[PATCH 10/57][Arm][GAS] Add support for MVE instructions: vcmp and vpt
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright (C) 1994-2019 Free Software Foundation, Inc.
3 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
4 Modified by David Taylor (dtaylor@armltd.co.uk)
5 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
6 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
7 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
8
9 This file is part of GAS, the GNU Assembler.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include <limits.h>
28 #include <stdarg.h>
29 #define NO_RELOC 0
30 #include "safe-ctype.h"
31 #include "subsegs.h"
32 #include "obstack.h"
33 #include "libiberty.h"
34 #include "opcode/arm.h"
35
36 #ifdef OBJ_ELF
37 #include "elf/arm.h"
38 #include "dw2gencfi.h"
39 #endif
40
41 #include "dwarf2dbg.h"
42
43 #ifdef OBJ_ELF
44 /* Must be at least the size of the largest unwind opcode (currently two). */
45 #define ARM_OPCODE_CHUNK_SIZE 8
46
47 /* This structure holds the unwinding state. */
48
49 static struct
50 {
51 symbolS * proc_start;
52 symbolS * table_entry;
53 symbolS * personality_routine;
54 int personality_index;
55 /* The segment containing the function. */
56 segT saved_seg;
57 subsegT saved_subseg;
58 /* Opcodes generated from this function. */
59 unsigned char * opcodes;
60 int opcode_count;
61 int opcode_alloc;
62 /* The number of bytes pushed to the stack. */
63 offsetT frame_size;
64 /* We don't add stack adjustment opcodes immediately so that we can merge
65 multiple adjustments. We can also omit the final adjustment
66 when using a frame pointer. */
67 offsetT pending_offset;
68 /* These two fields are set by both unwind_movsp and unwind_setfp. They
69 hold the reg+offset to use when restoring sp from a frame pointer. */
70 offsetT fp_offset;
71 int fp_reg;
72 /* Nonzero if an unwind_setfp directive has been seen. */
73 unsigned fp_used:1;
74 /* Nonzero if the last opcode restores sp from fp_reg. */
75 unsigned sp_restored:1;
76 } unwind;
77
78 /* Whether --fdpic was given. */
79 static int arm_fdpic;
80
81 #endif /* OBJ_ELF */
82
83 /* Results from operand parsing worker functions. */
84
85 typedef enum
86 {
87 PARSE_OPERAND_SUCCESS,
88 PARSE_OPERAND_FAIL,
89 PARSE_OPERAND_FAIL_NO_BACKTRACK
90 } parse_operand_result;
91
92 enum arm_float_abi
93 {
94 ARM_FLOAT_ABI_HARD,
95 ARM_FLOAT_ABI_SOFTFP,
96 ARM_FLOAT_ABI_SOFT
97 };
98
99 /* Types of processor to assemble for. */
100 #ifndef CPU_DEFAULT
101 /* The code that was here used to select a default CPU depending on compiler
102 pre-defines which were only present when doing native builds, thus
103 changing gas' default behaviour depending upon the build host.
104
105 If you have a target that requires a default CPU option then the you
106 should define CPU_DEFAULT here. */
107 #endif
108
109 #ifndef FPU_DEFAULT
110 # ifdef TE_LINUX
111 # define FPU_DEFAULT FPU_ARCH_FPA
112 # elif defined (TE_NetBSD)
113 # ifdef OBJ_ELF
114 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
115 # else
116 /* Legacy a.out format. */
117 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
118 # endif
119 # elif defined (TE_VXWORKS)
120 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
121 # else
122 /* For backwards compatibility, default to FPA. */
123 # define FPU_DEFAULT FPU_ARCH_FPA
124 # endif
125 #endif /* ifndef FPU_DEFAULT */
126
127 #define streq(a, b) (strcmp (a, b) == 0)
128
129 /* Current set of feature bits available (CPU+FPU). Different from
130 selected_cpu + selected_fpu in case of autodetection since the CPU
131 feature bits are then all set. */
132 static arm_feature_set cpu_variant;
133 /* Feature bits used in each execution state. Used to set build attribute
134 (in particular Tag_*_ISA_use) in CPU autodetection mode. */
135 static arm_feature_set arm_arch_used;
136 static arm_feature_set thumb_arch_used;
137
138 /* Flags stored in private area of BFD structure. */
139 static int uses_apcs_26 = FALSE;
140 static int atpcs = FALSE;
141 static int support_interwork = FALSE;
142 static int uses_apcs_float = FALSE;
143 static int pic_code = FALSE;
144 static int fix_v4bx = FALSE;
145 /* Warn on using deprecated features. */
146 static int warn_on_deprecated = TRUE;
147
148 /* Understand CodeComposer Studio assembly syntax. */
149 bfd_boolean codecomposer_syntax = FALSE;
150
151 /* Variables that we set while parsing command-line options. Once all
152 options have been read we re-process these values to set the real
153 assembly flags. */
154
155 /* CPU and FPU feature bits set for legacy CPU and FPU options (eg. -marm1
156 instead of -mcpu=arm1). */
157 static const arm_feature_set *legacy_cpu = NULL;
158 static const arm_feature_set *legacy_fpu = NULL;
159
160 /* CPU, extension and FPU feature bits selected by -mcpu. */
161 static const arm_feature_set *mcpu_cpu_opt = NULL;
162 static arm_feature_set *mcpu_ext_opt = NULL;
163 static const arm_feature_set *mcpu_fpu_opt = NULL;
164
165 /* CPU, extension and FPU feature bits selected by -march. */
166 static const arm_feature_set *march_cpu_opt = NULL;
167 static arm_feature_set *march_ext_opt = NULL;
168 static const arm_feature_set *march_fpu_opt = NULL;
169
170 /* Feature bits selected by -mfpu. */
171 static const arm_feature_set *mfpu_opt = NULL;
172
173 /* Constants for known architecture features. */
174 static const arm_feature_set fpu_default = FPU_DEFAULT;
175 static const arm_feature_set fpu_arch_vfp_v1 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V1;
176 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
177 static const arm_feature_set fpu_arch_vfp_v3 ATTRIBUTE_UNUSED = FPU_ARCH_VFP_V3;
178 static const arm_feature_set fpu_arch_neon_v1 ATTRIBUTE_UNUSED = FPU_ARCH_NEON_V1;
179 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
180 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
181 #ifdef OBJ_ELF
182 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
183 #endif
184 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
185
186 #ifdef CPU_DEFAULT
187 static const arm_feature_set cpu_default = CPU_DEFAULT;
188 #endif
189
190 static const arm_feature_set arm_ext_v1 = ARM_FEATURE_CORE_LOW (ARM_EXT_V1);
191 static const arm_feature_set arm_ext_v2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V2);
192 static const arm_feature_set arm_ext_v2s = ARM_FEATURE_CORE_LOW (ARM_EXT_V2S);
193 static const arm_feature_set arm_ext_v3 = ARM_FEATURE_CORE_LOW (ARM_EXT_V3);
194 static const arm_feature_set arm_ext_v3m = ARM_FEATURE_CORE_LOW (ARM_EXT_V3M);
195 static const arm_feature_set arm_ext_v4 = ARM_FEATURE_CORE_LOW (ARM_EXT_V4);
196 static const arm_feature_set arm_ext_v4t = ARM_FEATURE_CORE_LOW (ARM_EXT_V4T);
197 static const arm_feature_set arm_ext_v5 = ARM_FEATURE_CORE_LOW (ARM_EXT_V5);
198 static const arm_feature_set arm_ext_v4t_5 =
199 ARM_FEATURE_CORE_LOW (ARM_EXT_V4T | ARM_EXT_V5);
200 static const arm_feature_set arm_ext_v5t = ARM_FEATURE_CORE_LOW (ARM_EXT_V5T);
201 static const arm_feature_set arm_ext_v5e = ARM_FEATURE_CORE_LOW (ARM_EXT_V5E);
202 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP);
203 static const arm_feature_set arm_ext_v5j = ARM_FEATURE_CORE_LOW (ARM_EXT_V5J);
204 static const arm_feature_set arm_ext_v6 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6);
205 static const arm_feature_set arm_ext_v6k = ARM_FEATURE_CORE_LOW (ARM_EXT_V6K);
206 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE_CORE_LOW (ARM_EXT_V6T2);
207 /* Only for compatability of hint instructions. */
208 static const arm_feature_set arm_ext_v6k_v6t2 =
209 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K | ARM_EXT_V6T2);
210 static const arm_feature_set arm_ext_v6_notm =
211 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_NOTM);
212 static const arm_feature_set arm_ext_v6_dsp =
213 ARM_FEATURE_CORE_LOW (ARM_EXT_V6_DSP);
214 static const arm_feature_set arm_ext_barrier =
215 ARM_FEATURE_CORE_LOW (ARM_EXT_BARRIER);
216 static const arm_feature_set arm_ext_msr =
217 ARM_FEATURE_CORE_LOW (ARM_EXT_THUMB_MSR);
218 static const arm_feature_set arm_ext_div = ARM_FEATURE_CORE_LOW (ARM_EXT_DIV);
219 static const arm_feature_set arm_ext_v7 = ARM_FEATURE_CORE_LOW (ARM_EXT_V7);
220 static const arm_feature_set arm_ext_v7a = ARM_FEATURE_CORE_LOW (ARM_EXT_V7A);
221 static const arm_feature_set arm_ext_v7r = ARM_FEATURE_CORE_LOW (ARM_EXT_V7R);
222 #ifdef OBJ_ELF
223 static const arm_feature_set ATTRIBUTE_UNUSED arm_ext_v7m = ARM_FEATURE_CORE_LOW (ARM_EXT_V7M);
224 #endif
225 static const arm_feature_set arm_ext_v8 = ARM_FEATURE_CORE_LOW (ARM_EXT_V8);
226 static const arm_feature_set arm_ext_m =
227 ARM_FEATURE_CORE (ARM_EXT_V6M | ARM_EXT_V7M,
228 ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
229 static const arm_feature_set arm_ext_mp = ARM_FEATURE_CORE_LOW (ARM_EXT_MP);
230 static const arm_feature_set arm_ext_sec = ARM_FEATURE_CORE_LOW (ARM_EXT_SEC);
231 static const arm_feature_set arm_ext_os = ARM_FEATURE_CORE_LOW (ARM_EXT_OS);
232 static const arm_feature_set arm_ext_adiv = ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV);
233 static const arm_feature_set arm_ext_virt = ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT);
234 static const arm_feature_set arm_ext_pan = ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN);
235 static const arm_feature_set arm_ext_v8m = ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M);
236 static const arm_feature_set arm_ext_v8m_main =
237 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M_MAIN);
238 static const arm_feature_set arm_ext_v8_1m_main =
239 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_1M_MAIN);
240 /* Instructions in ARMv8-M only found in M profile architectures. */
241 static const arm_feature_set arm_ext_v8m_m_only =
242 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8M | ARM_EXT2_V8M_MAIN);
243 static const arm_feature_set arm_ext_v6t2_v8m =
244 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V6T2_V8M);
245 /* Instructions shared between ARMv8-A and ARMv8-M. */
246 static const arm_feature_set arm_ext_atomics =
247 ARM_FEATURE_CORE_HIGH (ARM_EXT2_ATOMICS);
248 #ifdef OBJ_ELF
249 /* DSP instructions Tag_DSP_extension refers to. */
250 static const arm_feature_set arm_ext_dsp =
251 ARM_FEATURE_CORE_LOW (ARM_EXT_V5E | ARM_EXT_V5ExP | ARM_EXT_V6_DSP);
252 #endif
253 static const arm_feature_set arm_ext_ras =
254 ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS);
255 /* FP16 instructions. */
256 static const arm_feature_set arm_ext_fp16 =
257 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST);
258 static const arm_feature_set arm_ext_fp16_fml =
259 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_FML);
260 static const arm_feature_set arm_ext_v8_2 =
261 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_2A);
262 static const arm_feature_set arm_ext_v8_3 =
263 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8_3A);
264 static const arm_feature_set arm_ext_sb =
265 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB);
266 static const arm_feature_set arm_ext_predres =
267 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES);
268
269 static const arm_feature_set arm_arch_any = ARM_ANY;
270 #ifdef OBJ_ELF
271 static const arm_feature_set fpu_any = FPU_ANY;
272 #endif
273 static const arm_feature_set arm_arch_full ATTRIBUTE_UNUSED = ARM_FEATURE (-1, -1, -1);
274 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
275 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
276
277 static const arm_feature_set arm_cext_iwmmxt2 =
278 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2);
279 static const arm_feature_set arm_cext_iwmmxt =
280 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT);
281 static const arm_feature_set arm_cext_xscale =
282 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE);
283 static const arm_feature_set arm_cext_maverick =
284 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK);
285 static const arm_feature_set fpu_fpa_ext_v1 =
286 ARM_FEATURE_COPROC (FPU_FPA_EXT_V1);
287 static const arm_feature_set fpu_fpa_ext_v2 =
288 ARM_FEATURE_COPROC (FPU_FPA_EXT_V2);
289 static const arm_feature_set fpu_vfp_ext_v1xd =
290 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1xD);
291 static const arm_feature_set fpu_vfp_ext_v1 =
292 ARM_FEATURE_COPROC (FPU_VFP_EXT_V1);
293 static const arm_feature_set fpu_vfp_ext_v2 =
294 ARM_FEATURE_COPROC (FPU_VFP_EXT_V2);
295 static const arm_feature_set fpu_vfp_ext_v3xd =
296 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3xD);
297 static const arm_feature_set fpu_vfp_ext_v3 =
298 ARM_FEATURE_COPROC (FPU_VFP_EXT_V3);
299 static const arm_feature_set fpu_vfp_ext_d32 =
300 ARM_FEATURE_COPROC (FPU_VFP_EXT_D32);
301 static const arm_feature_set fpu_neon_ext_v1 =
302 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1);
303 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
304 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
305 static const arm_feature_set mve_ext =
306 ARM_FEATURE_COPROC (FPU_MVE);
307 static const arm_feature_set mve_fp_ext =
308 ARM_FEATURE_COPROC (FPU_MVE_FP);
309 #ifdef OBJ_ELF
310 static const arm_feature_set fpu_vfp_fp16 =
311 ARM_FEATURE_COPROC (FPU_VFP_EXT_FP16);
312 static const arm_feature_set fpu_neon_ext_fma =
313 ARM_FEATURE_COPROC (FPU_NEON_EXT_FMA);
314 #endif
315 static const arm_feature_set fpu_vfp_ext_fma =
316 ARM_FEATURE_COPROC (FPU_VFP_EXT_FMA);
317 static const arm_feature_set fpu_vfp_ext_armv8 =
318 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8);
319 static const arm_feature_set fpu_vfp_ext_armv8xd =
320 ARM_FEATURE_COPROC (FPU_VFP_EXT_ARMV8xD);
321 static const arm_feature_set fpu_neon_ext_armv8 =
322 ARM_FEATURE_COPROC (FPU_NEON_EXT_ARMV8);
323 static const arm_feature_set fpu_crypto_ext_armv8 =
324 ARM_FEATURE_COPROC (FPU_CRYPTO_EXT_ARMV8);
325 static const arm_feature_set crc_ext_armv8 =
326 ARM_FEATURE_COPROC (CRC_EXT_ARMV8);
327 static const arm_feature_set fpu_neon_ext_v8_1 =
328 ARM_FEATURE_COPROC (FPU_NEON_EXT_RDMA);
329 static const arm_feature_set fpu_neon_ext_dotprod =
330 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD);
331
332 static int mfloat_abi_opt = -1;
333 /* Architecture feature bits selected by the last -mcpu/-march or .cpu/.arch
334 directive. */
335 static arm_feature_set selected_arch = ARM_ARCH_NONE;
336 /* Extension feature bits selected by the last -mcpu/-march or .arch_extension
337 directive. */
338 static arm_feature_set selected_ext = ARM_ARCH_NONE;
339 /* Feature bits selected by the last -mcpu/-march or by the combination of the
340 last .cpu/.arch directive .arch_extension directives since that
341 directive. */
342 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
343 /* FPU feature bits selected by the last -mfpu or .fpu directive. */
344 static arm_feature_set selected_fpu = FPU_NONE;
345 /* Feature bits selected by the last .object_arch directive. */
346 static arm_feature_set selected_object_arch = ARM_ARCH_NONE;
347 /* Must be long enough to hold any of the names in arm_cpus. */
348 static char selected_cpu_name[20];
349
350 extern FLONUM_TYPE generic_floating_point_number;
351
352 /* Return if no cpu was selected on command-line. */
353 static bfd_boolean
354 no_cpu_selected (void)
355 {
356 return ARM_FEATURE_EQUAL (selected_cpu, arm_arch_none);
357 }
358
359 #ifdef OBJ_ELF
360 # ifdef EABI_DEFAULT
361 static int meabi_flags = EABI_DEFAULT;
362 # else
363 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
364 # endif
365
366 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
367
368 bfd_boolean
369 arm_is_eabi (void)
370 {
371 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
372 }
373 #endif
374
375 #ifdef OBJ_ELF
376 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
377 symbolS * GOT_symbol;
378 #endif
379
380 /* 0: assemble for ARM,
381 1: assemble for Thumb,
382 2: assemble for Thumb even though target CPU does not support thumb
383 instructions. */
384 static int thumb_mode = 0;
385 /* A value distinct from the possible values for thumb_mode that we
386 can use to record whether thumb_mode has been copied into the
387 tc_frag_data field of a frag. */
388 #define MODE_RECORDED (1 << 4)
389
390 /* Specifies the intrinsic IT insn behavior mode. */
391 enum implicit_it_mode
392 {
393 IMPLICIT_IT_MODE_NEVER = 0x00,
394 IMPLICIT_IT_MODE_ARM = 0x01,
395 IMPLICIT_IT_MODE_THUMB = 0x02,
396 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
397 };
398 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
399
400 /* If unified_syntax is true, we are processing the new unified
401 ARM/Thumb syntax. Important differences from the old ARM mode:
402
403 - Immediate operands do not require a # prefix.
404 - Conditional affixes always appear at the end of the
405 instruction. (For backward compatibility, those instructions
406 that formerly had them in the middle, continue to accept them
407 there.)
408 - The IT instruction may appear, and if it does is validated
409 against subsequent conditional affixes. It does not generate
410 machine code.
411
412 Important differences from the old Thumb mode:
413
414 - Immediate operands do not require a # prefix.
415 - Most of the V6T2 instructions are only available in unified mode.
416 - The .N and .W suffixes are recognized and honored (it is an error
417 if they cannot be honored).
418 - All instructions set the flags if and only if they have an 's' affix.
419 - Conditional affixes may be used. They are validated against
420 preceding IT instructions. Unlike ARM mode, you cannot use a
421 conditional affix except in the scope of an IT instruction. */
422
423 static bfd_boolean unified_syntax = FALSE;
424
425 /* An immediate operand can start with #, and ld*, st*, pld operands
426 can contain [ and ]. We need to tell APP not to elide whitespace
427 before a [, which can appear as the first operand for pld.
428 Likewise, a { can appear as the first operand for push, pop, vld*, etc. */
429 const char arm_symbol_chars[] = "#[]{}";
430
431 enum neon_el_type
432 {
433 NT_invtype,
434 NT_untyped,
435 NT_integer,
436 NT_float,
437 NT_poly,
438 NT_signed,
439 NT_unsigned
440 };
441
442 struct neon_type_el
443 {
444 enum neon_el_type type;
445 unsigned size;
446 };
447
448 #define NEON_MAX_TYPE_ELS 4
449
450 struct neon_type
451 {
452 struct neon_type_el el[NEON_MAX_TYPE_ELS];
453 unsigned elems;
454 };
455
456 enum pred_instruction_type
457 {
458 OUTSIDE_PRED_INSN,
459 INSIDE_VPT_INSN,
460 INSIDE_IT_INSN,
461 INSIDE_IT_LAST_INSN,
462 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
463 if inside, should be the last one. */
464 NEUTRAL_IT_INSN, /* This could be either inside or outside,
465 i.e. BKPT and NOP. */
466 IT_INSN, /* The IT insn has been parsed. */
467 VPT_INSN, /* The VPT/VPST insn has been parsed. */
468 MVE_OUTSIDE_PRED_INSN , /* Instruction to indicate a MVE instruction without
469 a predication code. */
470 MVE_UNPREDICABLE_INSN /* MVE instruction that is non-predicable. */
471 };
472
473 /* The maximum number of operands we need. */
474 #define ARM_IT_MAX_OPERANDS 6
475 #define ARM_IT_MAX_RELOCS 3
476
477 struct arm_it
478 {
479 const char * error;
480 unsigned long instruction;
481 int size;
482 int size_req;
483 int cond;
484 /* "uncond_value" is set to the value in place of the conditional field in
485 unconditional versions of the instruction, or -1 if nothing is
486 appropriate. */
487 int uncond_value;
488 struct neon_type vectype;
489 /* This does not indicate an actual NEON instruction, only that
490 the mnemonic accepts neon-style type suffixes. */
491 int is_neon;
492 /* Set to the opcode if the instruction needs relaxation.
493 Zero if the instruction is not relaxed. */
494 unsigned long relax;
495 struct
496 {
497 bfd_reloc_code_real_type type;
498 expressionS exp;
499 int pc_rel;
500 } relocs[ARM_IT_MAX_RELOCS];
501
502 enum pred_instruction_type pred_insn_type;
503
504 struct
505 {
506 unsigned reg;
507 signed int imm;
508 struct neon_type_el vectype;
509 unsigned present : 1; /* Operand present. */
510 unsigned isreg : 1; /* Operand was a register. */
511 unsigned immisreg : 2; /* .imm field is a second register.
512 0: imm, 1: gpr, 2: MVE Q-register. */
513 unsigned isscalar : 2; /* Operand is a (SIMD) scalar:
514 0) not scalar,
515 1) Neon scalar,
516 2) MVE scalar. */
517 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
518 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
519 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
520 instructions. This allows us to disambiguate ARM <-> vector insns. */
521 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
522 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
523 unsigned isquad : 1; /* Operand is SIMD quad register. */
524 unsigned issingle : 1; /* Operand is VFP single-precision register. */
525 unsigned iszr : 1; /* Operand is ZR register. */
526 unsigned hasreloc : 1; /* Operand has relocation suffix. */
527 unsigned writeback : 1; /* Operand has trailing ! */
528 unsigned preind : 1; /* Preindexed address. */
529 unsigned postind : 1; /* Postindexed address. */
530 unsigned negative : 1; /* Index register was negated. */
531 unsigned shifted : 1; /* Shift applied to operation. */
532 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
533 } operands[ARM_IT_MAX_OPERANDS];
534 };
535
536 static struct arm_it inst;
537
538 #define NUM_FLOAT_VALS 8
539
540 const char * fp_const[] =
541 {
542 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
543 };
544
545 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
546
547 #define FAIL (-1)
548 #define SUCCESS (0)
549
550 #define SUFF_S 1
551 #define SUFF_D 2
552 #define SUFF_E 3
553 #define SUFF_P 4
554
555 #define CP_T_X 0x00008000
556 #define CP_T_Y 0x00400000
557
558 #define CONDS_BIT 0x00100000
559 #define LOAD_BIT 0x00100000
560
561 #define DOUBLE_LOAD_FLAG 0x00000001
562
563 struct asm_cond
564 {
565 const char * template_name;
566 unsigned long value;
567 };
568
569 #define COND_ALWAYS 0xE
570
571 struct asm_psr
572 {
573 const char * template_name;
574 unsigned long field;
575 };
576
577 struct asm_barrier_opt
578 {
579 const char * template_name;
580 unsigned long value;
581 const arm_feature_set arch;
582 };
583
584 /* The bit that distinguishes CPSR and SPSR. */
585 #define SPSR_BIT (1 << 22)
586
587 /* The individual PSR flag bits. */
588 #define PSR_c (1 << 16)
589 #define PSR_x (1 << 17)
590 #define PSR_s (1 << 18)
591 #define PSR_f (1 << 19)
592
593 struct reloc_entry
594 {
595 const char * name;
596 bfd_reloc_code_real_type reloc;
597 };
598
599 enum vfp_reg_pos
600 {
601 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
602 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
603 };
604
605 enum vfp_ldstm_type
606 {
607 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
608 };
609
610 /* Bits for DEFINED field in neon_typed_alias. */
611 #define NTA_HASTYPE 1
612 #define NTA_HASINDEX 2
613
614 struct neon_typed_alias
615 {
616 unsigned char defined;
617 unsigned char index;
618 struct neon_type_el eltype;
619 };
620
621 /* ARM register categories. This includes coprocessor numbers and various
622 architecture extensions' registers. Each entry should have an error message
623 in reg_expected_msgs below. */
624 enum arm_reg_type
625 {
626 REG_TYPE_RN,
627 REG_TYPE_CP,
628 REG_TYPE_CN,
629 REG_TYPE_FN,
630 REG_TYPE_VFS,
631 REG_TYPE_VFD,
632 REG_TYPE_NQ,
633 REG_TYPE_VFSD,
634 REG_TYPE_NDQ,
635 REG_TYPE_NSD,
636 REG_TYPE_NSDQ,
637 REG_TYPE_VFC,
638 REG_TYPE_MVF,
639 REG_TYPE_MVD,
640 REG_TYPE_MVFX,
641 REG_TYPE_MVDX,
642 REG_TYPE_MVAX,
643 REG_TYPE_MQ,
644 REG_TYPE_DSPSC,
645 REG_TYPE_MMXWR,
646 REG_TYPE_MMXWC,
647 REG_TYPE_MMXWCG,
648 REG_TYPE_XSCALE,
649 REG_TYPE_RNB,
650 REG_TYPE_ZR
651 };
652
653 /* Structure for a hash table entry for a register.
654 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
655 information which states whether a vector type or index is specified (for a
656 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
657 struct reg_entry
658 {
659 const char * name;
660 unsigned int number;
661 unsigned char type;
662 unsigned char builtin;
663 struct neon_typed_alias * neon;
664 };
665
666 /* Diagnostics used when we don't get a register of the expected type. */
667 const char * const reg_expected_msgs[] =
668 {
669 [REG_TYPE_RN] = N_("ARM register expected"),
670 [REG_TYPE_CP] = N_("bad or missing co-processor number"),
671 [REG_TYPE_CN] = N_("co-processor register expected"),
672 [REG_TYPE_FN] = N_("FPA register expected"),
673 [REG_TYPE_VFS] = N_("VFP single precision register expected"),
674 [REG_TYPE_VFD] = N_("VFP/Neon double precision register expected"),
675 [REG_TYPE_NQ] = N_("Neon quad precision register expected"),
676 [REG_TYPE_VFSD] = N_("VFP single or double precision register expected"),
677 [REG_TYPE_NDQ] = N_("Neon double or quad precision register expected"),
678 [REG_TYPE_NSD] = N_("Neon single or double precision register expected"),
679 [REG_TYPE_NSDQ] = N_("VFP single, double or Neon quad precision register"
680 " expected"),
681 [REG_TYPE_VFC] = N_("VFP system register expected"),
682 [REG_TYPE_MVF] = N_("Maverick MVF register expected"),
683 [REG_TYPE_MVD] = N_("Maverick MVD register expected"),
684 [REG_TYPE_MVFX] = N_("Maverick MVFX register expected"),
685 [REG_TYPE_MVDX] = N_("Maverick MVDX register expected"),
686 [REG_TYPE_MVAX] = N_("Maverick MVAX register expected"),
687 [REG_TYPE_DSPSC] = N_("Maverick DSPSC register expected"),
688 [REG_TYPE_MMXWR] = N_("iWMMXt data register expected"),
689 [REG_TYPE_MMXWC] = N_("iWMMXt control register expected"),
690 [REG_TYPE_MMXWCG] = N_("iWMMXt scalar register expected"),
691 [REG_TYPE_XSCALE] = N_("XScale accumulator register expected"),
692 [REG_TYPE_MQ] = N_("MVE vector register expected"),
693 [REG_TYPE_RNB] = N_("")
694 };
695
696 /* Some well known registers that we refer to directly elsewhere. */
697 #define REG_R12 12
698 #define REG_SP 13
699 #define REG_LR 14
700 #define REG_PC 15
701
702 /* ARM instructions take 4bytes in the object file, Thumb instructions
703 take 2: */
704 #define INSN_SIZE 4
705
706 struct asm_opcode
707 {
708 /* Basic string to match. */
709 const char * template_name;
710
711 /* Parameters to instruction. */
712 unsigned int operands[8];
713
714 /* Conditional tag - see opcode_lookup. */
715 unsigned int tag : 4;
716
717 /* Basic instruction code. */
718 unsigned int avalue;
719
720 /* Thumb-format instruction code. */
721 unsigned int tvalue;
722
723 /* Which architecture variant provides this instruction. */
724 const arm_feature_set * avariant;
725 const arm_feature_set * tvariant;
726
727 /* Function to call to encode instruction in ARM format. */
728 void (* aencode) (void);
729
730 /* Function to call to encode instruction in Thumb format. */
731 void (* tencode) (void);
732
733 /* Indicates whether this instruction may be vector predicated. */
734 unsigned int mayBeVecPred : 1;
735 };
736
737 /* Defines for various bits that we will want to toggle. */
738 #define INST_IMMEDIATE 0x02000000
739 #define OFFSET_REG 0x02000000
740 #define HWOFFSET_IMM 0x00400000
741 #define SHIFT_BY_REG 0x00000010
742 #define PRE_INDEX 0x01000000
743 #define INDEX_UP 0x00800000
744 #define WRITE_BACK 0x00200000
745 #define LDM_TYPE_2_OR_3 0x00400000
746 #define CPSI_MMOD 0x00020000
747
748 #define LITERAL_MASK 0xf000f000
749 #define OPCODE_MASK 0xfe1fffff
750 #define V4_STR_BIT 0x00000020
751 #define VLDR_VMOV_SAME 0x0040f000
752
753 #define T2_SUBS_PC_LR 0xf3de8f00
754
755 #define DATA_OP_SHIFT 21
756 #define SBIT_SHIFT 20
757
758 #define T2_OPCODE_MASK 0xfe1fffff
759 #define T2_DATA_OP_SHIFT 21
760 #define T2_SBIT_SHIFT 20
761
762 #define A_COND_MASK 0xf0000000
763 #define A_PUSH_POP_OP_MASK 0x0fff0000
764
765 /* Opcodes for pushing/poping registers to/from the stack. */
766 #define A1_OPCODE_PUSH 0x092d0000
767 #define A2_OPCODE_PUSH 0x052d0004
768 #define A2_OPCODE_POP 0x049d0004
769
770 /* Codes to distinguish the arithmetic instructions. */
771 #define OPCODE_AND 0
772 #define OPCODE_EOR 1
773 #define OPCODE_SUB 2
774 #define OPCODE_RSB 3
775 #define OPCODE_ADD 4
776 #define OPCODE_ADC 5
777 #define OPCODE_SBC 6
778 #define OPCODE_RSC 7
779 #define OPCODE_TST 8
780 #define OPCODE_TEQ 9
781 #define OPCODE_CMP 10
782 #define OPCODE_CMN 11
783 #define OPCODE_ORR 12
784 #define OPCODE_MOV 13
785 #define OPCODE_BIC 14
786 #define OPCODE_MVN 15
787
788 #define T2_OPCODE_AND 0
789 #define T2_OPCODE_BIC 1
790 #define T2_OPCODE_ORR 2
791 #define T2_OPCODE_ORN 3
792 #define T2_OPCODE_EOR 4
793 #define T2_OPCODE_ADD 8
794 #define T2_OPCODE_ADC 10
795 #define T2_OPCODE_SBC 11
796 #define T2_OPCODE_SUB 13
797 #define T2_OPCODE_RSB 14
798
799 #define T_OPCODE_MUL 0x4340
800 #define T_OPCODE_TST 0x4200
801 #define T_OPCODE_CMN 0x42c0
802 #define T_OPCODE_NEG 0x4240
803 #define T_OPCODE_MVN 0x43c0
804
805 #define T_OPCODE_ADD_R3 0x1800
806 #define T_OPCODE_SUB_R3 0x1a00
807 #define T_OPCODE_ADD_HI 0x4400
808 #define T_OPCODE_ADD_ST 0xb000
809 #define T_OPCODE_SUB_ST 0xb080
810 #define T_OPCODE_ADD_SP 0xa800
811 #define T_OPCODE_ADD_PC 0xa000
812 #define T_OPCODE_ADD_I8 0x3000
813 #define T_OPCODE_SUB_I8 0x3800
814 #define T_OPCODE_ADD_I3 0x1c00
815 #define T_OPCODE_SUB_I3 0x1e00
816
817 #define T_OPCODE_ASR_R 0x4100
818 #define T_OPCODE_LSL_R 0x4080
819 #define T_OPCODE_LSR_R 0x40c0
820 #define T_OPCODE_ROR_R 0x41c0
821 #define T_OPCODE_ASR_I 0x1000
822 #define T_OPCODE_LSL_I 0x0000
823 #define T_OPCODE_LSR_I 0x0800
824
825 #define T_OPCODE_MOV_I8 0x2000
826 #define T_OPCODE_CMP_I8 0x2800
827 #define T_OPCODE_CMP_LR 0x4280
828 #define T_OPCODE_MOV_HR 0x4600
829 #define T_OPCODE_CMP_HR 0x4500
830
831 #define T_OPCODE_LDR_PC 0x4800
832 #define T_OPCODE_LDR_SP 0x9800
833 #define T_OPCODE_STR_SP 0x9000
834 #define T_OPCODE_LDR_IW 0x6800
835 #define T_OPCODE_STR_IW 0x6000
836 #define T_OPCODE_LDR_IH 0x8800
837 #define T_OPCODE_STR_IH 0x8000
838 #define T_OPCODE_LDR_IB 0x7800
839 #define T_OPCODE_STR_IB 0x7000
840 #define T_OPCODE_LDR_RW 0x5800
841 #define T_OPCODE_STR_RW 0x5000
842 #define T_OPCODE_LDR_RH 0x5a00
843 #define T_OPCODE_STR_RH 0x5200
844 #define T_OPCODE_LDR_RB 0x5c00
845 #define T_OPCODE_STR_RB 0x5400
846
847 #define T_OPCODE_PUSH 0xb400
848 #define T_OPCODE_POP 0xbc00
849
850 #define T_OPCODE_BRANCH 0xe000
851
852 #define THUMB_SIZE 2 /* Size of thumb instruction. */
853 #define THUMB_PP_PC_LR 0x0100
854 #define THUMB_LOAD_BIT 0x0800
855 #define THUMB2_LOAD_BIT 0x00100000
856
857 #define BAD_SYNTAX _("syntax error")
858 #define BAD_ARGS _("bad arguments to instruction")
859 #define BAD_SP _("r13 not allowed here")
860 #define BAD_PC _("r15 not allowed here")
861 #define BAD_ODD _("Odd register not allowed here")
862 #define BAD_EVEN _("Even register not allowed here")
863 #define BAD_COND _("instruction cannot be conditional")
864 #define BAD_OVERLAP _("registers may not be the same")
865 #define BAD_HIREG _("lo register required")
866 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
867 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode")
868 #define BAD_BRANCH _("branch must be last instruction in IT block")
869 #define BAD_BRANCH_OFF _("branch out of range or not a multiple of 2")
870 #define BAD_NOT_IT _("instruction not allowed in IT block")
871 #define BAD_NOT_VPT _("instruction missing MVE vector predication code")
872 #define BAD_FPU _("selected FPU does not support instruction")
873 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
874 #define BAD_OUT_VPT \
875 _("vector predicated instruction should be in VPT/VPST block")
876 #define BAD_IT_COND _("incorrect condition in IT block")
877 #define BAD_VPT_COND _("incorrect condition in VPT/VPST block")
878 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
879 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
880 #define BAD_PC_ADDRESSING \
881 _("cannot use register index with PC-relative addressing")
882 #define BAD_PC_WRITEBACK \
883 _("cannot use writeback with PC-relative addressing")
884 #define BAD_RANGE _("branch out of range")
885 #define BAD_FP16 _("selected processor does not support fp16 instruction")
886 #define UNPRED_REG(R) _("using " R " results in unpredictable behaviour")
887 #define THUMB1_RELOC_ONLY _("relocation valid in thumb1 code only")
888 #define MVE_NOT_IT _("Warning: instruction is UNPREDICTABLE in an IT " \
889 "block")
890 #define MVE_NOT_VPT _("Warning: instruction is UNPREDICTABLE in a VPT " \
891 "block")
892 #define MVE_BAD_PC _("Warning: instruction is UNPREDICTABLE with PC" \
893 " operand")
894 #define MVE_BAD_SP _("Warning: instruction is UNPREDICTABLE with SP" \
895 " operand")
896 #define BAD_SIMD_TYPE _("bad type in SIMD instruction")
897 #define BAD_MVE_AUTO \
898 _("GAS auto-detection mode and -march=all is deprecated for MVE, please" \
899 " use a valid -march or -mcpu option.")
900 #define BAD_MVE_SRCDEST _("Warning: 32-bit element size and same destination "\
901 "and source operands makes instruction UNPREDICTABLE")
902 #define BAD_EL_TYPE _("bad element type for instruction")
903 #define MVE_BAD_QREG _("MVE vector register Q[0..7] expected")
904
905 static struct hash_control * arm_ops_hsh;
906 static struct hash_control * arm_cond_hsh;
907 static struct hash_control * arm_vcond_hsh;
908 static struct hash_control * arm_shift_hsh;
909 static struct hash_control * arm_psr_hsh;
910 static struct hash_control * arm_v7m_psr_hsh;
911 static struct hash_control * arm_reg_hsh;
912 static struct hash_control * arm_reloc_hsh;
913 static struct hash_control * arm_barrier_opt_hsh;
914
915 /* Stuff needed to resolve the label ambiguity
916 As:
917 ...
918 label: <insn>
919 may differ from:
920 ...
921 label:
922 <insn> */
923
924 symbolS * last_label_seen;
925 static int label_is_thumb_function_name = FALSE;
926
927 /* Literal pool structure. Held on a per-section
928 and per-sub-section basis. */
929
930 #define MAX_LITERAL_POOL_SIZE 1024
931 typedef struct literal_pool
932 {
933 expressionS literals [MAX_LITERAL_POOL_SIZE];
934 unsigned int next_free_entry;
935 unsigned int id;
936 symbolS * symbol;
937 segT section;
938 subsegT sub_section;
939 #ifdef OBJ_ELF
940 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
941 #endif
942 struct literal_pool * next;
943 unsigned int alignment;
944 } literal_pool;
945
946 /* Pointer to a linked list of literal pools. */
947 literal_pool * list_of_pools = NULL;
948
949 typedef enum asmfunc_states
950 {
951 OUTSIDE_ASMFUNC,
952 WAITING_ASMFUNC_NAME,
953 WAITING_ENDASMFUNC
954 } asmfunc_states;
955
956 static asmfunc_states asmfunc_state = OUTSIDE_ASMFUNC;
957
958 #ifdef OBJ_ELF
959 # define now_pred seg_info (now_seg)->tc_segment_info_data.current_pred
960 #else
961 static struct current_pred now_pred;
962 #endif
963
964 static inline int
965 now_pred_compatible (int cond)
966 {
967 return (cond & ~1) == (now_pred.cc & ~1);
968 }
969
970 static inline int
971 conditional_insn (void)
972 {
973 return inst.cond != COND_ALWAYS;
974 }
975
976 static int in_pred_block (void);
977
978 static int handle_pred_state (void);
979
980 static void force_automatic_it_block_close (void);
981
982 static void it_fsm_post_encode (void);
983
984 #define set_pred_insn_type(type) \
985 do \
986 { \
987 inst.pred_insn_type = type; \
988 if (handle_pred_state () == FAIL) \
989 return; \
990 } \
991 while (0)
992
993 #define set_pred_insn_type_nonvoid(type, failret) \
994 do \
995 { \
996 inst.pred_insn_type = type; \
997 if (handle_pred_state () == FAIL) \
998 return failret; \
999 } \
1000 while(0)
1001
1002 #define set_pred_insn_type_last() \
1003 do \
1004 { \
1005 if (inst.cond == COND_ALWAYS) \
1006 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN); \
1007 else \
1008 set_pred_insn_type (INSIDE_IT_LAST_INSN); \
1009 } \
1010 while (0)
1011
1012 /* Pure syntax. */
1013
1014 /* This array holds the chars that always start a comment. If the
1015 pre-processor is disabled, these aren't very useful. */
1016 char arm_comment_chars[] = "@";
1017
1018 /* This array holds the chars that only start a comment at the beginning of
1019 a line. If the line seems to have the form '# 123 filename'
1020 .line and .file directives will appear in the pre-processed output. */
1021 /* Note that input_file.c hand checks for '#' at the beginning of the
1022 first line of the input file. This is because the compiler outputs
1023 #NO_APP at the beginning of its output. */
1024 /* Also note that comments like this one will always work. */
1025 const char line_comment_chars[] = "#";
1026
1027 char arm_line_separator_chars[] = ";";
1028
1029 /* Chars that can be used to separate mant
1030 from exp in floating point numbers. */
1031 const char EXP_CHARS[] = "eE";
1032
1033 /* Chars that mean this number is a floating point constant. */
1034 /* As in 0f12.456 */
1035 /* or 0d1.2345e12 */
1036
1037 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
1038
1039 /* Prefix characters that indicate the start of an immediate
1040 value. */
1041 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
1042
1043 /* Separator character handling. */
1044
1045 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
1046
1047 static inline int
1048 skip_past_char (char ** str, char c)
1049 {
1050 /* PR gas/14987: Allow for whitespace before the expected character. */
1051 skip_whitespace (*str);
1052
1053 if (**str == c)
1054 {
1055 (*str)++;
1056 return SUCCESS;
1057 }
1058 else
1059 return FAIL;
1060 }
1061
1062 #define skip_past_comma(str) skip_past_char (str, ',')
1063
1064 /* Arithmetic expressions (possibly involving symbols). */
1065
1066 /* Return TRUE if anything in the expression is a bignum. */
1067
1068 static bfd_boolean
1069 walk_no_bignums (symbolS * sp)
1070 {
1071 if (symbol_get_value_expression (sp)->X_op == O_big)
1072 return TRUE;
1073
1074 if (symbol_get_value_expression (sp)->X_add_symbol)
1075 {
1076 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
1077 || (symbol_get_value_expression (sp)->X_op_symbol
1078 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
1079 }
1080
1081 return FALSE;
1082 }
1083
1084 static bfd_boolean in_my_get_expression = FALSE;
1085
1086 /* Third argument to my_get_expression. */
1087 #define GE_NO_PREFIX 0
1088 #define GE_IMM_PREFIX 1
1089 #define GE_OPT_PREFIX 2
1090 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
1091 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
1092 #define GE_OPT_PREFIX_BIG 3
1093
1094 static int
1095 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
1096 {
1097 char * save_in;
1098
1099 /* In unified syntax, all prefixes are optional. */
1100 if (unified_syntax)
1101 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
1102 : GE_OPT_PREFIX;
1103
1104 switch (prefix_mode)
1105 {
1106 case GE_NO_PREFIX: break;
1107 case GE_IMM_PREFIX:
1108 if (!is_immediate_prefix (**str))
1109 {
1110 inst.error = _("immediate expression requires a # prefix");
1111 return FAIL;
1112 }
1113 (*str)++;
1114 break;
1115 case GE_OPT_PREFIX:
1116 case GE_OPT_PREFIX_BIG:
1117 if (is_immediate_prefix (**str))
1118 (*str)++;
1119 break;
1120 default:
1121 abort ();
1122 }
1123
1124 memset (ep, 0, sizeof (expressionS));
1125
1126 save_in = input_line_pointer;
1127 input_line_pointer = *str;
1128 in_my_get_expression = TRUE;
1129 expression (ep);
1130 in_my_get_expression = FALSE;
1131
1132 if (ep->X_op == O_illegal || ep->X_op == O_absent)
1133 {
1134 /* We found a bad or missing expression in md_operand(). */
1135 *str = input_line_pointer;
1136 input_line_pointer = save_in;
1137 if (inst.error == NULL)
1138 inst.error = (ep->X_op == O_absent
1139 ? _("missing expression") :_("bad expression"));
1140 return 1;
1141 }
1142
1143 /* Get rid of any bignums now, so that we don't generate an error for which
1144 we can't establish a line number later on. Big numbers are never valid
1145 in instructions, which is where this routine is always called. */
1146 if (prefix_mode != GE_OPT_PREFIX_BIG
1147 && (ep->X_op == O_big
1148 || (ep->X_add_symbol
1149 && (walk_no_bignums (ep->X_add_symbol)
1150 || (ep->X_op_symbol
1151 && walk_no_bignums (ep->X_op_symbol))))))
1152 {
1153 inst.error = _("invalid constant");
1154 *str = input_line_pointer;
1155 input_line_pointer = save_in;
1156 return 1;
1157 }
1158
1159 *str = input_line_pointer;
1160 input_line_pointer = save_in;
1161 return SUCCESS;
1162 }
1163
1164 /* Turn a string in input_line_pointer into a floating point constant
1165 of type TYPE, and store the appropriate bytes in *LITP. The number
1166 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1167 returned, or NULL on OK.
1168
1169 Note that fp constants aren't represent in the normal way on the ARM.
1170 In big endian mode, things are as expected. However, in little endian
1171 mode fp constants are big-endian word-wise, and little-endian byte-wise
1172 within the words. For example, (double) 1.1 in big endian mode is
1173 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1174 the byte sequence 99 99 f1 3f 9a 99 99 99.
1175
1176 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1177
1178 const char *
1179 md_atof (int type, char * litP, int * sizeP)
1180 {
1181 int prec;
1182 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1183 char *t;
1184 int i;
1185
1186 switch (type)
1187 {
1188 case 'f':
1189 case 'F':
1190 case 's':
1191 case 'S':
1192 prec = 2;
1193 break;
1194
1195 case 'd':
1196 case 'D':
1197 case 'r':
1198 case 'R':
1199 prec = 4;
1200 break;
1201
1202 case 'x':
1203 case 'X':
1204 prec = 5;
1205 break;
1206
1207 case 'p':
1208 case 'P':
1209 prec = 5;
1210 break;
1211
1212 default:
1213 *sizeP = 0;
1214 return _("Unrecognized or unsupported floating point constant");
1215 }
1216
1217 t = atof_ieee (input_line_pointer, type, words);
1218 if (t)
1219 input_line_pointer = t;
1220 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1221
1222 if (target_big_endian)
1223 {
1224 for (i = 0; i < prec; i++)
1225 {
1226 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1227 litP += sizeof (LITTLENUM_TYPE);
1228 }
1229 }
1230 else
1231 {
1232 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1233 for (i = prec - 1; i >= 0; i--)
1234 {
1235 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1236 litP += sizeof (LITTLENUM_TYPE);
1237 }
1238 else
1239 /* For a 4 byte float the order of elements in `words' is 1 0.
1240 For an 8 byte float the order is 1 0 3 2. */
1241 for (i = 0; i < prec; i += 2)
1242 {
1243 md_number_to_chars (litP, (valueT) words[i + 1],
1244 sizeof (LITTLENUM_TYPE));
1245 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1246 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1247 litP += 2 * sizeof (LITTLENUM_TYPE);
1248 }
1249 }
1250
1251 return NULL;
1252 }
1253
1254 /* We handle all bad expressions here, so that we can report the faulty
1255 instruction in the error message. */
1256
1257 void
1258 md_operand (expressionS * exp)
1259 {
1260 if (in_my_get_expression)
1261 exp->X_op = O_illegal;
1262 }
1263
1264 /* Immediate values. */
1265
1266 #ifdef OBJ_ELF
1267 /* Generic immediate-value read function for use in directives.
1268 Accepts anything that 'expression' can fold to a constant.
1269 *val receives the number. */
1270
1271 static int
1272 immediate_for_directive (int *val)
1273 {
1274 expressionS exp;
1275 exp.X_op = O_illegal;
1276
1277 if (is_immediate_prefix (*input_line_pointer))
1278 {
1279 input_line_pointer++;
1280 expression (&exp);
1281 }
1282
1283 if (exp.X_op != O_constant)
1284 {
1285 as_bad (_("expected #constant"));
1286 ignore_rest_of_line ();
1287 return FAIL;
1288 }
1289 *val = exp.X_add_number;
1290 return SUCCESS;
1291 }
1292 #endif
1293
1294 /* Register parsing. */
1295
1296 /* Generic register parser. CCP points to what should be the
1297 beginning of a register name. If it is indeed a valid register
1298 name, advance CCP over it and return the reg_entry structure;
1299 otherwise return NULL. Does not issue diagnostics. */
1300
1301 static struct reg_entry *
1302 arm_reg_parse_multi (char **ccp)
1303 {
1304 char *start = *ccp;
1305 char *p;
1306 struct reg_entry *reg;
1307
1308 skip_whitespace (start);
1309
1310 #ifdef REGISTER_PREFIX
1311 if (*start != REGISTER_PREFIX)
1312 return NULL;
1313 start++;
1314 #endif
1315 #ifdef OPTIONAL_REGISTER_PREFIX
1316 if (*start == OPTIONAL_REGISTER_PREFIX)
1317 start++;
1318 #endif
1319
1320 p = start;
1321 if (!ISALPHA (*p) || !is_name_beginner (*p))
1322 return NULL;
1323
1324 do
1325 p++;
1326 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1327
1328 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1329
1330 if (!reg)
1331 return NULL;
1332
1333 *ccp = p;
1334 return reg;
1335 }
1336
1337 static int
1338 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1339 enum arm_reg_type type)
1340 {
1341 /* Alternative syntaxes are accepted for a few register classes. */
1342 switch (type)
1343 {
1344 case REG_TYPE_MVF:
1345 case REG_TYPE_MVD:
1346 case REG_TYPE_MVFX:
1347 case REG_TYPE_MVDX:
1348 /* Generic coprocessor register names are allowed for these. */
1349 if (reg && reg->type == REG_TYPE_CN)
1350 return reg->number;
1351 break;
1352
1353 case REG_TYPE_CP:
1354 /* For backward compatibility, a bare number is valid here. */
1355 {
1356 unsigned long processor = strtoul (start, ccp, 10);
1357 if (*ccp != start && processor <= 15)
1358 return processor;
1359 }
1360 /* Fall through. */
1361
1362 case REG_TYPE_MMXWC:
1363 /* WC includes WCG. ??? I'm not sure this is true for all
1364 instructions that take WC registers. */
1365 if (reg && reg->type == REG_TYPE_MMXWCG)
1366 return reg->number;
1367 break;
1368
1369 default:
1370 break;
1371 }
1372
1373 return FAIL;
1374 }
1375
1376 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1377 return value is the register number or FAIL. */
1378
1379 static int
1380 arm_reg_parse (char **ccp, enum arm_reg_type type)
1381 {
1382 char *start = *ccp;
1383 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1384 int ret;
1385
1386 /* Do not allow a scalar (reg+index) to parse as a register. */
1387 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1388 return FAIL;
1389
1390 if (reg && reg->type == type)
1391 return reg->number;
1392
1393 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1394 return ret;
1395
1396 *ccp = start;
1397 return FAIL;
1398 }
1399
1400 /* Parse a Neon type specifier. *STR should point at the leading '.'
1401 character. Does no verification at this stage that the type fits the opcode
1402 properly. E.g.,
1403
1404 .i32.i32.s16
1405 .s32.f32
1406 .u16
1407
1408 Can all be legally parsed by this function.
1409
1410 Fills in neon_type struct pointer with parsed information, and updates STR
1411 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1412 type, FAIL if not. */
1413
1414 static int
1415 parse_neon_type (struct neon_type *type, char **str)
1416 {
1417 char *ptr = *str;
1418
1419 if (type)
1420 type->elems = 0;
1421
1422 while (type->elems < NEON_MAX_TYPE_ELS)
1423 {
1424 enum neon_el_type thistype = NT_untyped;
1425 unsigned thissize = -1u;
1426
1427 if (*ptr != '.')
1428 break;
1429
1430 ptr++;
1431
1432 /* Just a size without an explicit type. */
1433 if (ISDIGIT (*ptr))
1434 goto parsesize;
1435
1436 switch (TOLOWER (*ptr))
1437 {
1438 case 'i': thistype = NT_integer; break;
1439 case 'f': thistype = NT_float; break;
1440 case 'p': thistype = NT_poly; break;
1441 case 's': thistype = NT_signed; break;
1442 case 'u': thistype = NT_unsigned; break;
1443 case 'd':
1444 thistype = NT_float;
1445 thissize = 64;
1446 ptr++;
1447 goto done;
1448 default:
1449 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1450 return FAIL;
1451 }
1452
1453 ptr++;
1454
1455 /* .f is an abbreviation for .f32. */
1456 if (thistype == NT_float && !ISDIGIT (*ptr))
1457 thissize = 32;
1458 else
1459 {
1460 parsesize:
1461 thissize = strtoul (ptr, &ptr, 10);
1462
1463 if (thissize != 8 && thissize != 16 && thissize != 32
1464 && thissize != 64)
1465 {
1466 as_bad (_("bad size %d in type specifier"), thissize);
1467 return FAIL;
1468 }
1469 }
1470
1471 done:
1472 if (type)
1473 {
1474 type->el[type->elems].type = thistype;
1475 type->el[type->elems].size = thissize;
1476 type->elems++;
1477 }
1478 }
1479
1480 /* Empty/missing type is not a successful parse. */
1481 if (type->elems == 0)
1482 return FAIL;
1483
1484 *str = ptr;
1485
1486 return SUCCESS;
1487 }
1488
1489 /* Errors may be set multiple times during parsing or bit encoding
1490 (particularly in the Neon bits), but usually the earliest error which is set
1491 will be the most meaningful. Avoid overwriting it with later (cascading)
1492 errors by calling this function. */
1493
1494 static void
1495 first_error (const char *err)
1496 {
1497 if (!inst.error)
1498 inst.error = err;
1499 }
1500
1501 /* Parse a single type, e.g. ".s32", leading period included. */
1502 static int
1503 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1504 {
1505 char *str = *ccp;
1506 struct neon_type optype;
1507
1508 if (*str == '.')
1509 {
1510 if (parse_neon_type (&optype, &str) == SUCCESS)
1511 {
1512 if (optype.elems == 1)
1513 *vectype = optype.el[0];
1514 else
1515 {
1516 first_error (_("only one type should be specified for operand"));
1517 return FAIL;
1518 }
1519 }
1520 else
1521 {
1522 first_error (_("vector type expected"));
1523 return FAIL;
1524 }
1525 }
1526 else
1527 return FAIL;
1528
1529 *ccp = str;
1530
1531 return SUCCESS;
1532 }
1533
1534 /* Special meanings for indices (which have a range of 0-7), which will fit into
1535 a 4-bit integer. */
1536
1537 #define NEON_ALL_LANES 15
1538 #define NEON_INTERLEAVE_LANES 14
1539
1540 /* Record a use of the given feature. */
1541 static void
1542 record_feature_use (const arm_feature_set *feature)
1543 {
1544 if (thumb_mode)
1545 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
1546 else
1547 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
1548 }
1549
1550 /* If the given feature available in the selected CPU, mark it as used.
1551 Returns TRUE iff feature is available. */
1552 static bfd_boolean
1553 mark_feature_used (const arm_feature_set *feature)
1554 {
1555
1556 /* Do not support the use of MVE only instructions when in auto-detection or
1557 -march=all. */
1558 if (((feature == &mve_ext) || (feature == &mve_fp_ext))
1559 && ARM_CPU_IS_ANY (cpu_variant))
1560 {
1561 first_error (BAD_MVE_AUTO);
1562 return FALSE;
1563 }
1564 /* Ensure the option is valid on the current architecture. */
1565 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
1566 return FALSE;
1567
1568 /* Add the appropriate architecture feature for the barrier option used.
1569 */
1570 record_feature_use (feature);
1571
1572 return TRUE;
1573 }
1574
1575 /* Parse either a register or a scalar, with an optional type. Return the
1576 register number, and optionally fill in the actual type of the register
1577 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1578 type/index information in *TYPEINFO. */
1579
1580 static int
1581 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1582 enum arm_reg_type *rtype,
1583 struct neon_typed_alias *typeinfo)
1584 {
1585 char *str = *ccp;
1586 struct reg_entry *reg = arm_reg_parse_multi (&str);
1587 struct neon_typed_alias atype;
1588 struct neon_type_el parsetype;
1589
1590 atype.defined = 0;
1591 atype.index = -1;
1592 atype.eltype.type = NT_invtype;
1593 atype.eltype.size = -1;
1594
1595 /* Try alternate syntax for some types of register. Note these are mutually
1596 exclusive with the Neon syntax extensions. */
1597 if (reg == NULL)
1598 {
1599 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1600 if (altreg != FAIL)
1601 *ccp = str;
1602 if (typeinfo)
1603 *typeinfo = atype;
1604 return altreg;
1605 }
1606
1607 /* Undo polymorphism when a set of register types may be accepted. */
1608 if ((type == REG_TYPE_NDQ
1609 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1610 || (type == REG_TYPE_VFSD
1611 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1612 || (type == REG_TYPE_NSDQ
1613 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1614 || reg->type == REG_TYPE_NQ))
1615 || (type == REG_TYPE_NSD
1616 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1617 || (type == REG_TYPE_MMXWC
1618 && (reg->type == REG_TYPE_MMXWCG)))
1619 type = (enum arm_reg_type) reg->type;
1620
1621 if (type == REG_TYPE_MQ)
1622 {
1623 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1624 return FAIL;
1625
1626 if (!reg || reg->type != REG_TYPE_NQ)
1627 return FAIL;
1628
1629 if (reg->number > 14 && !mark_feature_used (&fpu_vfp_ext_d32))
1630 {
1631 first_error (_("expected MVE register [q0..q7]"));
1632 return FAIL;
1633 }
1634 type = REG_TYPE_NQ;
1635 }
1636 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
1637 && (type == REG_TYPE_NQ))
1638 return FAIL;
1639
1640
1641 if (type != reg->type)
1642 return FAIL;
1643
1644 if (reg->neon)
1645 atype = *reg->neon;
1646
1647 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1648 {
1649 if ((atype.defined & NTA_HASTYPE) != 0)
1650 {
1651 first_error (_("can't redefine type for operand"));
1652 return FAIL;
1653 }
1654 atype.defined |= NTA_HASTYPE;
1655 atype.eltype = parsetype;
1656 }
1657
1658 if (skip_past_char (&str, '[') == SUCCESS)
1659 {
1660 if (type != REG_TYPE_VFD
1661 && !(type == REG_TYPE_VFS
1662 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8_2))
1663 && !(type == REG_TYPE_NQ
1664 && ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)))
1665 {
1666 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
1667 first_error (_("only D and Q registers may be indexed"));
1668 else
1669 first_error (_("only D registers may be indexed"));
1670 return FAIL;
1671 }
1672
1673 if ((atype.defined & NTA_HASINDEX) != 0)
1674 {
1675 first_error (_("can't change index for operand"));
1676 return FAIL;
1677 }
1678
1679 atype.defined |= NTA_HASINDEX;
1680
1681 if (skip_past_char (&str, ']') == SUCCESS)
1682 atype.index = NEON_ALL_LANES;
1683 else
1684 {
1685 expressionS exp;
1686
1687 my_get_expression (&exp, &str, GE_NO_PREFIX);
1688
1689 if (exp.X_op != O_constant)
1690 {
1691 first_error (_("constant expression required"));
1692 return FAIL;
1693 }
1694
1695 if (skip_past_char (&str, ']') == FAIL)
1696 return FAIL;
1697
1698 atype.index = exp.X_add_number;
1699 }
1700 }
1701
1702 if (typeinfo)
1703 *typeinfo = atype;
1704
1705 if (rtype)
1706 *rtype = type;
1707
1708 *ccp = str;
1709
1710 return reg->number;
1711 }
1712
1713 /* Like arm_reg_parse, but also allow the following extra features:
1714 - If RTYPE is non-zero, return the (possibly restricted) type of the
1715 register (e.g. Neon double or quad reg when either has been requested).
1716 - If this is a Neon vector type with additional type information, fill
1717 in the struct pointed to by VECTYPE (if non-NULL).
1718 This function will fault on encountering a scalar. */
1719
1720 static int
1721 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1722 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1723 {
1724 struct neon_typed_alias atype;
1725 char *str = *ccp;
1726 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1727
1728 if (reg == FAIL)
1729 return FAIL;
1730
1731 /* Do not allow regname(... to parse as a register. */
1732 if (*str == '(')
1733 return FAIL;
1734
1735 /* Do not allow a scalar (reg+index) to parse as a register. */
1736 if ((atype.defined & NTA_HASINDEX) != 0)
1737 {
1738 first_error (_("register operand expected, but got scalar"));
1739 return FAIL;
1740 }
1741
1742 if (vectype)
1743 *vectype = atype.eltype;
1744
1745 *ccp = str;
1746
1747 return reg;
1748 }
1749
1750 #define NEON_SCALAR_REG(X) ((X) >> 4)
1751 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1752
1753 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1754 have enough information to be able to do a good job bounds-checking. So, we
1755 just do easy checks here, and do further checks later. */
1756
1757 static int
1758 parse_scalar (char **ccp, int elsize, struct neon_type_el *type, enum
1759 arm_reg_type reg_type)
1760 {
1761 int reg;
1762 char *str = *ccp;
1763 struct neon_typed_alias atype;
1764 unsigned reg_size;
1765
1766 reg = parse_typed_reg_or_scalar (&str, reg_type, NULL, &atype);
1767
1768 switch (reg_type)
1769 {
1770 case REG_TYPE_VFS:
1771 reg_size = 32;
1772 break;
1773 case REG_TYPE_VFD:
1774 reg_size = 64;
1775 break;
1776 case REG_TYPE_MQ:
1777 reg_size = 128;
1778 break;
1779 default:
1780 gas_assert (0);
1781 return FAIL;
1782 }
1783
1784 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1785 return FAIL;
1786
1787 if (reg_type != REG_TYPE_MQ && atype.index == NEON_ALL_LANES)
1788 {
1789 first_error (_("scalar must have an index"));
1790 return FAIL;
1791 }
1792 else if (atype.index >= reg_size / elsize)
1793 {
1794 first_error (_("scalar index out of range"));
1795 return FAIL;
1796 }
1797
1798 if (type)
1799 *type = atype.eltype;
1800
1801 *ccp = str;
1802
1803 return reg * 16 + atype.index;
1804 }
1805
1806 /* Types of registers in a list. */
1807
1808 enum reg_list_els
1809 {
1810 REGLIST_RN,
1811 REGLIST_CLRM,
1812 REGLIST_VFP_S,
1813 REGLIST_VFP_S_VPR,
1814 REGLIST_VFP_D,
1815 REGLIST_VFP_D_VPR,
1816 REGLIST_NEON_D
1817 };
1818
1819 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1820
1821 static long
1822 parse_reg_list (char ** strp, enum reg_list_els etype)
1823 {
1824 char *str = *strp;
1825 long range = 0;
1826 int another_range;
1827
1828 gas_assert (etype == REGLIST_RN || etype == REGLIST_CLRM);
1829
1830 /* We come back here if we get ranges concatenated by '+' or '|'. */
1831 do
1832 {
1833 skip_whitespace (str);
1834
1835 another_range = 0;
1836
1837 if (*str == '{')
1838 {
1839 int in_range = 0;
1840 int cur_reg = -1;
1841
1842 str++;
1843 do
1844 {
1845 int reg;
1846 const char apsr_str[] = "apsr";
1847 int apsr_str_len = strlen (apsr_str);
1848
1849 reg = arm_reg_parse (&str, REGLIST_RN);
1850 if (etype == REGLIST_CLRM)
1851 {
1852 if (reg == REG_SP || reg == REG_PC)
1853 reg = FAIL;
1854 else if (reg == FAIL
1855 && !strncasecmp (str, apsr_str, apsr_str_len)
1856 && !ISALPHA (*(str + apsr_str_len)))
1857 {
1858 reg = 15;
1859 str += apsr_str_len;
1860 }
1861
1862 if (reg == FAIL)
1863 {
1864 first_error (_("r0-r12, lr or APSR expected"));
1865 return FAIL;
1866 }
1867 }
1868 else /* etype == REGLIST_RN. */
1869 {
1870 if (reg == FAIL)
1871 {
1872 first_error (_(reg_expected_msgs[REGLIST_RN]));
1873 return FAIL;
1874 }
1875 }
1876
1877 if (in_range)
1878 {
1879 int i;
1880
1881 if (reg <= cur_reg)
1882 {
1883 first_error (_("bad range in register list"));
1884 return FAIL;
1885 }
1886
1887 for (i = cur_reg + 1; i < reg; i++)
1888 {
1889 if (range & (1 << i))
1890 as_tsktsk
1891 (_("Warning: duplicated register (r%d) in register list"),
1892 i);
1893 else
1894 range |= 1 << i;
1895 }
1896 in_range = 0;
1897 }
1898
1899 if (range & (1 << reg))
1900 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1901 reg);
1902 else if (reg <= cur_reg)
1903 as_tsktsk (_("Warning: register range not in ascending order"));
1904
1905 range |= 1 << reg;
1906 cur_reg = reg;
1907 }
1908 while (skip_past_comma (&str) != FAIL
1909 || (in_range = 1, *str++ == '-'));
1910 str--;
1911
1912 if (skip_past_char (&str, '}') == FAIL)
1913 {
1914 first_error (_("missing `}'"));
1915 return FAIL;
1916 }
1917 }
1918 else if (etype == REGLIST_RN)
1919 {
1920 expressionS exp;
1921
1922 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1923 return FAIL;
1924
1925 if (exp.X_op == O_constant)
1926 {
1927 if (exp.X_add_number
1928 != (exp.X_add_number & 0x0000ffff))
1929 {
1930 inst.error = _("invalid register mask");
1931 return FAIL;
1932 }
1933
1934 if ((range & exp.X_add_number) != 0)
1935 {
1936 int regno = range & exp.X_add_number;
1937
1938 regno &= -regno;
1939 regno = (1 << regno) - 1;
1940 as_tsktsk
1941 (_("Warning: duplicated register (r%d) in register list"),
1942 regno);
1943 }
1944
1945 range |= exp.X_add_number;
1946 }
1947 else
1948 {
1949 if (inst.relocs[0].type != 0)
1950 {
1951 inst.error = _("expression too complex");
1952 return FAIL;
1953 }
1954
1955 memcpy (&inst.relocs[0].exp, &exp, sizeof (expressionS));
1956 inst.relocs[0].type = BFD_RELOC_ARM_MULTI;
1957 inst.relocs[0].pc_rel = 0;
1958 }
1959 }
1960
1961 if (*str == '|' || *str == '+')
1962 {
1963 str++;
1964 another_range = 1;
1965 }
1966 }
1967 while (another_range);
1968
1969 *strp = str;
1970 return range;
1971 }
1972
1973 /* Parse a VFP register list. If the string is invalid return FAIL.
1974 Otherwise return the number of registers, and set PBASE to the first
1975 register. Parses registers of type ETYPE.
1976 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1977 - Q registers can be used to specify pairs of D registers
1978 - { } can be omitted from around a singleton register list
1979 FIXME: This is not implemented, as it would require backtracking in
1980 some cases, e.g.:
1981 vtbl.8 d3,d4,d5
1982 This could be done (the meaning isn't really ambiguous), but doesn't
1983 fit in well with the current parsing framework.
1984 - 32 D registers may be used (also true for VFPv3).
1985 FIXME: Types are ignored in these register lists, which is probably a
1986 bug. */
1987
1988 static int
1989 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype,
1990 bfd_boolean *partial_match)
1991 {
1992 char *str = *ccp;
1993 int base_reg;
1994 int new_base;
1995 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1996 int max_regs = 0;
1997 int count = 0;
1998 int warned = 0;
1999 unsigned long mask = 0;
2000 int i;
2001 bfd_boolean vpr_seen = FALSE;
2002 bfd_boolean expect_vpr =
2003 (etype == REGLIST_VFP_S_VPR) || (etype == REGLIST_VFP_D_VPR);
2004
2005 if (skip_past_char (&str, '{') == FAIL)
2006 {
2007 inst.error = _("expecting {");
2008 return FAIL;
2009 }
2010
2011 switch (etype)
2012 {
2013 case REGLIST_VFP_S:
2014 case REGLIST_VFP_S_VPR:
2015 regtype = REG_TYPE_VFS;
2016 max_regs = 32;
2017 break;
2018
2019 case REGLIST_VFP_D:
2020 case REGLIST_VFP_D_VPR:
2021 regtype = REG_TYPE_VFD;
2022 break;
2023
2024 case REGLIST_NEON_D:
2025 regtype = REG_TYPE_NDQ;
2026 break;
2027
2028 default:
2029 gas_assert (0);
2030 }
2031
2032 if (etype != REGLIST_VFP_S && etype != REGLIST_VFP_S_VPR)
2033 {
2034 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
2035 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
2036 {
2037 max_regs = 32;
2038 if (thumb_mode)
2039 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
2040 fpu_vfp_ext_d32);
2041 else
2042 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
2043 fpu_vfp_ext_d32);
2044 }
2045 else
2046 max_regs = 16;
2047 }
2048
2049 base_reg = max_regs;
2050 *partial_match = FALSE;
2051
2052 do
2053 {
2054 int setmask = 1, addregs = 1;
2055 const char vpr_str[] = "vpr";
2056 int vpr_str_len = strlen (vpr_str);
2057
2058 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
2059
2060 if (expect_vpr)
2061 {
2062 if (new_base == FAIL
2063 && !strncasecmp (str, vpr_str, vpr_str_len)
2064 && !ISALPHA (*(str + vpr_str_len))
2065 && !vpr_seen)
2066 {
2067 vpr_seen = TRUE;
2068 str += vpr_str_len;
2069 if (count == 0)
2070 base_reg = 0; /* Canonicalize VPR only on d0 with 0 regs. */
2071 }
2072 else if (vpr_seen)
2073 {
2074 first_error (_("VPR expected last"));
2075 return FAIL;
2076 }
2077 else if (new_base == FAIL)
2078 {
2079 if (regtype == REG_TYPE_VFS)
2080 first_error (_("VFP single precision register or VPR "
2081 "expected"));
2082 else /* regtype == REG_TYPE_VFD. */
2083 first_error (_("VFP/Neon double precision register or VPR "
2084 "expected"));
2085 return FAIL;
2086 }
2087 }
2088 else if (new_base == FAIL)
2089 {
2090 first_error (_(reg_expected_msgs[regtype]));
2091 return FAIL;
2092 }
2093
2094 *partial_match = TRUE;
2095 if (vpr_seen)
2096 continue;
2097
2098 if (new_base >= max_regs)
2099 {
2100 first_error (_("register out of range in list"));
2101 return FAIL;
2102 }
2103
2104 /* Note: a value of 2 * n is returned for the register Q<n>. */
2105 if (regtype == REG_TYPE_NQ)
2106 {
2107 setmask = 3;
2108 addregs = 2;
2109 }
2110
2111 if (new_base < base_reg)
2112 base_reg = new_base;
2113
2114 if (mask & (setmask << new_base))
2115 {
2116 first_error (_("invalid register list"));
2117 return FAIL;
2118 }
2119
2120 if ((mask >> new_base) != 0 && ! warned && !vpr_seen)
2121 {
2122 as_tsktsk (_("register list not in ascending order"));
2123 warned = 1;
2124 }
2125
2126 mask |= setmask << new_base;
2127 count += addregs;
2128
2129 if (*str == '-') /* We have the start of a range expression */
2130 {
2131 int high_range;
2132
2133 str++;
2134
2135 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
2136 == FAIL)
2137 {
2138 inst.error = gettext (reg_expected_msgs[regtype]);
2139 return FAIL;
2140 }
2141
2142 if (high_range >= max_regs)
2143 {
2144 first_error (_("register out of range in list"));
2145 return FAIL;
2146 }
2147
2148 if (regtype == REG_TYPE_NQ)
2149 high_range = high_range + 1;
2150
2151 if (high_range <= new_base)
2152 {
2153 inst.error = _("register range not in ascending order");
2154 return FAIL;
2155 }
2156
2157 for (new_base += addregs; new_base <= high_range; new_base += addregs)
2158 {
2159 if (mask & (setmask << new_base))
2160 {
2161 inst.error = _("invalid register list");
2162 return FAIL;
2163 }
2164
2165 mask |= setmask << new_base;
2166 count += addregs;
2167 }
2168 }
2169 }
2170 while (skip_past_comma (&str) != FAIL);
2171
2172 str++;
2173
2174 /* Sanity check -- should have raised a parse error above. */
2175 if ((!vpr_seen && count == 0) || count > max_regs)
2176 abort ();
2177
2178 *pbase = base_reg;
2179
2180 if (expect_vpr && !vpr_seen)
2181 {
2182 first_error (_("VPR expected last"));
2183 return FAIL;
2184 }
2185
2186 /* Final test -- the registers must be consecutive. */
2187 mask >>= base_reg;
2188 for (i = 0; i < count; i++)
2189 {
2190 if ((mask & (1u << i)) == 0)
2191 {
2192 inst.error = _("non-contiguous register range");
2193 return FAIL;
2194 }
2195 }
2196
2197 *ccp = str;
2198
2199 return count;
2200 }
2201
2202 /* True if two alias types are the same. */
2203
2204 static bfd_boolean
2205 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
2206 {
2207 if (!a && !b)
2208 return TRUE;
2209
2210 if (!a || !b)
2211 return FALSE;
2212
2213 if (a->defined != b->defined)
2214 return FALSE;
2215
2216 if ((a->defined & NTA_HASTYPE) != 0
2217 && (a->eltype.type != b->eltype.type
2218 || a->eltype.size != b->eltype.size))
2219 return FALSE;
2220
2221 if ((a->defined & NTA_HASINDEX) != 0
2222 && (a->index != b->index))
2223 return FALSE;
2224
2225 return TRUE;
2226 }
2227
2228 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
2229 The base register is put in *PBASE.
2230 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
2231 the return value.
2232 The register stride (minus one) is put in bit 4 of the return value.
2233 Bits [6:5] encode the list length (minus one).
2234 The type of the list elements is put in *ELTYPE, if non-NULL. */
2235
2236 #define NEON_LANE(X) ((X) & 0xf)
2237 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
2238 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
2239
2240 static int
2241 parse_neon_el_struct_list (char **str, unsigned *pbase,
2242 int mve,
2243 struct neon_type_el *eltype)
2244 {
2245 char *ptr = *str;
2246 int base_reg = -1;
2247 int reg_incr = -1;
2248 int count = 0;
2249 int lane = -1;
2250 int leading_brace = 0;
2251 enum arm_reg_type rtype = REG_TYPE_NDQ;
2252 const char *const incr_error = mve ? _("register stride must be 1") :
2253 _("register stride must be 1 or 2");
2254 const char *const type_error = _("mismatched element/structure types in list");
2255 struct neon_typed_alias firsttype;
2256 firsttype.defined = 0;
2257 firsttype.eltype.type = NT_invtype;
2258 firsttype.eltype.size = -1;
2259 firsttype.index = -1;
2260
2261 if (skip_past_char (&ptr, '{') == SUCCESS)
2262 leading_brace = 1;
2263
2264 do
2265 {
2266 struct neon_typed_alias atype;
2267 if (mve)
2268 rtype = REG_TYPE_MQ;
2269 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
2270
2271 if (getreg == FAIL)
2272 {
2273 first_error (_(reg_expected_msgs[rtype]));
2274 return FAIL;
2275 }
2276
2277 if (base_reg == -1)
2278 {
2279 base_reg = getreg;
2280 if (rtype == REG_TYPE_NQ)
2281 {
2282 reg_incr = 1;
2283 }
2284 firsttype = atype;
2285 }
2286 else if (reg_incr == -1)
2287 {
2288 reg_incr = getreg - base_reg;
2289 if (reg_incr < 1 || reg_incr > 2)
2290 {
2291 first_error (_(incr_error));
2292 return FAIL;
2293 }
2294 }
2295 else if (getreg != base_reg + reg_incr * count)
2296 {
2297 first_error (_(incr_error));
2298 return FAIL;
2299 }
2300
2301 if (! neon_alias_types_same (&atype, &firsttype))
2302 {
2303 first_error (_(type_error));
2304 return FAIL;
2305 }
2306
2307 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
2308 modes. */
2309 if (ptr[0] == '-')
2310 {
2311 struct neon_typed_alias htype;
2312 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
2313 if (lane == -1)
2314 lane = NEON_INTERLEAVE_LANES;
2315 else if (lane != NEON_INTERLEAVE_LANES)
2316 {
2317 first_error (_(type_error));
2318 return FAIL;
2319 }
2320 if (reg_incr == -1)
2321 reg_incr = 1;
2322 else if (reg_incr != 1)
2323 {
2324 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
2325 return FAIL;
2326 }
2327 ptr++;
2328 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2329 if (hireg == FAIL)
2330 {
2331 first_error (_(reg_expected_msgs[rtype]));
2332 return FAIL;
2333 }
2334 if (! neon_alias_types_same (&htype, &firsttype))
2335 {
2336 first_error (_(type_error));
2337 return FAIL;
2338 }
2339 count += hireg + dregs - getreg;
2340 continue;
2341 }
2342
2343 /* If we're using Q registers, we can't use [] or [n] syntax. */
2344 if (rtype == REG_TYPE_NQ)
2345 {
2346 count += 2;
2347 continue;
2348 }
2349
2350 if ((atype.defined & NTA_HASINDEX) != 0)
2351 {
2352 if (lane == -1)
2353 lane = atype.index;
2354 else if (lane != atype.index)
2355 {
2356 first_error (_(type_error));
2357 return FAIL;
2358 }
2359 }
2360 else if (lane == -1)
2361 lane = NEON_INTERLEAVE_LANES;
2362 else if (lane != NEON_INTERLEAVE_LANES)
2363 {
2364 first_error (_(type_error));
2365 return FAIL;
2366 }
2367 count++;
2368 }
2369 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2370
2371 /* No lane set by [x]. We must be interleaving structures. */
2372 if (lane == -1)
2373 lane = NEON_INTERLEAVE_LANES;
2374
2375 /* Sanity check. */
2376 if (lane == -1 || base_reg == -1 || count < 1 || (!mve && count > 4)
2377 || (count > 1 && reg_incr == -1))
2378 {
2379 first_error (_("error parsing element/structure list"));
2380 return FAIL;
2381 }
2382
2383 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2384 {
2385 first_error (_("expected }"));
2386 return FAIL;
2387 }
2388
2389 if (reg_incr == -1)
2390 reg_incr = 1;
2391
2392 if (eltype)
2393 *eltype = firsttype.eltype;
2394
2395 *pbase = base_reg;
2396 *str = ptr;
2397
2398 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2399 }
2400
2401 /* Parse an explicit relocation suffix on an expression. This is
2402 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2403 arm_reloc_hsh contains no entries, so this function can only
2404 succeed if there is no () after the word. Returns -1 on error,
2405 BFD_RELOC_UNUSED if there wasn't any suffix. */
2406
2407 static int
2408 parse_reloc (char **str)
2409 {
2410 struct reloc_entry *r;
2411 char *p, *q;
2412
2413 if (**str != '(')
2414 return BFD_RELOC_UNUSED;
2415
2416 p = *str + 1;
2417 q = p;
2418
2419 while (*q && *q != ')' && *q != ',')
2420 q++;
2421 if (*q != ')')
2422 return -1;
2423
2424 if ((r = (struct reloc_entry *)
2425 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2426 return -1;
2427
2428 *str = q + 1;
2429 return r->reloc;
2430 }
2431
2432 /* Directives: register aliases. */
2433
2434 static struct reg_entry *
2435 insert_reg_alias (char *str, unsigned number, int type)
2436 {
2437 struct reg_entry *new_reg;
2438 const char *name;
2439
2440 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2441 {
2442 if (new_reg->builtin)
2443 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2444
2445 /* Only warn about a redefinition if it's not defined as the
2446 same register. */
2447 else if (new_reg->number != number || new_reg->type != type)
2448 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2449
2450 return NULL;
2451 }
2452
2453 name = xstrdup (str);
2454 new_reg = XNEW (struct reg_entry);
2455
2456 new_reg->name = name;
2457 new_reg->number = number;
2458 new_reg->type = type;
2459 new_reg->builtin = FALSE;
2460 new_reg->neon = NULL;
2461
2462 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2463 abort ();
2464
2465 return new_reg;
2466 }
2467
2468 static void
2469 insert_neon_reg_alias (char *str, int number, int type,
2470 struct neon_typed_alias *atype)
2471 {
2472 struct reg_entry *reg = insert_reg_alias (str, number, type);
2473
2474 if (!reg)
2475 {
2476 first_error (_("attempt to redefine typed alias"));
2477 return;
2478 }
2479
2480 if (atype)
2481 {
2482 reg->neon = XNEW (struct neon_typed_alias);
2483 *reg->neon = *atype;
2484 }
2485 }
2486
2487 /* Look for the .req directive. This is of the form:
2488
2489 new_register_name .req existing_register_name
2490
2491 If we find one, or if it looks sufficiently like one that we want to
2492 handle any error here, return TRUE. Otherwise return FALSE. */
2493
2494 static bfd_boolean
2495 create_register_alias (char * newname, char *p)
2496 {
2497 struct reg_entry *old;
2498 char *oldname, *nbuf;
2499 size_t nlen;
2500
2501 /* The input scrubber ensures that whitespace after the mnemonic is
2502 collapsed to single spaces. */
2503 oldname = p;
2504 if (strncmp (oldname, " .req ", 6) != 0)
2505 return FALSE;
2506
2507 oldname += 6;
2508 if (*oldname == '\0')
2509 return FALSE;
2510
2511 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2512 if (!old)
2513 {
2514 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2515 return TRUE;
2516 }
2517
2518 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2519 the desired alias name, and p points to its end. If not, then
2520 the desired alias name is in the global original_case_string. */
2521 #ifdef TC_CASE_SENSITIVE
2522 nlen = p - newname;
2523 #else
2524 newname = original_case_string;
2525 nlen = strlen (newname);
2526 #endif
2527
2528 nbuf = xmemdup0 (newname, nlen);
2529
2530 /* Create aliases under the new name as stated; an all-lowercase
2531 version of the new name; and an all-uppercase version of the new
2532 name. */
2533 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2534 {
2535 for (p = nbuf; *p; p++)
2536 *p = TOUPPER (*p);
2537
2538 if (strncmp (nbuf, newname, nlen))
2539 {
2540 /* If this attempt to create an additional alias fails, do not bother
2541 trying to create the all-lower case alias. We will fail and issue
2542 a second, duplicate error message. This situation arises when the
2543 programmer does something like:
2544 foo .req r0
2545 Foo .req r1
2546 The second .req creates the "Foo" alias but then fails to create
2547 the artificial FOO alias because it has already been created by the
2548 first .req. */
2549 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2550 {
2551 free (nbuf);
2552 return TRUE;
2553 }
2554 }
2555
2556 for (p = nbuf; *p; p++)
2557 *p = TOLOWER (*p);
2558
2559 if (strncmp (nbuf, newname, nlen))
2560 insert_reg_alias (nbuf, old->number, old->type);
2561 }
2562
2563 free (nbuf);
2564 return TRUE;
2565 }
2566
2567 /* Create a Neon typed/indexed register alias using directives, e.g.:
2568 X .dn d5.s32[1]
2569 Y .qn 6.s16
2570 Z .dn d7
2571 T .dn Z[0]
2572 These typed registers can be used instead of the types specified after the
2573 Neon mnemonic, so long as all operands given have types. Types can also be
2574 specified directly, e.g.:
2575 vadd d0.s32, d1.s32, d2.s32 */
2576
2577 static bfd_boolean
2578 create_neon_reg_alias (char *newname, char *p)
2579 {
2580 enum arm_reg_type basetype;
2581 struct reg_entry *basereg;
2582 struct reg_entry mybasereg;
2583 struct neon_type ntype;
2584 struct neon_typed_alias typeinfo;
2585 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2586 int namelen;
2587
2588 typeinfo.defined = 0;
2589 typeinfo.eltype.type = NT_invtype;
2590 typeinfo.eltype.size = -1;
2591 typeinfo.index = -1;
2592
2593 nameend = p;
2594
2595 if (strncmp (p, " .dn ", 5) == 0)
2596 basetype = REG_TYPE_VFD;
2597 else if (strncmp (p, " .qn ", 5) == 0)
2598 basetype = REG_TYPE_NQ;
2599 else
2600 return FALSE;
2601
2602 p += 5;
2603
2604 if (*p == '\0')
2605 return FALSE;
2606
2607 basereg = arm_reg_parse_multi (&p);
2608
2609 if (basereg && basereg->type != basetype)
2610 {
2611 as_bad (_("bad type for register"));
2612 return FALSE;
2613 }
2614
2615 if (basereg == NULL)
2616 {
2617 expressionS exp;
2618 /* Try parsing as an integer. */
2619 my_get_expression (&exp, &p, GE_NO_PREFIX);
2620 if (exp.X_op != O_constant)
2621 {
2622 as_bad (_("expression must be constant"));
2623 return FALSE;
2624 }
2625 basereg = &mybasereg;
2626 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2627 : exp.X_add_number;
2628 basereg->neon = 0;
2629 }
2630
2631 if (basereg->neon)
2632 typeinfo = *basereg->neon;
2633
2634 if (parse_neon_type (&ntype, &p) == SUCCESS)
2635 {
2636 /* We got a type. */
2637 if (typeinfo.defined & NTA_HASTYPE)
2638 {
2639 as_bad (_("can't redefine the type of a register alias"));
2640 return FALSE;
2641 }
2642
2643 typeinfo.defined |= NTA_HASTYPE;
2644 if (ntype.elems != 1)
2645 {
2646 as_bad (_("you must specify a single type only"));
2647 return FALSE;
2648 }
2649 typeinfo.eltype = ntype.el[0];
2650 }
2651
2652 if (skip_past_char (&p, '[') == SUCCESS)
2653 {
2654 expressionS exp;
2655 /* We got a scalar index. */
2656
2657 if (typeinfo.defined & NTA_HASINDEX)
2658 {
2659 as_bad (_("can't redefine the index of a scalar alias"));
2660 return FALSE;
2661 }
2662
2663 my_get_expression (&exp, &p, GE_NO_PREFIX);
2664
2665 if (exp.X_op != O_constant)
2666 {
2667 as_bad (_("scalar index must be constant"));
2668 return FALSE;
2669 }
2670
2671 typeinfo.defined |= NTA_HASINDEX;
2672 typeinfo.index = exp.X_add_number;
2673
2674 if (skip_past_char (&p, ']') == FAIL)
2675 {
2676 as_bad (_("expecting ]"));
2677 return FALSE;
2678 }
2679 }
2680
2681 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2682 the desired alias name, and p points to its end. If not, then
2683 the desired alias name is in the global original_case_string. */
2684 #ifdef TC_CASE_SENSITIVE
2685 namelen = nameend - newname;
2686 #else
2687 newname = original_case_string;
2688 namelen = strlen (newname);
2689 #endif
2690
2691 namebuf = xmemdup0 (newname, namelen);
2692
2693 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2694 typeinfo.defined != 0 ? &typeinfo : NULL);
2695
2696 /* Insert name in all uppercase. */
2697 for (p = namebuf; *p; p++)
2698 *p = TOUPPER (*p);
2699
2700 if (strncmp (namebuf, newname, namelen))
2701 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2702 typeinfo.defined != 0 ? &typeinfo : NULL);
2703
2704 /* Insert name in all lowercase. */
2705 for (p = namebuf; *p; p++)
2706 *p = TOLOWER (*p);
2707
2708 if (strncmp (namebuf, newname, namelen))
2709 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2710 typeinfo.defined != 0 ? &typeinfo : NULL);
2711
2712 free (namebuf);
2713 return TRUE;
2714 }
2715
2716 /* Should never be called, as .req goes between the alias and the
2717 register name, not at the beginning of the line. */
2718
2719 static void
2720 s_req (int a ATTRIBUTE_UNUSED)
2721 {
2722 as_bad (_("invalid syntax for .req directive"));
2723 }
2724
2725 static void
2726 s_dn (int a ATTRIBUTE_UNUSED)
2727 {
2728 as_bad (_("invalid syntax for .dn directive"));
2729 }
2730
2731 static void
2732 s_qn (int a ATTRIBUTE_UNUSED)
2733 {
2734 as_bad (_("invalid syntax for .qn directive"));
2735 }
2736
2737 /* The .unreq directive deletes an alias which was previously defined
2738 by .req. For example:
2739
2740 my_alias .req r11
2741 .unreq my_alias */
2742
2743 static void
2744 s_unreq (int a ATTRIBUTE_UNUSED)
2745 {
2746 char * name;
2747 char saved_char;
2748
2749 name = input_line_pointer;
2750
2751 while (*input_line_pointer != 0
2752 && *input_line_pointer != ' '
2753 && *input_line_pointer != '\n')
2754 ++input_line_pointer;
2755
2756 saved_char = *input_line_pointer;
2757 *input_line_pointer = 0;
2758
2759 if (!*name)
2760 as_bad (_("invalid syntax for .unreq directive"));
2761 else
2762 {
2763 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2764 name);
2765
2766 if (!reg)
2767 as_bad (_("unknown register alias '%s'"), name);
2768 else if (reg->builtin)
2769 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2770 name);
2771 else
2772 {
2773 char * p;
2774 char * nbuf;
2775
2776 hash_delete (arm_reg_hsh, name, FALSE);
2777 free ((char *) reg->name);
2778 if (reg->neon)
2779 free (reg->neon);
2780 free (reg);
2781
2782 /* Also locate the all upper case and all lower case versions.
2783 Do not complain if we cannot find one or the other as it
2784 was probably deleted above. */
2785
2786 nbuf = strdup (name);
2787 for (p = nbuf; *p; p++)
2788 *p = TOUPPER (*p);
2789 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2790 if (reg)
2791 {
2792 hash_delete (arm_reg_hsh, nbuf, FALSE);
2793 free ((char *) reg->name);
2794 if (reg->neon)
2795 free (reg->neon);
2796 free (reg);
2797 }
2798
2799 for (p = nbuf; *p; p++)
2800 *p = TOLOWER (*p);
2801 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2802 if (reg)
2803 {
2804 hash_delete (arm_reg_hsh, nbuf, FALSE);
2805 free ((char *) reg->name);
2806 if (reg->neon)
2807 free (reg->neon);
2808 free (reg);
2809 }
2810
2811 free (nbuf);
2812 }
2813 }
2814
2815 *input_line_pointer = saved_char;
2816 demand_empty_rest_of_line ();
2817 }
2818
2819 /* Directives: Instruction set selection. */
2820
2821 #ifdef OBJ_ELF
2822 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2823 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2824 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2825 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2826
2827 /* Create a new mapping symbol for the transition to STATE. */
2828
2829 static void
2830 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2831 {
2832 symbolS * symbolP;
2833 const char * symname;
2834 int type;
2835
2836 switch (state)
2837 {
2838 case MAP_DATA:
2839 symname = "$d";
2840 type = BSF_NO_FLAGS;
2841 break;
2842 case MAP_ARM:
2843 symname = "$a";
2844 type = BSF_NO_FLAGS;
2845 break;
2846 case MAP_THUMB:
2847 symname = "$t";
2848 type = BSF_NO_FLAGS;
2849 break;
2850 default:
2851 abort ();
2852 }
2853
2854 symbolP = symbol_new (symname, now_seg, value, frag);
2855 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2856
2857 switch (state)
2858 {
2859 case MAP_ARM:
2860 THUMB_SET_FUNC (symbolP, 0);
2861 ARM_SET_THUMB (symbolP, 0);
2862 ARM_SET_INTERWORK (symbolP, support_interwork);
2863 break;
2864
2865 case MAP_THUMB:
2866 THUMB_SET_FUNC (symbolP, 1);
2867 ARM_SET_THUMB (symbolP, 1);
2868 ARM_SET_INTERWORK (symbolP, support_interwork);
2869 break;
2870
2871 case MAP_DATA:
2872 default:
2873 break;
2874 }
2875
2876 /* Save the mapping symbols for future reference. Also check that
2877 we do not place two mapping symbols at the same offset within a
2878 frag. We'll handle overlap between frags in
2879 check_mapping_symbols.
2880
2881 If .fill or other data filling directive generates zero sized data,
2882 the mapping symbol for the following code will have the same value
2883 as the one generated for the data filling directive. In this case,
2884 we replace the old symbol with the new one at the same address. */
2885 if (value == 0)
2886 {
2887 if (frag->tc_frag_data.first_map != NULL)
2888 {
2889 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2890 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2891 }
2892 frag->tc_frag_data.first_map = symbolP;
2893 }
2894 if (frag->tc_frag_data.last_map != NULL)
2895 {
2896 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2897 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2898 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2899 }
2900 frag->tc_frag_data.last_map = symbolP;
2901 }
2902
2903 /* We must sometimes convert a region marked as code to data during
2904 code alignment, if an odd number of bytes have to be padded. The
2905 code mapping symbol is pushed to an aligned address. */
2906
2907 static void
2908 insert_data_mapping_symbol (enum mstate state,
2909 valueT value, fragS *frag, offsetT bytes)
2910 {
2911 /* If there was already a mapping symbol, remove it. */
2912 if (frag->tc_frag_data.last_map != NULL
2913 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2914 {
2915 symbolS *symp = frag->tc_frag_data.last_map;
2916
2917 if (value == 0)
2918 {
2919 know (frag->tc_frag_data.first_map == symp);
2920 frag->tc_frag_data.first_map = NULL;
2921 }
2922 frag->tc_frag_data.last_map = NULL;
2923 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2924 }
2925
2926 make_mapping_symbol (MAP_DATA, value, frag);
2927 make_mapping_symbol (state, value + bytes, frag);
2928 }
2929
2930 static void mapping_state_2 (enum mstate state, int max_chars);
2931
2932 /* Set the mapping state to STATE. Only call this when about to
2933 emit some STATE bytes to the file. */
2934
2935 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2936 void
2937 mapping_state (enum mstate state)
2938 {
2939 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2940
2941 if (mapstate == state)
2942 /* The mapping symbol has already been emitted.
2943 There is nothing else to do. */
2944 return;
2945
2946 if (state == MAP_ARM || state == MAP_THUMB)
2947 /* PR gas/12931
2948 All ARM instructions require 4-byte alignment.
2949 (Almost) all Thumb instructions require 2-byte alignment.
2950
2951 When emitting instructions into any section, mark the section
2952 appropriately.
2953
2954 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2955 but themselves require 2-byte alignment; this applies to some
2956 PC- relative forms. However, these cases will involve implicit
2957 literal pool generation or an explicit .align >=2, both of
2958 which will cause the section to me marked with sufficient
2959 alignment. Thus, we don't handle those cases here. */
2960 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2961
2962 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2963 /* This case will be evaluated later. */
2964 return;
2965
2966 mapping_state_2 (state, 0);
2967 }
2968
2969 /* Same as mapping_state, but MAX_CHARS bytes have already been
2970 allocated. Put the mapping symbol that far back. */
2971
2972 static void
2973 mapping_state_2 (enum mstate state, int max_chars)
2974 {
2975 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2976
2977 if (!SEG_NORMAL (now_seg))
2978 return;
2979
2980 if (mapstate == state)
2981 /* The mapping symbol has already been emitted.
2982 There is nothing else to do. */
2983 return;
2984
2985 if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2986 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2987 {
2988 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2989 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2990
2991 if (add_symbol)
2992 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2993 }
2994
2995 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2996 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2997 }
2998 #undef TRANSITION
2999 #else
3000 #define mapping_state(x) ((void)0)
3001 #define mapping_state_2(x, y) ((void)0)
3002 #endif
3003
3004 /* Find the real, Thumb encoded start of a Thumb function. */
3005
3006 #ifdef OBJ_COFF
3007 static symbolS *
3008 find_real_start (symbolS * symbolP)
3009 {
3010 char * real_start;
3011 const char * name = S_GET_NAME (symbolP);
3012 symbolS * new_target;
3013
3014 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
3015 #define STUB_NAME ".real_start_of"
3016
3017 if (name == NULL)
3018 abort ();
3019
3020 /* The compiler may generate BL instructions to local labels because
3021 it needs to perform a branch to a far away location. These labels
3022 do not have a corresponding ".real_start_of" label. We check
3023 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
3024 the ".real_start_of" convention for nonlocal branches. */
3025 if (S_IS_LOCAL (symbolP) || name[0] == '.')
3026 return symbolP;
3027
3028 real_start = concat (STUB_NAME, name, NULL);
3029 new_target = symbol_find (real_start);
3030 free (real_start);
3031
3032 if (new_target == NULL)
3033 {
3034 as_warn (_("Failed to find real start of function: %s\n"), name);
3035 new_target = symbolP;
3036 }
3037
3038 return new_target;
3039 }
3040 #endif
3041
3042 static void
3043 opcode_select (int width)
3044 {
3045 switch (width)
3046 {
3047 case 16:
3048 if (! thumb_mode)
3049 {
3050 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
3051 as_bad (_("selected processor does not support THUMB opcodes"));
3052
3053 thumb_mode = 1;
3054 /* No need to force the alignment, since we will have been
3055 coming from ARM mode, which is word-aligned. */
3056 record_alignment (now_seg, 1);
3057 }
3058 break;
3059
3060 case 32:
3061 if (thumb_mode)
3062 {
3063 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
3064 as_bad (_("selected processor does not support ARM opcodes"));
3065
3066 thumb_mode = 0;
3067
3068 if (!need_pass_2)
3069 frag_align (2, 0, 0);
3070
3071 record_alignment (now_seg, 1);
3072 }
3073 break;
3074
3075 default:
3076 as_bad (_("invalid instruction size selected (%d)"), width);
3077 }
3078 }
3079
3080 static void
3081 s_arm (int ignore ATTRIBUTE_UNUSED)
3082 {
3083 opcode_select (32);
3084 demand_empty_rest_of_line ();
3085 }
3086
3087 static void
3088 s_thumb (int ignore ATTRIBUTE_UNUSED)
3089 {
3090 opcode_select (16);
3091 demand_empty_rest_of_line ();
3092 }
3093
3094 static void
3095 s_code (int unused ATTRIBUTE_UNUSED)
3096 {
3097 int temp;
3098
3099 temp = get_absolute_expression ();
3100 switch (temp)
3101 {
3102 case 16:
3103 case 32:
3104 opcode_select (temp);
3105 break;
3106
3107 default:
3108 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
3109 }
3110 }
3111
3112 static void
3113 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
3114 {
3115 /* If we are not already in thumb mode go into it, EVEN if
3116 the target processor does not support thumb instructions.
3117 This is used by gcc/config/arm/lib1funcs.asm for example
3118 to compile interworking support functions even if the
3119 target processor should not support interworking. */
3120 if (! thumb_mode)
3121 {
3122 thumb_mode = 2;
3123 record_alignment (now_seg, 1);
3124 }
3125
3126 demand_empty_rest_of_line ();
3127 }
3128
3129 static void
3130 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
3131 {
3132 s_thumb (0);
3133
3134 /* The following label is the name/address of the start of a Thumb function.
3135 We need to know this for the interworking support. */
3136 label_is_thumb_function_name = TRUE;
3137 }
3138
3139 /* Perform a .set directive, but also mark the alias as
3140 being a thumb function. */
3141
3142 static void
3143 s_thumb_set (int equiv)
3144 {
3145 /* XXX the following is a duplicate of the code for s_set() in read.c
3146 We cannot just call that code as we need to get at the symbol that
3147 is created. */
3148 char * name;
3149 char delim;
3150 char * end_name;
3151 symbolS * symbolP;
3152
3153 /* Especial apologies for the random logic:
3154 This just grew, and could be parsed much more simply!
3155 Dean - in haste. */
3156 delim = get_symbol_name (& name);
3157 end_name = input_line_pointer;
3158 (void) restore_line_pointer (delim);
3159
3160 if (*input_line_pointer != ',')
3161 {
3162 *end_name = 0;
3163 as_bad (_("expected comma after name \"%s\""), name);
3164 *end_name = delim;
3165 ignore_rest_of_line ();
3166 return;
3167 }
3168
3169 input_line_pointer++;
3170 *end_name = 0;
3171
3172 if (name[0] == '.' && name[1] == '\0')
3173 {
3174 /* XXX - this should not happen to .thumb_set. */
3175 abort ();
3176 }
3177
3178 if ((symbolP = symbol_find (name)) == NULL
3179 && (symbolP = md_undefined_symbol (name)) == NULL)
3180 {
3181 #ifndef NO_LISTING
3182 /* When doing symbol listings, play games with dummy fragments living
3183 outside the normal fragment chain to record the file and line info
3184 for this symbol. */
3185 if (listing & LISTING_SYMBOLS)
3186 {
3187 extern struct list_info_struct * listing_tail;
3188 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
3189
3190 memset (dummy_frag, 0, sizeof (fragS));
3191 dummy_frag->fr_type = rs_fill;
3192 dummy_frag->line = listing_tail;
3193 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
3194 dummy_frag->fr_symbol = symbolP;
3195 }
3196 else
3197 #endif
3198 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
3199
3200 #ifdef OBJ_COFF
3201 /* "set" symbols are local unless otherwise specified. */
3202 SF_SET_LOCAL (symbolP);
3203 #endif /* OBJ_COFF */
3204 } /* Make a new symbol. */
3205
3206 symbol_table_insert (symbolP);
3207
3208 * end_name = delim;
3209
3210 if (equiv
3211 && S_IS_DEFINED (symbolP)
3212 && S_GET_SEGMENT (symbolP) != reg_section)
3213 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
3214
3215 pseudo_set (symbolP);
3216
3217 demand_empty_rest_of_line ();
3218
3219 /* XXX Now we come to the Thumb specific bit of code. */
3220
3221 THUMB_SET_FUNC (symbolP, 1);
3222 ARM_SET_THUMB (symbolP, 1);
3223 #if defined OBJ_ELF || defined OBJ_COFF
3224 ARM_SET_INTERWORK (symbolP, support_interwork);
3225 #endif
3226 }
3227
3228 /* Directives: Mode selection. */
3229
3230 /* .syntax [unified|divided] - choose the new unified syntax
3231 (same for Arm and Thumb encoding, modulo slight differences in what
3232 can be represented) or the old divergent syntax for each mode. */
3233 static void
3234 s_syntax (int unused ATTRIBUTE_UNUSED)
3235 {
3236 char *name, delim;
3237
3238 delim = get_symbol_name (& name);
3239
3240 if (!strcasecmp (name, "unified"))
3241 unified_syntax = TRUE;
3242 else if (!strcasecmp (name, "divided"))
3243 unified_syntax = FALSE;
3244 else
3245 {
3246 as_bad (_("unrecognized syntax mode \"%s\""), name);
3247 return;
3248 }
3249 (void) restore_line_pointer (delim);
3250 demand_empty_rest_of_line ();
3251 }
3252
3253 /* Directives: sectioning and alignment. */
3254
3255 static void
3256 s_bss (int ignore ATTRIBUTE_UNUSED)
3257 {
3258 /* We don't support putting frags in the BSS segment, we fake it by
3259 marking in_bss, then looking at s_skip for clues. */
3260 subseg_set (bss_section, 0);
3261 demand_empty_rest_of_line ();
3262
3263 #ifdef md_elf_section_change_hook
3264 md_elf_section_change_hook ();
3265 #endif
3266 }
3267
3268 static void
3269 s_even (int ignore ATTRIBUTE_UNUSED)
3270 {
3271 /* Never make frag if expect extra pass. */
3272 if (!need_pass_2)
3273 frag_align (1, 0, 0);
3274
3275 record_alignment (now_seg, 1);
3276
3277 demand_empty_rest_of_line ();
3278 }
3279
3280 /* Directives: CodeComposer Studio. */
3281
3282 /* .ref (for CodeComposer Studio syntax only). */
3283 static void
3284 s_ccs_ref (int unused ATTRIBUTE_UNUSED)
3285 {
3286 if (codecomposer_syntax)
3287 ignore_rest_of_line ();
3288 else
3289 as_bad (_(".ref pseudo-op only available with -mccs flag."));
3290 }
3291
3292 /* If name is not NULL, then it is used for marking the beginning of a
3293 function, whereas if it is NULL then it means the function end. */
3294 static void
3295 asmfunc_debug (const char * name)
3296 {
3297 static const char * last_name = NULL;
3298
3299 if (name != NULL)
3300 {
3301 gas_assert (last_name == NULL);
3302 last_name = name;
3303
3304 if (debug_type == DEBUG_STABS)
3305 stabs_generate_asm_func (name, name);
3306 }
3307 else
3308 {
3309 gas_assert (last_name != NULL);
3310
3311 if (debug_type == DEBUG_STABS)
3312 stabs_generate_asm_endfunc (last_name, last_name);
3313
3314 last_name = NULL;
3315 }
3316 }
3317
3318 static void
3319 s_ccs_asmfunc (int unused ATTRIBUTE_UNUSED)
3320 {
3321 if (codecomposer_syntax)
3322 {
3323 switch (asmfunc_state)
3324 {
3325 case OUTSIDE_ASMFUNC:
3326 asmfunc_state = WAITING_ASMFUNC_NAME;
3327 break;
3328
3329 case WAITING_ASMFUNC_NAME:
3330 as_bad (_(".asmfunc repeated."));
3331 break;
3332
3333 case WAITING_ENDASMFUNC:
3334 as_bad (_(".asmfunc without function."));
3335 break;
3336 }
3337 demand_empty_rest_of_line ();
3338 }
3339 else
3340 as_bad (_(".asmfunc pseudo-op only available with -mccs flag."));
3341 }
3342
3343 static void
3344 s_ccs_endasmfunc (int unused ATTRIBUTE_UNUSED)
3345 {
3346 if (codecomposer_syntax)
3347 {
3348 switch (asmfunc_state)
3349 {
3350 case OUTSIDE_ASMFUNC:
3351 as_bad (_(".endasmfunc without a .asmfunc."));
3352 break;
3353
3354 case WAITING_ASMFUNC_NAME:
3355 as_bad (_(".endasmfunc without function."));
3356 break;
3357
3358 case WAITING_ENDASMFUNC:
3359 asmfunc_state = OUTSIDE_ASMFUNC;
3360 asmfunc_debug (NULL);
3361 break;
3362 }
3363 demand_empty_rest_of_line ();
3364 }
3365 else
3366 as_bad (_(".endasmfunc pseudo-op only available with -mccs flag."));
3367 }
3368
3369 static void
3370 s_ccs_def (int name)
3371 {
3372 if (codecomposer_syntax)
3373 s_globl (name);
3374 else
3375 as_bad (_(".def pseudo-op only available with -mccs flag."));
3376 }
3377
3378 /* Directives: Literal pools. */
3379
3380 static literal_pool *
3381 find_literal_pool (void)
3382 {
3383 literal_pool * pool;
3384
3385 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3386 {
3387 if (pool->section == now_seg
3388 && pool->sub_section == now_subseg)
3389 break;
3390 }
3391
3392 return pool;
3393 }
3394
3395 static literal_pool *
3396 find_or_make_literal_pool (void)
3397 {
3398 /* Next literal pool ID number. */
3399 static unsigned int latest_pool_num = 1;
3400 literal_pool * pool;
3401
3402 pool = find_literal_pool ();
3403
3404 if (pool == NULL)
3405 {
3406 /* Create a new pool. */
3407 pool = XNEW (literal_pool);
3408 if (! pool)
3409 return NULL;
3410
3411 pool->next_free_entry = 0;
3412 pool->section = now_seg;
3413 pool->sub_section = now_subseg;
3414 pool->next = list_of_pools;
3415 pool->symbol = NULL;
3416 pool->alignment = 2;
3417
3418 /* Add it to the list. */
3419 list_of_pools = pool;
3420 }
3421
3422 /* New pools, and emptied pools, will have a NULL symbol. */
3423 if (pool->symbol == NULL)
3424 {
3425 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3426 (valueT) 0, &zero_address_frag);
3427 pool->id = latest_pool_num ++;
3428 }
3429
3430 /* Done. */
3431 return pool;
3432 }
3433
3434 /* Add the literal in the global 'inst'
3435 structure to the relevant literal pool. */
3436
3437 static int
3438 add_to_lit_pool (unsigned int nbytes)
3439 {
3440 #define PADDING_SLOT 0x1
3441 #define LIT_ENTRY_SIZE_MASK 0xFF
3442 literal_pool * pool;
3443 unsigned int entry, pool_size = 0;
3444 bfd_boolean padding_slot_p = FALSE;
3445 unsigned imm1 = 0;
3446 unsigned imm2 = 0;
3447
3448 if (nbytes == 8)
3449 {
3450 imm1 = inst.operands[1].imm;
3451 imm2 = (inst.operands[1].regisimm ? inst.operands[1].reg
3452 : inst.relocs[0].exp.X_unsigned ? 0
3453 : ((bfd_int64_t) inst.operands[1].imm) >> 32);
3454 if (target_big_endian)
3455 {
3456 imm1 = imm2;
3457 imm2 = inst.operands[1].imm;
3458 }
3459 }
3460
3461 pool = find_or_make_literal_pool ();
3462
3463 /* Check if this literal value is already in the pool. */
3464 for (entry = 0; entry < pool->next_free_entry; entry ++)
3465 {
3466 if (nbytes == 4)
3467 {
3468 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3469 && (inst.relocs[0].exp.X_op == O_constant)
3470 && (pool->literals[entry].X_add_number
3471 == inst.relocs[0].exp.X_add_number)
3472 && (pool->literals[entry].X_md == nbytes)
3473 && (pool->literals[entry].X_unsigned
3474 == inst.relocs[0].exp.X_unsigned))
3475 break;
3476
3477 if ((pool->literals[entry].X_op == inst.relocs[0].exp.X_op)
3478 && (inst.relocs[0].exp.X_op == O_symbol)
3479 && (pool->literals[entry].X_add_number
3480 == inst.relocs[0].exp.X_add_number)
3481 && (pool->literals[entry].X_add_symbol
3482 == inst.relocs[0].exp.X_add_symbol)
3483 && (pool->literals[entry].X_op_symbol
3484 == inst.relocs[0].exp.X_op_symbol)
3485 && (pool->literals[entry].X_md == nbytes))
3486 break;
3487 }
3488 else if ((nbytes == 8)
3489 && !(pool_size & 0x7)
3490 && ((entry + 1) != pool->next_free_entry)
3491 && (pool->literals[entry].X_op == O_constant)
3492 && (pool->literals[entry].X_add_number == (offsetT) imm1)
3493 && (pool->literals[entry].X_unsigned
3494 == inst.relocs[0].exp.X_unsigned)
3495 && (pool->literals[entry + 1].X_op == O_constant)
3496 && (pool->literals[entry + 1].X_add_number == (offsetT) imm2)
3497 && (pool->literals[entry + 1].X_unsigned
3498 == inst.relocs[0].exp.X_unsigned))
3499 break;
3500
3501 padding_slot_p = ((pool->literals[entry].X_md >> 8) == PADDING_SLOT);
3502 if (padding_slot_p && (nbytes == 4))
3503 break;
3504
3505 pool_size += 4;
3506 }
3507
3508 /* Do we need to create a new entry? */
3509 if (entry == pool->next_free_entry)
3510 {
3511 if (entry >= MAX_LITERAL_POOL_SIZE)
3512 {
3513 inst.error = _("literal pool overflow");
3514 return FAIL;
3515 }
3516
3517 if (nbytes == 8)
3518 {
3519 /* For 8-byte entries, we align to an 8-byte boundary,
3520 and split it into two 4-byte entries, because on 32-bit
3521 host, 8-byte constants are treated as big num, thus
3522 saved in "generic_bignum" which will be overwritten
3523 by later assignments.
3524
3525 We also need to make sure there is enough space for
3526 the split.
3527
3528 We also check to make sure the literal operand is a
3529 constant number. */
3530 if (!(inst.relocs[0].exp.X_op == O_constant
3531 || inst.relocs[0].exp.X_op == O_big))
3532 {
3533 inst.error = _("invalid type for literal pool");
3534 return FAIL;
3535 }
3536 else if (pool_size & 0x7)
3537 {
3538 if ((entry + 2) >= MAX_LITERAL_POOL_SIZE)
3539 {
3540 inst.error = _("literal pool overflow");
3541 return FAIL;
3542 }
3543
3544 pool->literals[entry] = inst.relocs[0].exp;
3545 pool->literals[entry].X_op = O_constant;
3546 pool->literals[entry].X_add_number = 0;
3547 pool->literals[entry++].X_md = (PADDING_SLOT << 8) | 4;
3548 pool->next_free_entry += 1;
3549 pool_size += 4;
3550 }
3551 else if ((entry + 1) >= MAX_LITERAL_POOL_SIZE)
3552 {
3553 inst.error = _("literal pool overflow");
3554 return FAIL;
3555 }
3556
3557 pool->literals[entry] = inst.relocs[0].exp;
3558 pool->literals[entry].X_op = O_constant;
3559 pool->literals[entry].X_add_number = imm1;
3560 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3561 pool->literals[entry++].X_md = 4;
3562 pool->literals[entry] = inst.relocs[0].exp;
3563 pool->literals[entry].X_op = O_constant;
3564 pool->literals[entry].X_add_number = imm2;
3565 pool->literals[entry].X_unsigned = inst.relocs[0].exp.X_unsigned;
3566 pool->literals[entry].X_md = 4;
3567 pool->alignment = 3;
3568 pool->next_free_entry += 1;
3569 }
3570 else
3571 {
3572 pool->literals[entry] = inst.relocs[0].exp;
3573 pool->literals[entry].X_md = 4;
3574 }
3575
3576 #ifdef OBJ_ELF
3577 /* PR ld/12974: Record the location of the first source line to reference
3578 this entry in the literal pool. If it turns out during linking that the
3579 symbol does not exist we will be able to give an accurate line number for
3580 the (first use of the) missing reference. */
3581 if (debug_type == DEBUG_DWARF2)
3582 dwarf2_where (pool->locs + entry);
3583 #endif
3584 pool->next_free_entry += 1;
3585 }
3586 else if (padding_slot_p)
3587 {
3588 pool->literals[entry] = inst.relocs[0].exp;
3589 pool->literals[entry].X_md = nbytes;
3590 }
3591
3592 inst.relocs[0].exp.X_op = O_symbol;
3593 inst.relocs[0].exp.X_add_number = pool_size;
3594 inst.relocs[0].exp.X_add_symbol = pool->symbol;
3595
3596 return SUCCESS;
3597 }
3598
3599 bfd_boolean
3600 tc_start_label_without_colon (void)
3601 {
3602 bfd_boolean ret = TRUE;
3603
3604 if (codecomposer_syntax && asmfunc_state == WAITING_ASMFUNC_NAME)
3605 {
3606 const char *label = input_line_pointer;
3607
3608 while (!is_end_of_line[(int) label[-1]])
3609 --label;
3610
3611 if (*label == '.')
3612 {
3613 as_bad (_("Invalid label '%s'"), label);
3614 ret = FALSE;
3615 }
3616
3617 asmfunc_debug (label);
3618
3619 asmfunc_state = WAITING_ENDASMFUNC;
3620 }
3621
3622 return ret;
3623 }
3624
3625 /* Can't use symbol_new here, so have to create a symbol and then at
3626 a later date assign it a value. That's what these functions do. */
3627
3628 static void
3629 symbol_locate (symbolS * symbolP,
3630 const char * name, /* It is copied, the caller can modify. */
3631 segT segment, /* Segment identifier (SEG_<something>). */
3632 valueT valu, /* Symbol value. */
3633 fragS * frag) /* Associated fragment. */
3634 {
3635 size_t name_length;
3636 char * preserved_copy_of_name;
3637
3638 name_length = strlen (name) + 1; /* +1 for \0. */
3639 obstack_grow (&notes, name, name_length);
3640 preserved_copy_of_name = (char *) obstack_finish (&notes);
3641
3642 #ifdef tc_canonicalize_symbol_name
3643 preserved_copy_of_name =
3644 tc_canonicalize_symbol_name (preserved_copy_of_name);
3645 #endif
3646
3647 S_SET_NAME (symbolP, preserved_copy_of_name);
3648
3649 S_SET_SEGMENT (symbolP, segment);
3650 S_SET_VALUE (symbolP, valu);
3651 symbol_clear_list_pointers (symbolP);
3652
3653 symbol_set_frag (symbolP, frag);
3654
3655 /* Link to end of symbol chain. */
3656 {
3657 extern int symbol_table_frozen;
3658
3659 if (symbol_table_frozen)
3660 abort ();
3661 }
3662
3663 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3664
3665 obj_symbol_new_hook (symbolP);
3666
3667 #ifdef tc_symbol_new_hook
3668 tc_symbol_new_hook (symbolP);
3669 #endif
3670
3671 #ifdef DEBUG_SYMS
3672 verify_symbol_chain (symbol_rootP, symbol_lastP);
3673 #endif /* DEBUG_SYMS */
3674 }
3675
3676 static void
3677 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3678 {
3679 unsigned int entry;
3680 literal_pool * pool;
3681 char sym_name[20];
3682
3683 pool = find_literal_pool ();
3684 if (pool == NULL
3685 || pool->symbol == NULL
3686 || pool->next_free_entry == 0)
3687 return;
3688
3689 /* Align pool as you have word accesses.
3690 Only make a frag if we have to. */
3691 if (!need_pass_2)
3692 frag_align (pool->alignment, 0, 0);
3693
3694 record_alignment (now_seg, 2);
3695
3696 #ifdef OBJ_ELF
3697 seg_info (now_seg)->tc_segment_info_data.mapstate = MAP_DATA;
3698 make_mapping_symbol (MAP_DATA, (valueT) frag_now_fix (), frag_now);
3699 #endif
3700 sprintf (sym_name, "$$lit_\002%x", pool->id);
3701
3702 symbol_locate (pool->symbol, sym_name, now_seg,
3703 (valueT) frag_now_fix (), frag_now);
3704 symbol_table_insert (pool->symbol);
3705
3706 ARM_SET_THUMB (pool->symbol, thumb_mode);
3707
3708 #if defined OBJ_COFF || defined OBJ_ELF
3709 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3710 #endif
3711
3712 for (entry = 0; entry < pool->next_free_entry; entry ++)
3713 {
3714 #ifdef OBJ_ELF
3715 if (debug_type == DEBUG_DWARF2)
3716 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3717 #endif
3718 /* First output the expression in the instruction to the pool. */
3719 emit_expr (&(pool->literals[entry]),
3720 pool->literals[entry].X_md & LIT_ENTRY_SIZE_MASK);
3721 }
3722
3723 /* Mark the pool as empty. */
3724 pool->next_free_entry = 0;
3725 pool->symbol = NULL;
3726 }
3727
3728 #ifdef OBJ_ELF
3729 /* Forward declarations for functions below, in the MD interface
3730 section. */
3731 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3732 static valueT create_unwind_entry (int);
3733 static void start_unwind_section (const segT, int);
3734 static void add_unwind_opcode (valueT, int);
3735 static void flush_pending_unwind (void);
3736
3737 /* Directives: Data. */
3738
3739 static void
3740 s_arm_elf_cons (int nbytes)
3741 {
3742 expressionS exp;
3743
3744 #ifdef md_flush_pending_output
3745 md_flush_pending_output ();
3746 #endif
3747
3748 if (is_it_end_of_statement ())
3749 {
3750 demand_empty_rest_of_line ();
3751 return;
3752 }
3753
3754 #ifdef md_cons_align
3755 md_cons_align (nbytes);
3756 #endif
3757
3758 mapping_state (MAP_DATA);
3759 do
3760 {
3761 int reloc;
3762 char *base = input_line_pointer;
3763
3764 expression (& exp);
3765
3766 if (exp.X_op != O_symbol)
3767 emit_expr (&exp, (unsigned int) nbytes);
3768 else
3769 {
3770 char *before_reloc = input_line_pointer;
3771 reloc = parse_reloc (&input_line_pointer);
3772 if (reloc == -1)
3773 {
3774 as_bad (_("unrecognized relocation suffix"));
3775 ignore_rest_of_line ();
3776 return;
3777 }
3778 else if (reloc == BFD_RELOC_UNUSED)
3779 emit_expr (&exp, (unsigned int) nbytes);
3780 else
3781 {
3782 reloc_howto_type *howto = (reloc_howto_type *)
3783 bfd_reloc_type_lookup (stdoutput,
3784 (bfd_reloc_code_real_type) reloc);
3785 int size = bfd_get_reloc_size (howto);
3786
3787 if (reloc == BFD_RELOC_ARM_PLT32)
3788 {
3789 as_bad (_("(plt) is only valid on branch targets"));
3790 reloc = BFD_RELOC_UNUSED;
3791 size = 0;
3792 }
3793
3794 if (size > nbytes)
3795 as_bad (ngettext ("%s relocations do not fit in %d byte",
3796 "%s relocations do not fit in %d bytes",
3797 nbytes),
3798 howto->name, nbytes);
3799 else
3800 {
3801 /* We've parsed an expression stopping at O_symbol.
3802 But there may be more expression left now that we
3803 have parsed the relocation marker. Parse it again.
3804 XXX Surely there is a cleaner way to do this. */
3805 char *p = input_line_pointer;
3806 int offset;
3807 char *save_buf = XNEWVEC (char, input_line_pointer - base);
3808
3809 memcpy (save_buf, base, input_line_pointer - base);
3810 memmove (base + (input_line_pointer - before_reloc),
3811 base, before_reloc - base);
3812
3813 input_line_pointer = base + (input_line_pointer-before_reloc);
3814 expression (&exp);
3815 memcpy (base, save_buf, p - base);
3816
3817 offset = nbytes - size;
3818 p = frag_more (nbytes);
3819 memset (p, 0, nbytes);
3820 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3821 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3822 free (save_buf);
3823 }
3824 }
3825 }
3826 }
3827 while (*input_line_pointer++ == ',');
3828
3829 /* Put terminator back into stream. */
3830 input_line_pointer --;
3831 demand_empty_rest_of_line ();
3832 }
3833
3834 /* Emit an expression containing a 32-bit thumb instruction.
3835 Implementation based on put_thumb32_insn. */
3836
3837 static void
3838 emit_thumb32_expr (expressionS * exp)
3839 {
3840 expressionS exp_high = *exp;
3841
3842 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3843 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3844 exp->X_add_number &= 0xffff;
3845 emit_expr (exp, (unsigned int) THUMB_SIZE);
3846 }
3847
3848 /* Guess the instruction size based on the opcode. */
3849
3850 static int
3851 thumb_insn_size (int opcode)
3852 {
3853 if ((unsigned int) opcode < 0xe800u)
3854 return 2;
3855 else if ((unsigned int) opcode >= 0xe8000000u)
3856 return 4;
3857 else
3858 return 0;
3859 }
3860
3861 static bfd_boolean
3862 emit_insn (expressionS *exp, int nbytes)
3863 {
3864 int size = 0;
3865
3866 if (exp->X_op == O_constant)
3867 {
3868 size = nbytes;
3869
3870 if (size == 0)
3871 size = thumb_insn_size (exp->X_add_number);
3872
3873 if (size != 0)
3874 {
3875 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3876 {
3877 as_bad (_(".inst.n operand too big. "\
3878 "Use .inst.w instead"));
3879 size = 0;
3880 }
3881 else
3882 {
3883 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
3884 set_pred_insn_type_nonvoid (OUTSIDE_PRED_INSN, 0);
3885 else
3886 set_pred_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3887
3888 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3889 emit_thumb32_expr (exp);
3890 else
3891 emit_expr (exp, (unsigned int) size);
3892
3893 it_fsm_post_encode ();
3894 }
3895 }
3896 else
3897 as_bad (_("cannot determine Thumb instruction size. " \
3898 "Use .inst.n/.inst.w instead"));
3899 }
3900 else
3901 as_bad (_("constant expression required"));
3902
3903 return (size != 0);
3904 }
3905
3906 /* Like s_arm_elf_cons but do not use md_cons_align and
3907 set the mapping state to MAP_ARM/MAP_THUMB. */
3908
3909 static void
3910 s_arm_elf_inst (int nbytes)
3911 {
3912 if (is_it_end_of_statement ())
3913 {
3914 demand_empty_rest_of_line ();
3915 return;
3916 }
3917
3918 /* Calling mapping_state () here will not change ARM/THUMB,
3919 but will ensure not to be in DATA state. */
3920
3921 if (thumb_mode)
3922 mapping_state (MAP_THUMB);
3923 else
3924 {
3925 if (nbytes != 0)
3926 {
3927 as_bad (_("width suffixes are invalid in ARM mode"));
3928 ignore_rest_of_line ();
3929 return;
3930 }
3931
3932 nbytes = 4;
3933
3934 mapping_state (MAP_ARM);
3935 }
3936
3937 do
3938 {
3939 expressionS exp;
3940
3941 expression (& exp);
3942
3943 if (! emit_insn (& exp, nbytes))
3944 {
3945 ignore_rest_of_line ();
3946 return;
3947 }
3948 }
3949 while (*input_line_pointer++ == ',');
3950
3951 /* Put terminator back into stream. */
3952 input_line_pointer --;
3953 demand_empty_rest_of_line ();
3954 }
3955
3956 /* Parse a .rel31 directive. */
3957
3958 static void
3959 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3960 {
3961 expressionS exp;
3962 char *p;
3963 valueT highbit;
3964
3965 highbit = 0;
3966 if (*input_line_pointer == '1')
3967 highbit = 0x80000000;
3968 else if (*input_line_pointer != '0')
3969 as_bad (_("expected 0 or 1"));
3970
3971 input_line_pointer++;
3972 if (*input_line_pointer != ',')
3973 as_bad (_("missing comma"));
3974 input_line_pointer++;
3975
3976 #ifdef md_flush_pending_output
3977 md_flush_pending_output ();
3978 #endif
3979
3980 #ifdef md_cons_align
3981 md_cons_align (4);
3982 #endif
3983
3984 mapping_state (MAP_DATA);
3985
3986 expression (&exp);
3987
3988 p = frag_more (4);
3989 md_number_to_chars (p, highbit, 4);
3990 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3991 BFD_RELOC_ARM_PREL31);
3992
3993 demand_empty_rest_of_line ();
3994 }
3995
3996 /* Directives: AEABI stack-unwind tables. */
3997
3998 /* Parse an unwind_fnstart directive. Simply records the current location. */
3999
4000 static void
4001 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
4002 {
4003 demand_empty_rest_of_line ();
4004 if (unwind.proc_start)
4005 {
4006 as_bad (_("duplicate .fnstart directive"));
4007 return;
4008 }
4009
4010 /* Mark the start of the function. */
4011 unwind.proc_start = expr_build_dot ();
4012
4013 /* Reset the rest of the unwind info. */
4014 unwind.opcode_count = 0;
4015 unwind.table_entry = NULL;
4016 unwind.personality_routine = NULL;
4017 unwind.personality_index = -1;
4018 unwind.frame_size = 0;
4019 unwind.fp_offset = 0;
4020 unwind.fp_reg = REG_SP;
4021 unwind.fp_used = 0;
4022 unwind.sp_restored = 0;
4023 }
4024
4025
4026 /* Parse a handlerdata directive. Creates the exception handling table entry
4027 for the function. */
4028
4029 static void
4030 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
4031 {
4032 demand_empty_rest_of_line ();
4033 if (!unwind.proc_start)
4034 as_bad (MISSING_FNSTART);
4035
4036 if (unwind.table_entry)
4037 as_bad (_("duplicate .handlerdata directive"));
4038
4039 create_unwind_entry (1);
4040 }
4041
4042 /* Parse an unwind_fnend directive. Generates the index table entry. */
4043
4044 static void
4045 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
4046 {
4047 long where;
4048 char *ptr;
4049 valueT val;
4050 unsigned int marked_pr_dependency;
4051
4052 demand_empty_rest_of_line ();
4053
4054 if (!unwind.proc_start)
4055 {
4056 as_bad (_(".fnend directive without .fnstart"));
4057 return;
4058 }
4059
4060 /* Add eh table entry. */
4061 if (unwind.table_entry == NULL)
4062 val = create_unwind_entry (0);
4063 else
4064 val = 0;
4065
4066 /* Add index table entry. This is two words. */
4067 start_unwind_section (unwind.saved_seg, 1);
4068 frag_align (2, 0, 0);
4069 record_alignment (now_seg, 2);
4070
4071 ptr = frag_more (8);
4072 memset (ptr, 0, 8);
4073 where = frag_now_fix () - 8;
4074
4075 /* Self relative offset of the function start. */
4076 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
4077 BFD_RELOC_ARM_PREL31);
4078
4079 /* Indicate dependency on EHABI-defined personality routines to the
4080 linker, if it hasn't been done already. */
4081 marked_pr_dependency
4082 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
4083 if (unwind.personality_index >= 0 && unwind.personality_index < 3
4084 && !(marked_pr_dependency & (1 << unwind.personality_index)))
4085 {
4086 static const char *const name[] =
4087 {
4088 "__aeabi_unwind_cpp_pr0",
4089 "__aeabi_unwind_cpp_pr1",
4090 "__aeabi_unwind_cpp_pr2"
4091 };
4092 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
4093 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
4094 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
4095 |= 1 << unwind.personality_index;
4096 }
4097
4098 if (val)
4099 /* Inline exception table entry. */
4100 md_number_to_chars (ptr + 4, val, 4);
4101 else
4102 /* Self relative offset of the table entry. */
4103 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
4104 BFD_RELOC_ARM_PREL31);
4105
4106 /* Restore the original section. */
4107 subseg_set (unwind.saved_seg, unwind.saved_subseg);
4108
4109 unwind.proc_start = NULL;
4110 }
4111
4112
4113 /* Parse an unwind_cantunwind directive. */
4114
4115 static void
4116 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
4117 {
4118 demand_empty_rest_of_line ();
4119 if (!unwind.proc_start)
4120 as_bad (MISSING_FNSTART);
4121
4122 if (unwind.personality_routine || unwind.personality_index != -1)
4123 as_bad (_("personality routine specified for cantunwind frame"));
4124
4125 unwind.personality_index = -2;
4126 }
4127
4128
4129 /* Parse a personalityindex directive. */
4130
4131 static void
4132 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
4133 {
4134 expressionS exp;
4135
4136 if (!unwind.proc_start)
4137 as_bad (MISSING_FNSTART);
4138
4139 if (unwind.personality_routine || unwind.personality_index != -1)
4140 as_bad (_("duplicate .personalityindex directive"));
4141
4142 expression (&exp);
4143
4144 if (exp.X_op != O_constant
4145 || exp.X_add_number < 0 || exp.X_add_number > 15)
4146 {
4147 as_bad (_("bad personality routine number"));
4148 ignore_rest_of_line ();
4149 return;
4150 }
4151
4152 unwind.personality_index = exp.X_add_number;
4153
4154 demand_empty_rest_of_line ();
4155 }
4156
4157
4158 /* Parse a personality directive. */
4159
4160 static void
4161 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
4162 {
4163 char *name, *p, c;
4164
4165 if (!unwind.proc_start)
4166 as_bad (MISSING_FNSTART);
4167
4168 if (unwind.personality_routine || unwind.personality_index != -1)
4169 as_bad (_("duplicate .personality directive"));
4170
4171 c = get_symbol_name (& name);
4172 p = input_line_pointer;
4173 if (c == '"')
4174 ++ input_line_pointer;
4175 unwind.personality_routine = symbol_find_or_make (name);
4176 *p = c;
4177 demand_empty_rest_of_line ();
4178 }
4179
4180
4181 /* Parse a directive saving core registers. */
4182
4183 static void
4184 s_arm_unwind_save_core (void)
4185 {
4186 valueT op;
4187 long range;
4188 int n;
4189
4190 range = parse_reg_list (&input_line_pointer, REGLIST_RN);
4191 if (range == FAIL)
4192 {
4193 as_bad (_("expected register list"));
4194 ignore_rest_of_line ();
4195 return;
4196 }
4197
4198 demand_empty_rest_of_line ();
4199
4200 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
4201 into .unwind_save {..., sp...}. We aren't bothered about the value of
4202 ip because it is clobbered by calls. */
4203 if (unwind.sp_restored && unwind.fp_reg == 12
4204 && (range & 0x3000) == 0x1000)
4205 {
4206 unwind.opcode_count--;
4207 unwind.sp_restored = 0;
4208 range = (range | 0x2000) & ~0x1000;
4209 unwind.pending_offset = 0;
4210 }
4211
4212 /* Pop r4-r15. */
4213 if (range & 0xfff0)
4214 {
4215 /* See if we can use the short opcodes. These pop a block of up to 8
4216 registers starting with r4, plus maybe r14. */
4217 for (n = 0; n < 8; n++)
4218 {
4219 /* Break at the first non-saved register. */
4220 if ((range & (1 << (n + 4))) == 0)
4221 break;
4222 }
4223 /* See if there are any other bits set. */
4224 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
4225 {
4226 /* Use the long form. */
4227 op = 0x8000 | ((range >> 4) & 0xfff);
4228 add_unwind_opcode (op, 2);
4229 }
4230 else
4231 {
4232 /* Use the short form. */
4233 if (range & 0x4000)
4234 op = 0xa8; /* Pop r14. */
4235 else
4236 op = 0xa0; /* Do not pop r14. */
4237 op |= (n - 1);
4238 add_unwind_opcode (op, 1);
4239 }
4240 }
4241
4242 /* Pop r0-r3. */
4243 if (range & 0xf)
4244 {
4245 op = 0xb100 | (range & 0xf);
4246 add_unwind_opcode (op, 2);
4247 }
4248
4249 /* Record the number of bytes pushed. */
4250 for (n = 0; n < 16; n++)
4251 {
4252 if (range & (1 << n))
4253 unwind.frame_size += 4;
4254 }
4255 }
4256
4257
4258 /* Parse a directive saving FPA registers. */
4259
4260 static void
4261 s_arm_unwind_save_fpa (int reg)
4262 {
4263 expressionS exp;
4264 int num_regs;
4265 valueT op;
4266
4267 /* Get Number of registers to transfer. */
4268 if (skip_past_comma (&input_line_pointer) != FAIL)
4269 expression (&exp);
4270 else
4271 exp.X_op = O_illegal;
4272
4273 if (exp.X_op != O_constant)
4274 {
4275 as_bad (_("expected , <constant>"));
4276 ignore_rest_of_line ();
4277 return;
4278 }
4279
4280 num_regs = exp.X_add_number;
4281
4282 if (num_regs < 1 || num_regs > 4)
4283 {
4284 as_bad (_("number of registers must be in the range [1:4]"));
4285 ignore_rest_of_line ();
4286 return;
4287 }
4288
4289 demand_empty_rest_of_line ();
4290
4291 if (reg == 4)
4292 {
4293 /* Short form. */
4294 op = 0xb4 | (num_regs - 1);
4295 add_unwind_opcode (op, 1);
4296 }
4297 else
4298 {
4299 /* Long form. */
4300 op = 0xc800 | (reg << 4) | (num_regs - 1);
4301 add_unwind_opcode (op, 2);
4302 }
4303 unwind.frame_size += num_regs * 12;
4304 }
4305
4306
4307 /* Parse a directive saving VFP registers for ARMv6 and above. */
4308
4309 static void
4310 s_arm_unwind_save_vfp_armv6 (void)
4311 {
4312 int count;
4313 unsigned int start;
4314 valueT op;
4315 int num_vfpv3_regs = 0;
4316 int num_regs_below_16;
4317 bfd_boolean partial_match;
4318
4319 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D,
4320 &partial_match);
4321 if (count == FAIL)
4322 {
4323 as_bad (_("expected register list"));
4324 ignore_rest_of_line ();
4325 return;
4326 }
4327
4328 demand_empty_rest_of_line ();
4329
4330 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
4331 than FSTMX/FLDMX-style ones). */
4332
4333 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
4334 if (start >= 16)
4335 num_vfpv3_regs = count;
4336 else if (start + count > 16)
4337 num_vfpv3_regs = start + count - 16;
4338
4339 if (num_vfpv3_regs > 0)
4340 {
4341 int start_offset = start > 16 ? start - 16 : 0;
4342 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
4343 add_unwind_opcode (op, 2);
4344 }
4345
4346 /* Generate opcode for registers numbered in the range 0 .. 15. */
4347 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
4348 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
4349 if (num_regs_below_16 > 0)
4350 {
4351 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
4352 add_unwind_opcode (op, 2);
4353 }
4354
4355 unwind.frame_size += count * 8;
4356 }
4357
4358
4359 /* Parse a directive saving VFP registers for pre-ARMv6. */
4360
4361 static void
4362 s_arm_unwind_save_vfp (void)
4363 {
4364 int count;
4365 unsigned int reg;
4366 valueT op;
4367 bfd_boolean partial_match;
4368
4369 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D,
4370 &partial_match);
4371 if (count == FAIL)
4372 {
4373 as_bad (_("expected register list"));
4374 ignore_rest_of_line ();
4375 return;
4376 }
4377
4378 demand_empty_rest_of_line ();
4379
4380 if (reg == 8)
4381 {
4382 /* Short form. */
4383 op = 0xb8 | (count - 1);
4384 add_unwind_opcode (op, 1);
4385 }
4386 else
4387 {
4388 /* Long form. */
4389 op = 0xb300 | (reg << 4) | (count - 1);
4390 add_unwind_opcode (op, 2);
4391 }
4392 unwind.frame_size += count * 8 + 4;
4393 }
4394
4395
4396 /* Parse a directive saving iWMMXt data registers. */
4397
4398 static void
4399 s_arm_unwind_save_mmxwr (void)
4400 {
4401 int reg;
4402 int hi_reg;
4403 int i;
4404 unsigned mask = 0;
4405 valueT op;
4406
4407 if (*input_line_pointer == '{')
4408 input_line_pointer++;
4409
4410 do
4411 {
4412 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4413
4414 if (reg == FAIL)
4415 {
4416 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4417 goto error;
4418 }
4419
4420 if (mask >> reg)
4421 as_tsktsk (_("register list not in ascending order"));
4422 mask |= 1 << reg;
4423
4424 if (*input_line_pointer == '-')
4425 {
4426 input_line_pointer++;
4427 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
4428 if (hi_reg == FAIL)
4429 {
4430 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
4431 goto error;
4432 }
4433 else if (reg >= hi_reg)
4434 {
4435 as_bad (_("bad register range"));
4436 goto error;
4437 }
4438 for (; reg < hi_reg; reg++)
4439 mask |= 1 << reg;
4440 }
4441 }
4442 while (skip_past_comma (&input_line_pointer) != FAIL);
4443
4444 skip_past_char (&input_line_pointer, '}');
4445
4446 demand_empty_rest_of_line ();
4447
4448 /* Generate any deferred opcodes because we're going to be looking at
4449 the list. */
4450 flush_pending_unwind ();
4451
4452 for (i = 0; i < 16; i++)
4453 {
4454 if (mask & (1 << i))
4455 unwind.frame_size += 8;
4456 }
4457
4458 /* Attempt to combine with a previous opcode. We do this because gcc
4459 likes to output separate unwind directives for a single block of
4460 registers. */
4461 if (unwind.opcode_count > 0)
4462 {
4463 i = unwind.opcodes[unwind.opcode_count - 1];
4464 if ((i & 0xf8) == 0xc0)
4465 {
4466 i &= 7;
4467 /* Only merge if the blocks are contiguous. */
4468 if (i < 6)
4469 {
4470 if ((mask & 0xfe00) == (1 << 9))
4471 {
4472 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
4473 unwind.opcode_count--;
4474 }
4475 }
4476 else if (i == 6 && unwind.opcode_count >= 2)
4477 {
4478 i = unwind.opcodes[unwind.opcode_count - 2];
4479 reg = i >> 4;
4480 i &= 0xf;
4481
4482 op = 0xffff << (reg - 1);
4483 if (reg > 0
4484 && ((mask & op) == (1u << (reg - 1))))
4485 {
4486 op = (1 << (reg + i + 1)) - 1;
4487 op &= ~((1 << reg) - 1);
4488 mask |= op;
4489 unwind.opcode_count -= 2;
4490 }
4491 }
4492 }
4493 }
4494
4495 hi_reg = 15;
4496 /* We want to generate opcodes in the order the registers have been
4497 saved, ie. descending order. */
4498 for (reg = 15; reg >= -1; reg--)
4499 {
4500 /* Save registers in blocks. */
4501 if (reg < 0
4502 || !(mask & (1 << reg)))
4503 {
4504 /* We found an unsaved reg. Generate opcodes to save the
4505 preceding block. */
4506 if (reg != hi_reg)
4507 {
4508 if (reg == 9)
4509 {
4510 /* Short form. */
4511 op = 0xc0 | (hi_reg - 10);
4512 add_unwind_opcode (op, 1);
4513 }
4514 else
4515 {
4516 /* Long form. */
4517 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4518 add_unwind_opcode (op, 2);
4519 }
4520 }
4521 hi_reg = reg - 1;
4522 }
4523 }
4524
4525 return;
4526 error:
4527 ignore_rest_of_line ();
4528 }
4529
4530 static void
4531 s_arm_unwind_save_mmxwcg (void)
4532 {
4533 int reg;
4534 int hi_reg;
4535 unsigned mask = 0;
4536 valueT op;
4537
4538 if (*input_line_pointer == '{')
4539 input_line_pointer++;
4540
4541 skip_whitespace (input_line_pointer);
4542
4543 do
4544 {
4545 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4546
4547 if (reg == FAIL)
4548 {
4549 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4550 goto error;
4551 }
4552
4553 reg -= 8;
4554 if (mask >> reg)
4555 as_tsktsk (_("register list not in ascending order"));
4556 mask |= 1 << reg;
4557
4558 if (*input_line_pointer == '-')
4559 {
4560 input_line_pointer++;
4561 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4562 if (hi_reg == FAIL)
4563 {
4564 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4565 goto error;
4566 }
4567 else if (reg >= hi_reg)
4568 {
4569 as_bad (_("bad register range"));
4570 goto error;
4571 }
4572 for (; reg < hi_reg; reg++)
4573 mask |= 1 << reg;
4574 }
4575 }
4576 while (skip_past_comma (&input_line_pointer) != FAIL);
4577
4578 skip_past_char (&input_line_pointer, '}');
4579
4580 demand_empty_rest_of_line ();
4581
4582 /* Generate any deferred opcodes because we're going to be looking at
4583 the list. */
4584 flush_pending_unwind ();
4585
4586 for (reg = 0; reg < 16; reg++)
4587 {
4588 if (mask & (1 << reg))
4589 unwind.frame_size += 4;
4590 }
4591 op = 0xc700 | mask;
4592 add_unwind_opcode (op, 2);
4593 return;
4594 error:
4595 ignore_rest_of_line ();
4596 }
4597
4598
4599 /* Parse an unwind_save directive.
4600 If the argument is non-zero, this is a .vsave directive. */
4601
4602 static void
4603 s_arm_unwind_save (int arch_v6)
4604 {
4605 char *peek;
4606 struct reg_entry *reg;
4607 bfd_boolean had_brace = FALSE;
4608
4609 if (!unwind.proc_start)
4610 as_bad (MISSING_FNSTART);
4611
4612 /* Figure out what sort of save we have. */
4613 peek = input_line_pointer;
4614
4615 if (*peek == '{')
4616 {
4617 had_brace = TRUE;
4618 peek++;
4619 }
4620
4621 reg = arm_reg_parse_multi (&peek);
4622
4623 if (!reg)
4624 {
4625 as_bad (_("register expected"));
4626 ignore_rest_of_line ();
4627 return;
4628 }
4629
4630 switch (reg->type)
4631 {
4632 case REG_TYPE_FN:
4633 if (had_brace)
4634 {
4635 as_bad (_("FPA .unwind_save does not take a register list"));
4636 ignore_rest_of_line ();
4637 return;
4638 }
4639 input_line_pointer = peek;
4640 s_arm_unwind_save_fpa (reg->number);
4641 return;
4642
4643 case REG_TYPE_RN:
4644 s_arm_unwind_save_core ();
4645 return;
4646
4647 case REG_TYPE_VFD:
4648 if (arch_v6)
4649 s_arm_unwind_save_vfp_armv6 ();
4650 else
4651 s_arm_unwind_save_vfp ();
4652 return;
4653
4654 case REG_TYPE_MMXWR:
4655 s_arm_unwind_save_mmxwr ();
4656 return;
4657
4658 case REG_TYPE_MMXWCG:
4659 s_arm_unwind_save_mmxwcg ();
4660 return;
4661
4662 default:
4663 as_bad (_(".unwind_save does not support this kind of register"));
4664 ignore_rest_of_line ();
4665 }
4666 }
4667
4668
4669 /* Parse an unwind_movsp directive. */
4670
4671 static void
4672 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4673 {
4674 int reg;
4675 valueT op;
4676 int offset;
4677
4678 if (!unwind.proc_start)
4679 as_bad (MISSING_FNSTART);
4680
4681 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4682 if (reg == FAIL)
4683 {
4684 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4685 ignore_rest_of_line ();
4686 return;
4687 }
4688
4689 /* Optional constant. */
4690 if (skip_past_comma (&input_line_pointer) != FAIL)
4691 {
4692 if (immediate_for_directive (&offset) == FAIL)
4693 return;
4694 }
4695 else
4696 offset = 0;
4697
4698 demand_empty_rest_of_line ();
4699
4700 if (reg == REG_SP || reg == REG_PC)
4701 {
4702 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4703 return;
4704 }
4705
4706 if (unwind.fp_reg != REG_SP)
4707 as_bad (_("unexpected .unwind_movsp directive"));
4708
4709 /* Generate opcode to restore the value. */
4710 op = 0x90 | reg;
4711 add_unwind_opcode (op, 1);
4712
4713 /* Record the information for later. */
4714 unwind.fp_reg = reg;
4715 unwind.fp_offset = unwind.frame_size - offset;
4716 unwind.sp_restored = 1;
4717 }
4718
4719 /* Parse an unwind_pad directive. */
4720
4721 static void
4722 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4723 {
4724 int offset;
4725
4726 if (!unwind.proc_start)
4727 as_bad (MISSING_FNSTART);
4728
4729 if (immediate_for_directive (&offset) == FAIL)
4730 return;
4731
4732 if (offset & 3)
4733 {
4734 as_bad (_("stack increment must be multiple of 4"));
4735 ignore_rest_of_line ();
4736 return;
4737 }
4738
4739 /* Don't generate any opcodes, just record the details for later. */
4740 unwind.frame_size += offset;
4741 unwind.pending_offset += offset;
4742
4743 demand_empty_rest_of_line ();
4744 }
4745
4746 /* Parse an unwind_setfp directive. */
4747
4748 static void
4749 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4750 {
4751 int sp_reg;
4752 int fp_reg;
4753 int offset;
4754
4755 if (!unwind.proc_start)
4756 as_bad (MISSING_FNSTART);
4757
4758 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4759 if (skip_past_comma (&input_line_pointer) == FAIL)
4760 sp_reg = FAIL;
4761 else
4762 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4763
4764 if (fp_reg == FAIL || sp_reg == FAIL)
4765 {
4766 as_bad (_("expected <reg>, <reg>"));
4767 ignore_rest_of_line ();
4768 return;
4769 }
4770
4771 /* Optional constant. */
4772 if (skip_past_comma (&input_line_pointer) != FAIL)
4773 {
4774 if (immediate_for_directive (&offset) == FAIL)
4775 return;
4776 }
4777 else
4778 offset = 0;
4779
4780 demand_empty_rest_of_line ();
4781
4782 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4783 {
4784 as_bad (_("register must be either sp or set by a previous"
4785 "unwind_movsp directive"));
4786 return;
4787 }
4788
4789 /* Don't generate any opcodes, just record the information for later. */
4790 unwind.fp_reg = fp_reg;
4791 unwind.fp_used = 1;
4792 if (sp_reg == REG_SP)
4793 unwind.fp_offset = unwind.frame_size - offset;
4794 else
4795 unwind.fp_offset -= offset;
4796 }
4797
4798 /* Parse an unwind_raw directive. */
4799
4800 static void
4801 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4802 {
4803 expressionS exp;
4804 /* This is an arbitrary limit. */
4805 unsigned char op[16];
4806 int count;
4807
4808 if (!unwind.proc_start)
4809 as_bad (MISSING_FNSTART);
4810
4811 expression (&exp);
4812 if (exp.X_op == O_constant
4813 && skip_past_comma (&input_line_pointer) != FAIL)
4814 {
4815 unwind.frame_size += exp.X_add_number;
4816 expression (&exp);
4817 }
4818 else
4819 exp.X_op = O_illegal;
4820
4821 if (exp.X_op != O_constant)
4822 {
4823 as_bad (_("expected <offset>, <opcode>"));
4824 ignore_rest_of_line ();
4825 return;
4826 }
4827
4828 count = 0;
4829
4830 /* Parse the opcode. */
4831 for (;;)
4832 {
4833 if (count >= 16)
4834 {
4835 as_bad (_("unwind opcode too long"));
4836 ignore_rest_of_line ();
4837 }
4838 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4839 {
4840 as_bad (_("invalid unwind opcode"));
4841 ignore_rest_of_line ();
4842 return;
4843 }
4844 op[count++] = exp.X_add_number;
4845
4846 /* Parse the next byte. */
4847 if (skip_past_comma (&input_line_pointer) == FAIL)
4848 break;
4849
4850 expression (&exp);
4851 }
4852
4853 /* Add the opcode bytes in reverse order. */
4854 while (count--)
4855 add_unwind_opcode (op[count], 1);
4856
4857 demand_empty_rest_of_line ();
4858 }
4859
4860
4861 /* Parse a .eabi_attribute directive. */
4862
4863 static void
4864 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4865 {
4866 int tag = obj_elf_vendor_attribute (OBJ_ATTR_PROC);
4867
4868 if (tag >= 0 && tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4869 attributes_set_explicitly[tag] = 1;
4870 }
4871
4872 /* Emit a tls fix for the symbol. */
4873
4874 static void
4875 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4876 {
4877 char *p;
4878 expressionS exp;
4879 #ifdef md_flush_pending_output
4880 md_flush_pending_output ();
4881 #endif
4882
4883 #ifdef md_cons_align
4884 md_cons_align (4);
4885 #endif
4886
4887 /* Since we're just labelling the code, there's no need to define a
4888 mapping symbol. */
4889 expression (&exp);
4890 p = obstack_next_free (&frchain_now->frch_obstack);
4891 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4892 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4893 : BFD_RELOC_ARM_TLS_DESCSEQ);
4894 }
4895 #endif /* OBJ_ELF */
4896
4897 static void s_arm_arch (int);
4898 static void s_arm_object_arch (int);
4899 static void s_arm_cpu (int);
4900 static void s_arm_fpu (int);
4901 static void s_arm_arch_extension (int);
4902
4903 #ifdef TE_PE
4904
4905 static void
4906 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4907 {
4908 expressionS exp;
4909
4910 do
4911 {
4912 expression (&exp);
4913 if (exp.X_op == O_symbol)
4914 exp.X_op = O_secrel;
4915
4916 emit_expr (&exp, 4);
4917 }
4918 while (*input_line_pointer++ == ',');
4919
4920 input_line_pointer--;
4921 demand_empty_rest_of_line ();
4922 }
4923 #endif /* TE_PE */
4924
4925 /* This table describes all the machine specific pseudo-ops the assembler
4926 has to support. The fields are:
4927 pseudo-op name without dot
4928 function to call to execute this pseudo-op
4929 Integer arg to pass to the function. */
4930
4931 const pseudo_typeS md_pseudo_table[] =
4932 {
4933 /* Never called because '.req' does not start a line. */
4934 { "req", s_req, 0 },
4935 /* Following two are likewise never called. */
4936 { "dn", s_dn, 0 },
4937 { "qn", s_qn, 0 },
4938 { "unreq", s_unreq, 0 },
4939 { "bss", s_bss, 0 },
4940 { "align", s_align_ptwo, 2 },
4941 { "arm", s_arm, 0 },
4942 { "thumb", s_thumb, 0 },
4943 { "code", s_code, 0 },
4944 { "force_thumb", s_force_thumb, 0 },
4945 { "thumb_func", s_thumb_func, 0 },
4946 { "thumb_set", s_thumb_set, 0 },
4947 { "even", s_even, 0 },
4948 { "ltorg", s_ltorg, 0 },
4949 { "pool", s_ltorg, 0 },
4950 { "syntax", s_syntax, 0 },
4951 { "cpu", s_arm_cpu, 0 },
4952 { "arch", s_arm_arch, 0 },
4953 { "object_arch", s_arm_object_arch, 0 },
4954 { "fpu", s_arm_fpu, 0 },
4955 { "arch_extension", s_arm_arch_extension, 0 },
4956 #ifdef OBJ_ELF
4957 { "word", s_arm_elf_cons, 4 },
4958 { "long", s_arm_elf_cons, 4 },
4959 { "inst.n", s_arm_elf_inst, 2 },
4960 { "inst.w", s_arm_elf_inst, 4 },
4961 { "inst", s_arm_elf_inst, 0 },
4962 { "rel31", s_arm_rel31, 0 },
4963 { "fnstart", s_arm_unwind_fnstart, 0 },
4964 { "fnend", s_arm_unwind_fnend, 0 },
4965 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4966 { "personality", s_arm_unwind_personality, 0 },
4967 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4968 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4969 { "save", s_arm_unwind_save, 0 },
4970 { "vsave", s_arm_unwind_save, 1 },
4971 { "movsp", s_arm_unwind_movsp, 0 },
4972 { "pad", s_arm_unwind_pad, 0 },
4973 { "setfp", s_arm_unwind_setfp, 0 },
4974 { "unwind_raw", s_arm_unwind_raw, 0 },
4975 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4976 { "tlsdescseq", s_arm_tls_descseq, 0 },
4977 #else
4978 { "word", cons, 4},
4979
4980 /* These are used for dwarf. */
4981 {"2byte", cons, 2},
4982 {"4byte", cons, 4},
4983 {"8byte", cons, 8},
4984 /* These are used for dwarf2. */
4985 { "file", dwarf2_directive_file, 0 },
4986 { "loc", dwarf2_directive_loc, 0 },
4987 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4988 #endif
4989 { "extend", float_cons, 'x' },
4990 { "ldouble", float_cons, 'x' },
4991 { "packed", float_cons, 'p' },
4992 #ifdef TE_PE
4993 {"secrel32", pe_directive_secrel, 0},
4994 #endif
4995
4996 /* These are for compatibility with CodeComposer Studio. */
4997 {"ref", s_ccs_ref, 0},
4998 {"def", s_ccs_def, 0},
4999 {"asmfunc", s_ccs_asmfunc, 0},
5000 {"endasmfunc", s_ccs_endasmfunc, 0},
5001
5002 { 0, 0, 0 }
5003 };
5004 \f
5005 /* Parser functions used exclusively in instruction operands. */
5006
5007 /* Generic immediate-value read function for use in insn parsing.
5008 STR points to the beginning of the immediate (the leading #);
5009 VAL receives the value; if the value is outside [MIN, MAX]
5010 issue an error. PREFIX_OPT is true if the immediate prefix is
5011 optional. */
5012
5013 static int
5014 parse_immediate (char **str, int *val, int min, int max,
5015 bfd_boolean prefix_opt)
5016 {
5017 expressionS exp;
5018
5019 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
5020 if (exp.X_op != O_constant)
5021 {
5022 inst.error = _("constant expression required");
5023 return FAIL;
5024 }
5025
5026 if (exp.X_add_number < min || exp.X_add_number > max)
5027 {
5028 inst.error = _("immediate value out of range");
5029 return FAIL;
5030 }
5031
5032 *val = exp.X_add_number;
5033 return SUCCESS;
5034 }
5035
5036 /* Less-generic immediate-value read function with the possibility of loading a
5037 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
5038 instructions. Puts the result directly in inst.operands[i]. */
5039
5040 static int
5041 parse_big_immediate (char **str, int i, expressionS *in_exp,
5042 bfd_boolean allow_symbol_p)
5043 {
5044 expressionS exp;
5045 expressionS *exp_p = in_exp ? in_exp : &exp;
5046 char *ptr = *str;
5047
5048 my_get_expression (exp_p, &ptr, GE_OPT_PREFIX_BIG);
5049
5050 if (exp_p->X_op == O_constant)
5051 {
5052 inst.operands[i].imm = exp_p->X_add_number & 0xffffffff;
5053 /* If we're on a 64-bit host, then a 64-bit number can be returned using
5054 O_constant. We have to be careful not to break compilation for
5055 32-bit X_add_number, though. */
5056 if ((exp_p->X_add_number & ~(offsetT)(0xffffffffU)) != 0)
5057 {
5058 /* X >> 32 is illegal if sizeof (exp_p->X_add_number) == 4. */
5059 inst.operands[i].reg = (((exp_p->X_add_number >> 16) >> 16)
5060 & 0xffffffff);
5061 inst.operands[i].regisimm = 1;
5062 }
5063 }
5064 else if (exp_p->X_op == O_big
5065 && LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 32)
5066 {
5067 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
5068
5069 /* Bignums have their least significant bits in
5070 generic_bignum[0]. Make sure we put 32 bits in imm and
5071 32 bits in reg, in a (hopefully) portable way. */
5072 gas_assert (parts != 0);
5073
5074 /* Make sure that the number is not too big.
5075 PR 11972: Bignums can now be sign-extended to the
5076 size of a .octa so check that the out of range bits
5077 are all zero or all one. */
5078 if (LITTLENUM_NUMBER_OF_BITS * exp_p->X_add_number > 64)
5079 {
5080 LITTLENUM_TYPE m = -1;
5081
5082 if (generic_bignum[parts * 2] != 0
5083 && generic_bignum[parts * 2] != m)
5084 return FAIL;
5085
5086 for (j = parts * 2 + 1; j < (unsigned) exp_p->X_add_number; j++)
5087 if (generic_bignum[j] != generic_bignum[j-1])
5088 return FAIL;
5089 }
5090
5091 inst.operands[i].imm = 0;
5092 for (j = 0; j < parts; j++, idx++)
5093 inst.operands[i].imm |= generic_bignum[idx]
5094 << (LITTLENUM_NUMBER_OF_BITS * j);
5095 inst.operands[i].reg = 0;
5096 for (j = 0; j < parts; j++, idx++)
5097 inst.operands[i].reg |= generic_bignum[idx]
5098 << (LITTLENUM_NUMBER_OF_BITS * j);
5099 inst.operands[i].regisimm = 1;
5100 }
5101 else if (!(exp_p->X_op == O_symbol && allow_symbol_p))
5102 return FAIL;
5103
5104 *str = ptr;
5105
5106 return SUCCESS;
5107 }
5108
5109 /* Returns the pseudo-register number of an FPA immediate constant,
5110 or FAIL if there isn't a valid constant here. */
5111
5112 static int
5113 parse_fpa_immediate (char ** str)
5114 {
5115 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5116 char * save_in;
5117 expressionS exp;
5118 int i;
5119 int j;
5120
5121 /* First try and match exact strings, this is to guarantee
5122 that some formats will work even for cross assembly. */
5123
5124 for (i = 0; fp_const[i]; i++)
5125 {
5126 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
5127 {
5128 char *start = *str;
5129
5130 *str += strlen (fp_const[i]);
5131 if (is_end_of_line[(unsigned char) **str])
5132 return i + 8;
5133 *str = start;
5134 }
5135 }
5136
5137 /* Just because we didn't get a match doesn't mean that the constant
5138 isn't valid, just that it is in a format that we don't
5139 automatically recognize. Try parsing it with the standard
5140 expression routines. */
5141
5142 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
5143
5144 /* Look for a raw floating point number. */
5145 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
5146 && is_end_of_line[(unsigned char) *save_in])
5147 {
5148 for (i = 0; i < NUM_FLOAT_VALS; i++)
5149 {
5150 for (j = 0; j < MAX_LITTLENUMS; j++)
5151 {
5152 if (words[j] != fp_values[i][j])
5153 break;
5154 }
5155
5156 if (j == MAX_LITTLENUMS)
5157 {
5158 *str = save_in;
5159 return i + 8;
5160 }
5161 }
5162 }
5163
5164 /* Try and parse a more complex expression, this will probably fail
5165 unless the code uses a floating point prefix (eg "0f"). */
5166 save_in = input_line_pointer;
5167 input_line_pointer = *str;
5168 if (expression (&exp) == absolute_section
5169 && exp.X_op == O_big
5170 && exp.X_add_number < 0)
5171 {
5172 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
5173 Ditto for 15. */
5174 #define X_PRECISION 5
5175 #define E_PRECISION 15L
5176 if (gen_to_words (words, X_PRECISION, E_PRECISION) == 0)
5177 {
5178 for (i = 0; i < NUM_FLOAT_VALS; i++)
5179 {
5180 for (j = 0; j < MAX_LITTLENUMS; j++)
5181 {
5182 if (words[j] != fp_values[i][j])
5183 break;
5184 }
5185
5186 if (j == MAX_LITTLENUMS)
5187 {
5188 *str = input_line_pointer;
5189 input_line_pointer = save_in;
5190 return i + 8;
5191 }
5192 }
5193 }
5194 }
5195
5196 *str = input_line_pointer;
5197 input_line_pointer = save_in;
5198 inst.error = _("invalid FPA immediate expression");
5199 return FAIL;
5200 }
5201
5202 /* Returns 1 if a number has "quarter-precision" float format
5203 0baBbbbbbc defgh000 00000000 00000000. */
5204
5205 static int
5206 is_quarter_float (unsigned imm)
5207 {
5208 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
5209 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
5210 }
5211
5212
5213 /* Detect the presence of a floating point or integer zero constant,
5214 i.e. #0.0 or #0. */
5215
5216 static bfd_boolean
5217 parse_ifimm_zero (char **in)
5218 {
5219 int error_code;
5220
5221 if (!is_immediate_prefix (**in))
5222 {
5223 /* In unified syntax, all prefixes are optional. */
5224 if (!unified_syntax)
5225 return FALSE;
5226 }
5227 else
5228 ++*in;
5229
5230 /* Accept #0x0 as a synonym for #0. */
5231 if (strncmp (*in, "0x", 2) == 0)
5232 {
5233 int val;
5234 if (parse_immediate (in, &val, 0, 0, TRUE) == FAIL)
5235 return FALSE;
5236 return TRUE;
5237 }
5238
5239 error_code = atof_generic (in, ".", EXP_CHARS,
5240 &generic_floating_point_number);
5241
5242 if (!error_code
5243 && generic_floating_point_number.sign == '+'
5244 && (generic_floating_point_number.low
5245 > generic_floating_point_number.leader))
5246 return TRUE;
5247
5248 return FALSE;
5249 }
5250
5251 /* Parse an 8-bit "quarter-precision" floating point number of the form:
5252 0baBbbbbbc defgh000 00000000 00000000.
5253 The zero and minus-zero cases need special handling, since they can't be
5254 encoded in the "quarter-precision" float format, but can nonetheless be
5255 loaded as integer constants. */
5256
5257 static unsigned
5258 parse_qfloat_immediate (char **ccp, int *immed)
5259 {
5260 char *str = *ccp;
5261 char *fpnum;
5262 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5263 int found_fpchar = 0;
5264
5265 skip_past_char (&str, '#');
5266
5267 /* We must not accidentally parse an integer as a floating-point number. Make
5268 sure that the value we parse is not an integer by checking for special
5269 characters '.' or 'e'.
5270 FIXME: This is a horrible hack, but doing better is tricky because type
5271 information isn't in a very usable state at parse time. */
5272 fpnum = str;
5273 skip_whitespace (fpnum);
5274
5275 if (strncmp (fpnum, "0x", 2) == 0)
5276 return FAIL;
5277 else
5278 {
5279 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
5280 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
5281 {
5282 found_fpchar = 1;
5283 break;
5284 }
5285
5286 if (!found_fpchar)
5287 return FAIL;
5288 }
5289
5290 if ((str = atof_ieee (str, 's', words)) != NULL)
5291 {
5292 unsigned fpword = 0;
5293 int i;
5294
5295 /* Our FP word must be 32 bits (single-precision FP). */
5296 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
5297 {
5298 fpword <<= LITTLENUM_NUMBER_OF_BITS;
5299 fpword |= words[i];
5300 }
5301
5302 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
5303 *immed = fpword;
5304 else
5305 return FAIL;
5306
5307 *ccp = str;
5308
5309 return SUCCESS;
5310 }
5311
5312 return FAIL;
5313 }
5314
5315 /* Shift operands. */
5316 enum shift_kind
5317 {
5318 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX, SHIFT_UXTW
5319 };
5320
5321 struct asm_shift_name
5322 {
5323 const char *name;
5324 enum shift_kind kind;
5325 };
5326
5327 /* Third argument to parse_shift. */
5328 enum parse_shift_mode
5329 {
5330 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
5331 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
5332 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
5333 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
5334 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
5335 SHIFT_UXTW_IMMEDIATE /* Shift must be UXTW immediate. */
5336 };
5337
5338 /* Parse a <shift> specifier on an ARM data processing instruction.
5339 This has three forms:
5340
5341 (LSL|LSR|ASL|ASR|ROR) Rs
5342 (LSL|LSR|ASL|ASR|ROR) #imm
5343 RRX
5344
5345 Note that ASL is assimilated to LSL in the instruction encoding, and
5346 RRX to ROR #0 (which cannot be written as such). */
5347
5348 static int
5349 parse_shift (char **str, int i, enum parse_shift_mode mode)
5350 {
5351 const struct asm_shift_name *shift_name;
5352 enum shift_kind shift;
5353 char *s = *str;
5354 char *p = s;
5355 int reg;
5356
5357 for (p = *str; ISALPHA (*p); p++)
5358 ;
5359
5360 if (p == *str)
5361 {
5362 inst.error = _("shift expression expected");
5363 return FAIL;
5364 }
5365
5366 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
5367 p - *str);
5368
5369 if (shift_name == NULL)
5370 {
5371 inst.error = _("shift expression expected");
5372 return FAIL;
5373 }
5374
5375 shift = shift_name->kind;
5376
5377 switch (mode)
5378 {
5379 case NO_SHIFT_RESTRICT:
5380 case SHIFT_IMMEDIATE:
5381 if (shift == SHIFT_UXTW)
5382 {
5383 inst.error = _("'UXTW' not allowed here");
5384 return FAIL;
5385 }
5386 break;
5387
5388 case SHIFT_LSL_OR_ASR_IMMEDIATE:
5389 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
5390 {
5391 inst.error = _("'LSL' or 'ASR' required");
5392 return FAIL;
5393 }
5394 break;
5395
5396 case SHIFT_LSL_IMMEDIATE:
5397 if (shift != SHIFT_LSL)
5398 {
5399 inst.error = _("'LSL' required");
5400 return FAIL;
5401 }
5402 break;
5403
5404 case SHIFT_ASR_IMMEDIATE:
5405 if (shift != SHIFT_ASR)
5406 {
5407 inst.error = _("'ASR' required");
5408 return FAIL;
5409 }
5410 break;
5411 case SHIFT_UXTW_IMMEDIATE:
5412 if (shift != SHIFT_UXTW)
5413 {
5414 inst.error = _("'UXTW' required");
5415 return FAIL;
5416 }
5417 break;
5418
5419 default: abort ();
5420 }
5421
5422 if (shift != SHIFT_RRX)
5423 {
5424 /* Whitespace can appear here if the next thing is a bare digit. */
5425 skip_whitespace (p);
5426
5427 if (mode == NO_SHIFT_RESTRICT
5428 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5429 {
5430 inst.operands[i].imm = reg;
5431 inst.operands[i].immisreg = 1;
5432 }
5433 else if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5434 return FAIL;
5435 }
5436 inst.operands[i].shift_kind = shift;
5437 inst.operands[i].shifted = 1;
5438 *str = p;
5439 return SUCCESS;
5440 }
5441
5442 /* Parse a <shifter_operand> for an ARM data processing instruction:
5443
5444 #<immediate>
5445 #<immediate>, <rotate>
5446 <Rm>
5447 <Rm>, <shift>
5448
5449 where <shift> is defined by parse_shift above, and <rotate> is a
5450 multiple of 2 between 0 and 30. Validation of immediate operands
5451 is deferred to md_apply_fix. */
5452
5453 static int
5454 parse_shifter_operand (char **str, int i)
5455 {
5456 int value;
5457 expressionS exp;
5458
5459 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
5460 {
5461 inst.operands[i].reg = value;
5462 inst.operands[i].isreg = 1;
5463
5464 /* parse_shift will override this if appropriate */
5465 inst.relocs[0].exp.X_op = O_constant;
5466 inst.relocs[0].exp.X_add_number = 0;
5467
5468 if (skip_past_comma (str) == FAIL)
5469 return SUCCESS;
5470
5471 /* Shift operation on register. */
5472 return parse_shift (str, i, NO_SHIFT_RESTRICT);
5473 }
5474
5475 if (my_get_expression (&inst.relocs[0].exp, str, GE_IMM_PREFIX))
5476 return FAIL;
5477
5478 if (skip_past_comma (str) == SUCCESS)
5479 {
5480 /* #x, y -- ie explicit rotation by Y. */
5481 if (my_get_expression (&exp, str, GE_NO_PREFIX))
5482 return FAIL;
5483
5484 if (exp.X_op != O_constant || inst.relocs[0].exp.X_op != O_constant)
5485 {
5486 inst.error = _("constant expression expected");
5487 return FAIL;
5488 }
5489
5490 value = exp.X_add_number;
5491 if (value < 0 || value > 30 || value % 2 != 0)
5492 {
5493 inst.error = _("invalid rotation");
5494 return FAIL;
5495 }
5496 if (inst.relocs[0].exp.X_add_number < 0
5497 || inst.relocs[0].exp.X_add_number > 255)
5498 {
5499 inst.error = _("invalid constant");
5500 return FAIL;
5501 }
5502
5503 /* Encode as specified. */
5504 inst.operands[i].imm = inst.relocs[0].exp.X_add_number | value << 7;
5505 return SUCCESS;
5506 }
5507
5508 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
5509 inst.relocs[0].pc_rel = 0;
5510 return SUCCESS;
5511 }
5512
5513 /* Group relocation information. Each entry in the table contains the
5514 textual name of the relocation as may appear in assembler source
5515 and must end with a colon.
5516 Along with this textual name are the relocation codes to be used if
5517 the corresponding instruction is an ALU instruction (ADD or SUB only),
5518 an LDR, an LDRS, or an LDC. */
5519
5520 struct group_reloc_table_entry
5521 {
5522 const char *name;
5523 int alu_code;
5524 int ldr_code;
5525 int ldrs_code;
5526 int ldc_code;
5527 };
5528
5529 typedef enum
5530 {
5531 /* Varieties of non-ALU group relocation. */
5532
5533 GROUP_LDR,
5534 GROUP_LDRS,
5535 GROUP_LDC,
5536 GROUP_MVE
5537 } group_reloc_type;
5538
5539 static struct group_reloc_table_entry group_reloc_table[] =
5540 { /* Program counter relative: */
5541 { "pc_g0_nc",
5542 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
5543 0, /* LDR */
5544 0, /* LDRS */
5545 0 }, /* LDC */
5546 { "pc_g0",
5547 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
5548 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
5549 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
5550 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
5551 { "pc_g1_nc",
5552 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
5553 0, /* LDR */
5554 0, /* LDRS */
5555 0 }, /* LDC */
5556 { "pc_g1",
5557 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
5558 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
5559 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
5560 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
5561 { "pc_g2",
5562 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
5563 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
5564 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
5565 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
5566 /* Section base relative */
5567 { "sb_g0_nc",
5568 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
5569 0, /* LDR */
5570 0, /* LDRS */
5571 0 }, /* LDC */
5572 { "sb_g0",
5573 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
5574 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
5575 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
5576 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
5577 { "sb_g1_nc",
5578 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
5579 0, /* LDR */
5580 0, /* LDRS */
5581 0 }, /* LDC */
5582 { "sb_g1",
5583 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
5584 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
5585 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
5586 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
5587 { "sb_g2",
5588 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
5589 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
5590 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
5591 BFD_RELOC_ARM_LDC_SB_G2 }, /* LDC */
5592 /* Absolute thumb alu relocations. */
5593 { "lower0_7",
5594 BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC,/* ALU. */
5595 0, /* LDR. */
5596 0, /* LDRS. */
5597 0 }, /* LDC. */
5598 { "lower8_15",
5599 BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC,/* ALU. */
5600 0, /* LDR. */
5601 0, /* LDRS. */
5602 0 }, /* LDC. */
5603 { "upper0_7",
5604 BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC,/* ALU. */
5605 0, /* LDR. */
5606 0, /* LDRS. */
5607 0 }, /* LDC. */
5608 { "upper8_15",
5609 BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC,/* ALU. */
5610 0, /* LDR. */
5611 0, /* LDRS. */
5612 0 } }; /* LDC. */
5613
5614 /* Given the address of a pointer pointing to the textual name of a group
5615 relocation as may appear in assembler source, attempt to find its details
5616 in group_reloc_table. The pointer will be updated to the character after
5617 the trailing colon. On failure, FAIL will be returned; SUCCESS
5618 otherwise. On success, *entry will be updated to point at the relevant
5619 group_reloc_table entry. */
5620
5621 static int
5622 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5623 {
5624 unsigned int i;
5625 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5626 {
5627 int length = strlen (group_reloc_table[i].name);
5628
5629 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5630 && (*str)[length] == ':')
5631 {
5632 *out = &group_reloc_table[i];
5633 *str += (length + 1);
5634 return SUCCESS;
5635 }
5636 }
5637
5638 return FAIL;
5639 }
5640
5641 /* Parse a <shifter_operand> for an ARM data processing instruction
5642 (as for parse_shifter_operand) where group relocations are allowed:
5643
5644 #<immediate>
5645 #<immediate>, <rotate>
5646 #:<group_reloc>:<expression>
5647 <Rm>
5648 <Rm>, <shift>
5649
5650 where <group_reloc> is one of the strings defined in group_reloc_table.
5651 The hashes are optional.
5652
5653 Everything else is as for parse_shifter_operand. */
5654
5655 static parse_operand_result
5656 parse_shifter_operand_group_reloc (char **str, int i)
5657 {
5658 /* Determine if we have the sequence of characters #: or just :
5659 coming next. If we do, then we check for a group relocation.
5660 If we don't, punt the whole lot to parse_shifter_operand. */
5661
5662 if (((*str)[0] == '#' && (*str)[1] == ':')
5663 || (*str)[0] == ':')
5664 {
5665 struct group_reloc_table_entry *entry;
5666
5667 if ((*str)[0] == '#')
5668 (*str) += 2;
5669 else
5670 (*str)++;
5671
5672 /* Try to parse a group relocation. Anything else is an error. */
5673 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5674 {
5675 inst.error = _("unknown group relocation");
5676 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5677 }
5678
5679 /* We now have the group relocation table entry corresponding to
5680 the name in the assembler source. Next, we parse the expression. */
5681 if (my_get_expression (&inst.relocs[0].exp, str, GE_NO_PREFIX))
5682 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5683
5684 /* Record the relocation type (always the ALU variant here). */
5685 inst.relocs[0].type = (bfd_reloc_code_real_type) entry->alu_code;
5686 gas_assert (inst.relocs[0].type != 0);
5687
5688 return PARSE_OPERAND_SUCCESS;
5689 }
5690 else
5691 return parse_shifter_operand (str, i) == SUCCESS
5692 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5693
5694 /* Never reached. */
5695 }
5696
5697 /* Parse a Neon alignment expression. Information is written to
5698 inst.operands[i]. We assume the initial ':' has been skipped.
5699
5700 align .imm = align << 8, .immisalign=1, .preind=0 */
5701 static parse_operand_result
5702 parse_neon_alignment (char **str, int i)
5703 {
5704 char *p = *str;
5705 expressionS exp;
5706
5707 my_get_expression (&exp, &p, GE_NO_PREFIX);
5708
5709 if (exp.X_op != O_constant)
5710 {
5711 inst.error = _("alignment must be constant");
5712 return PARSE_OPERAND_FAIL;
5713 }
5714
5715 inst.operands[i].imm = exp.X_add_number << 8;
5716 inst.operands[i].immisalign = 1;
5717 /* Alignments are not pre-indexes. */
5718 inst.operands[i].preind = 0;
5719
5720 *str = p;
5721 return PARSE_OPERAND_SUCCESS;
5722 }
5723
5724 /* Parse all forms of an ARM address expression. Information is written
5725 to inst.operands[i] and/or inst.relocs[0].
5726
5727 Preindexed addressing (.preind=1):
5728
5729 [Rn, #offset] .reg=Rn .relocs[0].exp=offset
5730 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5731 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5732 .shift_kind=shift .relocs[0].exp=shift_imm
5733
5734 These three may have a trailing ! which causes .writeback to be set also.
5735
5736 Postindexed addressing (.postind=1, .writeback=1):
5737
5738 [Rn], #offset .reg=Rn .relocs[0].exp=offset
5739 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5740 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5741 .shift_kind=shift .relocs[0].exp=shift_imm
5742
5743 Unindexed addressing (.preind=0, .postind=0):
5744
5745 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5746
5747 Other:
5748
5749 [Rn]{!} shorthand for [Rn,#0]{!}
5750 =immediate .isreg=0 .relocs[0].exp=immediate
5751 label .reg=PC .relocs[0].pc_rel=1 .relocs[0].exp=label
5752
5753 It is the caller's responsibility to check for addressing modes not
5754 supported by the instruction, and to set inst.relocs[0].type. */
5755
5756 static parse_operand_result
5757 parse_address_main (char **str, int i, int group_relocations,
5758 group_reloc_type group_type)
5759 {
5760 char *p = *str;
5761 int reg;
5762
5763 if (skip_past_char (&p, '[') == FAIL)
5764 {
5765 if (skip_past_char (&p, '=') == FAIL)
5766 {
5767 /* Bare address - translate to PC-relative offset. */
5768 inst.relocs[0].pc_rel = 1;
5769 inst.operands[i].reg = REG_PC;
5770 inst.operands[i].isreg = 1;
5771 inst.operands[i].preind = 1;
5772
5773 if (my_get_expression (&inst.relocs[0].exp, &p, GE_OPT_PREFIX_BIG))
5774 return PARSE_OPERAND_FAIL;
5775 }
5776 else if (parse_big_immediate (&p, i, &inst.relocs[0].exp,
5777 /*allow_symbol_p=*/TRUE))
5778 return PARSE_OPERAND_FAIL;
5779
5780 *str = p;
5781 return PARSE_OPERAND_SUCCESS;
5782 }
5783
5784 /* PR gas/14887: Allow for whitespace after the opening bracket. */
5785 skip_whitespace (p);
5786
5787 if (group_type == GROUP_MVE)
5788 {
5789 enum arm_reg_type rtype = REG_TYPE_MQ;
5790 struct neon_type_el et;
5791 if ((reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5792 {
5793 inst.operands[i].isquad = 1;
5794 }
5795 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5796 {
5797 inst.error = BAD_ADDR_MODE;
5798 return PARSE_OPERAND_FAIL;
5799 }
5800 }
5801 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5802 {
5803 if (group_type == GROUP_MVE)
5804 inst.error = BAD_ADDR_MODE;
5805 else
5806 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5807 return PARSE_OPERAND_FAIL;
5808 }
5809 inst.operands[i].reg = reg;
5810 inst.operands[i].isreg = 1;
5811
5812 if (skip_past_comma (&p) == SUCCESS)
5813 {
5814 inst.operands[i].preind = 1;
5815
5816 if (*p == '+') p++;
5817 else if (*p == '-') p++, inst.operands[i].negative = 1;
5818
5819 enum arm_reg_type rtype = REG_TYPE_MQ;
5820 struct neon_type_el et;
5821 if (group_type == GROUP_MVE
5822 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5823 {
5824 inst.operands[i].immisreg = 2;
5825 inst.operands[i].imm = reg;
5826
5827 if (skip_past_comma (&p) == SUCCESS)
5828 {
5829 if (parse_shift (&p, i, SHIFT_UXTW_IMMEDIATE) == SUCCESS)
5830 {
5831 inst.operands[i].imm |= inst.relocs[0].exp.X_add_number << 5;
5832 inst.relocs[0].exp.X_add_number = 0;
5833 }
5834 else
5835 return PARSE_OPERAND_FAIL;
5836 }
5837 }
5838 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5839 {
5840 inst.operands[i].imm = reg;
5841 inst.operands[i].immisreg = 1;
5842
5843 if (skip_past_comma (&p) == SUCCESS)
5844 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5845 return PARSE_OPERAND_FAIL;
5846 }
5847 else if (skip_past_char (&p, ':') == SUCCESS)
5848 {
5849 /* FIXME: '@' should be used here, but it's filtered out by generic
5850 code before we get to see it here. This may be subject to
5851 change. */
5852 parse_operand_result result = parse_neon_alignment (&p, i);
5853
5854 if (result != PARSE_OPERAND_SUCCESS)
5855 return result;
5856 }
5857 else
5858 {
5859 if (inst.operands[i].negative)
5860 {
5861 inst.operands[i].negative = 0;
5862 p--;
5863 }
5864
5865 if (group_relocations
5866 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5867 {
5868 struct group_reloc_table_entry *entry;
5869
5870 /* Skip over the #: or : sequence. */
5871 if (*p == '#')
5872 p += 2;
5873 else
5874 p++;
5875
5876 /* Try to parse a group relocation. Anything else is an
5877 error. */
5878 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5879 {
5880 inst.error = _("unknown group relocation");
5881 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5882 }
5883
5884 /* We now have the group relocation table entry corresponding to
5885 the name in the assembler source. Next, we parse the
5886 expression. */
5887 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
5888 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5889
5890 /* Record the relocation type. */
5891 switch (group_type)
5892 {
5893 case GROUP_LDR:
5894 inst.relocs[0].type
5895 = (bfd_reloc_code_real_type) entry->ldr_code;
5896 break;
5897
5898 case GROUP_LDRS:
5899 inst.relocs[0].type
5900 = (bfd_reloc_code_real_type) entry->ldrs_code;
5901 break;
5902
5903 case GROUP_LDC:
5904 inst.relocs[0].type
5905 = (bfd_reloc_code_real_type) entry->ldc_code;
5906 break;
5907
5908 default:
5909 gas_assert (0);
5910 }
5911
5912 if (inst.relocs[0].type == 0)
5913 {
5914 inst.error = _("this group relocation is not allowed on this instruction");
5915 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5916 }
5917 }
5918 else
5919 {
5920 char *q = p;
5921
5922 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
5923 return PARSE_OPERAND_FAIL;
5924 /* If the offset is 0, find out if it's a +0 or -0. */
5925 if (inst.relocs[0].exp.X_op == O_constant
5926 && inst.relocs[0].exp.X_add_number == 0)
5927 {
5928 skip_whitespace (q);
5929 if (*q == '#')
5930 {
5931 q++;
5932 skip_whitespace (q);
5933 }
5934 if (*q == '-')
5935 inst.operands[i].negative = 1;
5936 }
5937 }
5938 }
5939 }
5940 else if (skip_past_char (&p, ':') == SUCCESS)
5941 {
5942 /* FIXME: '@' should be used here, but it's filtered out by generic code
5943 before we get to see it here. This may be subject to change. */
5944 parse_operand_result result = parse_neon_alignment (&p, i);
5945
5946 if (result != PARSE_OPERAND_SUCCESS)
5947 return result;
5948 }
5949
5950 if (skip_past_char (&p, ']') == FAIL)
5951 {
5952 inst.error = _("']' expected");
5953 return PARSE_OPERAND_FAIL;
5954 }
5955
5956 if (skip_past_char (&p, '!') == SUCCESS)
5957 inst.operands[i].writeback = 1;
5958
5959 else if (skip_past_comma (&p) == SUCCESS)
5960 {
5961 if (skip_past_char (&p, '{') == SUCCESS)
5962 {
5963 /* [Rn], {expr} - unindexed, with option */
5964 if (parse_immediate (&p, &inst.operands[i].imm,
5965 0, 255, TRUE) == FAIL)
5966 return PARSE_OPERAND_FAIL;
5967
5968 if (skip_past_char (&p, '}') == FAIL)
5969 {
5970 inst.error = _("'}' expected at end of 'option' field");
5971 return PARSE_OPERAND_FAIL;
5972 }
5973 if (inst.operands[i].preind)
5974 {
5975 inst.error = _("cannot combine index with option");
5976 return PARSE_OPERAND_FAIL;
5977 }
5978 *str = p;
5979 return PARSE_OPERAND_SUCCESS;
5980 }
5981 else
5982 {
5983 inst.operands[i].postind = 1;
5984 inst.operands[i].writeback = 1;
5985
5986 if (inst.operands[i].preind)
5987 {
5988 inst.error = _("cannot combine pre- and post-indexing");
5989 return PARSE_OPERAND_FAIL;
5990 }
5991
5992 if (*p == '+') p++;
5993 else if (*p == '-') p++, inst.operands[i].negative = 1;
5994
5995 enum arm_reg_type rtype = REG_TYPE_MQ;
5996 struct neon_type_el et;
5997 if (group_type == GROUP_MVE
5998 && (reg = arm_typed_reg_parse (&p, rtype, &rtype, &et)) != FAIL)
5999 {
6000 inst.operands[i].immisreg = 2;
6001 inst.operands[i].imm = reg;
6002 }
6003 else if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
6004 {
6005 /* We might be using the immediate for alignment already. If we
6006 are, OR the register number into the low-order bits. */
6007 if (inst.operands[i].immisalign)
6008 inst.operands[i].imm |= reg;
6009 else
6010 inst.operands[i].imm = reg;
6011 inst.operands[i].immisreg = 1;
6012
6013 if (skip_past_comma (&p) == SUCCESS)
6014 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
6015 return PARSE_OPERAND_FAIL;
6016 }
6017 else
6018 {
6019 char *q = p;
6020
6021 if (inst.operands[i].negative)
6022 {
6023 inst.operands[i].negative = 0;
6024 p--;
6025 }
6026 if (my_get_expression (&inst.relocs[0].exp, &p, GE_IMM_PREFIX))
6027 return PARSE_OPERAND_FAIL;
6028 /* If the offset is 0, find out if it's a +0 or -0. */
6029 if (inst.relocs[0].exp.X_op == O_constant
6030 && inst.relocs[0].exp.X_add_number == 0)
6031 {
6032 skip_whitespace (q);
6033 if (*q == '#')
6034 {
6035 q++;
6036 skip_whitespace (q);
6037 }
6038 if (*q == '-')
6039 inst.operands[i].negative = 1;
6040 }
6041 }
6042 }
6043 }
6044
6045 /* If at this point neither .preind nor .postind is set, we have a
6046 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
6047 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
6048 {
6049 inst.operands[i].preind = 1;
6050 inst.relocs[0].exp.X_op = O_constant;
6051 inst.relocs[0].exp.X_add_number = 0;
6052 }
6053 *str = p;
6054 return PARSE_OPERAND_SUCCESS;
6055 }
6056
6057 static int
6058 parse_address (char **str, int i)
6059 {
6060 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
6061 ? SUCCESS : FAIL;
6062 }
6063
6064 static parse_operand_result
6065 parse_address_group_reloc (char **str, int i, group_reloc_type type)
6066 {
6067 return parse_address_main (str, i, 1, type);
6068 }
6069
6070 /* Parse an operand for a MOVW or MOVT instruction. */
6071 static int
6072 parse_half (char **str)
6073 {
6074 char * p;
6075
6076 p = *str;
6077 skip_past_char (&p, '#');
6078 if (strncasecmp (p, ":lower16:", 9) == 0)
6079 inst.relocs[0].type = BFD_RELOC_ARM_MOVW;
6080 else if (strncasecmp (p, ":upper16:", 9) == 0)
6081 inst.relocs[0].type = BFD_RELOC_ARM_MOVT;
6082
6083 if (inst.relocs[0].type != BFD_RELOC_UNUSED)
6084 {
6085 p += 9;
6086 skip_whitespace (p);
6087 }
6088
6089 if (my_get_expression (&inst.relocs[0].exp, &p, GE_NO_PREFIX))
6090 return FAIL;
6091
6092 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
6093 {
6094 if (inst.relocs[0].exp.X_op != O_constant)
6095 {
6096 inst.error = _("constant expression expected");
6097 return FAIL;
6098 }
6099 if (inst.relocs[0].exp.X_add_number < 0
6100 || inst.relocs[0].exp.X_add_number > 0xffff)
6101 {
6102 inst.error = _("immediate value out of range");
6103 return FAIL;
6104 }
6105 }
6106 *str = p;
6107 return SUCCESS;
6108 }
6109
6110 /* Miscellaneous. */
6111
6112 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
6113 or a bitmask suitable to be or-ed into the ARM msr instruction. */
6114 static int
6115 parse_psr (char **str, bfd_boolean lhs)
6116 {
6117 char *p;
6118 unsigned long psr_field;
6119 const struct asm_psr *psr;
6120 char *start;
6121 bfd_boolean is_apsr = FALSE;
6122 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
6123
6124 /* PR gas/12698: If the user has specified -march=all then m_profile will
6125 be TRUE, but we want to ignore it in this case as we are building for any
6126 CPU type, including non-m variants. */
6127 if (ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any))
6128 m_profile = FALSE;
6129
6130 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
6131 feature for ease of use and backwards compatibility. */
6132 p = *str;
6133 if (strncasecmp (p, "SPSR", 4) == 0)
6134 {
6135 if (m_profile)
6136 goto unsupported_psr;
6137
6138 psr_field = SPSR_BIT;
6139 }
6140 else if (strncasecmp (p, "CPSR", 4) == 0)
6141 {
6142 if (m_profile)
6143 goto unsupported_psr;
6144
6145 psr_field = 0;
6146 }
6147 else if (strncasecmp (p, "APSR", 4) == 0)
6148 {
6149 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
6150 and ARMv7-R architecture CPUs. */
6151 is_apsr = TRUE;
6152 psr_field = 0;
6153 }
6154 else if (m_profile)
6155 {
6156 start = p;
6157 do
6158 p++;
6159 while (ISALNUM (*p) || *p == '_');
6160
6161 if (strncasecmp (start, "iapsr", 5) == 0
6162 || strncasecmp (start, "eapsr", 5) == 0
6163 || strncasecmp (start, "xpsr", 4) == 0
6164 || strncasecmp (start, "psr", 3) == 0)
6165 p = start + strcspn (start, "rR") + 1;
6166
6167 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
6168 p - start);
6169
6170 if (!psr)
6171 return FAIL;
6172
6173 /* If APSR is being written, a bitfield may be specified. Note that
6174 APSR itself is handled above. */
6175 if (psr->field <= 3)
6176 {
6177 psr_field = psr->field;
6178 is_apsr = TRUE;
6179 goto check_suffix;
6180 }
6181
6182 *str = p;
6183 /* M-profile MSR instructions have the mask field set to "10", except
6184 *PSR variants which modify APSR, which may use a different mask (and
6185 have been handled already). Do that by setting the PSR_f field
6186 here. */
6187 return psr->field | (lhs ? PSR_f : 0);
6188 }
6189 else
6190 goto unsupported_psr;
6191
6192 p += 4;
6193 check_suffix:
6194 if (*p == '_')
6195 {
6196 /* A suffix follows. */
6197 p++;
6198 start = p;
6199
6200 do
6201 p++;
6202 while (ISALNUM (*p) || *p == '_');
6203
6204 if (is_apsr)
6205 {
6206 /* APSR uses a notation for bits, rather than fields. */
6207 unsigned int nzcvq_bits = 0;
6208 unsigned int g_bit = 0;
6209 char *bit;
6210
6211 for (bit = start; bit != p; bit++)
6212 {
6213 switch (TOLOWER (*bit))
6214 {
6215 case 'n':
6216 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
6217 break;
6218
6219 case 'z':
6220 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
6221 break;
6222
6223 case 'c':
6224 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
6225 break;
6226
6227 case 'v':
6228 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
6229 break;
6230
6231 case 'q':
6232 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
6233 break;
6234
6235 case 'g':
6236 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
6237 break;
6238
6239 default:
6240 inst.error = _("unexpected bit specified after APSR");
6241 return FAIL;
6242 }
6243 }
6244
6245 if (nzcvq_bits == 0x1f)
6246 psr_field |= PSR_f;
6247
6248 if (g_bit == 0x1)
6249 {
6250 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
6251 {
6252 inst.error = _("selected processor does not "
6253 "support DSP extension");
6254 return FAIL;
6255 }
6256
6257 psr_field |= PSR_s;
6258 }
6259
6260 if ((nzcvq_bits & 0x20) != 0
6261 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
6262 || (g_bit & 0x2) != 0)
6263 {
6264 inst.error = _("bad bitmask specified after APSR");
6265 return FAIL;
6266 }
6267 }
6268 else
6269 {
6270 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
6271 p - start);
6272 if (!psr)
6273 goto error;
6274
6275 psr_field |= psr->field;
6276 }
6277 }
6278 else
6279 {
6280 if (ISALNUM (*p))
6281 goto error; /* Garbage after "[CS]PSR". */
6282
6283 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
6284 is deprecated, but allow it anyway. */
6285 if (is_apsr && lhs)
6286 {
6287 psr_field |= PSR_f;
6288 as_tsktsk (_("writing to APSR without specifying a bitmask is "
6289 "deprecated"));
6290 }
6291 else if (!m_profile)
6292 /* These bits are never right for M-profile devices: don't set them
6293 (only code paths which read/write APSR reach here). */
6294 psr_field |= (PSR_c | PSR_f);
6295 }
6296 *str = p;
6297 return psr_field;
6298
6299 unsupported_psr:
6300 inst.error = _("selected processor does not support requested special "
6301 "purpose register");
6302 return FAIL;
6303
6304 error:
6305 inst.error = _("flag for {c}psr instruction expected");
6306 return FAIL;
6307 }
6308
6309 static int
6310 parse_sys_vldr_vstr (char **str)
6311 {
6312 unsigned i;
6313 int val = FAIL;
6314 struct {
6315 const char *name;
6316 int regl;
6317 int regh;
6318 } sysregs[] = {
6319 {"FPSCR", 0x1, 0x0},
6320 {"FPSCR_nzcvqc", 0x2, 0x0},
6321 {"VPR", 0x4, 0x1},
6322 {"P0", 0x5, 0x1},
6323 {"FPCXTNS", 0x6, 0x1},
6324 {"FPCXTS", 0x7, 0x1}
6325 };
6326 char *op_end = strchr (*str, ',');
6327 size_t op_strlen = op_end - *str;
6328
6329 for (i = 0; i < sizeof (sysregs) / sizeof (sysregs[0]); i++)
6330 {
6331 if (!strncmp (*str, sysregs[i].name, op_strlen))
6332 {
6333 val = sysregs[i].regl | (sysregs[i].regh << 3);
6334 *str = op_end;
6335 break;
6336 }
6337 }
6338
6339 return val;
6340 }
6341
6342 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
6343 value suitable for splatting into the AIF field of the instruction. */
6344
6345 static int
6346 parse_cps_flags (char **str)
6347 {
6348 int val = 0;
6349 int saw_a_flag = 0;
6350 char *s = *str;
6351
6352 for (;;)
6353 switch (*s++)
6354 {
6355 case '\0': case ',':
6356 goto done;
6357
6358 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
6359 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
6360 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
6361
6362 default:
6363 inst.error = _("unrecognized CPS flag");
6364 return FAIL;
6365 }
6366
6367 done:
6368 if (saw_a_flag == 0)
6369 {
6370 inst.error = _("missing CPS flags");
6371 return FAIL;
6372 }
6373
6374 *str = s - 1;
6375 return val;
6376 }
6377
6378 /* Parse an endian specifier ("BE" or "LE", case insensitive);
6379 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
6380
6381 static int
6382 parse_endian_specifier (char **str)
6383 {
6384 int little_endian;
6385 char *s = *str;
6386
6387 if (strncasecmp (s, "BE", 2))
6388 little_endian = 0;
6389 else if (strncasecmp (s, "LE", 2))
6390 little_endian = 1;
6391 else
6392 {
6393 inst.error = _("valid endian specifiers are be or le");
6394 return FAIL;
6395 }
6396
6397 if (ISALNUM (s[2]) || s[2] == '_')
6398 {
6399 inst.error = _("valid endian specifiers are be or le");
6400 return FAIL;
6401 }
6402
6403 *str = s + 2;
6404 return little_endian;
6405 }
6406
6407 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
6408 value suitable for poking into the rotate field of an sxt or sxta
6409 instruction, or FAIL on error. */
6410
6411 static int
6412 parse_ror (char **str)
6413 {
6414 int rot;
6415 char *s = *str;
6416
6417 if (strncasecmp (s, "ROR", 3) == 0)
6418 s += 3;
6419 else
6420 {
6421 inst.error = _("missing rotation field after comma");
6422 return FAIL;
6423 }
6424
6425 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
6426 return FAIL;
6427
6428 switch (rot)
6429 {
6430 case 0: *str = s; return 0x0;
6431 case 8: *str = s; return 0x1;
6432 case 16: *str = s; return 0x2;
6433 case 24: *str = s; return 0x3;
6434
6435 default:
6436 inst.error = _("rotation can only be 0, 8, 16, or 24");
6437 return FAIL;
6438 }
6439 }
6440
6441 /* Parse a conditional code (from conds[] below). The value returned is in the
6442 range 0 .. 14, or FAIL. */
6443 static int
6444 parse_cond (char **str)
6445 {
6446 char *q;
6447 const struct asm_cond *c;
6448 int n;
6449 /* Condition codes are always 2 characters, so matching up to
6450 3 characters is sufficient. */
6451 char cond[3];
6452
6453 q = *str;
6454 n = 0;
6455 while (ISALPHA (*q) && n < 3)
6456 {
6457 cond[n] = TOLOWER (*q);
6458 q++;
6459 n++;
6460 }
6461
6462 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
6463 if (!c)
6464 {
6465 inst.error = _("condition required");
6466 return FAIL;
6467 }
6468
6469 *str = q;
6470 return c->value;
6471 }
6472
6473 /* Parse an option for a barrier instruction. Returns the encoding for the
6474 option, or FAIL. */
6475 static int
6476 parse_barrier (char **str)
6477 {
6478 char *p, *q;
6479 const struct asm_barrier_opt *o;
6480
6481 p = q = *str;
6482 while (ISALPHA (*q))
6483 q++;
6484
6485 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
6486 q - p);
6487 if (!o)
6488 return FAIL;
6489
6490 if (!mark_feature_used (&o->arch))
6491 return FAIL;
6492
6493 *str = q;
6494 return o->value;
6495 }
6496
6497 /* Parse the operands of a table branch instruction. Similar to a memory
6498 operand. */
6499 static int
6500 parse_tb (char **str)
6501 {
6502 char * p = *str;
6503 int reg;
6504
6505 if (skip_past_char (&p, '[') == FAIL)
6506 {
6507 inst.error = _("'[' expected");
6508 return FAIL;
6509 }
6510
6511 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6512 {
6513 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6514 return FAIL;
6515 }
6516 inst.operands[0].reg = reg;
6517
6518 if (skip_past_comma (&p) == FAIL)
6519 {
6520 inst.error = _("',' expected");
6521 return FAIL;
6522 }
6523
6524 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
6525 {
6526 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
6527 return FAIL;
6528 }
6529 inst.operands[0].imm = reg;
6530
6531 if (skip_past_comma (&p) == SUCCESS)
6532 {
6533 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
6534 return FAIL;
6535 if (inst.relocs[0].exp.X_add_number != 1)
6536 {
6537 inst.error = _("invalid shift");
6538 return FAIL;
6539 }
6540 inst.operands[0].shifted = 1;
6541 }
6542
6543 if (skip_past_char (&p, ']') == FAIL)
6544 {
6545 inst.error = _("']' expected");
6546 return FAIL;
6547 }
6548 *str = p;
6549 return SUCCESS;
6550 }
6551
6552 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
6553 information on the types the operands can take and how they are encoded.
6554 Up to four operands may be read; this function handles setting the
6555 ".present" field for each read operand itself.
6556 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
6557 else returns FAIL. */
6558
6559 static int
6560 parse_neon_mov (char **str, int *which_operand)
6561 {
6562 int i = *which_operand, val;
6563 enum arm_reg_type rtype;
6564 char *ptr = *str;
6565 struct neon_type_el optype;
6566
6567 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6568 {
6569 /* Cases 17 or 19. */
6570 inst.operands[i].reg = val;
6571 inst.operands[i].isvec = 1;
6572 inst.operands[i].isscalar = 2;
6573 inst.operands[i].vectype = optype;
6574 inst.operands[i++].present = 1;
6575
6576 if (skip_past_comma (&ptr) == FAIL)
6577 goto wanted_comma;
6578
6579 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6580 {
6581 /* Case 17: VMOV<c>.<dt> <Qd[idx]>, <Rt> */
6582 inst.operands[i].reg = val;
6583 inst.operands[i].isreg = 1;
6584 inst.operands[i].present = 1;
6585 }
6586 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6587 {
6588 /* Case 19: VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2> */
6589 inst.operands[i].reg = val;
6590 inst.operands[i].isvec = 1;
6591 inst.operands[i].isscalar = 2;
6592 inst.operands[i].vectype = optype;
6593 inst.operands[i++].present = 1;
6594
6595 if (skip_past_comma (&ptr) == FAIL)
6596 goto wanted_comma;
6597
6598 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6599 goto wanted_arm;
6600
6601 inst.operands[i].reg = val;
6602 inst.operands[i].isreg = 1;
6603 inst.operands[i++].present = 1;
6604
6605 if (skip_past_comma (&ptr) == FAIL)
6606 goto wanted_comma;
6607
6608 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6609 goto wanted_arm;
6610
6611 inst.operands[i].reg = val;
6612 inst.operands[i].isreg = 1;
6613 inst.operands[i].present = 1;
6614 }
6615 else
6616 {
6617 first_error (_("expected ARM or MVE vector register"));
6618 return FAIL;
6619 }
6620 }
6621 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6622 {
6623 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
6624 inst.operands[i].reg = val;
6625 inst.operands[i].isscalar = 1;
6626 inst.operands[i].vectype = optype;
6627 inst.operands[i++].present = 1;
6628
6629 if (skip_past_comma (&ptr) == FAIL)
6630 goto wanted_comma;
6631
6632 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6633 goto wanted_arm;
6634
6635 inst.operands[i].reg = val;
6636 inst.operands[i].isreg = 1;
6637 inst.operands[i].present = 1;
6638 }
6639 else if (((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
6640 != FAIL)
6641 || ((val = arm_typed_reg_parse (&ptr, REG_TYPE_MQ, &rtype, &optype))
6642 != FAIL))
6643 {
6644 /* Cases 0, 1, 2, 3, 5 (D only). */
6645 if (skip_past_comma (&ptr) == FAIL)
6646 goto wanted_comma;
6647
6648 inst.operands[i].reg = val;
6649 inst.operands[i].isreg = 1;
6650 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6651 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6652 inst.operands[i].isvec = 1;
6653 inst.operands[i].vectype = optype;
6654 inst.operands[i++].present = 1;
6655
6656 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6657 {
6658 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
6659 Case 13: VMOV <Sd>, <Rm> */
6660 inst.operands[i].reg = val;
6661 inst.operands[i].isreg = 1;
6662 inst.operands[i].present = 1;
6663
6664 if (rtype == REG_TYPE_NQ)
6665 {
6666 first_error (_("can't use Neon quad register here"));
6667 return FAIL;
6668 }
6669 else if (rtype != REG_TYPE_VFS)
6670 {
6671 i++;
6672 if (skip_past_comma (&ptr) == FAIL)
6673 goto wanted_comma;
6674 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6675 goto wanted_arm;
6676 inst.operands[i].reg = val;
6677 inst.operands[i].isreg = 1;
6678 inst.operands[i].present = 1;
6679 }
6680 }
6681 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
6682 &optype)) != FAIL)
6683 {
6684 /* Case 0: VMOV<c><q> <Qd>, <Qm>
6685 Case 1: VMOV<c><q> <Dd>, <Dm>
6686 Case 8: VMOV.F32 <Sd>, <Sm>
6687 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
6688
6689 inst.operands[i].reg = val;
6690 inst.operands[i].isreg = 1;
6691 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
6692 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6693 inst.operands[i].isvec = 1;
6694 inst.operands[i].vectype = optype;
6695 inst.operands[i].present = 1;
6696
6697 if (skip_past_comma (&ptr) == SUCCESS)
6698 {
6699 /* Case 15. */
6700 i++;
6701
6702 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6703 goto wanted_arm;
6704
6705 inst.operands[i].reg = val;
6706 inst.operands[i].isreg = 1;
6707 inst.operands[i++].present = 1;
6708
6709 if (skip_past_comma (&ptr) == FAIL)
6710 goto wanted_comma;
6711
6712 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
6713 goto wanted_arm;
6714
6715 inst.operands[i].reg = val;
6716 inst.operands[i].isreg = 1;
6717 inst.operands[i].present = 1;
6718 }
6719 }
6720 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
6721 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
6722 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
6723 Case 10: VMOV.F32 <Sd>, #<imm>
6724 Case 11: VMOV.F64 <Dd>, #<imm> */
6725 inst.operands[i].immisfloat = 1;
6726 else if (parse_big_immediate (&ptr, i, NULL, /*allow_symbol_p=*/FALSE)
6727 == SUCCESS)
6728 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
6729 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
6730 ;
6731 else
6732 {
6733 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
6734 return FAIL;
6735 }
6736 }
6737 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6738 {
6739 /* Cases 6, 7, 16, 18. */
6740 inst.operands[i].reg = val;
6741 inst.operands[i].isreg = 1;
6742 inst.operands[i++].present = 1;
6743
6744 if (skip_past_comma (&ptr) == FAIL)
6745 goto wanted_comma;
6746
6747 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ)) != FAIL)
6748 {
6749 /* Case 18: VMOV<c>.<dt> <Rt>, <Qn[idx]> */
6750 inst.operands[i].reg = val;
6751 inst.operands[i].isscalar = 2;
6752 inst.operands[i].present = 1;
6753 inst.operands[i].vectype = optype;
6754 }
6755 else if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_VFD)) != FAIL)
6756 {
6757 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6758 inst.operands[i].reg = val;
6759 inst.operands[i].isscalar = 1;
6760 inst.operands[i].present = 1;
6761 inst.operands[i].vectype = optype;
6762 }
6763 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6764 {
6765 inst.operands[i].reg = val;
6766 inst.operands[i].isreg = 1;
6767 inst.operands[i++].present = 1;
6768
6769 if (skip_past_comma (&ptr) == FAIL)
6770 goto wanted_comma;
6771
6772 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6773 != FAIL)
6774 {
6775 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6776
6777 inst.operands[i].reg = val;
6778 inst.operands[i].isreg = 1;
6779 inst.operands[i].isvec = 1;
6780 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6781 inst.operands[i].vectype = optype;
6782 inst.operands[i].present = 1;
6783
6784 if (rtype == REG_TYPE_VFS)
6785 {
6786 /* Case 14. */
6787 i++;
6788 if (skip_past_comma (&ptr) == FAIL)
6789 goto wanted_comma;
6790 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6791 &optype)) == FAIL)
6792 {
6793 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6794 return FAIL;
6795 }
6796 inst.operands[i].reg = val;
6797 inst.operands[i].isreg = 1;
6798 inst.operands[i].isvec = 1;
6799 inst.operands[i].issingle = 1;
6800 inst.operands[i].vectype = optype;
6801 inst.operands[i].present = 1;
6802 }
6803 }
6804 else
6805 {
6806 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6807 != FAIL)
6808 {
6809 /* Case 16: VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]> */
6810 inst.operands[i].reg = val;
6811 inst.operands[i].isvec = 1;
6812 inst.operands[i].isscalar = 2;
6813 inst.operands[i].vectype = optype;
6814 inst.operands[i++].present = 1;
6815
6816 if (skip_past_comma (&ptr) == FAIL)
6817 goto wanted_comma;
6818
6819 if ((val = parse_scalar (&ptr, 8, &optype, REG_TYPE_MQ))
6820 == FAIL)
6821 {
6822 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
6823 return FAIL;
6824 }
6825 inst.operands[i].reg = val;
6826 inst.operands[i].isvec = 1;
6827 inst.operands[i].isscalar = 2;
6828 inst.operands[i].vectype = optype;
6829 inst.operands[i].present = 1;
6830 }
6831 else
6832 {
6833 first_error (_("VFP single, double or MVE vector register"
6834 " expected"));
6835 return FAIL;
6836 }
6837 }
6838 }
6839 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6840 != FAIL)
6841 {
6842 /* Case 13. */
6843 inst.operands[i].reg = val;
6844 inst.operands[i].isreg = 1;
6845 inst.operands[i].isvec = 1;
6846 inst.operands[i].issingle = 1;
6847 inst.operands[i].vectype = optype;
6848 inst.operands[i].present = 1;
6849 }
6850 }
6851 else
6852 {
6853 first_error (_("parse error"));
6854 return FAIL;
6855 }
6856
6857 /* Successfully parsed the operands. Update args. */
6858 *which_operand = i;
6859 *str = ptr;
6860 return SUCCESS;
6861
6862 wanted_comma:
6863 first_error (_("expected comma"));
6864 return FAIL;
6865
6866 wanted_arm:
6867 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6868 return FAIL;
6869 }
6870
6871 /* Use this macro when the operand constraints are different
6872 for ARM and THUMB (e.g. ldrd). */
6873 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6874 ((arm_operand) | ((thumb_operand) << 16))
6875
6876 /* Matcher codes for parse_operands. */
6877 enum operand_parse_code
6878 {
6879 OP_stop, /* end of line */
6880
6881 OP_RR, /* ARM register */
6882 OP_RRnpc, /* ARM register, not r15 */
6883 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6884 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6885 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6886 optional trailing ! */
6887 OP_RRw, /* ARM register, not r15, optional trailing ! */
6888 OP_RCP, /* Coprocessor number */
6889 OP_RCN, /* Coprocessor register */
6890 OP_RF, /* FPA register */
6891 OP_RVS, /* VFP single precision register */
6892 OP_RVD, /* VFP double precision register (0..15) */
6893 OP_RND, /* Neon double precision register (0..31) */
6894 OP_RNDMQ, /* Neon double precision (0..31) or MVE vector register. */
6895 OP_RNDMQR, /* Neon double precision (0..31), MVE vector or ARM register.
6896 */
6897 OP_RNQ, /* Neon quad precision register */
6898 OP_RNQMQ, /* Neon quad or MVE vector register. */
6899 OP_RVSD, /* VFP single or double precision register */
6900 OP_RVSD_COND, /* VFP single, double precision register or condition code. */
6901 OP_RVSDMQ, /* VFP single, double precision or MVE vector register. */
6902 OP_RNSD, /* Neon single or double precision register */
6903 OP_RNDQ, /* Neon double or quad precision register */
6904 OP_RNDQMQ, /* Neon double, quad or MVE vector register. */
6905 OP_RNSDQ, /* Neon single, double or quad precision register */
6906 OP_RNSC, /* Neon scalar D[X] */
6907 OP_RVC, /* VFP control register */
6908 OP_RMF, /* Maverick F register */
6909 OP_RMD, /* Maverick D register */
6910 OP_RMFX, /* Maverick FX register */
6911 OP_RMDX, /* Maverick DX register */
6912 OP_RMAX, /* Maverick AX register */
6913 OP_RMDS, /* Maverick DSPSC register */
6914 OP_RIWR, /* iWMMXt wR register */
6915 OP_RIWC, /* iWMMXt wC register */
6916 OP_RIWG, /* iWMMXt wCG register */
6917 OP_RXA, /* XScale accumulator register */
6918
6919 OP_RNSDQMQ, /* Neon single, double or quad register or MVE vector register
6920 */
6921 OP_RNSDQMQR, /* Neon single, double or quad register, MVE vector register or
6922 GPR (no SP/SP) */
6923 OP_RMQ, /* MVE vector register. */
6924 OP_RMQRZ, /* MVE vector or ARM register including ZR. */
6925
6926 /* New operands for Armv8.1-M Mainline. */
6927 OP_LR, /* ARM LR register */
6928 OP_RRe, /* ARM register, only even numbered. */
6929 OP_RRo, /* ARM register, only odd numbered, not r13 or r15. */
6930 OP_RRnpcsp_I32, /* ARM register (no BadReg) or literal 1 .. 32 */
6931
6932 OP_REGLST, /* ARM register list */
6933 OP_CLRMLST, /* CLRM register list */
6934 OP_VRSLST, /* VFP single-precision register list */
6935 OP_VRDLST, /* VFP double-precision register list */
6936 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6937 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6938 OP_NSTRLST, /* Neon element/structure list */
6939 OP_VRSDVLST, /* VFP single or double-precision register list and VPR */
6940 OP_MSTRLST2, /* MVE vector list with two elements. */
6941 OP_MSTRLST4, /* MVE vector list with four elements. */
6942
6943 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6944 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6945 OP_RSVD_FI0, /* VFP S or D reg, or floating point immediate zero. */
6946 OP_RSVDMQ_FI0, /* VFP S, D, MVE vector register or floating point immediate
6947 zero. */
6948 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6949 OP_RNSD_RNSC, /* Neon S or D reg, or Neon scalar. */
6950 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6951 OP_RNSDQ_RNSC_MQ, /* Vector S, D or Q reg, Neon scalar or MVE vector register.
6952 */
6953 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6954 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6955 OP_VMOV, /* Neon VMOV operands. */
6956 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6957 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6958 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6959 OP_VLDR, /* VLDR operand. */
6960
6961 OP_I0, /* immediate zero */
6962 OP_I7, /* immediate value 0 .. 7 */
6963 OP_I15, /* 0 .. 15 */
6964 OP_I16, /* 1 .. 16 */
6965 OP_I16z, /* 0 .. 16 */
6966 OP_I31, /* 0 .. 31 */
6967 OP_I31w, /* 0 .. 31, optional trailing ! */
6968 OP_I32, /* 1 .. 32 */
6969 OP_I32z, /* 0 .. 32 */
6970 OP_I63, /* 0 .. 63 */
6971 OP_I63s, /* -64 .. 63 */
6972 OP_I64, /* 1 .. 64 */
6973 OP_I64z, /* 0 .. 64 */
6974 OP_I255, /* 0 .. 255 */
6975
6976 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6977 OP_I7b, /* 0 .. 7 */
6978 OP_I15b, /* 0 .. 15 */
6979 OP_I31b, /* 0 .. 31 */
6980
6981 OP_SH, /* shifter operand */
6982 OP_SHG, /* shifter operand with possible group relocation */
6983 OP_ADDR, /* Memory address expression (any mode) */
6984 OP_ADDRMVE, /* Memory address expression for MVE's VSTR/VLDR. */
6985 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6986 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6987 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6988 OP_EXP, /* arbitrary expression */
6989 OP_EXPi, /* same, with optional immediate prefix */
6990 OP_EXPr, /* same, with optional relocation suffix */
6991 OP_EXPs, /* same, with optional non-first operand relocation suffix */
6992 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6993 OP_IROT1, /* VCADD rotate immediate: 90, 270. */
6994 OP_IROT2, /* VCMLA rotate immediate: 0, 90, 180, 270. */
6995
6996 OP_CPSF, /* CPS flags */
6997 OP_ENDI, /* Endianness specifier */
6998 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6999 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
7000 OP_COND, /* conditional code */
7001 OP_TB, /* Table branch. */
7002
7003 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
7004
7005 OP_RRnpc_I0, /* ARM register or literal 0 */
7006 OP_RR_EXr, /* ARM register or expression with opt. reloc stuff. */
7007 OP_RR_EXi, /* ARM register or expression with imm prefix */
7008 OP_RF_IF, /* FPA register or immediate */
7009 OP_RIWR_RIWC, /* iWMMXt R or C reg */
7010 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
7011
7012 /* Optional operands. */
7013 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
7014 OP_oI31b, /* 0 .. 31 */
7015 OP_oI32b, /* 1 .. 32 */
7016 OP_oI32z, /* 0 .. 32 */
7017 OP_oIffffb, /* 0 .. 65535 */
7018 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
7019
7020 OP_oRR, /* ARM register */
7021 OP_oLR, /* ARM LR register */
7022 OP_oRRnpc, /* ARM register, not the PC */
7023 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
7024 OP_oRRw, /* ARM register, not r15, optional trailing ! */
7025 OP_oRND, /* Optional Neon double precision register */
7026 OP_oRNQ, /* Optional Neon quad precision register */
7027 OP_oRNDQMQ, /* Optional Neon double, quad or MVE vector register. */
7028 OP_oRNDQ, /* Optional Neon double or quad precision register */
7029 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
7030 OP_oRNSDQMQ, /* Optional single, double or quad register or MVE vector
7031 register. */
7032 OP_oSHll, /* LSL immediate */
7033 OP_oSHar, /* ASR immediate */
7034 OP_oSHllar, /* LSL or ASR immediate */
7035 OP_oROR, /* ROR 0/8/16/24 */
7036 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
7037
7038 OP_oRMQRZ, /* optional MVE vector or ARM register including ZR. */
7039
7040 /* Some pre-defined mixed (ARM/THUMB) operands. */
7041 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
7042 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
7043 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
7044
7045 OP_FIRST_OPTIONAL = OP_oI7b
7046 };
7047
7048 /* Generic instruction operand parser. This does no encoding and no
7049 semantic validation; it merely squirrels values away in the inst
7050 structure. Returns SUCCESS or FAIL depending on whether the
7051 specified grammar matched. */
7052 static int
7053 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
7054 {
7055 unsigned const int *upat = pattern;
7056 char *backtrack_pos = 0;
7057 const char *backtrack_error = 0;
7058 int i, val = 0, backtrack_index = 0;
7059 enum arm_reg_type rtype;
7060 parse_operand_result result;
7061 unsigned int op_parse_code;
7062 bfd_boolean partial_match;
7063
7064 #define po_char_or_fail(chr) \
7065 do \
7066 { \
7067 if (skip_past_char (&str, chr) == FAIL) \
7068 goto bad_args; \
7069 } \
7070 while (0)
7071
7072 #define po_reg_or_fail(regtype) \
7073 do \
7074 { \
7075 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7076 & inst.operands[i].vectype); \
7077 if (val == FAIL) \
7078 { \
7079 first_error (_(reg_expected_msgs[regtype])); \
7080 goto failure; \
7081 } \
7082 inst.operands[i].reg = val; \
7083 inst.operands[i].isreg = 1; \
7084 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7085 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7086 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7087 || rtype == REG_TYPE_VFD \
7088 || rtype == REG_TYPE_NQ); \
7089 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7090 } \
7091 while (0)
7092
7093 #define po_reg_or_goto(regtype, label) \
7094 do \
7095 { \
7096 val = arm_typed_reg_parse (& str, regtype, & rtype, \
7097 & inst.operands[i].vectype); \
7098 if (val == FAIL) \
7099 goto label; \
7100 \
7101 inst.operands[i].reg = val; \
7102 inst.operands[i].isreg = 1; \
7103 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
7104 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
7105 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
7106 || rtype == REG_TYPE_VFD \
7107 || rtype == REG_TYPE_NQ); \
7108 inst.operands[i].iszr = (rtype == REG_TYPE_ZR); \
7109 } \
7110 while (0)
7111
7112 #define po_imm_or_fail(min, max, popt) \
7113 do \
7114 { \
7115 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
7116 goto failure; \
7117 inst.operands[i].imm = val; \
7118 } \
7119 while (0)
7120
7121 #define po_scalar_or_goto(elsz, label, reg_type) \
7122 do \
7123 { \
7124 val = parse_scalar (& str, elsz, & inst.operands[i].vectype, \
7125 reg_type); \
7126 if (val == FAIL) \
7127 goto label; \
7128 inst.operands[i].reg = val; \
7129 inst.operands[i].isscalar = 1; \
7130 } \
7131 while (0)
7132
7133 #define po_misc_or_fail(expr) \
7134 do \
7135 { \
7136 if (expr) \
7137 goto failure; \
7138 } \
7139 while (0)
7140
7141 #define po_misc_or_fail_no_backtrack(expr) \
7142 do \
7143 { \
7144 result = expr; \
7145 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
7146 backtrack_pos = 0; \
7147 if (result != PARSE_OPERAND_SUCCESS) \
7148 goto failure; \
7149 } \
7150 while (0)
7151
7152 #define po_barrier_or_imm(str) \
7153 do \
7154 { \
7155 val = parse_barrier (&str); \
7156 if (val == FAIL && ! ISALPHA (*str)) \
7157 goto immediate; \
7158 if (val == FAIL \
7159 /* ISB can only take SY as an option. */ \
7160 || ((inst.instruction & 0xf0) == 0x60 \
7161 && val != 0xf)) \
7162 { \
7163 inst.error = _("invalid barrier type"); \
7164 backtrack_pos = 0; \
7165 goto failure; \
7166 } \
7167 } \
7168 while (0)
7169
7170 skip_whitespace (str);
7171
7172 for (i = 0; upat[i] != OP_stop; i++)
7173 {
7174 op_parse_code = upat[i];
7175 if (op_parse_code >= 1<<16)
7176 op_parse_code = thumb ? (op_parse_code >> 16)
7177 : (op_parse_code & ((1<<16)-1));
7178
7179 if (op_parse_code >= OP_FIRST_OPTIONAL)
7180 {
7181 /* Remember where we are in case we need to backtrack. */
7182 backtrack_pos = str;
7183 backtrack_error = inst.error;
7184 backtrack_index = i;
7185 }
7186
7187 if (i > 0 && (i > 1 || inst.operands[0].present))
7188 po_char_or_fail (',');
7189
7190 switch (op_parse_code)
7191 {
7192 /* Registers */
7193 case OP_oRRnpc:
7194 case OP_oRRnpcsp:
7195 case OP_RRnpc:
7196 case OP_RRnpcsp:
7197 case OP_oRR:
7198 case OP_RRe:
7199 case OP_RRo:
7200 case OP_LR:
7201 case OP_oLR:
7202 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
7203 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
7204 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
7205 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
7206 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
7207 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
7208 case OP_oRND:
7209 case OP_RNDMQR:
7210 po_reg_or_goto (REG_TYPE_RN, try_rndmq);
7211 break;
7212 try_rndmq:
7213 case OP_RNDMQ:
7214 po_reg_or_goto (REG_TYPE_MQ, try_rnd);
7215 break;
7216 try_rnd:
7217 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
7218 case OP_RVC:
7219 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
7220 break;
7221 /* Also accept generic coprocessor regs for unknown registers. */
7222 coproc_reg:
7223 po_reg_or_fail (REG_TYPE_CN);
7224 break;
7225 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
7226 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
7227 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
7228 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
7229 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
7230 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
7231 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
7232 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
7233 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
7234 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
7235 case OP_oRNQ:
7236 case OP_RNQMQ:
7237 po_reg_or_goto (REG_TYPE_MQ, try_nq);
7238 break;
7239 try_nq:
7240 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
7241 case OP_RNSD: po_reg_or_fail (REG_TYPE_NSD); break;
7242 case OP_oRNDQMQ:
7243 case OP_RNDQMQ:
7244 po_reg_or_goto (REG_TYPE_MQ, try_rndq);
7245 break;
7246 try_rndq:
7247 case OP_oRNDQ:
7248 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
7249 case OP_RVSDMQ:
7250 po_reg_or_goto (REG_TYPE_MQ, try_rvsd);
7251 break;
7252 try_rvsd:
7253 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
7254 case OP_RVSD_COND:
7255 po_reg_or_goto (REG_TYPE_VFSD, try_cond);
7256 break;
7257 case OP_oRNSDQ:
7258 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
7259 case OP_RNSDQMQR:
7260 po_reg_or_goto (REG_TYPE_RN, try_mq);
7261 break;
7262 try_mq:
7263 case OP_oRNSDQMQ:
7264 case OP_RNSDQMQ:
7265 po_reg_or_goto (REG_TYPE_MQ, try_nsdq2);
7266 break;
7267 try_nsdq2:
7268 po_reg_or_fail (REG_TYPE_NSDQ);
7269 inst.error = 0;
7270 break;
7271 case OP_RMQ:
7272 po_reg_or_fail (REG_TYPE_MQ);
7273 break;
7274 /* Neon scalar. Using an element size of 8 means that some invalid
7275 scalars are accepted here, so deal with those in later code. */
7276 case OP_RNSC: po_scalar_or_goto (8, failure, REG_TYPE_VFD); break;
7277
7278 case OP_RNDQ_I0:
7279 {
7280 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
7281 break;
7282 try_imm0:
7283 po_imm_or_fail (0, 0, TRUE);
7284 }
7285 break;
7286
7287 case OP_RVSD_I0:
7288 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
7289 break;
7290
7291 case OP_RSVDMQ_FI0:
7292 po_reg_or_goto (REG_TYPE_MQ, try_rsvd_fi0);
7293 break;
7294 try_rsvd_fi0:
7295 case OP_RSVD_FI0:
7296 {
7297 po_reg_or_goto (REG_TYPE_VFSD, try_ifimm0);
7298 break;
7299 try_ifimm0:
7300 if (parse_ifimm_zero (&str))
7301 inst.operands[i].imm = 0;
7302 else
7303 {
7304 inst.error
7305 = _("only floating point zero is allowed as immediate value");
7306 goto failure;
7307 }
7308 }
7309 break;
7310
7311 case OP_RR_RNSC:
7312 {
7313 po_scalar_or_goto (8, try_rr, REG_TYPE_VFD);
7314 break;
7315 try_rr:
7316 po_reg_or_fail (REG_TYPE_RN);
7317 }
7318 break;
7319
7320 case OP_RNSDQ_RNSC_MQ:
7321 po_reg_or_goto (REG_TYPE_MQ, try_rnsdq_rnsc);
7322 break;
7323 try_rnsdq_rnsc:
7324 case OP_RNSDQ_RNSC:
7325 {
7326 po_scalar_or_goto (8, try_nsdq, REG_TYPE_VFD);
7327 inst.error = 0;
7328 break;
7329 try_nsdq:
7330 po_reg_or_fail (REG_TYPE_NSDQ);
7331 inst.error = 0;
7332 }
7333 break;
7334
7335 case OP_RNSD_RNSC:
7336 {
7337 po_scalar_or_goto (8, try_s_scalar, REG_TYPE_VFD);
7338 break;
7339 try_s_scalar:
7340 po_scalar_or_goto (4, try_nsd, REG_TYPE_VFS);
7341 break;
7342 try_nsd:
7343 po_reg_or_fail (REG_TYPE_NSD);
7344 }
7345 break;
7346
7347 case OP_RNDQ_RNSC:
7348 {
7349 po_scalar_or_goto (8, try_ndq, REG_TYPE_VFD);
7350 break;
7351 try_ndq:
7352 po_reg_or_fail (REG_TYPE_NDQ);
7353 }
7354 break;
7355
7356 case OP_RND_RNSC:
7357 {
7358 po_scalar_or_goto (8, try_vfd, REG_TYPE_VFD);
7359 break;
7360 try_vfd:
7361 po_reg_or_fail (REG_TYPE_VFD);
7362 }
7363 break;
7364
7365 case OP_VMOV:
7366 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
7367 not careful then bad things might happen. */
7368 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
7369 break;
7370
7371 case OP_RNDQ_Ibig:
7372 {
7373 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
7374 break;
7375 try_immbig:
7376 /* There's a possibility of getting a 64-bit immediate here, so
7377 we need special handling. */
7378 if (parse_big_immediate (&str, i, NULL, /*allow_symbol_p=*/FALSE)
7379 == FAIL)
7380 {
7381 inst.error = _("immediate value is out of range");
7382 goto failure;
7383 }
7384 }
7385 break;
7386
7387 case OP_RNDQ_I63b:
7388 {
7389 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
7390 break;
7391 try_shimm:
7392 po_imm_or_fail (0, 63, TRUE);
7393 }
7394 break;
7395
7396 case OP_RRnpcb:
7397 po_char_or_fail ('[');
7398 po_reg_or_fail (REG_TYPE_RN);
7399 po_char_or_fail (']');
7400 break;
7401
7402 case OP_RRnpctw:
7403 case OP_RRw:
7404 case OP_oRRw:
7405 po_reg_or_fail (REG_TYPE_RN);
7406 if (skip_past_char (&str, '!') == SUCCESS)
7407 inst.operands[i].writeback = 1;
7408 break;
7409
7410 /* Immediates */
7411 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
7412 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
7413 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
7414 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
7415 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
7416 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
7417 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
7418 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
7419 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
7420 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
7421 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
7422 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
7423
7424 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
7425 case OP_oI7b:
7426 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
7427 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
7428 case OP_oI31b:
7429 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
7430 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
7431 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
7432 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
7433
7434 /* Immediate variants */
7435 case OP_oI255c:
7436 po_char_or_fail ('{');
7437 po_imm_or_fail (0, 255, TRUE);
7438 po_char_or_fail ('}');
7439 break;
7440
7441 case OP_I31w:
7442 /* The expression parser chokes on a trailing !, so we have
7443 to find it first and zap it. */
7444 {
7445 char *s = str;
7446 while (*s && *s != ',')
7447 s++;
7448 if (s[-1] == '!')
7449 {
7450 s[-1] = '\0';
7451 inst.operands[i].writeback = 1;
7452 }
7453 po_imm_or_fail (0, 31, TRUE);
7454 if (str == s - 1)
7455 str = s;
7456 }
7457 break;
7458
7459 /* Expressions */
7460 case OP_EXPi: EXPi:
7461 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7462 GE_OPT_PREFIX));
7463 break;
7464
7465 case OP_EXP:
7466 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7467 GE_NO_PREFIX));
7468 break;
7469
7470 case OP_EXPr: EXPr:
7471 po_misc_or_fail (my_get_expression (&inst.relocs[0].exp, &str,
7472 GE_NO_PREFIX));
7473 if (inst.relocs[0].exp.X_op == O_symbol)
7474 {
7475 val = parse_reloc (&str);
7476 if (val == -1)
7477 {
7478 inst.error = _("unrecognized relocation suffix");
7479 goto failure;
7480 }
7481 else if (val != BFD_RELOC_UNUSED)
7482 {
7483 inst.operands[i].imm = val;
7484 inst.operands[i].hasreloc = 1;
7485 }
7486 }
7487 break;
7488
7489 case OP_EXPs:
7490 po_misc_or_fail (my_get_expression (&inst.relocs[i].exp, &str,
7491 GE_NO_PREFIX));
7492 if (inst.relocs[i].exp.X_op == O_symbol)
7493 {
7494 inst.operands[i].hasreloc = 1;
7495 }
7496 else if (inst.relocs[i].exp.X_op == O_constant)
7497 {
7498 inst.operands[i].imm = inst.relocs[i].exp.X_add_number;
7499 inst.operands[i].hasreloc = 0;
7500 }
7501 break;
7502
7503 /* Operand for MOVW or MOVT. */
7504 case OP_HALF:
7505 po_misc_or_fail (parse_half (&str));
7506 break;
7507
7508 /* Register or expression. */
7509 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
7510 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
7511
7512 /* Register or immediate. */
7513 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
7514 I0: po_imm_or_fail (0, 0, FALSE); break;
7515
7516 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
7517 IF:
7518 if (!is_immediate_prefix (*str))
7519 goto bad_args;
7520 str++;
7521 val = parse_fpa_immediate (&str);
7522 if (val == FAIL)
7523 goto failure;
7524 /* FPA immediates are encoded as registers 8-15.
7525 parse_fpa_immediate has already applied the offset. */
7526 inst.operands[i].reg = val;
7527 inst.operands[i].isreg = 1;
7528 break;
7529
7530 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
7531 I32z: po_imm_or_fail (0, 32, FALSE); break;
7532
7533 /* Two kinds of register. */
7534 case OP_RIWR_RIWC:
7535 {
7536 struct reg_entry *rege = arm_reg_parse_multi (&str);
7537 if (!rege
7538 || (rege->type != REG_TYPE_MMXWR
7539 && rege->type != REG_TYPE_MMXWC
7540 && rege->type != REG_TYPE_MMXWCG))
7541 {
7542 inst.error = _("iWMMXt data or control register expected");
7543 goto failure;
7544 }
7545 inst.operands[i].reg = rege->number;
7546 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
7547 }
7548 break;
7549
7550 case OP_RIWC_RIWG:
7551 {
7552 struct reg_entry *rege = arm_reg_parse_multi (&str);
7553 if (!rege
7554 || (rege->type != REG_TYPE_MMXWC
7555 && rege->type != REG_TYPE_MMXWCG))
7556 {
7557 inst.error = _("iWMMXt control register expected");
7558 goto failure;
7559 }
7560 inst.operands[i].reg = rege->number;
7561 inst.operands[i].isreg = 1;
7562 }
7563 break;
7564
7565 /* Misc */
7566 case OP_CPSF: val = parse_cps_flags (&str); break;
7567 case OP_ENDI: val = parse_endian_specifier (&str); break;
7568 case OP_oROR: val = parse_ror (&str); break;
7569 try_cond:
7570 case OP_COND: val = parse_cond (&str); break;
7571 case OP_oBARRIER_I15:
7572 po_barrier_or_imm (str); break;
7573 immediate:
7574 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
7575 goto failure;
7576 break;
7577
7578 case OP_wPSR:
7579 case OP_rPSR:
7580 po_reg_or_goto (REG_TYPE_RNB, try_psr);
7581 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
7582 {
7583 inst.error = _("Banked registers are not available with this "
7584 "architecture.");
7585 goto failure;
7586 }
7587 break;
7588 try_psr:
7589 val = parse_psr (&str, op_parse_code == OP_wPSR);
7590 break;
7591
7592 case OP_VLDR:
7593 po_reg_or_goto (REG_TYPE_VFSD, try_sysreg);
7594 break;
7595 try_sysreg:
7596 val = parse_sys_vldr_vstr (&str);
7597 break;
7598
7599 case OP_APSR_RR:
7600 po_reg_or_goto (REG_TYPE_RN, try_apsr);
7601 break;
7602 try_apsr:
7603 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
7604 instruction). */
7605 if (strncasecmp (str, "APSR_", 5) == 0)
7606 {
7607 unsigned found = 0;
7608 str += 5;
7609 while (found < 15)
7610 switch (*str++)
7611 {
7612 case 'c': found = (found & 1) ? 16 : found | 1; break;
7613 case 'n': found = (found & 2) ? 16 : found | 2; break;
7614 case 'z': found = (found & 4) ? 16 : found | 4; break;
7615 case 'v': found = (found & 8) ? 16 : found | 8; break;
7616 default: found = 16;
7617 }
7618 if (found != 15)
7619 goto failure;
7620 inst.operands[i].isvec = 1;
7621 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
7622 inst.operands[i].reg = REG_PC;
7623 }
7624 else
7625 goto failure;
7626 break;
7627
7628 case OP_TB:
7629 po_misc_or_fail (parse_tb (&str));
7630 break;
7631
7632 /* Register lists. */
7633 case OP_REGLST:
7634 val = parse_reg_list (&str, REGLIST_RN);
7635 if (*str == '^')
7636 {
7637 inst.operands[i].writeback = 1;
7638 str++;
7639 }
7640 break;
7641
7642 case OP_CLRMLST:
7643 val = parse_reg_list (&str, REGLIST_CLRM);
7644 break;
7645
7646 case OP_VRSLST:
7647 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S,
7648 &partial_match);
7649 break;
7650
7651 case OP_VRDLST:
7652 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D,
7653 &partial_match);
7654 break;
7655
7656 case OP_VRSDLST:
7657 /* Allow Q registers too. */
7658 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7659 REGLIST_NEON_D, &partial_match);
7660 if (val == FAIL)
7661 {
7662 inst.error = NULL;
7663 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7664 REGLIST_VFP_S, &partial_match);
7665 inst.operands[i].issingle = 1;
7666 }
7667 break;
7668
7669 case OP_VRSDVLST:
7670 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7671 REGLIST_VFP_D_VPR, &partial_match);
7672 if (val == FAIL && !partial_match)
7673 {
7674 inst.error = NULL;
7675 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7676 REGLIST_VFP_S_VPR, &partial_match);
7677 inst.operands[i].issingle = 1;
7678 }
7679 break;
7680
7681 case OP_NRDLST:
7682 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
7683 REGLIST_NEON_D, &partial_match);
7684 break;
7685
7686 case OP_MSTRLST4:
7687 case OP_MSTRLST2:
7688 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7689 1, &inst.operands[i].vectype);
7690 if (val != (((op_parse_code == OP_MSTRLST2) ? 3 : 7) << 5 | 0xe))
7691 goto failure;
7692 break;
7693 case OP_NSTRLST:
7694 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
7695 0, &inst.operands[i].vectype);
7696 break;
7697
7698 /* Addressing modes */
7699 case OP_ADDRMVE:
7700 po_misc_or_fail (parse_address_group_reloc (&str, i, GROUP_MVE));
7701 break;
7702
7703 case OP_ADDR:
7704 po_misc_or_fail (parse_address (&str, i));
7705 break;
7706
7707 case OP_ADDRGLDR:
7708 po_misc_or_fail_no_backtrack (
7709 parse_address_group_reloc (&str, i, GROUP_LDR));
7710 break;
7711
7712 case OP_ADDRGLDRS:
7713 po_misc_or_fail_no_backtrack (
7714 parse_address_group_reloc (&str, i, GROUP_LDRS));
7715 break;
7716
7717 case OP_ADDRGLDC:
7718 po_misc_or_fail_no_backtrack (
7719 parse_address_group_reloc (&str, i, GROUP_LDC));
7720 break;
7721
7722 case OP_SH:
7723 po_misc_or_fail (parse_shifter_operand (&str, i));
7724 break;
7725
7726 case OP_SHG:
7727 po_misc_or_fail_no_backtrack (
7728 parse_shifter_operand_group_reloc (&str, i));
7729 break;
7730
7731 case OP_oSHll:
7732 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
7733 break;
7734
7735 case OP_oSHar:
7736 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
7737 break;
7738
7739 case OP_oSHllar:
7740 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
7741 break;
7742
7743 case OP_RMQRZ:
7744 case OP_oRMQRZ:
7745 po_reg_or_goto (REG_TYPE_MQ, try_rr_zr);
7746 break;
7747 try_rr_zr:
7748 po_reg_or_goto (REG_TYPE_RN, ZR);
7749 break;
7750 ZR:
7751 po_reg_or_fail (REG_TYPE_ZR);
7752 break;
7753
7754 default:
7755 as_fatal (_("unhandled operand code %d"), op_parse_code);
7756 }
7757
7758 /* Various value-based sanity checks and shared operations. We
7759 do not signal immediate failures for the register constraints;
7760 this allows a syntax error to take precedence. */
7761 switch (op_parse_code)
7762 {
7763 case OP_oRRnpc:
7764 case OP_RRnpc:
7765 case OP_RRnpcb:
7766 case OP_RRw:
7767 case OP_oRRw:
7768 case OP_RRnpc_I0:
7769 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
7770 inst.error = BAD_PC;
7771 break;
7772
7773 case OP_oRRnpcsp:
7774 case OP_RRnpcsp:
7775 if (inst.operands[i].isreg)
7776 {
7777 if (inst.operands[i].reg == REG_PC)
7778 inst.error = BAD_PC;
7779 else if (inst.operands[i].reg == REG_SP
7780 /* The restriction on Rd/Rt/Rt2 on Thumb mode has been
7781 relaxed since ARMv8-A. */
7782 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
7783 {
7784 gas_assert (thumb);
7785 inst.error = BAD_SP;
7786 }
7787 }
7788 break;
7789
7790 case OP_RRnpctw:
7791 if (inst.operands[i].isreg
7792 && inst.operands[i].reg == REG_PC
7793 && (inst.operands[i].writeback || thumb))
7794 inst.error = BAD_PC;
7795 break;
7796
7797 case OP_RVSD_COND:
7798 case OP_VLDR:
7799 if (inst.operands[i].isreg)
7800 break;
7801 /* fall through. */
7802
7803 case OP_CPSF:
7804 case OP_ENDI:
7805 case OP_oROR:
7806 case OP_wPSR:
7807 case OP_rPSR:
7808 case OP_COND:
7809 case OP_oBARRIER_I15:
7810 case OP_REGLST:
7811 case OP_CLRMLST:
7812 case OP_VRSLST:
7813 case OP_VRDLST:
7814 case OP_VRSDLST:
7815 case OP_VRSDVLST:
7816 case OP_NRDLST:
7817 case OP_NSTRLST:
7818 case OP_MSTRLST2:
7819 case OP_MSTRLST4:
7820 if (val == FAIL)
7821 goto failure;
7822 inst.operands[i].imm = val;
7823 break;
7824
7825 case OP_LR:
7826 case OP_oLR:
7827 if (inst.operands[i].reg != REG_LR)
7828 inst.error = _("operand must be LR register");
7829 break;
7830
7831 case OP_RMQRZ:
7832 case OP_oRMQRZ:
7833 if (!inst.operands[i].iszr && inst.operands[i].reg == REG_PC)
7834 inst.error = BAD_PC;
7835 break;
7836
7837 case OP_RRe:
7838 if (inst.operands[i].isreg
7839 && (inst.operands[i].reg & 0x00000001) != 0)
7840 inst.error = BAD_ODD;
7841 break;
7842
7843 case OP_RRo:
7844 if (inst.operands[i].isreg)
7845 {
7846 if ((inst.operands[i].reg & 0x00000001) != 1)
7847 inst.error = BAD_EVEN;
7848 else if (inst.operands[i].reg == REG_SP)
7849 as_tsktsk (MVE_BAD_SP);
7850 else if (inst.operands[i].reg == REG_PC)
7851 inst.error = BAD_PC;
7852 }
7853 break;
7854
7855 default:
7856 break;
7857 }
7858
7859 /* If we get here, this operand was successfully parsed. */
7860 inst.operands[i].present = 1;
7861 continue;
7862
7863 bad_args:
7864 inst.error = BAD_ARGS;
7865
7866 failure:
7867 if (!backtrack_pos)
7868 {
7869 /* The parse routine should already have set inst.error, but set a
7870 default here just in case. */
7871 if (!inst.error)
7872 inst.error = BAD_SYNTAX;
7873 return FAIL;
7874 }
7875
7876 /* Do not backtrack over a trailing optional argument that
7877 absorbed some text. We will only fail again, with the
7878 'garbage following instruction' error message, which is
7879 probably less helpful than the current one. */
7880 if (backtrack_index == i && backtrack_pos != str
7881 && upat[i+1] == OP_stop)
7882 {
7883 if (!inst.error)
7884 inst.error = BAD_SYNTAX;
7885 return FAIL;
7886 }
7887
7888 /* Try again, skipping the optional argument at backtrack_pos. */
7889 str = backtrack_pos;
7890 inst.error = backtrack_error;
7891 inst.operands[backtrack_index].present = 0;
7892 i = backtrack_index;
7893 backtrack_pos = 0;
7894 }
7895
7896 /* Check that we have parsed all the arguments. */
7897 if (*str != '\0' && !inst.error)
7898 inst.error = _("garbage following instruction");
7899
7900 return inst.error ? FAIL : SUCCESS;
7901 }
7902
7903 #undef po_char_or_fail
7904 #undef po_reg_or_fail
7905 #undef po_reg_or_goto
7906 #undef po_imm_or_fail
7907 #undef po_scalar_or_fail
7908 #undef po_barrier_or_imm
7909
7910 /* Shorthand macro for instruction encoding functions issuing errors. */
7911 #define constraint(expr, err) \
7912 do \
7913 { \
7914 if (expr) \
7915 { \
7916 inst.error = err; \
7917 return; \
7918 } \
7919 } \
7920 while (0)
7921
7922 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
7923 instructions are unpredictable if these registers are used. This
7924 is the BadReg predicate in ARM's Thumb-2 documentation.
7925
7926 Before ARMv8-A, REG_PC and REG_SP were not allowed in quite a few
7927 places, while the restriction on REG_SP was relaxed since ARMv8-A. */
7928 #define reject_bad_reg(reg) \
7929 do \
7930 if (reg == REG_PC) \
7931 { \
7932 inst.error = BAD_PC; \
7933 return; \
7934 } \
7935 else if (reg == REG_SP \
7936 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)) \
7937 { \
7938 inst.error = BAD_SP; \
7939 return; \
7940 } \
7941 while (0)
7942
7943 /* If REG is R13 (the stack pointer), warn that its use is
7944 deprecated. */
7945 #define warn_deprecated_sp(reg) \
7946 do \
7947 if (warn_on_deprecated && reg == REG_SP) \
7948 as_tsktsk (_("use of r13 is deprecated")); \
7949 while (0)
7950
7951 /* Functions for operand encoding. ARM, then Thumb. */
7952
7953 #define rotate_left(v, n) (v << (n & 31) | v >> ((32 - n) & 31))
7954
7955 /* If the current inst is scalar ARMv8.2 fp16 instruction, do special encoding.
7956
7957 The only binary encoding difference is the Coprocessor number. Coprocessor
7958 9 is used for half-precision calculations or conversions. The format of the
7959 instruction is the same as the equivalent Coprocessor 10 instruction that
7960 exists for Single-Precision operation. */
7961
7962 static void
7963 do_scalar_fp16_v82_encode (void)
7964 {
7965 if (inst.cond < COND_ALWAYS)
7966 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
7967 " the behaviour is UNPREDICTABLE"));
7968 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
7969 _(BAD_FP16));
7970
7971 inst.instruction = (inst.instruction & 0xfffff0ff) | 0x900;
7972 mark_feature_used (&arm_ext_fp16);
7973 }
7974
7975 /* If VAL can be encoded in the immediate field of an ARM instruction,
7976 return the encoded form. Otherwise, return FAIL. */
7977
7978 static unsigned int
7979 encode_arm_immediate (unsigned int val)
7980 {
7981 unsigned int a, i;
7982
7983 if (val <= 0xff)
7984 return val;
7985
7986 for (i = 2; i < 32; i += 2)
7987 if ((a = rotate_left (val, i)) <= 0xff)
7988 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
7989
7990 return FAIL;
7991 }
7992
7993 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
7994 return the encoded form. Otherwise, return FAIL. */
7995 static unsigned int
7996 encode_thumb32_immediate (unsigned int val)
7997 {
7998 unsigned int a, i;
7999
8000 if (val <= 0xff)
8001 return val;
8002
8003 for (i = 1; i <= 24; i++)
8004 {
8005 a = val >> i;
8006 if ((val & ~(0xff << i)) == 0)
8007 return ((val >> i) & 0x7f) | ((32 - i) << 7);
8008 }
8009
8010 a = val & 0xff;
8011 if (val == ((a << 16) | a))
8012 return 0x100 | a;
8013 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
8014 return 0x300 | a;
8015
8016 a = val & 0xff00;
8017 if (val == ((a << 16) | a))
8018 return 0x200 | (a >> 8);
8019
8020 return FAIL;
8021 }
8022 /* Encode a VFP SP or DP register number into inst.instruction. */
8023
8024 static void
8025 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
8026 {
8027 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
8028 && reg > 15)
8029 {
8030 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
8031 {
8032 if (thumb_mode)
8033 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
8034 fpu_vfp_ext_d32);
8035 else
8036 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
8037 fpu_vfp_ext_d32);
8038 }
8039 else
8040 {
8041 first_error (_("D register out of range for selected VFP version"));
8042 return;
8043 }
8044 }
8045
8046 switch (pos)
8047 {
8048 case VFP_REG_Sd:
8049 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
8050 break;
8051
8052 case VFP_REG_Sn:
8053 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
8054 break;
8055
8056 case VFP_REG_Sm:
8057 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
8058 break;
8059
8060 case VFP_REG_Dd:
8061 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
8062 break;
8063
8064 case VFP_REG_Dn:
8065 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
8066 break;
8067
8068 case VFP_REG_Dm:
8069 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
8070 break;
8071
8072 default:
8073 abort ();
8074 }
8075 }
8076
8077 /* Encode a <shift> in an ARM-format instruction. The immediate,
8078 if any, is handled by md_apply_fix. */
8079 static void
8080 encode_arm_shift (int i)
8081 {
8082 /* register-shifted register. */
8083 if (inst.operands[i].immisreg)
8084 {
8085 int op_index;
8086 for (op_index = 0; op_index <= i; ++op_index)
8087 {
8088 /* Check the operand only when it's presented. In pre-UAL syntax,
8089 if the destination register is the same as the first operand, two
8090 register form of the instruction can be used. */
8091 if (inst.operands[op_index].present && inst.operands[op_index].isreg
8092 && inst.operands[op_index].reg == REG_PC)
8093 as_warn (UNPRED_REG ("r15"));
8094 }
8095
8096 if (inst.operands[i].imm == REG_PC)
8097 as_warn (UNPRED_REG ("r15"));
8098 }
8099
8100 if (inst.operands[i].shift_kind == SHIFT_RRX)
8101 inst.instruction |= SHIFT_ROR << 5;
8102 else
8103 {
8104 inst.instruction |= inst.operands[i].shift_kind << 5;
8105 if (inst.operands[i].immisreg)
8106 {
8107 inst.instruction |= SHIFT_BY_REG;
8108 inst.instruction |= inst.operands[i].imm << 8;
8109 }
8110 else
8111 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8112 }
8113 }
8114
8115 static void
8116 encode_arm_shifter_operand (int i)
8117 {
8118 if (inst.operands[i].isreg)
8119 {
8120 inst.instruction |= inst.operands[i].reg;
8121 encode_arm_shift (i);
8122 }
8123 else
8124 {
8125 inst.instruction |= INST_IMMEDIATE;
8126 if (inst.relocs[0].type != BFD_RELOC_ARM_IMMEDIATE)
8127 inst.instruction |= inst.operands[i].imm;
8128 }
8129 }
8130
8131 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
8132 static void
8133 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
8134 {
8135 /* PR 14260:
8136 Generate an error if the operand is not a register. */
8137 constraint (!inst.operands[i].isreg,
8138 _("Instruction does not support =N addresses"));
8139
8140 inst.instruction |= inst.operands[i].reg << 16;
8141
8142 if (inst.operands[i].preind)
8143 {
8144 if (is_t)
8145 {
8146 inst.error = _("instruction does not accept preindexed addressing");
8147 return;
8148 }
8149 inst.instruction |= PRE_INDEX;
8150 if (inst.operands[i].writeback)
8151 inst.instruction |= WRITE_BACK;
8152
8153 }
8154 else if (inst.operands[i].postind)
8155 {
8156 gas_assert (inst.operands[i].writeback);
8157 if (is_t)
8158 inst.instruction |= WRITE_BACK;
8159 }
8160 else /* unindexed - only for coprocessor */
8161 {
8162 inst.error = _("instruction does not accept unindexed addressing");
8163 return;
8164 }
8165
8166 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
8167 && (((inst.instruction & 0x000f0000) >> 16)
8168 == ((inst.instruction & 0x0000f000) >> 12)))
8169 as_warn ((inst.instruction & LOAD_BIT)
8170 ? _("destination register same as write-back base")
8171 : _("source register same as write-back base"));
8172 }
8173
8174 /* inst.operands[i] was set up by parse_address. Encode it into an
8175 ARM-format mode 2 load or store instruction. If is_t is true,
8176 reject forms that cannot be used with a T instruction (i.e. not
8177 post-indexed). */
8178 static void
8179 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
8180 {
8181 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8182
8183 encode_arm_addr_mode_common (i, is_t);
8184
8185 if (inst.operands[i].immisreg)
8186 {
8187 constraint ((inst.operands[i].imm == REG_PC
8188 || (is_pc && inst.operands[i].writeback)),
8189 BAD_PC_ADDRESSING);
8190 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
8191 inst.instruction |= inst.operands[i].imm;
8192 if (!inst.operands[i].negative)
8193 inst.instruction |= INDEX_UP;
8194 if (inst.operands[i].shifted)
8195 {
8196 if (inst.operands[i].shift_kind == SHIFT_RRX)
8197 inst.instruction |= SHIFT_ROR << 5;
8198 else
8199 {
8200 inst.instruction |= inst.operands[i].shift_kind << 5;
8201 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
8202 }
8203 }
8204 }
8205 else /* immediate offset in inst.relocs[0] */
8206 {
8207 if (is_pc && !inst.relocs[0].pc_rel)
8208 {
8209 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
8210
8211 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
8212 cannot use PC in addressing.
8213 PC cannot be used in writeback addressing, either. */
8214 constraint ((is_t || inst.operands[i].writeback),
8215 BAD_PC_ADDRESSING);
8216
8217 /* Use of PC in str is deprecated for ARMv7. */
8218 if (warn_on_deprecated
8219 && !is_load
8220 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
8221 as_tsktsk (_("use of PC in this instruction is deprecated"));
8222 }
8223
8224 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8225 {
8226 /* Prefer + for zero encoded value. */
8227 if (!inst.operands[i].negative)
8228 inst.instruction |= INDEX_UP;
8229 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM;
8230 }
8231 }
8232 }
8233
8234 /* inst.operands[i] was set up by parse_address. Encode it into an
8235 ARM-format mode 3 load or store instruction. Reject forms that
8236 cannot be used with such instructions. If is_t is true, reject
8237 forms that cannot be used with a T instruction (i.e. not
8238 post-indexed). */
8239 static void
8240 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
8241 {
8242 if (inst.operands[i].immisreg && inst.operands[i].shifted)
8243 {
8244 inst.error = _("instruction does not accept scaled register index");
8245 return;
8246 }
8247
8248 encode_arm_addr_mode_common (i, is_t);
8249
8250 if (inst.operands[i].immisreg)
8251 {
8252 constraint ((inst.operands[i].imm == REG_PC
8253 || (is_t && inst.operands[i].reg == REG_PC)),
8254 BAD_PC_ADDRESSING);
8255 constraint (inst.operands[i].reg == REG_PC && inst.operands[i].writeback,
8256 BAD_PC_WRITEBACK);
8257 inst.instruction |= inst.operands[i].imm;
8258 if (!inst.operands[i].negative)
8259 inst.instruction |= INDEX_UP;
8260 }
8261 else /* immediate offset in inst.relocs[0] */
8262 {
8263 constraint ((inst.operands[i].reg == REG_PC && !inst.relocs[0].pc_rel
8264 && inst.operands[i].writeback),
8265 BAD_PC_WRITEBACK);
8266 inst.instruction |= HWOFFSET_IMM;
8267 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
8268 {
8269 /* Prefer + for zero encoded value. */
8270 if (!inst.operands[i].negative)
8271 inst.instruction |= INDEX_UP;
8272
8273 inst.relocs[0].type = BFD_RELOC_ARM_OFFSET_IMM8;
8274 }
8275 }
8276 }
8277
8278 /* Write immediate bits [7:0] to the following locations:
8279
8280 |28/24|23 19|18 16|15 4|3 0|
8281 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
8282
8283 This function is used by VMOV/VMVN/VORR/VBIC. */
8284
8285 static void
8286 neon_write_immbits (unsigned immbits)
8287 {
8288 inst.instruction |= immbits & 0xf;
8289 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
8290 inst.instruction |= ((immbits >> 7) & 0x1) << (thumb_mode ? 28 : 24);
8291 }
8292
8293 /* Invert low-order SIZE bits of XHI:XLO. */
8294
8295 static void
8296 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
8297 {
8298 unsigned immlo = xlo ? *xlo : 0;
8299 unsigned immhi = xhi ? *xhi : 0;
8300
8301 switch (size)
8302 {
8303 case 8:
8304 immlo = (~immlo) & 0xff;
8305 break;
8306
8307 case 16:
8308 immlo = (~immlo) & 0xffff;
8309 break;
8310
8311 case 64:
8312 immhi = (~immhi) & 0xffffffff;
8313 /* fall through. */
8314
8315 case 32:
8316 immlo = (~immlo) & 0xffffffff;
8317 break;
8318
8319 default:
8320 abort ();
8321 }
8322
8323 if (xlo)
8324 *xlo = immlo;
8325
8326 if (xhi)
8327 *xhi = immhi;
8328 }
8329
8330 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
8331 A, B, C, D. */
8332
8333 static int
8334 neon_bits_same_in_bytes (unsigned imm)
8335 {
8336 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
8337 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
8338 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
8339 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
8340 }
8341
8342 /* For immediate of above form, return 0bABCD. */
8343
8344 static unsigned
8345 neon_squash_bits (unsigned imm)
8346 {
8347 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
8348 | ((imm & 0x01000000) >> 21);
8349 }
8350
8351 /* Compress quarter-float representation to 0b...000 abcdefgh. */
8352
8353 static unsigned
8354 neon_qfloat_bits (unsigned imm)
8355 {
8356 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
8357 }
8358
8359 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
8360 the instruction. *OP is passed as the initial value of the op field, and
8361 may be set to a different value depending on the constant (i.e.
8362 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
8363 MVN). If the immediate looks like a repeated pattern then also
8364 try smaller element sizes. */
8365
8366 static int
8367 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
8368 unsigned *immbits, int *op, int size,
8369 enum neon_el_type type)
8370 {
8371 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
8372 float. */
8373 if (type == NT_float && !float_p)
8374 return FAIL;
8375
8376 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
8377 {
8378 if (size != 32 || *op == 1)
8379 return FAIL;
8380 *immbits = neon_qfloat_bits (immlo);
8381 return 0xf;
8382 }
8383
8384 if (size == 64)
8385 {
8386 if (neon_bits_same_in_bytes (immhi)
8387 && neon_bits_same_in_bytes (immlo))
8388 {
8389 if (*op == 1)
8390 return FAIL;
8391 *immbits = (neon_squash_bits (immhi) << 4)
8392 | neon_squash_bits (immlo);
8393 *op = 1;
8394 return 0xe;
8395 }
8396
8397 if (immhi != immlo)
8398 return FAIL;
8399 }
8400
8401 if (size >= 32)
8402 {
8403 if (immlo == (immlo & 0x000000ff))
8404 {
8405 *immbits = immlo;
8406 return 0x0;
8407 }
8408 else if (immlo == (immlo & 0x0000ff00))
8409 {
8410 *immbits = immlo >> 8;
8411 return 0x2;
8412 }
8413 else if (immlo == (immlo & 0x00ff0000))
8414 {
8415 *immbits = immlo >> 16;
8416 return 0x4;
8417 }
8418 else if (immlo == (immlo & 0xff000000))
8419 {
8420 *immbits = immlo >> 24;
8421 return 0x6;
8422 }
8423 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
8424 {
8425 *immbits = (immlo >> 8) & 0xff;
8426 return 0xc;
8427 }
8428 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
8429 {
8430 *immbits = (immlo >> 16) & 0xff;
8431 return 0xd;
8432 }
8433
8434 if ((immlo & 0xffff) != (immlo >> 16))
8435 return FAIL;
8436 immlo &= 0xffff;
8437 }
8438
8439 if (size >= 16)
8440 {
8441 if (immlo == (immlo & 0x000000ff))
8442 {
8443 *immbits = immlo;
8444 return 0x8;
8445 }
8446 else if (immlo == (immlo & 0x0000ff00))
8447 {
8448 *immbits = immlo >> 8;
8449 return 0xa;
8450 }
8451
8452 if ((immlo & 0xff) != (immlo >> 8))
8453 return FAIL;
8454 immlo &= 0xff;
8455 }
8456
8457 if (immlo == (immlo & 0x000000ff))
8458 {
8459 /* Don't allow MVN with 8-bit immediate. */
8460 if (*op == 1)
8461 return FAIL;
8462 *immbits = immlo;
8463 return 0xe;
8464 }
8465
8466 return FAIL;
8467 }
8468
8469 #if defined BFD_HOST_64_BIT
8470 /* Returns TRUE if double precision value V may be cast
8471 to single precision without loss of accuracy. */
8472
8473 static bfd_boolean
8474 is_double_a_single (bfd_int64_t v)
8475 {
8476 int exp = (int)((v >> 52) & 0x7FF);
8477 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8478
8479 return (exp == 0 || exp == 0x7FF
8480 || (exp >= 1023 - 126 && exp <= 1023 + 127))
8481 && (mantissa & 0x1FFFFFFFl) == 0;
8482 }
8483
8484 /* Returns a double precision value casted to single precision
8485 (ignoring the least significant bits in exponent and mantissa). */
8486
8487 static int
8488 double_to_single (bfd_int64_t v)
8489 {
8490 int sign = (int) ((v >> 63) & 1l);
8491 int exp = (int) ((v >> 52) & 0x7FF);
8492 bfd_int64_t mantissa = (v & (bfd_int64_t)0xFFFFFFFFFFFFFULL);
8493
8494 if (exp == 0x7FF)
8495 exp = 0xFF;
8496 else
8497 {
8498 exp = exp - 1023 + 127;
8499 if (exp >= 0xFF)
8500 {
8501 /* Infinity. */
8502 exp = 0x7F;
8503 mantissa = 0;
8504 }
8505 else if (exp < 0)
8506 {
8507 /* No denormalized numbers. */
8508 exp = 0;
8509 mantissa = 0;
8510 }
8511 }
8512 mantissa >>= 29;
8513 return (sign << 31) | (exp << 23) | mantissa;
8514 }
8515 #endif /* BFD_HOST_64_BIT */
8516
8517 enum lit_type
8518 {
8519 CONST_THUMB,
8520 CONST_ARM,
8521 CONST_VEC
8522 };
8523
8524 static void do_vfp_nsyn_opcode (const char *);
8525
8526 /* inst.relocs[0].exp describes an "=expr" load pseudo-operation.
8527 Determine whether it can be performed with a move instruction; if
8528 it can, convert inst.instruction to that move instruction and
8529 return TRUE; if it can't, convert inst.instruction to a literal-pool
8530 load and return FALSE. If this is not a valid thing to do in the
8531 current context, set inst.error and return TRUE.
8532
8533 inst.operands[i] describes the destination register. */
8534
8535 static bfd_boolean
8536 move_or_literal_pool (int i, enum lit_type t, bfd_boolean mode_3)
8537 {
8538 unsigned long tbit;
8539 bfd_boolean thumb_p = (t == CONST_THUMB);
8540 bfd_boolean arm_p = (t == CONST_ARM);
8541
8542 if (thumb_p)
8543 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
8544 else
8545 tbit = LOAD_BIT;
8546
8547 if ((inst.instruction & tbit) == 0)
8548 {
8549 inst.error = _("invalid pseudo operation");
8550 return TRUE;
8551 }
8552
8553 if (inst.relocs[0].exp.X_op != O_constant
8554 && inst.relocs[0].exp.X_op != O_symbol
8555 && inst.relocs[0].exp.X_op != O_big)
8556 {
8557 inst.error = _("constant expression expected");
8558 return TRUE;
8559 }
8560
8561 if (inst.relocs[0].exp.X_op == O_constant
8562 || inst.relocs[0].exp.X_op == O_big)
8563 {
8564 #if defined BFD_HOST_64_BIT
8565 bfd_int64_t v;
8566 #else
8567 offsetT v;
8568 #endif
8569 if (inst.relocs[0].exp.X_op == O_big)
8570 {
8571 LITTLENUM_TYPE w[X_PRECISION];
8572 LITTLENUM_TYPE * l;
8573
8574 if (inst.relocs[0].exp.X_add_number == -1)
8575 {
8576 gen_to_words (w, X_PRECISION, E_PRECISION);
8577 l = w;
8578 /* FIXME: Should we check words w[2..5] ? */
8579 }
8580 else
8581 l = generic_bignum;
8582
8583 #if defined BFD_HOST_64_BIT
8584 v =
8585 ((((((((bfd_int64_t) l[3] & LITTLENUM_MASK)
8586 << LITTLENUM_NUMBER_OF_BITS)
8587 | ((bfd_int64_t) l[2] & LITTLENUM_MASK))
8588 << LITTLENUM_NUMBER_OF_BITS)
8589 | ((bfd_int64_t) l[1] & LITTLENUM_MASK))
8590 << LITTLENUM_NUMBER_OF_BITS)
8591 | ((bfd_int64_t) l[0] & LITTLENUM_MASK));
8592 #else
8593 v = ((l[1] & LITTLENUM_MASK) << LITTLENUM_NUMBER_OF_BITS)
8594 | (l[0] & LITTLENUM_MASK);
8595 #endif
8596 }
8597 else
8598 v = inst.relocs[0].exp.X_add_number;
8599
8600 if (!inst.operands[i].issingle)
8601 {
8602 if (thumb_p)
8603 {
8604 /* LDR should not use lead in a flag-setting instruction being
8605 chosen so we do not check whether movs can be used. */
8606
8607 if ((ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
8608 || ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8609 && inst.operands[i].reg != 13
8610 && inst.operands[i].reg != 15)
8611 {
8612 /* Check if on thumb2 it can be done with a mov.w, mvn or
8613 movw instruction. */
8614 unsigned int newimm;
8615 bfd_boolean isNegated;
8616
8617 newimm = encode_thumb32_immediate (v);
8618 if (newimm != (unsigned int) FAIL)
8619 isNegated = FALSE;
8620 else
8621 {
8622 newimm = encode_thumb32_immediate (~v);
8623 if (newimm != (unsigned int) FAIL)
8624 isNegated = TRUE;
8625 }
8626
8627 /* The number can be loaded with a mov.w or mvn
8628 instruction. */
8629 if (newimm != (unsigned int) FAIL
8630 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
8631 {
8632 inst.instruction = (0xf04f0000 /* MOV.W. */
8633 | (inst.operands[i].reg << 8));
8634 /* Change to MOVN. */
8635 inst.instruction |= (isNegated ? 0x200000 : 0);
8636 inst.instruction |= (newimm & 0x800) << 15;
8637 inst.instruction |= (newimm & 0x700) << 4;
8638 inst.instruction |= (newimm & 0x0ff);
8639 return TRUE;
8640 }
8641 /* The number can be loaded with a movw instruction. */
8642 else if ((v & ~0xFFFF) == 0
8643 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m))
8644 {
8645 int imm = v & 0xFFFF;
8646
8647 inst.instruction = 0xf2400000; /* MOVW. */
8648 inst.instruction |= (inst.operands[i].reg << 8);
8649 inst.instruction |= (imm & 0xf000) << 4;
8650 inst.instruction |= (imm & 0x0800) << 15;
8651 inst.instruction |= (imm & 0x0700) << 4;
8652 inst.instruction |= (imm & 0x00ff);
8653 return TRUE;
8654 }
8655 }
8656 }
8657 else if (arm_p)
8658 {
8659 int value = encode_arm_immediate (v);
8660
8661 if (value != FAIL)
8662 {
8663 /* This can be done with a mov instruction. */
8664 inst.instruction &= LITERAL_MASK;
8665 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
8666 inst.instruction |= value & 0xfff;
8667 return TRUE;
8668 }
8669
8670 value = encode_arm_immediate (~ v);
8671 if (value != FAIL)
8672 {
8673 /* This can be done with a mvn instruction. */
8674 inst.instruction &= LITERAL_MASK;
8675 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
8676 inst.instruction |= value & 0xfff;
8677 return TRUE;
8678 }
8679 }
8680 else if (t == CONST_VEC && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
8681 {
8682 int op = 0;
8683 unsigned immbits = 0;
8684 unsigned immlo = inst.operands[1].imm;
8685 unsigned immhi = inst.operands[1].regisimm
8686 ? inst.operands[1].reg
8687 : inst.relocs[0].exp.X_unsigned
8688 ? 0
8689 : ((bfd_int64_t)((int) immlo)) >> 32;
8690 int cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8691 &op, 64, NT_invtype);
8692
8693 if (cmode == FAIL)
8694 {
8695 neon_invert_size (&immlo, &immhi, 64);
8696 op = !op;
8697 cmode = neon_cmode_for_move_imm (immlo, immhi, FALSE, &immbits,
8698 &op, 64, NT_invtype);
8699 }
8700
8701 if (cmode != FAIL)
8702 {
8703 inst.instruction = (inst.instruction & VLDR_VMOV_SAME)
8704 | (1 << 23)
8705 | (cmode << 8)
8706 | (op << 5)
8707 | (1 << 4);
8708
8709 /* Fill other bits in vmov encoding for both thumb and arm. */
8710 if (thumb_mode)
8711 inst.instruction |= (0x7U << 29) | (0xF << 24);
8712 else
8713 inst.instruction |= (0xFU << 28) | (0x1 << 25);
8714 neon_write_immbits (immbits);
8715 return TRUE;
8716 }
8717 }
8718 }
8719
8720 if (t == CONST_VEC)
8721 {
8722 /* Check if vldr Rx, =constant could be optimized to vmov Rx, #constant. */
8723 if (inst.operands[i].issingle
8724 && is_quarter_float (inst.operands[1].imm)
8725 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3xd))
8726 {
8727 inst.operands[1].imm =
8728 neon_qfloat_bits (v);
8729 do_vfp_nsyn_opcode ("fconsts");
8730 return TRUE;
8731 }
8732
8733 /* If our host does not support a 64-bit type then we cannot perform
8734 the following optimization. This mean that there will be a
8735 discrepancy between the output produced by an assembler built for
8736 a 32-bit-only host and the output produced from a 64-bit host, but
8737 this cannot be helped. */
8738 #if defined BFD_HOST_64_BIT
8739 else if (!inst.operands[1].issingle
8740 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
8741 {
8742 if (is_double_a_single (v)
8743 && is_quarter_float (double_to_single (v)))
8744 {
8745 inst.operands[1].imm =
8746 neon_qfloat_bits (double_to_single (v));
8747 do_vfp_nsyn_opcode ("fconstd");
8748 return TRUE;
8749 }
8750 }
8751 #endif
8752 }
8753 }
8754
8755 if (add_to_lit_pool ((!inst.operands[i].isvec
8756 || inst.operands[i].issingle) ? 4 : 8) == FAIL)
8757 return TRUE;
8758
8759 inst.operands[1].reg = REG_PC;
8760 inst.operands[1].isreg = 1;
8761 inst.operands[1].preind = 1;
8762 inst.relocs[0].pc_rel = 1;
8763 inst.relocs[0].type = (thumb_p
8764 ? BFD_RELOC_ARM_THUMB_OFFSET
8765 : (mode_3
8766 ? BFD_RELOC_ARM_HWLITERAL
8767 : BFD_RELOC_ARM_LITERAL));
8768 return FALSE;
8769 }
8770
8771 /* inst.operands[i] was set up by parse_address. Encode it into an
8772 ARM-format instruction. Reject all forms which cannot be encoded
8773 into a coprocessor load/store instruction. If wb_ok is false,
8774 reject use of writeback; if unind_ok is false, reject use of
8775 unindexed addressing. If reloc_override is not 0, use it instead
8776 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
8777 (in which case it is preserved). */
8778
8779 static int
8780 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
8781 {
8782 if (!inst.operands[i].isreg)
8783 {
8784 /* PR 18256 */
8785 if (! inst.operands[0].isvec)
8786 {
8787 inst.error = _("invalid co-processor operand");
8788 return FAIL;
8789 }
8790 if (move_or_literal_pool (0, CONST_VEC, /*mode_3=*/FALSE))
8791 return SUCCESS;
8792 }
8793
8794 inst.instruction |= inst.operands[i].reg << 16;
8795
8796 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
8797
8798 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
8799 {
8800 gas_assert (!inst.operands[i].writeback);
8801 if (!unind_ok)
8802 {
8803 inst.error = _("instruction does not support unindexed addressing");
8804 return FAIL;
8805 }
8806 inst.instruction |= inst.operands[i].imm;
8807 inst.instruction |= INDEX_UP;
8808 return SUCCESS;
8809 }
8810
8811 if (inst.operands[i].preind)
8812 inst.instruction |= PRE_INDEX;
8813
8814 if (inst.operands[i].writeback)
8815 {
8816 if (inst.operands[i].reg == REG_PC)
8817 {
8818 inst.error = _("pc may not be used with write-back");
8819 return FAIL;
8820 }
8821 if (!wb_ok)
8822 {
8823 inst.error = _("instruction does not support writeback");
8824 return FAIL;
8825 }
8826 inst.instruction |= WRITE_BACK;
8827 }
8828
8829 if (reloc_override)
8830 inst.relocs[0].type = (bfd_reloc_code_real_type) reloc_override;
8831 else if ((inst.relocs[0].type < BFD_RELOC_ARM_ALU_PC_G0_NC
8832 || inst.relocs[0].type > BFD_RELOC_ARM_LDC_SB_G2)
8833 && inst.relocs[0].type != BFD_RELOC_ARM_LDR_PC_G0)
8834 {
8835 if (thumb_mode)
8836 inst.relocs[0].type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
8837 else
8838 inst.relocs[0].type = BFD_RELOC_ARM_CP_OFF_IMM;
8839 }
8840
8841 /* Prefer + for zero encoded value. */
8842 if (!inst.operands[i].negative)
8843 inst.instruction |= INDEX_UP;
8844
8845 return SUCCESS;
8846 }
8847
8848 /* Functions for instruction encoding, sorted by sub-architecture.
8849 First some generics; their names are taken from the conventional
8850 bit positions for register arguments in ARM format instructions. */
8851
8852 static void
8853 do_noargs (void)
8854 {
8855 }
8856
8857 static void
8858 do_rd (void)
8859 {
8860 inst.instruction |= inst.operands[0].reg << 12;
8861 }
8862
8863 static void
8864 do_rn (void)
8865 {
8866 inst.instruction |= inst.operands[0].reg << 16;
8867 }
8868
8869 static void
8870 do_rd_rm (void)
8871 {
8872 inst.instruction |= inst.operands[0].reg << 12;
8873 inst.instruction |= inst.operands[1].reg;
8874 }
8875
8876 static void
8877 do_rm_rn (void)
8878 {
8879 inst.instruction |= inst.operands[0].reg;
8880 inst.instruction |= inst.operands[1].reg << 16;
8881 }
8882
8883 static void
8884 do_rd_rn (void)
8885 {
8886 inst.instruction |= inst.operands[0].reg << 12;
8887 inst.instruction |= inst.operands[1].reg << 16;
8888 }
8889
8890 static void
8891 do_rn_rd (void)
8892 {
8893 inst.instruction |= inst.operands[0].reg << 16;
8894 inst.instruction |= inst.operands[1].reg << 12;
8895 }
8896
8897 static void
8898 do_tt (void)
8899 {
8900 inst.instruction |= inst.operands[0].reg << 8;
8901 inst.instruction |= inst.operands[1].reg << 16;
8902 }
8903
8904 static bfd_boolean
8905 check_obsolete (const arm_feature_set *feature, const char *msg)
8906 {
8907 if (ARM_CPU_IS_ANY (cpu_variant))
8908 {
8909 as_tsktsk ("%s", msg);
8910 return TRUE;
8911 }
8912 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
8913 {
8914 as_bad ("%s", msg);
8915 return TRUE;
8916 }
8917
8918 return FALSE;
8919 }
8920
8921 static void
8922 do_rd_rm_rn (void)
8923 {
8924 unsigned Rn = inst.operands[2].reg;
8925 /* Enforce restrictions on SWP instruction. */
8926 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
8927 {
8928 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
8929 _("Rn must not overlap other operands"));
8930
8931 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
8932 */
8933 if (!check_obsolete (&arm_ext_v8,
8934 _("swp{b} use is obsoleted for ARMv8 and later"))
8935 && warn_on_deprecated
8936 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
8937 as_tsktsk (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
8938 }
8939
8940 inst.instruction |= inst.operands[0].reg << 12;
8941 inst.instruction |= inst.operands[1].reg;
8942 inst.instruction |= Rn << 16;
8943 }
8944
8945 static void
8946 do_rd_rn_rm (void)
8947 {
8948 inst.instruction |= inst.operands[0].reg << 12;
8949 inst.instruction |= inst.operands[1].reg << 16;
8950 inst.instruction |= inst.operands[2].reg;
8951 }
8952
8953 static void
8954 do_rm_rd_rn (void)
8955 {
8956 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
8957 constraint (((inst.relocs[0].exp.X_op != O_constant
8958 && inst.relocs[0].exp.X_op != O_illegal)
8959 || inst.relocs[0].exp.X_add_number != 0),
8960 BAD_ADDR_MODE);
8961 inst.instruction |= inst.operands[0].reg;
8962 inst.instruction |= inst.operands[1].reg << 12;
8963 inst.instruction |= inst.operands[2].reg << 16;
8964 }
8965
8966 static void
8967 do_imm0 (void)
8968 {
8969 inst.instruction |= inst.operands[0].imm;
8970 }
8971
8972 static void
8973 do_rd_cpaddr (void)
8974 {
8975 inst.instruction |= inst.operands[0].reg << 12;
8976 encode_arm_cp_address (1, TRUE, TRUE, 0);
8977 }
8978
8979 /* ARM instructions, in alphabetical order by function name (except
8980 that wrapper functions appear immediately after the function they
8981 wrap). */
8982
8983 /* This is a pseudo-op of the form "adr rd, label" to be converted
8984 into a relative address of the form "add rd, pc, #label-.-8". */
8985
8986 static void
8987 do_adr (void)
8988 {
8989 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
8990
8991 /* Frag hacking will turn this into a sub instruction if the offset turns
8992 out to be negative. */
8993 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
8994 inst.relocs[0].pc_rel = 1;
8995 inst.relocs[0].exp.X_add_number -= 8;
8996
8997 if (support_interwork
8998 && inst.relocs[0].exp.X_op == O_symbol
8999 && inst.relocs[0].exp.X_add_symbol != NULL
9000 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9001 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9002 inst.relocs[0].exp.X_add_number |= 1;
9003 }
9004
9005 /* This is a pseudo-op of the form "adrl rd, label" to be converted
9006 into a relative address of the form:
9007 add rd, pc, #low(label-.-8)"
9008 add rd, rd, #high(label-.-8)" */
9009
9010 static void
9011 do_adrl (void)
9012 {
9013 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
9014
9015 /* Frag hacking will turn this into a sub instruction if the offset turns
9016 out to be negative. */
9017 inst.relocs[0].type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
9018 inst.relocs[0].pc_rel = 1;
9019 inst.size = INSN_SIZE * 2;
9020 inst.relocs[0].exp.X_add_number -= 8;
9021
9022 if (support_interwork
9023 && inst.relocs[0].exp.X_op == O_symbol
9024 && inst.relocs[0].exp.X_add_symbol != NULL
9025 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
9026 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
9027 inst.relocs[0].exp.X_add_number |= 1;
9028 }
9029
9030 static void
9031 do_arit (void)
9032 {
9033 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9034 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9035 THUMB1_RELOC_ONLY);
9036 if (!inst.operands[1].present)
9037 inst.operands[1].reg = inst.operands[0].reg;
9038 inst.instruction |= inst.operands[0].reg << 12;
9039 inst.instruction |= inst.operands[1].reg << 16;
9040 encode_arm_shifter_operand (2);
9041 }
9042
9043 static void
9044 do_barrier (void)
9045 {
9046 if (inst.operands[0].present)
9047 inst.instruction |= inst.operands[0].imm;
9048 else
9049 inst.instruction |= 0xf;
9050 }
9051
9052 static void
9053 do_bfc (void)
9054 {
9055 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
9056 constraint (msb > 32, _("bit-field extends past end of register"));
9057 /* The instruction encoding stores the LSB and MSB,
9058 not the LSB and width. */
9059 inst.instruction |= inst.operands[0].reg << 12;
9060 inst.instruction |= inst.operands[1].imm << 7;
9061 inst.instruction |= (msb - 1) << 16;
9062 }
9063
9064 static void
9065 do_bfi (void)
9066 {
9067 unsigned int msb;
9068
9069 /* #0 in second position is alternative syntax for bfc, which is
9070 the same instruction but with REG_PC in the Rm field. */
9071 if (!inst.operands[1].isreg)
9072 inst.operands[1].reg = REG_PC;
9073
9074 msb = inst.operands[2].imm + inst.operands[3].imm;
9075 constraint (msb > 32, _("bit-field extends past end of register"));
9076 /* The instruction encoding stores the LSB and MSB,
9077 not the LSB and width. */
9078 inst.instruction |= inst.operands[0].reg << 12;
9079 inst.instruction |= inst.operands[1].reg;
9080 inst.instruction |= inst.operands[2].imm << 7;
9081 inst.instruction |= (msb - 1) << 16;
9082 }
9083
9084 static void
9085 do_bfx (void)
9086 {
9087 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
9088 _("bit-field extends past end of register"));
9089 inst.instruction |= inst.operands[0].reg << 12;
9090 inst.instruction |= inst.operands[1].reg;
9091 inst.instruction |= inst.operands[2].imm << 7;
9092 inst.instruction |= (inst.operands[3].imm - 1) << 16;
9093 }
9094
9095 /* ARM V5 breakpoint instruction (argument parse)
9096 BKPT <16 bit unsigned immediate>
9097 Instruction is not conditional.
9098 The bit pattern given in insns[] has the COND_ALWAYS condition,
9099 and it is an error if the caller tried to override that. */
9100
9101 static void
9102 do_bkpt (void)
9103 {
9104 /* Top 12 of 16 bits to bits 19:8. */
9105 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
9106
9107 /* Bottom 4 of 16 bits to bits 3:0. */
9108 inst.instruction |= inst.operands[0].imm & 0xf;
9109 }
9110
9111 static void
9112 encode_branch (int default_reloc)
9113 {
9114 if (inst.operands[0].hasreloc)
9115 {
9116 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
9117 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
9118 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
9119 inst.relocs[0].type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
9120 ? BFD_RELOC_ARM_PLT32
9121 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
9122 }
9123 else
9124 inst.relocs[0].type = (bfd_reloc_code_real_type) default_reloc;
9125 inst.relocs[0].pc_rel = 1;
9126 }
9127
9128 static void
9129 do_branch (void)
9130 {
9131 #ifdef OBJ_ELF
9132 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9133 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9134 else
9135 #endif
9136 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9137 }
9138
9139 static void
9140 do_bl (void)
9141 {
9142 #ifdef OBJ_ELF
9143 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
9144 {
9145 if (inst.cond == COND_ALWAYS)
9146 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
9147 else
9148 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
9149 }
9150 else
9151 #endif
9152 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
9153 }
9154
9155 /* ARM V5 branch-link-exchange instruction (argument parse)
9156 BLX <target_addr> ie BLX(1)
9157 BLX{<condition>} <Rm> ie BLX(2)
9158 Unfortunately, there are two different opcodes for this mnemonic.
9159 So, the insns[].value is not used, and the code here zaps values
9160 into inst.instruction.
9161 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
9162
9163 static void
9164 do_blx (void)
9165 {
9166 if (inst.operands[0].isreg)
9167 {
9168 /* Arg is a register; the opcode provided by insns[] is correct.
9169 It is not illegal to do "blx pc", just useless. */
9170 if (inst.operands[0].reg == REG_PC)
9171 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
9172
9173 inst.instruction |= inst.operands[0].reg;
9174 }
9175 else
9176 {
9177 /* Arg is an address; this instruction cannot be executed
9178 conditionally, and the opcode must be adjusted.
9179 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
9180 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
9181 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9182 inst.instruction = 0xfa000000;
9183 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
9184 }
9185 }
9186
9187 static void
9188 do_bx (void)
9189 {
9190 bfd_boolean want_reloc;
9191
9192 if (inst.operands[0].reg == REG_PC)
9193 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
9194
9195 inst.instruction |= inst.operands[0].reg;
9196 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
9197 it is for ARMv4t or earlier. */
9198 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
9199 if (!ARM_FEATURE_ZERO (selected_object_arch)
9200 && !ARM_CPU_HAS_FEATURE (selected_object_arch, arm_ext_v5))
9201 want_reloc = TRUE;
9202
9203 #ifdef OBJ_ELF
9204 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
9205 #endif
9206 want_reloc = FALSE;
9207
9208 if (want_reloc)
9209 inst.relocs[0].type = BFD_RELOC_ARM_V4BX;
9210 }
9211
9212
9213 /* ARM v5TEJ. Jump to Jazelle code. */
9214
9215 static void
9216 do_bxj (void)
9217 {
9218 if (inst.operands[0].reg == REG_PC)
9219 as_tsktsk (_("use of r15 in bxj is not really useful"));
9220
9221 inst.instruction |= inst.operands[0].reg;
9222 }
9223
9224 /* Co-processor data operation:
9225 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
9226 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
9227 static void
9228 do_cdp (void)
9229 {
9230 inst.instruction |= inst.operands[0].reg << 8;
9231 inst.instruction |= inst.operands[1].imm << 20;
9232 inst.instruction |= inst.operands[2].reg << 12;
9233 inst.instruction |= inst.operands[3].reg << 16;
9234 inst.instruction |= inst.operands[4].reg;
9235 inst.instruction |= inst.operands[5].imm << 5;
9236 }
9237
9238 static void
9239 do_cmp (void)
9240 {
9241 inst.instruction |= inst.operands[0].reg << 16;
9242 encode_arm_shifter_operand (1);
9243 }
9244
9245 /* Transfer between coprocessor and ARM registers.
9246 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
9247 MRC2
9248 MCR{cond}
9249 MCR2
9250
9251 No special properties. */
9252
9253 struct deprecated_coproc_regs_s
9254 {
9255 unsigned cp;
9256 int opc1;
9257 unsigned crn;
9258 unsigned crm;
9259 int opc2;
9260 arm_feature_set deprecated;
9261 arm_feature_set obsoleted;
9262 const char *dep_msg;
9263 const char *obs_msg;
9264 };
9265
9266 #define DEPR_ACCESS_V8 \
9267 N_("This coprocessor register access is deprecated in ARMv8")
9268
9269 /* Table of all deprecated coprocessor registers. */
9270 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
9271 {
9272 {15, 0, 7, 10, 5, /* CP15DMB. */
9273 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9274 DEPR_ACCESS_V8, NULL},
9275 {15, 0, 7, 10, 4, /* CP15DSB. */
9276 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9277 DEPR_ACCESS_V8, NULL},
9278 {15, 0, 7, 5, 4, /* CP15ISB. */
9279 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9280 DEPR_ACCESS_V8, NULL},
9281 {14, 6, 1, 0, 0, /* TEEHBR. */
9282 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9283 DEPR_ACCESS_V8, NULL},
9284 {14, 6, 0, 0, 0, /* TEECR. */
9285 ARM_FEATURE_CORE_LOW (ARM_EXT_V8), ARM_ARCH_NONE,
9286 DEPR_ACCESS_V8, NULL},
9287 };
9288
9289 #undef DEPR_ACCESS_V8
9290
9291 static const size_t deprecated_coproc_reg_count =
9292 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
9293
9294 static void
9295 do_co_reg (void)
9296 {
9297 unsigned Rd;
9298 size_t i;
9299
9300 Rd = inst.operands[2].reg;
9301 if (thumb_mode)
9302 {
9303 if (inst.instruction == 0xee000010
9304 || inst.instruction == 0xfe000010)
9305 /* MCR, MCR2 */
9306 reject_bad_reg (Rd);
9307 else if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
9308 /* MRC, MRC2 */
9309 constraint (Rd == REG_SP, BAD_SP);
9310 }
9311 else
9312 {
9313 /* MCR */
9314 if (inst.instruction == 0xe000010)
9315 constraint (Rd == REG_PC, BAD_PC);
9316 }
9317
9318 for (i = 0; i < deprecated_coproc_reg_count; ++i)
9319 {
9320 const struct deprecated_coproc_regs_s *r =
9321 deprecated_coproc_regs + i;
9322
9323 if (inst.operands[0].reg == r->cp
9324 && inst.operands[1].imm == r->opc1
9325 && inst.operands[3].reg == r->crn
9326 && inst.operands[4].reg == r->crm
9327 && inst.operands[5].imm == r->opc2)
9328 {
9329 if (! ARM_CPU_IS_ANY (cpu_variant)
9330 && warn_on_deprecated
9331 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
9332 as_tsktsk ("%s", r->dep_msg);
9333 }
9334 }
9335
9336 inst.instruction |= inst.operands[0].reg << 8;
9337 inst.instruction |= inst.operands[1].imm << 21;
9338 inst.instruction |= Rd << 12;
9339 inst.instruction |= inst.operands[3].reg << 16;
9340 inst.instruction |= inst.operands[4].reg;
9341 inst.instruction |= inst.operands[5].imm << 5;
9342 }
9343
9344 /* Transfer between coprocessor register and pair of ARM registers.
9345 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
9346 MCRR2
9347 MRRC{cond}
9348 MRRC2
9349
9350 Two XScale instructions are special cases of these:
9351
9352 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
9353 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
9354
9355 Result unpredictable if Rd or Rn is R15. */
9356
9357 static void
9358 do_co_reg2c (void)
9359 {
9360 unsigned Rd, Rn;
9361
9362 Rd = inst.operands[2].reg;
9363 Rn = inst.operands[3].reg;
9364
9365 if (thumb_mode)
9366 {
9367 reject_bad_reg (Rd);
9368 reject_bad_reg (Rn);
9369 }
9370 else
9371 {
9372 constraint (Rd == REG_PC, BAD_PC);
9373 constraint (Rn == REG_PC, BAD_PC);
9374 }
9375
9376 /* Only check the MRRC{2} variants. */
9377 if ((inst.instruction & 0x0FF00000) == 0x0C500000)
9378 {
9379 /* If Rd == Rn, error that the operation is
9380 unpredictable (example MRRC p3,#1,r1,r1,c4). */
9381 constraint (Rd == Rn, BAD_OVERLAP);
9382 }
9383
9384 inst.instruction |= inst.operands[0].reg << 8;
9385 inst.instruction |= inst.operands[1].imm << 4;
9386 inst.instruction |= Rd << 12;
9387 inst.instruction |= Rn << 16;
9388 inst.instruction |= inst.operands[4].reg;
9389 }
9390
9391 static void
9392 do_cpsi (void)
9393 {
9394 inst.instruction |= inst.operands[0].imm << 6;
9395 if (inst.operands[1].present)
9396 {
9397 inst.instruction |= CPSI_MMOD;
9398 inst.instruction |= inst.operands[1].imm;
9399 }
9400 }
9401
9402 static void
9403 do_dbg (void)
9404 {
9405 inst.instruction |= inst.operands[0].imm;
9406 }
9407
9408 static void
9409 do_div (void)
9410 {
9411 unsigned Rd, Rn, Rm;
9412
9413 Rd = inst.operands[0].reg;
9414 Rn = (inst.operands[1].present
9415 ? inst.operands[1].reg : Rd);
9416 Rm = inst.operands[2].reg;
9417
9418 constraint ((Rd == REG_PC), BAD_PC);
9419 constraint ((Rn == REG_PC), BAD_PC);
9420 constraint ((Rm == REG_PC), BAD_PC);
9421
9422 inst.instruction |= Rd << 16;
9423 inst.instruction |= Rn << 0;
9424 inst.instruction |= Rm << 8;
9425 }
9426
9427 static void
9428 do_it (void)
9429 {
9430 /* There is no IT instruction in ARM mode. We
9431 process it to do the validation as if in
9432 thumb mode, just in case the code gets
9433 assembled for thumb using the unified syntax. */
9434
9435 inst.size = 0;
9436 if (unified_syntax)
9437 {
9438 set_pred_insn_type (IT_INSN);
9439 now_pred.mask = (inst.instruction & 0xf) | 0x10;
9440 now_pred.cc = inst.operands[0].imm;
9441 }
9442 }
9443
9444 /* If there is only one register in the register list,
9445 then return its register number. Otherwise return -1. */
9446 static int
9447 only_one_reg_in_list (int range)
9448 {
9449 int i = ffs (range) - 1;
9450 return (i > 15 || range != (1 << i)) ? -1 : i;
9451 }
9452
9453 static void
9454 encode_ldmstm(int from_push_pop_mnem)
9455 {
9456 int base_reg = inst.operands[0].reg;
9457 int range = inst.operands[1].imm;
9458 int one_reg;
9459
9460 inst.instruction |= base_reg << 16;
9461 inst.instruction |= range;
9462
9463 if (inst.operands[1].writeback)
9464 inst.instruction |= LDM_TYPE_2_OR_3;
9465
9466 if (inst.operands[0].writeback)
9467 {
9468 inst.instruction |= WRITE_BACK;
9469 /* Check for unpredictable uses of writeback. */
9470 if (inst.instruction & LOAD_BIT)
9471 {
9472 /* Not allowed in LDM type 2. */
9473 if ((inst.instruction & LDM_TYPE_2_OR_3)
9474 && ((range & (1 << REG_PC)) == 0))
9475 as_warn (_("writeback of base register is UNPREDICTABLE"));
9476 /* Only allowed if base reg not in list for other types. */
9477 else if (range & (1 << base_reg))
9478 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
9479 }
9480 else /* STM. */
9481 {
9482 /* Not allowed for type 2. */
9483 if (inst.instruction & LDM_TYPE_2_OR_3)
9484 as_warn (_("writeback of base register is UNPREDICTABLE"));
9485 /* Only allowed if base reg not in list, or first in list. */
9486 else if ((range & (1 << base_reg))
9487 && (range & ((1 << base_reg) - 1)))
9488 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
9489 }
9490 }
9491
9492 /* If PUSH/POP has only one register, then use the A2 encoding. */
9493 one_reg = only_one_reg_in_list (range);
9494 if (from_push_pop_mnem && one_reg >= 0)
9495 {
9496 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
9497
9498 if (is_push && one_reg == 13 /* SP */)
9499 /* PR 22483: The A2 encoding cannot be used when
9500 pushing the stack pointer as this is UNPREDICTABLE. */
9501 return;
9502
9503 inst.instruction &= A_COND_MASK;
9504 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
9505 inst.instruction |= one_reg << 12;
9506 }
9507 }
9508
9509 static void
9510 do_ldmstm (void)
9511 {
9512 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
9513 }
9514
9515 /* ARMv5TE load-consecutive (argument parse)
9516 Mode is like LDRH.
9517
9518 LDRccD R, mode
9519 STRccD R, mode. */
9520
9521 static void
9522 do_ldrd (void)
9523 {
9524 constraint (inst.operands[0].reg % 2 != 0,
9525 _("first transfer register must be even"));
9526 constraint (inst.operands[1].present
9527 && inst.operands[1].reg != inst.operands[0].reg + 1,
9528 _("can only transfer two consecutive registers"));
9529 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9530 constraint (!inst.operands[2].isreg, _("'[' expected"));
9531
9532 if (!inst.operands[1].present)
9533 inst.operands[1].reg = inst.operands[0].reg + 1;
9534
9535 /* encode_arm_addr_mode_3 will diagnose overlap between the base
9536 register and the first register written; we have to diagnose
9537 overlap between the base and the second register written here. */
9538
9539 if (inst.operands[2].reg == inst.operands[1].reg
9540 && (inst.operands[2].writeback || inst.operands[2].postind))
9541 as_warn (_("base register written back, and overlaps "
9542 "second transfer register"));
9543
9544 if (!(inst.instruction & V4_STR_BIT))
9545 {
9546 /* For an index-register load, the index register must not overlap the
9547 destination (even if not write-back). */
9548 if (inst.operands[2].immisreg
9549 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
9550 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
9551 as_warn (_("index register overlaps transfer register"));
9552 }
9553 inst.instruction |= inst.operands[0].reg << 12;
9554 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
9555 }
9556
9557 static void
9558 do_ldrex (void)
9559 {
9560 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9561 || inst.operands[1].postind || inst.operands[1].writeback
9562 || inst.operands[1].immisreg || inst.operands[1].shifted
9563 || inst.operands[1].negative
9564 /* This can arise if the programmer has written
9565 strex rN, rM, foo
9566 or if they have mistakenly used a register name as the last
9567 operand, eg:
9568 strex rN, rM, rX
9569 It is very difficult to distinguish between these two cases
9570 because "rX" might actually be a label. ie the register
9571 name has been occluded by a symbol of the same name. So we
9572 just generate a general 'bad addressing mode' type error
9573 message and leave it up to the programmer to discover the
9574 true cause and fix their mistake. */
9575 || (inst.operands[1].reg == REG_PC),
9576 BAD_ADDR_MODE);
9577
9578 constraint (inst.relocs[0].exp.X_op != O_constant
9579 || inst.relocs[0].exp.X_add_number != 0,
9580 _("offset must be zero in ARM encoding"));
9581
9582 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
9583
9584 inst.instruction |= inst.operands[0].reg << 12;
9585 inst.instruction |= inst.operands[1].reg << 16;
9586 inst.relocs[0].type = BFD_RELOC_UNUSED;
9587 }
9588
9589 static void
9590 do_ldrexd (void)
9591 {
9592 constraint (inst.operands[0].reg % 2 != 0,
9593 _("even register required"));
9594 constraint (inst.operands[1].present
9595 && inst.operands[1].reg != inst.operands[0].reg + 1,
9596 _("can only load two consecutive registers"));
9597 /* If op 1 were present and equal to PC, this function wouldn't
9598 have been called in the first place. */
9599 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
9600
9601 inst.instruction |= inst.operands[0].reg << 12;
9602 inst.instruction |= inst.operands[2].reg << 16;
9603 }
9604
9605 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
9606 which is not a multiple of four is UNPREDICTABLE. */
9607 static void
9608 check_ldr_r15_aligned (void)
9609 {
9610 constraint (!(inst.operands[1].immisreg)
9611 && (inst.operands[0].reg == REG_PC
9612 && inst.operands[1].reg == REG_PC
9613 && (inst.relocs[0].exp.X_add_number & 0x3)),
9614 _("ldr to register 15 must be 4-byte aligned"));
9615 }
9616
9617 static void
9618 do_ldst (void)
9619 {
9620 inst.instruction |= inst.operands[0].reg << 12;
9621 if (!inst.operands[1].isreg)
9622 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/FALSE))
9623 return;
9624 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
9625 check_ldr_r15_aligned ();
9626 }
9627
9628 static void
9629 do_ldstt (void)
9630 {
9631 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9632 reject [Rn,...]. */
9633 if (inst.operands[1].preind)
9634 {
9635 constraint (inst.relocs[0].exp.X_op != O_constant
9636 || inst.relocs[0].exp.X_add_number != 0,
9637 _("this instruction requires a post-indexed address"));
9638
9639 inst.operands[1].preind = 0;
9640 inst.operands[1].postind = 1;
9641 inst.operands[1].writeback = 1;
9642 }
9643 inst.instruction |= inst.operands[0].reg << 12;
9644 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
9645 }
9646
9647 /* Halfword and signed-byte load/store operations. */
9648
9649 static void
9650 do_ldstv4 (void)
9651 {
9652 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9653 inst.instruction |= inst.operands[0].reg << 12;
9654 if (!inst.operands[1].isreg)
9655 if (move_or_literal_pool (0, CONST_ARM, /*mode_3=*/TRUE))
9656 return;
9657 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
9658 }
9659
9660 static void
9661 do_ldsttv4 (void)
9662 {
9663 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
9664 reject [Rn,...]. */
9665 if (inst.operands[1].preind)
9666 {
9667 constraint (inst.relocs[0].exp.X_op != O_constant
9668 || inst.relocs[0].exp.X_add_number != 0,
9669 _("this instruction requires a post-indexed address"));
9670
9671 inst.operands[1].preind = 0;
9672 inst.operands[1].postind = 1;
9673 inst.operands[1].writeback = 1;
9674 }
9675 inst.instruction |= inst.operands[0].reg << 12;
9676 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
9677 }
9678
9679 /* Co-processor register load/store.
9680 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
9681 static void
9682 do_lstc (void)
9683 {
9684 inst.instruction |= inst.operands[0].reg << 8;
9685 inst.instruction |= inst.operands[1].reg << 12;
9686 encode_arm_cp_address (2, TRUE, TRUE, 0);
9687 }
9688
9689 static void
9690 do_mlas (void)
9691 {
9692 /* This restriction does not apply to mls (nor to mla in v6 or later). */
9693 if (inst.operands[0].reg == inst.operands[1].reg
9694 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
9695 && !(inst.instruction & 0x00400000))
9696 as_tsktsk (_("Rd and Rm should be different in mla"));
9697
9698 inst.instruction |= inst.operands[0].reg << 16;
9699 inst.instruction |= inst.operands[1].reg;
9700 inst.instruction |= inst.operands[2].reg << 8;
9701 inst.instruction |= inst.operands[3].reg << 12;
9702 }
9703
9704 static void
9705 do_mov (void)
9706 {
9707 constraint (inst.relocs[0].type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
9708 && inst.relocs[0].type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC ,
9709 THUMB1_RELOC_ONLY);
9710 inst.instruction |= inst.operands[0].reg << 12;
9711 encode_arm_shifter_operand (1);
9712 }
9713
9714 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
9715 static void
9716 do_mov16 (void)
9717 {
9718 bfd_vma imm;
9719 bfd_boolean top;
9720
9721 top = (inst.instruction & 0x00400000) != 0;
9722 constraint (top && inst.relocs[0].type == BFD_RELOC_ARM_MOVW,
9723 _(":lower16: not allowed in this instruction"));
9724 constraint (!top && inst.relocs[0].type == BFD_RELOC_ARM_MOVT,
9725 _(":upper16: not allowed in this instruction"));
9726 inst.instruction |= inst.operands[0].reg << 12;
9727 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
9728 {
9729 imm = inst.relocs[0].exp.X_add_number;
9730 /* The value is in two pieces: 0:11, 16:19. */
9731 inst.instruction |= (imm & 0x00000fff);
9732 inst.instruction |= (imm & 0x0000f000) << 4;
9733 }
9734 }
9735
9736 static int
9737 do_vfp_nsyn_mrs (void)
9738 {
9739 if (inst.operands[0].isvec)
9740 {
9741 if (inst.operands[1].reg != 1)
9742 first_error (_("operand 1 must be FPSCR"));
9743 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
9744 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
9745 do_vfp_nsyn_opcode ("fmstat");
9746 }
9747 else if (inst.operands[1].isvec)
9748 do_vfp_nsyn_opcode ("fmrx");
9749 else
9750 return FAIL;
9751
9752 return SUCCESS;
9753 }
9754
9755 static int
9756 do_vfp_nsyn_msr (void)
9757 {
9758 if (inst.operands[0].isvec)
9759 do_vfp_nsyn_opcode ("fmxr");
9760 else
9761 return FAIL;
9762
9763 return SUCCESS;
9764 }
9765
9766 static void
9767 do_vmrs (void)
9768 {
9769 unsigned Rt = inst.operands[0].reg;
9770
9771 if (thumb_mode && Rt == REG_SP)
9772 {
9773 inst.error = BAD_SP;
9774 return;
9775 }
9776
9777 /* MVFR2 is only valid at ARMv8-A. */
9778 if (inst.operands[1].reg == 5)
9779 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9780 _(BAD_FPU));
9781
9782 /* APSR_ sets isvec. All other refs to PC are illegal. */
9783 if (!inst.operands[0].isvec && Rt == REG_PC)
9784 {
9785 inst.error = BAD_PC;
9786 return;
9787 }
9788
9789 /* If we get through parsing the register name, we just insert the number
9790 generated into the instruction without further validation. */
9791 inst.instruction |= (inst.operands[1].reg << 16);
9792 inst.instruction |= (Rt << 12);
9793 }
9794
9795 static void
9796 do_vmsr (void)
9797 {
9798 unsigned Rt = inst.operands[1].reg;
9799
9800 if (thumb_mode)
9801 reject_bad_reg (Rt);
9802 else if (Rt == REG_PC)
9803 {
9804 inst.error = BAD_PC;
9805 return;
9806 }
9807
9808 /* MVFR2 is only valid for ARMv8-A. */
9809 if (inst.operands[0].reg == 5)
9810 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
9811 _(BAD_FPU));
9812
9813 /* If we get through parsing the register name, we just insert the number
9814 generated into the instruction without further validation. */
9815 inst.instruction |= (inst.operands[0].reg << 16);
9816 inst.instruction |= (Rt << 12);
9817 }
9818
9819 static void
9820 do_mrs (void)
9821 {
9822 unsigned br;
9823
9824 if (do_vfp_nsyn_mrs () == SUCCESS)
9825 return;
9826
9827 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
9828 inst.instruction |= inst.operands[0].reg << 12;
9829
9830 if (inst.operands[1].isreg)
9831 {
9832 br = inst.operands[1].reg;
9833 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf0000))
9834 as_bad (_("bad register for mrs"));
9835 }
9836 else
9837 {
9838 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9839 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
9840 != (PSR_c|PSR_f),
9841 _("'APSR', 'CPSR' or 'SPSR' expected"));
9842 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
9843 }
9844
9845 inst.instruction |= br;
9846 }
9847
9848 /* Two possible forms:
9849 "{C|S}PSR_<field>, Rm",
9850 "{C|S}PSR_f, #expression". */
9851
9852 static void
9853 do_msr (void)
9854 {
9855 if (do_vfp_nsyn_msr () == SUCCESS)
9856 return;
9857
9858 inst.instruction |= inst.operands[0].imm;
9859 if (inst.operands[1].isreg)
9860 inst.instruction |= inst.operands[1].reg;
9861 else
9862 {
9863 inst.instruction |= INST_IMMEDIATE;
9864 inst.relocs[0].type = BFD_RELOC_ARM_IMMEDIATE;
9865 inst.relocs[0].pc_rel = 0;
9866 }
9867 }
9868
9869 static void
9870 do_mul (void)
9871 {
9872 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
9873
9874 if (!inst.operands[2].present)
9875 inst.operands[2].reg = inst.operands[0].reg;
9876 inst.instruction |= inst.operands[0].reg << 16;
9877 inst.instruction |= inst.operands[1].reg;
9878 inst.instruction |= inst.operands[2].reg << 8;
9879
9880 if (inst.operands[0].reg == inst.operands[1].reg
9881 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9882 as_tsktsk (_("Rd and Rm should be different in mul"));
9883 }
9884
9885 /* Long Multiply Parser
9886 UMULL RdLo, RdHi, Rm, Rs
9887 SMULL RdLo, RdHi, Rm, Rs
9888 UMLAL RdLo, RdHi, Rm, Rs
9889 SMLAL RdLo, RdHi, Rm, Rs. */
9890
9891 static void
9892 do_mull (void)
9893 {
9894 inst.instruction |= inst.operands[0].reg << 12;
9895 inst.instruction |= inst.operands[1].reg << 16;
9896 inst.instruction |= inst.operands[2].reg;
9897 inst.instruction |= inst.operands[3].reg << 8;
9898
9899 /* rdhi and rdlo must be different. */
9900 if (inst.operands[0].reg == inst.operands[1].reg)
9901 as_tsktsk (_("rdhi and rdlo must be different"));
9902
9903 /* rdhi, rdlo and rm must all be different before armv6. */
9904 if ((inst.operands[0].reg == inst.operands[2].reg
9905 || inst.operands[1].reg == inst.operands[2].reg)
9906 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
9907 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
9908 }
9909
9910 static void
9911 do_nop (void)
9912 {
9913 if (inst.operands[0].present
9914 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
9915 {
9916 /* Architectural NOP hints are CPSR sets with no bits selected. */
9917 inst.instruction &= 0xf0000000;
9918 inst.instruction |= 0x0320f000;
9919 if (inst.operands[0].present)
9920 inst.instruction |= inst.operands[0].imm;
9921 }
9922 }
9923
9924 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
9925 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
9926 Condition defaults to COND_ALWAYS.
9927 Error if Rd, Rn or Rm are R15. */
9928
9929 static void
9930 do_pkhbt (void)
9931 {
9932 inst.instruction |= inst.operands[0].reg << 12;
9933 inst.instruction |= inst.operands[1].reg << 16;
9934 inst.instruction |= inst.operands[2].reg;
9935 if (inst.operands[3].present)
9936 encode_arm_shift (3);
9937 }
9938
9939 /* ARM V6 PKHTB (Argument Parse). */
9940
9941 static void
9942 do_pkhtb (void)
9943 {
9944 if (!inst.operands[3].present)
9945 {
9946 /* If the shift specifier is omitted, turn the instruction
9947 into pkhbt rd, rm, rn. */
9948 inst.instruction &= 0xfff00010;
9949 inst.instruction |= inst.operands[0].reg << 12;
9950 inst.instruction |= inst.operands[1].reg;
9951 inst.instruction |= inst.operands[2].reg << 16;
9952 }
9953 else
9954 {
9955 inst.instruction |= inst.operands[0].reg << 12;
9956 inst.instruction |= inst.operands[1].reg << 16;
9957 inst.instruction |= inst.operands[2].reg;
9958 encode_arm_shift (3);
9959 }
9960 }
9961
9962 /* ARMv5TE: Preload-Cache
9963 MP Extensions: Preload for write
9964
9965 PLD(W) <addr_mode>
9966
9967 Syntactically, like LDR with B=1, W=0, L=1. */
9968
9969 static void
9970 do_pld (void)
9971 {
9972 constraint (!inst.operands[0].isreg,
9973 _("'[' expected after PLD mnemonic"));
9974 constraint (inst.operands[0].postind,
9975 _("post-indexed expression used in preload instruction"));
9976 constraint (inst.operands[0].writeback,
9977 _("writeback used in preload instruction"));
9978 constraint (!inst.operands[0].preind,
9979 _("unindexed addressing used in preload instruction"));
9980 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9981 }
9982
9983 /* ARMv7: PLI <addr_mode> */
9984 static void
9985 do_pli (void)
9986 {
9987 constraint (!inst.operands[0].isreg,
9988 _("'[' expected after PLI mnemonic"));
9989 constraint (inst.operands[0].postind,
9990 _("post-indexed expression used in preload instruction"));
9991 constraint (inst.operands[0].writeback,
9992 _("writeback used in preload instruction"));
9993 constraint (!inst.operands[0].preind,
9994 _("unindexed addressing used in preload instruction"));
9995 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
9996 inst.instruction &= ~PRE_INDEX;
9997 }
9998
9999 static void
10000 do_push_pop (void)
10001 {
10002 constraint (inst.operands[0].writeback,
10003 _("push/pop do not support {reglist}^"));
10004 inst.operands[1] = inst.operands[0];
10005 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
10006 inst.operands[0].isreg = 1;
10007 inst.operands[0].writeback = 1;
10008 inst.operands[0].reg = REG_SP;
10009 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
10010 }
10011
10012 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
10013 word at the specified address and the following word
10014 respectively.
10015 Unconditionally executed.
10016 Error if Rn is R15. */
10017
10018 static void
10019 do_rfe (void)
10020 {
10021 inst.instruction |= inst.operands[0].reg << 16;
10022 if (inst.operands[0].writeback)
10023 inst.instruction |= WRITE_BACK;
10024 }
10025
10026 /* ARM V6 ssat (argument parse). */
10027
10028 static void
10029 do_ssat (void)
10030 {
10031 inst.instruction |= inst.operands[0].reg << 12;
10032 inst.instruction |= (inst.operands[1].imm - 1) << 16;
10033 inst.instruction |= inst.operands[2].reg;
10034
10035 if (inst.operands[3].present)
10036 encode_arm_shift (3);
10037 }
10038
10039 /* ARM V6 usat (argument parse). */
10040
10041 static void
10042 do_usat (void)
10043 {
10044 inst.instruction |= inst.operands[0].reg << 12;
10045 inst.instruction |= inst.operands[1].imm << 16;
10046 inst.instruction |= inst.operands[2].reg;
10047
10048 if (inst.operands[3].present)
10049 encode_arm_shift (3);
10050 }
10051
10052 /* ARM V6 ssat16 (argument parse). */
10053
10054 static void
10055 do_ssat16 (void)
10056 {
10057 inst.instruction |= inst.operands[0].reg << 12;
10058 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
10059 inst.instruction |= inst.operands[2].reg;
10060 }
10061
10062 static void
10063 do_usat16 (void)
10064 {
10065 inst.instruction |= inst.operands[0].reg << 12;
10066 inst.instruction |= inst.operands[1].imm << 16;
10067 inst.instruction |= inst.operands[2].reg;
10068 }
10069
10070 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
10071 preserving the other bits.
10072
10073 setend <endian_specifier>, where <endian_specifier> is either
10074 BE or LE. */
10075
10076 static void
10077 do_setend (void)
10078 {
10079 if (warn_on_deprecated
10080 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
10081 as_tsktsk (_("setend use is deprecated for ARMv8"));
10082
10083 if (inst.operands[0].imm)
10084 inst.instruction |= 0x200;
10085 }
10086
10087 static void
10088 do_shift (void)
10089 {
10090 unsigned int Rm = (inst.operands[1].present
10091 ? inst.operands[1].reg
10092 : inst.operands[0].reg);
10093
10094 inst.instruction |= inst.operands[0].reg << 12;
10095 inst.instruction |= Rm;
10096 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
10097 {
10098 inst.instruction |= inst.operands[2].reg << 8;
10099 inst.instruction |= SHIFT_BY_REG;
10100 /* PR 12854: Error on extraneous shifts. */
10101 constraint (inst.operands[2].shifted,
10102 _("extraneous shift as part of operand to shift insn"));
10103 }
10104 else
10105 inst.relocs[0].type = BFD_RELOC_ARM_SHIFT_IMM;
10106 }
10107
10108 static void
10109 do_smc (void)
10110 {
10111 inst.relocs[0].type = BFD_RELOC_ARM_SMC;
10112 inst.relocs[0].pc_rel = 0;
10113 }
10114
10115 static void
10116 do_hvc (void)
10117 {
10118 inst.relocs[0].type = BFD_RELOC_ARM_HVC;
10119 inst.relocs[0].pc_rel = 0;
10120 }
10121
10122 static void
10123 do_swi (void)
10124 {
10125 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
10126 inst.relocs[0].pc_rel = 0;
10127 }
10128
10129 static void
10130 do_setpan (void)
10131 {
10132 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10133 _("selected processor does not support SETPAN instruction"));
10134
10135 inst.instruction |= ((inst.operands[0].imm & 1) << 9);
10136 }
10137
10138 static void
10139 do_t_setpan (void)
10140 {
10141 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_pan),
10142 _("selected processor does not support SETPAN instruction"));
10143
10144 inst.instruction |= (inst.operands[0].imm << 3);
10145 }
10146
10147 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
10148 SMLAxy{cond} Rd,Rm,Rs,Rn
10149 SMLAWy{cond} Rd,Rm,Rs,Rn
10150 Error if any register is R15. */
10151
10152 static void
10153 do_smla (void)
10154 {
10155 inst.instruction |= inst.operands[0].reg << 16;
10156 inst.instruction |= inst.operands[1].reg;
10157 inst.instruction |= inst.operands[2].reg << 8;
10158 inst.instruction |= inst.operands[3].reg << 12;
10159 }
10160
10161 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
10162 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
10163 Error if any register is R15.
10164 Warning if Rdlo == Rdhi. */
10165
10166 static void
10167 do_smlal (void)
10168 {
10169 inst.instruction |= inst.operands[0].reg << 12;
10170 inst.instruction |= inst.operands[1].reg << 16;
10171 inst.instruction |= inst.operands[2].reg;
10172 inst.instruction |= inst.operands[3].reg << 8;
10173
10174 if (inst.operands[0].reg == inst.operands[1].reg)
10175 as_tsktsk (_("rdhi and rdlo must be different"));
10176 }
10177
10178 /* ARM V5E (El Segundo) signed-multiply (argument parse)
10179 SMULxy{cond} Rd,Rm,Rs
10180 Error if any register is R15. */
10181
10182 static void
10183 do_smul (void)
10184 {
10185 inst.instruction |= inst.operands[0].reg << 16;
10186 inst.instruction |= inst.operands[1].reg;
10187 inst.instruction |= inst.operands[2].reg << 8;
10188 }
10189
10190 /* ARM V6 srs (argument parse). The variable fields in the encoding are
10191 the same for both ARM and Thumb-2. */
10192
10193 static void
10194 do_srs (void)
10195 {
10196 int reg;
10197
10198 if (inst.operands[0].present)
10199 {
10200 reg = inst.operands[0].reg;
10201 constraint (reg != REG_SP, _("SRS base register must be r13"));
10202 }
10203 else
10204 reg = REG_SP;
10205
10206 inst.instruction |= reg << 16;
10207 inst.instruction |= inst.operands[1].imm;
10208 if (inst.operands[0].writeback || inst.operands[1].writeback)
10209 inst.instruction |= WRITE_BACK;
10210 }
10211
10212 /* ARM V6 strex (argument parse). */
10213
10214 static void
10215 do_strex (void)
10216 {
10217 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10218 || inst.operands[2].postind || inst.operands[2].writeback
10219 || inst.operands[2].immisreg || inst.operands[2].shifted
10220 || inst.operands[2].negative
10221 /* See comment in do_ldrex(). */
10222 || (inst.operands[2].reg == REG_PC),
10223 BAD_ADDR_MODE);
10224
10225 constraint (inst.operands[0].reg == inst.operands[1].reg
10226 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10227
10228 constraint (inst.relocs[0].exp.X_op != O_constant
10229 || inst.relocs[0].exp.X_add_number != 0,
10230 _("offset must be zero in ARM encoding"));
10231
10232 inst.instruction |= inst.operands[0].reg << 12;
10233 inst.instruction |= inst.operands[1].reg;
10234 inst.instruction |= inst.operands[2].reg << 16;
10235 inst.relocs[0].type = BFD_RELOC_UNUSED;
10236 }
10237
10238 static void
10239 do_t_strexbh (void)
10240 {
10241 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
10242 || inst.operands[2].postind || inst.operands[2].writeback
10243 || inst.operands[2].immisreg || inst.operands[2].shifted
10244 || inst.operands[2].negative,
10245 BAD_ADDR_MODE);
10246
10247 constraint (inst.operands[0].reg == inst.operands[1].reg
10248 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10249
10250 do_rm_rd_rn ();
10251 }
10252
10253 static void
10254 do_strexd (void)
10255 {
10256 constraint (inst.operands[1].reg % 2 != 0,
10257 _("even register required"));
10258 constraint (inst.operands[2].present
10259 && inst.operands[2].reg != inst.operands[1].reg + 1,
10260 _("can only store two consecutive registers"));
10261 /* If op 2 were present and equal to PC, this function wouldn't
10262 have been called in the first place. */
10263 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
10264
10265 constraint (inst.operands[0].reg == inst.operands[1].reg
10266 || inst.operands[0].reg == inst.operands[1].reg + 1
10267 || inst.operands[0].reg == inst.operands[3].reg,
10268 BAD_OVERLAP);
10269
10270 inst.instruction |= inst.operands[0].reg << 12;
10271 inst.instruction |= inst.operands[1].reg;
10272 inst.instruction |= inst.operands[3].reg << 16;
10273 }
10274
10275 /* ARM V8 STRL. */
10276 static void
10277 do_stlex (void)
10278 {
10279 constraint (inst.operands[0].reg == inst.operands[1].reg
10280 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10281
10282 do_rd_rm_rn ();
10283 }
10284
10285 static void
10286 do_t_stlex (void)
10287 {
10288 constraint (inst.operands[0].reg == inst.operands[1].reg
10289 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
10290
10291 do_rm_rd_rn ();
10292 }
10293
10294 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
10295 extends it to 32-bits, and adds the result to a value in another
10296 register. You can specify a rotation by 0, 8, 16, or 24 bits
10297 before extracting the 16-bit value.
10298 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
10299 Condition defaults to COND_ALWAYS.
10300 Error if any register uses R15. */
10301
10302 static void
10303 do_sxtah (void)
10304 {
10305 inst.instruction |= inst.operands[0].reg << 12;
10306 inst.instruction |= inst.operands[1].reg << 16;
10307 inst.instruction |= inst.operands[2].reg;
10308 inst.instruction |= inst.operands[3].imm << 10;
10309 }
10310
10311 /* ARM V6 SXTH.
10312
10313 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
10314 Condition defaults to COND_ALWAYS.
10315 Error if any register uses R15. */
10316
10317 static void
10318 do_sxth (void)
10319 {
10320 inst.instruction |= inst.operands[0].reg << 12;
10321 inst.instruction |= inst.operands[1].reg;
10322 inst.instruction |= inst.operands[2].imm << 10;
10323 }
10324 \f
10325 /* VFP instructions. In a logical order: SP variant first, monad
10326 before dyad, arithmetic then move then load/store. */
10327
10328 static void
10329 do_vfp_sp_monadic (void)
10330 {
10331 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10332 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10333 _(BAD_FPU));
10334
10335 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10336 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10337 }
10338
10339 static void
10340 do_vfp_sp_dyadic (void)
10341 {
10342 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10343 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10344 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10345 }
10346
10347 static void
10348 do_vfp_sp_compare_z (void)
10349 {
10350 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10351 }
10352
10353 static void
10354 do_vfp_dp_sp_cvt (void)
10355 {
10356 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10357 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
10358 }
10359
10360 static void
10361 do_vfp_sp_dp_cvt (void)
10362 {
10363 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10364 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10365 }
10366
10367 static void
10368 do_vfp_reg_from_sp (void)
10369 {
10370 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10371 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10372 _(BAD_FPU));
10373
10374 inst.instruction |= inst.operands[0].reg << 12;
10375 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
10376 }
10377
10378 static void
10379 do_vfp_reg2_from_sp2 (void)
10380 {
10381 constraint (inst.operands[2].imm != 2,
10382 _("only two consecutive VFP SP registers allowed here"));
10383 inst.instruction |= inst.operands[0].reg << 12;
10384 inst.instruction |= inst.operands[1].reg << 16;
10385 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
10386 }
10387
10388 static void
10389 do_vfp_sp_from_reg (void)
10390 {
10391 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
10392 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10393 _(BAD_FPU));
10394
10395 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
10396 inst.instruction |= inst.operands[1].reg << 12;
10397 }
10398
10399 static void
10400 do_vfp_sp2_from_reg2 (void)
10401 {
10402 constraint (inst.operands[0].imm != 2,
10403 _("only two consecutive VFP SP registers allowed here"));
10404 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
10405 inst.instruction |= inst.operands[1].reg << 12;
10406 inst.instruction |= inst.operands[2].reg << 16;
10407 }
10408
10409 static void
10410 do_vfp_sp_ldst (void)
10411 {
10412 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10413 encode_arm_cp_address (1, FALSE, TRUE, 0);
10414 }
10415
10416 static void
10417 do_vfp_dp_ldst (void)
10418 {
10419 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10420 encode_arm_cp_address (1, FALSE, TRUE, 0);
10421 }
10422
10423
10424 static void
10425 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
10426 {
10427 if (inst.operands[0].writeback)
10428 inst.instruction |= WRITE_BACK;
10429 else
10430 constraint (ldstm_type != VFP_LDSTMIA,
10431 _("this addressing mode requires base-register writeback"));
10432 inst.instruction |= inst.operands[0].reg << 16;
10433 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
10434 inst.instruction |= inst.operands[1].imm;
10435 }
10436
10437 static void
10438 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
10439 {
10440 int count;
10441
10442 if (inst.operands[0].writeback)
10443 inst.instruction |= WRITE_BACK;
10444 else
10445 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
10446 _("this addressing mode requires base-register writeback"));
10447
10448 inst.instruction |= inst.operands[0].reg << 16;
10449 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10450
10451 count = inst.operands[1].imm << 1;
10452 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
10453 count += 1;
10454
10455 inst.instruction |= count;
10456 }
10457
10458 static void
10459 do_vfp_sp_ldstmia (void)
10460 {
10461 vfp_sp_ldstm (VFP_LDSTMIA);
10462 }
10463
10464 static void
10465 do_vfp_sp_ldstmdb (void)
10466 {
10467 vfp_sp_ldstm (VFP_LDSTMDB);
10468 }
10469
10470 static void
10471 do_vfp_dp_ldstmia (void)
10472 {
10473 vfp_dp_ldstm (VFP_LDSTMIA);
10474 }
10475
10476 static void
10477 do_vfp_dp_ldstmdb (void)
10478 {
10479 vfp_dp_ldstm (VFP_LDSTMDB);
10480 }
10481
10482 static void
10483 do_vfp_xp_ldstmia (void)
10484 {
10485 vfp_dp_ldstm (VFP_LDSTMIAX);
10486 }
10487
10488 static void
10489 do_vfp_xp_ldstmdb (void)
10490 {
10491 vfp_dp_ldstm (VFP_LDSTMDBX);
10492 }
10493
10494 static void
10495 do_vfp_dp_rd_rm (void)
10496 {
10497 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
10498 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10499 _(BAD_FPU));
10500
10501 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10502 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
10503 }
10504
10505 static void
10506 do_vfp_dp_rn_rd (void)
10507 {
10508 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
10509 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10510 }
10511
10512 static void
10513 do_vfp_dp_rd_rn (void)
10514 {
10515 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10516 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10517 }
10518
10519 static void
10520 do_vfp_dp_rd_rn_rm (void)
10521 {
10522 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10523 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10524 _(BAD_FPU));
10525
10526 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10527 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
10528 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
10529 }
10530
10531 static void
10532 do_vfp_dp_rd (void)
10533 {
10534 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10535 }
10536
10537 static void
10538 do_vfp_dp_rm_rd_rn (void)
10539 {
10540 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
10541 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
10542 _(BAD_FPU));
10543
10544 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
10545 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
10546 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
10547 }
10548
10549 /* VFPv3 instructions. */
10550 static void
10551 do_vfp_sp_const (void)
10552 {
10553 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10554 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10555 inst.instruction |= (inst.operands[1].imm & 0x0f);
10556 }
10557
10558 static void
10559 do_vfp_dp_const (void)
10560 {
10561 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10562 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
10563 inst.instruction |= (inst.operands[1].imm & 0x0f);
10564 }
10565
10566 static void
10567 vfp_conv (int srcsize)
10568 {
10569 int immbits = srcsize - inst.operands[1].imm;
10570
10571 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
10572 {
10573 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
10574 i.e. immbits must be in range 0 - 16. */
10575 inst.error = _("immediate value out of range, expected range [0, 16]");
10576 return;
10577 }
10578 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
10579 {
10580 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
10581 i.e. immbits must be in range 0 - 31. */
10582 inst.error = _("immediate value out of range, expected range [1, 32]");
10583 return;
10584 }
10585
10586 inst.instruction |= (immbits & 1) << 5;
10587 inst.instruction |= (immbits >> 1);
10588 }
10589
10590 static void
10591 do_vfp_sp_conv_16 (void)
10592 {
10593 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10594 vfp_conv (16);
10595 }
10596
10597 static void
10598 do_vfp_dp_conv_16 (void)
10599 {
10600 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10601 vfp_conv (16);
10602 }
10603
10604 static void
10605 do_vfp_sp_conv_32 (void)
10606 {
10607 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
10608 vfp_conv (32);
10609 }
10610
10611 static void
10612 do_vfp_dp_conv_32 (void)
10613 {
10614 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
10615 vfp_conv (32);
10616 }
10617 \f
10618 /* FPA instructions. Also in a logical order. */
10619
10620 static void
10621 do_fpa_cmp (void)
10622 {
10623 inst.instruction |= inst.operands[0].reg << 16;
10624 inst.instruction |= inst.operands[1].reg;
10625 }
10626
10627 static void
10628 do_fpa_ldmstm (void)
10629 {
10630 inst.instruction |= inst.operands[0].reg << 12;
10631 switch (inst.operands[1].imm)
10632 {
10633 case 1: inst.instruction |= CP_T_X; break;
10634 case 2: inst.instruction |= CP_T_Y; break;
10635 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
10636 case 4: break;
10637 default: abort ();
10638 }
10639
10640 if (inst.instruction & (PRE_INDEX | INDEX_UP))
10641 {
10642 /* The instruction specified "ea" or "fd", so we can only accept
10643 [Rn]{!}. The instruction does not really support stacking or
10644 unstacking, so we have to emulate these by setting appropriate
10645 bits and offsets. */
10646 constraint (inst.relocs[0].exp.X_op != O_constant
10647 || inst.relocs[0].exp.X_add_number != 0,
10648 _("this instruction does not support indexing"));
10649
10650 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
10651 inst.relocs[0].exp.X_add_number = 12 * inst.operands[1].imm;
10652
10653 if (!(inst.instruction & INDEX_UP))
10654 inst.relocs[0].exp.X_add_number = -inst.relocs[0].exp.X_add_number;
10655
10656 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
10657 {
10658 inst.operands[2].preind = 0;
10659 inst.operands[2].postind = 1;
10660 }
10661 }
10662
10663 encode_arm_cp_address (2, TRUE, TRUE, 0);
10664 }
10665 \f
10666 /* iWMMXt instructions: strictly in alphabetical order. */
10667
10668 static void
10669 do_iwmmxt_tandorc (void)
10670 {
10671 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
10672 }
10673
10674 static void
10675 do_iwmmxt_textrc (void)
10676 {
10677 inst.instruction |= inst.operands[0].reg << 12;
10678 inst.instruction |= inst.operands[1].imm;
10679 }
10680
10681 static void
10682 do_iwmmxt_textrm (void)
10683 {
10684 inst.instruction |= inst.operands[0].reg << 12;
10685 inst.instruction |= inst.operands[1].reg << 16;
10686 inst.instruction |= inst.operands[2].imm;
10687 }
10688
10689 static void
10690 do_iwmmxt_tinsr (void)
10691 {
10692 inst.instruction |= inst.operands[0].reg << 16;
10693 inst.instruction |= inst.operands[1].reg << 12;
10694 inst.instruction |= inst.operands[2].imm;
10695 }
10696
10697 static void
10698 do_iwmmxt_tmia (void)
10699 {
10700 inst.instruction |= inst.operands[0].reg << 5;
10701 inst.instruction |= inst.operands[1].reg;
10702 inst.instruction |= inst.operands[2].reg << 12;
10703 }
10704
10705 static void
10706 do_iwmmxt_waligni (void)
10707 {
10708 inst.instruction |= inst.operands[0].reg << 12;
10709 inst.instruction |= inst.operands[1].reg << 16;
10710 inst.instruction |= inst.operands[2].reg;
10711 inst.instruction |= inst.operands[3].imm << 20;
10712 }
10713
10714 static void
10715 do_iwmmxt_wmerge (void)
10716 {
10717 inst.instruction |= inst.operands[0].reg << 12;
10718 inst.instruction |= inst.operands[1].reg << 16;
10719 inst.instruction |= inst.operands[2].reg;
10720 inst.instruction |= inst.operands[3].imm << 21;
10721 }
10722
10723 static void
10724 do_iwmmxt_wmov (void)
10725 {
10726 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
10727 inst.instruction |= inst.operands[0].reg << 12;
10728 inst.instruction |= inst.operands[1].reg << 16;
10729 inst.instruction |= inst.operands[1].reg;
10730 }
10731
10732 static void
10733 do_iwmmxt_wldstbh (void)
10734 {
10735 int reloc;
10736 inst.instruction |= inst.operands[0].reg << 12;
10737 if (thumb_mode)
10738 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
10739 else
10740 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
10741 encode_arm_cp_address (1, TRUE, FALSE, reloc);
10742 }
10743
10744 static void
10745 do_iwmmxt_wldstw (void)
10746 {
10747 /* RIWR_RIWC clears .isreg for a control register. */
10748 if (!inst.operands[0].isreg)
10749 {
10750 constraint (inst.cond != COND_ALWAYS, BAD_COND);
10751 inst.instruction |= 0xf0000000;
10752 }
10753
10754 inst.instruction |= inst.operands[0].reg << 12;
10755 encode_arm_cp_address (1, TRUE, TRUE, 0);
10756 }
10757
10758 static void
10759 do_iwmmxt_wldstd (void)
10760 {
10761 inst.instruction |= inst.operands[0].reg << 12;
10762 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
10763 && inst.operands[1].immisreg)
10764 {
10765 inst.instruction &= ~0x1a000ff;
10766 inst.instruction |= (0xfU << 28);
10767 if (inst.operands[1].preind)
10768 inst.instruction |= PRE_INDEX;
10769 if (!inst.operands[1].negative)
10770 inst.instruction |= INDEX_UP;
10771 if (inst.operands[1].writeback)
10772 inst.instruction |= WRITE_BACK;
10773 inst.instruction |= inst.operands[1].reg << 16;
10774 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
10775 inst.instruction |= inst.operands[1].imm;
10776 }
10777 else
10778 encode_arm_cp_address (1, TRUE, FALSE, 0);
10779 }
10780
10781 static void
10782 do_iwmmxt_wshufh (void)
10783 {
10784 inst.instruction |= inst.operands[0].reg << 12;
10785 inst.instruction |= inst.operands[1].reg << 16;
10786 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
10787 inst.instruction |= (inst.operands[2].imm & 0x0f);
10788 }
10789
10790 static void
10791 do_iwmmxt_wzero (void)
10792 {
10793 /* WZERO reg is an alias for WANDN reg, reg, reg. */
10794 inst.instruction |= inst.operands[0].reg;
10795 inst.instruction |= inst.operands[0].reg << 12;
10796 inst.instruction |= inst.operands[0].reg << 16;
10797 }
10798
10799 static void
10800 do_iwmmxt_wrwrwr_or_imm5 (void)
10801 {
10802 if (inst.operands[2].isreg)
10803 do_rd_rn_rm ();
10804 else {
10805 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
10806 _("immediate operand requires iWMMXt2"));
10807 do_rd_rn ();
10808 if (inst.operands[2].imm == 0)
10809 {
10810 switch ((inst.instruction >> 20) & 0xf)
10811 {
10812 case 4:
10813 case 5:
10814 case 6:
10815 case 7:
10816 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
10817 inst.operands[2].imm = 16;
10818 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
10819 break;
10820 case 8:
10821 case 9:
10822 case 10:
10823 case 11:
10824 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
10825 inst.operands[2].imm = 32;
10826 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
10827 break;
10828 case 12:
10829 case 13:
10830 case 14:
10831 case 15:
10832 {
10833 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
10834 unsigned long wrn;
10835 wrn = (inst.instruction >> 16) & 0xf;
10836 inst.instruction &= 0xff0fff0f;
10837 inst.instruction |= wrn;
10838 /* Bail out here; the instruction is now assembled. */
10839 return;
10840 }
10841 }
10842 }
10843 /* Map 32 -> 0, etc. */
10844 inst.operands[2].imm &= 0x1f;
10845 inst.instruction |= (0xfU << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
10846 }
10847 }
10848 \f
10849 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
10850 operations first, then control, shift, and load/store. */
10851
10852 /* Insns like "foo X,Y,Z". */
10853
10854 static void
10855 do_mav_triple (void)
10856 {
10857 inst.instruction |= inst.operands[0].reg << 16;
10858 inst.instruction |= inst.operands[1].reg;
10859 inst.instruction |= inst.operands[2].reg << 12;
10860 }
10861
10862 /* Insns like "foo W,X,Y,Z".
10863 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
10864
10865 static void
10866 do_mav_quad (void)
10867 {
10868 inst.instruction |= inst.operands[0].reg << 5;
10869 inst.instruction |= inst.operands[1].reg << 12;
10870 inst.instruction |= inst.operands[2].reg << 16;
10871 inst.instruction |= inst.operands[3].reg;
10872 }
10873
10874 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
10875 static void
10876 do_mav_dspsc (void)
10877 {
10878 inst.instruction |= inst.operands[1].reg << 12;
10879 }
10880
10881 /* Maverick shift immediate instructions.
10882 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
10883 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
10884
10885 static void
10886 do_mav_shift (void)
10887 {
10888 int imm = inst.operands[2].imm;
10889
10890 inst.instruction |= inst.operands[0].reg << 12;
10891 inst.instruction |= inst.operands[1].reg << 16;
10892
10893 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
10894 Bits 5-7 of the insn should have bits 4-6 of the immediate.
10895 Bit 4 should be 0. */
10896 imm = (imm & 0xf) | ((imm & 0x70) << 1);
10897
10898 inst.instruction |= imm;
10899 }
10900 \f
10901 /* XScale instructions. Also sorted arithmetic before move. */
10902
10903 /* Xscale multiply-accumulate (argument parse)
10904 MIAcc acc0,Rm,Rs
10905 MIAPHcc acc0,Rm,Rs
10906 MIAxycc acc0,Rm,Rs. */
10907
10908 static void
10909 do_xsc_mia (void)
10910 {
10911 inst.instruction |= inst.operands[1].reg;
10912 inst.instruction |= inst.operands[2].reg << 12;
10913 }
10914
10915 /* Xscale move-accumulator-register (argument parse)
10916
10917 MARcc acc0,RdLo,RdHi. */
10918
10919 static void
10920 do_xsc_mar (void)
10921 {
10922 inst.instruction |= inst.operands[1].reg << 12;
10923 inst.instruction |= inst.operands[2].reg << 16;
10924 }
10925
10926 /* Xscale move-register-accumulator (argument parse)
10927
10928 MRAcc RdLo,RdHi,acc0. */
10929
10930 static void
10931 do_xsc_mra (void)
10932 {
10933 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
10934 inst.instruction |= inst.operands[0].reg << 12;
10935 inst.instruction |= inst.operands[1].reg << 16;
10936 }
10937 \f
10938 /* Encoding functions relevant only to Thumb. */
10939
10940 /* inst.operands[i] is a shifted-register operand; encode
10941 it into inst.instruction in the format used by Thumb32. */
10942
10943 static void
10944 encode_thumb32_shifted_operand (int i)
10945 {
10946 unsigned int value = inst.relocs[0].exp.X_add_number;
10947 unsigned int shift = inst.operands[i].shift_kind;
10948
10949 constraint (inst.operands[i].immisreg,
10950 _("shift by register not allowed in thumb mode"));
10951 inst.instruction |= inst.operands[i].reg;
10952 if (shift == SHIFT_RRX)
10953 inst.instruction |= SHIFT_ROR << 4;
10954 else
10955 {
10956 constraint (inst.relocs[0].exp.X_op != O_constant,
10957 _("expression too complex"));
10958
10959 constraint (value > 32
10960 || (value == 32 && (shift == SHIFT_LSL
10961 || shift == SHIFT_ROR)),
10962 _("shift expression is too large"));
10963
10964 if (value == 0)
10965 shift = SHIFT_LSL;
10966 else if (value == 32)
10967 value = 0;
10968
10969 inst.instruction |= shift << 4;
10970 inst.instruction |= (value & 0x1c) << 10;
10971 inst.instruction |= (value & 0x03) << 6;
10972 }
10973 }
10974
10975
10976 /* inst.operands[i] was set up by parse_address. Encode it into a
10977 Thumb32 format load or store instruction. Reject forms that cannot
10978 be used with such instructions. If is_t is true, reject forms that
10979 cannot be used with a T instruction; if is_d is true, reject forms
10980 that cannot be used with a D instruction. If it is a store insn,
10981 reject PC in Rn. */
10982
10983 static void
10984 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
10985 {
10986 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
10987
10988 constraint (!inst.operands[i].isreg,
10989 _("Instruction does not support =N addresses"));
10990
10991 inst.instruction |= inst.operands[i].reg << 16;
10992 if (inst.operands[i].immisreg)
10993 {
10994 constraint (is_pc, BAD_PC_ADDRESSING);
10995 constraint (is_t || is_d, _("cannot use register index with this instruction"));
10996 constraint (inst.operands[i].negative,
10997 _("Thumb does not support negative register indexing"));
10998 constraint (inst.operands[i].postind,
10999 _("Thumb does not support register post-indexing"));
11000 constraint (inst.operands[i].writeback,
11001 _("Thumb does not support register indexing with writeback"));
11002 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
11003 _("Thumb supports only LSL in shifted register indexing"));
11004
11005 inst.instruction |= inst.operands[i].imm;
11006 if (inst.operands[i].shifted)
11007 {
11008 constraint (inst.relocs[0].exp.X_op != O_constant,
11009 _("expression too complex"));
11010 constraint (inst.relocs[0].exp.X_add_number < 0
11011 || inst.relocs[0].exp.X_add_number > 3,
11012 _("shift out of range"));
11013 inst.instruction |= inst.relocs[0].exp.X_add_number << 4;
11014 }
11015 inst.relocs[0].type = BFD_RELOC_UNUSED;
11016 }
11017 else if (inst.operands[i].preind)
11018 {
11019 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
11020 constraint (is_t && inst.operands[i].writeback,
11021 _("cannot use writeback with this instruction"));
11022 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0),
11023 BAD_PC_ADDRESSING);
11024
11025 if (is_d)
11026 {
11027 inst.instruction |= 0x01000000;
11028 if (inst.operands[i].writeback)
11029 inst.instruction |= 0x00200000;
11030 }
11031 else
11032 {
11033 inst.instruction |= 0x00000c00;
11034 if (inst.operands[i].writeback)
11035 inst.instruction |= 0x00000100;
11036 }
11037 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11038 }
11039 else if (inst.operands[i].postind)
11040 {
11041 gas_assert (inst.operands[i].writeback);
11042 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
11043 constraint (is_t, _("cannot use post-indexing with this instruction"));
11044
11045 if (is_d)
11046 inst.instruction |= 0x00200000;
11047 else
11048 inst.instruction |= 0x00000900;
11049 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_IMM;
11050 }
11051 else /* unindexed - only for coprocessor */
11052 inst.error = _("instruction does not accept unindexed addressing");
11053 }
11054
11055 /* Table of Thumb instructions which exist in both 16- and 32-bit
11056 encodings (the latter only in post-V6T2 cores). The index is the
11057 value used in the insns table below. When there is more than one
11058 possible 16-bit encoding for the instruction, this table always
11059 holds variant (1).
11060 Also contains several pseudo-instructions used during relaxation. */
11061 #define T16_32_TAB \
11062 X(_adc, 4140, eb400000), \
11063 X(_adcs, 4140, eb500000), \
11064 X(_add, 1c00, eb000000), \
11065 X(_adds, 1c00, eb100000), \
11066 X(_addi, 0000, f1000000), \
11067 X(_addis, 0000, f1100000), \
11068 X(_add_pc,000f, f20f0000), \
11069 X(_add_sp,000d, f10d0000), \
11070 X(_adr, 000f, f20f0000), \
11071 X(_and, 4000, ea000000), \
11072 X(_ands, 4000, ea100000), \
11073 X(_asr, 1000, fa40f000), \
11074 X(_asrs, 1000, fa50f000), \
11075 X(_b, e000, f000b000), \
11076 X(_bcond, d000, f0008000), \
11077 X(_bf, 0000, f040e001), \
11078 X(_bfcsel,0000, f000e001), \
11079 X(_bfx, 0000, f060e001), \
11080 X(_bfl, 0000, f000c001), \
11081 X(_bflx, 0000, f070e001), \
11082 X(_bic, 4380, ea200000), \
11083 X(_bics, 4380, ea300000), \
11084 X(_cmn, 42c0, eb100f00), \
11085 X(_cmp, 2800, ebb00f00), \
11086 X(_cpsie, b660, f3af8400), \
11087 X(_cpsid, b670, f3af8600), \
11088 X(_cpy, 4600, ea4f0000), \
11089 X(_dec_sp,80dd, f1ad0d00), \
11090 X(_dls, 0000, f040e001), \
11091 X(_eor, 4040, ea800000), \
11092 X(_eors, 4040, ea900000), \
11093 X(_inc_sp,00dd, f10d0d00), \
11094 X(_ldmia, c800, e8900000), \
11095 X(_ldr, 6800, f8500000), \
11096 X(_ldrb, 7800, f8100000), \
11097 X(_ldrh, 8800, f8300000), \
11098 X(_ldrsb, 5600, f9100000), \
11099 X(_ldrsh, 5e00, f9300000), \
11100 X(_ldr_pc,4800, f85f0000), \
11101 X(_ldr_pc2,4800, f85f0000), \
11102 X(_ldr_sp,9800, f85d0000), \
11103 X(_le, 0000, f00fc001), \
11104 X(_lsl, 0000, fa00f000), \
11105 X(_lsls, 0000, fa10f000), \
11106 X(_lsr, 0800, fa20f000), \
11107 X(_lsrs, 0800, fa30f000), \
11108 X(_mov, 2000, ea4f0000), \
11109 X(_movs, 2000, ea5f0000), \
11110 X(_mul, 4340, fb00f000), \
11111 X(_muls, 4340, ffffffff), /* no 32b muls */ \
11112 X(_mvn, 43c0, ea6f0000), \
11113 X(_mvns, 43c0, ea7f0000), \
11114 X(_neg, 4240, f1c00000), /* rsb #0 */ \
11115 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
11116 X(_orr, 4300, ea400000), \
11117 X(_orrs, 4300, ea500000), \
11118 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
11119 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
11120 X(_rev, ba00, fa90f080), \
11121 X(_rev16, ba40, fa90f090), \
11122 X(_revsh, bac0, fa90f0b0), \
11123 X(_ror, 41c0, fa60f000), \
11124 X(_rors, 41c0, fa70f000), \
11125 X(_sbc, 4180, eb600000), \
11126 X(_sbcs, 4180, eb700000), \
11127 X(_stmia, c000, e8800000), \
11128 X(_str, 6000, f8400000), \
11129 X(_strb, 7000, f8000000), \
11130 X(_strh, 8000, f8200000), \
11131 X(_str_sp,9000, f84d0000), \
11132 X(_sub, 1e00, eba00000), \
11133 X(_subs, 1e00, ebb00000), \
11134 X(_subi, 8000, f1a00000), \
11135 X(_subis, 8000, f1b00000), \
11136 X(_sxtb, b240, fa4ff080), \
11137 X(_sxth, b200, fa0ff080), \
11138 X(_tst, 4200, ea100f00), \
11139 X(_uxtb, b2c0, fa5ff080), \
11140 X(_uxth, b280, fa1ff080), \
11141 X(_nop, bf00, f3af8000), \
11142 X(_yield, bf10, f3af8001), \
11143 X(_wfe, bf20, f3af8002), \
11144 X(_wfi, bf30, f3af8003), \
11145 X(_wls, 0000, f040c001), \
11146 X(_sev, bf40, f3af8004), \
11147 X(_sevl, bf50, f3af8005), \
11148 X(_udf, de00, f7f0a000)
11149
11150 /* To catch errors in encoding functions, the codes are all offset by
11151 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
11152 as 16-bit instructions. */
11153 #define X(a,b,c) T_MNEM##a
11154 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
11155 #undef X
11156
11157 #define X(a,b,c) 0x##b
11158 static const unsigned short thumb_op16[] = { T16_32_TAB };
11159 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
11160 #undef X
11161
11162 #define X(a,b,c) 0x##c
11163 static const unsigned int thumb_op32[] = { T16_32_TAB };
11164 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
11165 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
11166 #undef X
11167 #undef T16_32_TAB
11168
11169 /* Thumb instruction encoders, in alphabetical order. */
11170
11171 /* ADDW or SUBW. */
11172
11173 static void
11174 do_t_add_sub_w (void)
11175 {
11176 int Rd, Rn;
11177
11178 Rd = inst.operands[0].reg;
11179 Rn = inst.operands[1].reg;
11180
11181 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
11182 is the SP-{plus,minus}-immediate form of the instruction. */
11183 if (Rn == REG_SP)
11184 constraint (Rd == REG_PC, BAD_PC);
11185 else
11186 reject_bad_reg (Rd);
11187
11188 inst.instruction |= (Rn << 16) | (Rd << 8);
11189 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11190 }
11191
11192 /* Parse an add or subtract instruction. We get here with inst.instruction
11193 equaling any of THUMB_OPCODE_add, adds, sub, or subs. */
11194
11195 static void
11196 do_t_add_sub (void)
11197 {
11198 int Rd, Rs, Rn;
11199
11200 Rd = inst.operands[0].reg;
11201 Rs = (inst.operands[1].present
11202 ? inst.operands[1].reg /* Rd, Rs, foo */
11203 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11204
11205 if (Rd == REG_PC)
11206 set_pred_insn_type_last ();
11207
11208 if (unified_syntax)
11209 {
11210 bfd_boolean flags;
11211 bfd_boolean narrow;
11212 int opcode;
11213
11214 flags = (inst.instruction == T_MNEM_adds
11215 || inst.instruction == T_MNEM_subs);
11216 if (flags)
11217 narrow = !in_pred_block ();
11218 else
11219 narrow = in_pred_block ();
11220 if (!inst.operands[2].isreg)
11221 {
11222 int add;
11223
11224 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11225 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11226
11227 add = (inst.instruction == T_MNEM_add
11228 || inst.instruction == T_MNEM_adds);
11229 opcode = 0;
11230 if (inst.size_req != 4)
11231 {
11232 /* Attempt to use a narrow opcode, with relaxation if
11233 appropriate. */
11234 if (Rd == REG_SP && Rs == REG_SP && !flags)
11235 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
11236 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
11237 opcode = T_MNEM_add_sp;
11238 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
11239 opcode = T_MNEM_add_pc;
11240 else if (Rd <= 7 && Rs <= 7 && narrow)
11241 {
11242 if (flags)
11243 opcode = add ? T_MNEM_addis : T_MNEM_subis;
11244 else
11245 opcode = add ? T_MNEM_addi : T_MNEM_subi;
11246 }
11247 if (opcode)
11248 {
11249 inst.instruction = THUMB_OP16(opcode);
11250 inst.instruction |= (Rd << 4) | Rs;
11251 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
11252 || (inst.relocs[0].type
11253 > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC))
11254 {
11255 if (inst.size_req == 2)
11256 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11257 else
11258 inst.relax = opcode;
11259 }
11260 }
11261 else
11262 constraint (inst.size_req == 2, BAD_HIREG);
11263 }
11264 if (inst.size_req == 4
11265 || (inst.size_req != 2 && !opcode))
11266 {
11267 constraint ((inst.relocs[0].type
11268 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
11269 && (inst.relocs[0].type
11270 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
11271 THUMB1_RELOC_ONLY);
11272 if (Rd == REG_PC)
11273 {
11274 constraint (add, BAD_PC);
11275 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
11276 _("only SUBS PC, LR, #const allowed"));
11277 constraint (inst.relocs[0].exp.X_op != O_constant,
11278 _("expression too complex"));
11279 constraint (inst.relocs[0].exp.X_add_number < 0
11280 || inst.relocs[0].exp.X_add_number > 0xff,
11281 _("immediate value out of range"));
11282 inst.instruction = T2_SUBS_PC_LR
11283 | inst.relocs[0].exp.X_add_number;
11284 inst.relocs[0].type = BFD_RELOC_UNUSED;
11285 return;
11286 }
11287 else if (Rs == REG_PC)
11288 {
11289 /* Always use addw/subw. */
11290 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
11291 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMM12;
11292 }
11293 else
11294 {
11295 inst.instruction = THUMB_OP32 (inst.instruction);
11296 inst.instruction = (inst.instruction & 0xe1ffffff)
11297 | 0x10000000;
11298 if (flags)
11299 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11300 else
11301 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_IMM;
11302 }
11303 inst.instruction |= Rd << 8;
11304 inst.instruction |= Rs << 16;
11305 }
11306 }
11307 else
11308 {
11309 unsigned int value = inst.relocs[0].exp.X_add_number;
11310 unsigned int shift = inst.operands[2].shift_kind;
11311
11312 Rn = inst.operands[2].reg;
11313 /* See if we can do this with a 16-bit instruction. */
11314 if (!inst.operands[2].shifted && inst.size_req != 4)
11315 {
11316 if (Rd > 7 || Rs > 7 || Rn > 7)
11317 narrow = FALSE;
11318
11319 if (narrow)
11320 {
11321 inst.instruction = ((inst.instruction == T_MNEM_adds
11322 || inst.instruction == T_MNEM_add)
11323 ? T_OPCODE_ADD_R3
11324 : T_OPCODE_SUB_R3);
11325 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11326 return;
11327 }
11328
11329 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
11330 {
11331 /* Thumb-1 cores (except v6-M) require at least one high
11332 register in a narrow non flag setting add. */
11333 if (Rd > 7 || Rn > 7
11334 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
11335 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
11336 {
11337 if (Rd == Rn)
11338 {
11339 Rn = Rs;
11340 Rs = Rd;
11341 }
11342 inst.instruction = T_OPCODE_ADD_HI;
11343 inst.instruction |= (Rd & 8) << 4;
11344 inst.instruction |= (Rd & 7);
11345 inst.instruction |= Rn << 3;
11346 return;
11347 }
11348 }
11349 }
11350
11351 constraint (Rd == REG_PC, BAD_PC);
11352 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11353 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
11354 constraint (Rs == REG_PC, BAD_PC);
11355 reject_bad_reg (Rn);
11356
11357 /* If we get here, it can't be done in 16 bits. */
11358 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
11359 _("shift must be constant"));
11360 inst.instruction = THUMB_OP32 (inst.instruction);
11361 inst.instruction |= Rd << 8;
11362 inst.instruction |= Rs << 16;
11363 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
11364 _("shift value over 3 not allowed in thumb mode"));
11365 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
11366 _("only LSL shift allowed in thumb mode"));
11367 encode_thumb32_shifted_operand (2);
11368 }
11369 }
11370 else
11371 {
11372 constraint (inst.instruction == T_MNEM_adds
11373 || inst.instruction == T_MNEM_subs,
11374 BAD_THUMB32);
11375
11376 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
11377 {
11378 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
11379 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
11380 BAD_HIREG);
11381
11382 inst.instruction = (inst.instruction == T_MNEM_add
11383 ? 0x0000 : 0x8000);
11384 inst.instruction |= (Rd << 4) | Rs;
11385 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11386 return;
11387 }
11388
11389 Rn = inst.operands[2].reg;
11390 constraint (inst.operands[2].shifted, _("unshifted register required"));
11391
11392 /* We now have Rd, Rs, and Rn set to registers. */
11393 if (Rd > 7 || Rs > 7 || Rn > 7)
11394 {
11395 /* Can't do this for SUB. */
11396 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
11397 inst.instruction = T_OPCODE_ADD_HI;
11398 inst.instruction |= (Rd & 8) << 4;
11399 inst.instruction |= (Rd & 7);
11400 if (Rs == Rd)
11401 inst.instruction |= Rn << 3;
11402 else if (Rn == Rd)
11403 inst.instruction |= Rs << 3;
11404 else
11405 constraint (1, _("dest must overlap one source register"));
11406 }
11407 else
11408 {
11409 inst.instruction = (inst.instruction == T_MNEM_add
11410 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
11411 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
11412 }
11413 }
11414 }
11415
11416 static void
11417 do_t_adr (void)
11418 {
11419 unsigned Rd;
11420
11421 Rd = inst.operands[0].reg;
11422 reject_bad_reg (Rd);
11423
11424 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
11425 {
11426 /* Defer to section relaxation. */
11427 inst.relax = inst.instruction;
11428 inst.instruction = THUMB_OP16 (inst.instruction);
11429 inst.instruction |= Rd << 4;
11430 }
11431 else if (unified_syntax && inst.size_req != 2)
11432 {
11433 /* Generate a 32-bit opcode. */
11434 inst.instruction = THUMB_OP32 (inst.instruction);
11435 inst.instruction |= Rd << 8;
11436 inst.relocs[0].type = BFD_RELOC_ARM_T32_ADD_PC12;
11437 inst.relocs[0].pc_rel = 1;
11438 }
11439 else
11440 {
11441 /* Generate a 16-bit opcode. */
11442 inst.instruction = THUMB_OP16 (inst.instruction);
11443 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_ADD;
11444 inst.relocs[0].exp.X_add_number -= 4; /* PC relative adjust. */
11445 inst.relocs[0].pc_rel = 1;
11446 inst.instruction |= Rd << 4;
11447 }
11448
11449 if (inst.relocs[0].exp.X_op == O_symbol
11450 && inst.relocs[0].exp.X_add_symbol != NULL
11451 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11452 && THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11453 inst.relocs[0].exp.X_add_number += 1;
11454 }
11455
11456 /* Arithmetic instructions for which there is just one 16-bit
11457 instruction encoding, and it allows only two low registers.
11458 For maximal compatibility with ARM syntax, we allow three register
11459 operands even when Thumb-32 instructions are not available, as long
11460 as the first two are identical. For instance, both "sbc r0,r1" and
11461 "sbc r0,r0,r1" are allowed. */
11462 static void
11463 do_t_arit3 (void)
11464 {
11465 int Rd, Rs, Rn;
11466
11467 Rd = inst.operands[0].reg;
11468 Rs = (inst.operands[1].present
11469 ? inst.operands[1].reg /* Rd, Rs, foo */
11470 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11471 Rn = inst.operands[2].reg;
11472
11473 reject_bad_reg (Rd);
11474 reject_bad_reg (Rs);
11475 if (inst.operands[2].isreg)
11476 reject_bad_reg (Rn);
11477
11478 if (unified_syntax)
11479 {
11480 if (!inst.operands[2].isreg)
11481 {
11482 /* For an immediate, we always generate a 32-bit opcode;
11483 section relaxation will shrink it later if possible. */
11484 inst.instruction = THUMB_OP32 (inst.instruction);
11485 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11486 inst.instruction |= Rd << 8;
11487 inst.instruction |= Rs << 16;
11488 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11489 }
11490 else
11491 {
11492 bfd_boolean narrow;
11493
11494 /* See if we can do this with a 16-bit instruction. */
11495 if (THUMB_SETS_FLAGS (inst.instruction))
11496 narrow = !in_pred_block ();
11497 else
11498 narrow = in_pred_block ();
11499
11500 if (Rd > 7 || Rn > 7 || Rs > 7)
11501 narrow = FALSE;
11502 if (inst.operands[2].shifted)
11503 narrow = FALSE;
11504 if (inst.size_req == 4)
11505 narrow = FALSE;
11506
11507 if (narrow
11508 && Rd == Rs)
11509 {
11510 inst.instruction = THUMB_OP16 (inst.instruction);
11511 inst.instruction |= Rd;
11512 inst.instruction |= Rn << 3;
11513 return;
11514 }
11515
11516 /* If we get here, it can't be done in 16 bits. */
11517 constraint (inst.operands[2].shifted
11518 && inst.operands[2].immisreg,
11519 _("shift must be constant"));
11520 inst.instruction = THUMB_OP32 (inst.instruction);
11521 inst.instruction |= Rd << 8;
11522 inst.instruction |= Rs << 16;
11523 encode_thumb32_shifted_operand (2);
11524 }
11525 }
11526 else
11527 {
11528 /* On its face this is a lie - the instruction does set the
11529 flags. However, the only supported mnemonic in this mode
11530 says it doesn't. */
11531 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11532
11533 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11534 _("unshifted register required"));
11535 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11536 constraint (Rd != Rs,
11537 _("dest and source1 must be the same register"));
11538
11539 inst.instruction = THUMB_OP16 (inst.instruction);
11540 inst.instruction |= Rd;
11541 inst.instruction |= Rn << 3;
11542 }
11543 }
11544
11545 /* Similarly, but for instructions where the arithmetic operation is
11546 commutative, so we can allow either of them to be different from
11547 the destination operand in a 16-bit instruction. For instance, all
11548 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
11549 accepted. */
11550 static void
11551 do_t_arit3c (void)
11552 {
11553 int Rd, Rs, Rn;
11554
11555 Rd = inst.operands[0].reg;
11556 Rs = (inst.operands[1].present
11557 ? inst.operands[1].reg /* Rd, Rs, foo */
11558 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11559 Rn = inst.operands[2].reg;
11560
11561 reject_bad_reg (Rd);
11562 reject_bad_reg (Rs);
11563 if (inst.operands[2].isreg)
11564 reject_bad_reg (Rn);
11565
11566 if (unified_syntax)
11567 {
11568 if (!inst.operands[2].isreg)
11569 {
11570 /* For an immediate, we always generate a 32-bit opcode;
11571 section relaxation will shrink it later if possible. */
11572 inst.instruction = THUMB_OP32 (inst.instruction);
11573 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11574 inst.instruction |= Rd << 8;
11575 inst.instruction |= Rs << 16;
11576 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
11577 }
11578 else
11579 {
11580 bfd_boolean narrow;
11581
11582 /* See if we can do this with a 16-bit instruction. */
11583 if (THUMB_SETS_FLAGS (inst.instruction))
11584 narrow = !in_pred_block ();
11585 else
11586 narrow = in_pred_block ();
11587
11588 if (Rd > 7 || Rn > 7 || Rs > 7)
11589 narrow = FALSE;
11590 if (inst.operands[2].shifted)
11591 narrow = FALSE;
11592 if (inst.size_req == 4)
11593 narrow = FALSE;
11594
11595 if (narrow)
11596 {
11597 if (Rd == Rs)
11598 {
11599 inst.instruction = THUMB_OP16 (inst.instruction);
11600 inst.instruction |= Rd;
11601 inst.instruction |= Rn << 3;
11602 return;
11603 }
11604 if (Rd == Rn)
11605 {
11606 inst.instruction = THUMB_OP16 (inst.instruction);
11607 inst.instruction |= Rd;
11608 inst.instruction |= Rs << 3;
11609 return;
11610 }
11611 }
11612
11613 /* If we get here, it can't be done in 16 bits. */
11614 constraint (inst.operands[2].shifted
11615 && inst.operands[2].immisreg,
11616 _("shift must be constant"));
11617 inst.instruction = THUMB_OP32 (inst.instruction);
11618 inst.instruction |= Rd << 8;
11619 inst.instruction |= Rs << 16;
11620 encode_thumb32_shifted_operand (2);
11621 }
11622 }
11623 else
11624 {
11625 /* On its face this is a lie - the instruction does set the
11626 flags. However, the only supported mnemonic in this mode
11627 says it doesn't. */
11628 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11629
11630 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
11631 _("unshifted register required"));
11632 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
11633
11634 inst.instruction = THUMB_OP16 (inst.instruction);
11635 inst.instruction |= Rd;
11636
11637 if (Rd == Rs)
11638 inst.instruction |= Rn << 3;
11639 else if (Rd == Rn)
11640 inst.instruction |= Rs << 3;
11641 else
11642 constraint (1, _("dest must overlap one source register"));
11643 }
11644 }
11645
11646 static void
11647 do_t_bfc (void)
11648 {
11649 unsigned Rd;
11650 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
11651 constraint (msb > 32, _("bit-field extends past end of register"));
11652 /* The instruction encoding stores the LSB and MSB,
11653 not the LSB and width. */
11654 Rd = inst.operands[0].reg;
11655 reject_bad_reg (Rd);
11656 inst.instruction |= Rd << 8;
11657 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
11658 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
11659 inst.instruction |= msb - 1;
11660 }
11661
11662 static void
11663 do_t_bfi (void)
11664 {
11665 int Rd, Rn;
11666 unsigned int msb;
11667
11668 Rd = inst.operands[0].reg;
11669 reject_bad_reg (Rd);
11670
11671 /* #0 in second position is alternative syntax for bfc, which is
11672 the same instruction but with REG_PC in the Rm field. */
11673 if (!inst.operands[1].isreg)
11674 Rn = REG_PC;
11675 else
11676 {
11677 Rn = inst.operands[1].reg;
11678 reject_bad_reg (Rn);
11679 }
11680
11681 msb = inst.operands[2].imm + inst.operands[3].imm;
11682 constraint (msb > 32, _("bit-field extends past end of register"));
11683 /* The instruction encoding stores the LSB and MSB,
11684 not the LSB and width. */
11685 inst.instruction |= Rd << 8;
11686 inst.instruction |= Rn << 16;
11687 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11688 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11689 inst.instruction |= msb - 1;
11690 }
11691
11692 static void
11693 do_t_bfx (void)
11694 {
11695 unsigned Rd, Rn;
11696
11697 Rd = inst.operands[0].reg;
11698 Rn = inst.operands[1].reg;
11699
11700 reject_bad_reg (Rd);
11701 reject_bad_reg (Rn);
11702
11703 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
11704 _("bit-field extends past end of register"));
11705 inst.instruction |= Rd << 8;
11706 inst.instruction |= Rn << 16;
11707 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
11708 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
11709 inst.instruction |= inst.operands[3].imm - 1;
11710 }
11711
11712 /* ARM V5 Thumb BLX (argument parse)
11713 BLX <target_addr> which is BLX(1)
11714 BLX <Rm> which is BLX(2)
11715 Unfortunately, there are two different opcodes for this mnemonic.
11716 So, the insns[].value is not used, and the code here zaps values
11717 into inst.instruction.
11718
11719 ??? How to take advantage of the additional two bits of displacement
11720 available in Thumb32 mode? Need new relocation? */
11721
11722 static void
11723 do_t_blx (void)
11724 {
11725 set_pred_insn_type_last ();
11726
11727 if (inst.operands[0].isreg)
11728 {
11729 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
11730 /* We have a register, so this is BLX(2). */
11731 inst.instruction |= inst.operands[0].reg << 3;
11732 }
11733 else
11734 {
11735 /* No register. This must be BLX(1). */
11736 inst.instruction = 0xf000e800;
11737 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
11738 }
11739 }
11740
11741 static void
11742 do_t_branch (void)
11743 {
11744 int opcode;
11745 int cond;
11746 bfd_reloc_code_real_type reloc;
11747
11748 cond = inst.cond;
11749 set_pred_insn_type (IF_INSIDE_IT_LAST_INSN);
11750
11751 if (in_pred_block ())
11752 {
11753 /* Conditional branches inside IT blocks are encoded as unconditional
11754 branches. */
11755 cond = COND_ALWAYS;
11756 }
11757 else
11758 cond = inst.cond;
11759
11760 if (cond != COND_ALWAYS)
11761 opcode = T_MNEM_bcond;
11762 else
11763 opcode = inst.instruction;
11764
11765 if (unified_syntax
11766 && (inst.size_req == 4
11767 || (inst.size_req != 2
11768 && (inst.operands[0].hasreloc
11769 || inst.relocs[0].exp.X_op == O_constant))))
11770 {
11771 inst.instruction = THUMB_OP32(opcode);
11772 if (cond == COND_ALWAYS)
11773 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
11774 else
11775 {
11776 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2),
11777 _("selected architecture does not support "
11778 "wide conditional branch instruction"));
11779
11780 gas_assert (cond != 0xF);
11781 inst.instruction |= cond << 22;
11782 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
11783 }
11784 }
11785 else
11786 {
11787 inst.instruction = THUMB_OP16(opcode);
11788 if (cond == COND_ALWAYS)
11789 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
11790 else
11791 {
11792 inst.instruction |= cond << 8;
11793 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
11794 }
11795 /* Allow section relaxation. */
11796 if (unified_syntax && inst.size_req != 2)
11797 inst.relax = opcode;
11798 }
11799 inst.relocs[0].type = reloc;
11800 inst.relocs[0].pc_rel = 1;
11801 }
11802
11803 /* Actually do the work for Thumb state bkpt and hlt. The only difference
11804 between the two is the maximum immediate allowed - which is passed in
11805 RANGE. */
11806 static void
11807 do_t_bkpt_hlt1 (int range)
11808 {
11809 constraint (inst.cond != COND_ALWAYS,
11810 _("instruction is always unconditional"));
11811 if (inst.operands[0].present)
11812 {
11813 constraint (inst.operands[0].imm > range,
11814 _("immediate value out of range"));
11815 inst.instruction |= inst.operands[0].imm;
11816 }
11817
11818 set_pred_insn_type (NEUTRAL_IT_INSN);
11819 }
11820
11821 static void
11822 do_t_hlt (void)
11823 {
11824 do_t_bkpt_hlt1 (63);
11825 }
11826
11827 static void
11828 do_t_bkpt (void)
11829 {
11830 do_t_bkpt_hlt1 (255);
11831 }
11832
11833 static void
11834 do_t_branch23 (void)
11835 {
11836 set_pred_insn_type_last ();
11837 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
11838
11839 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
11840 this file. We used to simply ignore the PLT reloc type here --
11841 the branch encoding is now needed to deal with TLSCALL relocs.
11842 So if we see a PLT reloc now, put it back to how it used to be to
11843 keep the preexisting behaviour. */
11844 if (inst.relocs[0].type == BFD_RELOC_ARM_PLT32)
11845 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH23;
11846
11847 #if defined(OBJ_COFF)
11848 /* If the destination of the branch is a defined symbol which does not have
11849 the THUMB_FUNC attribute, then we must be calling a function which has
11850 the (interfacearm) attribute. We look for the Thumb entry point to that
11851 function and change the branch to refer to that function instead. */
11852 if ( inst.relocs[0].exp.X_op == O_symbol
11853 && inst.relocs[0].exp.X_add_symbol != NULL
11854 && S_IS_DEFINED (inst.relocs[0].exp.X_add_symbol)
11855 && ! THUMB_IS_FUNC (inst.relocs[0].exp.X_add_symbol))
11856 inst.relocs[0].exp.X_add_symbol
11857 = find_real_start (inst.relocs[0].exp.X_add_symbol);
11858 #endif
11859 }
11860
11861 static void
11862 do_t_bx (void)
11863 {
11864 set_pred_insn_type_last ();
11865 inst.instruction |= inst.operands[0].reg << 3;
11866 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
11867 should cause the alignment to be checked once it is known. This is
11868 because BX PC only works if the instruction is word aligned. */
11869 }
11870
11871 static void
11872 do_t_bxj (void)
11873 {
11874 int Rm;
11875
11876 set_pred_insn_type_last ();
11877 Rm = inst.operands[0].reg;
11878 reject_bad_reg (Rm);
11879 inst.instruction |= Rm << 16;
11880 }
11881
11882 static void
11883 do_t_clz (void)
11884 {
11885 unsigned Rd;
11886 unsigned Rm;
11887
11888 Rd = inst.operands[0].reg;
11889 Rm = inst.operands[1].reg;
11890
11891 reject_bad_reg (Rd);
11892 reject_bad_reg (Rm);
11893
11894 inst.instruction |= Rd << 8;
11895 inst.instruction |= Rm << 16;
11896 inst.instruction |= Rm;
11897 }
11898
11899 static void
11900 do_t_csdb (void)
11901 {
11902 set_pred_insn_type (OUTSIDE_PRED_INSN);
11903 }
11904
11905 static void
11906 do_t_cps (void)
11907 {
11908 set_pred_insn_type (OUTSIDE_PRED_INSN);
11909 inst.instruction |= inst.operands[0].imm;
11910 }
11911
11912 static void
11913 do_t_cpsi (void)
11914 {
11915 set_pred_insn_type (OUTSIDE_PRED_INSN);
11916 if (unified_syntax
11917 && (inst.operands[1].present || inst.size_req == 4)
11918 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
11919 {
11920 unsigned int imod = (inst.instruction & 0x0030) >> 4;
11921 inst.instruction = 0xf3af8000;
11922 inst.instruction |= imod << 9;
11923 inst.instruction |= inst.operands[0].imm << 5;
11924 if (inst.operands[1].present)
11925 inst.instruction |= 0x100 | inst.operands[1].imm;
11926 }
11927 else
11928 {
11929 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
11930 && (inst.operands[0].imm & 4),
11931 _("selected processor does not support 'A' form "
11932 "of this instruction"));
11933 constraint (inst.operands[1].present || inst.size_req == 4,
11934 _("Thumb does not support the 2-argument "
11935 "form of this instruction"));
11936 inst.instruction |= inst.operands[0].imm;
11937 }
11938 }
11939
11940 /* THUMB CPY instruction (argument parse). */
11941
11942 static void
11943 do_t_cpy (void)
11944 {
11945 if (inst.size_req == 4)
11946 {
11947 inst.instruction = THUMB_OP32 (T_MNEM_mov);
11948 inst.instruction |= inst.operands[0].reg << 8;
11949 inst.instruction |= inst.operands[1].reg;
11950 }
11951 else
11952 {
11953 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
11954 inst.instruction |= (inst.operands[0].reg & 0x7);
11955 inst.instruction |= inst.operands[1].reg << 3;
11956 }
11957 }
11958
11959 static void
11960 do_t_cbz (void)
11961 {
11962 set_pred_insn_type (OUTSIDE_PRED_INSN);
11963 constraint (inst.operands[0].reg > 7, BAD_HIREG);
11964 inst.instruction |= inst.operands[0].reg;
11965 inst.relocs[0].pc_rel = 1;
11966 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH7;
11967 }
11968
11969 static void
11970 do_t_dbg (void)
11971 {
11972 inst.instruction |= inst.operands[0].imm;
11973 }
11974
11975 static void
11976 do_t_div (void)
11977 {
11978 unsigned Rd, Rn, Rm;
11979
11980 Rd = inst.operands[0].reg;
11981 Rn = (inst.operands[1].present
11982 ? inst.operands[1].reg : Rd);
11983 Rm = inst.operands[2].reg;
11984
11985 reject_bad_reg (Rd);
11986 reject_bad_reg (Rn);
11987 reject_bad_reg (Rm);
11988
11989 inst.instruction |= Rd << 8;
11990 inst.instruction |= Rn << 16;
11991 inst.instruction |= Rm;
11992 }
11993
11994 static void
11995 do_t_hint (void)
11996 {
11997 if (unified_syntax && inst.size_req == 4)
11998 inst.instruction = THUMB_OP32 (inst.instruction);
11999 else
12000 inst.instruction = THUMB_OP16 (inst.instruction);
12001 }
12002
12003 static void
12004 do_t_it (void)
12005 {
12006 unsigned int cond = inst.operands[0].imm;
12007
12008 set_pred_insn_type (IT_INSN);
12009 now_pred.mask = (inst.instruction & 0xf) | 0x10;
12010 now_pred.cc = cond;
12011 now_pred.warn_deprecated = FALSE;
12012 now_pred.type = SCALAR_PRED;
12013
12014 /* If the condition is a negative condition, invert the mask. */
12015 if ((cond & 0x1) == 0x0)
12016 {
12017 unsigned int mask = inst.instruction & 0x000f;
12018
12019 if ((mask & 0x7) == 0)
12020 {
12021 /* No conversion needed. */
12022 now_pred.block_length = 1;
12023 }
12024 else if ((mask & 0x3) == 0)
12025 {
12026 mask ^= 0x8;
12027 now_pred.block_length = 2;
12028 }
12029 else if ((mask & 0x1) == 0)
12030 {
12031 mask ^= 0xC;
12032 now_pred.block_length = 3;
12033 }
12034 else
12035 {
12036 mask ^= 0xE;
12037 now_pred.block_length = 4;
12038 }
12039
12040 inst.instruction &= 0xfff0;
12041 inst.instruction |= mask;
12042 }
12043
12044 inst.instruction |= cond << 4;
12045 }
12046
12047 /* Helper function used for both push/pop and ldm/stm. */
12048 static void
12049 encode_thumb2_multi (bfd_boolean do_io, int base, unsigned mask,
12050 bfd_boolean writeback)
12051 {
12052 bfd_boolean load, store;
12053
12054 gas_assert (base != -1 || !do_io);
12055 load = do_io && ((inst.instruction & (1 << 20)) != 0);
12056 store = do_io && !load;
12057
12058 if (mask & (1 << 13))
12059 inst.error = _("SP not allowed in register list");
12060
12061 if (do_io && (mask & (1 << base)) != 0
12062 && writeback)
12063 inst.error = _("having the base register in the register list when "
12064 "using write back is UNPREDICTABLE");
12065
12066 if (load)
12067 {
12068 if (mask & (1 << 15))
12069 {
12070 if (mask & (1 << 14))
12071 inst.error = _("LR and PC should not both be in register list");
12072 else
12073 set_pred_insn_type_last ();
12074 }
12075 }
12076 else if (store)
12077 {
12078 if (mask & (1 << 15))
12079 inst.error = _("PC not allowed in register list");
12080 }
12081
12082 if (do_io && ((mask & (mask - 1)) == 0))
12083 {
12084 /* Single register transfers implemented as str/ldr. */
12085 if (writeback)
12086 {
12087 if (inst.instruction & (1 << 23))
12088 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
12089 else
12090 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
12091 }
12092 else
12093 {
12094 if (inst.instruction & (1 << 23))
12095 inst.instruction = 0x00800000; /* ia -> [base] */
12096 else
12097 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
12098 }
12099
12100 inst.instruction |= 0xf8400000;
12101 if (load)
12102 inst.instruction |= 0x00100000;
12103
12104 mask = ffs (mask) - 1;
12105 mask <<= 12;
12106 }
12107 else if (writeback)
12108 inst.instruction |= WRITE_BACK;
12109
12110 inst.instruction |= mask;
12111 if (do_io)
12112 inst.instruction |= base << 16;
12113 }
12114
12115 static void
12116 do_t_ldmstm (void)
12117 {
12118 /* This really doesn't seem worth it. */
12119 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
12120 _("expression too complex"));
12121 constraint (inst.operands[1].writeback,
12122 _("Thumb load/store multiple does not support {reglist}^"));
12123
12124 if (unified_syntax)
12125 {
12126 bfd_boolean narrow;
12127 unsigned mask;
12128
12129 narrow = FALSE;
12130 /* See if we can use a 16-bit instruction. */
12131 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
12132 && inst.size_req != 4
12133 && !(inst.operands[1].imm & ~0xff))
12134 {
12135 mask = 1 << inst.operands[0].reg;
12136
12137 if (inst.operands[0].reg <= 7)
12138 {
12139 if (inst.instruction == T_MNEM_stmia
12140 ? inst.operands[0].writeback
12141 : (inst.operands[0].writeback
12142 == !(inst.operands[1].imm & mask)))
12143 {
12144 if (inst.instruction == T_MNEM_stmia
12145 && (inst.operands[1].imm & mask)
12146 && (inst.operands[1].imm & (mask - 1)))
12147 as_warn (_("value stored for r%d is UNKNOWN"),
12148 inst.operands[0].reg);
12149
12150 inst.instruction = THUMB_OP16 (inst.instruction);
12151 inst.instruction |= inst.operands[0].reg << 8;
12152 inst.instruction |= inst.operands[1].imm;
12153 narrow = TRUE;
12154 }
12155 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12156 {
12157 /* This means 1 register in reg list one of 3 situations:
12158 1. Instruction is stmia, but without writeback.
12159 2. lmdia without writeback, but with Rn not in
12160 reglist.
12161 3. ldmia with writeback, but with Rn in reglist.
12162 Case 3 is UNPREDICTABLE behaviour, so we handle
12163 case 1 and 2 which can be converted into a 16-bit
12164 str or ldr. The SP cases are handled below. */
12165 unsigned long opcode;
12166 /* First, record an error for Case 3. */
12167 if (inst.operands[1].imm & mask
12168 && inst.operands[0].writeback)
12169 inst.error =
12170 _("having the base register in the register list when "
12171 "using write back is UNPREDICTABLE");
12172
12173 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
12174 : T_MNEM_ldr);
12175 inst.instruction = THUMB_OP16 (opcode);
12176 inst.instruction |= inst.operands[0].reg << 3;
12177 inst.instruction |= (ffs (inst.operands[1].imm)-1);
12178 narrow = TRUE;
12179 }
12180 }
12181 else if (inst.operands[0] .reg == REG_SP)
12182 {
12183 if (inst.operands[0].writeback)
12184 {
12185 inst.instruction =
12186 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12187 ? T_MNEM_push : T_MNEM_pop);
12188 inst.instruction |= inst.operands[1].imm;
12189 narrow = TRUE;
12190 }
12191 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
12192 {
12193 inst.instruction =
12194 THUMB_OP16 (inst.instruction == T_MNEM_stmia
12195 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
12196 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
12197 narrow = TRUE;
12198 }
12199 }
12200 }
12201
12202 if (!narrow)
12203 {
12204 if (inst.instruction < 0xffff)
12205 inst.instruction = THUMB_OP32 (inst.instruction);
12206
12207 encode_thumb2_multi (TRUE /* do_io */, inst.operands[0].reg,
12208 inst.operands[1].imm,
12209 inst.operands[0].writeback);
12210 }
12211 }
12212 else
12213 {
12214 constraint (inst.operands[0].reg > 7
12215 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
12216 constraint (inst.instruction != T_MNEM_ldmia
12217 && inst.instruction != T_MNEM_stmia,
12218 _("Thumb-2 instruction only valid in unified syntax"));
12219 if (inst.instruction == T_MNEM_stmia)
12220 {
12221 if (!inst.operands[0].writeback)
12222 as_warn (_("this instruction will write back the base register"));
12223 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
12224 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
12225 as_warn (_("value stored for r%d is UNKNOWN"),
12226 inst.operands[0].reg);
12227 }
12228 else
12229 {
12230 if (!inst.operands[0].writeback
12231 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
12232 as_warn (_("this instruction will write back the base register"));
12233 else if (inst.operands[0].writeback
12234 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
12235 as_warn (_("this instruction will not write back the base register"));
12236 }
12237
12238 inst.instruction = THUMB_OP16 (inst.instruction);
12239 inst.instruction |= inst.operands[0].reg << 8;
12240 inst.instruction |= inst.operands[1].imm;
12241 }
12242 }
12243
12244 static void
12245 do_t_ldrex (void)
12246 {
12247 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
12248 || inst.operands[1].postind || inst.operands[1].writeback
12249 || inst.operands[1].immisreg || inst.operands[1].shifted
12250 || inst.operands[1].negative,
12251 BAD_ADDR_MODE);
12252
12253 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
12254
12255 inst.instruction |= inst.operands[0].reg << 12;
12256 inst.instruction |= inst.operands[1].reg << 16;
12257 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
12258 }
12259
12260 static void
12261 do_t_ldrexd (void)
12262 {
12263 if (!inst.operands[1].present)
12264 {
12265 constraint (inst.operands[0].reg == REG_LR,
12266 _("r14 not allowed as first register "
12267 "when second register is omitted"));
12268 inst.operands[1].reg = inst.operands[0].reg + 1;
12269 }
12270 constraint (inst.operands[0].reg == inst.operands[1].reg,
12271 BAD_OVERLAP);
12272
12273 inst.instruction |= inst.operands[0].reg << 12;
12274 inst.instruction |= inst.operands[1].reg << 8;
12275 inst.instruction |= inst.operands[2].reg << 16;
12276 }
12277
12278 static void
12279 do_t_ldst (void)
12280 {
12281 unsigned long opcode;
12282 int Rn;
12283
12284 if (inst.operands[0].isreg
12285 && !inst.operands[0].preind
12286 && inst.operands[0].reg == REG_PC)
12287 set_pred_insn_type_last ();
12288
12289 opcode = inst.instruction;
12290 if (unified_syntax)
12291 {
12292 if (!inst.operands[1].isreg)
12293 {
12294 if (opcode <= 0xffff)
12295 inst.instruction = THUMB_OP32 (opcode);
12296 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12297 return;
12298 }
12299 if (inst.operands[1].isreg
12300 && !inst.operands[1].writeback
12301 && !inst.operands[1].shifted && !inst.operands[1].postind
12302 && !inst.operands[1].negative && inst.operands[0].reg <= 7
12303 && opcode <= 0xffff
12304 && inst.size_req != 4)
12305 {
12306 /* Insn may have a 16-bit form. */
12307 Rn = inst.operands[1].reg;
12308 if (inst.operands[1].immisreg)
12309 {
12310 inst.instruction = THUMB_OP16 (opcode);
12311 /* [Rn, Rik] */
12312 if (Rn <= 7 && inst.operands[1].imm <= 7)
12313 goto op16;
12314 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
12315 reject_bad_reg (inst.operands[1].imm);
12316 }
12317 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
12318 && opcode != T_MNEM_ldrsb)
12319 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
12320 || (Rn == REG_SP && opcode == T_MNEM_str))
12321 {
12322 /* [Rn, #const] */
12323 if (Rn > 7)
12324 {
12325 if (Rn == REG_PC)
12326 {
12327 if (inst.relocs[0].pc_rel)
12328 opcode = T_MNEM_ldr_pc2;
12329 else
12330 opcode = T_MNEM_ldr_pc;
12331 }
12332 else
12333 {
12334 if (opcode == T_MNEM_ldr)
12335 opcode = T_MNEM_ldr_sp;
12336 else
12337 opcode = T_MNEM_str_sp;
12338 }
12339 inst.instruction = inst.operands[0].reg << 8;
12340 }
12341 else
12342 {
12343 inst.instruction = inst.operands[0].reg;
12344 inst.instruction |= inst.operands[1].reg << 3;
12345 }
12346 inst.instruction |= THUMB_OP16 (opcode);
12347 if (inst.size_req == 2)
12348 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12349 else
12350 inst.relax = opcode;
12351 return;
12352 }
12353 }
12354 /* Definitely a 32-bit variant. */
12355
12356 /* Warning for Erratum 752419. */
12357 if (opcode == T_MNEM_ldr
12358 && inst.operands[0].reg == REG_SP
12359 && inst.operands[1].writeback == 1
12360 && !inst.operands[1].immisreg)
12361 {
12362 if (no_cpu_selected ()
12363 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
12364 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
12365 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
12366 as_warn (_("This instruction may be unpredictable "
12367 "if executed on M-profile cores "
12368 "with interrupts enabled."));
12369 }
12370
12371 /* Do some validations regarding addressing modes. */
12372 if (inst.operands[1].immisreg)
12373 reject_bad_reg (inst.operands[1].imm);
12374
12375 constraint (inst.operands[1].writeback == 1
12376 && inst.operands[0].reg == inst.operands[1].reg,
12377 BAD_OVERLAP);
12378
12379 inst.instruction = THUMB_OP32 (opcode);
12380 inst.instruction |= inst.operands[0].reg << 12;
12381 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
12382 check_ldr_r15_aligned ();
12383 return;
12384 }
12385
12386 constraint (inst.operands[0].reg > 7, BAD_HIREG);
12387
12388 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
12389 {
12390 /* Only [Rn,Rm] is acceptable. */
12391 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
12392 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
12393 || inst.operands[1].postind || inst.operands[1].shifted
12394 || inst.operands[1].negative,
12395 _("Thumb does not support this addressing mode"));
12396 inst.instruction = THUMB_OP16 (inst.instruction);
12397 goto op16;
12398 }
12399
12400 inst.instruction = THUMB_OP16 (inst.instruction);
12401 if (!inst.operands[1].isreg)
12402 if (move_or_literal_pool (0, CONST_THUMB, /*mode_3=*/FALSE))
12403 return;
12404
12405 constraint (!inst.operands[1].preind
12406 || inst.operands[1].shifted
12407 || inst.operands[1].writeback,
12408 _("Thumb does not support this addressing mode"));
12409 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
12410 {
12411 constraint (inst.instruction & 0x0600,
12412 _("byte or halfword not valid for base register"));
12413 constraint (inst.operands[1].reg == REG_PC
12414 && !(inst.instruction & THUMB_LOAD_BIT),
12415 _("r15 based store not allowed"));
12416 constraint (inst.operands[1].immisreg,
12417 _("invalid base register for register offset"));
12418
12419 if (inst.operands[1].reg == REG_PC)
12420 inst.instruction = T_OPCODE_LDR_PC;
12421 else if (inst.instruction & THUMB_LOAD_BIT)
12422 inst.instruction = T_OPCODE_LDR_SP;
12423 else
12424 inst.instruction = T_OPCODE_STR_SP;
12425
12426 inst.instruction |= inst.operands[0].reg << 8;
12427 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12428 return;
12429 }
12430
12431 constraint (inst.operands[1].reg > 7, BAD_HIREG);
12432 if (!inst.operands[1].immisreg)
12433 {
12434 /* Immediate offset. */
12435 inst.instruction |= inst.operands[0].reg;
12436 inst.instruction |= inst.operands[1].reg << 3;
12437 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_OFFSET;
12438 return;
12439 }
12440
12441 /* Register offset. */
12442 constraint (inst.operands[1].imm > 7, BAD_HIREG);
12443 constraint (inst.operands[1].negative,
12444 _("Thumb does not support this addressing mode"));
12445
12446 op16:
12447 switch (inst.instruction)
12448 {
12449 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
12450 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
12451 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
12452 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
12453 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
12454 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
12455 case 0x5600 /* ldrsb */:
12456 case 0x5e00 /* ldrsh */: break;
12457 default: abort ();
12458 }
12459
12460 inst.instruction |= inst.operands[0].reg;
12461 inst.instruction |= inst.operands[1].reg << 3;
12462 inst.instruction |= inst.operands[1].imm << 6;
12463 }
12464
12465 static void
12466 do_t_ldstd (void)
12467 {
12468 if (!inst.operands[1].present)
12469 {
12470 inst.operands[1].reg = inst.operands[0].reg + 1;
12471 constraint (inst.operands[0].reg == REG_LR,
12472 _("r14 not allowed here"));
12473 constraint (inst.operands[0].reg == REG_R12,
12474 _("r12 not allowed here"));
12475 }
12476
12477 if (inst.operands[2].writeback
12478 && (inst.operands[0].reg == inst.operands[2].reg
12479 || inst.operands[1].reg == inst.operands[2].reg))
12480 as_warn (_("base register written back, and overlaps "
12481 "one of transfer registers"));
12482
12483 inst.instruction |= inst.operands[0].reg << 12;
12484 inst.instruction |= inst.operands[1].reg << 8;
12485 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
12486 }
12487
12488 static void
12489 do_t_ldstt (void)
12490 {
12491 inst.instruction |= inst.operands[0].reg << 12;
12492 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
12493 }
12494
12495 static void
12496 do_t_mla (void)
12497 {
12498 unsigned Rd, Rn, Rm, Ra;
12499
12500 Rd = inst.operands[0].reg;
12501 Rn = inst.operands[1].reg;
12502 Rm = inst.operands[2].reg;
12503 Ra = inst.operands[3].reg;
12504
12505 reject_bad_reg (Rd);
12506 reject_bad_reg (Rn);
12507 reject_bad_reg (Rm);
12508 reject_bad_reg (Ra);
12509
12510 inst.instruction |= Rd << 8;
12511 inst.instruction |= Rn << 16;
12512 inst.instruction |= Rm;
12513 inst.instruction |= Ra << 12;
12514 }
12515
12516 static void
12517 do_t_mlal (void)
12518 {
12519 unsigned RdLo, RdHi, Rn, Rm;
12520
12521 RdLo = inst.operands[0].reg;
12522 RdHi = inst.operands[1].reg;
12523 Rn = inst.operands[2].reg;
12524 Rm = inst.operands[3].reg;
12525
12526 reject_bad_reg (RdLo);
12527 reject_bad_reg (RdHi);
12528 reject_bad_reg (Rn);
12529 reject_bad_reg (Rm);
12530
12531 inst.instruction |= RdLo << 12;
12532 inst.instruction |= RdHi << 8;
12533 inst.instruction |= Rn << 16;
12534 inst.instruction |= Rm;
12535 }
12536
12537 static void
12538 do_t_mov_cmp (void)
12539 {
12540 unsigned Rn, Rm;
12541
12542 Rn = inst.operands[0].reg;
12543 Rm = inst.operands[1].reg;
12544
12545 if (Rn == REG_PC)
12546 set_pred_insn_type_last ();
12547
12548 if (unified_syntax)
12549 {
12550 int r0off = (inst.instruction == T_MNEM_mov
12551 || inst.instruction == T_MNEM_movs) ? 8 : 16;
12552 unsigned long opcode;
12553 bfd_boolean narrow;
12554 bfd_boolean low_regs;
12555
12556 low_regs = (Rn <= 7 && Rm <= 7);
12557 opcode = inst.instruction;
12558 if (in_pred_block ())
12559 narrow = opcode != T_MNEM_movs;
12560 else
12561 narrow = opcode != T_MNEM_movs || low_regs;
12562 if (inst.size_req == 4
12563 || inst.operands[1].shifted)
12564 narrow = FALSE;
12565
12566 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
12567 if (opcode == T_MNEM_movs && inst.operands[1].isreg
12568 && !inst.operands[1].shifted
12569 && Rn == REG_PC
12570 && Rm == REG_LR)
12571 {
12572 inst.instruction = T2_SUBS_PC_LR;
12573 return;
12574 }
12575
12576 if (opcode == T_MNEM_cmp)
12577 {
12578 constraint (Rn == REG_PC, BAD_PC);
12579 if (narrow)
12580 {
12581 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
12582 but valid. */
12583 warn_deprecated_sp (Rm);
12584 /* R15 was documented as a valid choice for Rm in ARMv6,
12585 but as UNPREDICTABLE in ARMv7. ARM's proprietary
12586 tools reject R15, so we do too. */
12587 constraint (Rm == REG_PC, BAD_PC);
12588 }
12589 else
12590 reject_bad_reg (Rm);
12591 }
12592 else if (opcode == T_MNEM_mov
12593 || opcode == T_MNEM_movs)
12594 {
12595 if (inst.operands[1].isreg)
12596 {
12597 if (opcode == T_MNEM_movs)
12598 {
12599 reject_bad_reg (Rn);
12600 reject_bad_reg (Rm);
12601 }
12602 else if (narrow)
12603 {
12604 /* This is mov.n. */
12605 if ((Rn == REG_SP || Rn == REG_PC)
12606 && (Rm == REG_SP || Rm == REG_PC))
12607 {
12608 as_tsktsk (_("Use of r%u as a source register is "
12609 "deprecated when r%u is the destination "
12610 "register."), Rm, Rn);
12611 }
12612 }
12613 else
12614 {
12615 /* This is mov.w. */
12616 constraint (Rn == REG_PC, BAD_PC);
12617 constraint (Rm == REG_PC, BAD_PC);
12618 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
12619 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
12620 }
12621 }
12622 else
12623 reject_bad_reg (Rn);
12624 }
12625
12626 if (!inst.operands[1].isreg)
12627 {
12628 /* Immediate operand. */
12629 if (!in_pred_block () && opcode == T_MNEM_mov)
12630 narrow = 0;
12631 if (low_regs && narrow)
12632 {
12633 inst.instruction = THUMB_OP16 (opcode);
12634 inst.instruction |= Rn << 8;
12635 if (inst.relocs[0].type < BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
12636 || inst.relocs[0].type > BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
12637 {
12638 if (inst.size_req == 2)
12639 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12640 else
12641 inst.relax = opcode;
12642 }
12643 }
12644 else
12645 {
12646 constraint ((inst.relocs[0].type
12647 >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC)
12648 && (inst.relocs[0].type
12649 <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC) ,
12650 THUMB1_RELOC_ONLY);
12651
12652 inst.instruction = THUMB_OP32 (inst.instruction);
12653 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12654 inst.instruction |= Rn << r0off;
12655 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12656 }
12657 }
12658 else if (inst.operands[1].shifted && inst.operands[1].immisreg
12659 && (inst.instruction == T_MNEM_mov
12660 || inst.instruction == T_MNEM_movs))
12661 {
12662 /* Register shifts are encoded as separate shift instructions. */
12663 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
12664
12665 if (in_pred_block ())
12666 narrow = !flags;
12667 else
12668 narrow = flags;
12669
12670 if (inst.size_req == 4)
12671 narrow = FALSE;
12672
12673 if (!low_regs || inst.operands[1].imm > 7)
12674 narrow = FALSE;
12675
12676 if (Rn != Rm)
12677 narrow = FALSE;
12678
12679 switch (inst.operands[1].shift_kind)
12680 {
12681 case SHIFT_LSL:
12682 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
12683 break;
12684 case SHIFT_ASR:
12685 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
12686 break;
12687 case SHIFT_LSR:
12688 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
12689 break;
12690 case SHIFT_ROR:
12691 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
12692 break;
12693 default:
12694 abort ();
12695 }
12696
12697 inst.instruction = opcode;
12698 if (narrow)
12699 {
12700 inst.instruction |= Rn;
12701 inst.instruction |= inst.operands[1].imm << 3;
12702 }
12703 else
12704 {
12705 if (flags)
12706 inst.instruction |= CONDS_BIT;
12707
12708 inst.instruction |= Rn << 8;
12709 inst.instruction |= Rm << 16;
12710 inst.instruction |= inst.operands[1].imm;
12711 }
12712 }
12713 else if (!narrow)
12714 {
12715 /* Some mov with immediate shift have narrow variants.
12716 Register shifts are handled above. */
12717 if (low_regs && inst.operands[1].shifted
12718 && (inst.instruction == T_MNEM_mov
12719 || inst.instruction == T_MNEM_movs))
12720 {
12721 if (in_pred_block ())
12722 narrow = (inst.instruction == T_MNEM_mov);
12723 else
12724 narrow = (inst.instruction == T_MNEM_movs);
12725 }
12726
12727 if (narrow)
12728 {
12729 switch (inst.operands[1].shift_kind)
12730 {
12731 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
12732 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
12733 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
12734 default: narrow = FALSE; break;
12735 }
12736 }
12737
12738 if (narrow)
12739 {
12740 inst.instruction |= Rn;
12741 inst.instruction |= Rm << 3;
12742 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
12743 }
12744 else
12745 {
12746 inst.instruction = THUMB_OP32 (inst.instruction);
12747 inst.instruction |= Rn << r0off;
12748 encode_thumb32_shifted_operand (1);
12749 }
12750 }
12751 else
12752 switch (inst.instruction)
12753 {
12754 case T_MNEM_mov:
12755 /* In v4t or v5t a move of two lowregs produces unpredictable
12756 results. Don't allow this. */
12757 if (low_regs)
12758 {
12759 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
12760 "MOV Rd, Rs with two low registers is not "
12761 "permitted on this architecture");
12762 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
12763 arm_ext_v6);
12764 }
12765
12766 inst.instruction = T_OPCODE_MOV_HR;
12767 inst.instruction |= (Rn & 0x8) << 4;
12768 inst.instruction |= (Rn & 0x7);
12769 inst.instruction |= Rm << 3;
12770 break;
12771
12772 case T_MNEM_movs:
12773 /* We know we have low registers at this point.
12774 Generate LSLS Rd, Rs, #0. */
12775 inst.instruction = T_OPCODE_LSL_I;
12776 inst.instruction |= Rn;
12777 inst.instruction |= Rm << 3;
12778 break;
12779
12780 case T_MNEM_cmp:
12781 if (low_regs)
12782 {
12783 inst.instruction = T_OPCODE_CMP_LR;
12784 inst.instruction |= Rn;
12785 inst.instruction |= Rm << 3;
12786 }
12787 else
12788 {
12789 inst.instruction = T_OPCODE_CMP_HR;
12790 inst.instruction |= (Rn & 0x8) << 4;
12791 inst.instruction |= (Rn & 0x7);
12792 inst.instruction |= Rm << 3;
12793 }
12794 break;
12795 }
12796 return;
12797 }
12798
12799 inst.instruction = THUMB_OP16 (inst.instruction);
12800
12801 /* PR 10443: Do not silently ignore shifted operands. */
12802 constraint (inst.operands[1].shifted,
12803 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
12804
12805 if (inst.operands[1].isreg)
12806 {
12807 if (Rn < 8 && Rm < 8)
12808 {
12809 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
12810 since a MOV instruction produces unpredictable results. */
12811 if (inst.instruction == T_OPCODE_MOV_I8)
12812 inst.instruction = T_OPCODE_ADD_I3;
12813 else
12814 inst.instruction = T_OPCODE_CMP_LR;
12815
12816 inst.instruction |= Rn;
12817 inst.instruction |= Rm << 3;
12818 }
12819 else
12820 {
12821 if (inst.instruction == T_OPCODE_MOV_I8)
12822 inst.instruction = T_OPCODE_MOV_HR;
12823 else
12824 inst.instruction = T_OPCODE_CMP_HR;
12825 do_t_cpy ();
12826 }
12827 }
12828 else
12829 {
12830 constraint (Rn > 7,
12831 _("only lo regs allowed with immediate"));
12832 inst.instruction |= Rn << 8;
12833 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_IMM;
12834 }
12835 }
12836
12837 static void
12838 do_t_mov16 (void)
12839 {
12840 unsigned Rd;
12841 bfd_vma imm;
12842 bfd_boolean top;
12843
12844 top = (inst.instruction & 0x00800000) != 0;
12845 if (inst.relocs[0].type == BFD_RELOC_ARM_MOVW)
12846 {
12847 constraint (top, _(":lower16: not allowed in this instruction"));
12848 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVW;
12849 }
12850 else if (inst.relocs[0].type == BFD_RELOC_ARM_MOVT)
12851 {
12852 constraint (!top, _(":upper16: not allowed in this instruction"));
12853 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_MOVT;
12854 }
12855
12856 Rd = inst.operands[0].reg;
12857 reject_bad_reg (Rd);
12858
12859 inst.instruction |= Rd << 8;
12860 if (inst.relocs[0].type == BFD_RELOC_UNUSED)
12861 {
12862 imm = inst.relocs[0].exp.X_add_number;
12863 inst.instruction |= (imm & 0xf000) << 4;
12864 inst.instruction |= (imm & 0x0800) << 15;
12865 inst.instruction |= (imm & 0x0700) << 4;
12866 inst.instruction |= (imm & 0x00ff);
12867 }
12868 }
12869
12870 static void
12871 do_t_mvn_tst (void)
12872 {
12873 unsigned Rn, Rm;
12874
12875 Rn = inst.operands[0].reg;
12876 Rm = inst.operands[1].reg;
12877
12878 if (inst.instruction == T_MNEM_cmp
12879 || inst.instruction == T_MNEM_cmn)
12880 constraint (Rn == REG_PC, BAD_PC);
12881 else
12882 reject_bad_reg (Rn);
12883 reject_bad_reg (Rm);
12884
12885 if (unified_syntax)
12886 {
12887 int r0off = (inst.instruction == T_MNEM_mvn
12888 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
12889 bfd_boolean narrow;
12890
12891 if (inst.size_req == 4
12892 || inst.instruction > 0xffff
12893 || inst.operands[1].shifted
12894 || Rn > 7 || Rm > 7)
12895 narrow = FALSE;
12896 else if (inst.instruction == T_MNEM_cmn
12897 || inst.instruction == T_MNEM_tst)
12898 narrow = TRUE;
12899 else if (THUMB_SETS_FLAGS (inst.instruction))
12900 narrow = !in_pred_block ();
12901 else
12902 narrow = in_pred_block ();
12903
12904 if (!inst.operands[1].isreg)
12905 {
12906 /* For an immediate, we always generate a 32-bit opcode;
12907 section relaxation will shrink it later if possible. */
12908 if (inst.instruction < 0xffff)
12909 inst.instruction = THUMB_OP32 (inst.instruction);
12910 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
12911 inst.instruction |= Rn << r0off;
12912 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
12913 }
12914 else
12915 {
12916 /* See if we can do this with a 16-bit instruction. */
12917 if (narrow)
12918 {
12919 inst.instruction = THUMB_OP16 (inst.instruction);
12920 inst.instruction |= Rn;
12921 inst.instruction |= Rm << 3;
12922 }
12923 else
12924 {
12925 constraint (inst.operands[1].shifted
12926 && inst.operands[1].immisreg,
12927 _("shift must be constant"));
12928 if (inst.instruction < 0xffff)
12929 inst.instruction = THUMB_OP32 (inst.instruction);
12930 inst.instruction |= Rn << r0off;
12931 encode_thumb32_shifted_operand (1);
12932 }
12933 }
12934 }
12935 else
12936 {
12937 constraint (inst.instruction > 0xffff
12938 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
12939 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
12940 _("unshifted register required"));
12941 constraint (Rn > 7 || Rm > 7,
12942 BAD_HIREG);
12943
12944 inst.instruction = THUMB_OP16 (inst.instruction);
12945 inst.instruction |= Rn;
12946 inst.instruction |= Rm << 3;
12947 }
12948 }
12949
12950 static void
12951 do_t_mrs (void)
12952 {
12953 unsigned Rd;
12954
12955 if (do_vfp_nsyn_mrs () == SUCCESS)
12956 return;
12957
12958 Rd = inst.operands[0].reg;
12959 reject_bad_reg (Rd);
12960 inst.instruction |= Rd << 8;
12961
12962 if (inst.operands[1].isreg)
12963 {
12964 unsigned br = inst.operands[1].reg;
12965 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
12966 as_bad (_("bad register for mrs"));
12967
12968 inst.instruction |= br & (0xf << 16);
12969 inst.instruction |= (br & 0x300) >> 4;
12970 inst.instruction |= (br & SPSR_BIT) >> 2;
12971 }
12972 else
12973 {
12974 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
12975
12976 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
12977 {
12978 /* PR gas/12698: The constraint is only applied for m_profile.
12979 If the user has specified -march=all, we want to ignore it as
12980 we are building for any CPU type, including non-m variants. */
12981 bfd_boolean m_profile =
12982 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
12983 constraint ((flags != 0) && m_profile, _("selected processor does "
12984 "not support requested special purpose register"));
12985 }
12986 else
12987 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
12988 devices). */
12989 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
12990 _("'APSR', 'CPSR' or 'SPSR' expected"));
12991
12992 inst.instruction |= (flags & SPSR_BIT) >> 2;
12993 inst.instruction |= inst.operands[1].imm & 0xff;
12994 inst.instruction |= 0xf0000;
12995 }
12996 }
12997
12998 static void
12999 do_t_msr (void)
13000 {
13001 int flags;
13002 unsigned Rn;
13003
13004 if (do_vfp_nsyn_msr () == SUCCESS)
13005 return;
13006
13007 constraint (!inst.operands[1].isreg,
13008 _("Thumb encoding does not support an immediate here"));
13009
13010 if (inst.operands[0].isreg)
13011 flags = (int)(inst.operands[0].reg);
13012 else
13013 flags = inst.operands[0].imm;
13014
13015 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
13016 {
13017 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
13018
13019 /* PR gas/12698: The constraint is only applied for m_profile.
13020 If the user has specified -march=all, we want to ignore it as
13021 we are building for any CPU type, including non-m variants. */
13022 bfd_boolean m_profile =
13023 !ARM_FEATURE_CORE_EQUAL (selected_cpu, arm_arch_any);
13024 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13025 && (bits & ~(PSR_s | PSR_f)) != 0)
13026 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
13027 && bits != PSR_f)) && m_profile,
13028 _("selected processor does not support requested special "
13029 "purpose register"));
13030 }
13031 else
13032 constraint ((flags & 0xff) != 0, _("selected processor does not support "
13033 "requested special purpose register"));
13034
13035 Rn = inst.operands[1].reg;
13036 reject_bad_reg (Rn);
13037
13038 inst.instruction |= (flags & SPSR_BIT) >> 2;
13039 inst.instruction |= (flags & 0xf0000) >> 8;
13040 inst.instruction |= (flags & 0x300) >> 4;
13041 inst.instruction |= (flags & 0xff);
13042 inst.instruction |= Rn << 16;
13043 }
13044
13045 static void
13046 do_t_mul (void)
13047 {
13048 bfd_boolean narrow;
13049 unsigned Rd, Rn, Rm;
13050
13051 if (!inst.operands[2].present)
13052 inst.operands[2].reg = inst.operands[0].reg;
13053
13054 Rd = inst.operands[0].reg;
13055 Rn = inst.operands[1].reg;
13056 Rm = inst.operands[2].reg;
13057
13058 if (unified_syntax)
13059 {
13060 if (inst.size_req == 4
13061 || (Rd != Rn
13062 && Rd != Rm)
13063 || Rn > 7
13064 || Rm > 7)
13065 narrow = FALSE;
13066 else if (inst.instruction == T_MNEM_muls)
13067 narrow = !in_pred_block ();
13068 else
13069 narrow = in_pred_block ();
13070 }
13071 else
13072 {
13073 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
13074 constraint (Rn > 7 || Rm > 7,
13075 BAD_HIREG);
13076 narrow = TRUE;
13077 }
13078
13079 if (narrow)
13080 {
13081 /* 16-bit MULS/Conditional MUL. */
13082 inst.instruction = THUMB_OP16 (inst.instruction);
13083 inst.instruction |= Rd;
13084
13085 if (Rd == Rn)
13086 inst.instruction |= Rm << 3;
13087 else if (Rd == Rm)
13088 inst.instruction |= Rn << 3;
13089 else
13090 constraint (1, _("dest must overlap one source register"));
13091 }
13092 else
13093 {
13094 constraint (inst.instruction != T_MNEM_mul,
13095 _("Thumb-2 MUL must not set flags"));
13096 /* 32-bit MUL. */
13097 inst.instruction = THUMB_OP32 (inst.instruction);
13098 inst.instruction |= Rd << 8;
13099 inst.instruction |= Rn << 16;
13100 inst.instruction |= Rm << 0;
13101
13102 reject_bad_reg (Rd);
13103 reject_bad_reg (Rn);
13104 reject_bad_reg (Rm);
13105 }
13106 }
13107
13108 static void
13109 do_t_mull (void)
13110 {
13111 unsigned RdLo, RdHi, Rn, Rm;
13112
13113 RdLo = inst.operands[0].reg;
13114 RdHi = inst.operands[1].reg;
13115 Rn = inst.operands[2].reg;
13116 Rm = inst.operands[3].reg;
13117
13118 reject_bad_reg (RdLo);
13119 reject_bad_reg (RdHi);
13120 reject_bad_reg (Rn);
13121 reject_bad_reg (Rm);
13122
13123 inst.instruction |= RdLo << 12;
13124 inst.instruction |= RdHi << 8;
13125 inst.instruction |= Rn << 16;
13126 inst.instruction |= Rm;
13127
13128 if (RdLo == RdHi)
13129 as_tsktsk (_("rdhi and rdlo must be different"));
13130 }
13131
13132 static void
13133 do_t_nop (void)
13134 {
13135 set_pred_insn_type (NEUTRAL_IT_INSN);
13136
13137 if (unified_syntax)
13138 {
13139 if (inst.size_req == 4 || inst.operands[0].imm > 15)
13140 {
13141 inst.instruction = THUMB_OP32 (inst.instruction);
13142 inst.instruction |= inst.operands[0].imm;
13143 }
13144 else
13145 {
13146 /* PR9722: Check for Thumb2 availability before
13147 generating a thumb2 nop instruction. */
13148 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
13149 {
13150 inst.instruction = THUMB_OP16 (inst.instruction);
13151 inst.instruction |= inst.operands[0].imm << 4;
13152 }
13153 else
13154 inst.instruction = 0x46c0;
13155 }
13156 }
13157 else
13158 {
13159 constraint (inst.operands[0].present,
13160 _("Thumb does not support NOP with hints"));
13161 inst.instruction = 0x46c0;
13162 }
13163 }
13164
13165 static void
13166 do_t_neg (void)
13167 {
13168 if (unified_syntax)
13169 {
13170 bfd_boolean narrow;
13171
13172 if (THUMB_SETS_FLAGS (inst.instruction))
13173 narrow = !in_pred_block ();
13174 else
13175 narrow = in_pred_block ();
13176 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13177 narrow = FALSE;
13178 if (inst.size_req == 4)
13179 narrow = FALSE;
13180
13181 if (!narrow)
13182 {
13183 inst.instruction = THUMB_OP32 (inst.instruction);
13184 inst.instruction |= inst.operands[0].reg << 8;
13185 inst.instruction |= inst.operands[1].reg << 16;
13186 }
13187 else
13188 {
13189 inst.instruction = THUMB_OP16 (inst.instruction);
13190 inst.instruction |= inst.operands[0].reg;
13191 inst.instruction |= inst.operands[1].reg << 3;
13192 }
13193 }
13194 else
13195 {
13196 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
13197 BAD_HIREG);
13198 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13199
13200 inst.instruction = THUMB_OP16 (inst.instruction);
13201 inst.instruction |= inst.operands[0].reg;
13202 inst.instruction |= inst.operands[1].reg << 3;
13203 }
13204 }
13205
13206 static void
13207 do_t_orn (void)
13208 {
13209 unsigned Rd, Rn;
13210
13211 Rd = inst.operands[0].reg;
13212 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
13213
13214 reject_bad_reg (Rd);
13215 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
13216 reject_bad_reg (Rn);
13217
13218 inst.instruction |= Rd << 8;
13219 inst.instruction |= Rn << 16;
13220
13221 if (!inst.operands[2].isreg)
13222 {
13223 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13224 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13225 }
13226 else
13227 {
13228 unsigned Rm;
13229
13230 Rm = inst.operands[2].reg;
13231 reject_bad_reg (Rm);
13232
13233 constraint (inst.operands[2].shifted
13234 && inst.operands[2].immisreg,
13235 _("shift must be constant"));
13236 encode_thumb32_shifted_operand (2);
13237 }
13238 }
13239
13240 static void
13241 do_t_pkhbt (void)
13242 {
13243 unsigned Rd, Rn, Rm;
13244
13245 Rd = inst.operands[0].reg;
13246 Rn = inst.operands[1].reg;
13247 Rm = inst.operands[2].reg;
13248
13249 reject_bad_reg (Rd);
13250 reject_bad_reg (Rn);
13251 reject_bad_reg (Rm);
13252
13253 inst.instruction |= Rd << 8;
13254 inst.instruction |= Rn << 16;
13255 inst.instruction |= Rm;
13256 if (inst.operands[3].present)
13257 {
13258 unsigned int val = inst.relocs[0].exp.X_add_number;
13259 constraint (inst.relocs[0].exp.X_op != O_constant,
13260 _("expression too complex"));
13261 inst.instruction |= (val & 0x1c) << 10;
13262 inst.instruction |= (val & 0x03) << 6;
13263 }
13264 }
13265
13266 static void
13267 do_t_pkhtb (void)
13268 {
13269 if (!inst.operands[3].present)
13270 {
13271 unsigned Rtmp;
13272
13273 inst.instruction &= ~0x00000020;
13274
13275 /* PR 10168. Swap the Rm and Rn registers. */
13276 Rtmp = inst.operands[1].reg;
13277 inst.operands[1].reg = inst.operands[2].reg;
13278 inst.operands[2].reg = Rtmp;
13279 }
13280 do_t_pkhbt ();
13281 }
13282
13283 static void
13284 do_t_pld (void)
13285 {
13286 if (inst.operands[0].immisreg)
13287 reject_bad_reg (inst.operands[0].imm);
13288
13289 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
13290 }
13291
13292 static void
13293 do_t_push_pop (void)
13294 {
13295 unsigned mask;
13296
13297 constraint (inst.operands[0].writeback,
13298 _("push/pop do not support {reglist}^"));
13299 constraint (inst.relocs[0].type != BFD_RELOC_UNUSED,
13300 _("expression too complex"));
13301
13302 mask = inst.operands[0].imm;
13303 if (inst.size_req != 4 && (mask & ~0xff) == 0)
13304 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
13305 else if (inst.size_req != 4
13306 && (mask & ~0xff) == (1U << (inst.instruction == T_MNEM_push
13307 ? REG_LR : REG_PC)))
13308 {
13309 inst.instruction = THUMB_OP16 (inst.instruction);
13310 inst.instruction |= THUMB_PP_PC_LR;
13311 inst.instruction |= mask & 0xff;
13312 }
13313 else if (unified_syntax)
13314 {
13315 inst.instruction = THUMB_OP32 (inst.instruction);
13316 encode_thumb2_multi (TRUE /* do_io */, 13, mask, TRUE);
13317 }
13318 else
13319 {
13320 inst.error = _("invalid register list to push/pop instruction");
13321 return;
13322 }
13323 }
13324
13325 static void
13326 do_t_clrm (void)
13327 {
13328 if (unified_syntax)
13329 encode_thumb2_multi (FALSE /* do_io */, -1, inst.operands[0].imm, FALSE);
13330 else
13331 {
13332 inst.error = _("invalid register list to push/pop instruction");
13333 return;
13334 }
13335 }
13336
13337 static void
13338 do_t_vscclrm (void)
13339 {
13340 if (inst.operands[0].issingle)
13341 {
13342 inst.instruction |= (inst.operands[0].reg & 0x1) << 22;
13343 inst.instruction |= (inst.operands[0].reg & 0x1e) << 11;
13344 inst.instruction |= inst.operands[0].imm;
13345 }
13346 else
13347 {
13348 inst.instruction |= (inst.operands[0].reg & 0x10) << 18;
13349 inst.instruction |= (inst.operands[0].reg & 0xf) << 12;
13350 inst.instruction |= 1 << 8;
13351 inst.instruction |= inst.operands[0].imm << 1;
13352 }
13353 }
13354
13355 static void
13356 do_t_rbit (void)
13357 {
13358 unsigned Rd, Rm;
13359
13360 Rd = inst.operands[0].reg;
13361 Rm = inst.operands[1].reg;
13362
13363 reject_bad_reg (Rd);
13364 reject_bad_reg (Rm);
13365
13366 inst.instruction |= Rd << 8;
13367 inst.instruction |= Rm << 16;
13368 inst.instruction |= Rm;
13369 }
13370
13371 static void
13372 do_t_rev (void)
13373 {
13374 unsigned Rd, Rm;
13375
13376 Rd = inst.operands[0].reg;
13377 Rm = inst.operands[1].reg;
13378
13379 reject_bad_reg (Rd);
13380 reject_bad_reg (Rm);
13381
13382 if (Rd <= 7 && Rm <= 7
13383 && inst.size_req != 4)
13384 {
13385 inst.instruction = THUMB_OP16 (inst.instruction);
13386 inst.instruction |= Rd;
13387 inst.instruction |= Rm << 3;
13388 }
13389 else if (unified_syntax)
13390 {
13391 inst.instruction = THUMB_OP32 (inst.instruction);
13392 inst.instruction |= Rd << 8;
13393 inst.instruction |= Rm << 16;
13394 inst.instruction |= Rm;
13395 }
13396 else
13397 inst.error = BAD_HIREG;
13398 }
13399
13400 static void
13401 do_t_rrx (void)
13402 {
13403 unsigned Rd, Rm;
13404
13405 Rd = inst.operands[0].reg;
13406 Rm = inst.operands[1].reg;
13407
13408 reject_bad_reg (Rd);
13409 reject_bad_reg (Rm);
13410
13411 inst.instruction |= Rd << 8;
13412 inst.instruction |= Rm;
13413 }
13414
13415 static void
13416 do_t_rsb (void)
13417 {
13418 unsigned Rd, Rs;
13419
13420 Rd = inst.operands[0].reg;
13421 Rs = (inst.operands[1].present
13422 ? inst.operands[1].reg /* Rd, Rs, foo */
13423 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
13424
13425 reject_bad_reg (Rd);
13426 reject_bad_reg (Rs);
13427 if (inst.operands[2].isreg)
13428 reject_bad_reg (inst.operands[2].reg);
13429
13430 inst.instruction |= Rd << 8;
13431 inst.instruction |= Rs << 16;
13432 if (!inst.operands[2].isreg)
13433 {
13434 bfd_boolean narrow;
13435
13436 if ((inst.instruction & 0x00100000) != 0)
13437 narrow = !in_pred_block ();
13438 else
13439 narrow = in_pred_block ();
13440
13441 if (Rd > 7 || Rs > 7)
13442 narrow = FALSE;
13443
13444 if (inst.size_req == 4 || !unified_syntax)
13445 narrow = FALSE;
13446
13447 if (inst.relocs[0].exp.X_op != O_constant
13448 || inst.relocs[0].exp.X_add_number != 0)
13449 narrow = FALSE;
13450
13451 /* Turn rsb #0 into 16-bit neg. We should probably do this via
13452 relaxation, but it doesn't seem worth the hassle. */
13453 if (narrow)
13454 {
13455 inst.relocs[0].type = BFD_RELOC_UNUSED;
13456 inst.instruction = THUMB_OP16 (T_MNEM_negs);
13457 inst.instruction |= Rs << 3;
13458 inst.instruction |= Rd;
13459 }
13460 else
13461 {
13462 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
13463 inst.relocs[0].type = BFD_RELOC_ARM_T32_IMMEDIATE;
13464 }
13465 }
13466 else
13467 encode_thumb32_shifted_operand (2);
13468 }
13469
13470 static void
13471 do_t_setend (void)
13472 {
13473 if (warn_on_deprecated
13474 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13475 as_tsktsk (_("setend use is deprecated for ARMv8"));
13476
13477 set_pred_insn_type (OUTSIDE_PRED_INSN);
13478 if (inst.operands[0].imm)
13479 inst.instruction |= 0x8;
13480 }
13481
13482 static void
13483 do_t_shift (void)
13484 {
13485 if (!inst.operands[1].present)
13486 inst.operands[1].reg = inst.operands[0].reg;
13487
13488 if (unified_syntax)
13489 {
13490 bfd_boolean narrow;
13491 int shift_kind;
13492
13493 switch (inst.instruction)
13494 {
13495 case T_MNEM_asr:
13496 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
13497 case T_MNEM_lsl:
13498 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
13499 case T_MNEM_lsr:
13500 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
13501 case T_MNEM_ror:
13502 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
13503 default: abort ();
13504 }
13505
13506 if (THUMB_SETS_FLAGS (inst.instruction))
13507 narrow = !in_pred_block ();
13508 else
13509 narrow = in_pred_block ();
13510 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
13511 narrow = FALSE;
13512 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
13513 narrow = FALSE;
13514 if (inst.operands[2].isreg
13515 && (inst.operands[1].reg != inst.operands[0].reg
13516 || inst.operands[2].reg > 7))
13517 narrow = FALSE;
13518 if (inst.size_req == 4)
13519 narrow = FALSE;
13520
13521 reject_bad_reg (inst.operands[0].reg);
13522 reject_bad_reg (inst.operands[1].reg);
13523
13524 if (!narrow)
13525 {
13526 if (inst.operands[2].isreg)
13527 {
13528 reject_bad_reg (inst.operands[2].reg);
13529 inst.instruction = THUMB_OP32 (inst.instruction);
13530 inst.instruction |= inst.operands[0].reg << 8;
13531 inst.instruction |= inst.operands[1].reg << 16;
13532 inst.instruction |= inst.operands[2].reg;
13533
13534 /* PR 12854: Error on extraneous shifts. */
13535 constraint (inst.operands[2].shifted,
13536 _("extraneous shift as part of operand to shift insn"));
13537 }
13538 else
13539 {
13540 inst.operands[1].shifted = 1;
13541 inst.operands[1].shift_kind = shift_kind;
13542 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
13543 ? T_MNEM_movs : T_MNEM_mov);
13544 inst.instruction |= inst.operands[0].reg << 8;
13545 encode_thumb32_shifted_operand (1);
13546 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
13547 inst.relocs[0].type = BFD_RELOC_UNUSED;
13548 }
13549 }
13550 else
13551 {
13552 if (inst.operands[2].isreg)
13553 {
13554 switch (shift_kind)
13555 {
13556 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
13557 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
13558 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
13559 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
13560 default: abort ();
13561 }
13562
13563 inst.instruction |= inst.operands[0].reg;
13564 inst.instruction |= inst.operands[2].reg << 3;
13565
13566 /* PR 12854: Error on extraneous shifts. */
13567 constraint (inst.operands[2].shifted,
13568 _("extraneous shift as part of operand to shift insn"));
13569 }
13570 else
13571 {
13572 switch (shift_kind)
13573 {
13574 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
13575 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
13576 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
13577 default: abort ();
13578 }
13579 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13580 inst.instruction |= inst.operands[0].reg;
13581 inst.instruction |= inst.operands[1].reg << 3;
13582 }
13583 }
13584 }
13585 else
13586 {
13587 constraint (inst.operands[0].reg > 7
13588 || inst.operands[1].reg > 7, BAD_HIREG);
13589 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
13590
13591 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
13592 {
13593 constraint (inst.operands[2].reg > 7, BAD_HIREG);
13594 constraint (inst.operands[0].reg != inst.operands[1].reg,
13595 _("source1 and dest must be same register"));
13596
13597 switch (inst.instruction)
13598 {
13599 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
13600 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
13601 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
13602 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
13603 default: abort ();
13604 }
13605
13606 inst.instruction |= inst.operands[0].reg;
13607 inst.instruction |= inst.operands[2].reg << 3;
13608
13609 /* PR 12854: Error on extraneous shifts. */
13610 constraint (inst.operands[2].shifted,
13611 _("extraneous shift as part of operand to shift insn"));
13612 }
13613 else
13614 {
13615 switch (inst.instruction)
13616 {
13617 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
13618 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
13619 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
13620 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
13621 default: abort ();
13622 }
13623 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_SHIFT;
13624 inst.instruction |= inst.operands[0].reg;
13625 inst.instruction |= inst.operands[1].reg << 3;
13626 }
13627 }
13628 }
13629
13630 static void
13631 do_t_simd (void)
13632 {
13633 unsigned Rd, Rn, Rm;
13634
13635 Rd = inst.operands[0].reg;
13636 Rn = inst.operands[1].reg;
13637 Rm = inst.operands[2].reg;
13638
13639 reject_bad_reg (Rd);
13640 reject_bad_reg (Rn);
13641 reject_bad_reg (Rm);
13642
13643 inst.instruction |= Rd << 8;
13644 inst.instruction |= Rn << 16;
13645 inst.instruction |= Rm;
13646 }
13647
13648 static void
13649 do_t_simd2 (void)
13650 {
13651 unsigned Rd, Rn, Rm;
13652
13653 Rd = inst.operands[0].reg;
13654 Rm = inst.operands[1].reg;
13655 Rn = inst.operands[2].reg;
13656
13657 reject_bad_reg (Rd);
13658 reject_bad_reg (Rn);
13659 reject_bad_reg (Rm);
13660
13661 inst.instruction |= Rd << 8;
13662 inst.instruction |= Rn << 16;
13663 inst.instruction |= Rm;
13664 }
13665
13666 static void
13667 do_t_smc (void)
13668 {
13669 unsigned int value = inst.relocs[0].exp.X_add_number;
13670 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
13671 _("SMC is not permitted on this architecture"));
13672 constraint (inst.relocs[0].exp.X_op != O_constant,
13673 _("expression too complex"));
13674 inst.relocs[0].type = BFD_RELOC_UNUSED;
13675 inst.instruction |= (value & 0xf000) >> 12;
13676 inst.instruction |= (value & 0x0ff0);
13677 inst.instruction |= (value & 0x000f) << 16;
13678 /* PR gas/15623: SMC instructions must be last in an IT block. */
13679 set_pred_insn_type_last ();
13680 }
13681
13682 static void
13683 do_t_hvc (void)
13684 {
13685 unsigned int value = inst.relocs[0].exp.X_add_number;
13686
13687 inst.relocs[0].type = BFD_RELOC_UNUSED;
13688 inst.instruction |= (value & 0x0fff);
13689 inst.instruction |= (value & 0xf000) << 4;
13690 }
13691
13692 static void
13693 do_t_ssat_usat (int bias)
13694 {
13695 unsigned Rd, Rn;
13696
13697 Rd = inst.operands[0].reg;
13698 Rn = inst.operands[2].reg;
13699
13700 reject_bad_reg (Rd);
13701 reject_bad_reg (Rn);
13702
13703 inst.instruction |= Rd << 8;
13704 inst.instruction |= inst.operands[1].imm - bias;
13705 inst.instruction |= Rn << 16;
13706
13707 if (inst.operands[3].present)
13708 {
13709 offsetT shift_amount = inst.relocs[0].exp.X_add_number;
13710
13711 inst.relocs[0].type = BFD_RELOC_UNUSED;
13712
13713 constraint (inst.relocs[0].exp.X_op != O_constant,
13714 _("expression too complex"));
13715
13716 if (shift_amount != 0)
13717 {
13718 constraint (shift_amount > 31,
13719 _("shift expression is too large"));
13720
13721 if (inst.operands[3].shift_kind == SHIFT_ASR)
13722 inst.instruction |= 0x00200000; /* sh bit. */
13723
13724 inst.instruction |= (shift_amount & 0x1c) << 10;
13725 inst.instruction |= (shift_amount & 0x03) << 6;
13726 }
13727 }
13728 }
13729
13730 static void
13731 do_t_ssat (void)
13732 {
13733 do_t_ssat_usat (1);
13734 }
13735
13736 static void
13737 do_t_ssat16 (void)
13738 {
13739 unsigned Rd, Rn;
13740
13741 Rd = inst.operands[0].reg;
13742 Rn = inst.operands[2].reg;
13743
13744 reject_bad_reg (Rd);
13745 reject_bad_reg (Rn);
13746
13747 inst.instruction |= Rd << 8;
13748 inst.instruction |= inst.operands[1].imm - 1;
13749 inst.instruction |= Rn << 16;
13750 }
13751
13752 static void
13753 do_t_strex (void)
13754 {
13755 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
13756 || inst.operands[2].postind || inst.operands[2].writeback
13757 || inst.operands[2].immisreg || inst.operands[2].shifted
13758 || inst.operands[2].negative,
13759 BAD_ADDR_MODE);
13760
13761 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
13762
13763 inst.instruction |= inst.operands[0].reg << 8;
13764 inst.instruction |= inst.operands[1].reg << 12;
13765 inst.instruction |= inst.operands[2].reg << 16;
13766 inst.relocs[0].type = BFD_RELOC_ARM_T32_OFFSET_U8;
13767 }
13768
13769 static void
13770 do_t_strexd (void)
13771 {
13772 if (!inst.operands[2].present)
13773 inst.operands[2].reg = inst.operands[1].reg + 1;
13774
13775 constraint (inst.operands[0].reg == inst.operands[1].reg
13776 || inst.operands[0].reg == inst.operands[2].reg
13777 || inst.operands[0].reg == inst.operands[3].reg,
13778 BAD_OVERLAP);
13779
13780 inst.instruction |= inst.operands[0].reg;
13781 inst.instruction |= inst.operands[1].reg << 12;
13782 inst.instruction |= inst.operands[2].reg << 8;
13783 inst.instruction |= inst.operands[3].reg << 16;
13784 }
13785
13786 static void
13787 do_t_sxtah (void)
13788 {
13789 unsigned Rd, Rn, Rm;
13790
13791 Rd = inst.operands[0].reg;
13792 Rn = inst.operands[1].reg;
13793 Rm = inst.operands[2].reg;
13794
13795 reject_bad_reg (Rd);
13796 reject_bad_reg (Rn);
13797 reject_bad_reg (Rm);
13798
13799 inst.instruction |= Rd << 8;
13800 inst.instruction |= Rn << 16;
13801 inst.instruction |= Rm;
13802 inst.instruction |= inst.operands[3].imm << 4;
13803 }
13804
13805 static void
13806 do_t_sxth (void)
13807 {
13808 unsigned Rd, Rm;
13809
13810 Rd = inst.operands[0].reg;
13811 Rm = inst.operands[1].reg;
13812
13813 reject_bad_reg (Rd);
13814 reject_bad_reg (Rm);
13815
13816 if (inst.instruction <= 0xffff
13817 && inst.size_req != 4
13818 && Rd <= 7 && Rm <= 7
13819 && (!inst.operands[2].present || inst.operands[2].imm == 0))
13820 {
13821 inst.instruction = THUMB_OP16 (inst.instruction);
13822 inst.instruction |= Rd;
13823 inst.instruction |= Rm << 3;
13824 }
13825 else if (unified_syntax)
13826 {
13827 if (inst.instruction <= 0xffff)
13828 inst.instruction = THUMB_OP32 (inst.instruction);
13829 inst.instruction |= Rd << 8;
13830 inst.instruction |= Rm;
13831 inst.instruction |= inst.operands[2].imm << 4;
13832 }
13833 else
13834 {
13835 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
13836 _("Thumb encoding does not support rotation"));
13837 constraint (1, BAD_HIREG);
13838 }
13839 }
13840
13841 static void
13842 do_t_swi (void)
13843 {
13844 inst.relocs[0].type = BFD_RELOC_ARM_SWI;
13845 }
13846
13847 static void
13848 do_t_tb (void)
13849 {
13850 unsigned Rn, Rm;
13851 int half;
13852
13853 half = (inst.instruction & 0x10) != 0;
13854 set_pred_insn_type_last ();
13855 constraint (inst.operands[0].immisreg,
13856 _("instruction requires register index"));
13857
13858 Rn = inst.operands[0].reg;
13859 Rm = inst.operands[0].imm;
13860
13861 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
13862 constraint (Rn == REG_SP, BAD_SP);
13863 reject_bad_reg (Rm);
13864
13865 constraint (!half && inst.operands[0].shifted,
13866 _("instruction does not allow shifted index"));
13867 inst.instruction |= (Rn << 16) | Rm;
13868 }
13869
13870 static void
13871 do_t_udf (void)
13872 {
13873 if (!inst.operands[0].present)
13874 inst.operands[0].imm = 0;
13875
13876 if ((unsigned int) inst.operands[0].imm > 255 || inst.size_req == 4)
13877 {
13878 constraint (inst.size_req == 2,
13879 _("immediate value out of range"));
13880 inst.instruction = THUMB_OP32 (inst.instruction);
13881 inst.instruction |= (inst.operands[0].imm & 0xf000u) << 4;
13882 inst.instruction |= (inst.operands[0].imm & 0x0fffu) << 0;
13883 }
13884 else
13885 {
13886 inst.instruction = THUMB_OP16 (inst.instruction);
13887 inst.instruction |= inst.operands[0].imm;
13888 }
13889
13890 set_pred_insn_type (NEUTRAL_IT_INSN);
13891 }
13892
13893
13894 static void
13895 do_t_usat (void)
13896 {
13897 do_t_ssat_usat (0);
13898 }
13899
13900 static void
13901 do_t_usat16 (void)
13902 {
13903 unsigned Rd, Rn;
13904
13905 Rd = inst.operands[0].reg;
13906 Rn = inst.operands[2].reg;
13907
13908 reject_bad_reg (Rd);
13909 reject_bad_reg (Rn);
13910
13911 inst.instruction |= Rd << 8;
13912 inst.instruction |= inst.operands[1].imm;
13913 inst.instruction |= Rn << 16;
13914 }
13915
13916 /* Checking the range of the branch offset (VAL) with NBITS bits
13917 and IS_SIGNED signedness. Also checks the LSB to be 0. */
13918 static int
13919 v8_1_branch_value_check (int val, int nbits, int is_signed)
13920 {
13921 gas_assert (nbits > 0 && nbits <= 32);
13922 if (is_signed)
13923 {
13924 int cmp = (1 << (nbits - 1));
13925 if ((val < -cmp) || (val >= cmp) || (val & 0x01))
13926 return FAIL;
13927 }
13928 else
13929 {
13930 if ((val <= 0) || (val >= (1 << nbits)) || (val & 0x1))
13931 return FAIL;
13932 }
13933 return SUCCESS;
13934 }
13935
13936 /* For branches in Armv8.1-M Mainline. */
13937 static void
13938 do_t_branch_future (void)
13939 {
13940 unsigned long insn = inst.instruction;
13941
13942 inst.instruction = THUMB_OP32 (inst.instruction);
13943 if (inst.operands[0].hasreloc == 0)
13944 {
13945 if (v8_1_branch_value_check (inst.operands[0].imm, 5, FALSE) == FAIL)
13946 as_bad (BAD_BRANCH_OFF);
13947
13948 inst.instruction |= ((inst.operands[0].imm & 0x1f) >> 1) << 23;
13949 }
13950 else
13951 {
13952 inst.relocs[0].type = BFD_RELOC_THUMB_PCREL_BRANCH5;
13953 inst.relocs[0].pc_rel = 1;
13954 }
13955
13956 switch (insn)
13957 {
13958 case T_MNEM_bf:
13959 if (inst.operands[1].hasreloc == 0)
13960 {
13961 int val = inst.operands[1].imm;
13962 if (v8_1_branch_value_check (inst.operands[1].imm, 17, TRUE) == FAIL)
13963 as_bad (BAD_BRANCH_OFF);
13964
13965 int immA = (val & 0x0001f000) >> 12;
13966 int immB = (val & 0x00000ffc) >> 2;
13967 int immC = (val & 0x00000002) >> 1;
13968 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13969 }
13970 else
13971 {
13972 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF17;
13973 inst.relocs[1].pc_rel = 1;
13974 }
13975 break;
13976
13977 case T_MNEM_bfl:
13978 if (inst.operands[1].hasreloc == 0)
13979 {
13980 int val = inst.operands[1].imm;
13981 if (v8_1_branch_value_check (inst.operands[1].imm, 19, TRUE) == FAIL)
13982 as_bad (BAD_BRANCH_OFF);
13983
13984 int immA = (val & 0x0007f000) >> 12;
13985 int immB = (val & 0x00000ffc) >> 2;
13986 int immC = (val & 0x00000002) >> 1;
13987 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
13988 }
13989 else
13990 {
13991 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF19;
13992 inst.relocs[1].pc_rel = 1;
13993 }
13994 break;
13995
13996 case T_MNEM_bfcsel:
13997 /* Operand 1. */
13998 if (inst.operands[1].hasreloc == 0)
13999 {
14000 int val = inst.operands[1].imm;
14001 int immA = (val & 0x00001000) >> 12;
14002 int immB = (val & 0x00000ffc) >> 2;
14003 int immC = (val & 0x00000002) >> 1;
14004 inst.instruction |= (immA << 16) | (immB << 1) | (immC << 11);
14005 }
14006 else
14007 {
14008 inst.relocs[1].type = BFD_RELOC_ARM_THUMB_BF13;
14009 inst.relocs[1].pc_rel = 1;
14010 }
14011
14012 /* Operand 2. */
14013 if (inst.operands[2].hasreloc == 0)
14014 {
14015 constraint ((inst.operands[0].hasreloc != 0), BAD_ARGS);
14016 int val2 = inst.operands[2].imm;
14017 int val0 = inst.operands[0].imm & 0x1f;
14018 int diff = val2 - val0;
14019 if (diff == 4)
14020 inst.instruction |= 1 << 17; /* T bit. */
14021 else if (diff != 2)
14022 as_bad (_("out of range label-relative fixup value"));
14023 }
14024 else
14025 {
14026 constraint ((inst.operands[0].hasreloc == 0), BAD_ARGS);
14027 inst.relocs[2].type = BFD_RELOC_THUMB_PCREL_BFCSEL;
14028 inst.relocs[2].pc_rel = 1;
14029 }
14030
14031 /* Operand 3. */
14032 constraint (inst.cond != COND_ALWAYS, BAD_COND);
14033 inst.instruction |= (inst.operands[3].imm & 0xf) << 18;
14034 break;
14035
14036 case T_MNEM_bfx:
14037 case T_MNEM_bflx:
14038 inst.instruction |= inst.operands[1].reg << 16;
14039 break;
14040
14041 default: abort ();
14042 }
14043 }
14044
14045 /* Helper function for do_t_loloop to handle relocations. */
14046 static void
14047 v8_1_loop_reloc (int is_le)
14048 {
14049 if (inst.relocs[0].exp.X_op == O_constant)
14050 {
14051 int value = inst.relocs[0].exp.X_add_number;
14052 value = (is_le) ? -value : value;
14053
14054 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
14055 as_bad (BAD_BRANCH_OFF);
14056
14057 int imml, immh;
14058
14059 immh = (value & 0x00000ffc) >> 2;
14060 imml = (value & 0x00000002) >> 1;
14061
14062 inst.instruction |= (imml << 11) | (immh << 1);
14063 }
14064 else
14065 {
14066 inst.relocs[0].type = BFD_RELOC_ARM_THUMB_LOOP12;
14067 inst.relocs[0].pc_rel = 1;
14068 }
14069 }
14070
14071 /* To handle the Scalar Low Overhead Loop instructions
14072 in Armv8.1-M Mainline. */
14073 static void
14074 do_t_loloop (void)
14075 {
14076 unsigned long insn = inst.instruction;
14077
14078 set_pred_insn_type (OUTSIDE_PRED_INSN);
14079 inst.instruction = THUMB_OP32 (inst.instruction);
14080
14081 switch (insn)
14082 {
14083 case T_MNEM_le:
14084 /* le <label>. */
14085 if (!inst.operands[0].present)
14086 inst.instruction |= 1 << 21;
14087
14088 v8_1_loop_reloc (TRUE);
14089 break;
14090
14091 case T_MNEM_wls:
14092 v8_1_loop_reloc (FALSE);
14093 /* Fall through. */
14094 case T_MNEM_dls:
14095 constraint (inst.operands[1].isreg != 1, BAD_ARGS);
14096 inst.instruction |= (inst.operands[1].reg << 16);
14097 break;
14098
14099 default: abort();
14100 }
14101 }
14102
14103 /* MVE instruction encoder helpers. */
14104 #define M_MNEM_vabav 0xee800f01
14105 #define M_MNEM_vmladav 0xeef00e00
14106 #define M_MNEM_vmladava 0xeef00e20
14107 #define M_MNEM_vmladavx 0xeef01e00
14108 #define M_MNEM_vmladavax 0xeef01e20
14109 #define M_MNEM_vmlsdav 0xeef00e01
14110 #define M_MNEM_vmlsdava 0xeef00e21
14111 #define M_MNEM_vmlsdavx 0xeef01e01
14112 #define M_MNEM_vmlsdavax 0xeef01e21
14113 #define M_MNEM_vmullt 0xee011e00
14114 #define M_MNEM_vmullb 0xee010e00
14115 #define M_MNEM_vst20 0xfc801e00
14116 #define M_MNEM_vst21 0xfc801e20
14117 #define M_MNEM_vst40 0xfc801e01
14118 #define M_MNEM_vst41 0xfc801e21
14119 #define M_MNEM_vst42 0xfc801e41
14120 #define M_MNEM_vst43 0xfc801e61
14121 #define M_MNEM_vld20 0xfc901e00
14122 #define M_MNEM_vld21 0xfc901e20
14123 #define M_MNEM_vld40 0xfc901e01
14124 #define M_MNEM_vld41 0xfc901e21
14125 #define M_MNEM_vld42 0xfc901e41
14126 #define M_MNEM_vld43 0xfc901e61
14127 #define M_MNEM_vstrb 0xec000e00
14128 #define M_MNEM_vstrh 0xec000e10
14129 #define M_MNEM_vstrw 0xec000e40
14130 #define M_MNEM_vstrd 0xec000e50
14131 #define M_MNEM_vldrb 0xec100e00
14132 #define M_MNEM_vldrh 0xec100e10
14133 #define M_MNEM_vldrw 0xec100e40
14134 #define M_MNEM_vldrd 0xec100e50
14135 #define M_MNEM_vmovlt 0xeea01f40
14136 #define M_MNEM_vmovlb 0xeea00f40
14137 #define M_MNEM_vmovnt 0xfe311e81
14138 #define M_MNEM_vmovnb 0xfe310e81
14139
14140 /* Neon instruction encoder helpers. */
14141
14142 /* Encodings for the different types for various Neon opcodes. */
14143
14144 /* An "invalid" code for the following tables. */
14145 #define N_INV -1u
14146
14147 struct neon_tab_entry
14148 {
14149 unsigned integer;
14150 unsigned float_or_poly;
14151 unsigned scalar_or_imm;
14152 };
14153
14154 /* Map overloaded Neon opcodes to their respective encodings. */
14155 #define NEON_ENC_TAB \
14156 X(vabd, 0x0000700, 0x1200d00, N_INV), \
14157 X(vabdl, 0x0800700, N_INV, N_INV), \
14158 X(vmax, 0x0000600, 0x0000f00, N_INV), \
14159 X(vmin, 0x0000610, 0x0200f00, N_INV), \
14160 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
14161 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
14162 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
14163 X(vadd, 0x0000800, 0x0000d00, N_INV), \
14164 X(vaddl, 0x0800000, N_INV, N_INV), \
14165 X(vsub, 0x1000800, 0x0200d00, N_INV), \
14166 X(vsubl, 0x0800200, N_INV, N_INV), \
14167 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
14168 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
14169 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
14170 /* Register variants of the following two instructions are encoded as
14171 vcge / vcgt with the operands reversed. */ \
14172 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
14173 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
14174 X(vfma, N_INV, 0x0000c10, N_INV), \
14175 X(vfms, N_INV, 0x0200c10, N_INV), \
14176 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
14177 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
14178 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
14179 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
14180 X(vmlal, 0x0800800, N_INV, 0x0800240), \
14181 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
14182 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
14183 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
14184 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
14185 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
14186 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
14187 X(vqrdmlah, 0x3000b10, N_INV, 0x0800e40), \
14188 X(vqrdmlsh, 0x3000c10, N_INV, 0x0800f40), \
14189 X(vshl, 0x0000400, N_INV, 0x0800510), \
14190 X(vqshl, 0x0000410, N_INV, 0x0800710), \
14191 X(vand, 0x0000110, N_INV, 0x0800030), \
14192 X(vbic, 0x0100110, N_INV, 0x0800030), \
14193 X(veor, 0x1000110, N_INV, N_INV), \
14194 X(vorn, 0x0300110, N_INV, 0x0800010), \
14195 X(vorr, 0x0200110, N_INV, 0x0800010), \
14196 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
14197 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
14198 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
14199 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
14200 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
14201 X(vst1, 0x0000000, 0x0800000, N_INV), \
14202 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
14203 X(vst2, 0x0000100, 0x0800100, N_INV), \
14204 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
14205 X(vst3, 0x0000200, 0x0800200, N_INV), \
14206 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
14207 X(vst4, 0x0000300, 0x0800300, N_INV), \
14208 X(vmovn, 0x1b20200, N_INV, N_INV), \
14209 X(vtrn, 0x1b20080, N_INV, N_INV), \
14210 X(vqmovn, 0x1b20200, N_INV, N_INV), \
14211 X(vqmovun, 0x1b20240, N_INV, N_INV), \
14212 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
14213 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
14214 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
14215 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
14216 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
14217 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
14218 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
14219 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
14220 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
14221 X(vseleq, 0xe000a00, N_INV, N_INV), \
14222 X(vselvs, 0xe100a00, N_INV, N_INV), \
14223 X(vselge, 0xe200a00, N_INV, N_INV), \
14224 X(vselgt, 0xe300a00, N_INV, N_INV), \
14225 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
14226 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
14227 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
14228 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
14229 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
14230 X(aes, 0x3b00300, N_INV, N_INV), \
14231 X(sha3op, 0x2000c00, N_INV, N_INV), \
14232 X(sha1h, 0x3b902c0, N_INV, N_INV), \
14233 X(sha2op, 0x3ba0380, N_INV, N_INV)
14234
14235 enum neon_opc
14236 {
14237 #define X(OPC,I,F,S) N_MNEM_##OPC
14238 NEON_ENC_TAB
14239 #undef X
14240 };
14241
14242 static const struct neon_tab_entry neon_enc_tab[] =
14243 {
14244 #define X(OPC,I,F,S) { (I), (F), (S) }
14245 NEON_ENC_TAB
14246 #undef X
14247 };
14248
14249 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
14250 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14251 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14252 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14253 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14254 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14255 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14256 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
14257 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
14258 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
14259 #define NEON_ENC_SINGLE_(X) \
14260 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
14261 #define NEON_ENC_DOUBLE_(X) \
14262 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
14263 #define NEON_ENC_FPV8_(X) \
14264 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
14265
14266 #define NEON_ENCODE(type, inst) \
14267 do \
14268 { \
14269 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
14270 inst.is_neon = 1; \
14271 } \
14272 while (0)
14273
14274 #define check_neon_suffixes \
14275 do \
14276 { \
14277 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
14278 { \
14279 as_bad (_("invalid neon suffix for non neon instruction")); \
14280 return; \
14281 } \
14282 } \
14283 while (0)
14284
14285 /* Define shapes for instruction operands. The following mnemonic characters
14286 are used in this table:
14287
14288 F - VFP S<n> register
14289 D - Neon D<n> register
14290 Q - Neon Q<n> register
14291 I - Immediate
14292 S - Scalar
14293 R - ARM register
14294 L - D<n> register list
14295
14296 This table is used to generate various data:
14297 - enumerations of the form NS_DDR to be used as arguments to
14298 neon_select_shape.
14299 - a table classifying shapes into single, double, quad, mixed.
14300 - a table used to drive neon_select_shape. */
14301
14302 #define NEON_SHAPE_DEF \
14303 X(4, (R, R, S, S), QUAD), \
14304 X(4, (S, S, R, R), QUAD), \
14305 X(3, (I, Q, Q), QUAD), \
14306 X(3, (I, Q, R), QUAD), \
14307 X(3, (R, Q, Q), QUAD), \
14308 X(3, (D, D, D), DOUBLE), \
14309 X(3, (Q, Q, Q), QUAD), \
14310 X(3, (D, D, I), DOUBLE), \
14311 X(3, (Q, Q, I), QUAD), \
14312 X(3, (D, D, S), DOUBLE), \
14313 X(3, (Q, Q, S), QUAD), \
14314 X(3, (Q, Q, R), QUAD), \
14315 X(2, (D, D), DOUBLE), \
14316 X(2, (Q, Q), QUAD), \
14317 X(2, (D, S), DOUBLE), \
14318 X(2, (Q, S), QUAD), \
14319 X(2, (D, R), DOUBLE), \
14320 X(2, (Q, R), QUAD), \
14321 X(2, (D, I), DOUBLE), \
14322 X(2, (Q, I), QUAD), \
14323 X(3, (D, L, D), DOUBLE), \
14324 X(2, (D, Q), MIXED), \
14325 X(2, (Q, D), MIXED), \
14326 X(3, (D, Q, I), MIXED), \
14327 X(3, (Q, D, I), MIXED), \
14328 X(3, (Q, D, D), MIXED), \
14329 X(3, (D, Q, Q), MIXED), \
14330 X(3, (Q, Q, D), MIXED), \
14331 X(3, (Q, D, S), MIXED), \
14332 X(3, (D, Q, S), MIXED), \
14333 X(4, (D, D, D, I), DOUBLE), \
14334 X(4, (Q, Q, Q, I), QUAD), \
14335 X(4, (D, D, S, I), DOUBLE), \
14336 X(4, (Q, Q, S, I), QUAD), \
14337 X(2, (F, F), SINGLE), \
14338 X(3, (F, F, F), SINGLE), \
14339 X(2, (F, I), SINGLE), \
14340 X(2, (F, D), MIXED), \
14341 X(2, (D, F), MIXED), \
14342 X(3, (F, F, I), MIXED), \
14343 X(4, (R, R, F, F), SINGLE), \
14344 X(4, (F, F, R, R), SINGLE), \
14345 X(3, (D, R, R), DOUBLE), \
14346 X(3, (R, R, D), DOUBLE), \
14347 X(2, (S, R), SINGLE), \
14348 X(2, (R, S), SINGLE), \
14349 X(2, (F, R), SINGLE), \
14350 X(2, (R, F), SINGLE), \
14351 /* Half float shape supported so far. */\
14352 X (2, (H, D), MIXED), \
14353 X (2, (D, H), MIXED), \
14354 X (2, (H, F), MIXED), \
14355 X (2, (F, H), MIXED), \
14356 X (2, (H, H), HALF), \
14357 X (2, (H, R), HALF), \
14358 X (2, (R, H), HALF), \
14359 X (2, (H, I), HALF), \
14360 X (3, (H, H, H), HALF), \
14361 X (3, (H, F, I), MIXED), \
14362 X (3, (F, H, I), MIXED), \
14363 X (3, (D, H, H), MIXED), \
14364 X (3, (D, H, S), MIXED)
14365
14366 #define S2(A,B) NS_##A##B
14367 #define S3(A,B,C) NS_##A##B##C
14368 #define S4(A,B,C,D) NS_##A##B##C##D
14369
14370 #define X(N, L, C) S##N L
14371
14372 enum neon_shape
14373 {
14374 NEON_SHAPE_DEF,
14375 NS_NULL
14376 };
14377
14378 #undef X
14379 #undef S2
14380 #undef S3
14381 #undef S4
14382
14383 enum neon_shape_class
14384 {
14385 SC_HALF,
14386 SC_SINGLE,
14387 SC_DOUBLE,
14388 SC_QUAD,
14389 SC_MIXED
14390 };
14391
14392 #define X(N, L, C) SC_##C
14393
14394 static enum neon_shape_class neon_shape_class[] =
14395 {
14396 NEON_SHAPE_DEF
14397 };
14398
14399 #undef X
14400
14401 enum neon_shape_el
14402 {
14403 SE_H,
14404 SE_F,
14405 SE_D,
14406 SE_Q,
14407 SE_I,
14408 SE_S,
14409 SE_R,
14410 SE_L
14411 };
14412
14413 /* Register widths of above. */
14414 static unsigned neon_shape_el_size[] =
14415 {
14416 16,
14417 32,
14418 64,
14419 128,
14420 0,
14421 32,
14422 32,
14423 0
14424 };
14425
14426 struct neon_shape_info
14427 {
14428 unsigned els;
14429 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
14430 };
14431
14432 #define S2(A,B) { SE_##A, SE_##B }
14433 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
14434 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
14435
14436 #define X(N, L, C) { N, S##N L }
14437
14438 static struct neon_shape_info neon_shape_tab[] =
14439 {
14440 NEON_SHAPE_DEF
14441 };
14442
14443 #undef X
14444 #undef S2
14445 #undef S3
14446 #undef S4
14447
14448 /* Bit masks used in type checking given instructions.
14449 'N_EQK' means the type must be the same as (or based on in some way) the key
14450 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
14451 set, various other bits can be set as well in order to modify the meaning of
14452 the type constraint. */
14453
14454 enum neon_type_mask
14455 {
14456 N_S8 = 0x0000001,
14457 N_S16 = 0x0000002,
14458 N_S32 = 0x0000004,
14459 N_S64 = 0x0000008,
14460 N_U8 = 0x0000010,
14461 N_U16 = 0x0000020,
14462 N_U32 = 0x0000040,
14463 N_U64 = 0x0000080,
14464 N_I8 = 0x0000100,
14465 N_I16 = 0x0000200,
14466 N_I32 = 0x0000400,
14467 N_I64 = 0x0000800,
14468 N_8 = 0x0001000,
14469 N_16 = 0x0002000,
14470 N_32 = 0x0004000,
14471 N_64 = 0x0008000,
14472 N_P8 = 0x0010000,
14473 N_P16 = 0x0020000,
14474 N_F16 = 0x0040000,
14475 N_F32 = 0x0080000,
14476 N_F64 = 0x0100000,
14477 N_P64 = 0x0200000,
14478 N_KEY = 0x1000000, /* Key element (main type specifier). */
14479 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
14480 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
14481 N_UNT = 0x8000000, /* Must be explicitly untyped. */
14482 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
14483 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
14484 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
14485 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
14486 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
14487 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
14488 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
14489 N_UTYP = 0,
14490 N_MAX_NONSPECIAL = N_P64
14491 };
14492
14493 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
14494
14495 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
14496 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14497 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
14498 #define N_S_32 (N_S8 | N_S16 | N_S32)
14499 #define N_F_16_32 (N_F16 | N_F32)
14500 #define N_SUF_32 (N_SU_32 | N_F_16_32)
14501 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
14502 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F16 | N_F32)
14503 #define N_F_ALL (N_F16 | N_F32 | N_F64)
14504 #define N_I_MVE (N_I8 | N_I16 | N_I32)
14505 #define N_F_MVE (N_F16 | N_F32)
14506 #define N_SU_MVE (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
14507
14508 /* Pass this as the first type argument to neon_check_type to ignore types
14509 altogether. */
14510 #define N_IGNORE_TYPE (N_KEY | N_EQK)
14511
14512 /* Select a "shape" for the current instruction (describing register types or
14513 sizes) from a list of alternatives. Return NS_NULL if the current instruction
14514 doesn't fit. For non-polymorphic shapes, checking is usually done as a
14515 function of operand parsing, so this function doesn't need to be called.
14516 Shapes should be listed in order of decreasing length. */
14517
14518 static enum neon_shape
14519 neon_select_shape (enum neon_shape shape, ...)
14520 {
14521 va_list ap;
14522 enum neon_shape first_shape = shape;
14523
14524 /* Fix missing optional operands. FIXME: we don't know at this point how
14525 many arguments we should have, so this makes the assumption that we have
14526 > 1. This is true of all current Neon opcodes, I think, but may not be
14527 true in the future. */
14528 if (!inst.operands[1].present)
14529 inst.operands[1] = inst.operands[0];
14530
14531 va_start (ap, shape);
14532
14533 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
14534 {
14535 unsigned j;
14536 int matches = 1;
14537
14538 for (j = 0; j < neon_shape_tab[shape].els; j++)
14539 {
14540 if (!inst.operands[j].present)
14541 {
14542 matches = 0;
14543 break;
14544 }
14545
14546 switch (neon_shape_tab[shape].el[j])
14547 {
14548 /* If a .f16, .16, .u16, .s16 type specifier is given over
14549 a VFP single precision register operand, it's essentially
14550 means only half of the register is used.
14551
14552 If the type specifier is given after the mnemonics, the
14553 information is stored in inst.vectype. If the type specifier
14554 is given after register operand, the information is stored
14555 in inst.operands[].vectype.
14556
14557 When there is only one type specifier, and all the register
14558 operands are the same type of hardware register, the type
14559 specifier applies to all register operands.
14560
14561 If no type specifier is given, the shape is inferred from
14562 operand information.
14563
14564 for example:
14565 vadd.f16 s0, s1, s2: NS_HHH
14566 vabs.f16 s0, s1: NS_HH
14567 vmov.f16 s0, r1: NS_HR
14568 vmov.f16 r0, s1: NS_RH
14569 vcvt.f16 r0, s1: NS_RH
14570 vcvt.f16.s32 s2, s2, #29: NS_HFI
14571 vcvt.f16.s32 s2, s2: NS_HF
14572 */
14573 case SE_H:
14574 if (!(inst.operands[j].isreg
14575 && inst.operands[j].isvec
14576 && inst.operands[j].issingle
14577 && !inst.operands[j].isquad
14578 && ((inst.vectype.elems == 1
14579 && inst.vectype.el[0].size == 16)
14580 || (inst.vectype.elems > 1
14581 && inst.vectype.el[j].size == 16)
14582 || (inst.vectype.elems == 0
14583 && inst.operands[j].vectype.type != NT_invtype
14584 && inst.operands[j].vectype.size == 16))))
14585 matches = 0;
14586 break;
14587
14588 case SE_F:
14589 if (!(inst.operands[j].isreg
14590 && inst.operands[j].isvec
14591 && inst.operands[j].issingle
14592 && !inst.operands[j].isquad
14593 && ((inst.vectype.elems == 1 && inst.vectype.el[0].size == 32)
14594 || (inst.vectype.elems > 1 && inst.vectype.el[j].size == 32)
14595 || (inst.vectype.elems == 0
14596 && (inst.operands[j].vectype.size == 32
14597 || inst.operands[j].vectype.type == NT_invtype)))))
14598 matches = 0;
14599 break;
14600
14601 case SE_D:
14602 if (!(inst.operands[j].isreg
14603 && inst.operands[j].isvec
14604 && !inst.operands[j].isquad
14605 && !inst.operands[j].issingle))
14606 matches = 0;
14607 break;
14608
14609 case SE_R:
14610 if (!(inst.operands[j].isreg
14611 && !inst.operands[j].isvec))
14612 matches = 0;
14613 break;
14614
14615 case SE_Q:
14616 if (!(inst.operands[j].isreg
14617 && inst.operands[j].isvec
14618 && inst.operands[j].isquad
14619 && !inst.operands[j].issingle))
14620 matches = 0;
14621 break;
14622
14623 case SE_I:
14624 if (!(!inst.operands[j].isreg
14625 && !inst.operands[j].isscalar))
14626 matches = 0;
14627 break;
14628
14629 case SE_S:
14630 if (!(!inst.operands[j].isreg
14631 && inst.operands[j].isscalar))
14632 matches = 0;
14633 break;
14634
14635 case SE_L:
14636 break;
14637 }
14638 if (!matches)
14639 break;
14640 }
14641 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
14642 /* We've matched all the entries in the shape table, and we don't
14643 have any left over operands which have not been matched. */
14644 break;
14645 }
14646
14647 va_end (ap);
14648
14649 if (shape == NS_NULL && first_shape != NS_NULL)
14650 first_error (_("invalid instruction shape"));
14651
14652 return shape;
14653 }
14654
14655 /* True if SHAPE is predominantly a quadword operation (most of the time, this
14656 means the Q bit should be set). */
14657
14658 static int
14659 neon_quad (enum neon_shape shape)
14660 {
14661 return neon_shape_class[shape] == SC_QUAD;
14662 }
14663
14664 static void
14665 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
14666 unsigned *g_size)
14667 {
14668 /* Allow modification to be made to types which are constrained to be
14669 based on the key element, based on bits set alongside N_EQK. */
14670 if ((typebits & N_EQK) != 0)
14671 {
14672 if ((typebits & N_HLF) != 0)
14673 *g_size /= 2;
14674 else if ((typebits & N_DBL) != 0)
14675 *g_size *= 2;
14676 if ((typebits & N_SGN) != 0)
14677 *g_type = NT_signed;
14678 else if ((typebits & N_UNS) != 0)
14679 *g_type = NT_unsigned;
14680 else if ((typebits & N_INT) != 0)
14681 *g_type = NT_integer;
14682 else if ((typebits & N_FLT) != 0)
14683 *g_type = NT_float;
14684 else if ((typebits & N_SIZ) != 0)
14685 *g_type = NT_untyped;
14686 }
14687 }
14688
14689 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
14690 operand type, i.e. the single type specified in a Neon instruction when it
14691 is the only one given. */
14692
14693 static struct neon_type_el
14694 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
14695 {
14696 struct neon_type_el dest = *key;
14697
14698 gas_assert ((thisarg & N_EQK) != 0);
14699
14700 neon_modify_type_size (thisarg, &dest.type, &dest.size);
14701
14702 return dest;
14703 }
14704
14705 /* Convert Neon type and size into compact bitmask representation. */
14706
14707 static enum neon_type_mask
14708 type_chk_of_el_type (enum neon_el_type type, unsigned size)
14709 {
14710 switch (type)
14711 {
14712 case NT_untyped:
14713 switch (size)
14714 {
14715 case 8: return N_8;
14716 case 16: return N_16;
14717 case 32: return N_32;
14718 case 64: return N_64;
14719 default: ;
14720 }
14721 break;
14722
14723 case NT_integer:
14724 switch (size)
14725 {
14726 case 8: return N_I8;
14727 case 16: return N_I16;
14728 case 32: return N_I32;
14729 case 64: return N_I64;
14730 default: ;
14731 }
14732 break;
14733
14734 case NT_float:
14735 switch (size)
14736 {
14737 case 16: return N_F16;
14738 case 32: return N_F32;
14739 case 64: return N_F64;
14740 default: ;
14741 }
14742 break;
14743
14744 case NT_poly:
14745 switch (size)
14746 {
14747 case 8: return N_P8;
14748 case 16: return N_P16;
14749 case 64: return N_P64;
14750 default: ;
14751 }
14752 break;
14753
14754 case NT_signed:
14755 switch (size)
14756 {
14757 case 8: return N_S8;
14758 case 16: return N_S16;
14759 case 32: return N_S32;
14760 case 64: return N_S64;
14761 default: ;
14762 }
14763 break;
14764
14765 case NT_unsigned:
14766 switch (size)
14767 {
14768 case 8: return N_U8;
14769 case 16: return N_U16;
14770 case 32: return N_U32;
14771 case 64: return N_U64;
14772 default: ;
14773 }
14774 break;
14775
14776 default: ;
14777 }
14778
14779 return N_UTYP;
14780 }
14781
14782 /* Convert compact Neon bitmask type representation to a type and size. Only
14783 handles the case where a single bit is set in the mask. */
14784
14785 static int
14786 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
14787 enum neon_type_mask mask)
14788 {
14789 if ((mask & N_EQK) != 0)
14790 return FAIL;
14791
14792 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
14793 *size = 8;
14794 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
14795 *size = 16;
14796 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
14797 *size = 32;
14798 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
14799 *size = 64;
14800 else
14801 return FAIL;
14802
14803 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
14804 *type = NT_signed;
14805 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
14806 *type = NT_unsigned;
14807 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
14808 *type = NT_integer;
14809 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
14810 *type = NT_untyped;
14811 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
14812 *type = NT_poly;
14813 else if ((mask & (N_F_ALL)) != 0)
14814 *type = NT_float;
14815 else
14816 return FAIL;
14817
14818 return SUCCESS;
14819 }
14820
14821 /* Modify a bitmask of allowed types. This is only needed for type
14822 relaxation. */
14823
14824 static unsigned
14825 modify_types_allowed (unsigned allowed, unsigned mods)
14826 {
14827 unsigned size;
14828 enum neon_el_type type;
14829 unsigned destmask;
14830 int i;
14831
14832 destmask = 0;
14833
14834 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
14835 {
14836 if (el_type_of_type_chk (&type, &size,
14837 (enum neon_type_mask) (allowed & i)) == SUCCESS)
14838 {
14839 neon_modify_type_size (mods, &type, &size);
14840 destmask |= type_chk_of_el_type (type, size);
14841 }
14842 }
14843
14844 return destmask;
14845 }
14846
14847 /* Check type and return type classification.
14848 The manual states (paraphrase): If one datatype is given, it indicates the
14849 type given in:
14850 - the second operand, if there is one
14851 - the operand, if there is no second operand
14852 - the result, if there are no operands.
14853 This isn't quite good enough though, so we use a concept of a "key" datatype
14854 which is set on a per-instruction basis, which is the one which matters when
14855 only one data type is written.
14856 Note: this function has side-effects (e.g. filling in missing operands). All
14857 Neon instructions should call it before performing bit encoding. */
14858
14859 static struct neon_type_el
14860 neon_check_type (unsigned els, enum neon_shape ns, ...)
14861 {
14862 va_list ap;
14863 unsigned i, pass, key_el = 0;
14864 unsigned types[NEON_MAX_TYPE_ELS];
14865 enum neon_el_type k_type = NT_invtype;
14866 unsigned k_size = -1u;
14867 struct neon_type_el badtype = {NT_invtype, -1};
14868 unsigned key_allowed = 0;
14869
14870 /* Optional registers in Neon instructions are always (not) in operand 1.
14871 Fill in the missing operand here, if it was omitted. */
14872 if (els > 1 && !inst.operands[1].present)
14873 inst.operands[1] = inst.operands[0];
14874
14875 /* Suck up all the varargs. */
14876 va_start (ap, ns);
14877 for (i = 0; i < els; i++)
14878 {
14879 unsigned thisarg = va_arg (ap, unsigned);
14880 if (thisarg == N_IGNORE_TYPE)
14881 {
14882 va_end (ap);
14883 return badtype;
14884 }
14885 types[i] = thisarg;
14886 if ((thisarg & N_KEY) != 0)
14887 key_el = i;
14888 }
14889 va_end (ap);
14890
14891 if (inst.vectype.elems > 0)
14892 for (i = 0; i < els; i++)
14893 if (inst.operands[i].vectype.type != NT_invtype)
14894 {
14895 first_error (_("types specified in both the mnemonic and operands"));
14896 return badtype;
14897 }
14898
14899 /* Duplicate inst.vectype elements here as necessary.
14900 FIXME: No idea if this is exactly the same as the ARM assembler,
14901 particularly when an insn takes one register and one non-register
14902 operand. */
14903 if (inst.vectype.elems == 1 && els > 1)
14904 {
14905 unsigned j;
14906 inst.vectype.elems = els;
14907 inst.vectype.el[key_el] = inst.vectype.el[0];
14908 for (j = 0; j < els; j++)
14909 if (j != key_el)
14910 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14911 types[j]);
14912 }
14913 else if (inst.vectype.elems == 0 && els > 0)
14914 {
14915 unsigned j;
14916 /* No types were given after the mnemonic, so look for types specified
14917 after each operand. We allow some flexibility here; as long as the
14918 "key" operand has a type, we can infer the others. */
14919 for (j = 0; j < els; j++)
14920 if (inst.operands[j].vectype.type != NT_invtype)
14921 inst.vectype.el[j] = inst.operands[j].vectype;
14922
14923 if (inst.operands[key_el].vectype.type != NT_invtype)
14924 {
14925 for (j = 0; j < els; j++)
14926 if (inst.operands[j].vectype.type == NT_invtype)
14927 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
14928 types[j]);
14929 }
14930 else
14931 {
14932 first_error (_("operand types can't be inferred"));
14933 return badtype;
14934 }
14935 }
14936 else if (inst.vectype.elems != els)
14937 {
14938 first_error (_("type specifier has the wrong number of parts"));
14939 return badtype;
14940 }
14941
14942 for (pass = 0; pass < 2; pass++)
14943 {
14944 for (i = 0; i < els; i++)
14945 {
14946 unsigned thisarg = types[i];
14947 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
14948 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
14949 enum neon_el_type g_type = inst.vectype.el[i].type;
14950 unsigned g_size = inst.vectype.el[i].size;
14951
14952 /* Decay more-specific signed & unsigned types to sign-insensitive
14953 integer types if sign-specific variants are unavailable. */
14954 if ((g_type == NT_signed || g_type == NT_unsigned)
14955 && (types_allowed & N_SU_ALL) == 0)
14956 g_type = NT_integer;
14957
14958 /* If only untyped args are allowed, decay any more specific types to
14959 them. Some instructions only care about signs for some element
14960 sizes, so handle that properly. */
14961 if (((types_allowed & N_UNT) == 0)
14962 && ((g_size == 8 && (types_allowed & N_8) != 0)
14963 || (g_size == 16 && (types_allowed & N_16) != 0)
14964 || (g_size == 32 && (types_allowed & N_32) != 0)
14965 || (g_size == 64 && (types_allowed & N_64) != 0)))
14966 g_type = NT_untyped;
14967
14968 if (pass == 0)
14969 {
14970 if ((thisarg & N_KEY) != 0)
14971 {
14972 k_type = g_type;
14973 k_size = g_size;
14974 key_allowed = thisarg & ~N_KEY;
14975
14976 /* Check architecture constraint on FP16 extension. */
14977 if (k_size == 16
14978 && k_type == NT_float
14979 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
14980 {
14981 inst.error = _(BAD_FP16);
14982 return badtype;
14983 }
14984 }
14985 }
14986 else
14987 {
14988 if ((thisarg & N_VFP) != 0)
14989 {
14990 enum neon_shape_el regshape;
14991 unsigned regwidth, match;
14992
14993 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
14994 if (ns == NS_NULL)
14995 {
14996 first_error (_("invalid instruction shape"));
14997 return badtype;
14998 }
14999 regshape = neon_shape_tab[ns].el[i];
15000 regwidth = neon_shape_el_size[regshape];
15001
15002 /* In VFP mode, operands must match register widths. If we
15003 have a key operand, use its width, else use the width of
15004 the current operand. */
15005 if (k_size != -1u)
15006 match = k_size;
15007 else
15008 match = g_size;
15009
15010 /* FP16 will use a single precision register. */
15011 if (regwidth == 32 && match == 16)
15012 {
15013 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16))
15014 match = regwidth;
15015 else
15016 {
15017 inst.error = _(BAD_FP16);
15018 return badtype;
15019 }
15020 }
15021
15022 if (regwidth != match)
15023 {
15024 first_error (_("operand size must match register width"));
15025 return badtype;
15026 }
15027 }
15028
15029 if ((thisarg & N_EQK) == 0)
15030 {
15031 unsigned given_type = type_chk_of_el_type (g_type, g_size);
15032
15033 if ((given_type & types_allowed) == 0)
15034 {
15035 first_error (BAD_SIMD_TYPE);
15036 return badtype;
15037 }
15038 }
15039 else
15040 {
15041 enum neon_el_type mod_k_type = k_type;
15042 unsigned mod_k_size = k_size;
15043 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
15044 if (g_type != mod_k_type || g_size != mod_k_size)
15045 {
15046 first_error (_("inconsistent types in Neon instruction"));
15047 return badtype;
15048 }
15049 }
15050 }
15051 }
15052 }
15053
15054 return inst.vectype.el[key_el];
15055 }
15056
15057 /* Neon-style VFP instruction forwarding. */
15058
15059 /* Thumb VFP instructions have 0xE in the condition field. */
15060
15061 static void
15062 do_vfp_cond_or_thumb (void)
15063 {
15064 inst.is_neon = 1;
15065
15066 if (thumb_mode)
15067 inst.instruction |= 0xe0000000;
15068 else
15069 inst.instruction |= inst.cond << 28;
15070 }
15071
15072 /* Look up and encode a simple mnemonic, for use as a helper function for the
15073 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
15074 etc. It is assumed that operand parsing has already been done, and that the
15075 operands are in the form expected by the given opcode (this isn't necessarily
15076 the same as the form in which they were parsed, hence some massaging must
15077 take place before this function is called).
15078 Checks current arch version against that in the looked-up opcode. */
15079
15080 static void
15081 do_vfp_nsyn_opcode (const char *opname)
15082 {
15083 const struct asm_opcode *opcode;
15084
15085 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
15086
15087 if (!opcode)
15088 abort ();
15089
15090 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
15091 thumb_mode ? *opcode->tvariant : *opcode->avariant),
15092 _(BAD_FPU));
15093
15094 inst.is_neon = 1;
15095
15096 if (thumb_mode)
15097 {
15098 inst.instruction = opcode->tvalue;
15099 opcode->tencode ();
15100 }
15101 else
15102 {
15103 inst.instruction = (inst.cond << 28) | opcode->avalue;
15104 opcode->aencode ();
15105 }
15106 }
15107
15108 static void
15109 do_vfp_nsyn_add_sub (enum neon_shape rs)
15110 {
15111 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
15112
15113 if (rs == NS_FFF || rs == NS_HHH)
15114 {
15115 if (is_add)
15116 do_vfp_nsyn_opcode ("fadds");
15117 else
15118 do_vfp_nsyn_opcode ("fsubs");
15119
15120 /* ARMv8.2 fp16 instruction. */
15121 if (rs == NS_HHH)
15122 do_scalar_fp16_v82_encode ();
15123 }
15124 else
15125 {
15126 if (is_add)
15127 do_vfp_nsyn_opcode ("faddd");
15128 else
15129 do_vfp_nsyn_opcode ("fsubd");
15130 }
15131 }
15132
15133 /* Check operand types to see if this is a VFP instruction, and if so call
15134 PFN (). */
15135
15136 static int
15137 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
15138 {
15139 enum neon_shape rs;
15140 struct neon_type_el et;
15141
15142 switch (args)
15143 {
15144 case 2:
15145 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15146 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15147 break;
15148
15149 case 3:
15150 rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15151 et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15152 N_F_ALL | N_KEY | N_VFP);
15153 break;
15154
15155 default:
15156 abort ();
15157 }
15158
15159 if (et.type != NT_invtype)
15160 {
15161 pfn (rs);
15162 return SUCCESS;
15163 }
15164
15165 inst.error = NULL;
15166 return FAIL;
15167 }
15168
15169 static void
15170 do_vfp_nsyn_mla_mls (enum neon_shape rs)
15171 {
15172 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
15173
15174 if (rs == NS_FFF || rs == NS_HHH)
15175 {
15176 if (is_mla)
15177 do_vfp_nsyn_opcode ("fmacs");
15178 else
15179 do_vfp_nsyn_opcode ("fnmacs");
15180
15181 /* ARMv8.2 fp16 instruction. */
15182 if (rs == NS_HHH)
15183 do_scalar_fp16_v82_encode ();
15184 }
15185 else
15186 {
15187 if (is_mla)
15188 do_vfp_nsyn_opcode ("fmacd");
15189 else
15190 do_vfp_nsyn_opcode ("fnmacd");
15191 }
15192 }
15193
15194 static void
15195 do_vfp_nsyn_fma_fms (enum neon_shape rs)
15196 {
15197 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
15198
15199 if (rs == NS_FFF || rs == NS_HHH)
15200 {
15201 if (is_fma)
15202 do_vfp_nsyn_opcode ("ffmas");
15203 else
15204 do_vfp_nsyn_opcode ("ffnmas");
15205
15206 /* ARMv8.2 fp16 instruction. */
15207 if (rs == NS_HHH)
15208 do_scalar_fp16_v82_encode ();
15209 }
15210 else
15211 {
15212 if (is_fma)
15213 do_vfp_nsyn_opcode ("ffmad");
15214 else
15215 do_vfp_nsyn_opcode ("ffnmad");
15216 }
15217 }
15218
15219 static void
15220 do_vfp_nsyn_mul (enum neon_shape rs)
15221 {
15222 if (rs == NS_FFF || rs == NS_HHH)
15223 {
15224 do_vfp_nsyn_opcode ("fmuls");
15225
15226 /* ARMv8.2 fp16 instruction. */
15227 if (rs == NS_HHH)
15228 do_scalar_fp16_v82_encode ();
15229 }
15230 else
15231 do_vfp_nsyn_opcode ("fmuld");
15232 }
15233
15234 static void
15235 do_vfp_nsyn_abs_neg (enum neon_shape rs)
15236 {
15237 int is_neg = (inst.instruction & 0x80) != 0;
15238 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_VFP | N_KEY);
15239
15240 if (rs == NS_FF || rs == NS_HH)
15241 {
15242 if (is_neg)
15243 do_vfp_nsyn_opcode ("fnegs");
15244 else
15245 do_vfp_nsyn_opcode ("fabss");
15246
15247 /* ARMv8.2 fp16 instruction. */
15248 if (rs == NS_HH)
15249 do_scalar_fp16_v82_encode ();
15250 }
15251 else
15252 {
15253 if (is_neg)
15254 do_vfp_nsyn_opcode ("fnegd");
15255 else
15256 do_vfp_nsyn_opcode ("fabsd");
15257 }
15258 }
15259
15260 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
15261 insns belong to Neon, and are handled elsewhere. */
15262
15263 static void
15264 do_vfp_nsyn_ldm_stm (int is_dbmode)
15265 {
15266 int is_ldm = (inst.instruction & (1 << 20)) != 0;
15267 if (is_ldm)
15268 {
15269 if (is_dbmode)
15270 do_vfp_nsyn_opcode ("fldmdbs");
15271 else
15272 do_vfp_nsyn_opcode ("fldmias");
15273 }
15274 else
15275 {
15276 if (is_dbmode)
15277 do_vfp_nsyn_opcode ("fstmdbs");
15278 else
15279 do_vfp_nsyn_opcode ("fstmias");
15280 }
15281 }
15282
15283 static void
15284 do_vfp_nsyn_sqrt (void)
15285 {
15286 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15287 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15288
15289 if (rs == NS_FF || rs == NS_HH)
15290 {
15291 do_vfp_nsyn_opcode ("fsqrts");
15292
15293 /* ARMv8.2 fp16 instruction. */
15294 if (rs == NS_HH)
15295 do_scalar_fp16_v82_encode ();
15296 }
15297 else
15298 do_vfp_nsyn_opcode ("fsqrtd");
15299 }
15300
15301 static void
15302 do_vfp_nsyn_div (void)
15303 {
15304 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15305 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15306 N_F_ALL | N_KEY | N_VFP);
15307
15308 if (rs == NS_FFF || rs == NS_HHH)
15309 {
15310 do_vfp_nsyn_opcode ("fdivs");
15311
15312 /* ARMv8.2 fp16 instruction. */
15313 if (rs == NS_HHH)
15314 do_scalar_fp16_v82_encode ();
15315 }
15316 else
15317 do_vfp_nsyn_opcode ("fdivd");
15318 }
15319
15320 static void
15321 do_vfp_nsyn_nmul (void)
15322 {
15323 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_NULL);
15324 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
15325 N_F_ALL | N_KEY | N_VFP);
15326
15327 if (rs == NS_FFF || rs == NS_HHH)
15328 {
15329 NEON_ENCODE (SINGLE, inst);
15330 do_vfp_sp_dyadic ();
15331
15332 /* ARMv8.2 fp16 instruction. */
15333 if (rs == NS_HHH)
15334 do_scalar_fp16_v82_encode ();
15335 }
15336 else
15337 {
15338 NEON_ENCODE (DOUBLE, inst);
15339 do_vfp_dp_rd_rn_rm ();
15340 }
15341 do_vfp_cond_or_thumb ();
15342
15343 }
15344
15345 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
15346 (0, 1, 2, 3). */
15347
15348 static unsigned
15349 neon_logbits (unsigned x)
15350 {
15351 return ffs (x) - 4;
15352 }
15353
15354 #define LOW4(R) ((R) & 0xf)
15355 #define HI1(R) (((R) >> 4) & 1)
15356
15357 static unsigned
15358 mve_get_vcmp_vpt_cond (struct neon_type_el et)
15359 {
15360 switch (et.type)
15361 {
15362 default:
15363 first_error (BAD_EL_TYPE);
15364 return 0;
15365 case NT_float:
15366 switch (inst.operands[0].imm)
15367 {
15368 default:
15369 first_error (_("invalid condition"));
15370 return 0;
15371 case 0x0:
15372 /* eq. */
15373 return 0;
15374 case 0x1:
15375 /* ne. */
15376 return 1;
15377 case 0xa:
15378 /* ge/ */
15379 return 4;
15380 case 0xb:
15381 /* lt. */
15382 return 5;
15383 case 0xc:
15384 /* gt. */
15385 return 6;
15386 case 0xd:
15387 /* le. */
15388 return 7;
15389 }
15390 case NT_integer:
15391 /* only accept eq and ne. */
15392 if (inst.operands[0].imm > 1)
15393 {
15394 first_error (_("invalid condition"));
15395 return 0;
15396 }
15397 return inst.operands[0].imm;
15398 case NT_unsigned:
15399 if (inst.operands[0].imm == 0x2)
15400 return 2;
15401 else if (inst.operands[0].imm == 0x8)
15402 return 3;
15403 else
15404 {
15405 first_error (_("invalid condition"));
15406 return 0;
15407 }
15408 case NT_signed:
15409 switch (inst.operands[0].imm)
15410 {
15411 default:
15412 first_error (_("invalid condition"));
15413 return 0;
15414 case 0xa:
15415 /* ge. */
15416 return 4;
15417 case 0xb:
15418 /* lt. */
15419 return 5;
15420 case 0xc:
15421 /* gt. */
15422 return 6;
15423 case 0xd:
15424 /* le. */
15425 return 7;
15426 }
15427 }
15428 /* Should be unreachable. */
15429 abort ();
15430 }
15431
15432 static void
15433 do_mve_vpt (void)
15434 {
15435 /* We are dealing with a vector predicated block. */
15436 if (inst.operands[0].present)
15437 {
15438 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15439 struct neon_type_el et
15440 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15441 N_EQK);
15442
15443 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15444
15445 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15446
15447 if (et.type == NT_invtype)
15448 return;
15449
15450 if (et.type == NT_float)
15451 {
15452 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15453 BAD_FPU);
15454 constraint (et.size != 16 && et.size != 32, BAD_EL_TYPE);
15455 inst.instruction |= (et.size == 16) << 28;
15456 inst.instruction |= 0x3 << 20;
15457 }
15458 else
15459 {
15460 constraint (et.size != 8 && et.size != 16 && et.size != 32,
15461 BAD_EL_TYPE);
15462 inst.instruction |= 1 << 28;
15463 inst.instruction |= neon_logbits (et.size) << 20;
15464 }
15465
15466 if (inst.operands[2].isquad)
15467 {
15468 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15469 inst.instruction |= LOW4 (inst.operands[2].reg);
15470 inst.instruction |= (fcond & 0x2) >> 1;
15471 }
15472 else
15473 {
15474 if (inst.operands[2].reg == REG_SP)
15475 as_tsktsk (MVE_BAD_SP);
15476 inst.instruction |= 1 << 6;
15477 inst.instruction |= (fcond & 0x2) << 4;
15478 inst.instruction |= inst.operands[2].reg;
15479 }
15480 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15481 inst.instruction |= (fcond & 0x4) << 10;
15482 inst.instruction |= (fcond & 0x1) << 7;
15483
15484 }
15485 set_pred_insn_type (VPT_INSN);
15486 now_pred.cc = 0;
15487 now_pred.mask = ((inst.instruction & 0x00400000) >> 19)
15488 | ((inst.instruction & 0xe000) >> 13);
15489 now_pred.warn_deprecated = FALSE;
15490 now_pred.type = VECTOR_PRED;
15491 inst.is_neon = 1;
15492 }
15493
15494 static void
15495 do_mve_vcmp (void)
15496 {
15497 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext), BAD_FPU);
15498 if (!inst.operands[1].isreg || !inst.operands[1].isquad)
15499 first_error (_(reg_expected_msgs[REG_TYPE_MQ]));
15500 if (!inst.operands[2].present)
15501 first_error (_("MVE vector or ARM register expected"));
15502 constraint (inst.operands[1].reg > 14, MVE_BAD_QREG);
15503
15504 /* Deal with 'else' conditional MVE's vcmp, it will be parsed as vcmpe. */
15505 if ((inst.instruction & 0xffffffff) == N_MNEM_vcmpe
15506 && inst.operands[1].isquad)
15507 {
15508 inst.instruction = N_MNEM_vcmp;
15509 inst.cond = 0x10;
15510 }
15511
15512 if (inst.cond > COND_ALWAYS)
15513 inst.pred_insn_type = INSIDE_VPT_INSN;
15514 else
15515 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
15516
15517 enum neon_shape rs = neon_select_shape (NS_IQQ, NS_IQR, NS_NULL);
15518 struct neon_type_el et
15519 = neon_check_type (3, rs, N_EQK, N_KEY | N_F_MVE | N_I_MVE | N_SU_32,
15520 N_EQK);
15521
15522 constraint (rs == NS_IQR && inst.operands[2].reg == REG_PC
15523 && !inst.operands[2].iszr, BAD_PC);
15524
15525 unsigned fcond = mve_get_vcmp_vpt_cond (et);
15526
15527 inst.instruction = 0xee010f00;
15528 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15529 inst.instruction |= (fcond & 0x4) << 10;
15530 inst.instruction |= (fcond & 0x1) << 7;
15531 if (et.type == NT_float)
15532 {
15533 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext),
15534 BAD_FPU);
15535 inst.instruction |= (et.size == 16) << 28;
15536 inst.instruction |= 0x3 << 20;
15537 }
15538 else
15539 {
15540 inst.instruction |= 1 << 28;
15541 inst.instruction |= neon_logbits (et.size) << 20;
15542 }
15543 if (inst.operands[2].isquad)
15544 {
15545 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15546 inst.instruction |= (fcond & 0x2) >> 1;
15547 inst.instruction |= LOW4 (inst.operands[2].reg);
15548 }
15549 else
15550 {
15551 if (inst.operands[2].reg == REG_SP)
15552 as_tsktsk (MVE_BAD_SP);
15553 inst.instruction |= 1 << 6;
15554 inst.instruction |= (fcond & 0x2) << 4;
15555 inst.instruction |= inst.operands[2].reg;
15556 }
15557
15558 inst.is_neon = 1;
15559 return;
15560 }
15561
15562 static void
15563 do_vfp_nsyn_cmp (void)
15564 {
15565 enum neon_shape rs;
15566 if (!inst.operands[0].isreg)
15567 {
15568 do_mve_vcmp ();
15569 return;
15570 }
15571 else
15572 {
15573 constraint (inst.operands[2].present, BAD_SYNTAX);
15574 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd),
15575 BAD_FPU);
15576 }
15577
15578 if (inst.operands[1].isreg)
15579 {
15580 rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_NULL);
15581 neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY | N_VFP);
15582
15583 if (rs == NS_FF || rs == NS_HH)
15584 {
15585 NEON_ENCODE (SINGLE, inst);
15586 do_vfp_sp_monadic ();
15587 }
15588 else
15589 {
15590 NEON_ENCODE (DOUBLE, inst);
15591 do_vfp_dp_rd_rm ();
15592 }
15593 }
15594 else
15595 {
15596 rs = neon_select_shape (NS_HI, NS_FI, NS_DI, NS_NULL);
15597 neon_check_type (2, rs, N_F_ALL | N_KEY | N_VFP, N_EQK);
15598
15599 switch (inst.instruction & 0x0fffffff)
15600 {
15601 case N_MNEM_vcmp:
15602 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
15603 break;
15604 case N_MNEM_vcmpe:
15605 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
15606 break;
15607 default:
15608 abort ();
15609 }
15610
15611 if (rs == NS_FI || rs == NS_HI)
15612 {
15613 NEON_ENCODE (SINGLE, inst);
15614 do_vfp_sp_compare_z ();
15615 }
15616 else
15617 {
15618 NEON_ENCODE (DOUBLE, inst);
15619 do_vfp_dp_rd ();
15620 }
15621 }
15622 do_vfp_cond_or_thumb ();
15623
15624 /* ARMv8.2 fp16 instruction. */
15625 if (rs == NS_HI || rs == NS_HH)
15626 do_scalar_fp16_v82_encode ();
15627 }
15628
15629 static void
15630 nsyn_insert_sp (void)
15631 {
15632 inst.operands[1] = inst.operands[0];
15633 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
15634 inst.operands[0].reg = REG_SP;
15635 inst.operands[0].isreg = 1;
15636 inst.operands[0].writeback = 1;
15637 inst.operands[0].present = 1;
15638 }
15639
15640 static void
15641 do_vfp_nsyn_push (void)
15642 {
15643 nsyn_insert_sp ();
15644
15645 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15646 _("register list must contain at least 1 and at most 16 "
15647 "registers"));
15648
15649 if (inst.operands[1].issingle)
15650 do_vfp_nsyn_opcode ("fstmdbs");
15651 else
15652 do_vfp_nsyn_opcode ("fstmdbd");
15653 }
15654
15655 static void
15656 do_vfp_nsyn_pop (void)
15657 {
15658 nsyn_insert_sp ();
15659
15660 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15661 _("register list must contain at least 1 and at most 16 "
15662 "registers"));
15663
15664 if (inst.operands[1].issingle)
15665 do_vfp_nsyn_opcode ("fldmias");
15666 else
15667 do_vfp_nsyn_opcode ("fldmiad");
15668 }
15669
15670 /* Fix up Neon data-processing instructions, ORing in the correct bits for
15671 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
15672
15673 static void
15674 neon_dp_fixup (struct arm_it* insn)
15675 {
15676 unsigned int i = insn->instruction;
15677 insn->is_neon = 1;
15678
15679 if (thumb_mode)
15680 {
15681 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
15682 if (i & (1 << 24))
15683 i |= 1 << 28;
15684
15685 i &= ~(1 << 24);
15686
15687 i |= 0xef000000;
15688 }
15689 else
15690 i |= 0xf2000000;
15691
15692 insn->instruction = i;
15693 }
15694
15695 static void
15696 mve_encode_qqr (int size, int fp)
15697 {
15698 if (inst.operands[2].reg == REG_SP)
15699 as_tsktsk (MVE_BAD_SP);
15700 else if (inst.operands[2].reg == REG_PC)
15701 as_tsktsk (MVE_BAD_PC);
15702
15703 if (fp)
15704 {
15705 /* vadd. */
15706 if (((unsigned)inst.instruction) == 0xd00)
15707 inst.instruction = 0xee300f40;
15708 /* vsub. */
15709 else if (((unsigned)inst.instruction) == 0x200d00)
15710 inst.instruction = 0xee301f40;
15711
15712 /* Setting size which is 1 for F16 and 0 for F32. */
15713 inst.instruction |= (size == 16) << 28;
15714 }
15715 else
15716 {
15717 /* vadd. */
15718 if (((unsigned)inst.instruction) == 0x800)
15719 inst.instruction = 0xee010f40;
15720 /* vsub. */
15721 else if (((unsigned)inst.instruction) == 0x1000800)
15722 inst.instruction = 0xee011f40;
15723 /* Setting bits for size. */
15724 inst.instruction |= neon_logbits (size) << 20;
15725 }
15726 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15727 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15728 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15729 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15730 inst.instruction |= inst.operands[2].reg;
15731 inst.is_neon = 1;
15732 }
15733
15734 static void
15735 mve_encode_rqq (unsigned bit28, unsigned size)
15736 {
15737 inst.instruction |= bit28 << 28;
15738 inst.instruction |= neon_logbits (size) << 20;
15739 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15740 inst.instruction |= inst.operands[0].reg << 12;
15741 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15742 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15743 inst.instruction |= LOW4 (inst.operands[2].reg);
15744 inst.is_neon = 1;
15745 }
15746
15747 static void
15748 mve_encode_qqq (int ubit, int size)
15749 {
15750
15751 inst.instruction |= (ubit != 0) << 28;
15752 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15753 inst.instruction |= neon_logbits (size) << 20;
15754 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15755 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15756 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15757 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15758 inst.instruction |= LOW4 (inst.operands[2].reg);
15759
15760 inst.is_neon = 1;
15761 }
15762
15763
15764 /* Encode insns with bit pattern:
15765
15766 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15767 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
15768
15769 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
15770 different meaning for some instruction. */
15771
15772 static void
15773 neon_three_same (int isquad, int ubit, int size)
15774 {
15775 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15776 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15777 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15778 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15779 inst.instruction |= LOW4 (inst.operands[2].reg);
15780 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15781 inst.instruction |= (isquad != 0) << 6;
15782 inst.instruction |= (ubit != 0) << 24;
15783 if (size != -1)
15784 inst.instruction |= neon_logbits (size) << 20;
15785
15786 neon_dp_fixup (&inst);
15787 }
15788
15789 /* Encode instructions of the form:
15790
15791 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
15792 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
15793
15794 Don't write size if SIZE == -1. */
15795
15796 static void
15797 neon_two_same (int qbit, int ubit, int size)
15798 {
15799 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15800 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15801 inst.instruction |= LOW4 (inst.operands[1].reg);
15802 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15803 inst.instruction |= (qbit != 0) << 6;
15804 inst.instruction |= (ubit != 0) << 24;
15805
15806 if (size != -1)
15807 inst.instruction |= neon_logbits (size) << 18;
15808
15809 neon_dp_fixup (&inst);
15810 }
15811
15812 /* Neon instruction encoders, in approximate order of appearance. */
15813
15814 static void
15815 do_neon_dyadic_i_su (void)
15816 {
15817 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15818 struct neon_type_el et = neon_check_type (3, rs,
15819 N_EQK, N_EQK, N_SU_32 | N_KEY);
15820 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15821 }
15822
15823 static void
15824 do_neon_dyadic_i64_su (void)
15825 {
15826 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15827 struct neon_type_el et = neon_check_type (3, rs,
15828 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15829 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15830 }
15831
15832 static void
15833 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
15834 unsigned immbits)
15835 {
15836 unsigned size = et.size >> 3;
15837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15839 inst.instruction |= LOW4 (inst.operands[1].reg);
15840 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15841 inst.instruction |= (isquad != 0) << 6;
15842 inst.instruction |= immbits << 16;
15843 inst.instruction |= (size >> 3) << 7;
15844 inst.instruction |= (size & 0x7) << 19;
15845 if (write_ubit)
15846 inst.instruction |= (uval != 0) << 24;
15847
15848 neon_dp_fixup (&inst);
15849 }
15850
15851 static void
15852 do_neon_shl_imm (void)
15853 {
15854 if (!inst.operands[2].isreg)
15855 {
15856 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15857 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
15858 int imm = inst.operands[2].imm;
15859
15860 constraint (imm < 0 || (unsigned)imm >= et.size,
15861 _("immediate out of range for shift"));
15862 NEON_ENCODE (IMMED, inst);
15863 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
15864 }
15865 else
15866 {
15867 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15868 struct neon_type_el et = neon_check_type (3, rs,
15869 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
15870 unsigned int tmp;
15871
15872 /* VSHL/VQSHL 3-register variants have syntax such as:
15873 vshl.xx Dd, Dm, Dn
15874 whereas other 3-register operations encoded by neon_three_same have
15875 syntax like:
15876 vadd.xx Dd, Dn, Dm
15877 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
15878 here. */
15879 tmp = inst.operands[2].reg;
15880 inst.operands[2].reg = inst.operands[1].reg;
15881 inst.operands[1].reg = tmp;
15882 NEON_ENCODE (INTEGER, inst);
15883 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15884 }
15885 }
15886
15887 static void
15888 do_neon_qshl_imm (void)
15889 {
15890 if (!inst.operands[2].isreg)
15891 {
15892 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15893 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15894 int imm = inst.operands[2].imm;
15895
15896 constraint (imm < 0 || (unsigned)imm >= et.size,
15897 _("immediate out of range for shift"));
15898 NEON_ENCODE (IMMED, inst);
15899 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, imm);
15900 }
15901 else
15902 {
15903 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15904 struct neon_type_el et = neon_check_type (3, rs,
15905 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
15906 unsigned int tmp;
15907
15908 /* See note in do_neon_shl_imm. */
15909 tmp = inst.operands[2].reg;
15910 inst.operands[2].reg = inst.operands[1].reg;
15911 inst.operands[1].reg = tmp;
15912 NEON_ENCODE (INTEGER, inst);
15913 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15914 }
15915 }
15916
15917 static void
15918 do_neon_rshl (void)
15919 {
15920 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15921 struct neon_type_el et = neon_check_type (3, rs,
15922 N_EQK, N_EQK, N_SU_ALL | N_KEY);
15923 unsigned int tmp;
15924
15925 tmp = inst.operands[2].reg;
15926 inst.operands[2].reg = inst.operands[1].reg;
15927 inst.operands[1].reg = tmp;
15928 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
15929 }
15930
15931 static int
15932 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
15933 {
15934 /* Handle .I8 pseudo-instructions. */
15935 if (size == 8)
15936 {
15937 /* Unfortunately, this will make everything apart from zero out-of-range.
15938 FIXME is this the intended semantics? There doesn't seem much point in
15939 accepting .I8 if so. */
15940 immediate |= immediate << 8;
15941 size = 16;
15942 }
15943
15944 if (size >= 32)
15945 {
15946 if (immediate == (immediate & 0x000000ff))
15947 {
15948 *immbits = immediate;
15949 return 0x1;
15950 }
15951 else if (immediate == (immediate & 0x0000ff00))
15952 {
15953 *immbits = immediate >> 8;
15954 return 0x3;
15955 }
15956 else if (immediate == (immediate & 0x00ff0000))
15957 {
15958 *immbits = immediate >> 16;
15959 return 0x5;
15960 }
15961 else if (immediate == (immediate & 0xff000000))
15962 {
15963 *immbits = immediate >> 24;
15964 return 0x7;
15965 }
15966 if ((immediate & 0xffff) != (immediate >> 16))
15967 goto bad_immediate;
15968 immediate &= 0xffff;
15969 }
15970
15971 if (immediate == (immediate & 0x000000ff))
15972 {
15973 *immbits = immediate;
15974 return 0x9;
15975 }
15976 else if (immediate == (immediate & 0x0000ff00))
15977 {
15978 *immbits = immediate >> 8;
15979 return 0xb;
15980 }
15981
15982 bad_immediate:
15983 first_error (_("immediate value out of range"));
15984 return FAIL;
15985 }
15986
15987 static void
15988 do_neon_logic (void)
15989 {
15990 if (inst.operands[2].present && inst.operands[2].isreg)
15991 {
15992 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
15993 neon_check_type (3, rs, N_IGNORE_TYPE);
15994 /* U bit and size field were set as part of the bitmask. */
15995 NEON_ENCODE (INTEGER, inst);
15996 neon_three_same (neon_quad (rs), 0, -1);
15997 }
15998 else
15999 {
16000 const int three_ops_form = (inst.operands[2].present
16001 && !inst.operands[2].isreg);
16002 const int immoperand = (three_ops_form ? 2 : 1);
16003 enum neon_shape rs = (three_ops_form
16004 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
16005 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
16006 struct neon_type_el et = neon_check_type (2, rs,
16007 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
16008 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
16009 unsigned immbits;
16010 int cmode;
16011
16012 if (et.type == NT_invtype)
16013 return;
16014
16015 if (three_ops_form)
16016 constraint (inst.operands[0].reg != inst.operands[1].reg,
16017 _("first and second operands shall be the same register"));
16018
16019 NEON_ENCODE (IMMED, inst);
16020
16021 immbits = inst.operands[immoperand].imm;
16022 if (et.size == 64)
16023 {
16024 /* .i64 is a pseudo-op, so the immediate must be a repeating
16025 pattern. */
16026 if (immbits != (inst.operands[immoperand].regisimm ?
16027 inst.operands[immoperand].reg : 0))
16028 {
16029 /* Set immbits to an invalid constant. */
16030 immbits = 0xdeadbeef;
16031 }
16032 }
16033
16034 switch (opcode)
16035 {
16036 case N_MNEM_vbic:
16037 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16038 break;
16039
16040 case N_MNEM_vorr:
16041 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16042 break;
16043
16044 case N_MNEM_vand:
16045 /* Pseudo-instruction for VBIC. */
16046 neon_invert_size (&immbits, 0, et.size);
16047 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16048 break;
16049
16050 case N_MNEM_vorn:
16051 /* Pseudo-instruction for VORR. */
16052 neon_invert_size (&immbits, 0, et.size);
16053 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
16054 break;
16055
16056 default:
16057 abort ();
16058 }
16059
16060 if (cmode == FAIL)
16061 return;
16062
16063 inst.instruction |= neon_quad (rs) << 6;
16064 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16065 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16066 inst.instruction |= cmode << 8;
16067 neon_write_immbits (immbits);
16068
16069 neon_dp_fixup (&inst);
16070 }
16071 }
16072
16073 static void
16074 do_neon_bitfield (void)
16075 {
16076 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16077 neon_check_type (3, rs, N_IGNORE_TYPE);
16078 neon_three_same (neon_quad (rs), 0, -1);
16079 }
16080
16081 static void
16082 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
16083 unsigned destbits)
16084 {
16085 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16086 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
16087 types | N_KEY);
16088 if (et.type == NT_float)
16089 {
16090 NEON_ENCODE (FLOAT, inst);
16091 if (rs == NS_QQR)
16092 mve_encode_qqr (et.size, 1);
16093 else
16094 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16095 }
16096 else
16097 {
16098 NEON_ENCODE (INTEGER, inst);
16099 if (rs == NS_QQR)
16100 mve_encode_qqr (et.size, 0);
16101 else
16102 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
16103 }
16104 }
16105
16106
16107 static void
16108 do_neon_dyadic_if_su_d (void)
16109 {
16110 /* This version only allow D registers, but that constraint is enforced during
16111 operand parsing so we don't need to do anything extra here. */
16112 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16113 }
16114
16115 static void
16116 do_neon_dyadic_if_i_d (void)
16117 {
16118 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16119 affected if we specify unsigned args. */
16120 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16121 }
16122
16123 enum vfp_or_neon_is_neon_bits
16124 {
16125 NEON_CHECK_CC = 1,
16126 NEON_CHECK_ARCH = 2,
16127 NEON_CHECK_ARCH8 = 4
16128 };
16129
16130 /* Call this function if an instruction which may have belonged to the VFP or
16131 Neon instruction sets, but turned out to be a Neon instruction (due to the
16132 operand types involved, etc.). We have to check and/or fix-up a couple of
16133 things:
16134
16135 - Make sure the user hasn't attempted to make a Neon instruction
16136 conditional.
16137 - Alter the value in the condition code field if necessary.
16138 - Make sure that the arch supports Neon instructions.
16139
16140 Which of these operations take place depends on bits from enum
16141 vfp_or_neon_is_neon_bits.
16142
16143 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
16144 current instruction's condition is COND_ALWAYS, the condition field is
16145 changed to inst.uncond_value. This is necessary because instructions shared
16146 between VFP and Neon may be conditional for the VFP variants only, and the
16147 unconditional Neon version must have, e.g., 0xF in the condition field. */
16148
16149 static int
16150 vfp_or_neon_is_neon (unsigned check)
16151 {
16152 /* Conditions are always legal in Thumb mode (IT blocks). */
16153 if (!thumb_mode && (check & NEON_CHECK_CC))
16154 {
16155 if (inst.cond != COND_ALWAYS)
16156 {
16157 first_error (_(BAD_COND));
16158 return FAIL;
16159 }
16160 if (inst.uncond_value != -1)
16161 inst.instruction |= inst.uncond_value << 28;
16162 }
16163
16164
16165 if (((check & NEON_CHECK_ARCH) && !mark_feature_used (&fpu_neon_ext_v1))
16166 || ((check & NEON_CHECK_ARCH8)
16167 && !mark_feature_used (&fpu_neon_ext_armv8)))
16168 {
16169 first_error (_(BAD_FPU));
16170 return FAIL;
16171 }
16172
16173 return SUCCESS;
16174 }
16175
16176 static int
16177 check_simd_pred_availability (int fp, unsigned check)
16178 {
16179 if (inst.cond > COND_ALWAYS)
16180 {
16181 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16182 {
16183 inst.error = BAD_FPU;
16184 return 1;
16185 }
16186 inst.pred_insn_type = INSIDE_VPT_INSN;
16187 }
16188 else if (inst.cond < COND_ALWAYS)
16189 {
16190 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16191 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16192 else if (vfp_or_neon_is_neon (check) == FAIL)
16193 return 2;
16194 }
16195 else
16196 {
16197 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fp ? mve_fp_ext : mve_ext)
16198 && vfp_or_neon_is_neon (check) == FAIL)
16199 return 3;
16200
16201 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16202 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16203 }
16204 return 0;
16205 }
16206
16207 static void
16208 do_mve_vstr_vldr_QI (int size, int elsize, int load)
16209 {
16210 constraint (size < 32, BAD_ADDR_MODE);
16211 constraint (size != elsize, BAD_EL_TYPE);
16212 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
16213 constraint (!inst.operands[1].preind, BAD_ADDR_MODE);
16214 constraint (load && inst.operands[0].reg == inst.operands[1].reg,
16215 _("destination register and offset register may not be the"
16216 " same"));
16217
16218 int imm = inst.relocs[0].exp.X_add_number;
16219 int add = 1;
16220 if (imm < 0)
16221 {
16222 add = 0;
16223 imm = -imm;
16224 }
16225 constraint ((imm % (size / 8) != 0)
16226 || imm > (0x7f << neon_logbits (size)),
16227 (size == 32) ? _("immediate must be a multiple of 4 in the"
16228 " range of +/-[0,508]")
16229 : _("immediate must be a multiple of 8 in the"
16230 " range of +/-[0,1016]"));
16231 inst.instruction |= 0x11 << 24;
16232 inst.instruction |= add << 23;
16233 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16234 inst.instruction |= inst.operands[1].writeback << 21;
16235 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16236 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16237 inst.instruction |= 1 << 12;
16238 inst.instruction |= (size == 64) << 8;
16239 inst.instruction &= 0xffffff00;
16240 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16241 inst.instruction |= imm >> neon_logbits (size);
16242 }
16243
16244 static void
16245 do_mve_vstr_vldr_RQ (int size, int elsize, int load)
16246 {
16247 unsigned os = inst.operands[1].imm >> 5;
16248 constraint (os != 0 && size == 8,
16249 _("can not shift offsets when accessing less than half-word"));
16250 constraint (os && os != neon_logbits (size),
16251 _("shift immediate must be 1, 2 or 3 for half-word, word"
16252 " or double-word accesses respectively"));
16253 if (inst.operands[1].reg == REG_PC)
16254 as_tsktsk (MVE_BAD_PC);
16255
16256 switch (size)
16257 {
16258 case 8:
16259 constraint (elsize >= 64, BAD_EL_TYPE);
16260 break;
16261 case 16:
16262 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16263 break;
16264 case 32:
16265 case 64:
16266 constraint (elsize != size, BAD_EL_TYPE);
16267 break;
16268 default:
16269 break;
16270 }
16271 constraint (inst.operands[1].writeback || !inst.operands[1].preind,
16272 BAD_ADDR_MODE);
16273 if (load)
16274 {
16275 constraint (inst.operands[0].reg == (inst.operands[1].imm & 0x1f),
16276 _("destination register and offset register may not be"
16277 " the same"));
16278 constraint (size == elsize && inst.vectype.el[0].type != NT_unsigned,
16279 BAD_EL_TYPE);
16280 constraint (inst.vectype.el[0].type != NT_unsigned
16281 && inst.vectype.el[0].type != NT_signed, BAD_EL_TYPE);
16282 inst.instruction |= (inst.vectype.el[0].type == NT_unsigned) << 28;
16283 }
16284 else
16285 {
16286 constraint (inst.vectype.el[0].type != NT_untyped, BAD_EL_TYPE);
16287 }
16288
16289 inst.instruction |= 1 << 23;
16290 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16291 inst.instruction |= inst.operands[1].reg << 16;
16292 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16293 inst.instruction |= neon_logbits (elsize) << 7;
16294 inst.instruction |= HI1 (inst.operands[1].imm) << 5;
16295 inst.instruction |= LOW4 (inst.operands[1].imm);
16296 inst.instruction |= !!os;
16297 }
16298
16299 static void
16300 do_mve_vstr_vldr_RI (int size, int elsize, int load)
16301 {
16302 enum neon_el_type type = inst.vectype.el[0].type;
16303
16304 constraint (size >= 64, BAD_ADDR_MODE);
16305 switch (size)
16306 {
16307 case 16:
16308 constraint (elsize < 16 || elsize >= 64, BAD_EL_TYPE);
16309 break;
16310 case 32:
16311 constraint (elsize != size, BAD_EL_TYPE);
16312 break;
16313 default:
16314 break;
16315 }
16316 if (load)
16317 {
16318 constraint (elsize != size && type != NT_unsigned
16319 && type != NT_signed, BAD_EL_TYPE);
16320 }
16321 else
16322 {
16323 constraint (elsize != size && type != NT_untyped, BAD_EL_TYPE);
16324 }
16325
16326 int imm = inst.relocs[0].exp.X_add_number;
16327 int add = 1;
16328 if (imm < 0)
16329 {
16330 add = 0;
16331 imm = -imm;
16332 }
16333
16334 if ((imm % (size / 8) != 0) || imm > (0x7f << neon_logbits (size)))
16335 {
16336 switch (size)
16337 {
16338 case 8:
16339 constraint (1, _("immediate must be in the range of +/-[0,127]"));
16340 break;
16341 case 16:
16342 constraint (1, _("immediate must be a multiple of 2 in the"
16343 " range of +/-[0,254]"));
16344 break;
16345 case 32:
16346 constraint (1, _("immediate must be a multiple of 4 in the"
16347 " range of +/-[0,508]"));
16348 break;
16349 }
16350 }
16351
16352 if (size != elsize)
16353 {
16354 constraint (inst.operands[1].reg > 7, BAD_HIREG);
16355 constraint (inst.operands[0].reg > 14,
16356 _("MVE vector register in the range [Q0..Q7] expected"));
16357 inst.instruction |= (load && type == NT_unsigned) << 28;
16358 inst.instruction |= (size == 16) << 19;
16359 inst.instruction |= neon_logbits (elsize) << 7;
16360 }
16361 else
16362 {
16363 if (inst.operands[1].reg == REG_PC)
16364 as_tsktsk (MVE_BAD_PC);
16365 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16366 as_tsktsk (MVE_BAD_SP);
16367 inst.instruction |= 1 << 12;
16368 inst.instruction |= neon_logbits (size) << 7;
16369 }
16370 inst.instruction |= inst.operands[1].preind << 24;
16371 inst.instruction |= add << 23;
16372 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16373 inst.instruction |= inst.operands[1].writeback << 21;
16374 inst.instruction |= inst.operands[1].reg << 16;
16375 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16376 inst.instruction &= 0xffffff80;
16377 inst.instruction |= imm >> neon_logbits (size);
16378
16379 }
16380
16381 static void
16382 do_mve_vstr_vldr (void)
16383 {
16384 unsigned size;
16385 int load = 0;
16386
16387 if (inst.cond > COND_ALWAYS)
16388 inst.pred_insn_type = INSIDE_VPT_INSN;
16389 else
16390 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16391
16392 switch (inst.instruction)
16393 {
16394 default:
16395 gas_assert (0);
16396 break;
16397 case M_MNEM_vldrb:
16398 load = 1;
16399 /* fall through. */
16400 case M_MNEM_vstrb:
16401 size = 8;
16402 break;
16403 case M_MNEM_vldrh:
16404 load = 1;
16405 /* fall through. */
16406 case M_MNEM_vstrh:
16407 size = 16;
16408 break;
16409 case M_MNEM_vldrw:
16410 load = 1;
16411 /* fall through. */
16412 case M_MNEM_vstrw:
16413 size = 32;
16414 break;
16415 case M_MNEM_vldrd:
16416 load = 1;
16417 /* fall through. */
16418 case M_MNEM_vstrd:
16419 size = 64;
16420 break;
16421 }
16422 unsigned elsize = inst.vectype.el[0].size;
16423
16424 if (inst.operands[1].isquad)
16425 {
16426 /* We are dealing with [Q, imm]{!} cases. */
16427 do_mve_vstr_vldr_QI (size, elsize, load);
16428 }
16429 else
16430 {
16431 if (inst.operands[1].immisreg == 2)
16432 {
16433 /* We are dealing with [R, Q, {UXTW #os}] cases. */
16434 do_mve_vstr_vldr_RQ (size, elsize, load);
16435 }
16436 else if (!inst.operands[1].immisreg)
16437 {
16438 /* We are dealing with [R, Imm]{!}/[R], Imm cases. */
16439 do_mve_vstr_vldr_RI (size, elsize, load);
16440 }
16441 else
16442 constraint (1, BAD_ADDR_MODE);
16443 }
16444
16445 inst.is_neon = 1;
16446 }
16447
16448 static void
16449 do_mve_vst_vld (void)
16450 {
16451 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16452 return;
16453
16454 constraint (!inst.operands[1].preind || inst.relocs[0].exp.X_add_symbol != 0
16455 || inst.relocs[0].exp.X_add_number != 0
16456 || inst.operands[1].immisreg != 0,
16457 BAD_ADDR_MODE);
16458 constraint (inst.vectype.el[0].size > 32, BAD_EL_TYPE);
16459 if (inst.operands[1].reg == REG_PC)
16460 as_tsktsk (MVE_BAD_PC);
16461 else if (inst.operands[1].reg == REG_SP && inst.operands[1].writeback)
16462 as_tsktsk (MVE_BAD_SP);
16463
16464
16465 /* These instructions are one of the "exceptions" mentioned in
16466 handle_pred_state. They are MVE instructions that are not VPT compatible
16467 and do not accept a VPT code, thus appending such a code is a syntax
16468 error. */
16469 if (inst.cond > COND_ALWAYS)
16470 first_error (BAD_SYNTAX);
16471 /* If we append a scalar condition code we can set this to
16472 MVE_OUTSIDE_PRED_INSN as it will also lead to a syntax error. */
16473 else if (inst.cond < COND_ALWAYS)
16474 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16475 else
16476 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
16477
16478 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16479 inst.instruction |= inst.operands[1].writeback << 21;
16480 inst.instruction |= inst.operands[1].reg << 16;
16481 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16482 inst.instruction |= neon_logbits (inst.vectype.el[0].size) << 7;
16483 inst.is_neon = 1;
16484 }
16485
16486 static void
16487 do_neon_dyadic_if_su (void)
16488 {
16489 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16490 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16491 N_SUF_32 | N_KEY);
16492
16493 if (check_simd_pred_availability (et.type == NT_float,
16494 NEON_CHECK_ARCH | NEON_CHECK_CC))
16495 return;
16496
16497 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
16498 }
16499
16500 static void
16501 do_neon_addsub_if_i (void)
16502 {
16503 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1xd)
16504 && try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
16505 return;
16506
16507 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_QQR, NS_NULL);
16508 struct neon_type_el et = neon_check_type (3, rs, N_EQK,
16509 N_EQK, N_IF_32 | N_I64 | N_KEY);
16510
16511 constraint (rs == NS_QQR && et.size == 64, BAD_FPU);
16512 /* If we are parsing Q registers and the element types match MVE, which NEON
16513 also supports, then we must check whether this is an instruction that can
16514 be used by both MVE/NEON. This distinction can be made based on whether
16515 they are predicated or not. */
16516 if ((rs == NS_QQQ || rs == NS_QQR) && et.size != 64)
16517 {
16518 if (check_simd_pred_availability (et.type == NT_float,
16519 NEON_CHECK_ARCH | NEON_CHECK_CC))
16520 return;
16521 }
16522 else
16523 {
16524 /* If they are either in a D register or are using an unsupported. */
16525 if (rs != NS_QQR
16526 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16527 return;
16528 }
16529
16530 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16531 affected if we specify unsigned args. */
16532 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
16533 }
16534
16535 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
16536 result to be:
16537 V<op> A,B (A is operand 0, B is operand 2)
16538 to mean:
16539 V<op> A,B,A
16540 not:
16541 V<op> A,B,B
16542 so handle that case specially. */
16543
16544 static void
16545 neon_exchange_operands (void)
16546 {
16547 if (inst.operands[1].present)
16548 {
16549 void *scratch = xmalloc (sizeof (inst.operands[0]));
16550
16551 /* Swap operands[1] and operands[2]. */
16552 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
16553 inst.operands[1] = inst.operands[2];
16554 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
16555 free (scratch);
16556 }
16557 else
16558 {
16559 inst.operands[1] = inst.operands[2];
16560 inst.operands[2] = inst.operands[0];
16561 }
16562 }
16563
16564 static void
16565 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
16566 {
16567 if (inst.operands[2].isreg)
16568 {
16569 if (invert)
16570 neon_exchange_operands ();
16571 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
16572 }
16573 else
16574 {
16575 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16576 struct neon_type_el et = neon_check_type (2, rs,
16577 N_EQK | N_SIZ, immtypes | N_KEY);
16578
16579 NEON_ENCODE (IMMED, inst);
16580 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16581 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16582 inst.instruction |= LOW4 (inst.operands[1].reg);
16583 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16584 inst.instruction |= neon_quad (rs) << 6;
16585 inst.instruction |= (et.type == NT_float) << 10;
16586 inst.instruction |= neon_logbits (et.size) << 18;
16587
16588 neon_dp_fixup (&inst);
16589 }
16590 }
16591
16592 static void
16593 do_neon_cmp (void)
16594 {
16595 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, FALSE);
16596 }
16597
16598 static void
16599 do_neon_cmp_inv (void)
16600 {
16601 neon_compare (N_SUF_32, N_S_32 | N_F_16_32, TRUE);
16602 }
16603
16604 static void
16605 do_neon_ceq (void)
16606 {
16607 neon_compare (N_IF_32, N_IF_32, FALSE);
16608 }
16609
16610 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
16611 scalars, which are encoded in 5 bits, M : Rm.
16612 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
16613 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
16614 index in M.
16615
16616 Dot Product instructions are similar to multiply instructions except elsize
16617 should always be 32.
16618
16619 This function translates SCALAR, which is GAS's internal encoding of indexed
16620 scalar register, to raw encoding. There is also register and index range
16621 check based on ELSIZE. */
16622
16623 static unsigned
16624 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
16625 {
16626 unsigned regno = NEON_SCALAR_REG (scalar);
16627 unsigned elno = NEON_SCALAR_INDEX (scalar);
16628
16629 switch (elsize)
16630 {
16631 case 16:
16632 if (regno > 7 || elno > 3)
16633 goto bad_scalar;
16634 return regno | (elno << 3);
16635
16636 case 32:
16637 if (regno > 15 || elno > 1)
16638 goto bad_scalar;
16639 return regno | (elno << 4);
16640
16641 default:
16642 bad_scalar:
16643 first_error (_("scalar out of range for multiply instruction"));
16644 }
16645
16646 return 0;
16647 }
16648
16649 /* Encode multiply / multiply-accumulate scalar instructions. */
16650
16651 static void
16652 neon_mul_mac (struct neon_type_el et, int ubit)
16653 {
16654 unsigned scalar;
16655
16656 /* Give a more helpful error message if we have an invalid type. */
16657 if (et.type == NT_invtype)
16658 return;
16659
16660 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
16661 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16662 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16663 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
16664 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
16665 inst.instruction |= LOW4 (scalar);
16666 inst.instruction |= HI1 (scalar) << 5;
16667 inst.instruction |= (et.type == NT_float) << 8;
16668 inst.instruction |= neon_logbits (et.size) << 20;
16669 inst.instruction |= (ubit != 0) << 24;
16670
16671 neon_dp_fixup (&inst);
16672 }
16673
16674 static void
16675 do_neon_mac_maybe_scalar (void)
16676 {
16677 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
16678 return;
16679
16680 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16681 return;
16682
16683 if (inst.operands[2].isscalar)
16684 {
16685 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16686 struct neon_type_el et = neon_check_type (3, rs,
16687 N_EQK, N_EQK, N_I16 | N_I32 | N_F_16_32 | N_KEY);
16688 NEON_ENCODE (SCALAR, inst);
16689 neon_mul_mac (et, neon_quad (rs));
16690 }
16691 else
16692 {
16693 /* The "untyped" case can't happen. Do this to stop the "U" bit being
16694 affected if we specify unsigned args. */
16695 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16696 }
16697 }
16698
16699 static void
16700 do_neon_fmac (void)
16701 {
16702 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
16703 return;
16704
16705 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16706 return;
16707
16708 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
16709 }
16710
16711 static void
16712 do_neon_tst (void)
16713 {
16714 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16715 struct neon_type_el et = neon_check_type (3, rs,
16716 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
16717 neon_three_same (neon_quad (rs), 0, et.size);
16718 }
16719
16720 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
16721 same types as the MAC equivalents. The polynomial type for this instruction
16722 is encoded the same as the integer type. */
16723
16724 static void
16725 do_neon_mul (void)
16726 {
16727 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
16728 return;
16729
16730 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
16731 return;
16732
16733 if (inst.operands[2].isscalar)
16734 do_neon_mac_maybe_scalar ();
16735 else
16736 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F16 | N_F32 | N_P8, 0);
16737 }
16738
16739 static void
16740 do_neon_qdmulh (void)
16741 {
16742 if (inst.operands[2].isscalar)
16743 {
16744 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16745 struct neon_type_el et = neon_check_type (3, rs,
16746 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16747 NEON_ENCODE (SCALAR, inst);
16748 neon_mul_mac (et, neon_quad (rs));
16749 }
16750 else
16751 {
16752 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16753 struct neon_type_el et = neon_check_type (3, rs,
16754 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16755 NEON_ENCODE (INTEGER, inst);
16756 /* The U bit (rounding) comes from bit mask. */
16757 neon_three_same (neon_quad (rs), 0, et.size);
16758 }
16759 }
16760
16761 static void
16762 do_mve_vmull (void)
16763 {
16764
16765 enum neon_shape rs = neon_select_shape (NS_HHH, NS_FFF, NS_DDD, NS_DDS,
16766 NS_QQS, NS_QQQ, NS_QQR, NS_NULL);
16767 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
16768 && inst.cond == COND_ALWAYS
16769 && ((unsigned)inst.instruction) == M_MNEM_vmullt)
16770 {
16771 if (rs == NS_QQQ)
16772 {
16773
16774 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16775 N_SUF_32 | N_F64 | N_P8
16776 | N_P16 | N_I_MVE | N_KEY);
16777 if (((et.type == NT_poly) && et.size == 8
16778 && ARM_CPU_IS_ANY (cpu_variant))
16779 || (et.type == NT_integer) || (et.type == NT_float))
16780 goto neon_vmul;
16781 }
16782 else
16783 goto neon_vmul;
16784 }
16785
16786 constraint (rs != NS_QQQ, BAD_FPU);
16787 struct neon_type_el et = neon_check_type (3, rs, N_EQK , N_EQK,
16788 N_SU_32 | N_P8 | N_P16 | N_KEY);
16789
16790 /* We are dealing with MVE's vmullt. */
16791 if (et.size == 32
16792 && (inst.operands[0].reg == inst.operands[1].reg
16793 || inst.operands[0].reg == inst.operands[2].reg))
16794 as_tsktsk (BAD_MVE_SRCDEST);
16795
16796 if (inst.cond > COND_ALWAYS)
16797 inst.pred_insn_type = INSIDE_VPT_INSN;
16798 else
16799 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16800
16801 if (et.type == NT_poly)
16802 mve_encode_qqq (neon_logbits (et.size), 64);
16803 else
16804 mve_encode_qqq (et.type == NT_unsigned, et.size);
16805
16806 return;
16807
16808 neon_vmul:
16809 inst.instruction = N_MNEM_vmul;
16810 inst.cond = 0xb;
16811 if (thumb_mode)
16812 inst.pred_insn_type = INSIDE_IT_INSN;
16813 do_neon_mul ();
16814 }
16815
16816 static void
16817 do_mve_vabav (void)
16818 {
16819 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16820
16821 if (rs == NS_NULL)
16822 return;
16823
16824 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
16825 return;
16826
16827 struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_KEY | N_S8
16828 | N_S16 | N_S32 | N_U8 | N_U16
16829 | N_U32);
16830
16831 if (inst.cond > COND_ALWAYS)
16832 inst.pred_insn_type = INSIDE_VPT_INSN;
16833 else
16834 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16835
16836 mve_encode_rqq (et.type == NT_unsigned, et.size);
16837 }
16838
16839 static void
16840 do_mve_vmladav (void)
16841 {
16842 enum neon_shape rs = neon_select_shape (NS_RQQ, NS_NULL);
16843 struct neon_type_el et = neon_check_type (3, rs,
16844 N_EQK, N_EQK, N_SU_MVE | N_KEY);
16845
16846 if (et.type == NT_unsigned
16847 && (inst.instruction == M_MNEM_vmladavx
16848 || inst.instruction == M_MNEM_vmladavax
16849 || inst.instruction == M_MNEM_vmlsdav
16850 || inst.instruction == M_MNEM_vmlsdava
16851 || inst.instruction == M_MNEM_vmlsdavx
16852 || inst.instruction == M_MNEM_vmlsdavax))
16853 first_error (BAD_SIMD_TYPE);
16854
16855 constraint (inst.operands[2].reg > 14,
16856 _("MVE vector register in the range [Q0..Q7] expected"));
16857
16858 if (inst.cond > COND_ALWAYS)
16859 inst.pred_insn_type = INSIDE_VPT_INSN;
16860 else
16861 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
16862
16863 if (inst.instruction == M_MNEM_vmlsdav
16864 || inst.instruction == M_MNEM_vmlsdava
16865 || inst.instruction == M_MNEM_vmlsdavx
16866 || inst.instruction == M_MNEM_vmlsdavax)
16867 inst.instruction |= (et.size == 8) << 28;
16868 else
16869 inst.instruction |= (et.size == 8) << 8;
16870
16871 mve_encode_rqq (et.type == NT_unsigned, 64);
16872 inst.instruction |= (et.size == 32) << 16;
16873 }
16874
16875 static void
16876 do_neon_qrdmlah (void)
16877 {
16878 /* Check we're on the correct architecture. */
16879 if (!mark_feature_used (&fpu_neon_ext_armv8))
16880 inst.error =
16881 _("instruction form not available on this architecture.");
16882 else if (!mark_feature_used (&fpu_neon_ext_v8_1))
16883 {
16884 as_warn (_("this instruction implies use of ARMv8.1 AdvSIMD."));
16885 record_feature_use (&fpu_neon_ext_v8_1);
16886 }
16887
16888 if (inst.operands[2].isscalar)
16889 {
16890 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
16891 struct neon_type_el et = neon_check_type (3, rs,
16892 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16893 NEON_ENCODE (SCALAR, inst);
16894 neon_mul_mac (et, neon_quad (rs));
16895 }
16896 else
16897 {
16898 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16899 struct neon_type_el et = neon_check_type (3, rs,
16900 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
16901 NEON_ENCODE (INTEGER, inst);
16902 /* The U bit (rounding) comes from bit mask. */
16903 neon_three_same (neon_quad (rs), 0, et.size);
16904 }
16905 }
16906
16907 static void
16908 do_neon_fcmp_absolute (void)
16909 {
16910 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16911 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
16912 N_F_16_32 | N_KEY);
16913 /* Size field comes from bit mask. */
16914 neon_three_same (neon_quad (rs), 1, et.size == 16 ? (int) et.size : -1);
16915 }
16916
16917 static void
16918 do_neon_fcmp_absolute_inv (void)
16919 {
16920 neon_exchange_operands ();
16921 do_neon_fcmp_absolute ();
16922 }
16923
16924 static void
16925 do_neon_step (void)
16926 {
16927 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
16928 struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK,
16929 N_F_16_32 | N_KEY);
16930 neon_three_same (neon_quad (rs), 0, et.size == 16 ? (int) et.size : -1);
16931 }
16932
16933 static void
16934 do_neon_abs_neg (void)
16935 {
16936 enum neon_shape rs;
16937 struct neon_type_el et;
16938
16939 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
16940 return;
16941
16942 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
16943 et = neon_check_type (2, rs, N_EQK, N_S_32 | N_F_16_32 | N_KEY);
16944
16945 if (check_simd_pred_availability (et.type == NT_float,
16946 NEON_CHECK_ARCH | NEON_CHECK_CC))
16947 return;
16948
16949 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16950 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16951 inst.instruction |= LOW4 (inst.operands[1].reg);
16952 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16953 inst.instruction |= neon_quad (rs) << 6;
16954 inst.instruction |= (et.type == NT_float) << 10;
16955 inst.instruction |= neon_logbits (et.size) << 18;
16956
16957 neon_dp_fixup (&inst);
16958 }
16959
16960 static void
16961 do_neon_sli (void)
16962 {
16963 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16964 struct neon_type_el et = neon_check_type (2, rs,
16965 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16966 int imm = inst.operands[2].imm;
16967 constraint (imm < 0 || (unsigned)imm >= et.size,
16968 _("immediate out of range for insert"));
16969 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16970 }
16971
16972 static void
16973 do_neon_sri (void)
16974 {
16975 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16976 struct neon_type_el et = neon_check_type (2, rs,
16977 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
16978 int imm = inst.operands[2].imm;
16979 constraint (imm < 1 || (unsigned)imm > et.size,
16980 _("immediate out of range for insert"));
16981 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
16982 }
16983
16984 static void
16985 do_neon_qshlu_imm (void)
16986 {
16987 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
16988 struct neon_type_el et = neon_check_type (2, rs,
16989 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
16990 int imm = inst.operands[2].imm;
16991 constraint (imm < 0 || (unsigned)imm >= et.size,
16992 _("immediate out of range for shift"));
16993 /* Only encodes the 'U present' variant of the instruction.
16994 In this case, signed types have OP (bit 8) set to 0.
16995 Unsigned types have OP set to 1. */
16996 inst.instruction |= (et.type == NT_unsigned) << 8;
16997 /* The rest of the bits are the same as other immediate shifts. */
16998 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
16999 }
17000
17001 static void
17002 do_neon_qmovn (void)
17003 {
17004 struct neon_type_el et = neon_check_type (2, NS_DQ,
17005 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17006 /* Saturating move where operands can be signed or unsigned, and the
17007 destination has the same signedness. */
17008 NEON_ENCODE (INTEGER, inst);
17009 if (et.type == NT_unsigned)
17010 inst.instruction |= 0xc0;
17011 else
17012 inst.instruction |= 0x80;
17013 neon_two_same (0, 1, et.size / 2);
17014 }
17015
17016 static void
17017 do_neon_qmovun (void)
17018 {
17019 struct neon_type_el et = neon_check_type (2, NS_DQ,
17020 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17021 /* Saturating move with unsigned results. Operands must be signed. */
17022 NEON_ENCODE (INTEGER, inst);
17023 neon_two_same (0, 1, et.size / 2);
17024 }
17025
17026 static void
17027 do_neon_rshift_sat_narrow (void)
17028 {
17029 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17030 or unsigned. If operands are unsigned, results must also be unsigned. */
17031 struct neon_type_el et = neon_check_type (2, NS_DQI,
17032 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
17033 int imm = inst.operands[2].imm;
17034 /* This gets the bounds check, size encoding and immediate bits calculation
17035 right. */
17036 et.size /= 2;
17037
17038 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
17039 VQMOVN.I<size> <Dd>, <Qm>. */
17040 if (imm == 0)
17041 {
17042 inst.operands[2].present = 0;
17043 inst.instruction = N_MNEM_vqmovn;
17044 do_neon_qmovn ();
17045 return;
17046 }
17047
17048 constraint (imm < 1 || (unsigned)imm > et.size,
17049 _("immediate out of range"));
17050 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
17051 }
17052
17053 static void
17054 do_neon_rshift_sat_narrow_u (void)
17055 {
17056 /* FIXME: Types for narrowing. If operands are signed, results can be signed
17057 or unsigned. If operands are unsigned, results must also be unsigned. */
17058 struct neon_type_el et = neon_check_type (2, NS_DQI,
17059 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
17060 int imm = inst.operands[2].imm;
17061 /* This gets the bounds check, size encoding and immediate bits calculation
17062 right. */
17063 et.size /= 2;
17064
17065 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
17066 VQMOVUN.I<size> <Dd>, <Qm>. */
17067 if (imm == 0)
17068 {
17069 inst.operands[2].present = 0;
17070 inst.instruction = N_MNEM_vqmovun;
17071 do_neon_qmovun ();
17072 return;
17073 }
17074
17075 constraint (imm < 1 || (unsigned)imm > et.size,
17076 _("immediate out of range"));
17077 /* FIXME: The manual is kind of unclear about what value U should have in
17078 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
17079 must be 1. */
17080 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
17081 }
17082
17083 static void
17084 do_neon_movn (void)
17085 {
17086 struct neon_type_el et = neon_check_type (2, NS_DQ,
17087 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17088 NEON_ENCODE (INTEGER, inst);
17089 neon_two_same (0, 1, et.size / 2);
17090 }
17091
17092 static void
17093 do_neon_rshift_narrow (void)
17094 {
17095 struct neon_type_el et = neon_check_type (2, NS_DQI,
17096 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
17097 int imm = inst.operands[2].imm;
17098 /* This gets the bounds check, size encoding and immediate bits calculation
17099 right. */
17100 et.size /= 2;
17101
17102 /* If immediate is zero then we are a pseudo-instruction for
17103 VMOVN.I<size> <Dd>, <Qm> */
17104 if (imm == 0)
17105 {
17106 inst.operands[2].present = 0;
17107 inst.instruction = N_MNEM_vmovn;
17108 do_neon_movn ();
17109 return;
17110 }
17111
17112 constraint (imm < 1 || (unsigned)imm > et.size,
17113 _("immediate out of range for narrowing operation"));
17114 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
17115 }
17116
17117 static void
17118 do_neon_shll (void)
17119 {
17120 /* FIXME: Type checking when lengthening. */
17121 struct neon_type_el et = neon_check_type (2, NS_QDI,
17122 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
17123 unsigned imm = inst.operands[2].imm;
17124
17125 if (imm == et.size)
17126 {
17127 /* Maximum shift variant. */
17128 NEON_ENCODE (INTEGER, inst);
17129 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17130 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17131 inst.instruction |= LOW4 (inst.operands[1].reg);
17132 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17133 inst.instruction |= neon_logbits (et.size) << 18;
17134
17135 neon_dp_fixup (&inst);
17136 }
17137 else
17138 {
17139 /* A more-specific type check for non-max versions. */
17140 et = neon_check_type (2, NS_QDI,
17141 N_EQK | N_DBL, N_SU_32 | N_KEY);
17142 NEON_ENCODE (IMMED, inst);
17143 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
17144 }
17145 }
17146
17147 /* Check the various types for the VCVT instruction, and return which version
17148 the current instruction is. */
17149
17150 #define CVT_FLAVOUR_VAR \
17151 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
17152 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
17153 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
17154 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
17155 /* Half-precision conversions. */ \
17156 CVT_VAR (s16_f16, N_S16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17157 CVT_VAR (u16_f16, N_U16, N_F16 | N_KEY, whole_reg, NULL, NULL, NULL) \
17158 CVT_VAR (f16_s16, N_F16 | N_KEY, N_S16, whole_reg, NULL, NULL, NULL) \
17159 CVT_VAR (f16_u16, N_F16 | N_KEY, N_U16, whole_reg, NULL, NULL, NULL) \
17160 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
17161 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
17162 /* New VCVT instructions introduced by ARMv8.2 fp16 extension. \
17163 Compared with single/double precision variants, only the co-processor \
17164 field is different, so the encoding flow is reused here. */ \
17165 CVT_VAR (f16_s32, N_F16 | N_KEY, N_S32, N_VFP, "fsltos", "fsitos", NULL) \
17166 CVT_VAR (f16_u32, N_F16 | N_KEY, N_U32, N_VFP, "fultos", "fuitos", NULL) \
17167 CVT_VAR (u32_f16, N_U32, N_F16 | N_KEY, N_VFP, "ftouls", "ftouis", "ftouizs")\
17168 CVT_VAR (s32_f16, N_S32, N_F16 | N_KEY, N_VFP, "ftosls", "ftosis", "ftosizs")\
17169 /* VFP instructions. */ \
17170 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
17171 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
17172 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
17173 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
17174 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
17175 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
17176 /* VFP instructions with bitshift. */ \
17177 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
17178 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
17179 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
17180 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
17181 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
17182 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
17183 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
17184 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
17185
17186 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
17187 neon_cvt_flavour_##C,
17188
17189 /* The different types of conversions we can do. */
17190 enum neon_cvt_flavour
17191 {
17192 CVT_FLAVOUR_VAR
17193 neon_cvt_flavour_invalid,
17194 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
17195 };
17196
17197 #undef CVT_VAR
17198
17199 static enum neon_cvt_flavour
17200 get_neon_cvt_flavour (enum neon_shape rs)
17201 {
17202 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
17203 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
17204 if (et.type != NT_invtype) \
17205 { \
17206 inst.error = NULL; \
17207 return (neon_cvt_flavour_##C); \
17208 }
17209
17210 struct neon_type_el et;
17211 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
17212 || rs == NS_FF) ? N_VFP : 0;
17213 /* The instruction versions which take an immediate take one register
17214 argument, which is extended to the width of the full register. Thus the
17215 "source" and "destination" registers must have the same width. Hack that
17216 here by making the size equal to the key (wider, in this case) operand. */
17217 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
17218
17219 CVT_FLAVOUR_VAR;
17220
17221 return neon_cvt_flavour_invalid;
17222 #undef CVT_VAR
17223 }
17224
17225 enum neon_cvt_mode
17226 {
17227 neon_cvt_mode_a,
17228 neon_cvt_mode_n,
17229 neon_cvt_mode_p,
17230 neon_cvt_mode_m,
17231 neon_cvt_mode_z,
17232 neon_cvt_mode_x,
17233 neon_cvt_mode_r
17234 };
17235
17236 /* Neon-syntax VFP conversions. */
17237
17238 static void
17239 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
17240 {
17241 const char *opname = 0;
17242
17243 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI
17244 || rs == NS_FHI || rs == NS_HFI)
17245 {
17246 /* Conversions with immediate bitshift. */
17247 const char *enc[] =
17248 {
17249 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
17250 CVT_FLAVOUR_VAR
17251 NULL
17252 #undef CVT_VAR
17253 };
17254
17255 if (flavour < (int) ARRAY_SIZE (enc))
17256 {
17257 opname = enc[flavour];
17258 constraint (inst.operands[0].reg != inst.operands[1].reg,
17259 _("operands 0 and 1 must be the same register"));
17260 inst.operands[1] = inst.operands[2];
17261 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
17262 }
17263 }
17264 else
17265 {
17266 /* Conversions without bitshift. */
17267 const char *enc[] =
17268 {
17269 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
17270 CVT_FLAVOUR_VAR
17271 NULL
17272 #undef CVT_VAR
17273 };
17274
17275 if (flavour < (int) ARRAY_SIZE (enc))
17276 opname = enc[flavour];
17277 }
17278
17279 if (opname)
17280 do_vfp_nsyn_opcode (opname);
17281
17282 /* ARMv8.2 fp16 VCVT instruction. */
17283 if (flavour == neon_cvt_flavour_s32_f16
17284 || flavour == neon_cvt_flavour_u32_f16
17285 || flavour == neon_cvt_flavour_f16_u32
17286 || flavour == neon_cvt_flavour_f16_s32)
17287 do_scalar_fp16_v82_encode ();
17288 }
17289
17290 static void
17291 do_vfp_nsyn_cvtz (void)
17292 {
17293 enum neon_shape rs = neon_select_shape (NS_FH, NS_FF, NS_FD, NS_NULL);
17294 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17295 const char *enc[] =
17296 {
17297 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
17298 CVT_FLAVOUR_VAR
17299 NULL
17300 #undef CVT_VAR
17301 };
17302
17303 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
17304 do_vfp_nsyn_opcode (enc[flavour]);
17305 }
17306
17307 static void
17308 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
17309 enum neon_cvt_mode mode)
17310 {
17311 int sz, op;
17312 int rm;
17313
17314 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
17315 D register operands. */
17316 if (flavour == neon_cvt_flavour_s32_f64
17317 || flavour == neon_cvt_flavour_u32_f64)
17318 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17319 _(BAD_FPU));
17320
17321 if (flavour == neon_cvt_flavour_s32_f16
17322 || flavour == neon_cvt_flavour_u32_f16)
17323 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16),
17324 _(BAD_FP16));
17325
17326 set_pred_insn_type (OUTSIDE_PRED_INSN);
17327
17328 switch (flavour)
17329 {
17330 case neon_cvt_flavour_s32_f64:
17331 sz = 1;
17332 op = 1;
17333 break;
17334 case neon_cvt_flavour_s32_f32:
17335 sz = 0;
17336 op = 1;
17337 break;
17338 case neon_cvt_flavour_s32_f16:
17339 sz = 0;
17340 op = 1;
17341 break;
17342 case neon_cvt_flavour_u32_f64:
17343 sz = 1;
17344 op = 0;
17345 break;
17346 case neon_cvt_flavour_u32_f32:
17347 sz = 0;
17348 op = 0;
17349 break;
17350 case neon_cvt_flavour_u32_f16:
17351 sz = 0;
17352 op = 0;
17353 break;
17354 default:
17355 first_error (_("invalid instruction shape"));
17356 return;
17357 }
17358
17359 switch (mode)
17360 {
17361 case neon_cvt_mode_a: rm = 0; break;
17362 case neon_cvt_mode_n: rm = 1; break;
17363 case neon_cvt_mode_p: rm = 2; break;
17364 case neon_cvt_mode_m: rm = 3; break;
17365 default: first_error (_("invalid rounding mode")); return;
17366 }
17367
17368 NEON_ENCODE (FPV8, inst);
17369 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
17370 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
17371 inst.instruction |= sz << 8;
17372
17373 /* ARMv8.2 fp16 VCVT instruction. */
17374 if (flavour == neon_cvt_flavour_s32_f16
17375 ||flavour == neon_cvt_flavour_u32_f16)
17376 do_scalar_fp16_v82_encode ();
17377 inst.instruction |= op << 7;
17378 inst.instruction |= rm << 16;
17379 inst.instruction |= 0xf0000000;
17380 inst.is_neon = TRUE;
17381 }
17382
17383 static void
17384 do_neon_cvt_1 (enum neon_cvt_mode mode)
17385 {
17386 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
17387 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ,
17388 NS_FH, NS_HF, NS_FHI, NS_HFI,
17389 NS_NULL);
17390 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17391
17392 if (flavour == neon_cvt_flavour_invalid)
17393 return;
17394
17395 /* PR11109: Handle round-to-zero for VCVT conversions. */
17396 if (mode == neon_cvt_mode_z
17397 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
17398 && (flavour == neon_cvt_flavour_s16_f16
17399 || flavour == neon_cvt_flavour_u16_f16
17400 || flavour == neon_cvt_flavour_s32_f32
17401 || flavour == neon_cvt_flavour_u32_f32
17402 || flavour == neon_cvt_flavour_s32_f64
17403 || flavour == neon_cvt_flavour_u32_f64)
17404 && (rs == NS_FD || rs == NS_FF))
17405 {
17406 do_vfp_nsyn_cvtz ();
17407 return;
17408 }
17409
17410 /* ARMv8.2 fp16 VCVT conversions. */
17411 if (mode == neon_cvt_mode_z
17412 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16)
17413 && (flavour == neon_cvt_flavour_s32_f16
17414 || flavour == neon_cvt_flavour_u32_f16)
17415 && (rs == NS_FH))
17416 {
17417 do_vfp_nsyn_cvtz ();
17418 do_scalar_fp16_v82_encode ();
17419 return;
17420 }
17421
17422 /* VFP rather than Neon conversions. */
17423 if (flavour >= neon_cvt_flavour_first_fp)
17424 {
17425 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17426 do_vfp_nsyn_cvt (rs, flavour);
17427 else
17428 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17429
17430 return;
17431 }
17432
17433 switch (rs)
17434 {
17435 case NS_QQI:
17436 if (mode == neon_cvt_mode_z
17437 && (flavour == neon_cvt_flavour_f16_s16
17438 || flavour == neon_cvt_flavour_f16_u16
17439 || flavour == neon_cvt_flavour_s16_f16
17440 || flavour == neon_cvt_flavour_u16_f16
17441 || flavour == neon_cvt_flavour_f32_u32
17442 || flavour == neon_cvt_flavour_f32_s32
17443 || flavour == neon_cvt_flavour_s32_f32
17444 || flavour == neon_cvt_flavour_u32_f32))
17445 {
17446 if (check_simd_pred_availability (1, NEON_CHECK_CC | NEON_CHECK_ARCH))
17447 return;
17448 }
17449 else if (mode == neon_cvt_mode_n)
17450 {
17451 /* We are dealing with vcvt with the 'ne' condition. */
17452 inst.cond = 0x1;
17453 inst.instruction = N_MNEM_vcvt;
17454 do_neon_cvt_1 (neon_cvt_mode_z);
17455 return;
17456 }
17457 /* fall through. */
17458 case NS_DDI:
17459 {
17460 unsigned immbits;
17461 unsigned enctab[] = {0x0000100, 0x1000100, 0x0, 0x1000000,
17462 0x0000100, 0x1000100, 0x0, 0x1000000};
17463
17464 if ((rs != NS_QQI || !ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17465 && vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17466 return;
17467
17468 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17469 {
17470 constraint (inst.operands[2].present && inst.operands[2].imm == 0,
17471 _("immediate value out of range"));
17472 switch (flavour)
17473 {
17474 case neon_cvt_flavour_f16_s16:
17475 case neon_cvt_flavour_f16_u16:
17476 case neon_cvt_flavour_s16_f16:
17477 case neon_cvt_flavour_u16_f16:
17478 constraint (inst.operands[2].imm > 16,
17479 _("immediate value out of range"));
17480 break;
17481 case neon_cvt_flavour_f32_u32:
17482 case neon_cvt_flavour_f32_s32:
17483 case neon_cvt_flavour_s32_f32:
17484 case neon_cvt_flavour_u32_f32:
17485 constraint (inst.operands[2].imm > 32,
17486 _("immediate value out of range"));
17487 break;
17488 default:
17489 inst.error = BAD_FPU;
17490 return;
17491 }
17492 }
17493
17494 /* Fixed-point conversion with #0 immediate is encoded as an
17495 integer conversion. */
17496 if (inst.operands[2].present && inst.operands[2].imm == 0)
17497 goto int_encode;
17498 NEON_ENCODE (IMMED, inst);
17499 if (flavour != neon_cvt_flavour_invalid)
17500 inst.instruction |= enctab[flavour];
17501 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17502 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17503 inst.instruction |= LOW4 (inst.operands[1].reg);
17504 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17505 inst.instruction |= neon_quad (rs) << 6;
17506 inst.instruction |= 1 << 21;
17507 if (flavour < neon_cvt_flavour_s16_f16)
17508 {
17509 inst.instruction |= 1 << 21;
17510 immbits = 32 - inst.operands[2].imm;
17511 inst.instruction |= immbits << 16;
17512 }
17513 else
17514 {
17515 inst.instruction |= 3 << 20;
17516 immbits = 16 - inst.operands[2].imm;
17517 inst.instruction |= immbits << 16;
17518 inst.instruction &= ~(1 << 9);
17519 }
17520
17521 neon_dp_fixup (&inst);
17522 }
17523 break;
17524
17525 case NS_QQ:
17526 if ((mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
17527 || mode == neon_cvt_mode_m || mode == neon_cvt_mode_p)
17528 && (flavour == neon_cvt_flavour_s16_f16
17529 || flavour == neon_cvt_flavour_u16_f16
17530 || flavour == neon_cvt_flavour_s32_f32
17531 || flavour == neon_cvt_flavour_u32_f32))
17532 {
17533 if (check_simd_pred_availability (1,
17534 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17535 return;
17536 }
17537 else if (mode == neon_cvt_mode_z
17538 && (flavour == neon_cvt_flavour_f16_s16
17539 || flavour == neon_cvt_flavour_f16_u16
17540 || flavour == neon_cvt_flavour_s16_f16
17541 || flavour == neon_cvt_flavour_u16_f16
17542 || flavour == neon_cvt_flavour_f32_u32
17543 || flavour == neon_cvt_flavour_f32_s32
17544 || flavour == neon_cvt_flavour_s32_f32
17545 || flavour == neon_cvt_flavour_u32_f32))
17546 {
17547 if (check_simd_pred_availability (1,
17548 NEON_CHECK_CC | NEON_CHECK_ARCH))
17549 return;
17550 }
17551 /* fall through. */
17552 case NS_DD:
17553 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
17554 {
17555
17556 NEON_ENCODE (FLOAT, inst);
17557 if (check_simd_pred_availability (1,
17558 NEON_CHECK_CC | NEON_CHECK_ARCH8))
17559 return;
17560
17561 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17562 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17563 inst.instruction |= LOW4 (inst.operands[1].reg);
17564 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17565 inst.instruction |= neon_quad (rs) << 6;
17566 inst.instruction |= (flavour == neon_cvt_flavour_u16_f16
17567 || flavour == neon_cvt_flavour_u32_f32) << 7;
17568 inst.instruction |= mode << 8;
17569 if (flavour == neon_cvt_flavour_u16_f16
17570 || flavour == neon_cvt_flavour_s16_f16)
17571 /* Mask off the original size bits and reencode them. */
17572 inst.instruction = ((inst.instruction & 0xfff3ffff) | (1 << 18));
17573
17574 if (thumb_mode)
17575 inst.instruction |= 0xfc000000;
17576 else
17577 inst.instruction |= 0xf0000000;
17578 }
17579 else
17580 {
17581 int_encode:
17582 {
17583 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080,
17584 0x100, 0x180, 0x0, 0x080};
17585
17586 NEON_ENCODE (INTEGER, inst);
17587
17588 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_fp_ext))
17589 {
17590 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17591 return;
17592 }
17593
17594 if (flavour != neon_cvt_flavour_invalid)
17595 inst.instruction |= enctab[flavour];
17596
17597 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17598 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17599 inst.instruction |= LOW4 (inst.operands[1].reg);
17600 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17601 inst.instruction |= neon_quad (rs) << 6;
17602 if (flavour >= neon_cvt_flavour_s16_f16
17603 && flavour <= neon_cvt_flavour_f16_u16)
17604 /* Half precision. */
17605 inst.instruction |= 1 << 18;
17606 else
17607 inst.instruction |= 2 << 18;
17608
17609 neon_dp_fixup (&inst);
17610 }
17611 }
17612 break;
17613
17614 /* Half-precision conversions for Advanced SIMD -- neon. */
17615 case NS_QD:
17616 case NS_DQ:
17617 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
17618 return;
17619
17620 if ((rs == NS_DQ)
17621 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
17622 {
17623 as_bad (_("operand size must match register width"));
17624 break;
17625 }
17626
17627 if ((rs == NS_QD)
17628 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
17629 {
17630 as_bad (_("operand size must match register width"));
17631 break;
17632 }
17633
17634 if (rs == NS_DQ)
17635 inst.instruction = 0x3b60600;
17636 else
17637 inst.instruction = 0x3b60700;
17638
17639 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17640 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17641 inst.instruction |= LOW4 (inst.operands[1].reg);
17642 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17643 neon_dp_fixup (&inst);
17644 break;
17645
17646 default:
17647 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
17648 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
17649 do_vfp_nsyn_cvt (rs, flavour);
17650 else
17651 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
17652 }
17653 }
17654
17655 static void
17656 do_neon_cvtr (void)
17657 {
17658 do_neon_cvt_1 (neon_cvt_mode_x);
17659 }
17660
17661 static void
17662 do_neon_cvt (void)
17663 {
17664 do_neon_cvt_1 (neon_cvt_mode_z);
17665 }
17666
17667 static void
17668 do_neon_cvta (void)
17669 {
17670 do_neon_cvt_1 (neon_cvt_mode_a);
17671 }
17672
17673 static void
17674 do_neon_cvtn (void)
17675 {
17676 do_neon_cvt_1 (neon_cvt_mode_n);
17677 }
17678
17679 static void
17680 do_neon_cvtp (void)
17681 {
17682 do_neon_cvt_1 (neon_cvt_mode_p);
17683 }
17684
17685 static void
17686 do_neon_cvtm (void)
17687 {
17688 do_neon_cvt_1 (neon_cvt_mode_m);
17689 }
17690
17691 static void
17692 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
17693 {
17694 if (is_double)
17695 mark_feature_used (&fpu_vfp_ext_armv8);
17696
17697 encode_arm_vfp_reg (inst.operands[0].reg,
17698 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
17699 encode_arm_vfp_reg (inst.operands[1].reg,
17700 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
17701 inst.instruction |= to ? 0x10000 : 0;
17702 inst.instruction |= t ? 0x80 : 0;
17703 inst.instruction |= is_double ? 0x100 : 0;
17704 do_vfp_cond_or_thumb ();
17705 }
17706
17707 static void
17708 do_neon_cvttb_1 (bfd_boolean t)
17709 {
17710 enum neon_shape rs = neon_select_shape (NS_HF, NS_HD, NS_FH, NS_FF, NS_FD,
17711 NS_DF, NS_DH, NS_QQ, NS_QQI, NS_NULL);
17712
17713 if (rs == NS_NULL)
17714 return;
17715 else if (rs == NS_QQ || rs == NS_QQI)
17716 {
17717 int single_to_half = 0;
17718 if (check_simd_pred_availability (1, NEON_CHECK_ARCH))
17719 return;
17720
17721 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
17722
17723 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17724 && (flavour == neon_cvt_flavour_u16_f16
17725 || flavour == neon_cvt_flavour_s16_f16
17726 || flavour == neon_cvt_flavour_f16_s16
17727 || flavour == neon_cvt_flavour_f16_u16
17728 || flavour == neon_cvt_flavour_u32_f32
17729 || flavour == neon_cvt_flavour_s32_f32
17730 || flavour == neon_cvt_flavour_f32_s32
17731 || flavour == neon_cvt_flavour_f32_u32))
17732 {
17733 inst.cond = 0xf;
17734 inst.instruction = N_MNEM_vcvt;
17735 set_pred_insn_type (INSIDE_VPT_INSN);
17736 do_neon_cvt_1 (neon_cvt_mode_z);
17737 return;
17738 }
17739 else if (rs == NS_QQ && flavour == neon_cvt_flavour_f32_f16)
17740 single_to_half = 1;
17741 else if (rs == NS_QQ && flavour != neon_cvt_flavour_f16_f32)
17742 {
17743 first_error (BAD_FPU);
17744 return;
17745 }
17746
17747 inst.instruction = 0xee3f0e01;
17748 inst.instruction |= single_to_half << 28;
17749 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17750 inst.instruction |= LOW4 (inst.operands[0].reg) << 13;
17751 inst.instruction |= t << 12;
17752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17753 inst.instruction |= LOW4 (inst.operands[1].reg) << 1;
17754 inst.is_neon = 1;
17755 }
17756 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
17757 {
17758 inst.error = NULL;
17759 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
17760 }
17761 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
17762 {
17763 inst.error = NULL;
17764 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
17765 }
17766 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
17767 {
17768 /* The VCVTB and VCVTT instructions with D-register operands
17769 don't work for SP only targets. */
17770 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17771 _(BAD_FPU));
17772
17773 inst.error = NULL;
17774 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
17775 }
17776 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
17777 {
17778 /* The VCVTB and VCVTT instructions with D-register operands
17779 don't work for SP only targets. */
17780 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
17781 _(BAD_FPU));
17782
17783 inst.error = NULL;
17784 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
17785 }
17786 else
17787 return;
17788 }
17789
17790 static void
17791 do_neon_cvtb (void)
17792 {
17793 do_neon_cvttb_1 (FALSE);
17794 }
17795
17796
17797 static void
17798 do_neon_cvtt (void)
17799 {
17800 do_neon_cvttb_1 (TRUE);
17801 }
17802
17803 static void
17804 neon_move_immediate (void)
17805 {
17806 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
17807 struct neon_type_el et = neon_check_type (2, rs,
17808 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
17809 unsigned immlo, immhi = 0, immbits;
17810 int op, cmode, float_p;
17811
17812 constraint (et.type == NT_invtype,
17813 _("operand size must be specified for immediate VMOV"));
17814
17815 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
17816 op = (inst.instruction & (1 << 5)) != 0;
17817
17818 immlo = inst.operands[1].imm;
17819 if (inst.operands[1].regisimm)
17820 immhi = inst.operands[1].reg;
17821
17822 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
17823 _("immediate has bits set outside the operand size"));
17824
17825 float_p = inst.operands[1].immisfloat;
17826
17827 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
17828 et.size, et.type)) == FAIL)
17829 {
17830 /* Invert relevant bits only. */
17831 neon_invert_size (&immlo, &immhi, et.size);
17832 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
17833 with one or the other; those cases are caught by
17834 neon_cmode_for_move_imm. */
17835 op = !op;
17836 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
17837 &op, et.size, et.type)) == FAIL)
17838 {
17839 first_error (_("immediate out of range"));
17840 return;
17841 }
17842 }
17843
17844 inst.instruction &= ~(1 << 5);
17845 inst.instruction |= op << 5;
17846
17847 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17848 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17849 inst.instruction |= neon_quad (rs) << 6;
17850 inst.instruction |= cmode << 8;
17851
17852 neon_write_immbits (immbits);
17853 }
17854
17855 static void
17856 do_neon_mvn (void)
17857 {
17858 if (inst.operands[1].isreg)
17859 {
17860 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
17861
17862 NEON_ENCODE (INTEGER, inst);
17863 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17864 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17865 inst.instruction |= LOW4 (inst.operands[1].reg);
17866 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
17867 inst.instruction |= neon_quad (rs) << 6;
17868 }
17869 else
17870 {
17871 NEON_ENCODE (IMMED, inst);
17872 neon_move_immediate ();
17873 }
17874
17875 neon_dp_fixup (&inst);
17876 }
17877
17878 /* Encode instructions of form:
17879
17880 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
17881 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
17882
17883 static void
17884 neon_mixed_length (struct neon_type_el et, unsigned size)
17885 {
17886 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
17887 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
17888 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
17889 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
17890 inst.instruction |= LOW4 (inst.operands[2].reg);
17891 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
17892 inst.instruction |= (et.type == NT_unsigned) << 24;
17893 inst.instruction |= neon_logbits (size) << 20;
17894
17895 neon_dp_fixup (&inst);
17896 }
17897
17898 static void
17899 do_neon_dyadic_long (void)
17900 {
17901 enum neon_shape rs = neon_select_shape (NS_QDD, NS_QQQ, NS_QQR, NS_NULL);
17902 if (rs == NS_QDD)
17903 {
17904 if (vfp_or_neon_is_neon (NEON_CHECK_ARCH | NEON_CHECK_CC) == FAIL)
17905 return;
17906
17907 NEON_ENCODE (INTEGER, inst);
17908 /* FIXME: Type checking for lengthening op. */
17909 struct neon_type_el et = neon_check_type (3, NS_QDD,
17910 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
17911 neon_mixed_length (et, et.size);
17912 }
17913 else if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
17914 && (inst.cond == 0xf || inst.cond == 0x10))
17915 {
17916 /* If parsing for MVE, vaddl/vsubl/vabdl{e,t} can only be vadd/vsub/vabd
17917 in an IT block with le/lt conditions. */
17918
17919 if (inst.cond == 0xf)
17920 inst.cond = 0xb;
17921 else if (inst.cond == 0x10)
17922 inst.cond = 0xd;
17923
17924 inst.pred_insn_type = INSIDE_IT_INSN;
17925
17926 if (inst.instruction == N_MNEM_vaddl)
17927 {
17928 inst.instruction = N_MNEM_vadd;
17929 do_neon_addsub_if_i ();
17930 }
17931 else if (inst.instruction == N_MNEM_vsubl)
17932 {
17933 inst.instruction = N_MNEM_vsub;
17934 do_neon_addsub_if_i ();
17935 }
17936 else if (inst.instruction == N_MNEM_vabdl)
17937 {
17938 inst.instruction = N_MNEM_vabd;
17939 do_neon_dyadic_if_su ();
17940 }
17941 }
17942 else
17943 first_error (BAD_FPU);
17944 }
17945
17946 static void
17947 do_neon_abal (void)
17948 {
17949 struct neon_type_el et = neon_check_type (3, NS_QDD,
17950 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
17951 neon_mixed_length (et, et.size);
17952 }
17953
17954 static void
17955 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
17956 {
17957 if (inst.operands[2].isscalar)
17958 {
17959 struct neon_type_el et = neon_check_type (3, NS_QDS,
17960 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
17961 NEON_ENCODE (SCALAR, inst);
17962 neon_mul_mac (et, et.type == NT_unsigned);
17963 }
17964 else
17965 {
17966 struct neon_type_el et = neon_check_type (3, NS_QDD,
17967 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
17968 NEON_ENCODE (INTEGER, inst);
17969 neon_mixed_length (et, et.size);
17970 }
17971 }
17972
17973 static void
17974 do_neon_mac_maybe_scalar_long (void)
17975 {
17976 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
17977 }
17978
17979 /* Like neon_scalar_for_mul, this function generate Rm encoding from GAS's
17980 internal SCALAR. QUAD_P is 1 if it's for Q format, otherwise it's 0. */
17981
17982 static unsigned
17983 neon_scalar_for_fmac_fp16_long (unsigned scalar, unsigned quad_p)
17984 {
17985 unsigned regno = NEON_SCALAR_REG (scalar);
17986 unsigned elno = NEON_SCALAR_INDEX (scalar);
17987
17988 if (quad_p)
17989 {
17990 if (regno > 7 || elno > 3)
17991 goto bad_scalar;
17992
17993 return ((regno & 0x7)
17994 | ((elno & 0x1) << 3)
17995 | (((elno >> 1) & 0x1) << 5));
17996 }
17997 else
17998 {
17999 if (regno > 15 || elno > 1)
18000 goto bad_scalar;
18001
18002 return (((regno & 0x1) << 5)
18003 | ((regno >> 1) & 0x7)
18004 | ((elno & 0x1) << 3));
18005 }
18006
18007 bad_scalar:
18008 first_error (_("scalar out of range for multiply instruction"));
18009 return 0;
18010 }
18011
18012 static void
18013 do_neon_fmac_maybe_scalar_long (int subtype)
18014 {
18015 enum neon_shape rs;
18016 int high8;
18017 /* NOTE: vfmal/vfmsl use slightly different NEON three-same encoding. 'size"
18018 field (bits[21:20]) has different meaning. For scalar index variant, it's
18019 used to differentiate add and subtract, otherwise it's with fixed value
18020 0x2. */
18021 int size = -1;
18022
18023 if (inst.cond != COND_ALWAYS)
18024 as_warn (_("vfmal/vfmsl with FP16 type cannot be conditional, the "
18025 "behaviour is UNPREDICTABLE"));
18026
18027 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_fp16_fml),
18028 _(BAD_FP16));
18029
18030 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
18031 _(BAD_FPU));
18032
18033 /* vfmal/vfmsl are in three-same D/Q register format or the third operand can
18034 be a scalar index register. */
18035 if (inst.operands[2].isscalar)
18036 {
18037 high8 = 0xfe000000;
18038 if (subtype)
18039 size = 16;
18040 rs = neon_select_shape (NS_DHS, NS_QDS, NS_NULL);
18041 }
18042 else
18043 {
18044 high8 = 0xfc000000;
18045 size = 32;
18046 if (subtype)
18047 inst.instruction |= (0x1 << 23);
18048 rs = neon_select_shape (NS_DHH, NS_QDD, NS_NULL);
18049 }
18050
18051 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_F16);
18052
18053 /* "opcode" from template has included "ubit", so simply pass 0 here. Also,
18054 the "S" bit in size field has been reused to differentiate vfmal and vfmsl,
18055 so we simply pass -1 as size. */
18056 unsigned quad_p = (rs == NS_QDD || rs == NS_QDS);
18057 neon_three_same (quad_p, 0, size);
18058
18059 /* Undo neon_dp_fixup. Redo the high eight bits. */
18060 inst.instruction &= 0x00ffffff;
18061 inst.instruction |= high8;
18062
18063 #define LOW1(R) ((R) & 0x1)
18064 #define HI4(R) (((R) >> 1) & 0xf)
18065 /* Unlike usually NEON three-same, encoding for Vn and Vm will depend on
18066 whether the instruction is in Q form and whether Vm is a scalar indexed
18067 operand. */
18068 if (inst.operands[2].isscalar)
18069 {
18070 unsigned rm
18071 = neon_scalar_for_fmac_fp16_long (inst.operands[2].reg, quad_p);
18072 inst.instruction &= 0xffffffd0;
18073 inst.instruction |= rm;
18074
18075 if (!quad_p)
18076 {
18077 /* Redo Rn as well. */
18078 inst.instruction &= 0xfff0ff7f;
18079 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18080 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18081 }
18082 }
18083 else if (!quad_p)
18084 {
18085 /* Redo Rn and Rm. */
18086 inst.instruction &= 0xfff0ff50;
18087 inst.instruction |= HI4 (inst.operands[1].reg) << 16;
18088 inst.instruction |= LOW1 (inst.operands[1].reg) << 7;
18089 inst.instruction |= HI4 (inst.operands[2].reg);
18090 inst.instruction |= LOW1 (inst.operands[2].reg) << 5;
18091 }
18092 }
18093
18094 static void
18095 do_neon_vfmal (void)
18096 {
18097 return do_neon_fmac_maybe_scalar_long (0);
18098 }
18099
18100 static void
18101 do_neon_vfmsl (void)
18102 {
18103 return do_neon_fmac_maybe_scalar_long (1);
18104 }
18105
18106 static void
18107 do_neon_dyadic_wide (void)
18108 {
18109 struct neon_type_el et = neon_check_type (3, NS_QQD,
18110 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
18111 neon_mixed_length (et, et.size);
18112 }
18113
18114 static void
18115 do_neon_dyadic_narrow (void)
18116 {
18117 struct neon_type_el et = neon_check_type (3, NS_QDD,
18118 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
18119 /* Operand sign is unimportant, and the U bit is part of the opcode,
18120 so force the operand type to integer. */
18121 et.type = NT_integer;
18122 neon_mixed_length (et, et.size / 2);
18123 }
18124
18125 static void
18126 do_neon_mul_sat_scalar_long (void)
18127 {
18128 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
18129 }
18130
18131 static void
18132 do_neon_vmull (void)
18133 {
18134 if (inst.operands[2].isscalar)
18135 do_neon_mac_maybe_scalar_long ();
18136 else
18137 {
18138 struct neon_type_el et = neon_check_type (3, NS_QDD,
18139 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
18140
18141 if (et.type == NT_poly)
18142 NEON_ENCODE (POLY, inst);
18143 else
18144 NEON_ENCODE (INTEGER, inst);
18145
18146 /* For polynomial encoding the U bit must be zero, and the size must
18147 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
18148 obviously, as 0b10). */
18149 if (et.size == 64)
18150 {
18151 /* Check we're on the correct architecture. */
18152 if (!mark_feature_used (&fpu_crypto_ext_armv8))
18153 inst.error =
18154 _("Instruction form not available on this architecture.");
18155
18156 et.size = 32;
18157 }
18158
18159 neon_mixed_length (et, et.size);
18160 }
18161 }
18162
18163 static void
18164 do_neon_ext (void)
18165 {
18166 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
18167 struct neon_type_el et = neon_check_type (3, rs,
18168 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
18169 unsigned imm = (inst.operands[3].imm * et.size) / 8;
18170
18171 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
18172 _("shift out of range"));
18173 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18174 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18175 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18176 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18177 inst.instruction |= LOW4 (inst.operands[2].reg);
18178 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18179 inst.instruction |= neon_quad (rs) << 6;
18180 inst.instruction |= imm << 8;
18181
18182 neon_dp_fixup (&inst);
18183 }
18184
18185 static void
18186 do_neon_rev (void)
18187 {
18188 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18189 struct neon_type_el et = neon_check_type (2, rs,
18190 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18191 unsigned op = (inst.instruction >> 7) & 3;
18192 /* N (width of reversed regions) is encoded as part of the bitmask. We
18193 extract it here to check the elements to be reversed are smaller.
18194 Otherwise we'd get a reserved instruction. */
18195 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
18196 gas_assert (elsize != 0);
18197 constraint (et.size >= elsize,
18198 _("elements must be smaller than reversal region"));
18199 neon_two_same (neon_quad (rs), 1, et.size);
18200 }
18201
18202 static void
18203 do_neon_dup (void)
18204 {
18205 if (inst.operands[1].isscalar)
18206 {
18207 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
18208 struct neon_type_el et = neon_check_type (2, rs,
18209 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18210 unsigned sizebits = et.size >> 3;
18211 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
18212 int logsize = neon_logbits (et.size);
18213 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
18214
18215 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
18216 return;
18217
18218 NEON_ENCODE (SCALAR, inst);
18219 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18220 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18221 inst.instruction |= LOW4 (dm);
18222 inst.instruction |= HI1 (dm) << 5;
18223 inst.instruction |= neon_quad (rs) << 6;
18224 inst.instruction |= x << 17;
18225 inst.instruction |= sizebits << 16;
18226
18227 neon_dp_fixup (&inst);
18228 }
18229 else
18230 {
18231 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
18232 struct neon_type_el et = neon_check_type (2, rs,
18233 N_8 | N_16 | N_32 | N_KEY, N_EQK);
18234 /* Duplicate ARM register to lanes of vector. */
18235 NEON_ENCODE (ARMREG, inst);
18236 switch (et.size)
18237 {
18238 case 8: inst.instruction |= 0x400000; break;
18239 case 16: inst.instruction |= 0x000020; break;
18240 case 32: inst.instruction |= 0x000000; break;
18241 default: break;
18242 }
18243 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18244 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
18245 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
18246 inst.instruction |= neon_quad (rs) << 21;
18247 /* The encoding for this instruction is identical for the ARM and Thumb
18248 variants, except for the condition field. */
18249 do_vfp_cond_or_thumb ();
18250 }
18251 }
18252
18253 static void
18254 do_mve_mov (int toQ)
18255 {
18256 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18257 return;
18258 if (inst.cond > COND_ALWAYS)
18259 inst.pred_insn_type = MVE_UNPREDICABLE_INSN;
18260
18261 unsigned Rt = 0, Rt2 = 1, Q0 = 2, Q1 = 3;
18262 if (toQ)
18263 {
18264 Q0 = 0;
18265 Q1 = 1;
18266 Rt = 2;
18267 Rt2 = 3;
18268 }
18269
18270 constraint (inst.operands[Q0].reg != inst.operands[Q1].reg + 2,
18271 _("Index one must be [2,3] and index two must be two less than"
18272 " index one."));
18273 constraint (inst.operands[Rt].reg == inst.operands[Rt2].reg,
18274 _("General purpose registers may not be the same"));
18275 constraint (inst.operands[Rt].reg == REG_SP
18276 || inst.operands[Rt2].reg == REG_SP,
18277 BAD_SP);
18278 constraint (inst.operands[Rt].reg == REG_PC
18279 || inst.operands[Rt2].reg == REG_PC,
18280 BAD_PC);
18281
18282 inst.instruction = 0xec000f00;
18283 inst.instruction |= HI1 (inst.operands[Q1].reg / 32) << 23;
18284 inst.instruction |= !!toQ << 20;
18285 inst.instruction |= inst.operands[Rt2].reg << 16;
18286 inst.instruction |= LOW4 (inst.operands[Q1].reg / 32) << 13;
18287 inst.instruction |= (inst.operands[Q1].reg % 4) << 4;
18288 inst.instruction |= inst.operands[Rt].reg;
18289 }
18290
18291 static void
18292 do_mve_movn (void)
18293 {
18294 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18295 return;
18296
18297 if (inst.cond > COND_ALWAYS)
18298 inst.pred_insn_type = INSIDE_VPT_INSN;
18299 else
18300 inst.pred_insn_type = MVE_OUTSIDE_PRED_INSN;
18301
18302 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_I16 | N_I32
18303 | N_KEY);
18304
18305 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18306 inst.instruction |= (neon_logbits (et.size) - 1) << 18;
18307 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18308 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18309 inst.instruction |= LOW4 (inst.operands[1].reg);
18310 inst.is_neon = 1;
18311
18312 }
18313
18314 /* VMOV has particularly many variations. It can be one of:
18315 0. VMOV<c><q> <Qd>, <Qm>
18316 1. VMOV<c><q> <Dd>, <Dm>
18317 (Register operations, which are VORR with Rm = Rn.)
18318 2. VMOV<c><q>.<dt> <Qd>, #<imm>
18319 3. VMOV<c><q>.<dt> <Dd>, #<imm>
18320 (Immediate loads.)
18321 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
18322 (ARM register to scalar.)
18323 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
18324 (Two ARM registers to vector.)
18325 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
18326 (Scalar to ARM register.)
18327 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
18328 (Vector to two ARM registers.)
18329 8. VMOV.F32 <Sd>, <Sm>
18330 9. VMOV.F64 <Dd>, <Dm>
18331 (VFP register moves.)
18332 10. VMOV.F32 <Sd>, #imm
18333 11. VMOV.F64 <Dd>, #imm
18334 (VFP float immediate load.)
18335 12. VMOV <Rd>, <Sm>
18336 (VFP single to ARM reg.)
18337 13. VMOV <Sd>, <Rm>
18338 (ARM reg to VFP single.)
18339 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
18340 (Two ARM regs to two VFP singles.)
18341 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
18342 (Two VFP singles to two ARM regs.)
18343 16. VMOV<c> <Rt>, <Rt2>, <Qd[idx]>, <Qd[idx2]>
18344 17. VMOV<c> <Qd[idx]>, <Qd[idx2]>, <Rt>, <Rt2>
18345 18. VMOV<c>.<dt> <Rt>, <Qn[idx]>
18346 19. VMOV<c>.<dt> <Qd[idx]>, <Rt>
18347
18348 These cases can be disambiguated using neon_select_shape, except cases 1/9
18349 and 3/11 which depend on the operand type too.
18350
18351 All the encoded bits are hardcoded by this function.
18352
18353 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
18354 Cases 5, 7 may be used with VFPv2 and above.
18355
18356 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
18357 can specify a type where it doesn't make sense to, and is ignored). */
18358
18359 static void
18360 do_neon_mov (void)
18361 {
18362 enum neon_shape rs = neon_select_shape (NS_RRSS, NS_SSRR, NS_RRFF, NS_FFRR,
18363 NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI,
18364 NS_DI, NS_SR, NS_RS, NS_FF, NS_FI,
18365 NS_RF, NS_FR, NS_HR, NS_RH, NS_HI,
18366 NS_NULL);
18367 struct neon_type_el et;
18368 const char *ldconst = 0;
18369
18370 switch (rs)
18371 {
18372 case NS_DD: /* case 1/9. */
18373 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18374 /* It is not an error here if no type is given. */
18375 inst.error = NULL;
18376 if (et.type == NT_float && et.size == 64)
18377 {
18378 do_vfp_nsyn_opcode ("fcpyd");
18379 break;
18380 }
18381 /* fall through. */
18382
18383 case NS_QQ: /* case 0/1. */
18384 {
18385 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18386 return;
18387 /* The architecture manual I have doesn't explicitly state which
18388 value the U bit should have for register->register moves, but
18389 the equivalent VORR instruction has U = 0, so do that. */
18390 inst.instruction = 0x0200110;
18391 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18392 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18393 inst.instruction |= LOW4 (inst.operands[1].reg);
18394 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18395 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18396 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18397 inst.instruction |= neon_quad (rs) << 6;
18398
18399 neon_dp_fixup (&inst);
18400 }
18401 break;
18402
18403 case NS_DI: /* case 3/11. */
18404 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
18405 inst.error = NULL;
18406 if (et.type == NT_float && et.size == 64)
18407 {
18408 /* case 11 (fconstd). */
18409 ldconst = "fconstd";
18410 goto encode_fconstd;
18411 }
18412 /* fall through. */
18413
18414 case NS_QI: /* case 2/3. */
18415 if (check_simd_pred_availability (0, NEON_CHECK_CC | NEON_CHECK_ARCH))
18416 return;
18417 inst.instruction = 0x0800010;
18418 neon_move_immediate ();
18419 neon_dp_fixup (&inst);
18420 break;
18421
18422 case NS_SR: /* case 4. */
18423 {
18424 unsigned bcdebits = 0;
18425 int logsize;
18426 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
18427 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
18428
18429 /* .<size> is optional here, defaulting to .32. */
18430 if (inst.vectype.elems == 0
18431 && inst.operands[0].vectype.type == NT_invtype
18432 && inst.operands[1].vectype.type == NT_invtype)
18433 {
18434 inst.vectype.el[0].type = NT_untyped;
18435 inst.vectype.el[0].size = 32;
18436 inst.vectype.elems = 1;
18437 }
18438
18439 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
18440 logsize = neon_logbits (et.size);
18441
18442 if (et.size != 32)
18443 {
18444 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18445 && vfp_or_neon_is_neon (NEON_CHECK_ARCH) == FAIL)
18446 return;
18447 }
18448 else
18449 {
18450 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18451 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18452 _(BAD_FPU));
18453 }
18454
18455 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18456 {
18457 if (inst.operands[1].reg == REG_SP)
18458 as_tsktsk (MVE_BAD_SP);
18459 else if (inst.operands[1].reg == REG_PC)
18460 as_tsktsk (MVE_BAD_PC);
18461 }
18462 unsigned size = inst.operands[0].isscalar == 1 ? 64 : 128;
18463
18464 constraint (et.type == NT_invtype, _("bad type for scalar"));
18465 constraint (x >= size / et.size, _("scalar index out of range"));
18466
18467
18468 switch (et.size)
18469 {
18470 case 8: bcdebits = 0x8; break;
18471 case 16: bcdebits = 0x1; break;
18472 case 32: bcdebits = 0x0; break;
18473 default: ;
18474 }
18475
18476 bcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18477
18478 inst.instruction = 0xe000b10;
18479 do_vfp_cond_or_thumb ();
18480 inst.instruction |= LOW4 (dn) << 16;
18481 inst.instruction |= HI1 (dn) << 7;
18482 inst.instruction |= inst.operands[1].reg << 12;
18483 inst.instruction |= (bcdebits & 3) << 5;
18484 inst.instruction |= ((bcdebits >> 2) & 3) << 21;
18485 inst.instruction |= (x >> (3-logsize)) << 16;
18486 }
18487 break;
18488
18489 case NS_DRR: /* case 5 (fmdrr). */
18490 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18491 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18492 _(BAD_FPU));
18493
18494 inst.instruction = 0xc400b10;
18495 do_vfp_cond_or_thumb ();
18496 inst.instruction |= LOW4 (inst.operands[0].reg);
18497 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
18498 inst.instruction |= inst.operands[1].reg << 12;
18499 inst.instruction |= inst.operands[2].reg << 16;
18500 break;
18501
18502 case NS_RS: /* case 6. */
18503 {
18504 unsigned logsize;
18505 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
18506 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
18507 unsigned abcdebits = 0;
18508
18509 /* .<dt> is optional here, defaulting to .32. */
18510 if (inst.vectype.elems == 0
18511 && inst.operands[0].vectype.type == NT_invtype
18512 && inst.operands[1].vectype.type == NT_invtype)
18513 {
18514 inst.vectype.el[0].type = NT_untyped;
18515 inst.vectype.el[0].size = 32;
18516 inst.vectype.elems = 1;
18517 }
18518
18519 et = neon_check_type (2, NS_NULL,
18520 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
18521 logsize = neon_logbits (et.size);
18522
18523 if (et.size != 32)
18524 {
18525 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext)
18526 && vfp_or_neon_is_neon (NEON_CHECK_CC
18527 | NEON_CHECK_ARCH) == FAIL)
18528 return;
18529 }
18530 else
18531 {
18532 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1)
18533 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18534 _(BAD_FPU));
18535 }
18536
18537 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18538 {
18539 if (inst.operands[0].reg == REG_SP)
18540 as_tsktsk (MVE_BAD_SP);
18541 else if (inst.operands[0].reg == REG_PC)
18542 as_tsktsk (MVE_BAD_PC);
18543 }
18544
18545 unsigned size = inst.operands[1].isscalar == 1 ? 64 : 128;
18546
18547 constraint (et.type == NT_invtype, _("bad type for scalar"));
18548 constraint (x >= size / et.size, _("scalar index out of range"));
18549
18550 switch (et.size)
18551 {
18552 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
18553 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
18554 case 32: abcdebits = 0x00; break;
18555 default: ;
18556 }
18557
18558 abcdebits |= (x & ((1 << (3-logsize)) - 1)) << logsize;
18559 inst.instruction = 0xe100b10;
18560 do_vfp_cond_or_thumb ();
18561 inst.instruction |= LOW4 (dn) << 16;
18562 inst.instruction |= HI1 (dn) << 7;
18563 inst.instruction |= inst.operands[0].reg << 12;
18564 inst.instruction |= (abcdebits & 3) << 5;
18565 inst.instruction |= (abcdebits >> 2) << 21;
18566 inst.instruction |= (x >> (3-logsize)) << 16;
18567 }
18568 break;
18569
18570 case NS_RRD: /* case 7 (fmrrd). */
18571 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18572 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18573 _(BAD_FPU));
18574
18575 inst.instruction = 0xc500b10;
18576 do_vfp_cond_or_thumb ();
18577 inst.instruction |= inst.operands[0].reg << 12;
18578 inst.instruction |= inst.operands[1].reg << 16;
18579 inst.instruction |= LOW4 (inst.operands[2].reg);
18580 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18581 break;
18582
18583 case NS_FF: /* case 8 (fcpys). */
18584 do_vfp_nsyn_opcode ("fcpys");
18585 break;
18586
18587 case NS_HI:
18588 case NS_FI: /* case 10 (fconsts). */
18589 ldconst = "fconsts";
18590 encode_fconstd:
18591 if (!inst.operands[1].immisfloat)
18592 {
18593 unsigned new_imm;
18594 /* Immediate has to fit in 8 bits so float is enough. */
18595 float imm = (float) inst.operands[1].imm;
18596 memcpy (&new_imm, &imm, sizeof (float));
18597 /* But the assembly may have been written to provide an integer
18598 bit pattern that equates to a float, so check that the
18599 conversion has worked. */
18600 if (is_quarter_float (new_imm))
18601 {
18602 if (is_quarter_float (inst.operands[1].imm))
18603 as_warn (_("immediate constant is valid both as a bit-pattern and a floating point value (using the fp value)"));
18604
18605 inst.operands[1].imm = new_imm;
18606 inst.operands[1].immisfloat = 1;
18607 }
18608 }
18609
18610 if (is_quarter_float (inst.operands[1].imm))
18611 {
18612 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
18613 do_vfp_nsyn_opcode (ldconst);
18614
18615 /* ARMv8.2 fp16 vmov.f16 instruction. */
18616 if (rs == NS_HI)
18617 do_scalar_fp16_v82_encode ();
18618 }
18619 else
18620 first_error (_("immediate out of range"));
18621 break;
18622
18623 case NS_RH:
18624 case NS_RF: /* case 12 (fmrs). */
18625 do_vfp_nsyn_opcode ("fmrs");
18626 /* ARMv8.2 fp16 vmov.f16 instruction. */
18627 if (rs == NS_RH)
18628 do_scalar_fp16_v82_encode ();
18629 break;
18630
18631 case NS_HR:
18632 case NS_FR: /* case 13 (fmsr). */
18633 do_vfp_nsyn_opcode ("fmsr");
18634 /* ARMv8.2 fp16 vmov.f16 instruction. */
18635 if (rs == NS_HR)
18636 do_scalar_fp16_v82_encode ();
18637 break;
18638
18639 case NS_RRSS:
18640 do_mve_mov (0);
18641 break;
18642 case NS_SSRR:
18643 do_mve_mov (1);
18644 break;
18645
18646 /* The encoders for the fmrrs and fmsrr instructions expect three operands
18647 (one of which is a list), but we have parsed four. Do some fiddling to
18648 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
18649 expect. */
18650 case NS_RRFF: /* case 14 (fmrrs). */
18651 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18652 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18653 _(BAD_FPU));
18654 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
18655 _("VFP registers must be adjacent"));
18656 inst.operands[2].imm = 2;
18657 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18658 do_vfp_nsyn_opcode ("fmrrs");
18659 break;
18660
18661 case NS_FFRR: /* case 15 (fmsrr). */
18662 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2)
18663 && !ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext),
18664 _(BAD_FPU));
18665 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
18666 _("VFP registers must be adjacent"));
18667 inst.operands[1] = inst.operands[2];
18668 inst.operands[2] = inst.operands[3];
18669 inst.operands[0].imm = 2;
18670 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
18671 do_vfp_nsyn_opcode ("fmsrr");
18672 break;
18673
18674 case NS_NULL:
18675 /* neon_select_shape has determined that the instruction
18676 shape is wrong and has already set the error message. */
18677 break;
18678
18679 default:
18680 abort ();
18681 }
18682 }
18683
18684 static void
18685 do_mve_movl (void)
18686 {
18687 if (!(inst.operands[0].present && inst.operands[0].isquad
18688 && inst.operands[1].present && inst.operands[1].isquad
18689 && !inst.operands[2].present))
18690 {
18691 inst.instruction = 0;
18692 inst.cond = 0xb;
18693 if (thumb_mode)
18694 set_pred_insn_type (INSIDE_IT_INSN);
18695 do_neon_mov ();
18696 return;
18697 }
18698
18699 if (!ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
18700 return;
18701
18702 if (inst.cond != COND_ALWAYS)
18703 inst.pred_insn_type = INSIDE_VPT_INSN;
18704
18705 struct neon_type_el et = neon_check_type (2, NS_QQ, N_EQK, N_S8 | N_U8
18706 | N_S16 | N_U16 | N_KEY);
18707
18708 inst.instruction |= (et.type == NT_unsigned) << 28;
18709 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18710 inst.instruction |= (neon_logbits (et.size) + 1) << 19;
18711 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18712 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
18713 inst.instruction |= LOW4 (inst.operands[1].reg);
18714 inst.is_neon = 1;
18715 }
18716
18717 static void
18718 do_neon_rshift_round_imm (void)
18719 {
18720 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
18721 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
18722 int imm = inst.operands[2].imm;
18723
18724 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
18725 if (imm == 0)
18726 {
18727 inst.operands[2].present = 0;
18728 do_neon_mov ();
18729 return;
18730 }
18731
18732 constraint (imm < 1 || (unsigned)imm > et.size,
18733 _("immediate out of range for shift"));
18734 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
18735 et.size - imm);
18736 }
18737
18738 static void
18739 do_neon_movhf (void)
18740 {
18741 enum neon_shape rs = neon_select_shape (NS_HH, NS_NULL);
18742 constraint (rs != NS_HH, _("invalid suffix"));
18743
18744 if (inst.cond != COND_ALWAYS)
18745 {
18746 if (thumb_mode)
18747 {
18748 as_warn (_("ARMv8.2 scalar fp16 instruction cannot be conditional,"
18749 " the behaviour is UNPREDICTABLE"));
18750 }
18751 else
18752 {
18753 inst.error = BAD_COND;
18754 return;
18755 }
18756 }
18757
18758 do_vfp_sp_monadic ();
18759
18760 inst.is_neon = 1;
18761 inst.instruction |= 0xf0000000;
18762 }
18763
18764 static void
18765 do_neon_movl (void)
18766 {
18767 struct neon_type_el et = neon_check_type (2, NS_QD,
18768 N_EQK | N_DBL, N_SU_32 | N_KEY);
18769 unsigned sizebits = et.size >> 3;
18770 inst.instruction |= sizebits << 19;
18771 neon_two_same (0, et.type == NT_unsigned, -1);
18772 }
18773
18774 static void
18775 do_neon_trn (void)
18776 {
18777 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18778 struct neon_type_el et = neon_check_type (2, rs,
18779 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18780 NEON_ENCODE (INTEGER, inst);
18781 neon_two_same (neon_quad (rs), 1, et.size);
18782 }
18783
18784 static void
18785 do_neon_zip_uzp (void)
18786 {
18787 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18788 struct neon_type_el et = neon_check_type (2, rs,
18789 N_EQK, N_8 | N_16 | N_32 | N_KEY);
18790 if (rs == NS_DD && et.size == 32)
18791 {
18792 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
18793 inst.instruction = N_MNEM_vtrn;
18794 do_neon_trn ();
18795 return;
18796 }
18797 neon_two_same (neon_quad (rs), 1, et.size);
18798 }
18799
18800 static void
18801 do_neon_sat_abs_neg (void)
18802 {
18803 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18804 struct neon_type_el et = neon_check_type (2, rs,
18805 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18806 neon_two_same (neon_quad (rs), 1, et.size);
18807 }
18808
18809 static void
18810 do_neon_pair_long (void)
18811 {
18812 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18813 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
18814 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
18815 inst.instruction |= (et.type == NT_unsigned) << 7;
18816 neon_two_same (neon_quad (rs), 1, et.size);
18817 }
18818
18819 static void
18820 do_neon_recip_est (void)
18821 {
18822 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18823 struct neon_type_el et = neon_check_type (2, rs,
18824 N_EQK | N_FLT, N_F_16_32 | N_U32 | N_KEY);
18825 inst.instruction |= (et.type == NT_float) << 8;
18826 neon_two_same (neon_quad (rs), 1, et.size);
18827 }
18828
18829 static void
18830 do_neon_cls (void)
18831 {
18832 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18833 struct neon_type_el et = neon_check_type (2, rs,
18834 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
18835 neon_two_same (neon_quad (rs), 1, et.size);
18836 }
18837
18838 static void
18839 do_neon_clz (void)
18840 {
18841 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18842 struct neon_type_el et = neon_check_type (2, rs,
18843 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
18844 neon_two_same (neon_quad (rs), 1, et.size);
18845 }
18846
18847 static void
18848 do_neon_cnt (void)
18849 {
18850 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18851 struct neon_type_el et = neon_check_type (2, rs,
18852 N_EQK | N_INT, N_8 | N_KEY);
18853 neon_two_same (neon_quad (rs), 1, et.size);
18854 }
18855
18856 static void
18857 do_neon_swp (void)
18858 {
18859 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
18860 neon_two_same (neon_quad (rs), 1, -1);
18861 }
18862
18863 static void
18864 do_neon_tbl_tbx (void)
18865 {
18866 unsigned listlenbits;
18867 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
18868
18869 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
18870 {
18871 first_error (_("bad list length for table lookup"));
18872 return;
18873 }
18874
18875 listlenbits = inst.operands[1].imm - 1;
18876 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
18877 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
18878 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
18879 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
18880 inst.instruction |= LOW4 (inst.operands[2].reg);
18881 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
18882 inst.instruction |= listlenbits << 8;
18883
18884 neon_dp_fixup (&inst);
18885 }
18886
18887 static void
18888 do_neon_ldm_stm (void)
18889 {
18890 /* P, U and L bits are part of bitmask. */
18891 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
18892 unsigned offsetbits = inst.operands[1].imm * 2;
18893
18894 if (inst.operands[1].issingle)
18895 {
18896 do_vfp_nsyn_ldm_stm (is_dbmode);
18897 return;
18898 }
18899
18900 constraint (is_dbmode && !inst.operands[0].writeback,
18901 _("writeback (!) must be used for VLDMDB and VSTMDB"));
18902
18903 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
18904 _("register list must contain at least 1 and at most 16 "
18905 "registers"));
18906
18907 inst.instruction |= inst.operands[0].reg << 16;
18908 inst.instruction |= inst.operands[0].writeback << 21;
18909 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
18910 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
18911
18912 inst.instruction |= offsetbits;
18913
18914 do_vfp_cond_or_thumb ();
18915 }
18916
18917 static void
18918 do_neon_ldr_str (void)
18919 {
18920 int is_ldr = (inst.instruction & (1 << 20)) != 0;
18921
18922 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
18923 And is UNPREDICTABLE in thumb mode. */
18924 if (!is_ldr
18925 && inst.operands[1].reg == REG_PC
18926 && (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7) || thumb_mode))
18927 {
18928 if (thumb_mode)
18929 inst.error = _("Use of PC here is UNPREDICTABLE");
18930 else if (warn_on_deprecated)
18931 as_tsktsk (_("Use of PC here is deprecated"));
18932 }
18933
18934 if (inst.operands[0].issingle)
18935 {
18936 if (is_ldr)
18937 do_vfp_nsyn_opcode ("flds");
18938 else
18939 do_vfp_nsyn_opcode ("fsts");
18940
18941 /* ARMv8.2 vldr.16/vstr.16 instruction. */
18942 if (inst.vectype.el[0].size == 16)
18943 do_scalar_fp16_v82_encode ();
18944 }
18945 else
18946 {
18947 if (is_ldr)
18948 do_vfp_nsyn_opcode ("fldd");
18949 else
18950 do_vfp_nsyn_opcode ("fstd");
18951 }
18952 }
18953
18954 static void
18955 do_t_vldr_vstr_sysreg (void)
18956 {
18957 int fp_vldr_bitno = 20, sysreg_vldr_bitno = 20;
18958 bfd_boolean is_vldr = ((inst.instruction & (1 << fp_vldr_bitno)) != 0);
18959
18960 /* Use of PC is UNPREDICTABLE. */
18961 if (inst.operands[1].reg == REG_PC)
18962 inst.error = _("Use of PC here is UNPREDICTABLE");
18963
18964 if (inst.operands[1].immisreg)
18965 inst.error = _("instruction does not accept register index");
18966
18967 if (!inst.operands[1].isreg)
18968 inst.error = _("instruction does not accept PC-relative addressing");
18969
18970 if (abs (inst.operands[1].imm) >= (1 << 7))
18971 inst.error = _("immediate value out of range");
18972
18973 inst.instruction = 0xec000f80;
18974 if (is_vldr)
18975 inst.instruction |= 1 << sysreg_vldr_bitno;
18976 encode_arm_cp_address (1, TRUE, FALSE, BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM);
18977 inst.instruction |= (inst.operands[0].imm & 0x7) << 13;
18978 inst.instruction |= (inst.operands[0].imm & 0x8) << 19;
18979 }
18980
18981 static void
18982 do_vldr_vstr (void)
18983 {
18984 bfd_boolean sysreg_op = !inst.operands[0].isreg;
18985
18986 /* VLDR/VSTR (System Register). */
18987 if (sysreg_op)
18988 {
18989 if (!mark_feature_used (&arm_ext_v8_1m_main))
18990 as_bad (_("Instruction not permitted on this architecture"));
18991
18992 do_t_vldr_vstr_sysreg ();
18993 }
18994 /* VLDR/VSTR. */
18995 else
18996 {
18997 if (!mark_feature_used (&fpu_vfp_ext_v1xd))
18998 as_bad (_("Instruction not permitted on this architecture"));
18999 do_neon_ldr_str ();
19000 }
19001 }
19002
19003 /* "interleave" version also handles non-interleaving register VLD1/VST1
19004 instructions. */
19005
19006 static void
19007 do_neon_ld_st_interleave (void)
19008 {
19009 struct neon_type_el et = neon_check_type (1, NS_NULL,
19010 N_8 | N_16 | N_32 | N_64);
19011 unsigned alignbits = 0;
19012 unsigned idx;
19013 /* The bits in this table go:
19014 0: register stride of one (0) or two (1)
19015 1,2: register list length, minus one (1, 2, 3, 4).
19016 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
19017 We use -1 for invalid entries. */
19018 const int typetable[] =
19019 {
19020 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
19021 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
19022 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
19023 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
19024 };
19025 int typebits;
19026
19027 if (et.type == NT_invtype)
19028 return;
19029
19030 if (inst.operands[1].immisalign)
19031 switch (inst.operands[1].imm >> 8)
19032 {
19033 case 64: alignbits = 1; break;
19034 case 128:
19035 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
19036 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19037 goto bad_alignment;
19038 alignbits = 2;
19039 break;
19040 case 256:
19041 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
19042 goto bad_alignment;
19043 alignbits = 3;
19044 break;
19045 default:
19046 bad_alignment:
19047 first_error (_("bad alignment"));
19048 return;
19049 }
19050
19051 inst.instruction |= alignbits << 4;
19052 inst.instruction |= neon_logbits (et.size) << 6;
19053
19054 /* Bits [4:6] of the immediate in a list specifier encode register stride
19055 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
19056 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
19057 up the right value for "type" in a table based on this value and the given
19058 list style, then stick it back. */
19059 idx = ((inst.operands[0].imm >> 4) & 7)
19060 | (((inst.instruction >> 8) & 3) << 3);
19061
19062 typebits = typetable[idx];
19063
19064 constraint (typebits == -1, _("bad list type for instruction"));
19065 constraint (((inst.instruction >> 8) & 3) && et.size == 64,
19066 BAD_EL_TYPE);
19067
19068 inst.instruction &= ~0xf00;
19069 inst.instruction |= typebits << 8;
19070 }
19071
19072 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
19073 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
19074 otherwise. The variable arguments are a list of pairs of legal (size, align)
19075 values, terminated with -1. */
19076
19077 static int
19078 neon_alignment_bit (int size, int align, int *do_alignment, ...)
19079 {
19080 va_list ap;
19081 int result = FAIL, thissize, thisalign;
19082
19083 if (!inst.operands[1].immisalign)
19084 {
19085 *do_alignment = 0;
19086 return SUCCESS;
19087 }
19088
19089 va_start (ap, do_alignment);
19090
19091 do
19092 {
19093 thissize = va_arg (ap, int);
19094 if (thissize == -1)
19095 break;
19096 thisalign = va_arg (ap, int);
19097
19098 if (size == thissize && align == thisalign)
19099 result = SUCCESS;
19100 }
19101 while (result != SUCCESS);
19102
19103 va_end (ap);
19104
19105 if (result == SUCCESS)
19106 *do_alignment = 1;
19107 else
19108 first_error (_("unsupported alignment for instruction"));
19109
19110 return result;
19111 }
19112
19113 static void
19114 do_neon_ld_st_lane (void)
19115 {
19116 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19117 int align_good, do_alignment = 0;
19118 int logsize = neon_logbits (et.size);
19119 int align = inst.operands[1].imm >> 8;
19120 int n = (inst.instruction >> 8) & 3;
19121 int max_el = 64 / et.size;
19122
19123 if (et.type == NT_invtype)
19124 return;
19125
19126 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
19127 _("bad list length"));
19128 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
19129 _("scalar index out of range"));
19130 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
19131 && et.size == 8,
19132 _("stride of 2 unavailable when element size is 8"));
19133
19134 switch (n)
19135 {
19136 case 0: /* VLD1 / VST1. */
19137 align_good = neon_alignment_bit (et.size, align, &do_alignment, 16, 16,
19138 32, 32, -1);
19139 if (align_good == FAIL)
19140 return;
19141 if (do_alignment)
19142 {
19143 unsigned alignbits = 0;
19144 switch (et.size)
19145 {
19146 case 16: alignbits = 0x1; break;
19147 case 32: alignbits = 0x3; break;
19148 default: ;
19149 }
19150 inst.instruction |= alignbits << 4;
19151 }
19152 break;
19153
19154 case 1: /* VLD2 / VST2. */
19155 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 16,
19156 16, 32, 32, 64, -1);
19157 if (align_good == FAIL)
19158 return;
19159 if (do_alignment)
19160 inst.instruction |= 1 << 4;
19161 break;
19162
19163 case 2: /* VLD3 / VST3. */
19164 constraint (inst.operands[1].immisalign,
19165 _("can't use alignment with this instruction"));
19166 break;
19167
19168 case 3: /* VLD4 / VST4. */
19169 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19170 16, 64, 32, 64, 32, 128, -1);
19171 if (align_good == FAIL)
19172 return;
19173 if (do_alignment)
19174 {
19175 unsigned alignbits = 0;
19176 switch (et.size)
19177 {
19178 case 8: alignbits = 0x1; break;
19179 case 16: alignbits = 0x1; break;
19180 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
19181 default: ;
19182 }
19183 inst.instruction |= alignbits << 4;
19184 }
19185 break;
19186
19187 default: ;
19188 }
19189
19190 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
19191 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19192 inst.instruction |= 1 << (4 + logsize);
19193
19194 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
19195 inst.instruction |= logsize << 10;
19196 }
19197
19198 /* Encode single n-element structure to all lanes VLD<n> instructions. */
19199
19200 static void
19201 do_neon_ld_dup (void)
19202 {
19203 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
19204 int align_good, do_alignment = 0;
19205
19206 if (et.type == NT_invtype)
19207 return;
19208
19209 switch ((inst.instruction >> 8) & 3)
19210 {
19211 case 0: /* VLD1. */
19212 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
19213 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19214 &do_alignment, 16, 16, 32, 32, -1);
19215 if (align_good == FAIL)
19216 return;
19217 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
19218 {
19219 case 1: break;
19220 case 2: inst.instruction |= 1 << 5; break;
19221 default: first_error (_("bad list length")); return;
19222 }
19223 inst.instruction |= neon_logbits (et.size) << 6;
19224 break;
19225
19226 case 1: /* VLD2. */
19227 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
19228 &do_alignment, 8, 16, 16, 32, 32, 64,
19229 -1);
19230 if (align_good == FAIL)
19231 return;
19232 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
19233 _("bad list length"));
19234 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19235 inst.instruction |= 1 << 5;
19236 inst.instruction |= neon_logbits (et.size) << 6;
19237 break;
19238
19239 case 2: /* VLD3. */
19240 constraint (inst.operands[1].immisalign,
19241 _("can't use alignment with this instruction"));
19242 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
19243 _("bad list length"));
19244 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19245 inst.instruction |= 1 << 5;
19246 inst.instruction |= neon_logbits (et.size) << 6;
19247 break;
19248
19249 case 3: /* VLD4. */
19250 {
19251 int align = inst.operands[1].imm >> 8;
19252 align_good = neon_alignment_bit (et.size, align, &do_alignment, 8, 32,
19253 16, 64, 32, 64, 32, 128, -1);
19254 if (align_good == FAIL)
19255 return;
19256 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
19257 _("bad list length"));
19258 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
19259 inst.instruction |= 1 << 5;
19260 if (et.size == 32 && align == 128)
19261 inst.instruction |= 0x3 << 6;
19262 else
19263 inst.instruction |= neon_logbits (et.size) << 6;
19264 }
19265 break;
19266
19267 default: ;
19268 }
19269
19270 inst.instruction |= do_alignment << 4;
19271 }
19272
19273 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
19274 apart from bits [11:4]. */
19275
19276 static void
19277 do_neon_ldx_stx (void)
19278 {
19279 if (inst.operands[1].isreg)
19280 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
19281
19282 switch (NEON_LANE (inst.operands[0].imm))
19283 {
19284 case NEON_INTERLEAVE_LANES:
19285 NEON_ENCODE (INTERLV, inst);
19286 do_neon_ld_st_interleave ();
19287 break;
19288
19289 case NEON_ALL_LANES:
19290 NEON_ENCODE (DUP, inst);
19291 if (inst.instruction == N_INV)
19292 {
19293 first_error ("only loads support such operands");
19294 break;
19295 }
19296 do_neon_ld_dup ();
19297 break;
19298
19299 default:
19300 NEON_ENCODE (LANE, inst);
19301 do_neon_ld_st_lane ();
19302 }
19303
19304 /* L bit comes from bit mask. */
19305 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19306 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19307 inst.instruction |= inst.operands[1].reg << 16;
19308
19309 if (inst.operands[1].postind)
19310 {
19311 int postreg = inst.operands[1].imm & 0xf;
19312 constraint (!inst.operands[1].immisreg,
19313 _("post-index must be a register"));
19314 constraint (postreg == 0xd || postreg == 0xf,
19315 _("bad register for post-index"));
19316 inst.instruction |= postreg;
19317 }
19318 else
19319 {
19320 constraint (inst.operands[1].immisreg, BAD_ADDR_MODE);
19321 constraint (inst.relocs[0].exp.X_op != O_constant
19322 || inst.relocs[0].exp.X_add_number != 0,
19323 BAD_ADDR_MODE);
19324
19325 if (inst.operands[1].writeback)
19326 {
19327 inst.instruction |= 0xd;
19328 }
19329 else
19330 inst.instruction |= 0xf;
19331 }
19332
19333 if (thumb_mode)
19334 inst.instruction |= 0xf9000000;
19335 else
19336 inst.instruction |= 0xf4000000;
19337 }
19338
19339 /* FP v8. */
19340 static void
19341 do_vfp_nsyn_fpv8 (enum neon_shape rs)
19342 {
19343 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19344 D register operands. */
19345 if (neon_shape_class[rs] == SC_DOUBLE)
19346 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19347 _(BAD_FPU));
19348
19349 NEON_ENCODE (FPV8, inst);
19350
19351 if (rs == NS_FFF || rs == NS_HHH)
19352 {
19353 do_vfp_sp_dyadic ();
19354
19355 /* ARMv8.2 fp16 instruction. */
19356 if (rs == NS_HHH)
19357 do_scalar_fp16_v82_encode ();
19358 }
19359 else
19360 do_vfp_dp_rd_rn_rm ();
19361
19362 if (rs == NS_DDD)
19363 inst.instruction |= 0x100;
19364
19365 inst.instruction |= 0xf0000000;
19366 }
19367
19368 static void
19369 do_vsel (void)
19370 {
19371 set_pred_insn_type (OUTSIDE_PRED_INSN);
19372
19373 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
19374 first_error (_("invalid instruction shape"));
19375 }
19376
19377 static void
19378 do_vmaxnm (void)
19379 {
19380 set_pred_insn_type (OUTSIDE_PRED_INSN);
19381
19382 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
19383 return;
19384
19385 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19386 return;
19387
19388 neon_dyadic_misc (NT_untyped, N_F_16_32, 0);
19389 }
19390
19391 static void
19392 do_vrint_1 (enum neon_cvt_mode mode)
19393 {
19394 enum neon_shape rs = neon_select_shape (NS_HH, NS_FF, NS_DD, NS_QQ, NS_NULL);
19395 struct neon_type_el et;
19396
19397 if (rs == NS_NULL)
19398 return;
19399
19400 /* Targets like FPv5-SP-D16 don't support FP v8 instructions with
19401 D register operands. */
19402 if (neon_shape_class[rs] == SC_DOUBLE)
19403 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19404 _(BAD_FPU));
19405
19406 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F_ALL | N_KEY
19407 | N_VFP);
19408 if (et.type != NT_invtype)
19409 {
19410 /* VFP encodings. */
19411 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
19412 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
19413 set_pred_insn_type (OUTSIDE_PRED_INSN);
19414
19415 NEON_ENCODE (FPV8, inst);
19416 if (rs == NS_FF || rs == NS_HH)
19417 do_vfp_sp_monadic ();
19418 else
19419 do_vfp_dp_rd_rm ();
19420
19421 switch (mode)
19422 {
19423 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
19424 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
19425 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
19426 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
19427 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
19428 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
19429 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
19430 default: abort ();
19431 }
19432
19433 inst.instruction |= (rs == NS_DD) << 8;
19434 do_vfp_cond_or_thumb ();
19435
19436 /* ARMv8.2 fp16 vrint instruction. */
19437 if (rs == NS_HH)
19438 do_scalar_fp16_v82_encode ();
19439 }
19440 else
19441 {
19442 /* Neon encodings (or something broken...). */
19443 inst.error = NULL;
19444 et = neon_check_type (2, rs, N_EQK, N_F_16_32 | N_KEY);
19445
19446 if (et.type == NT_invtype)
19447 return;
19448
19449 set_pred_insn_type (OUTSIDE_PRED_INSN);
19450 NEON_ENCODE (FLOAT, inst);
19451
19452 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
19453 return;
19454
19455 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19456 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19457 inst.instruction |= LOW4 (inst.operands[1].reg);
19458 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19459 inst.instruction |= neon_quad (rs) << 6;
19460 /* Mask off the original size bits and reencode them. */
19461 inst.instruction = ((inst.instruction & 0xfff3ffff)
19462 | neon_logbits (et.size) << 18);
19463
19464 switch (mode)
19465 {
19466 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
19467 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
19468 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
19469 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
19470 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
19471 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
19472 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
19473 default: abort ();
19474 }
19475
19476 if (thumb_mode)
19477 inst.instruction |= 0xfc000000;
19478 else
19479 inst.instruction |= 0xf0000000;
19480 }
19481 }
19482
19483 static void
19484 do_vrintx (void)
19485 {
19486 do_vrint_1 (neon_cvt_mode_x);
19487 }
19488
19489 static void
19490 do_vrintz (void)
19491 {
19492 do_vrint_1 (neon_cvt_mode_z);
19493 }
19494
19495 static void
19496 do_vrintr (void)
19497 {
19498 do_vrint_1 (neon_cvt_mode_r);
19499 }
19500
19501 static void
19502 do_vrinta (void)
19503 {
19504 do_vrint_1 (neon_cvt_mode_a);
19505 }
19506
19507 static void
19508 do_vrintn (void)
19509 {
19510 do_vrint_1 (neon_cvt_mode_n);
19511 }
19512
19513 static void
19514 do_vrintp (void)
19515 {
19516 do_vrint_1 (neon_cvt_mode_p);
19517 }
19518
19519 static void
19520 do_vrintm (void)
19521 {
19522 do_vrint_1 (neon_cvt_mode_m);
19523 }
19524
19525 static unsigned
19526 neon_scalar_for_vcmla (unsigned opnd, unsigned elsize)
19527 {
19528 unsigned regno = NEON_SCALAR_REG (opnd);
19529 unsigned elno = NEON_SCALAR_INDEX (opnd);
19530
19531 if (elsize == 16 && elno < 2 && regno < 16)
19532 return regno | (elno << 4);
19533 else if (elsize == 32 && elno == 0)
19534 return regno;
19535
19536 first_error (_("scalar out of range"));
19537 return 0;
19538 }
19539
19540 static void
19541 do_vcmla (void)
19542 {
19543 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19544 _(BAD_FPU));
19545 constraint (inst.relocs[0].exp.X_op != O_constant,
19546 _("expression too complex"));
19547 unsigned rot = inst.relocs[0].exp.X_add_number;
19548 constraint (rot != 0 && rot != 90 && rot != 180 && rot != 270,
19549 _("immediate out of range"));
19550 rot /= 90;
19551 if (inst.operands[2].isscalar)
19552 {
19553 enum neon_shape rs = neon_select_shape (NS_DDSI, NS_QQSI, NS_NULL);
19554 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19555 N_KEY | N_F16 | N_F32).size;
19556 unsigned m = neon_scalar_for_vcmla (inst.operands[2].reg, size);
19557 inst.is_neon = 1;
19558 inst.instruction = 0xfe000800;
19559 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19560 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19561 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
19562 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
19563 inst.instruction |= LOW4 (m);
19564 inst.instruction |= HI1 (m) << 5;
19565 inst.instruction |= neon_quad (rs) << 6;
19566 inst.instruction |= rot << 20;
19567 inst.instruction |= (size == 32) << 23;
19568 }
19569 else
19570 {
19571 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19572 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19573 N_KEY | N_F16 | N_F32).size;
19574 neon_three_same (neon_quad (rs), 0, -1);
19575 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19576 inst.instruction |= 0xfc200800;
19577 inst.instruction |= rot << 23;
19578 inst.instruction |= (size == 32) << 20;
19579 }
19580 }
19581
19582 static void
19583 do_vcadd (void)
19584 {
19585 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19586 _(BAD_FPU));
19587 constraint (inst.relocs[0].exp.X_op != O_constant,
19588 _("expression too complex"));
19589 unsigned rot = inst.relocs[0].exp.X_add_number;
19590 constraint (rot != 90 && rot != 270, _("immediate out of range"));
19591 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
19592 unsigned size = neon_check_type (3, rs, N_EQK, N_EQK,
19593 N_KEY | N_F16 | N_F32).size;
19594 neon_three_same (neon_quad (rs), 0, -1);
19595 inst.instruction &= 0x00ffffff; /* Undo neon_dp_fixup. */
19596 inst.instruction |= 0xfc800800;
19597 inst.instruction |= (rot == 270) << 24;
19598 inst.instruction |= (size == 32) << 20;
19599 }
19600
19601 /* Dot Product instructions encoding support. */
19602
19603 static void
19604 do_neon_dotproduct (int unsigned_p)
19605 {
19606 enum neon_shape rs;
19607 unsigned scalar_oprd2 = 0;
19608 int high8;
19609
19610 if (inst.cond != COND_ALWAYS)
19611 as_warn (_("Dot Product instructions cannot be conditional, the behaviour "
19612 "is UNPREDICTABLE"));
19613
19614 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_armv8),
19615 _(BAD_FPU));
19616
19617 /* Dot Product instructions are in three-same D/Q register format or the third
19618 operand can be a scalar index register. */
19619 if (inst.operands[2].isscalar)
19620 {
19621 scalar_oprd2 = neon_scalar_for_mul (inst.operands[2].reg, 32);
19622 high8 = 0xfe000000;
19623 rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
19624 }
19625 else
19626 {
19627 high8 = 0xfc000000;
19628 rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
19629 }
19630
19631 if (unsigned_p)
19632 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_U8);
19633 else
19634 neon_check_type (3, rs, N_EQK, N_EQK, N_KEY | N_S8);
19635
19636 /* The "U" bit in traditional Three Same encoding is fixed to 0 for Dot
19637 Product instruction, so we pass 0 as the "ubit" parameter. And the
19638 "Size" field are fixed to 0x2, so we pass 32 as the "size" parameter. */
19639 neon_three_same (neon_quad (rs), 0, 32);
19640
19641 /* Undo neon_dp_fixup. Dot Product instructions are using a slightly
19642 different NEON three-same encoding. */
19643 inst.instruction &= 0x00ffffff;
19644 inst.instruction |= high8;
19645 /* Encode 'U' bit which indicates signedness. */
19646 inst.instruction |= (unsigned_p ? 1 : 0) << 4;
19647 /* Re-encode operand2 if it's indexed scalar operand. What has been encoded
19648 from inst.operand[2].reg in neon_three_same is GAS's internal encoding, not
19649 the instruction encoding. */
19650 if (inst.operands[2].isscalar)
19651 {
19652 inst.instruction &= 0xffffffd0;
19653 inst.instruction |= LOW4 (scalar_oprd2);
19654 inst.instruction |= HI1 (scalar_oprd2) << 5;
19655 }
19656 }
19657
19658 /* Dot Product instructions for signed integer. */
19659
19660 static void
19661 do_neon_dotproduct_s (void)
19662 {
19663 return do_neon_dotproduct (0);
19664 }
19665
19666 /* Dot Product instructions for unsigned integer. */
19667
19668 static void
19669 do_neon_dotproduct_u (void)
19670 {
19671 return do_neon_dotproduct (1);
19672 }
19673
19674 /* Crypto v1 instructions. */
19675 static void
19676 do_crypto_2op_1 (unsigned elttype, int op)
19677 {
19678 set_pred_insn_type (OUTSIDE_PRED_INSN);
19679
19680 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
19681 == NT_invtype)
19682 return;
19683
19684 inst.error = NULL;
19685
19686 NEON_ENCODE (INTEGER, inst);
19687 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
19688 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
19689 inst.instruction |= LOW4 (inst.operands[1].reg);
19690 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
19691 if (op != -1)
19692 inst.instruction |= op << 6;
19693
19694 if (thumb_mode)
19695 inst.instruction |= 0xfc000000;
19696 else
19697 inst.instruction |= 0xf0000000;
19698 }
19699
19700 static void
19701 do_crypto_3op_1 (int u, int op)
19702 {
19703 set_pred_insn_type (OUTSIDE_PRED_INSN);
19704
19705 if (neon_check_type (3, NS_QQQ, N_EQK | N_UNT, N_EQK | N_UNT,
19706 N_32 | N_UNT | N_KEY).type == NT_invtype)
19707 return;
19708
19709 inst.error = NULL;
19710
19711 NEON_ENCODE (INTEGER, inst);
19712 neon_three_same (1, u, 8 << op);
19713 }
19714
19715 static void
19716 do_aese (void)
19717 {
19718 do_crypto_2op_1 (N_8, 0);
19719 }
19720
19721 static void
19722 do_aesd (void)
19723 {
19724 do_crypto_2op_1 (N_8, 1);
19725 }
19726
19727 static void
19728 do_aesmc (void)
19729 {
19730 do_crypto_2op_1 (N_8, 2);
19731 }
19732
19733 static void
19734 do_aesimc (void)
19735 {
19736 do_crypto_2op_1 (N_8, 3);
19737 }
19738
19739 static void
19740 do_sha1c (void)
19741 {
19742 do_crypto_3op_1 (0, 0);
19743 }
19744
19745 static void
19746 do_sha1p (void)
19747 {
19748 do_crypto_3op_1 (0, 1);
19749 }
19750
19751 static void
19752 do_sha1m (void)
19753 {
19754 do_crypto_3op_1 (0, 2);
19755 }
19756
19757 static void
19758 do_sha1su0 (void)
19759 {
19760 do_crypto_3op_1 (0, 3);
19761 }
19762
19763 static void
19764 do_sha256h (void)
19765 {
19766 do_crypto_3op_1 (1, 0);
19767 }
19768
19769 static void
19770 do_sha256h2 (void)
19771 {
19772 do_crypto_3op_1 (1, 1);
19773 }
19774
19775 static void
19776 do_sha256su1 (void)
19777 {
19778 do_crypto_3op_1 (1, 2);
19779 }
19780
19781 static void
19782 do_sha1h (void)
19783 {
19784 do_crypto_2op_1 (N_32, -1);
19785 }
19786
19787 static void
19788 do_sha1su1 (void)
19789 {
19790 do_crypto_2op_1 (N_32, 0);
19791 }
19792
19793 static void
19794 do_sha256su0 (void)
19795 {
19796 do_crypto_2op_1 (N_32, 1);
19797 }
19798
19799 static void
19800 do_crc32_1 (unsigned int poly, unsigned int sz)
19801 {
19802 unsigned int Rd = inst.operands[0].reg;
19803 unsigned int Rn = inst.operands[1].reg;
19804 unsigned int Rm = inst.operands[2].reg;
19805
19806 set_pred_insn_type (OUTSIDE_PRED_INSN);
19807 inst.instruction |= LOW4 (Rd) << (thumb_mode ? 8 : 12);
19808 inst.instruction |= LOW4 (Rn) << 16;
19809 inst.instruction |= LOW4 (Rm);
19810 inst.instruction |= sz << (thumb_mode ? 4 : 21);
19811 inst.instruction |= poly << (thumb_mode ? 20 : 9);
19812
19813 if (Rd == REG_PC || Rn == REG_PC || Rm == REG_PC)
19814 as_warn (UNPRED_REG ("r15"));
19815 }
19816
19817 static void
19818 do_crc32b (void)
19819 {
19820 do_crc32_1 (0, 0);
19821 }
19822
19823 static void
19824 do_crc32h (void)
19825 {
19826 do_crc32_1 (0, 1);
19827 }
19828
19829 static void
19830 do_crc32w (void)
19831 {
19832 do_crc32_1 (0, 2);
19833 }
19834
19835 static void
19836 do_crc32cb (void)
19837 {
19838 do_crc32_1 (1, 0);
19839 }
19840
19841 static void
19842 do_crc32ch (void)
19843 {
19844 do_crc32_1 (1, 1);
19845 }
19846
19847 static void
19848 do_crc32cw (void)
19849 {
19850 do_crc32_1 (1, 2);
19851 }
19852
19853 static void
19854 do_vjcvt (void)
19855 {
19856 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_armv8),
19857 _(BAD_FPU));
19858 neon_check_type (2, NS_FD, N_S32, N_F64);
19859 do_vfp_sp_dp_cvt ();
19860 do_vfp_cond_or_thumb ();
19861 }
19862
19863 \f
19864 /* Overall per-instruction processing. */
19865
19866 /* We need to be able to fix up arbitrary expressions in some statements.
19867 This is so that we can handle symbols that are an arbitrary distance from
19868 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
19869 which returns part of an address in a form which will be valid for
19870 a data instruction. We do this by pushing the expression into a symbol
19871 in the expr_section, and creating a fix for that. */
19872
19873 static void
19874 fix_new_arm (fragS * frag,
19875 int where,
19876 short int size,
19877 expressionS * exp,
19878 int pc_rel,
19879 int reloc)
19880 {
19881 fixS * new_fix;
19882
19883 switch (exp->X_op)
19884 {
19885 case O_constant:
19886 if (pc_rel)
19887 {
19888 /* Create an absolute valued symbol, so we have something to
19889 refer to in the object file. Unfortunately for us, gas's
19890 generic expression parsing will already have folded out
19891 any use of .set foo/.type foo %function that may have
19892 been used to set type information of the target location,
19893 that's being specified symbolically. We have to presume
19894 the user knows what they are doing. */
19895 char name[16 + 8];
19896 symbolS *symbol;
19897
19898 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
19899
19900 symbol = symbol_find_or_make (name);
19901 S_SET_SEGMENT (symbol, absolute_section);
19902 symbol_set_frag (symbol, &zero_address_frag);
19903 S_SET_VALUE (symbol, exp->X_add_number);
19904 exp->X_op = O_symbol;
19905 exp->X_add_symbol = symbol;
19906 exp->X_add_number = 0;
19907 }
19908 /* FALLTHROUGH */
19909 case O_symbol:
19910 case O_add:
19911 case O_subtract:
19912 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
19913 (enum bfd_reloc_code_real) reloc);
19914 break;
19915
19916 default:
19917 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
19918 pc_rel, (enum bfd_reloc_code_real) reloc);
19919 break;
19920 }
19921
19922 /* Mark whether the fix is to a THUMB instruction, or an ARM
19923 instruction. */
19924 new_fix->tc_fix_data = thumb_mode;
19925 }
19926
19927 /* Create a frg for an instruction requiring relaxation. */
19928 static void
19929 output_relax_insn (void)
19930 {
19931 char * to;
19932 symbolS *sym;
19933 int offset;
19934
19935 /* The size of the instruction is unknown, so tie the debug info to the
19936 start of the instruction. */
19937 dwarf2_emit_insn (0);
19938
19939 switch (inst.relocs[0].exp.X_op)
19940 {
19941 case O_symbol:
19942 sym = inst.relocs[0].exp.X_add_symbol;
19943 offset = inst.relocs[0].exp.X_add_number;
19944 break;
19945 case O_constant:
19946 sym = NULL;
19947 offset = inst.relocs[0].exp.X_add_number;
19948 break;
19949 default:
19950 sym = make_expr_symbol (&inst.relocs[0].exp);
19951 offset = 0;
19952 break;
19953 }
19954 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
19955 inst.relax, sym, offset, NULL/*offset, opcode*/);
19956 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
19957 }
19958
19959 /* Write a 32-bit thumb instruction to buf. */
19960 static void
19961 put_thumb32_insn (char * buf, unsigned long insn)
19962 {
19963 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
19964 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
19965 }
19966
19967 static void
19968 output_inst (const char * str)
19969 {
19970 char * to = NULL;
19971
19972 if (inst.error)
19973 {
19974 as_bad ("%s -- `%s'", inst.error, str);
19975 return;
19976 }
19977 if (inst.relax)
19978 {
19979 output_relax_insn ();
19980 return;
19981 }
19982 if (inst.size == 0)
19983 return;
19984
19985 to = frag_more (inst.size);
19986 /* PR 9814: Record the thumb mode into the current frag so that we know
19987 what type of NOP padding to use, if necessary. We override any previous
19988 setting so that if the mode has changed then the NOPS that we use will
19989 match the encoding of the last instruction in the frag. */
19990 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19991
19992 if (thumb_mode && (inst.size > THUMB_SIZE))
19993 {
19994 gas_assert (inst.size == (2 * THUMB_SIZE));
19995 put_thumb32_insn (to, inst.instruction);
19996 }
19997 else if (inst.size > INSN_SIZE)
19998 {
19999 gas_assert (inst.size == (2 * INSN_SIZE));
20000 md_number_to_chars (to, inst.instruction, INSN_SIZE);
20001 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
20002 }
20003 else
20004 md_number_to_chars (to, inst.instruction, inst.size);
20005
20006 int r;
20007 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20008 {
20009 if (inst.relocs[r].type != BFD_RELOC_UNUSED)
20010 fix_new_arm (frag_now, to - frag_now->fr_literal,
20011 inst.size, & inst.relocs[r].exp, inst.relocs[r].pc_rel,
20012 inst.relocs[r].type);
20013 }
20014
20015 dwarf2_emit_insn (inst.size);
20016 }
20017
20018 static char *
20019 output_it_inst (int cond, int mask, char * to)
20020 {
20021 unsigned long instruction = 0xbf00;
20022
20023 mask &= 0xf;
20024 instruction |= mask;
20025 instruction |= cond << 4;
20026
20027 if (to == NULL)
20028 {
20029 to = frag_more (2);
20030 #ifdef OBJ_ELF
20031 dwarf2_emit_insn (2);
20032 #endif
20033 }
20034
20035 md_number_to_chars (to, instruction, 2);
20036
20037 return to;
20038 }
20039
20040 /* Tag values used in struct asm_opcode's tag field. */
20041 enum opcode_tag
20042 {
20043 OT_unconditional, /* Instruction cannot be conditionalized.
20044 The ARM condition field is still 0xE. */
20045 OT_unconditionalF, /* Instruction cannot be conditionalized
20046 and carries 0xF in its ARM condition field. */
20047 OT_csuffix, /* Instruction takes a conditional suffix. */
20048 OT_csuffixF, /* Some forms of the instruction take a scalar
20049 conditional suffix, others place 0xF where the
20050 condition field would be, others take a vector
20051 conditional suffix. */
20052 OT_cinfix3, /* Instruction takes a conditional infix,
20053 beginning at character index 3. (In
20054 unified mode, it becomes a suffix.) */
20055 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
20056 tsts, cmps, cmns, and teqs. */
20057 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
20058 character index 3, even in unified mode. Used for
20059 legacy instructions where suffix and infix forms
20060 may be ambiguous. */
20061 OT_csuf_or_in3, /* Instruction takes either a conditional
20062 suffix or an infix at character index 3. */
20063 OT_odd_infix_unc, /* This is the unconditional variant of an
20064 instruction that takes a conditional infix
20065 at an unusual position. In unified mode,
20066 this variant will accept a suffix. */
20067 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
20068 are the conditional variants of instructions that
20069 take conditional infixes in unusual positions.
20070 The infix appears at character index
20071 (tag - OT_odd_infix_0). These are not accepted
20072 in unified mode. */
20073 };
20074
20075 /* Subroutine of md_assemble, responsible for looking up the primary
20076 opcode from the mnemonic the user wrote. STR points to the
20077 beginning of the mnemonic.
20078
20079 This is not simply a hash table lookup, because of conditional
20080 variants. Most instructions have conditional variants, which are
20081 expressed with a _conditional affix_ to the mnemonic. If we were
20082 to encode each conditional variant as a literal string in the opcode
20083 table, it would have approximately 20,000 entries.
20084
20085 Most mnemonics take this affix as a suffix, and in unified syntax,
20086 'most' is upgraded to 'all'. However, in the divided syntax, some
20087 instructions take the affix as an infix, notably the s-variants of
20088 the arithmetic instructions. Of those instructions, all but six
20089 have the infix appear after the third character of the mnemonic.
20090
20091 Accordingly, the algorithm for looking up primary opcodes given
20092 an identifier is:
20093
20094 1. Look up the identifier in the opcode table.
20095 If we find a match, go to step U.
20096
20097 2. Look up the last two characters of the identifier in the
20098 conditions table. If we find a match, look up the first N-2
20099 characters of the identifier in the opcode table. If we
20100 find a match, go to step CE.
20101
20102 3. Look up the fourth and fifth characters of the identifier in
20103 the conditions table. If we find a match, extract those
20104 characters from the identifier, and look up the remaining
20105 characters in the opcode table. If we find a match, go
20106 to step CM.
20107
20108 4. Fail.
20109
20110 U. Examine the tag field of the opcode structure, in case this is
20111 one of the six instructions with its conditional infix in an
20112 unusual place. If it is, the tag tells us where to find the
20113 infix; look it up in the conditions table and set inst.cond
20114 accordingly. Otherwise, this is an unconditional instruction.
20115 Again set inst.cond accordingly. Return the opcode structure.
20116
20117 CE. Examine the tag field to make sure this is an instruction that
20118 should receive a conditional suffix. If it is not, fail.
20119 Otherwise, set inst.cond from the suffix we already looked up,
20120 and return the opcode structure.
20121
20122 CM. Examine the tag field to make sure this is an instruction that
20123 should receive a conditional infix after the third character.
20124 If it is not, fail. Otherwise, undo the edits to the current
20125 line of input and proceed as for case CE. */
20126
20127 static const struct asm_opcode *
20128 opcode_lookup (char **str)
20129 {
20130 char *end, *base;
20131 char *affix;
20132 const struct asm_opcode *opcode;
20133 const struct asm_cond *cond;
20134 char save[2];
20135
20136 /* Scan up to the end of the mnemonic, which must end in white space,
20137 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
20138 for (base = end = *str; *end != '\0'; end++)
20139 if (*end == ' ' || *end == '.')
20140 break;
20141
20142 if (end == base)
20143 return NULL;
20144
20145 /* Handle a possible width suffix and/or Neon type suffix. */
20146 if (end[0] == '.')
20147 {
20148 int offset = 2;
20149
20150 /* The .w and .n suffixes are only valid if the unified syntax is in
20151 use. */
20152 if (unified_syntax && end[1] == 'w')
20153 inst.size_req = 4;
20154 else if (unified_syntax && end[1] == 'n')
20155 inst.size_req = 2;
20156 else
20157 offset = 0;
20158
20159 inst.vectype.elems = 0;
20160
20161 *str = end + offset;
20162
20163 if (end[offset] == '.')
20164 {
20165 /* See if we have a Neon type suffix (possible in either unified or
20166 non-unified ARM syntax mode). */
20167 if (parse_neon_type (&inst.vectype, str) == FAIL)
20168 return NULL;
20169 }
20170 else if (end[offset] != '\0' && end[offset] != ' ')
20171 return NULL;
20172 }
20173 else
20174 *str = end;
20175
20176 /* Look for unaffixed or special-case affixed mnemonic. */
20177 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20178 end - base);
20179 if (opcode)
20180 {
20181 /* step U */
20182 if (opcode->tag < OT_odd_infix_0)
20183 {
20184 inst.cond = COND_ALWAYS;
20185 return opcode;
20186 }
20187
20188 if (warn_on_deprecated && unified_syntax)
20189 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20190 affix = base + (opcode->tag - OT_odd_infix_0);
20191 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20192 gas_assert (cond);
20193
20194 inst.cond = cond->value;
20195 return opcode;
20196 }
20197 if (ARM_CPU_HAS_FEATURE (cpu_variant, mve_ext))
20198 {
20199 /* Cannot have a conditional suffix on a mnemonic of less than a character.
20200 */
20201 if (end - base < 2)
20202 return NULL;
20203 affix = end - 1;
20204 cond = (const struct asm_cond *) hash_find_n (arm_vcond_hsh, affix, 1);
20205 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20206 affix - base);
20207 /* If this opcode can not be vector predicated then don't accept it with a
20208 vector predication code. */
20209 if (opcode && !opcode->mayBeVecPred)
20210 opcode = NULL;
20211 }
20212 if (!opcode || !cond)
20213 {
20214 /* Cannot have a conditional suffix on a mnemonic of less than two
20215 characters. */
20216 if (end - base < 3)
20217 return NULL;
20218
20219 /* Look for suffixed mnemonic. */
20220 affix = end - 2;
20221 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20222 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20223 affix - base);
20224 }
20225
20226 if (opcode && cond)
20227 {
20228 /* step CE */
20229 switch (opcode->tag)
20230 {
20231 case OT_cinfix3_legacy:
20232 /* Ignore conditional suffixes matched on infix only mnemonics. */
20233 break;
20234
20235 case OT_cinfix3:
20236 case OT_cinfix3_deprecated:
20237 case OT_odd_infix_unc:
20238 if (!unified_syntax)
20239 return NULL;
20240 /* Fall through. */
20241
20242 case OT_csuffix:
20243 case OT_csuffixF:
20244 case OT_csuf_or_in3:
20245 inst.cond = cond->value;
20246 return opcode;
20247
20248 case OT_unconditional:
20249 case OT_unconditionalF:
20250 if (thumb_mode)
20251 inst.cond = cond->value;
20252 else
20253 {
20254 /* Delayed diagnostic. */
20255 inst.error = BAD_COND;
20256 inst.cond = COND_ALWAYS;
20257 }
20258 return opcode;
20259
20260 default:
20261 return NULL;
20262 }
20263 }
20264
20265 /* Cannot have a usual-position infix on a mnemonic of less than
20266 six characters (five would be a suffix). */
20267 if (end - base < 6)
20268 return NULL;
20269
20270 /* Look for infixed mnemonic in the usual position. */
20271 affix = base + 3;
20272 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
20273 if (!cond)
20274 return NULL;
20275
20276 memcpy (save, affix, 2);
20277 memmove (affix, affix + 2, (end - affix) - 2);
20278 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
20279 (end - base) - 2);
20280 memmove (affix + 2, affix, (end - affix) - 2);
20281 memcpy (affix, save, 2);
20282
20283 if (opcode
20284 && (opcode->tag == OT_cinfix3
20285 || opcode->tag == OT_cinfix3_deprecated
20286 || opcode->tag == OT_csuf_or_in3
20287 || opcode->tag == OT_cinfix3_legacy))
20288 {
20289 /* Step CM. */
20290 if (warn_on_deprecated && unified_syntax
20291 && (opcode->tag == OT_cinfix3
20292 || opcode->tag == OT_cinfix3_deprecated))
20293 as_tsktsk (_("conditional infixes are deprecated in unified syntax"));
20294
20295 inst.cond = cond->value;
20296 return opcode;
20297 }
20298
20299 return NULL;
20300 }
20301
20302 /* This function generates an initial IT instruction, leaving its block
20303 virtually open for the new instructions. Eventually,
20304 the mask will be updated by now_pred_add_mask () each time
20305 a new instruction needs to be included in the IT block.
20306 Finally, the block is closed with close_automatic_it_block ().
20307 The block closure can be requested either from md_assemble (),
20308 a tencode (), or due to a label hook. */
20309
20310 static void
20311 new_automatic_it_block (int cond)
20312 {
20313 now_pred.state = AUTOMATIC_PRED_BLOCK;
20314 now_pred.mask = 0x18;
20315 now_pred.cc = cond;
20316 now_pred.block_length = 1;
20317 mapping_state (MAP_THUMB);
20318 now_pred.insn = output_it_inst (cond, now_pred.mask, NULL);
20319 now_pred.warn_deprecated = FALSE;
20320 now_pred.insn_cond = TRUE;
20321 }
20322
20323 /* Close an automatic IT block.
20324 See comments in new_automatic_it_block (). */
20325
20326 static void
20327 close_automatic_it_block (void)
20328 {
20329 now_pred.mask = 0x10;
20330 now_pred.block_length = 0;
20331 }
20332
20333 /* Update the mask of the current automatically-generated IT
20334 instruction. See comments in new_automatic_it_block (). */
20335
20336 static void
20337 now_pred_add_mask (int cond)
20338 {
20339 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
20340 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
20341 | ((bitvalue) << (nbit)))
20342 const int resulting_bit = (cond & 1);
20343
20344 now_pred.mask &= 0xf;
20345 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20346 resulting_bit,
20347 (5 - now_pred.block_length));
20348 now_pred.mask = SET_BIT_VALUE (now_pred.mask,
20349 1,
20350 ((5 - now_pred.block_length) - 1));
20351 output_it_inst (now_pred.cc, now_pred.mask, now_pred.insn);
20352
20353 #undef CLEAR_BIT
20354 #undef SET_BIT_VALUE
20355 }
20356
20357 /* The IT blocks handling machinery is accessed through the these functions:
20358 it_fsm_pre_encode () from md_assemble ()
20359 set_pred_insn_type () optional, from the tencode functions
20360 set_pred_insn_type_last () ditto
20361 in_pred_block () ditto
20362 it_fsm_post_encode () from md_assemble ()
20363 force_automatic_it_block_close () from label handling functions
20364
20365 Rationale:
20366 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
20367 initializing the IT insn type with a generic initial value depending
20368 on the inst.condition.
20369 2) During the tencode function, two things may happen:
20370 a) The tencode function overrides the IT insn type by
20371 calling either set_pred_insn_type (type) or
20372 set_pred_insn_type_last ().
20373 b) The tencode function queries the IT block state by
20374 calling in_pred_block () (i.e. to determine narrow/not narrow mode).
20375
20376 Both set_pred_insn_type and in_pred_block run the internal FSM state
20377 handling function (handle_pred_state), because: a) setting the IT insn
20378 type may incur in an invalid state (exiting the function),
20379 and b) querying the state requires the FSM to be updated.
20380 Specifically we want to avoid creating an IT block for conditional
20381 branches, so it_fsm_pre_encode is actually a guess and we can't
20382 determine whether an IT block is required until the tencode () routine
20383 has decided what type of instruction this actually it.
20384 Because of this, if set_pred_insn_type and in_pred_block have to be
20385 used, set_pred_insn_type has to be called first.
20386
20387 set_pred_insn_type_last () is a wrapper of set_pred_insn_type (type),
20388 that determines the insn IT type depending on the inst.cond code.
20389 When a tencode () routine encodes an instruction that can be
20390 either outside an IT block, or, in the case of being inside, has to be
20391 the last one, set_pred_insn_type_last () will determine the proper
20392 IT instruction type based on the inst.cond code. Otherwise,
20393 set_pred_insn_type can be called for overriding that logic or
20394 for covering other cases.
20395
20396 Calling handle_pred_state () may not transition the IT block state to
20397 OUTSIDE_PRED_BLOCK immediately, since the (current) state could be
20398 still queried. Instead, if the FSM determines that the state should
20399 be transitioned to OUTSIDE_PRED_BLOCK, a flag is marked to be closed
20400 after the tencode () function: that's what it_fsm_post_encode () does.
20401
20402 Since in_pred_block () calls the state handling function to get an
20403 updated state, an error may occur (due to invalid insns combination).
20404 In that case, inst.error is set.
20405 Therefore, inst.error has to be checked after the execution of
20406 the tencode () routine.
20407
20408 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
20409 any pending state change (if any) that didn't take place in
20410 handle_pred_state () as explained above. */
20411
20412 static void
20413 it_fsm_pre_encode (void)
20414 {
20415 if (inst.cond != COND_ALWAYS)
20416 inst.pred_insn_type = INSIDE_IT_INSN;
20417 else
20418 inst.pred_insn_type = OUTSIDE_PRED_INSN;
20419
20420 now_pred.state_handled = 0;
20421 }
20422
20423 /* IT state FSM handling function. */
20424 /* MVE instructions and non-MVE instructions are handled differently because of
20425 the introduction of VPT blocks.
20426 Specifications say that any non-MVE instruction inside a VPT block is
20427 UNPREDICTABLE, with the exception of the BKPT instruction. Whereas most MVE
20428 instructions are deemed to be UNPREDICTABLE if inside an IT block. For the
20429 few exceptions we have MVE_UNPREDICABLE_INSN.
20430 The error messages provided depending on the different combinations possible
20431 are described in the cases below:
20432 For 'most' MVE instructions:
20433 1) In an IT block, with an IT code: syntax error
20434 2) In an IT block, with a VPT code: error: must be in a VPT block
20435 3) In an IT block, with no code: warning: UNPREDICTABLE
20436 4) In a VPT block, with an IT code: syntax error
20437 5) In a VPT block, with a VPT code: OK!
20438 6) In a VPT block, with no code: error: missing code
20439 7) Outside a pred block, with an IT code: error: syntax error
20440 8) Outside a pred block, with a VPT code: error: should be in a VPT block
20441 9) Outside a pred block, with no code: OK!
20442 For non-MVE instructions:
20443 10) In an IT block, with an IT code: OK!
20444 11) In an IT block, with a VPT code: syntax error
20445 12) In an IT block, with no code: error: missing code
20446 13) In a VPT block, with an IT code: error: should be in an IT block
20447 14) In a VPT block, with a VPT code: syntax error
20448 15) In a VPT block, with no code: UNPREDICTABLE
20449 16) Outside a pred block, with an IT code: error: should be in an IT block
20450 17) Outside a pred block, with a VPT code: syntax error
20451 18) Outside a pred block, with no code: OK!
20452 */
20453
20454
20455 static int
20456 handle_pred_state (void)
20457 {
20458 now_pred.state_handled = 1;
20459 now_pred.insn_cond = FALSE;
20460
20461 switch (now_pred.state)
20462 {
20463 case OUTSIDE_PRED_BLOCK:
20464 switch (inst.pred_insn_type)
20465 {
20466 case MVE_UNPREDICABLE_INSN:
20467 case MVE_OUTSIDE_PRED_INSN:
20468 if (inst.cond < COND_ALWAYS)
20469 {
20470 /* Case 7: Outside a pred block, with an IT code: error: syntax
20471 error. */
20472 inst.error = BAD_SYNTAX;
20473 return FAIL;
20474 }
20475 /* Case 9: Outside a pred block, with no code: OK! */
20476 break;
20477 case OUTSIDE_PRED_INSN:
20478 if (inst.cond > COND_ALWAYS)
20479 {
20480 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20481 */
20482 inst.error = BAD_SYNTAX;
20483 return FAIL;
20484 }
20485 /* Case 18: Outside a pred block, with no code: OK! */
20486 break;
20487
20488 case INSIDE_VPT_INSN:
20489 /* Case 8: Outside a pred block, with a VPT code: error: should be in
20490 a VPT block. */
20491 inst.error = BAD_OUT_VPT;
20492 return FAIL;
20493
20494 case INSIDE_IT_INSN:
20495 case INSIDE_IT_LAST_INSN:
20496 if (inst.cond < COND_ALWAYS)
20497 {
20498 /* Case 16: Outside a pred block, with an IT code: error: should
20499 be in an IT block. */
20500 if (thumb_mode == 0)
20501 {
20502 if (unified_syntax
20503 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
20504 as_tsktsk (_("Warning: conditional outside an IT block"\
20505 " for Thumb."));
20506 }
20507 else
20508 {
20509 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
20510 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
20511 {
20512 /* Automatically generate the IT instruction. */
20513 new_automatic_it_block (inst.cond);
20514 if (inst.pred_insn_type == INSIDE_IT_LAST_INSN)
20515 close_automatic_it_block ();
20516 }
20517 else
20518 {
20519 inst.error = BAD_OUT_IT;
20520 return FAIL;
20521 }
20522 }
20523 break;
20524 }
20525 else if (inst.cond > COND_ALWAYS)
20526 {
20527 /* Case 17: Outside a pred block, with a VPT code: syntax error.
20528 */
20529 inst.error = BAD_SYNTAX;
20530 return FAIL;
20531 }
20532 else
20533 gas_assert (0);
20534 case IF_INSIDE_IT_LAST_INSN:
20535 case NEUTRAL_IT_INSN:
20536 break;
20537
20538 case VPT_INSN:
20539 if (inst.cond != COND_ALWAYS)
20540 first_error (BAD_SYNTAX);
20541 now_pred.state = MANUAL_PRED_BLOCK;
20542 now_pred.block_length = 0;
20543 now_pred.type = VECTOR_PRED;
20544 now_pred.cc = 0;
20545 break;
20546 case IT_INSN:
20547 now_pred.state = MANUAL_PRED_BLOCK;
20548 now_pred.block_length = 0;
20549 now_pred.type = SCALAR_PRED;
20550 break;
20551 }
20552 break;
20553
20554 case AUTOMATIC_PRED_BLOCK:
20555 /* Three things may happen now:
20556 a) We should increment current it block size;
20557 b) We should close current it block (closing insn or 4 insns);
20558 c) We should close current it block and start a new one (due
20559 to incompatible conditions or
20560 4 insns-length block reached). */
20561
20562 switch (inst.pred_insn_type)
20563 {
20564 case INSIDE_VPT_INSN:
20565 case VPT_INSN:
20566 case MVE_UNPREDICABLE_INSN:
20567 case MVE_OUTSIDE_PRED_INSN:
20568 gas_assert (0);
20569 case OUTSIDE_PRED_INSN:
20570 /* The closure of the block shall happen immediately,
20571 so any in_pred_block () call reports the block as closed. */
20572 force_automatic_it_block_close ();
20573 break;
20574
20575 case INSIDE_IT_INSN:
20576 case INSIDE_IT_LAST_INSN:
20577 case IF_INSIDE_IT_LAST_INSN:
20578 now_pred.block_length++;
20579
20580 if (now_pred.block_length > 4
20581 || !now_pred_compatible (inst.cond))
20582 {
20583 force_automatic_it_block_close ();
20584 if (inst.pred_insn_type != IF_INSIDE_IT_LAST_INSN)
20585 new_automatic_it_block (inst.cond);
20586 }
20587 else
20588 {
20589 now_pred.insn_cond = TRUE;
20590 now_pred_add_mask (inst.cond);
20591 }
20592
20593 if (now_pred.state == AUTOMATIC_PRED_BLOCK
20594 && (inst.pred_insn_type == INSIDE_IT_LAST_INSN
20595 || inst.pred_insn_type == IF_INSIDE_IT_LAST_INSN))
20596 close_automatic_it_block ();
20597 break;
20598
20599 case NEUTRAL_IT_INSN:
20600 now_pred.block_length++;
20601 now_pred.insn_cond = TRUE;
20602
20603 if (now_pred.block_length > 4)
20604 force_automatic_it_block_close ();
20605 else
20606 now_pred_add_mask (now_pred.cc & 1);
20607 break;
20608
20609 case IT_INSN:
20610 close_automatic_it_block ();
20611 now_pred.state = MANUAL_PRED_BLOCK;
20612 break;
20613 }
20614 break;
20615
20616 case MANUAL_PRED_BLOCK:
20617 {
20618 int cond, is_last;
20619 if (now_pred.type == SCALAR_PRED)
20620 {
20621 /* Check conditional suffixes. */
20622 cond = now_pred.cc ^ ((now_pred.mask >> 4) & 1) ^ 1;
20623 now_pred.mask <<= 1;
20624 now_pred.mask &= 0x1f;
20625 is_last = (now_pred.mask == 0x10);
20626 }
20627 else
20628 {
20629 now_pred.cc ^= (now_pred.mask >> 4);
20630 cond = now_pred.cc + 0xf;
20631 now_pred.mask <<= 1;
20632 now_pred.mask &= 0x1f;
20633 is_last = now_pred.mask == 0x10;
20634 }
20635 now_pred.insn_cond = TRUE;
20636
20637 switch (inst.pred_insn_type)
20638 {
20639 case OUTSIDE_PRED_INSN:
20640 if (now_pred.type == SCALAR_PRED)
20641 {
20642 if (inst.cond == COND_ALWAYS)
20643 {
20644 /* Case 12: In an IT block, with no code: error: missing
20645 code. */
20646 inst.error = BAD_NOT_IT;
20647 return FAIL;
20648 }
20649 else if (inst.cond > COND_ALWAYS)
20650 {
20651 /* Case 11: In an IT block, with a VPT code: syntax error.
20652 */
20653 inst.error = BAD_SYNTAX;
20654 return FAIL;
20655 }
20656 else if (thumb_mode)
20657 {
20658 /* This is for some special cases where a non-MVE
20659 instruction is not allowed in an IT block, such as cbz,
20660 but are put into one with a condition code.
20661 You could argue this should be a syntax error, but we
20662 gave the 'not allowed in IT block' diagnostic in the
20663 past so we will keep doing so. */
20664 inst.error = BAD_NOT_IT;
20665 return FAIL;
20666 }
20667 break;
20668 }
20669 else
20670 {
20671 /* Case 15: In a VPT block, with no code: UNPREDICTABLE. */
20672 as_tsktsk (MVE_NOT_VPT);
20673 return SUCCESS;
20674 }
20675 case MVE_OUTSIDE_PRED_INSN:
20676 if (now_pred.type == SCALAR_PRED)
20677 {
20678 if (inst.cond == COND_ALWAYS)
20679 {
20680 /* Case 3: In an IT block, with no code: warning:
20681 UNPREDICTABLE. */
20682 as_tsktsk (MVE_NOT_IT);
20683 return SUCCESS;
20684 }
20685 else if (inst.cond < COND_ALWAYS)
20686 {
20687 /* Case 1: In an IT block, with an IT code: syntax error.
20688 */
20689 inst.error = BAD_SYNTAX;
20690 return FAIL;
20691 }
20692 else
20693 gas_assert (0);
20694 }
20695 else
20696 {
20697 if (inst.cond < COND_ALWAYS)
20698 {
20699 /* Case 4: In a VPT block, with an IT code: syntax error.
20700 */
20701 inst.error = BAD_SYNTAX;
20702 return FAIL;
20703 }
20704 else if (inst.cond == COND_ALWAYS)
20705 {
20706 /* Case 6: In a VPT block, with no code: error: missing
20707 code. */
20708 inst.error = BAD_NOT_VPT;
20709 return FAIL;
20710 }
20711 else
20712 {
20713 gas_assert (0);
20714 }
20715 }
20716 case MVE_UNPREDICABLE_INSN:
20717 as_tsktsk (now_pred.type == SCALAR_PRED ? MVE_NOT_IT : MVE_NOT_VPT);
20718 return SUCCESS;
20719 case INSIDE_IT_INSN:
20720 if (inst.cond > COND_ALWAYS)
20721 {
20722 /* Case 11: In an IT block, with a VPT code: syntax error. */
20723 /* Case 14: In a VPT block, with a VPT code: syntax error. */
20724 inst.error = BAD_SYNTAX;
20725 return FAIL;
20726 }
20727 else if (now_pred.type == SCALAR_PRED)
20728 {
20729 /* Case 10: In an IT block, with an IT code: OK! */
20730 if (cond != inst.cond)
20731 {
20732 inst.error = now_pred.type == SCALAR_PRED ? BAD_IT_COND :
20733 BAD_VPT_COND;
20734 return FAIL;
20735 }
20736 }
20737 else
20738 {
20739 /* Case 13: In a VPT block, with an IT code: error: should be
20740 in an IT block. */
20741 inst.error = BAD_OUT_IT;
20742 return FAIL;
20743 }
20744 break;
20745
20746 case INSIDE_VPT_INSN:
20747 if (now_pred.type == SCALAR_PRED)
20748 {
20749 /* Case 2: In an IT block, with a VPT code: error: must be in a
20750 VPT block. */
20751 inst.error = BAD_OUT_VPT;
20752 return FAIL;
20753 }
20754 /* Case 5: In a VPT block, with a VPT code: OK! */
20755 else if (cond != inst.cond)
20756 {
20757 inst.error = BAD_VPT_COND;
20758 return FAIL;
20759 }
20760 break;
20761 case INSIDE_IT_LAST_INSN:
20762 case IF_INSIDE_IT_LAST_INSN:
20763 if (now_pred.type == VECTOR_PRED || inst.cond > COND_ALWAYS)
20764 {
20765 /* Case 4: In a VPT block, with an IT code: syntax error. */
20766 /* Case 11: In an IT block, with a VPT code: syntax error. */
20767 inst.error = BAD_SYNTAX;
20768 return FAIL;
20769 }
20770 else if (cond != inst.cond)
20771 {
20772 inst.error = BAD_IT_COND;
20773 return FAIL;
20774 }
20775 if (!is_last)
20776 {
20777 inst.error = BAD_BRANCH;
20778 return FAIL;
20779 }
20780 break;
20781
20782 case NEUTRAL_IT_INSN:
20783 /* The BKPT instruction is unconditional even in a IT or VPT
20784 block. */
20785 break;
20786
20787 case IT_INSN:
20788 if (now_pred.type == SCALAR_PRED)
20789 {
20790 inst.error = BAD_IT_IT;
20791 return FAIL;
20792 }
20793 /* fall through. */
20794 case VPT_INSN:
20795 if (inst.cond == COND_ALWAYS)
20796 {
20797 /* Executing a VPT/VPST instruction inside an IT block or a
20798 VPT/VPST/IT instruction inside a VPT block is UNPREDICTABLE.
20799 */
20800 if (now_pred.type == SCALAR_PRED)
20801 as_tsktsk (MVE_NOT_IT);
20802 else
20803 as_tsktsk (MVE_NOT_VPT);
20804 return SUCCESS;
20805 }
20806 else
20807 {
20808 /* VPT/VPST do not accept condition codes. */
20809 inst.error = BAD_SYNTAX;
20810 return FAIL;
20811 }
20812 }
20813 }
20814 break;
20815 }
20816
20817 return SUCCESS;
20818 }
20819
20820 struct depr_insn_mask
20821 {
20822 unsigned long pattern;
20823 unsigned long mask;
20824 const char* description;
20825 };
20826
20827 /* List of 16-bit instruction patterns deprecated in an IT block in
20828 ARMv8. */
20829 static const struct depr_insn_mask depr_it_insns[] = {
20830 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
20831 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
20832 { 0xa000, 0xb800, N_("ADR") },
20833 { 0x4800, 0xf800, N_("Literal loads") },
20834 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
20835 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
20836 /* NOTE: 0x00dd is not the real encoding, instead, it is the 'tvalue'
20837 field in asm_opcode. 'tvalue' is used at the stage this check happen. */
20838 { 0x00dd, 0x7fff, N_("ADD/SUB sp, sp #imm") },
20839 { 0, 0, NULL }
20840 };
20841
20842 static void
20843 it_fsm_post_encode (void)
20844 {
20845 int is_last;
20846
20847 if (!now_pred.state_handled)
20848 handle_pred_state ();
20849
20850 if (now_pred.insn_cond
20851 && !now_pred.warn_deprecated
20852 && warn_on_deprecated
20853 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8)
20854 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_m))
20855 {
20856 if (inst.instruction >= 0x10000)
20857 {
20858 as_tsktsk (_("IT blocks containing 32-bit Thumb instructions are "
20859 "performance deprecated in ARMv8-A and ARMv8-R"));
20860 now_pred.warn_deprecated = TRUE;
20861 }
20862 else
20863 {
20864 const struct depr_insn_mask *p = depr_it_insns;
20865
20866 while (p->mask != 0)
20867 {
20868 if ((inst.instruction & p->mask) == p->pattern)
20869 {
20870 as_tsktsk (_("IT blocks containing 16-bit Thumb "
20871 "instructions of the following class are "
20872 "performance deprecated in ARMv8-A and "
20873 "ARMv8-R: %s"), p->description);
20874 now_pred.warn_deprecated = TRUE;
20875 break;
20876 }
20877
20878 ++p;
20879 }
20880 }
20881
20882 if (now_pred.block_length > 1)
20883 {
20884 as_tsktsk (_("IT blocks containing more than one conditional "
20885 "instruction are performance deprecated in ARMv8-A and "
20886 "ARMv8-R"));
20887 now_pred.warn_deprecated = TRUE;
20888 }
20889 }
20890
20891 is_last = (now_pred.mask == 0x10);
20892 if (is_last)
20893 {
20894 now_pred.state = OUTSIDE_PRED_BLOCK;
20895 now_pred.mask = 0;
20896 }
20897 }
20898
20899 static void
20900 force_automatic_it_block_close (void)
20901 {
20902 if (now_pred.state == AUTOMATIC_PRED_BLOCK)
20903 {
20904 close_automatic_it_block ();
20905 now_pred.state = OUTSIDE_PRED_BLOCK;
20906 now_pred.mask = 0;
20907 }
20908 }
20909
20910 static int
20911 in_pred_block (void)
20912 {
20913 if (!now_pred.state_handled)
20914 handle_pred_state ();
20915
20916 return now_pred.state != OUTSIDE_PRED_BLOCK;
20917 }
20918
20919 /* Whether OPCODE only has T32 encoding. Since this function is only used by
20920 t32_insn_ok, OPCODE enabled by v6t2 extension bit do not need to be listed
20921 here, hence the "known" in the function name. */
20922
20923 static bfd_boolean
20924 known_t32_only_insn (const struct asm_opcode *opcode)
20925 {
20926 /* Original Thumb-1 wide instruction. */
20927 if (opcode->tencode == do_t_blx
20928 || opcode->tencode == do_t_branch23
20929 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
20930 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier))
20931 return TRUE;
20932
20933 /* Wide-only instruction added to ARMv8-M Baseline. */
20934 if (ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v8m_m_only)
20935 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_atomics)
20936 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_v6t2_v8m)
20937 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_div))
20938 return TRUE;
20939
20940 return FALSE;
20941 }
20942
20943 /* Whether wide instruction variant can be used if available for a valid OPCODE
20944 in ARCH. */
20945
20946 static bfd_boolean
20947 t32_insn_ok (arm_feature_set arch, const struct asm_opcode *opcode)
20948 {
20949 if (known_t32_only_insn (opcode))
20950 return TRUE;
20951
20952 /* Instruction with narrow and wide encoding added to ARMv8-M. Availability
20953 of variant T3 of B.W is checked in do_t_branch. */
20954 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
20955 && opcode->tencode == do_t_branch)
20956 return TRUE;
20957
20958 /* MOV accepts T1/T3 encodings under Baseline, T3 encoding is 32bit. */
20959 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v8m)
20960 && opcode->tencode == do_t_mov_cmp
20961 /* Make sure CMP instruction is not affected. */
20962 && opcode->aencode == do_mov)
20963 return TRUE;
20964
20965 /* Wide instruction variants of all instructions with narrow *and* wide
20966 variants become available with ARMv6t2. Other opcodes are either
20967 narrow-only or wide-only and are thus available if OPCODE is valid. */
20968 if (ARM_CPU_HAS_FEATURE (arch, arm_ext_v6t2))
20969 return TRUE;
20970
20971 /* OPCODE with narrow only instruction variant or wide variant not
20972 available. */
20973 return FALSE;
20974 }
20975
20976 void
20977 md_assemble (char *str)
20978 {
20979 char *p = str;
20980 const struct asm_opcode * opcode;
20981
20982 /* Align the previous label if needed. */
20983 if (last_label_seen != NULL)
20984 {
20985 symbol_set_frag (last_label_seen, frag_now);
20986 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
20987 S_SET_SEGMENT (last_label_seen, now_seg);
20988 }
20989
20990 memset (&inst, '\0', sizeof (inst));
20991 int r;
20992 for (r = 0; r < ARM_IT_MAX_RELOCS; r++)
20993 inst.relocs[r].type = BFD_RELOC_UNUSED;
20994
20995 opcode = opcode_lookup (&p);
20996 if (!opcode)
20997 {
20998 /* It wasn't an instruction, but it might be a register alias of
20999 the form alias .req reg, or a Neon .dn/.qn directive. */
21000 if (! create_register_alias (str, p)
21001 && ! create_neon_reg_alias (str, p))
21002 as_bad (_("bad instruction `%s'"), str);
21003
21004 return;
21005 }
21006
21007 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
21008 as_tsktsk (_("s suffix on comparison instruction is deprecated"));
21009
21010 /* The value which unconditional instructions should have in place of the
21011 condition field. */
21012 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
21013
21014 if (thumb_mode)
21015 {
21016 arm_feature_set variant;
21017
21018 variant = cpu_variant;
21019 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
21020 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
21021 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
21022 /* Check that this instruction is supported for this CPU. */
21023 if (!opcode->tvariant
21024 || (thumb_mode == 1
21025 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
21026 {
21027 if (opcode->tencode == do_t_swi)
21028 as_bad (_("SVC is not permitted on this architecture"));
21029 else
21030 as_bad (_("selected processor does not support `%s' in Thumb mode"), str);
21031 return;
21032 }
21033 if (inst.cond != COND_ALWAYS && !unified_syntax
21034 && opcode->tencode != do_t_branch)
21035 {
21036 as_bad (_("Thumb does not support conditional execution"));
21037 return;
21038 }
21039
21040 /* Two things are addressed here:
21041 1) Implicit require narrow instructions on Thumb-1.
21042 This avoids relaxation accidentally introducing Thumb-2
21043 instructions.
21044 2) Reject wide instructions in non Thumb-2 cores.
21045
21046 Only instructions with narrow and wide variants need to be handled
21047 but selecting all non wide-only instructions is easier. */
21048 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2)
21049 && !t32_insn_ok (variant, opcode))
21050 {
21051 if (inst.size_req == 0)
21052 inst.size_req = 2;
21053 else if (inst.size_req == 4)
21054 {
21055 if (ARM_CPU_HAS_FEATURE (variant, arm_ext_v8m))
21056 as_bad (_("selected processor does not support 32bit wide "
21057 "variant of instruction `%s'"), str);
21058 else
21059 as_bad (_("selected processor does not support `%s' in "
21060 "Thumb-2 mode"), str);
21061 return;
21062 }
21063 }
21064
21065 inst.instruction = opcode->tvalue;
21066
21067 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
21068 {
21069 /* Prepare the pred_insn_type for those encodings that don't set
21070 it. */
21071 it_fsm_pre_encode ();
21072
21073 opcode->tencode ();
21074
21075 it_fsm_post_encode ();
21076 }
21077
21078 if (!(inst.error || inst.relax))
21079 {
21080 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
21081 inst.size = (inst.instruction > 0xffff ? 4 : 2);
21082 if (inst.size_req && inst.size_req != inst.size)
21083 {
21084 as_bad (_("cannot honor width suffix -- `%s'"), str);
21085 return;
21086 }
21087 }
21088
21089 /* Something has gone badly wrong if we try to relax a fixed size
21090 instruction. */
21091 gas_assert (inst.size_req == 0 || !inst.relax);
21092
21093 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21094 *opcode->tvariant);
21095 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
21096 set those bits when Thumb-2 32-bit instructions are seen. The impact
21097 of relaxable instructions will be considered later after we finish all
21098 relaxation. */
21099 if (ARM_FEATURE_CORE_EQUAL (cpu_variant, arm_arch_any))
21100 variant = arm_arch_none;
21101 else
21102 variant = cpu_variant;
21103 if (inst.size == 4 && !t32_insn_ok (variant, opcode))
21104 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
21105 arm_ext_v6t2);
21106
21107 check_neon_suffixes;
21108
21109 if (!inst.error)
21110 {
21111 mapping_state (MAP_THUMB);
21112 }
21113 }
21114 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
21115 {
21116 bfd_boolean is_bx;
21117
21118 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
21119 is_bx = (opcode->aencode == do_bx);
21120
21121 /* Check that this instruction is supported for this CPU. */
21122 if (!(is_bx && fix_v4bx)
21123 && !(opcode->avariant &&
21124 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
21125 {
21126 as_bad (_("selected processor does not support `%s' in ARM mode"), str);
21127 return;
21128 }
21129 if (inst.size_req)
21130 {
21131 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
21132 return;
21133 }
21134
21135 inst.instruction = opcode->avalue;
21136 if (opcode->tag == OT_unconditionalF)
21137 inst.instruction |= 0xFU << 28;
21138 else
21139 inst.instruction |= inst.cond << 28;
21140 inst.size = INSN_SIZE;
21141 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
21142 {
21143 it_fsm_pre_encode ();
21144 opcode->aencode ();
21145 it_fsm_post_encode ();
21146 }
21147 /* Arm mode bx is marked as both v4T and v5 because it's still required
21148 on a hypothetical non-thumb v5 core. */
21149 if (is_bx)
21150 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
21151 else
21152 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
21153 *opcode->avariant);
21154
21155 check_neon_suffixes;
21156
21157 if (!inst.error)
21158 {
21159 mapping_state (MAP_ARM);
21160 }
21161 }
21162 else
21163 {
21164 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
21165 "-- `%s'"), str);
21166 return;
21167 }
21168 output_inst (str);
21169 }
21170
21171 static void
21172 check_pred_blocks_finished (void)
21173 {
21174 #ifdef OBJ_ELF
21175 asection *sect;
21176
21177 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
21178 if (seg_info (sect)->tc_segment_info_data.current_pred.state
21179 == MANUAL_PRED_BLOCK)
21180 {
21181 if (now_pred.type == SCALAR_PRED)
21182 as_warn (_("section '%s' finished with an open IT block."),
21183 sect->name);
21184 else
21185 as_warn (_("section '%s' finished with an open VPT/VPST block."),
21186 sect->name);
21187 }
21188 #else
21189 if (now_pred.state == MANUAL_PRED_BLOCK)
21190 {
21191 if (now_pred.type == SCALAR_PRED)
21192 as_warn (_("file finished with an open IT block."));
21193 else
21194 as_warn (_("file finished with an open VPT/VPST block."));
21195 }
21196 #endif
21197 }
21198
21199 /* Various frobbings of labels and their addresses. */
21200
21201 void
21202 arm_start_line_hook (void)
21203 {
21204 last_label_seen = NULL;
21205 }
21206
21207 void
21208 arm_frob_label (symbolS * sym)
21209 {
21210 last_label_seen = sym;
21211
21212 ARM_SET_THUMB (sym, thumb_mode);
21213
21214 #if defined OBJ_COFF || defined OBJ_ELF
21215 ARM_SET_INTERWORK (sym, support_interwork);
21216 #endif
21217
21218 force_automatic_it_block_close ();
21219
21220 /* Note - do not allow local symbols (.Lxxx) to be labelled
21221 as Thumb functions. This is because these labels, whilst
21222 they exist inside Thumb code, are not the entry points for
21223 possible ARM->Thumb calls. Also, these labels can be used
21224 as part of a computed goto or switch statement. eg gcc
21225 can generate code that looks like this:
21226
21227 ldr r2, [pc, .Laaa]
21228 lsl r3, r3, #2
21229 ldr r2, [r3, r2]
21230 mov pc, r2
21231
21232 .Lbbb: .word .Lxxx
21233 .Lccc: .word .Lyyy
21234 ..etc...
21235 .Laaa: .word Lbbb
21236
21237 The first instruction loads the address of the jump table.
21238 The second instruction converts a table index into a byte offset.
21239 The third instruction gets the jump address out of the table.
21240 The fourth instruction performs the jump.
21241
21242 If the address stored at .Laaa is that of a symbol which has the
21243 Thumb_Func bit set, then the linker will arrange for this address
21244 to have the bottom bit set, which in turn would mean that the
21245 address computation performed by the third instruction would end
21246 up with the bottom bit set. Since the ARM is capable of unaligned
21247 word loads, the instruction would then load the incorrect address
21248 out of the jump table, and chaos would ensue. */
21249 if (label_is_thumb_function_name
21250 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
21251 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
21252 {
21253 /* When the address of a Thumb function is taken the bottom
21254 bit of that address should be set. This will allow
21255 interworking between Arm and Thumb functions to work
21256 correctly. */
21257
21258 THUMB_SET_FUNC (sym, 1);
21259
21260 label_is_thumb_function_name = FALSE;
21261 }
21262
21263 dwarf2_emit_label (sym);
21264 }
21265
21266 bfd_boolean
21267 arm_data_in_code (void)
21268 {
21269 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
21270 {
21271 *input_line_pointer = '/';
21272 input_line_pointer += 5;
21273 *input_line_pointer = 0;
21274 return TRUE;
21275 }
21276
21277 return FALSE;
21278 }
21279
21280 char *
21281 arm_canonicalize_symbol_name (char * name)
21282 {
21283 int len;
21284
21285 if (thumb_mode && (len = strlen (name)) > 5
21286 && streq (name + len - 5, "/data"))
21287 *(name + len - 5) = 0;
21288
21289 return name;
21290 }
21291 \f
21292 /* Table of all register names defined by default. The user can
21293 define additional names with .req. Note that all register names
21294 should appear in both upper and lowercase variants. Some registers
21295 also have mixed-case names. */
21296
21297 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
21298 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
21299 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
21300 #define REGSET(p,t) \
21301 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
21302 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
21303 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
21304 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
21305 #define REGSETH(p,t) \
21306 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
21307 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
21308 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
21309 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
21310 #define REGSET2(p,t) \
21311 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
21312 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
21313 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
21314 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
21315 #define SPLRBANK(base,bank,t) \
21316 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
21317 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
21318 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
21319 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
21320 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
21321 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
21322
21323 static const struct reg_entry reg_names[] =
21324 {
21325 /* ARM integer registers. */
21326 REGSET(r, RN), REGSET(R, RN),
21327
21328 /* ATPCS synonyms. */
21329 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
21330 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
21331 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
21332
21333 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
21334 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
21335 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
21336
21337 /* Well-known aliases. */
21338 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
21339 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
21340
21341 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
21342 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
21343
21344 /* Defining the new Zero register from ARMv8.1-M. */
21345 REGDEF(zr,15,ZR),
21346 REGDEF(ZR,15,ZR),
21347
21348 /* Coprocessor numbers. */
21349 REGSET(p, CP), REGSET(P, CP),
21350
21351 /* Coprocessor register numbers. The "cr" variants are for backward
21352 compatibility. */
21353 REGSET(c, CN), REGSET(C, CN),
21354 REGSET(cr, CN), REGSET(CR, CN),
21355
21356 /* ARM banked registers. */
21357 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
21358 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
21359 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
21360 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
21361 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
21362 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
21363 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
21364
21365 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
21366 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
21367 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
21368 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
21369 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
21370 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(sp_fiq,512|(13<<16),RNB),
21371 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
21372 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
21373
21374 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
21375 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
21376 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
21377 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
21378 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
21379 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
21380 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
21381 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
21382 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
21383
21384 /* FPA registers. */
21385 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
21386 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
21387
21388 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
21389 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
21390
21391 /* VFP SP registers. */
21392 REGSET(s,VFS), REGSET(S,VFS),
21393 REGSETH(s,VFS), REGSETH(S,VFS),
21394
21395 /* VFP DP Registers. */
21396 REGSET(d,VFD), REGSET(D,VFD),
21397 /* Extra Neon DP registers. */
21398 REGSETH(d,VFD), REGSETH(D,VFD),
21399
21400 /* Neon QP registers. */
21401 REGSET2(q,NQ), REGSET2(Q,NQ),
21402
21403 /* VFP control registers. */
21404 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
21405 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
21406 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
21407 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
21408 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
21409 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
21410 REGDEF(mvfr2,5,VFC), REGDEF(MVFR2,5,VFC),
21411
21412 /* Maverick DSP coprocessor registers. */
21413 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
21414 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
21415
21416 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
21417 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
21418 REGDEF(dspsc,0,DSPSC),
21419
21420 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
21421 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
21422 REGDEF(DSPSC,0,DSPSC),
21423
21424 /* iWMMXt data registers - p0, c0-15. */
21425 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
21426
21427 /* iWMMXt control registers - p1, c0-3. */
21428 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
21429 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
21430 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
21431 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
21432
21433 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
21434 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
21435 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
21436 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
21437 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
21438
21439 /* XScale accumulator registers. */
21440 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
21441 };
21442 #undef REGDEF
21443 #undef REGNUM
21444 #undef REGSET
21445
21446 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
21447 within psr_required_here. */
21448 static const struct asm_psr psrs[] =
21449 {
21450 /* Backward compatibility notation. Note that "all" is no longer
21451 truly all possible PSR bits. */
21452 {"all", PSR_c | PSR_f},
21453 {"flg", PSR_f},
21454 {"ctl", PSR_c},
21455
21456 /* Individual flags. */
21457 {"f", PSR_f},
21458 {"c", PSR_c},
21459 {"x", PSR_x},
21460 {"s", PSR_s},
21461
21462 /* Combinations of flags. */
21463 {"fs", PSR_f | PSR_s},
21464 {"fx", PSR_f | PSR_x},
21465 {"fc", PSR_f | PSR_c},
21466 {"sf", PSR_s | PSR_f},
21467 {"sx", PSR_s | PSR_x},
21468 {"sc", PSR_s | PSR_c},
21469 {"xf", PSR_x | PSR_f},
21470 {"xs", PSR_x | PSR_s},
21471 {"xc", PSR_x | PSR_c},
21472 {"cf", PSR_c | PSR_f},
21473 {"cs", PSR_c | PSR_s},
21474 {"cx", PSR_c | PSR_x},
21475 {"fsx", PSR_f | PSR_s | PSR_x},
21476 {"fsc", PSR_f | PSR_s | PSR_c},
21477 {"fxs", PSR_f | PSR_x | PSR_s},
21478 {"fxc", PSR_f | PSR_x | PSR_c},
21479 {"fcs", PSR_f | PSR_c | PSR_s},
21480 {"fcx", PSR_f | PSR_c | PSR_x},
21481 {"sfx", PSR_s | PSR_f | PSR_x},
21482 {"sfc", PSR_s | PSR_f | PSR_c},
21483 {"sxf", PSR_s | PSR_x | PSR_f},
21484 {"sxc", PSR_s | PSR_x | PSR_c},
21485 {"scf", PSR_s | PSR_c | PSR_f},
21486 {"scx", PSR_s | PSR_c | PSR_x},
21487 {"xfs", PSR_x | PSR_f | PSR_s},
21488 {"xfc", PSR_x | PSR_f | PSR_c},
21489 {"xsf", PSR_x | PSR_s | PSR_f},
21490 {"xsc", PSR_x | PSR_s | PSR_c},
21491 {"xcf", PSR_x | PSR_c | PSR_f},
21492 {"xcs", PSR_x | PSR_c | PSR_s},
21493 {"cfs", PSR_c | PSR_f | PSR_s},
21494 {"cfx", PSR_c | PSR_f | PSR_x},
21495 {"csf", PSR_c | PSR_s | PSR_f},
21496 {"csx", PSR_c | PSR_s | PSR_x},
21497 {"cxf", PSR_c | PSR_x | PSR_f},
21498 {"cxs", PSR_c | PSR_x | PSR_s},
21499 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
21500 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
21501 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
21502 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
21503 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
21504 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
21505 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
21506 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
21507 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
21508 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
21509 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
21510 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
21511 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
21512 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
21513 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
21514 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
21515 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
21516 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
21517 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
21518 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
21519 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
21520 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
21521 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
21522 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
21523 };
21524
21525 /* Table of V7M psr names. */
21526 static const struct asm_psr v7m_psrs[] =
21527 {
21528 {"apsr", 0x0 }, {"APSR", 0x0 },
21529 {"iapsr", 0x1 }, {"IAPSR", 0x1 },
21530 {"eapsr", 0x2 }, {"EAPSR", 0x2 },
21531 {"psr", 0x3 }, {"PSR", 0x3 },
21532 {"xpsr", 0x3 }, {"XPSR", 0x3 }, {"xPSR", 3 },
21533 {"ipsr", 0x5 }, {"IPSR", 0x5 },
21534 {"epsr", 0x6 }, {"EPSR", 0x6 },
21535 {"iepsr", 0x7 }, {"IEPSR", 0x7 },
21536 {"msp", 0x8 }, {"MSP", 0x8 },
21537 {"psp", 0x9 }, {"PSP", 0x9 },
21538 {"msplim", 0xa }, {"MSPLIM", 0xa },
21539 {"psplim", 0xb }, {"PSPLIM", 0xb },
21540 {"primask", 0x10}, {"PRIMASK", 0x10},
21541 {"basepri", 0x11}, {"BASEPRI", 0x11},
21542 {"basepri_max", 0x12}, {"BASEPRI_MAX", 0x12},
21543 {"faultmask", 0x13}, {"FAULTMASK", 0x13},
21544 {"control", 0x14}, {"CONTROL", 0x14},
21545 {"msp_ns", 0x88}, {"MSP_NS", 0x88},
21546 {"psp_ns", 0x89}, {"PSP_NS", 0x89},
21547 {"msplim_ns", 0x8a}, {"MSPLIM_NS", 0x8a},
21548 {"psplim_ns", 0x8b}, {"PSPLIM_NS", 0x8b},
21549 {"primask_ns", 0x90}, {"PRIMASK_NS", 0x90},
21550 {"basepri_ns", 0x91}, {"BASEPRI_NS", 0x91},
21551 {"faultmask_ns", 0x93}, {"FAULTMASK_NS", 0x93},
21552 {"control_ns", 0x94}, {"CONTROL_NS", 0x94},
21553 {"sp_ns", 0x98}, {"SP_NS", 0x98 }
21554 };
21555
21556 /* Table of all shift-in-operand names. */
21557 static const struct asm_shift_name shift_names [] =
21558 {
21559 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
21560 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
21561 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
21562 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
21563 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
21564 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX },
21565 { "uxtw", SHIFT_UXTW}, { "UXTW", SHIFT_UXTW}
21566 };
21567
21568 /* Table of all explicit relocation names. */
21569 #ifdef OBJ_ELF
21570 static struct reloc_entry reloc_names[] =
21571 {
21572 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
21573 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
21574 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
21575 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
21576 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
21577 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
21578 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
21579 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
21580 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
21581 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
21582 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
21583 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
21584 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
21585 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
21586 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
21587 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
21588 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
21589 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ},
21590 { "gotfuncdesc", BFD_RELOC_ARM_GOTFUNCDESC },
21591 { "GOTFUNCDESC", BFD_RELOC_ARM_GOTFUNCDESC },
21592 { "gotofffuncdesc", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21593 { "GOTOFFFUNCDESC", BFD_RELOC_ARM_GOTOFFFUNCDESC },
21594 { "funcdesc", BFD_RELOC_ARM_FUNCDESC },
21595 { "FUNCDESC", BFD_RELOC_ARM_FUNCDESC },
21596 { "tlsgd_fdpic", BFD_RELOC_ARM_TLS_GD32_FDPIC }, { "TLSGD_FDPIC", BFD_RELOC_ARM_TLS_GD32_FDPIC },
21597 { "tlsldm_fdpic", BFD_RELOC_ARM_TLS_LDM32_FDPIC }, { "TLSLDM_FDPIC", BFD_RELOC_ARM_TLS_LDM32_FDPIC },
21598 { "gottpoff_fdpic", BFD_RELOC_ARM_TLS_IE32_FDPIC }, { "GOTTPOFF_FDIC", BFD_RELOC_ARM_TLS_IE32_FDPIC },
21599 };
21600 #endif
21601
21602 /* Table of all conditional affixes. */
21603 static const struct asm_cond conds[] =
21604 {
21605 {"eq", 0x0},
21606 {"ne", 0x1},
21607 {"cs", 0x2}, {"hs", 0x2},
21608 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
21609 {"mi", 0x4},
21610 {"pl", 0x5},
21611 {"vs", 0x6},
21612 {"vc", 0x7},
21613 {"hi", 0x8},
21614 {"ls", 0x9},
21615 {"ge", 0xa},
21616 {"lt", 0xb},
21617 {"gt", 0xc},
21618 {"le", 0xd},
21619 {"al", 0xe}
21620 };
21621 static const struct asm_cond vconds[] =
21622 {
21623 {"t", 0xf},
21624 {"e", 0x10}
21625 };
21626
21627 #define UL_BARRIER(L,U,CODE,FEAT) \
21628 { L, CODE, ARM_FEATURE_CORE_LOW (FEAT) }, \
21629 { U, CODE, ARM_FEATURE_CORE_LOW (FEAT) }
21630
21631 static struct asm_barrier_opt barrier_opt_names[] =
21632 {
21633 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
21634 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
21635 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
21636 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
21637 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
21638 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
21639 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
21640 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
21641 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
21642 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
21643 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
21644 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
21645 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
21646 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
21647 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
21648 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
21649 };
21650
21651 #undef UL_BARRIER
21652
21653 /* Table of ARM-format instructions. */
21654
21655 /* Macros for gluing together operand strings. N.B. In all cases
21656 other than OPS0, the trailing OP_stop comes from default
21657 zero-initialization of the unspecified elements of the array. */
21658 #define OPS0() { OP_stop, }
21659 #define OPS1(a) { OP_##a, }
21660 #define OPS2(a,b) { OP_##a,OP_##b, }
21661 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
21662 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
21663 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
21664 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
21665
21666 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
21667 This is useful when mixing operands for ARM and THUMB, i.e. using the
21668 MIX_ARM_THUMB_OPERANDS macro.
21669 In order to use these macros, prefix the number of operands with _
21670 e.g. _3. */
21671 #define OPS_1(a) { a, }
21672 #define OPS_2(a,b) { a,b, }
21673 #define OPS_3(a,b,c) { a,b,c, }
21674 #define OPS_4(a,b,c,d) { a,b,c,d, }
21675 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
21676 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
21677
21678 /* These macros abstract out the exact format of the mnemonic table and
21679 save some repeated characters. */
21680
21681 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
21682 #define TxCE(mnem, op, top, nops, ops, ae, te) \
21683 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
21684 THUMB_VARIANT, do_##ae, do_##te, 0 }
21685
21686 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
21687 a T_MNEM_xyz enumerator. */
21688 #define TCE(mnem, aop, top, nops, ops, ae, te) \
21689 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
21690 #define tCE(mnem, aop, top, nops, ops, ae, te) \
21691 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21692
21693 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
21694 infix after the third character. */
21695 #define TxC3(mnem, op, top, nops, ops, ae, te) \
21696 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
21697 THUMB_VARIANT, do_##ae, do_##te, 0 }
21698 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
21699 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
21700 THUMB_VARIANT, do_##ae, do_##te, 0 }
21701 #define TC3(mnem, aop, top, nops, ops, ae, te) \
21702 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
21703 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
21704 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
21705 #define tC3(mnem, aop, top, nops, ops, ae, te) \
21706 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21707 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
21708 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
21709
21710 /* Mnemonic that cannot be conditionalized. The ARM condition-code
21711 field is still 0xE. Many of the Thumb variants can be executed
21712 conditionally, so this is checked separately. */
21713 #define TUE(mnem, op, top, nops, ops, ae, te) \
21714 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21715 THUMB_VARIANT, do_##ae, do_##te, 0 }
21716
21717 /* Same as TUE but the encoding function for ARM and Thumb modes is the same.
21718 Used by mnemonics that have very minimal differences in the encoding for
21719 ARM and Thumb variants and can be handled in a common function. */
21720 #define TUEc(mnem, op, top, nops, ops, en) \
21721 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
21722 THUMB_VARIANT, do_##en, do_##en, 0 }
21723
21724 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
21725 condition code field. */
21726 #define TUF(mnem, op, top, nops, ops, ae, te) \
21727 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
21728 THUMB_VARIANT, do_##ae, do_##te, 0 }
21729
21730 /* ARM-only variants of all the above. */
21731 #define CE(mnem, op, nops, ops, ae) \
21732 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21733
21734 #define C3(mnem, op, nops, ops, ae) \
21735 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21736
21737 /* Thumb-only variants of TCE and TUE. */
21738 #define ToC(mnem, top, nops, ops, te) \
21739 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21740 do_##te, 0 }
21741
21742 #define ToU(mnem, top, nops, ops, te) \
21743 { mnem, OPS##nops ops, OT_unconditional, 0x0, 0x##top, 0, THUMB_VARIANT, \
21744 NULL, do_##te, 0 }
21745
21746 /* T_MNEM_xyz enumerator variants of ToC. */
21747 #define toC(mnem, top, nops, ops, te) \
21748 { mnem, OPS##nops ops, OT_csuffix, 0x0, T_MNEM##top, 0, THUMB_VARIANT, NULL, \
21749 do_##te, 0 }
21750
21751 /* T_MNEM_xyz enumerator variants of ToU. */
21752 #define toU(mnem, top, nops, ops, te) \
21753 { mnem, OPS##nops ops, OT_unconditional, 0x0, T_MNEM##top, 0, THUMB_VARIANT, \
21754 NULL, do_##te, 0 }
21755
21756 /* Legacy mnemonics that always have conditional infix after the third
21757 character. */
21758 #define CL(mnem, op, nops, ops, ae) \
21759 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21760 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21761
21762 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
21763 #define cCE(mnem, op, nops, ops, ae) \
21764 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21765
21766 /* mov instructions that are shared between coprocessor and MVE. */
21767 #define mcCE(mnem, op, nops, ops, ae) \
21768 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##ae, 0 }
21769
21770 /* Legacy coprocessor instructions where conditional infix and conditional
21771 suffix are ambiguous. For consistency this includes all FPA instructions,
21772 not just the potentially ambiguous ones. */
21773 #define cCL(mnem, op, nops, ops, ae) \
21774 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
21775 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21776
21777 /* Coprocessor, takes either a suffix or a position-3 infix
21778 (for an FPA corner case). */
21779 #define C3E(mnem, op, nops, ops, ae) \
21780 { mnem, OPS##nops ops, OT_csuf_or_in3, \
21781 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae, 0 }
21782
21783 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
21784 { m1 #m2 m3, OPS##nops ops, \
21785 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
21786 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21787
21788 #define CM(m1, m2, op, nops, ops, ae) \
21789 xCM_ (m1, , m2, op, nops, ops, ae), \
21790 xCM_ (m1, eq, m2, op, nops, ops, ae), \
21791 xCM_ (m1, ne, m2, op, nops, ops, ae), \
21792 xCM_ (m1, cs, m2, op, nops, ops, ae), \
21793 xCM_ (m1, hs, m2, op, nops, ops, ae), \
21794 xCM_ (m1, cc, m2, op, nops, ops, ae), \
21795 xCM_ (m1, ul, m2, op, nops, ops, ae), \
21796 xCM_ (m1, lo, m2, op, nops, ops, ae), \
21797 xCM_ (m1, mi, m2, op, nops, ops, ae), \
21798 xCM_ (m1, pl, m2, op, nops, ops, ae), \
21799 xCM_ (m1, vs, m2, op, nops, ops, ae), \
21800 xCM_ (m1, vc, m2, op, nops, ops, ae), \
21801 xCM_ (m1, hi, m2, op, nops, ops, ae), \
21802 xCM_ (m1, ls, m2, op, nops, ops, ae), \
21803 xCM_ (m1, ge, m2, op, nops, ops, ae), \
21804 xCM_ (m1, lt, m2, op, nops, ops, ae), \
21805 xCM_ (m1, gt, m2, op, nops, ops, ae), \
21806 xCM_ (m1, le, m2, op, nops, ops, ae), \
21807 xCM_ (m1, al, m2, op, nops, ops, ae)
21808
21809 #define UE(mnem, op, nops, ops, ae) \
21810 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21811
21812 #define UF(mnem, op, nops, ops, ae) \
21813 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL, 0 }
21814
21815 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
21816 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
21817 use the same encoding function for each. */
21818 #define NUF(mnem, op, nops, ops, enc) \
21819 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21820 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21821
21822 /* Neon data processing, version which indirects through neon_enc_tab for
21823 the various overloaded versions of opcodes. */
21824 #define nUF(mnem, op, nops, ops, enc) \
21825 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21826 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 0 }
21827
21828 /* Neon insn with conditional suffix for the ARM version, non-overloaded
21829 version. */
21830 #define NCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21831 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
21832 THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21833
21834 #define NCE(mnem, op, nops, ops, enc) \
21835 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21836
21837 #define NCEF(mnem, op, nops, ops, enc) \
21838 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21839
21840 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
21841 #define nCE_tag(mnem, op, nops, ops, enc, tag, mve_p) \
21842 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
21843 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, mve_p }
21844
21845 #define nCE(mnem, op, nops, ops, enc) \
21846 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 0)
21847
21848 #define nCEF(mnem, op, nops, ops, enc) \
21849 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 0)
21850
21851 /* */
21852 #define mCEF(mnem, op, nops, ops, enc) \
21853 { #mnem, OPS##nops ops, OT_csuffixF, M_MNEM##op, M_MNEM##op, \
21854 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21855
21856
21857 /* nCEF but for MVE predicated instructions. */
21858 #define mnCEF(mnem, op, nops, ops, enc) \
21859 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21860
21861 /* nCE but for MVE predicated instructions. */
21862 #define mnCE(mnem, op, nops, ops, enc) \
21863 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
21864
21865 /* NUF but for potentially MVE predicated instructions. */
21866 #define MNUF(mnem, op, nops, ops, enc) \
21867 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
21868 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21869
21870 /* nUF but for potentially MVE predicated instructions. */
21871 #define mnUF(mnem, op, nops, ops, enc) \
21872 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
21873 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc, 1 }
21874
21875 /* ToC but for potentially MVE predicated instructions. */
21876 #define mToC(mnem, top, nops, ops, te) \
21877 { mnem, OPS##nops ops, OT_csuffix, 0x0, 0x##top, 0, THUMB_VARIANT, NULL, \
21878 do_##te, 1 }
21879
21880 /* NCE but for MVE predicated instructions. */
21881 #define MNCE(mnem, op, nops, ops, enc) \
21882 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix, 1)
21883
21884 /* NCEF but for MVE predicated instructions. */
21885 #define MNCEF(mnem, op, nops, ops, enc) \
21886 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF, 1)
21887 #define do_0 0
21888
21889 static const struct asm_opcode insns[] =
21890 {
21891 #define ARM_VARIANT & arm_ext_v1 /* Core ARM Instructions. */
21892 #define THUMB_VARIANT & arm_ext_v4t
21893 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
21894 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
21895 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
21896 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
21897 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
21898 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
21899 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
21900 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
21901 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
21902 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
21903 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
21904 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
21905 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
21906 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
21907 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
21908 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
21909
21910 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
21911 for setting PSR flag bits. They are obsolete in V6 and do not
21912 have Thumb equivalents. */
21913 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
21914 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
21915 CL("tstp", 110f000, 2, (RR, SH), cmp),
21916 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
21917 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
21918 CL("cmpp", 150f000, 2, (RR, SH), cmp),
21919 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
21920 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
21921 CL("cmnp", 170f000, 2, (RR, SH), cmp),
21922
21923 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
21924 tC3("movs", 1b00000, _movs, 2, (RR, SHG), mov, t_mov_cmp),
21925 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
21926 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
21927
21928 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
21929 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21930 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
21931 OP_RRnpc),
21932 OP_ADDRGLDR),ldst, t_ldst),
21933 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
21934
21935 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21936 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21937 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21938 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21939 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21940 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21941
21942 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
21943 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
21944
21945 /* Pseudo ops. */
21946 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
21947 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
21948 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
21949 tCE("udf", 7f000f0, _udf, 1, (oIffffb), bkpt, t_udf),
21950
21951 /* Thumb-compatibility pseudo ops. */
21952 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
21953 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
21954 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
21955 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
21956 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
21957 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
21958 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
21959 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
21960 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
21961 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
21962 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
21963 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
21964
21965 /* These may simplify to neg. */
21966 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
21967 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
21968
21969 #undef THUMB_VARIANT
21970 #define THUMB_VARIANT & arm_ext_os
21971
21972 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
21973 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
21974
21975 #undef THUMB_VARIANT
21976 #define THUMB_VARIANT & arm_ext_v6
21977
21978 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
21979
21980 /* V1 instructions with no Thumb analogue prior to V6T2. */
21981 #undef THUMB_VARIANT
21982 #define THUMB_VARIANT & arm_ext_v6t2
21983
21984 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
21985 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
21986 CL("teqp", 130f000, 2, (RR, SH), cmp),
21987
21988 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
21989 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
21990 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
21991 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
21992
21993 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21994 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21995
21996 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21997 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
21998
21999 /* V1 instructions with no Thumb analogue at all. */
22000 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
22001 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
22002
22003 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
22004 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
22005 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
22006 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
22007 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
22008 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
22009 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
22010 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
22011
22012 #undef ARM_VARIANT
22013 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
22014 #undef THUMB_VARIANT
22015 #define THUMB_VARIANT & arm_ext_v4t
22016
22017 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22018 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
22019
22020 #undef THUMB_VARIANT
22021 #define THUMB_VARIANT & arm_ext_v6t2
22022
22023 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22024 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
22025
22026 /* Generic coprocessor instructions. */
22027 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22028 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22029 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22030 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22031 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22032 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22033 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
22034
22035 #undef ARM_VARIANT
22036 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
22037
22038 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22039 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
22040
22041 #undef ARM_VARIANT
22042 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
22043 #undef THUMB_VARIANT
22044 #define THUMB_VARIANT & arm_ext_msr
22045
22046 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
22047 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
22048
22049 #undef ARM_VARIANT
22050 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
22051 #undef THUMB_VARIANT
22052 #define THUMB_VARIANT & arm_ext_v6t2
22053
22054 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22055 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22056 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22057 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22058 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22059 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22060 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
22061 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
22062
22063 #undef ARM_VARIANT
22064 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
22065 #undef THUMB_VARIANT
22066 #define THUMB_VARIANT & arm_ext_v4t
22067
22068 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22069 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22070 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22071 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22072 tC3("ldsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22073 tC3("ldsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
22074
22075 #undef ARM_VARIANT
22076 #define ARM_VARIANT & arm_ext_v4t_5
22077
22078 /* ARM Architecture 4T. */
22079 /* Note: bx (and blx) are required on V5, even if the processor does
22080 not support Thumb. */
22081 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
22082
22083 #undef ARM_VARIANT
22084 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
22085 #undef THUMB_VARIANT
22086 #define THUMB_VARIANT & arm_ext_v5t
22087
22088 /* Note: blx has 2 variants; the .value coded here is for
22089 BLX(2). Only this variant has conditional execution. */
22090 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
22091 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
22092
22093 #undef THUMB_VARIANT
22094 #define THUMB_VARIANT & arm_ext_v6t2
22095
22096 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
22097 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22098 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22099 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22100 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
22101 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
22102 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22103 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
22104
22105 #undef ARM_VARIANT
22106 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
22107 #undef THUMB_VARIANT
22108 #define THUMB_VARIANT & arm_ext_v5exp
22109
22110 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22111 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22112 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22113 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22114
22115 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22116 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
22117
22118 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22119 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22120 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22121 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
22122
22123 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22124 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22125 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22126 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22127
22128 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22129 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22130
22131 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22132 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22133 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22134 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
22135
22136 #undef ARM_VARIANT
22137 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
22138 #undef THUMB_VARIANT
22139 #define THUMB_VARIANT & arm_ext_v6t2
22140
22141 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
22142 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
22143 ldrd, t_ldstd),
22144 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
22145 ADDRGLDRS), ldrd, t_ldstd),
22146
22147 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22148 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22149
22150 #undef ARM_VARIANT
22151 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
22152
22153 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
22154
22155 #undef ARM_VARIANT
22156 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
22157 #undef THUMB_VARIANT
22158 #define THUMB_VARIANT & arm_ext_v6
22159
22160 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
22161 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
22162 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22163 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22164 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
22165 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22166 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22167 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22168 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22169 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
22170
22171 #undef THUMB_VARIANT
22172 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22173
22174 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
22175 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22176 strex, t_strex),
22177 #undef THUMB_VARIANT
22178 #define THUMB_VARIANT & arm_ext_v6t2
22179
22180 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22181 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
22182
22183 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
22184 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
22185
22186 /* ARM V6 not included in V7M. */
22187 #undef THUMB_VARIANT
22188 #define THUMB_VARIANT & arm_ext_v6_notm
22189 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22190 TUF("rfe", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22191 UF(rfeib, 9900a00, 1, (RRw), rfe),
22192 UF(rfeda, 8100a00, 1, (RRw), rfe),
22193 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22194 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
22195 UF(rfefa, 8100a00, 1, (RRw), rfe),
22196 TUF("rfeea", 9100a00, e810c000, 1, (RRw), rfe, rfe),
22197 UF(rfeed, 9900a00, 1, (RRw), rfe),
22198 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22199 TUF("srs", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22200 TUF("srsea", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
22201 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
22202 UF(srsfa, 9c00500, 2, (oRRw, I31w), srs),
22203 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
22204 UF(srsed, 8400500, 2, (oRRw, I31w), srs),
22205 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22206 TUF("srsfd", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
22207 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
22208
22209 /* ARM V6 not included in V7M (eg. integer SIMD). */
22210 #undef THUMB_VARIANT
22211 #define THUMB_VARIANT & arm_ext_v6_dsp
22212 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
22213 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
22214 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22215 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22216 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22217 /* Old name for QASX. */
22218 TCE("qaddsubx",6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22219 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22220 /* Old name for QSAX. */
22221 TCE("qsubaddx",6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22222 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22223 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22224 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22225 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22226 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22227 /* Old name for SASX. */
22228 TCE("saddsubx",6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22229 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22230 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22231 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22232 /* Old name for SHASX. */
22233 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22234 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22235 /* Old name for SHSAX. */
22236 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22237 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22238 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22239 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22240 /* Old name for SSAX. */
22241 TCE("ssubaddx",6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22242 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22243 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22244 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22245 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22246 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22247 /* Old name for UASX. */
22248 TCE("uaddsubx",6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22249 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22250 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22251 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22252 /* Old name for UHASX. */
22253 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22254 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22255 /* Old name for UHSAX. */
22256 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22257 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22258 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22259 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22260 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22261 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22262 /* Old name for UQASX. */
22263 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22264 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22265 /* Old name for UQSAX. */
22266 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22267 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22268 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22269 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22270 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22271 /* Old name for USAX. */
22272 TCE("usubaddx",6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22273 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22274 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22275 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22276 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22277 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22278 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22279 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22280 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
22281 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
22282 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
22283 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22284 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22285 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22286 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22287 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22288 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22289 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22290 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
22291 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22292 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22293 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22294 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22295 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22296 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22297 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22298 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22299 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22300 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22301 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
22302 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
22303 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
22304 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
22305 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
22306
22307 #undef ARM_VARIANT
22308 #define ARM_VARIANT & arm_ext_v6k_v6t2
22309 #undef THUMB_VARIANT
22310 #define THUMB_VARIANT & arm_ext_v6k_v6t2
22311
22312 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
22313 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
22314 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
22315 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
22316
22317 #undef THUMB_VARIANT
22318 #define THUMB_VARIANT & arm_ext_v6_notm
22319 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
22320 ldrexd, t_ldrexd),
22321 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
22322 RRnpcb), strexd, t_strexd),
22323
22324 #undef THUMB_VARIANT
22325 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22326 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
22327 rd_rn, rd_rn),
22328 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
22329 rd_rn, rd_rn),
22330 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22331 strex, t_strexbh),
22332 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
22333 strex, t_strexbh),
22334 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
22335
22336 #undef ARM_VARIANT
22337 #define ARM_VARIANT & arm_ext_sec
22338 #undef THUMB_VARIANT
22339 #define THUMB_VARIANT & arm_ext_sec
22340
22341 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
22342
22343 #undef ARM_VARIANT
22344 #define ARM_VARIANT & arm_ext_virt
22345 #undef THUMB_VARIANT
22346 #define THUMB_VARIANT & arm_ext_virt
22347
22348 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
22349 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
22350
22351 #undef ARM_VARIANT
22352 #define ARM_VARIANT & arm_ext_pan
22353 #undef THUMB_VARIANT
22354 #define THUMB_VARIANT & arm_ext_pan
22355
22356 TUF("setpan", 1100000, b610, 1, (I7), setpan, t_setpan),
22357
22358 #undef ARM_VARIANT
22359 #define ARM_VARIANT & arm_ext_v6t2
22360 #undef THUMB_VARIANT
22361 #define THUMB_VARIANT & arm_ext_v6t2
22362
22363 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
22364 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
22365 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22366 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
22367
22368 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
22369 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
22370
22371 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22372 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22373 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22374 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
22375
22376 #undef ARM_VARIANT
22377 #define ARM_VARIANT & arm_ext_v3
22378 #undef THUMB_VARIANT
22379 #define THUMB_VARIANT & arm_ext_v6t2
22380
22381 TUE("csdb", 320f014, f3af8014, 0, (), noargs, t_csdb),
22382 TUF("ssbb", 57ff040, f3bf8f40, 0, (), noargs, t_csdb),
22383 TUF("pssbb", 57ff044, f3bf8f44, 0, (), noargs, t_csdb),
22384
22385 #undef ARM_VARIANT
22386 #define ARM_VARIANT & arm_ext_v6t2
22387 #undef THUMB_VARIANT
22388 #define THUMB_VARIANT & arm_ext_v6t2_v8m
22389 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
22390 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
22391
22392 /* Thumb-only instructions. */
22393 #undef ARM_VARIANT
22394 #define ARM_VARIANT NULL
22395 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
22396 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
22397
22398 /* ARM does not really have an IT instruction, so always allow it.
22399 The opcode is copied from Thumb in order to allow warnings in
22400 -mimplicit-it=[never | arm] modes. */
22401 #undef ARM_VARIANT
22402 #define ARM_VARIANT & arm_ext_v1
22403 #undef THUMB_VARIANT
22404 #define THUMB_VARIANT & arm_ext_v6t2
22405
22406 TUE("it", bf08, bf08, 1, (COND), it, t_it),
22407 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
22408 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
22409 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
22410 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
22411 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
22412 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
22413 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
22414 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
22415 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
22416 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
22417 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
22418 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
22419 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
22420 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
22421 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
22422 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
22423 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
22424
22425 /* Thumb2 only instructions. */
22426 #undef ARM_VARIANT
22427 #define ARM_VARIANT NULL
22428
22429 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22430 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
22431 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
22432 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
22433 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
22434 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
22435
22436 /* Hardware division instructions. */
22437 #undef ARM_VARIANT
22438 #define ARM_VARIANT & arm_ext_adiv
22439 #undef THUMB_VARIANT
22440 #define THUMB_VARIANT & arm_ext_div
22441
22442 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
22443 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
22444
22445 /* ARM V6M/V7 instructions. */
22446 #undef ARM_VARIANT
22447 #define ARM_VARIANT & arm_ext_barrier
22448 #undef THUMB_VARIANT
22449 #define THUMB_VARIANT & arm_ext_barrier
22450
22451 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, barrier),
22452 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, barrier),
22453 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, barrier),
22454
22455 /* ARM V7 instructions. */
22456 #undef ARM_VARIANT
22457 #define ARM_VARIANT & arm_ext_v7
22458 #undef THUMB_VARIANT
22459 #define THUMB_VARIANT & arm_ext_v7
22460
22461 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
22462 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
22463
22464 #undef ARM_VARIANT
22465 #define ARM_VARIANT & arm_ext_mp
22466 #undef THUMB_VARIANT
22467 #define THUMB_VARIANT & arm_ext_mp
22468
22469 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
22470
22471 /* AArchv8 instructions. */
22472 #undef ARM_VARIANT
22473 #define ARM_VARIANT & arm_ext_v8
22474
22475 /* Instructions shared between armv8-a and armv8-m. */
22476 #undef THUMB_VARIANT
22477 #define THUMB_VARIANT & arm_ext_atomics
22478
22479 TCE("lda", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22480 TCE("ldab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22481 TCE("ldah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22482 TCE("stl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22483 TCE("stlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22484 TCE("stlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
22485 TCE("ldaex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22486 TCE("ldaexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
22487 TCE("ldaexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
22488 TCE("stlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
22489 stlex, t_stlex),
22490 TCE("stlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
22491 stlex, t_stlex),
22492 TCE("stlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
22493 stlex, t_stlex),
22494 #undef THUMB_VARIANT
22495 #define THUMB_VARIANT & arm_ext_v8
22496
22497 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
22498 TCE("ldaexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
22499 ldrexd, t_ldrexd),
22500 TCE("stlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
22501 strexd, t_strexd),
22502
22503 /* Defined in V8 but is in undefined encoding space for earlier
22504 architectures. However earlier architectures are required to treat
22505 this instuction as a semihosting trap as well. Hence while not explicitly
22506 defined as such, it is in fact correct to define the instruction for all
22507 architectures. */
22508 #undef THUMB_VARIANT
22509 #define THUMB_VARIANT & arm_ext_v1
22510 #undef ARM_VARIANT
22511 #define ARM_VARIANT & arm_ext_v1
22512 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
22513
22514 /* ARMv8 T32 only. */
22515 #undef ARM_VARIANT
22516 #define ARM_VARIANT NULL
22517 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
22518 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
22519 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
22520
22521 /* FP for ARMv8. */
22522 #undef ARM_VARIANT
22523 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
22524 #undef THUMB_VARIANT
22525 #define THUMB_VARIANT & fpu_vfp_ext_armv8xd
22526
22527 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
22528 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
22529 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
22530 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
22531 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22532 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
22533 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
22534 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
22535 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
22536 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
22537 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
22538 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
22539 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
22540
22541 /* Crypto v1 extensions. */
22542 #undef ARM_VARIANT
22543 #define ARM_VARIANT & fpu_crypto_ext_armv8
22544 #undef THUMB_VARIANT
22545 #define THUMB_VARIANT & fpu_crypto_ext_armv8
22546
22547 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
22548 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
22549 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
22550 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
22551 nUF(sha1c, _sha3op, 3, (RNQ, RNQ, RNQ), sha1c),
22552 nUF(sha1p, _sha3op, 3, (RNQ, RNQ, RNQ), sha1p),
22553 nUF(sha1m, _sha3op, 3, (RNQ, RNQ, RNQ), sha1m),
22554 nUF(sha1su0, _sha3op, 3, (RNQ, RNQ, RNQ), sha1su0),
22555 nUF(sha256h, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h),
22556 nUF(sha256h2, _sha3op, 3, (RNQ, RNQ, RNQ), sha256h2),
22557 nUF(sha256su1, _sha3op, 3, (RNQ, RNQ, RNQ), sha256su1),
22558 nUF(sha1h, _sha1h, 2, (RNQ, RNQ), sha1h),
22559 nUF(sha1su1, _sha2op, 2, (RNQ, RNQ), sha1su1),
22560 nUF(sha256su0, _sha2op, 2, (RNQ, RNQ), sha256su0),
22561
22562 #undef ARM_VARIANT
22563 #define ARM_VARIANT & crc_ext_armv8
22564 #undef THUMB_VARIANT
22565 #define THUMB_VARIANT & crc_ext_armv8
22566 TUEc("crc32b", 1000040, fac0f080, 3, (RR, oRR, RR), crc32b),
22567 TUEc("crc32h", 1200040, fac0f090, 3, (RR, oRR, RR), crc32h),
22568 TUEc("crc32w", 1400040, fac0f0a0, 3, (RR, oRR, RR), crc32w),
22569 TUEc("crc32cb",1000240, fad0f080, 3, (RR, oRR, RR), crc32cb),
22570 TUEc("crc32ch",1200240, fad0f090, 3, (RR, oRR, RR), crc32ch),
22571 TUEc("crc32cw",1400240, fad0f0a0, 3, (RR, oRR, RR), crc32cw),
22572
22573 /* ARMv8.2 RAS extension. */
22574 #undef ARM_VARIANT
22575 #define ARM_VARIANT & arm_ext_ras
22576 #undef THUMB_VARIANT
22577 #define THUMB_VARIANT & arm_ext_ras
22578 TUE ("esb", 320f010, f3af8010, 0, (), noargs, noargs),
22579
22580 #undef ARM_VARIANT
22581 #define ARM_VARIANT & arm_ext_v8_3
22582 #undef THUMB_VARIANT
22583 #define THUMB_VARIANT & arm_ext_v8_3
22584 NCE (vjcvt, eb90bc0, 2, (RVS, RVD), vjcvt),
22585 NUF (vcmla, 0, 4, (RNDQ, RNDQ, RNDQ_RNSC, EXPi), vcmla),
22586 NUF (vcadd, 0, 4, (RNDQ, RNDQ, RNDQ, EXPi), vcadd),
22587
22588 #undef ARM_VARIANT
22589 #define ARM_VARIANT & fpu_neon_ext_dotprod
22590 #undef THUMB_VARIANT
22591 #define THUMB_VARIANT & fpu_neon_ext_dotprod
22592 NUF (vsdot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_s),
22593 NUF (vudot, d00, 3, (RNDQ, RNDQ, RNDQ_RNSC), neon_dotproduct_u),
22594
22595 #undef ARM_VARIANT
22596 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
22597 #undef THUMB_VARIANT
22598 #define THUMB_VARIANT NULL
22599
22600 cCE("wfs", e200110, 1, (RR), rd),
22601 cCE("rfs", e300110, 1, (RR), rd),
22602 cCE("wfc", e400110, 1, (RR), rd),
22603 cCE("rfc", e500110, 1, (RR), rd),
22604
22605 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
22606 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
22607 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
22608 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
22609
22610 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
22611 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
22612 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
22613 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
22614
22615 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
22616 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
22617 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
22618 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
22619 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
22620 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
22621 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
22622 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
22623 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
22624 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
22625 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
22626 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
22627
22628 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
22629 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
22630 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
22631 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
22632 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
22633 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
22634 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
22635 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
22636 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
22637 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
22638 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
22639 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
22640
22641 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
22642 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
22643 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
22644 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
22645 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
22646 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
22647 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
22648 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
22649 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
22650 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
22651 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
22652 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
22653
22654 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
22655 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
22656 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
22657 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
22658 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
22659 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
22660 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
22661 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
22662 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
22663 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
22664 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
22665 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
22666
22667 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
22668 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
22669 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
22670 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
22671 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
22672 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
22673 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
22674 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
22675 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
22676 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
22677 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
22678 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
22679
22680 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
22681 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
22682 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
22683 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
22684 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
22685 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
22686 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
22687 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
22688 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
22689 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
22690 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
22691 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
22692
22693 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
22694 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
22695 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
22696 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
22697 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
22698 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
22699 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
22700 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
22701 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
22702 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
22703 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
22704 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
22705
22706 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
22707 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
22708 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
22709 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
22710 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
22711 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
22712 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
22713 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
22714 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
22715 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
22716 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
22717 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
22718
22719 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
22720 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
22721 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
22722 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
22723 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
22724 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
22725 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
22726 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
22727 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
22728 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
22729 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
22730 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
22731
22732 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
22733 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
22734 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
22735 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
22736 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
22737 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
22738 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
22739 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
22740 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
22741 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
22742 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
22743 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
22744
22745 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
22746 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
22747 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
22748 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
22749 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
22750 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
22751 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
22752 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
22753 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
22754 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
22755 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
22756 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
22757
22758 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
22759 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
22760 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
22761 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
22762 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
22763 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
22764 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
22765 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
22766 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
22767 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
22768 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
22769 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
22770
22771 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
22772 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
22773 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
22774 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
22775 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
22776 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
22777 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
22778 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
22779 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
22780 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
22781 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
22782 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
22783
22784 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
22785 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
22786 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
22787 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
22788 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
22789 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
22790 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
22791 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
22792 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
22793 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
22794 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
22795 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
22796
22797 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
22798 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
22799 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
22800 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
22801 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
22802 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
22803 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
22804 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
22805 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
22806 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
22807 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
22808 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
22809
22810 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
22811 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
22812 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
22813 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
22814 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
22815 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
22816 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
22817 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
22818 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
22819 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
22820 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
22821 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
22822
22823 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
22824 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
22825 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
22826 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
22827 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
22828 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22829 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22830 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22831 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
22832 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
22833 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
22834 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
22835
22836 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
22837 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
22838 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
22839 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
22840 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
22841 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22842 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22843 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22844 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
22845 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
22846 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
22847 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
22848
22849 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
22850 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
22851 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
22852 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
22853 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
22854 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22855 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22856 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22857 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
22858 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
22859 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
22860 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
22861
22862 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
22863 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
22864 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
22865 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
22866 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
22867 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22868 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22869 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22870 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
22871 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
22872 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
22873 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
22874
22875 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
22876 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
22877 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
22878 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
22879 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
22880 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22881 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22882 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22883 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
22884 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
22885 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
22886 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
22887
22888 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
22889 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
22890 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
22891 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
22892 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
22893 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22894 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22895 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22896 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
22897 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
22898 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
22899 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
22900
22901 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
22902 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
22903 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
22904 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
22905 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
22906 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22907 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22908 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22909 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
22910 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
22911 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
22912 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
22913
22914 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
22915 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
22916 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
22917 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
22918 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
22919 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22920 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22921 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22922 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
22923 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
22924 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
22925 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
22926
22927 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
22928 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
22929 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
22930 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
22931 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
22932 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22933 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22934 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22935 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
22936 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
22937 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
22938 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
22939
22940 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
22941 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
22942 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
22943 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
22944 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
22945 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22946 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22947 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22948 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
22949 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
22950 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
22951 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
22952
22953 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
22954 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
22955 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
22956 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
22957 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
22958 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22959 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22960 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22961 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
22962 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
22963 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
22964 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
22965
22966 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
22967 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
22968 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
22969 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
22970 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
22971 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22972 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22973 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22974 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
22975 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
22976 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
22977 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
22978
22979 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
22980 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
22981 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
22982 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
22983 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
22984 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
22985 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
22986 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
22987 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
22988 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
22989 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
22990 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
22991
22992 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
22993 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
22994 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
22995 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
22996
22997 cCL("flts", e000110, 2, (RF, RR), rn_rd),
22998 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
22999 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
23000 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
23001 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
23002 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
23003 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
23004 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
23005 cCL("flte", e080110, 2, (RF, RR), rn_rd),
23006 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
23007 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
23008 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
23009
23010 /* The implementation of the FIX instruction is broken on some
23011 assemblers, in that it accepts a precision specifier as well as a
23012 rounding specifier, despite the fact that this is meaningless.
23013 To be more compatible, we accept it as well, though of course it
23014 does not set any bits. */
23015 cCE("fix", e100110, 2, (RR, RF), rd_rm),
23016 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
23017 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
23018 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
23019 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
23020 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
23021 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
23022 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
23023 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
23024 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
23025 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
23026 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
23027 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
23028
23029 /* Instructions that were new with the real FPA, call them V2. */
23030 #undef ARM_VARIANT
23031 #define ARM_VARIANT & fpu_fpa_ext_v2
23032
23033 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23034 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23035 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23036 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23037 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23038 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
23039
23040 #undef ARM_VARIANT
23041 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
23042
23043 /* Moves and type conversions. */
23044 cCE("fmstat", ef1fa10, 0, (), noargs),
23045 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
23046 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
23047 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
23048 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
23049 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
23050 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23051 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
23052 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
23053 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
23054 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
23055
23056 /* Memory operations. */
23057 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23058 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
23059 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23060 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23061 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23062 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23063 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23064 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23065 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23066 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23067 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23068 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
23069 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23070 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
23071 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23072 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
23073 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23074 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
23075
23076 /* Monadic operations. */
23077 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
23078 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
23079 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
23080
23081 /* Dyadic operations. */
23082 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23083 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23084 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23085 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23086 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23087 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23088 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23089 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23090 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23091
23092 /* Comparisons. */
23093 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
23094 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
23095 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
23096 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
23097
23098 /* Double precision load/store are still present on single precision
23099 implementations. */
23100 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23101 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
23102 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23103 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23104 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23105 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23106 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23107 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
23108 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23109 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
23110
23111 #undef ARM_VARIANT
23112 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
23113
23114 /* Moves and type conversions. */
23115 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23116 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23117 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
23118 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
23119 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
23120 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
23121 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
23122 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
23123 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23124 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23125 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
23126 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
23127
23128 /* Monadic operations. */
23129 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23130 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23131 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23132
23133 /* Dyadic operations. */
23134 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23135 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23136 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23137 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23138 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23139 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23140 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23141 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23142 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23143
23144 /* Comparisons. */
23145 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23146 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
23147 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
23148 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
23149
23150 /* Instructions which may belong to either the Neon or VFP instruction sets.
23151 Individual encoder functions perform additional architecture checks. */
23152 #undef ARM_VARIANT
23153 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23154 #undef THUMB_VARIANT
23155 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
23156
23157 /* These mnemonics are unique to VFP. */
23158 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
23159 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
23160 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23161 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23162 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23163 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
23164 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
23165 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
23166
23167 /* Mnemonics shared by Neon and VFP. */
23168 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
23169 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23170 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
23171
23172 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23173 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23174 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23175 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23176 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23177 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
23178
23179 mnCEF(vcvt, _vcvt, 3, (RNSDQMQ, RNSDQMQ, oI32z), neon_cvt),
23180 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
23181 MNCEF(vcvtb, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtb),
23182 MNCEF(vcvtt, eb20a40, 3, (RVSDMQ, RVSDMQ, oI32b), neon_cvtt),
23183
23184
23185 /* NOTE: All VMOV encoding is special-cased! */
23186 NCE(vmovq, 0, 1, (VMOV), neon_mov),
23187
23188 #undef THUMB_VARIANT
23189 /* Could be either VLDR/VSTR or VLDR/VSTR (system register) which are guarded
23190 by different feature bits. Since we are setting the Thumb guard, we can
23191 require Thumb-1 which makes it a nop guard and set the right feature bit in
23192 do_vldr_vstr (). */
23193 #define THUMB_VARIANT & arm_ext_v4t
23194 NCE(vldr, d100b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23195 NCE(vstr, d000b00, 2, (VLDR, ADDRGLDC), vldr_vstr),
23196
23197 #undef ARM_VARIANT
23198 #define ARM_VARIANT & arm_ext_fp16
23199 #undef THUMB_VARIANT
23200 #define THUMB_VARIANT & arm_ext_fp16
23201 /* New instructions added from v8.2, allowing the extraction and insertion of
23202 the upper 16 bits of a 32-bit vector register. */
23203 NCE (vmovx, eb00a40, 2, (RVS, RVS), neon_movhf),
23204 NCE (vins, eb00ac0, 2, (RVS, RVS), neon_movhf),
23205
23206 /* New backported fma/fms instructions optional in v8.2. */
23207 NCE (vfmal, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmal),
23208 NCE (vfmsl, 810, 3, (RNDQ, RNSD, RNSD_RNSC), neon_vfmsl),
23209
23210 #undef THUMB_VARIANT
23211 #define THUMB_VARIANT & fpu_neon_ext_v1
23212 #undef ARM_VARIANT
23213 #define ARM_VARIANT & fpu_neon_ext_v1
23214
23215 /* Data processing with three registers of the same length. */
23216 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
23217 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
23218 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
23219 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23220 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23221 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23222 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23223 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
23224 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
23225 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
23226 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23227 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23228 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
23229 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
23230 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23231 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23232 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
23233 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
23234 /* If not immediate, fall back to neon_dyadic_i64_su.
23235 shl_imm should accept I8 I16 I32 I64,
23236 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
23237 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
23238 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
23239 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
23240 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
23241 /* Logic ops, types optional & ignored. */
23242 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23243 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23244 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23245 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23246 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23247 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23248 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
23249 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
23250 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
23251 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
23252 /* Bitfield ops, untyped. */
23253 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23254 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23255 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23256 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23257 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
23258 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
23259 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F16 F32. */
23260 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23261 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23262 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23263 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
23264 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
23265 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
23266 back to neon_dyadic_if_su. */
23267 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23268 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23269 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
23270 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
23271 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23272 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23273 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
23274 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
23275 /* Comparison. Type I8 I16 I32 F32. */
23276 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
23277 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
23278 /* As above, D registers only. */
23279 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23280 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
23281 /* Int and float variants, signedness unimportant. */
23282 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23283 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
23284 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
23285 /* Add/sub take types I8 I16 I32 I64 F32. */
23286 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23287 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
23288 /* vtst takes sizes 8, 16, 32. */
23289 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
23290 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
23291 /* VMUL takes I8 I16 I32 F32 P8. */
23292 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
23293 /* VQD{R}MULH takes S16 S32. */
23294 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23295 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23296 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
23297 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
23298 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23299 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23300 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
23301 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
23302 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23303 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23304 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
23305 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
23306 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23307 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23308 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
23309 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
23310 /* ARM v8.1 extension. */
23311 nUF (vqrdmlah, _vqrdmlah, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23312 nUF (vqrdmlahq, _vqrdmlah, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23313 nUF (vqrdmlsh, _vqrdmlsh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qrdmlah),
23314 nUF (vqrdmlshq, _vqrdmlsh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qrdmlah),
23315
23316 /* Two address, int/float. Types S8 S16 S32 F32. */
23317 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
23318 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
23319
23320 /* Data processing with two registers and a shift amount. */
23321 /* Right shifts, and variants with rounding.
23322 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
23323 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23324 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23325 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
23326 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
23327 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23328 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23329 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
23330 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
23331 /* Shift and insert. Sizes accepted 8 16 32 64. */
23332 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
23333 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
23334 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
23335 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
23336 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
23337 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
23338 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
23339 /* Right shift immediate, saturating & narrowing, with rounding variants.
23340 Types accepted S16 S32 S64 U16 U32 U64. */
23341 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23342 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
23343 /* As above, unsigned. Types accepted S16 S32 S64. */
23344 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23345 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
23346 /* Right shift narrowing. Types accepted I16 I32 I64. */
23347 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23348 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
23349 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
23350 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
23351 /* CVT with optional immediate for fixed-point variant. */
23352 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
23353
23354 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
23355 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
23356
23357 /* Data processing, three registers of different lengths. */
23358 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
23359 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
23360 /* If not scalar, fall back to neon_dyadic_long.
23361 Vector types as above, scalar types S16 S32 U16 U32. */
23362 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23363 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
23364 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
23365 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23366 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
23367 /* Dyadic, narrowing insns. Types I16 I32 I64. */
23368 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23369 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23370 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23371 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
23372 /* Saturating doubling multiplies. Types S16 S32. */
23373 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23374 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23375 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
23376 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
23377 S16 S32 U16 U32. */
23378 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
23379
23380 /* Extract. Size 8. */
23381 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
23382 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
23383
23384 /* Two registers, miscellaneous. */
23385 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
23386 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
23387 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
23388 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
23389 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
23390 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
23391 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
23392 /* Vector replicate. Sizes 8 16 32. */
23393 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
23394 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
23395 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
23396 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
23397 /* VMOVN. Types I16 I32 I64. */
23398 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
23399 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
23400 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
23401 /* VQMOVUN. Types S16 S32 S64. */
23402 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
23403 /* VZIP / VUZP. Sizes 8 16 32. */
23404 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
23405 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
23406 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
23407 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
23408 /* VQABS / VQNEG. Types S8 S16 S32. */
23409 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23410 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
23411 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
23412 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
23413 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
23414 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
23415 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
23416 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
23417 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
23418 /* Reciprocal estimates. Types U32 F16 F32. */
23419 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
23420 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
23421 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
23422 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
23423 /* VCLS. Types S8 S16 S32. */
23424 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
23425 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
23426 /* VCLZ. Types I8 I16 I32. */
23427 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
23428 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
23429 /* VCNT. Size 8. */
23430 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
23431 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
23432 /* Two address, untyped. */
23433 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
23434 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
23435 /* VTRN. Sizes 8 16 32. */
23436 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
23437 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
23438
23439 /* Table lookup. Size 8. */
23440 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23441 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
23442
23443 #undef THUMB_VARIANT
23444 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
23445 #undef ARM_VARIANT
23446 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
23447
23448 /* Neon element/structure load/store. */
23449 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23450 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
23451 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23452 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
23453 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23454 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
23455 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23456 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
23457
23458 #undef THUMB_VARIANT
23459 #define THUMB_VARIANT & fpu_vfp_ext_v3xd
23460 #undef ARM_VARIANT
23461 #define ARM_VARIANT & fpu_vfp_ext_v3xd
23462 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
23463 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23464 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23465 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23466 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23467 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23468 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23469 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
23470 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
23471
23472 #undef THUMB_VARIANT
23473 #define THUMB_VARIANT & fpu_vfp_ext_v3
23474 #undef ARM_VARIANT
23475 #define ARM_VARIANT & fpu_vfp_ext_v3
23476
23477 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
23478 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23479 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23480 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23481 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23482 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23483 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23484 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
23485 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
23486
23487 #undef ARM_VARIANT
23488 #define ARM_VARIANT & fpu_vfp_ext_fma
23489 #undef THUMB_VARIANT
23490 #define THUMB_VARIANT & fpu_vfp_ext_fma
23491 /* Mnemonics shared by Neon and VFP. These are included in the
23492 VFP FMA variant; NEON and VFP FMA always includes the NEON
23493 FMA instructions. */
23494 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23495 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
23496 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
23497 the v form should always be used. */
23498 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23499 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
23500 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23501 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
23502 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23503 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
23504
23505 #undef THUMB_VARIANT
23506 #undef ARM_VARIANT
23507 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
23508
23509 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23510 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23511 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23512 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23513 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23514 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
23515 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
23516 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
23517
23518 #undef ARM_VARIANT
23519 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
23520
23521 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
23522 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
23523 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
23524 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
23525 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
23526 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
23527 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
23528 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
23529 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
23530 cCE("textrmub",e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23531 cCE("textrmuh",e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23532 cCE("textrmuw",e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
23533 cCE("textrmsb",e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23534 cCE("textrmsh",e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23535 cCE("textrmsw",e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
23536 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23537 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23538 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
23539 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
23540 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
23541 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23542 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23543 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23544 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23545 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23546 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
23547 cCE("tmovmskb",e100030, 2, (RR, RIWR), rd_rn),
23548 cCE("tmovmskh",e500030, 2, (RR, RIWR), rd_rn),
23549 cCE("tmovmskw",e900030, 2, (RR, RIWR), rd_rn),
23550 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
23551 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
23552 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
23553 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
23554 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
23555 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
23556 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
23557 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
23558 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23559 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23560 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23561 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23562 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23563 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23564 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23565 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23566 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23567 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
23568 cCE("walignr0",e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23569 cCE("walignr1",e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23570 cCE("walignr2",ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23571 cCE("walignr3",eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23572 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23573 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23574 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23575 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23576 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23577 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23578 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23579 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23580 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23581 cCE("wcmpgtub",e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23582 cCE("wcmpgtuh",e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23583 cCE("wcmpgtuw",e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23584 cCE("wcmpgtsb",e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23585 cCE("wcmpgtsh",e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23586 cCE("wcmpgtsw",eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23587 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23588 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23589 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23590 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23591 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23592 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23593 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23594 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23595 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23596 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23597 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23598 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23599 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23600 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23601 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23602 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23603 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23604 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23605 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23606 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23607 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23608 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23609 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
23610 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23611 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23612 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23613 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23614 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23615 cCE("wpackhss",e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23616 cCE("wpackhus",e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23617 cCE("wpackwss",eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23618 cCE("wpackwus",e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23619 cCE("wpackdss",ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23620 cCE("wpackdus",ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23621 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23622 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23623 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23624 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23625 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23626 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23627 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23628 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23629 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23630 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23631 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
23632 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23633 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23634 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23635 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23636 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23637 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23638 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23639 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23640 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23641 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23642 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23643 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23644 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23645 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23646 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23647 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23648 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
23649 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
23650 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23651 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
23652 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
23653 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
23654 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23655 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23656 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23657 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23658 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23659 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23660 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23661 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23662 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23663 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
23664 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
23665 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
23666 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
23667 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
23668 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
23669 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23670 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23671 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23672 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
23673 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
23674 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
23675 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
23676 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
23677 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
23678 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23679 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23680 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23681 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23682 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
23683
23684 #undef ARM_VARIANT
23685 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
23686
23687 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
23688 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
23689 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
23690 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
23691 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
23692 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
23693 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23694 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23695 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23696 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23697 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23698 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23699 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23700 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23701 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23702 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23703 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23704 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23705 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23706 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23707 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
23708 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23709 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23710 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23711 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23712 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23713 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23714 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23715 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23716 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23717 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23718 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23719 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23720 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23721 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23722 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23723 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23724 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23725 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23726 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23727 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23728 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23729 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23730 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23731 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23732 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23733 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23734 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23735 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23736 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23737 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23738 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23739 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23740 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23741 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23742 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23743 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
23744
23745 #undef ARM_VARIANT
23746 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
23747
23748 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23749 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23750 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23751 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23752 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
23753 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
23754 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
23755 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
23756 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
23757 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
23758 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
23759 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
23760 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
23761 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
23762 cCE("cfmv64lr",e000510, 2, (RMDX, RR), rn_rd),
23763 cCE("cfmvr64l",e100510, 2, (RR, RMDX), rd_rn),
23764 cCE("cfmv64hr",e000530, 2, (RMDX, RR), rn_rd),
23765 cCE("cfmvr64h",e100530, 2, (RR, RMDX), rd_rn),
23766 cCE("cfmval32",e200440, 2, (RMAX, RMFX), rd_rn),
23767 cCE("cfmv32al",e100440, 2, (RMFX, RMAX), rd_rn),
23768 cCE("cfmvam32",e200460, 2, (RMAX, RMFX), rd_rn),
23769 cCE("cfmv32am",e100460, 2, (RMFX, RMAX), rd_rn),
23770 cCE("cfmvah32",e200480, 2, (RMAX, RMFX), rd_rn),
23771 cCE("cfmv32ah",e100480, 2, (RMFX, RMAX), rd_rn),
23772 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
23773 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
23774 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
23775 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
23776 cCE("cfmvsc32",e2004e0, 2, (RMDS, RMDX), mav_dspsc),
23777 cCE("cfmv32sc",e1004e0, 2, (RMDX, RMDS), rd),
23778 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
23779 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
23780 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
23781 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
23782 cCE("cfcvt32s",e000480, 2, (RMF, RMFX), rd_rn),
23783 cCE("cfcvt32d",e0004a0, 2, (RMD, RMFX), rd_rn),
23784 cCE("cfcvt64s",e0004c0, 2, (RMF, RMDX), rd_rn),
23785 cCE("cfcvt64d",e0004e0, 2, (RMD, RMDX), rd_rn),
23786 cCE("cfcvts32",e100580, 2, (RMFX, RMF), rd_rn),
23787 cCE("cfcvtd32",e1005a0, 2, (RMFX, RMD), rd_rn),
23788 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
23789 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
23790 cCE("cfrshl32",e000550, 3, (RMFX, RMFX, RR), mav_triple),
23791 cCE("cfrshl64",e000570, 3, (RMDX, RMDX, RR), mav_triple),
23792 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
23793 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
23794 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
23795 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
23796 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
23797 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
23798 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
23799 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
23800 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
23801 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
23802 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
23803 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
23804 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
23805 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
23806 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
23807 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
23808 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
23809 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
23810 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
23811 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
23812 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23813 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23814 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23815 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23816 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23817 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
23818 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23819 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
23820 cCE("cfmadd32",e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
23821 cCE("cfmsub32",e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
23822 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
23823 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
23824
23825 /* ARMv8.5-A instructions. */
23826 #undef ARM_VARIANT
23827 #define ARM_VARIANT & arm_ext_sb
23828 #undef THUMB_VARIANT
23829 #define THUMB_VARIANT & arm_ext_sb
23830 TUF("sb", 57ff070, f3bf8f70, 0, (), noargs, noargs),
23831
23832 #undef ARM_VARIANT
23833 #define ARM_VARIANT & arm_ext_predres
23834 #undef THUMB_VARIANT
23835 #define THUMB_VARIANT & arm_ext_predres
23836 CE("cfprctx", e070f93, 1, (RRnpc), rd),
23837 CE("dvprctx", e070fb3, 1, (RRnpc), rd),
23838 CE("cpprctx", e070ff3, 1, (RRnpc), rd),
23839
23840 /* ARMv8-M instructions. */
23841 #undef ARM_VARIANT
23842 #define ARM_VARIANT NULL
23843 #undef THUMB_VARIANT
23844 #define THUMB_VARIANT & arm_ext_v8m
23845 ToU("sg", e97fe97f, 0, (), noargs),
23846 ToC("blxns", 4784, 1, (RRnpc), t_blx),
23847 ToC("bxns", 4704, 1, (RRnpc), t_bx),
23848 ToC("tt", e840f000, 2, (RRnpc, RRnpc), tt),
23849 ToC("ttt", e840f040, 2, (RRnpc, RRnpc), tt),
23850 ToC("tta", e840f080, 2, (RRnpc, RRnpc), tt),
23851 ToC("ttat", e840f0c0, 2, (RRnpc, RRnpc), tt),
23852
23853 /* FP for ARMv8-M Mainline. Enabled for ARMv8-M Mainline because the
23854 instructions behave as nop if no VFP is present. */
23855 #undef THUMB_VARIANT
23856 #define THUMB_VARIANT & arm_ext_v8m_main
23857 ToC("vlldm", ec300a00, 1, (RRnpc), rn),
23858 ToC("vlstm", ec200a00, 1, (RRnpc), rn),
23859
23860 /* Armv8.1-M Mainline instructions. */
23861 #undef THUMB_VARIANT
23862 #define THUMB_VARIANT & arm_ext_v8_1m_main
23863 toC("bf", _bf, 2, (EXPs, EXPs), t_branch_future),
23864 toU("bfcsel", _bfcsel, 4, (EXPs, EXPs, EXPs, COND), t_branch_future),
23865 toC("bfx", _bfx, 2, (EXPs, RRnpcsp), t_branch_future),
23866 toC("bfl", _bfl, 2, (EXPs, EXPs), t_branch_future),
23867 toC("bflx", _bflx, 2, (EXPs, RRnpcsp), t_branch_future),
23868
23869 toU("dls", _dls, 2, (LR, RRnpcsp), t_loloop),
23870 toU("wls", _wls, 3, (LR, RRnpcsp, EXP), t_loloop),
23871 toU("le", _le, 2, (oLR, EXP), t_loloop),
23872
23873 ToC("clrm", e89f0000, 1, (CLRMLST), t_clrm),
23874 ToC("vscclrm", ec9f0a00, 1, (VRSDVLST), t_vscclrm),
23875
23876 #undef THUMB_VARIANT
23877 #define THUMB_VARIANT & mve_ext
23878
23879 ToC("vpt", ee410f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23880 ToC("vptt", ee018f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23881 ToC("vpte", ee418f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23882 ToC("vpttt", ee014f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23883 ToC("vptte", ee01cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23884 ToC("vptet", ee41cf00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23885 ToC("vptee", ee414f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23886 ToC("vptttt", ee012f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23887 ToC("vpttte", ee016f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23888 ToC("vpttet", ee01ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23889 ToC("vpttee", ee01af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23890 ToC("vptett", ee41af00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23891 ToC("vptete", ee41ef00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23892 ToC("vpteet", ee416f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23893 ToC("vpteee", ee412f00, 3, (COND, RMQ, RMQRZ), mve_vpt),
23894
23895 ToC("vpst", fe710f4d, 0, (), mve_vpt),
23896 ToC("vpstt", fe318f4d, 0, (), mve_vpt),
23897 ToC("vpste", fe718f4d, 0, (), mve_vpt),
23898 ToC("vpsttt", fe314f4d, 0, (), mve_vpt),
23899 ToC("vpstte", fe31cf4d, 0, (), mve_vpt),
23900 ToC("vpstet", fe71cf4d, 0, (), mve_vpt),
23901 ToC("vpstee", fe714f4d, 0, (), mve_vpt),
23902 ToC("vpstttt", fe312f4d, 0, (), mve_vpt),
23903 ToC("vpsttte", fe316f4d, 0, (), mve_vpt),
23904 ToC("vpsttet", fe31ef4d, 0, (), mve_vpt),
23905 ToC("vpsttee", fe31af4d, 0, (), mve_vpt),
23906 ToC("vpstett", fe71af4d, 0, (), mve_vpt),
23907 ToC("vpstete", fe71ef4d, 0, (), mve_vpt),
23908 ToC("vpsteet", fe716f4d, 0, (), mve_vpt),
23909 ToC("vpsteee", fe712f4d, 0, (), mve_vpt),
23910
23911 /* MVE and MVE FP only. */
23912 mCEF(vmullb, _vmullb, 3, (RMQ, RMQ, RMQ), mve_vmull),
23913 mCEF(vabav, _vabav, 3, (RRnpcsp, RMQ, RMQ), mve_vabav),
23914 mCEF(vmladav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
23915 mCEF(vmladava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
23916 mCEF(vmladavx, _vmladavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
23917 mCEF(vmladavax, _vmladavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
23918 mCEF(vmlav, _vmladav, 3, (RRe, RMQ, RMQ), mve_vmladav),
23919 mCEF(vmlava, _vmladava, 3, (RRe, RMQ, RMQ), mve_vmladav),
23920 mCEF(vmlsdav, _vmlsdav, 3, (RRe, RMQ, RMQ), mve_vmladav),
23921 mCEF(vmlsdava, _vmlsdava, 3, (RRe, RMQ, RMQ), mve_vmladav),
23922 mCEF(vmlsdavx, _vmlsdavx, 3, (RRe, RMQ, RMQ), mve_vmladav),
23923 mCEF(vmlsdavax, _vmlsdavax, 3, (RRe, RMQ, RMQ), mve_vmladav),
23924
23925 mCEF(vst20, _vst20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23926 mCEF(vst21, _vst21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23927 mCEF(vst40, _vst40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23928 mCEF(vst41, _vst41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23929 mCEF(vst42, _vst42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23930 mCEF(vst43, _vst43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23931 mCEF(vld20, _vld20, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23932 mCEF(vld21, _vld21, 2, (MSTRLST2, ADDRMVE), mve_vst_vld),
23933 mCEF(vld40, _vld40, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23934 mCEF(vld41, _vld41, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23935 mCEF(vld42, _vld42, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23936 mCEF(vld43, _vld43, 2, (MSTRLST4, ADDRMVE), mve_vst_vld),
23937 mCEF(vstrb, _vstrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23938 mCEF(vstrh, _vstrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23939 mCEF(vstrw, _vstrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23940 mCEF(vstrd, _vstrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23941 mCEF(vldrb, _vldrb, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23942 mCEF(vldrh, _vldrh, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23943 mCEF(vldrw, _vldrw, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23944 mCEF(vldrd, _vldrd, 2, (RMQ, ADDRMVE), mve_vstr_vldr),
23945
23946 mCEF(vmovnt, _vmovnt, 2, (RMQ, RMQ), mve_movn),
23947 mCEF(vmovnb, _vmovnb, 2, (RMQ, RMQ), mve_movn),
23948
23949 #undef ARM_VARIANT
23950 #define ARM_VARIANT & fpu_vfp_ext_v1
23951 #undef THUMB_VARIANT
23952 #define THUMB_VARIANT & arm_ext_v6t2
23953
23954 mcCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
23955
23956 #undef ARM_VARIANT
23957 #define ARM_VARIANT & fpu_vfp_ext_v1xd
23958
23959 MNCE(vmov, 0, 1, (VMOV), neon_mov),
23960 mcCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
23961 mcCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
23962 mcCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
23963
23964 mCEF(vmullt, _vmullt, 3, (RNSDQMQ, oRNSDQMQ, RNSDQ_RNSC_MQ), mve_vmull),
23965 mnCEF(vadd, _vadd, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
23966 mnCEF(vsub, _vsub, 3, (RNSDQMQ, oRNSDQMQ, RNSDQMQR), neon_addsub_if_i),
23967
23968 MNCEF(vabs, 1b10300, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
23969 MNCEF(vneg, 1b10380, 2, (RNSDQMQ, RNSDQMQ), neon_abs_neg),
23970
23971 mCEF(vmovlt, _vmovlt, 1, (VMOV), mve_movl),
23972 mCEF(vmovlb, _vmovlb, 1, (VMOV), mve_movl),
23973
23974 mnCE(vcmp, _vcmp, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
23975 mnCE(vcmpe, _vcmpe, 3, (RVSD_COND, RSVDMQ_FI0, oRMQRZ), vfp_nsyn_cmp),
23976
23977 #undef ARM_VARIANT
23978 #define ARM_VARIANT & fpu_vfp_ext_v2
23979
23980 mcCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
23981 mcCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
23982 mcCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
23983 mcCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
23984
23985 #undef ARM_VARIANT
23986 #define ARM_VARIANT & fpu_vfp_ext_armv8xd
23987 mnUF(vcvta, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvta),
23988 mnUF(vcvtp, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtp),
23989 mnUF(vcvtn, _vcvta, 3, (RNSDQMQ, oRNSDQMQ, oI32z), neon_cvtn),
23990 mnUF(vcvtm, _vcvta, 2, (RNSDQMQ, oRNSDQMQ), neon_cvtm),
23991
23992 #undef ARM_VARIANT
23993 #define ARM_VARIANT & fpu_neon_ext_v1
23994 mnUF(vabd, _vabd, 3, (RNDQMQ, oRNDQMQ, RNDQMQ), neon_dyadic_if_su),
23995 mnUF(vabdl, _vabdl, 3, (RNQMQ, RNDMQ, RNDMQ), neon_dyadic_long),
23996 mnUF(vaddl, _vaddl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
23997 mnUF(vsubl, _vsubl, 3, (RNQMQ, RNDMQ, RNDMQR), neon_dyadic_long),
23998 };
23999 #undef ARM_VARIANT
24000 #undef THUMB_VARIANT
24001 #undef TCE
24002 #undef TUE
24003 #undef TUF
24004 #undef TCC
24005 #undef cCE
24006 #undef cCL
24007 #undef C3E
24008 #undef C3
24009 #undef CE
24010 #undef CM
24011 #undef CL
24012 #undef UE
24013 #undef UF
24014 #undef UT
24015 #undef NUF
24016 #undef nUF
24017 #undef NCE
24018 #undef nCE
24019 #undef OPS0
24020 #undef OPS1
24021 #undef OPS2
24022 #undef OPS3
24023 #undef OPS4
24024 #undef OPS5
24025 #undef OPS6
24026 #undef do_0
24027 #undef ToC
24028 #undef toC
24029 #undef ToU
24030 #undef toU
24031 \f
24032 /* MD interface: bits in the object file. */
24033
24034 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
24035 for use in the a.out file, and stores them in the array pointed to by buf.
24036 This knows about the endian-ness of the target machine and does
24037 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
24038 2 (short) and 4 (long) Floating numbers are put out as a series of
24039 LITTLENUMS (shorts, here at least). */
24040
24041 void
24042 md_number_to_chars (char * buf, valueT val, int n)
24043 {
24044 if (target_big_endian)
24045 number_to_chars_bigendian (buf, val, n);
24046 else
24047 number_to_chars_littleendian (buf, val, n);
24048 }
24049
24050 static valueT
24051 md_chars_to_number (char * buf, int n)
24052 {
24053 valueT result = 0;
24054 unsigned char * where = (unsigned char *) buf;
24055
24056 if (target_big_endian)
24057 {
24058 while (n--)
24059 {
24060 result <<= 8;
24061 result |= (*where++ & 255);
24062 }
24063 }
24064 else
24065 {
24066 while (n--)
24067 {
24068 result <<= 8;
24069 result |= (where[n] & 255);
24070 }
24071 }
24072
24073 return result;
24074 }
24075
24076 /* MD interface: Sections. */
24077
24078 /* Calculate the maximum variable size (i.e., excluding fr_fix)
24079 that an rs_machine_dependent frag may reach. */
24080
24081 unsigned int
24082 arm_frag_max_var (fragS *fragp)
24083 {
24084 /* We only use rs_machine_dependent for variable-size Thumb instructions,
24085 which are either THUMB_SIZE (2) or INSN_SIZE (4).
24086
24087 Note that we generate relaxable instructions even for cases that don't
24088 really need it, like an immediate that's a trivial constant. So we're
24089 overestimating the instruction size for some of those cases. Rather
24090 than putting more intelligence here, it would probably be better to
24091 avoid generating a relaxation frag in the first place when it can be
24092 determined up front that a short instruction will suffice. */
24093
24094 gas_assert (fragp->fr_type == rs_machine_dependent);
24095 return INSN_SIZE;
24096 }
24097
24098 /* Estimate the size of a frag before relaxing. Assume everything fits in
24099 2 bytes. */
24100
24101 int
24102 md_estimate_size_before_relax (fragS * fragp,
24103 segT segtype ATTRIBUTE_UNUSED)
24104 {
24105 fragp->fr_var = 2;
24106 return 2;
24107 }
24108
24109 /* Convert a machine dependent frag. */
24110
24111 void
24112 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
24113 {
24114 unsigned long insn;
24115 unsigned long old_op;
24116 char *buf;
24117 expressionS exp;
24118 fixS *fixp;
24119 int reloc_type;
24120 int pc_rel;
24121 int opcode;
24122
24123 buf = fragp->fr_literal + fragp->fr_fix;
24124
24125 old_op = bfd_get_16(abfd, buf);
24126 if (fragp->fr_symbol)
24127 {
24128 exp.X_op = O_symbol;
24129 exp.X_add_symbol = fragp->fr_symbol;
24130 }
24131 else
24132 {
24133 exp.X_op = O_constant;
24134 }
24135 exp.X_add_number = fragp->fr_offset;
24136 opcode = fragp->fr_subtype;
24137 switch (opcode)
24138 {
24139 case T_MNEM_ldr_pc:
24140 case T_MNEM_ldr_pc2:
24141 case T_MNEM_ldr_sp:
24142 case T_MNEM_str_sp:
24143 case T_MNEM_ldr:
24144 case T_MNEM_ldrb:
24145 case T_MNEM_ldrh:
24146 case T_MNEM_str:
24147 case T_MNEM_strb:
24148 case T_MNEM_strh:
24149 if (fragp->fr_var == 4)
24150 {
24151 insn = THUMB_OP32 (opcode);
24152 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
24153 {
24154 insn |= (old_op & 0x700) << 4;
24155 }
24156 else
24157 {
24158 insn |= (old_op & 7) << 12;
24159 insn |= (old_op & 0x38) << 13;
24160 }
24161 insn |= 0x00000c00;
24162 put_thumb32_insn (buf, insn);
24163 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
24164 }
24165 else
24166 {
24167 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
24168 }
24169 pc_rel = (opcode == T_MNEM_ldr_pc2);
24170 break;
24171 case T_MNEM_adr:
24172 if (fragp->fr_var == 4)
24173 {
24174 insn = THUMB_OP32 (opcode);
24175 insn |= (old_op & 0xf0) << 4;
24176 put_thumb32_insn (buf, insn);
24177 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
24178 }
24179 else
24180 {
24181 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24182 exp.X_add_number -= 4;
24183 }
24184 pc_rel = 1;
24185 break;
24186 case T_MNEM_mov:
24187 case T_MNEM_movs:
24188 case T_MNEM_cmp:
24189 case T_MNEM_cmn:
24190 if (fragp->fr_var == 4)
24191 {
24192 int r0off = (opcode == T_MNEM_mov
24193 || opcode == T_MNEM_movs) ? 0 : 8;
24194 insn = THUMB_OP32 (opcode);
24195 insn = (insn & 0xe1ffffff) | 0x10000000;
24196 insn |= (old_op & 0x700) << r0off;
24197 put_thumb32_insn (buf, insn);
24198 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24199 }
24200 else
24201 {
24202 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
24203 }
24204 pc_rel = 0;
24205 break;
24206 case T_MNEM_b:
24207 if (fragp->fr_var == 4)
24208 {
24209 insn = THUMB_OP32(opcode);
24210 put_thumb32_insn (buf, insn);
24211 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
24212 }
24213 else
24214 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
24215 pc_rel = 1;
24216 break;
24217 case T_MNEM_bcond:
24218 if (fragp->fr_var == 4)
24219 {
24220 insn = THUMB_OP32(opcode);
24221 insn |= (old_op & 0xf00) << 14;
24222 put_thumb32_insn (buf, insn);
24223 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
24224 }
24225 else
24226 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
24227 pc_rel = 1;
24228 break;
24229 case T_MNEM_add_sp:
24230 case T_MNEM_add_pc:
24231 case T_MNEM_inc_sp:
24232 case T_MNEM_dec_sp:
24233 if (fragp->fr_var == 4)
24234 {
24235 /* ??? Choose between add and addw. */
24236 insn = THUMB_OP32 (opcode);
24237 insn |= (old_op & 0xf0) << 4;
24238 put_thumb32_insn (buf, insn);
24239 if (opcode == T_MNEM_add_pc)
24240 reloc_type = BFD_RELOC_ARM_T32_IMM12;
24241 else
24242 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24243 }
24244 else
24245 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24246 pc_rel = 0;
24247 break;
24248
24249 case T_MNEM_addi:
24250 case T_MNEM_addis:
24251 case T_MNEM_subi:
24252 case T_MNEM_subis:
24253 if (fragp->fr_var == 4)
24254 {
24255 insn = THUMB_OP32 (opcode);
24256 insn |= (old_op & 0xf0) << 4;
24257 insn |= (old_op & 0xf) << 16;
24258 put_thumb32_insn (buf, insn);
24259 if (insn & (1 << 20))
24260 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
24261 else
24262 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
24263 }
24264 else
24265 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
24266 pc_rel = 0;
24267 break;
24268 default:
24269 abort ();
24270 }
24271 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
24272 (enum bfd_reloc_code_real) reloc_type);
24273 fixp->fx_file = fragp->fr_file;
24274 fixp->fx_line = fragp->fr_line;
24275 fragp->fr_fix += fragp->fr_var;
24276
24277 /* Set whether we use thumb-2 ISA based on final relaxation results. */
24278 if (thumb_mode && fragp->fr_var == 4 && no_cpu_selected ()
24279 && !ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2))
24280 ARM_MERGE_FEATURE_SETS (arm_arch_used, thumb_arch_used, arm_ext_v6t2);
24281 }
24282
24283 /* Return the size of a relaxable immediate operand instruction.
24284 SHIFT and SIZE specify the form of the allowable immediate. */
24285 static int
24286 relax_immediate (fragS *fragp, int size, int shift)
24287 {
24288 offsetT offset;
24289 offsetT mask;
24290 offsetT low;
24291
24292 /* ??? Should be able to do better than this. */
24293 if (fragp->fr_symbol)
24294 return 4;
24295
24296 low = (1 << shift) - 1;
24297 mask = (1 << (shift + size)) - (1 << shift);
24298 offset = fragp->fr_offset;
24299 /* Force misaligned offsets to 32-bit variant. */
24300 if (offset & low)
24301 return 4;
24302 if (offset & ~mask)
24303 return 4;
24304 return 2;
24305 }
24306
24307 /* Get the address of a symbol during relaxation. */
24308 static addressT
24309 relaxed_symbol_addr (fragS *fragp, long stretch)
24310 {
24311 fragS *sym_frag;
24312 addressT addr;
24313 symbolS *sym;
24314
24315 sym = fragp->fr_symbol;
24316 sym_frag = symbol_get_frag (sym);
24317 know (S_GET_SEGMENT (sym) != absolute_section
24318 || sym_frag == &zero_address_frag);
24319 addr = S_GET_VALUE (sym) + fragp->fr_offset;
24320
24321 /* If frag has yet to be reached on this pass, assume it will
24322 move by STRETCH just as we did. If this is not so, it will
24323 be because some frag between grows, and that will force
24324 another pass. */
24325
24326 if (stretch != 0
24327 && sym_frag->relax_marker != fragp->relax_marker)
24328 {
24329 fragS *f;
24330
24331 /* Adjust stretch for any alignment frag. Note that if have
24332 been expanding the earlier code, the symbol may be
24333 defined in what appears to be an earlier frag. FIXME:
24334 This doesn't handle the fr_subtype field, which specifies
24335 a maximum number of bytes to skip when doing an
24336 alignment. */
24337 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
24338 {
24339 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
24340 {
24341 if (stretch < 0)
24342 stretch = - ((- stretch)
24343 & ~ ((1 << (int) f->fr_offset) - 1));
24344 else
24345 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
24346 if (stretch == 0)
24347 break;
24348 }
24349 }
24350 if (f != NULL)
24351 addr += stretch;
24352 }
24353
24354 return addr;
24355 }
24356
24357 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
24358 load. */
24359 static int
24360 relax_adr (fragS *fragp, asection *sec, long stretch)
24361 {
24362 addressT addr;
24363 offsetT val;
24364
24365 /* Assume worst case for symbols not known to be in the same section. */
24366 if (fragp->fr_symbol == NULL
24367 || !S_IS_DEFINED (fragp->fr_symbol)
24368 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24369 || S_IS_WEAK (fragp->fr_symbol))
24370 return 4;
24371
24372 val = relaxed_symbol_addr (fragp, stretch);
24373 addr = fragp->fr_address + fragp->fr_fix;
24374 addr = (addr + 4) & ~3;
24375 /* Force misaligned targets to 32-bit variant. */
24376 if (val & 3)
24377 return 4;
24378 val -= addr;
24379 if (val < 0 || val > 1020)
24380 return 4;
24381 return 2;
24382 }
24383
24384 /* Return the size of a relaxable add/sub immediate instruction. */
24385 static int
24386 relax_addsub (fragS *fragp, asection *sec)
24387 {
24388 char *buf;
24389 int op;
24390
24391 buf = fragp->fr_literal + fragp->fr_fix;
24392 op = bfd_get_16(sec->owner, buf);
24393 if ((op & 0xf) == ((op >> 4) & 0xf))
24394 return relax_immediate (fragp, 8, 0);
24395 else
24396 return relax_immediate (fragp, 3, 0);
24397 }
24398
24399 /* Return TRUE iff the definition of symbol S could be pre-empted
24400 (overridden) at link or load time. */
24401 static bfd_boolean
24402 symbol_preemptible (symbolS *s)
24403 {
24404 /* Weak symbols can always be pre-empted. */
24405 if (S_IS_WEAK (s))
24406 return TRUE;
24407
24408 /* Non-global symbols cannot be pre-empted. */
24409 if (! S_IS_EXTERNAL (s))
24410 return FALSE;
24411
24412 #ifdef OBJ_ELF
24413 /* In ELF, a global symbol can be marked protected, or private. In that
24414 case it can't be pre-empted (other definitions in the same link unit
24415 would violate the ODR). */
24416 if (ELF_ST_VISIBILITY (S_GET_OTHER (s)) > STV_DEFAULT)
24417 return FALSE;
24418 #endif
24419
24420 /* Other global symbols might be pre-empted. */
24421 return TRUE;
24422 }
24423
24424 /* Return the size of a relaxable branch instruction. BITS is the
24425 size of the offset field in the narrow instruction. */
24426
24427 static int
24428 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
24429 {
24430 addressT addr;
24431 offsetT val;
24432 offsetT limit;
24433
24434 /* Assume worst case for symbols not known to be in the same section. */
24435 if (!S_IS_DEFINED (fragp->fr_symbol)
24436 || sec != S_GET_SEGMENT (fragp->fr_symbol)
24437 || S_IS_WEAK (fragp->fr_symbol))
24438 return 4;
24439
24440 #ifdef OBJ_ELF
24441 /* A branch to a function in ARM state will require interworking. */
24442 if (S_IS_DEFINED (fragp->fr_symbol)
24443 && ARM_IS_FUNC (fragp->fr_symbol))
24444 return 4;
24445 #endif
24446
24447 if (symbol_preemptible (fragp->fr_symbol))
24448 return 4;
24449
24450 val = relaxed_symbol_addr (fragp, stretch);
24451 addr = fragp->fr_address + fragp->fr_fix + 4;
24452 val -= addr;
24453
24454 /* Offset is a signed value *2 */
24455 limit = 1 << bits;
24456 if (val >= limit || val < -limit)
24457 return 4;
24458 return 2;
24459 }
24460
24461
24462 /* Relax a machine dependent frag. This returns the amount by which
24463 the current size of the frag should change. */
24464
24465 int
24466 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
24467 {
24468 int oldsize;
24469 int newsize;
24470
24471 oldsize = fragp->fr_var;
24472 switch (fragp->fr_subtype)
24473 {
24474 case T_MNEM_ldr_pc2:
24475 newsize = relax_adr (fragp, sec, stretch);
24476 break;
24477 case T_MNEM_ldr_pc:
24478 case T_MNEM_ldr_sp:
24479 case T_MNEM_str_sp:
24480 newsize = relax_immediate (fragp, 8, 2);
24481 break;
24482 case T_MNEM_ldr:
24483 case T_MNEM_str:
24484 newsize = relax_immediate (fragp, 5, 2);
24485 break;
24486 case T_MNEM_ldrh:
24487 case T_MNEM_strh:
24488 newsize = relax_immediate (fragp, 5, 1);
24489 break;
24490 case T_MNEM_ldrb:
24491 case T_MNEM_strb:
24492 newsize = relax_immediate (fragp, 5, 0);
24493 break;
24494 case T_MNEM_adr:
24495 newsize = relax_adr (fragp, sec, stretch);
24496 break;
24497 case T_MNEM_mov:
24498 case T_MNEM_movs:
24499 case T_MNEM_cmp:
24500 case T_MNEM_cmn:
24501 newsize = relax_immediate (fragp, 8, 0);
24502 break;
24503 case T_MNEM_b:
24504 newsize = relax_branch (fragp, sec, 11, stretch);
24505 break;
24506 case T_MNEM_bcond:
24507 newsize = relax_branch (fragp, sec, 8, stretch);
24508 break;
24509 case T_MNEM_add_sp:
24510 case T_MNEM_add_pc:
24511 newsize = relax_immediate (fragp, 8, 2);
24512 break;
24513 case T_MNEM_inc_sp:
24514 case T_MNEM_dec_sp:
24515 newsize = relax_immediate (fragp, 7, 2);
24516 break;
24517 case T_MNEM_addi:
24518 case T_MNEM_addis:
24519 case T_MNEM_subi:
24520 case T_MNEM_subis:
24521 newsize = relax_addsub (fragp, sec);
24522 break;
24523 default:
24524 abort ();
24525 }
24526
24527 fragp->fr_var = newsize;
24528 /* Freeze wide instructions that are at or before the same location as
24529 in the previous pass. This avoids infinite loops.
24530 Don't freeze them unconditionally because targets may be artificially
24531 misaligned by the expansion of preceding frags. */
24532 if (stretch <= 0 && newsize > 2)
24533 {
24534 md_convert_frag (sec->owner, sec, fragp);
24535 frag_wane (fragp);
24536 }
24537
24538 return newsize - oldsize;
24539 }
24540
24541 /* Round up a section size to the appropriate boundary. */
24542
24543 valueT
24544 md_section_align (segT segment ATTRIBUTE_UNUSED,
24545 valueT size)
24546 {
24547 return size;
24548 }
24549
24550 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
24551 of an rs_align_code fragment. */
24552
24553 void
24554 arm_handle_align (fragS * fragP)
24555 {
24556 static unsigned char const arm_noop[2][2][4] =
24557 {
24558 { /* ARMv1 */
24559 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
24560 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
24561 },
24562 { /* ARMv6k */
24563 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
24564 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
24565 },
24566 };
24567 static unsigned char const thumb_noop[2][2][2] =
24568 {
24569 { /* Thumb-1 */
24570 {0xc0, 0x46}, /* LE */
24571 {0x46, 0xc0}, /* BE */
24572 },
24573 { /* Thumb-2 */
24574 {0x00, 0xbf}, /* LE */
24575 {0xbf, 0x00} /* BE */
24576 }
24577 };
24578 static unsigned char const wide_thumb_noop[2][4] =
24579 { /* Wide Thumb-2 */
24580 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
24581 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
24582 };
24583
24584 unsigned bytes, fix, noop_size;
24585 char * p;
24586 const unsigned char * noop;
24587 const unsigned char *narrow_noop = NULL;
24588 #ifdef OBJ_ELF
24589 enum mstate state;
24590 #endif
24591
24592 if (fragP->fr_type != rs_align_code)
24593 return;
24594
24595 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
24596 p = fragP->fr_literal + fragP->fr_fix;
24597 fix = 0;
24598
24599 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
24600 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
24601
24602 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
24603
24604 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
24605 {
24606 if (ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24607 ? selected_cpu : arm_arch_none, arm_ext_v6t2))
24608 {
24609 narrow_noop = thumb_noop[1][target_big_endian];
24610 noop = wide_thumb_noop[target_big_endian];
24611 }
24612 else
24613 noop = thumb_noop[0][target_big_endian];
24614 noop_size = 2;
24615 #ifdef OBJ_ELF
24616 state = MAP_THUMB;
24617 #endif
24618 }
24619 else
24620 {
24621 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu_name[0]
24622 ? selected_cpu : arm_arch_none,
24623 arm_ext_v6k) != 0]
24624 [target_big_endian];
24625 noop_size = 4;
24626 #ifdef OBJ_ELF
24627 state = MAP_ARM;
24628 #endif
24629 }
24630
24631 fragP->fr_var = noop_size;
24632
24633 if (bytes & (noop_size - 1))
24634 {
24635 fix = bytes & (noop_size - 1);
24636 #ifdef OBJ_ELF
24637 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
24638 #endif
24639 memset (p, 0, fix);
24640 p += fix;
24641 bytes -= fix;
24642 }
24643
24644 if (narrow_noop)
24645 {
24646 if (bytes & noop_size)
24647 {
24648 /* Insert a narrow noop. */
24649 memcpy (p, narrow_noop, noop_size);
24650 p += noop_size;
24651 bytes -= noop_size;
24652 fix += noop_size;
24653 }
24654
24655 /* Use wide noops for the remainder */
24656 noop_size = 4;
24657 }
24658
24659 while (bytes >= noop_size)
24660 {
24661 memcpy (p, noop, noop_size);
24662 p += noop_size;
24663 bytes -= noop_size;
24664 fix += noop_size;
24665 }
24666
24667 fragP->fr_fix += fix;
24668 }
24669
24670 /* Called from md_do_align. Used to create an alignment
24671 frag in a code section. */
24672
24673 void
24674 arm_frag_align_code (int n, int max)
24675 {
24676 char * p;
24677
24678 /* We assume that there will never be a requirement
24679 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
24680 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
24681 {
24682 char err_msg[128];
24683
24684 sprintf (err_msg,
24685 _("alignments greater than %d bytes not supported in .text sections."),
24686 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
24687 as_fatal ("%s", err_msg);
24688 }
24689
24690 p = frag_var (rs_align_code,
24691 MAX_MEM_FOR_RS_ALIGN_CODE,
24692 1,
24693 (relax_substateT) max,
24694 (symbolS *) NULL,
24695 (offsetT) n,
24696 (char *) NULL);
24697 *p = 0;
24698 }
24699
24700 /* Perform target specific initialisation of a frag.
24701 Note - despite the name this initialisation is not done when the frag
24702 is created, but only when its type is assigned. A frag can be created
24703 and used a long time before its type is set, so beware of assuming that
24704 this initialisation is performed first. */
24705
24706 #ifndef OBJ_ELF
24707 void
24708 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
24709 {
24710 /* Record whether this frag is in an ARM or a THUMB area. */
24711 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24712 }
24713
24714 #else /* OBJ_ELF is defined. */
24715 void
24716 arm_init_frag (fragS * fragP, int max_chars)
24717 {
24718 bfd_boolean frag_thumb_mode;
24719
24720 /* If the current ARM vs THUMB mode has not already
24721 been recorded into this frag then do so now. */
24722 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
24723 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
24724
24725 /* PR 21809: Do not set a mapping state for debug sections
24726 - it just confuses other tools. */
24727 if (bfd_get_section_flags (NULL, now_seg) & SEC_DEBUGGING)
24728 return;
24729
24730 frag_thumb_mode = fragP->tc_frag_data.thumb_mode ^ MODE_RECORDED;
24731
24732 /* Record a mapping symbol for alignment frags. We will delete this
24733 later if the alignment ends up empty. */
24734 switch (fragP->fr_type)
24735 {
24736 case rs_align:
24737 case rs_align_test:
24738 case rs_fill:
24739 mapping_state_2 (MAP_DATA, max_chars);
24740 break;
24741 case rs_align_code:
24742 mapping_state_2 (frag_thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
24743 break;
24744 default:
24745 break;
24746 }
24747 }
24748
24749 /* When we change sections we need to issue a new mapping symbol. */
24750
24751 void
24752 arm_elf_change_section (void)
24753 {
24754 /* Link an unlinked unwind index table section to the .text section. */
24755 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
24756 && elf_linked_to_section (now_seg) == NULL)
24757 elf_linked_to_section (now_seg) = text_section;
24758 }
24759
24760 int
24761 arm_elf_section_type (const char * str, size_t len)
24762 {
24763 if (len == 5 && strncmp (str, "exidx", 5) == 0)
24764 return SHT_ARM_EXIDX;
24765
24766 return -1;
24767 }
24768 \f
24769 /* Code to deal with unwinding tables. */
24770
24771 static void add_unwind_adjustsp (offsetT);
24772
24773 /* Generate any deferred unwind frame offset. */
24774
24775 static void
24776 flush_pending_unwind (void)
24777 {
24778 offsetT offset;
24779
24780 offset = unwind.pending_offset;
24781 unwind.pending_offset = 0;
24782 if (offset != 0)
24783 add_unwind_adjustsp (offset);
24784 }
24785
24786 /* Add an opcode to this list for this function. Two-byte opcodes should
24787 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
24788 order. */
24789
24790 static void
24791 add_unwind_opcode (valueT op, int length)
24792 {
24793 /* Add any deferred stack adjustment. */
24794 if (unwind.pending_offset)
24795 flush_pending_unwind ();
24796
24797 unwind.sp_restored = 0;
24798
24799 if (unwind.opcode_count + length > unwind.opcode_alloc)
24800 {
24801 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
24802 if (unwind.opcodes)
24803 unwind.opcodes = XRESIZEVEC (unsigned char, unwind.opcodes,
24804 unwind.opcode_alloc);
24805 else
24806 unwind.opcodes = XNEWVEC (unsigned char, unwind.opcode_alloc);
24807 }
24808 while (length > 0)
24809 {
24810 length--;
24811 unwind.opcodes[unwind.opcode_count] = op & 0xff;
24812 op >>= 8;
24813 unwind.opcode_count++;
24814 }
24815 }
24816
24817 /* Add unwind opcodes to adjust the stack pointer. */
24818
24819 static void
24820 add_unwind_adjustsp (offsetT offset)
24821 {
24822 valueT op;
24823
24824 if (offset > 0x200)
24825 {
24826 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
24827 char bytes[5];
24828 int n;
24829 valueT o;
24830
24831 /* Long form: 0xb2, uleb128. */
24832 /* This might not fit in a word so add the individual bytes,
24833 remembering the list is built in reverse order. */
24834 o = (valueT) ((offset - 0x204) >> 2);
24835 if (o == 0)
24836 add_unwind_opcode (0, 1);
24837
24838 /* Calculate the uleb128 encoding of the offset. */
24839 n = 0;
24840 while (o)
24841 {
24842 bytes[n] = o & 0x7f;
24843 o >>= 7;
24844 if (o)
24845 bytes[n] |= 0x80;
24846 n++;
24847 }
24848 /* Add the insn. */
24849 for (; n; n--)
24850 add_unwind_opcode (bytes[n - 1], 1);
24851 add_unwind_opcode (0xb2, 1);
24852 }
24853 else if (offset > 0x100)
24854 {
24855 /* Two short opcodes. */
24856 add_unwind_opcode (0x3f, 1);
24857 op = (offset - 0x104) >> 2;
24858 add_unwind_opcode (op, 1);
24859 }
24860 else if (offset > 0)
24861 {
24862 /* Short opcode. */
24863 op = (offset - 4) >> 2;
24864 add_unwind_opcode (op, 1);
24865 }
24866 else if (offset < 0)
24867 {
24868 offset = -offset;
24869 while (offset > 0x100)
24870 {
24871 add_unwind_opcode (0x7f, 1);
24872 offset -= 0x100;
24873 }
24874 op = ((offset - 4) >> 2) | 0x40;
24875 add_unwind_opcode (op, 1);
24876 }
24877 }
24878
24879 /* Finish the list of unwind opcodes for this function. */
24880
24881 static void
24882 finish_unwind_opcodes (void)
24883 {
24884 valueT op;
24885
24886 if (unwind.fp_used)
24887 {
24888 /* Adjust sp as necessary. */
24889 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
24890 flush_pending_unwind ();
24891
24892 /* After restoring sp from the frame pointer. */
24893 op = 0x90 | unwind.fp_reg;
24894 add_unwind_opcode (op, 1);
24895 }
24896 else
24897 flush_pending_unwind ();
24898 }
24899
24900
24901 /* Start an exception table entry. If idx is nonzero this is an index table
24902 entry. */
24903
24904 static void
24905 start_unwind_section (const segT text_seg, int idx)
24906 {
24907 const char * text_name;
24908 const char * prefix;
24909 const char * prefix_once;
24910 const char * group_name;
24911 char * sec_name;
24912 int type;
24913 int flags;
24914 int linkonce;
24915
24916 if (idx)
24917 {
24918 prefix = ELF_STRING_ARM_unwind;
24919 prefix_once = ELF_STRING_ARM_unwind_once;
24920 type = SHT_ARM_EXIDX;
24921 }
24922 else
24923 {
24924 prefix = ELF_STRING_ARM_unwind_info;
24925 prefix_once = ELF_STRING_ARM_unwind_info_once;
24926 type = SHT_PROGBITS;
24927 }
24928
24929 text_name = segment_name (text_seg);
24930 if (streq (text_name, ".text"))
24931 text_name = "";
24932
24933 if (strncmp (text_name, ".gnu.linkonce.t.",
24934 strlen (".gnu.linkonce.t.")) == 0)
24935 {
24936 prefix = prefix_once;
24937 text_name += strlen (".gnu.linkonce.t.");
24938 }
24939
24940 sec_name = concat (prefix, text_name, (char *) NULL);
24941
24942 flags = SHF_ALLOC;
24943 linkonce = 0;
24944 group_name = 0;
24945
24946 /* Handle COMDAT group. */
24947 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
24948 {
24949 group_name = elf_group_name (text_seg);
24950 if (group_name == NULL)
24951 {
24952 as_bad (_("Group section `%s' has no group signature"),
24953 segment_name (text_seg));
24954 ignore_rest_of_line ();
24955 return;
24956 }
24957 flags |= SHF_GROUP;
24958 linkonce = 1;
24959 }
24960
24961 obj_elf_change_section (sec_name, type, 0, flags, 0, group_name,
24962 linkonce, 0);
24963
24964 /* Set the section link for index tables. */
24965 if (idx)
24966 elf_linked_to_section (now_seg) = text_seg;
24967 }
24968
24969
24970 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
24971 personality routine data. Returns zero, or the index table value for
24972 an inline entry. */
24973
24974 static valueT
24975 create_unwind_entry (int have_data)
24976 {
24977 int size;
24978 addressT where;
24979 char *ptr;
24980 /* The current word of data. */
24981 valueT data;
24982 /* The number of bytes left in this word. */
24983 int n;
24984
24985 finish_unwind_opcodes ();
24986
24987 /* Remember the current text section. */
24988 unwind.saved_seg = now_seg;
24989 unwind.saved_subseg = now_subseg;
24990
24991 start_unwind_section (now_seg, 0);
24992
24993 if (unwind.personality_routine == NULL)
24994 {
24995 if (unwind.personality_index == -2)
24996 {
24997 if (have_data)
24998 as_bad (_("handlerdata in cantunwind frame"));
24999 return 1; /* EXIDX_CANTUNWIND. */
25000 }
25001
25002 /* Use a default personality routine if none is specified. */
25003 if (unwind.personality_index == -1)
25004 {
25005 if (unwind.opcode_count > 3)
25006 unwind.personality_index = 1;
25007 else
25008 unwind.personality_index = 0;
25009 }
25010
25011 /* Space for the personality routine entry. */
25012 if (unwind.personality_index == 0)
25013 {
25014 if (unwind.opcode_count > 3)
25015 as_bad (_("too many unwind opcodes for personality routine 0"));
25016
25017 if (!have_data)
25018 {
25019 /* All the data is inline in the index table. */
25020 data = 0x80;
25021 n = 3;
25022 while (unwind.opcode_count > 0)
25023 {
25024 unwind.opcode_count--;
25025 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25026 n--;
25027 }
25028
25029 /* Pad with "finish" opcodes. */
25030 while (n--)
25031 data = (data << 8) | 0xb0;
25032
25033 return data;
25034 }
25035 size = 0;
25036 }
25037 else
25038 /* We get two opcodes "free" in the first word. */
25039 size = unwind.opcode_count - 2;
25040 }
25041 else
25042 {
25043 /* PR 16765: Missing or misplaced unwind directives can trigger this. */
25044 if (unwind.personality_index != -1)
25045 {
25046 as_bad (_("attempt to recreate an unwind entry"));
25047 return 1;
25048 }
25049
25050 /* An extra byte is required for the opcode count. */
25051 size = unwind.opcode_count + 1;
25052 }
25053
25054 size = (size + 3) >> 2;
25055 if (size > 0xff)
25056 as_bad (_("too many unwind opcodes"));
25057
25058 frag_align (2, 0, 0);
25059 record_alignment (now_seg, 2);
25060 unwind.table_entry = expr_build_dot ();
25061
25062 /* Allocate the table entry. */
25063 ptr = frag_more ((size << 2) + 4);
25064 /* PR 13449: Zero the table entries in case some of them are not used. */
25065 memset (ptr, 0, (size << 2) + 4);
25066 where = frag_now_fix () - ((size << 2) + 4);
25067
25068 switch (unwind.personality_index)
25069 {
25070 case -1:
25071 /* ??? Should this be a PLT generating relocation? */
25072 /* Custom personality routine. */
25073 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
25074 BFD_RELOC_ARM_PREL31);
25075
25076 where += 4;
25077 ptr += 4;
25078
25079 /* Set the first byte to the number of additional words. */
25080 data = size > 0 ? size - 1 : 0;
25081 n = 3;
25082 break;
25083
25084 /* ABI defined personality routines. */
25085 case 0:
25086 /* Three opcodes bytes are packed into the first word. */
25087 data = 0x80;
25088 n = 3;
25089 break;
25090
25091 case 1:
25092 case 2:
25093 /* The size and first two opcode bytes go in the first word. */
25094 data = ((0x80 + unwind.personality_index) << 8) | size;
25095 n = 2;
25096 break;
25097
25098 default:
25099 /* Should never happen. */
25100 abort ();
25101 }
25102
25103 /* Pack the opcodes into words (MSB first), reversing the list at the same
25104 time. */
25105 while (unwind.opcode_count > 0)
25106 {
25107 if (n == 0)
25108 {
25109 md_number_to_chars (ptr, data, 4);
25110 ptr += 4;
25111 n = 4;
25112 data = 0;
25113 }
25114 unwind.opcode_count--;
25115 n--;
25116 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
25117 }
25118
25119 /* Finish off the last word. */
25120 if (n < 4)
25121 {
25122 /* Pad with "finish" opcodes. */
25123 while (n--)
25124 data = (data << 8) | 0xb0;
25125
25126 md_number_to_chars (ptr, data, 4);
25127 }
25128
25129 if (!have_data)
25130 {
25131 /* Add an empty descriptor if there is no user-specified data. */
25132 ptr = frag_more (4);
25133 md_number_to_chars (ptr, 0, 4);
25134 }
25135
25136 return 0;
25137 }
25138
25139
25140 /* Initialize the DWARF-2 unwind information for this procedure. */
25141
25142 void
25143 tc_arm_frame_initial_instructions (void)
25144 {
25145 cfi_add_CFA_def_cfa (REG_SP, 0);
25146 }
25147 #endif /* OBJ_ELF */
25148
25149 /* Convert REGNAME to a DWARF-2 register number. */
25150
25151 int
25152 tc_arm_regname_to_dw2regnum (char *regname)
25153 {
25154 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
25155 if (reg != FAIL)
25156 return reg;
25157
25158 /* PR 16694: Allow VFP registers as well. */
25159 reg = arm_reg_parse (&regname, REG_TYPE_VFS);
25160 if (reg != FAIL)
25161 return 64 + reg;
25162
25163 reg = arm_reg_parse (&regname, REG_TYPE_VFD);
25164 if (reg != FAIL)
25165 return reg + 256;
25166
25167 return FAIL;
25168 }
25169
25170 #ifdef TE_PE
25171 void
25172 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
25173 {
25174 expressionS exp;
25175
25176 exp.X_op = O_secrel;
25177 exp.X_add_symbol = symbol;
25178 exp.X_add_number = 0;
25179 emit_expr (&exp, size);
25180 }
25181 #endif
25182
25183 /* MD interface: Symbol and relocation handling. */
25184
25185 /* Return the address within the segment that a PC-relative fixup is
25186 relative to. For ARM, PC-relative fixups applied to instructions
25187 are generally relative to the location of the fixup plus 8 bytes.
25188 Thumb branches are offset by 4, and Thumb loads relative to PC
25189 require special handling. */
25190
25191 long
25192 md_pcrel_from_section (fixS * fixP, segT seg)
25193 {
25194 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
25195
25196 /* If this is pc-relative and we are going to emit a relocation
25197 then we just want to put out any pipeline compensation that the linker
25198 will need. Otherwise we want to use the calculated base.
25199 For WinCE we skip the bias for externals as well, since this
25200 is how the MS ARM-CE assembler behaves and we want to be compatible. */
25201 if (fixP->fx_pcrel
25202 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
25203 || (arm_force_relocation (fixP)
25204 #ifdef TE_WINCE
25205 && !S_IS_EXTERNAL (fixP->fx_addsy)
25206 #endif
25207 )))
25208 base = 0;
25209
25210
25211 switch (fixP->fx_r_type)
25212 {
25213 /* PC relative addressing on the Thumb is slightly odd as the
25214 bottom two bits of the PC are forced to zero for the
25215 calculation. This happens *after* application of the
25216 pipeline offset. However, Thumb adrl already adjusts for
25217 this, so we need not do it again. */
25218 case BFD_RELOC_ARM_THUMB_ADD:
25219 return base & ~3;
25220
25221 case BFD_RELOC_ARM_THUMB_OFFSET:
25222 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25223 case BFD_RELOC_ARM_T32_ADD_PC12:
25224 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
25225 return (base + 4) & ~3;
25226
25227 /* Thumb branches are simply offset by +4. */
25228 case BFD_RELOC_THUMB_PCREL_BRANCH5:
25229 case BFD_RELOC_THUMB_PCREL_BRANCH7:
25230 case BFD_RELOC_THUMB_PCREL_BRANCH9:
25231 case BFD_RELOC_THUMB_PCREL_BRANCH12:
25232 case BFD_RELOC_THUMB_PCREL_BRANCH20:
25233 case BFD_RELOC_THUMB_PCREL_BRANCH25:
25234 case BFD_RELOC_THUMB_PCREL_BFCSEL:
25235 case BFD_RELOC_ARM_THUMB_BF17:
25236 case BFD_RELOC_ARM_THUMB_BF19:
25237 case BFD_RELOC_ARM_THUMB_BF13:
25238 case BFD_RELOC_ARM_THUMB_LOOP12:
25239 return base + 4;
25240
25241 case BFD_RELOC_THUMB_PCREL_BRANCH23:
25242 if (fixP->fx_addsy
25243 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25244 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25245 && ARM_IS_FUNC (fixP->fx_addsy)
25246 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25247 base = fixP->fx_where + fixP->fx_frag->fr_address;
25248 return base + 4;
25249
25250 /* BLX is like branches above, but forces the low two bits of PC to
25251 zero. */
25252 case BFD_RELOC_THUMB_PCREL_BLX:
25253 if (fixP->fx_addsy
25254 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25255 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25256 && THUMB_IS_FUNC (fixP->fx_addsy)
25257 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25258 base = fixP->fx_where + fixP->fx_frag->fr_address;
25259 return (base + 4) & ~3;
25260
25261 /* ARM mode branches are offset by +8. However, the Windows CE
25262 loader expects the relocation not to take this into account. */
25263 case BFD_RELOC_ARM_PCREL_BLX:
25264 if (fixP->fx_addsy
25265 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25266 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25267 && ARM_IS_FUNC (fixP->fx_addsy)
25268 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25269 base = fixP->fx_where + fixP->fx_frag->fr_address;
25270 return base + 8;
25271
25272 case BFD_RELOC_ARM_PCREL_CALL:
25273 if (fixP->fx_addsy
25274 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25275 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
25276 && THUMB_IS_FUNC (fixP->fx_addsy)
25277 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
25278 base = fixP->fx_where + fixP->fx_frag->fr_address;
25279 return base + 8;
25280
25281 case BFD_RELOC_ARM_PCREL_BRANCH:
25282 case BFD_RELOC_ARM_PCREL_JUMP:
25283 case BFD_RELOC_ARM_PLT32:
25284 #ifdef TE_WINCE
25285 /* When handling fixups immediately, because we have already
25286 discovered the value of a symbol, or the address of the frag involved
25287 we must account for the offset by +8, as the OS loader will never see the reloc.
25288 see fixup_segment() in write.c
25289 The S_IS_EXTERNAL test handles the case of global symbols.
25290 Those need the calculated base, not just the pipe compensation the linker will need. */
25291 if (fixP->fx_pcrel
25292 && fixP->fx_addsy != NULL
25293 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
25294 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
25295 return base + 8;
25296 return base;
25297 #else
25298 return base + 8;
25299 #endif
25300
25301
25302 /* ARM mode loads relative to PC are also offset by +8. Unlike
25303 branches, the Windows CE loader *does* expect the relocation
25304 to take this into account. */
25305 case BFD_RELOC_ARM_OFFSET_IMM:
25306 case BFD_RELOC_ARM_OFFSET_IMM8:
25307 case BFD_RELOC_ARM_HWLITERAL:
25308 case BFD_RELOC_ARM_LITERAL:
25309 case BFD_RELOC_ARM_CP_OFF_IMM:
25310 return base + 8;
25311
25312
25313 /* Other PC-relative relocations are un-offset. */
25314 default:
25315 return base;
25316 }
25317 }
25318
25319 static bfd_boolean flag_warn_syms = TRUE;
25320
25321 bfd_boolean
25322 arm_tc_equal_in_insn (int c ATTRIBUTE_UNUSED, char * name)
25323 {
25324 /* PR 18347 - Warn if the user attempts to create a symbol with the same
25325 name as an ARM instruction. Whilst strictly speaking it is allowed, it
25326 does mean that the resulting code might be very confusing to the reader.
25327 Also this warning can be triggered if the user omits an operand before
25328 an immediate address, eg:
25329
25330 LDR =foo
25331
25332 GAS treats this as an assignment of the value of the symbol foo to a
25333 symbol LDR, and so (without this code) it will not issue any kind of
25334 warning or error message.
25335
25336 Note - ARM instructions are case-insensitive but the strings in the hash
25337 table are all stored in lower case, so we must first ensure that name is
25338 lower case too. */
25339 if (flag_warn_syms && arm_ops_hsh)
25340 {
25341 char * nbuf = strdup (name);
25342 char * p;
25343
25344 for (p = nbuf; *p; p++)
25345 *p = TOLOWER (*p);
25346 if (hash_find (arm_ops_hsh, nbuf) != NULL)
25347 {
25348 static struct hash_control * already_warned = NULL;
25349
25350 if (already_warned == NULL)
25351 already_warned = hash_new ();
25352 /* Only warn about the symbol once. To keep the code
25353 simple we let hash_insert do the lookup for us. */
25354 if (hash_insert (already_warned, nbuf, NULL) == NULL)
25355 as_warn (_("[-mwarn-syms]: Assignment makes a symbol match an ARM instruction: %s"), name);
25356 }
25357 else
25358 free (nbuf);
25359 }
25360
25361 return FALSE;
25362 }
25363
25364 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
25365 Otherwise we have no need to default values of symbols. */
25366
25367 symbolS *
25368 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
25369 {
25370 #ifdef OBJ_ELF
25371 if (name[0] == '_' && name[1] == 'G'
25372 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
25373 {
25374 if (!GOT_symbol)
25375 {
25376 if (symbol_find (name))
25377 as_bad (_("GOT already in the symbol table"));
25378
25379 GOT_symbol = symbol_new (name, undefined_section,
25380 (valueT) 0, & zero_address_frag);
25381 }
25382
25383 return GOT_symbol;
25384 }
25385 #endif
25386
25387 return NULL;
25388 }
25389
25390 /* Subroutine of md_apply_fix. Check to see if an immediate can be
25391 computed as two separate immediate values, added together. We
25392 already know that this value cannot be computed by just one ARM
25393 instruction. */
25394
25395 static unsigned int
25396 validate_immediate_twopart (unsigned int val,
25397 unsigned int * highpart)
25398 {
25399 unsigned int a;
25400 unsigned int i;
25401
25402 for (i = 0; i < 32; i += 2)
25403 if (((a = rotate_left (val, i)) & 0xff) != 0)
25404 {
25405 if (a & 0xff00)
25406 {
25407 if (a & ~ 0xffff)
25408 continue;
25409 * highpart = (a >> 8) | ((i + 24) << 7);
25410 }
25411 else if (a & 0xff0000)
25412 {
25413 if (a & 0xff000000)
25414 continue;
25415 * highpart = (a >> 16) | ((i + 16) << 7);
25416 }
25417 else
25418 {
25419 gas_assert (a & 0xff000000);
25420 * highpart = (a >> 24) | ((i + 8) << 7);
25421 }
25422
25423 return (a & 0xff) | (i << 7);
25424 }
25425
25426 return FAIL;
25427 }
25428
25429 static int
25430 validate_offset_imm (unsigned int val, int hwse)
25431 {
25432 if ((hwse && val > 255) || val > 4095)
25433 return FAIL;
25434 return val;
25435 }
25436
25437 /* Subroutine of md_apply_fix. Do those data_ops which can take a
25438 negative immediate constant by altering the instruction. A bit of
25439 a hack really.
25440 MOV <-> MVN
25441 AND <-> BIC
25442 ADC <-> SBC
25443 by inverting the second operand, and
25444 ADD <-> SUB
25445 CMP <-> CMN
25446 by negating the second operand. */
25447
25448 static int
25449 negate_data_op (unsigned long * instruction,
25450 unsigned long value)
25451 {
25452 int op, new_inst;
25453 unsigned long negated, inverted;
25454
25455 negated = encode_arm_immediate (-value);
25456 inverted = encode_arm_immediate (~value);
25457
25458 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
25459 switch (op)
25460 {
25461 /* First negates. */
25462 case OPCODE_SUB: /* ADD <-> SUB */
25463 new_inst = OPCODE_ADD;
25464 value = negated;
25465 break;
25466
25467 case OPCODE_ADD:
25468 new_inst = OPCODE_SUB;
25469 value = negated;
25470 break;
25471
25472 case OPCODE_CMP: /* CMP <-> CMN */
25473 new_inst = OPCODE_CMN;
25474 value = negated;
25475 break;
25476
25477 case OPCODE_CMN:
25478 new_inst = OPCODE_CMP;
25479 value = negated;
25480 break;
25481
25482 /* Now Inverted ops. */
25483 case OPCODE_MOV: /* MOV <-> MVN */
25484 new_inst = OPCODE_MVN;
25485 value = inverted;
25486 break;
25487
25488 case OPCODE_MVN:
25489 new_inst = OPCODE_MOV;
25490 value = inverted;
25491 break;
25492
25493 case OPCODE_AND: /* AND <-> BIC */
25494 new_inst = OPCODE_BIC;
25495 value = inverted;
25496 break;
25497
25498 case OPCODE_BIC:
25499 new_inst = OPCODE_AND;
25500 value = inverted;
25501 break;
25502
25503 case OPCODE_ADC: /* ADC <-> SBC */
25504 new_inst = OPCODE_SBC;
25505 value = inverted;
25506 break;
25507
25508 case OPCODE_SBC:
25509 new_inst = OPCODE_ADC;
25510 value = inverted;
25511 break;
25512
25513 /* We cannot do anything. */
25514 default:
25515 return FAIL;
25516 }
25517
25518 if (value == (unsigned) FAIL)
25519 return FAIL;
25520
25521 *instruction &= OPCODE_MASK;
25522 *instruction |= new_inst << DATA_OP_SHIFT;
25523 return value;
25524 }
25525
25526 /* Like negate_data_op, but for Thumb-2. */
25527
25528 static unsigned int
25529 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
25530 {
25531 int op, new_inst;
25532 int rd;
25533 unsigned int negated, inverted;
25534
25535 negated = encode_thumb32_immediate (-value);
25536 inverted = encode_thumb32_immediate (~value);
25537
25538 rd = (*instruction >> 8) & 0xf;
25539 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
25540 switch (op)
25541 {
25542 /* ADD <-> SUB. Includes CMP <-> CMN. */
25543 case T2_OPCODE_SUB:
25544 new_inst = T2_OPCODE_ADD;
25545 value = negated;
25546 break;
25547
25548 case T2_OPCODE_ADD:
25549 new_inst = T2_OPCODE_SUB;
25550 value = negated;
25551 break;
25552
25553 /* ORR <-> ORN. Includes MOV <-> MVN. */
25554 case T2_OPCODE_ORR:
25555 new_inst = T2_OPCODE_ORN;
25556 value = inverted;
25557 break;
25558
25559 case T2_OPCODE_ORN:
25560 new_inst = T2_OPCODE_ORR;
25561 value = inverted;
25562 break;
25563
25564 /* AND <-> BIC. TST has no inverted equivalent. */
25565 case T2_OPCODE_AND:
25566 new_inst = T2_OPCODE_BIC;
25567 if (rd == 15)
25568 value = FAIL;
25569 else
25570 value = inverted;
25571 break;
25572
25573 case T2_OPCODE_BIC:
25574 new_inst = T2_OPCODE_AND;
25575 value = inverted;
25576 break;
25577
25578 /* ADC <-> SBC */
25579 case T2_OPCODE_ADC:
25580 new_inst = T2_OPCODE_SBC;
25581 value = inverted;
25582 break;
25583
25584 case T2_OPCODE_SBC:
25585 new_inst = T2_OPCODE_ADC;
25586 value = inverted;
25587 break;
25588
25589 /* We cannot do anything. */
25590 default:
25591 return FAIL;
25592 }
25593
25594 if (value == (unsigned int)FAIL)
25595 return FAIL;
25596
25597 *instruction &= T2_OPCODE_MASK;
25598 *instruction |= new_inst << T2_DATA_OP_SHIFT;
25599 return value;
25600 }
25601
25602 /* Read a 32-bit thumb instruction from buf. */
25603
25604 static unsigned long
25605 get_thumb32_insn (char * buf)
25606 {
25607 unsigned long insn;
25608 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
25609 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25610
25611 return insn;
25612 }
25613
25614 /* We usually want to set the low bit on the address of thumb function
25615 symbols. In particular .word foo - . should have the low bit set.
25616 Generic code tries to fold the difference of two symbols to
25617 a constant. Prevent this and force a relocation when the first symbols
25618 is a thumb function. */
25619
25620 bfd_boolean
25621 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
25622 {
25623 if (op == O_subtract
25624 && l->X_op == O_symbol
25625 && r->X_op == O_symbol
25626 && THUMB_IS_FUNC (l->X_add_symbol))
25627 {
25628 l->X_op = O_subtract;
25629 l->X_op_symbol = r->X_add_symbol;
25630 l->X_add_number -= r->X_add_number;
25631 return TRUE;
25632 }
25633
25634 /* Process as normal. */
25635 return FALSE;
25636 }
25637
25638 /* Encode Thumb2 unconditional branches and calls. The encoding
25639 for the 2 are identical for the immediate values. */
25640
25641 static void
25642 encode_thumb2_b_bl_offset (char * buf, offsetT value)
25643 {
25644 #define T2I1I2MASK ((1 << 13) | (1 << 11))
25645 offsetT newval;
25646 offsetT newval2;
25647 addressT S, I1, I2, lo, hi;
25648
25649 S = (value >> 24) & 0x01;
25650 I1 = (value >> 23) & 0x01;
25651 I2 = (value >> 22) & 0x01;
25652 hi = (value >> 12) & 0x3ff;
25653 lo = (value >> 1) & 0x7ff;
25654 newval = md_chars_to_number (buf, THUMB_SIZE);
25655 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
25656 newval |= (S << 10) | hi;
25657 newval2 &= ~T2I1I2MASK;
25658 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
25659 md_number_to_chars (buf, newval, THUMB_SIZE);
25660 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
25661 }
25662
25663 void
25664 md_apply_fix (fixS * fixP,
25665 valueT * valP,
25666 segT seg)
25667 {
25668 offsetT value = * valP;
25669 offsetT newval;
25670 unsigned int newimm;
25671 unsigned long temp;
25672 int sign;
25673 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
25674
25675 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
25676
25677 /* Note whether this will delete the relocation. */
25678
25679 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
25680 fixP->fx_done = 1;
25681
25682 /* On a 64-bit host, silently truncate 'value' to 32 bits for
25683 consistency with the behaviour on 32-bit hosts. Remember value
25684 for emit_reloc. */
25685 value &= 0xffffffff;
25686 value ^= 0x80000000;
25687 value -= 0x80000000;
25688
25689 *valP = value;
25690 fixP->fx_addnumber = value;
25691
25692 /* Same treatment for fixP->fx_offset. */
25693 fixP->fx_offset &= 0xffffffff;
25694 fixP->fx_offset ^= 0x80000000;
25695 fixP->fx_offset -= 0x80000000;
25696
25697 switch (fixP->fx_r_type)
25698 {
25699 case BFD_RELOC_NONE:
25700 /* This will need to go in the object file. */
25701 fixP->fx_done = 0;
25702 break;
25703
25704 case BFD_RELOC_ARM_IMMEDIATE:
25705 /* We claim that this fixup has been processed here,
25706 even if in fact we generate an error because we do
25707 not have a reloc for it, so tc_gen_reloc will reject it. */
25708 fixP->fx_done = 1;
25709
25710 if (fixP->fx_addsy)
25711 {
25712 const char *msg = 0;
25713
25714 if (! S_IS_DEFINED (fixP->fx_addsy))
25715 msg = _("undefined symbol %s used as an immediate value");
25716 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25717 msg = _("symbol %s is in a different section");
25718 else if (S_IS_WEAK (fixP->fx_addsy))
25719 msg = _("symbol %s is weak and may be overridden later");
25720
25721 if (msg)
25722 {
25723 as_bad_where (fixP->fx_file, fixP->fx_line,
25724 msg, S_GET_NAME (fixP->fx_addsy));
25725 break;
25726 }
25727 }
25728
25729 temp = md_chars_to_number (buf, INSN_SIZE);
25730
25731 /* If the offset is negative, we should use encoding A2 for ADR. */
25732 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
25733 newimm = negate_data_op (&temp, value);
25734 else
25735 {
25736 newimm = encode_arm_immediate (value);
25737
25738 /* If the instruction will fail, see if we can fix things up by
25739 changing the opcode. */
25740 if (newimm == (unsigned int) FAIL)
25741 newimm = negate_data_op (&temp, value);
25742 /* MOV accepts both ARM modified immediate (A1 encoding) and
25743 UINT16 (A2 encoding) when possible, MOVW only accepts UINT16.
25744 When disassembling, MOV is preferred when there is no encoding
25745 overlap. */
25746 if (newimm == (unsigned int) FAIL
25747 && ((temp >> DATA_OP_SHIFT) & 0xf) == OPCODE_MOV
25748 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)
25749 && !((temp >> SBIT_SHIFT) & 0x1)
25750 && value >= 0 && value <= 0xffff)
25751 {
25752 /* Clear bits[23:20] to change encoding from A1 to A2. */
25753 temp &= 0xff0fffff;
25754 /* Encoding high 4bits imm. Code below will encode the remaining
25755 low 12bits. */
25756 temp |= (value & 0x0000f000) << 4;
25757 newimm = value & 0x00000fff;
25758 }
25759 }
25760
25761 if (newimm == (unsigned int) FAIL)
25762 {
25763 as_bad_where (fixP->fx_file, fixP->fx_line,
25764 _("invalid constant (%lx) after fixup"),
25765 (unsigned long) value);
25766 break;
25767 }
25768
25769 newimm |= (temp & 0xfffff000);
25770 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
25771 break;
25772
25773 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
25774 {
25775 unsigned int highpart = 0;
25776 unsigned int newinsn = 0xe1a00000; /* nop. */
25777
25778 if (fixP->fx_addsy)
25779 {
25780 const char *msg = 0;
25781
25782 if (! S_IS_DEFINED (fixP->fx_addsy))
25783 msg = _("undefined symbol %s used as an immediate value");
25784 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
25785 msg = _("symbol %s is in a different section");
25786 else if (S_IS_WEAK (fixP->fx_addsy))
25787 msg = _("symbol %s is weak and may be overridden later");
25788
25789 if (msg)
25790 {
25791 as_bad_where (fixP->fx_file, fixP->fx_line,
25792 msg, S_GET_NAME (fixP->fx_addsy));
25793 break;
25794 }
25795 }
25796
25797 newimm = encode_arm_immediate (value);
25798 temp = md_chars_to_number (buf, INSN_SIZE);
25799
25800 /* If the instruction will fail, see if we can fix things up by
25801 changing the opcode. */
25802 if (newimm == (unsigned int) FAIL
25803 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
25804 {
25805 /* No ? OK - try using two ADD instructions to generate
25806 the value. */
25807 newimm = validate_immediate_twopart (value, & highpart);
25808
25809 /* Yes - then make sure that the second instruction is
25810 also an add. */
25811 if (newimm != (unsigned int) FAIL)
25812 newinsn = temp;
25813 /* Still No ? Try using a negated value. */
25814 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
25815 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
25816 /* Otherwise - give up. */
25817 else
25818 {
25819 as_bad_where (fixP->fx_file, fixP->fx_line,
25820 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
25821 (long) value);
25822 break;
25823 }
25824
25825 /* Replace the first operand in the 2nd instruction (which
25826 is the PC) with the destination register. We have
25827 already added in the PC in the first instruction and we
25828 do not want to do it again. */
25829 newinsn &= ~ 0xf0000;
25830 newinsn |= ((newinsn & 0x0f000) << 4);
25831 }
25832
25833 newimm |= (temp & 0xfffff000);
25834 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
25835
25836 highpart |= (newinsn & 0xfffff000);
25837 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
25838 }
25839 break;
25840
25841 case BFD_RELOC_ARM_OFFSET_IMM:
25842 if (!fixP->fx_done && seg->use_rela_p)
25843 value = 0;
25844 /* Fall through. */
25845
25846 case BFD_RELOC_ARM_LITERAL:
25847 sign = value > 0;
25848
25849 if (value < 0)
25850 value = - value;
25851
25852 if (validate_offset_imm (value, 0) == FAIL)
25853 {
25854 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
25855 as_bad_where (fixP->fx_file, fixP->fx_line,
25856 _("invalid literal constant: pool needs to be closer"));
25857 else
25858 as_bad_where (fixP->fx_file, fixP->fx_line,
25859 _("bad immediate value for offset (%ld)"),
25860 (long) value);
25861 break;
25862 }
25863
25864 newval = md_chars_to_number (buf, INSN_SIZE);
25865 if (value == 0)
25866 newval &= 0xfffff000;
25867 else
25868 {
25869 newval &= 0xff7ff000;
25870 newval |= value | (sign ? INDEX_UP : 0);
25871 }
25872 md_number_to_chars (buf, newval, INSN_SIZE);
25873 break;
25874
25875 case BFD_RELOC_ARM_OFFSET_IMM8:
25876 case BFD_RELOC_ARM_HWLITERAL:
25877 sign = value > 0;
25878
25879 if (value < 0)
25880 value = - value;
25881
25882 if (validate_offset_imm (value, 1) == FAIL)
25883 {
25884 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
25885 as_bad_where (fixP->fx_file, fixP->fx_line,
25886 _("invalid literal constant: pool needs to be closer"));
25887 else
25888 as_bad_where (fixP->fx_file, fixP->fx_line,
25889 _("bad immediate value for 8-bit offset (%ld)"),
25890 (long) value);
25891 break;
25892 }
25893
25894 newval = md_chars_to_number (buf, INSN_SIZE);
25895 if (value == 0)
25896 newval &= 0xfffff0f0;
25897 else
25898 {
25899 newval &= 0xff7ff0f0;
25900 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
25901 }
25902 md_number_to_chars (buf, newval, INSN_SIZE);
25903 break;
25904
25905 case BFD_RELOC_ARM_T32_OFFSET_U8:
25906 if (value < 0 || value > 1020 || value % 4 != 0)
25907 as_bad_where (fixP->fx_file, fixP->fx_line,
25908 _("bad immediate value for offset (%ld)"), (long) value);
25909 value /= 4;
25910
25911 newval = md_chars_to_number (buf+2, THUMB_SIZE);
25912 newval |= value;
25913 md_number_to_chars (buf+2, newval, THUMB_SIZE);
25914 break;
25915
25916 case BFD_RELOC_ARM_T32_OFFSET_IMM:
25917 /* This is a complicated relocation used for all varieties of Thumb32
25918 load/store instruction with immediate offset:
25919
25920 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
25921 *4, optional writeback(W)
25922 (doubleword load/store)
25923
25924 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
25925 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
25926 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
25927 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
25928 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
25929
25930 Uppercase letters indicate bits that are already encoded at
25931 this point. Lowercase letters are our problem. For the
25932 second block of instructions, the secondary opcode nybble
25933 (bits 8..11) is present, and bit 23 is zero, even if this is
25934 a PC-relative operation. */
25935 newval = md_chars_to_number (buf, THUMB_SIZE);
25936 newval <<= 16;
25937 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
25938
25939 if ((newval & 0xf0000000) == 0xe0000000)
25940 {
25941 /* Doubleword load/store: 8-bit offset, scaled by 4. */
25942 if (value >= 0)
25943 newval |= (1 << 23);
25944 else
25945 value = -value;
25946 if (value % 4 != 0)
25947 {
25948 as_bad_where (fixP->fx_file, fixP->fx_line,
25949 _("offset not a multiple of 4"));
25950 break;
25951 }
25952 value /= 4;
25953 if (value > 0xff)
25954 {
25955 as_bad_where (fixP->fx_file, fixP->fx_line,
25956 _("offset out of range"));
25957 break;
25958 }
25959 newval &= ~0xff;
25960 }
25961 else if ((newval & 0x000f0000) == 0x000f0000)
25962 {
25963 /* PC-relative, 12-bit offset. */
25964 if (value >= 0)
25965 newval |= (1 << 23);
25966 else
25967 value = -value;
25968 if (value > 0xfff)
25969 {
25970 as_bad_where (fixP->fx_file, fixP->fx_line,
25971 _("offset out of range"));
25972 break;
25973 }
25974 newval &= ~0xfff;
25975 }
25976 else if ((newval & 0x00000100) == 0x00000100)
25977 {
25978 /* Writeback: 8-bit, +/- offset. */
25979 if (value >= 0)
25980 newval |= (1 << 9);
25981 else
25982 value = -value;
25983 if (value > 0xff)
25984 {
25985 as_bad_where (fixP->fx_file, fixP->fx_line,
25986 _("offset out of range"));
25987 break;
25988 }
25989 newval &= ~0xff;
25990 }
25991 else if ((newval & 0x00000f00) == 0x00000e00)
25992 {
25993 /* T-instruction: positive 8-bit offset. */
25994 if (value < 0 || value > 0xff)
25995 {
25996 as_bad_where (fixP->fx_file, fixP->fx_line,
25997 _("offset out of range"));
25998 break;
25999 }
26000 newval &= ~0xff;
26001 newval |= value;
26002 }
26003 else
26004 {
26005 /* Positive 12-bit or negative 8-bit offset. */
26006 int limit;
26007 if (value >= 0)
26008 {
26009 newval |= (1 << 23);
26010 limit = 0xfff;
26011 }
26012 else
26013 {
26014 value = -value;
26015 limit = 0xff;
26016 }
26017 if (value > limit)
26018 {
26019 as_bad_where (fixP->fx_file, fixP->fx_line,
26020 _("offset out of range"));
26021 break;
26022 }
26023 newval &= ~limit;
26024 }
26025
26026 newval |= value;
26027 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
26028 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
26029 break;
26030
26031 case BFD_RELOC_ARM_SHIFT_IMM:
26032 newval = md_chars_to_number (buf, INSN_SIZE);
26033 if (((unsigned long) value) > 32
26034 || (value == 32
26035 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
26036 {
26037 as_bad_where (fixP->fx_file, fixP->fx_line,
26038 _("shift expression is too large"));
26039 break;
26040 }
26041
26042 if (value == 0)
26043 /* Shifts of zero must be done as lsl. */
26044 newval &= ~0x60;
26045 else if (value == 32)
26046 value = 0;
26047 newval &= 0xfffff07f;
26048 newval |= (value & 0x1f) << 7;
26049 md_number_to_chars (buf, newval, INSN_SIZE);
26050 break;
26051
26052 case BFD_RELOC_ARM_T32_IMMEDIATE:
26053 case BFD_RELOC_ARM_T32_ADD_IMM:
26054 case BFD_RELOC_ARM_T32_IMM12:
26055 case BFD_RELOC_ARM_T32_ADD_PC12:
26056 /* We claim that this fixup has been processed here,
26057 even if in fact we generate an error because we do
26058 not have a reloc for it, so tc_gen_reloc will reject it. */
26059 fixP->fx_done = 1;
26060
26061 if (fixP->fx_addsy
26062 && ! S_IS_DEFINED (fixP->fx_addsy))
26063 {
26064 as_bad_where (fixP->fx_file, fixP->fx_line,
26065 _("undefined symbol %s used as an immediate value"),
26066 S_GET_NAME (fixP->fx_addsy));
26067 break;
26068 }
26069
26070 newval = md_chars_to_number (buf, THUMB_SIZE);
26071 newval <<= 16;
26072 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
26073
26074 newimm = FAIL;
26075 if ((fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
26076 /* ARMv8-M Baseline MOV will reach here, but it doesn't support
26077 Thumb2 modified immediate encoding (T2). */
26078 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2))
26079 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26080 {
26081 newimm = encode_thumb32_immediate (value);
26082 if (newimm == (unsigned int) FAIL)
26083 newimm = thumb32_negate_data_op (&newval, value);
26084 }
26085 if (newimm == (unsigned int) FAIL)
26086 {
26087 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE)
26088 {
26089 /* Turn add/sum into addw/subw. */
26090 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
26091 newval = (newval & 0xfeffffff) | 0x02000000;
26092 /* No flat 12-bit imm encoding for addsw/subsw. */
26093 if ((newval & 0x00100000) == 0)
26094 {
26095 /* 12 bit immediate for addw/subw. */
26096 if (value < 0)
26097 {
26098 value = -value;
26099 newval ^= 0x00a00000;
26100 }
26101 if (value > 0xfff)
26102 newimm = (unsigned int) FAIL;
26103 else
26104 newimm = value;
26105 }
26106 }
26107 else
26108 {
26109 /* MOV accepts both Thumb2 modified immediate (T2 encoding) and
26110 UINT16 (T3 encoding), MOVW only accepts UINT16. When
26111 disassembling, MOV is preferred when there is no encoding
26112 overlap. */
26113 if (((newval >> T2_DATA_OP_SHIFT) & 0xf) == T2_OPCODE_ORR
26114 /* NOTE: MOV uses the ORR opcode in Thumb 2 mode
26115 but with the Rn field [19:16] set to 1111. */
26116 && (((newval >> 16) & 0xf) == 0xf)
26117 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2_v8m)
26118 && !((newval >> T2_SBIT_SHIFT) & 0x1)
26119 && value >= 0 && value <= 0xffff)
26120 {
26121 /* Toggle bit[25] to change encoding from T2 to T3. */
26122 newval ^= 1 << 25;
26123 /* Clear bits[19:16]. */
26124 newval &= 0xfff0ffff;
26125 /* Encoding high 4bits imm. Code below will encode the
26126 remaining low 12bits. */
26127 newval |= (value & 0x0000f000) << 4;
26128 newimm = value & 0x00000fff;
26129 }
26130 }
26131 }
26132
26133 if (newimm == (unsigned int)FAIL)
26134 {
26135 as_bad_where (fixP->fx_file, fixP->fx_line,
26136 _("invalid constant (%lx) after fixup"),
26137 (unsigned long) value);
26138 break;
26139 }
26140
26141 newval |= (newimm & 0x800) << 15;
26142 newval |= (newimm & 0x700) << 4;
26143 newval |= (newimm & 0x0ff);
26144
26145 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
26146 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
26147 break;
26148
26149 case BFD_RELOC_ARM_SMC:
26150 if (((unsigned long) value) > 0xffff)
26151 as_bad_where (fixP->fx_file, fixP->fx_line,
26152 _("invalid smc expression"));
26153 newval = md_chars_to_number (buf, INSN_SIZE);
26154 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26155 md_number_to_chars (buf, newval, INSN_SIZE);
26156 break;
26157
26158 case BFD_RELOC_ARM_HVC:
26159 if (((unsigned long) value) > 0xffff)
26160 as_bad_where (fixP->fx_file, fixP->fx_line,
26161 _("invalid hvc expression"));
26162 newval = md_chars_to_number (buf, INSN_SIZE);
26163 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
26164 md_number_to_chars (buf, newval, INSN_SIZE);
26165 break;
26166
26167 case BFD_RELOC_ARM_SWI:
26168 if (fixP->tc_fix_data != 0)
26169 {
26170 if (((unsigned long) value) > 0xff)
26171 as_bad_where (fixP->fx_file, fixP->fx_line,
26172 _("invalid swi expression"));
26173 newval = md_chars_to_number (buf, THUMB_SIZE);
26174 newval |= value;
26175 md_number_to_chars (buf, newval, THUMB_SIZE);
26176 }
26177 else
26178 {
26179 if (((unsigned long) value) > 0x00ffffff)
26180 as_bad_where (fixP->fx_file, fixP->fx_line,
26181 _("invalid swi expression"));
26182 newval = md_chars_to_number (buf, INSN_SIZE);
26183 newval |= value;
26184 md_number_to_chars (buf, newval, INSN_SIZE);
26185 }
26186 break;
26187
26188 case BFD_RELOC_ARM_MULTI:
26189 if (((unsigned long) value) > 0xffff)
26190 as_bad_where (fixP->fx_file, fixP->fx_line,
26191 _("invalid expression in load/store multiple"));
26192 newval = value | md_chars_to_number (buf, INSN_SIZE);
26193 md_number_to_chars (buf, newval, INSN_SIZE);
26194 break;
26195
26196 #ifdef OBJ_ELF
26197 case BFD_RELOC_ARM_PCREL_CALL:
26198
26199 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26200 && fixP->fx_addsy
26201 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26202 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26203 && THUMB_IS_FUNC (fixP->fx_addsy))
26204 /* Flip the bl to blx. This is a simple flip
26205 bit here because we generate PCREL_CALL for
26206 unconditional bls. */
26207 {
26208 newval = md_chars_to_number (buf, INSN_SIZE);
26209 newval = newval | 0x10000000;
26210 md_number_to_chars (buf, newval, INSN_SIZE);
26211 temp = 1;
26212 fixP->fx_done = 1;
26213 }
26214 else
26215 temp = 3;
26216 goto arm_branch_common;
26217
26218 case BFD_RELOC_ARM_PCREL_JUMP:
26219 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26220 && fixP->fx_addsy
26221 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26222 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26223 && THUMB_IS_FUNC (fixP->fx_addsy))
26224 {
26225 /* This would map to a bl<cond>, b<cond>,
26226 b<always> to a Thumb function. We
26227 need to force a relocation for this particular
26228 case. */
26229 newval = md_chars_to_number (buf, INSN_SIZE);
26230 fixP->fx_done = 0;
26231 }
26232 /* Fall through. */
26233
26234 case BFD_RELOC_ARM_PLT32:
26235 #endif
26236 case BFD_RELOC_ARM_PCREL_BRANCH:
26237 temp = 3;
26238 goto arm_branch_common;
26239
26240 case BFD_RELOC_ARM_PCREL_BLX:
26241
26242 temp = 1;
26243 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
26244 && fixP->fx_addsy
26245 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26246 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26247 && ARM_IS_FUNC (fixP->fx_addsy))
26248 {
26249 /* Flip the blx to a bl and warn. */
26250 const char *name = S_GET_NAME (fixP->fx_addsy);
26251 newval = 0xeb000000;
26252 as_warn_where (fixP->fx_file, fixP->fx_line,
26253 _("blx to '%s' an ARM ISA state function changed to bl"),
26254 name);
26255 md_number_to_chars (buf, newval, INSN_SIZE);
26256 temp = 3;
26257 fixP->fx_done = 1;
26258 }
26259
26260 #ifdef OBJ_ELF
26261 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
26262 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
26263 #endif
26264
26265 arm_branch_common:
26266 /* We are going to store value (shifted right by two) in the
26267 instruction, in a 24 bit, signed field. Bits 26 through 32 either
26268 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
26269 also be clear. */
26270 if (value & temp)
26271 as_bad_where (fixP->fx_file, fixP->fx_line,
26272 _("misaligned branch destination"));
26273 if ((value & (offsetT)0xfe000000) != (offsetT)0
26274 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
26275 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26276
26277 if (fixP->fx_done || !seg->use_rela_p)
26278 {
26279 newval = md_chars_to_number (buf, INSN_SIZE);
26280 newval |= (value >> 2) & 0x00ffffff;
26281 /* Set the H bit on BLX instructions. */
26282 if (temp == 1)
26283 {
26284 if (value & 2)
26285 newval |= 0x01000000;
26286 else
26287 newval &= ~0x01000000;
26288 }
26289 md_number_to_chars (buf, newval, INSN_SIZE);
26290 }
26291 break;
26292
26293 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
26294 /* CBZ can only branch forward. */
26295
26296 /* Attempts to use CBZ to branch to the next instruction
26297 (which, strictly speaking, are prohibited) will be turned into
26298 no-ops.
26299
26300 FIXME: It may be better to remove the instruction completely and
26301 perform relaxation. */
26302 if (value == -2)
26303 {
26304 newval = md_chars_to_number (buf, THUMB_SIZE);
26305 newval = 0xbf00; /* NOP encoding T1 */
26306 md_number_to_chars (buf, newval, THUMB_SIZE);
26307 }
26308 else
26309 {
26310 if (value & ~0x7e)
26311 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26312
26313 if (fixP->fx_done || !seg->use_rela_p)
26314 {
26315 newval = md_chars_to_number (buf, THUMB_SIZE);
26316 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
26317 md_number_to_chars (buf, newval, THUMB_SIZE);
26318 }
26319 }
26320 break;
26321
26322 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
26323 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
26324 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26325
26326 if (fixP->fx_done || !seg->use_rela_p)
26327 {
26328 newval = md_chars_to_number (buf, THUMB_SIZE);
26329 newval |= (value & 0x1ff) >> 1;
26330 md_number_to_chars (buf, newval, THUMB_SIZE);
26331 }
26332 break;
26333
26334 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
26335 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
26336 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26337
26338 if (fixP->fx_done || !seg->use_rela_p)
26339 {
26340 newval = md_chars_to_number (buf, THUMB_SIZE);
26341 newval |= (value & 0xfff) >> 1;
26342 md_number_to_chars (buf, newval, THUMB_SIZE);
26343 }
26344 break;
26345
26346 case BFD_RELOC_THUMB_PCREL_BRANCH20:
26347 if (fixP->fx_addsy
26348 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26349 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26350 && ARM_IS_FUNC (fixP->fx_addsy)
26351 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26352 {
26353 /* Force a relocation for a branch 20 bits wide. */
26354 fixP->fx_done = 0;
26355 }
26356 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
26357 as_bad_where (fixP->fx_file, fixP->fx_line,
26358 _("conditional branch out of range"));
26359
26360 if (fixP->fx_done || !seg->use_rela_p)
26361 {
26362 offsetT newval2;
26363 addressT S, J1, J2, lo, hi;
26364
26365 S = (value & 0x00100000) >> 20;
26366 J2 = (value & 0x00080000) >> 19;
26367 J1 = (value & 0x00040000) >> 18;
26368 hi = (value & 0x0003f000) >> 12;
26369 lo = (value & 0x00000ffe) >> 1;
26370
26371 newval = md_chars_to_number (buf, THUMB_SIZE);
26372 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26373 newval |= (S << 10) | hi;
26374 newval2 |= (J1 << 13) | (J2 << 11) | lo;
26375 md_number_to_chars (buf, newval, THUMB_SIZE);
26376 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
26377 }
26378 break;
26379
26380 case BFD_RELOC_THUMB_PCREL_BLX:
26381 /* If there is a blx from a thumb state function to
26382 another thumb function flip this to a bl and warn
26383 about it. */
26384
26385 if (fixP->fx_addsy
26386 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26387 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26388 && THUMB_IS_FUNC (fixP->fx_addsy))
26389 {
26390 const char *name = S_GET_NAME (fixP->fx_addsy);
26391 as_warn_where (fixP->fx_file, fixP->fx_line,
26392 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
26393 name);
26394 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26395 newval = newval | 0x1000;
26396 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26397 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26398 fixP->fx_done = 1;
26399 }
26400
26401
26402 goto thumb_bl_common;
26403
26404 case BFD_RELOC_THUMB_PCREL_BRANCH23:
26405 /* A bl from Thumb state ISA to an internal ARM state function
26406 is converted to a blx. */
26407 if (fixP->fx_addsy
26408 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
26409 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
26410 && ARM_IS_FUNC (fixP->fx_addsy)
26411 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
26412 {
26413 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
26414 newval = newval & ~0x1000;
26415 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
26416 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
26417 fixP->fx_done = 1;
26418 }
26419
26420 thumb_bl_common:
26421
26422 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26423 /* For a BLX instruction, make sure that the relocation is rounded up
26424 to a word boundary. This follows the semantics of the instruction
26425 which specifies that bit 1 of the target address will come from bit
26426 1 of the base address. */
26427 value = (value + 3) & ~ 3;
26428
26429 #ifdef OBJ_ELF
26430 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
26431 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
26432 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
26433 #endif
26434
26435 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
26436 {
26437 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6t2)))
26438 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26439 else if ((value & ~0x1ffffff)
26440 && ((value & ~0x1ffffff) != ~0x1ffffff))
26441 as_bad_where (fixP->fx_file, fixP->fx_line,
26442 _("Thumb2 branch out of range"));
26443 }
26444
26445 if (fixP->fx_done || !seg->use_rela_p)
26446 encode_thumb2_b_bl_offset (buf, value);
26447
26448 break;
26449
26450 case BFD_RELOC_THUMB_PCREL_BRANCH25:
26451 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
26452 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
26453
26454 if (fixP->fx_done || !seg->use_rela_p)
26455 encode_thumb2_b_bl_offset (buf, value);
26456
26457 break;
26458
26459 case BFD_RELOC_8:
26460 if (fixP->fx_done || !seg->use_rela_p)
26461 *buf = value;
26462 break;
26463
26464 case BFD_RELOC_16:
26465 if (fixP->fx_done || !seg->use_rela_p)
26466 md_number_to_chars (buf, value, 2);
26467 break;
26468
26469 #ifdef OBJ_ELF
26470 case BFD_RELOC_ARM_TLS_CALL:
26471 case BFD_RELOC_ARM_THM_TLS_CALL:
26472 case BFD_RELOC_ARM_TLS_DESCSEQ:
26473 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
26474 case BFD_RELOC_ARM_TLS_GOTDESC:
26475 case BFD_RELOC_ARM_TLS_GD32:
26476 case BFD_RELOC_ARM_TLS_LE32:
26477 case BFD_RELOC_ARM_TLS_IE32:
26478 case BFD_RELOC_ARM_TLS_LDM32:
26479 case BFD_RELOC_ARM_TLS_LDO32:
26480 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26481 break;
26482
26483 /* Same handling as above, but with the arm_fdpic guard. */
26484 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
26485 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
26486 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
26487 if (arm_fdpic)
26488 {
26489 S_SET_THREAD_LOCAL (fixP->fx_addsy);
26490 }
26491 else
26492 {
26493 as_bad_where (fixP->fx_file, fixP->fx_line,
26494 _("Relocation supported only in FDPIC mode"));
26495 }
26496 break;
26497
26498 case BFD_RELOC_ARM_GOT32:
26499 case BFD_RELOC_ARM_GOTOFF:
26500 break;
26501
26502 case BFD_RELOC_ARM_GOT_PREL:
26503 if (fixP->fx_done || !seg->use_rela_p)
26504 md_number_to_chars (buf, value, 4);
26505 break;
26506
26507 case BFD_RELOC_ARM_TARGET2:
26508 /* TARGET2 is not partial-inplace, so we need to write the
26509 addend here for REL targets, because it won't be written out
26510 during reloc processing later. */
26511 if (fixP->fx_done || !seg->use_rela_p)
26512 md_number_to_chars (buf, fixP->fx_offset, 4);
26513 break;
26514
26515 /* Relocations for FDPIC. */
26516 case BFD_RELOC_ARM_GOTFUNCDESC:
26517 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
26518 case BFD_RELOC_ARM_FUNCDESC:
26519 if (arm_fdpic)
26520 {
26521 if (fixP->fx_done || !seg->use_rela_p)
26522 md_number_to_chars (buf, 0, 4);
26523 }
26524 else
26525 {
26526 as_bad_where (fixP->fx_file, fixP->fx_line,
26527 _("Relocation supported only in FDPIC mode"));
26528 }
26529 break;
26530 #endif
26531
26532 case BFD_RELOC_RVA:
26533 case BFD_RELOC_32:
26534 case BFD_RELOC_ARM_TARGET1:
26535 case BFD_RELOC_ARM_ROSEGREL32:
26536 case BFD_RELOC_ARM_SBREL32:
26537 case BFD_RELOC_32_PCREL:
26538 #ifdef TE_PE
26539 case BFD_RELOC_32_SECREL:
26540 #endif
26541 if (fixP->fx_done || !seg->use_rela_p)
26542 #ifdef TE_WINCE
26543 /* For WinCE we only do this for pcrel fixups. */
26544 if (fixP->fx_done || fixP->fx_pcrel)
26545 #endif
26546 md_number_to_chars (buf, value, 4);
26547 break;
26548
26549 #ifdef OBJ_ELF
26550 case BFD_RELOC_ARM_PREL31:
26551 if (fixP->fx_done || !seg->use_rela_p)
26552 {
26553 newval = md_chars_to_number (buf, 4) & 0x80000000;
26554 if ((value ^ (value >> 1)) & 0x40000000)
26555 {
26556 as_bad_where (fixP->fx_file, fixP->fx_line,
26557 _("rel31 relocation overflow"));
26558 }
26559 newval |= value & 0x7fffffff;
26560 md_number_to_chars (buf, newval, 4);
26561 }
26562 break;
26563 #endif
26564
26565 case BFD_RELOC_ARM_CP_OFF_IMM:
26566 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
26567 case BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM:
26568 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM)
26569 newval = md_chars_to_number (buf, INSN_SIZE);
26570 else
26571 newval = get_thumb32_insn (buf);
26572 if ((newval & 0x0f200f00) == 0x0d000900)
26573 {
26574 /* This is a fp16 vstr/vldr. The immediate offset in the mnemonic
26575 has permitted values that are multiples of 2, in the range 0
26576 to 510. */
26577 if (value < -510 || value > 510 || (value & 1))
26578 as_bad_where (fixP->fx_file, fixP->fx_line,
26579 _("co-processor offset out of range"));
26580 }
26581 else if ((newval & 0xfe001f80) == 0xec000f80)
26582 {
26583 if (value < -511 || value > 512 || (value & 3))
26584 as_bad_where (fixP->fx_file, fixP->fx_line,
26585 _("co-processor offset out of range"));
26586 }
26587 else if (value < -1023 || value > 1023 || (value & 3))
26588 as_bad_where (fixP->fx_file, fixP->fx_line,
26589 _("co-processor offset out of range"));
26590 cp_off_common:
26591 sign = value > 0;
26592 if (value < 0)
26593 value = -value;
26594 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26595 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26596 newval = md_chars_to_number (buf, INSN_SIZE);
26597 else
26598 newval = get_thumb32_insn (buf);
26599 if (value == 0)
26600 {
26601 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26602 newval &= 0xffffff80;
26603 else
26604 newval &= 0xffffff00;
26605 }
26606 else
26607 {
26608 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_VLDR_VSTR_OFF_IMM)
26609 newval &= 0xff7fff80;
26610 else
26611 newval &= 0xff7fff00;
26612 if ((newval & 0x0f200f00) == 0x0d000900)
26613 {
26614 /* This is a fp16 vstr/vldr.
26615
26616 It requires the immediate offset in the instruction is shifted
26617 left by 1 to be a half-word offset.
26618
26619 Here, left shift by 1 first, and later right shift by 2
26620 should get the right offset. */
26621 value <<= 1;
26622 }
26623 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
26624 }
26625 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
26626 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
26627 md_number_to_chars (buf, newval, INSN_SIZE);
26628 else
26629 put_thumb32_insn (buf, newval);
26630 break;
26631
26632 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
26633 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
26634 if (value < -255 || value > 255)
26635 as_bad_where (fixP->fx_file, fixP->fx_line,
26636 _("co-processor offset out of range"));
26637 value *= 4;
26638 goto cp_off_common;
26639
26640 case BFD_RELOC_ARM_THUMB_OFFSET:
26641 newval = md_chars_to_number (buf, THUMB_SIZE);
26642 /* Exactly what ranges, and where the offset is inserted depends
26643 on the type of instruction, we can establish this from the
26644 top 4 bits. */
26645 switch (newval >> 12)
26646 {
26647 case 4: /* PC load. */
26648 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
26649 forced to zero for these loads; md_pcrel_from has already
26650 compensated for this. */
26651 if (value & 3)
26652 as_bad_where (fixP->fx_file, fixP->fx_line,
26653 _("invalid offset, target not word aligned (0x%08lX)"),
26654 (((unsigned long) fixP->fx_frag->fr_address
26655 + (unsigned long) fixP->fx_where) & ~3)
26656 + (unsigned long) value);
26657
26658 if (value & ~0x3fc)
26659 as_bad_where (fixP->fx_file, fixP->fx_line,
26660 _("invalid offset, value too big (0x%08lX)"),
26661 (long) value);
26662
26663 newval |= value >> 2;
26664 break;
26665
26666 case 9: /* SP load/store. */
26667 if (value & ~0x3fc)
26668 as_bad_where (fixP->fx_file, fixP->fx_line,
26669 _("invalid offset, value too big (0x%08lX)"),
26670 (long) value);
26671 newval |= value >> 2;
26672 break;
26673
26674 case 6: /* Word load/store. */
26675 if (value & ~0x7c)
26676 as_bad_where (fixP->fx_file, fixP->fx_line,
26677 _("invalid offset, value too big (0x%08lX)"),
26678 (long) value);
26679 newval |= value << 4; /* 6 - 2. */
26680 break;
26681
26682 case 7: /* Byte load/store. */
26683 if (value & ~0x1f)
26684 as_bad_where (fixP->fx_file, fixP->fx_line,
26685 _("invalid offset, value too big (0x%08lX)"),
26686 (long) value);
26687 newval |= value << 6;
26688 break;
26689
26690 case 8: /* Halfword load/store. */
26691 if (value & ~0x3e)
26692 as_bad_where (fixP->fx_file, fixP->fx_line,
26693 _("invalid offset, value too big (0x%08lX)"),
26694 (long) value);
26695 newval |= value << 5; /* 6 - 1. */
26696 break;
26697
26698 default:
26699 as_bad_where (fixP->fx_file, fixP->fx_line,
26700 "Unable to process relocation for thumb opcode: %lx",
26701 (unsigned long) newval);
26702 break;
26703 }
26704 md_number_to_chars (buf, newval, THUMB_SIZE);
26705 break;
26706
26707 case BFD_RELOC_ARM_THUMB_ADD:
26708 /* This is a complicated relocation, since we use it for all of
26709 the following immediate relocations:
26710
26711 3bit ADD/SUB
26712 8bit ADD/SUB
26713 9bit ADD/SUB SP word-aligned
26714 10bit ADD PC/SP word-aligned
26715
26716 The type of instruction being processed is encoded in the
26717 instruction field:
26718
26719 0x8000 SUB
26720 0x00F0 Rd
26721 0x000F Rs
26722 */
26723 newval = md_chars_to_number (buf, THUMB_SIZE);
26724 {
26725 int rd = (newval >> 4) & 0xf;
26726 int rs = newval & 0xf;
26727 int subtract = !!(newval & 0x8000);
26728
26729 /* Check for HI regs, only very restricted cases allowed:
26730 Adjusting SP, and using PC or SP to get an address. */
26731 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
26732 || (rs > 7 && rs != REG_SP && rs != REG_PC))
26733 as_bad_where (fixP->fx_file, fixP->fx_line,
26734 _("invalid Hi register with immediate"));
26735
26736 /* If value is negative, choose the opposite instruction. */
26737 if (value < 0)
26738 {
26739 value = -value;
26740 subtract = !subtract;
26741 if (value < 0)
26742 as_bad_where (fixP->fx_file, fixP->fx_line,
26743 _("immediate value out of range"));
26744 }
26745
26746 if (rd == REG_SP)
26747 {
26748 if (value & ~0x1fc)
26749 as_bad_where (fixP->fx_file, fixP->fx_line,
26750 _("invalid immediate for stack address calculation"));
26751 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
26752 newval |= value >> 2;
26753 }
26754 else if (rs == REG_PC || rs == REG_SP)
26755 {
26756 /* PR gas/18541. If the addition is for a defined symbol
26757 within range of an ADR instruction then accept it. */
26758 if (subtract
26759 && value == 4
26760 && fixP->fx_addsy != NULL)
26761 {
26762 subtract = 0;
26763
26764 if (! S_IS_DEFINED (fixP->fx_addsy)
26765 || S_GET_SEGMENT (fixP->fx_addsy) != seg
26766 || S_IS_WEAK (fixP->fx_addsy))
26767 {
26768 as_bad_where (fixP->fx_file, fixP->fx_line,
26769 _("address calculation needs a strongly defined nearby symbol"));
26770 }
26771 else
26772 {
26773 offsetT v = fixP->fx_where + fixP->fx_frag->fr_address;
26774
26775 /* Round up to the next 4-byte boundary. */
26776 if (v & 3)
26777 v = (v + 3) & ~ 3;
26778 else
26779 v += 4;
26780 v = S_GET_VALUE (fixP->fx_addsy) - v;
26781
26782 if (v & ~0x3fc)
26783 {
26784 as_bad_where (fixP->fx_file, fixP->fx_line,
26785 _("symbol too far away"));
26786 }
26787 else
26788 {
26789 fixP->fx_done = 1;
26790 value = v;
26791 }
26792 }
26793 }
26794
26795 if (subtract || value & ~0x3fc)
26796 as_bad_where (fixP->fx_file, fixP->fx_line,
26797 _("invalid immediate for address calculation (value = 0x%08lX)"),
26798 (unsigned long) (subtract ? - value : value));
26799 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
26800 newval |= rd << 8;
26801 newval |= value >> 2;
26802 }
26803 else if (rs == rd)
26804 {
26805 if (value & ~0xff)
26806 as_bad_where (fixP->fx_file, fixP->fx_line,
26807 _("immediate value out of range"));
26808 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
26809 newval |= (rd << 8) | value;
26810 }
26811 else
26812 {
26813 if (value & ~0x7)
26814 as_bad_where (fixP->fx_file, fixP->fx_line,
26815 _("immediate value out of range"));
26816 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
26817 newval |= rd | (rs << 3) | (value << 6);
26818 }
26819 }
26820 md_number_to_chars (buf, newval, THUMB_SIZE);
26821 break;
26822
26823 case BFD_RELOC_ARM_THUMB_IMM:
26824 newval = md_chars_to_number (buf, THUMB_SIZE);
26825 if (value < 0 || value > 255)
26826 as_bad_where (fixP->fx_file, fixP->fx_line,
26827 _("invalid immediate: %ld is out of range"),
26828 (long) value);
26829 newval |= value;
26830 md_number_to_chars (buf, newval, THUMB_SIZE);
26831 break;
26832
26833 case BFD_RELOC_ARM_THUMB_SHIFT:
26834 /* 5bit shift value (0..32). LSL cannot take 32. */
26835 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
26836 temp = newval & 0xf800;
26837 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
26838 as_bad_where (fixP->fx_file, fixP->fx_line,
26839 _("invalid shift value: %ld"), (long) value);
26840 /* Shifts of zero must be encoded as LSL. */
26841 if (value == 0)
26842 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
26843 /* Shifts of 32 are encoded as zero. */
26844 else if (value == 32)
26845 value = 0;
26846 newval |= value << 6;
26847 md_number_to_chars (buf, newval, THUMB_SIZE);
26848 break;
26849
26850 case BFD_RELOC_VTABLE_INHERIT:
26851 case BFD_RELOC_VTABLE_ENTRY:
26852 fixP->fx_done = 0;
26853 return;
26854
26855 case BFD_RELOC_ARM_MOVW:
26856 case BFD_RELOC_ARM_MOVT:
26857 case BFD_RELOC_ARM_THUMB_MOVW:
26858 case BFD_RELOC_ARM_THUMB_MOVT:
26859 if (fixP->fx_done || !seg->use_rela_p)
26860 {
26861 /* REL format relocations are limited to a 16-bit addend. */
26862 if (!fixP->fx_done)
26863 {
26864 if (value < -0x8000 || value > 0x7fff)
26865 as_bad_where (fixP->fx_file, fixP->fx_line,
26866 _("offset out of range"));
26867 }
26868 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
26869 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
26870 {
26871 value >>= 16;
26872 }
26873
26874 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
26875 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
26876 {
26877 newval = get_thumb32_insn (buf);
26878 newval &= 0xfbf08f00;
26879 newval |= (value & 0xf000) << 4;
26880 newval |= (value & 0x0800) << 15;
26881 newval |= (value & 0x0700) << 4;
26882 newval |= (value & 0x00ff);
26883 put_thumb32_insn (buf, newval);
26884 }
26885 else
26886 {
26887 newval = md_chars_to_number (buf, 4);
26888 newval &= 0xfff0f000;
26889 newval |= value & 0x0fff;
26890 newval |= (value & 0xf000) << 4;
26891 md_number_to_chars (buf, newval, 4);
26892 }
26893 }
26894 return;
26895
26896 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
26897 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
26898 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
26899 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
26900 gas_assert (!fixP->fx_done);
26901 {
26902 bfd_vma insn;
26903 bfd_boolean is_mov;
26904 bfd_vma encoded_addend = value;
26905
26906 /* Check that addend can be encoded in instruction. */
26907 if (!seg->use_rela_p && (value < 0 || value > 255))
26908 as_bad_where (fixP->fx_file, fixP->fx_line,
26909 _("the offset 0x%08lX is not representable"),
26910 (unsigned long) encoded_addend);
26911
26912 /* Extract the instruction. */
26913 insn = md_chars_to_number (buf, THUMB_SIZE);
26914 is_mov = (insn & 0xf800) == 0x2000;
26915
26916 /* Encode insn. */
26917 if (is_mov)
26918 {
26919 if (!seg->use_rela_p)
26920 insn |= encoded_addend;
26921 }
26922 else
26923 {
26924 int rd, rs;
26925
26926 /* Extract the instruction. */
26927 /* Encoding is the following
26928 0x8000 SUB
26929 0x00F0 Rd
26930 0x000F Rs
26931 */
26932 /* The following conditions must be true :
26933 - ADD
26934 - Rd == Rs
26935 - Rd <= 7
26936 */
26937 rd = (insn >> 4) & 0xf;
26938 rs = insn & 0xf;
26939 if ((insn & 0x8000) || (rd != rs) || rd > 7)
26940 as_bad_where (fixP->fx_file, fixP->fx_line,
26941 _("Unable to process relocation for thumb opcode: %lx"),
26942 (unsigned long) insn);
26943
26944 /* Encode as ADD immediate8 thumb 1 code. */
26945 insn = 0x3000 | (rd << 8);
26946
26947 /* Place the encoded addend into the first 8 bits of the
26948 instruction. */
26949 if (!seg->use_rela_p)
26950 insn |= encoded_addend;
26951 }
26952
26953 /* Update the instruction. */
26954 md_number_to_chars (buf, insn, THUMB_SIZE);
26955 }
26956 break;
26957
26958 case BFD_RELOC_ARM_ALU_PC_G0_NC:
26959 case BFD_RELOC_ARM_ALU_PC_G0:
26960 case BFD_RELOC_ARM_ALU_PC_G1_NC:
26961 case BFD_RELOC_ARM_ALU_PC_G1:
26962 case BFD_RELOC_ARM_ALU_PC_G2:
26963 case BFD_RELOC_ARM_ALU_SB_G0_NC:
26964 case BFD_RELOC_ARM_ALU_SB_G0:
26965 case BFD_RELOC_ARM_ALU_SB_G1_NC:
26966 case BFD_RELOC_ARM_ALU_SB_G1:
26967 case BFD_RELOC_ARM_ALU_SB_G2:
26968 gas_assert (!fixP->fx_done);
26969 if (!seg->use_rela_p)
26970 {
26971 bfd_vma insn;
26972 bfd_vma encoded_addend;
26973 bfd_vma addend_abs = llabs (value);
26974
26975 /* Check that the absolute value of the addend can be
26976 expressed as an 8-bit constant plus a rotation. */
26977 encoded_addend = encode_arm_immediate (addend_abs);
26978 if (encoded_addend == (unsigned int) FAIL)
26979 as_bad_where (fixP->fx_file, fixP->fx_line,
26980 _("the offset 0x%08lX is not representable"),
26981 (unsigned long) addend_abs);
26982
26983 /* Extract the instruction. */
26984 insn = md_chars_to_number (buf, INSN_SIZE);
26985
26986 /* If the addend is positive, use an ADD instruction.
26987 Otherwise use a SUB. Take care not to destroy the S bit. */
26988 insn &= 0xff1fffff;
26989 if (value < 0)
26990 insn |= 1 << 22;
26991 else
26992 insn |= 1 << 23;
26993
26994 /* Place the encoded addend into the first 12 bits of the
26995 instruction. */
26996 insn &= 0xfffff000;
26997 insn |= encoded_addend;
26998
26999 /* Update the instruction. */
27000 md_number_to_chars (buf, insn, INSN_SIZE);
27001 }
27002 break;
27003
27004 case BFD_RELOC_ARM_LDR_PC_G0:
27005 case BFD_RELOC_ARM_LDR_PC_G1:
27006 case BFD_RELOC_ARM_LDR_PC_G2:
27007 case BFD_RELOC_ARM_LDR_SB_G0:
27008 case BFD_RELOC_ARM_LDR_SB_G1:
27009 case BFD_RELOC_ARM_LDR_SB_G2:
27010 gas_assert (!fixP->fx_done);
27011 if (!seg->use_rela_p)
27012 {
27013 bfd_vma insn;
27014 bfd_vma addend_abs = llabs (value);
27015
27016 /* Check that the absolute value of the addend can be
27017 encoded in 12 bits. */
27018 if (addend_abs >= 0x1000)
27019 as_bad_where (fixP->fx_file, fixP->fx_line,
27020 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
27021 (unsigned long) addend_abs);
27022
27023 /* Extract the instruction. */
27024 insn = md_chars_to_number (buf, INSN_SIZE);
27025
27026 /* If the addend is negative, clear bit 23 of the instruction.
27027 Otherwise set it. */
27028 if (value < 0)
27029 insn &= ~(1 << 23);
27030 else
27031 insn |= 1 << 23;
27032
27033 /* Place the absolute value of the addend into the first 12 bits
27034 of the instruction. */
27035 insn &= 0xfffff000;
27036 insn |= addend_abs;
27037
27038 /* Update the instruction. */
27039 md_number_to_chars (buf, insn, INSN_SIZE);
27040 }
27041 break;
27042
27043 case BFD_RELOC_ARM_LDRS_PC_G0:
27044 case BFD_RELOC_ARM_LDRS_PC_G1:
27045 case BFD_RELOC_ARM_LDRS_PC_G2:
27046 case BFD_RELOC_ARM_LDRS_SB_G0:
27047 case BFD_RELOC_ARM_LDRS_SB_G1:
27048 case BFD_RELOC_ARM_LDRS_SB_G2:
27049 gas_assert (!fixP->fx_done);
27050 if (!seg->use_rela_p)
27051 {
27052 bfd_vma insn;
27053 bfd_vma addend_abs = llabs (value);
27054
27055 /* Check that the absolute value of the addend can be
27056 encoded in 8 bits. */
27057 if (addend_abs >= 0x100)
27058 as_bad_where (fixP->fx_file, fixP->fx_line,
27059 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
27060 (unsigned long) addend_abs);
27061
27062 /* Extract the instruction. */
27063 insn = md_chars_to_number (buf, INSN_SIZE);
27064
27065 /* If the addend is negative, clear bit 23 of the instruction.
27066 Otherwise set it. */
27067 if (value < 0)
27068 insn &= ~(1 << 23);
27069 else
27070 insn |= 1 << 23;
27071
27072 /* Place the first four bits of the absolute value of the addend
27073 into the first 4 bits of the instruction, and the remaining
27074 four into bits 8 .. 11. */
27075 insn &= 0xfffff0f0;
27076 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
27077
27078 /* Update the instruction. */
27079 md_number_to_chars (buf, insn, INSN_SIZE);
27080 }
27081 break;
27082
27083 case BFD_RELOC_ARM_LDC_PC_G0:
27084 case BFD_RELOC_ARM_LDC_PC_G1:
27085 case BFD_RELOC_ARM_LDC_PC_G2:
27086 case BFD_RELOC_ARM_LDC_SB_G0:
27087 case BFD_RELOC_ARM_LDC_SB_G1:
27088 case BFD_RELOC_ARM_LDC_SB_G2:
27089 gas_assert (!fixP->fx_done);
27090 if (!seg->use_rela_p)
27091 {
27092 bfd_vma insn;
27093 bfd_vma addend_abs = llabs (value);
27094
27095 /* Check that the absolute value of the addend is a multiple of
27096 four and, when divided by four, fits in 8 bits. */
27097 if (addend_abs & 0x3)
27098 as_bad_where (fixP->fx_file, fixP->fx_line,
27099 _("bad offset 0x%08lX (must be word-aligned)"),
27100 (unsigned long) addend_abs);
27101
27102 if ((addend_abs >> 2) > 0xff)
27103 as_bad_where (fixP->fx_file, fixP->fx_line,
27104 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
27105 (unsigned long) addend_abs);
27106
27107 /* Extract the instruction. */
27108 insn = md_chars_to_number (buf, INSN_SIZE);
27109
27110 /* If the addend is negative, clear bit 23 of the instruction.
27111 Otherwise set it. */
27112 if (value < 0)
27113 insn &= ~(1 << 23);
27114 else
27115 insn |= 1 << 23;
27116
27117 /* Place the addend (divided by four) into the first eight
27118 bits of the instruction. */
27119 insn &= 0xfffffff0;
27120 insn |= addend_abs >> 2;
27121
27122 /* Update the instruction. */
27123 md_number_to_chars (buf, insn, INSN_SIZE);
27124 }
27125 break;
27126
27127 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27128 if (fixP->fx_addsy
27129 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27130 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27131 && ARM_IS_FUNC (fixP->fx_addsy)
27132 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27133 {
27134 /* Force a relocation for a branch 5 bits wide. */
27135 fixP->fx_done = 0;
27136 }
27137 if (v8_1_branch_value_check (value, 5, FALSE) == FAIL)
27138 as_bad_where (fixP->fx_file, fixP->fx_line,
27139 BAD_BRANCH_OFF);
27140
27141 if (fixP->fx_done || !seg->use_rela_p)
27142 {
27143 addressT boff = value >> 1;
27144
27145 newval = md_chars_to_number (buf, THUMB_SIZE);
27146 newval |= (boff << 7);
27147 md_number_to_chars (buf, newval, THUMB_SIZE);
27148 }
27149 break;
27150
27151 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27152 if (fixP->fx_addsy
27153 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27154 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27155 && ARM_IS_FUNC (fixP->fx_addsy)
27156 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27157 {
27158 fixP->fx_done = 0;
27159 }
27160 if ((value & ~0x7f) && ((value & ~0x3f) != ~0x3f))
27161 as_bad_where (fixP->fx_file, fixP->fx_line,
27162 _("branch out of range"));
27163
27164 if (fixP->fx_done || !seg->use_rela_p)
27165 {
27166 newval = md_chars_to_number (buf, THUMB_SIZE);
27167
27168 addressT boff = ((newval & 0x0780) >> 7) << 1;
27169 addressT diff = value - boff;
27170
27171 if (diff == 4)
27172 {
27173 newval |= 1 << 1; /* T bit. */
27174 }
27175 else if (diff != 2)
27176 {
27177 as_bad_where (fixP->fx_file, fixP->fx_line,
27178 _("out of range label-relative fixup value"));
27179 }
27180 md_number_to_chars (buf, newval, THUMB_SIZE);
27181 }
27182 break;
27183
27184 case BFD_RELOC_ARM_THUMB_BF17:
27185 if (fixP->fx_addsy
27186 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27187 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27188 && ARM_IS_FUNC (fixP->fx_addsy)
27189 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27190 {
27191 /* Force a relocation for a branch 17 bits wide. */
27192 fixP->fx_done = 0;
27193 }
27194
27195 if (v8_1_branch_value_check (value, 17, TRUE) == FAIL)
27196 as_bad_where (fixP->fx_file, fixP->fx_line,
27197 BAD_BRANCH_OFF);
27198
27199 if (fixP->fx_done || !seg->use_rela_p)
27200 {
27201 offsetT newval2;
27202 addressT immA, immB, immC;
27203
27204 immA = (value & 0x0001f000) >> 12;
27205 immB = (value & 0x00000ffc) >> 2;
27206 immC = (value & 0x00000002) >> 1;
27207
27208 newval = md_chars_to_number (buf, THUMB_SIZE);
27209 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27210 newval |= immA;
27211 newval2 |= (immC << 11) | (immB << 1);
27212 md_number_to_chars (buf, newval, THUMB_SIZE);
27213 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27214 }
27215 break;
27216
27217 case BFD_RELOC_ARM_THUMB_BF19:
27218 if (fixP->fx_addsy
27219 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27220 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27221 && ARM_IS_FUNC (fixP->fx_addsy)
27222 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27223 {
27224 /* Force a relocation for a branch 19 bits wide. */
27225 fixP->fx_done = 0;
27226 }
27227
27228 if (v8_1_branch_value_check (value, 19, TRUE) == FAIL)
27229 as_bad_where (fixP->fx_file, fixP->fx_line,
27230 BAD_BRANCH_OFF);
27231
27232 if (fixP->fx_done || !seg->use_rela_p)
27233 {
27234 offsetT newval2;
27235 addressT immA, immB, immC;
27236
27237 immA = (value & 0x0007f000) >> 12;
27238 immB = (value & 0x00000ffc) >> 2;
27239 immC = (value & 0x00000002) >> 1;
27240
27241 newval = md_chars_to_number (buf, THUMB_SIZE);
27242 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27243 newval |= immA;
27244 newval2 |= (immC << 11) | (immB << 1);
27245 md_number_to_chars (buf, newval, THUMB_SIZE);
27246 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27247 }
27248 break;
27249
27250 case BFD_RELOC_ARM_THUMB_BF13:
27251 if (fixP->fx_addsy
27252 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27253 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27254 && ARM_IS_FUNC (fixP->fx_addsy)
27255 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27256 {
27257 /* Force a relocation for a branch 13 bits wide. */
27258 fixP->fx_done = 0;
27259 }
27260
27261 if (v8_1_branch_value_check (value, 13, TRUE) == FAIL)
27262 as_bad_where (fixP->fx_file, fixP->fx_line,
27263 BAD_BRANCH_OFF);
27264
27265 if (fixP->fx_done || !seg->use_rela_p)
27266 {
27267 offsetT newval2;
27268 addressT immA, immB, immC;
27269
27270 immA = (value & 0x00001000) >> 12;
27271 immB = (value & 0x00000ffc) >> 2;
27272 immC = (value & 0x00000002) >> 1;
27273
27274 newval = md_chars_to_number (buf, THUMB_SIZE);
27275 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27276 newval |= immA;
27277 newval2 |= (immC << 11) | (immB << 1);
27278 md_number_to_chars (buf, newval, THUMB_SIZE);
27279 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
27280 }
27281 break;
27282
27283 case BFD_RELOC_ARM_THUMB_LOOP12:
27284 if (fixP->fx_addsy
27285 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
27286 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
27287 && ARM_IS_FUNC (fixP->fx_addsy)
27288 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v8_1m_main))
27289 {
27290 /* Force a relocation for a branch 12 bits wide. */
27291 fixP->fx_done = 0;
27292 }
27293
27294 bfd_vma insn = get_thumb32_insn (buf);
27295 /* le lr, <label> or le <label> */
27296 if (((insn & 0xffffffff) == 0xf00fc001)
27297 || ((insn & 0xffffffff) == 0xf02fc001))
27298 value = -value;
27299
27300 if (v8_1_branch_value_check (value, 12, FALSE) == FAIL)
27301 as_bad_where (fixP->fx_file, fixP->fx_line,
27302 BAD_BRANCH_OFF);
27303 if (fixP->fx_done || !seg->use_rela_p)
27304 {
27305 addressT imml, immh;
27306
27307 immh = (value & 0x00000ffc) >> 2;
27308 imml = (value & 0x00000002) >> 1;
27309
27310 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
27311 newval |= (imml << 11) | (immh << 1);
27312 md_number_to_chars (buf + THUMB_SIZE, newval, THUMB_SIZE);
27313 }
27314 break;
27315
27316 case BFD_RELOC_ARM_V4BX:
27317 /* This will need to go in the object file. */
27318 fixP->fx_done = 0;
27319 break;
27320
27321 case BFD_RELOC_UNUSED:
27322 default:
27323 as_bad_where (fixP->fx_file, fixP->fx_line,
27324 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
27325 }
27326 }
27327
27328 /* Translate internal representation of relocation info to BFD target
27329 format. */
27330
27331 arelent *
27332 tc_gen_reloc (asection *section, fixS *fixp)
27333 {
27334 arelent * reloc;
27335 bfd_reloc_code_real_type code;
27336
27337 reloc = XNEW (arelent);
27338
27339 reloc->sym_ptr_ptr = XNEW (asymbol *);
27340 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
27341 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
27342
27343 if (fixp->fx_pcrel)
27344 {
27345 if (section->use_rela_p)
27346 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
27347 else
27348 fixp->fx_offset = reloc->address;
27349 }
27350 reloc->addend = fixp->fx_offset;
27351
27352 switch (fixp->fx_r_type)
27353 {
27354 case BFD_RELOC_8:
27355 if (fixp->fx_pcrel)
27356 {
27357 code = BFD_RELOC_8_PCREL;
27358 break;
27359 }
27360 /* Fall through. */
27361
27362 case BFD_RELOC_16:
27363 if (fixp->fx_pcrel)
27364 {
27365 code = BFD_RELOC_16_PCREL;
27366 break;
27367 }
27368 /* Fall through. */
27369
27370 case BFD_RELOC_32:
27371 if (fixp->fx_pcrel)
27372 {
27373 code = BFD_RELOC_32_PCREL;
27374 break;
27375 }
27376 /* Fall through. */
27377
27378 case BFD_RELOC_ARM_MOVW:
27379 if (fixp->fx_pcrel)
27380 {
27381 code = BFD_RELOC_ARM_MOVW_PCREL;
27382 break;
27383 }
27384 /* Fall through. */
27385
27386 case BFD_RELOC_ARM_MOVT:
27387 if (fixp->fx_pcrel)
27388 {
27389 code = BFD_RELOC_ARM_MOVT_PCREL;
27390 break;
27391 }
27392 /* Fall through. */
27393
27394 case BFD_RELOC_ARM_THUMB_MOVW:
27395 if (fixp->fx_pcrel)
27396 {
27397 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
27398 break;
27399 }
27400 /* Fall through. */
27401
27402 case BFD_RELOC_ARM_THUMB_MOVT:
27403 if (fixp->fx_pcrel)
27404 {
27405 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
27406 break;
27407 }
27408 /* Fall through. */
27409
27410 case BFD_RELOC_NONE:
27411 case BFD_RELOC_ARM_PCREL_BRANCH:
27412 case BFD_RELOC_ARM_PCREL_BLX:
27413 case BFD_RELOC_RVA:
27414 case BFD_RELOC_THUMB_PCREL_BRANCH7:
27415 case BFD_RELOC_THUMB_PCREL_BRANCH9:
27416 case BFD_RELOC_THUMB_PCREL_BRANCH12:
27417 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27418 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27419 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27420 case BFD_RELOC_VTABLE_ENTRY:
27421 case BFD_RELOC_VTABLE_INHERIT:
27422 #ifdef TE_PE
27423 case BFD_RELOC_32_SECREL:
27424 #endif
27425 code = fixp->fx_r_type;
27426 break;
27427
27428 case BFD_RELOC_THUMB_PCREL_BLX:
27429 #ifdef OBJ_ELF
27430 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
27431 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
27432 else
27433 #endif
27434 code = BFD_RELOC_THUMB_PCREL_BLX;
27435 break;
27436
27437 case BFD_RELOC_ARM_LITERAL:
27438 case BFD_RELOC_ARM_HWLITERAL:
27439 /* If this is called then the a literal has
27440 been referenced across a section boundary. */
27441 as_bad_where (fixp->fx_file, fixp->fx_line,
27442 _("literal referenced across section boundary"));
27443 return NULL;
27444
27445 #ifdef OBJ_ELF
27446 case BFD_RELOC_ARM_TLS_CALL:
27447 case BFD_RELOC_ARM_THM_TLS_CALL:
27448 case BFD_RELOC_ARM_TLS_DESCSEQ:
27449 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
27450 case BFD_RELOC_ARM_GOT32:
27451 case BFD_RELOC_ARM_GOTOFF:
27452 case BFD_RELOC_ARM_GOT_PREL:
27453 case BFD_RELOC_ARM_PLT32:
27454 case BFD_RELOC_ARM_TARGET1:
27455 case BFD_RELOC_ARM_ROSEGREL32:
27456 case BFD_RELOC_ARM_SBREL32:
27457 case BFD_RELOC_ARM_PREL31:
27458 case BFD_RELOC_ARM_TARGET2:
27459 case BFD_RELOC_ARM_TLS_LDO32:
27460 case BFD_RELOC_ARM_PCREL_CALL:
27461 case BFD_RELOC_ARM_PCREL_JUMP:
27462 case BFD_RELOC_ARM_ALU_PC_G0_NC:
27463 case BFD_RELOC_ARM_ALU_PC_G0:
27464 case BFD_RELOC_ARM_ALU_PC_G1_NC:
27465 case BFD_RELOC_ARM_ALU_PC_G1:
27466 case BFD_RELOC_ARM_ALU_PC_G2:
27467 case BFD_RELOC_ARM_LDR_PC_G0:
27468 case BFD_RELOC_ARM_LDR_PC_G1:
27469 case BFD_RELOC_ARM_LDR_PC_G2:
27470 case BFD_RELOC_ARM_LDRS_PC_G0:
27471 case BFD_RELOC_ARM_LDRS_PC_G1:
27472 case BFD_RELOC_ARM_LDRS_PC_G2:
27473 case BFD_RELOC_ARM_LDC_PC_G0:
27474 case BFD_RELOC_ARM_LDC_PC_G1:
27475 case BFD_RELOC_ARM_LDC_PC_G2:
27476 case BFD_RELOC_ARM_ALU_SB_G0_NC:
27477 case BFD_RELOC_ARM_ALU_SB_G0:
27478 case BFD_RELOC_ARM_ALU_SB_G1_NC:
27479 case BFD_RELOC_ARM_ALU_SB_G1:
27480 case BFD_RELOC_ARM_ALU_SB_G2:
27481 case BFD_RELOC_ARM_LDR_SB_G0:
27482 case BFD_RELOC_ARM_LDR_SB_G1:
27483 case BFD_RELOC_ARM_LDR_SB_G2:
27484 case BFD_RELOC_ARM_LDRS_SB_G0:
27485 case BFD_RELOC_ARM_LDRS_SB_G1:
27486 case BFD_RELOC_ARM_LDRS_SB_G2:
27487 case BFD_RELOC_ARM_LDC_SB_G0:
27488 case BFD_RELOC_ARM_LDC_SB_G1:
27489 case BFD_RELOC_ARM_LDC_SB_G2:
27490 case BFD_RELOC_ARM_V4BX:
27491 case BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC:
27492 case BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC:
27493 case BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC:
27494 case BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC:
27495 case BFD_RELOC_ARM_GOTFUNCDESC:
27496 case BFD_RELOC_ARM_GOTOFFFUNCDESC:
27497 case BFD_RELOC_ARM_FUNCDESC:
27498 case BFD_RELOC_ARM_THUMB_BF17:
27499 case BFD_RELOC_ARM_THUMB_BF19:
27500 case BFD_RELOC_ARM_THUMB_BF13:
27501 code = fixp->fx_r_type;
27502 break;
27503
27504 case BFD_RELOC_ARM_TLS_GOTDESC:
27505 case BFD_RELOC_ARM_TLS_GD32:
27506 case BFD_RELOC_ARM_TLS_GD32_FDPIC:
27507 case BFD_RELOC_ARM_TLS_LE32:
27508 case BFD_RELOC_ARM_TLS_IE32:
27509 case BFD_RELOC_ARM_TLS_IE32_FDPIC:
27510 case BFD_RELOC_ARM_TLS_LDM32:
27511 case BFD_RELOC_ARM_TLS_LDM32_FDPIC:
27512 /* BFD will include the symbol's address in the addend.
27513 But we don't want that, so subtract it out again here. */
27514 if (!S_IS_COMMON (fixp->fx_addsy))
27515 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
27516 code = fixp->fx_r_type;
27517 break;
27518 #endif
27519
27520 case BFD_RELOC_ARM_IMMEDIATE:
27521 as_bad_where (fixp->fx_file, fixp->fx_line,
27522 _("internal relocation (type: IMMEDIATE) not fixed up"));
27523 return NULL;
27524
27525 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
27526 as_bad_where (fixp->fx_file, fixp->fx_line,
27527 _("ADRL used for a symbol not defined in the same file"));
27528 return NULL;
27529
27530 case BFD_RELOC_THUMB_PCREL_BRANCH5:
27531 case BFD_RELOC_THUMB_PCREL_BFCSEL:
27532 case BFD_RELOC_ARM_THUMB_LOOP12:
27533 as_bad_where (fixp->fx_file, fixp->fx_line,
27534 _("%s used for a symbol not defined in the same file"),
27535 bfd_get_reloc_code_name (fixp->fx_r_type));
27536 return NULL;
27537
27538 case BFD_RELOC_ARM_OFFSET_IMM:
27539 if (section->use_rela_p)
27540 {
27541 code = fixp->fx_r_type;
27542 break;
27543 }
27544
27545 if (fixp->fx_addsy != NULL
27546 && !S_IS_DEFINED (fixp->fx_addsy)
27547 && S_IS_LOCAL (fixp->fx_addsy))
27548 {
27549 as_bad_where (fixp->fx_file, fixp->fx_line,
27550 _("undefined local label `%s'"),
27551 S_GET_NAME (fixp->fx_addsy));
27552 return NULL;
27553 }
27554
27555 as_bad_where (fixp->fx_file, fixp->fx_line,
27556 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
27557 return NULL;
27558
27559 default:
27560 {
27561 const char * type;
27562
27563 switch (fixp->fx_r_type)
27564 {
27565 case BFD_RELOC_NONE: type = "NONE"; break;
27566 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
27567 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
27568 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
27569 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
27570 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
27571 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
27572 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
27573 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
27574 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
27575 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
27576 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
27577 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
27578 default: type = _("<unknown>"); break;
27579 }
27580 as_bad_where (fixp->fx_file, fixp->fx_line,
27581 _("cannot represent %s relocation in this object file format"),
27582 type);
27583 return NULL;
27584 }
27585 }
27586
27587 #ifdef OBJ_ELF
27588 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
27589 && GOT_symbol
27590 && fixp->fx_addsy == GOT_symbol)
27591 {
27592 code = BFD_RELOC_ARM_GOTPC;
27593 reloc->addend = fixp->fx_offset = reloc->address;
27594 }
27595 #endif
27596
27597 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
27598
27599 if (reloc->howto == NULL)
27600 {
27601 as_bad_where (fixp->fx_file, fixp->fx_line,
27602 _("cannot represent %s relocation in this object file format"),
27603 bfd_get_reloc_code_name (code));
27604 return NULL;
27605 }
27606
27607 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
27608 vtable entry to be used in the relocation's section offset. */
27609 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27610 reloc->address = fixp->fx_offset;
27611
27612 return reloc;
27613 }
27614
27615 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
27616
27617 void
27618 cons_fix_new_arm (fragS * frag,
27619 int where,
27620 int size,
27621 expressionS * exp,
27622 bfd_reloc_code_real_type reloc)
27623 {
27624 int pcrel = 0;
27625
27626 /* Pick a reloc.
27627 FIXME: @@ Should look at CPU word size. */
27628 switch (size)
27629 {
27630 case 1:
27631 reloc = BFD_RELOC_8;
27632 break;
27633 case 2:
27634 reloc = BFD_RELOC_16;
27635 break;
27636 case 4:
27637 default:
27638 reloc = BFD_RELOC_32;
27639 break;
27640 case 8:
27641 reloc = BFD_RELOC_64;
27642 break;
27643 }
27644
27645 #ifdef TE_PE
27646 if (exp->X_op == O_secrel)
27647 {
27648 exp->X_op = O_symbol;
27649 reloc = BFD_RELOC_32_SECREL;
27650 }
27651 #endif
27652
27653 fix_new_exp (frag, where, size, exp, pcrel, reloc);
27654 }
27655
27656 #if defined (OBJ_COFF)
27657 void
27658 arm_validate_fix (fixS * fixP)
27659 {
27660 /* If the destination of the branch is a defined symbol which does not have
27661 the THUMB_FUNC attribute, then we must be calling a function which has
27662 the (interfacearm) attribute. We look for the Thumb entry point to that
27663 function and change the branch to refer to that function instead. */
27664 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
27665 && fixP->fx_addsy != NULL
27666 && S_IS_DEFINED (fixP->fx_addsy)
27667 && ! THUMB_IS_FUNC (fixP->fx_addsy))
27668 {
27669 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
27670 }
27671 }
27672 #endif
27673
27674
27675 int
27676 arm_force_relocation (struct fix * fixp)
27677 {
27678 #if defined (OBJ_COFF) && defined (TE_PE)
27679 if (fixp->fx_r_type == BFD_RELOC_RVA)
27680 return 1;
27681 #endif
27682
27683 /* In case we have a call or a branch to a function in ARM ISA mode from
27684 a thumb function or vice-versa force the relocation. These relocations
27685 are cleared off for some cores that might have blx and simple transformations
27686 are possible. */
27687
27688 #ifdef OBJ_ELF
27689 switch (fixp->fx_r_type)
27690 {
27691 case BFD_RELOC_ARM_PCREL_JUMP:
27692 case BFD_RELOC_ARM_PCREL_CALL:
27693 case BFD_RELOC_THUMB_PCREL_BLX:
27694 if (THUMB_IS_FUNC (fixp->fx_addsy))
27695 return 1;
27696 break;
27697
27698 case BFD_RELOC_ARM_PCREL_BLX:
27699 case BFD_RELOC_THUMB_PCREL_BRANCH25:
27700 case BFD_RELOC_THUMB_PCREL_BRANCH20:
27701 case BFD_RELOC_THUMB_PCREL_BRANCH23:
27702 if (ARM_IS_FUNC (fixp->fx_addsy))
27703 return 1;
27704 break;
27705
27706 default:
27707 break;
27708 }
27709 #endif
27710
27711 /* Resolve these relocations even if the symbol is extern or weak.
27712 Technically this is probably wrong due to symbol preemption.
27713 In practice these relocations do not have enough range to be useful
27714 at dynamic link time, and some code (e.g. in the Linux kernel)
27715 expects these references to be resolved. */
27716 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
27717 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
27718 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
27719 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
27720 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
27721 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
27722 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
27723 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
27724 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
27725 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
27726 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
27727 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
27728 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
27729 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
27730 return 0;
27731
27732 /* Always leave these relocations for the linker. */
27733 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27734 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27735 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27736 return 1;
27737
27738 /* Always generate relocations against function symbols. */
27739 if (fixp->fx_r_type == BFD_RELOC_32
27740 && fixp->fx_addsy
27741 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
27742 return 1;
27743
27744 return generic_force_reloc (fixp);
27745 }
27746
27747 #if defined (OBJ_ELF) || defined (OBJ_COFF)
27748 /* Relocations against function names must be left unadjusted,
27749 so that the linker can use this information to generate interworking
27750 stubs. The MIPS version of this function
27751 also prevents relocations that are mips-16 specific, but I do not
27752 know why it does this.
27753
27754 FIXME:
27755 There is one other problem that ought to be addressed here, but
27756 which currently is not: Taking the address of a label (rather
27757 than a function) and then later jumping to that address. Such
27758 addresses also ought to have their bottom bit set (assuming that
27759 they reside in Thumb code), but at the moment they will not. */
27760
27761 bfd_boolean
27762 arm_fix_adjustable (fixS * fixP)
27763 {
27764 if (fixP->fx_addsy == NULL)
27765 return 1;
27766
27767 /* Preserve relocations against symbols with function type. */
27768 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
27769 return FALSE;
27770
27771 if (THUMB_IS_FUNC (fixP->fx_addsy)
27772 && fixP->fx_subsy == NULL)
27773 return FALSE;
27774
27775 /* We need the symbol name for the VTABLE entries. */
27776 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
27777 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
27778 return FALSE;
27779
27780 /* Don't allow symbols to be discarded on GOT related relocs. */
27781 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
27782 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
27783 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
27784 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
27785 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32_FDPIC
27786 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
27787 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
27788 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32_FDPIC
27789 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
27790 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32_FDPIC
27791 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
27792 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
27793 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
27794 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
27795 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
27796 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
27797 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
27798 return FALSE;
27799
27800 /* Similarly for group relocations. */
27801 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
27802 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
27803 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
27804 return FALSE;
27805
27806 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
27807 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
27808 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
27809 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
27810 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
27811 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
27812 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
27813 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
27814 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
27815 return FALSE;
27816
27817 /* BFD_RELOC_ARM_THUMB_ALU_ABS_Gx_NC relocations have VERY limited
27818 offsets, so keep these symbols. */
27819 if (fixP->fx_r_type >= BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
27820 && fixP->fx_r_type <= BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC)
27821 return FALSE;
27822
27823 return TRUE;
27824 }
27825 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
27826
27827 #ifdef OBJ_ELF
27828 const char *
27829 elf32_arm_target_format (void)
27830 {
27831 #ifdef TE_SYMBIAN
27832 return (target_big_endian
27833 ? "elf32-bigarm-symbian"
27834 : "elf32-littlearm-symbian");
27835 #elif defined (TE_VXWORKS)
27836 return (target_big_endian
27837 ? "elf32-bigarm-vxworks"
27838 : "elf32-littlearm-vxworks");
27839 #elif defined (TE_NACL)
27840 return (target_big_endian
27841 ? "elf32-bigarm-nacl"
27842 : "elf32-littlearm-nacl");
27843 #else
27844 if (arm_fdpic)
27845 {
27846 if (target_big_endian)
27847 return "elf32-bigarm-fdpic";
27848 else
27849 return "elf32-littlearm-fdpic";
27850 }
27851 else
27852 {
27853 if (target_big_endian)
27854 return "elf32-bigarm";
27855 else
27856 return "elf32-littlearm";
27857 }
27858 #endif
27859 }
27860
27861 void
27862 armelf_frob_symbol (symbolS * symp,
27863 int * puntp)
27864 {
27865 elf_frob_symbol (symp, puntp);
27866 }
27867 #endif
27868
27869 /* MD interface: Finalization. */
27870
27871 void
27872 arm_cleanup (void)
27873 {
27874 literal_pool * pool;
27875
27876 /* Ensure that all the predication blocks are properly closed. */
27877 check_pred_blocks_finished ();
27878
27879 for (pool = list_of_pools; pool; pool = pool->next)
27880 {
27881 /* Put it at the end of the relevant section. */
27882 subseg_set (pool->section, pool->sub_section);
27883 #ifdef OBJ_ELF
27884 arm_elf_change_section ();
27885 #endif
27886 s_ltorg (0);
27887 }
27888 }
27889
27890 #ifdef OBJ_ELF
27891 /* Remove any excess mapping symbols generated for alignment frags in
27892 SEC. We may have created a mapping symbol before a zero byte
27893 alignment; remove it if there's a mapping symbol after the
27894 alignment. */
27895 static void
27896 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
27897 void *dummy ATTRIBUTE_UNUSED)
27898 {
27899 segment_info_type *seginfo = seg_info (sec);
27900 fragS *fragp;
27901
27902 if (seginfo == NULL || seginfo->frchainP == NULL)
27903 return;
27904
27905 for (fragp = seginfo->frchainP->frch_root;
27906 fragp != NULL;
27907 fragp = fragp->fr_next)
27908 {
27909 symbolS *sym = fragp->tc_frag_data.last_map;
27910 fragS *next = fragp->fr_next;
27911
27912 /* Variable-sized frags have been converted to fixed size by
27913 this point. But if this was variable-sized to start with,
27914 there will be a fixed-size frag after it. So don't handle
27915 next == NULL. */
27916 if (sym == NULL || next == NULL)
27917 continue;
27918
27919 if (S_GET_VALUE (sym) < next->fr_address)
27920 /* Not at the end of this frag. */
27921 continue;
27922 know (S_GET_VALUE (sym) == next->fr_address);
27923
27924 do
27925 {
27926 if (next->tc_frag_data.first_map != NULL)
27927 {
27928 /* Next frag starts with a mapping symbol. Discard this
27929 one. */
27930 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
27931 break;
27932 }
27933
27934 if (next->fr_next == NULL)
27935 {
27936 /* This mapping symbol is at the end of the section. Discard
27937 it. */
27938 know (next->fr_fix == 0 && next->fr_var == 0);
27939 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
27940 break;
27941 }
27942
27943 /* As long as we have empty frags without any mapping symbols,
27944 keep looking. */
27945 /* If the next frag is non-empty and does not start with a
27946 mapping symbol, then this mapping symbol is required. */
27947 if (next->fr_address != next->fr_next->fr_address)
27948 break;
27949
27950 next = next->fr_next;
27951 }
27952 while (next != NULL);
27953 }
27954 }
27955 #endif
27956
27957 /* Adjust the symbol table. This marks Thumb symbols as distinct from
27958 ARM ones. */
27959
27960 void
27961 arm_adjust_symtab (void)
27962 {
27963 #ifdef OBJ_COFF
27964 symbolS * sym;
27965
27966 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
27967 {
27968 if (ARM_IS_THUMB (sym))
27969 {
27970 if (THUMB_IS_FUNC (sym))
27971 {
27972 /* Mark the symbol as a Thumb function. */
27973 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
27974 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
27975 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
27976
27977 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
27978 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
27979 else
27980 as_bad (_("%s: unexpected function type: %d"),
27981 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
27982 }
27983 else switch (S_GET_STORAGE_CLASS (sym))
27984 {
27985 case C_EXT:
27986 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
27987 break;
27988 case C_STAT:
27989 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
27990 break;
27991 case C_LABEL:
27992 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
27993 break;
27994 default:
27995 /* Do nothing. */
27996 break;
27997 }
27998 }
27999
28000 if (ARM_IS_INTERWORK (sym))
28001 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
28002 }
28003 #endif
28004 #ifdef OBJ_ELF
28005 symbolS * sym;
28006 char bind;
28007
28008 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
28009 {
28010 if (ARM_IS_THUMB (sym))
28011 {
28012 elf_symbol_type * elf_sym;
28013
28014 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
28015 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
28016
28017 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
28018 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
28019 {
28020 /* If it's a .thumb_func, declare it as so,
28021 otherwise tag label as .code 16. */
28022 if (THUMB_IS_FUNC (sym))
28023 ARM_SET_SYM_BRANCH_TYPE (elf_sym->internal_elf_sym.st_target_internal,
28024 ST_BRANCH_TO_THUMB);
28025 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
28026 elf_sym->internal_elf_sym.st_info =
28027 ELF_ST_INFO (bind, STT_ARM_16BIT);
28028 }
28029 }
28030 }
28031
28032 /* Remove any overlapping mapping symbols generated by alignment frags. */
28033 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
28034 /* Now do generic ELF adjustments. */
28035 elf_adjust_symtab ();
28036 #endif
28037 }
28038
28039 /* MD interface: Initialization. */
28040
28041 static void
28042 set_constant_flonums (void)
28043 {
28044 int i;
28045
28046 for (i = 0; i < NUM_FLOAT_VALS; i++)
28047 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
28048 abort ();
28049 }
28050
28051 /* Auto-select Thumb mode if it's the only available instruction set for the
28052 given architecture. */
28053
28054 static void
28055 autoselect_thumb_from_cpu_variant (void)
28056 {
28057 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
28058 opcode_select (16);
28059 }
28060
28061 void
28062 md_begin (void)
28063 {
28064 unsigned mach;
28065 unsigned int i;
28066
28067 if ( (arm_ops_hsh = hash_new ()) == NULL
28068 || (arm_cond_hsh = hash_new ()) == NULL
28069 || (arm_vcond_hsh = hash_new ()) == NULL
28070 || (arm_shift_hsh = hash_new ()) == NULL
28071 || (arm_psr_hsh = hash_new ()) == NULL
28072 || (arm_v7m_psr_hsh = hash_new ()) == NULL
28073 || (arm_reg_hsh = hash_new ()) == NULL
28074 || (arm_reloc_hsh = hash_new ()) == NULL
28075 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
28076 as_fatal (_("virtual memory exhausted"));
28077
28078 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
28079 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
28080 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
28081 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
28082 for (i = 0; i < sizeof (vconds) / sizeof (struct asm_cond); i++)
28083 hash_insert (arm_vcond_hsh, vconds[i].template_name, (void *) (vconds + i));
28084 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
28085 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
28086 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
28087 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
28088 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
28089 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
28090 (void *) (v7m_psrs + i));
28091 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
28092 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
28093 for (i = 0;
28094 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
28095 i++)
28096 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
28097 (void *) (barrier_opt_names + i));
28098 #ifdef OBJ_ELF
28099 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
28100 {
28101 struct reloc_entry * entry = reloc_names + i;
28102
28103 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
28104 /* This makes encode_branch() use the EABI versions of this relocation. */
28105 entry->reloc = BFD_RELOC_UNUSED;
28106
28107 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
28108 }
28109 #endif
28110
28111 set_constant_flonums ();
28112
28113 /* Set the cpu variant based on the command-line options. We prefer
28114 -mcpu= over -march= if both are set (as for GCC); and we prefer
28115 -mfpu= over any other way of setting the floating point unit.
28116 Use of legacy options with new options are faulted. */
28117 if (legacy_cpu)
28118 {
28119 if (mcpu_cpu_opt || march_cpu_opt)
28120 as_bad (_("use of old and new-style options to set CPU type"));
28121
28122 selected_arch = *legacy_cpu;
28123 }
28124 else if (mcpu_cpu_opt)
28125 {
28126 selected_arch = *mcpu_cpu_opt;
28127 selected_ext = *mcpu_ext_opt;
28128 }
28129 else if (march_cpu_opt)
28130 {
28131 selected_arch = *march_cpu_opt;
28132 selected_ext = *march_ext_opt;
28133 }
28134 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
28135
28136 if (legacy_fpu)
28137 {
28138 if (mfpu_opt)
28139 as_bad (_("use of old and new-style options to set FPU type"));
28140
28141 selected_fpu = *legacy_fpu;
28142 }
28143 else if (mfpu_opt)
28144 selected_fpu = *mfpu_opt;
28145 else
28146 {
28147 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
28148 || defined (TE_NetBSD) || defined (TE_VXWORKS))
28149 /* Some environments specify a default FPU. If they don't, infer it
28150 from the processor. */
28151 if (mcpu_fpu_opt)
28152 selected_fpu = *mcpu_fpu_opt;
28153 else if (march_fpu_opt)
28154 selected_fpu = *march_fpu_opt;
28155 #else
28156 selected_fpu = fpu_default;
28157 #endif
28158 }
28159
28160 if (ARM_FEATURE_ZERO (selected_fpu))
28161 {
28162 if (!no_cpu_selected ())
28163 selected_fpu = fpu_default;
28164 else
28165 selected_fpu = fpu_arch_fpa;
28166 }
28167
28168 #ifdef CPU_DEFAULT
28169 if (ARM_FEATURE_ZERO (selected_arch))
28170 {
28171 selected_arch = cpu_default;
28172 selected_cpu = selected_arch;
28173 }
28174 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28175 #else
28176 /* Autodection of feature mode: allow all features in cpu_variant but leave
28177 selected_cpu unset. It will be set in aeabi_set_public_attributes ()
28178 after all instruction have been processed and we can decide what CPU
28179 should be selected. */
28180 if (ARM_FEATURE_ZERO (selected_arch))
28181 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
28182 else
28183 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
28184 #endif
28185
28186 autoselect_thumb_from_cpu_variant ();
28187
28188 arm_arch_used = thumb_arch_used = arm_arch_none;
28189
28190 #if defined OBJ_COFF || defined OBJ_ELF
28191 {
28192 unsigned int flags = 0;
28193
28194 #if defined OBJ_ELF
28195 flags = meabi_flags;
28196
28197 switch (meabi_flags)
28198 {
28199 case EF_ARM_EABI_UNKNOWN:
28200 #endif
28201 /* Set the flags in the private structure. */
28202 if (uses_apcs_26) flags |= F_APCS26;
28203 if (support_interwork) flags |= F_INTERWORK;
28204 if (uses_apcs_float) flags |= F_APCS_FLOAT;
28205 if (pic_code) flags |= F_PIC;
28206 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
28207 flags |= F_SOFT_FLOAT;
28208
28209 switch (mfloat_abi_opt)
28210 {
28211 case ARM_FLOAT_ABI_SOFT:
28212 case ARM_FLOAT_ABI_SOFTFP:
28213 flags |= F_SOFT_FLOAT;
28214 break;
28215
28216 case ARM_FLOAT_ABI_HARD:
28217 if (flags & F_SOFT_FLOAT)
28218 as_bad (_("hard-float conflicts with specified fpu"));
28219 break;
28220 }
28221
28222 /* Using pure-endian doubles (even if soft-float). */
28223 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
28224 flags |= F_VFP_FLOAT;
28225
28226 #if defined OBJ_ELF
28227 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
28228 flags |= EF_ARM_MAVERICK_FLOAT;
28229 break;
28230
28231 case EF_ARM_EABI_VER4:
28232 case EF_ARM_EABI_VER5:
28233 /* No additional flags to set. */
28234 break;
28235
28236 default:
28237 abort ();
28238 }
28239 #endif
28240 bfd_set_private_flags (stdoutput, flags);
28241
28242 /* We have run out flags in the COFF header to encode the
28243 status of ATPCS support, so instead we create a dummy,
28244 empty, debug section called .arm.atpcs. */
28245 if (atpcs)
28246 {
28247 asection * sec;
28248
28249 sec = bfd_make_section (stdoutput, ".arm.atpcs");
28250
28251 if (sec != NULL)
28252 {
28253 bfd_set_section_flags
28254 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
28255 bfd_set_section_size (stdoutput, sec, 0);
28256 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
28257 }
28258 }
28259 }
28260 #endif
28261
28262 /* Record the CPU type as well. */
28263 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
28264 mach = bfd_mach_arm_iWMMXt2;
28265 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
28266 mach = bfd_mach_arm_iWMMXt;
28267 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
28268 mach = bfd_mach_arm_XScale;
28269 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
28270 mach = bfd_mach_arm_ep9312;
28271 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
28272 mach = bfd_mach_arm_5TE;
28273 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
28274 {
28275 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28276 mach = bfd_mach_arm_5T;
28277 else
28278 mach = bfd_mach_arm_5;
28279 }
28280 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
28281 {
28282 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
28283 mach = bfd_mach_arm_4T;
28284 else
28285 mach = bfd_mach_arm_4;
28286 }
28287 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
28288 mach = bfd_mach_arm_3M;
28289 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
28290 mach = bfd_mach_arm_3;
28291 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
28292 mach = bfd_mach_arm_2a;
28293 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
28294 mach = bfd_mach_arm_2;
28295 else
28296 mach = bfd_mach_arm_unknown;
28297
28298 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
28299 }
28300
28301 /* Command line processing. */
28302
28303 /* md_parse_option
28304 Invocation line includes a switch not recognized by the base assembler.
28305 See if it's a processor-specific option.
28306
28307 This routine is somewhat complicated by the need for backwards
28308 compatibility (since older releases of gcc can't be changed).
28309 The new options try to make the interface as compatible as
28310 possible with GCC.
28311
28312 New options (supported) are:
28313
28314 -mcpu=<cpu name> Assemble for selected processor
28315 -march=<architecture name> Assemble for selected architecture
28316 -mfpu=<fpu architecture> Assemble for selected FPU.
28317 -EB/-mbig-endian Big-endian
28318 -EL/-mlittle-endian Little-endian
28319 -k Generate PIC code
28320 -mthumb Start in Thumb mode
28321 -mthumb-interwork Code supports ARM/Thumb interworking
28322
28323 -m[no-]warn-deprecated Warn about deprecated features
28324 -m[no-]warn-syms Warn when symbols match instructions
28325
28326 For now we will also provide support for:
28327
28328 -mapcs-32 32-bit Program counter
28329 -mapcs-26 26-bit Program counter
28330 -macps-float Floats passed in FP registers
28331 -mapcs-reentrant Reentrant code
28332 -matpcs
28333 (sometime these will probably be replaced with -mapcs=<list of options>
28334 and -matpcs=<list of options>)
28335
28336 The remaining options are only supported for back-wards compatibility.
28337 Cpu variants, the arm part is optional:
28338 -m[arm]1 Currently not supported.
28339 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
28340 -m[arm]3 Arm 3 processor
28341 -m[arm]6[xx], Arm 6 processors
28342 -m[arm]7[xx][t][[d]m] Arm 7 processors
28343 -m[arm]8[10] Arm 8 processors
28344 -m[arm]9[20][tdmi] Arm 9 processors
28345 -mstrongarm[110[0]] StrongARM processors
28346 -mxscale XScale processors
28347 -m[arm]v[2345[t[e]]] Arm architectures
28348 -mall All (except the ARM1)
28349 FP variants:
28350 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
28351 -mfpe-old (No float load/store multiples)
28352 -mvfpxd VFP Single precision
28353 -mvfp All VFP
28354 -mno-fpu Disable all floating point instructions
28355
28356 The following CPU names are recognized:
28357 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
28358 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
28359 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
28360 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
28361 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
28362 arm10t arm10e, arm1020t, arm1020e, arm10200e,
28363 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
28364
28365 */
28366
28367 const char * md_shortopts = "m:k";
28368
28369 #ifdef ARM_BI_ENDIAN
28370 #define OPTION_EB (OPTION_MD_BASE + 0)
28371 #define OPTION_EL (OPTION_MD_BASE + 1)
28372 #else
28373 #if TARGET_BYTES_BIG_ENDIAN
28374 #define OPTION_EB (OPTION_MD_BASE + 0)
28375 #else
28376 #define OPTION_EL (OPTION_MD_BASE + 1)
28377 #endif
28378 #endif
28379 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
28380 #define OPTION_FDPIC (OPTION_MD_BASE + 3)
28381
28382 struct option md_longopts[] =
28383 {
28384 #ifdef OPTION_EB
28385 {"EB", no_argument, NULL, OPTION_EB},
28386 #endif
28387 #ifdef OPTION_EL
28388 {"EL", no_argument, NULL, OPTION_EL},
28389 #endif
28390 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
28391 #ifdef OBJ_ELF
28392 {"fdpic", no_argument, NULL, OPTION_FDPIC},
28393 #endif
28394 {NULL, no_argument, NULL, 0}
28395 };
28396
28397 size_t md_longopts_size = sizeof (md_longopts);
28398
28399 struct arm_option_table
28400 {
28401 const char * option; /* Option name to match. */
28402 const char * help; /* Help information. */
28403 int * var; /* Variable to change. */
28404 int value; /* What to change it to. */
28405 const char * deprecated; /* If non-null, print this message. */
28406 };
28407
28408 struct arm_option_table arm_opts[] =
28409 {
28410 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
28411 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
28412 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
28413 &support_interwork, 1, NULL},
28414 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
28415 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
28416 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
28417 1, NULL},
28418 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
28419 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
28420 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
28421 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
28422 NULL},
28423
28424 /* These are recognized by the assembler, but have no affect on code. */
28425 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
28426 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
28427
28428 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
28429 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
28430 &warn_on_deprecated, 0, NULL},
28431 {"mwarn-syms", N_("warn about symbols that match instruction names [default]"), (int *) (& flag_warn_syms), TRUE, NULL},
28432 {"mno-warn-syms", N_("disable warnings about symobls that match instructions"), (int *) (& flag_warn_syms), FALSE, NULL},
28433 {NULL, NULL, NULL, 0, NULL}
28434 };
28435
28436 struct arm_legacy_option_table
28437 {
28438 const char * option; /* Option name to match. */
28439 const arm_feature_set ** var; /* Variable to change. */
28440 const arm_feature_set value; /* What to change it to. */
28441 const char * deprecated; /* If non-null, print this message. */
28442 };
28443
28444 const struct arm_legacy_option_table arm_legacy_opts[] =
28445 {
28446 /* DON'T add any new processors to this list -- we want the whole list
28447 to go away... Add them to the processors table instead. */
28448 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28449 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
28450 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28451 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
28452 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28453 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
28454 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28455 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
28456 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28457 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
28458 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28459 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
28460 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28461 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
28462 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28463 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
28464 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28465 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
28466 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28467 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
28468 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28469 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
28470 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28471 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
28472 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28473 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
28474 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28475 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
28476 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28477 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
28478 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28479 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
28480 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28481 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
28482 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28483 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
28484 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28485 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
28486 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28487 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
28488 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28489 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
28490 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28491 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
28492 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28493 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
28494 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28495 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28496 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28497 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
28498 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28499 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
28500 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28501 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
28502 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28503 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
28504 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28505 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
28506 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28507 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
28508 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28509 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
28510 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28511 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
28512 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28513 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
28514 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28515 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
28516 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
28517 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
28518 N_("use -mcpu=strongarm110")},
28519 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
28520 N_("use -mcpu=strongarm1100")},
28521 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
28522 N_("use -mcpu=strongarm1110")},
28523 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
28524 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
28525 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
28526
28527 /* Architecture variants -- don't add any more to this list either. */
28528 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28529 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
28530 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28531 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
28532 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28533 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
28534 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28535 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
28536 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28537 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
28538 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28539 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
28540 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28541 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
28542 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28543 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
28544 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28545 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
28546
28547 /* Floating point variants -- don't add any more to this list either. */
28548 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
28549 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
28550 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
28551 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
28552 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
28553
28554 {NULL, NULL, ARM_ARCH_NONE, NULL}
28555 };
28556
28557 struct arm_cpu_option_table
28558 {
28559 const char * name;
28560 size_t name_len;
28561 const arm_feature_set value;
28562 const arm_feature_set ext;
28563 /* For some CPUs we assume an FPU unless the user explicitly sets
28564 -mfpu=... */
28565 const arm_feature_set default_fpu;
28566 /* The canonical name of the CPU, or NULL to use NAME converted to upper
28567 case. */
28568 const char * canonical_name;
28569 };
28570
28571 /* This list should, at a minimum, contain all the cpu names
28572 recognized by GCC. */
28573 #define ARM_CPU_OPT(N, CN, V, E, DF) { N, sizeof (N) - 1, V, E, DF, CN }
28574
28575 static const struct arm_cpu_option_table arm_cpus[] =
28576 {
28577 ARM_CPU_OPT ("all", NULL, ARM_ANY,
28578 ARM_ARCH_NONE,
28579 FPU_ARCH_FPA),
28580 ARM_CPU_OPT ("arm1", NULL, ARM_ARCH_V1,
28581 ARM_ARCH_NONE,
28582 FPU_ARCH_FPA),
28583 ARM_CPU_OPT ("arm2", NULL, ARM_ARCH_V2,
28584 ARM_ARCH_NONE,
28585 FPU_ARCH_FPA),
28586 ARM_CPU_OPT ("arm250", NULL, ARM_ARCH_V2S,
28587 ARM_ARCH_NONE,
28588 FPU_ARCH_FPA),
28589 ARM_CPU_OPT ("arm3", NULL, ARM_ARCH_V2S,
28590 ARM_ARCH_NONE,
28591 FPU_ARCH_FPA),
28592 ARM_CPU_OPT ("arm6", NULL, ARM_ARCH_V3,
28593 ARM_ARCH_NONE,
28594 FPU_ARCH_FPA),
28595 ARM_CPU_OPT ("arm60", NULL, ARM_ARCH_V3,
28596 ARM_ARCH_NONE,
28597 FPU_ARCH_FPA),
28598 ARM_CPU_OPT ("arm600", NULL, ARM_ARCH_V3,
28599 ARM_ARCH_NONE,
28600 FPU_ARCH_FPA),
28601 ARM_CPU_OPT ("arm610", NULL, ARM_ARCH_V3,
28602 ARM_ARCH_NONE,
28603 FPU_ARCH_FPA),
28604 ARM_CPU_OPT ("arm620", NULL, ARM_ARCH_V3,
28605 ARM_ARCH_NONE,
28606 FPU_ARCH_FPA),
28607 ARM_CPU_OPT ("arm7", NULL, ARM_ARCH_V3,
28608 ARM_ARCH_NONE,
28609 FPU_ARCH_FPA),
28610 ARM_CPU_OPT ("arm7m", NULL, ARM_ARCH_V3M,
28611 ARM_ARCH_NONE,
28612 FPU_ARCH_FPA),
28613 ARM_CPU_OPT ("arm7d", NULL, ARM_ARCH_V3,
28614 ARM_ARCH_NONE,
28615 FPU_ARCH_FPA),
28616 ARM_CPU_OPT ("arm7dm", NULL, ARM_ARCH_V3M,
28617 ARM_ARCH_NONE,
28618 FPU_ARCH_FPA),
28619 ARM_CPU_OPT ("arm7di", NULL, ARM_ARCH_V3,
28620 ARM_ARCH_NONE,
28621 FPU_ARCH_FPA),
28622 ARM_CPU_OPT ("arm7dmi", NULL, ARM_ARCH_V3M,
28623 ARM_ARCH_NONE,
28624 FPU_ARCH_FPA),
28625 ARM_CPU_OPT ("arm70", NULL, ARM_ARCH_V3,
28626 ARM_ARCH_NONE,
28627 FPU_ARCH_FPA),
28628 ARM_CPU_OPT ("arm700", NULL, ARM_ARCH_V3,
28629 ARM_ARCH_NONE,
28630 FPU_ARCH_FPA),
28631 ARM_CPU_OPT ("arm700i", NULL, ARM_ARCH_V3,
28632 ARM_ARCH_NONE,
28633 FPU_ARCH_FPA),
28634 ARM_CPU_OPT ("arm710", NULL, ARM_ARCH_V3,
28635 ARM_ARCH_NONE,
28636 FPU_ARCH_FPA),
28637 ARM_CPU_OPT ("arm710t", NULL, ARM_ARCH_V4T,
28638 ARM_ARCH_NONE,
28639 FPU_ARCH_FPA),
28640 ARM_CPU_OPT ("arm720", NULL, ARM_ARCH_V3,
28641 ARM_ARCH_NONE,
28642 FPU_ARCH_FPA),
28643 ARM_CPU_OPT ("arm720t", NULL, ARM_ARCH_V4T,
28644 ARM_ARCH_NONE,
28645 FPU_ARCH_FPA),
28646 ARM_CPU_OPT ("arm740t", NULL, ARM_ARCH_V4T,
28647 ARM_ARCH_NONE,
28648 FPU_ARCH_FPA),
28649 ARM_CPU_OPT ("arm710c", NULL, ARM_ARCH_V3,
28650 ARM_ARCH_NONE,
28651 FPU_ARCH_FPA),
28652 ARM_CPU_OPT ("arm7100", NULL, ARM_ARCH_V3,
28653 ARM_ARCH_NONE,
28654 FPU_ARCH_FPA),
28655 ARM_CPU_OPT ("arm7500", NULL, ARM_ARCH_V3,
28656 ARM_ARCH_NONE,
28657 FPU_ARCH_FPA),
28658 ARM_CPU_OPT ("arm7500fe", NULL, ARM_ARCH_V3,
28659 ARM_ARCH_NONE,
28660 FPU_ARCH_FPA),
28661 ARM_CPU_OPT ("arm7t", NULL, ARM_ARCH_V4T,
28662 ARM_ARCH_NONE,
28663 FPU_ARCH_FPA),
28664 ARM_CPU_OPT ("arm7tdmi", NULL, ARM_ARCH_V4T,
28665 ARM_ARCH_NONE,
28666 FPU_ARCH_FPA),
28667 ARM_CPU_OPT ("arm7tdmi-s", NULL, ARM_ARCH_V4T,
28668 ARM_ARCH_NONE,
28669 FPU_ARCH_FPA),
28670 ARM_CPU_OPT ("arm8", NULL, ARM_ARCH_V4,
28671 ARM_ARCH_NONE,
28672 FPU_ARCH_FPA),
28673 ARM_CPU_OPT ("arm810", NULL, ARM_ARCH_V4,
28674 ARM_ARCH_NONE,
28675 FPU_ARCH_FPA),
28676 ARM_CPU_OPT ("strongarm", NULL, ARM_ARCH_V4,
28677 ARM_ARCH_NONE,
28678 FPU_ARCH_FPA),
28679 ARM_CPU_OPT ("strongarm1", NULL, ARM_ARCH_V4,
28680 ARM_ARCH_NONE,
28681 FPU_ARCH_FPA),
28682 ARM_CPU_OPT ("strongarm110", NULL, ARM_ARCH_V4,
28683 ARM_ARCH_NONE,
28684 FPU_ARCH_FPA),
28685 ARM_CPU_OPT ("strongarm1100", NULL, ARM_ARCH_V4,
28686 ARM_ARCH_NONE,
28687 FPU_ARCH_FPA),
28688 ARM_CPU_OPT ("strongarm1110", NULL, ARM_ARCH_V4,
28689 ARM_ARCH_NONE,
28690 FPU_ARCH_FPA),
28691 ARM_CPU_OPT ("arm9", NULL, ARM_ARCH_V4T,
28692 ARM_ARCH_NONE,
28693 FPU_ARCH_FPA),
28694 ARM_CPU_OPT ("arm920", "ARM920T", ARM_ARCH_V4T,
28695 ARM_ARCH_NONE,
28696 FPU_ARCH_FPA),
28697 ARM_CPU_OPT ("arm920t", NULL, ARM_ARCH_V4T,
28698 ARM_ARCH_NONE,
28699 FPU_ARCH_FPA),
28700 ARM_CPU_OPT ("arm922t", NULL, ARM_ARCH_V4T,
28701 ARM_ARCH_NONE,
28702 FPU_ARCH_FPA),
28703 ARM_CPU_OPT ("arm940t", NULL, ARM_ARCH_V4T,
28704 ARM_ARCH_NONE,
28705 FPU_ARCH_FPA),
28706 ARM_CPU_OPT ("arm9tdmi", NULL, ARM_ARCH_V4T,
28707 ARM_ARCH_NONE,
28708 FPU_ARCH_FPA),
28709 ARM_CPU_OPT ("fa526", NULL, ARM_ARCH_V4,
28710 ARM_ARCH_NONE,
28711 FPU_ARCH_FPA),
28712 ARM_CPU_OPT ("fa626", NULL, ARM_ARCH_V4,
28713 ARM_ARCH_NONE,
28714 FPU_ARCH_FPA),
28715
28716 /* For V5 or later processors we default to using VFP; but the user
28717 should really set the FPU type explicitly. */
28718 ARM_CPU_OPT ("arm9e-r0", NULL, ARM_ARCH_V5TExP,
28719 ARM_ARCH_NONE,
28720 FPU_ARCH_VFP_V2),
28721 ARM_CPU_OPT ("arm9e", NULL, ARM_ARCH_V5TE,
28722 ARM_ARCH_NONE,
28723 FPU_ARCH_VFP_V2),
28724 ARM_CPU_OPT ("arm926ej", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28725 ARM_ARCH_NONE,
28726 FPU_ARCH_VFP_V2),
28727 ARM_CPU_OPT ("arm926ejs", "ARM926EJ-S", ARM_ARCH_V5TEJ,
28728 ARM_ARCH_NONE,
28729 FPU_ARCH_VFP_V2),
28730 ARM_CPU_OPT ("arm926ej-s", NULL, ARM_ARCH_V5TEJ,
28731 ARM_ARCH_NONE,
28732 FPU_ARCH_VFP_V2),
28733 ARM_CPU_OPT ("arm946e-r0", NULL, ARM_ARCH_V5TExP,
28734 ARM_ARCH_NONE,
28735 FPU_ARCH_VFP_V2),
28736 ARM_CPU_OPT ("arm946e", "ARM946E-S", ARM_ARCH_V5TE,
28737 ARM_ARCH_NONE,
28738 FPU_ARCH_VFP_V2),
28739 ARM_CPU_OPT ("arm946e-s", NULL, ARM_ARCH_V5TE,
28740 ARM_ARCH_NONE,
28741 FPU_ARCH_VFP_V2),
28742 ARM_CPU_OPT ("arm966e-r0", NULL, ARM_ARCH_V5TExP,
28743 ARM_ARCH_NONE,
28744 FPU_ARCH_VFP_V2),
28745 ARM_CPU_OPT ("arm966e", "ARM966E-S", ARM_ARCH_V5TE,
28746 ARM_ARCH_NONE,
28747 FPU_ARCH_VFP_V2),
28748 ARM_CPU_OPT ("arm966e-s", NULL, ARM_ARCH_V5TE,
28749 ARM_ARCH_NONE,
28750 FPU_ARCH_VFP_V2),
28751 ARM_CPU_OPT ("arm968e-s", NULL, ARM_ARCH_V5TE,
28752 ARM_ARCH_NONE,
28753 FPU_ARCH_VFP_V2),
28754 ARM_CPU_OPT ("arm10t", NULL, ARM_ARCH_V5T,
28755 ARM_ARCH_NONE,
28756 FPU_ARCH_VFP_V1),
28757 ARM_CPU_OPT ("arm10tdmi", NULL, ARM_ARCH_V5T,
28758 ARM_ARCH_NONE,
28759 FPU_ARCH_VFP_V1),
28760 ARM_CPU_OPT ("arm10e", NULL, ARM_ARCH_V5TE,
28761 ARM_ARCH_NONE,
28762 FPU_ARCH_VFP_V2),
28763 ARM_CPU_OPT ("arm1020", "ARM1020E", ARM_ARCH_V5TE,
28764 ARM_ARCH_NONE,
28765 FPU_ARCH_VFP_V2),
28766 ARM_CPU_OPT ("arm1020t", NULL, ARM_ARCH_V5T,
28767 ARM_ARCH_NONE,
28768 FPU_ARCH_VFP_V1),
28769 ARM_CPU_OPT ("arm1020e", NULL, ARM_ARCH_V5TE,
28770 ARM_ARCH_NONE,
28771 FPU_ARCH_VFP_V2),
28772 ARM_CPU_OPT ("arm1022e", NULL, ARM_ARCH_V5TE,
28773 ARM_ARCH_NONE,
28774 FPU_ARCH_VFP_V2),
28775 ARM_CPU_OPT ("arm1026ejs", "ARM1026EJ-S", ARM_ARCH_V5TEJ,
28776 ARM_ARCH_NONE,
28777 FPU_ARCH_VFP_V2),
28778 ARM_CPU_OPT ("arm1026ej-s", NULL, ARM_ARCH_V5TEJ,
28779 ARM_ARCH_NONE,
28780 FPU_ARCH_VFP_V2),
28781 ARM_CPU_OPT ("fa606te", NULL, ARM_ARCH_V5TE,
28782 ARM_ARCH_NONE,
28783 FPU_ARCH_VFP_V2),
28784 ARM_CPU_OPT ("fa616te", NULL, ARM_ARCH_V5TE,
28785 ARM_ARCH_NONE,
28786 FPU_ARCH_VFP_V2),
28787 ARM_CPU_OPT ("fa626te", NULL, ARM_ARCH_V5TE,
28788 ARM_ARCH_NONE,
28789 FPU_ARCH_VFP_V2),
28790 ARM_CPU_OPT ("fmp626", NULL, ARM_ARCH_V5TE,
28791 ARM_ARCH_NONE,
28792 FPU_ARCH_VFP_V2),
28793 ARM_CPU_OPT ("fa726te", NULL, ARM_ARCH_V5TE,
28794 ARM_ARCH_NONE,
28795 FPU_ARCH_VFP_V2),
28796 ARM_CPU_OPT ("arm1136js", "ARM1136J-S", ARM_ARCH_V6,
28797 ARM_ARCH_NONE,
28798 FPU_NONE),
28799 ARM_CPU_OPT ("arm1136j-s", NULL, ARM_ARCH_V6,
28800 ARM_ARCH_NONE,
28801 FPU_NONE),
28802 ARM_CPU_OPT ("arm1136jfs", "ARM1136JF-S", ARM_ARCH_V6,
28803 ARM_ARCH_NONE,
28804 FPU_ARCH_VFP_V2),
28805 ARM_CPU_OPT ("arm1136jf-s", NULL, ARM_ARCH_V6,
28806 ARM_ARCH_NONE,
28807 FPU_ARCH_VFP_V2),
28808 ARM_CPU_OPT ("mpcore", "MPCore", ARM_ARCH_V6K,
28809 ARM_ARCH_NONE,
28810 FPU_ARCH_VFP_V2),
28811 ARM_CPU_OPT ("mpcorenovfp", "MPCore", ARM_ARCH_V6K,
28812 ARM_ARCH_NONE,
28813 FPU_NONE),
28814 ARM_CPU_OPT ("arm1156t2-s", NULL, ARM_ARCH_V6T2,
28815 ARM_ARCH_NONE,
28816 FPU_NONE),
28817 ARM_CPU_OPT ("arm1156t2f-s", NULL, ARM_ARCH_V6T2,
28818 ARM_ARCH_NONE,
28819 FPU_ARCH_VFP_V2),
28820 ARM_CPU_OPT ("arm1176jz-s", NULL, ARM_ARCH_V6KZ,
28821 ARM_ARCH_NONE,
28822 FPU_NONE),
28823 ARM_CPU_OPT ("arm1176jzf-s", NULL, ARM_ARCH_V6KZ,
28824 ARM_ARCH_NONE,
28825 FPU_ARCH_VFP_V2),
28826 ARM_CPU_OPT ("cortex-a5", "Cortex-A5", ARM_ARCH_V7A,
28827 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28828 FPU_NONE),
28829 ARM_CPU_OPT ("cortex-a7", "Cortex-A7", ARM_ARCH_V7VE,
28830 ARM_ARCH_NONE,
28831 FPU_ARCH_NEON_VFP_V4),
28832 ARM_CPU_OPT ("cortex-a8", "Cortex-A8", ARM_ARCH_V7A,
28833 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
28834 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
28835 ARM_CPU_OPT ("cortex-a9", "Cortex-A9", ARM_ARCH_V7A,
28836 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28837 ARM_FEATURE_COPROC (FPU_VFP_V3 | FPU_NEON_EXT_V1)),
28838 ARM_CPU_OPT ("cortex-a12", "Cortex-A12", ARM_ARCH_V7VE,
28839 ARM_ARCH_NONE,
28840 FPU_ARCH_NEON_VFP_V4),
28841 ARM_CPU_OPT ("cortex-a15", "Cortex-A15", ARM_ARCH_V7VE,
28842 ARM_ARCH_NONE,
28843 FPU_ARCH_NEON_VFP_V4),
28844 ARM_CPU_OPT ("cortex-a17", "Cortex-A17", ARM_ARCH_V7VE,
28845 ARM_ARCH_NONE,
28846 FPU_ARCH_NEON_VFP_V4),
28847 ARM_CPU_OPT ("cortex-a32", "Cortex-A32", ARM_ARCH_V8A,
28848 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28849 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28850 ARM_CPU_OPT ("cortex-a35", "Cortex-A35", ARM_ARCH_V8A,
28851 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28852 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28853 ARM_CPU_OPT ("cortex-a53", "Cortex-A53", ARM_ARCH_V8A,
28854 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28855 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28856 ARM_CPU_OPT ("cortex-a55", "Cortex-A55", ARM_ARCH_V8_2A,
28857 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28858 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
28859 ARM_CPU_OPT ("cortex-a57", "Cortex-A57", ARM_ARCH_V8A,
28860 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28861 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28862 ARM_CPU_OPT ("cortex-a72", "Cortex-A72", ARM_ARCH_V8A,
28863 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28864 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28865 ARM_CPU_OPT ("cortex-a73", "Cortex-A73", ARM_ARCH_V8A,
28866 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28867 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28868 ARM_CPU_OPT ("cortex-a75", "Cortex-A75", ARM_ARCH_V8_2A,
28869 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28870 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
28871 ARM_CPU_OPT ("cortex-a76", "Cortex-A76", ARM_ARCH_V8_2A,
28872 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28873 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
28874 ARM_CPU_OPT ("ares", "Ares", ARM_ARCH_V8_2A,
28875 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28876 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
28877 ARM_CPU_OPT ("cortex-r4", "Cortex-R4", ARM_ARCH_V7R,
28878 ARM_ARCH_NONE,
28879 FPU_NONE),
28880 ARM_CPU_OPT ("cortex-r4f", "Cortex-R4F", ARM_ARCH_V7R,
28881 ARM_ARCH_NONE,
28882 FPU_ARCH_VFP_V3D16),
28883 ARM_CPU_OPT ("cortex-r5", "Cortex-R5", ARM_ARCH_V7R,
28884 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
28885 FPU_NONE),
28886 ARM_CPU_OPT ("cortex-r7", "Cortex-R7", ARM_ARCH_V7R,
28887 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
28888 FPU_ARCH_VFP_V3D16),
28889 ARM_CPU_OPT ("cortex-r8", "Cortex-R8", ARM_ARCH_V7R,
28890 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV),
28891 FPU_ARCH_VFP_V3D16),
28892 ARM_CPU_OPT ("cortex-r52", "Cortex-R52", ARM_ARCH_V8R,
28893 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28894 FPU_ARCH_NEON_VFP_ARMV8),
28895 ARM_CPU_OPT ("cortex-m33", "Cortex-M33", ARM_ARCH_V8M_MAIN,
28896 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
28897 FPU_NONE),
28898 ARM_CPU_OPT ("cortex-m23", "Cortex-M23", ARM_ARCH_V8M_BASE,
28899 ARM_ARCH_NONE,
28900 FPU_NONE),
28901 ARM_CPU_OPT ("cortex-m7", "Cortex-M7", ARM_ARCH_V7EM,
28902 ARM_ARCH_NONE,
28903 FPU_NONE),
28904 ARM_CPU_OPT ("cortex-m4", "Cortex-M4", ARM_ARCH_V7EM,
28905 ARM_ARCH_NONE,
28906 FPU_NONE),
28907 ARM_CPU_OPT ("cortex-m3", "Cortex-M3", ARM_ARCH_V7M,
28908 ARM_ARCH_NONE,
28909 FPU_NONE),
28910 ARM_CPU_OPT ("cortex-m1", "Cortex-M1", ARM_ARCH_V6SM,
28911 ARM_ARCH_NONE,
28912 FPU_NONE),
28913 ARM_CPU_OPT ("cortex-m0", "Cortex-M0", ARM_ARCH_V6SM,
28914 ARM_ARCH_NONE,
28915 FPU_NONE),
28916 ARM_CPU_OPT ("cortex-m0plus", "Cortex-M0+", ARM_ARCH_V6SM,
28917 ARM_ARCH_NONE,
28918 FPU_NONE),
28919 ARM_CPU_OPT ("exynos-m1", "Samsung Exynos M1", ARM_ARCH_V8A,
28920 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28921 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28922 ARM_CPU_OPT ("neoverse-n1", "Neoverse N1", ARM_ARCH_V8_2A,
28923 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
28924 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_DOTPROD),
28925 /* ??? XSCALE is really an architecture. */
28926 ARM_CPU_OPT ("xscale", NULL, ARM_ARCH_XSCALE,
28927 ARM_ARCH_NONE,
28928 FPU_ARCH_VFP_V2),
28929
28930 /* ??? iwmmxt is not a processor. */
28931 ARM_CPU_OPT ("iwmmxt", NULL, ARM_ARCH_IWMMXT,
28932 ARM_ARCH_NONE,
28933 FPU_ARCH_VFP_V2),
28934 ARM_CPU_OPT ("iwmmxt2", NULL, ARM_ARCH_IWMMXT2,
28935 ARM_ARCH_NONE,
28936 FPU_ARCH_VFP_V2),
28937 ARM_CPU_OPT ("i80200", NULL, ARM_ARCH_XSCALE,
28938 ARM_ARCH_NONE,
28939 FPU_ARCH_VFP_V2),
28940
28941 /* Maverick. */
28942 ARM_CPU_OPT ("ep9312", "ARM920T",
28943 ARM_FEATURE_LOW (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
28944 ARM_ARCH_NONE, FPU_ARCH_MAVERICK),
28945
28946 /* Marvell processors. */
28947 ARM_CPU_OPT ("marvell-pj4", NULL, ARM_ARCH_V7A,
28948 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28949 FPU_ARCH_VFP_V3D16),
28950 ARM_CPU_OPT ("marvell-whitney", NULL, ARM_ARCH_V7A,
28951 ARM_FEATURE_CORE_LOW (ARM_EXT_MP | ARM_EXT_SEC),
28952 FPU_ARCH_NEON_VFP_V4),
28953
28954 /* APM X-Gene family. */
28955 ARM_CPU_OPT ("xgene1", "APM X-Gene 1", ARM_ARCH_V8A,
28956 ARM_ARCH_NONE,
28957 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28958 ARM_CPU_OPT ("xgene2", "APM X-Gene 2", ARM_ARCH_V8A,
28959 ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
28960 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8),
28961
28962 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
28963 };
28964 #undef ARM_CPU_OPT
28965
28966 struct arm_ext_table
28967 {
28968 const char * name;
28969 size_t name_len;
28970 const arm_feature_set merge;
28971 const arm_feature_set clear;
28972 };
28973
28974 struct arm_arch_option_table
28975 {
28976 const char * name;
28977 size_t name_len;
28978 const arm_feature_set value;
28979 const arm_feature_set default_fpu;
28980 const struct arm_ext_table * ext_table;
28981 };
28982
28983 /* Used to add support for +E and +noE extension. */
28984 #define ARM_EXT(E, M, C) { E, sizeof (E) - 1, M, C }
28985 /* Used to add support for a +E extension. */
28986 #define ARM_ADD(E, M) { E, sizeof(E) - 1, M, ARM_ARCH_NONE }
28987 /* Used to add support for a +noE extension. */
28988 #define ARM_REMOVE(E, C) { E, sizeof(E) -1, ARM_ARCH_NONE, C }
28989
28990 #define ALL_FP ARM_FEATURE (0, ARM_EXT2_FP16_INST | ARM_EXT2_FP16_FML, \
28991 ~0 & ~FPU_ENDIAN_PURE)
28992
28993 static const struct arm_ext_table armv5te_ext_table[] =
28994 {
28995 ARM_EXT ("fp", FPU_ARCH_VFP_V2, ALL_FP),
28996 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
28997 };
28998
28999 static const struct arm_ext_table armv7_ext_table[] =
29000 {
29001 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29002 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29003 };
29004
29005 static const struct arm_ext_table armv7ve_ext_table[] =
29006 {
29007 ARM_EXT ("fp", FPU_ARCH_VFP_V4D16, ALL_FP),
29008 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16),
29009 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29010 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29011 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29012 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16), /* Alias for +fp. */
29013 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29014
29015 ARM_EXT ("simd", FPU_ARCH_NEON_VFP_V4,
29016 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29017
29018 /* Aliases for +simd. */
29019 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29020
29021 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29022 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29023 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29024
29025 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29026 };
29027
29028 static const struct arm_ext_table armv7a_ext_table[] =
29029 {
29030 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29031 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29032 ARM_ADD ("vfpv3", FPU_ARCH_VFP_V3),
29033 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29034 ARM_ADD ("vfpv3-fp16", FPU_ARCH_VFP_V3_FP16),
29035 ARM_ADD ("vfpv4-d16", FPU_ARCH_VFP_V4D16),
29036 ARM_ADD ("vfpv4", FPU_ARCH_VFP_V4),
29037
29038 ARM_EXT ("simd", FPU_ARCH_VFP_V3_PLUS_NEON_V1,
29039 ARM_FEATURE_COPROC (FPU_NEON_EXT_V1 | FPU_NEON_EXT_FMA)),
29040
29041 /* Aliases for +simd. */
29042 ARM_ADD ("neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29043 ARM_ADD ("neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1),
29044
29045 ARM_ADD ("neon-fp16", FPU_ARCH_NEON_FP16),
29046 ARM_ADD ("neon-vfpv4", FPU_ARCH_NEON_VFP_V4),
29047
29048 ARM_ADD ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP)),
29049 ARM_ADD ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC)),
29050 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29051 };
29052
29053 static const struct arm_ext_table armv7r_ext_table[] =
29054 {
29055 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V3xD),
29056 ARM_ADD ("vfpv3xd", FPU_ARCH_VFP_V3xD), /* Alias for +fp.sp. */
29057 ARM_EXT ("fp", FPU_ARCH_VFP_V3D16, ALL_FP),
29058 ARM_ADD ("vfpv3-d16", FPU_ARCH_VFP_V3D16), /* Alias for +fp. */
29059 ARM_ADD ("vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16),
29060 ARM_ADD ("vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16),
29061 ARM_EXT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29062 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV)),
29063 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29064 };
29065
29066 static const struct arm_ext_table armv7em_ext_table[] =
29067 {
29068 ARM_EXT ("fp", FPU_ARCH_VFP_V4_SP_D16, ALL_FP),
29069 /* Alias for +fp, used to be known as fpv4-sp-d16. */
29070 ARM_ADD ("vfpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16),
29071 ARM_ADD ("fpv5", FPU_ARCH_VFP_V5_SP_D16),
29072 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29073 ARM_ADD ("fpv5-d16", FPU_ARCH_VFP_V5D16),
29074 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29075 };
29076
29077 static const struct arm_ext_table armv8a_ext_table[] =
29078 {
29079 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29080 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29081 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29082 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29083
29084 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29085 should use the +simd option to turn on FP. */
29086 ARM_REMOVE ("fp", ALL_FP),
29087 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29088 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29089 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29090 };
29091
29092
29093 static const struct arm_ext_table armv81a_ext_table[] =
29094 {
29095 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29096 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29097 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29098
29099 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29100 should use the +simd option to turn on FP. */
29101 ARM_REMOVE ("fp", ALL_FP),
29102 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29103 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29104 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29105 };
29106
29107 static const struct arm_ext_table armv82a_ext_table[] =
29108 {
29109 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8_1),
29110 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_2_FP16),
29111 ARM_ADD ("fp16fml", FPU_ARCH_NEON_VFP_ARMV8_2_FP16FML),
29112 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1,
29113 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29114 ARM_ADD ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29115
29116 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29117 should use the +simd option to turn on FP. */
29118 ARM_REMOVE ("fp", ALL_FP),
29119 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29120 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29121 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29122 };
29123
29124 static const struct arm_ext_table armv84a_ext_table[] =
29125 {
29126 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29127 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29128 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29129 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29130
29131 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29132 should use the +simd option to turn on FP. */
29133 ARM_REMOVE ("fp", ALL_FP),
29134 ARM_ADD ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB)),
29135 ARM_ADD ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES)),
29136 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29137 };
29138
29139 static const struct arm_ext_table armv85a_ext_table[] =
29140 {
29141 ARM_ADD ("simd", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8),
29142 ARM_ADD ("fp16", FPU_ARCH_NEON_VFP_ARMV8_4_FP16FML),
29143 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_4,
29144 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29145
29146 /* Armv8-a does not allow an FP implementation without SIMD, so the user
29147 should use the +simd option to turn on FP. */
29148 ARM_REMOVE ("fp", ALL_FP),
29149 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29150 };
29151
29152 static const struct arm_ext_table armv8m_main_ext_table[] =
29153 {
29154 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29155 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29156 ARM_EXT ("fp", FPU_ARCH_VFP_V5_SP_D16, ALL_FP),
29157 ARM_ADD ("fp.dp", FPU_ARCH_VFP_V5D16),
29158 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29159 };
29160
29161 static const struct arm_ext_table armv8_1m_main_ext_table[] =
29162 {
29163 ARM_EXT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29164 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP)),
29165 ARM_EXT ("fp",
29166 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29167 FPU_VFP_V5_SP_D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA),
29168 ALL_FP),
29169 ARM_ADD ("fp.dp",
29170 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29171 FPU_VFP_V5D16 | FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29172 ARM_EXT ("mve", ARM_FEATURE_COPROC (FPU_MVE),
29173 ARM_FEATURE_COPROC (FPU_MVE | FPU_MVE_FP)),
29174 ARM_ADD ("mve.fp",
29175 ARM_FEATURE (0, ARM_EXT2_FP16_INST,
29176 FPU_MVE | FPU_MVE_FP | FPU_VFP_V5_SP_D16 |
29177 FPU_VFP_EXT_FP16 | FPU_VFP_EXT_FMA)),
29178 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29179 };
29180
29181 static const struct arm_ext_table armv8r_ext_table[] =
29182 {
29183 ARM_ADD ("crc", ARCH_CRC_ARMV8),
29184 ARM_ADD ("simd", FPU_ARCH_NEON_VFP_ARMV8),
29185 ARM_EXT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29186 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8)),
29187 ARM_REMOVE ("fp", ALL_FP),
29188 ARM_ADD ("fp.sp", FPU_ARCH_VFP_V5_SP_D16),
29189 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
29190 };
29191
29192 /* This list should, at a minimum, contain all the architecture names
29193 recognized by GCC. */
29194 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF, NULL }
29195 #define ARM_ARCH_OPT2(N, V, DF, ext) \
29196 { N, sizeof (N) - 1, V, DF, ext##_ext_table }
29197
29198 static const struct arm_arch_option_table arm_archs[] =
29199 {
29200 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
29201 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
29202 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
29203 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
29204 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
29205 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
29206 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
29207 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
29208 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
29209 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
29210 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
29211 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
29212 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
29213 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
29214 ARM_ARCH_OPT2 ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP, armv5te),
29215 ARM_ARCH_OPT2 ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP, armv5te),
29216 ARM_ARCH_OPT2 ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP, armv5te),
29217 ARM_ARCH_OPT2 ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29218 ARM_ARCH_OPT2 ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP, armv5te),
29219 ARM_ARCH_OPT2 ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP, armv5te),
29220 ARM_ARCH_OPT2 ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP, armv5te),
29221 /* The official spelling of this variant is ARMv6KZ, the name "armv6zk" is
29222 kept to preserve existing behaviour. */
29223 ARM_ARCH_OPT2 ("armv6kz", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29224 ARM_ARCH_OPT2 ("armv6zk", ARM_ARCH_V6KZ, FPU_ARCH_VFP, armv5te),
29225 ARM_ARCH_OPT2 ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP, armv5te),
29226 ARM_ARCH_OPT2 ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP, armv5te),
29227 ARM_ARCH_OPT2 ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP, armv5te),
29228 /* The official spelling of this variant is ARMv6KZ, the name "armv6zkt2" is
29229 kept to preserve existing behaviour. */
29230 ARM_ARCH_OPT2 ("armv6kzt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29231 ARM_ARCH_OPT2 ("armv6zkt2", ARM_ARCH_V6KZT2, FPU_ARCH_VFP, armv5te),
29232 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
29233 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
29234 ARM_ARCH_OPT2 ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP, armv7),
29235 /* The official spelling of the ARMv7 profile variants is the dashed form.
29236 Accept the non-dashed form for compatibility with old toolchains. */
29237 ARM_ARCH_OPT2 ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29238 ARM_ARCH_OPT2 ("armv7ve", ARM_ARCH_V7VE, FPU_ARCH_VFP, armv7ve),
29239 ARM_ARCH_OPT2 ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29240 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29241 ARM_ARCH_OPT2 ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP, armv7a),
29242 ARM_ARCH_OPT2 ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP, armv7r),
29243 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
29244 ARM_ARCH_OPT2 ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP, armv7em),
29245 ARM_ARCH_OPT ("armv8-m.base", ARM_ARCH_V8M_BASE, FPU_ARCH_VFP),
29246 ARM_ARCH_OPT2 ("armv8-m.main", ARM_ARCH_V8M_MAIN, FPU_ARCH_VFP,
29247 armv8m_main),
29248 ARM_ARCH_OPT2 ("armv8.1-m.main", ARM_ARCH_V8_1M_MAIN, FPU_ARCH_VFP,
29249 armv8_1m_main),
29250 ARM_ARCH_OPT2 ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP, armv8a),
29251 ARM_ARCH_OPT2 ("armv8.1-a", ARM_ARCH_V8_1A, FPU_ARCH_VFP, armv81a),
29252 ARM_ARCH_OPT2 ("armv8.2-a", ARM_ARCH_V8_2A, FPU_ARCH_VFP, armv82a),
29253 ARM_ARCH_OPT2 ("armv8.3-a", ARM_ARCH_V8_3A, FPU_ARCH_VFP, armv82a),
29254 ARM_ARCH_OPT2 ("armv8-r", ARM_ARCH_V8R, FPU_ARCH_VFP, armv8r),
29255 ARM_ARCH_OPT2 ("armv8.4-a", ARM_ARCH_V8_4A, FPU_ARCH_VFP, armv84a),
29256 ARM_ARCH_OPT2 ("armv8.5-a", ARM_ARCH_V8_5A, FPU_ARCH_VFP, armv85a),
29257 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
29258 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
29259 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2, FPU_ARCH_VFP),
29260 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
29261 };
29262 #undef ARM_ARCH_OPT
29263
29264 /* ISA extensions in the co-processor and main instruction set space. */
29265
29266 struct arm_option_extension_value_table
29267 {
29268 const char * name;
29269 size_t name_len;
29270 const arm_feature_set merge_value;
29271 const arm_feature_set clear_value;
29272 /* List of architectures for which an extension is available. ARM_ARCH_NONE
29273 indicates that an extension is available for all architectures while
29274 ARM_ANY marks an empty entry. */
29275 const arm_feature_set allowed_archs[2];
29276 };
29277
29278 /* The following table must be in alphabetical order with a NULL last entry. */
29279
29280 #define ARM_EXT_OPT(N, M, C, AA) { N, sizeof (N) - 1, M, C, { AA, ARM_ANY } }
29281 #define ARM_EXT_OPT2(N, M, C, AA1, AA2) { N, sizeof (N) - 1, M, C, {AA1, AA2} }
29282
29283 /* DEPRECATED: Refrain from using this table to add any new extensions, instead
29284 use the context sensitive approach using arm_ext_table's. */
29285 static const struct arm_option_extension_value_table arm_extensions[] =
29286 {
29287 ARM_EXT_OPT ("crc", ARCH_CRC_ARMV8, ARM_FEATURE_COPROC (CRC_EXT_ARMV8),
29288 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29289 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
29290 ARM_FEATURE_COPROC (FPU_CRYPTO_ARMV8),
29291 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29292 ARM_EXT_OPT ("dotprod", FPU_ARCH_DOTPROD_NEON_VFP_ARMV8,
29293 ARM_FEATURE_COPROC (FPU_NEON_EXT_DOTPROD),
29294 ARM_ARCH_V8_2A),
29295 ARM_EXT_OPT ("dsp", ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29296 ARM_FEATURE_CORE_LOW (ARM_EXT_V5ExP | ARM_EXT_V6_DSP),
29297 ARM_FEATURE_CORE (ARM_EXT_V7M, ARM_EXT2_V8M)),
29298 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8, ARM_FEATURE_COPROC (FPU_VFP_ARMV8),
29299 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29300 ARM_EXT_OPT ("fp16", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29301 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST),
29302 ARM_ARCH_V8_2A),
29303 ARM_EXT_OPT ("fp16fml", ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29304 | ARM_EXT2_FP16_FML),
29305 ARM_FEATURE_CORE_HIGH (ARM_EXT2_FP16_INST
29306 | ARM_EXT2_FP16_FML),
29307 ARM_ARCH_V8_2A),
29308 ARM_EXT_OPT2 ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29309 ARM_FEATURE_CORE_LOW (ARM_EXT_ADIV | ARM_EXT_DIV),
29310 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29311 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29312 /* Duplicate entry for the purpose of allowing ARMv7 to match in presence of
29313 Thumb divide instruction. Due to this having the same name as the
29314 previous entry, this will be ignored when doing command-line parsing and
29315 only considered by build attribute selection code. */
29316 ARM_EXT_OPT ("idiv", ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29317 ARM_FEATURE_CORE_LOW (ARM_EXT_DIV),
29318 ARM_FEATURE_CORE_LOW (ARM_EXT_V7)),
29319 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT),
29320 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT), ARM_ARCH_NONE),
29321 ARM_EXT_OPT ("iwmmxt2", ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2),
29322 ARM_FEATURE_COPROC (ARM_CEXT_IWMMXT2), ARM_ARCH_NONE),
29323 ARM_EXT_OPT ("maverick", ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK),
29324 ARM_FEATURE_COPROC (ARM_CEXT_MAVERICK), ARM_ARCH_NONE),
29325 ARM_EXT_OPT2 ("mp", ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29326 ARM_FEATURE_CORE_LOW (ARM_EXT_MP),
29327 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A),
29328 ARM_FEATURE_CORE_LOW (ARM_EXT_V7R)),
29329 ARM_EXT_OPT ("os", ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29330 ARM_FEATURE_CORE_LOW (ARM_EXT_OS),
29331 ARM_FEATURE_CORE_LOW (ARM_EXT_V6M)),
29332 ARM_EXT_OPT ("pan", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PAN),
29333 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_PAN, 0),
29334 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29335 ARM_EXT_OPT ("predres", ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29336 ARM_FEATURE_CORE_HIGH (ARM_EXT2_PREDRES),
29337 ARM_ARCH_V8A),
29338 ARM_EXT_OPT ("ras", ARM_FEATURE_CORE_HIGH (ARM_EXT2_RAS),
29339 ARM_FEATURE (ARM_EXT_V8, ARM_EXT2_RAS, 0),
29340 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29341 ARM_EXT_OPT ("rdma", FPU_ARCH_NEON_VFP_ARMV8_1,
29342 ARM_FEATURE_COPROC (FPU_NEON_ARMV8 | FPU_NEON_EXT_RDMA),
29343 ARM_FEATURE_CORE_HIGH (ARM_EXT2_V8A)),
29344 ARM_EXT_OPT ("sb", ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29345 ARM_FEATURE_CORE_HIGH (ARM_EXT2_SB),
29346 ARM_ARCH_V8A),
29347 ARM_EXT_OPT2 ("sec", ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29348 ARM_FEATURE_CORE_LOW (ARM_EXT_SEC),
29349 ARM_FEATURE_CORE_LOW (ARM_EXT_V6K),
29350 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29351 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
29352 ARM_FEATURE_COPROC (FPU_NEON_ARMV8),
29353 ARM_FEATURE_CORE_LOW (ARM_EXT_V8)),
29354 ARM_EXT_OPT ("virt", ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT | ARM_EXT_ADIV
29355 | ARM_EXT_DIV),
29356 ARM_FEATURE_CORE_LOW (ARM_EXT_VIRT),
29357 ARM_FEATURE_CORE_LOW (ARM_EXT_V7A)),
29358 ARM_EXT_OPT ("xscale",ARM_FEATURE_COPROC (ARM_CEXT_XSCALE),
29359 ARM_FEATURE_COPROC (ARM_CEXT_XSCALE), ARM_ARCH_NONE),
29360 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, { ARM_ARCH_NONE, ARM_ARCH_NONE } }
29361 };
29362 #undef ARM_EXT_OPT
29363
29364 /* ISA floating-point and Advanced SIMD extensions. */
29365 struct arm_option_fpu_value_table
29366 {
29367 const char * name;
29368 const arm_feature_set value;
29369 };
29370
29371 /* This list should, at a minimum, contain all the fpu names
29372 recognized by GCC. */
29373 static const struct arm_option_fpu_value_table arm_fpus[] =
29374 {
29375 {"softfpa", FPU_NONE},
29376 {"fpe", FPU_ARCH_FPE},
29377 {"fpe2", FPU_ARCH_FPE},
29378 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
29379 {"fpa", FPU_ARCH_FPA},
29380 {"fpa10", FPU_ARCH_FPA},
29381 {"fpa11", FPU_ARCH_FPA},
29382 {"arm7500fe", FPU_ARCH_FPA},
29383 {"softvfp", FPU_ARCH_VFP},
29384 {"softvfp+vfp", FPU_ARCH_VFP_V2},
29385 {"vfp", FPU_ARCH_VFP_V2},
29386 {"vfp9", FPU_ARCH_VFP_V2},
29387 {"vfp3", FPU_ARCH_VFP_V3}, /* Undocumented, use vfpv3. */
29388 {"vfp10", FPU_ARCH_VFP_V2},
29389 {"vfp10-r0", FPU_ARCH_VFP_V1},
29390 {"vfpxd", FPU_ARCH_VFP_V1xD},
29391 {"vfpv2", FPU_ARCH_VFP_V2},
29392 {"vfpv3", FPU_ARCH_VFP_V3},
29393 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
29394 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
29395 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
29396 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
29397 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
29398 {"arm1020t", FPU_ARCH_VFP_V1},
29399 {"arm1020e", FPU_ARCH_VFP_V2},
29400 {"arm1136jfs", FPU_ARCH_VFP_V2}, /* Undocumented, use arm1136jf-s. */
29401 {"arm1136jf-s", FPU_ARCH_VFP_V2},
29402 {"maverick", FPU_ARCH_MAVERICK},
29403 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29404 {"neon-vfpv3", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
29405 {"neon-fp16", FPU_ARCH_NEON_FP16},
29406 {"vfpv4", FPU_ARCH_VFP_V4},
29407 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
29408 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
29409 {"fpv5-d16", FPU_ARCH_VFP_V5D16},
29410 {"fpv5-sp-d16", FPU_ARCH_VFP_V5_SP_D16},
29411 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
29412 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
29413 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
29414 {"crypto-neon-fp-armv8",
29415 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
29416 {"neon-fp-armv8.1", FPU_ARCH_NEON_VFP_ARMV8_1},
29417 {"crypto-neon-fp-armv8.1",
29418 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8_1},
29419 {NULL, ARM_ARCH_NONE}
29420 };
29421
29422 struct arm_option_value_table
29423 {
29424 const char *name;
29425 long value;
29426 };
29427
29428 static const struct arm_option_value_table arm_float_abis[] =
29429 {
29430 {"hard", ARM_FLOAT_ABI_HARD},
29431 {"softfp", ARM_FLOAT_ABI_SOFTFP},
29432 {"soft", ARM_FLOAT_ABI_SOFT},
29433 {NULL, 0}
29434 };
29435
29436 #ifdef OBJ_ELF
29437 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
29438 static const struct arm_option_value_table arm_eabis[] =
29439 {
29440 {"gnu", EF_ARM_EABI_UNKNOWN},
29441 {"4", EF_ARM_EABI_VER4},
29442 {"5", EF_ARM_EABI_VER5},
29443 {NULL, 0}
29444 };
29445 #endif
29446
29447 struct arm_long_option_table
29448 {
29449 const char * option; /* Substring to match. */
29450 const char * help; /* Help information. */
29451 int (* func) (const char * subopt); /* Function to decode sub-option. */
29452 const char * deprecated; /* If non-null, print this message. */
29453 };
29454
29455 static bfd_boolean
29456 arm_parse_extension (const char *str, const arm_feature_set *opt_set,
29457 arm_feature_set *ext_set,
29458 const struct arm_ext_table *ext_table)
29459 {
29460 /* We insist on extensions being specified in alphabetical order, and with
29461 extensions being added before being removed. We achieve this by having
29462 the global ARM_EXTENSIONS table in alphabetical order, and using the
29463 ADDING_VALUE variable to indicate whether we are adding an extension (1)
29464 or removing it (0) and only allowing it to change in the order
29465 -1 -> 1 -> 0. */
29466 const struct arm_option_extension_value_table * opt = NULL;
29467 const arm_feature_set arm_any = ARM_ANY;
29468 int adding_value = -1;
29469
29470 while (str != NULL && *str != 0)
29471 {
29472 const char *ext;
29473 size_t len;
29474
29475 if (*str != '+')
29476 {
29477 as_bad (_("invalid architectural extension"));
29478 return FALSE;
29479 }
29480
29481 str++;
29482 ext = strchr (str, '+');
29483
29484 if (ext != NULL)
29485 len = ext - str;
29486 else
29487 len = strlen (str);
29488
29489 if (len >= 2 && strncmp (str, "no", 2) == 0)
29490 {
29491 if (adding_value != 0)
29492 {
29493 adding_value = 0;
29494 opt = arm_extensions;
29495 }
29496
29497 len -= 2;
29498 str += 2;
29499 }
29500 else if (len > 0)
29501 {
29502 if (adding_value == -1)
29503 {
29504 adding_value = 1;
29505 opt = arm_extensions;
29506 }
29507 else if (adding_value != 1)
29508 {
29509 as_bad (_("must specify extensions to add before specifying "
29510 "those to remove"));
29511 return FALSE;
29512 }
29513 }
29514
29515 if (len == 0)
29516 {
29517 as_bad (_("missing architectural extension"));
29518 return FALSE;
29519 }
29520
29521 gas_assert (adding_value != -1);
29522 gas_assert (opt != NULL);
29523
29524 if (ext_table != NULL)
29525 {
29526 const struct arm_ext_table * ext_opt = ext_table;
29527 bfd_boolean found = FALSE;
29528 for (; ext_opt->name != NULL; ext_opt++)
29529 if (ext_opt->name_len == len
29530 && strncmp (ext_opt->name, str, len) == 0)
29531 {
29532 if (adding_value)
29533 {
29534 if (ARM_FEATURE_ZERO (ext_opt->merge))
29535 /* TODO: Option not supported. When we remove the
29536 legacy table this case should error out. */
29537 continue;
29538
29539 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, ext_opt->merge);
29540 }
29541 else
29542 {
29543 if (ARM_FEATURE_ZERO (ext_opt->clear))
29544 /* TODO: Option not supported. When we remove the
29545 legacy table this case should error out. */
29546 continue;
29547 ARM_CLEAR_FEATURE (*ext_set, *ext_set, ext_opt->clear);
29548 }
29549 found = TRUE;
29550 break;
29551 }
29552 if (found)
29553 {
29554 str = ext;
29555 continue;
29556 }
29557 }
29558
29559 /* Scan over the options table trying to find an exact match. */
29560 for (; opt->name != NULL; opt++)
29561 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29562 {
29563 int i, nb_allowed_archs =
29564 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
29565 /* Check we can apply the extension to this architecture. */
29566 for (i = 0; i < nb_allowed_archs; i++)
29567 {
29568 /* Empty entry. */
29569 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_any))
29570 continue;
29571 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *opt_set))
29572 break;
29573 }
29574 if (i == nb_allowed_archs)
29575 {
29576 as_bad (_("extension does not apply to the base architecture"));
29577 return FALSE;
29578 }
29579
29580 /* Add or remove the extension. */
29581 if (adding_value)
29582 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->merge_value);
29583 else
29584 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->clear_value);
29585
29586 /* Allowing Thumb division instructions for ARMv7 in autodetection
29587 rely on this break so that duplicate extensions (extensions
29588 with the same name as a previous extension in the list) are not
29589 considered for command-line parsing. */
29590 break;
29591 }
29592
29593 if (opt->name == NULL)
29594 {
29595 /* Did we fail to find an extension because it wasn't specified in
29596 alphabetical order, or because it does not exist? */
29597
29598 for (opt = arm_extensions; opt->name != NULL; opt++)
29599 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29600 break;
29601
29602 if (opt->name == NULL)
29603 as_bad (_("unknown architectural extension `%s'"), str);
29604 else
29605 as_bad (_("architectural extensions must be specified in "
29606 "alphabetical order"));
29607
29608 return FALSE;
29609 }
29610 else
29611 {
29612 /* We should skip the extension we've just matched the next time
29613 round. */
29614 opt++;
29615 }
29616
29617 str = ext;
29618 };
29619
29620 return TRUE;
29621 }
29622
29623 static bfd_boolean
29624 arm_parse_cpu (const char *str)
29625 {
29626 const struct arm_cpu_option_table *opt;
29627 const char *ext = strchr (str, '+');
29628 size_t len;
29629
29630 if (ext != NULL)
29631 len = ext - str;
29632 else
29633 len = strlen (str);
29634
29635 if (len == 0)
29636 {
29637 as_bad (_("missing cpu name `%s'"), str);
29638 return FALSE;
29639 }
29640
29641 for (opt = arm_cpus; opt->name != NULL; opt++)
29642 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29643 {
29644 mcpu_cpu_opt = &opt->value;
29645 if (mcpu_ext_opt == NULL)
29646 mcpu_ext_opt = XNEW (arm_feature_set);
29647 *mcpu_ext_opt = opt->ext;
29648 mcpu_fpu_opt = &opt->default_fpu;
29649 if (opt->canonical_name)
29650 {
29651 gas_assert (sizeof selected_cpu_name > strlen (opt->canonical_name));
29652 strcpy (selected_cpu_name, opt->canonical_name);
29653 }
29654 else
29655 {
29656 size_t i;
29657
29658 if (len >= sizeof selected_cpu_name)
29659 len = (sizeof selected_cpu_name) - 1;
29660
29661 for (i = 0; i < len; i++)
29662 selected_cpu_name[i] = TOUPPER (opt->name[i]);
29663 selected_cpu_name[i] = 0;
29664 }
29665
29666 if (ext != NULL)
29667 return arm_parse_extension (ext, mcpu_cpu_opt, mcpu_ext_opt, NULL);
29668
29669 return TRUE;
29670 }
29671
29672 as_bad (_("unknown cpu `%s'"), str);
29673 return FALSE;
29674 }
29675
29676 static bfd_boolean
29677 arm_parse_arch (const char *str)
29678 {
29679 const struct arm_arch_option_table *opt;
29680 const char *ext = strchr (str, '+');
29681 size_t len;
29682
29683 if (ext != NULL)
29684 len = ext - str;
29685 else
29686 len = strlen (str);
29687
29688 if (len == 0)
29689 {
29690 as_bad (_("missing architecture name `%s'"), str);
29691 return FALSE;
29692 }
29693
29694 for (opt = arm_archs; opt->name != NULL; opt++)
29695 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
29696 {
29697 march_cpu_opt = &opt->value;
29698 if (march_ext_opt == NULL)
29699 march_ext_opt = XNEW (arm_feature_set);
29700 *march_ext_opt = arm_arch_none;
29701 march_fpu_opt = &opt->default_fpu;
29702 strcpy (selected_cpu_name, opt->name);
29703
29704 if (ext != NULL)
29705 return arm_parse_extension (ext, march_cpu_opt, march_ext_opt,
29706 opt->ext_table);
29707
29708 return TRUE;
29709 }
29710
29711 as_bad (_("unknown architecture `%s'\n"), str);
29712 return FALSE;
29713 }
29714
29715 static bfd_boolean
29716 arm_parse_fpu (const char * str)
29717 {
29718 const struct arm_option_fpu_value_table * opt;
29719
29720 for (opt = arm_fpus; opt->name != NULL; opt++)
29721 if (streq (opt->name, str))
29722 {
29723 mfpu_opt = &opt->value;
29724 return TRUE;
29725 }
29726
29727 as_bad (_("unknown floating point format `%s'\n"), str);
29728 return FALSE;
29729 }
29730
29731 static bfd_boolean
29732 arm_parse_float_abi (const char * str)
29733 {
29734 const struct arm_option_value_table * opt;
29735
29736 for (opt = arm_float_abis; opt->name != NULL; opt++)
29737 if (streq (opt->name, str))
29738 {
29739 mfloat_abi_opt = opt->value;
29740 return TRUE;
29741 }
29742
29743 as_bad (_("unknown floating point abi `%s'\n"), str);
29744 return FALSE;
29745 }
29746
29747 #ifdef OBJ_ELF
29748 static bfd_boolean
29749 arm_parse_eabi (const char * str)
29750 {
29751 const struct arm_option_value_table *opt;
29752
29753 for (opt = arm_eabis; opt->name != NULL; opt++)
29754 if (streq (opt->name, str))
29755 {
29756 meabi_flags = opt->value;
29757 return TRUE;
29758 }
29759 as_bad (_("unknown EABI `%s'\n"), str);
29760 return FALSE;
29761 }
29762 #endif
29763
29764 static bfd_boolean
29765 arm_parse_it_mode (const char * str)
29766 {
29767 bfd_boolean ret = TRUE;
29768
29769 if (streq ("arm", str))
29770 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
29771 else if (streq ("thumb", str))
29772 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
29773 else if (streq ("always", str))
29774 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
29775 else if (streq ("never", str))
29776 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
29777 else
29778 {
29779 as_bad (_("unknown implicit IT mode `%s', should be "\
29780 "arm, thumb, always, or never."), str);
29781 ret = FALSE;
29782 }
29783
29784 return ret;
29785 }
29786
29787 static bfd_boolean
29788 arm_ccs_mode (const char * unused ATTRIBUTE_UNUSED)
29789 {
29790 codecomposer_syntax = TRUE;
29791 arm_comment_chars[0] = ';';
29792 arm_line_separator_chars[0] = 0;
29793 return TRUE;
29794 }
29795
29796 struct arm_long_option_table arm_long_opts[] =
29797 {
29798 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
29799 arm_parse_cpu, NULL},
29800 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
29801 arm_parse_arch, NULL},
29802 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
29803 arm_parse_fpu, NULL},
29804 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
29805 arm_parse_float_abi, NULL},
29806 #ifdef OBJ_ELF
29807 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
29808 arm_parse_eabi, NULL},
29809 #endif
29810 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
29811 arm_parse_it_mode, NULL},
29812 {"mccs", N_("\t\t\t TI CodeComposer Studio syntax compatibility mode"),
29813 arm_ccs_mode, NULL},
29814 {NULL, NULL, 0, NULL}
29815 };
29816
29817 int
29818 md_parse_option (int c, const char * arg)
29819 {
29820 struct arm_option_table *opt;
29821 const struct arm_legacy_option_table *fopt;
29822 struct arm_long_option_table *lopt;
29823
29824 switch (c)
29825 {
29826 #ifdef OPTION_EB
29827 case OPTION_EB:
29828 target_big_endian = 1;
29829 break;
29830 #endif
29831
29832 #ifdef OPTION_EL
29833 case OPTION_EL:
29834 target_big_endian = 0;
29835 break;
29836 #endif
29837
29838 case OPTION_FIX_V4BX:
29839 fix_v4bx = TRUE;
29840 break;
29841
29842 #ifdef OBJ_ELF
29843 case OPTION_FDPIC:
29844 arm_fdpic = TRUE;
29845 break;
29846 #endif /* OBJ_ELF */
29847
29848 case 'a':
29849 /* Listing option. Just ignore these, we don't support additional
29850 ones. */
29851 return 0;
29852
29853 default:
29854 for (opt = arm_opts; opt->option != NULL; opt++)
29855 {
29856 if (c == opt->option[0]
29857 && ((arg == NULL && opt->option[1] == 0)
29858 || streq (arg, opt->option + 1)))
29859 {
29860 /* If the option is deprecated, tell the user. */
29861 if (warn_on_deprecated && opt->deprecated != NULL)
29862 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
29863 arg ? arg : "", _(opt->deprecated));
29864
29865 if (opt->var != NULL)
29866 *opt->var = opt->value;
29867
29868 return 1;
29869 }
29870 }
29871
29872 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
29873 {
29874 if (c == fopt->option[0]
29875 && ((arg == NULL && fopt->option[1] == 0)
29876 || streq (arg, fopt->option + 1)))
29877 {
29878 /* If the option is deprecated, tell the user. */
29879 if (warn_on_deprecated && fopt->deprecated != NULL)
29880 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
29881 arg ? arg : "", _(fopt->deprecated));
29882
29883 if (fopt->var != NULL)
29884 *fopt->var = &fopt->value;
29885
29886 return 1;
29887 }
29888 }
29889
29890 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
29891 {
29892 /* These options are expected to have an argument. */
29893 if (c == lopt->option[0]
29894 && arg != NULL
29895 && strncmp (arg, lopt->option + 1,
29896 strlen (lopt->option + 1)) == 0)
29897 {
29898 /* If the option is deprecated, tell the user. */
29899 if (warn_on_deprecated && lopt->deprecated != NULL)
29900 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
29901 _(lopt->deprecated));
29902
29903 /* Call the sup-option parser. */
29904 return lopt->func (arg + strlen (lopt->option) - 1);
29905 }
29906 }
29907
29908 return 0;
29909 }
29910
29911 return 1;
29912 }
29913
29914 void
29915 md_show_usage (FILE * fp)
29916 {
29917 struct arm_option_table *opt;
29918 struct arm_long_option_table *lopt;
29919
29920 fprintf (fp, _(" ARM-specific assembler options:\n"));
29921
29922 for (opt = arm_opts; opt->option != NULL; opt++)
29923 if (opt->help != NULL)
29924 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
29925
29926 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
29927 if (lopt->help != NULL)
29928 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
29929
29930 #ifdef OPTION_EB
29931 fprintf (fp, _("\
29932 -EB assemble code for a big-endian cpu\n"));
29933 #endif
29934
29935 #ifdef OPTION_EL
29936 fprintf (fp, _("\
29937 -EL assemble code for a little-endian cpu\n"));
29938 #endif
29939
29940 fprintf (fp, _("\
29941 --fix-v4bx Allow BX in ARMv4 code\n"));
29942
29943 #ifdef OBJ_ELF
29944 fprintf (fp, _("\
29945 --fdpic generate an FDPIC object file\n"));
29946 #endif /* OBJ_ELF */
29947 }
29948
29949 #ifdef OBJ_ELF
29950
29951 typedef struct
29952 {
29953 int val;
29954 arm_feature_set flags;
29955 } cpu_arch_ver_table;
29956
29957 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
29958 chronologically for architectures, with an exception for ARMv6-M and
29959 ARMv6S-M due to legacy reasons. No new architecture should have a
29960 special case. This allows for build attribute selection results to be
29961 stable when new architectures are added. */
29962 static const cpu_arch_ver_table cpu_arch_ver[] =
29963 {
29964 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V1},
29965 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2},
29966 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V2S},
29967 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3},
29968 {TAG_CPU_ARCH_PRE_V4, ARM_ARCH_V3M},
29969 {TAG_CPU_ARCH_V4, ARM_ARCH_V4xM},
29970 {TAG_CPU_ARCH_V4, ARM_ARCH_V4},
29971 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4TxM},
29972 {TAG_CPU_ARCH_V4T, ARM_ARCH_V4T},
29973 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5xM},
29974 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5},
29975 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5TxM},
29976 {TAG_CPU_ARCH_V5T, ARM_ARCH_V5T},
29977 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TExP},
29978 {TAG_CPU_ARCH_V5TE, ARM_ARCH_V5TE},
29979 {TAG_CPU_ARCH_V5TEJ, ARM_ARCH_V5TEJ},
29980 {TAG_CPU_ARCH_V6, ARM_ARCH_V6},
29981 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6Z},
29982 {TAG_CPU_ARCH_V6KZ, ARM_ARCH_V6KZ},
29983 {TAG_CPU_ARCH_V6K, ARM_ARCH_V6K},
29984 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6T2},
29985 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KT2},
29986 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6ZT2},
29987 {TAG_CPU_ARCH_V6T2, ARM_ARCH_V6KZT2},
29988
29989 /* When assembling a file with only ARMv6-M or ARMv6S-M instruction, GNU as
29990 always selected build attributes to match those of ARMv6-M
29991 (resp. ARMv6S-M). However, due to these architectures being a strict
29992 subset of ARMv7-M in terms of instructions available, ARMv7-M attributes
29993 would be selected when fully respecting chronology of architectures.
29994 It is thus necessary to make a special case of ARMv6-M and ARMv6S-M and
29995 move them before ARMv7 architectures. */
29996 {TAG_CPU_ARCH_V6_M, ARM_ARCH_V6M},
29997 {TAG_CPU_ARCH_V6S_M, ARM_ARCH_V6SM},
29998
29999 {TAG_CPU_ARCH_V7, ARM_ARCH_V7},
30000 {TAG_CPU_ARCH_V7, ARM_ARCH_V7A},
30001 {TAG_CPU_ARCH_V7, ARM_ARCH_V7R},
30002 {TAG_CPU_ARCH_V7, ARM_ARCH_V7M},
30003 {TAG_CPU_ARCH_V7, ARM_ARCH_V7VE},
30004 {TAG_CPU_ARCH_V7E_M, ARM_ARCH_V7EM},
30005 {TAG_CPU_ARCH_V8, ARM_ARCH_V8A},
30006 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_1A},
30007 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_2A},
30008 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_3A},
30009 {TAG_CPU_ARCH_V8M_BASE, ARM_ARCH_V8M_BASE},
30010 {TAG_CPU_ARCH_V8M_MAIN, ARM_ARCH_V8M_MAIN},
30011 {TAG_CPU_ARCH_V8R, ARM_ARCH_V8R},
30012 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_4A},
30013 {TAG_CPU_ARCH_V8, ARM_ARCH_V8_5A},
30014 {TAG_CPU_ARCH_V8_1M_MAIN, ARM_ARCH_V8_1M_MAIN},
30015 {-1, ARM_ARCH_NONE}
30016 };
30017
30018 /* Set an attribute if it has not already been set by the user. */
30019
30020 static void
30021 aeabi_set_attribute_int (int tag, int value)
30022 {
30023 if (tag < 1
30024 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30025 || !attributes_set_explicitly[tag])
30026 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
30027 }
30028
30029 static void
30030 aeabi_set_attribute_string (int tag, const char *value)
30031 {
30032 if (tag < 1
30033 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
30034 || !attributes_set_explicitly[tag])
30035 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
30036 }
30037
30038 /* Return whether features in the *NEEDED feature set are available via
30039 extensions for the architecture whose feature set is *ARCH_FSET. */
30040
30041 static bfd_boolean
30042 have_ext_for_needed_feat_p (const arm_feature_set *arch_fset,
30043 const arm_feature_set *needed)
30044 {
30045 int i, nb_allowed_archs;
30046 arm_feature_set ext_fset;
30047 const struct arm_option_extension_value_table *opt;
30048
30049 ext_fset = arm_arch_none;
30050 for (opt = arm_extensions; opt->name != NULL; opt++)
30051 {
30052 /* Extension does not provide any feature we need. */
30053 if (!ARM_CPU_HAS_FEATURE (*needed, opt->merge_value))
30054 continue;
30055
30056 nb_allowed_archs =
30057 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[0]);
30058 for (i = 0; i < nb_allowed_archs; i++)
30059 {
30060 /* Empty entry. */
30061 if (ARM_FEATURE_EQUAL (opt->allowed_archs[i], arm_arch_any))
30062 break;
30063
30064 /* Extension is available, add it. */
30065 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], *arch_fset))
30066 ARM_MERGE_FEATURE_SETS (ext_fset, ext_fset, opt->merge_value);
30067 }
30068 }
30069
30070 /* Can we enable all features in *needed? */
30071 return ARM_FSET_CPU_SUBSET (*needed, ext_fset);
30072 }
30073
30074 /* Select value for Tag_CPU_arch and Tag_CPU_arch_profile build attributes for
30075 a given architecture feature set *ARCH_EXT_FSET including extension feature
30076 set *EXT_FSET. Selection logic used depend on EXACT_MATCH:
30077 - if true, check for an exact match of the architecture modulo extensions;
30078 - otherwise, select build attribute value of the first superset
30079 architecture released so that results remains stable when new architectures
30080 are added.
30081 For -march/-mcpu=all the build attribute value of the most featureful
30082 architecture is returned. Tag_CPU_arch_profile result is returned in
30083 PROFILE. */
30084
30085 static int
30086 get_aeabi_cpu_arch_from_fset (const arm_feature_set *arch_ext_fset,
30087 const arm_feature_set *ext_fset,
30088 char *profile, int exact_match)
30089 {
30090 arm_feature_set arch_fset;
30091 const cpu_arch_ver_table *p_ver, *p_ver_ret = NULL;
30092
30093 /* Select most featureful architecture with all its extensions if building
30094 for -march=all as the feature sets used to set build attributes. */
30095 if (ARM_FEATURE_EQUAL (*arch_ext_fset, arm_arch_any))
30096 {
30097 /* Force revisiting of decision for each new architecture. */
30098 gas_assert (MAX_TAG_CPU_ARCH <= TAG_CPU_ARCH_V8_1M_MAIN);
30099 *profile = 'A';
30100 return TAG_CPU_ARCH_V8;
30101 }
30102
30103 ARM_CLEAR_FEATURE (arch_fset, *arch_ext_fset, *ext_fset);
30104
30105 for (p_ver = cpu_arch_ver; p_ver->val != -1; p_ver++)
30106 {
30107 arm_feature_set known_arch_fset;
30108
30109 ARM_CLEAR_FEATURE (known_arch_fset, p_ver->flags, fpu_any);
30110 if (exact_match)
30111 {
30112 /* Base architecture match user-specified architecture and
30113 extensions, eg. ARMv6S-M matching -march=armv6-m+os. */
30114 if (ARM_FEATURE_EQUAL (*arch_ext_fset, known_arch_fset))
30115 {
30116 p_ver_ret = p_ver;
30117 goto found;
30118 }
30119 /* Base architecture match user-specified architecture only
30120 (eg. ARMv6-M in the same case as above). Record it in case we
30121 find a match with above condition. */
30122 else if (p_ver_ret == NULL
30123 && ARM_FEATURE_EQUAL (arch_fset, known_arch_fset))
30124 p_ver_ret = p_ver;
30125 }
30126 else
30127 {
30128
30129 /* Architecture has all features wanted. */
30130 if (ARM_FSET_CPU_SUBSET (arch_fset, known_arch_fset))
30131 {
30132 arm_feature_set added_fset;
30133
30134 /* Compute features added by this architecture over the one
30135 recorded in p_ver_ret. */
30136 if (p_ver_ret != NULL)
30137 ARM_CLEAR_FEATURE (added_fset, known_arch_fset,
30138 p_ver_ret->flags);
30139 /* First architecture that match incl. with extensions, or the
30140 only difference in features over the recorded match is
30141 features that were optional and are now mandatory. */
30142 if (p_ver_ret == NULL
30143 || ARM_FSET_CPU_SUBSET (added_fset, arch_fset))
30144 {
30145 p_ver_ret = p_ver;
30146 goto found;
30147 }
30148 }
30149 else if (p_ver_ret == NULL)
30150 {
30151 arm_feature_set needed_ext_fset;
30152
30153 ARM_CLEAR_FEATURE (needed_ext_fset, arch_fset, known_arch_fset);
30154
30155 /* Architecture has all features needed when using some
30156 extensions. Record it and continue searching in case there
30157 exist an architecture providing all needed features without
30158 the need for extensions (eg. ARMv6S-M Vs ARMv6-M with
30159 OS extension). */
30160 if (have_ext_for_needed_feat_p (&known_arch_fset,
30161 &needed_ext_fset))
30162 p_ver_ret = p_ver;
30163 }
30164 }
30165 }
30166
30167 if (p_ver_ret == NULL)
30168 return -1;
30169
30170 found:
30171 /* Tag_CPU_arch_profile. */
30172 if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7a)
30173 || ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8)
30174 || (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_atomics)
30175 && !ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v8m_m_only)))
30176 *profile = 'A';
30177 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_v7r))
30178 *profile = 'R';
30179 else if (ARM_CPU_HAS_FEATURE (p_ver_ret->flags, arm_ext_m))
30180 *profile = 'M';
30181 else
30182 *profile = '\0';
30183 return p_ver_ret->val;
30184 }
30185
30186 /* Set the public EABI object attributes. */
30187
30188 static void
30189 aeabi_set_public_attributes (void)
30190 {
30191 char profile = '\0';
30192 int arch = -1;
30193 int virt_sec = 0;
30194 int fp16_optional = 0;
30195 int skip_exact_match = 0;
30196 arm_feature_set flags, flags_arch, flags_ext;
30197
30198 /* Autodetection mode, choose the architecture based the instructions
30199 actually used. */
30200 if (no_cpu_selected ())
30201 {
30202 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
30203
30204 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
30205 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
30206
30207 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
30208 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
30209
30210 /* Code run during relaxation relies on selected_cpu being set. */
30211 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30212 flags_ext = arm_arch_none;
30213 ARM_CLEAR_FEATURE (selected_arch, flags_arch, flags_ext);
30214 selected_ext = flags_ext;
30215 selected_cpu = flags;
30216 }
30217 /* Otherwise, choose the architecture based on the capabilities of the
30218 requested cpu. */
30219 else
30220 {
30221 ARM_MERGE_FEATURE_SETS (flags_arch, selected_arch, selected_ext);
30222 ARM_CLEAR_FEATURE (flags_arch, flags_arch, fpu_any);
30223 flags_ext = selected_ext;
30224 flags = selected_cpu;
30225 }
30226 ARM_MERGE_FEATURE_SETS (flags, flags, selected_fpu);
30227
30228 /* Allow the user to override the reported architecture. */
30229 if (!ARM_FEATURE_ZERO (selected_object_arch))
30230 {
30231 ARM_CLEAR_FEATURE (flags_arch, selected_object_arch, fpu_any);
30232 flags_ext = arm_arch_none;
30233 }
30234 else
30235 skip_exact_match = ARM_FEATURE_EQUAL (selected_cpu, arm_arch_any);
30236
30237 /* When this function is run again after relaxation has happened there is no
30238 way to determine whether an architecture or CPU was specified by the user:
30239 - selected_cpu is set above for relaxation to work;
30240 - march_cpu_opt is not set if only -mcpu or .cpu is used;
30241 - mcpu_cpu_opt is set to arm_arch_any for autodetection.
30242 Therefore, if not in -march=all case we first try an exact match and fall
30243 back to autodetection. */
30244 if (!skip_exact_match)
30245 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 1);
30246 if (arch == -1)
30247 arch = get_aeabi_cpu_arch_from_fset (&flags_arch, &flags_ext, &profile, 0);
30248 if (arch == -1)
30249 as_bad (_("no architecture contains all the instructions used\n"));
30250
30251 /* Tag_CPU_name. */
30252 if (selected_cpu_name[0])
30253 {
30254 char *q;
30255
30256 q = selected_cpu_name;
30257 if (strncmp (q, "armv", 4) == 0)
30258 {
30259 int i;
30260
30261 q += 4;
30262 for (i = 0; q[i]; i++)
30263 q[i] = TOUPPER (q[i]);
30264 }
30265 aeabi_set_attribute_string (Tag_CPU_name, q);
30266 }
30267
30268 /* Tag_CPU_arch. */
30269 aeabi_set_attribute_int (Tag_CPU_arch, arch);
30270
30271 /* Tag_CPU_arch_profile. */
30272 if (profile != '\0')
30273 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
30274
30275 /* Tag_DSP_extension. */
30276 if (ARM_CPU_HAS_FEATURE (selected_ext, arm_ext_dsp))
30277 aeabi_set_attribute_int (Tag_DSP_extension, 1);
30278
30279 ARM_CLEAR_FEATURE (flags_arch, flags, fpu_any);
30280 /* Tag_ARM_ISA_use. */
30281 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
30282 || ARM_FEATURE_ZERO (flags_arch))
30283 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
30284
30285 /* Tag_THUMB_ISA_use. */
30286 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
30287 || ARM_FEATURE_ZERO (flags_arch))
30288 {
30289 int thumb_isa_use;
30290
30291 if (!ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30292 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m_m_only))
30293 thumb_isa_use = 3;
30294 else if (ARM_CPU_HAS_FEATURE (flags, arm_arch_t2))
30295 thumb_isa_use = 2;
30296 else
30297 thumb_isa_use = 1;
30298 aeabi_set_attribute_int (Tag_THUMB_ISA_use, thumb_isa_use);
30299 }
30300
30301 /* Tag_VFP_arch. */
30302 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8xd))
30303 aeabi_set_attribute_int (Tag_VFP_arch,
30304 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30305 ? 7 : 8);
30306 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
30307 aeabi_set_attribute_int (Tag_VFP_arch,
30308 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
30309 ? 5 : 6);
30310 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
30311 {
30312 fp16_optional = 1;
30313 aeabi_set_attribute_int (Tag_VFP_arch, 3);
30314 }
30315 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
30316 {
30317 aeabi_set_attribute_int (Tag_VFP_arch, 4);
30318 fp16_optional = 1;
30319 }
30320 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
30321 aeabi_set_attribute_int (Tag_VFP_arch, 2);
30322 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
30323 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
30324 aeabi_set_attribute_int (Tag_VFP_arch, 1);
30325
30326 /* Tag_ABI_HardFP_use. */
30327 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
30328 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
30329 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
30330
30331 /* Tag_WMMX_arch. */
30332 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
30333 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
30334 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
30335 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
30336
30337 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
30338 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v8_1))
30339 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 4);
30340 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
30341 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
30342 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
30343 {
30344 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
30345 {
30346 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
30347 }
30348 else
30349 {
30350 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
30351 fp16_optional = 1;
30352 }
30353 }
30354
30355 if (ARM_CPU_HAS_FEATURE (flags, mve_fp_ext))
30356 aeabi_set_attribute_int (Tag_MVE_arch, 2);
30357 else if (ARM_CPU_HAS_FEATURE (flags, mve_ext))
30358 aeabi_set_attribute_int (Tag_MVE_arch, 1);
30359
30360 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
30361 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
30362 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
30363
30364 /* Tag_DIV_use.
30365
30366 We set Tag_DIV_use to two when integer divide instructions have been used
30367 in ARM state, or when Thumb integer divide instructions have been used,
30368 but we have no architecture profile set, nor have we any ARM instructions.
30369
30370 For ARMv8-A and ARMv8-M we set the tag to 0 as integer divide is implied
30371 by the base architecture.
30372
30373 For new architectures we will have to check these tests. */
30374 gas_assert (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
30375 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8)
30376 || ARM_CPU_HAS_FEATURE (flags, arm_ext_v8m))
30377 aeabi_set_attribute_int (Tag_DIV_use, 0);
30378 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
30379 || (profile == '\0'
30380 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
30381 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
30382 aeabi_set_attribute_int (Tag_DIV_use, 2);
30383
30384 /* Tag_MP_extension_use. */
30385 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
30386 aeabi_set_attribute_int (Tag_MPextension_use, 1);
30387
30388 /* Tag Virtualization_use. */
30389 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
30390 virt_sec |= 1;
30391 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
30392 virt_sec |= 2;
30393 if (virt_sec != 0)
30394 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
30395 }
30396
30397 /* Post relaxation hook. Recompute ARM attributes now that relaxation is
30398 finished and free extension feature bits which will not be used anymore. */
30399
30400 void
30401 arm_md_post_relax (void)
30402 {
30403 aeabi_set_public_attributes ();
30404 XDELETE (mcpu_ext_opt);
30405 mcpu_ext_opt = NULL;
30406 XDELETE (march_ext_opt);
30407 march_ext_opt = NULL;
30408 }
30409
30410 /* Add the default contents for the .ARM.attributes section. */
30411
30412 void
30413 arm_md_end (void)
30414 {
30415 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
30416 return;
30417
30418 aeabi_set_public_attributes ();
30419 }
30420 #endif /* OBJ_ELF */
30421
30422 /* Parse a .cpu directive. */
30423
30424 static void
30425 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
30426 {
30427 const struct arm_cpu_option_table *opt;
30428 char *name;
30429 char saved_char;
30430
30431 name = input_line_pointer;
30432 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30433 input_line_pointer++;
30434 saved_char = *input_line_pointer;
30435 *input_line_pointer = 0;
30436
30437 /* Skip the first "all" entry. */
30438 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
30439 if (streq (opt->name, name))
30440 {
30441 selected_arch = opt->value;
30442 selected_ext = opt->ext;
30443 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30444 if (opt->canonical_name)
30445 strcpy (selected_cpu_name, opt->canonical_name);
30446 else
30447 {
30448 int i;
30449 for (i = 0; opt->name[i]; i++)
30450 selected_cpu_name[i] = TOUPPER (opt->name[i]);
30451
30452 selected_cpu_name[i] = 0;
30453 }
30454 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30455
30456 *input_line_pointer = saved_char;
30457 demand_empty_rest_of_line ();
30458 return;
30459 }
30460 as_bad (_("unknown cpu `%s'"), name);
30461 *input_line_pointer = saved_char;
30462 ignore_rest_of_line ();
30463 }
30464
30465 /* Parse a .arch directive. */
30466
30467 static void
30468 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
30469 {
30470 const struct arm_arch_option_table *opt;
30471 char saved_char;
30472 char *name;
30473
30474 name = input_line_pointer;
30475 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30476 input_line_pointer++;
30477 saved_char = *input_line_pointer;
30478 *input_line_pointer = 0;
30479
30480 /* Skip the first "all" entry. */
30481 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30482 if (streq (opt->name, name))
30483 {
30484 selected_arch = opt->value;
30485 selected_ext = arm_arch_none;
30486 selected_cpu = selected_arch;
30487 strcpy (selected_cpu_name, opt->name);
30488 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30489 *input_line_pointer = saved_char;
30490 demand_empty_rest_of_line ();
30491 return;
30492 }
30493
30494 as_bad (_("unknown architecture `%s'\n"), name);
30495 *input_line_pointer = saved_char;
30496 ignore_rest_of_line ();
30497 }
30498
30499 /* Parse a .object_arch directive. */
30500
30501 static void
30502 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
30503 {
30504 const struct arm_arch_option_table *opt;
30505 char saved_char;
30506 char *name;
30507
30508 name = input_line_pointer;
30509 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30510 input_line_pointer++;
30511 saved_char = *input_line_pointer;
30512 *input_line_pointer = 0;
30513
30514 /* Skip the first "all" entry. */
30515 for (opt = arm_archs + 1; opt->name != NULL; opt++)
30516 if (streq (opt->name, name))
30517 {
30518 selected_object_arch = opt->value;
30519 *input_line_pointer = saved_char;
30520 demand_empty_rest_of_line ();
30521 return;
30522 }
30523
30524 as_bad (_("unknown architecture `%s'\n"), name);
30525 *input_line_pointer = saved_char;
30526 ignore_rest_of_line ();
30527 }
30528
30529 /* Parse a .arch_extension directive. */
30530
30531 static void
30532 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
30533 {
30534 const struct arm_option_extension_value_table *opt;
30535 char saved_char;
30536 char *name;
30537 int adding_value = 1;
30538
30539 name = input_line_pointer;
30540 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30541 input_line_pointer++;
30542 saved_char = *input_line_pointer;
30543 *input_line_pointer = 0;
30544
30545 if (strlen (name) >= 2
30546 && strncmp (name, "no", 2) == 0)
30547 {
30548 adding_value = 0;
30549 name += 2;
30550 }
30551
30552 for (opt = arm_extensions; opt->name != NULL; opt++)
30553 if (streq (opt->name, name))
30554 {
30555 int i, nb_allowed_archs =
30556 sizeof (opt->allowed_archs) / sizeof (opt->allowed_archs[i]);
30557 for (i = 0; i < nb_allowed_archs; i++)
30558 {
30559 /* Empty entry. */
30560 if (ARM_CPU_IS_ANY (opt->allowed_archs[i]))
30561 continue;
30562 if (ARM_FSET_CPU_SUBSET (opt->allowed_archs[i], selected_arch))
30563 break;
30564 }
30565
30566 if (i == nb_allowed_archs)
30567 {
30568 as_bad (_("architectural extension `%s' is not allowed for the "
30569 "current base architecture"), name);
30570 break;
30571 }
30572
30573 if (adding_value)
30574 ARM_MERGE_FEATURE_SETS (selected_ext, selected_ext,
30575 opt->merge_value);
30576 else
30577 ARM_CLEAR_FEATURE (selected_ext, selected_ext, opt->clear_value);
30578
30579 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_arch, selected_ext);
30580 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30581 *input_line_pointer = saved_char;
30582 demand_empty_rest_of_line ();
30583 /* Allowing Thumb division instructions for ARMv7 in autodetection rely
30584 on this return so that duplicate extensions (extensions with the
30585 same name as a previous extension in the list) are not considered
30586 for command-line parsing. */
30587 return;
30588 }
30589
30590 if (opt->name == NULL)
30591 as_bad (_("unknown architecture extension `%s'\n"), name);
30592
30593 *input_line_pointer = saved_char;
30594 ignore_rest_of_line ();
30595 }
30596
30597 /* Parse a .fpu directive. */
30598
30599 static void
30600 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
30601 {
30602 const struct arm_option_fpu_value_table *opt;
30603 char saved_char;
30604 char *name;
30605
30606 name = input_line_pointer;
30607 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
30608 input_line_pointer++;
30609 saved_char = *input_line_pointer;
30610 *input_line_pointer = 0;
30611
30612 for (opt = arm_fpus; opt->name != NULL; opt++)
30613 if (streq (opt->name, name))
30614 {
30615 selected_fpu = opt->value;
30616 #ifndef CPU_DEFAULT
30617 if (no_cpu_selected ())
30618 ARM_MERGE_FEATURE_SETS (cpu_variant, arm_arch_any, selected_fpu);
30619 else
30620 #endif
30621 ARM_MERGE_FEATURE_SETS (cpu_variant, selected_cpu, selected_fpu);
30622 *input_line_pointer = saved_char;
30623 demand_empty_rest_of_line ();
30624 return;
30625 }
30626
30627 as_bad (_("unknown floating point format `%s'\n"), name);
30628 *input_line_pointer = saved_char;
30629 ignore_rest_of_line ();
30630 }
30631
30632 /* Copy symbol information. */
30633
30634 void
30635 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
30636 {
30637 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
30638 }
30639
30640 #ifdef OBJ_ELF
30641 /* Given a symbolic attribute NAME, return the proper integer value.
30642 Returns -1 if the attribute is not known. */
30643
30644 int
30645 arm_convert_symbolic_attribute (const char *name)
30646 {
30647 static const struct
30648 {
30649 const char * name;
30650 const int tag;
30651 }
30652 attribute_table[] =
30653 {
30654 /* When you modify this table you should
30655 also modify the list in doc/c-arm.texi. */
30656 #define T(tag) {#tag, tag}
30657 T (Tag_CPU_raw_name),
30658 T (Tag_CPU_name),
30659 T (Tag_CPU_arch),
30660 T (Tag_CPU_arch_profile),
30661 T (Tag_ARM_ISA_use),
30662 T (Tag_THUMB_ISA_use),
30663 T (Tag_FP_arch),
30664 T (Tag_VFP_arch),
30665 T (Tag_WMMX_arch),
30666 T (Tag_Advanced_SIMD_arch),
30667 T (Tag_PCS_config),
30668 T (Tag_ABI_PCS_R9_use),
30669 T (Tag_ABI_PCS_RW_data),
30670 T (Tag_ABI_PCS_RO_data),
30671 T (Tag_ABI_PCS_GOT_use),
30672 T (Tag_ABI_PCS_wchar_t),
30673 T (Tag_ABI_FP_rounding),
30674 T (Tag_ABI_FP_denormal),
30675 T (Tag_ABI_FP_exceptions),
30676 T (Tag_ABI_FP_user_exceptions),
30677 T (Tag_ABI_FP_number_model),
30678 T (Tag_ABI_align_needed),
30679 T (Tag_ABI_align8_needed),
30680 T (Tag_ABI_align_preserved),
30681 T (Tag_ABI_align8_preserved),
30682 T (Tag_ABI_enum_size),
30683 T (Tag_ABI_HardFP_use),
30684 T (Tag_ABI_VFP_args),
30685 T (Tag_ABI_WMMX_args),
30686 T (Tag_ABI_optimization_goals),
30687 T (Tag_ABI_FP_optimization_goals),
30688 T (Tag_compatibility),
30689 T (Tag_CPU_unaligned_access),
30690 T (Tag_FP_HP_extension),
30691 T (Tag_VFP_HP_extension),
30692 T (Tag_ABI_FP_16bit_format),
30693 T (Tag_MPextension_use),
30694 T (Tag_DIV_use),
30695 T (Tag_nodefaults),
30696 T (Tag_also_compatible_with),
30697 T (Tag_conformance),
30698 T (Tag_T2EE_use),
30699 T (Tag_Virtualization_use),
30700 T (Tag_DSP_extension),
30701 T (Tag_MVE_arch),
30702 /* We deliberately do not include Tag_MPextension_use_legacy. */
30703 #undef T
30704 };
30705 unsigned int i;
30706
30707 if (name == NULL)
30708 return -1;
30709
30710 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
30711 if (streq (name, attribute_table[i].name))
30712 return attribute_table[i].tag;
30713
30714 return -1;
30715 }
30716
30717 /* Apply sym value for relocations only in the case that they are for
30718 local symbols in the same segment as the fixup and you have the
30719 respective architectural feature for blx and simple switches. */
30720
30721 int
30722 arm_apply_sym_value (struct fix * fixP, segT this_seg)
30723 {
30724 if (fixP->fx_addsy
30725 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
30726 /* PR 17444: If the local symbol is in a different section then a reloc
30727 will always be generated for it, so applying the symbol value now
30728 will result in a double offset being stored in the relocation. */
30729 && (S_GET_SEGMENT (fixP->fx_addsy) == this_seg)
30730 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
30731 {
30732 switch (fixP->fx_r_type)
30733 {
30734 case BFD_RELOC_ARM_PCREL_BLX:
30735 case BFD_RELOC_THUMB_PCREL_BRANCH23:
30736 if (ARM_IS_FUNC (fixP->fx_addsy))
30737 return 1;
30738 break;
30739
30740 case BFD_RELOC_ARM_PCREL_CALL:
30741 case BFD_RELOC_THUMB_PCREL_BLX:
30742 if (THUMB_IS_FUNC (fixP->fx_addsy))
30743 return 1;
30744 break;
30745
30746 default:
30747 break;
30748 }
30749
30750 }
30751 return 0;
30752 }
30753 #endif /* OBJ_ELF */