t][[d]m] Arm 7 processors
19772 -m[arm]8[10] Arm 8 processors
19773 -m[arm]9[20][tdmi] Arm 9 processors
19774 -mstrongarm[110[0]] StrongARM processors
19775 -mxscale XScale processors
19776 -m[arm]v[2345[t[e]]] Arm architectures
19777 -mall All (except the ARM1)
19778 FP variants:
19779 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19780 -mfpe-old (No float load/store multiples)
19781 -mvfpxd VFP Single precision
19782 -mvfp All VFP
19783 -mno-fpu Disable all floating point instructions
19784
19785 The following CPU names are recognized:
19786 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19787 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19788 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19789 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19790 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19791 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19792 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19793
19794 */
19795
19796 const char * md_shortopts = "m:k";
19797
19798 #ifdef ARM_BI_ENDIAN
19799 #define OPTION_EB (OPTION_MD_BASE + 0)
19800 #define OPTION_EL (OPTION_MD_BASE + 1)
19801 #else
19802 #if TARGET_BYTES_BIG_ENDIAN
19803 #define OPTION_EB (OPTION_MD_BASE + 0)
19804 #else
19805 #define OPTION_EL (OPTION_MD_BASE + 1)
19806 #endif
19807 #endif
19808
19809 struct option md_longopts[] =
19810 {
19811 #ifdef OPTION_EB
19812 {"EB", no_argument, NULL, OPTION_EB},
19813 #endif
19814 #ifdef OPTION_EL
19815 {"EL", no_argument, NULL, OPTION_EL},
19816 #endif
19817 {NULL, no_argument, NULL, 0}
19818 };
19819
19820 size_t md_longopts_size = sizeof (md_longopts);
19821
19822 struct arm_option_table
19823 {
19824 char *option; /* Option name to match. */
19825 char *help; /* Help information. */
19826 int *var; /* Variable to change. */
19827 int value; /* What to change it to. */
19828 char *deprecated; /* If non-null, print this message. */
19829 };
19830
19831 struct arm_option_table arm_opts[] =
19832 {
19833 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19834 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19835 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19836 &support_interwork, 1, NULL},
19837 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19838 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19839 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19840 1, NULL},
19841 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19842 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19843 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19844 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19845 NULL},
19846
19847 /* These are recognized by the assembler, but have no affect on code. */
19848 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19849 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19850 {NULL, NULL, NULL, 0, NULL}
19851 };
19852
19853 struct arm_legacy_option_table
19854 {
19855 char *option; /* Option name to match. */
19856 const arm_feature_set **var; /* Variable to change. */
19857 const arm_feature_set value; /* What to change it to. */
19858 char *deprecated; /* If non-null, print this message. */
19859 };
19860
19861 const struct arm_legacy_option_table arm_legacy_opts[] =
19862 {
19863 /* DON'T add any new processors to this list -- we want the whole list
19864 to go away... Add them to the processors table instead. */
19865 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19866 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19867 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19868 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19869 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19870 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19871 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19872 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19873 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19874 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19875 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19876 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19877 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19878 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19879 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19880 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19881 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19882 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19883 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19884 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19885 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19886 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19887 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19888 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19889 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19890 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19891 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19892 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19893 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19894 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19895 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19896 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19897 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19898 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19899 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19900 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19901 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19902 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19903 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19904 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19905 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19906 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19907 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19908 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19909 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19910 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19911 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19912 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19913 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19914 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19915 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19916 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19917 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19918 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19919 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19920 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19921 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19922 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19923 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19924 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19925 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19926 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19927 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19928 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19929 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19930 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19931 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19932 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19933 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19934 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19935 N_("use -mcpu=strongarm110")},
19936 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19937 N_("use -mcpu=strongarm1100")},
19938 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19939 N_("use -mcpu=strongarm1110")},
19940 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19941 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19942 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
19943
19944 /* Architecture variants -- don't add any more to this list either. */
19945 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19946 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19947 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19948 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19949 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19950 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19951 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19952 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19953 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19954 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19955 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19956 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19957 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19958 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19959 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19960 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19961 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19962 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19963
19964 /* Floating point variants -- don't add any more to this list either. */
19965 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19966 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19967 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19968 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
19969 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19970
19971 {NULL, NULL, ARM_ARCH_NONE, NULL}
19972 };
19973
19974 struct arm_cpu_option_table
19975 {
19976 char *name;
19977 const arm_feature_set value;
19978 /* For some CPUs we assume an FPU unless the user explicitly sets
19979 -mfpu=... */
19980 const arm_feature_set default_fpu;
19981 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19982 case. */
19983 const char *canonical_name;
19984 };
19985
19986 /* This list should, at a minimum, contain all the cpu names
19987 recognized by GCC. */
19988 static const struct arm_cpu_option_table arm_cpus[] =
19989 {
19990 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19991 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19992 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19993 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19994 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19995 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19996 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19997 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19998 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19999 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20000 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20001 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20002 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20003 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20004 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20005 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
20006 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20007 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20008 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20009 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20010 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20011 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20012 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20013 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20014 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20015 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20016 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20017 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
20018 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20019 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20020 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20021 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20022 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20023 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20024 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20025 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20026 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20027 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
20028 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20029 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
20030 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20031 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20032 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20033 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
20034 /* For V5 or later processors we default to using VFP; but the user
20035 should really set the FPU type explicitly. */
20036 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20037 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20038 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20039 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
20040 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20041 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20042 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
20043 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20044 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
20045 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
20046 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20047 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20048 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20049 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20050 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20051 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
20052 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
20053 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20054 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
20055 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
20056 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
20057 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
20058 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
20059 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
20060 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
20061 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
20062 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
20063 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
20064 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
20065 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
20066 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
20067 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
20068 | FPU_NEON_EXT_V1),
20069 NULL},
20070 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
20071 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
20072 /* ??? XSCALE is really an architecture. */
20073 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20074 /* ??? iwmmxt is not a processor. */
20075 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
20076 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL},
20077 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
20078 /* Maverick */
20079 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
20080 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
20081 };
20082
20083 struct arm_arch_option_table
20084 {
20085 char *name;
20086 const arm_feature_set value;
20087 const arm_feature_set default_fpu;
20088 };
20089
20090 /* This list should, at a minimum, contain all the architecture names
20091 recognized by GCC. */
20092 static const struct arm_arch_option_table arm_archs[] =
20093 {
20094 {"all", ARM_ANY, FPU_ARCH_FPA},
20095 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
20096 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
20097 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
20098 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
20099 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
20100 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
20101 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
20102 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
20103 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
20104 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
20105 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
20106 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
20107 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
20108 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
20109 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
20110 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
20111 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
20112 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
20113 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
20114 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
20115 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
20116 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
20117 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
20118 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
20119 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
20120 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
20121 /* The official spelling of the ARMv7 profile variants is the dashed form.
20122 Accept the non-dashed form for compatibility with old toolchains. */
20123 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20124 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20125 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20126 {"armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP},
20127 {"armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP},
20128 {"armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP},
20129 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
20130 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
20131 {"iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP},
20132 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
20133 };
20134
20135 /* ISA extensions in the co-processor space. */
20136 struct arm_option_cpu_value_table
20137 {
20138 char *name;
20139 const arm_feature_set value;
20140 };
20141
20142 static const struct arm_option_cpu_value_table arm_extensions[] =
20143 {
20144 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
20145 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
20146 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
20147 {"iwmmxt2", ARM_FEATURE (0, ARM_CEXT_IWMMXT2)},
20148 {NULL, ARM_ARCH_NONE}
20149 };
20150
20151 /* This list should, at a minimum, contain all the fpu names
20152 recognized by GCC. */
20153 static const struct arm_option_cpu_value_table arm_fpus[] =
20154 {
20155 {"softfpa", FPU_NONE},
20156 {"fpe", FPU_ARCH_FPE},
20157 {"fpe2", FPU_ARCH_FPE},
20158 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
20159 {"fpa", FPU_ARCH_FPA},
20160 {"fpa10", FPU_ARCH_FPA},
20161 {"fpa11", FPU_ARCH_FPA},
20162 {"arm7500fe", FPU_ARCH_FPA},
20163 {"softvfp", FPU_ARCH_VFP},
20164 {"softvfp+vfp", FPU_ARCH_VFP_V2},
20165 {"vfp", FPU_ARCH_VFP_V2},
20166 {"vfp9", FPU_ARCH_VFP_V2},
20167 {"vfp3", FPU_ARCH_VFP_V3},
20168 {"vfp10", FPU_ARCH_VFP_V2},
20169 {"vfp10-r0", FPU_ARCH_VFP_V1},
20170 {"vfpxd", FPU_ARCH_VFP_V1xD},
20171 {"arm1020t", FPU_ARCH_VFP_V1},
20172 {"arm1020e", FPU_ARCH_VFP_V2},
20173 {"arm1136jfs", FPU_ARCH_VFP_V2},
20174 {"arm1136jf-s", FPU_ARCH_VFP_V2},
20175 {"maverick", FPU_ARCH_MAVERICK},
20176 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
20177 {NULL, ARM_ARCH_NONE}
20178 };
20179
20180 struct arm_option_value_table
20181 {
20182 char *name;
20183 long value;
20184 };
20185
20186 static const struct arm_option_value_table arm_float_abis[] =
20187 {
20188 {"hard", ARM_FLOAT_ABI_HARD},
20189 {"softfp", ARM_FLOAT_ABI_SOFTFP},
20190 {"soft", ARM_FLOAT_ABI_SOFT},
20191 {NULL, 0}
20192 };
20193
20194 #ifdef OBJ_ELF
20195 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
20196 static const struct arm_option_value_table arm_eabis[] =
20197 {
20198 {"gnu", EF_ARM_EABI_UNKNOWN},
20199 {"4", EF_ARM_EABI_VER4},
20200 {"5", EF_ARM_EABI_VER5},
20201 {NULL, 0}
20202 };
20203 #endif
20204
20205 struct arm_long_option_table
20206 {
20207 char * option; /* Substring to match. */
20208 char * help; /* Help information. */
20209 int (* func) (char * subopt); /* Function to decode sub-option. */
20210 char * deprecated; /* If non-null, print this message. */
20211 };
20212
20213 static int
20214 arm_parse_extension (char * str, const arm_feature_set **opt_p)
20215 {
20216 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
20217
20218 /* Copy the feature set, so that we can modify it. */
20219 *ext_set = **opt_p;
20220 *opt_p = ext_set;
20221
20222 while (str != NULL && *str != 0)
20223 {
20224 const struct arm_option_cpu_value_table * opt;
20225 char * ext;
20226 int optlen;
20227
20228 if (*str != '+')
20229 {
20230 as_bad (_("invalid architectural extension"));
20231 return 0;
20232 }
20233
20234 str++;
20235 ext = strchr (str, '+');
20236
20237 if (ext != NULL)
20238 optlen = ext - str;
20239 else
20240 optlen = strlen (str);
20241
20242 if (optlen == 0)
20243 {
20244 as_bad (_("missing architectural extension"));
20245 return 0;
20246 }
20247
20248 for (opt = arm_extensions; opt->name != NULL; opt++)
20249 if (strncmp (opt->name, str, optlen) == 0)
20250 {
20251 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
20252 break;
20253 }
20254
20255 if (opt->name == NULL)
20256 {
20257 as_bad (_("unknown architectural extension `%s'"), str);
20258 return 0;
20259 }
20260
20261 str = ext;
20262 };
20263
20264 return 1;
20265 }
20266
20267 static int
20268 arm_parse_cpu (char * str)
20269 {
20270 const struct arm_cpu_option_table * opt;
20271 char * ext = strchr (str, '+');
20272 int optlen;
20273
20274 if (ext != NULL)
20275 optlen = ext - str;
20276 else
20277 optlen = strlen (str);
20278
20279 if (optlen == 0)
20280 {
20281 as_bad (_("missing cpu name `%s'"), str);
20282 return 0;
20283 }
20284
20285 for (opt = arm_cpus; opt->name != NULL; opt++)
20286 if (strncmp (opt->name, str, optlen) == 0)
20287 {
20288 mcpu_cpu_opt = &opt->value;
20289 mcpu_fpu_opt = &opt->default_fpu;
20290 if (opt->canonical_name)
20291 strcpy (selected_cpu_name, opt->canonical_name);
20292 else
20293 {
20294 int i;
20295 for (i = 0; i < optlen; i++)
20296 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20297 selected_cpu_name[i] = 0;
20298 }
20299
20300 if (ext != NULL)
20301 return arm_parse_extension (ext, &mcpu_cpu_opt);
20302
20303 return 1;
20304 }
20305
20306 as_bad (_("unknown cpu `%s'"), str);
20307 return 0;
20308 }
20309
20310 static int
20311 arm_parse_arch (char * str)
20312 {
20313 const struct arm_arch_option_table *opt;
20314 char *ext = strchr (str, '+');
20315 int optlen;
20316
20317 if (ext != NULL)
20318 optlen = ext - str;
20319 else
20320 optlen = strlen (str);
20321
20322 if (optlen == 0)
20323 {
20324 as_bad (_("missing architecture name `%s'"), str);
20325 return 0;
20326 }
20327
20328 for (opt = arm_archs; opt->name != NULL; opt++)
20329 if (streq (opt->name, str))
20330 {
20331 march_cpu_opt = &opt->value;
20332 march_fpu_opt = &opt->default_fpu;
20333 strcpy (selected_cpu_name, opt->name);
20334
20335 if (ext != NULL)
20336 return arm_parse_extension (ext, &march_cpu_opt);
20337
20338 return 1;
20339 }
20340
20341 as_bad (_("unknown architecture `%s'\n"), str);
20342 return 0;
20343 }
20344
20345 static int
20346 arm_parse_fpu (char * str)
20347 {
20348 const struct arm_option_cpu_value_table * opt;
20349
20350 for (opt = arm_fpus; opt->name != NULL; opt++)
20351 if (streq (opt->name, str))
20352 {
20353 mfpu_opt = &opt->value;
20354 return 1;
20355 }
20356
20357 as_bad (_("unknown floating point format `%s'\n"), str);
20358 return 0;
20359 }
20360
20361 static int
20362 arm_parse_float_abi (char * str)
20363 {
20364 const struct arm_option_value_table * opt;
20365
20366 for (opt = arm_float_abis; opt->name != NULL; opt++)
20367 if (streq (opt->name, str))
20368 {
20369 mfloat_abi_opt = opt->value;
20370 return 1;
20371 }
20372
20373 as_bad (_("unknown floating point abi `%s'\n"), str);
20374 return 0;
20375 }
20376
20377 #ifdef OBJ_ELF
20378 static int
20379 arm_parse_eabi (char * str)
20380 {
20381 const struct arm_option_value_table *opt;
20382
20383 for (opt = arm_eabis; opt->name != NULL; opt++)
20384 if (streq (opt->name, str))
20385 {
20386 meabi_flags = opt->value;
20387 return 1;
20388 }
20389 as_bad (_("unknown EABI `%s'\n"), str);
20390 return 0;
20391 }
20392 #endif
20393
20394 struct arm_long_option_table arm_long_opts[] =
20395 {
20396 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
20397 arm_parse_cpu, NULL},
20398 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
20399 arm_parse_arch, NULL},
20400 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
20401 arm_parse_fpu, NULL},
20402 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
20403 arm_parse_float_abi, NULL},
20404 #ifdef OBJ_ELF
20405 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
20406 arm_parse_eabi, NULL},
20407 #endif
20408 {NULL, NULL, 0, NULL}
20409 };
20410
20411 int
20412 md_parse_option (int c, char * arg)
20413 {
20414 struct arm_option_table *opt;
20415 const struct arm_legacy_option_table *fopt;
20416 struct arm_long_option_table *lopt;
20417
20418 switch (c)
20419 {
20420 #ifdef OPTION_EB
20421 case OPTION_EB:
20422 target_big_endian = 1;
20423 break;
20424 #endif
20425
20426 #ifdef OPTION_EL
20427 case OPTION_EL:
20428 target_big_endian = 0;
20429 break;
20430 #endif
20431
20432 case 'a':
20433 /* Listing option. Just ignore these, we don't support additional
20434 ones. */
20435 return 0;
20436
20437 default:
20438 for (opt = arm_opts; opt->option != NULL; opt++)
20439 {
20440 if (c == opt->option[0]
20441 && ((arg == NULL && opt->option[1] == 0)
20442 || streq (arg, opt->option + 1)))
20443 {
20444 #if WARN_DEPRECATED
20445 /* If the option is deprecated, tell the user. */
20446 if (opt->deprecated != NULL)
20447 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20448 arg ? arg : "", _(opt->deprecated));
20449 #endif
20450
20451 if (opt->var != NULL)
20452 *opt->var = opt->value;
20453
20454 return 1;
20455 }
20456 }
20457
20458 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
20459 {
20460 if (c == fopt->option[0]
20461 && ((arg == NULL && fopt->option[1] == 0)
20462 || streq (arg, fopt->option + 1)))
20463 {
20464 #if WARN_DEPRECATED
20465 /* If the option is deprecated, tell the user. */
20466 if (fopt->deprecated != NULL)
20467 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
20468 arg ? arg : "", _(fopt->deprecated));
20469 #endif
20470
20471 if (fopt->var != NULL)
20472 *fopt->var = &fopt->value;
20473
20474 return 1;
20475 }
20476 }
20477
20478 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20479 {
20480 /* These options are expected to have an argument. */
20481 if (c == lopt->option[0]
20482 && arg != NULL
20483 && strncmp (arg, lopt->option + 1,
20484 strlen (lopt->option + 1)) == 0)
20485 {
20486 #if WARN_DEPRECATED
20487 /* If the option is deprecated, tell the user. */
20488 if (lopt->deprecated != NULL)
20489 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
20490 _(lopt->deprecated));
20491 #endif
20492
20493 /* Call the sup-option parser. */
20494 return lopt->func (arg + strlen (lopt->option) - 1);
20495 }
20496 }
20497
20498 return 0;
20499 }
20500
20501 return 1;
20502 }
20503
20504 void
20505 md_show_usage (FILE * fp)
20506 {
20507 struct arm_option_table *opt;
20508 struct arm_long_option_table *lopt;
20509
20510 fprintf (fp, _(" ARM-specific assembler options:\n"));
20511
20512 for (opt = arm_opts; opt->option != NULL; opt++)
20513 if (opt->help != NULL)
20514 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
20515
20516 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
20517 if (lopt->help != NULL)
20518 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
20519
20520 #ifdef OPTION_EB
20521 fprintf (fp, _("\
20522 -EB assemble code for a big-endian cpu\n"));
20523 #endif
20524
20525 #ifdef OPTION_EL
20526 fprintf (fp, _("\
20527 -EL assemble code for a little-endian cpu\n"));
20528 #endif
20529 }
20530
20531
20532 #ifdef OBJ_ELF
20533 typedef struct
20534 {
20535 int val;
20536 arm_feature_set flags;
20537 } cpu_arch_ver_table;
20538
20539 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
20540 least features first. */
20541 static const cpu_arch_ver_table cpu_arch_ver[] =
20542 {
20543 {1, ARM_ARCH_V4},
20544 {2, ARM_ARCH_V4T},
20545 {3, ARM_ARCH_V5},
20546 {4, ARM_ARCH_V5TE},
20547 {5, ARM_ARCH_V5TEJ},
20548 {6, ARM_ARCH_V6},
20549 {7, ARM_ARCH_V6Z},
20550 {8, ARM_ARCH_V6K},
20551 {9, ARM_ARCH_V6T2},
20552 {10, ARM_ARCH_V7A},
20553 {10, ARM_ARCH_V7R},
20554 {10, ARM_ARCH_V7M},
20555 {0, ARM_ARCH_NONE}
20556 };
20557
20558 /* Set the public EABI object attributes. */
20559 static void
20560 aeabi_set_public_attributes (void)
20561 {
20562 int arch;
20563 arm_feature_set flags;
20564 arm_feature_set tmp;
20565 const cpu_arch_ver_table *p;
20566
20567 /* Choose the architecture based on the capabilities of the requested cpu
20568 (if any) and/or the instructions actually used. */
20569 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20570 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20571 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20572 /*Allow the user to override the reported architecture. */
20573 if (object_arch)
20574 {
20575 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
20576 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
20577 }
20578
20579 tmp = flags;
20580 arch = 0;
20581 for (p = cpu_arch_ver; p->val; p++)
20582 {
20583 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20584 {
20585 arch = p->val;
20586 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20587 }
20588 }
20589
20590 /* Tag_CPU_name. */
20591 if (selected_cpu_name[0])
20592 {
20593 char *p;
20594
20595 p = selected_cpu_name;
20596 if (strncmp (p, "armv", 4) == 0)
20597 {
20598 int i;
20599
20600 p += 4;
20601 for (i = 0; p[i]; i++)
20602 p[i] = TOUPPER (p[i]);
20603 }
20604 bfd_elf_add_proc_attr_string (stdoutput, 5, p);
20605 }
20606 /* Tag_CPU_arch. */
20607 bfd_elf_add_proc_attr_int (stdoutput, 6, arch);
20608 /* Tag_CPU_arch_profile. */
20609 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20610 bfd_elf_add_proc_attr_int (stdoutput, 7, 'A');
20611 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20612 bfd_elf_add_proc_attr_int (stdoutput, 7, 'R');
20613 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20614 bfd_elf_add_proc_attr_int (stdoutput, 7, 'M');
20615 /* Tag_ARM_ISA_use. */
20616 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
20617 bfd_elf_add_proc_attr_int (stdoutput, 8, 1);
20618 /* Tag_THUMB_ISA_use. */
20619 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
20620 bfd_elf_add_proc_attr_int (stdoutput, 9,
20621 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
20622 /* Tag_VFP_arch. */
20623 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20624 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20625 bfd_elf_add_proc_attr_int (stdoutput, 10, 3);
20626 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20627 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
20628 bfd_elf_add_proc_attr_int (stdoutput, 10, 2);
20629 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20630 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20631 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20632 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
20633 bfd_elf_add_proc_attr_int (stdoutput, 10, 1);
20634 /* Tag_WMMX_arch. */
20635 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20636 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
20637 bfd_elf_add_proc_attr_int (stdoutput, 11, 1);
20638 /* Tag_NEON_arch. */
20639 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20640 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20641 bfd_elf_add_proc_attr_int (stdoutput, 12, 1);
20642 }
20643
20644 /* Add the default contents for the .ARM.attributes section. */
20645 void
20646 arm_md_end (void)
20647 {
20648 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20649 return;
20650
20651 aeabi_set_public_attributes ();
20652 }
20653 #endif /* OBJ_ELF */
20654
20655
20656 /* Parse a .cpu directive. */
20657
20658 static void
20659 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20660 {
20661 const struct arm_cpu_option_table *opt;
20662 char *name;
20663 char saved_char;
20664
20665 name = input_line_pointer;
20666 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20667 input_line_pointer++;
20668 saved_char = *input_line_pointer;
20669 *input_line_pointer = 0;
20670
20671 /* Skip the first "all" entry. */
20672 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20673 if (streq (opt->name, name))
20674 {
20675 mcpu_cpu_opt = &opt->value;
20676 selected_cpu = opt->value;
20677 if (opt->canonical_name)
20678 strcpy (selected_cpu_name, opt->canonical_name);
20679 else
20680 {
20681 int i;
20682 for (i = 0; opt->name[i]; i++)
20683 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20684 selected_cpu_name[i] = 0;
20685 }
20686 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20687 *input_line_pointer = saved_char;
20688 demand_empty_rest_of_line ();
20689 return;
20690 }
20691 as_bad (_("unknown cpu `%s'"), name);
20692 *input_line_pointer = saved_char;
20693 ignore_rest_of_line ();
20694 }
20695
20696
20697 /* Parse a .arch directive. */
20698
20699 static void
20700 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20701 {
20702 const struct arm_arch_option_table *opt;
20703 char saved_char;
20704 char *name;
20705
20706 name = input_line_pointer;
20707 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20708 input_line_pointer++;
20709 saved_char = *input_line_pointer;
20710 *input_line_pointer = 0;
20711
20712 /* Skip the first "all" entry. */
20713 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20714 if (streq (opt->name, name))
20715 {
20716 mcpu_cpu_opt = &opt->value;
20717 selected_cpu = opt->value;
20718 strcpy (selected_cpu_name, opt->name);
20719 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20720 *input_line_pointer = saved_char;
20721 demand_empty_rest_of_line ();
20722 return;
20723 }
20724
20725 as_bad (_("unknown architecture `%s'\n"), name);
20726 *input_line_pointer = saved_char;
20727 ignore_rest_of_line ();
20728 }
20729
20730
20731 /* Parse a .object_arch directive. */
20732
20733 static void
20734 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
20735 {
20736 const struct arm_arch_option_table *opt;
20737 char saved_char;
20738 char *name;
20739
20740 name = input_line_pointer;
20741 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20742 input_line_pointer++;
20743 saved_char = *input_line_pointer;
20744 *input_line_pointer = 0;
20745
20746 /* Skip the first "all" entry. */
20747 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20748 if (streq (opt->name, name))
20749 {
20750 object_arch = &opt->value;
20751 *input_line_pointer = saved_char;
20752 demand_empty_rest_of_line ();
20753 return;
20754 }
20755
20756 as_bad (_("unknown architecture `%s'\n"), name);
20757 *input_line_pointer = saved_char;
20758 ignore_rest_of_line ();
20759 }
20760
20761
20762 /* Parse a .fpu directive. */
20763
20764 static void
20765 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20766 {
20767 const struct arm_option_cpu_value_table *opt;
20768 char saved_char;
20769 char *name;
20770
20771 name = input_line_pointer;
20772 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
20773 input_line_pointer++;
20774 saved_char = *input_line_pointer;
20775 *input_line_pointer = 0;
20776
20777 for (opt = arm_fpus; opt->name != NULL; opt++)
20778 if (streq (opt->name, name))
20779 {
20780 mfpu_opt = &opt->value;
20781 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20782 *input_line_pointer = saved_char;
20783 demand_empty_rest_of_line ();
20784 return;
20785 }
20786
20787 as_bad (_("unknown floating point format `%s'\n"), name);
20788 *input_line_pointer = saved_char;
20789 ignore_rest_of_line ();
20790 }
20791
20792 /* Copy symbol information. */
20793 void
20794 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
20795 {
20796 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
20797 }