* config/tc-arm.c (opcode_lookup): Allow Neon type suffixes to be
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include <limits.h>
29 #include <stdarg.h>
30 #define NO_RELOC 0
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #define WARN_DEPRECATED 1
46
47 #ifdef OBJ_ELF
48 /* Must be at least the size of the largest unwind opcode (currently two). */
49 #define ARM_OPCODE_CHUNK_SIZE 8
50
51 /* This structure holds the unwinding state. */
52
53 static struct
54 {
55 symbolS * proc_start;
56 symbolS * table_entry;
57 symbolS * personality_routine;
58 int personality_index;
59 /* The segment containing the function. */
60 segT saved_seg;
61 subsegT saved_subseg;
62 /* Opcodes generated from this function. */
63 unsigned char * opcodes;
64 int opcode_count;
65 int opcode_alloc;
66 /* The number of bytes pushed to the stack. */
67 offsetT frame_size;
68 /* We don't add stack adjustment opcodes immediately so that we can merge
69 multiple adjustments. We can also omit the final adjustment
70 when using a frame pointer. */
71 offsetT pending_offset;
72 /* These two fields are set by both unwind_movsp and unwind_setfp. They
73 hold the reg+offset to use when restoring sp from a frame pointer. */
74 offsetT fp_offset;
75 int fp_reg;
76 /* Nonzero if an unwind_setfp directive has been seen. */
77 unsigned fp_used:1;
78 /* Nonzero if the last opcode restores sp from fp_reg. */
79 unsigned sp_restored:1;
80 } unwind;
81
82 /* Bit N indicates that an R_ARM_NONE relocation has been output for
83 __aeabi_unwind_cpp_prN already if set. This enables dependencies to be
84 emitted only once per section, to save unnecessary bloat. */
85 static unsigned int marked_pr_dependency = 0;
86
87 #endif /* OBJ_ELF */
88
89 /* Results from operand parsing worker functions. */
90
91 typedef enum
92 {
93 PARSE_OPERAND_SUCCESS,
94 PARSE_OPERAND_FAIL,
95 PARSE_OPERAND_FAIL_NO_BACKTRACK
96 } parse_operand_result;
97
98 enum arm_float_abi
99 {
100 ARM_FLOAT_ABI_HARD,
101 ARM_FLOAT_ABI_SOFTFP,
102 ARM_FLOAT_ABI_SOFT
103 };
104
105 /* Types of processor to assemble for. */
106 #ifndef CPU_DEFAULT
107 #if defined __XSCALE__
108 #define CPU_DEFAULT ARM_ARCH_XSCALE
109 #else
110 #if defined __thumb__
111 #define CPU_DEFAULT ARM_ARCH_V5T
112 #endif
113 #endif
114 #endif
115
116 #ifndef FPU_DEFAULT
117 # ifdef TE_LINUX
118 # define FPU_DEFAULT FPU_ARCH_FPA
119 # elif defined (TE_NetBSD)
120 # ifdef OBJ_ELF
121 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
122 # else
123 /* Legacy a.out format. */
124 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
125 # endif
126 # elif defined (TE_VXWORKS)
127 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
128 # else
129 /* For backwards compatibility, default to FPA. */
130 # define FPU_DEFAULT FPU_ARCH_FPA
131 # endif
132 #endif /* ifndef FPU_DEFAULT */
133
134 #define streq(a, b) (strcmp (a, b) == 0)
135
136 static arm_feature_set cpu_variant;
137 static arm_feature_set arm_arch_used;
138 static arm_feature_set thumb_arch_used;
139
140 /* Flags stored in private area of BFD structure. */
141 static int uses_apcs_26 = FALSE;
142 static int atpcs = FALSE;
143 static int support_interwork = FALSE;
144 static int uses_apcs_float = FALSE;
145 static int pic_code = FALSE;
146
147 /* Variables that we set while parsing command-line options. Once all
148 options have been read we re-process these values to set the real
149 assembly flags. */
150 static const arm_feature_set *legacy_cpu = NULL;
151 static const arm_feature_set *legacy_fpu = NULL;
152
153 static const arm_feature_set *mcpu_cpu_opt = NULL;
154 static const arm_feature_set *mcpu_fpu_opt = NULL;
155 static const arm_feature_set *march_cpu_opt = NULL;
156 static const arm_feature_set *march_fpu_opt = NULL;
157 static const arm_feature_set *mfpu_opt = NULL;
158
159 /* Constants for known architecture features. */
160 static const arm_feature_set fpu_default = FPU_DEFAULT;
161 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
162 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
163 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
164 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
165 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
166 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
167 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
168 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
169
170 #ifdef CPU_DEFAULT
171 static const arm_feature_set cpu_default = CPU_DEFAULT;
172 #endif
173
174 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
175 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
176 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
177 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
178 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
179 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
180 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
181 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
182 static const arm_feature_set arm_ext_v4t_5 =
183 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
184 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
185 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
186 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
187 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
188 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
189 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
190 static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0);
191 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
192 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198
199 static const arm_feature_set arm_arch_any = ARM_ANY;
200 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
201 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
202 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
203
204 static const arm_feature_set arm_cext_iwmmxt =
205 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
206 static const arm_feature_set arm_cext_xscale =
207 ARM_FEATURE (0, ARM_CEXT_XSCALE);
208 static const arm_feature_set arm_cext_maverick =
209 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
210 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
211 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
212 static const arm_feature_set fpu_vfp_ext_v1xd =
213 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
214 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
215 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
216 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
217 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
218 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
219 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
220
221 static int mfloat_abi_opt = -1;
222 /* Record user cpu selection for object attributes. */
223 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
224 /* Must be long enough to hold any of the names in arm_cpus. */
225 static char selected_cpu_name[16];
226 #ifdef OBJ_ELF
227 # ifdef EABI_DEFAULT
228 static int meabi_flags = EABI_DEFAULT;
229 # else
230 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
231 # endif
232 #endif
233
234 #ifdef OBJ_ELF
235 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
236 symbolS * GOT_symbol;
237 #endif
238
239 /* 0: assemble for ARM,
240 1: assemble for Thumb,
241 2: assemble for Thumb even though target CPU does not support thumb
242 instructions. */
243 static int thumb_mode = 0;
244
245 /* If unified_syntax is true, we are processing the new unified
246 ARM/Thumb syntax. Important differences from the old ARM mode:
247
248 - Immediate operands do not require a # prefix.
249 - Conditional affixes always appear at the end of the
250 instruction. (For backward compatibility, those instructions
251 that formerly had them in the middle, continue to accept them
252 there.)
253 - The IT instruction may appear, and if it does is validated
254 against subsequent conditional affixes. It does not generate
255 machine code.
256
257 Important differences from the old Thumb mode:
258
259 - Immediate operands do not require a # prefix.
260 - Most of the V6T2 instructions are only available in unified mode.
261 - The .N and .W suffixes are recognized and honored (it is an error
262 if they cannot be honored).
263 - All instructions set the flags if and only if they have an 's' affix.
264 - Conditional affixes may be used. They are validated against
265 preceding IT instructions. Unlike ARM mode, you cannot use a
266 conditional affix except in the scope of an IT instruction. */
267
268 static bfd_boolean unified_syntax = FALSE;
269
270 enum neon_el_type
271 {
272 NT_invtype,
273 NT_untyped,
274 NT_integer,
275 NT_float,
276 NT_poly,
277 NT_signed,
278 NT_unsigned
279 };
280
281 struct neon_type_el
282 {
283 enum neon_el_type type;
284 unsigned size;
285 };
286
287 #define NEON_MAX_TYPE_ELS 4
288
289 struct neon_type
290 {
291 struct neon_type_el el[NEON_MAX_TYPE_ELS];
292 unsigned elems;
293 };
294
295 struct arm_it
296 {
297 const char * error;
298 unsigned long instruction;
299 int size;
300 int size_req;
301 int cond;
302 /* "uncond_value" is set to the value in place of the conditional field in
303 unconditional versions of the instruction, or -1 if nothing is
304 appropriate. */
305 int uncond_value;
306 struct neon_type vectype;
307 /* Set to the opcode if the instruction needs relaxation.
308 Zero if the instruction is not relaxed. */
309 unsigned long relax;
310 struct
311 {
312 bfd_reloc_code_real_type type;
313 expressionS exp;
314 int pc_rel;
315 } reloc;
316
317 struct
318 {
319 unsigned reg;
320 signed int imm;
321 struct neon_type_el vectype;
322 unsigned present : 1; /* Operand present. */
323 unsigned isreg : 1; /* Operand was a register. */
324 unsigned immisreg : 1; /* .imm field is a second register. */
325 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
326 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
327 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
328 instructions. This allows us to disambiguate ARM <-> vector insns. */
329 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
330 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
331 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
332 unsigned issingle : 1; /* Operand is VFP single-precision register. */
333 unsigned hasreloc : 1; /* Operand has relocation suffix. */
334 unsigned writeback : 1; /* Operand has trailing ! */
335 unsigned preind : 1; /* Preindexed address. */
336 unsigned postind : 1; /* Postindexed address. */
337 unsigned negative : 1; /* Index register was negated. */
338 unsigned shifted : 1; /* Shift applied to operation. */
339 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
340 } operands[6];
341 };
342
343 static struct arm_it inst;
344
345 #define NUM_FLOAT_VALS 8
346
347 const char * fp_const[] =
348 {
349 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
350 };
351
352 /* Number of littlenums required to hold an extended precision number. */
353 #define MAX_LITTLENUMS 6
354
355 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
356
357 #define FAIL (-1)
358 #define SUCCESS (0)
359
360 #define SUFF_S 1
361 #define SUFF_D 2
362 #define SUFF_E 3
363 #define SUFF_P 4
364
365 #define CP_T_X 0x00008000
366 #define CP_T_Y 0x00400000
367
368 #define CONDS_BIT 0x00100000
369 #define LOAD_BIT 0x00100000
370
371 #define DOUBLE_LOAD_FLAG 0x00000001
372
373 struct asm_cond
374 {
375 const char * template;
376 unsigned long value;
377 };
378
379 #define COND_ALWAYS 0xE
380
381 struct asm_psr
382 {
383 const char *template;
384 unsigned long field;
385 };
386
387 struct asm_barrier_opt
388 {
389 const char *template;
390 unsigned long value;
391 };
392
393 /* The bit that distinguishes CPSR and SPSR. */
394 #define SPSR_BIT (1 << 22)
395
396 /* The individual PSR flag bits. */
397 #define PSR_c (1 << 16)
398 #define PSR_x (1 << 17)
399 #define PSR_s (1 << 18)
400 #define PSR_f (1 << 19)
401
402 struct reloc_entry
403 {
404 char *name;
405 bfd_reloc_code_real_type reloc;
406 };
407
408 enum vfp_reg_pos
409 {
410 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
411 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
412 };
413
414 enum vfp_ldstm_type
415 {
416 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
417 };
418
419 /* Bits for DEFINED field in neon_typed_alias. */
420 #define NTA_HASTYPE 1
421 #define NTA_HASINDEX 2
422
423 struct neon_typed_alias
424 {
425 unsigned char defined;
426 unsigned char index;
427 struct neon_type_el eltype;
428 };
429
430 /* ARM register categories. This includes coprocessor numbers and various
431 architecture extensions' registers. */
432 enum arm_reg_type
433 {
434 REG_TYPE_RN,
435 REG_TYPE_CP,
436 REG_TYPE_CN,
437 REG_TYPE_FN,
438 REG_TYPE_VFS,
439 REG_TYPE_VFD,
440 REG_TYPE_NQ,
441 REG_TYPE_VFSD,
442 REG_TYPE_NDQ,
443 REG_TYPE_NSDQ,
444 REG_TYPE_VFC,
445 REG_TYPE_MVF,
446 REG_TYPE_MVD,
447 REG_TYPE_MVFX,
448 REG_TYPE_MVDX,
449 REG_TYPE_MVAX,
450 REG_TYPE_DSPSC,
451 REG_TYPE_MMXWR,
452 REG_TYPE_MMXWC,
453 REG_TYPE_MMXWCG,
454 REG_TYPE_XSCALE,
455 };
456
457 /* Structure for a hash table entry for a register.
458 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
459 information which states whether a vector type or index is specified (for a
460 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
461 struct reg_entry
462 {
463 const char *name;
464 unsigned char number;
465 unsigned char type;
466 unsigned char builtin;
467 struct neon_typed_alias *neon;
468 };
469
470 /* Diagnostics used when we don't get a register of the expected type. */
471 const char *const reg_expected_msgs[] =
472 {
473 N_("ARM register expected"),
474 N_("bad or missing co-processor number"),
475 N_("co-processor register expected"),
476 N_("FPA register expected"),
477 N_("VFP single precision register expected"),
478 N_("VFP/Neon double precision register expected"),
479 N_("Neon quad precision register expected"),
480 N_("VFP single or double precision register expected"),
481 N_("Neon double or quad precision register expected"),
482 N_("VFP single, double or Neon quad precision register expected"),
483 N_("VFP system register expected"),
484 N_("Maverick MVF register expected"),
485 N_("Maverick MVD register expected"),
486 N_("Maverick MVFX register expected"),
487 N_("Maverick MVDX register expected"),
488 N_("Maverick MVAX register expected"),
489 N_("Maverick DSPSC register expected"),
490 N_("iWMMXt data register expected"),
491 N_("iWMMXt control register expected"),
492 N_("iWMMXt scalar register expected"),
493 N_("XScale accumulator register expected"),
494 };
495
496 /* Some well known registers that we refer to directly elsewhere. */
497 #define REG_SP 13
498 #define REG_LR 14
499 #define REG_PC 15
500
501 /* ARM instructions take 4bytes in the object file, Thumb instructions
502 take 2: */
503 #define INSN_SIZE 4
504
505 struct asm_opcode
506 {
507 /* Basic string to match. */
508 const char *template;
509
510 /* Parameters to instruction. */
511 unsigned char operands[8];
512
513 /* Conditional tag - see opcode_lookup. */
514 unsigned int tag : 4;
515
516 /* Basic instruction code. */
517 unsigned int avalue : 28;
518
519 /* Thumb-format instruction code. */
520 unsigned int tvalue;
521
522 /* Which architecture variant provides this instruction. */
523 const arm_feature_set *avariant;
524 const arm_feature_set *tvariant;
525
526 /* Function to call to encode instruction in ARM format. */
527 void (* aencode) (void);
528
529 /* Function to call to encode instruction in Thumb format. */
530 void (* tencode) (void);
531 };
532
533 /* Defines for various bits that we will want to toggle. */
534 #define INST_IMMEDIATE 0x02000000
535 #define OFFSET_REG 0x02000000
536 #define HWOFFSET_IMM 0x00400000
537 #define SHIFT_BY_REG 0x00000010
538 #define PRE_INDEX 0x01000000
539 #define INDEX_UP 0x00800000
540 #define WRITE_BACK 0x00200000
541 #define LDM_TYPE_2_OR_3 0x00400000
542
543 #define LITERAL_MASK 0xf000f000
544 #define OPCODE_MASK 0xfe1fffff
545 #define V4_STR_BIT 0x00000020
546
547 #define DATA_OP_SHIFT 21
548
549 #define T2_OPCODE_MASK 0xfe1fffff
550 #define T2_DATA_OP_SHIFT 21
551
552 /* Codes to distinguish the arithmetic instructions. */
553 #define OPCODE_AND 0
554 #define OPCODE_EOR 1
555 #define OPCODE_SUB 2
556 #define OPCODE_RSB 3
557 #define OPCODE_ADD 4
558 #define OPCODE_ADC 5
559 #define OPCODE_SBC 6
560 #define OPCODE_RSC 7
561 #define OPCODE_TST 8
562 #define OPCODE_TEQ 9
563 #define OPCODE_CMP 10
564 #define OPCODE_CMN 11
565 #define OPCODE_ORR 12
566 #define OPCODE_MOV 13
567 #define OPCODE_BIC 14
568 #define OPCODE_MVN 15
569
570 #define T2_OPCODE_AND 0
571 #define T2_OPCODE_BIC 1
572 #define T2_OPCODE_ORR 2
573 #define T2_OPCODE_ORN 3
574 #define T2_OPCODE_EOR 4
575 #define T2_OPCODE_ADD 8
576 #define T2_OPCODE_ADC 10
577 #define T2_OPCODE_SBC 11
578 #define T2_OPCODE_SUB 13
579 #define T2_OPCODE_RSB 14
580
581 #define T_OPCODE_MUL 0x4340
582 #define T_OPCODE_TST 0x4200
583 #define T_OPCODE_CMN 0x42c0
584 #define T_OPCODE_NEG 0x4240
585 #define T_OPCODE_MVN 0x43c0
586
587 #define T_OPCODE_ADD_R3 0x1800
588 #define T_OPCODE_SUB_R3 0x1a00
589 #define T_OPCODE_ADD_HI 0x4400
590 #define T_OPCODE_ADD_ST 0xb000
591 #define T_OPCODE_SUB_ST 0xb080
592 #define T_OPCODE_ADD_SP 0xa800
593 #define T_OPCODE_ADD_PC 0xa000
594 #define T_OPCODE_ADD_I8 0x3000
595 #define T_OPCODE_SUB_I8 0x3800
596 #define T_OPCODE_ADD_I3 0x1c00
597 #define T_OPCODE_SUB_I3 0x1e00
598
599 #define T_OPCODE_ASR_R 0x4100
600 #define T_OPCODE_LSL_R 0x4080
601 #define T_OPCODE_LSR_R 0x40c0
602 #define T_OPCODE_ROR_R 0x41c0
603 #define T_OPCODE_ASR_I 0x1000
604 #define T_OPCODE_LSL_I 0x0000
605 #define T_OPCODE_LSR_I 0x0800
606
607 #define T_OPCODE_MOV_I8 0x2000
608 #define T_OPCODE_CMP_I8 0x2800
609 #define T_OPCODE_CMP_LR 0x4280
610 #define T_OPCODE_MOV_HR 0x4600
611 #define T_OPCODE_CMP_HR 0x4500
612
613 #define T_OPCODE_LDR_PC 0x4800
614 #define T_OPCODE_LDR_SP 0x9800
615 #define T_OPCODE_STR_SP 0x9000
616 #define T_OPCODE_LDR_IW 0x6800
617 #define T_OPCODE_STR_IW 0x6000
618 #define T_OPCODE_LDR_IH 0x8800
619 #define T_OPCODE_STR_IH 0x8000
620 #define T_OPCODE_LDR_IB 0x7800
621 #define T_OPCODE_STR_IB 0x7000
622 #define T_OPCODE_LDR_RW 0x5800
623 #define T_OPCODE_STR_RW 0x5000
624 #define T_OPCODE_LDR_RH 0x5a00
625 #define T_OPCODE_STR_RH 0x5200
626 #define T_OPCODE_LDR_RB 0x5c00
627 #define T_OPCODE_STR_RB 0x5400
628
629 #define T_OPCODE_PUSH 0xb400
630 #define T_OPCODE_POP 0xbc00
631
632 #define T_OPCODE_BRANCH 0xe000
633
634 #define THUMB_SIZE 2 /* Size of thumb instruction. */
635 #define THUMB_PP_PC_LR 0x0100
636 #define THUMB_LOAD_BIT 0x0800
637 #define THUMB2_LOAD_BIT 0x00100000
638
639 #define BAD_ARGS _("bad arguments to instruction")
640 #define BAD_PC _("r15 not allowed here")
641 #define BAD_COND _("instruction cannot be conditional")
642 #define BAD_OVERLAP _("registers may not be the same")
643 #define BAD_HIREG _("lo register required")
644 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
645 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
646 #define BAD_BRANCH _("branch must be last instruction in IT block")
647 #define BAD_NOT_IT _("instruction not allowed in IT block")
648 #define BAD_FPU _("selected FPU does not support instruction")
649
650 static struct hash_control *arm_ops_hsh;
651 static struct hash_control *arm_cond_hsh;
652 static struct hash_control *arm_shift_hsh;
653 static struct hash_control *arm_psr_hsh;
654 static struct hash_control *arm_v7m_psr_hsh;
655 static struct hash_control *arm_reg_hsh;
656 static struct hash_control *arm_reloc_hsh;
657 static struct hash_control *arm_barrier_opt_hsh;
658
659 /* Stuff needed to resolve the label ambiguity
660 As:
661 ...
662 label: <insn>
663 may differ from:
664 ...
665 label:
666 <insn>
667 */
668
669 symbolS * last_label_seen;
670 static int label_is_thumb_function_name = FALSE;
671 \f
672 /* Literal pool structure. Held on a per-section
673 and per-sub-section basis. */
674
675 #define MAX_LITERAL_POOL_SIZE 1024
676 typedef struct literal_pool
677 {
678 expressionS literals [MAX_LITERAL_POOL_SIZE];
679 unsigned int next_free_entry;
680 unsigned int id;
681 symbolS * symbol;
682 segT section;
683 subsegT sub_section;
684 struct literal_pool * next;
685 } literal_pool;
686
687 /* Pointer to a linked list of literal pools. */
688 literal_pool * list_of_pools = NULL;
689
690 /* State variables for IT block handling. */
691 static bfd_boolean current_it_mask = 0;
692 static int current_cc;
693
694 \f
695 /* Pure syntax. */
696
697 /* This array holds the chars that always start a comment. If the
698 pre-processor is disabled, these aren't very useful. */
699 const char comment_chars[] = "@";
700
701 /* This array holds the chars that only start a comment at the beginning of
702 a line. If the line seems to have the form '# 123 filename'
703 .line and .file directives will appear in the pre-processed output. */
704 /* Note that input_file.c hand checks for '#' at the beginning of the
705 first line of the input file. This is because the compiler outputs
706 #NO_APP at the beginning of its output. */
707 /* Also note that comments like this one will always work. */
708 const char line_comment_chars[] = "#";
709
710 const char line_separator_chars[] = ";";
711
712 /* Chars that can be used to separate mant
713 from exp in floating point numbers. */
714 const char EXP_CHARS[] = "eE";
715
716 /* Chars that mean this number is a floating point constant. */
717 /* As in 0f12.456 */
718 /* or 0d1.2345e12 */
719
720 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
721
722 /* Prefix characters that indicate the start of an immediate
723 value. */
724 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
725
726 /* Separator character handling. */
727
728 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
729
730 static inline int
731 skip_past_char (char ** str, char c)
732 {
733 if (**str == c)
734 {
735 (*str)++;
736 return SUCCESS;
737 }
738 else
739 return FAIL;
740 }
741 #define skip_past_comma(str) skip_past_char (str, ',')
742
743 /* Arithmetic expressions (possibly involving symbols). */
744
745 /* Return TRUE if anything in the expression is a bignum. */
746
747 static int
748 walk_no_bignums (symbolS * sp)
749 {
750 if (symbol_get_value_expression (sp)->X_op == O_big)
751 return 1;
752
753 if (symbol_get_value_expression (sp)->X_add_symbol)
754 {
755 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
756 || (symbol_get_value_expression (sp)->X_op_symbol
757 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
758 }
759
760 return 0;
761 }
762
763 static int in_my_get_expression = 0;
764
765 /* Third argument to my_get_expression. */
766 #define GE_NO_PREFIX 0
767 #define GE_IMM_PREFIX 1
768 #define GE_OPT_PREFIX 2
769 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
770 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
771 #define GE_OPT_PREFIX_BIG 3
772
773 static int
774 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
775 {
776 char * save_in;
777 segT seg;
778
779 /* In unified syntax, all prefixes are optional. */
780 if (unified_syntax)
781 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
782 : GE_OPT_PREFIX;
783
784 switch (prefix_mode)
785 {
786 case GE_NO_PREFIX: break;
787 case GE_IMM_PREFIX:
788 if (!is_immediate_prefix (**str))
789 {
790 inst.error = _("immediate expression requires a # prefix");
791 return FAIL;
792 }
793 (*str)++;
794 break;
795 case GE_OPT_PREFIX:
796 case GE_OPT_PREFIX_BIG:
797 if (is_immediate_prefix (**str))
798 (*str)++;
799 break;
800 default: abort ();
801 }
802
803 memset (ep, 0, sizeof (expressionS));
804
805 save_in = input_line_pointer;
806 input_line_pointer = *str;
807 in_my_get_expression = 1;
808 seg = expression (ep);
809 in_my_get_expression = 0;
810
811 if (ep->X_op == O_illegal)
812 {
813 /* We found a bad expression in md_operand(). */
814 *str = input_line_pointer;
815 input_line_pointer = save_in;
816 if (inst.error == NULL)
817 inst.error = _("bad expression");
818 return 1;
819 }
820
821 #ifdef OBJ_AOUT
822 if (seg != absolute_section
823 && seg != text_section
824 && seg != data_section
825 && seg != bss_section
826 && seg != undefined_section)
827 {
828 inst.error = _("bad segment");
829 *str = input_line_pointer;
830 input_line_pointer = save_in;
831 return 1;
832 }
833 #endif
834
835 /* Get rid of any bignums now, so that we don't generate an error for which
836 we can't establish a line number later on. Big numbers are never valid
837 in instructions, which is where this routine is always called. */
838 if (prefix_mode != GE_OPT_PREFIX_BIG
839 && (ep->X_op == O_big
840 || (ep->X_add_symbol
841 && (walk_no_bignums (ep->X_add_symbol)
842 || (ep->X_op_symbol
843 && walk_no_bignums (ep->X_op_symbol))))))
844 {
845 inst.error = _("invalid constant");
846 *str = input_line_pointer;
847 input_line_pointer = save_in;
848 return 1;
849 }
850
851 *str = input_line_pointer;
852 input_line_pointer = save_in;
853 return 0;
854 }
855
856 /* Turn a string in input_line_pointer into a floating point constant
857 of type TYPE, and store the appropriate bytes in *LITP. The number
858 of LITTLENUMS emitted is stored in *SIZEP. An error message is
859 returned, or NULL on OK.
860
861 Note that fp constants aren't represent in the normal way on the ARM.
862 In big endian mode, things are as expected. However, in little endian
863 mode fp constants are big-endian word-wise, and little-endian byte-wise
864 within the words. For example, (double) 1.1 in big endian mode is
865 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
866 the byte sequence 99 99 f1 3f 9a 99 99 99.
867
868 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
869
870 char *
871 md_atof (int type, char * litP, int * sizeP)
872 {
873 int prec;
874 LITTLENUM_TYPE words[MAX_LITTLENUMS];
875 char *t;
876 int i;
877
878 switch (type)
879 {
880 case 'f':
881 case 'F':
882 case 's':
883 case 'S':
884 prec = 2;
885 break;
886
887 case 'd':
888 case 'D':
889 case 'r':
890 case 'R':
891 prec = 4;
892 break;
893
894 case 'x':
895 case 'X':
896 prec = 6;
897 break;
898
899 case 'p':
900 case 'P':
901 prec = 6;
902 break;
903
904 default:
905 *sizeP = 0;
906 return _("bad call to MD_ATOF()");
907 }
908
909 t = atof_ieee (input_line_pointer, type, words);
910 if (t)
911 input_line_pointer = t;
912 *sizeP = prec * 2;
913
914 if (target_big_endian)
915 {
916 for (i = 0; i < prec; i++)
917 {
918 md_number_to_chars (litP, (valueT) words[i], 2);
919 litP += 2;
920 }
921 }
922 else
923 {
924 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
925 for (i = prec - 1; i >= 0; i--)
926 {
927 md_number_to_chars (litP, (valueT) words[i], 2);
928 litP += 2;
929 }
930 else
931 /* For a 4 byte float the order of elements in `words' is 1 0.
932 For an 8 byte float the order is 1 0 3 2. */
933 for (i = 0; i < prec; i += 2)
934 {
935 md_number_to_chars (litP, (valueT) words[i + 1], 2);
936 md_number_to_chars (litP + 2, (valueT) words[i], 2);
937 litP += 4;
938 }
939 }
940
941 return 0;
942 }
943
944 /* We handle all bad expressions here, so that we can report the faulty
945 instruction in the error message. */
946 void
947 md_operand (expressionS * expr)
948 {
949 if (in_my_get_expression)
950 expr->X_op = O_illegal;
951 }
952
953 /* Immediate values. */
954
955 /* Generic immediate-value read function for use in directives.
956 Accepts anything that 'expression' can fold to a constant.
957 *val receives the number. */
958 #ifdef OBJ_ELF
959 static int
960 immediate_for_directive (int *val)
961 {
962 expressionS exp;
963 exp.X_op = O_illegal;
964
965 if (is_immediate_prefix (*input_line_pointer))
966 {
967 input_line_pointer++;
968 expression (&exp);
969 }
970
971 if (exp.X_op != O_constant)
972 {
973 as_bad (_("expected #constant"));
974 ignore_rest_of_line ();
975 return FAIL;
976 }
977 *val = exp.X_add_number;
978 return SUCCESS;
979 }
980 #endif
981
982 /* Register parsing. */
983
984 /* Generic register parser. CCP points to what should be the
985 beginning of a register name. If it is indeed a valid register
986 name, advance CCP over it and return the reg_entry structure;
987 otherwise return NULL. Does not issue diagnostics. */
988
989 static struct reg_entry *
990 arm_reg_parse_multi (char **ccp)
991 {
992 char *start = *ccp;
993 char *p;
994 struct reg_entry *reg;
995
996 #ifdef REGISTER_PREFIX
997 if (*start != REGISTER_PREFIX)
998 return NULL;
999 start++;
1000 #endif
1001 #ifdef OPTIONAL_REGISTER_PREFIX
1002 if (*start == OPTIONAL_REGISTER_PREFIX)
1003 start++;
1004 #endif
1005
1006 p = start;
1007 if (!ISALPHA (*p) || !is_name_beginner (*p))
1008 return NULL;
1009
1010 do
1011 p++;
1012 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1013
1014 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1015
1016 if (!reg)
1017 return NULL;
1018
1019 *ccp = p;
1020 return reg;
1021 }
1022
1023 static int
1024 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1025 enum arm_reg_type type)
1026 {
1027 /* Alternative syntaxes are accepted for a few register classes. */
1028 switch (type)
1029 {
1030 case REG_TYPE_MVF:
1031 case REG_TYPE_MVD:
1032 case REG_TYPE_MVFX:
1033 case REG_TYPE_MVDX:
1034 /* Generic coprocessor register names are allowed for these. */
1035 if (reg && reg->type == REG_TYPE_CN)
1036 return reg->number;
1037 break;
1038
1039 case REG_TYPE_CP:
1040 /* For backward compatibility, a bare number is valid here. */
1041 {
1042 unsigned long processor = strtoul (start, ccp, 10);
1043 if (*ccp != start && processor <= 15)
1044 return processor;
1045 }
1046
1047 case REG_TYPE_MMXWC:
1048 /* WC includes WCG. ??? I'm not sure this is true for all
1049 instructions that take WC registers. */
1050 if (reg && reg->type == REG_TYPE_MMXWCG)
1051 return reg->number;
1052 break;
1053
1054 default:
1055 break;
1056 }
1057
1058 return FAIL;
1059 }
1060
1061 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1062 return value is the register number or FAIL. */
1063
1064 static int
1065 arm_reg_parse (char **ccp, enum arm_reg_type type)
1066 {
1067 char *start = *ccp;
1068 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1069 int ret;
1070
1071 /* Do not allow a scalar (reg+index) to parse as a register. */
1072 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1073 return FAIL;
1074
1075 if (reg && reg->type == type)
1076 return reg->number;
1077
1078 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1079 return ret;
1080
1081 *ccp = start;
1082 return FAIL;
1083 }
1084
1085 /* Parse a Neon type specifier. *STR should point at the leading '.'
1086 character. Does no verification at this stage that the type fits the opcode
1087 properly. E.g.,
1088
1089 .i32.i32.s16
1090 .s32.f32
1091 .u16
1092
1093 Can all be legally parsed by this function.
1094
1095 Fills in neon_type struct pointer with parsed information, and updates STR
1096 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1097 type, FAIL if not. */
1098
1099 static int
1100 parse_neon_type (struct neon_type *type, char **str)
1101 {
1102 char *ptr = *str;
1103
1104 if (type)
1105 type->elems = 0;
1106
1107 while (type->elems < NEON_MAX_TYPE_ELS)
1108 {
1109 enum neon_el_type thistype = NT_untyped;
1110 unsigned thissize = -1u;
1111
1112 if (*ptr != '.')
1113 break;
1114
1115 ptr++;
1116
1117 /* Just a size without an explicit type. */
1118 if (ISDIGIT (*ptr))
1119 goto parsesize;
1120
1121 switch (TOLOWER (*ptr))
1122 {
1123 case 'i': thistype = NT_integer; break;
1124 case 'f': thistype = NT_float; break;
1125 case 'p': thistype = NT_poly; break;
1126 case 's': thistype = NT_signed; break;
1127 case 'u': thistype = NT_unsigned; break;
1128 case 'd':
1129 thistype = NT_float;
1130 thissize = 64;
1131 ptr++;
1132 goto done;
1133 default:
1134 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1135 return FAIL;
1136 }
1137
1138 ptr++;
1139
1140 /* .f is an abbreviation for .f32. */
1141 if (thistype == NT_float && !ISDIGIT (*ptr))
1142 thissize = 32;
1143 else
1144 {
1145 parsesize:
1146 thissize = strtoul (ptr, &ptr, 10);
1147
1148 if (thissize != 8 && thissize != 16 && thissize != 32
1149 && thissize != 64)
1150 {
1151 as_bad (_("bad size %d in type specifier"), thissize);
1152 return FAIL;
1153 }
1154 }
1155
1156 done:
1157 if (type)
1158 {
1159 type->el[type->elems].type = thistype;
1160 type->el[type->elems].size = thissize;
1161 type->elems++;
1162 }
1163 }
1164
1165 /* Empty/missing type is not a successful parse. */
1166 if (type->elems == 0)
1167 return FAIL;
1168
1169 *str = ptr;
1170
1171 return SUCCESS;
1172 }
1173
1174 /* Errors may be set multiple times during parsing or bit encoding
1175 (particularly in the Neon bits), but usually the earliest error which is set
1176 will be the most meaningful. Avoid overwriting it with later (cascading)
1177 errors by calling this function. */
1178
1179 static void
1180 first_error (const char *err)
1181 {
1182 if (!inst.error)
1183 inst.error = err;
1184 }
1185
1186 /* Parse a single type, e.g. ".s32", leading period included. */
1187 static int
1188 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1189 {
1190 char *str = *ccp;
1191 struct neon_type optype;
1192
1193 if (*str == '.')
1194 {
1195 if (parse_neon_type (&optype, &str) == SUCCESS)
1196 {
1197 if (optype.elems == 1)
1198 *vectype = optype.el[0];
1199 else
1200 {
1201 first_error (_("only one type should be specified for operand"));
1202 return FAIL;
1203 }
1204 }
1205 else
1206 {
1207 first_error (_("vector type expected"));
1208 return FAIL;
1209 }
1210 }
1211 else
1212 return FAIL;
1213
1214 *ccp = str;
1215
1216 return SUCCESS;
1217 }
1218
1219 /* Special meanings for indices (which have a range of 0-7), which will fit into
1220 a 4-bit integer. */
1221
1222 #define NEON_ALL_LANES 15
1223 #define NEON_INTERLEAVE_LANES 14
1224
1225 /* Parse either a register or a scalar, with an optional type. Return the
1226 register number, and optionally fill in the actual type of the register
1227 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1228 type/index information in *TYPEINFO. */
1229
1230 static int
1231 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1232 enum arm_reg_type *rtype,
1233 struct neon_typed_alias *typeinfo)
1234 {
1235 char *str = *ccp;
1236 struct reg_entry *reg = arm_reg_parse_multi (&str);
1237 struct neon_typed_alias atype;
1238 struct neon_type_el parsetype;
1239
1240 atype.defined = 0;
1241 atype.index = -1;
1242 atype.eltype.type = NT_invtype;
1243 atype.eltype.size = -1;
1244
1245 /* Try alternate syntax for some types of register. Note these are mutually
1246 exclusive with the Neon syntax extensions. */
1247 if (reg == NULL)
1248 {
1249 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1250 if (altreg != FAIL)
1251 *ccp = str;
1252 if (typeinfo)
1253 *typeinfo = atype;
1254 return altreg;
1255 }
1256
1257 /* Undo polymorphism when a set of register types may be accepted. */
1258 if ((type == REG_TYPE_NDQ
1259 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1260 || (type == REG_TYPE_VFSD
1261 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1262 || (type == REG_TYPE_NSDQ
1263 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1264 || reg->type == REG_TYPE_NQ)))
1265 type = reg->type;
1266
1267 if (type != reg->type)
1268 return FAIL;
1269
1270 if (reg->neon)
1271 atype = *reg->neon;
1272
1273 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1274 {
1275 if ((atype.defined & NTA_HASTYPE) != 0)
1276 {
1277 first_error (_("can't redefine type for operand"));
1278 return FAIL;
1279 }
1280 atype.defined |= NTA_HASTYPE;
1281 atype.eltype = parsetype;
1282 }
1283
1284 if (skip_past_char (&str, '[') == SUCCESS)
1285 {
1286 if (type != REG_TYPE_VFD)
1287 {
1288 first_error (_("only D registers may be indexed"));
1289 return FAIL;
1290 }
1291
1292 if ((atype.defined & NTA_HASINDEX) != 0)
1293 {
1294 first_error (_("can't change index for operand"));
1295 return FAIL;
1296 }
1297
1298 atype.defined |= NTA_HASINDEX;
1299
1300 if (skip_past_char (&str, ']') == SUCCESS)
1301 atype.index = NEON_ALL_LANES;
1302 else
1303 {
1304 expressionS exp;
1305
1306 my_get_expression (&exp, &str, GE_NO_PREFIX);
1307
1308 if (exp.X_op != O_constant)
1309 {
1310 first_error (_("constant expression required"));
1311 return FAIL;
1312 }
1313
1314 if (skip_past_char (&str, ']') == FAIL)
1315 return FAIL;
1316
1317 atype.index = exp.X_add_number;
1318 }
1319 }
1320
1321 if (typeinfo)
1322 *typeinfo = atype;
1323
1324 if (rtype)
1325 *rtype = type;
1326
1327 *ccp = str;
1328
1329 return reg->number;
1330 }
1331
1332 /* Like arm_reg_parse, but allow allow the following extra features:
1333 - If RTYPE is non-zero, return the (possibly restricted) type of the
1334 register (e.g. Neon double or quad reg when either has been requested).
1335 - If this is a Neon vector type with additional type information, fill
1336 in the struct pointed to by VECTYPE (if non-NULL).
1337 This function will fault on encountering a scalar.
1338 */
1339
1340 static int
1341 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1342 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1343 {
1344 struct neon_typed_alias atype;
1345 char *str = *ccp;
1346 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1347
1348 if (reg == FAIL)
1349 return FAIL;
1350
1351 /* Do not allow a scalar (reg+index) to parse as a register. */
1352 if ((atype.defined & NTA_HASINDEX) != 0)
1353 {
1354 first_error (_("register operand expected, but got scalar"));
1355 return FAIL;
1356 }
1357
1358 if (vectype)
1359 *vectype = atype.eltype;
1360
1361 *ccp = str;
1362
1363 return reg;
1364 }
1365
1366 #define NEON_SCALAR_REG(X) ((X) >> 4)
1367 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1368
1369 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1370 have enough information to be able to do a good job bounds-checking. So, we
1371 just do easy checks here, and do further checks later. */
1372
1373 static int
1374 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1375 {
1376 int reg;
1377 char *str = *ccp;
1378 struct neon_typed_alias atype;
1379
1380 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1381
1382 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1383 return FAIL;
1384
1385 if (atype.index == NEON_ALL_LANES)
1386 {
1387 first_error (_("scalar must have an index"));
1388 return FAIL;
1389 }
1390 else if (atype.index >= 64 / elsize)
1391 {
1392 first_error (_("scalar index out of range"));
1393 return FAIL;
1394 }
1395
1396 if (type)
1397 *type = atype.eltype;
1398
1399 *ccp = str;
1400
1401 return reg * 16 + atype.index;
1402 }
1403
1404 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1405 static long
1406 parse_reg_list (char ** strp)
1407 {
1408 char * str = * strp;
1409 long range = 0;
1410 int another_range;
1411
1412 /* We come back here if we get ranges concatenated by '+' or '|'. */
1413 do
1414 {
1415 another_range = 0;
1416
1417 if (*str == '{')
1418 {
1419 int in_range = 0;
1420 int cur_reg = -1;
1421
1422 str++;
1423 do
1424 {
1425 int reg;
1426
1427 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1428 {
1429 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1430 return FAIL;
1431 }
1432
1433 if (in_range)
1434 {
1435 int i;
1436
1437 if (reg <= cur_reg)
1438 {
1439 first_error (_("bad range in register list"));
1440 return FAIL;
1441 }
1442
1443 for (i = cur_reg + 1; i < reg; i++)
1444 {
1445 if (range & (1 << i))
1446 as_tsktsk
1447 (_("Warning: duplicated register (r%d) in register list"),
1448 i);
1449 else
1450 range |= 1 << i;
1451 }
1452 in_range = 0;
1453 }
1454
1455 if (range & (1 << reg))
1456 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1457 reg);
1458 else if (reg <= cur_reg)
1459 as_tsktsk (_("Warning: register range not in ascending order"));
1460
1461 range |= 1 << reg;
1462 cur_reg = reg;
1463 }
1464 while (skip_past_comma (&str) != FAIL
1465 || (in_range = 1, *str++ == '-'));
1466 str--;
1467
1468 if (*str++ != '}')
1469 {
1470 first_error (_("missing `}'"));
1471 return FAIL;
1472 }
1473 }
1474 else
1475 {
1476 expressionS expr;
1477
1478 if (my_get_expression (&expr, &str, GE_NO_PREFIX))
1479 return FAIL;
1480
1481 if (expr.X_op == O_constant)
1482 {
1483 if (expr.X_add_number
1484 != (expr.X_add_number & 0x0000ffff))
1485 {
1486 inst.error = _("invalid register mask");
1487 return FAIL;
1488 }
1489
1490 if ((range & expr.X_add_number) != 0)
1491 {
1492 int regno = range & expr.X_add_number;
1493
1494 regno &= -regno;
1495 regno = (1 << regno) - 1;
1496 as_tsktsk
1497 (_("Warning: duplicated register (r%d) in register list"),
1498 regno);
1499 }
1500
1501 range |= expr.X_add_number;
1502 }
1503 else
1504 {
1505 if (inst.reloc.type != 0)
1506 {
1507 inst.error = _("expression too complex");
1508 return FAIL;
1509 }
1510
1511 memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
1512 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1513 inst.reloc.pc_rel = 0;
1514 }
1515 }
1516
1517 if (*str == '|' || *str == '+')
1518 {
1519 str++;
1520 another_range = 1;
1521 }
1522 }
1523 while (another_range);
1524
1525 *strp = str;
1526 return range;
1527 }
1528
1529 /* Types of registers in a list. */
1530
1531 enum reg_list_els
1532 {
1533 REGLIST_VFP_S,
1534 REGLIST_VFP_D,
1535 REGLIST_NEON_D
1536 };
1537
1538 /* Parse a VFP register list. If the string is invalid return FAIL.
1539 Otherwise return the number of registers, and set PBASE to the first
1540 register. Parses registers of type ETYPE.
1541 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1542 - Q registers can be used to specify pairs of D registers
1543 - { } can be omitted from around a singleton register list
1544 FIXME: This is not implemented, as it would require backtracking in
1545 some cases, e.g.:
1546 vtbl.8 d3,d4,d5
1547 This could be done (the meaning isn't really ambiguous), but doesn't
1548 fit in well with the current parsing framework.
1549 - 32 D registers may be used (also true for VFPv3).
1550 FIXME: Types are ignored in these register lists, which is probably a
1551 bug. */
1552
1553 static int
1554 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1555 {
1556 char *str = *ccp;
1557 int base_reg;
1558 int new_base;
1559 enum arm_reg_type regtype = 0;
1560 int max_regs = 0;
1561 int count = 0;
1562 int warned = 0;
1563 unsigned long mask = 0;
1564 int i;
1565
1566 if (*str != '{')
1567 {
1568 inst.error = _("expecting {");
1569 return FAIL;
1570 }
1571
1572 str++;
1573
1574 switch (etype)
1575 {
1576 case REGLIST_VFP_S:
1577 regtype = REG_TYPE_VFS;
1578 max_regs = 32;
1579 break;
1580
1581 case REGLIST_VFP_D:
1582 regtype = REG_TYPE_VFD;
1583 break;
1584
1585 case REGLIST_NEON_D:
1586 regtype = REG_TYPE_NDQ;
1587 break;
1588 }
1589
1590 if (etype != REGLIST_VFP_S)
1591 {
1592 /* VFPv3 allows 32 D registers. */
1593 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
1594 {
1595 max_regs = 32;
1596 if (thumb_mode)
1597 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1598 fpu_vfp_ext_v3);
1599 else
1600 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1601 fpu_vfp_ext_v3);
1602 }
1603 else
1604 max_regs = 16;
1605 }
1606
1607 base_reg = max_regs;
1608
1609 do
1610 {
1611 int setmask = 1, addregs = 1;
1612
1613 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1614
1615 if (new_base == FAIL)
1616 {
1617 first_error (_(reg_expected_msgs[regtype]));
1618 return FAIL;
1619 }
1620
1621 if (new_base >= max_regs)
1622 {
1623 first_error (_("register out of range in list"));
1624 return FAIL;
1625 }
1626
1627 /* Note: a value of 2 * n is returned for the register Q<n>. */
1628 if (regtype == REG_TYPE_NQ)
1629 {
1630 setmask = 3;
1631 addregs = 2;
1632 }
1633
1634 if (new_base < base_reg)
1635 base_reg = new_base;
1636
1637 if (mask & (setmask << new_base))
1638 {
1639 first_error (_("invalid register list"));
1640 return FAIL;
1641 }
1642
1643 if ((mask >> new_base) != 0 && ! warned)
1644 {
1645 as_tsktsk (_("register list not in ascending order"));
1646 warned = 1;
1647 }
1648
1649 mask |= setmask << new_base;
1650 count += addregs;
1651
1652 if (*str == '-') /* We have the start of a range expression */
1653 {
1654 int high_range;
1655
1656 str++;
1657
1658 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1659 == FAIL)
1660 {
1661 inst.error = gettext (reg_expected_msgs[regtype]);
1662 return FAIL;
1663 }
1664
1665 if (high_range >= max_regs)
1666 {
1667 first_error (_("register out of range in list"));
1668 return FAIL;
1669 }
1670
1671 if (regtype == REG_TYPE_NQ)
1672 high_range = high_range + 1;
1673
1674 if (high_range <= new_base)
1675 {
1676 inst.error = _("register range not in ascending order");
1677 return FAIL;
1678 }
1679
1680 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1681 {
1682 if (mask & (setmask << new_base))
1683 {
1684 inst.error = _("invalid register list");
1685 return FAIL;
1686 }
1687
1688 mask |= setmask << new_base;
1689 count += addregs;
1690 }
1691 }
1692 }
1693 while (skip_past_comma (&str) != FAIL);
1694
1695 str++;
1696
1697 /* Sanity check -- should have raised a parse error above. */
1698 if (count == 0 || count > max_regs)
1699 abort ();
1700
1701 *pbase = base_reg;
1702
1703 /* Final test -- the registers must be consecutive. */
1704 mask >>= base_reg;
1705 for (i = 0; i < count; i++)
1706 {
1707 if ((mask & (1u << i)) == 0)
1708 {
1709 inst.error = _("non-contiguous register range");
1710 return FAIL;
1711 }
1712 }
1713
1714 *ccp = str;
1715
1716 return count;
1717 }
1718
1719 /* True if two alias types are the same. */
1720
1721 static int
1722 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1723 {
1724 if (!a && !b)
1725 return 1;
1726
1727 if (!a || !b)
1728 return 0;
1729
1730 if (a->defined != b->defined)
1731 return 0;
1732
1733 if ((a->defined & NTA_HASTYPE) != 0
1734 && (a->eltype.type != b->eltype.type
1735 || a->eltype.size != b->eltype.size))
1736 return 0;
1737
1738 if ((a->defined & NTA_HASINDEX) != 0
1739 && (a->index != b->index))
1740 return 0;
1741
1742 return 1;
1743 }
1744
1745 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1746 The base register is put in *PBASE.
1747 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1748 the return value.
1749 The register stride (minus one) is put in bit 4 of the return value.
1750 Bits [6:5] encode the list length (minus one).
1751 The type of the list elements is put in *ELTYPE, if non-NULL. */
1752
1753 #define NEON_LANE(X) ((X) & 0xf)
1754 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1755 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1756
1757 static int
1758 parse_neon_el_struct_list (char **str, unsigned *pbase,
1759 struct neon_type_el *eltype)
1760 {
1761 char *ptr = *str;
1762 int base_reg = -1;
1763 int reg_incr = -1;
1764 int count = 0;
1765 int lane = -1;
1766 int leading_brace = 0;
1767 enum arm_reg_type rtype = REG_TYPE_NDQ;
1768 int addregs = 1;
1769 const char *const incr_error = "register stride must be 1 or 2";
1770 const char *const type_error = "mismatched element/structure types in list";
1771 struct neon_typed_alias firsttype;
1772
1773 if (skip_past_char (&ptr, '{') == SUCCESS)
1774 leading_brace = 1;
1775
1776 do
1777 {
1778 struct neon_typed_alias atype;
1779 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1780
1781 if (getreg == FAIL)
1782 {
1783 first_error (_(reg_expected_msgs[rtype]));
1784 return FAIL;
1785 }
1786
1787 if (base_reg == -1)
1788 {
1789 base_reg = getreg;
1790 if (rtype == REG_TYPE_NQ)
1791 {
1792 reg_incr = 1;
1793 addregs = 2;
1794 }
1795 firsttype = atype;
1796 }
1797 else if (reg_incr == -1)
1798 {
1799 reg_incr = getreg - base_reg;
1800 if (reg_incr < 1 || reg_incr > 2)
1801 {
1802 first_error (_(incr_error));
1803 return FAIL;
1804 }
1805 }
1806 else if (getreg != base_reg + reg_incr * count)
1807 {
1808 first_error (_(incr_error));
1809 return FAIL;
1810 }
1811
1812 if (!neon_alias_types_same (&atype, &firsttype))
1813 {
1814 first_error (_(type_error));
1815 return FAIL;
1816 }
1817
1818 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1819 modes. */
1820 if (ptr[0] == '-')
1821 {
1822 struct neon_typed_alias htype;
1823 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1824 if (lane == -1)
1825 lane = NEON_INTERLEAVE_LANES;
1826 else if (lane != NEON_INTERLEAVE_LANES)
1827 {
1828 first_error (_(type_error));
1829 return FAIL;
1830 }
1831 if (reg_incr == -1)
1832 reg_incr = 1;
1833 else if (reg_incr != 1)
1834 {
1835 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1836 return FAIL;
1837 }
1838 ptr++;
1839 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
1840 if (hireg == FAIL)
1841 {
1842 first_error (_(reg_expected_msgs[rtype]));
1843 return FAIL;
1844 }
1845 if (!neon_alias_types_same (&htype, &firsttype))
1846 {
1847 first_error (_(type_error));
1848 return FAIL;
1849 }
1850 count += hireg + dregs - getreg;
1851 continue;
1852 }
1853
1854 /* If we're using Q registers, we can't use [] or [n] syntax. */
1855 if (rtype == REG_TYPE_NQ)
1856 {
1857 count += 2;
1858 continue;
1859 }
1860
1861 if ((atype.defined & NTA_HASINDEX) != 0)
1862 {
1863 if (lane == -1)
1864 lane = atype.index;
1865 else if (lane != atype.index)
1866 {
1867 first_error (_(type_error));
1868 return FAIL;
1869 }
1870 }
1871 else if (lane == -1)
1872 lane = NEON_INTERLEAVE_LANES;
1873 else if (lane != NEON_INTERLEAVE_LANES)
1874 {
1875 first_error (_(type_error));
1876 return FAIL;
1877 }
1878 count++;
1879 }
1880 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
1881
1882 /* No lane set by [x]. We must be interleaving structures. */
1883 if (lane == -1)
1884 lane = NEON_INTERLEAVE_LANES;
1885
1886 /* Sanity check. */
1887 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
1888 || (count > 1 && reg_incr == -1))
1889 {
1890 first_error (_("error parsing element/structure list"));
1891 return FAIL;
1892 }
1893
1894 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
1895 {
1896 first_error (_("expected }"));
1897 return FAIL;
1898 }
1899
1900 if (reg_incr == -1)
1901 reg_incr = 1;
1902
1903 if (eltype)
1904 *eltype = firsttype.eltype;
1905
1906 *pbase = base_reg;
1907 *str = ptr;
1908
1909 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
1910 }
1911
1912 /* Parse an explicit relocation suffix on an expression. This is
1913 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
1914 arm_reloc_hsh contains no entries, so this function can only
1915 succeed if there is no () after the word. Returns -1 on error,
1916 BFD_RELOC_UNUSED if there wasn't any suffix. */
1917 static int
1918 parse_reloc (char **str)
1919 {
1920 struct reloc_entry *r;
1921 char *p, *q;
1922
1923 if (**str != '(')
1924 return BFD_RELOC_UNUSED;
1925
1926 p = *str + 1;
1927 q = p;
1928
1929 while (*q && *q != ')' && *q != ',')
1930 q++;
1931 if (*q != ')')
1932 return -1;
1933
1934 if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
1935 return -1;
1936
1937 *str = q + 1;
1938 return r->reloc;
1939 }
1940
1941 /* Directives: register aliases. */
1942
1943 static struct reg_entry *
1944 insert_reg_alias (char *str, int number, int type)
1945 {
1946 struct reg_entry *new;
1947 const char *name;
1948
1949 if ((new = hash_find (arm_reg_hsh, str)) != 0)
1950 {
1951 if (new->builtin)
1952 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
1953
1954 /* Only warn about a redefinition if it's not defined as the
1955 same register. */
1956 else if (new->number != number || new->type != type)
1957 as_warn (_("ignoring redefinition of register alias '%s'"), str);
1958
1959 return 0;
1960 }
1961
1962 name = xstrdup (str);
1963 new = xmalloc (sizeof (struct reg_entry));
1964
1965 new->name = name;
1966 new->number = number;
1967 new->type = type;
1968 new->builtin = FALSE;
1969 new->neon = NULL;
1970
1971 if (hash_insert (arm_reg_hsh, name, (PTR) new))
1972 abort ();
1973
1974 return new;
1975 }
1976
1977 static void
1978 insert_neon_reg_alias (char *str, int number, int type,
1979 struct neon_typed_alias *atype)
1980 {
1981 struct reg_entry *reg = insert_reg_alias (str, number, type);
1982
1983 if (!reg)
1984 {
1985 first_error (_("attempt to redefine typed alias"));
1986 return;
1987 }
1988
1989 if (atype)
1990 {
1991 reg->neon = xmalloc (sizeof (struct neon_typed_alias));
1992 *reg->neon = *atype;
1993 }
1994 }
1995
1996 /* Look for the .req directive. This is of the form:
1997
1998 new_register_name .req existing_register_name
1999
2000 If we find one, or if it looks sufficiently like one that we want to
2001 handle any error here, return non-zero. Otherwise return zero. */
2002
2003 static int
2004 create_register_alias (char * newname, char *p)
2005 {
2006 struct reg_entry *old;
2007 char *oldname, *nbuf;
2008 size_t nlen;
2009
2010 /* The input scrubber ensures that whitespace after the mnemonic is
2011 collapsed to single spaces. */
2012 oldname = p;
2013 if (strncmp (oldname, " .req ", 6) != 0)
2014 return 0;
2015
2016 oldname += 6;
2017 if (*oldname == '\0')
2018 return 0;
2019
2020 old = hash_find (arm_reg_hsh, oldname);
2021 if (!old)
2022 {
2023 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2024 return 1;
2025 }
2026
2027 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2028 the desired alias name, and p points to its end. If not, then
2029 the desired alias name is in the global original_case_string. */
2030 #ifdef TC_CASE_SENSITIVE
2031 nlen = p - newname;
2032 #else
2033 newname = original_case_string;
2034 nlen = strlen (newname);
2035 #endif
2036
2037 nbuf = alloca (nlen + 1);
2038 memcpy (nbuf, newname, nlen);
2039 nbuf[nlen] = '\0';
2040
2041 /* Create aliases under the new name as stated; an all-lowercase
2042 version of the new name; and an all-uppercase version of the new
2043 name. */
2044 insert_reg_alias (nbuf, old->number, old->type);
2045
2046 for (p = nbuf; *p; p++)
2047 *p = TOUPPER (*p);
2048
2049 if (strncmp (nbuf, newname, nlen))
2050 insert_reg_alias (nbuf, old->number, old->type);
2051
2052 for (p = nbuf; *p; p++)
2053 *p = TOLOWER (*p);
2054
2055 if (strncmp (nbuf, newname, nlen))
2056 insert_reg_alias (nbuf, old->number, old->type);
2057
2058 return 1;
2059 }
2060
2061 /* Create a Neon typed/indexed register alias using directives, e.g.:
2062 X .dn d5.s32[1]
2063 Y .qn 6.s16
2064 Z .dn d7
2065 T .dn Z[0]
2066 These typed registers can be used instead of the types specified after the
2067 Neon mnemonic, so long as all operands given have types. Types can also be
2068 specified directly, e.g.:
2069 vadd d0.s32, d1.s32, d2.s32
2070 */
2071
2072 static int
2073 create_neon_reg_alias (char *newname, char *p)
2074 {
2075 enum arm_reg_type basetype;
2076 struct reg_entry *basereg;
2077 struct reg_entry mybasereg;
2078 struct neon_type ntype;
2079 struct neon_typed_alias typeinfo;
2080 char *namebuf, *nameend;
2081 int namelen;
2082
2083 typeinfo.defined = 0;
2084 typeinfo.eltype.type = NT_invtype;
2085 typeinfo.eltype.size = -1;
2086 typeinfo.index = -1;
2087
2088 nameend = p;
2089
2090 if (strncmp (p, " .dn ", 5) == 0)
2091 basetype = REG_TYPE_VFD;
2092 else if (strncmp (p, " .qn ", 5) == 0)
2093 basetype = REG_TYPE_NQ;
2094 else
2095 return 0;
2096
2097 p += 5;
2098
2099 if (*p == '\0')
2100 return 0;
2101
2102 basereg = arm_reg_parse_multi (&p);
2103
2104 if (basereg && basereg->type != basetype)
2105 {
2106 as_bad (_("bad type for register"));
2107 return 0;
2108 }
2109
2110 if (basereg == NULL)
2111 {
2112 expressionS exp;
2113 /* Try parsing as an integer. */
2114 my_get_expression (&exp, &p, GE_NO_PREFIX);
2115 if (exp.X_op != O_constant)
2116 {
2117 as_bad (_("expression must be constant"));
2118 return 0;
2119 }
2120 basereg = &mybasereg;
2121 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2122 : exp.X_add_number;
2123 basereg->neon = 0;
2124 }
2125
2126 if (basereg->neon)
2127 typeinfo = *basereg->neon;
2128
2129 if (parse_neon_type (&ntype, &p) == SUCCESS)
2130 {
2131 /* We got a type. */
2132 if (typeinfo.defined & NTA_HASTYPE)
2133 {
2134 as_bad (_("can't redefine the type of a register alias"));
2135 return 0;
2136 }
2137
2138 typeinfo.defined |= NTA_HASTYPE;
2139 if (ntype.elems != 1)
2140 {
2141 as_bad (_("you must specify a single type only"));
2142 return 0;
2143 }
2144 typeinfo.eltype = ntype.el[0];
2145 }
2146
2147 if (skip_past_char (&p, '[') == SUCCESS)
2148 {
2149 expressionS exp;
2150 /* We got a scalar index. */
2151
2152 if (typeinfo.defined & NTA_HASINDEX)
2153 {
2154 as_bad (_("can't redefine the index of a scalar alias"));
2155 return 0;
2156 }
2157
2158 my_get_expression (&exp, &p, GE_NO_PREFIX);
2159
2160 if (exp.X_op != O_constant)
2161 {
2162 as_bad (_("scalar index must be constant"));
2163 return 0;
2164 }
2165
2166 typeinfo.defined |= NTA_HASINDEX;
2167 typeinfo.index = exp.X_add_number;
2168
2169 if (skip_past_char (&p, ']') == FAIL)
2170 {
2171 as_bad (_("expecting ]"));
2172 return 0;
2173 }
2174 }
2175
2176 namelen = nameend - newname;
2177 namebuf = alloca (namelen + 1);
2178 strncpy (namebuf, newname, namelen);
2179 namebuf[namelen] = '\0';
2180
2181 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2182 typeinfo.defined != 0 ? &typeinfo : NULL);
2183
2184 /* Insert name in all uppercase. */
2185 for (p = namebuf; *p; p++)
2186 *p = TOUPPER (*p);
2187
2188 if (strncmp (namebuf, newname, namelen))
2189 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2190 typeinfo.defined != 0 ? &typeinfo : NULL);
2191
2192 /* Insert name in all lowercase. */
2193 for (p = namebuf; *p; p++)
2194 *p = TOLOWER (*p);
2195
2196 if (strncmp (namebuf, newname, namelen))
2197 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2198 typeinfo.defined != 0 ? &typeinfo : NULL);
2199
2200 return 1;
2201 }
2202
2203 /* Should never be called, as .req goes between the alias and the
2204 register name, not at the beginning of the line. */
2205 static void
2206 s_req (int a ATTRIBUTE_UNUSED)
2207 {
2208 as_bad (_("invalid syntax for .req directive"));
2209 }
2210
2211 static void
2212 s_dn (int a ATTRIBUTE_UNUSED)
2213 {
2214 as_bad (_("invalid syntax for .dn directive"));
2215 }
2216
2217 static void
2218 s_qn (int a ATTRIBUTE_UNUSED)
2219 {
2220 as_bad (_("invalid syntax for .qn directive"));
2221 }
2222
2223 /* The .unreq directive deletes an alias which was previously defined
2224 by .req. For example:
2225
2226 my_alias .req r11
2227 .unreq my_alias */
2228
2229 static void
2230 s_unreq (int a ATTRIBUTE_UNUSED)
2231 {
2232 char * name;
2233 char saved_char;
2234
2235 name = input_line_pointer;
2236
2237 while (*input_line_pointer != 0
2238 && *input_line_pointer != ' '
2239 && *input_line_pointer != '\n')
2240 ++input_line_pointer;
2241
2242 saved_char = *input_line_pointer;
2243 *input_line_pointer = 0;
2244
2245 if (!*name)
2246 as_bad (_("invalid syntax for .unreq directive"));
2247 else
2248 {
2249 struct reg_entry *reg = hash_find (arm_reg_hsh, name);
2250
2251 if (!reg)
2252 as_bad (_("unknown register alias '%s'"), name);
2253 else if (reg->builtin)
2254 as_warn (_("ignoring attempt to undefine built-in register '%s'"),
2255 name);
2256 else
2257 {
2258 hash_delete (arm_reg_hsh, name);
2259 free ((char *) reg->name);
2260 if (reg->neon)
2261 free (reg->neon);
2262 free (reg);
2263 }
2264 }
2265
2266 *input_line_pointer = saved_char;
2267 demand_empty_rest_of_line ();
2268 }
2269
2270 /* Directives: Instruction set selection. */
2271
2272 #ifdef OBJ_ELF
2273 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2274 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2275 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2276 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2277
2278 static enum mstate mapstate = MAP_UNDEFINED;
2279
2280 static void
2281 mapping_state (enum mstate state)
2282 {
2283 symbolS * symbolP;
2284 const char * symname;
2285 int type;
2286
2287 if (mapstate == state)
2288 /* The mapping symbol has already been emitted.
2289 There is nothing else to do. */
2290 return;
2291
2292 mapstate = state;
2293
2294 switch (state)
2295 {
2296 case MAP_DATA:
2297 symname = "$d";
2298 type = BSF_NO_FLAGS;
2299 break;
2300 case MAP_ARM:
2301 symname = "$a";
2302 type = BSF_NO_FLAGS;
2303 break;
2304 case MAP_THUMB:
2305 symname = "$t";
2306 type = BSF_NO_FLAGS;
2307 break;
2308 case MAP_UNDEFINED:
2309 return;
2310 default:
2311 abort ();
2312 }
2313
2314 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2315
2316 symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now);
2317 symbol_table_insert (symbolP);
2318 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2319
2320 switch (state)
2321 {
2322 case MAP_ARM:
2323 THUMB_SET_FUNC (symbolP, 0);
2324 ARM_SET_THUMB (symbolP, 0);
2325 ARM_SET_INTERWORK (symbolP, support_interwork);
2326 break;
2327
2328 case MAP_THUMB:
2329 THUMB_SET_FUNC (symbolP, 1);
2330 ARM_SET_THUMB (symbolP, 1);
2331 ARM_SET_INTERWORK (symbolP, support_interwork);
2332 break;
2333
2334 case MAP_DATA:
2335 default:
2336 return;
2337 }
2338 }
2339 #else
2340 #define mapping_state(x) /* nothing */
2341 #endif
2342
2343 /* Find the real, Thumb encoded start of a Thumb function. */
2344
2345 static symbolS *
2346 find_real_start (symbolS * symbolP)
2347 {
2348 char * real_start;
2349 const char * name = S_GET_NAME (symbolP);
2350 symbolS * new_target;
2351
2352 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2353 #define STUB_NAME ".real_start_of"
2354
2355 if (name == NULL)
2356 abort ();
2357
2358 /* The compiler may generate BL instructions to local labels because
2359 it needs to perform a branch to a far away location. These labels
2360 do not have a corresponding ".real_start_of" label. We check
2361 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2362 the ".real_start_of" convention for nonlocal branches. */
2363 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2364 return symbolP;
2365
2366 real_start = ACONCAT ((STUB_NAME, name, NULL));
2367 new_target = symbol_find (real_start);
2368
2369 if (new_target == NULL)
2370 {
2371 as_warn ("Failed to find real start of function: %s\n", name);
2372 new_target = symbolP;
2373 }
2374
2375 return new_target;
2376 }
2377
2378 static void
2379 opcode_select (int width)
2380 {
2381 switch (width)
2382 {
2383 case 16:
2384 if (! thumb_mode)
2385 {
2386 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2387 as_bad (_("selected processor does not support THUMB opcodes"));
2388
2389 thumb_mode = 1;
2390 /* No need to force the alignment, since we will have been
2391 coming from ARM mode, which is word-aligned. */
2392 record_alignment (now_seg, 1);
2393 }
2394 mapping_state (MAP_THUMB);
2395 break;
2396
2397 case 32:
2398 if (thumb_mode)
2399 {
2400 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2401 as_bad (_("selected processor does not support ARM opcodes"));
2402
2403 thumb_mode = 0;
2404
2405 if (!need_pass_2)
2406 frag_align (2, 0, 0);
2407
2408 record_alignment (now_seg, 1);
2409 }
2410 mapping_state (MAP_ARM);
2411 break;
2412
2413 default:
2414 as_bad (_("invalid instruction size selected (%d)"), width);
2415 }
2416 }
2417
2418 static void
2419 s_arm (int ignore ATTRIBUTE_UNUSED)
2420 {
2421 opcode_select (32);
2422 demand_empty_rest_of_line ();
2423 }
2424
2425 static void
2426 s_thumb (int ignore ATTRIBUTE_UNUSED)
2427 {
2428 opcode_select (16);
2429 demand_empty_rest_of_line ();
2430 }
2431
2432 static void
2433 s_code (int unused ATTRIBUTE_UNUSED)
2434 {
2435 int temp;
2436
2437 temp = get_absolute_expression ();
2438 switch (temp)
2439 {
2440 case 16:
2441 case 32:
2442 opcode_select (temp);
2443 break;
2444
2445 default:
2446 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2447 }
2448 }
2449
2450 static void
2451 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2452 {
2453 /* If we are not already in thumb mode go into it, EVEN if
2454 the target processor does not support thumb instructions.
2455 This is used by gcc/config/arm/lib1funcs.asm for example
2456 to compile interworking support functions even if the
2457 target processor should not support interworking. */
2458 if (! thumb_mode)
2459 {
2460 thumb_mode = 2;
2461 record_alignment (now_seg, 1);
2462 }
2463
2464 demand_empty_rest_of_line ();
2465 }
2466
2467 static void
2468 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2469 {
2470 s_thumb (0);
2471
2472 /* The following label is the name/address of the start of a Thumb function.
2473 We need to know this for the interworking support. */
2474 label_is_thumb_function_name = TRUE;
2475 }
2476
2477 /* Perform a .set directive, but also mark the alias as
2478 being a thumb function. */
2479
2480 static void
2481 s_thumb_set (int equiv)
2482 {
2483 /* XXX the following is a duplicate of the code for s_set() in read.c
2484 We cannot just call that code as we need to get at the symbol that
2485 is created. */
2486 char * name;
2487 char delim;
2488 char * end_name;
2489 symbolS * symbolP;
2490
2491 /* Especial apologies for the random logic:
2492 This just grew, and could be parsed much more simply!
2493 Dean - in haste. */
2494 name = input_line_pointer;
2495 delim = get_symbol_end ();
2496 end_name = input_line_pointer;
2497 *end_name = delim;
2498
2499 if (*input_line_pointer != ',')
2500 {
2501 *end_name = 0;
2502 as_bad (_("expected comma after name \"%s\""), name);
2503 *end_name = delim;
2504 ignore_rest_of_line ();
2505 return;
2506 }
2507
2508 input_line_pointer++;
2509 *end_name = 0;
2510
2511 if (name[0] == '.' && name[1] == '\0')
2512 {
2513 /* XXX - this should not happen to .thumb_set. */
2514 abort ();
2515 }
2516
2517 if ((symbolP = symbol_find (name)) == NULL
2518 && (symbolP = md_undefined_symbol (name)) == NULL)
2519 {
2520 #ifndef NO_LISTING
2521 /* When doing symbol listings, play games with dummy fragments living
2522 outside the normal fragment chain to record the file and line info
2523 for this symbol. */
2524 if (listing & LISTING_SYMBOLS)
2525 {
2526 extern struct list_info_struct * listing_tail;
2527 fragS * dummy_frag = xmalloc (sizeof (fragS));
2528
2529 memset (dummy_frag, 0, sizeof (fragS));
2530 dummy_frag->fr_type = rs_fill;
2531 dummy_frag->line = listing_tail;
2532 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2533 dummy_frag->fr_symbol = symbolP;
2534 }
2535 else
2536 #endif
2537 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2538
2539 #ifdef OBJ_COFF
2540 /* "set" symbols are local unless otherwise specified. */
2541 SF_SET_LOCAL (symbolP);
2542 #endif /* OBJ_COFF */
2543 } /* Make a new symbol. */
2544
2545 symbol_table_insert (symbolP);
2546
2547 * end_name = delim;
2548
2549 if (equiv
2550 && S_IS_DEFINED (symbolP)
2551 && S_GET_SEGMENT (symbolP) != reg_section)
2552 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2553
2554 pseudo_set (symbolP);
2555
2556 demand_empty_rest_of_line ();
2557
2558 /* XXX Now we come to the Thumb specific bit of code. */
2559
2560 THUMB_SET_FUNC (symbolP, 1);
2561 ARM_SET_THUMB (symbolP, 1);
2562 #if defined OBJ_ELF || defined OBJ_COFF
2563 ARM_SET_INTERWORK (symbolP, support_interwork);
2564 #endif
2565 }
2566
2567 /* Directives: Mode selection. */
2568
2569 /* .syntax [unified|divided] - choose the new unified syntax
2570 (same for Arm and Thumb encoding, modulo slight differences in what
2571 can be represented) or the old divergent syntax for each mode. */
2572 static void
2573 s_syntax (int unused ATTRIBUTE_UNUSED)
2574 {
2575 char *name, delim;
2576
2577 name = input_line_pointer;
2578 delim = get_symbol_end ();
2579
2580 if (!strcasecmp (name, "unified"))
2581 unified_syntax = TRUE;
2582 else if (!strcasecmp (name, "divided"))
2583 unified_syntax = FALSE;
2584 else
2585 {
2586 as_bad (_("unrecognized syntax mode \"%s\""), name);
2587 return;
2588 }
2589 *input_line_pointer = delim;
2590 demand_empty_rest_of_line ();
2591 }
2592
2593 /* Directives: sectioning and alignment. */
2594
2595 /* Same as s_align_ptwo but align 0 => align 2. */
2596
2597 static void
2598 s_align (int unused ATTRIBUTE_UNUSED)
2599 {
2600 int temp;
2601 long temp_fill;
2602 long max_alignment = 15;
2603
2604 temp = get_absolute_expression ();
2605 if (temp > max_alignment)
2606 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2607 else if (temp < 0)
2608 {
2609 as_bad (_("alignment negative. 0 assumed."));
2610 temp = 0;
2611 }
2612
2613 if (*input_line_pointer == ',')
2614 {
2615 input_line_pointer++;
2616 temp_fill = get_absolute_expression ();
2617 }
2618 else
2619 temp_fill = 0;
2620
2621 if (!temp)
2622 temp = 2;
2623
2624 /* Only make a frag if we HAVE to. */
2625 if (temp && !need_pass_2)
2626 frag_align (temp, (int) temp_fill, 0);
2627 demand_empty_rest_of_line ();
2628
2629 record_alignment (now_seg, temp);
2630 }
2631
2632 static void
2633 s_bss (int ignore ATTRIBUTE_UNUSED)
2634 {
2635 /* We don't support putting frags in the BSS segment, we fake it by
2636 marking in_bss, then looking at s_skip for clues. */
2637 subseg_set (bss_section, 0);
2638 demand_empty_rest_of_line ();
2639 mapping_state (MAP_DATA);
2640 }
2641
2642 static void
2643 s_even (int ignore ATTRIBUTE_UNUSED)
2644 {
2645 /* Never make frag if expect extra pass. */
2646 if (!need_pass_2)
2647 frag_align (1, 0, 0);
2648
2649 record_alignment (now_seg, 1);
2650
2651 demand_empty_rest_of_line ();
2652 }
2653
2654 /* Directives: Literal pools. */
2655
2656 static literal_pool *
2657 find_literal_pool (void)
2658 {
2659 literal_pool * pool;
2660
2661 for (pool = list_of_pools; pool != NULL; pool = pool->next)
2662 {
2663 if (pool->section == now_seg
2664 && pool->sub_section == now_subseg)
2665 break;
2666 }
2667
2668 return pool;
2669 }
2670
2671 static literal_pool *
2672 find_or_make_literal_pool (void)
2673 {
2674 /* Next literal pool ID number. */
2675 static unsigned int latest_pool_num = 1;
2676 literal_pool * pool;
2677
2678 pool = find_literal_pool ();
2679
2680 if (pool == NULL)
2681 {
2682 /* Create a new pool. */
2683 pool = xmalloc (sizeof (* pool));
2684 if (! pool)
2685 return NULL;
2686
2687 pool->next_free_entry = 0;
2688 pool->section = now_seg;
2689 pool->sub_section = now_subseg;
2690 pool->next = list_of_pools;
2691 pool->symbol = NULL;
2692
2693 /* Add it to the list. */
2694 list_of_pools = pool;
2695 }
2696
2697 /* New pools, and emptied pools, will have a NULL symbol. */
2698 if (pool->symbol == NULL)
2699 {
2700 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
2701 (valueT) 0, &zero_address_frag);
2702 pool->id = latest_pool_num ++;
2703 }
2704
2705 /* Done. */
2706 return pool;
2707 }
2708
2709 /* Add the literal in the global 'inst'
2710 structure to the relevent literal pool. */
2711
2712 static int
2713 add_to_lit_pool (void)
2714 {
2715 literal_pool * pool;
2716 unsigned int entry;
2717
2718 pool = find_or_make_literal_pool ();
2719
2720 /* Check if this literal value is already in the pool. */
2721 for (entry = 0; entry < pool->next_free_entry; entry ++)
2722 {
2723 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2724 && (inst.reloc.exp.X_op == O_constant)
2725 && (pool->literals[entry].X_add_number
2726 == inst.reloc.exp.X_add_number)
2727 && (pool->literals[entry].X_unsigned
2728 == inst.reloc.exp.X_unsigned))
2729 break;
2730
2731 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
2732 && (inst.reloc.exp.X_op == O_symbol)
2733 && (pool->literals[entry].X_add_number
2734 == inst.reloc.exp.X_add_number)
2735 && (pool->literals[entry].X_add_symbol
2736 == inst.reloc.exp.X_add_symbol)
2737 && (pool->literals[entry].X_op_symbol
2738 == inst.reloc.exp.X_op_symbol))
2739 break;
2740 }
2741
2742 /* Do we need to create a new entry? */
2743 if (entry == pool->next_free_entry)
2744 {
2745 if (entry >= MAX_LITERAL_POOL_SIZE)
2746 {
2747 inst.error = _("literal pool overflow");
2748 return FAIL;
2749 }
2750
2751 pool->literals[entry] = inst.reloc.exp;
2752 pool->next_free_entry += 1;
2753 }
2754
2755 inst.reloc.exp.X_op = O_symbol;
2756 inst.reloc.exp.X_add_number = ((int) entry) * 4;
2757 inst.reloc.exp.X_add_symbol = pool->symbol;
2758
2759 return SUCCESS;
2760 }
2761
2762 /* Can't use symbol_new here, so have to create a symbol and then at
2763 a later date assign it a value. Thats what these functions do. */
2764
2765 static void
2766 symbol_locate (symbolS * symbolP,
2767 const char * name, /* It is copied, the caller can modify. */
2768 segT segment, /* Segment identifier (SEG_<something>). */
2769 valueT valu, /* Symbol value. */
2770 fragS * frag) /* Associated fragment. */
2771 {
2772 unsigned int name_length;
2773 char * preserved_copy_of_name;
2774
2775 name_length = strlen (name) + 1; /* +1 for \0. */
2776 obstack_grow (&notes, name, name_length);
2777 preserved_copy_of_name = obstack_finish (&notes);
2778
2779 #ifdef tc_canonicalize_symbol_name
2780 preserved_copy_of_name =
2781 tc_canonicalize_symbol_name (preserved_copy_of_name);
2782 #endif
2783
2784 S_SET_NAME (symbolP, preserved_copy_of_name);
2785
2786 S_SET_SEGMENT (symbolP, segment);
2787 S_SET_VALUE (symbolP, valu);
2788 symbol_clear_list_pointers (symbolP);
2789
2790 symbol_set_frag (symbolP, frag);
2791
2792 /* Link to end of symbol chain. */
2793 {
2794 extern int symbol_table_frozen;
2795
2796 if (symbol_table_frozen)
2797 abort ();
2798 }
2799
2800 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
2801
2802 obj_symbol_new_hook (symbolP);
2803
2804 #ifdef tc_symbol_new_hook
2805 tc_symbol_new_hook (symbolP);
2806 #endif
2807
2808 #ifdef DEBUG_SYMS
2809 verify_symbol_chain (symbol_rootP, symbol_lastP);
2810 #endif /* DEBUG_SYMS */
2811 }
2812
2813
2814 static void
2815 s_ltorg (int ignored ATTRIBUTE_UNUSED)
2816 {
2817 unsigned int entry;
2818 literal_pool * pool;
2819 char sym_name[20];
2820
2821 pool = find_literal_pool ();
2822 if (pool == NULL
2823 || pool->symbol == NULL
2824 || pool->next_free_entry == 0)
2825 return;
2826
2827 mapping_state (MAP_DATA);
2828
2829 /* Align pool as you have word accesses.
2830 Only make a frag if we have to. */
2831 if (!need_pass_2)
2832 frag_align (2, 0, 0);
2833
2834 record_alignment (now_seg, 2);
2835
2836 sprintf (sym_name, "$$lit_\002%x", pool->id);
2837
2838 symbol_locate (pool->symbol, sym_name, now_seg,
2839 (valueT) frag_now_fix (), frag_now);
2840 symbol_table_insert (pool->symbol);
2841
2842 ARM_SET_THUMB (pool->symbol, thumb_mode);
2843
2844 #if defined OBJ_COFF || defined OBJ_ELF
2845 ARM_SET_INTERWORK (pool->symbol, support_interwork);
2846 #endif
2847
2848 for (entry = 0; entry < pool->next_free_entry; entry ++)
2849 /* First output the expression in the instruction to the pool. */
2850 emit_expr (&(pool->literals[entry]), 4); /* .word */
2851
2852 /* Mark the pool as empty. */
2853 pool->next_free_entry = 0;
2854 pool->symbol = NULL;
2855 }
2856
2857 #ifdef OBJ_ELF
2858 /* Forward declarations for functions below, in the MD interface
2859 section. */
2860 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
2861 static valueT create_unwind_entry (int);
2862 static void start_unwind_section (const segT, int);
2863 static void add_unwind_opcode (valueT, int);
2864 static void flush_pending_unwind (void);
2865
2866 /* Directives: Data. */
2867
2868 static void
2869 s_arm_elf_cons (int nbytes)
2870 {
2871 expressionS exp;
2872
2873 #ifdef md_flush_pending_output
2874 md_flush_pending_output ();
2875 #endif
2876
2877 if (is_it_end_of_statement ())
2878 {
2879 demand_empty_rest_of_line ();
2880 return;
2881 }
2882
2883 #ifdef md_cons_align
2884 md_cons_align (nbytes);
2885 #endif
2886
2887 mapping_state (MAP_DATA);
2888 do
2889 {
2890 int reloc;
2891 char *base = input_line_pointer;
2892
2893 expression (& exp);
2894
2895 if (exp.X_op != O_symbol)
2896 emit_expr (&exp, (unsigned int) nbytes);
2897 else
2898 {
2899 char *before_reloc = input_line_pointer;
2900 reloc = parse_reloc (&input_line_pointer);
2901 if (reloc == -1)
2902 {
2903 as_bad (_("unrecognized relocation suffix"));
2904 ignore_rest_of_line ();
2905 return;
2906 }
2907 else if (reloc == BFD_RELOC_UNUSED)
2908 emit_expr (&exp, (unsigned int) nbytes);
2909 else
2910 {
2911 reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
2912 int size = bfd_get_reloc_size (howto);
2913
2914 if (reloc == BFD_RELOC_ARM_PLT32)
2915 {
2916 as_bad (_("(plt) is only valid on branch targets"));
2917 reloc = BFD_RELOC_UNUSED;
2918 size = 0;
2919 }
2920
2921 if (size > nbytes)
2922 as_bad (_("%s relocations do not fit in %d bytes"),
2923 howto->name, nbytes);
2924 else
2925 {
2926 /* We've parsed an expression stopping at O_symbol.
2927 But there may be more expression left now that we
2928 have parsed the relocation marker. Parse it again.
2929 XXX Surely there is a cleaner way to do this. */
2930 char *p = input_line_pointer;
2931 int offset;
2932 char *save_buf = alloca (input_line_pointer - base);
2933 memcpy (save_buf, base, input_line_pointer - base);
2934 memmove (base + (input_line_pointer - before_reloc),
2935 base, before_reloc - base);
2936
2937 input_line_pointer = base + (input_line_pointer-before_reloc);
2938 expression (&exp);
2939 memcpy (base, save_buf, p - base);
2940
2941 offset = nbytes - size;
2942 p = frag_more ((int) nbytes);
2943 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
2944 size, &exp, 0, reloc);
2945 }
2946 }
2947 }
2948 }
2949 while (*input_line_pointer++ == ',');
2950
2951 /* Put terminator back into stream. */
2952 input_line_pointer --;
2953 demand_empty_rest_of_line ();
2954 }
2955
2956
2957 /* Parse a .rel31 directive. */
2958
2959 static void
2960 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
2961 {
2962 expressionS exp;
2963 char *p;
2964 valueT highbit;
2965
2966 highbit = 0;
2967 if (*input_line_pointer == '1')
2968 highbit = 0x80000000;
2969 else if (*input_line_pointer != '0')
2970 as_bad (_("expected 0 or 1"));
2971
2972 input_line_pointer++;
2973 if (*input_line_pointer != ',')
2974 as_bad (_("missing comma"));
2975 input_line_pointer++;
2976
2977 #ifdef md_flush_pending_output
2978 md_flush_pending_output ();
2979 #endif
2980
2981 #ifdef md_cons_align
2982 md_cons_align (4);
2983 #endif
2984
2985 mapping_state (MAP_DATA);
2986
2987 expression (&exp);
2988
2989 p = frag_more (4);
2990 md_number_to_chars (p, highbit, 4);
2991 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
2992 BFD_RELOC_ARM_PREL31);
2993
2994 demand_empty_rest_of_line ();
2995 }
2996
2997 /* Directives: AEABI stack-unwind tables. */
2998
2999 /* Parse an unwind_fnstart directive. Simply records the current location. */
3000
3001 static void
3002 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3003 {
3004 demand_empty_rest_of_line ();
3005 /* Mark the start of the function. */
3006 unwind.proc_start = expr_build_dot ();
3007
3008 /* Reset the rest of the unwind info. */
3009 unwind.opcode_count = 0;
3010 unwind.table_entry = NULL;
3011 unwind.personality_routine = NULL;
3012 unwind.personality_index = -1;
3013 unwind.frame_size = 0;
3014 unwind.fp_offset = 0;
3015 unwind.fp_reg = 13;
3016 unwind.fp_used = 0;
3017 unwind.sp_restored = 0;
3018 }
3019
3020
3021 /* Parse a handlerdata directive. Creates the exception handling table entry
3022 for the function. */
3023
3024 static void
3025 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3026 {
3027 demand_empty_rest_of_line ();
3028 if (unwind.table_entry)
3029 as_bad (_("dupicate .handlerdata directive"));
3030
3031 create_unwind_entry (1);
3032 }
3033
3034 /* Parse an unwind_fnend directive. Generates the index table entry. */
3035
3036 static void
3037 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3038 {
3039 long where;
3040 char *ptr;
3041 valueT val;
3042
3043 demand_empty_rest_of_line ();
3044
3045 /* Add eh table entry. */
3046 if (unwind.table_entry == NULL)
3047 val = create_unwind_entry (0);
3048 else
3049 val = 0;
3050
3051 /* Add index table entry. This is two words. */
3052 start_unwind_section (unwind.saved_seg, 1);
3053 frag_align (2, 0, 0);
3054 record_alignment (now_seg, 2);
3055
3056 ptr = frag_more (8);
3057 where = frag_now_fix () - 8;
3058
3059 /* Self relative offset of the function start. */
3060 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3061 BFD_RELOC_ARM_PREL31);
3062
3063 /* Indicate dependency on EHABI-defined personality routines to the
3064 linker, if it hasn't been done already. */
3065 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3066 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3067 {
3068 static const char *const name[] = {
3069 "__aeabi_unwind_cpp_pr0",
3070 "__aeabi_unwind_cpp_pr1",
3071 "__aeabi_unwind_cpp_pr2"
3072 };
3073 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3074 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3075 marked_pr_dependency |= 1 << unwind.personality_index;
3076 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3077 = marked_pr_dependency;
3078 }
3079
3080 if (val)
3081 /* Inline exception table entry. */
3082 md_number_to_chars (ptr + 4, val, 4);
3083 else
3084 /* Self relative offset of the table entry. */
3085 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3086 BFD_RELOC_ARM_PREL31);
3087
3088 /* Restore the original section. */
3089 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3090 }
3091
3092
3093 /* Parse an unwind_cantunwind directive. */
3094
3095 static void
3096 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3097 {
3098 demand_empty_rest_of_line ();
3099 if (unwind.personality_routine || unwind.personality_index != -1)
3100 as_bad (_("personality routine specified for cantunwind frame"));
3101
3102 unwind.personality_index = -2;
3103 }
3104
3105
3106 /* Parse a personalityindex directive. */
3107
3108 static void
3109 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3110 {
3111 expressionS exp;
3112
3113 if (unwind.personality_routine || unwind.personality_index != -1)
3114 as_bad (_("duplicate .personalityindex directive"));
3115
3116 expression (&exp);
3117
3118 if (exp.X_op != O_constant
3119 || exp.X_add_number < 0 || exp.X_add_number > 15)
3120 {
3121 as_bad (_("bad personality routine number"));
3122 ignore_rest_of_line ();
3123 return;
3124 }
3125
3126 unwind.personality_index = exp.X_add_number;
3127
3128 demand_empty_rest_of_line ();
3129 }
3130
3131
3132 /* Parse a personality directive. */
3133
3134 static void
3135 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3136 {
3137 char *name, *p, c;
3138
3139 if (unwind.personality_routine || unwind.personality_index != -1)
3140 as_bad (_("duplicate .personality directive"));
3141
3142 name = input_line_pointer;
3143 c = get_symbol_end ();
3144 p = input_line_pointer;
3145 unwind.personality_routine = symbol_find_or_make (name);
3146 *p = c;
3147 demand_empty_rest_of_line ();
3148 }
3149
3150
3151 /* Parse a directive saving core registers. */
3152
3153 static void
3154 s_arm_unwind_save_core (void)
3155 {
3156 valueT op;
3157 long range;
3158 int n;
3159
3160 range = parse_reg_list (&input_line_pointer);
3161 if (range == FAIL)
3162 {
3163 as_bad (_("expected register list"));
3164 ignore_rest_of_line ();
3165 return;
3166 }
3167
3168 demand_empty_rest_of_line ();
3169
3170 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3171 into .unwind_save {..., sp...}. We aren't bothered about the value of
3172 ip because it is clobbered by calls. */
3173 if (unwind.sp_restored && unwind.fp_reg == 12
3174 && (range & 0x3000) == 0x1000)
3175 {
3176 unwind.opcode_count--;
3177 unwind.sp_restored = 0;
3178 range = (range | 0x2000) & ~0x1000;
3179 unwind.pending_offset = 0;
3180 }
3181
3182 /* Pop r4-r15. */
3183 if (range & 0xfff0)
3184 {
3185 /* See if we can use the short opcodes. These pop a block of up to 8
3186 registers starting with r4, plus maybe r14. */
3187 for (n = 0; n < 8; n++)
3188 {
3189 /* Break at the first non-saved register. */
3190 if ((range & (1 << (n + 4))) == 0)
3191 break;
3192 }
3193 /* See if there are any other bits set. */
3194 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3195 {
3196 /* Use the long form. */
3197 op = 0x8000 | ((range >> 4) & 0xfff);
3198 add_unwind_opcode (op, 2);
3199 }
3200 else
3201 {
3202 /* Use the short form. */
3203 if (range & 0x4000)
3204 op = 0xa8; /* Pop r14. */
3205 else
3206 op = 0xa0; /* Do not pop r14. */
3207 op |= (n - 1);
3208 add_unwind_opcode (op, 1);
3209 }
3210 }
3211
3212 /* Pop r0-r3. */
3213 if (range & 0xf)
3214 {
3215 op = 0xb100 | (range & 0xf);
3216 add_unwind_opcode (op, 2);
3217 }
3218
3219 /* Record the number of bytes pushed. */
3220 for (n = 0; n < 16; n++)
3221 {
3222 if (range & (1 << n))
3223 unwind.frame_size += 4;
3224 }
3225 }
3226
3227
3228 /* Parse a directive saving FPA registers. */
3229
3230 static void
3231 s_arm_unwind_save_fpa (int reg)
3232 {
3233 expressionS exp;
3234 int num_regs;
3235 valueT op;
3236
3237 /* Get Number of registers to transfer. */
3238 if (skip_past_comma (&input_line_pointer) != FAIL)
3239 expression (&exp);
3240 else
3241 exp.X_op = O_illegal;
3242
3243 if (exp.X_op != O_constant)
3244 {
3245 as_bad (_("expected , <constant>"));
3246 ignore_rest_of_line ();
3247 return;
3248 }
3249
3250 num_regs = exp.X_add_number;
3251
3252 if (num_regs < 1 || num_regs > 4)
3253 {
3254 as_bad (_("number of registers must be in the range [1:4]"));
3255 ignore_rest_of_line ();
3256 return;
3257 }
3258
3259 demand_empty_rest_of_line ();
3260
3261 if (reg == 4)
3262 {
3263 /* Short form. */
3264 op = 0xb4 | (num_regs - 1);
3265 add_unwind_opcode (op, 1);
3266 }
3267 else
3268 {
3269 /* Long form. */
3270 op = 0xc800 | (reg << 4) | (num_regs - 1);
3271 add_unwind_opcode (op, 2);
3272 }
3273 unwind.frame_size += num_regs * 12;
3274 }
3275
3276
3277 /* Parse a directive saving VFP registers for ARMv6 and above. */
3278
3279 static void
3280 s_arm_unwind_save_vfp_armv6 (void)
3281 {
3282 int count;
3283 unsigned int start;
3284 valueT op;
3285 int num_vfpv3_regs = 0;
3286 int num_regs_below_16;
3287
3288 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3289 if (count == FAIL)
3290 {
3291 as_bad (_("expected register list"));
3292 ignore_rest_of_line ();
3293 return;
3294 }
3295
3296 demand_empty_rest_of_line ();
3297
3298 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3299 than FSTMX/FLDMX-style ones). */
3300
3301 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3302 if (start >= 16)
3303 num_vfpv3_regs = count;
3304 else if (start + count > 16)
3305 num_vfpv3_regs = start + count - 16;
3306
3307 if (num_vfpv3_regs > 0)
3308 {
3309 int start_offset = start > 16 ? start - 16 : 0;
3310 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3311 add_unwind_opcode (op, 2);
3312 }
3313
3314 /* Generate opcode for registers numbered in the range 0 .. 15. */
3315 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3316 assert (num_regs_below_16 + num_vfpv3_regs == count);
3317 if (num_regs_below_16 > 0)
3318 {
3319 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3320 add_unwind_opcode (op, 2);
3321 }
3322
3323 unwind.frame_size += count * 8;
3324 }
3325
3326
3327 /* Parse a directive saving VFP registers for pre-ARMv6. */
3328
3329 static void
3330 s_arm_unwind_save_vfp (void)
3331 {
3332 int count;
3333 unsigned int reg;
3334 valueT op;
3335
3336 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3337 if (count == FAIL)
3338 {
3339 as_bad (_("expected register list"));
3340 ignore_rest_of_line ();
3341 return;
3342 }
3343
3344 demand_empty_rest_of_line ();
3345
3346 if (reg == 8)
3347 {
3348 /* Short form. */
3349 op = 0xb8 | (count - 1);
3350 add_unwind_opcode (op, 1);
3351 }
3352 else
3353 {
3354 /* Long form. */
3355 op = 0xb300 | (reg << 4) | (count - 1);
3356 add_unwind_opcode (op, 2);
3357 }
3358 unwind.frame_size += count * 8 + 4;
3359 }
3360
3361
3362 /* Parse a directive saving iWMMXt data registers. */
3363
3364 static void
3365 s_arm_unwind_save_mmxwr (void)
3366 {
3367 int reg;
3368 int hi_reg;
3369 int i;
3370 unsigned mask = 0;
3371 valueT op;
3372
3373 if (*input_line_pointer == '{')
3374 input_line_pointer++;
3375
3376 do
3377 {
3378 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3379
3380 if (reg == FAIL)
3381 {
3382 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3383 goto error;
3384 }
3385
3386 if (mask >> reg)
3387 as_tsktsk (_("register list not in ascending order"));
3388 mask |= 1 << reg;
3389
3390 if (*input_line_pointer == '-')
3391 {
3392 input_line_pointer++;
3393 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3394 if (hi_reg == FAIL)
3395 {
3396 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR]));
3397 goto error;
3398 }
3399 else if (reg >= hi_reg)
3400 {
3401 as_bad (_("bad register range"));
3402 goto error;
3403 }
3404 for (; reg < hi_reg; reg++)
3405 mask |= 1 << reg;
3406 }
3407 }
3408 while (skip_past_comma (&input_line_pointer) != FAIL);
3409
3410 if (*input_line_pointer == '}')
3411 input_line_pointer++;
3412
3413 demand_empty_rest_of_line ();
3414
3415 /* Generate any deferred opcodes because we're going to be looking at
3416 the list. */
3417 flush_pending_unwind ();
3418
3419 for (i = 0; i < 16; i++)
3420 {
3421 if (mask & (1 << i))
3422 unwind.frame_size += 8;
3423 }
3424
3425 /* Attempt to combine with a previous opcode. We do this because gcc
3426 likes to output separate unwind directives for a single block of
3427 registers. */
3428 if (unwind.opcode_count > 0)
3429 {
3430 i = unwind.opcodes[unwind.opcode_count - 1];
3431 if ((i & 0xf8) == 0xc0)
3432 {
3433 i &= 7;
3434 /* Only merge if the blocks are contiguous. */
3435 if (i < 6)
3436 {
3437 if ((mask & 0xfe00) == (1 << 9))
3438 {
3439 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3440 unwind.opcode_count--;
3441 }
3442 }
3443 else if (i == 6 && unwind.opcode_count >= 2)
3444 {
3445 i = unwind.opcodes[unwind.opcode_count - 2];
3446 reg = i >> 4;
3447 i &= 0xf;
3448
3449 op = 0xffff << (reg - 1);
3450 if (reg > 0
3451 || ((mask & op) == (1u << (reg - 1))))
3452 {
3453 op = (1 << (reg + i + 1)) - 1;
3454 op &= ~((1 << reg) - 1);
3455 mask |= op;
3456 unwind.opcode_count -= 2;
3457 }
3458 }
3459 }
3460 }
3461
3462 hi_reg = 15;
3463 /* We want to generate opcodes in the order the registers have been
3464 saved, ie. descending order. */
3465 for (reg = 15; reg >= -1; reg--)
3466 {
3467 /* Save registers in blocks. */
3468 if (reg < 0
3469 || !(mask & (1 << reg)))
3470 {
3471 /* We found an unsaved reg. Generate opcodes to save the
3472 preceeding block. */
3473 if (reg != hi_reg)
3474 {
3475 if (reg == 9)
3476 {
3477 /* Short form. */
3478 op = 0xc0 | (hi_reg - 10);
3479 add_unwind_opcode (op, 1);
3480 }
3481 else
3482 {
3483 /* Long form. */
3484 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
3485 add_unwind_opcode (op, 2);
3486 }
3487 }
3488 hi_reg = reg - 1;
3489 }
3490 }
3491
3492 return;
3493 error:
3494 ignore_rest_of_line ();
3495 }
3496
3497 static void
3498 s_arm_unwind_save_mmxwcg (void)
3499 {
3500 int reg;
3501 int hi_reg;
3502 unsigned mask = 0;
3503 valueT op;
3504
3505 if (*input_line_pointer == '{')
3506 input_line_pointer++;
3507
3508 do
3509 {
3510 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3511
3512 if (reg == FAIL)
3513 {
3514 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3515 goto error;
3516 }
3517
3518 reg -= 8;
3519 if (mask >> reg)
3520 as_tsktsk (_("register list not in ascending order"));
3521 mask |= 1 << reg;
3522
3523 if (*input_line_pointer == '-')
3524 {
3525 input_line_pointer++;
3526 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
3527 if (hi_reg == FAIL)
3528 {
3529 as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG]));
3530 goto error;
3531 }
3532 else if (reg >= hi_reg)
3533 {
3534 as_bad (_("bad register range"));
3535 goto error;
3536 }
3537 for (; reg < hi_reg; reg++)
3538 mask |= 1 << reg;
3539 }
3540 }
3541 while (skip_past_comma (&input_line_pointer) != FAIL);
3542
3543 if (*input_line_pointer == '}')
3544 input_line_pointer++;
3545
3546 demand_empty_rest_of_line ();
3547
3548 /* Generate any deferred opcodes because we're going to be looking at
3549 the list. */
3550 flush_pending_unwind ();
3551
3552 for (reg = 0; reg < 16; reg++)
3553 {
3554 if (mask & (1 << reg))
3555 unwind.frame_size += 4;
3556 }
3557 op = 0xc700 | mask;
3558 add_unwind_opcode (op, 2);
3559 return;
3560 error:
3561 ignore_rest_of_line ();
3562 }
3563
3564
3565 /* Parse an unwind_save directive.
3566 If the argument is non-zero, this is a .vsave directive. */
3567
3568 static void
3569 s_arm_unwind_save (int arch_v6)
3570 {
3571 char *peek;
3572 struct reg_entry *reg;
3573 bfd_boolean had_brace = FALSE;
3574
3575 /* Figure out what sort of save we have. */
3576 peek = input_line_pointer;
3577
3578 if (*peek == '{')
3579 {
3580 had_brace = TRUE;
3581 peek++;
3582 }
3583
3584 reg = arm_reg_parse_multi (&peek);
3585
3586 if (!reg)
3587 {
3588 as_bad (_("register expected"));
3589 ignore_rest_of_line ();
3590 return;
3591 }
3592
3593 switch (reg->type)
3594 {
3595 case REG_TYPE_FN:
3596 if (had_brace)
3597 {
3598 as_bad (_("FPA .unwind_save does not take a register list"));
3599 ignore_rest_of_line ();
3600 return;
3601 }
3602 s_arm_unwind_save_fpa (reg->number);
3603 return;
3604
3605 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
3606 case REG_TYPE_VFD:
3607 if (arch_v6)
3608 s_arm_unwind_save_vfp_armv6 ();
3609 else
3610 s_arm_unwind_save_vfp ();
3611 return;
3612 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
3613 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
3614
3615 default:
3616 as_bad (_(".unwind_save does not support this kind of register"));
3617 ignore_rest_of_line ();
3618 }
3619 }
3620
3621
3622 /* Parse an unwind_movsp directive. */
3623
3624 static void
3625 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
3626 {
3627 int reg;
3628 valueT op;
3629
3630 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3631 if (reg == FAIL)
3632 {
3633 as_bad (_(reg_expected_msgs[REG_TYPE_RN]));
3634 ignore_rest_of_line ();
3635 return;
3636 }
3637 demand_empty_rest_of_line ();
3638
3639 if (reg == REG_SP || reg == REG_PC)
3640 {
3641 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
3642 return;
3643 }
3644
3645 if (unwind.fp_reg != REG_SP)
3646 as_bad (_("unexpected .unwind_movsp directive"));
3647
3648 /* Generate opcode to restore the value. */
3649 op = 0x90 | reg;
3650 add_unwind_opcode (op, 1);
3651
3652 /* Record the information for later. */
3653 unwind.fp_reg = reg;
3654 unwind.fp_offset = unwind.frame_size;
3655 unwind.sp_restored = 1;
3656 }
3657
3658 /* Parse an unwind_pad directive. */
3659
3660 static void
3661 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
3662 {
3663 int offset;
3664
3665 if (immediate_for_directive (&offset) == FAIL)
3666 return;
3667
3668 if (offset & 3)
3669 {
3670 as_bad (_("stack increment must be multiple of 4"));
3671 ignore_rest_of_line ();
3672 return;
3673 }
3674
3675 /* Don't generate any opcodes, just record the details for later. */
3676 unwind.frame_size += offset;
3677 unwind.pending_offset += offset;
3678
3679 demand_empty_rest_of_line ();
3680 }
3681
3682 /* Parse an unwind_setfp directive. */
3683
3684 static void
3685 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
3686 {
3687 int sp_reg;
3688 int fp_reg;
3689 int offset;
3690
3691 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3692 if (skip_past_comma (&input_line_pointer) == FAIL)
3693 sp_reg = FAIL;
3694 else
3695 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
3696
3697 if (fp_reg == FAIL || sp_reg == FAIL)
3698 {
3699 as_bad (_("expected <reg>, <reg>"));
3700 ignore_rest_of_line ();
3701 return;
3702 }
3703
3704 /* Optional constant. */
3705 if (skip_past_comma (&input_line_pointer) != FAIL)
3706 {
3707 if (immediate_for_directive (&offset) == FAIL)
3708 return;
3709 }
3710 else
3711 offset = 0;
3712
3713 demand_empty_rest_of_line ();
3714
3715 if (sp_reg != 13 && sp_reg != unwind.fp_reg)
3716 {
3717 as_bad (_("register must be either sp or set by a previous"
3718 "unwind_movsp directive"));
3719 return;
3720 }
3721
3722 /* Don't generate any opcodes, just record the information for later. */
3723 unwind.fp_reg = fp_reg;
3724 unwind.fp_used = 1;
3725 if (sp_reg == 13)
3726 unwind.fp_offset = unwind.frame_size - offset;
3727 else
3728 unwind.fp_offset -= offset;
3729 }
3730
3731 /* Parse an unwind_raw directive. */
3732
3733 static void
3734 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
3735 {
3736 expressionS exp;
3737 /* This is an arbitrary limit. */
3738 unsigned char op[16];
3739 int count;
3740
3741 expression (&exp);
3742 if (exp.X_op == O_constant
3743 && skip_past_comma (&input_line_pointer) != FAIL)
3744 {
3745 unwind.frame_size += exp.X_add_number;
3746 expression (&exp);
3747 }
3748 else
3749 exp.X_op = O_illegal;
3750
3751 if (exp.X_op != O_constant)
3752 {
3753 as_bad (_("expected <offset>, <opcode>"));
3754 ignore_rest_of_line ();
3755 return;
3756 }
3757
3758 count = 0;
3759
3760 /* Parse the opcode. */
3761 for (;;)
3762 {
3763 if (count >= 16)
3764 {
3765 as_bad (_("unwind opcode too long"));
3766 ignore_rest_of_line ();
3767 }
3768 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
3769 {
3770 as_bad (_("invalid unwind opcode"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774 op[count++] = exp.X_add_number;
3775
3776 /* Parse the next byte. */
3777 if (skip_past_comma (&input_line_pointer) == FAIL)
3778 break;
3779
3780 expression (&exp);
3781 }
3782
3783 /* Add the opcode bytes in reverse order. */
3784 while (count--)
3785 add_unwind_opcode (op[count], 1);
3786
3787 demand_empty_rest_of_line ();
3788 }
3789
3790
3791 /* Parse a .eabi_attribute directive. */
3792
3793 static void
3794 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
3795 {
3796 expressionS exp;
3797 bfd_boolean is_string;
3798 int tag;
3799 unsigned int i = 0;
3800 char *s = NULL;
3801 char saved_char;
3802
3803 expression (& exp);
3804 if (exp.X_op != O_constant)
3805 goto bad;
3806
3807 tag = exp.X_add_number;
3808 if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0))
3809 is_string = 1;
3810 else
3811 is_string = 0;
3812
3813 if (skip_past_comma (&input_line_pointer) == FAIL)
3814 goto bad;
3815 if (tag == 32 || !is_string)
3816 {
3817 expression (& exp);
3818 if (exp.X_op != O_constant)
3819 {
3820 as_bad (_("expected numeric constant"));
3821 ignore_rest_of_line ();
3822 return;
3823 }
3824 i = exp.X_add_number;
3825 }
3826 if (tag == Tag_compatibility
3827 && skip_past_comma (&input_line_pointer) == FAIL)
3828 {
3829 as_bad (_("expected comma"));
3830 ignore_rest_of_line ();
3831 return;
3832 }
3833 if (is_string)
3834 {
3835 skip_whitespace(input_line_pointer);
3836 if (*input_line_pointer != '"')
3837 goto bad_string;
3838 input_line_pointer++;
3839 s = input_line_pointer;
3840 while (*input_line_pointer && *input_line_pointer != '"')
3841 input_line_pointer++;
3842 if (*input_line_pointer != '"')
3843 goto bad_string;
3844 saved_char = *input_line_pointer;
3845 *input_line_pointer = 0;
3846 }
3847 else
3848 {
3849 s = NULL;
3850 saved_char = 0;
3851 }
3852
3853 if (tag == Tag_compatibility)
3854 elf32_arm_add_eabi_attr_compat (stdoutput, i, s);
3855 else if (is_string)
3856 elf32_arm_add_eabi_attr_string (stdoutput, tag, s);
3857 else
3858 elf32_arm_add_eabi_attr_int (stdoutput, tag, i);
3859
3860 if (s)
3861 {
3862 *input_line_pointer = saved_char;
3863 input_line_pointer++;
3864 }
3865 demand_empty_rest_of_line ();
3866 return;
3867 bad_string:
3868 as_bad (_("bad string constant"));
3869 ignore_rest_of_line ();
3870 return;
3871 bad:
3872 as_bad (_("expected <tag> , <value>"));
3873 ignore_rest_of_line ();
3874 }
3875 #endif /* OBJ_ELF */
3876
3877 static void s_arm_arch (int);
3878 static void s_arm_cpu (int);
3879 static void s_arm_fpu (int);
3880
3881 #ifdef TE_PE
3882
3883 static void
3884 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
3885 {
3886 expressionS exp;
3887
3888 do
3889 {
3890 expression (&exp);
3891 if (exp.X_op == O_symbol)
3892 exp.X_op = O_secrel;
3893
3894 emit_expr (&exp, 4);
3895 }
3896 while (*input_line_pointer++ == ',');
3897
3898 input_line_pointer--;
3899 demand_empty_rest_of_line ();
3900 }
3901 #endif /* TE_PE */
3902
3903 /* This table describes all the machine specific pseudo-ops the assembler
3904 has to support. The fields are:
3905 pseudo-op name without dot
3906 function to call to execute this pseudo-op
3907 Integer arg to pass to the function. */
3908
3909 const pseudo_typeS md_pseudo_table[] =
3910 {
3911 /* Never called because '.req' does not start a line. */
3912 { "req", s_req, 0 },
3913 /* Following two are likewise never called. */
3914 { "dn", s_dn, 0 },
3915 { "qn", s_qn, 0 },
3916 { "unreq", s_unreq, 0 },
3917 { "bss", s_bss, 0 },
3918 { "align", s_align, 0 },
3919 { "arm", s_arm, 0 },
3920 { "thumb", s_thumb, 0 },
3921 { "code", s_code, 0 },
3922 { "force_thumb", s_force_thumb, 0 },
3923 { "thumb_func", s_thumb_func, 0 },
3924 { "thumb_set", s_thumb_set, 0 },
3925 { "even", s_even, 0 },
3926 { "ltorg", s_ltorg, 0 },
3927 { "pool", s_ltorg, 0 },
3928 { "syntax", s_syntax, 0 },
3929 { "cpu", s_arm_cpu, 0 },
3930 { "arch", s_arm_arch, 0 },
3931 { "fpu", s_arm_fpu, 0 },
3932 #ifdef OBJ_ELF
3933 { "word", s_arm_elf_cons, 4 },
3934 { "long", s_arm_elf_cons, 4 },
3935 { "rel31", s_arm_rel31, 0 },
3936 { "fnstart", s_arm_unwind_fnstart, 0 },
3937 { "fnend", s_arm_unwind_fnend, 0 },
3938 { "cantunwind", s_arm_unwind_cantunwind, 0 },
3939 { "personality", s_arm_unwind_personality, 0 },
3940 { "personalityindex", s_arm_unwind_personalityindex, 0 },
3941 { "handlerdata", s_arm_unwind_handlerdata, 0 },
3942 { "save", s_arm_unwind_save, 0 },
3943 { "vsave", s_arm_unwind_save, 1 },
3944 { "movsp", s_arm_unwind_movsp, 0 },
3945 { "pad", s_arm_unwind_pad, 0 },
3946 { "setfp", s_arm_unwind_setfp, 0 },
3947 { "unwind_raw", s_arm_unwind_raw, 0 },
3948 { "eabi_attribute", s_arm_eabi_attribute, 0 },
3949 #else
3950 { "word", cons, 4},
3951
3952 /* These are used for dwarf. */
3953 {"2byte", cons, 2},
3954 {"4byte", cons, 4},
3955 {"8byte", cons, 8},
3956 /* These are used for dwarf2. */
3957 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
3958 { "loc", dwarf2_directive_loc, 0 },
3959 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
3960 #endif
3961 { "extend", float_cons, 'x' },
3962 { "ldouble", float_cons, 'x' },
3963 { "packed", float_cons, 'p' },
3964 #ifdef TE_PE
3965 {"secrel32", pe_directive_secrel, 0},
3966 #endif
3967 { 0, 0, 0 }
3968 };
3969 \f
3970 /* Parser functions used exclusively in instruction operands. */
3971
3972 /* Generic immediate-value read function for use in insn parsing.
3973 STR points to the beginning of the immediate (the leading #);
3974 VAL receives the value; if the value is outside [MIN, MAX]
3975 issue an error. PREFIX_OPT is true if the immediate prefix is
3976 optional. */
3977
3978 static int
3979 parse_immediate (char **str, int *val, int min, int max,
3980 bfd_boolean prefix_opt)
3981 {
3982 expressionS exp;
3983 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
3984 if (exp.X_op != O_constant)
3985 {
3986 inst.error = _("constant expression required");
3987 return FAIL;
3988 }
3989
3990 if (exp.X_add_number < min || exp.X_add_number > max)
3991 {
3992 inst.error = _("immediate value out of range");
3993 return FAIL;
3994 }
3995
3996 *val = exp.X_add_number;
3997 return SUCCESS;
3998 }
3999
4000 /* Less-generic immediate-value read function with the possibility of loading a
4001 big (64-bit) immediate, as required by Neon VMOV and VMVN immediate
4002 instructions. Puts the result directly in inst.operands[i]. */
4003
4004 static int
4005 parse_big_immediate (char **str, int i)
4006 {
4007 expressionS exp;
4008 char *ptr = *str;
4009
4010 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4011
4012 if (exp.X_op == O_constant)
4013 inst.operands[i].imm = exp.X_add_number;
4014 else if (exp.X_op == O_big
4015 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32
4016 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64)
4017 {
4018 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4019 /* Bignums have their least significant bits in
4020 generic_bignum[0]. Make sure we put 32 bits in imm and
4021 32 bits in reg, in a (hopefully) portable way. */
4022 assert (parts != 0);
4023 inst.operands[i].imm = 0;
4024 for (j = 0; j < parts; j++, idx++)
4025 inst.operands[i].imm |= generic_bignum[idx]
4026 << (LITTLENUM_NUMBER_OF_BITS * j);
4027 inst.operands[i].reg = 0;
4028 for (j = 0; j < parts; j++, idx++)
4029 inst.operands[i].reg |= generic_bignum[idx]
4030 << (LITTLENUM_NUMBER_OF_BITS * j);
4031 inst.operands[i].regisimm = 1;
4032 }
4033 else
4034 return FAIL;
4035
4036 *str = ptr;
4037
4038 return SUCCESS;
4039 }
4040
4041 /* Returns the pseudo-register number of an FPA immediate constant,
4042 or FAIL if there isn't a valid constant here. */
4043
4044 static int
4045 parse_fpa_immediate (char ** str)
4046 {
4047 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4048 char * save_in;
4049 expressionS exp;
4050 int i;
4051 int j;
4052
4053 /* First try and match exact strings, this is to guarantee
4054 that some formats will work even for cross assembly. */
4055
4056 for (i = 0; fp_const[i]; i++)
4057 {
4058 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4059 {
4060 char *start = *str;
4061
4062 *str += strlen (fp_const[i]);
4063 if (is_end_of_line[(unsigned char) **str])
4064 return i + 8;
4065 *str = start;
4066 }
4067 }
4068
4069 /* Just because we didn't get a match doesn't mean that the constant
4070 isn't valid, just that it is in a format that we don't
4071 automatically recognize. Try parsing it with the standard
4072 expression routines. */
4073
4074 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4075
4076 /* Look for a raw floating point number. */
4077 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4078 && is_end_of_line[(unsigned char) *save_in])
4079 {
4080 for (i = 0; i < NUM_FLOAT_VALS; i++)
4081 {
4082 for (j = 0; j < MAX_LITTLENUMS; j++)
4083 {
4084 if (words[j] != fp_values[i][j])
4085 break;
4086 }
4087
4088 if (j == MAX_LITTLENUMS)
4089 {
4090 *str = save_in;
4091 return i + 8;
4092 }
4093 }
4094 }
4095
4096 /* Try and parse a more complex expression, this will probably fail
4097 unless the code uses a floating point prefix (eg "0f"). */
4098 save_in = input_line_pointer;
4099 input_line_pointer = *str;
4100 if (expression (&exp) == absolute_section
4101 && exp.X_op == O_big
4102 && exp.X_add_number < 0)
4103 {
4104 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4105 Ditto for 15. */
4106 if (gen_to_words (words, 5, (long) 15) == 0)
4107 {
4108 for (i = 0; i < NUM_FLOAT_VALS; i++)
4109 {
4110 for (j = 0; j < MAX_LITTLENUMS; j++)
4111 {
4112 if (words[j] != fp_values[i][j])
4113 break;
4114 }
4115
4116 if (j == MAX_LITTLENUMS)
4117 {
4118 *str = input_line_pointer;
4119 input_line_pointer = save_in;
4120 return i + 8;
4121 }
4122 }
4123 }
4124 }
4125
4126 *str = input_line_pointer;
4127 input_line_pointer = save_in;
4128 inst.error = _("invalid FPA immediate expression");
4129 return FAIL;
4130 }
4131
4132 /* Returns 1 if a number has "quarter-precision" float format
4133 0baBbbbbbc defgh000 00000000 00000000. */
4134
4135 static int
4136 is_quarter_float (unsigned imm)
4137 {
4138 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4139 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4140 }
4141
4142 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4143 0baBbbbbbc defgh000 00000000 00000000.
4144 The minus-zero case needs special handling, since it can't be encoded in the
4145 "quarter-precision" float format, but can nonetheless be loaded as an integer
4146 constant. */
4147
4148 static unsigned
4149 parse_qfloat_immediate (char **ccp, int *immed)
4150 {
4151 char *str = *ccp;
4152 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4153
4154 skip_past_char (&str, '#');
4155
4156 if ((str = atof_ieee (str, 's', words)) != NULL)
4157 {
4158 unsigned fpword = 0;
4159 int i;
4160
4161 /* Our FP word must be 32 bits (single-precision FP). */
4162 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4163 {
4164 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4165 fpword |= words[i];
4166 }
4167
4168 if (is_quarter_float (fpword) || fpword == 0x80000000)
4169 *immed = fpword;
4170 else
4171 return FAIL;
4172
4173 *ccp = str;
4174
4175 return SUCCESS;
4176 }
4177
4178 return FAIL;
4179 }
4180
4181 /* Shift operands. */
4182 enum shift_kind
4183 {
4184 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4185 };
4186
4187 struct asm_shift_name
4188 {
4189 const char *name;
4190 enum shift_kind kind;
4191 };
4192
4193 /* Third argument to parse_shift. */
4194 enum parse_shift_mode
4195 {
4196 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4197 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4198 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4199 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4200 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4201 };
4202
4203 /* Parse a <shift> specifier on an ARM data processing instruction.
4204 This has three forms:
4205
4206 (LSL|LSR|ASL|ASR|ROR) Rs
4207 (LSL|LSR|ASL|ASR|ROR) #imm
4208 RRX
4209
4210 Note that ASL is assimilated to LSL in the instruction encoding, and
4211 RRX to ROR #0 (which cannot be written as such). */
4212
4213 static int
4214 parse_shift (char **str, int i, enum parse_shift_mode mode)
4215 {
4216 const struct asm_shift_name *shift_name;
4217 enum shift_kind shift;
4218 char *s = *str;
4219 char *p = s;
4220 int reg;
4221
4222 for (p = *str; ISALPHA (*p); p++)
4223 ;
4224
4225 if (p == *str)
4226 {
4227 inst.error = _("shift expression expected");
4228 return FAIL;
4229 }
4230
4231 shift_name = hash_find_n (arm_shift_hsh, *str, p - *str);
4232
4233 if (shift_name == NULL)
4234 {
4235 inst.error = _("shift expression expected");
4236 return FAIL;
4237 }
4238
4239 shift = shift_name->kind;
4240
4241 switch (mode)
4242 {
4243 case NO_SHIFT_RESTRICT:
4244 case SHIFT_IMMEDIATE: break;
4245
4246 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4247 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4248 {
4249 inst.error = _("'LSL' or 'ASR' required");
4250 return FAIL;
4251 }
4252 break;
4253
4254 case SHIFT_LSL_IMMEDIATE:
4255 if (shift != SHIFT_LSL)
4256 {
4257 inst.error = _("'LSL' required");
4258 return FAIL;
4259 }
4260 break;
4261
4262 case SHIFT_ASR_IMMEDIATE:
4263 if (shift != SHIFT_ASR)
4264 {
4265 inst.error = _("'ASR' required");
4266 return FAIL;
4267 }
4268 break;
4269
4270 default: abort ();
4271 }
4272
4273 if (shift != SHIFT_RRX)
4274 {
4275 /* Whitespace can appear here if the next thing is a bare digit. */
4276 skip_whitespace (p);
4277
4278 if (mode == NO_SHIFT_RESTRICT
4279 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4280 {
4281 inst.operands[i].imm = reg;
4282 inst.operands[i].immisreg = 1;
4283 }
4284 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4285 return FAIL;
4286 }
4287 inst.operands[i].shift_kind = shift;
4288 inst.operands[i].shifted = 1;
4289 *str = p;
4290 return SUCCESS;
4291 }
4292
4293 /* Parse a <shifter_operand> for an ARM data processing instruction:
4294
4295 #<immediate>
4296 #<immediate>, <rotate>
4297 <Rm>
4298 <Rm>, <shift>
4299
4300 where <shift> is defined by parse_shift above, and <rotate> is a
4301 multiple of 2 between 0 and 30. Validation of immediate operands
4302 is deferred to md_apply_fix. */
4303
4304 static int
4305 parse_shifter_operand (char **str, int i)
4306 {
4307 int value;
4308 expressionS expr;
4309
4310 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4311 {
4312 inst.operands[i].reg = value;
4313 inst.operands[i].isreg = 1;
4314
4315 /* parse_shift will override this if appropriate */
4316 inst.reloc.exp.X_op = O_constant;
4317 inst.reloc.exp.X_add_number = 0;
4318
4319 if (skip_past_comma (str) == FAIL)
4320 return SUCCESS;
4321
4322 /* Shift operation on register. */
4323 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4324 }
4325
4326 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4327 return FAIL;
4328
4329 if (skip_past_comma (str) == SUCCESS)
4330 {
4331 /* #x, y -- ie explicit rotation by Y. */
4332 if (my_get_expression (&expr, str, GE_NO_PREFIX))
4333 return FAIL;
4334
4335 if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4336 {
4337 inst.error = _("constant expression expected");
4338 return FAIL;
4339 }
4340
4341 value = expr.X_add_number;
4342 if (value < 0 || value > 30 || value % 2 != 0)
4343 {
4344 inst.error = _("invalid rotation");
4345 return FAIL;
4346 }
4347 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4348 {
4349 inst.error = _("invalid constant");
4350 return FAIL;
4351 }
4352
4353 /* Convert to decoded value. md_apply_fix will put it back. */
4354 inst.reloc.exp.X_add_number
4355 = (((inst.reloc.exp.X_add_number << (32 - value))
4356 | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff);
4357 }
4358
4359 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4360 inst.reloc.pc_rel = 0;
4361 return SUCCESS;
4362 }
4363
4364 /* Group relocation information. Each entry in the table contains the
4365 textual name of the relocation as may appear in assembler source
4366 and must end with a colon.
4367 Along with this textual name are the relocation codes to be used if
4368 the corresponding instruction is an ALU instruction (ADD or SUB only),
4369 an LDR, an LDRS, or an LDC. */
4370
4371 struct group_reloc_table_entry
4372 {
4373 const char *name;
4374 int alu_code;
4375 int ldr_code;
4376 int ldrs_code;
4377 int ldc_code;
4378 };
4379
4380 typedef enum
4381 {
4382 /* Varieties of non-ALU group relocation. */
4383
4384 GROUP_LDR,
4385 GROUP_LDRS,
4386 GROUP_LDC
4387 } group_reloc_type;
4388
4389 static struct group_reloc_table_entry group_reloc_table[] =
4390 { /* Program counter relative: */
4391 { "pc_g0_nc",
4392 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4393 0, /* LDR */
4394 0, /* LDRS */
4395 0 }, /* LDC */
4396 { "pc_g0",
4397 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4398 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4399 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4400 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4401 { "pc_g1_nc",
4402 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4403 0, /* LDR */
4404 0, /* LDRS */
4405 0 }, /* LDC */
4406 { "pc_g1",
4407 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4408 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4409 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4410 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4411 { "pc_g2",
4412 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4413 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4414 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4415 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4416 /* Section base relative */
4417 { "sb_g0_nc",
4418 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4419 0, /* LDR */
4420 0, /* LDRS */
4421 0 }, /* LDC */
4422 { "sb_g0",
4423 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4424 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4425 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4426 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4427 { "sb_g1_nc",
4428 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4429 0, /* LDR */
4430 0, /* LDRS */
4431 0 }, /* LDC */
4432 { "sb_g1",
4433 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4434 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4435 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4436 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4437 { "sb_g2",
4438 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4439 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4440 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4441 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4442
4443 /* Given the address of a pointer pointing to the textual name of a group
4444 relocation as may appear in assembler source, attempt to find its details
4445 in group_reloc_table. The pointer will be updated to the character after
4446 the trailing colon. On failure, FAIL will be returned; SUCCESS
4447 otherwise. On success, *entry will be updated to point at the relevant
4448 group_reloc_table entry. */
4449
4450 static int
4451 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
4452 {
4453 unsigned int i;
4454 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
4455 {
4456 int length = strlen (group_reloc_table[i].name);
4457
4458 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 &&
4459 (*str)[length] == ':')
4460 {
4461 *out = &group_reloc_table[i];
4462 *str += (length + 1);
4463 return SUCCESS;
4464 }
4465 }
4466
4467 return FAIL;
4468 }
4469
4470 /* Parse a <shifter_operand> for an ARM data processing instruction
4471 (as for parse_shifter_operand) where group relocations are allowed:
4472
4473 #<immediate>
4474 #<immediate>, <rotate>
4475 #:<group_reloc>:<expression>
4476 <Rm>
4477 <Rm>, <shift>
4478
4479 where <group_reloc> is one of the strings defined in group_reloc_table.
4480 The hashes are optional.
4481
4482 Everything else is as for parse_shifter_operand. */
4483
4484 static parse_operand_result
4485 parse_shifter_operand_group_reloc (char **str, int i)
4486 {
4487 /* Determine if we have the sequence of characters #: or just :
4488 coming next. If we do, then we check for a group relocation.
4489 If we don't, punt the whole lot to parse_shifter_operand. */
4490
4491 if (((*str)[0] == '#' && (*str)[1] == ':')
4492 || (*str)[0] == ':')
4493 {
4494 struct group_reloc_table_entry *entry;
4495
4496 if ((*str)[0] == '#')
4497 (*str) += 2;
4498 else
4499 (*str)++;
4500
4501 /* Try to parse a group relocation. Anything else is an error. */
4502 if (find_group_reloc_table_entry (str, &entry) == FAIL)
4503 {
4504 inst.error = _("unknown group relocation");
4505 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4506 }
4507
4508 /* We now have the group relocation table entry corresponding to
4509 the name in the assembler source. Next, we parse the expression. */
4510 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
4511 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4512
4513 /* Record the relocation type (always the ALU variant here). */
4514 inst.reloc.type = entry->alu_code;
4515 assert (inst.reloc.type != 0);
4516
4517 return PARSE_OPERAND_SUCCESS;
4518 }
4519 else
4520 return parse_shifter_operand (str, i) == SUCCESS
4521 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
4522
4523 /* Never reached. */
4524 }
4525
4526 /* Parse all forms of an ARM address expression. Information is written
4527 to inst.operands[i] and/or inst.reloc.
4528
4529 Preindexed addressing (.preind=1):
4530
4531 [Rn, #offset] .reg=Rn .reloc.exp=offset
4532 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4533 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4534 .shift_kind=shift .reloc.exp=shift_imm
4535
4536 These three may have a trailing ! which causes .writeback to be set also.
4537
4538 Postindexed addressing (.postind=1, .writeback=1):
4539
4540 [Rn], #offset .reg=Rn .reloc.exp=offset
4541 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4542 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
4543 .shift_kind=shift .reloc.exp=shift_imm
4544
4545 Unindexed addressing (.preind=0, .postind=0):
4546
4547 [Rn], {option} .reg=Rn .imm=option .immisreg=0
4548
4549 Other:
4550
4551 [Rn]{!} shorthand for [Rn,#0]{!}
4552 =immediate .isreg=0 .reloc.exp=immediate
4553 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
4554
4555 It is the caller's responsibility to check for addressing modes not
4556 supported by the instruction, and to set inst.reloc.type. */
4557
4558 static parse_operand_result
4559 parse_address_main (char **str, int i, int group_relocations,
4560 group_reloc_type group_type)
4561 {
4562 char *p = *str;
4563 int reg;
4564
4565 if (skip_past_char (&p, '[') == FAIL)
4566 {
4567 if (skip_past_char (&p, '=') == FAIL)
4568 {
4569 /* bare address - translate to PC-relative offset */
4570 inst.reloc.pc_rel = 1;
4571 inst.operands[i].reg = REG_PC;
4572 inst.operands[i].isreg = 1;
4573 inst.operands[i].preind = 1;
4574 }
4575 /* else a load-constant pseudo op, no special treatment needed here */
4576
4577 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4578 return PARSE_OPERAND_FAIL;
4579
4580 *str = p;
4581 return PARSE_OPERAND_SUCCESS;
4582 }
4583
4584 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
4585 {
4586 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
4587 return PARSE_OPERAND_FAIL;
4588 }
4589 inst.operands[i].reg = reg;
4590 inst.operands[i].isreg = 1;
4591
4592 if (skip_past_comma (&p) == SUCCESS)
4593 {
4594 inst.operands[i].preind = 1;
4595
4596 if (*p == '+') p++;
4597 else if (*p == '-') p++, inst.operands[i].negative = 1;
4598
4599 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4600 {
4601 inst.operands[i].imm = reg;
4602 inst.operands[i].immisreg = 1;
4603
4604 if (skip_past_comma (&p) == SUCCESS)
4605 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4606 return PARSE_OPERAND_FAIL;
4607 }
4608 else if (skip_past_char (&p, ':') == SUCCESS)
4609 {
4610 /* FIXME: '@' should be used here, but it's filtered out by generic
4611 code before we get to see it here. This may be subject to
4612 change. */
4613 expressionS exp;
4614 my_get_expression (&exp, &p, GE_NO_PREFIX);
4615 if (exp.X_op != O_constant)
4616 {
4617 inst.error = _("alignment must be constant");
4618 return PARSE_OPERAND_FAIL;
4619 }
4620 inst.operands[i].imm = exp.X_add_number << 8;
4621 inst.operands[i].immisalign = 1;
4622 /* Alignments are not pre-indexes. */
4623 inst.operands[i].preind = 0;
4624 }
4625 else
4626 {
4627 if (inst.operands[i].negative)
4628 {
4629 inst.operands[i].negative = 0;
4630 p--;
4631 }
4632
4633 if (group_relocations &&
4634 ((*p == '#' && *(p + 1) == ':') || *p == ':'))
4635
4636 {
4637 struct group_reloc_table_entry *entry;
4638
4639 /* Skip over the #: or : sequence. */
4640 if (*p == '#')
4641 p += 2;
4642 else
4643 p++;
4644
4645 /* Try to parse a group relocation. Anything else is an
4646 error. */
4647 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
4648 {
4649 inst.error = _("unknown group relocation");
4650 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4651 }
4652
4653 /* We now have the group relocation table entry corresponding to
4654 the name in the assembler source. Next, we parse the
4655 expression. */
4656 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4657 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4658
4659 /* Record the relocation type. */
4660 switch (group_type)
4661 {
4662 case GROUP_LDR:
4663 inst.reloc.type = entry->ldr_code;
4664 break;
4665
4666 case GROUP_LDRS:
4667 inst.reloc.type = entry->ldrs_code;
4668 break;
4669
4670 case GROUP_LDC:
4671 inst.reloc.type = entry->ldc_code;
4672 break;
4673
4674 default:
4675 assert (0);
4676 }
4677
4678 if (inst.reloc.type == 0)
4679 {
4680 inst.error = _("this group relocation is not allowed on this instruction");
4681 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
4682 }
4683 }
4684 else
4685 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4686 return PARSE_OPERAND_FAIL;
4687 }
4688 }
4689
4690 if (skip_past_char (&p, ']') == FAIL)
4691 {
4692 inst.error = _("']' expected");
4693 return PARSE_OPERAND_FAIL;
4694 }
4695
4696 if (skip_past_char (&p, '!') == SUCCESS)
4697 inst.operands[i].writeback = 1;
4698
4699 else if (skip_past_comma (&p) == SUCCESS)
4700 {
4701 if (skip_past_char (&p, '{') == SUCCESS)
4702 {
4703 /* [Rn], {expr} - unindexed, with option */
4704 if (parse_immediate (&p, &inst.operands[i].imm,
4705 0, 255, TRUE) == FAIL)
4706 return PARSE_OPERAND_FAIL;
4707
4708 if (skip_past_char (&p, '}') == FAIL)
4709 {
4710 inst.error = _("'}' expected at end of 'option' field");
4711 return PARSE_OPERAND_FAIL;
4712 }
4713 if (inst.operands[i].preind)
4714 {
4715 inst.error = _("cannot combine index with option");
4716 return PARSE_OPERAND_FAIL;
4717 }
4718 *str = p;
4719 return PARSE_OPERAND_SUCCESS;
4720 }
4721 else
4722 {
4723 inst.operands[i].postind = 1;
4724 inst.operands[i].writeback = 1;
4725
4726 if (inst.operands[i].preind)
4727 {
4728 inst.error = _("cannot combine pre- and post-indexing");
4729 return PARSE_OPERAND_FAIL;
4730 }
4731
4732 if (*p == '+') p++;
4733 else if (*p == '-') p++, inst.operands[i].negative = 1;
4734
4735 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4736 {
4737 /* We might be using the immediate for alignment already. If we
4738 are, OR the register number into the low-order bits. */
4739 if (inst.operands[i].immisalign)
4740 inst.operands[i].imm |= reg;
4741 else
4742 inst.operands[i].imm = reg;
4743 inst.operands[i].immisreg = 1;
4744
4745 if (skip_past_comma (&p) == SUCCESS)
4746 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
4747 return PARSE_OPERAND_FAIL;
4748 }
4749 else
4750 {
4751 if (inst.operands[i].negative)
4752 {
4753 inst.operands[i].negative = 0;
4754 p--;
4755 }
4756 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4757 return PARSE_OPERAND_FAIL;
4758 }
4759 }
4760 }
4761
4762 /* If at this point neither .preind nor .postind is set, we have a
4763 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
4764 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
4765 {
4766 inst.operands[i].preind = 1;
4767 inst.reloc.exp.X_op = O_constant;
4768 inst.reloc.exp.X_add_number = 0;
4769 }
4770 *str = p;
4771 return PARSE_OPERAND_SUCCESS;
4772 }
4773
4774 static int
4775 parse_address (char **str, int i)
4776 {
4777 return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS
4778 ? SUCCESS : FAIL;
4779 }
4780
4781 static parse_operand_result
4782 parse_address_group_reloc (char **str, int i, group_reloc_type type)
4783 {
4784 return parse_address_main (str, i, 1, type);
4785 }
4786
4787 /* Parse an operand for a MOVW or MOVT instruction. */
4788 static int
4789 parse_half (char **str)
4790 {
4791 char * p;
4792
4793 p = *str;
4794 skip_past_char (&p, '#');
4795 if (strncasecmp (p, ":lower16:", 9) == 0)
4796 inst.reloc.type = BFD_RELOC_ARM_MOVW;
4797 else if (strncasecmp (p, ":upper16:", 9) == 0)
4798 inst.reloc.type = BFD_RELOC_ARM_MOVT;
4799
4800 if (inst.reloc.type != BFD_RELOC_UNUSED)
4801 {
4802 p += 9;
4803 skip_whitespace(p);
4804 }
4805
4806 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
4807 return FAIL;
4808
4809 if (inst.reloc.type == BFD_RELOC_UNUSED)
4810 {
4811 if (inst.reloc.exp.X_op != O_constant)
4812 {
4813 inst.error = _("constant expression expected");
4814 return FAIL;
4815 }
4816 if (inst.reloc.exp.X_add_number < 0
4817 || inst.reloc.exp.X_add_number > 0xffff)
4818 {
4819 inst.error = _("immediate value out of range");
4820 return FAIL;
4821 }
4822 }
4823 *str = p;
4824 return SUCCESS;
4825 }
4826
4827 /* Miscellaneous. */
4828
4829 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
4830 or a bitmask suitable to be or-ed into the ARM msr instruction. */
4831 static int
4832 parse_psr (char **str)
4833 {
4834 char *p;
4835 unsigned long psr_field;
4836 const struct asm_psr *psr;
4837 char *start;
4838
4839 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
4840 feature for ease of use and backwards compatibility. */
4841 p = *str;
4842 if (strncasecmp (p, "SPSR", 4) == 0)
4843 psr_field = SPSR_BIT;
4844 else if (strncasecmp (p, "CPSR", 4) == 0)
4845 psr_field = 0;
4846 else
4847 {
4848 start = p;
4849 do
4850 p++;
4851 while (ISALNUM (*p) || *p == '_');
4852
4853 psr = hash_find_n (arm_v7m_psr_hsh, start, p - start);
4854 if (!psr)
4855 return FAIL;
4856
4857 *str = p;
4858 return psr->field;
4859 }
4860
4861 p += 4;
4862 if (*p == '_')
4863 {
4864 /* A suffix follows. */
4865 p++;
4866 start = p;
4867
4868 do
4869 p++;
4870 while (ISALNUM (*p) || *p == '_');
4871
4872 psr = hash_find_n (arm_psr_hsh, start, p - start);
4873 if (!psr)
4874 goto error;
4875
4876 psr_field |= psr->field;
4877 }
4878 else
4879 {
4880 if (ISALNUM (*p))
4881 goto error; /* Garbage after "[CS]PSR". */
4882
4883 psr_field |= (PSR_c | PSR_f);
4884 }
4885 *str = p;
4886 return psr_field;
4887
4888 error:
4889 inst.error = _("flag for {c}psr instruction expected");
4890 return FAIL;
4891 }
4892
4893 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
4894 value suitable for splatting into the AIF field of the instruction. */
4895
4896 static int
4897 parse_cps_flags (char **str)
4898 {
4899 int val = 0;
4900 int saw_a_flag = 0;
4901 char *s = *str;
4902
4903 for (;;)
4904 switch (*s++)
4905 {
4906 case '\0': case ',':
4907 goto done;
4908
4909 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
4910 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
4911 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
4912
4913 default:
4914 inst.error = _("unrecognized CPS flag");
4915 return FAIL;
4916 }
4917
4918 done:
4919 if (saw_a_flag == 0)
4920 {
4921 inst.error = _("missing CPS flags");
4922 return FAIL;
4923 }
4924
4925 *str = s - 1;
4926 return val;
4927 }
4928
4929 /* Parse an endian specifier ("BE" or "LE", case insensitive);
4930 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
4931
4932 static int
4933 parse_endian_specifier (char **str)
4934 {
4935 int little_endian;
4936 char *s = *str;
4937
4938 if (strncasecmp (s, "BE", 2))
4939 little_endian = 0;
4940 else if (strncasecmp (s, "LE", 2))
4941 little_endian = 1;
4942 else
4943 {
4944 inst.error = _("valid endian specifiers are be or le");
4945 return FAIL;
4946 }
4947
4948 if (ISALNUM (s[2]) || s[2] == '_')
4949 {
4950 inst.error = _("valid endian specifiers are be or le");
4951 return FAIL;
4952 }
4953
4954 *str = s + 2;
4955 return little_endian;
4956 }
4957
4958 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
4959 value suitable for poking into the rotate field of an sxt or sxta
4960 instruction, or FAIL on error. */
4961
4962 static int
4963 parse_ror (char **str)
4964 {
4965 int rot;
4966 char *s = *str;
4967
4968 if (strncasecmp (s, "ROR", 3) == 0)
4969 s += 3;
4970 else
4971 {
4972 inst.error = _("missing rotation field after comma");
4973 return FAIL;
4974 }
4975
4976 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
4977 return FAIL;
4978
4979 switch (rot)
4980 {
4981 case 0: *str = s; return 0x0;
4982 case 8: *str = s; return 0x1;
4983 case 16: *str = s; return 0x2;
4984 case 24: *str = s; return 0x3;
4985
4986 default:
4987 inst.error = _("rotation can only be 0, 8, 16, or 24");
4988 return FAIL;
4989 }
4990 }
4991
4992 /* Parse a conditional code (from conds[] below). The value returned is in the
4993 range 0 .. 14, or FAIL. */
4994 static int
4995 parse_cond (char **str)
4996 {
4997 char *p, *q;
4998 const struct asm_cond *c;
4999
5000 p = q = *str;
5001 while (ISALPHA (*q))
5002 q++;
5003
5004 c = hash_find_n (arm_cond_hsh, p, q - p);
5005 if (!c)
5006 {
5007 inst.error = _("condition required");
5008 return FAIL;
5009 }
5010
5011 *str = q;
5012 return c->value;
5013 }
5014
5015 /* Parse an option for a barrier instruction. Returns the encoding for the
5016 option, or FAIL. */
5017 static int
5018 parse_barrier (char **str)
5019 {
5020 char *p, *q;
5021 const struct asm_barrier_opt *o;
5022
5023 p = q = *str;
5024 while (ISALPHA (*q))
5025 q++;
5026
5027 o = hash_find_n (arm_barrier_opt_hsh, p, q - p);
5028 if (!o)
5029 return FAIL;
5030
5031 *str = q;
5032 return o->value;
5033 }
5034
5035 /* Parse the operands of a table branch instruction. Similar to a memory
5036 operand. */
5037 static int
5038 parse_tb (char **str)
5039 {
5040 char * p = *str;
5041 int reg;
5042
5043 if (skip_past_char (&p, '[') == FAIL)
5044 {
5045 inst.error = _("'[' expected");
5046 return FAIL;
5047 }
5048
5049 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5050 {
5051 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5052 return FAIL;
5053 }
5054 inst.operands[0].reg = reg;
5055
5056 if (skip_past_comma (&p) == FAIL)
5057 {
5058 inst.error = _("',' expected");
5059 return FAIL;
5060 }
5061
5062 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5063 {
5064 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5065 return FAIL;
5066 }
5067 inst.operands[0].imm = reg;
5068
5069 if (skip_past_comma (&p) == SUCCESS)
5070 {
5071 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5072 return FAIL;
5073 if (inst.reloc.exp.X_add_number != 1)
5074 {
5075 inst.error = _("invalid shift");
5076 return FAIL;
5077 }
5078 inst.operands[0].shifted = 1;
5079 }
5080
5081 if (skip_past_char (&p, ']') == FAIL)
5082 {
5083 inst.error = _("']' expected");
5084 return FAIL;
5085 }
5086 *str = p;
5087 return SUCCESS;
5088 }
5089
5090 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5091 information on the types the operands can take and how they are encoded.
5092 Up to four operands may be read; this function handles setting the
5093 ".present" field for each read operand itself.
5094 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5095 else returns FAIL. */
5096
5097 static int
5098 parse_neon_mov (char **str, int *which_operand)
5099 {
5100 int i = *which_operand, val;
5101 enum arm_reg_type rtype;
5102 char *ptr = *str;
5103 struct neon_type_el optype;
5104
5105 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5106 {
5107 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5108 inst.operands[i].reg = val;
5109 inst.operands[i].isscalar = 1;
5110 inst.operands[i].vectype = optype;
5111 inst.operands[i++].present = 1;
5112
5113 if (skip_past_comma (&ptr) == FAIL)
5114 goto wanted_comma;
5115
5116 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5117 goto wanted_arm;
5118
5119 inst.operands[i].reg = val;
5120 inst.operands[i].isreg = 1;
5121 inst.operands[i].present = 1;
5122 }
5123 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5124 != FAIL)
5125 {
5126 /* Cases 0, 1, 2, 3, 5 (D only). */
5127 if (skip_past_comma (&ptr) == FAIL)
5128 goto wanted_comma;
5129
5130 inst.operands[i].reg = val;
5131 inst.operands[i].isreg = 1;
5132 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5133 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5134 inst.operands[i].isvec = 1;
5135 inst.operands[i].vectype = optype;
5136 inst.operands[i++].present = 1;
5137
5138 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5139 {
5140 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5141 Case 13: VMOV <Sd>, <Rm> */
5142 inst.operands[i].reg = val;
5143 inst.operands[i].isreg = 1;
5144 inst.operands[i].present = 1;
5145
5146 if (rtype == REG_TYPE_NQ)
5147 {
5148 first_error (_("can't use Neon quad register here"));
5149 return FAIL;
5150 }
5151 else if (rtype != REG_TYPE_VFS)
5152 {
5153 i++;
5154 if (skip_past_comma (&ptr) == FAIL)
5155 goto wanted_comma;
5156 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5157 goto wanted_arm;
5158 inst.operands[i].reg = val;
5159 inst.operands[i].isreg = 1;
5160 inst.operands[i].present = 1;
5161 }
5162 }
5163 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5164 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5165 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5166 Case 10: VMOV.F32 <Sd>, #<imm>
5167 Case 11: VMOV.F64 <Dd>, #<imm> */
5168 ;
5169 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5170 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5171 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5172 ;
5173 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5174 &optype)) != FAIL)
5175 {
5176 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5177 Case 1: VMOV<c><q> <Dd>, <Dm>
5178 Case 8: VMOV.F32 <Sd>, <Sm>
5179 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5180
5181 inst.operands[i].reg = val;
5182 inst.operands[i].isreg = 1;
5183 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5184 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5185 inst.operands[i].isvec = 1;
5186 inst.operands[i].vectype = optype;
5187 inst.operands[i].present = 1;
5188
5189 if (skip_past_comma (&ptr) == SUCCESS)
5190 {
5191 /* Case 15. */
5192 i++;
5193
5194 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5195 goto wanted_arm;
5196
5197 inst.operands[i].reg = val;
5198 inst.operands[i].isreg = 1;
5199 inst.operands[i++].present = 1;
5200
5201 if (skip_past_comma (&ptr) == FAIL)
5202 goto wanted_comma;
5203
5204 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5205 goto wanted_arm;
5206
5207 inst.operands[i].reg = val;
5208 inst.operands[i].isreg = 1;
5209 inst.operands[i++].present = 1;
5210 }
5211 }
5212 else
5213 {
5214 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5215 return FAIL;
5216 }
5217 }
5218 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5219 {
5220 /* Cases 6, 7. */
5221 inst.operands[i].reg = val;
5222 inst.operands[i].isreg = 1;
5223 inst.operands[i++].present = 1;
5224
5225 if (skip_past_comma (&ptr) == FAIL)
5226 goto wanted_comma;
5227
5228 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5229 {
5230 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
5231 inst.operands[i].reg = val;
5232 inst.operands[i].isscalar = 1;
5233 inst.operands[i].present = 1;
5234 inst.operands[i].vectype = optype;
5235 }
5236 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5237 {
5238 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
5239 inst.operands[i].reg = val;
5240 inst.operands[i].isreg = 1;
5241 inst.operands[i++].present = 1;
5242
5243 if (skip_past_comma (&ptr) == FAIL)
5244 goto wanted_comma;
5245
5246 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
5247 == FAIL)
5248 {
5249 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
5250 return FAIL;
5251 }
5252
5253 inst.operands[i].reg = val;
5254 inst.operands[i].isreg = 1;
5255 inst.operands[i].isvec = 1;
5256 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5257 inst.operands[i].vectype = optype;
5258 inst.operands[i].present = 1;
5259
5260 if (rtype == REG_TYPE_VFS)
5261 {
5262 /* Case 14. */
5263 i++;
5264 if (skip_past_comma (&ptr) == FAIL)
5265 goto wanted_comma;
5266 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
5267 &optype)) == FAIL)
5268 {
5269 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
5270 return FAIL;
5271 }
5272 inst.operands[i].reg = val;
5273 inst.operands[i].isreg = 1;
5274 inst.operands[i].isvec = 1;
5275 inst.operands[i].issingle = 1;
5276 inst.operands[i].vectype = optype;
5277 inst.operands[i].present = 1;
5278 }
5279 }
5280 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
5281 != FAIL)
5282 {
5283 /* Case 13. */
5284 inst.operands[i].reg = val;
5285 inst.operands[i].isreg = 1;
5286 inst.operands[i].isvec = 1;
5287 inst.operands[i].issingle = 1;
5288 inst.operands[i].vectype = optype;
5289 inst.operands[i++].present = 1;
5290 }
5291 }
5292 else
5293 {
5294 first_error (_("parse error"));
5295 return FAIL;
5296 }
5297
5298 /* Successfully parsed the operands. Update args. */
5299 *which_operand = i;
5300 *str = ptr;
5301 return SUCCESS;
5302
5303 wanted_comma:
5304 first_error (_("expected comma"));
5305 return FAIL;
5306
5307 wanted_arm:
5308 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
5309 return FAIL;
5310 }
5311
5312 /* Matcher codes for parse_operands. */
5313 enum operand_parse_code
5314 {
5315 OP_stop, /* end of line */
5316
5317 OP_RR, /* ARM register */
5318 OP_RRnpc, /* ARM register, not r15 */
5319 OP_RRnpcb, /* ARM register, not r15, in square brackets */
5320 OP_RRw, /* ARM register, not r15, optional trailing ! */
5321 OP_RCP, /* Coprocessor number */
5322 OP_RCN, /* Coprocessor register */
5323 OP_RF, /* FPA register */
5324 OP_RVS, /* VFP single precision register */
5325 OP_RVD, /* VFP double precision register (0..15) */
5326 OP_RND, /* Neon double precision register (0..31) */
5327 OP_RNQ, /* Neon quad precision register */
5328 OP_RVSD, /* VFP single or double precision register */
5329 OP_RNDQ, /* Neon double or quad precision register */
5330 OP_RNSDQ, /* Neon single, double or quad precision register */
5331 OP_RNSC, /* Neon scalar D[X] */
5332 OP_RVC, /* VFP control register */
5333 OP_RMF, /* Maverick F register */
5334 OP_RMD, /* Maverick D register */
5335 OP_RMFX, /* Maverick FX register */
5336 OP_RMDX, /* Maverick DX register */
5337 OP_RMAX, /* Maverick AX register */
5338 OP_RMDS, /* Maverick DSPSC register */
5339 OP_RIWR, /* iWMMXt wR register */
5340 OP_RIWC, /* iWMMXt wC register */
5341 OP_RIWG, /* iWMMXt wCG register */
5342 OP_RXA, /* XScale accumulator register */
5343
5344 OP_REGLST, /* ARM register list */
5345 OP_VRSLST, /* VFP single-precision register list */
5346 OP_VRDLST, /* VFP double-precision register list */
5347 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
5348 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
5349 OP_NSTRLST, /* Neon element/structure list */
5350
5351 OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */
5352 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
5353 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
5354 OP_RR_RNSC, /* ARM reg or Neon scalar. */
5355 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
5356 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
5357 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
5358 OP_VMOV, /* Neon VMOV operands. */
5359 OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */
5360 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
5361
5362 OP_I0, /* immediate zero */
5363 OP_I7, /* immediate value 0 .. 7 */
5364 OP_I15, /* 0 .. 15 */
5365 OP_I16, /* 1 .. 16 */
5366 OP_I16z, /* 0 .. 16 */
5367 OP_I31, /* 0 .. 31 */
5368 OP_I31w, /* 0 .. 31, optional trailing ! */
5369 OP_I32, /* 1 .. 32 */
5370 OP_I32z, /* 0 .. 32 */
5371 OP_I63, /* 0 .. 63 */
5372 OP_I63s, /* -64 .. 63 */
5373 OP_I64, /* 1 .. 64 */
5374 OP_I64z, /* 0 .. 64 */
5375 OP_I255, /* 0 .. 255 */
5376
5377 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
5378 OP_I7b, /* 0 .. 7 */
5379 OP_I15b, /* 0 .. 15 */
5380 OP_I31b, /* 0 .. 31 */
5381
5382 OP_SH, /* shifter operand */
5383 OP_SHG, /* shifter operand with possible group relocation */
5384 OP_ADDR, /* Memory address expression (any mode) */
5385 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
5386 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
5387 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
5388 OP_EXP, /* arbitrary expression */
5389 OP_EXPi, /* same, with optional immediate prefix */
5390 OP_EXPr, /* same, with optional relocation suffix */
5391 OP_HALF, /* 0 .. 65535 or low/high reloc. */
5392
5393 OP_CPSF, /* CPS flags */
5394 OP_ENDI, /* Endianness specifier */
5395 OP_PSR, /* CPSR/SPSR mask for msr */
5396 OP_COND, /* conditional code */
5397 OP_TB, /* Table branch. */
5398
5399 OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */
5400 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
5401
5402 OP_RRnpc_I0, /* ARM register or literal 0 */
5403 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
5404 OP_RR_EXi, /* ARM register or expression with imm prefix */
5405 OP_RF_IF, /* FPA register or immediate */
5406 OP_RIWR_RIWC, /* iWMMXt R or C reg */
5407 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
5408
5409 /* Optional operands. */
5410 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
5411 OP_oI31b, /* 0 .. 31 */
5412 OP_oI32b, /* 1 .. 32 */
5413 OP_oIffffb, /* 0 .. 65535 */
5414 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
5415
5416 OP_oRR, /* ARM register */
5417 OP_oRRnpc, /* ARM register, not the PC */
5418 OP_oRND, /* Optional Neon double precision register */
5419 OP_oRNQ, /* Optional Neon quad precision register */
5420 OP_oRNDQ, /* Optional Neon double or quad precision register */
5421 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
5422 OP_oSHll, /* LSL immediate */
5423 OP_oSHar, /* ASR immediate */
5424 OP_oSHllar, /* LSL or ASR immediate */
5425 OP_oROR, /* ROR 0/8/16/24 */
5426 OP_oBARRIER, /* Option argument for a barrier instruction. */
5427
5428 OP_FIRST_OPTIONAL = OP_oI7b
5429 };
5430
5431 /* Generic instruction operand parser. This does no encoding and no
5432 semantic validation; it merely squirrels values away in the inst
5433 structure. Returns SUCCESS or FAIL depending on whether the
5434 specified grammar matched. */
5435 static int
5436 parse_operands (char *str, const unsigned char *pattern)
5437 {
5438 unsigned const char *upat = pattern;
5439 char *backtrack_pos = 0;
5440 const char *backtrack_error = 0;
5441 int i, val, backtrack_index = 0;
5442 enum arm_reg_type rtype;
5443 parse_operand_result result;
5444
5445 #define po_char_or_fail(chr) do { \
5446 if (skip_past_char (&str, chr) == FAIL) \
5447 goto bad_args; \
5448 } while (0)
5449
5450 #define po_reg_or_fail(regtype) do { \
5451 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5452 &inst.operands[i].vectype); \
5453 if (val == FAIL) \
5454 { \
5455 first_error (_(reg_expected_msgs[regtype])); \
5456 goto failure; \
5457 } \
5458 inst.operands[i].reg = val; \
5459 inst.operands[i].isreg = 1; \
5460 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5461 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5462 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5463 || rtype == REG_TYPE_VFD \
5464 || rtype == REG_TYPE_NQ); \
5465 } while (0)
5466
5467 #define po_reg_or_goto(regtype, label) do { \
5468 val = arm_typed_reg_parse (&str, regtype, &rtype, \
5469 &inst.operands[i].vectype); \
5470 if (val == FAIL) \
5471 goto label; \
5472 \
5473 inst.operands[i].reg = val; \
5474 inst.operands[i].isreg = 1; \
5475 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
5476 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
5477 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
5478 || rtype == REG_TYPE_VFD \
5479 || rtype == REG_TYPE_NQ); \
5480 } while (0)
5481
5482 #define po_imm_or_fail(min, max, popt) do { \
5483 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
5484 goto failure; \
5485 inst.operands[i].imm = val; \
5486 } while (0)
5487
5488 #define po_scalar_or_goto(elsz, label) do { \
5489 val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \
5490 if (val == FAIL) \
5491 goto label; \
5492 inst.operands[i].reg = val; \
5493 inst.operands[i].isscalar = 1; \
5494 } while (0)
5495
5496 #define po_misc_or_fail(expr) do { \
5497 if (expr) \
5498 goto failure; \
5499 } while (0)
5500
5501 #define po_misc_or_fail_no_backtrack(expr) do { \
5502 result = expr; \
5503 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\
5504 backtrack_pos = 0; \
5505 if (result != PARSE_OPERAND_SUCCESS) \
5506 goto failure; \
5507 } while (0)
5508
5509 skip_whitespace (str);
5510
5511 for (i = 0; upat[i] != OP_stop; i++)
5512 {
5513 if (upat[i] >= OP_FIRST_OPTIONAL)
5514 {
5515 /* Remember where we are in case we need to backtrack. */
5516 assert (!backtrack_pos);
5517 backtrack_pos = str;
5518 backtrack_error = inst.error;
5519 backtrack_index = i;
5520 }
5521
5522 if (i > 0)
5523 po_char_or_fail (',');
5524
5525 switch (upat[i])
5526 {
5527 /* Registers */
5528 case OP_oRRnpc:
5529 case OP_RRnpc:
5530 case OP_oRR:
5531 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
5532 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
5533 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
5534 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
5535 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
5536 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
5537 case OP_oRND:
5538 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
5539 case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break;
5540 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
5541 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
5542 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
5543 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
5544 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
5545 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
5546 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
5547 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
5548 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
5549 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
5550 case OP_oRNQ:
5551 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
5552 case OP_oRNDQ:
5553 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
5554 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
5555 case OP_oRNSDQ:
5556 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
5557
5558 /* Neon scalar. Using an element size of 8 means that some invalid
5559 scalars are accepted here, so deal with those in later code. */
5560 case OP_RNSC: po_scalar_or_goto (8, failure); break;
5561
5562 /* WARNING: We can expand to two operands here. This has the potential
5563 to totally confuse the backtracking mechanism! It will be OK at
5564 least as long as we don't try to use optional args as well,
5565 though. */
5566 case OP_NILO:
5567 {
5568 po_reg_or_goto (REG_TYPE_NDQ, try_imm);
5569 i++;
5570 skip_past_comma (&str);
5571 po_reg_or_goto (REG_TYPE_NDQ, one_reg_only);
5572 break;
5573 one_reg_only:
5574 /* Optional register operand was omitted. Unfortunately, it's in
5575 operands[i-1] and we need it to be in inst.operands[i]. Fix that
5576 here (this is a bit grotty). */
5577 inst.operands[i] = inst.operands[i-1];
5578 inst.operands[i-1].present = 0;
5579 break;
5580 try_imm:
5581 /* Immediate gets verified properly later, so accept any now. */
5582 po_imm_or_fail (INT_MIN, INT_MAX, TRUE);
5583 }
5584 break;
5585
5586 case OP_RNDQ_I0:
5587 {
5588 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
5589 break;
5590 try_imm0:
5591 po_imm_or_fail (0, 0, TRUE);
5592 }
5593 break;
5594
5595 case OP_RVSD_I0:
5596 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
5597 break;
5598
5599 case OP_RR_RNSC:
5600 {
5601 po_scalar_or_goto (8, try_rr);
5602 break;
5603 try_rr:
5604 po_reg_or_fail (REG_TYPE_RN);
5605 }
5606 break;
5607
5608 case OP_RNSDQ_RNSC:
5609 {
5610 po_scalar_or_goto (8, try_nsdq);
5611 break;
5612 try_nsdq:
5613 po_reg_or_fail (REG_TYPE_NSDQ);
5614 }
5615 break;
5616
5617 case OP_RNDQ_RNSC:
5618 {
5619 po_scalar_or_goto (8, try_ndq);
5620 break;
5621 try_ndq:
5622 po_reg_or_fail (REG_TYPE_NDQ);
5623 }
5624 break;
5625
5626 case OP_RND_RNSC:
5627 {
5628 po_scalar_or_goto (8, try_vfd);
5629 break;
5630 try_vfd:
5631 po_reg_or_fail (REG_TYPE_VFD);
5632 }
5633 break;
5634
5635 case OP_VMOV:
5636 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
5637 not careful then bad things might happen. */
5638 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
5639 break;
5640
5641 case OP_RNDQ_IMVNb:
5642 {
5643 po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm);
5644 break;
5645 try_mvnimm:
5646 /* There's a possibility of getting a 64-bit immediate here, so
5647 we need special handling. */
5648 if (parse_big_immediate (&str, i) == FAIL)
5649 {
5650 inst.error = _("immediate value is out of range");
5651 goto failure;
5652 }
5653 }
5654 break;
5655
5656 case OP_RNDQ_I63b:
5657 {
5658 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
5659 break;
5660 try_shimm:
5661 po_imm_or_fail (0, 63, TRUE);
5662 }
5663 break;
5664
5665 case OP_RRnpcb:
5666 po_char_or_fail ('[');
5667 po_reg_or_fail (REG_TYPE_RN);
5668 po_char_or_fail (']');
5669 break;
5670
5671 case OP_RRw:
5672 po_reg_or_fail (REG_TYPE_RN);
5673 if (skip_past_char (&str, '!') == SUCCESS)
5674 inst.operands[i].writeback = 1;
5675 break;
5676
5677 /* Immediates */
5678 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
5679 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
5680 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
5681 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
5682 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
5683 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
5684 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
5685 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
5686 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
5687 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
5688 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
5689 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
5690
5691 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
5692 case OP_oI7b:
5693 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
5694 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
5695 case OP_oI31b:
5696 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
5697 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
5698 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
5699
5700 /* Immediate variants */
5701 case OP_oI255c:
5702 po_char_or_fail ('{');
5703 po_imm_or_fail (0, 255, TRUE);
5704 po_char_or_fail ('}');
5705 break;
5706
5707 case OP_I31w:
5708 /* The expression parser chokes on a trailing !, so we have
5709 to find it first and zap it. */
5710 {
5711 char *s = str;
5712 while (*s && *s != ',')
5713 s++;
5714 if (s[-1] == '!')
5715 {
5716 s[-1] = '\0';
5717 inst.operands[i].writeback = 1;
5718 }
5719 po_imm_or_fail (0, 31, TRUE);
5720 if (str == s - 1)
5721 str = s;
5722 }
5723 break;
5724
5725 /* Expressions */
5726 case OP_EXPi: EXPi:
5727 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5728 GE_OPT_PREFIX));
5729 break;
5730
5731 case OP_EXP:
5732 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5733 GE_NO_PREFIX));
5734 break;
5735
5736 case OP_EXPr: EXPr:
5737 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
5738 GE_NO_PREFIX));
5739 if (inst.reloc.exp.X_op == O_symbol)
5740 {
5741 val = parse_reloc (&str);
5742 if (val == -1)
5743 {
5744 inst.error = _("unrecognized relocation suffix");
5745 goto failure;
5746 }
5747 else if (val != BFD_RELOC_UNUSED)
5748 {
5749 inst.operands[i].imm = val;
5750 inst.operands[i].hasreloc = 1;
5751 }
5752 }
5753 break;
5754
5755 /* Operand for MOVW or MOVT. */
5756 case OP_HALF:
5757 po_misc_or_fail (parse_half (&str));
5758 break;
5759
5760 /* Register or expression */
5761 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
5762 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
5763
5764 /* Register or immediate */
5765 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
5766 I0: po_imm_or_fail (0, 0, FALSE); break;
5767
5768 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
5769 IF:
5770 if (!is_immediate_prefix (*str))
5771 goto bad_args;
5772 str++;
5773 val = parse_fpa_immediate (&str);
5774 if (val == FAIL)
5775 goto failure;
5776 /* FPA immediates are encoded as registers 8-15.
5777 parse_fpa_immediate has already applied the offset. */
5778 inst.operands[i].reg = val;
5779 inst.operands[i].isreg = 1;
5780 break;
5781
5782 /* Two kinds of register */
5783 case OP_RIWR_RIWC:
5784 {
5785 struct reg_entry *rege = arm_reg_parse_multi (&str);
5786 if (!rege
5787 || (rege->type != REG_TYPE_MMXWR
5788 && rege->type != REG_TYPE_MMXWC
5789 && rege->type != REG_TYPE_MMXWCG))
5790 {
5791 inst.error = _("iWMMXt data or control register expected");
5792 goto failure;
5793 }
5794 inst.operands[i].reg = rege->number;
5795 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
5796 }
5797 break;
5798
5799 case OP_RIWC_RIWG:
5800 {
5801 struct reg_entry *rege = arm_reg_parse_multi (&str);
5802 if (!rege
5803 || (rege->type != REG_TYPE_MMXWC
5804 && rege->type != REG_TYPE_MMXWCG))
5805 {
5806 inst.error = _("iWMMXt control register expected");
5807 goto failure;
5808 }
5809 inst.operands[i].reg = rege->number;
5810 inst.operands[i].isreg = 1;
5811 }
5812 break;
5813
5814 /* Misc */
5815 case OP_CPSF: val = parse_cps_flags (&str); break;
5816 case OP_ENDI: val = parse_endian_specifier (&str); break;
5817 case OP_oROR: val = parse_ror (&str); break;
5818 case OP_PSR: val = parse_psr (&str); break;
5819 case OP_COND: val = parse_cond (&str); break;
5820 case OP_oBARRIER:val = parse_barrier (&str); break;
5821
5822 case OP_RVC_PSR:
5823 po_reg_or_goto (REG_TYPE_VFC, try_psr);
5824 inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */
5825 break;
5826 try_psr:
5827 val = parse_psr (&str);
5828 break;
5829
5830 case OP_APSR_RR:
5831 po_reg_or_goto (REG_TYPE_RN, try_apsr);
5832 break;
5833 try_apsr:
5834 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
5835 instruction). */
5836 if (strncasecmp (str, "APSR_", 5) == 0)
5837 {
5838 unsigned found = 0;
5839 str += 5;
5840 while (found < 15)
5841 switch (*str++)
5842 {
5843 case 'c': found = (found & 1) ? 16 : found | 1; break;
5844 case 'n': found = (found & 2) ? 16 : found | 2; break;
5845 case 'z': found = (found & 4) ? 16 : found | 4; break;
5846 case 'v': found = (found & 8) ? 16 : found | 8; break;
5847 default: found = 16;
5848 }
5849 if (found != 15)
5850 goto failure;
5851 inst.operands[i].isvec = 1;
5852 }
5853 else
5854 goto failure;
5855 break;
5856
5857 case OP_TB:
5858 po_misc_or_fail (parse_tb (&str));
5859 break;
5860
5861 /* Register lists */
5862 case OP_REGLST:
5863 val = parse_reg_list (&str);
5864 if (*str == '^')
5865 {
5866 inst.operands[1].writeback = 1;
5867 str++;
5868 }
5869 break;
5870
5871 case OP_VRSLST:
5872 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
5873 break;
5874
5875 case OP_VRDLST:
5876 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
5877 break;
5878
5879 case OP_VRSDLST:
5880 /* Allow Q registers too. */
5881 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5882 REGLIST_NEON_D);
5883 if (val == FAIL)
5884 {
5885 inst.error = NULL;
5886 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5887 REGLIST_VFP_S);
5888 inst.operands[i].issingle = 1;
5889 }
5890 break;
5891
5892 case OP_NRDLST:
5893 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
5894 REGLIST_NEON_D);
5895 break;
5896
5897 case OP_NSTRLST:
5898 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
5899 &inst.operands[i].vectype);
5900 break;
5901
5902 /* Addressing modes */
5903 case OP_ADDR:
5904 po_misc_or_fail (parse_address (&str, i));
5905 break;
5906
5907 case OP_ADDRGLDR:
5908 po_misc_or_fail_no_backtrack (
5909 parse_address_group_reloc (&str, i, GROUP_LDR));
5910 break;
5911
5912 case OP_ADDRGLDRS:
5913 po_misc_or_fail_no_backtrack (
5914 parse_address_group_reloc (&str, i, GROUP_LDRS));
5915 break;
5916
5917 case OP_ADDRGLDC:
5918 po_misc_or_fail_no_backtrack (
5919 parse_address_group_reloc (&str, i, GROUP_LDC));
5920 break;
5921
5922 case OP_SH:
5923 po_misc_or_fail (parse_shifter_operand (&str, i));
5924 break;
5925
5926 case OP_SHG:
5927 po_misc_or_fail_no_backtrack (
5928 parse_shifter_operand_group_reloc (&str, i));
5929 break;
5930
5931 case OP_oSHll:
5932 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
5933 break;
5934
5935 case OP_oSHar:
5936 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
5937 break;
5938
5939 case OP_oSHllar:
5940 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
5941 break;
5942
5943 default:
5944 as_fatal ("unhandled operand code %d", upat[i]);
5945 }
5946
5947 /* Various value-based sanity checks and shared operations. We
5948 do not signal immediate failures for the register constraints;
5949 this allows a syntax error to take precedence. */
5950 switch (upat[i])
5951 {
5952 case OP_oRRnpc:
5953 case OP_RRnpc:
5954 case OP_RRnpcb:
5955 case OP_RRw:
5956 case OP_RRnpc_I0:
5957 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
5958 inst.error = BAD_PC;
5959 break;
5960
5961 case OP_CPSF:
5962 case OP_ENDI:
5963 case OP_oROR:
5964 case OP_PSR:
5965 case OP_RVC_PSR:
5966 case OP_COND:
5967 case OP_oBARRIER:
5968 case OP_REGLST:
5969 case OP_VRSLST:
5970 case OP_VRDLST:
5971 case OP_VRSDLST:
5972 case OP_NRDLST:
5973 case OP_NSTRLST:
5974 if (val == FAIL)
5975 goto failure;
5976 inst.operands[i].imm = val;
5977 break;
5978
5979 default:
5980 break;
5981 }
5982
5983 /* If we get here, this operand was successfully parsed. */
5984 inst.operands[i].present = 1;
5985 continue;
5986
5987 bad_args:
5988 inst.error = BAD_ARGS;
5989
5990 failure:
5991 if (!backtrack_pos)
5992 {
5993 /* The parse routine should already have set inst.error, but set a
5994 defaut here just in case. */
5995 if (!inst.error)
5996 inst.error = _("syntax error");
5997 return FAIL;
5998 }
5999
6000 /* Do not backtrack over a trailing optional argument that
6001 absorbed some text. We will only fail again, with the
6002 'garbage following instruction' error message, which is
6003 probably less helpful than the current one. */
6004 if (backtrack_index == i && backtrack_pos != str
6005 && upat[i+1] == OP_stop)
6006 {
6007 if (!inst.error)
6008 inst.error = _("syntax error");
6009 return FAIL;
6010 }
6011
6012 /* Try again, skipping the optional argument at backtrack_pos. */
6013 str = backtrack_pos;
6014 inst.error = backtrack_error;
6015 inst.operands[backtrack_index].present = 0;
6016 i = backtrack_index;
6017 backtrack_pos = 0;
6018 }
6019
6020 /* Check that we have parsed all the arguments. */
6021 if (*str != '\0' && !inst.error)
6022 inst.error = _("garbage following instruction");
6023
6024 return inst.error ? FAIL : SUCCESS;
6025 }
6026
6027 #undef po_char_or_fail
6028 #undef po_reg_or_fail
6029 #undef po_reg_or_goto
6030 #undef po_imm_or_fail
6031 #undef po_scalar_or_fail
6032 \f
6033 /* Shorthand macro for instruction encoding functions issuing errors. */
6034 #define constraint(expr, err) do { \
6035 if (expr) \
6036 { \
6037 inst.error = err; \
6038 return; \
6039 } \
6040 } while (0)
6041
6042 /* Functions for operand encoding. ARM, then Thumb. */
6043
6044 #define rotate_left(v, n) (v << n | v >> (32 - n))
6045
6046 /* If VAL can be encoded in the immediate field of an ARM instruction,
6047 return the encoded form. Otherwise, return FAIL. */
6048
6049 static unsigned int
6050 encode_arm_immediate (unsigned int val)
6051 {
6052 unsigned int a, i;
6053
6054 for (i = 0; i < 32; i += 2)
6055 if ((a = rotate_left (val, i)) <= 0xff)
6056 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6057
6058 return FAIL;
6059 }
6060
6061 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6062 return the encoded form. Otherwise, return FAIL. */
6063 static unsigned int
6064 encode_thumb32_immediate (unsigned int val)
6065 {
6066 unsigned int a, i;
6067
6068 if (val <= 0xff)
6069 return val;
6070
6071 for (i = 1; i <= 24; i++)
6072 {
6073 a = val >> i;
6074 if ((val & ~(0xff << i)) == 0)
6075 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6076 }
6077
6078 a = val & 0xff;
6079 if (val == ((a << 16) | a))
6080 return 0x100 | a;
6081 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6082 return 0x300 | a;
6083
6084 a = val & 0xff00;
6085 if (val == ((a << 16) | a))
6086 return 0x200 | (a >> 8);
6087
6088 return FAIL;
6089 }
6090 /* Encode a VFP SP or DP register number into inst.instruction. */
6091
6092 static void
6093 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6094 {
6095 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6096 && reg > 15)
6097 {
6098 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3))
6099 {
6100 if (thumb_mode)
6101 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6102 fpu_vfp_ext_v3);
6103 else
6104 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6105 fpu_vfp_ext_v3);
6106 }
6107 else
6108 {
6109 first_error (_("D register out of range for selected VFP version"));
6110 return;
6111 }
6112 }
6113
6114 switch (pos)
6115 {
6116 case VFP_REG_Sd:
6117 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
6118 break;
6119
6120 case VFP_REG_Sn:
6121 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
6122 break;
6123
6124 case VFP_REG_Sm:
6125 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
6126 break;
6127
6128 case VFP_REG_Dd:
6129 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
6130 break;
6131
6132 case VFP_REG_Dn:
6133 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
6134 break;
6135
6136 case VFP_REG_Dm:
6137 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
6138 break;
6139
6140 default:
6141 abort ();
6142 }
6143 }
6144
6145 /* Encode a <shift> in an ARM-format instruction. The immediate,
6146 if any, is handled by md_apply_fix. */
6147 static void
6148 encode_arm_shift (int i)
6149 {
6150 if (inst.operands[i].shift_kind == SHIFT_RRX)
6151 inst.instruction |= SHIFT_ROR << 5;
6152 else
6153 {
6154 inst.instruction |= inst.operands[i].shift_kind << 5;
6155 if (inst.operands[i].immisreg)
6156 {
6157 inst.instruction |= SHIFT_BY_REG;
6158 inst.instruction |= inst.operands[i].imm << 8;
6159 }
6160 else
6161 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6162 }
6163 }
6164
6165 static void
6166 encode_arm_shifter_operand (int i)
6167 {
6168 if (inst.operands[i].isreg)
6169 {
6170 inst.instruction |= inst.operands[i].reg;
6171 encode_arm_shift (i);
6172 }
6173 else
6174 inst.instruction |= INST_IMMEDIATE;
6175 }
6176
6177 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
6178 static void
6179 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
6180 {
6181 assert (inst.operands[i].isreg);
6182 inst.instruction |= inst.operands[i].reg << 16;
6183
6184 if (inst.operands[i].preind)
6185 {
6186 if (is_t)
6187 {
6188 inst.error = _("instruction does not accept preindexed addressing");
6189 return;
6190 }
6191 inst.instruction |= PRE_INDEX;
6192 if (inst.operands[i].writeback)
6193 inst.instruction |= WRITE_BACK;
6194
6195 }
6196 else if (inst.operands[i].postind)
6197 {
6198 assert (inst.operands[i].writeback);
6199 if (is_t)
6200 inst.instruction |= WRITE_BACK;
6201 }
6202 else /* unindexed - only for coprocessor */
6203 {
6204 inst.error = _("instruction does not accept unindexed addressing");
6205 return;
6206 }
6207
6208 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
6209 && (((inst.instruction & 0x000f0000) >> 16)
6210 == ((inst.instruction & 0x0000f000) >> 12)))
6211 as_warn ((inst.instruction & LOAD_BIT)
6212 ? _("destination register same as write-back base")
6213 : _("source register same as write-back base"));
6214 }
6215
6216 /* inst.operands[i] was set up by parse_address. Encode it into an
6217 ARM-format mode 2 load or store instruction. If is_t is true,
6218 reject forms that cannot be used with a T instruction (i.e. not
6219 post-indexed). */
6220 static void
6221 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
6222 {
6223 encode_arm_addr_mode_common (i, is_t);
6224
6225 if (inst.operands[i].immisreg)
6226 {
6227 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
6228 inst.instruction |= inst.operands[i].imm;
6229 if (!inst.operands[i].negative)
6230 inst.instruction |= INDEX_UP;
6231 if (inst.operands[i].shifted)
6232 {
6233 if (inst.operands[i].shift_kind == SHIFT_RRX)
6234 inst.instruction |= SHIFT_ROR << 5;
6235 else
6236 {
6237 inst.instruction |= inst.operands[i].shift_kind << 5;
6238 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
6239 }
6240 }
6241 }
6242 else /* immediate offset in inst.reloc */
6243 {
6244 if (inst.reloc.type == BFD_RELOC_UNUSED)
6245 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
6246 }
6247 }
6248
6249 /* inst.operands[i] was set up by parse_address. Encode it into an
6250 ARM-format mode 3 load or store instruction. Reject forms that
6251 cannot be used with such instructions. If is_t is true, reject
6252 forms that cannot be used with a T instruction (i.e. not
6253 post-indexed). */
6254 static void
6255 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
6256 {
6257 if (inst.operands[i].immisreg && inst.operands[i].shifted)
6258 {
6259 inst.error = _("instruction does not accept scaled register index");
6260 return;
6261 }
6262
6263 encode_arm_addr_mode_common (i, is_t);
6264
6265 if (inst.operands[i].immisreg)
6266 {
6267 inst.instruction |= inst.operands[i].imm;
6268 if (!inst.operands[i].negative)
6269 inst.instruction |= INDEX_UP;
6270 }
6271 else /* immediate offset in inst.reloc */
6272 {
6273 inst.instruction |= HWOFFSET_IMM;
6274 if (inst.reloc.type == BFD_RELOC_UNUSED)
6275 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
6276 }
6277 }
6278
6279 /* inst.operands[i] was set up by parse_address. Encode it into an
6280 ARM-format instruction. Reject all forms which cannot be encoded
6281 into a coprocessor load/store instruction. If wb_ok is false,
6282 reject use of writeback; if unind_ok is false, reject use of
6283 unindexed addressing. If reloc_override is not 0, use it instead
6284 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
6285 (in which case it is preserved). */
6286
6287 static int
6288 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
6289 {
6290 inst.instruction |= inst.operands[i].reg << 16;
6291
6292 assert (!(inst.operands[i].preind && inst.operands[i].postind));
6293
6294 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
6295 {
6296 assert (!inst.operands[i].writeback);
6297 if (!unind_ok)
6298 {
6299 inst.error = _("instruction does not support unindexed addressing");
6300 return FAIL;
6301 }
6302 inst.instruction |= inst.operands[i].imm;
6303 inst.instruction |= INDEX_UP;
6304 return SUCCESS;
6305 }
6306
6307 if (inst.operands[i].preind)
6308 inst.instruction |= PRE_INDEX;
6309
6310 if (inst.operands[i].writeback)
6311 {
6312 if (inst.operands[i].reg == REG_PC)
6313 {
6314 inst.error = _("pc may not be used with write-back");
6315 return FAIL;
6316 }
6317 if (!wb_ok)
6318 {
6319 inst.error = _("instruction does not support writeback");
6320 return FAIL;
6321 }
6322 inst.instruction |= WRITE_BACK;
6323 }
6324
6325 if (reloc_override)
6326 inst.reloc.type = reloc_override;
6327 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
6328 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
6329 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
6330 {
6331 if (thumb_mode)
6332 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
6333 else
6334 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
6335 }
6336
6337 return SUCCESS;
6338 }
6339
6340 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
6341 Determine whether it can be performed with a move instruction; if
6342 it can, convert inst.instruction to that move instruction and
6343 return 1; if it can't, convert inst.instruction to a literal-pool
6344 load and return 0. If this is not a valid thing to do in the
6345 current context, set inst.error and return 1.
6346
6347 inst.operands[i] describes the destination register. */
6348
6349 static int
6350 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
6351 {
6352 unsigned long tbit;
6353
6354 if (thumb_p)
6355 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
6356 else
6357 tbit = LOAD_BIT;
6358
6359 if ((inst.instruction & tbit) == 0)
6360 {
6361 inst.error = _("invalid pseudo operation");
6362 return 1;
6363 }
6364 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
6365 {
6366 inst.error = _("constant expression expected");
6367 return 1;
6368 }
6369 if (inst.reloc.exp.X_op == O_constant)
6370 {
6371 if (thumb_p)
6372 {
6373 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
6374 {
6375 /* This can be done with a mov(1) instruction. */
6376 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
6377 inst.instruction |= inst.reloc.exp.X_add_number;
6378 return 1;
6379 }
6380 }
6381 else
6382 {
6383 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
6384 if (value != FAIL)
6385 {
6386 /* This can be done with a mov instruction. */
6387 inst.instruction &= LITERAL_MASK;
6388 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
6389 inst.instruction |= value & 0xfff;
6390 return 1;
6391 }
6392
6393 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
6394 if (value != FAIL)
6395 {
6396 /* This can be done with a mvn instruction. */
6397 inst.instruction &= LITERAL_MASK;
6398 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
6399 inst.instruction |= value & 0xfff;
6400 return 1;
6401 }
6402 }
6403 }
6404
6405 if (add_to_lit_pool () == FAIL)
6406 {
6407 inst.error = _("literal pool insertion failed");
6408 return 1;
6409 }
6410 inst.operands[1].reg = REG_PC;
6411 inst.operands[1].isreg = 1;
6412 inst.operands[1].preind = 1;
6413 inst.reloc.pc_rel = 1;
6414 inst.reloc.type = (thumb_p
6415 ? BFD_RELOC_ARM_THUMB_OFFSET
6416 : (mode_3
6417 ? BFD_RELOC_ARM_HWLITERAL
6418 : BFD_RELOC_ARM_LITERAL));
6419 return 0;
6420 }
6421
6422 /* Functions for instruction encoding, sorted by subarchitecture.
6423 First some generics; their names are taken from the conventional
6424 bit positions for register arguments in ARM format instructions. */
6425
6426 static void
6427 do_noargs (void)
6428 {
6429 }
6430
6431 static void
6432 do_rd (void)
6433 {
6434 inst.instruction |= inst.operands[0].reg << 12;
6435 }
6436
6437 static void
6438 do_rd_rm (void)
6439 {
6440 inst.instruction |= inst.operands[0].reg << 12;
6441 inst.instruction |= inst.operands[1].reg;
6442 }
6443
6444 static void
6445 do_rd_rn (void)
6446 {
6447 inst.instruction |= inst.operands[0].reg << 12;
6448 inst.instruction |= inst.operands[1].reg << 16;
6449 }
6450
6451 static void
6452 do_rn_rd (void)
6453 {
6454 inst.instruction |= inst.operands[0].reg << 16;
6455 inst.instruction |= inst.operands[1].reg << 12;
6456 }
6457
6458 static void
6459 do_rd_rm_rn (void)
6460 {
6461 unsigned Rn = inst.operands[2].reg;
6462 /* Enforce restrictions on SWP instruction. */
6463 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
6464 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
6465 _("Rn must not overlap other operands"));
6466 inst.instruction |= inst.operands[0].reg << 12;
6467 inst.instruction |= inst.operands[1].reg;
6468 inst.instruction |= Rn << 16;
6469 }
6470
6471 static void
6472 do_rd_rn_rm (void)
6473 {
6474 inst.instruction |= inst.operands[0].reg << 12;
6475 inst.instruction |= inst.operands[1].reg << 16;
6476 inst.instruction |= inst.operands[2].reg;
6477 }
6478
6479 static void
6480 do_rm_rd_rn (void)
6481 {
6482 inst.instruction |= inst.operands[0].reg;
6483 inst.instruction |= inst.operands[1].reg << 12;
6484 inst.instruction |= inst.operands[2].reg << 16;
6485 }
6486
6487 static void
6488 do_imm0 (void)
6489 {
6490 inst.instruction |= inst.operands[0].imm;
6491 }
6492
6493 static void
6494 do_rd_cpaddr (void)
6495 {
6496 inst.instruction |= inst.operands[0].reg << 12;
6497 encode_arm_cp_address (1, TRUE, TRUE, 0);
6498 }
6499
6500 /* ARM instructions, in alphabetical order by function name (except
6501 that wrapper functions appear immediately after the function they
6502 wrap). */
6503
6504 /* This is a pseudo-op of the form "adr rd, label" to be converted
6505 into a relative address of the form "add rd, pc, #label-.-8". */
6506
6507 static void
6508 do_adr (void)
6509 {
6510 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6511
6512 /* Frag hacking will turn this into a sub instruction if the offset turns
6513 out to be negative. */
6514 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
6515 inst.reloc.pc_rel = 1;
6516 inst.reloc.exp.X_add_number -= 8;
6517 }
6518
6519 /* This is a pseudo-op of the form "adrl rd, label" to be converted
6520 into a relative address of the form:
6521 add rd, pc, #low(label-.-8)"
6522 add rd, rd, #high(label-.-8)" */
6523
6524 static void
6525 do_adrl (void)
6526 {
6527 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
6528
6529 /* Frag hacking will turn this into a sub instruction if the offset turns
6530 out to be negative. */
6531 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
6532 inst.reloc.pc_rel = 1;
6533 inst.size = INSN_SIZE * 2;
6534 inst.reloc.exp.X_add_number -= 8;
6535 }
6536
6537 static void
6538 do_arit (void)
6539 {
6540 if (!inst.operands[1].present)
6541 inst.operands[1].reg = inst.operands[0].reg;
6542 inst.instruction |= inst.operands[0].reg << 12;
6543 inst.instruction |= inst.operands[1].reg << 16;
6544 encode_arm_shifter_operand (2);
6545 }
6546
6547 static void
6548 do_barrier (void)
6549 {
6550 if (inst.operands[0].present)
6551 {
6552 constraint ((inst.instruction & 0xf0) != 0x40
6553 && inst.operands[0].imm != 0xf,
6554 "bad barrier type");
6555 inst.instruction |= inst.operands[0].imm;
6556 }
6557 else
6558 inst.instruction |= 0xf;
6559 }
6560
6561 static void
6562 do_bfc (void)
6563 {
6564 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
6565 constraint (msb > 32, _("bit-field extends past end of register"));
6566 /* The instruction encoding stores the LSB and MSB,
6567 not the LSB and width. */
6568 inst.instruction |= inst.operands[0].reg << 12;
6569 inst.instruction |= inst.operands[1].imm << 7;
6570 inst.instruction |= (msb - 1) << 16;
6571 }
6572
6573 static void
6574 do_bfi (void)
6575 {
6576 unsigned int msb;
6577
6578 /* #0 in second position is alternative syntax for bfc, which is
6579 the same instruction but with REG_PC in the Rm field. */
6580 if (!inst.operands[1].isreg)
6581 inst.operands[1].reg = REG_PC;
6582
6583 msb = inst.operands[2].imm + inst.operands[3].imm;
6584 constraint (msb > 32, _("bit-field extends past end of register"));
6585 /* The instruction encoding stores the LSB and MSB,
6586 not the LSB and width. */
6587 inst.instruction |= inst.operands[0].reg << 12;
6588 inst.instruction |= inst.operands[1].reg;
6589 inst.instruction |= inst.operands[2].imm << 7;
6590 inst.instruction |= (msb - 1) << 16;
6591 }
6592
6593 static void
6594 do_bfx (void)
6595 {
6596 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
6597 _("bit-field extends past end of register"));
6598 inst.instruction |= inst.operands[0].reg << 12;
6599 inst.instruction |= inst.operands[1].reg;
6600 inst.instruction |= inst.operands[2].imm << 7;
6601 inst.instruction |= (inst.operands[3].imm - 1) << 16;
6602 }
6603
6604 /* ARM V5 breakpoint instruction (argument parse)
6605 BKPT <16 bit unsigned immediate>
6606 Instruction is not conditional.
6607 The bit pattern given in insns[] has the COND_ALWAYS condition,
6608 and it is an error if the caller tried to override that. */
6609
6610 static void
6611 do_bkpt (void)
6612 {
6613 /* Top 12 of 16 bits to bits 19:8. */
6614 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
6615
6616 /* Bottom 4 of 16 bits to bits 3:0. */
6617 inst.instruction |= inst.operands[0].imm & 0xf;
6618 }
6619
6620 static void
6621 encode_branch (int default_reloc)
6622 {
6623 if (inst.operands[0].hasreloc)
6624 {
6625 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32,
6626 _("the only suffix valid here is '(plt)'"));
6627 inst.reloc.type = BFD_RELOC_ARM_PLT32;
6628 }
6629 else
6630 {
6631 inst.reloc.type = default_reloc;
6632 }
6633 inst.reloc.pc_rel = 1;
6634 }
6635
6636 static void
6637 do_branch (void)
6638 {
6639 #ifdef OBJ_ELF
6640 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6641 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6642 else
6643 #endif
6644 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6645 }
6646
6647 static void
6648 do_bl (void)
6649 {
6650 #ifdef OBJ_ELF
6651 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6652 {
6653 if (inst.cond == COND_ALWAYS)
6654 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6655 else
6656 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
6657 }
6658 else
6659 #endif
6660 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
6661 }
6662
6663 /* ARM V5 branch-link-exchange instruction (argument parse)
6664 BLX <target_addr> ie BLX(1)
6665 BLX{<condition>} <Rm> ie BLX(2)
6666 Unfortunately, there are two different opcodes for this mnemonic.
6667 So, the insns[].value is not used, and the code here zaps values
6668 into inst.instruction.
6669 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
6670
6671 static void
6672 do_blx (void)
6673 {
6674 if (inst.operands[0].isreg)
6675 {
6676 /* Arg is a register; the opcode provided by insns[] is correct.
6677 It is not illegal to do "blx pc", just useless. */
6678 if (inst.operands[0].reg == REG_PC)
6679 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
6680
6681 inst.instruction |= inst.operands[0].reg;
6682 }
6683 else
6684 {
6685 /* Arg is an address; this instruction cannot be executed
6686 conditionally, and the opcode must be adjusted. */
6687 constraint (inst.cond != COND_ALWAYS, BAD_COND);
6688 inst.instruction = 0xfa000000;
6689 #ifdef OBJ_ELF
6690 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
6691 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
6692 else
6693 #endif
6694 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
6695 }
6696 }
6697
6698 static void
6699 do_bx (void)
6700 {
6701 if (inst.operands[0].reg == REG_PC)
6702 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
6703
6704 inst.instruction |= inst.operands[0].reg;
6705 }
6706
6707
6708 /* ARM v5TEJ. Jump to Jazelle code. */
6709
6710 static void
6711 do_bxj (void)
6712 {
6713 if (inst.operands[0].reg == REG_PC)
6714 as_tsktsk (_("use of r15 in bxj is not really useful"));
6715
6716 inst.instruction |= inst.operands[0].reg;
6717 }
6718
6719 /* Co-processor data operation:
6720 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
6721 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
6722 static void
6723 do_cdp (void)
6724 {
6725 inst.instruction |= inst.operands[0].reg << 8;
6726 inst.instruction |= inst.operands[1].imm << 20;
6727 inst.instruction |= inst.operands[2].reg << 12;
6728 inst.instruction |= inst.operands[3].reg << 16;
6729 inst.instruction |= inst.operands[4].reg;
6730 inst.instruction |= inst.operands[5].imm << 5;
6731 }
6732
6733 static void
6734 do_cmp (void)
6735 {
6736 inst.instruction |= inst.operands[0].reg << 16;
6737 encode_arm_shifter_operand (1);
6738 }
6739
6740 /* Transfer between coprocessor and ARM registers.
6741 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
6742 MRC2
6743 MCR{cond}
6744 MCR2
6745
6746 No special properties. */
6747
6748 static void
6749 do_co_reg (void)
6750 {
6751 inst.instruction |= inst.operands[0].reg << 8;
6752 inst.instruction |= inst.operands[1].imm << 21;
6753 inst.instruction |= inst.operands[2].reg << 12;
6754 inst.instruction |= inst.operands[3].reg << 16;
6755 inst.instruction |= inst.operands[4].reg;
6756 inst.instruction |= inst.operands[5].imm << 5;
6757 }
6758
6759 /* Transfer between coprocessor register and pair of ARM registers.
6760 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
6761 MCRR2
6762 MRRC{cond}
6763 MRRC2
6764
6765 Two XScale instructions are special cases of these:
6766
6767 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
6768 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
6769
6770 Result unpredicatable if Rd or Rn is R15. */
6771
6772 static void
6773 do_co_reg2c (void)
6774 {
6775 inst.instruction |= inst.operands[0].reg << 8;
6776 inst.instruction |= inst.operands[1].imm << 4;
6777 inst.instruction |= inst.operands[2].reg << 12;
6778 inst.instruction |= inst.operands[3].reg << 16;
6779 inst.instruction |= inst.operands[4].reg;
6780 }
6781
6782 static void
6783 do_cpsi (void)
6784 {
6785 inst.instruction |= inst.operands[0].imm << 6;
6786 inst.instruction |= inst.operands[1].imm;
6787 }
6788
6789 static void
6790 do_dbg (void)
6791 {
6792 inst.instruction |= inst.operands[0].imm;
6793 }
6794
6795 static void
6796 do_it (void)
6797 {
6798 /* There is no IT instruction in ARM mode. We
6799 process it but do not generate code for it. */
6800 inst.size = 0;
6801 }
6802
6803 static void
6804 do_ldmstm (void)
6805 {
6806 int base_reg = inst.operands[0].reg;
6807 int range = inst.operands[1].imm;
6808
6809 inst.instruction |= base_reg << 16;
6810 inst.instruction |= range;
6811
6812 if (inst.operands[1].writeback)
6813 inst.instruction |= LDM_TYPE_2_OR_3;
6814
6815 if (inst.operands[0].writeback)
6816 {
6817 inst.instruction |= WRITE_BACK;
6818 /* Check for unpredictable uses of writeback. */
6819 if (inst.instruction & LOAD_BIT)
6820 {
6821 /* Not allowed in LDM type 2. */
6822 if ((inst.instruction & LDM_TYPE_2_OR_3)
6823 && ((range & (1 << REG_PC)) == 0))
6824 as_warn (_("writeback of base register is UNPREDICTABLE"));
6825 /* Only allowed if base reg not in list for other types. */
6826 else if (range & (1 << base_reg))
6827 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
6828 }
6829 else /* STM. */
6830 {
6831 /* Not allowed for type 2. */
6832 if (inst.instruction & LDM_TYPE_2_OR_3)
6833 as_warn (_("writeback of base register is UNPREDICTABLE"));
6834 /* Only allowed if base reg not in list, or first in list. */
6835 else if ((range & (1 << base_reg))
6836 && (range & ((1 << base_reg) - 1)))
6837 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
6838 }
6839 }
6840 }
6841
6842 /* ARMv5TE load-consecutive (argument parse)
6843 Mode is like LDRH.
6844
6845 LDRccD R, mode
6846 STRccD R, mode. */
6847
6848 static void
6849 do_ldrd (void)
6850 {
6851 constraint (inst.operands[0].reg % 2 != 0,
6852 _("first destination register must be even"));
6853 constraint (inst.operands[1].present
6854 && inst.operands[1].reg != inst.operands[0].reg + 1,
6855 _("can only load two consecutive registers"));
6856 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6857 constraint (!inst.operands[2].isreg, _("'[' expected"));
6858
6859 if (!inst.operands[1].present)
6860 inst.operands[1].reg = inst.operands[0].reg + 1;
6861
6862 if (inst.instruction & LOAD_BIT)
6863 {
6864 /* encode_arm_addr_mode_3 will diagnose overlap between the base
6865 register and the first register written; we have to diagnose
6866 overlap between the base and the second register written here. */
6867
6868 if (inst.operands[2].reg == inst.operands[1].reg
6869 && (inst.operands[2].writeback || inst.operands[2].postind))
6870 as_warn (_("base register written back, and overlaps "
6871 "second destination register"));
6872
6873 /* For an index-register load, the index register must not overlap the
6874 destination (even if not write-back). */
6875 else if (inst.operands[2].immisreg
6876 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
6877 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
6878 as_warn (_("index register overlaps destination register"));
6879 }
6880
6881 inst.instruction |= inst.operands[0].reg << 12;
6882 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
6883 }
6884
6885 static void
6886 do_ldrex (void)
6887 {
6888 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
6889 || inst.operands[1].postind || inst.operands[1].writeback
6890 || inst.operands[1].immisreg || inst.operands[1].shifted
6891 || inst.operands[1].negative
6892 /* This can arise if the programmer has written
6893 strex rN, rM, foo
6894 or if they have mistakenly used a register name as the last
6895 operand, eg:
6896 strex rN, rM, rX
6897 It is very difficult to distinguish between these two cases
6898 because "rX" might actually be a label. ie the register
6899 name has been occluded by a symbol of the same name. So we
6900 just generate a general 'bad addressing mode' type error
6901 message and leave it up to the programmer to discover the
6902 true cause and fix their mistake. */
6903 || (inst.operands[1].reg == REG_PC),
6904 BAD_ADDR_MODE);
6905
6906 constraint (inst.reloc.exp.X_op != O_constant
6907 || inst.reloc.exp.X_add_number != 0,
6908 _("offset must be zero in ARM encoding"));
6909
6910 inst.instruction |= inst.operands[0].reg << 12;
6911 inst.instruction |= inst.operands[1].reg << 16;
6912 inst.reloc.type = BFD_RELOC_UNUSED;
6913 }
6914
6915 static void
6916 do_ldrexd (void)
6917 {
6918 constraint (inst.operands[0].reg % 2 != 0,
6919 _("even register required"));
6920 constraint (inst.operands[1].present
6921 && inst.operands[1].reg != inst.operands[0].reg + 1,
6922 _("can only load two consecutive registers"));
6923 /* If op 1 were present and equal to PC, this function wouldn't
6924 have been called in the first place. */
6925 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
6926
6927 inst.instruction |= inst.operands[0].reg << 12;
6928 inst.instruction |= inst.operands[2].reg << 16;
6929 }
6930
6931 static void
6932 do_ldst (void)
6933 {
6934 inst.instruction |= inst.operands[0].reg << 12;
6935 if (!inst.operands[1].isreg)
6936 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
6937 return;
6938 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
6939 }
6940
6941 static void
6942 do_ldstt (void)
6943 {
6944 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6945 reject [Rn,...]. */
6946 if (inst.operands[1].preind)
6947 {
6948 constraint (inst.reloc.exp.X_op != O_constant ||
6949 inst.reloc.exp.X_add_number != 0,
6950 _("this instruction requires a post-indexed address"));
6951
6952 inst.operands[1].preind = 0;
6953 inst.operands[1].postind = 1;
6954 inst.operands[1].writeback = 1;
6955 }
6956 inst.instruction |= inst.operands[0].reg << 12;
6957 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
6958 }
6959
6960 /* Halfword and signed-byte load/store operations. */
6961
6962 static void
6963 do_ldstv4 (void)
6964 {
6965 inst.instruction |= inst.operands[0].reg << 12;
6966 if (!inst.operands[1].isreg)
6967 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
6968 return;
6969 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
6970 }
6971
6972 static void
6973 do_ldsttv4 (void)
6974 {
6975 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
6976 reject [Rn,...]. */
6977 if (inst.operands[1].preind)
6978 {
6979 constraint (inst.reloc.exp.X_op != O_constant ||
6980 inst.reloc.exp.X_add_number != 0,
6981 _("this instruction requires a post-indexed address"));
6982
6983 inst.operands[1].preind = 0;
6984 inst.operands[1].postind = 1;
6985 inst.operands[1].writeback = 1;
6986 }
6987 inst.instruction |= inst.operands[0].reg << 12;
6988 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
6989 }
6990
6991 /* Co-processor register load/store.
6992 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
6993 static void
6994 do_lstc (void)
6995 {
6996 inst.instruction |= inst.operands[0].reg << 8;
6997 inst.instruction |= inst.operands[1].reg << 12;
6998 encode_arm_cp_address (2, TRUE, TRUE, 0);
6999 }
7000
7001 static void
7002 do_mlas (void)
7003 {
7004 /* This restriction does not apply to mls (nor to mla in v6, but
7005 that's hard to detect at present). */
7006 if (inst.operands[0].reg == inst.operands[1].reg
7007 && !(inst.instruction & 0x00400000))
7008 as_tsktsk (_("rd and rm should be different in mla"));
7009
7010 inst.instruction |= inst.operands[0].reg << 16;
7011 inst.instruction |= inst.operands[1].reg;
7012 inst.instruction |= inst.operands[2].reg << 8;
7013 inst.instruction |= inst.operands[3].reg << 12;
7014
7015 }
7016
7017 static void
7018 do_mov (void)
7019 {
7020 inst.instruction |= inst.operands[0].reg << 12;
7021 encode_arm_shifter_operand (1);
7022 }
7023
7024 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
7025 static void
7026 do_mov16 (void)
7027 {
7028 bfd_vma imm;
7029 bfd_boolean top;
7030
7031 top = (inst.instruction & 0x00400000) != 0;
7032 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
7033 _(":lower16: not allowed this instruction"));
7034 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
7035 _(":upper16: not allowed instruction"));
7036 inst.instruction |= inst.operands[0].reg << 12;
7037 if (inst.reloc.type == BFD_RELOC_UNUSED)
7038 {
7039 imm = inst.reloc.exp.X_add_number;
7040 /* The value is in two pieces: 0:11, 16:19. */
7041 inst.instruction |= (imm & 0x00000fff);
7042 inst.instruction |= (imm & 0x0000f000) << 4;
7043 }
7044 }
7045
7046 static void do_vfp_nsyn_opcode (const char *);
7047
7048 static int
7049 do_vfp_nsyn_mrs (void)
7050 {
7051 if (inst.operands[0].isvec)
7052 {
7053 if (inst.operands[1].reg != 1)
7054 first_error (_("operand 1 must be FPSCR"));
7055 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
7056 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
7057 do_vfp_nsyn_opcode ("fmstat");
7058 }
7059 else if (inst.operands[1].isvec)
7060 do_vfp_nsyn_opcode ("fmrx");
7061 else
7062 return FAIL;
7063
7064 return SUCCESS;
7065 }
7066
7067 static int
7068 do_vfp_nsyn_msr (void)
7069 {
7070 if (inst.operands[0].isvec)
7071 do_vfp_nsyn_opcode ("fmxr");
7072 else
7073 return FAIL;
7074
7075 return SUCCESS;
7076 }
7077
7078 static void
7079 do_mrs (void)
7080 {
7081 if (do_vfp_nsyn_mrs () == SUCCESS)
7082 return;
7083
7084 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
7085 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
7086 != (PSR_c|PSR_f),
7087 _("'CPSR' or 'SPSR' expected"));
7088 inst.instruction |= inst.operands[0].reg << 12;
7089 inst.instruction |= (inst.operands[1].imm & SPSR_BIT);
7090 }
7091
7092 /* Two possible forms:
7093 "{C|S}PSR_<field>, Rm",
7094 "{C|S}PSR_f, #expression". */
7095
7096 static void
7097 do_msr (void)
7098 {
7099 if (do_vfp_nsyn_msr () == SUCCESS)
7100 return;
7101
7102 inst.instruction |= inst.operands[0].imm;
7103 if (inst.operands[1].isreg)
7104 inst.instruction |= inst.operands[1].reg;
7105 else
7106 {
7107 inst.instruction |= INST_IMMEDIATE;
7108 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7109 inst.reloc.pc_rel = 0;
7110 }
7111 }
7112
7113 static void
7114 do_mul (void)
7115 {
7116 if (!inst.operands[2].present)
7117 inst.operands[2].reg = inst.operands[0].reg;
7118 inst.instruction |= inst.operands[0].reg << 16;
7119 inst.instruction |= inst.operands[1].reg;
7120 inst.instruction |= inst.operands[2].reg << 8;
7121
7122 if (inst.operands[0].reg == inst.operands[1].reg)
7123 as_tsktsk (_("rd and rm should be different in mul"));
7124 }
7125
7126 /* Long Multiply Parser
7127 UMULL RdLo, RdHi, Rm, Rs
7128 SMULL RdLo, RdHi, Rm, Rs
7129 UMLAL RdLo, RdHi, Rm, Rs
7130 SMLAL RdLo, RdHi, Rm, Rs. */
7131
7132 static void
7133 do_mull (void)
7134 {
7135 inst.instruction |= inst.operands[0].reg << 12;
7136 inst.instruction |= inst.operands[1].reg << 16;
7137 inst.instruction |= inst.operands[2].reg;
7138 inst.instruction |= inst.operands[3].reg << 8;
7139
7140 /* rdhi, rdlo and rm must all be different. */
7141 if (inst.operands[0].reg == inst.operands[1].reg
7142 || inst.operands[0].reg == inst.operands[2].reg
7143 || inst.operands[1].reg == inst.operands[2].reg)
7144 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
7145 }
7146
7147 static void
7148 do_nop (void)
7149 {
7150 if (inst.operands[0].present)
7151 {
7152 /* Architectural NOP hints are CPSR sets with no bits selected. */
7153 inst.instruction &= 0xf0000000;
7154 inst.instruction |= 0x0320f000 + inst.operands[0].imm;
7155 }
7156 }
7157
7158 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
7159 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
7160 Condition defaults to COND_ALWAYS.
7161 Error if Rd, Rn or Rm are R15. */
7162
7163 static void
7164 do_pkhbt (void)
7165 {
7166 inst.instruction |= inst.operands[0].reg << 12;
7167 inst.instruction |= inst.operands[1].reg << 16;
7168 inst.instruction |= inst.operands[2].reg;
7169 if (inst.operands[3].present)
7170 encode_arm_shift (3);
7171 }
7172
7173 /* ARM V6 PKHTB (Argument Parse). */
7174
7175 static void
7176 do_pkhtb (void)
7177 {
7178 if (!inst.operands[3].present)
7179 {
7180 /* If the shift specifier is omitted, turn the instruction
7181 into pkhbt rd, rm, rn. */
7182 inst.instruction &= 0xfff00010;
7183 inst.instruction |= inst.operands[0].reg << 12;
7184 inst.instruction |= inst.operands[1].reg;
7185 inst.instruction |= inst.operands[2].reg << 16;
7186 }
7187 else
7188 {
7189 inst.instruction |= inst.operands[0].reg << 12;
7190 inst.instruction |= inst.operands[1].reg << 16;
7191 inst.instruction |= inst.operands[2].reg;
7192 encode_arm_shift (3);
7193 }
7194 }
7195
7196 /* ARMv5TE: Preload-Cache
7197
7198 PLD <addr_mode>
7199
7200 Syntactically, like LDR with B=1, W=0, L=1. */
7201
7202 static void
7203 do_pld (void)
7204 {
7205 constraint (!inst.operands[0].isreg,
7206 _("'[' expected after PLD mnemonic"));
7207 constraint (inst.operands[0].postind,
7208 _("post-indexed expression used in preload instruction"));
7209 constraint (inst.operands[0].writeback,
7210 _("writeback used in preload instruction"));
7211 constraint (!inst.operands[0].preind,
7212 _("unindexed addressing used in preload instruction"));
7213 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7214 }
7215
7216 /* ARMv7: PLI <addr_mode> */
7217 static void
7218 do_pli (void)
7219 {
7220 constraint (!inst.operands[0].isreg,
7221 _("'[' expected after PLI mnemonic"));
7222 constraint (inst.operands[0].postind,
7223 _("post-indexed expression used in preload instruction"));
7224 constraint (inst.operands[0].writeback,
7225 _("writeback used in preload instruction"));
7226 constraint (!inst.operands[0].preind,
7227 _("unindexed addressing used in preload instruction"));
7228 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
7229 inst.instruction &= ~PRE_INDEX;
7230 }
7231
7232 static void
7233 do_push_pop (void)
7234 {
7235 inst.operands[1] = inst.operands[0];
7236 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
7237 inst.operands[0].isreg = 1;
7238 inst.operands[0].writeback = 1;
7239 inst.operands[0].reg = REG_SP;
7240 do_ldmstm ();
7241 }
7242
7243 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
7244 word at the specified address and the following word
7245 respectively.
7246 Unconditionally executed.
7247 Error if Rn is R15. */
7248
7249 static void
7250 do_rfe (void)
7251 {
7252 inst.instruction |= inst.operands[0].reg << 16;
7253 if (inst.operands[0].writeback)
7254 inst.instruction |= WRITE_BACK;
7255 }
7256
7257 /* ARM V6 ssat (argument parse). */
7258
7259 static void
7260 do_ssat (void)
7261 {
7262 inst.instruction |= inst.operands[0].reg << 12;
7263 inst.instruction |= (inst.operands[1].imm - 1) << 16;
7264 inst.instruction |= inst.operands[2].reg;
7265
7266 if (inst.operands[3].present)
7267 encode_arm_shift (3);
7268 }
7269
7270 /* ARM V6 usat (argument parse). */
7271
7272 static void
7273 do_usat (void)
7274 {
7275 inst.instruction |= inst.operands[0].reg << 12;
7276 inst.instruction |= inst.operands[1].imm << 16;
7277 inst.instruction |= inst.operands[2].reg;
7278
7279 if (inst.operands[3].present)
7280 encode_arm_shift (3);
7281 }
7282
7283 /* ARM V6 ssat16 (argument parse). */
7284
7285 static void
7286 do_ssat16 (void)
7287 {
7288 inst.instruction |= inst.operands[0].reg << 12;
7289 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
7290 inst.instruction |= inst.operands[2].reg;
7291 }
7292
7293 static void
7294 do_usat16 (void)
7295 {
7296 inst.instruction |= inst.operands[0].reg << 12;
7297 inst.instruction |= inst.operands[1].imm << 16;
7298 inst.instruction |= inst.operands[2].reg;
7299 }
7300
7301 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
7302 preserving the other bits.
7303
7304 setend <endian_specifier>, where <endian_specifier> is either
7305 BE or LE. */
7306
7307 static void
7308 do_setend (void)
7309 {
7310 if (inst.operands[0].imm)
7311 inst.instruction |= 0x200;
7312 }
7313
7314 static void
7315 do_shift (void)
7316 {
7317 unsigned int Rm = (inst.operands[1].present
7318 ? inst.operands[1].reg
7319 : inst.operands[0].reg);
7320
7321 inst.instruction |= inst.operands[0].reg << 12;
7322 inst.instruction |= Rm;
7323 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
7324 {
7325 inst.instruction |= inst.operands[2].reg << 8;
7326 inst.instruction |= SHIFT_BY_REG;
7327 }
7328 else
7329 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7330 }
7331
7332 static void
7333 do_smc (void)
7334 {
7335 inst.reloc.type = BFD_RELOC_ARM_SMC;
7336 inst.reloc.pc_rel = 0;
7337 }
7338
7339 static void
7340 do_swi (void)
7341 {
7342 inst.reloc.type = BFD_RELOC_ARM_SWI;
7343 inst.reloc.pc_rel = 0;
7344 }
7345
7346 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
7347 SMLAxy{cond} Rd,Rm,Rs,Rn
7348 SMLAWy{cond} Rd,Rm,Rs,Rn
7349 Error if any register is R15. */
7350
7351 static void
7352 do_smla (void)
7353 {
7354 inst.instruction |= inst.operands[0].reg << 16;
7355 inst.instruction |= inst.operands[1].reg;
7356 inst.instruction |= inst.operands[2].reg << 8;
7357 inst.instruction |= inst.operands[3].reg << 12;
7358 }
7359
7360 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
7361 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
7362 Error if any register is R15.
7363 Warning if Rdlo == Rdhi. */
7364
7365 static void
7366 do_smlal (void)
7367 {
7368 inst.instruction |= inst.operands[0].reg << 12;
7369 inst.instruction |= inst.operands[1].reg << 16;
7370 inst.instruction |= inst.operands[2].reg;
7371 inst.instruction |= inst.operands[3].reg << 8;
7372
7373 if (inst.operands[0].reg == inst.operands[1].reg)
7374 as_tsktsk (_("rdhi and rdlo must be different"));
7375 }
7376
7377 /* ARM V5E (El Segundo) signed-multiply (argument parse)
7378 SMULxy{cond} Rd,Rm,Rs
7379 Error if any register is R15. */
7380
7381 static void
7382 do_smul (void)
7383 {
7384 inst.instruction |= inst.operands[0].reg << 16;
7385 inst.instruction |= inst.operands[1].reg;
7386 inst.instruction |= inst.operands[2].reg << 8;
7387 }
7388
7389 /* ARM V6 srs (argument parse). */
7390
7391 static void
7392 do_srs (void)
7393 {
7394 inst.instruction |= inst.operands[0].imm;
7395 if (inst.operands[0].writeback)
7396 inst.instruction |= WRITE_BACK;
7397 }
7398
7399 /* ARM V6 strex (argument parse). */
7400
7401 static void
7402 do_strex (void)
7403 {
7404 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
7405 || inst.operands[2].postind || inst.operands[2].writeback
7406 || inst.operands[2].immisreg || inst.operands[2].shifted
7407 || inst.operands[2].negative
7408 /* See comment in do_ldrex(). */
7409 || (inst.operands[2].reg == REG_PC),
7410 BAD_ADDR_MODE);
7411
7412 constraint (inst.operands[0].reg == inst.operands[1].reg
7413 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
7414
7415 constraint (inst.reloc.exp.X_op != O_constant
7416 || inst.reloc.exp.X_add_number != 0,
7417 _("offset must be zero in ARM encoding"));
7418
7419 inst.instruction |= inst.operands[0].reg << 12;
7420 inst.instruction |= inst.operands[1].reg;
7421 inst.instruction |= inst.operands[2].reg << 16;
7422 inst.reloc.type = BFD_RELOC_UNUSED;
7423 }
7424
7425 static void
7426 do_strexd (void)
7427 {
7428 constraint (inst.operands[1].reg % 2 != 0,
7429 _("even register required"));
7430 constraint (inst.operands[2].present
7431 && inst.operands[2].reg != inst.operands[1].reg + 1,
7432 _("can only store two consecutive registers"));
7433 /* If op 2 were present and equal to PC, this function wouldn't
7434 have been called in the first place. */
7435 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
7436
7437 constraint (inst.operands[0].reg == inst.operands[1].reg
7438 || inst.operands[0].reg == inst.operands[1].reg + 1
7439 || inst.operands[0].reg == inst.operands[3].reg,
7440 BAD_OVERLAP);
7441
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
7444 inst.instruction |= inst.operands[3].reg << 16;
7445 }
7446
7447 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
7448 extends it to 32-bits, and adds the result to a value in another
7449 register. You can specify a rotation by 0, 8, 16, or 24 bits
7450 before extracting the 16-bit value.
7451 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
7452 Condition defaults to COND_ALWAYS.
7453 Error if any register uses R15. */
7454
7455 static void
7456 do_sxtah (void)
7457 {
7458 inst.instruction |= inst.operands[0].reg << 12;
7459 inst.instruction |= inst.operands[1].reg << 16;
7460 inst.instruction |= inst.operands[2].reg;
7461 inst.instruction |= inst.operands[3].imm << 10;
7462 }
7463
7464 /* ARM V6 SXTH.
7465
7466 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
7467 Condition defaults to COND_ALWAYS.
7468 Error if any register uses R15. */
7469
7470 static void
7471 do_sxth (void)
7472 {
7473 inst.instruction |= inst.operands[0].reg << 12;
7474 inst.instruction |= inst.operands[1].reg;
7475 inst.instruction |= inst.operands[2].imm << 10;
7476 }
7477 \f
7478 /* VFP instructions. In a logical order: SP variant first, monad
7479 before dyad, arithmetic then move then load/store. */
7480
7481 static void
7482 do_vfp_sp_monadic (void)
7483 {
7484 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7485 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7486 }
7487
7488 static void
7489 do_vfp_sp_dyadic (void)
7490 {
7491 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7492 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7493 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7494 }
7495
7496 static void
7497 do_vfp_sp_compare_z (void)
7498 {
7499 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7500 }
7501
7502 static void
7503 do_vfp_dp_sp_cvt (void)
7504 {
7505 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7506 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
7507 }
7508
7509 static void
7510 do_vfp_sp_dp_cvt (void)
7511 {
7512 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7513 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7514 }
7515
7516 static void
7517 do_vfp_reg_from_sp (void)
7518 {
7519 inst.instruction |= inst.operands[0].reg << 12;
7520 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
7521 }
7522
7523 static void
7524 do_vfp_reg2_from_sp2 (void)
7525 {
7526 constraint (inst.operands[2].imm != 2,
7527 _("only two consecutive VFP SP registers allowed here"));
7528 inst.instruction |= inst.operands[0].reg << 12;
7529 inst.instruction |= inst.operands[1].reg << 16;
7530 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
7531 }
7532
7533 static void
7534 do_vfp_sp_from_reg (void)
7535 {
7536 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
7537 inst.instruction |= inst.operands[1].reg << 12;
7538 }
7539
7540 static void
7541 do_vfp_sp2_from_reg2 (void)
7542 {
7543 constraint (inst.operands[0].imm != 2,
7544 _("only two consecutive VFP SP registers allowed here"));
7545 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
7546 inst.instruction |= inst.operands[1].reg << 12;
7547 inst.instruction |= inst.operands[2].reg << 16;
7548 }
7549
7550 static void
7551 do_vfp_sp_ldst (void)
7552 {
7553 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7554 encode_arm_cp_address (1, FALSE, TRUE, 0);
7555 }
7556
7557 static void
7558 do_vfp_dp_ldst (void)
7559 {
7560 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7561 encode_arm_cp_address (1, FALSE, TRUE, 0);
7562 }
7563
7564
7565 static void
7566 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
7567 {
7568 if (inst.operands[0].writeback)
7569 inst.instruction |= WRITE_BACK;
7570 else
7571 constraint (ldstm_type != VFP_LDSTMIA,
7572 _("this addressing mode requires base-register writeback"));
7573 inst.instruction |= inst.operands[0].reg << 16;
7574 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
7575 inst.instruction |= inst.operands[1].imm;
7576 }
7577
7578 static void
7579 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
7580 {
7581 int count;
7582
7583 if (inst.operands[0].writeback)
7584 inst.instruction |= WRITE_BACK;
7585 else
7586 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
7587 _("this addressing mode requires base-register writeback"));
7588
7589 inst.instruction |= inst.operands[0].reg << 16;
7590 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7591
7592 count = inst.operands[1].imm << 1;
7593 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
7594 count += 1;
7595
7596 inst.instruction |= count;
7597 }
7598
7599 static void
7600 do_vfp_sp_ldstmia (void)
7601 {
7602 vfp_sp_ldstm (VFP_LDSTMIA);
7603 }
7604
7605 static void
7606 do_vfp_sp_ldstmdb (void)
7607 {
7608 vfp_sp_ldstm (VFP_LDSTMDB);
7609 }
7610
7611 static void
7612 do_vfp_dp_ldstmia (void)
7613 {
7614 vfp_dp_ldstm (VFP_LDSTMIA);
7615 }
7616
7617 static void
7618 do_vfp_dp_ldstmdb (void)
7619 {
7620 vfp_dp_ldstm (VFP_LDSTMDB);
7621 }
7622
7623 static void
7624 do_vfp_xp_ldstmia (void)
7625 {
7626 vfp_dp_ldstm (VFP_LDSTMIAX);
7627 }
7628
7629 static void
7630 do_vfp_xp_ldstmdb (void)
7631 {
7632 vfp_dp_ldstm (VFP_LDSTMDBX);
7633 }
7634
7635 static void
7636 do_vfp_dp_rd_rm (void)
7637 {
7638 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7639 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
7640 }
7641
7642 static void
7643 do_vfp_dp_rn_rd (void)
7644 {
7645 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
7646 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7647 }
7648
7649 static void
7650 do_vfp_dp_rd_rn (void)
7651 {
7652 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7653 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7654 }
7655
7656 static void
7657 do_vfp_dp_rd_rn_rm (void)
7658 {
7659 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7660 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
7661 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
7662 }
7663
7664 static void
7665 do_vfp_dp_rd (void)
7666 {
7667 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7668 }
7669
7670 static void
7671 do_vfp_dp_rm_rd_rn (void)
7672 {
7673 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
7674 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
7675 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
7676 }
7677
7678 /* VFPv3 instructions. */
7679 static void
7680 do_vfp_sp_const (void)
7681 {
7682 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7683 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7684 inst.instruction |= (inst.operands[1].imm >> 4);
7685 }
7686
7687 static void
7688 do_vfp_dp_const (void)
7689 {
7690 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7691 inst.instruction |= (inst.operands[1].imm & 15) << 16;
7692 inst.instruction |= (inst.operands[1].imm >> 4);
7693 }
7694
7695 static void
7696 vfp_conv (int srcsize)
7697 {
7698 unsigned immbits = srcsize - inst.operands[1].imm;
7699 inst.instruction |= (immbits & 1) << 5;
7700 inst.instruction |= (immbits >> 1);
7701 }
7702
7703 static void
7704 do_vfp_sp_conv_16 (void)
7705 {
7706 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7707 vfp_conv (16);
7708 }
7709
7710 static void
7711 do_vfp_dp_conv_16 (void)
7712 {
7713 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7714 vfp_conv (16);
7715 }
7716
7717 static void
7718 do_vfp_sp_conv_32 (void)
7719 {
7720 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
7721 vfp_conv (32);
7722 }
7723
7724 static void
7725 do_vfp_dp_conv_32 (void)
7726 {
7727 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
7728 vfp_conv (32);
7729 }
7730
7731 \f
7732 /* FPA instructions. Also in a logical order. */
7733
7734 static void
7735 do_fpa_cmp (void)
7736 {
7737 inst.instruction |= inst.operands[0].reg << 16;
7738 inst.instruction |= inst.operands[1].reg;
7739 }
7740
7741 static void
7742 do_fpa_ldmstm (void)
7743 {
7744 inst.instruction |= inst.operands[0].reg << 12;
7745 switch (inst.operands[1].imm)
7746 {
7747 case 1: inst.instruction |= CP_T_X; break;
7748 case 2: inst.instruction |= CP_T_Y; break;
7749 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
7750 case 4: break;
7751 default: abort ();
7752 }
7753
7754 if (inst.instruction & (PRE_INDEX | INDEX_UP))
7755 {
7756 /* The instruction specified "ea" or "fd", so we can only accept
7757 [Rn]{!}. The instruction does not really support stacking or
7758 unstacking, so we have to emulate these by setting appropriate
7759 bits and offsets. */
7760 constraint (inst.reloc.exp.X_op != O_constant
7761 || inst.reloc.exp.X_add_number != 0,
7762 _("this instruction does not support indexing"));
7763
7764 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
7765 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
7766
7767 if (!(inst.instruction & INDEX_UP))
7768 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
7769
7770 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
7771 {
7772 inst.operands[2].preind = 0;
7773 inst.operands[2].postind = 1;
7774 }
7775 }
7776
7777 encode_arm_cp_address (2, TRUE, TRUE, 0);
7778 }
7779
7780 \f
7781 /* iWMMXt instructions: strictly in alphabetical order. */
7782
7783 static void
7784 do_iwmmxt_tandorc (void)
7785 {
7786 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
7787 }
7788
7789 static void
7790 do_iwmmxt_textrc (void)
7791 {
7792 inst.instruction |= inst.operands[0].reg << 12;
7793 inst.instruction |= inst.operands[1].imm;
7794 }
7795
7796 static void
7797 do_iwmmxt_textrm (void)
7798 {
7799 inst.instruction |= inst.operands[0].reg << 12;
7800 inst.instruction |= inst.operands[1].reg << 16;
7801 inst.instruction |= inst.operands[2].imm;
7802 }
7803
7804 static void
7805 do_iwmmxt_tinsr (void)
7806 {
7807 inst.instruction |= inst.operands[0].reg << 16;
7808 inst.instruction |= inst.operands[1].reg << 12;
7809 inst.instruction |= inst.operands[2].imm;
7810 }
7811
7812 static void
7813 do_iwmmxt_tmia (void)
7814 {
7815 inst.instruction |= inst.operands[0].reg << 5;
7816 inst.instruction |= inst.operands[1].reg;
7817 inst.instruction |= inst.operands[2].reg << 12;
7818 }
7819
7820 static void
7821 do_iwmmxt_waligni (void)
7822 {
7823 inst.instruction |= inst.operands[0].reg << 12;
7824 inst.instruction |= inst.operands[1].reg << 16;
7825 inst.instruction |= inst.operands[2].reg;
7826 inst.instruction |= inst.operands[3].imm << 20;
7827 }
7828
7829 static void
7830 do_iwmmxt_wmov (void)
7831 {
7832 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
7833 inst.instruction |= inst.operands[0].reg << 12;
7834 inst.instruction |= inst.operands[1].reg << 16;
7835 inst.instruction |= inst.operands[1].reg;
7836 }
7837
7838 static void
7839 do_iwmmxt_wldstbh (void)
7840 {
7841 int reloc;
7842 inst.instruction |= inst.operands[0].reg << 12;
7843 if (thumb_mode)
7844 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
7845 else
7846 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
7847 encode_arm_cp_address (1, TRUE, FALSE, reloc);
7848 }
7849
7850 static void
7851 do_iwmmxt_wldstw (void)
7852 {
7853 /* RIWR_RIWC clears .isreg for a control register. */
7854 if (!inst.operands[0].isreg)
7855 {
7856 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7857 inst.instruction |= 0xf0000000;
7858 }
7859
7860 inst.instruction |= inst.operands[0].reg << 12;
7861 encode_arm_cp_address (1, TRUE, TRUE, 0);
7862 }
7863
7864 static void
7865 do_iwmmxt_wldstd (void)
7866 {
7867 inst.instruction |= inst.operands[0].reg << 12;
7868 encode_arm_cp_address (1, TRUE, FALSE, 0);
7869 }
7870
7871 static void
7872 do_iwmmxt_wshufh (void)
7873 {
7874 inst.instruction |= inst.operands[0].reg << 12;
7875 inst.instruction |= inst.operands[1].reg << 16;
7876 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
7877 inst.instruction |= (inst.operands[2].imm & 0x0f);
7878 }
7879
7880 static void
7881 do_iwmmxt_wzero (void)
7882 {
7883 /* WZERO reg is an alias for WANDN reg, reg, reg. */
7884 inst.instruction |= inst.operands[0].reg;
7885 inst.instruction |= inst.operands[0].reg << 12;
7886 inst.instruction |= inst.operands[0].reg << 16;
7887 }
7888 \f
7889 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
7890 operations first, then control, shift, and load/store. */
7891
7892 /* Insns like "foo X,Y,Z". */
7893
7894 static void
7895 do_mav_triple (void)
7896 {
7897 inst.instruction |= inst.operands[0].reg << 16;
7898 inst.instruction |= inst.operands[1].reg;
7899 inst.instruction |= inst.operands[2].reg << 12;
7900 }
7901
7902 /* Insns like "foo W,X,Y,Z".
7903 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
7904
7905 static void
7906 do_mav_quad (void)
7907 {
7908 inst.instruction |= inst.operands[0].reg << 5;
7909 inst.instruction |= inst.operands[1].reg << 12;
7910 inst.instruction |= inst.operands[2].reg << 16;
7911 inst.instruction |= inst.operands[3].reg;
7912 }
7913
7914 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
7915 static void
7916 do_mav_dspsc (void)
7917 {
7918 inst.instruction |= inst.operands[1].reg << 12;
7919 }
7920
7921 /* Maverick shift immediate instructions.
7922 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
7923 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
7924
7925 static void
7926 do_mav_shift (void)
7927 {
7928 int imm = inst.operands[2].imm;
7929
7930 inst.instruction |= inst.operands[0].reg << 12;
7931 inst.instruction |= inst.operands[1].reg << 16;
7932
7933 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
7934 Bits 5-7 of the insn should have bits 4-6 of the immediate.
7935 Bit 4 should be 0. */
7936 imm = (imm & 0xf) | ((imm & 0x70) << 1);
7937
7938 inst.instruction |= imm;
7939 }
7940 \f
7941 /* XScale instructions. Also sorted arithmetic before move. */
7942
7943 /* Xscale multiply-accumulate (argument parse)
7944 MIAcc acc0,Rm,Rs
7945 MIAPHcc acc0,Rm,Rs
7946 MIAxycc acc0,Rm,Rs. */
7947
7948 static void
7949 do_xsc_mia (void)
7950 {
7951 inst.instruction |= inst.operands[1].reg;
7952 inst.instruction |= inst.operands[2].reg << 12;
7953 }
7954
7955 /* Xscale move-accumulator-register (argument parse)
7956
7957 MARcc acc0,RdLo,RdHi. */
7958
7959 static void
7960 do_xsc_mar (void)
7961 {
7962 inst.instruction |= inst.operands[1].reg << 12;
7963 inst.instruction |= inst.operands[2].reg << 16;
7964 }
7965
7966 /* Xscale move-register-accumulator (argument parse)
7967
7968 MRAcc RdLo,RdHi,acc0. */
7969
7970 static void
7971 do_xsc_mra (void)
7972 {
7973 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
7974 inst.instruction |= inst.operands[0].reg << 12;
7975 inst.instruction |= inst.operands[1].reg << 16;
7976 }
7977 \f
7978 /* Encoding functions relevant only to Thumb. */
7979
7980 /* inst.operands[i] is a shifted-register operand; encode
7981 it into inst.instruction in the format used by Thumb32. */
7982
7983 static void
7984 encode_thumb32_shifted_operand (int i)
7985 {
7986 unsigned int value = inst.reloc.exp.X_add_number;
7987 unsigned int shift = inst.operands[i].shift_kind;
7988
7989 constraint (inst.operands[i].immisreg,
7990 _("shift by register not allowed in thumb mode"));
7991 inst.instruction |= inst.operands[i].reg;
7992 if (shift == SHIFT_RRX)
7993 inst.instruction |= SHIFT_ROR << 4;
7994 else
7995 {
7996 constraint (inst.reloc.exp.X_op != O_constant,
7997 _("expression too complex"));
7998
7999 constraint (value > 32
8000 || (value == 32 && (shift == SHIFT_LSL
8001 || shift == SHIFT_ROR)),
8002 _("shift expression is too large"));
8003
8004 if (value == 0)
8005 shift = SHIFT_LSL;
8006 else if (value == 32)
8007 value = 0;
8008
8009 inst.instruction |= shift << 4;
8010 inst.instruction |= (value & 0x1c) << 10;
8011 inst.instruction |= (value & 0x03) << 6;
8012 }
8013 }
8014
8015
8016 /* inst.operands[i] was set up by parse_address. Encode it into a
8017 Thumb32 format load or store instruction. Reject forms that cannot
8018 be used with such instructions. If is_t is true, reject forms that
8019 cannot be used with a T instruction; if is_d is true, reject forms
8020 that cannot be used with a D instruction. */
8021
8022 static void
8023 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
8024 {
8025 bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
8026
8027 constraint (!inst.operands[i].isreg,
8028 _("Instruction does not support =N addresses"));
8029
8030 inst.instruction |= inst.operands[i].reg << 16;
8031 if (inst.operands[i].immisreg)
8032 {
8033 constraint (is_pc, _("cannot use register index with PC-relative addressing"));
8034 constraint (is_t || is_d, _("cannot use register index with this instruction"));
8035 constraint (inst.operands[i].negative,
8036 _("Thumb does not support negative register indexing"));
8037 constraint (inst.operands[i].postind,
8038 _("Thumb does not support register post-indexing"));
8039 constraint (inst.operands[i].writeback,
8040 _("Thumb does not support register indexing with writeback"));
8041 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
8042 _("Thumb supports only LSL in shifted register indexing"));
8043
8044 inst.instruction |= inst.operands[i].imm;
8045 if (inst.operands[i].shifted)
8046 {
8047 constraint (inst.reloc.exp.X_op != O_constant,
8048 _("expression too complex"));
8049 constraint (inst.reloc.exp.X_add_number < 0
8050 || inst.reloc.exp.X_add_number > 3,
8051 _("shift out of range"));
8052 inst.instruction |= inst.reloc.exp.X_add_number << 4;
8053 }
8054 inst.reloc.type = BFD_RELOC_UNUSED;
8055 }
8056 else if (inst.operands[i].preind)
8057 {
8058 constraint (is_pc && inst.operands[i].writeback,
8059 _("cannot use writeback with PC-relative addressing"));
8060 constraint (is_t && inst.operands[i].writeback,
8061 _("cannot use writeback with this instruction"));
8062
8063 if (is_d)
8064 {
8065 inst.instruction |= 0x01000000;
8066 if (inst.operands[i].writeback)
8067 inst.instruction |= 0x00200000;
8068 }
8069 else
8070 {
8071 inst.instruction |= 0x00000c00;
8072 if (inst.operands[i].writeback)
8073 inst.instruction |= 0x00000100;
8074 }
8075 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8076 }
8077 else if (inst.operands[i].postind)
8078 {
8079 assert (inst.operands[i].writeback);
8080 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
8081 constraint (is_t, _("cannot use post-indexing with this instruction"));
8082
8083 if (is_d)
8084 inst.instruction |= 0x00200000;
8085 else
8086 inst.instruction |= 0x00000900;
8087 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
8088 }
8089 else /* unindexed - only for coprocessor */
8090 inst.error = _("instruction does not accept unindexed addressing");
8091 }
8092
8093 /* Table of Thumb instructions which exist in both 16- and 32-bit
8094 encodings (the latter only in post-V6T2 cores). The index is the
8095 value used in the insns table below. When there is more than one
8096 possible 16-bit encoding for the instruction, this table always
8097 holds variant (1).
8098 Also contains several pseudo-instructions used during relaxation. */
8099 #define T16_32_TAB \
8100 X(adc, 4140, eb400000), \
8101 X(adcs, 4140, eb500000), \
8102 X(add, 1c00, eb000000), \
8103 X(adds, 1c00, eb100000), \
8104 X(addi, 0000, f1000000), \
8105 X(addis, 0000, f1100000), \
8106 X(add_pc,000f, f20f0000), \
8107 X(add_sp,000d, f10d0000), \
8108 X(adr, 000f, f20f0000), \
8109 X(and, 4000, ea000000), \
8110 X(ands, 4000, ea100000), \
8111 X(asr, 1000, fa40f000), \
8112 X(asrs, 1000, fa50f000), \
8113 X(b, e000, f000b000), \
8114 X(bcond, d000, f0008000), \
8115 X(bic, 4380, ea200000), \
8116 X(bics, 4380, ea300000), \
8117 X(cmn, 42c0, eb100f00), \
8118 X(cmp, 2800, ebb00f00), \
8119 X(cpsie, b660, f3af8400), \
8120 X(cpsid, b670, f3af8600), \
8121 X(cpy, 4600, ea4f0000), \
8122 X(dec_sp,80dd, f1bd0d00), \
8123 X(eor, 4040, ea800000), \
8124 X(eors, 4040, ea900000), \
8125 X(inc_sp,00dd, f10d0d00), \
8126 X(ldmia, c800, e8900000), \
8127 X(ldr, 6800, f8500000), \
8128 X(ldrb, 7800, f8100000), \
8129 X(ldrh, 8800, f8300000), \
8130 X(ldrsb, 5600, f9100000), \
8131 X(ldrsh, 5e00, f9300000), \
8132 X(ldr_pc,4800, f85f0000), \
8133 X(ldr_pc2,4800, f85f0000), \
8134 X(ldr_sp,9800, f85d0000), \
8135 X(lsl, 0000, fa00f000), \
8136 X(lsls, 0000, fa10f000), \
8137 X(lsr, 0800, fa20f000), \
8138 X(lsrs, 0800, fa30f000), \
8139 X(mov, 2000, ea4f0000), \
8140 X(movs, 2000, ea5f0000), \
8141 X(mul, 4340, fb00f000), \
8142 X(muls, 4340, ffffffff), /* no 32b muls */ \
8143 X(mvn, 43c0, ea6f0000), \
8144 X(mvns, 43c0, ea7f0000), \
8145 X(neg, 4240, f1c00000), /* rsb #0 */ \
8146 X(negs, 4240, f1d00000), /* rsbs #0 */ \
8147 X(orr, 4300, ea400000), \
8148 X(orrs, 4300, ea500000), \
8149 X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \
8150 X(push, b400, e92d0000), /* stmdb sp!,... */ \
8151 X(rev, ba00, fa90f080), \
8152 X(rev16, ba40, fa90f090), \
8153 X(revsh, bac0, fa90f0b0), \
8154 X(ror, 41c0, fa60f000), \
8155 X(rors, 41c0, fa70f000), \
8156 X(sbc, 4180, eb600000), \
8157 X(sbcs, 4180, eb700000), \
8158 X(stmia, c000, e8800000), \
8159 X(str, 6000, f8400000), \
8160 X(strb, 7000, f8000000), \
8161 X(strh, 8000, f8200000), \
8162 X(str_sp,9000, f84d0000), \
8163 X(sub, 1e00, eba00000), \
8164 X(subs, 1e00, ebb00000), \
8165 X(subi, 8000, f1a00000), \
8166 X(subis, 8000, f1b00000), \
8167 X(sxtb, b240, fa4ff080), \
8168 X(sxth, b200, fa0ff080), \
8169 X(tst, 4200, ea100f00), \
8170 X(uxtb, b2c0, fa5ff080), \
8171 X(uxth, b280, fa1ff080), \
8172 X(nop, bf00, f3af8000), \
8173 X(yield, bf10, f3af8001), \
8174 X(wfe, bf20, f3af8002), \
8175 X(wfi, bf30, f3af8003), \
8176 X(sev, bf40, f3af9004), /* typo, 8004? */
8177
8178 /* To catch errors in encoding functions, the codes are all offset by
8179 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
8180 as 16-bit instructions. */
8181 #define X(a,b,c) T_MNEM_##a
8182 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
8183 #undef X
8184
8185 #define X(a,b,c) 0x##b
8186 static const unsigned short thumb_op16[] = { T16_32_TAB };
8187 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
8188 #undef X
8189
8190 #define X(a,b,c) 0x##c
8191 static const unsigned int thumb_op32[] = { T16_32_TAB };
8192 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
8193 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
8194 #undef X
8195 #undef T16_32_TAB
8196
8197 /* Thumb instruction encoders, in alphabetical order. */
8198
8199 /* ADDW or SUBW. */
8200 static void
8201 do_t_add_sub_w (void)
8202 {
8203 int Rd, Rn;
8204
8205 Rd = inst.operands[0].reg;
8206 Rn = inst.operands[1].reg;
8207
8208 constraint (Rd == 15, _("PC not allowed as destination"));
8209 inst.instruction |= (Rn << 16) | (Rd << 8);
8210 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8211 }
8212
8213 /* Parse an add or subtract instruction. We get here with inst.instruction
8214 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
8215
8216 static void
8217 do_t_add_sub (void)
8218 {
8219 int Rd, Rs, Rn;
8220
8221 Rd = inst.operands[0].reg;
8222 Rs = (inst.operands[1].present
8223 ? inst.operands[1].reg /* Rd, Rs, foo */
8224 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8225
8226 if (unified_syntax)
8227 {
8228 bfd_boolean flags;
8229 bfd_boolean narrow;
8230 int opcode;
8231
8232 flags = (inst.instruction == T_MNEM_adds
8233 || inst.instruction == T_MNEM_subs);
8234 if (flags)
8235 narrow = (current_it_mask == 0);
8236 else
8237 narrow = (current_it_mask != 0);
8238 if (!inst.operands[2].isreg)
8239 {
8240 int add;
8241
8242 add = (inst.instruction == T_MNEM_add
8243 || inst.instruction == T_MNEM_adds);
8244 opcode = 0;
8245 if (inst.size_req != 4)
8246 {
8247 /* Attempt to use a narrow opcode, with relaxation if
8248 appropriate. */
8249 if (Rd == REG_SP && Rs == REG_SP && !flags)
8250 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
8251 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
8252 opcode = T_MNEM_add_sp;
8253 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
8254 opcode = T_MNEM_add_pc;
8255 else if (Rd <= 7 && Rs <= 7 && narrow)
8256 {
8257 if (flags)
8258 opcode = add ? T_MNEM_addis : T_MNEM_subis;
8259 else
8260 opcode = add ? T_MNEM_addi : T_MNEM_subi;
8261 }
8262 if (opcode)
8263 {
8264 inst.instruction = THUMB_OP16(opcode);
8265 inst.instruction |= (Rd << 4) | Rs;
8266 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8267 if (inst.size_req != 2)
8268 inst.relax = opcode;
8269 }
8270 else
8271 constraint (inst.size_req == 2, BAD_HIREG);
8272 }
8273 if (inst.size_req == 4
8274 || (inst.size_req != 2 && !opcode))
8275 {
8276 if (Rs == REG_PC)
8277 {
8278 /* Always use addw/subw. */
8279 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
8280 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
8281 }
8282 else
8283 {
8284 inst.instruction = THUMB_OP32 (inst.instruction);
8285 inst.instruction = (inst.instruction & 0xe1ffffff)
8286 | 0x10000000;
8287 if (flags)
8288 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8289 else
8290 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
8291 }
8292 inst.instruction |= inst.operands[0].reg << 8;
8293 inst.instruction |= inst.operands[1].reg << 16;
8294 }
8295 }
8296 else
8297 {
8298 Rn = inst.operands[2].reg;
8299 /* See if we can do this with a 16-bit instruction. */
8300 if (!inst.operands[2].shifted && inst.size_req != 4)
8301 {
8302 if (Rd > 7 || Rs > 7 || Rn > 7)
8303 narrow = FALSE;
8304
8305 if (narrow)
8306 {
8307 inst.instruction = ((inst.instruction == T_MNEM_adds
8308 || inst.instruction == T_MNEM_add)
8309 ? T_OPCODE_ADD_R3
8310 : T_OPCODE_SUB_R3);
8311 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8312 return;
8313 }
8314
8315 if (inst.instruction == T_MNEM_add)
8316 {
8317 if (Rd == Rs)
8318 {
8319 inst.instruction = T_OPCODE_ADD_HI;
8320 inst.instruction |= (Rd & 8) << 4;
8321 inst.instruction |= (Rd & 7);
8322 inst.instruction |= Rn << 3;
8323 return;
8324 }
8325 /* ... because addition is commutative! */
8326 else if (Rd == Rn)
8327 {
8328 inst.instruction = T_OPCODE_ADD_HI;
8329 inst.instruction |= (Rd & 8) << 4;
8330 inst.instruction |= (Rd & 7);
8331 inst.instruction |= Rs << 3;
8332 return;
8333 }
8334 }
8335 }
8336 /* If we get here, it can't be done in 16 bits. */
8337 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
8338 _("shift must be constant"));
8339 inst.instruction = THUMB_OP32 (inst.instruction);
8340 inst.instruction |= Rd << 8;
8341 inst.instruction |= Rs << 16;
8342 encode_thumb32_shifted_operand (2);
8343 }
8344 }
8345 else
8346 {
8347 constraint (inst.instruction == T_MNEM_adds
8348 || inst.instruction == T_MNEM_subs,
8349 BAD_THUMB32);
8350
8351 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
8352 {
8353 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
8354 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
8355 BAD_HIREG);
8356
8357 inst.instruction = (inst.instruction == T_MNEM_add
8358 ? 0x0000 : 0x8000);
8359 inst.instruction |= (Rd << 4) | Rs;
8360 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8361 return;
8362 }
8363
8364 Rn = inst.operands[2].reg;
8365 constraint (inst.operands[2].shifted, _("unshifted register required"));
8366
8367 /* We now have Rd, Rs, and Rn set to registers. */
8368 if (Rd > 7 || Rs > 7 || Rn > 7)
8369 {
8370 /* Can't do this for SUB. */
8371 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
8372 inst.instruction = T_OPCODE_ADD_HI;
8373 inst.instruction |= (Rd & 8) << 4;
8374 inst.instruction |= (Rd & 7);
8375 if (Rs == Rd)
8376 inst.instruction |= Rn << 3;
8377 else if (Rn == Rd)
8378 inst.instruction |= Rs << 3;
8379 else
8380 constraint (1, _("dest must overlap one source register"));
8381 }
8382 else
8383 {
8384 inst.instruction = (inst.instruction == T_MNEM_add
8385 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
8386 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
8387 }
8388 }
8389 }
8390
8391 static void
8392 do_t_adr (void)
8393 {
8394 if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7)
8395 {
8396 /* Defer to section relaxation. */
8397 inst.relax = inst.instruction;
8398 inst.instruction = THUMB_OP16 (inst.instruction);
8399 inst.instruction |= inst.operands[0].reg << 4;
8400 }
8401 else if (unified_syntax && inst.size_req != 2)
8402 {
8403 /* Generate a 32-bit opcode. */
8404 inst.instruction = THUMB_OP32 (inst.instruction);
8405 inst.instruction |= inst.operands[0].reg << 8;
8406 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
8407 inst.reloc.pc_rel = 1;
8408 }
8409 else
8410 {
8411 /* Generate a 16-bit opcode. */
8412 inst.instruction = THUMB_OP16 (inst.instruction);
8413 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
8414 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
8415 inst.reloc.pc_rel = 1;
8416
8417 inst.instruction |= inst.operands[0].reg << 4;
8418 }
8419 }
8420
8421 /* Arithmetic instructions for which there is just one 16-bit
8422 instruction encoding, and it allows only two low registers.
8423 For maximal compatibility with ARM syntax, we allow three register
8424 operands even when Thumb-32 instructions are not available, as long
8425 as the first two are identical. For instance, both "sbc r0,r1" and
8426 "sbc r0,r0,r1" are allowed. */
8427 static void
8428 do_t_arit3 (void)
8429 {
8430 int Rd, Rs, Rn;
8431
8432 Rd = inst.operands[0].reg;
8433 Rs = (inst.operands[1].present
8434 ? inst.operands[1].reg /* Rd, Rs, foo */
8435 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8436 Rn = inst.operands[2].reg;
8437
8438 if (unified_syntax)
8439 {
8440 if (!inst.operands[2].isreg)
8441 {
8442 /* For an immediate, we always generate a 32-bit opcode;
8443 section relaxation will shrink it later if possible. */
8444 inst.instruction = THUMB_OP32 (inst.instruction);
8445 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8446 inst.instruction |= Rd << 8;
8447 inst.instruction |= Rs << 16;
8448 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8449 }
8450 else
8451 {
8452 bfd_boolean narrow;
8453
8454 /* See if we can do this with a 16-bit instruction. */
8455 if (THUMB_SETS_FLAGS (inst.instruction))
8456 narrow = current_it_mask == 0;
8457 else
8458 narrow = current_it_mask != 0;
8459
8460 if (Rd > 7 || Rn > 7 || Rs > 7)
8461 narrow = FALSE;
8462 if (inst.operands[2].shifted)
8463 narrow = FALSE;
8464 if (inst.size_req == 4)
8465 narrow = FALSE;
8466
8467 if (narrow
8468 && Rd == Rs)
8469 {
8470 inst.instruction = THUMB_OP16 (inst.instruction);
8471 inst.instruction |= Rd;
8472 inst.instruction |= Rn << 3;
8473 return;
8474 }
8475
8476 /* If we get here, it can't be done in 16 bits. */
8477 constraint (inst.operands[2].shifted
8478 && inst.operands[2].immisreg,
8479 _("shift must be constant"));
8480 inst.instruction = THUMB_OP32 (inst.instruction);
8481 inst.instruction |= Rd << 8;
8482 inst.instruction |= Rs << 16;
8483 encode_thumb32_shifted_operand (2);
8484 }
8485 }
8486 else
8487 {
8488 /* On its face this is a lie - the instruction does set the
8489 flags. However, the only supported mnemonic in this mode
8490 says it doesn't. */
8491 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8492
8493 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8494 _("unshifted register required"));
8495 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8496 constraint (Rd != Rs,
8497 _("dest and source1 must be the same register"));
8498
8499 inst.instruction = THUMB_OP16 (inst.instruction);
8500 inst.instruction |= Rd;
8501 inst.instruction |= Rn << 3;
8502 }
8503 }
8504
8505 /* Similarly, but for instructions where the arithmetic operation is
8506 commutative, so we can allow either of them to be different from
8507 the destination operand in a 16-bit instruction. For instance, all
8508 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
8509 accepted. */
8510 static void
8511 do_t_arit3c (void)
8512 {
8513 int Rd, Rs, Rn;
8514
8515 Rd = inst.operands[0].reg;
8516 Rs = (inst.operands[1].present
8517 ? inst.operands[1].reg /* Rd, Rs, foo */
8518 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
8519 Rn = inst.operands[2].reg;
8520
8521 if (unified_syntax)
8522 {
8523 if (!inst.operands[2].isreg)
8524 {
8525 /* For an immediate, we always generate a 32-bit opcode;
8526 section relaxation will shrink it later if possible. */
8527 inst.instruction = THUMB_OP32 (inst.instruction);
8528 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
8529 inst.instruction |= Rd << 8;
8530 inst.instruction |= Rs << 16;
8531 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
8532 }
8533 else
8534 {
8535 bfd_boolean narrow;
8536
8537 /* See if we can do this with a 16-bit instruction. */
8538 if (THUMB_SETS_FLAGS (inst.instruction))
8539 narrow = current_it_mask == 0;
8540 else
8541 narrow = current_it_mask != 0;
8542
8543 if (Rd > 7 || Rn > 7 || Rs > 7)
8544 narrow = FALSE;
8545 if (inst.operands[2].shifted)
8546 narrow = FALSE;
8547 if (inst.size_req == 4)
8548 narrow = FALSE;
8549
8550 if (narrow)
8551 {
8552 if (Rd == Rs)
8553 {
8554 inst.instruction = THUMB_OP16 (inst.instruction);
8555 inst.instruction |= Rd;
8556 inst.instruction |= Rn << 3;
8557 return;
8558 }
8559 if (Rd == Rn)
8560 {
8561 inst.instruction = THUMB_OP16 (inst.instruction);
8562 inst.instruction |= Rd;
8563 inst.instruction |= Rs << 3;
8564 return;
8565 }
8566 }
8567
8568 /* If we get here, it can't be done in 16 bits. */
8569 constraint (inst.operands[2].shifted
8570 && inst.operands[2].immisreg,
8571 _("shift must be constant"));
8572 inst.instruction = THUMB_OP32 (inst.instruction);
8573 inst.instruction |= Rd << 8;
8574 inst.instruction |= Rs << 16;
8575 encode_thumb32_shifted_operand (2);
8576 }
8577 }
8578 else
8579 {
8580 /* On its face this is a lie - the instruction does set the
8581 flags. However, the only supported mnemonic in this mode
8582 says it doesn't. */
8583 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
8584
8585 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
8586 _("unshifted register required"));
8587 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
8588
8589 inst.instruction = THUMB_OP16 (inst.instruction);
8590 inst.instruction |= Rd;
8591
8592 if (Rd == Rs)
8593 inst.instruction |= Rn << 3;
8594 else if (Rd == Rn)
8595 inst.instruction |= Rs << 3;
8596 else
8597 constraint (1, _("dest must overlap one source register"));
8598 }
8599 }
8600
8601 static void
8602 do_t_barrier (void)
8603 {
8604 if (inst.operands[0].present)
8605 {
8606 constraint ((inst.instruction & 0xf0) != 0x40
8607 && inst.operands[0].imm != 0xf,
8608 "bad barrier type");
8609 inst.instruction |= inst.operands[0].imm;
8610 }
8611 else
8612 inst.instruction |= 0xf;
8613 }
8614
8615 static void
8616 do_t_bfc (void)
8617 {
8618 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
8619 constraint (msb > 32, _("bit-field extends past end of register"));
8620 /* The instruction encoding stores the LSB and MSB,
8621 not the LSB and width. */
8622 inst.instruction |= inst.operands[0].reg << 8;
8623 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
8624 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
8625 inst.instruction |= msb - 1;
8626 }
8627
8628 static void
8629 do_t_bfi (void)
8630 {
8631 unsigned int msb;
8632
8633 /* #0 in second position is alternative syntax for bfc, which is
8634 the same instruction but with REG_PC in the Rm field. */
8635 if (!inst.operands[1].isreg)
8636 inst.operands[1].reg = REG_PC;
8637
8638 msb = inst.operands[2].imm + inst.operands[3].imm;
8639 constraint (msb > 32, _("bit-field extends past end of register"));
8640 /* The instruction encoding stores the LSB and MSB,
8641 not the LSB and width. */
8642 inst.instruction |= inst.operands[0].reg << 8;
8643 inst.instruction |= inst.operands[1].reg << 16;
8644 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8645 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8646 inst.instruction |= msb - 1;
8647 }
8648
8649 static void
8650 do_t_bfx (void)
8651 {
8652 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
8653 _("bit-field extends past end of register"));
8654 inst.instruction |= inst.operands[0].reg << 8;
8655 inst.instruction |= inst.operands[1].reg << 16;
8656 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
8657 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
8658 inst.instruction |= inst.operands[3].imm - 1;
8659 }
8660
8661 /* ARM V5 Thumb BLX (argument parse)
8662 BLX <target_addr> which is BLX(1)
8663 BLX <Rm> which is BLX(2)
8664 Unfortunately, there are two different opcodes for this mnemonic.
8665 So, the insns[].value is not used, and the code here zaps values
8666 into inst.instruction.
8667
8668 ??? How to take advantage of the additional two bits of displacement
8669 available in Thumb32 mode? Need new relocation? */
8670
8671 static void
8672 do_t_blx (void)
8673 {
8674 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8675 if (inst.operands[0].isreg)
8676 /* We have a register, so this is BLX(2). */
8677 inst.instruction |= inst.operands[0].reg << 3;
8678 else
8679 {
8680 /* No register. This must be BLX(1). */
8681 inst.instruction = 0xf000e800;
8682 #ifdef OBJ_ELF
8683 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
8684 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8685 else
8686 #endif
8687 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
8688 inst.reloc.pc_rel = 1;
8689 }
8690 }
8691
8692 static void
8693 do_t_branch (void)
8694 {
8695 int opcode;
8696 int cond;
8697
8698 if (current_it_mask)
8699 {
8700 /* Conditional branches inside IT blocks are encoded as unconditional
8701 branches. */
8702 cond = COND_ALWAYS;
8703 /* A branch must be the last instruction in an IT block. */
8704 constraint (current_it_mask != 0x10, BAD_BRANCH);
8705 }
8706 else
8707 cond = inst.cond;
8708
8709 if (cond != COND_ALWAYS)
8710 opcode = T_MNEM_bcond;
8711 else
8712 opcode = inst.instruction;
8713
8714 if (unified_syntax && inst.size_req == 4)
8715 {
8716 inst.instruction = THUMB_OP32(opcode);
8717 if (cond == COND_ALWAYS)
8718 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25;
8719 else
8720 {
8721 assert (cond != 0xF);
8722 inst.instruction |= cond << 22;
8723 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20;
8724 }
8725 }
8726 else
8727 {
8728 inst.instruction = THUMB_OP16(opcode);
8729 if (cond == COND_ALWAYS)
8730 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
8731 else
8732 {
8733 inst.instruction |= cond << 8;
8734 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
8735 }
8736 /* Allow section relaxation. */
8737 if (unified_syntax && inst.size_req != 2)
8738 inst.relax = opcode;
8739 }
8740
8741 inst.reloc.pc_rel = 1;
8742 }
8743
8744 static void
8745 do_t_bkpt (void)
8746 {
8747 constraint (inst.cond != COND_ALWAYS,
8748 _("instruction is always unconditional"));
8749 if (inst.operands[0].present)
8750 {
8751 constraint (inst.operands[0].imm > 255,
8752 _("immediate value out of range"));
8753 inst.instruction |= inst.operands[0].imm;
8754 }
8755 }
8756
8757 static void
8758 do_t_branch23 (void)
8759 {
8760 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8761 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
8762 inst.reloc.pc_rel = 1;
8763
8764 /* If the destination of the branch is a defined symbol which does not have
8765 the THUMB_FUNC attribute, then we must be calling a function which has
8766 the (interfacearm) attribute. We look for the Thumb entry point to that
8767 function and change the branch to refer to that function instead. */
8768 if ( inst.reloc.exp.X_op == O_symbol
8769 && inst.reloc.exp.X_add_symbol != NULL
8770 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
8771 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
8772 inst.reloc.exp.X_add_symbol =
8773 find_real_start (inst.reloc.exp.X_add_symbol);
8774 }
8775
8776 static void
8777 do_t_bx (void)
8778 {
8779 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8780 inst.instruction |= inst.operands[0].reg << 3;
8781 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
8782 should cause the alignment to be checked once it is known. This is
8783 because BX PC only works if the instruction is word aligned. */
8784 }
8785
8786 static void
8787 do_t_bxj (void)
8788 {
8789 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
8790 if (inst.operands[0].reg == REG_PC)
8791 as_tsktsk (_("use of r15 in bxj is not really useful"));
8792
8793 inst.instruction |= inst.operands[0].reg << 16;
8794 }
8795
8796 static void
8797 do_t_clz (void)
8798 {
8799 inst.instruction |= inst.operands[0].reg << 8;
8800 inst.instruction |= inst.operands[1].reg << 16;
8801 inst.instruction |= inst.operands[1].reg;
8802 }
8803
8804 static void
8805 do_t_cps (void)
8806 {
8807 constraint (current_it_mask, BAD_NOT_IT);
8808 inst.instruction |= inst.operands[0].imm;
8809 }
8810
8811 static void
8812 do_t_cpsi (void)
8813 {
8814 constraint (current_it_mask, BAD_NOT_IT);
8815 if (unified_syntax
8816 && (inst.operands[1].present || inst.size_req == 4)
8817 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
8818 {
8819 unsigned int imod = (inst.instruction & 0x0030) >> 4;
8820 inst.instruction = 0xf3af8000;
8821 inst.instruction |= imod << 9;
8822 inst.instruction |= inst.operands[0].imm << 5;
8823 if (inst.operands[1].present)
8824 inst.instruction |= 0x100 | inst.operands[1].imm;
8825 }
8826 else
8827 {
8828 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
8829 && (inst.operands[0].imm & 4),
8830 _("selected processor does not support 'A' form "
8831 "of this instruction"));
8832 constraint (inst.operands[1].present || inst.size_req == 4,
8833 _("Thumb does not support the 2-argument "
8834 "form of this instruction"));
8835 inst.instruction |= inst.operands[0].imm;
8836 }
8837 }
8838
8839 /* THUMB CPY instruction (argument parse). */
8840
8841 static void
8842 do_t_cpy (void)
8843 {
8844 if (inst.size_req == 4)
8845 {
8846 inst.instruction = THUMB_OP32 (T_MNEM_mov);
8847 inst.instruction |= inst.operands[0].reg << 8;
8848 inst.instruction |= inst.operands[1].reg;
8849 }
8850 else
8851 {
8852 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
8853 inst.instruction |= (inst.operands[0].reg & 0x7);
8854 inst.instruction |= inst.operands[1].reg << 3;
8855 }
8856 }
8857
8858 static void
8859 do_t_czb (void)
8860 {
8861 constraint (current_it_mask, BAD_NOT_IT);
8862 constraint (inst.operands[0].reg > 7, BAD_HIREG);
8863 inst.instruction |= inst.operands[0].reg;
8864 inst.reloc.pc_rel = 1;
8865 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
8866 }
8867
8868 static void
8869 do_t_dbg (void)
8870 {
8871 inst.instruction |= inst.operands[0].imm;
8872 }
8873
8874 static void
8875 do_t_div (void)
8876 {
8877 if (!inst.operands[1].present)
8878 inst.operands[1].reg = inst.operands[0].reg;
8879 inst.instruction |= inst.operands[0].reg << 8;
8880 inst.instruction |= inst.operands[1].reg << 16;
8881 inst.instruction |= inst.operands[2].reg;
8882 }
8883
8884 static void
8885 do_t_hint (void)
8886 {
8887 if (unified_syntax && inst.size_req == 4)
8888 inst.instruction = THUMB_OP32 (inst.instruction);
8889 else
8890 inst.instruction = THUMB_OP16 (inst.instruction);
8891 }
8892
8893 static void
8894 do_t_it (void)
8895 {
8896 unsigned int cond = inst.operands[0].imm;
8897
8898 constraint (current_it_mask, BAD_NOT_IT);
8899 current_it_mask = (inst.instruction & 0xf) | 0x10;
8900 current_cc = cond;
8901
8902 /* If the condition is a negative condition, invert the mask. */
8903 if ((cond & 0x1) == 0x0)
8904 {
8905 unsigned int mask = inst.instruction & 0x000f;
8906
8907 if ((mask & 0x7) == 0)
8908 /* no conversion needed */;
8909 else if ((mask & 0x3) == 0)
8910 mask ^= 0x8;
8911 else if ((mask & 0x1) == 0)
8912 mask ^= 0xC;
8913 else
8914 mask ^= 0xE;
8915
8916 inst.instruction &= 0xfff0;
8917 inst.instruction |= mask;
8918 }
8919
8920 inst.instruction |= cond << 4;
8921 }
8922
8923 static void
8924 do_t_ldmstm (void)
8925 {
8926 /* This really doesn't seem worth it. */
8927 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
8928 _("expression too complex"));
8929 constraint (inst.operands[1].writeback,
8930 _("Thumb load/store multiple does not support {reglist}^"));
8931
8932 if (unified_syntax)
8933 {
8934 /* See if we can use a 16-bit instruction. */
8935 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
8936 && inst.size_req != 4
8937 && inst.operands[0].reg <= 7
8938 && !(inst.operands[1].imm & ~0xff)
8939 && (inst.instruction == T_MNEM_stmia
8940 ? inst.operands[0].writeback
8941 : (inst.operands[0].writeback
8942 == !(inst.operands[1].imm & (1 << inst.operands[0].reg)))))
8943 {
8944 if (inst.instruction == T_MNEM_stmia
8945 && (inst.operands[1].imm & (1 << inst.operands[0].reg))
8946 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8947 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8948 inst.operands[0].reg);
8949
8950 inst.instruction = THUMB_OP16 (inst.instruction);
8951 inst.instruction |= inst.operands[0].reg << 8;
8952 inst.instruction |= inst.operands[1].imm;
8953 }
8954 else
8955 {
8956 if (inst.operands[1].imm & (1 << 13))
8957 as_warn (_("SP should not be in register list"));
8958 if (inst.instruction == T_MNEM_stmia)
8959 {
8960 if (inst.operands[1].imm & (1 << 15))
8961 as_warn (_("PC should not be in register list"));
8962 if (inst.operands[1].imm & (1 << inst.operands[0].reg))
8963 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8964 inst.operands[0].reg);
8965 }
8966 else
8967 {
8968 if (inst.operands[1].imm & (1 << 14)
8969 && inst.operands[1].imm & (1 << 15))
8970 as_warn (_("LR and PC should not both be in register list"));
8971 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8972 && inst.operands[0].writeback)
8973 as_warn (_("base register should not be in register list "
8974 "when written back"));
8975 }
8976 if (inst.instruction < 0xffff)
8977 inst.instruction = THUMB_OP32 (inst.instruction);
8978 inst.instruction |= inst.operands[0].reg << 16;
8979 inst.instruction |= inst.operands[1].imm;
8980 if (inst.operands[0].writeback)
8981 inst.instruction |= WRITE_BACK;
8982 }
8983 }
8984 else
8985 {
8986 constraint (inst.operands[0].reg > 7
8987 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
8988 if (inst.instruction == T_MNEM_stmia)
8989 {
8990 if (!inst.operands[0].writeback)
8991 as_warn (_("this instruction will write back the base register"));
8992 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
8993 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
8994 as_warn (_("value stored for r%d is UNPREDICTABLE"),
8995 inst.operands[0].reg);
8996 }
8997 else
8998 {
8999 if (!inst.operands[0].writeback
9000 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
9001 as_warn (_("this instruction will write back the base register"));
9002 else if (inst.operands[0].writeback
9003 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
9004 as_warn (_("this instruction will not write back the base register"));
9005 }
9006
9007 inst.instruction = THUMB_OP16 (inst.instruction);
9008 inst.instruction |= inst.operands[0].reg << 8;
9009 inst.instruction |= inst.operands[1].imm;
9010 }
9011 }
9012
9013 static void
9014 do_t_ldrex (void)
9015 {
9016 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
9017 || inst.operands[1].postind || inst.operands[1].writeback
9018 || inst.operands[1].immisreg || inst.operands[1].shifted
9019 || inst.operands[1].negative,
9020 BAD_ADDR_MODE);
9021
9022 inst.instruction |= inst.operands[0].reg << 12;
9023 inst.instruction |= inst.operands[1].reg << 16;
9024 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9025 }
9026
9027 static void
9028 do_t_ldrexd (void)
9029 {
9030 if (!inst.operands[1].present)
9031 {
9032 constraint (inst.operands[0].reg == REG_LR,
9033 _("r14 not allowed as first register "
9034 "when second register is omitted"));
9035 inst.operands[1].reg = inst.operands[0].reg + 1;
9036 }
9037 constraint (inst.operands[0].reg == inst.operands[1].reg,
9038 BAD_OVERLAP);
9039
9040 inst.instruction |= inst.operands[0].reg << 12;
9041 inst.instruction |= inst.operands[1].reg << 8;
9042 inst.instruction |= inst.operands[2].reg << 16;
9043 }
9044
9045 static void
9046 do_t_ldst (void)
9047 {
9048 unsigned long opcode;
9049 int Rn;
9050
9051 opcode = inst.instruction;
9052 if (unified_syntax)
9053 {
9054 if (!inst.operands[1].isreg)
9055 {
9056 if (opcode <= 0xffff)
9057 inst.instruction = THUMB_OP32 (opcode);
9058 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9059 return;
9060 }
9061 if (inst.operands[1].isreg
9062 && !inst.operands[1].writeback
9063 && !inst.operands[1].shifted && !inst.operands[1].postind
9064 && !inst.operands[1].negative && inst.operands[0].reg <= 7
9065 && opcode <= 0xffff
9066 && inst.size_req != 4)
9067 {
9068 /* Insn may have a 16-bit form. */
9069 Rn = inst.operands[1].reg;
9070 if (inst.operands[1].immisreg)
9071 {
9072 inst.instruction = THUMB_OP16 (opcode);
9073 /* [Rn, Ri] */
9074 if (Rn <= 7 && inst.operands[1].imm <= 7)
9075 goto op16;
9076 }
9077 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
9078 && opcode != T_MNEM_ldrsb)
9079 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
9080 || (Rn == REG_SP && opcode == T_MNEM_str))
9081 {
9082 /* [Rn, #const] */
9083 if (Rn > 7)
9084 {
9085 if (Rn == REG_PC)
9086 {
9087 if (inst.reloc.pc_rel)
9088 opcode = T_MNEM_ldr_pc2;
9089 else
9090 opcode = T_MNEM_ldr_pc;
9091 }
9092 else
9093 {
9094 if (opcode == T_MNEM_ldr)
9095 opcode = T_MNEM_ldr_sp;
9096 else
9097 opcode = T_MNEM_str_sp;
9098 }
9099 inst.instruction = inst.operands[0].reg << 8;
9100 }
9101 else
9102 {
9103 inst.instruction = inst.operands[0].reg;
9104 inst.instruction |= inst.operands[1].reg << 3;
9105 }
9106 inst.instruction |= THUMB_OP16 (opcode);
9107 if (inst.size_req == 2)
9108 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9109 else
9110 inst.relax = opcode;
9111 return;
9112 }
9113 }
9114 /* Definitely a 32-bit variant. */
9115 inst.instruction = THUMB_OP32 (opcode);
9116 inst.instruction |= inst.operands[0].reg << 12;
9117 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
9118 return;
9119 }
9120
9121 constraint (inst.operands[0].reg > 7, BAD_HIREG);
9122
9123 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
9124 {
9125 /* Only [Rn,Rm] is acceptable. */
9126 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
9127 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
9128 || inst.operands[1].postind || inst.operands[1].shifted
9129 || inst.operands[1].negative,
9130 _("Thumb does not support this addressing mode"));
9131 inst.instruction = THUMB_OP16 (inst.instruction);
9132 goto op16;
9133 }
9134
9135 inst.instruction = THUMB_OP16 (inst.instruction);
9136 if (!inst.operands[1].isreg)
9137 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
9138 return;
9139
9140 constraint (!inst.operands[1].preind
9141 || inst.operands[1].shifted
9142 || inst.operands[1].writeback,
9143 _("Thumb does not support this addressing mode"));
9144 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
9145 {
9146 constraint (inst.instruction & 0x0600,
9147 _("byte or halfword not valid for base register"));
9148 constraint (inst.operands[1].reg == REG_PC
9149 && !(inst.instruction & THUMB_LOAD_BIT),
9150 _("r15 based store not allowed"));
9151 constraint (inst.operands[1].immisreg,
9152 _("invalid base register for register offset"));
9153
9154 if (inst.operands[1].reg == REG_PC)
9155 inst.instruction = T_OPCODE_LDR_PC;
9156 else if (inst.instruction & THUMB_LOAD_BIT)
9157 inst.instruction = T_OPCODE_LDR_SP;
9158 else
9159 inst.instruction = T_OPCODE_STR_SP;
9160
9161 inst.instruction |= inst.operands[0].reg << 8;
9162 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9163 return;
9164 }
9165
9166 constraint (inst.operands[1].reg > 7, BAD_HIREG);
9167 if (!inst.operands[1].immisreg)
9168 {
9169 /* Immediate offset. */
9170 inst.instruction |= inst.operands[0].reg;
9171 inst.instruction |= inst.operands[1].reg << 3;
9172 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
9173 return;
9174 }
9175
9176 /* Register offset. */
9177 constraint (inst.operands[1].imm > 7, BAD_HIREG);
9178 constraint (inst.operands[1].negative,
9179 _("Thumb does not support this addressing mode"));
9180
9181 op16:
9182 switch (inst.instruction)
9183 {
9184 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
9185 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
9186 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
9187 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
9188 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
9189 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
9190 case 0x5600 /* ldrsb */:
9191 case 0x5e00 /* ldrsh */: break;
9192 default: abort ();
9193 }
9194
9195 inst.instruction |= inst.operands[0].reg;
9196 inst.instruction |= inst.operands[1].reg << 3;
9197 inst.instruction |= inst.operands[1].imm << 6;
9198 }
9199
9200 static void
9201 do_t_ldstd (void)
9202 {
9203 if (!inst.operands[1].present)
9204 {
9205 inst.operands[1].reg = inst.operands[0].reg + 1;
9206 constraint (inst.operands[0].reg == REG_LR,
9207 _("r14 not allowed here"));
9208 }
9209 inst.instruction |= inst.operands[0].reg << 12;
9210 inst.instruction |= inst.operands[1].reg << 8;
9211 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
9212
9213 }
9214
9215 static void
9216 do_t_ldstt (void)
9217 {
9218 inst.instruction |= inst.operands[0].reg << 12;
9219 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
9220 }
9221
9222 static void
9223 do_t_mla (void)
9224 {
9225 inst.instruction |= inst.operands[0].reg << 8;
9226 inst.instruction |= inst.operands[1].reg << 16;
9227 inst.instruction |= inst.operands[2].reg;
9228 inst.instruction |= inst.operands[3].reg << 12;
9229 }
9230
9231 static void
9232 do_t_mlal (void)
9233 {
9234 inst.instruction |= inst.operands[0].reg << 12;
9235 inst.instruction |= inst.operands[1].reg << 8;
9236 inst.instruction |= inst.operands[2].reg << 16;
9237 inst.instruction |= inst.operands[3].reg;
9238 }
9239
9240 static void
9241 do_t_mov_cmp (void)
9242 {
9243 if (unified_syntax)
9244 {
9245 int r0off = (inst.instruction == T_MNEM_mov
9246 || inst.instruction == T_MNEM_movs) ? 8 : 16;
9247 unsigned long opcode;
9248 bfd_boolean narrow;
9249 bfd_boolean low_regs;
9250
9251 low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7);
9252 opcode = inst.instruction;
9253 if (current_it_mask)
9254 narrow = opcode != T_MNEM_movs;
9255 else
9256 narrow = opcode != T_MNEM_movs || low_regs;
9257 if (inst.size_req == 4
9258 || inst.operands[1].shifted)
9259 narrow = FALSE;
9260
9261 if (!inst.operands[1].isreg)
9262 {
9263 /* Immediate operand. */
9264 if (current_it_mask == 0 && opcode == T_MNEM_mov)
9265 narrow = 0;
9266 if (low_regs && narrow)
9267 {
9268 inst.instruction = THUMB_OP16 (opcode);
9269 inst.instruction |= inst.operands[0].reg << 8;
9270 if (inst.size_req == 2)
9271 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9272 else
9273 inst.relax = opcode;
9274 }
9275 else
9276 {
9277 inst.instruction = THUMB_OP32 (inst.instruction);
9278 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9279 inst.instruction |= inst.operands[0].reg << r0off;
9280 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9281 }
9282 }
9283 else if (!narrow)
9284 {
9285 inst.instruction = THUMB_OP32 (inst.instruction);
9286 inst.instruction |= inst.operands[0].reg << r0off;
9287 encode_thumb32_shifted_operand (1);
9288 }
9289 else
9290 switch (inst.instruction)
9291 {
9292 case T_MNEM_mov:
9293 inst.instruction = T_OPCODE_MOV_HR;
9294 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9295 inst.instruction |= (inst.operands[0].reg & 0x7);
9296 inst.instruction |= inst.operands[1].reg << 3;
9297 break;
9298
9299 case T_MNEM_movs:
9300 /* We know we have low registers at this point.
9301 Generate ADD Rd, Rs, #0. */
9302 inst.instruction = T_OPCODE_ADD_I3;
9303 inst.instruction |= inst.operands[0].reg;
9304 inst.instruction |= inst.operands[1].reg << 3;
9305 break;
9306
9307 case T_MNEM_cmp:
9308 if (low_regs)
9309 {
9310 inst.instruction = T_OPCODE_CMP_LR;
9311 inst.instruction |= inst.operands[0].reg;
9312 inst.instruction |= inst.operands[1].reg << 3;
9313 }
9314 else
9315 {
9316 inst.instruction = T_OPCODE_CMP_HR;
9317 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
9318 inst.instruction |= (inst.operands[0].reg & 0x7);
9319 inst.instruction |= inst.operands[1].reg << 3;
9320 }
9321 break;
9322 }
9323 return;
9324 }
9325
9326 inst.instruction = THUMB_OP16 (inst.instruction);
9327 if (inst.operands[1].isreg)
9328 {
9329 if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8)
9330 {
9331 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
9332 since a MOV instruction produces unpredictable results. */
9333 if (inst.instruction == T_OPCODE_MOV_I8)
9334 inst.instruction = T_OPCODE_ADD_I3;
9335 else
9336 inst.instruction = T_OPCODE_CMP_LR;
9337
9338 inst.instruction |= inst.operands[0].reg;
9339 inst.instruction |= inst.operands[1].reg << 3;
9340 }
9341 else
9342 {
9343 if (inst.instruction == T_OPCODE_MOV_I8)
9344 inst.instruction = T_OPCODE_MOV_HR;
9345 else
9346 inst.instruction = T_OPCODE_CMP_HR;
9347 do_t_cpy ();
9348 }
9349 }
9350 else
9351 {
9352 constraint (inst.operands[0].reg > 7,
9353 _("only lo regs allowed with immediate"));
9354 inst.instruction |= inst.operands[0].reg << 8;
9355 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
9356 }
9357 }
9358
9359 static void
9360 do_t_mov16 (void)
9361 {
9362 bfd_vma imm;
9363 bfd_boolean top;
9364
9365 top = (inst.instruction & 0x00800000) != 0;
9366 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
9367 {
9368 constraint (top, _(":lower16: not allowed this instruction"));
9369 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
9370 }
9371 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
9372 {
9373 constraint (!top, _(":upper16: not allowed this instruction"));
9374 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
9375 }
9376
9377 inst.instruction |= inst.operands[0].reg << 8;
9378 if (inst.reloc.type == BFD_RELOC_UNUSED)
9379 {
9380 imm = inst.reloc.exp.X_add_number;
9381 inst.instruction |= (imm & 0xf000) << 4;
9382 inst.instruction |= (imm & 0x0800) << 15;
9383 inst.instruction |= (imm & 0x0700) << 4;
9384 inst.instruction |= (imm & 0x00ff);
9385 }
9386 }
9387
9388 static void
9389 do_t_mvn_tst (void)
9390 {
9391 if (unified_syntax)
9392 {
9393 int r0off = (inst.instruction == T_MNEM_mvn
9394 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
9395 bfd_boolean narrow;
9396
9397 if (inst.size_req == 4
9398 || inst.instruction > 0xffff
9399 || inst.operands[1].shifted
9400 || inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9401 narrow = FALSE;
9402 else if (inst.instruction == T_MNEM_cmn)
9403 narrow = TRUE;
9404 else if (THUMB_SETS_FLAGS (inst.instruction))
9405 narrow = (current_it_mask == 0);
9406 else
9407 narrow = (current_it_mask != 0);
9408
9409 if (!inst.operands[1].isreg)
9410 {
9411 /* For an immediate, we always generate a 32-bit opcode;
9412 section relaxation will shrink it later if possible. */
9413 if (inst.instruction < 0xffff)
9414 inst.instruction = THUMB_OP32 (inst.instruction);
9415 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9416 inst.instruction |= inst.operands[0].reg << r0off;
9417 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9418 }
9419 else
9420 {
9421 /* See if we can do this with a 16-bit instruction. */
9422 if (narrow)
9423 {
9424 inst.instruction = THUMB_OP16 (inst.instruction);
9425 inst.instruction |= inst.operands[0].reg;
9426 inst.instruction |= inst.operands[1].reg << 3;
9427 }
9428 else
9429 {
9430 constraint (inst.operands[1].shifted
9431 && inst.operands[1].immisreg,
9432 _("shift must be constant"));
9433 if (inst.instruction < 0xffff)
9434 inst.instruction = THUMB_OP32 (inst.instruction);
9435 inst.instruction |= inst.operands[0].reg << r0off;
9436 encode_thumb32_shifted_operand (1);
9437 }
9438 }
9439 }
9440 else
9441 {
9442 constraint (inst.instruction > 0xffff
9443 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
9444 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
9445 _("unshifted register required"));
9446 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9447 BAD_HIREG);
9448
9449 inst.instruction = THUMB_OP16 (inst.instruction);
9450 inst.instruction |= inst.operands[0].reg;
9451 inst.instruction |= inst.operands[1].reg << 3;
9452 }
9453 }
9454
9455 static void
9456 do_t_mrs (void)
9457 {
9458 int flags;
9459
9460 if (do_vfp_nsyn_mrs () == SUCCESS)
9461 return;
9462
9463 flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
9464 if (flags == 0)
9465 {
9466 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9467 _("selected processor does not support "
9468 "requested special purpose register"));
9469 }
9470 else
9471 {
9472 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9473 _("selected processor does not support "
9474 "requested special purpose register %x"));
9475 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
9476 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
9477 _("'CPSR' or 'SPSR' expected"));
9478 }
9479
9480 inst.instruction |= inst.operands[0].reg << 8;
9481 inst.instruction |= (flags & SPSR_BIT) >> 2;
9482 inst.instruction |= inst.operands[1].imm & 0xff;
9483 }
9484
9485 static void
9486 do_t_msr (void)
9487 {
9488 int flags;
9489
9490 if (do_vfp_nsyn_msr () == SUCCESS)
9491 return;
9492
9493 constraint (!inst.operands[1].isreg,
9494 _("Thumb encoding does not support an immediate here"));
9495 flags = inst.operands[0].imm;
9496 if (flags & ~0xff)
9497 {
9498 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1),
9499 _("selected processor does not support "
9500 "requested special purpose register"));
9501 }
9502 else
9503 {
9504 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m),
9505 _("selected processor does not support "
9506 "requested special purpose register"));
9507 flags |= PSR_f;
9508 }
9509 inst.instruction |= (flags & SPSR_BIT) >> 2;
9510 inst.instruction |= (flags & ~SPSR_BIT) >> 8;
9511 inst.instruction |= (flags & 0xff);
9512 inst.instruction |= inst.operands[1].reg << 16;
9513 }
9514
9515 static void
9516 do_t_mul (void)
9517 {
9518 if (!inst.operands[2].present)
9519 inst.operands[2].reg = inst.operands[0].reg;
9520
9521 /* There is no 32-bit MULS and no 16-bit MUL. */
9522 if (unified_syntax && inst.instruction == T_MNEM_mul)
9523 {
9524 inst.instruction = THUMB_OP32 (inst.instruction);
9525 inst.instruction |= inst.operands[0].reg << 8;
9526 inst.instruction |= inst.operands[1].reg << 16;
9527 inst.instruction |= inst.operands[2].reg << 0;
9528 }
9529 else
9530 {
9531 constraint (!unified_syntax
9532 && inst.instruction == T_MNEM_muls, BAD_THUMB32);
9533 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9534 BAD_HIREG);
9535
9536 inst.instruction = THUMB_OP16 (inst.instruction);
9537 inst.instruction |= inst.operands[0].reg;
9538
9539 if (inst.operands[0].reg == inst.operands[1].reg)
9540 inst.instruction |= inst.operands[2].reg << 3;
9541 else if (inst.operands[0].reg == inst.operands[2].reg)
9542 inst.instruction |= inst.operands[1].reg << 3;
9543 else
9544 constraint (1, _("dest must overlap one source register"));
9545 }
9546 }
9547
9548 static void
9549 do_t_mull (void)
9550 {
9551 inst.instruction |= inst.operands[0].reg << 12;
9552 inst.instruction |= inst.operands[1].reg << 8;
9553 inst.instruction |= inst.operands[2].reg << 16;
9554 inst.instruction |= inst.operands[3].reg;
9555
9556 if (inst.operands[0].reg == inst.operands[1].reg)
9557 as_tsktsk (_("rdhi and rdlo must be different"));
9558 }
9559
9560 static void
9561 do_t_nop (void)
9562 {
9563 if (unified_syntax)
9564 {
9565 if (inst.size_req == 4 || inst.operands[0].imm > 15)
9566 {
9567 inst.instruction = THUMB_OP32 (inst.instruction);
9568 inst.instruction |= inst.operands[0].imm;
9569 }
9570 else
9571 {
9572 inst.instruction = THUMB_OP16 (inst.instruction);
9573 inst.instruction |= inst.operands[0].imm << 4;
9574 }
9575 }
9576 else
9577 {
9578 constraint (inst.operands[0].present,
9579 _("Thumb does not support NOP with hints"));
9580 inst.instruction = 0x46c0;
9581 }
9582 }
9583
9584 static void
9585 do_t_neg (void)
9586 {
9587 if (unified_syntax)
9588 {
9589 bfd_boolean narrow;
9590
9591 if (THUMB_SETS_FLAGS (inst.instruction))
9592 narrow = (current_it_mask == 0);
9593 else
9594 narrow = (current_it_mask != 0);
9595 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9596 narrow = FALSE;
9597 if (inst.size_req == 4)
9598 narrow = FALSE;
9599
9600 if (!narrow)
9601 {
9602 inst.instruction = THUMB_OP32 (inst.instruction);
9603 inst.instruction |= inst.operands[0].reg << 8;
9604 inst.instruction |= inst.operands[1].reg << 16;
9605 }
9606 else
9607 {
9608 inst.instruction = THUMB_OP16 (inst.instruction);
9609 inst.instruction |= inst.operands[0].reg;
9610 inst.instruction |= inst.operands[1].reg << 3;
9611 }
9612 }
9613 else
9614 {
9615 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
9616 BAD_HIREG);
9617 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9618
9619 inst.instruction = THUMB_OP16 (inst.instruction);
9620 inst.instruction |= inst.operands[0].reg;
9621 inst.instruction |= inst.operands[1].reg << 3;
9622 }
9623 }
9624
9625 static void
9626 do_t_pkhbt (void)
9627 {
9628 inst.instruction |= inst.operands[0].reg << 8;
9629 inst.instruction |= inst.operands[1].reg << 16;
9630 inst.instruction |= inst.operands[2].reg;
9631 if (inst.operands[3].present)
9632 {
9633 unsigned int val = inst.reloc.exp.X_add_number;
9634 constraint (inst.reloc.exp.X_op != O_constant,
9635 _("expression too complex"));
9636 inst.instruction |= (val & 0x1c) << 10;
9637 inst.instruction |= (val & 0x03) << 6;
9638 }
9639 }
9640
9641 static void
9642 do_t_pkhtb (void)
9643 {
9644 if (!inst.operands[3].present)
9645 inst.instruction &= ~0x00000020;
9646 do_t_pkhbt ();
9647 }
9648
9649 static void
9650 do_t_pld (void)
9651 {
9652 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
9653 }
9654
9655 static void
9656 do_t_push_pop (void)
9657 {
9658 unsigned mask;
9659
9660 constraint (inst.operands[0].writeback,
9661 _("push/pop do not support {reglist}^"));
9662 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
9663 _("expression too complex"));
9664
9665 mask = inst.operands[0].imm;
9666 if ((mask & ~0xff) == 0)
9667 inst.instruction = THUMB_OP16 (inst.instruction);
9668 else if ((inst.instruction == T_MNEM_push
9669 && (mask & ~0xff) == 1 << REG_LR)
9670 || (inst.instruction == T_MNEM_pop
9671 && (mask & ~0xff) == 1 << REG_PC))
9672 {
9673 inst.instruction = THUMB_OP16 (inst.instruction);
9674 inst.instruction |= THUMB_PP_PC_LR;
9675 mask &= 0xff;
9676 }
9677 else if (unified_syntax)
9678 {
9679 if (mask & (1 << 13))
9680 inst.error = _("SP not allowed in register list");
9681 if (inst.instruction == T_MNEM_push)
9682 {
9683 if (mask & (1 << 15))
9684 inst.error = _("PC not allowed in register list");
9685 }
9686 else
9687 {
9688 if (mask & (1 << 14)
9689 && mask & (1 << 15))
9690 inst.error = _("LR and PC should not both be in register list");
9691 }
9692 if ((mask & (mask - 1)) == 0)
9693 {
9694 /* Single register push/pop implemented as str/ldr. */
9695 if (inst.instruction == T_MNEM_push)
9696 inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */
9697 else
9698 inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */
9699 mask = ffs(mask) - 1;
9700 mask <<= 12;
9701 }
9702 else
9703 inst.instruction = THUMB_OP32 (inst.instruction);
9704 }
9705 else
9706 {
9707 inst.error = _("invalid register list to push/pop instruction");
9708 return;
9709 }
9710
9711 inst.instruction |= mask;
9712 }
9713
9714 static void
9715 do_t_rbit (void)
9716 {
9717 inst.instruction |= inst.operands[0].reg << 8;
9718 inst.instruction |= inst.operands[1].reg << 16;
9719 }
9720
9721 static void
9722 do_t_rev (void)
9723 {
9724 if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
9725 && inst.size_req != 4)
9726 {
9727 inst.instruction = THUMB_OP16 (inst.instruction);
9728 inst.instruction |= inst.operands[0].reg;
9729 inst.instruction |= inst.operands[1].reg << 3;
9730 }
9731 else if (unified_syntax)
9732 {
9733 inst.instruction = THUMB_OP32 (inst.instruction);
9734 inst.instruction |= inst.operands[0].reg << 8;
9735 inst.instruction |= inst.operands[1].reg << 16;
9736 inst.instruction |= inst.operands[1].reg;
9737 }
9738 else
9739 inst.error = BAD_HIREG;
9740 }
9741
9742 static void
9743 do_t_rsb (void)
9744 {
9745 int Rd, Rs;
9746
9747 Rd = inst.operands[0].reg;
9748 Rs = (inst.operands[1].present
9749 ? inst.operands[1].reg /* Rd, Rs, foo */
9750 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9751
9752 inst.instruction |= Rd << 8;
9753 inst.instruction |= Rs << 16;
9754 if (!inst.operands[2].isreg)
9755 {
9756 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9757 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9758 }
9759 else
9760 encode_thumb32_shifted_operand (2);
9761 }
9762
9763 static void
9764 do_t_setend (void)
9765 {
9766 constraint (current_it_mask, BAD_NOT_IT);
9767 if (inst.operands[0].imm)
9768 inst.instruction |= 0x8;
9769 }
9770
9771 static void
9772 do_t_shift (void)
9773 {
9774 if (!inst.operands[1].present)
9775 inst.operands[1].reg = inst.operands[0].reg;
9776
9777 if (unified_syntax)
9778 {
9779 bfd_boolean narrow;
9780 int shift_kind;
9781
9782 switch (inst.instruction)
9783 {
9784 case T_MNEM_asr:
9785 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
9786 case T_MNEM_lsl:
9787 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
9788 case T_MNEM_lsr:
9789 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
9790 case T_MNEM_ror:
9791 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
9792 default: abort ();
9793 }
9794
9795 if (THUMB_SETS_FLAGS (inst.instruction))
9796 narrow = (current_it_mask == 0);
9797 else
9798 narrow = (current_it_mask != 0);
9799 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
9800 narrow = FALSE;
9801 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
9802 narrow = FALSE;
9803 if (inst.operands[2].isreg
9804 && (inst.operands[1].reg != inst.operands[0].reg
9805 || inst.operands[2].reg > 7))
9806 narrow = FALSE;
9807 if (inst.size_req == 4)
9808 narrow = FALSE;
9809
9810 if (!narrow)
9811 {
9812 if (inst.operands[2].isreg)
9813 {
9814 inst.instruction = THUMB_OP32 (inst.instruction);
9815 inst.instruction |= inst.operands[0].reg << 8;
9816 inst.instruction |= inst.operands[1].reg << 16;
9817 inst.instruction |= inst.operands[2].reg;
9818 }
9819 else
9820 {
9821 inst.operands[1].shifted = 1;
9822 inst.operands[1].shift_kind = shift_kind;
9823 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
9824 ? T_MNEM_movs : T_MNEM_mov);
9825 inst.instruction |= inst.operands[0].reg << 8;
9826 encode_thumb32_shifted_operand (1);
9827 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
9828 inst.reloc.type = BFD_RELOC_UNUSED;
9829 }
9830 }
9831 else
9832 {
9833 if (inst.operands[2].isreg)
9834 {
9835 switch (shift_kind)
9836 {
9837 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
9838 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
9839 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
9840 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
9841 default: abort ();
9842 }
9843
9844 inst.instruction |= inst.operands[0].reg;
9845 inst.instruction |= inst.operands[2].reg << 3;
9846 }
9847 else
9848 {
9849 switch (shift_kind)
9850 {
9851 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
9852 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
9853 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
9854 default: abort ();
9855 }
9856 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9857 inst.instruction |= inst.operands[0].reg;
9858 inst.instruction |= inst.operands[1].reg << 3;
9859 }
9860 }
9861 }
9862 else
9863 {
9864 constraint (inst.operands[0].reg > 7
9865 || inst.operands[1].reg > 7, BAD_HIREG);
9866 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9867
9868 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
9869 {
9870 constraint (inst.operands[2].reg > 7, BAD_HIREG);
9871 constraint (inst.operands[0].reg != inst.operands[1].reg,
9872 _("source1 and dest must be same register"));
9873
9874 switch (inst.instruction)
9875 {
9876 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
9877 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
9878 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
9879 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
9880 default: abort ();
9881 }
9882
9883 inst.instruction |= inst.operands[0].reg;
9884 inst.instruction |= inst.operands[2].reg << 3;
9885 }
9886 else
9887 {
9888 switch (inst.instruction)
9889 {
9890 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
9891 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
9892 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
9893 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
9894 default: abort ();
9895 }
9896 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
9897 inst.instruction |= inst.operands[0].reg;
9898 inst.instruction |= inst.operands[1].reg << 3;
9899 }
9900 }
9901 }
9902
9903 static void
9904 do_t_simd (void)
9905 {
9906 inst.instruction |= inst.operands[0].reg << 8;
9907 inst.instruction |= inst.operands[1].reg << 16;
9908 inst.instruction |= inst.operands[2].reg;
9909 }
9910
9911 static void
9912 do_t_smc (void)
9913 {
9914 unsigned int value = inst.reloc.exp.X_add_number;
9915 constraint (inst.reloc.exp.X_op != O_constant,
9916 _("expression too complex"));
9917 inst.reloc.type = BFD_RELOC_UNUSED;
9918 inst.instruction |= (value & 0xf000) >> 12;
9919 inst.instruction |= (value & 0x0ff0);
9920 inst.instruction |= (value & 0x000f) << 16;
9921 }
9922
9923 static void
9924 do_t_ssat (void)
9925 {
9926 inst.instruction |= inst.operands[0].reg << 8;
9927 inst.instruction |= inst.operands[1].imm - 1;
9928 inst.instruction |= inst.operands[2].reg << 16;
9929
9930 if (inst.operands[3].present)
9931 {
9932 constraint (inst.reloc.exp.X_op != O_constant,
9933 _("expression too complex"));
9934
9935 if (inst.reloc.exp.X_add_number != 0)
9936 {
9937 if (inst.operands[3].shift_kind == SHIFT_ASR)
9938 inst.instruction |= 0x00200000; /* sh bit */
9939 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
9940 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
9941 }
9942 inst.reloc.type = BFD_RELOC_UNUSED;
9943 }
9944 }
9945
9946 static void
9947 do_t_ssat16 (void)
9948 {
9949 inst.instruction |= inst.operands[0].reg << 8;
9950 inst.instruction |= inst.operands[1].imm - 1;
9951 inst.instruction |= inst.operands[2].reg << 16;
9952 }
9953
9954 static void
9955 do_t_strex (void)
9956 {
9957 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
9958 || inst.operands[2].postind || inst.operands[2].writeback
9959 || inst.operands[2].immisreg || inst.operands[2].shifted
9960 || inst.operands[2].negative,
9961 BAD_ADDR_MODE);
9962
9963 inst.instruction |= inst.operands[0].reg << 8;
9964 inst.instruction |= inst.operands[1].reg << 12;
9965 inst.instruction |= inst.operands[2].reg << 16;
9966 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
9967 }
9968
9969 static void
9970 do_t_strexd (void)
9971 {
9972 if (!inst.operands[2].present)
9973 inst.operands[2].reg = inst.operands[1].reg + 1;
9974
9975 constraint (inst.operands[0].reg == inst.operands[1].reg
9976 || inst.operands[0].reg == inst.operands[2].reg
9977 || inst.operands[0].reg == inst.operands[3].reg
9978 || inst.operands[1].reg == inst.operands[2].reg,
9979 BAD_OVERLAP);
9980
9981 inst.instruction |= inst.operands[0].reg;
9982 inst.instruction |= inst.operands[1].reg << 12;
9983 inst.instruction |= inst.operands[2].reg << 8;
9984 inst.instruction |= inst.operands[3].reg << 16;
9985 }
9986
9987 static void
9988 do_t_sxtah (void)
9989 {
9990 inst.instruction |= inst.operands[0].reg << 8;
9991 inst.instruction |= inst.operands[1].reg << 16;
9992 inst.instruction |= inst.operands[2].reg;
9993 inst.instruction |= inst.operands[3].imm << 4;
9994 }
9995
9996 static void
9997 do_t_sxth (void)
9998 {
9999 if (inst.instruction <= 0xffff && inst.size_req != 4
10000 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7
10001 && (!inst.operands[2].present || inst.operands[2].imm == 0))
10002 {
10003 inst.instruction = THUMB_OP16 (inst.instruction);
10004 inst.instruction |= inst.operands[0].reg;
10005 inst.instruction |= inst.operands[1].reg << 3;
10006 }
10007 else if (unified_syntax)
10008 {
10009 if (inst.instruction <= 0xffff)
10010 inst.instruction = THUMB_OP32 (inst.instruction);
10011 inst.instruction |= inst.operands[0].reg << 8;
10012 inst.instruction |= inst.operands[1].reg;
10013 inst.instruction |= inst.operands[2].imm << 4;
10014 }
10015 else
10016 {
10017 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
10018 _("Thumb encoding does not support rotation"));
10019 constraint (1, BAD_HIREG);
10020 }
10021 }
10022
10023 static void
10024 do_t_swi (void)
10025 {
10026 inst.reloc.type = BFD_RELOC_ARM_SWI;
10027 }
10028
10029 static void
10030 do_t_tb (void)
10031 {
10032 int half;
10033
10034 half = (inst.instruction & 0x10) != 0;
10035 constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH);
10036 constraint (inst.operands[0].immisreg,
10037 _("instruction requires register index"));
10038 constraint (inst.operands[0].imm == 15,
10039 _("PC is not a valid index register"));
10040 constraint (!half && inst.operands[0].shifted,
10041 _("instruction does not allow shifted index"));
10042 inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm;
10043 }
10044
10045 static void
10046 do_t_usat (void)
10047 {
10048 inst.instruction |= inst.operands[0].reg << 8;
10049 inst.instruction |= inst.operands[1].imm;
10050 inst.instruction |= inst.operands[2].reg << 16;
10051
10052 if (inst.operands[3].present)
10053 {
10054 constraint (inst.reloc.exp.X_op != O_constant,
10055 _("expression too complex"));
10056 if (inst.reloc.exp.X_add_number != 0)
10057 {
10058 if (inst.operands[3].shift_kind == SHIFT_ASR)
10059 inst.instruction |= 0x00200000; /* sh bit */
10060
10061 inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10;
10062 inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6;
10063 }
10064 inst.reloc.type = BFD_RELOC_UNUSED;
10065 }
10066 }
10067
10068 static void
10069 do_t_usat16 (void)
10070 {
10071 inst.instruction |= inst.operands[0].reg << 8;
10072 inst.instruction |= inst.operands[1].imm;
10073 inst.instruction |= inst.operands[2].reg << 16;
10074 }
10075
10076 /* Neon instruction encoder helpers. */
10077
10078 /* Encodings for the different types for various Neon opcodes. */
10079
10080 /* An "invalid" code for the following tables. */
10081 #define N_INV -1u
10082
10083 struct neon_tab_entry
10084 {
10085 unsigned integer;
10086 unsigned float_or_poly;
10087 unsigned scalar_or_imm;
10088 };
10089
10090 /* Map overloaded Neon opcodes to their respective encodings. */
10091 #define NEON_ENC_TAB \
10092 X(vabd, 0x0000700, 0x1200d00, N_INV), \
10093 X(vmax, 0x0000600, 0x0000f00, N_INV), \
10094 X(vmin, 0x0000610, 0x0200f00, N_INV), \
10095 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
10096 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
10097 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
10098 X(vadd, 0x0000800, 0x0000d00, N_INV), \
10099 X(vsub, 0x1000800, 0x0200d00, N_INV), \
10100 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
10101 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
10102 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
10103 /* Register variants of the following two instructions are encoded as
10104 vcge / vcgt with the operands reversed. */ \
10105 X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \
10106 X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \
10107 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
10108 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
10109 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
10110 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
10111 X(vmlal, 0x0800800, N_INV, 0x0800240), \
10112 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
10113 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
10114 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
10115 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
10116 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
10117 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
10118 X(vshl, 0x0000400, N_INV, 0x0800510), \
10119 X(vqshl, 0x0000410, N_INV, 0x0800710), \
10120 X(vand, 0x0000110, N_INV, 0x0800030), \
10121 X(vbic, 0x0100110, N_INV, 0x0800030), \
10122 X(veor, 0x1000110, N_INV, N_INV), \
10123 X(vorn, 0x0300110, N_INV, 0x0800010), \
10124 X(vorr, 0x0200110, N_INV, 0x0800010), \
10125 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
10126 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
10127 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
10128 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
10129 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
10130 X(vst1, 0x0000000, 0x0800000, N_INV), \
10131 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
10132 X(vst2, 0x0000100, 0x0800100, N_INV), \
10133 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
10134 X(vst3, 0x0000200, 0x0800200, N_INV), \
10135 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
10136 X(vst4, 0x0000300, 0x0800300, N_INV), \
10137 X(vmovn, 0x1b20200, N_INV, N_INV), \
10138 X(vtrn, 0x1b20080, N_INV, N_INV), \
10139 X(vqmovn, 0x1b20200, N_INV, N_INV), \
10140 X(vqmovun, 0x1b20240, N_INV, N_INV), \
10141 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
10142 X(vnmla, 0xe000a40, 0xe000b40, N_INV), \
10143 X(vnmls, 0xe100a40, 0xe100b40, N_INV), \
10144 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
10145 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
10146 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
10147 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
10148
10149 enum neon_opc
10150 {
10151 #define X(OPC,I,F,S) N_MNEM_##OPC
10152 NEON_ENC_TAB
10153 #undef X
10154 };
10155
10156 static const struct neon_tab_entry neon_enc_tab[] =
10157 {
10158 #define X(OPC,I,F,S) { (I), (F), (S) }
10159 NEON_ENC_TAB
10160 #undef X
10161 };
10162
10163 #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10164 #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10165 #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10166 #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10167 #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10168 #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10169 #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
10170 #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
10171 #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
10172 #define NEON_ENC_SINGLE(X) \
10173 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
10174 #define NEON_ENC_DOUBLE(X) \
10175 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
10176
10177 /* Define shapes for instruction operands. The following mnemonic characters
10178 are used in this table:
10179
10180 F - VFP S<n> register
10181 D - Neon D<n> register
10182 Q - Neon Q<n> register
10183 I - Immediate
10184 S - Scalar
10185 R - ARM register
10186 L - D<n> register list
10187
10188 This table is used to generate various data:
10189 - enumerations of the form NS_DDR to be used as arguments to
10190 neon_select_shape.
10191 - a table classifying shapes into single, double, quad, mixed.
10192 - a table used to drive neon_select_shape.
10193 */
10194
10195 #define NEON_SHAPE_DEF \
10196 X(3, (D, D, D), DOUBLE), \
10197 X(3, (Q, Q, Q), QUAD), \
10198 X(3, (D, D, I), DOUBLE), \
10199 X(3, (Q, Q, I), QUAD), \
10200 X(3, (D, D, S), DOUBLE), \
10201 X(3, (Q, Q, S), QUAD), \
10202 X(2, (D, D), DOUBLE), \
10203 X(2, (Q, Q), QUAD), \
10204 X(2, (D, S), DOUBLE), \
10205 X(2, (Q, S), QUAD), \
10206 X(2, (D, R), DOUBLE), \
10207 X(2, (Q, R), QUAD), \
10208 X(2, (D, I), DOUBLE), \
10209 X(2, (Q, I), QUAD), \
10210 X(3, (D, L, D), DOUBLE), \
10211 X(2, (D, Q), MIXED), \
10212 X(2, (Q, D), MIXED), \
10213 X(3, (D, Q, I), MIXED), \
10214 X(3, (Q, D, I), MIXED), \
10215 X(3, (Q, D, D), MIXED), \
10216 X(3, (D, Q, Q), MIXED), \
10217 X(3, (Q, Q, D), MIXED), \
10218 X(3, (Q, D, S), MIXED), \
10219 X(3, (D, Q, S), MIXED), \
10220 X(4, (D, D, D, I), DOUBLE), \
10221 X(4, (Q, Q, Q, I), QUAD), \
10222 X(2, (F, F), SINGLE), \
10223 X(3, (F, F, F), SINGLE), \
10224 X(2, (F, I), SINGLE), \
10225 X(2, (F, D), MIXED), \
10226 X(2, (D, F), MIXED), \
10227 X(3, (F, F, I), MIXED), \
10228 X(4, (R, R, F, F), SINGLE), \
10229 X(4, (F, F, R, R), SINGLE), \
10230 X(3, (D, R, R), DOUBLE), \
10231 X(3, (R, R, D), DOUBLE), \
10232 X(2, (S, R), SINGLE), \
10233 X(2, (R, S), SINGLE), \
10234 X(2, (F, R), SINGLE), \
10235 X(2, (R, F), SINGLE)
10236
10237 #define S2(A,B) NS_##A##B
10238 #define S3(A,B,C) NS_##A##B##C
10239 #define S4(A,B,C,D) NS_##A##B##C##D
10240
10241 #define X(N, L, C) S##N L
10242
10243 enum neon_shape
10244 {
10245 NEON_SHAPE_DEF,
10246 NS_NULL
10247 };
10248
10249 #undef X
10250 #undef S2
10251 #undef S3
10252 #undef S4
10253
10254 enum neon_shape_class
10255 {
10256 SC_SINGLE,
10257 SC_DOUBLE,
10258 SC_QUAD,
10259 SC_MIXED
10260 };
10261
10262 #define X(N, L, C) SC_##C
10263
10264 static enum neon_shape_class neon_shape_class[] =
10265 {
10266 NEON_SHAPE_DEF
10267 };
10268
10269 #undef X
10270
10271 enum neon_shape_el
10272 {
10273 SE_F,
10274 SE_D,
10275 SE_Q,
10276 SE_I,
10277 SE_S,
10278 SE_R,
10279 SE_L
10280 };
10281
10282 /* Register widths of above. */
10283 static unsigned neon_shape_el_size[] =
10284 {
10285 32,
10286 64,
10287 128,
10288 0,
10289 32,
10290 32,
10291 0
10292 };
10293
10294 struct neon_shape_info
10295 {
10296 unsigned els;
10297 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
10298 };
10299
10300 #define S2(A,B) { SE_##A, SE_##B }
10301 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
10302 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
10303
10304 #define X(N, L, C) { N, S##N L }
10305
10306 static struct neon_shape_info neon_shape_tab[] =
10307 {
10308 NEON_SHAPE_DEF
10309 };
10310
10311 #undef X
10312 #undef S2
10313 #undef S3
10314 #undef S4
10315
10316 /* Bit masks used in type checking given instructions.
10317 'N_EQK' means the type must be the same as (or based on in some way) the key
10318 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
10319 set, various other bits can be set as well in order to modify the meaning of
10320 the type constraint. */
10321
10322 enum neon_type_mask
10323 {
10324 N_S8 = 0x000001,
10325 N_S16 = 0x000002,
10326 N_S32 = 0x000004,
10327 N_S64 = 0x000008,
10328 N_U8 = 0x000010,
10329 N_U16 = 0x000020,
10330 N_U32 = 0x000040,
10331 N_U64 = 0x000080,
10332 N_I8 = 0x000100,
10333 N_I16 = 0x000200,
10334 N_I32 = 0x000400,
10335 N_I64 = 0x000800,
10336 N_8 = 0x001000,
10337 N_16 = 0x002000,
10338 N_32 = 0x004000,
10339 N_64 = 0x008000,
10340 N_P8 = 0x010000,
10341 N_P16 = 0x020000,
10342 N_F32 = 0x040000,
10343 N_F64 = 0x080000,
10344 N_KEY = 0x100000, /* key element (main type specifier). */
10345 N_EQK = 0x200000, /* given operand has the same type & size as the key. */
10346 N_VFP = 0x400000, /* VFP mode: operand size must match register width. */
10347 N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */
10348 N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */
10349 N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */
10350 N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */
10351 N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */
10352 N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */
10353 N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */
10354 N_UTYP = 0,
10355 N_MAX_NONSPECIAL = N_F64
10356 };
10357
10358 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
10359
10360 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
10361 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
10362 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
10363 #define N_SUF_32 (N_SU_32 | N_F32)
10364 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
10365 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
10366
10367 /* Pass this as the first type argument to neon_check_type to ignore types
10368 altogether. */
10369 #define N_IGNORE_TYPE (N_KEY | N_EQK)
10370
10371 /* Select a "shape" for the current instruction (describing register types or
10372 sizes) from a list of alternatives. Return NS_NULL if the current instruction
10373 doesn't fit. For non-polymorphic shapes, checking is usually done as a
10374 function of operand parsing, so this function doesn't need to be called.
10375 Shapes should be listed in order of decreasing length. */
10376
10377 static enum neon_shape
10378 neon_select_shape (enum neon_shape shape, ...)
10379 {
10380 va_list ap;
10381 enum neon_shape first_shape = shape;
10382
10383 /* Fix missing optional operands. FIXME: we don't know at this point how
10384 many arguments we should have, so this makes the assumption that we have
10385 > 1. This is true of all current Neon opcodes, I think, but may not be
10386 true in the future. */
10387 if (!inst.operands[1].present)
10388 inst.operands[1] = inst.operands[0];
10389
10390 va_start (ap, shape);
10391
10392 for (; shape != NS_NULL; shape = va_arg (ap, int))
10393 {
10394 unsigned j;
10395 int matches = 1;
10396
10397 for (j = 0; j < neon_shape_tab[shape].els; j++)
10398 {
10399 if (!inst.operands[j].present)
10400 {
10401 matches = 0;
10402 break;
10403 }
10404
10405 switch (neon_shape_tab[shape].el[j])
10406 {
10407 case SE_F:
10408 if (!(inst.operands[j].isreg
10409 && inst.operands[j].isvec
10410 && inst.operands[j].issingle
10411 && !inst.operands[j].isquad))
10412 matches = 0;
10413 break;
10414
10415 case SE_D:
10416 if (!(inst.operands[j].isreg
10417 && inst.operands[j].isvec
10418 && !inst.operands[j].isquad
10419 && !inst.operands[j].issingle))
10420 matches = 0;
10421 break;
10422
10423 case SE_R:
10424 if (!(inst.operands[j].isreg
10425 && !inst.operands[j].isvec))
10426 matches = 0;
10427 break;
10428
10429 case SE_Q:
10430 if (!(inst.operands[j].isreg
10431 && inst.operands[j].isvec
10432 && inst.operands[j].isquad
10433 && !inst.operands[j].issingle))
10434 matches = 0;
10435 break;
10436
10437 case SE_I:
10438 if (!(!inst.operands[j].isreg
10439 && !inst.operands[j].isscalar))
10440 matches = 0;
10441 break;
10442
10443 case SE_S:
10444 if (!(!inst.operands[j].isreg
10445 && inst.operands[j].isscalar))
10446 matches = 0;
10447 break;
10448
10449 case SE_L:
10450 break;
10451 }
10452 }
10453 if (matches)
10454 break;
10455 }
10456
10457 va_end (ap);
10458
10459 if (shape == NS_NULL && first_shape != NS_NULL)
10460 first_error (_("invalid instruction shape"));
10461
10462 return shape;
10463 }
10464
10465 /* True if SHAPE is predominantly a quadword operation (most of the time, this
10466 means the Q bit should be set). */
10467
10468 static int
10469 neon_quad (enum neon_shape shape)
10470 {
10471 return neon_shape_class[shape] == SC_QUAD;
10472 }
10473
10474 static void
10475 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
10476 unsigned *g_size)
10477 {
10478 /* Allow modification to be made to types which are constrained to be
10479 based on the key element, based on bits set alongside N_EQK. */
10480 if ((typebits & N_EQK) != 0)
10481 {
10482 if ((typebits & N_HLF) != 0)
10483 *g_size /= 2;
10484 else if ((typebits & N_DBL) != 0)
10485 *g_size *= 2;
10486 if ((typebits & N_SGN) != 0)
10487 *g_type = NT_signed;
10488 else if ((typebits & N_UNS) != 0)
10489 *g_type = NT_unsigned;
10490 else if ((typebits & N_INT) != 0)
10491 *g_type = NT_integer;
10492 else if ((typebits & N_FLT) != 0)
10493 *g_type = NT_float;
10494 else if ((typebits & N_SIZ) != 0)
10495 *g_type = NT_untyped;
10496 }
10497 }
10498
10499 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
10500 operand type, i.e. the single type specified in a Neon instruction when it
10501 is the only one given. */
10502
10503 static struct neon_type_el
10504 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
10505 {
10506 struct neon_type_el dest = *key;
10507
10508 assert ((thisarg & N_EQK) != 0);
10509
10510 neon_modify_type_size (thisarg, &dest.type, &dest.size);
10511
10512 return dest;
10513 }
10514
10515 /* Convert Neon type and size into compact bitmask representation. */
10516
10517 static enum neon_type_mask
10518 type_chk_of_el_type (enum neon_el_type type, unsigned size)
10519 {
10520 switch (type)
10521 {
10522 case NT_untyped:
10523 switch (size)
10524 {
10525 case 8: return N_8;
10526 case 16: return N_16;
10527 case 32: return N_32;
10528 case 64: return N_64;
10529 default: ;
10530 }
10531 break;
10532
10533 case NT_integer:
10534 switch (size)
10535 {
10536 case 8: return N_I8;
10537 case 16: return N_I16;
10538 case 32: return N_I32;
10539 case 64: return N_I64;
10540 default: ;
10541 }
10542 break;
10543
10544 case NT_float:
10545 switch (size)
10546 {
10547 case 32: return N_F32;
10548 case 64: return N_F64;
10549 default: ;
10550 }
10551 break;
10552
10553 case NT_poly:
10554 switch (size)
10555 {
10556 case 8: return N_P8;
10557 case 16: return N_P16;
10558 default: ;
10559 }
10560 break;
10561
10562 case NT_signed:
10563 switch (size)
10564 {
10565 case 8: return N_S8;
10566 case 16: return N_S16;
10567 case 32: return N_S32;
10568 case 64: return N_S64;
10569 default: ;
10570 }
10571 break;
10572
10573 case NT_unsigned:
10574 switch (size)
10575 {
10576 case 8: return N_U8;
10577 case 16: return N_U16;
10578 case 32: return N_U32;
10579 case 64: return N_U64;
10580 default: ;
10581 }
10582 break;
10583
10584 default: ;
10585 }
10586
10587 return N_UTYP;
10588 }
10589
10590 /* Convert compact Neon bitmask type representation to a type and size. Only
10591 handles the case where a single bit is set in the mask. */
10592
10593 static int
10594 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
10595 enum neon_type_mask mask)
10596 {
10597 if ((mask & N_EQK) != 0)
10598 return FAIL;
10599
10600 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
10601 *size = 8;
10602 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
10603 *size = 16;
10604 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
10605 *size = 32;
10606 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
10607 *size = 64;
10608 else
10609 return FAIL;
10610
10611 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
10612 *type = NT_signed;
10613 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
10614 *type = NT_unsigned;
10615 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
10616 *type = NT_integer;
10617 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
10618 *type = NT_untyped;
10619 else if ((mask & (N_P8 | N_P16)) != 0)
10620 *type = NT_poly;
10621 else if ((mask & (N_F32 | N_F64)) != 0)
10622 *type = NT_float;
10623 else
10624 return FAIL;
10625
10626 return SUCCESS;
10627 }
10628
10629 /* Modify a bitmask of allowed types. This is only needed for type
10630 relaxation. */
10631
10632 static unsigned
10633 modify_types_allowed (unsigned allowed, unsigned mods)
10634 {
10635 unsigned size;
10636 enum neon_el_type type;
10637 unsigned destmask;
10638 int i;
10639
10640 destmask = 0;
10641
10642 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
10643 {
10644 if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS)
10645 {
10646 neon_modify_type_size (mods, &type, &size);
10647 destmask |= type_chk_of_el_type (type, size);
10648 }
10649 }
10650
10651 return destmask;
10652 }
10653
10654 /* Check type and return type classification.
10655 The manual states (paraphrase): If one datatype is given, it indicates the
10656 type given in:
10657 - the second operand, if there is one
10658 - the operand, if there is no second operand
10659 - the result, if there are no operands.
10660 This isn't quite good enough though, so we use a concept of a "key" datatype
10661 which is set on a per-instruction basis, which is the one which matters when
10662 only one data type is written.
10663 Note: this function has side-effects (e.g. filling in missing operands). All
10664 Neon instructions should call it before performing bit encoding. */
10665
10666 static struct neon_type_el
10667 neon_check_type (unsigned els, enum neon_shape ns, ...)
10668 {
10669 va_list ap;
10670 unsigned i, pass, key_el = 0;
10671 unsigned types[NEON_MAX_TYPE_ELS];
10672 enum neon_el_type k_type = NT_invtype;
10673 unsigned k_size = -1u;
10674 struct neon_type_el badtype = {NT_invtype, -1};
10675 unsigned key_allowed = 0;
10676
10677 /* Optional registers in Neon instructions are always (not) in operand 1.
10678 Fill in the missing operand here, if it was omitted. */
10679 if (els > 1 && !inst.operands[1].present)
10680 inst.operands[1] = inst.operands[0];
10681
10682 /* Suck up all the varargs. */
10683 va_start (ap, ns);
10684 for (i = 0; i < els; i++)
10685 {
10686 unsigned thisarg = va_arg (ap, unsigned);
10687 if (thisarg == N_IGNORE_TYPE)
10688 {
10689 va_end (ap);
10690 return badtype;
10691 }
10692 types[i] = thisarg;
10693 if ((thisarg & N_KEY) != 0)
10694 key_el = i;
10695 }
10696 va_end (ap);
10697
10698 if (inst.vectype.elems > 0)
10699 for (i = 0; i < els; i++)
10700 if (inst.operands[i].vectype.type != NT_invtype)
10701 {
10702 first_error (_("types specified in both the mnemonic and operands"));
10703 return badtype;
10704 }
10705
10706 /* Duplicate inst.vectype elements here as necessary.
10707 FIXME: No idea if this is exactly the same as the ARM assembler,
10708 particularly when an insn takes one register and one non-register
10709 operand. */
10710 if (inst.vectype.elems == 1 && els > 1)
10711 {
10712 unsigned j;
10713 inst.vectype.elems = els;
10714 inst.vectype.el[key_el] = inst.vectype.el[0];
10715 for (j = 0; j < els; j++)
10716 if (j != key_el)
10717 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10718 types[j]);
10719 }
10720 else if (inst.vectype.elems == 0 && els > 0)
10721 {
10722 unsigned j;
10723 /* No types were given after the mnemonic, so look for types specified
10724 after each operand. We allow some flexibility here; as long as the
10725 "key" operand has a type, we can infer the others. */
10726 for (j = 0; j < els; j++)
10727 if (inst.operands[j].vectype.type != NT_invtype)
10728 inst.vectype.el[j] = inst.operands[j].vectype;
10729
10730 if (inst.operands[key_el].vectype.type != NT_invtype)
10731 {
10732 for (j = 0; j < els; j++)
10733 if (inst.operands[j].vectype.type == NT_invtype)
10734 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
10735 types[j]);
10736 }
10737 else
10738 {
10739 first_error (_("operand types can't be inferred"));
10740 return badtype;
10741 }
10742 }
10743 else if (inst.vectype.elems != els)
10744 {
10745 first_error (_("type specifier has the wrong number of parts"));
10746 return badtype;
10747 }
10748
10749 for (pass = 0; pass < 2; pass++)
10750 {
10751 for (i = 0; i < els; i++)
10752 {
10753 unsigned thisarg = types[i];
10754 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
10755 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
10756 enum neon_el_type g_type = inst.vectype.el[i].type;
10757 unsigned g_size = inst.vectype.el[i].size;
10758
10759 /* Decay more-specific signed & unsigned types to sign-insensitive
10760 integer types if sign-specific variants are unavailable. */
10761 if ((g_type == NT_signed || g_type == NT_unsigned)
10762 && (types_allowed & N_SU_ALL) == 0)
10763 g_type = NT_integer;
10764
10765 /* If only untyped args are allowed, decay any more specific types to
10766 them. Some instructions only care about signs for some element
10767 sizes, so handle that properly. */
10768 if ((g_size == 8 && (types_allowed & N_8) != 0)
10769 || (g_size == 16 && (types_allowed & N_16) != 0)
10770 || (g_size == 32 && (types_allowed & N_32) != 0)
10771 || (g_size == 64 && (types_allowed & N_64) != 0))
10772 g_type = NT_untyped;
10773
10774 if (pass == 0)
10775 {
10776 if ((thisarg & N_KEY) != 0)
10777 {
10778 k_type = g_type;
10779 k_size = g_size;
10780 key_allowed = thisarg & ~N_KEY;
10781 }
10782 }
10783 else
10784 {
10785 if ((thisarg & N_VFP) != 0)
10786 {
10787 enum neon_shape_el regshape = neon_shape_tab[ns].el[i];
10788 unsigned regwidth = neon_shape_el_size[regshape], match;
10789
10790 /* In VFP mode, operands must match register widths. If we
10791 have a key operand, use its width, else use the width of
10792 the current operand. */
10793 if (k_size != -1u)
10794 match = k_size;
10795 else
10796 match = g_size;
10797
10798 if (regwidth != match)
10799 {
10800 first_error (_("operand size must match register width"));
10801 return badtype;
10802 }
10803 }
10804
10805 if ((thisarg & N_EQK) == 0)
10806 {
10807 unsigned given_type = type_chk_of_el_type (g_type, g_size);
10808
10809 if ((given_type & types_allowed) == 0)
10810 {
10811 first_error (_("bad type in Neon instruction"));
10812 return badtype;
10813 }
10814 }
10815 else
10816 {
10817 enum neon_el_type mod_k_type = k_type;
10818 unsigned mod_k_size = k_size;
10819 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
10820 if (g_type != mod_k_type || g_size != mod_k_size)
10821 {
10822 first_error (_("inconsistent types in Neon instruction"));
10823 return badtype;
10824 }
10825 }
10826 }
10827 }
10828 }
10829
10830 return inst.vectype.el[key_el];
10831 }
10832
10833 /* Neon-style VFP instruction forwarding. */
10834
10835 /* Thumb VFP instructions have 0xE in the condition field. */
10836
10837 static void
10838 do_vfp_cond_or_thumb (void)
10839 {
10840 if (thumb_mode)
10841 inst.instruction |= 0xe0000000;
10842 else
10843 inst.instruction |= inst.cond << 28;
10844 }
10845
10846 /* Look up and encode a simple mnemonic, for use as a helper function for the
10847 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
10848 etc. It is assumed that operand parsing has already been done, and that the
10849 operands are in the form expected by the given opcode (this isn't necessarily
10850 the same as the form in which they were parsed, hence some massaging must
10851 take place before this function is called).
10852 Checks current arch version against that in the looked-up opcode. */
10853
10854 static void
10855 do_vfp_nsyn_opcode (const char *opname)
10856 {
10857 const struct asm_opcode *opcode;
10858
10859 opcode = hash_find (arm_ops_hsh, opname);
10860
10861 if (!opcode)
10862 abort ();
10863
10864 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
10865 thumb_mode ? *opcode->tvariant : *opcode->avariant),
10866 _(BAD_FPU));
10867
10868 if (thumb_mode)
10869 {
10870 inst.instruction = opcode->tvalue;
10871 opcode->tencode ();
10872 }
10873 else
10874 {
10875 inst.instruction = (inst.cond << 28) | opcode->avalue;
10876 opcode->aencode ();
10877 }
10878 }
10879
10880 static void
10881 do_vfp_nsyn_add_sub (enum neon_shape rs)
10882 {
10883 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
10884
10885 if (rs == NS_FFF)
10886 {
10887 if (is_add)
10888 do_vfp_nsyn_opcode ("fadds");
10889 else
10890 do_vfp_nsyn_opcode ("fsubs");
10891 }
10892 else
10893 {
10894 if (is_add)
10895 do_vfp_nsyn_opcode ("faddd");
10896 else
10897 do_vfp_nsyn_opcode ("fsubd");
10898 }
10899 }
10900
10901 /* Check operand types to see if this is a VFP instruction, and if so call
10902 PFN (). */
10903
10904 static int
10905 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
10906 {
10907 enum neon_shape rs;
10908 struct neon_type_el et;
10909
10910 switch (args)
10911 {
10912 case 2:
10913 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
10914 et = neon_check_type (2, rs,
10915 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10916 break;
10917
10918 case 3:
10919 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
10920 et = neon_check_type (3, rs,
10921 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
10922 break;
10923
10924 default:
10925 abort ();
10926 }
10927
10928 if (et.type != NT_invtype)
10929 {
10930 pfn (rs);
10931 return SUCCESS;
10932 }
10933 else
10934 inst.error = NULL;
10935
10936 return FAIL;
10937 }
10938
10939 static void
10940 do_vfp_nsyn_mla_mls (enum neon_shape rs)
10941 {
10942 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
10943
10944 if (rs == NS_FFF)
10945 {
10946 if (is_mla)
10947 do_vfp_nsyn_opcode ("fmacs");
10948 else
10949 do_vfp_nsyn_opcode ("fmscs");
10950 }
10951 else
10952 {
10953 if (is_mla)
10954 do_vfp_nsyn_opcode ("fmacd");
10955 else
10956 do_vfp_nsyn_opcode ("fmscd");
10957 }
10958 }
10959
10960 static void
10961 do_vfp_nsyn_mul (enum neon_shape rs)
10962 {
10963 if (rs == NS_FFF)
10964 do_vfp_nsyn_opcode ("fmuls");
10965 else
10966 do_vfp_nsyn_opcode ("fmuld");
10967 }
10968
10969 static void
10970 do_vfp_nsyn_abs_neg (enum neon_shape rs)
10971 {
10972 int is_neg = (inst.instruction & 0x80) != 0;
10973 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
10974
10975 if (rs == NS_FF)
10976 {
10977 if (is_neg)
10978 do_vfp_nsyn_opcode ("fnegs");
10979 else
10980 do_vfp_nsyn_opcode ("fabss");
10981 }
10982 else
10983 {
10984 if (is_neg)
10985 do_vfp_nsyn_opcode ("fnegd");
10986 else
10987 do_vfp_nsyn_opcode ("fabsd");
10988 }
10989 }
10990
10991 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
10992 insns belong to Neon, and are handled elsewhere. */
10993
10994 static void
10995 do_vfp_nsyn_ldm_stm (int is_dbmode)
10996 {
10997 int is_ldm = (inst.instruction & (1 << 20)) != 0;
10998 if (is_ldm)
10999 {
11000 if (is_dbmode)
11001 do_vfp_nsyn_opcode ("fldmdbs");
11002 else
11003 do_vfp_nsyn_opcode ("fldmias");
11004 }
11005 else
11006 {
11007 if (is_dbmode)
11008 do_vfp_nsyn_opcode ("fstmdbs");
11009 else
11010 do_vfp_nsyn_opcode ("fstmias");
11011 }
11012 }
11013
11014 static void
11015 do_vfp_nsyn_sqrt (void)
11016 {
11017 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11018 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11019
11020 if (rs == NS_FF)
11021 do_vfp_nsyn_opcode ("fsqrts");
11022 else
11023 do_vfp_nsyn_opcode ("fsqrtd");
11024 }
11025
11026 static void
11027 do_vfp_nsyn_div (void)
11028 {
11029 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11030 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11031 N_F32 | N_F64 | N_KEY | N_VFP);
11032
11033 if (rs == NS_FFF)
11034 do_vfp_nsyn_opcode ("fdivs");
11035 else
11036 do_vfp_nsyn_opcode ("fdivd");
11037 }
11038
11039 static void
11040 do_vfp_nsyn_nmul (void)
11041 {
11042 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
11043 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
11044 N_F32 | N_F64 | N_KEY | N_VFP);
11045
11046 if (rs == NS_FFF)
11047 {
11048 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11049 do_vfp_sp_dyadic ();
11050 }
11051 else
11052 {
11053 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11054 do_vfp_dp_rd_rn_rm ();
11055 }
11056 do_vfp_cond_or_thumb ();
11057 }
11058
11059 static void
11060 do_vfp_nsyn_cmp (void)
11061 {
11062 if (inst.operands[1].isreg)
11063 {
11064 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
11065 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
11066
11067 if (rs == NS_FF)
11068 {
11069 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11070 do_vfp_sp_monadic ();
11071 }
11072 else
11073 {
11074 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11075 do_vfp_dp_rd_rm ();
11076 }
11077 }
11078 else
11079 {
11080 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
11081 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
11082
11083 switch (inst.instruction & 0x0fffffff)
11084 {
11085 case N_MNEM_vcmp:
11086 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
11087 break;
11088 case N_MNEM_vcmpe:
11089 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
11090 break;
11091 default:
11092 abort ();
11093 }
11094
11095 if (rs == NS_FI)
11096 {
11097 inst.instruction = NEON_ENC_SINGLE (inst.instruction);
11098 do_vfp_sp_compare_z ();
11099 }
11100 else
11101 {
11102 inst.instruction = NEON_ENC_DOUBLE (inst.instruction);
11103 do_vfp_dp_rd ();
11104 }
11105 }
11106 do_vfp_cond_or_thumb ();
11107 }
11108
11109 static void
11110 nsyn_insert_sp (void)
11111 {
11112 inst.operands[1] = inst.operands[0];
11113 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
11114 inst.operands[0].reg = 13;
11115 inst.operands[0].isreg = 1;
11116 inst.operands[0].writeback = 1;
11117 inst.operands[0].present = 1;
11118 }
11119
11120 static void
11121 do_vfp_nsyn_push (void)
11122 {
11123 nsyn_insert_sp ();
11124 if (inst.operands[1].issingle)
11125 do_vfp_nsyn_opcode ("fstmdbs");
11126 else
11127 do_vfp_nsyn_opcode ("fstmdbd");
11128 }
11129
11130 static void
11131 do_vfp_nsyn_pop (void)
11132 {
11133 nsyn_insert_sp ();
11134 if (inst.operands[1].issingle)
11135 do_vfp_nsyn_opcode ("fldmdbs");
11136 else
11137 do_vfp_nsyn_opcode ("fldmdbd");
11138 }
11139
11140 /* Fix up Neon data-processing instructions, ORing in the correct bits for
11141 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
11142
11143 static unsigned
11144 neon_dp_fixup (unsigned i)
11145 {
11146 if (thumb_mode)
11147 {
11148 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
11149 if (i & (1 << 24))
11150 i |= 1 << 28;
11151
11152 i &= ~(1 << 24);
11153
11154 i |= 0xef000000;
11155 }
11156 else
11157 i |= 0xf2000000;
11158
11159 return i;
11160 }
11161
11162 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
11163 (0, 1, 2, 3). */
11164
11165 static unsigned
11166 neon_logbits (unsigned x)
11167 {
11168 return ffs (x) - 4;
11169 }
11170
11171 #define LOW4(R) ((R) & 0xf)
11172 #define HI1(R) (((R) >> 4) & 1)
11173
11174 /* Encode insns with bit pattern:
11175
11176 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
11177 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
11178
11179 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
11180 different meaning for some instruction. */
11181
11182 static void
11183 neon_three_same (int isquad, int ubit, int size)
11184 {
11185 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11186 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11187 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11188 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11189 inst.instruction |= LOW4 (inst.operands[2].reg);
11190 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
11191 inst.instruction |= (isquad != 0) << 6;
11192 inst.instruction |= (ubit != 0) << 24;
11193 if (size != -1)
11194 inst.instruction |= neon_logbits (size) << 20;
11195
11196 inst.instruction = neon_dp_fixup (inst.instruction);
11197 }
11198
11199 /* Encode instructions of the form:
11200
11201 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
11202 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
11203
11204 Don't write size if SIZE == -1. */
11205
11206 static void
11207 neon_two_same (int qbit, int ubit, int size)
11208 {
11209 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11210 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11211 inst.instruction |= LOW4 (inst.operands[1].reg);
11212 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11213 inst.instruction |= (qbit != 0) << 6;
11214 inst.instruction |= (ubit != 0) << 24;
11215
11216 if (size != -1)
11217 inst.instruction |= neon_logbits (size) << 18;
11218
11219 inst.instruction = neon_dp_fixup (inst.instruction);
11220 }
11221
11222 /* Neon instruction encoders, in approximate order of appearance. */
11223
11224 static void
11225 do_neon_dyadic_i_su (void)
11226 {
11227 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11228 struct neon_type_el et = neon_check_type (3, rs,
11229 N_EQK, N_EQK, N_SU_32 | N_KEY);
11230 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11231 }
11232
11233 static void
11234 do_neon_dyadic_i64_su (void)
11235 {
11236 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11237 struct neon_type_el et = neon_check_type (3, rs,
11238 N_EQK, N_EQK, N_SU_ALL | N_KEY);
11239 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11240 }
11241
11242 static void
11243 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
11244 unsigned immbits)
11245 {
11246 unsigned size = et.size >> 3;
11247 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11248 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11249 inst.instruction |= LOW4 (inst.operands[1].reg);
11250 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11251 inst.instruction |= (isquad != 0) << 6;
11252 inst.instruction |= immbits << 16;
11253 inst.instruction |= (size >> 3) << 7;
11254 inst.instruction |= (size & 0x7) << 19;
11255 if (write_ubit)
11256 inst.instruction |= (uval != 0) << 24;
11257
11258 inst.instruction = neon_dp_fixup (inst.instruction);
11259 }
11260
11261 static void
11262 do_neon_shl_imm (void)
11263 {
11264 if (!inst.operands[2].isreg)
11265 {
11266 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11267 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
11268 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11269 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
11270 }
11271 else
11272 {
11273 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11274 struct neon_type_el et = neon_check_type (3, rs,
11275 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11276 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11277 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11278 }
11279 }
11280
11281 static void
11282 do_neon_qshl_imm (void)
11283 {
11284 if (!inst.operands[2].isreg)
11285 {
11286 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11287 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
11288 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11289 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
11290 inst.operands[2].imm);
11291 }
11292 else
11293 {
11294 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11295 struct neon_type_el et = neon_check_type (3, rs,
11296 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
11297 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11298 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
11299 }
11300 }
11301
11302 static int
11303 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
11304 {
11305 /* Handle .I8 and .I64 as pseudo-instructions. */
11306 switch (size)
11307 {
11308 case 8:
11309 /* Unfortunately, this will make everything apart from zero out-of-range.
11310 FIXME is this the intended semantics? There doesn't seem much point in
11311 accepting .I8 if so. */
11312 immediate |= immediate << 8;
11313 size = 16;
11314 break;
11315 case 64:
11316 /* Similarly, anything other than zero will be replicated in bits [63:32],
11317 which probably isn't want we want if we specified .I64. */
11318 if (immediate != 0)
11319 goto bad_immediate;
11320 size = 32;
11321 break;
11322 default: ;
11323 }
11324
11325 if (immediate == (immediate & 0x000000ff))
11326 {
11327 *immbits = immediate;
11328 return (size == 16) ? 0x9 : 0x1;
11329 }
11330 else if (immediate == (immediate & 0x0000ff00))
11331 {
11332 *immbits = immediate >> 8;
11333 return (size == 16) ? 0xb : 0x3;
11334 }
11335 else if (immediate == (immediate & 0x00ff0000))
11336 {
11337 *immbits = immediate >> 16;
11338 return 0x5;
11339 }
11340 else if (immediate == (immediate & 0xff000000))
11341 {
11342 *immbits = immediate >> 24;
11343 return 0x7;
11344 }
11345
11346 bad_immediate:
11347 first_error (_("immediate value out of range"));
11348 return FAIL;
11349 }
11350
11351 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
11352 A, B, C, D. */
11353
11354 static int
11355 neon_bits_same_in_bytes (unsigned imm)
11356 {
11357 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
11358 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
11359 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
11360 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
11361 }
11362
11363 /* For immediate of above form, return 0bABCD. */
11364
11365 static unsigned
11366 neon_squash_bits (unsigned imm)
11367 {
11368 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
11369 | ((imm & 0x01000000) >> 21);
11370 }
11371
11372 /* Compress quarter-float representation to 0b...000 abcdefgh. */
11373
11374 static unsigned
11375 neon_qfloat_bits (unsigned imm)
11376 {
11377 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
11378 }
11379
11380 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
11381 the instruction. *OP is passed as the initial value of the op field, and
11382 may be set to a different value depending on the constant (i.e.
11383 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
11384 MVN). */
11385
11386 static int
11387 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, unsigned *immbits,
11388 int *op, int size, enum neon_el_type type)
11389 {
11390 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
11391 {
11392 if (size != 32 || *op == 1)
11393 return FAIL;
11394 *immbits = neon_qfloat_bits (immlo);
11395 return 0xf;
11396 }
11397 else if (size == 64 && neon_bits_same_in_bytes (immhi)
11398 && neon_bits_same_in_bytes (immlo))
11399 {
11400 /* Check this one first so we don't have to bother with immhi in later
11401 tests. */
11402 if (*op == 1)
11403 return FAIL;
11404 *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo);
11405 *op = 1;
11406 return 0xe;
11407 }
11408 else if (immhi != 0)
11409 return FAIL;
11410 else if (immlo == (immlo & 0x000000ff))
11411 {
11412 /* 64-bit case was already handled. Don't allow MVN with 8-bit
11413 immediate. */
11414 if ((size != 8 && size != 16 && size != 32)
11415 || (size == 8 && *op == 1))
11416 return FAIL;
11417 *immbits = immlo;
11418 return (size == 8) ? 0xe : (size == 16) ? 0x8 : 0x0;
11419 }
11420 else if (immlo == (immlo & 0x0000ff00))
11421 {
11422 if (size != 16 && size != 32)
11423 return FAIL;
11424 *immbits = immlo >> 8;
11425 return (size == 16) ? 0xa : 0x2;
11426 }
11427 else if (immlo == (immlo & 0x00ff0000))
11428 {
11429 if (size != 32)
11430 return FAIL;
11431 *immbits = immlo >> 16;
11432 return 0x4;
11433 }
11434 else if (immlo == (immlo & 0xff000000))
11435 {
11436 if (size != 32)
11437 return FAIL;
11438 *immbits = immlo >> 24;
11439 return 0x6;
11440 }
11441 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
11442 {
11443 if (size != 32)
11444 return FAIL;
11445 *immbits = (immlo >> 8) & 0xff;
11446 return 0xc;
11447 }
11448 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
11449 {
11450 if (size != 32)
11451 return FAIL;
11452 *immbits = (immlo >> 16) & 0xff;
11453 return 0xd;
11454 }
11455
11456 return FAIL;
11457 }
11458
11459 /* Write immediate bits [7:0] to the following locations:
11460
11461 |28/24|23 19|18 16|15 4|3 0|
11462 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
11463
11464 This function is used by VMOV/VMVN/VORR/VBIC. */
11465
11466 static void
11467 neon_write_immbits (unsigned immbits)
11468 {
11469 inst.instruction |= immbits & 0xf;
11470 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
11471 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
11472 }
11473
11474 /* Invert low-order SIZE bits of XHI:XLO. */
11475
11476 static void
11477 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
11478 {
11479 unsigned immlo = xlo ? *xlo : 0;
11480 unsigned immhi = xhi ? *xhi : 0;
11481
11482 switch (size)
11483 {
11484 case 8:
11485 immlo = (~immlo) & 0xff;
11486 break;
11487
11488 case 16:
11489 immlo = (~immlo) & 0xffff;
11490 break;
11491
11492 case 64:
11493 immhi = (~immhi) & 0xffffffff;
11494 /* fall through. */
11495
11496 case 32:
11497 immlo = (~immlo) & 0xffffffff;
11498 break;
11499
11500 default:
11501 abort ();
11502 }
11503
11504 if (xlo)
11505 *xlo = immlo;
11506
11507 if (xhi)
11508 *xhi = immhi;
11509 }
11510
11511 static void
11512 do_neon_logic (void)
11513 {
11514 if (inst.operands[2].present && inst.operands[2].isreg)
11515 {
11516 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11517 neon_check_type (3, rs, N_IGNORE_TYPE);
11518 /* U bit and size field were set as part of the bitmask. */
11519 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11520 neon_three_same (neon_quad (rs), 0, -1);
11521 }
11522 else
11523 {
11524 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
11525 struct neon_type_el et = neon_check_type (2, rs,
11526 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
11527 enum neon_opc opcode = inst.instruction & 0x0fffffff;
11528 unsigned immbits;
11529 int cmode;
11530
11531 if (et.type == NT_invtype)
11532 return;
11533
11534 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11535
11536 switch (opcode)
11537 {
11538 case N_MNEM_vbic:
11539 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11540 et.size);
11541 break;
11542
11543 case N_MNEM_vorr:
11544 cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits,
11545 et.size);
11546 break;
11547
11548 case N_MNEM_vand:
11549 /* Pseudo-instruction for VBIC. */
11550 immbits = inst.operands[1].imm;
11551 neon_invert_size (&immbits, 0, et.size);
11552 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11553 break;
11554
11555 case N_MNEM_vorn:
11556 /* Pseudo-instruction for VORR. */
11557 immbits = inst.operands[1].imm;
11558 neon_invert_size (&immbits, 0, et.size);
11559 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
11560 break;
11561
11562 default:
11563 abort ();
11564 }
11565
11566 if (cmode == FAIL)
11567 return;
11568
11569 inst.instruction |= neon_quad (rs) << 6;
11570 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11571 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11572 inst.instruction |= cmode << 8;
11573 neon_write_immbits (immbits);
11574
11575 inst.instruction = neon_dp_fixup (inst.instruction);
11576 }
11577 }
11578
11579 static void
11580 do_neon_bitfield (void)
11581 {
11582 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11583 neon_check_type (3, rs, N_IGNORE_TYPE);
11584 neon_three_same (neon_quad (rs), 0, -1);
11585 }
11586
11587 static void
11588 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
11589 unsigned destbits)
11590 {
11591 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11592 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
11593 types | N_KEY);
11594 if (et.type == NT_float)
11595 {
11596 inst.instruction = NEON_ENC_FLOAT (inst.instruction);
11597 neon_three_same (neon_quad (rs), 0, -1);
11598 }
11599 else
11600 {
11601 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11602 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
11603 }
11604 }
11605
11606 static void
11607 do_neon_dyadic_if_su (void)
11608 {
11609 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11610 }
11611
11612 static void
11613 do_neon_dyadic_if_su_d (void)
11614 {
11615 /* This version only allow D registers, but that constraint is enforced during
11616 operand parsing so we don't need to do anything extra here. */
11617 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
11618 }
11619
11620 static void
11621 do_neon_dyadic_if_i (void)
11622 {
11623 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
11624 }
11625
11626 static void
11627 do_neon_dyadic_if_i_d (void)
11628 {
11629 neon_dyadic_misc (NT_unsigned, N_IF_32, 0);
11630 }
11631
11632 enum vfp_or_neon_is_neon_bits
11633 {
11634 NEON_CHECK_CC = 1,
11635 NEON_CHECK_ARCH = 2
11636 };
11637
11638 /* Call this function if an instruction which may have belonged to the VFP or
11639 Neon instruction sets, but turned out to be a Neon instruction (due to the
11640 operand types involved, etc.). We have to check and/or fix-up a couple of
11641 things:
11642
11643 - Make sure the user hasn't attempted to make a Neon instruction
11644 conditional.
11645 - Alter the value in the condition code field if necessary.
11646 - Make sure that the arch supports Neon instructions.
11647
11648 Which of these operations take place depends on bits from enum
11649 vfp_or_neon_is_neon_bits.
11650
11651 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
11652 current instruction's condition is COND_ALWAYS, the condition field is
11653 changed to inst.uncond_value. This is necessary because instructions shared
11654 between VFP and Neon may be conditional for the VFP variants only, and the
11655 unconditional Neon version must have, e.g., 0xF in the condition field. */
11656
11657 static int
11658 vfp_or_neon_is_neon (unsigned check)
11659 {
11660 /* Conditions are always legal in Thumb mode (IT blocks). */
11661 if (!thumb_mode && (check & NEON_CHECK_CC))
11662 {
11663 if (inst.cond != COND_ALWAYS)
11664 {
11665 first_error (_(BAD_COND));
11666 return FAIL;
11667 }
11668 if (inst.uncond_value != -1)
11669 inst.instruction |= inst.uncond_value << 28;
11670 }
11671
11672 if ((check & NEON_CHECK_ARCH)
11673 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
11674 {
11675 first_error (_(BAD_FPU));
11676 return FAIL;
11677 }
11678
11679 return SUCCESS;
11680 }
11681
11682 static void
11683 do_neon_addsub_if_i (void)
11684 {
11685 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
11686 return;
11687
11688 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11689 return;
11690
11691 /* The "untyped" case can't happen. Do this to stop the "U" bit being
11692 affected if we specify unsigned args. */
11693 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
11694 }
11695
11696 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
11697 result to be:
11698 V<op> A,B (A is operand 0, B is operand 2)
11699 to mean:
11700 V<op> A,B,A
11701 not:
11702 V<op> A,B,B
11703 so handle that case specially. */
11704
11705 static void
11706 neon_exchange_operands (void)
11707 {
11708 void *scratch = alloca (sizeof (inst.operands[0]));
11709 if (inst.operands[1].present)
11710 {
11711 /* Swap operands[1] and operands[2]. */
11712 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
11713 inst.operands[1] = inst.operands[2];
11714 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
11715 }
11716 else
11717 {
11718 inst.operands[1] = inst.operands[2];
11719 inst.operands[2] = inst.operands[0];
11720 }
11721 }
11722
11723 static void
11724 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
11725 {
11726 if (inst.operands[2].isreg)
11727 {
11728 if (invert)
11729 neon_exchange_operands ();
11730 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
11731 }
11732 else
11733 {
11734 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11735 struct neon_type_el et = neon_check_type (2, rs,
11736 N_EQK | N_SIZ, immtypes | N_KEY);
11737
11738 inst.instruction = NEON_ENC_IMMED (inst.instruction);
11739 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11740 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11741 inst.instruction |= LOW4 (inst.operands[1].reg);
11742 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11743 inst.instruction |= neon_quad (rs) << 6;
11744 inst.instruction |= (et.type == NT_float) << 10;
11745 inst.instruction |= neon_logbits (et.size) << 18;
11746
11747 inst.instruction = neon_dp_fixup (inst.instruction);
11748 }
11749 }
11750
11751 static void
11752 do_neon_cmp (void)
11753 {
11754 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
11755 }
11756
11757 static void
11758 do_neon_cmp_inv (void)
11759 {
11760 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
11761 }
11762
11763 static void
11764 do_neon_ceq (void)
11765 {
11766 neon_compare (N_IF_32, N_IF_32, FALSE);
11767 }
11768
11769 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
11770 scalars, which are encoded in 5 bits, M : Rm.
11771 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
11772 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
11773 index in M. */
11774
11775 static unsigned
11776 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
11777 {
11778 unsigned regno = NEON_SCALAR_REG (scalar);
11779 unsigned elno = NEON_SCALAR_INDEX (scalar);
11780
11781 switch (elsize)
11782 {
11783 case 16:
11784 if (regno > 7 || elno > 3)
11785 goto bad_scalar;
11786 return regno | (elno << 3);
11787
11788 case 32:
11789 if (regno > 15 || elno > 1)
11790 goto bad_scalar;
11791 return regno | (elno << 4);
11792
11793 default:
11794 bad_scalar:
11795 first_error (_("scalar out of range for multiply instruction"));
11796 }
11797
11798 return 0;
11799 }
11800
11801 /* Encode multiply / multiply-accumulate scalar instructions. */
11802
11803 static void
11804 neon_mul_mac (struct neon_type_el et, int ubit)
11805 {
11806 unsigned scalar;
11807
11808 /* Give a more helpful error message if we have an invalid type. */
11809 if (et.type == NT_invtype)
11810 return;
11811
11812 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
11813 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11814 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11815 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
11816 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
11817 inst.instruction |= LOW4 (scalar);
11818 inst.instruction |= HI1 (scalar) << 5;
11819 inst.instruction |= (et.type == NT_float) << 8;
11820 inst.instruction |= neon_logbits (et.size) << 20;
11821 inst.instruction |= (ubit != 0) << 24;
11822
11823 inst.instruction = neon_dp_fixup (inst.instruction);
11824 }
11825
11826 static void
11827 do_neon_mac_maybe_scalar (void)
11828 {
11829 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
11830 return;
11831
11832 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11833 return;
11834
11835 if (inst.operands[2].isscalar)
11836 {
11837 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
11838 struct neon_type_el et = neon_check_type (3, rs,
11839 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
11840 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11841 neon_mul_mac (et, neon_quad (rs));
11842 }
11843 else
11844 do_neon_dyadic_if_i ();
11845 }
11846
11847 static void
11848 do_neon_tst (void)
11849 {
11850 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11851 struct neon_type_el et = neon_check_type (3, rs,
11852 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
11853 neon_three_same (neon_quad (rs), 0, et.size);
11854 }
11855
11856 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
11857 same types as the MAC equivalents. The polynomial type for this instruction
11858 is encoded the same as the integer type. */
11859
11860 static void
11861 do_neon_mul (void)
11862 {
11863 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
11864 return;
11865
11866 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11867 return;
11868
11869 if (inst.operands[2].isscalar)
11870 do_neon_mac_maybe_scalar ();
11871 else
11872 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
11873 }
11874
11875 static void
11876 do_neon_qdmulh (void)
11877 {
11878 if (inst.operands[2].isscalar)
11879 {
11880 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
11881 struct neon_type_el et = neon_check_type (3, rs,
11882 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11883 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
11884 neon_mul_mac (et, neon_quad (rs));
11885 }
11886 else
11887 {
11888 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11889 struct neon_type_el et = neon_check_type (3, rs,
11890 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
11891 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11892 /* The U bit (rounding) comes from bit mask. */
11893 neon_three_same (neon_quad (rs), 0, et.size);
11894 }
11895 }
11896
11897 static void
11898 do_neon_fcmp_absolute (void)
11899 {
11900 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11901 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11902 /* Size field comes from bit mask. */
11903 neon_three_same (neon_quad (rs), 1, -1);
11904 }
11905
11906 static void
11907 do_neon_fcmp_absolute_inv (void)
11908 {
11909 neon_exchange_operands ();
11910 do_neon_fcmp_absolute ();
11911 }
11912
11913 static void
11914 do_neon_step (void)
11915 {
11916 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
11917 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
11918 neon_three_same (neon_quad (rs), 0, -1);
11919 }
11920
11921 static void
11922 do_neon_abs_neg (void)
11923 {
11924 enum neon_shape rs;
11925 struct neon_type_el et;
11926
11927 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
11928 return;
11929
11930 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
11931 return;
11932
11933 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
11934 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
11935
11936 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
11937 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
11938 inst.instruction |= LOW4 (inst.operands[1].reg);
11939 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
11940 inst.instruction |= neon_quad (rs) << 6;
11941 inst.instruction |= (et.type == NT_float) << 10;
11942 inst.instruction |= neon_logbits (et.size) << 18;
11943
11944 inst.instruction = neon_dp_fixup (inst.instruction);
11945 }
11946
11947 static void
11948 do_neon_sli (void)
11949 {
11950 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11951 struct neon_type_el et = neon_check_type (2, rs,
11952 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11953 int imm = inst.operands[2].imm;
11954 constraint (imm < 0 || (unsigned)imm >= et.size,
11955 _("immediate out of range for insert"));
11956 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
11957 }
11958
11959 static void
11960 do_neon_sri (void)
11961 {
11962 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11963 struct neon_type_el et = neon_check_type (2, rs,
11964 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
11965 int imm = inst.operands[2].imm;
11966 constraint (imm < 1 || (unsigned)imm > et.size,
11967 _("immediate out of range for insert"));
11968 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
11969 }
11970
11971 static void
11972 do_neon_qshlu_imm (void)
11973 {
11974 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
11975 struct neon_type_el et = neon_check_type (2, rs,
11976 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
11977 int imm = inst.operands[2].imm;
11978 constraint (imm < 0 || (unsigned)imm >= et.size,
11979 _("immediate out of range for shift"));
11980 /* Only encodes the 'U present' variant of the instruction.
11981 In this case, signed types have OP (bit 8) set to 0.
11982 Unsigned types have OP set to 1. */
11983 inst.instruction |= (et.type == NT_unsigned) << 8;
11984 /* The rest of the bits are the same as other immediate shifts. */
11985 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
11986 }
11987
11988 static void
11989 do_neon_qmovn (void)
11990 {
11991 struct neon_type_el et = neon_check_type (2, NS_DQ,
11992 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
11993 /* Saturating move where operands can be signed or unsigned, and the
11994 destination has the same signedness. */
11995 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
11996 if (et.type == NT_unsigned)
11997 inst.instruction |= 0xc0;
11998 else
11999 inst.instruction |= 0x80;
12000 neon_two_same (0, 1, et.size / 2);
12001 }
12002
12003 static void
12004 do_neon_qmovun (void)
12005 {
12006 struct neon_type_el et = neon_check_type (2, NS_DQ,
12007 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12008 /* Saturating move with unsigned results. Operands must be signed. */
12009 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12010 neon_two_same (0, 1, et.size / 2);
12011 }
12012
12013 static void
12014 do_neon_rshift_sat_narrow (void)
12015 {
12016 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12017 or unsigned. If operands are unsigned, results must also be unsigned. */
12018 struct neon_type_el et = neon_check_type (2, NS_DQI,
12019 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
12020 int imm = inst.operands[2].imm;
12021 /* This gets the bounds check, size encoding and immediate bits calculation
12022 right. */
12023 et.size /= 2;
12024
12025 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
12026 VQMOVN.I<size> <Dd>, <Qm>. */
12027 if (imm == 0)
12028 {
12029 inst.operands[2].present = 0;
12030 inst.instruction = N_MNEM_vqmovn;
12031 do_neon_qmovn ();
12032 return;
12033 }
12034
12035 constraint (imm < 1 || (unsigned)imm > et.size,
12036 _("immediate out of range"));
12037 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
12038 }
12039
12040 static void
12041 do_neon_rshift_sat_narrow_u (void)
12042 {
12043 /* FIXME: Types for narrowing. If operands are signed, results can be signed
12044 or unsigned. If operands are unsigned, results must also be unsigned. */
12045 struct neon_type_el et = neon_check_type (2, NS_DQI,
12046 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
12047 int imm = inst.operands[2].imm;
12048 /* This gets the bounds check, size encoding and immediate bits calculation
12049 right. */
12050 et.size /= 2;
12051
12052 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
12053 VQMOVUN.I<size> <Dd>, <Qm>. */
12054 if (imm == 0)
12055 {
12056 inst.operands[2].present = 0;
12057 inst.instruction = N_MNEM_vqmovun;
12058 do_neon_qmovun ();
12059 return;
12060 }
12061
12062 constraint (imm < 1 || (unsigned)imm > et.size,
12063 _("immediate out of range"));
12064 /* FIXME: The manual is kind of unclear about what value U should have in
12065 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
12066 must be 1. */
12067 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
12068 }
12069
12070 static void
12071 do_neon_movn (void)
12072 {
12073 struct neon_type_el et = neon_check_type (2, NS_DQ,
12074 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12075 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12076 neon_two_same (0, 1, et.size / 2);
12077 }
12078
12079 static void
12080 do_neon_rshift_narrow (void)
12081 {
12082 struct neon_type_el et = neon_check_type (2, NS_DQI,
12083 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
12084 int imm = inst.operands[2].imm;
12085 /* This gets the bounds check, size encoding and immediate bits calculation
12086 right. */
12087 et.size /= 2;
12088
12089 /* If immediate is zero then we are a pseudo-instruction for
12090 VMOVN.I<size> <Dd>, <Qm> */
12091 if (imm == 0)
12092 {
12093 inst.operands[2].present = 0;
12094 inst.instruction = N_MNEM_vmovn;
12095 do_neon_movn ();
12096 return;
12097 }
12098
12099 constraint (imm < 1 || (unsigned)imm > et.size,
12100 _("immediate out of range for narrowing operation"));
12101 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
12102 }
12103
12104 static void
12105 do_neon_shll (void)
12106 {
12107 /* FIXME: Type checking when lengthening. */
12108 struct neon_type_el et = neon_check_type (2, NS_QDI,
12109 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
12110 unsigned imm = inst.operands[2].imm;
12111
12112 if (imm == et.size)
12113 {
12114 /* Maximum shift variant. */
12115 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12116 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12117 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12118 inst.instruction |= LOW4 (inst.operands[1].reg);
12119 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12120 inst.instruction |= neon_logbits (et.size) << 18;
12121
12122 inst.instruction = neon_dp_fixup (inst.instruction);
12123 }
12124 else
12125 {
12126 /* A more-specific type check for non-max versions. */
12127 et = neon_check_type (2, NS_QDI,
12128 N_EQK | N_DBL, N_SU_32 | N_KEY);
12129 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12130 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
12131 }
12132 }
12133
12134 /* Check the various types for the VCVT instruction, and return which version
12135 the current instruction is. */
12136
12137 static int
12138 neon_cvt_flavour (enum neon_shape rs)
12139 {
12140 #define CVT_VAR(C,X,Y) \
12141 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
12142 if (et.type != NT_invtype) \
12143 { \
12144 inst.error = NULL; \
12145 return (C); \
12146 }
12147 struct neon_type_el et;
12148 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
12149 || rs == NS_FF) ? N_VFP : 0;
12150 /* The instruction versions which take an immediate take one register
12151 argument, which is extended to the width of the full register. Thus the
12152 "source" and "destination" registers must have the same width. Hack that
12153 here by making the size equal to the key (wider, in this case) operand. */
12154 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
12155
12156 CVT_VAR (0, N_S32, N_F32);
12157 CVT_VAR (1, N_U32, N_F32);
12158 CVT_VAR (2, N_F32, N_S32);
12159 CVT_VAR (3, N_F32, N_U32);
12160
12161 whole_reg = N_VFP;
12162
12163 /* VFP instructions. */
12164 CVT_VAR (4, N_F32, N_F64);
12165 CVT_VAR (5, N_F64, N_F32);
12166 CVT_VAR (6, N_S32, N_F64 | key);
12167 CVT_VAR (7, N_U32, N_F64 | key);
12168 CVT_VAR (8, N_F64 | key, N_S32);
12169 CVT_VAR (9, N_F64 | key, N_U32);
12170 /* VFP instructions with bitshift. */
12171 CVT_VAR (10, N_F32 | key, N_S16);
12172 CVT_VAR (11, N_F32 | key, N_U16);
12173 CVT_VAR (12, N_F64 | key, N_S16);
12174 CVT_VAR (13, N_F64 | key, N_U16);
12175 CVT_VAR (14, N_S16, N_F32 | key);
12176 CVT_VAR (15, N_U16, N_F32 | key);
12177 CVT_VAR (16, N_S16, N_F64 | key);
12178 CVT_VAR (17, N_U16, N_F64 | key);
12179
12180 return -1;
12181 #undef CVT_VAR
12182 }
12183
12184 /* Neon-syntax VFP conversions. */
12185
12186 static void
12187 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
12188 {
12189 const char *opname = 0;
12190
12191 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
12192 {
12193 /* Conversions with immediate bitshift. */
12194 const char *enc[] =
12195 {
12196 "ftosls",
12197 "ftouls",
12198 "fsltos",
12199 "fultos",
12200 NULL,
12201 NULL,
12202 "ftosld",
12203 "ftould",
12204 "fsltod",
12205 "fultod",
12206 "fshtos",
12207 "fuhtos",
12208 "fshtod",
12209 "fuhtod",
12210 "ftoshs",
12211 "ftouhs",
12212 "ftoshd",
12213 "ftouhd"
12214 };
12215
12216 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12217 {
12218 opname = enc[flavour];
12219 constraint (inst.operands[0].reg != inst.operands[1].reg,
12220 _("operands 0 and 1 must be the same register"));
12221 inst.operands[1] = inst.operands[2];
12222 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
12223 }
12224 }
12225 else
12226 {
12227 /* Conversions without bitshift. */
12228 const char *enc[] =
12229 {
12230 "ftosis",
12231 "ftouis",
12232 "fsitos",
12233 "fuitos",
12234 "fcvtsd",
12235 "fcvtds",
12236 "ftosid",
12237 "ftouid",
12238 "fsitod",
12239 "fuitod"
12240 };
12241
12242 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
12243 opname = enc[flavour];
12244 }
12245
12246 if (opname)
12247 do_vfp_nsyn_opcode (opname);
12248 }
12249
12250 static void
12251 do_vfp_nsyn_cvtz (void)
12252 {
12253 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
12254 int flavour = neon_cvt_flavour (rs);
12255 const char *enc[] =
12256 {
12257 "ftosizs",
12258 "ftouizs",
12259 NULL,
12260 NULL,
12261 NULL,
12262 NULL,
12263 "ftosizd",
12264 "ftouizd"
12265 };
12266
12267 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
12268 do_vfp_nsyn_opcode (enc[flavour]);
12269 }
12270
12271 static void
12272 do_neon_cvt (void)
12273 {
12274 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
12275 NS_FD, NS_DF, NS_FF, NS_NULL);
12276 int flavour = neon_cvt_flavour (rs);
12277
12278 /* VFP rather than Neon conversions. */
12279 if (flavour >= 4)
12280 {
12281 do_vfp_nsyn_cvt (rs, flavour);
12282 return;
12283 }
12284
12285 switch (rs)
12286 {
12287 case NS_DDI:
12288 case NS_QQI:
12289 {
12290 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12291 return;
12292
12293 /* Fixed-point conversion with #0 immediate is encoded as an
12294 integer conversion. */
12295 if (inst.operands[2].present && inst.operands[2].imm == 0)
12296 goto int_encode;
12297 unsigned immbits = 32 - inst.operands[2].imm;
12298 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
12299 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12300 if (flavour != -1)
12301 inst.instruction |= enctab[flavour];
12302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12304 inst.instruction |= LOW4 (inst.operands[1].reg);
12305 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12306 inst.instruction |= neon_quad (rs) << 6;
12307 inst.instruction |= 1 << 21;
12308 inst.instruction |= immbits << 16;
12309
12310 inst.instruction = neon_dp_fixup (inst.instruction);
12311 }
12312 break;
12313
12314 case NS_DD:
12315 case NS_QQ:
12316 int_encode:
12317 {
12318 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
12319
12320 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12321
12322 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12323 return;
12324
12325 if (flavour != -1)
12326 inst.instruction |= enctab[flavour];
12327
12328 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12329 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12330 inst.instruction |= LOW4 (inst.operands[1].reg);
12331 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12332 inst.instruction |= neon_quad (rs) << 6;
12333 inst.instruction |= 2 << 18;
12334
12335 inst.instruction = neon_dp_fixup (inst.instruction);
12336 }
12337 break;
12338
12339 default:
12340 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
12341 do_vfp_nsyn_cvt (rs, flavour);
12342 }
12343 }
12344
12345 static void
12346 neon_move_immediate (void)
12347 {
12348 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
12349 struct neon_type_el et = neon_check_type (2, rs,
12350 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
12351 unsigned immlo, immhi = 0, immbits;
12352 int op, cmode;
12353
12354 constraint (et.type == NT_invtype,
12355 _("operand size must be specified for immediate VMOV"));
12356
12357 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
12358 op = (inst.instruction & (1 << 5)) != 0;
12359
12360 immlo = inst.operands[1].imm;
12361 if (inst.operands[1].regisimm)
12362 immhi = inst.operands[1].reg;
12363
12364 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
12365 _("immediate has bits set outside the operand size"));
12366
12367 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
12368 et.size, et.type)) == FAIL)
12369 {
12370 /* Invert relevant bits only. */
12371 neon_invert_size (&immlo, &immhi, et.size);
12372 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
12373 with one or the other; those cases are caught by
12374 neon_cmode_for_move_imm. */
12375 op = !op;
12376 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op,
12377 et.size, et.type)) == FAIL)
12378 {
12379 first_error (_("immediate out of range"));
12380 return;
12381 }
12382 }
12383
12384 inst.instruction &= ~(1 << 5);
12385 inst.instruction |= op << 5;
12386
12387 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12388 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12389 inst.instruction |= neon_quad (rs) << 6;
12390 inst.instruction |= cmode << 8;
12391
12392 neon_write_immbits (immbits);
12393 }
12394
12395 static void
12396 do_neon_mvn (void)
12397 {
12398 if (inst.operands[1].isreg)
12399 {
12400 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12401
12402 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12403 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12404 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12405 inst.instruction |= LOW4 (inst.operands[1].reg);
12406 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12407 inst.instruction |= neon_quad (rs) << 6;
12408 }
12409 else
12410 {
12411 inst.instruction = NEON_ENC_IMMED (inst.instruction);
12412 neon_move_immediate ();
12413 }
12414
12415 inst.instruction = neon_dp_fixup (inst.instruction);
12416 }
12417
12418 /* Encode instructions of form:
12419
12420 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
12421 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm |
12422
12423 */
12424
12425 static void
12426 neon_mixed_length (struct neon_type_el et, unsigned size)
12427 {
12428 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12429 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12430 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12431 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12432 inst.instruction |= LOW4 (inst.operands[2].reg);
12433 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12434 inst.instruction |= (et.type == NT_unsigned) << 24;
12435 inst.instruction |= neon_logbits (size) << 20;
12436
12437 inst.instruction = neon_dp_fixup (inst.instruction);
12438 }
12439
12440 static void
12441 do_neon_dyadic_long (void)
12442 {
12443 /* FIXME: Type checking for lengthening op. */
12444 struct neon_type_el et = neon_check_type (3, NS_QDD,
12445 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
12446 neon_mixed_length (et, et.size);
12447 }
12448
12449 static void
12450 do_neon_abal (void)
12451 {
12452 struct neon_type_el et = neon_check_type (3, NS_QDD,
12453 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
12454 neon_mixed_length (et, et.size);
12455 }
12456
12457 static void
12458 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
12459 {
12460 if (inst.operands[2].isscalar)
12461 {
12462 struct neon_type_el et = neon_check_type (3, NS_QDS,
12463 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
12464 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12465 neon_mul_mac (et, et.type == NT_unsigned);
12466 }
12467 else
12468 {
12469 struct neon_type_el et = neon_check_type (3, NS_QDD,
12470 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
12471 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12472 neon_mixed_length (et, et.size);
12473 }
12474 }
12475
12476 static void
12477 do_neon_mac_maybe_scalar_long (void)
12478 {
12479 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
12480 }
12481
12482 static void
12483 do_neon_dyadic_wide (void)
12484 {
12485 struct neon_type_el et = neon_check_type (3, NS_QQD,
12486 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
12487 neon_mixed_length (et, et.size);
12488 }
12489
12490 static void
12491 do_neon_dyadic_narrow (void)
12492 {
12493 struct neon_type_el et = neon_check_type (3, NS_QDD,
12494 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
12495 neon_mixed_length (et, et.size / 2);
12496 }
12497
12498 static void
12499 do_neon_mul_sat_scalar_long (void)
12500 {
12501 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
12502 }
12503
12504 static void
12505 do_neon_vmull (void)
12506 {
12507 if (inst.operands[2].isscalar)
12508 do_neon_mac_maybe_scalar_long ();
12509 else
12510 {
12511 struct neon_type_el et = neon_check_type (3, NS_QDD,
12512 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
12513 if (et.type == NT_poly)
12514 inst.instruction = NEON_ENC_POLY (inst.instruction);
12515 else
12516 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12517 /* For polynomial encoding, size field must be 0b00 and the U bit must be
12518 zero. Should be OK as-is. */
12519 neon_mixed_length (et, et.size);
12520 }
12521 }
12522
12523 static void
12524 do_neon_ext (void)
12525 {
12526 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
12527 struct neon_type_el et = neon_check_type (3, rs,
12528 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
12529 unsigned imm = (inst.operands[3].imm * et.size) / 8;
12530 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12531 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12532 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12533 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12534 inst.instruction |= LOW4 (inst.operands[2].reg);
12535 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12536 inst.instruction |= neon_quad (rs) << 6;
12537 inst.instruction |= imm << 8;
12538
12539 inst.instruction = neon_dp_fixup (inst.instruction);
12540 }
12541
12542 static void
12543 do_neon_rev (void)
12544 {
12545 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12546 struct neon_type_el et = neon_check_type (2, rs,
12547 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12548 unsigned op = (inst.instruction >> 7) & 3;
12549 /* N (width of reversed regions) is encoded as part of the bitmask. We
12550 extract it here to check the elements to be reversed are smaller.
12551 Otherwise we'd get a reserved instruction. */
12552 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
12553 assert (elsize != 0);
12554 constraint (et.size >= elsize,
12555 _("elements must be smaller than reversal region"));
12556 neon_two_same (neon_quad (rs), 1, et.size);
12557 }
12558
12559 static void
12560 do_neon_dup (void)
12561 {
12562 if (inst.operands[1].isscalar)
12563 {
12564 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
12565 struct neon_type_el et = neon_check_type (2, rs,
12566 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12567 unsigned sizebits = et.size >> 3;
12568 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
12569 int logsize = neon_logbits (et.size);
12570 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
12571
12572 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
12573 return;
12574
12575 inst.instruction = NEON_ENC_SCALAR (inst.instruction);
12576 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12577 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12578 inst.instruction |= LOW4 (dm);
12579 inst.instruction |= HI1 (dm) << 5;
12580 inst.instruction |= neon_quad (rs) << 6;
12581 inst.instruction |= x << 17;
12582 inst.instruction |= sizebits << 16;
12583
12584 inst.instruction = neon_dp_fixup (inst.instruction);
12585 }
12586 else
12587 {
12588 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
12589 struct neon_type_el et = neon_check_type (2, rs,
12590 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12591 /* Duplicate ARM register to lanes of vector. */
12592 inst.instruction = NEON_ENC_ARMREG (inst.instruction);
12593 switch (et.size)
12594 {
12595 case 8: inst.instruction |= 0x400000; break;
12596 case 16: inst.instruction |= 0x000020; break;
12597 case 32: inst.instruction |= 0x000000; break;
12598 default: break;
12599 }
12600 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
12601 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
12602 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
12603 inst.instruction |= neon_quad (rs) << 21;
12604 /* The encoding for this instruction is identical for the ARM and Thumb
12605 variants, except for the condition field. */
12606 do_vfp_cond_or_thumb ();
12607 }
12608 }
12609
12610 /* VMOV has particularly many variations. It can be one of:
12611 0. VMOV<c><q> <Qd>, <Qm>
12612 1. VMOV<c><q> <Dd>, <Dm>
12613 (Register operations, which are VORR with Rm = Rn.)
12614 2. VMOV<c><q>.<dt> <Qd>, #<imm>
12615 3. VMOV<c><q>.<dt> <Dd>, #<imm>
12616 (Immediate loads.)
12617 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
12618 (ARM register to scalar.)
12619 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
12620 (Two ARM registers to vector.)
12621 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
12622 (Scalar to ARM register.)
12623 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
12624 (Vector to two ARM registers.)
12625 8. VMOV.F32 <Sd>, <Sm>
12626 9. VMOV.F64 <Dd>, <Dm>
12627 (VFP register moves.)
12628 10. VMOV.F32 <Sd>, #imm
12629 11. VMOV.F64 <Dd>, #imm
12630 (VFP float immediate load.)
12631 12. VMOV <Rd>, <Sm>
12632 (VFP single to ARM reg.)
12633 13. VMOV <Sd>, <Rm>
12634 (ARM reg to VFP single.)
12635 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
12636 (Two ARM regs to two VFP singles.)
12637 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
12638 (Two VFP singles to two ARM regs.)
12639
12640 These cases can be disambiguated using neon_select_shape, except cases 1/9
12641 and 3/11 which depend on the operand type too.
12642
12643 All the encoded bits are hardcoded by this function.
12644
12645 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
12646 Cases 5, 7 may be used with VFPv2 and above.
12647
12648 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
12649 can specify a type where it doesn't make sense to, and is ignored).
12650 */
12651
12652 static void
12653 do_neon_mov (void)
12654 {
12655 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
12656 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
12657 NS_NULL);
12658 struct neon_type_el et;
12659 const char *ldconst = 0;
12660
12661 switch (rs)
12662 {
12663 case NS_DD: /* case 1/9. */
12664 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12665 /* It is not an error here if no type is given. */
12666 inst.error = NULL;
12667 if (et.type == NT_float && et.size == 64)
12668 {
12669 do_vfp_nsyn_opcode ("fcpyd");
12670 break;
12671 }
12672 /* fall through. */
12673
12674 case NS_QQ: /* case 0/1. */
12675 {
12676 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12677 return;
12678 /* The architecture manual I have doesn't explicitly state which
12679 value the U bit should have for register->register moves, but
12680 the equivalent VORR instruction has U = 0, so do that. */
12681 inst.instruction = 0x0200110;
12682 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12683 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12684 inst.instruction |= LOW4 (inst.operands[1].reg);
12685 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
12686 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12687 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12688 inst.instruction |= neon_quad (rs) << 6;
12689
12690 inst.instruction = neon_dp_fixup (inst.instruction);
12691 }
12692 break;
12693
12694 case NS_DI: /* case 3/11. */
12695 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
12696 inst.error = NULL;
12697 if (et.type == NT_float && et.size == 64)
12698 {
12699 /* case 11 (fconstd). */
12700 ldconst = "fconstd";
12701 goto encode_fconstd;
12702 }
12703 /* fall through. */
12704
12705 case NS_QI: /* case 2/3. */
12706 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
12707 return;
12708 inst.instruction = 0x0800010;
12709 neon_move_immediate ();
12710 inst.instruction = neon_dp_fixup (inst.instruction);
12711 break;
12712
12713 case NS_SR: /* case 4. */
12714 {
12715 unsigned bcdebits = 0;
12716 struct neon_type_el et = neon_check_type (2, NS_NULL,
12717 N_8 | N_16 | N_32 | N_KEY, N_EQK);
12718 int logsize = neon_logbits (et.size);
12719 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
12720 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
12721
12722 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12723 _(BAD_FPU));
12724 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12725 && et.size != 32, _(BAD_FPU));
12726 constraint (et.type == NT_invtype, _("bad type for scalar"));
12727 constraint (x >= 64 / et.size, _("scalar index out of range"));
12728
12729 switch (et.size)
12730 {
12731 case 8: bcdebits = 0x8; break;
12732 case 16: bcdebits = 0x1; break;
12733 case 32: bcdebits = 0x0; break;
12734 default: ;
12735 }
12736
12737 bcdebits |= x << logsize;
12738
12739 inst.instruction = 0xe000b10;
12740 do_vfp_cond_or_thumb ();
12741 inst.instruction |= LOW4 (dn) << 16;
12742 inst.instruction |= HI1 (dn) << 7;
12743 inst.instruction |= inst.operands[1].reg << 12;
12744 inst.instruction |= (bcdebits & 3) << 5;
12745 inst.instruction |= (bcdebits >> 2) << 21;
12746 }
12747 break;
12748
12749 case NS_DRR: /* case 5 (fmdrr). */
12750 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12751 _(BAD_FPU));
12752
12753 inst.instruction = 0xc400b10;
12754 do_vfp_cond_or_thumb ();
12755 inst.instruction |= LOW4 (inst.operands[0].reg);
12756 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
12757 inst.instruction |= inst.operands[1].reg << 12;
12758 inst.instruction |= inst.operands[2].reg << 16;
12759 break;
12760
12761 case NS_RS: /* case 6. */
12762 {
12763 struct neon_type_el et = neon_check_type (2, NS_NULL,
12764 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
12765 unsigned logsize = neon_logbits (et.size);
12766 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
12767 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
12768 unsigned abcdebits = 0;
12769
12770 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
12771 _(BAD_FPU));
12772 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
12773 && et.size != 32, _(BAD_FPU));
12774 constraint (et.type == NT_invtype, _("bad type for scalar"));
12775 constraint (x >= 64 / et.size, _("scalar index out of range"));
12776
12777 switch (et.size)
12778 {
12779 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
12780 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
12781 case 32: abcdebits = 0x00; break;
12782 default: ;
12783 }
12784
12785 abcdebits |= x << logsize;
12786 inst.instruction = 0xe100b10;
12787 do_vfp_cond_or_thumb ();
12788 inst.instruction |= LOW4 (dn) << 16;
12789 inst.instruction |= HI1 (dn) << 7;
12790 inst.instruction |= inst.operands[0].reg << 12;
12791 inst.instruction |= (abcdebits & 3) << 5;
12792 inst.instruction |= (abcdebits >> 2) << 21;
12793 }
12794 break;
12795
12796 case NS_RRD: /* case 7 (fmrrd). */
12797 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
12798 _(BAD_FPU));
12799
12800 inst.instruction = 0xc500b10;
12801 do_vfp_cond_or_thumb ();
12802 inst.instruction |= inst.operands[0].reg << 12;
12803 inst.instruction |= inst.operands[1].reg << 16;
12804 inst.instruction |= LOW4 (inst.operands[2].reg);
12805 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12806 break;
12807
12808 case NS_FF: /* case 8 (fcpys). */
12809 do_vfp_nsyn_opcode ("fcpys");
12810 break;
12811
12812 case NS_FI: /* case 10 (fconsts). */
12813 ldconst = "fconsts";
12814 encode_fconstd:
12815 if (is_quarter_float (inst.operands[1].imm))
12816 {
12817 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
12818 do_vfp_nsyn_opcode (ldconst);
12819 }
12820 else
12821 first_error (_("immediate out of range"));
12822 break;
12823
12824 case NS_RF: /* case 12 (fmrs). */
12825 do_vfp_nsyn_opcode ("fmrs");
12826 break;
12827
12828 case NS_FR: /* case 13 (fmsr). */
12829 do_vfp_nsyn_opcode ("fmsr");
12830 break;
12831
12832 /* The encoders for the fmrrs and fmsrr instructions expect three operands
12833 (one of which is a list), but we have parsed four. Do some fiddling to
12834 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
12835 expect. */
12836 case NS_RRFF: /* case 14 (fmrrs). */
12837 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
12838 _("VFP registers must be adjacent"));
12839 inst.operands[2].imm = 2;
12840 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12841 do_vfp_nsyn_opcode ("fmrrs");
12842 break;
12843
12844 case NS_FFRR: /* case 15 (fmsrr). */
12845 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
12846 _("VFP registers must be adjacent"));
12847 inst.operands[1] = inst.operands[2];
12848 inst.operands[2] = inst.operands[3];
12849 inst.operands[0].imm = 2;
12850 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
12851 do_vfp_nsyn_opcode ("fmsrr");
12852 break;
12853
12854 default:
12855 abort ();
12856 }
12857 }
12858
12859 static void
12860 do_neon_rshift_round_imm (void)
12861 {
12862 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
12863 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
12864 int imm = inst.operands[2].imm;
12865
12866 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
12867 if (imm == 0)
12868 {
12869 inst.operands[2].present = 0;
12870 do_neon_mov ();
12871 return;
12872 }
12873
12874 constraint (imm < 1 || (unsigned)imm > et.size,
12875 _("immediate out of range for shift"));
12876 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
12877 et.size - imm);
12878 }
12879
12880 static void
12881 do_neon_movl (void)
12882 {
12883 struct neon_type_el et = neon_check_type (2, NS_QD,
12884 N_EQK | N_DBL, N_SU_32 | N_KEY);
12885 unsigned sizebits = et.size >> 3;
12886 inst.instruction |= sizebits << 19;
12887 neon_two_same (0, et.type == NT_unsigned, -1);
12888 }
12889
12890 static void
12891 do_neon_trn (void)
12892 {
12893 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12894 struct neon_type_el et = neon_check_type (2, rs,
12895 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12896 inst.instruction = NEON_ENC_INTEGER (inst.instruction);
12897 neon_two_same (neon_quad (rs), 1, et.size);
12898 }
12899
12900 static void
12901 do_neon_zip_uzp (void)
12902 {
12903 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12904 struct neon_type_el et = neon_check_type (2, rs,
12905 N_EQK, N_8 | N_16 | N_32 | N_KEY);
12906 if (rs == NS_DD && et.size == 32)
12907 {
12908 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
12909 inst.instruction = N_MNEM_vtrn;
12910 do_neon_trn ();
12911 return;
12912 }
12913 neon_two_same (neon_quad (rs), 1, et.size);
12914 }
12915
12916 static void
12917 do_neon_sat_abs_neg (void)
12918 {
12919 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12920 struct neon_type_el et = neon_check_type (2, rs,
12921 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
12922 neon_two_same (neon_quad (rs), 1, et.size);
12923 }
12924
12925 static void
12926 do_neon_pair_long (void)
12927 {
12928 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12929 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
12930 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
12931 inst.instruction |= (et.type == NT_unsigned) << 7;
12932 neon_two_same (neon_quad (rs), 1, et.size);
12933 }
12934
12935 static void
12936 do_neon_recip_est (void)
12937 {
12938 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12939 struct neon_type_el et = neon_check_type (2, rs,
12940 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
12941 inst.instruction |= (et.type == NT_float) << 8;
12942 neon_two_same (neon_quad (rs), 1, et.size);
12943 }
12944
12945 static void
12946 do_neon_cls (void)
12947 {
12948 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12949 struct neon_type_el et = neon_check_type (2, rs,
12950 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
12951 neon_two_same (neon_quad (rs), 1, et.size);
12952 }
12953
12954 static void
12955 do_neon_clz (void)
12956 {
12957 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12958 struct neon_type_el et = neon_check_type (2, rs,
12959 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
12960 neon_two_same (neon_quad (rs), 1, et.size);
12961 }
12962
12963 static void
12964 do_neon_cnt (void)
12965 {
12966 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12967 struct neon_type_el et = neon_check_type (2, rs,
12968 N_EQK | N_INT, N_8 | N_KEY);
12969 neon_two_same (neon_quad (rs), 1, et.size);
12970 }
12971
12972 static void
12973 do_neon_swp (void)
12974 {
12975 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
12976 neon_two_same (neon_quad (rs), 1, -1);
12977 }
12978
12979 static void
12980 do_neon_tbl_tbx (void)
12981 {
12982 unsigned listlenbits;
12983 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
12984
12985 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
12986 {
12987 first_error (_("bad list length for table lookup"));
12988 return;
12989 }
12990
12991 listlenbits = inst.operands[1].imm - 1;
12992 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
12993 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
12994 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
12995 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
12996 inst.instruction |= LOW4 (inst.operands[2].reg);
12997 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
12998 inst.instruction |= listlenbits << 8;
12999
13000 inst.instruction = neon_dp_fixup (inst.instruction);
13001 }
13002
13003 static void
13004 do_neon_ldm_stm (void)
13005 {
13006 /* P, U and L bits are part of bitmask. */
13007 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
13008 unsigned offsetbits = inst.operands[1].imm * 2;
13009
13010 if (inst.operands[1].issingle)
13011 {
13012 do_vfp_nsyn_ldm_stm (is_dbmode);
13013 return;
13014 }
13015
13016 constraint (is_dbmode && !inst.operands[0].writeback,
13017 _("writeback (!) must be used for VLDMDB and VSTMDB"));
13018
13019 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
13020 _("register list must contain at least 1 and at most 16 "
13021 "registers"));
13022
13023 inst.instruction |= inst.operands[0].reg << 16;
13024 inst.instruction |= inst.operands[0].writeback << 21;
13025 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
13026 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
13027
13028 inst.instruction |= offsetbits;
13029
13030 do_vfp_cond_or_thumb ();
13031 }
13032
13033 static void
13034 do_neon_ldr_str (void)
13035 {
13036 int is_ldr = (inst.instruction & (1 << 20)) != 0;
13037
13038 if (inst.operands[0].issingle)
13039 {
13040 if (is_ldr)
13041 do_vfp_nsyn_opcode ("flds");
13042 else
13043 do_vfp_nsyn_opcode ("fsts");
13044 }
13045 else
13046 {
13047 if (is_ldr)
13048 do_vfp_nsyn_opcode ("fldd");
13049 else
13050 do_vfp_nsyn_opcode ("fstd");
13051 }
13052 }
13053
13054 /* "interleave" version also handles non-interleaving register VLD1/VST1
13055 instructions. */
13056
13057 static void
13058 do_neon_ld_st_interleave (void)
13059 {
13060 struct neon_type_el et = neon_check_type (1, NS_NULL,
13061 N_8 | N_16 | N_32 | N_64);
13062 unsigned alignbits = 0;
13063 unsigned idx;
13064 /* The bits in this table go:
13065 0: register stride of one (0) or two (1)
13066 1,2: register list length, minus one (1, 2, 3, 4).
13067 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
13068 We use -1 for invalid entries. */
13069 const int typetable[] =
13070 {
13071 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
13072 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
13073 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
13074 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
13075 };
13076 int typebits;
13077
13078 if (et.type == NT_invtype)
13079 return;
13080
13081 if (inst.operands[1].immisalign)
13082 switch (inst.operands[1].imm >> 8)
13083 {
13084 case 64: alignbits = 1; break;
13085 case 128:
13086 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13087 goto bad_alignment;
13088 alignbits = 2;
13089 break;
13090 case 256:
13091 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3)
13092 goto bad_alignment;
13093 alignbits = 3;
13094 break;
13095 default:
13096 bad_alignment:
13097 first_error (_("bad alignment"));
13098 return;
13099 }
13100
13101 inst.instruction |= alignbits << 4;
13102 inst.instruction |= neon_logbits (et.size) << 6;
13103
13104 /* Bits [4:6] of the immediate in a list specifier encode register stride
13105 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
13106 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
13107 up the right value for "type" in a table based on this value and the given
13108 list style, then stick it back. */
13109 idx = ((inst.operands[0].imm >> 4) & 7)
13110 | (((inst.instruction >> 8) & 3) << 3);
13111
13112 typebits = typetable[idx];
13113
13114 constraint (typebits == -1, _("bad list type for instruction"));
13115
13116 inst.instruction &= ~0xf00;
13117 inst.instruction |= typebits << 8;
13118 }
13119
13120 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
13121 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
13122 otherwise. The variable arguments are a list of pairs of legal (size, align)
13123 values, terminated with -1. */
13124
13125 static int
13126 neon_alignment_bit (int size, int align, int *do_align, ...)
13127 {
13128 va_list ap;
13129 int result = FAIL, thissize, thisalign;
13130
13131 if (!inst.operands[1].immisalign)
13132 {
13133 *do_align = 0;
13134 return SUCCESS;
13135 }
13136
13137 va_start (ap, do_align);
13138
13139 do
13140 {
13141 thissize = va_arg (ap, int);
13142 if (thissize == -1)
13143 break;
13144 thisalign = va_arg (ap, int);
13145
13146 if (size == thissize && align == thisalign)
13147 result = SUCCESS;
13148 }
13149 while (result != SUCCESS);
13150
13151 va_end (ap);
13152
13153 if (result == SUCCESS)
13154 *do_align = 1;
13155 else
13156 first_error (_("unsupported alignment for instruction"));
13157
13158 return result;
13159 }
13160
13161 static void
13162 do_neon_ld_st_lane (void)
13163 {
13164 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13165 int align_good, do_align = 0;
13166 int logsize = neon_logbits (et.size);
13167 int align = inst.operands[1].imm >> 8;
13168 int n = (inst.instruction >> 8) & 3;
13169 int max_el = 64 / et.size;
13170
13171 if (et.type == NT_invtype)
13172 return;
13173
13174 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
13175 _("bad list length"));
13176 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
13177 _("scalar index out of range"));
13178 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
13179 && et.size == 8,
13180 _("stride of 2 unavailable when element size is 8"));
13181
13182 switch (n)
13183 {
13184 case 0: /* VLD1 / VST1. */
13185 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
13186 32, 32, -1);
13187 if (align_good == FAIL)
13188 return;
13189 if (do_align)
13190 {
13191 unsigned alignbits = 0;
13192 switch (et.size)
13193 {
13194 case 16: alignbits = 0x1; break;
13195 case 32: alignbits = 0x3; break;
13196 default: ;
13197 }
13198 inst.instruction |= alignbits << 4;
13199 }
13200 break;
13201
13202 case 1: /* VLD2 / VST2. */
13203 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
13204 32, 64, -1);
13205 if (align_good == FAIL)
13206 return;
13207 if (do_align)
13208 inst.instruction |= 1 << 4;
13209 break;
13210
13211 case 2: /* VLD3 / VST3. */
13212 constraint (inst.operands[1].immisalign,
13213 _("can't use alignment with this instruction"));
13214 break;
13215
13216 case 3: /* VLD4 / VST4. */
13217 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13218 16, 64, 32, 64, 32, 128, -1);
13219 if (align_good == FAIL)
13220 return;
13221 if (do_align)
13222 {
13223 unsigned alignbits = 0;
13224 switch (et.size)
13225 {
13226 case 8: alignbits = 0x1; break;
13227 case 16: alignbits = 0x1; break;
13228 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
13229 default: ;
13230 }
13231 inst.instruction |= alignbits << 4;
13232 }
13233 break;
13234
13235 default: ;
13236 }
13237
13238 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
13239 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13240 inst.instruction |= 1 << (4 + logsize);
13241
13242 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
13243 inst.instruction |= logsize << 10;
13244 }
13245
13246 /* Encode single n-element structure to all lanes VLD<n> instructions. */
13247
13248 static void
13249 do_neon_ld_dup (void)
13250 {
13251 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
13252 int align_good, do_align = 0;
13253
13254 if (et.type == NT_invtype)
13255 return;
13256
13257 switch ((inst.instruction >> 8) & 3)
13258 {
13259 case 0: /* VLD1. */
13260 assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
13261 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13262 &do_align, 16, 16, 32, 32, -1);
13263 if (align_good == FAIL)
13264 return;
13265 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
13266 {
13267 case 1: break;
13268 case 2: inst.instruction |= 1 << 5; break;
13269 default: first_error (_("bad list length")); return;
13270 }
13271 inst.instruction |= neon_logbits (et.size) << 6;
13272 break;
13273
13274 case 1: /* VLD2. */
13275 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
13276 &do_align, 8, 16, 16, 32, 32, 64, -1);
13277 if (align_good == FAIL)
13278 return;
13279 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
13280 _("bad list length"));
13281 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13282 inst.instruction |= 1 << 5;
13283 inst.instruction |= neon_logbits (et.size) << 6;
13284 break;
13285
13286 case 2: /* VLD3. */
13287 constraint (inst.operands[1].immisalign,
13288 _("can't use alignment with this instruction"));
13289 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
13290 _("bad list length"));
13291 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13292 inst.instruction |= 1 << 5;
13293 inst.instruction |= neon_logbits (et.size) << 6;
13294 break;
13295
13296 case 3: /* VLD4. */
13297 {
13298 int align = inst.operands[1].imm >> 8;
13299 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
13300 16, 64, 32, 64, 32, 128, -1);
13301 if (align_good == FAIL)
13302 return;
13303 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
13304 _("bad list length"));
13305 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
13306 inst.instruction |= 1 << 5;
13307 if (et.size == 32 && align == 128)
13308 inst.instruction |= 0x3 << 6;
13309 else
13310 inst.instruction |= neon_logbits (et.size) << 6;
13311 }
13312 break;
13313
13314 default: ;
13315 }
13316
13317 inst.instruction |= do_align << 4;
13318 }
13319
13320 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
13321 apart from bits [11:4]. */
13322
13323 static void
13324 do_neon_ldx_stx (void)
13325 {
13326 switch (NEON_LANE (inst.operands[0].imm))
13327 {
13328 case NEON_INTERLEAVE_LANES:
13329 inst.instruction = NEON_ENC_INTERLV (inst.instruction);
13330 do_neon_ld_st_interleave ();
13331 break;
13332
13333 case NEON_ALL_LANES:
13334 inst.instruction = NEON_ENC_DUP (inst.instruction);
13335 do_neon_ld_dup ();
13336 break;
13337
13338 default:
13339 inst.instruction = NEON_ENC_LANE (inst.instruction);
13340 do_neon_ld_st_lane ();
13341 }
13342
13343 /* L bit comes from bit mask. */
13344 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13345 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13346 inst.instruction |= inst.operands[1].reg << 16;
13347
13348 if (inst.operands[1].postind)
13349 {
13350 int postreg = inst.operands[1].imm & 0xf;
13351 constraint (!inst.operands[1].immisreg,
13352 _("post-index must be a register"));
13353 constraint (postreg == 0xd || postreg == 0xf,
13354 _("bad register for post-index"));
13355 inst.instruction |= postreg;
13356 }
13357 else if (inst.operands[1].writeback)
13358 {
13359 inst.instruction |= 0xd;
13360 }
13361 else
13362 inst.instruction |= 0xf;
13363
13364 if (thumb_mode)
13365 inst.instruction |= 0xf9000000;
13366 else
13367 inst.instruction |= 0xf4000000;
13368 }
13369
13370 \f
13371 /* Overall per-instruction processing. */
13372
13373 /* We need to be able to fix up arbitrary expressions in some statements.
13374 This is so that we can handle symbols that are an arbitrary distance from
13375 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
13376 which returns part of an address in a form which will be valid for
13377 a data instruction. We do this by pushing the expression into a symbol
13378 in the expr_section, and creating a fix for that. */
13379
13380 static void
13381 fix_new_arm (fragS * frag,
13382 int where,
13383 short int size,
13384 expressionS * exp,
13385 int pc_rel,
13386 int reloc)
13387 {
13388 fixS * new_fix;
13389
13390 switch (exp->X_op)
13391 {
13392 case O_constant:
13393 case O_symbol:
13394 case O_add:
13395 case O_subtract:
13396 new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
13397 break;
13398
13399 default:
13400 new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
13401 pc_rel, reloc);
13402 break;
13403 }
13404
13405 /* Mark whether the fix is to a THUMB instruction, or an ARM
13406 instruction. */
13407 new_fix->tc_fix_data = thumb_mode;
13408 }
13409
13410 /* Create a frg for an instruction requiring relaxation. */
13411 static void
13412 output_relax_insn (void)
13413 {
13414 char * to;
13415 symbolS *sym;
13416 int offset;
13417
13418 /* The size of the instruction is unknown, so tie the debug info to the
13419 start of the instruction. */
13420 dwarf2_emit_insn (0);
13421
13422 switch (inst.reloc.exp.X_op)
13423 {
13424 case O_symbol:
13425 sym = inst.reloc.exp.X_add_symbol;
13426 offset = inst.reloc.exp.X_add_number;
13427 break;
13428 case O_constant:
13429 sym = NULL;
13430 offset = inst.reloc.exp.X_add_number;
13431 break;
13432 default:
13433 sym = make_expr_symbol (&inst.reloc.exp);
13434 offset = 0;
13435 break;
13436 }
13437 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
13438 inst.relax, sym, offset, NULL/*offset, opcode*/);
13439 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
13440 }
13441
13442 /* Write a 32-bit thumb instruction to buf. */
13443 static void
13444 put_thumb32_insn (char * buf, unsigned long insn)
13445 {
13446 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
13447 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
13448 }
13449
13450 static void
13451 output_inst (const char * str)
13452 {
13453 char * to = NULL;
13454
13455 if (inst.error)
13456 {
13457 as_bad ("%s -- `%s'", inst.error, str);
13458 return;
13459 }
13460 if (inst.relax) {
13461 output_relax_insn();
13462 return;
13463 }
13464 if (inst.size == 0)
13465 return;
13466
13467 to = frag_more (inst.size);
13468
13469 if (thumb_mode && (inst.size > THUMB_SIZE))
13470 {
13471 assert (inst.size == (2 * THUMB_SIZE));
13472 put_thumb32_insn (to, inst.instruction);
13473 }
13474 else if (inst.size > INSN_SIZE)
13475 {
13476 assert (inst.size == (2 * INSN_SIZE));
13477 md_number_to_chars (to, inst.instruction, INSN_SIZE);
13478 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
13479 }
13480 else
13481 md_number_to_chars (to, inst.instruction, inst.size);
13482
13483 if (inst.reloc.type != BFD_RELOC_UNUSED)
13484 fix_new_arm (frag_now, to - frag_now->fr_literal,
13485 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
13486 inst.reloc.type);
13487
13488 dwarf2_emit_insn (inst.size);
13489 }
13490
13491 /* Tag values used in struct asm_opcode's tag field. */
13492 enum opcode_tag
13493 {
13494 OT_unconditional, /* Instruction cannot be conditionalized.
13495 The ARM condition field is still 0xE. */
13496 OT_unconditionalF, /* Instruction cannot be conditionalized
13497 and carries 0xF in its ARM condition field. */
13498 OT_csuffix, /* Instruction takes a conditional suffix. */
13499 OT_csuffixF, /* Some forms of the instruction take a conditional
13500 suffix, others place 0xF where the condition field
13501 would be. */
13502 OT_cinfix3, /* Instruction takes a conditional infix,
13503 beginning at character index 3. (In
13504 unified mode, it becomes a suffix.) */
13505 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
13506 tsts, cmps, cmns, and teqs. */
13507 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
13508 character index 3, even in unified mode. Used for
13509 legacy instructions where suffix and infix forms
13510 may be ambiguous. */
13511 OT_csuf_or_in3, /* Instruction takes either a conditional
13512 suffix or an infix at character index 3. */
13513 OT_odd_infix_unc, /* This is the unconditional variant of an
13514 instruction that takes a conditional infix
13515 at an unusual position. In unified mode,
13516 this variant will accept a suffix. */
13517 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
13518 are the conditional variants of instructions that
13519 take conditional infixes in unusual positions.
13520 The infix appears at character index
13521 (tag - OT_odd_infix_0). These are not accepted
13522 in unified mode. */
13523 };
13524
13525 /* Subroutine of md_assemble, responsible for looking up the primary
13526 opcode from the mnemonic the user wrote. STR points to the
13527 beginning of the mnemonic.
13528
13529 This is not simply a hash table lookup, because of conditional
13530 variants. Most instructions have conditional variants, which are
13531 expressed with a _conditional affix_ to the mnemonic. If we were
13532 to encode each conditional variant as a literal string in the opcode
13533 table, it would have approximately 20,000 entries.
13534
13535 Most mnemonics take this affix as a suffix, and in unified syntax,
13536 'most' is upgraded to 'all'. However, in the divided syntax, some
13537 instructions take the affix as an infix, notably the s-variants of
13538 the arithmetic instructions. Of those instructions, all but six
13539 have the infix appear after the third character of the mnemonic.
13540
13541 Accordingly, the algorithm for looking up primary opcodes given
13542 an identifier is:
13543
13544 1. Look up the identifier in the opcode table.
13545 If we find a match, go to step U.
13546
13547 2. Look up the last two characters of the identifier in the
13548 conditions table. If we find a match, look up the first N-2
13549 characters of the identifier in the opcode table. If we
13550 find a match, go to step CE.
13551
13552 3. Look up the fourth and fifth characters of the identifier in
13553 the conditions table. If we find a match, extract those
13554 characters from the identifier, and look up the remaining
13555 characters in the opcode table. If we find a match, go
13556 to step CM.
13557
13558 4. Fail.
13559
13560 U. Examine the tag field of the opcode structure, in case this is
13561 one of the six instructions with its conditional infix in an
13562 unusual place. If it is, the tag tells us where to find the
13563 infix; look it up in the conditions table and set inst.cond
13564 accordingly. Otherwise, this is an unconditional instruction.
13565 Again set inst.cond accordingly. Return the opcode structure.
13566
13567 CE. Examine the tag field to make sure this is an instruction that
13568 should receive a conditional suffix. If it is not, fail.
13569 Otherwise, set inst.cond from the suffix we already looked up,
13570 and return the opcode structure.
13571
13572 CM. Examine the tag field to make sure this is an instruction that
13573 should receive a conditional infix after the third character.
13574 If it is not, fail. Otherwise, undo the edits to the current
13575 line of input and proceed as for case CE. */
13576
13577 static const struct asm_opcode *
13578 opcode_lookup (char **str)
13579 {
13580 char *end, *base;
13581 char *affix;
13582 const struct asm_opcode *opcode;
13583 const struct asm_cond *cond;
13584 char save[2];
13585 bfd_boolean neon_supported;
13586
13587 neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1);
13588
13589 /* Scan up to the end of the mnemonic, which must end in white space,
13590 '.' (in unified mode, or for Neon instructions), or end of string. */
13591 for (base = end = *str; *end != '\0'; end++)
13592 if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.'))
13593 break;
13594
13595 if (end == base)
13596 return 0;
13597
13598 /* Handle a possible width suffix and/or Neon type suffix. */
13599 if (end[0] == '.')
13600 {
13601 int offset = 2;
13602
13603 /* The .w and .n suffixes are only valid if the unified syntax is in
13604 use. */
13605 if (unified_syntax && end[1] == 'w')
13606 inst.size_req = 4;
13607 else if (unified_syntax && end[1] == 'n')
13608 inst.size_req = 2;
13609 else
13610 offset = 0;
13611
13612 inst.vectype.elems = 0;
13613
13614 *str = end + offset;
13615
13616 if (end[offset] == '.')
13617 {
13618 /* See if we have a Neon type suffix (possible in either unified or
13619 non-unified ARM syntax mode). */
13620 if (parse_neon_type (&inst.vectype, str) == FAIL)
13621 return 0;
13622 }
13623 else if (end[offset] != '\0' && end[offset] != ' ')
13624 return 0;
13625 }
13626 else
13627 *str = end;
13628
13629 /* Look for unaffixed or special-case affixed mnemonic. */
13630 opcode = hash_find_n (arm_ops_hsh, base, end - base);
13631 if (opcode)
13632 {
13633 /* step U */
13634 if (opcode->tag < OT_odd_infix_0)
13635 {
13636 inst.cond = COND_ALWAYS;
13637 return opcode;
13638 }
13639
13640 if (unified_syntax)
13641 as_warn (_("conditional infixes are deprecated in unified syntax"));
13642 affix = base + (opcode->tag - OT_odd_infix_0);
13643 cond = hash_find_n (arm_cond_hsh, affix, 2);
13644 assert (cond);
13645
13646 inst.cond = cond->value;
13647 return opcode;
13648 }
13649
13650 /* Cannot have a conditional suffix on a mnemonic of less than two
13651 characters. */
13652 if (end - base < 3)
13653 return 0;
13654
13655 /* Look for suffixed mnemonic. */
13656 affix = end - 2;
13657 cond = hash_find_n (arm_cond_hsh, affix, 2);
13658 opcode = hash_find_n (arm_ops_hsh, base, affix - base);
13659 if (opcode && cond)
13660 {
13661 /* step CE */
13662 switch (opcode->tag)
13663 {
13664 case OT_cinfix3_legacy:
13665 /* Ignore conditional suffixes matched on infix only mnemonics. */
13666 break;
13667
13668 case OT_cinfix3:
13669 case OT_cinfix3_deprecated:
13670 case OT_odd_infix_unc:
13671 if (!unified_syntax)
13672 return 0;
13673 /* else fall through */
13674
13675 case OT_csuffix:
13676 case OT_csuffixF:
13677 case OT_csuf_or_in3:
13678 inst.cond = cond->value;
13679 return opcode;
13680
13681 case OT_unconditional:
13682 case OT_unconditionalF:
13683 if (thumb_mode)
13684 {
13685 inst.cond = cond->value;
13686 }
13687 else
13688 {
13689 /* delayed diagnostic */
13690 inst.error = BAD_COND;
13691 inst.cond = COND_ALWAYS;
13692 }
13693 return opcode;
13694
13695 default:
13696 return 0;
13697 }
13698 }
13699
13700 /* Cannot have a usual-position infix on a mnemonic of less than
13701 six characters (five would be a suffix). */
13702 if (end - base < 6)
13703 return 0;
13704
13705 /* Look for infixed mnemonic in the usual position. */
13706 affix = base + 3;
13707 cond = hash_find_n (arm_cond_hsh, affix, 2);
13708 if (!cond)
13709 return 0;
13710
13711 memcpy (save, affix, 2);
13712 memmove (affix, affix + 2, (end - affix) - 2);
13713 opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2);
13714 memmove (affix + 2, affix, (end - affix) - 2);
13715 memcpy (affix, save, 2);
13716
13717 if (opcode
13718 && (opcode->tag == OT_cinfix3
13719 || opcode->tag == OT_cinfix3_deprecated
13720 || opcode->tag == OT_csuf_or_in3
13721 || opcode->tag == OT_cinfix3_legacy))
13722 {
13723 /* step CM */
13724 if (unified_syntax
13725 && (opcode->tag == OT_cinfix3
13726 || opcode->tag == OT_cinfix3_deprecated))
13727 as_warn (_("conditional infixes are deprecated in unified syntax"));
13728
13729 inst.cond = cond->value;
13730 return opcode;
13731 }
13732
13733 return 0;
13734 }
13735
13736 void
13737 md_assemble (char *str)
13738 {
13739 char *p = str;
13740 const struct asm_opcode * opcode;
13741
13742 /* Align the previous label if needed. */
13743 if (last_label_seen != NULL)
13744 {
13745 symbol_set_frag (last_label_seen, frag_now);
13746 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
13747 S_SET_SEGMENT (last_label_seen, now_seg);
13748 }
13749
13750 memset (&inst, '\0', sizeof (inst));
13751 inst.reloc.type = BFD_RELOC_UNUSED;
13752
13753 opcode = opcode_lookup (&p);
13754 if (!opcode)
13755 {
13756 /* It wasn't an instruction, but it might be a register alias of
13757 the form alias .req reg, or a Neon .dn/.qn directive. */
13758 if (!create_register_alias (str, p)
13759 && !create_neon_reg_alias (str, p))
13760 as_bad (_("bad instruction `%s'"), str);
13761
13762 return;
13763 }
13764
13765 if (opcode->tag == OT_cinfix3_deprecated)
13766 as_warn (_("s suffix on comparison instruction is deprecated"));
13767
13768 /* The value which unconditional instructions should have in place of the
13769 condition field. */
13770 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
13771
13772 if (thumb_mode)
13773 {
13774 arm_feature_set variant;
13775
13776 variant = cpu_variant;
13777 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
13778 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
13779 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
13780 /* Check that this instruction is supported for this CPU. */
13781 if (!opcode->tvariant
13782 || (thumb_mode == 1
13783 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
13784 {
13785 as_bad (_("selected processor does not support `%s'"), str);
13786 return;
13787 }
13788 if (inst.cond != COND_ALWAYS && !unified_syntax
13789 && opcode->tencode != do_t_branch)
13790 {
13791 as_bad (_("Thumb does not support conditional execution"));
13792 return;
13793 }
13794
13795 /* Check conditional suffixes. */
13796 if (current_it_mask)
13797 {
13798 int cond;
13799 cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1;
13800 current_it_mask <<= 1;
13801 current_it_mask &= 0x1f;
13802 /* The BKPT instruction is unconditional even in an IT block. */
13803 if (!inst.error
13804 && cond != inst.cond && opcode->tencode != do_t_bkpt)
13805 {
13806 as_bad (_("incorrect condition in IT block"));
13807 return;
13808 }
13809 }
13810 else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch)
13811 {
13812 as_bad (_("thumb conditional instrunction not in IT block"));
13813 return;
13814 }
13815
13816 mapping_state (MAP_THUMB);
13817 inst.instruction = opcode->tvalue;
13818
13819 if (!parse_operands (p, opcode->operands))
13820 opcode->tencode ();
13821
13822 /* Clear current_it_mask at the end of an IT block. */
13823 if (current_it_mask == 0x10)
13824 current_it_mask = 0;
13825
13826 if (!(inst.error || inst.relax))
13827 {
13828 assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
13829 inst.size = (inst.instruction > 0xffff ? 4 : 2);
13830 if (inst.size_req && inst.size_req != inst.size)
13831 {
13832 as_bad (_("cannot honor width suffix -- `%s'"), str);
13833 return;
13834 }
13835 }
13836 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13837 *opcode->tvariant);
13838 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
13839 set those bits when Thumb-2 32-bit instructions are seen. ie.
13840 anything other than bl/blx.
13841 This is overly pessimistic for relaxable instructions. */
13842 if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
13843 || inst.relax)
13844 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
13845 arm_ext_v6t2);
13846 }
13847 else
13848 {
13849 /* Check that this instruction is supported for this CPU. */
13850 if (!opcode->avariant ||
13851 !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant))
13852 {
13853 as_bad (_("selected processor does not support `%s'"), str);
13854 return;
13855 }
13856 if (inst.size_req)
13857 {
13858 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
13859 return;
13860 }
13861
13862 mapping_state (MAP_ARM);
13863 inst.instruction = opcode->avalue;
13864 if (opcode->tag == OT_unconditionalF)
13865 inst.instruction |= 0xF << 28;
13866 else
13867 inst.instruction |= inst.cond << 28;
13868 inst.size = INSN_SIZE;
13869 if (!parse_operands (p, opcode->operands))
13870 opcode->aencode ();
13871 /* Arm mode bx is marked as both v4T and v5 because it's still required
13872 on a hypothetical non-thumb v5 core. */
13873 if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t)
13874 || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5))
13875 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
13876 else
13877 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
13878 *opcode->avariant);
13879 }
13880 output_inst (str);
13881 }
13882
13883 /* Various frobbings of labels and their addresses. */
13884
13885 void
13886 arm_start_line_hook (void)
13887 {
13888 last_label_seen = NULL;
13889 }
13890
13891 void
13892 arm_frob_label (symbolS * sym)
13893 {
13894 last_label_seen = sym;
13895
13896 ARM_SET_THUMB (sym, thumb_mode);
13897
13898 #if defined OBJ_COFF || defined OBJ_ELF
13899 ARM_SET_INTERWORK (sym, support_interwork);
13900 #endif
13901
13902 /* Note - do not allow local symbols (.Lxxx) to be labeled
13903 as Thumb functions. This is because these labels, whilst
13904 they exist inside Thumb code, are not the entry points for
13905 possible ARM->Thumb calls. Also, these labels can be used
13906 as part of a computed goto or switch statement. eg gcc
13907 can generate code that looks like this:
13908
13909 ldr r2, [pc, .Laaa]
13910 lsl r3, r3, #2
13911 ldr r2, [r3, r2]
13912 mov pc, r2
13913
13914 .Lbbb: .word .Lxxx
13915 .Lccc: .word .Lyyy
13916 ..etc...
13917 .Laaa: .word Lbbb
13918
13919 The first instruction loads the address of the jump table.
13920 The second instruction converts a table index into a byte offset.
13921 The third instruction gets the jump address out of the table.
13922 The fourth instruction performs the jump.
13923
13924 If the address stored at .Laaa is that of a symbol which has the
13925 Thumb_Func bit set, then the linker will arrange for this address
13926 to have the bottom bit set, which in turn would mean that the
13927 address computation performed by the third instruction would end
13928 up with the bottom bit set. Since the ARM is capable of unaligned
13929 word loads, the instruction would then load the incorrect address
13930 out of the jump table, and chaos would ensue. */
13931 if (label_is_thumb_function_name
13932 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
13933 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
13934 {
13935 /* When the address of a Thumb function is taken the bottom
13936 bit of that address should be set. This will allow
13937 interworking between Arm and Thumb functions to work
13938 correctly. */
13939
13940 THUMB_SET_FUNC (sym, 1);
13941
13942 label_is_thumb_function_name = FALSE;
13943 }
13944
13945 dwarf2_emit_label (sym);
13946 }
13947
13948 int
13949 arm_data_in_code (void)
13950 {
13951 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
13952 {
13953 *input_line_pointer = '/';
13954 input_line_pointer += 5;
13955 *input_line_pointer = 0;
13956 return 1;
13957 }
13958
13959 return 0;
13960 }
13961
13962 char *
13963 arm_canonicalize_symbol_name (char * name)
13964 {
13965 int len;
13966
13967 if (thumb_mode && (len = strlen (name)) > 5
13968 && streq (name + len - 5, "/data"))
13969 *(name + len - 5) = 0;
13970
13971 return name;
13972 }
13973 \f
13974 /* Table of all register names defined by default. The user can
13975 define additional names with .req. Note that all register names
13976 should appear in both upper and lowercase variants. Some registers
13977 also have mixed-case names. */
13978
13979 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
13980 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
13981 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
13982 #define REGSET(p,t) \
13983 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
13984 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
13985 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
13986 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
13987 #define REGSETH(p,t) \
13988 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
13989 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
13990 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
13991 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
13992 #define REGSET2(p,t) \
13993 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
13994 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
13995 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
13996 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
13997
13998 static const struct reg_entry reg_names[] =
13999 {
14000 /* ARM integer registers. */
14001 REGSET(r, RN), REGSET(R, RN),
14002
14003 /* ATPCS synonyms. */
14004 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
14005 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
14006 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
14007
14008 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
14009 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
14010 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
14011
14012 /* Well-known aliases. */
14013 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
14014 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
14015
14016 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
14017 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
14018
14019 /* Coprocessor numbers. */
14020 REGSET(p, CP), REGSET(P, CP),
14021
14022 /* Coprocessor register numbers. The "cr" variants are for backward
14023 compatibility. */
14024 REGSET(c, CN), REGSET(C, CN),
14025 REGSET(cr, CN), REGSET(CR, CN),
14026
14027 /* FPA registers. */
14028 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
14029 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
14030
14031 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
14032 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
14033
14034 /* VFP SP registers. */
14035 REGSET(s,VFS), REGSET(S,VFS),
14036 REGSETH(s,VFS), REGSETH(S,VFS),
14037
14038 /* VFP DP Registers. */
14039 REGSET(d,VFD), REGSET(D,VFD),
14040 /* Extra Neon DP registers. */
14041 REGSETH(d,VFD), REGSETH(D,VFD),
14042
14043 /* Neon QP registers. */
14044 REGSET2(q,NQ), REGSET2(Q,NQ),
14045
14046 /* VFP control registers. */
14047 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
14048 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
14049
14050 /* Maverick DSP coprocessor registers. */
14051 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
14052 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
14053
14054 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
14055 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
14056 REGDEF(dspsc,0,DSPSC),
14057
14058 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
14059 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
14060 REGDEF(DSPSC,0,DSPSC),
14061
14062 /* iWMMXt data registers - p0, c0-15. */
14063 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
14064
14065 /* iWMMXt control registers - p1, c0-3. */
14066 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
14067 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
14068 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
14069 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
14070
14071 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
14072 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
14073 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
14074 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
14075 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
14076
14077 /* XScale accumulator registers. */
14078 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
14079 };
14080 #undef REGDEF
14081 #undef REGNUM
14082 #undef REGSET
14083
14084 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
14085 within psr_required_here. */
14086 static const struct asm_psr psrs[] =
14087 {
14088 /* Backward compatibility notation. Note that "all" is no longer
14089 truly all possible PSR bits. */
14090 {"all", PSR_c | PSR_f},
14091 {"flg", PSR_f},
14092 {"ctl", PSR_c},
14093
14094 /* Individual flags. */
14095 {"f", PSR_f},
14096 {"c", PSR_c},
14097 {"x", PSR_x},
14098 {"s", PSR_s},
14099 /* Combinations of flags. */
14100 {"fs", PSR_f | PSR_s},
14101 {"fx", PSR_f | PSR_x},
14102 {"fc", PSR_f | PSR_c},
14103 {"sf", PSR_s | PSR_f},
14104 {"sx", PSR_s | PSR_x},
14105 {"sc", PSR_s | PSR_c},
14106 {"xf", PSR_x | PSR_f},
14107 {"xs", PSR_x | PSR_s},
14108 {"xc", PSR_x | PSR_c},
14109 {"cf", PSR_c | PSR_f},
14110 {"cs", PSR_c | PSR_s},
14111 {"cx", PSR_c | PSR_x},
14112 {"fsx", PSR_f | PSR_s | PSR_x},
14113 {"fsc", PSR_f | PSR_s | PSR_c},
14114 {"fxs", PSR_f | PSR_x | PSR_s},
14115 {"fxc", PSR_f | PSR_x | PSR_c},
14116 {"fcs", PSR_f | PSR_c | PSR_s},
14117 {"fcx", PSR_f | PSR_c | PSR_x},
14118 {"sfx", PSR_s | PSR_f | PSR_x},
14119 {"sfc", PSR_s | PSR_f | PSR_c},
14120 {"sxf", PSR_s | PSR_x | PSR_f},
14121 {"sxc", PSR_s | PSR_x | PSR_c},
14122 {"scf", PSR_s | PSR_c | PSR_f},
14123 {"scx", PSR_s | PSR_c | PSR_x},
14124 {"xfs", PSR_x | PSR_f | PSR_s},
14125 {"xfc", PSR_x | PSR_f | PSR_c},
14126 {"xsf", PSR_x | PSR_s | PSR_f},
14127 {"xsc", PSR_x | PSR_s | PSR_c},
14128 {"xcf", PSR_x | PSR_c | PSR_f},
14129 {"xcs", PSR_x | PSR_c | PSR_s},
14130 {"cfs", PSR_c | PSR_f | PSR_s},
14131 {"cfx", PSR_c | PSR_f | PSR_x},
14132 {"csf", PSR_c | PSR_s | PSR_f},
14133 {"csx", PSR_c | PSR_s | PSR_x},
14134 {"cxf", PSR_c | PSR_x | PSR_f},
14135 {"cxs", PSR_c | PSR_x | PSR_s},
14136 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
14137 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
14138 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
14139 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
14140 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
14141 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
14142 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
14143 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
14144 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
14145 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
14146 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
14147 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
14148 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
14149 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
14150 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
14151 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
14152 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
14153 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
14154 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
14155 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
14156 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
14157 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
14158 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
14159 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
14160 };
14161
14162 /* Table of V7M psr names. */
14163 static const struct asm_psr v7m_psrs[] =
14164 {
14165 {"apsr", 0 },
14166 {"iapsr", 1 },
14167 {"eapsr", 2 },
14168 {"psr", 3 },
14169 {"ipsr", 5 },
14170 {"epsr", 6 },
14171 {"iepsr", 7 },
14172 {"msp", 8 },
14173 {"psp", 9 },
14174 {"primask", 16},
14175 {"basepri", 17},
14176 {"basepri_max", 18},
14177 {"faultmask", 19},
14178 {"control", 20}
14179 };
14180
14181 /* Table of all shift-in-operand names. */
14182 static const struct asm_shift_name shift_names [] =
14183 {
14184 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
14185 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
14186 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
14187 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
14188 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
14189 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
14190 };
14191
14192 /* Table of all explicit relocation names. */
14193 #ifdef OBJ_ELF
14194 static struct reloc_entry reloc_names[] =
14195 {
14196 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
14197 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
14198 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
14199 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
14200 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
14201 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
14202 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
14203 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
14204 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
14205 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
14206 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32}
14207 };
14208 #endif
14209
14210 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
14211 static const struct asm_cond conds[] =
14212 {
14213 {"eq", 0x0},
14214 {"ne", 0x1},
14215 {"cs", 0x2}, {"hs", 0x2},
14216 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
14217 {"mi", 0x4},
14218 {"pl", 0x5},
14219 {"vs", 0x6},
14220 {"vc", 0x7},
14221 {"hi", 0x8},
14222 {"ls", 0x9},
14223 {"ge", 0xa},
14224 {"lt", 0xb},
14225 {"gt", 0xc},
14226 {"le", 0xd},
14227 {"al", 0xe}
14228 };
14229
14230 static struct asm_barrier_opt barrier_opt_names[] =
14231 {
14232 { "sy", 0xf },
14233 { "un", 0x7 },
14234 { "st", 0xe },
14235 { "unst", 0x6 }
14236 };
14237
14238 /* Table of ARM-format instructions. */
14239
14240 /* Macros for gluing together operand strings. N.B. In all cases
14241 other than OPS0, the trailing OP_stop comes from default
14242 zero-initialization of the unspecified elements of the array. */
14243 #define OPS0() { OP_stop, }
14244 #define OPS1(a) { OP_##a, }
14245 #define OPS2(a,b) { OP_##a,OP_##b, }
14246 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
14247 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
14248 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
14249 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
14250
14251 /* These macros abstract out the exact format of the mnemonic table and
14252 save some repeated characters. */
14253
14254 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
14255 #define TxCE(mnem, op, top, nops, ops, ae, te) \
14256 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
14257 THUMB_VARIANT, do_##ae, do_##te }
14258
14259 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
14260 a T_MNEM_xyz enumerator. */
14261 #define TCE(mnem, aop, top, nops, ops, ae, te) \
14262 TxCE(mnem, aop, 0x##top, nops, ops, ae, te)
14263 #define tCE(mnem, aop, top, nops, ops, ae, te) \
14264 TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14265
14266 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
14267 infix after the third character. */
14268 #define TxC3(mnem, op, top, nops, ops, ae, te) \
14269 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
14270 THUMB_VARIANT, do_##ae, do_##te }
14271 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
14272 { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
14273 THUMB_VARIANT, do_##ae, do_##te }
14274 #define TC3(mnem, aop, top, nops, ops, ae, te) \
14275 TxC3(mnem, aop, 0x##top, nops, ops, ae, te)
14276 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
14277 TxC3w(mnem, aop, 0x##top, nops, ops, ae, te)
14278 #define tC3(mnem, aop, top, nops, ops, ae, te) \
14279 TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14280 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
14281 TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te)
14282
14283 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
14284 appear in the condition table. */
14285 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
14286 { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14287 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
14288
14289 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
14290 TxCM_(m1, , m2, op, top, nops, ops, ae, te), \
14291 TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \
14292 TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \
14293 TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \
14294 TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \
14295 TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \
14296 TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \
14297 TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \
14298 TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \
14299 TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \
14300 TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \
14301 TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \
14302 TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \
14303 TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \
14304 TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \
14305 TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \
14306 TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \
14307 TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \
14308 TxCM_(m1, al, m2, op, top, nops, ops, ae, te)
14309
14310 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
14311 TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te)
14312 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
14313 TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te)
14314
14315 /* Mnemonic that cannot be conditionalized. The ARM condition-code
14316 field is still 0xE. Many of the Thumb variants can be executed
14317 conditionally, so this is checked separately. */
14318 #define TUE(mnem, op, top, nops, ops, ae, te) \
14319 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
14320 THUMB_VARIANT, do_##ae, do_##te }
14321
14322 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
14323 condition code field. */
14324 #define TUF(mnem, op, top, nops, ops, ae, te) \
14325 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
14326 THUMB_VARIANT, do_##ae, do_##te }
14327
14328 /* ARM-only variants of all the above. */
14329 #define CE(mnem, op, nops, ops, ae) \
14330 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14331
14332 #define C3(mnem, op, nops, ops, ae) \
14333 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14334
14335 /* Legacy mnemonics that always have conditional infix after the third
14336 character. */
14337 #define CL(mnem, op, nops, ops, ae) \
14338 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14339 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14340
14341 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
14342 #define cCE(mnem, op, nops, ops, ae) \
14343 { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14344
14345 /* Legacy coprocessor instructions where conditional infix and conditional
14346 suffix are ambiguous. For consistency this includes all FPA instructions,
14347 not just the potentially ambiguous ones. */
14348 #define cCL(mnem, op, nops, ops, ae) \
14349 { #mnem, OPS##nops ops, OT_cinfix3_legacy, \
14350 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14351
14352 /* Coprocessor, takes either a suffix or a position-3 infix
14353 (for an FPA corner case). */
14354 #define C3E(mnem, op, nops, ops, ae) \
14355 { #mnem, OPS##nops ops, OT_csuf_or_in3, \
14356 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
14357
14358 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
14359 { #m1 #m2 #m3, OPS##nops ops, \
14360 sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \
14361 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
14362
14363 #define CM(m1, m2, op, nops, ops, ae) \
14364 xCM_(m1, , m2, op, nops, ops, ae), \
14365 xCM_(m1, eq, m2, op, nops, ops, ae), \
14366 xCM_(m1, ne, m2, op, nops, ops, ae), \
14367 xCM_(m1, cs, m2, op, nops, ops, ae), \
14368 xCM_(m1, hs, m2, op, nops, ops, ae), \
14369 xCM_(m1, cc, m2, op, nops, ops, ae), \
14370 xCM_(m1, ul, m2, op, nops, ops, ae), \
14371 xCM_(m1, lo, m2, op, nops, ops, ae), \
14372 xCM_(m1, mi, m2, op, nops, ops, ae), \
14373 xCM_(m1, pl, m2, op, nops, ops, ae), \
14374 xCM_(m1, vs, m2, op, nops, ops, ae), \
14375 xCM_(m1, vc, m2, op, nops, ops, ae), \
14376 xCM_(m1, hi, m2, op, nops, ops, ae), \
14377 xCM_(m1, ls, m2, op, nops, ops, ae), \
14378 xCM_(m1, ge, m2, op, nops, ops, ae), \
14379 xCM_(m1, lt, m2, op, nops, ops, ae), \
14380 xCM_(m1, gt, m2, op, nops, ops, ae), \
14381 xCM_(m1, le, m2, op, nops, ops, ae), \
14382 xCM_(m1, al, m2, op, nops, ops, ae)
14383
14384 #define UE(mnem, op, nops, ops, ae) \
14385 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14386
14387 #define UF(mnem, op, nops, ops, ae) \
14388 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
14389
14390 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
14391 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
14392 use the same encoding function for each. */
14393 #define NUF(mnem, op, nops, ops, enc) \
14394 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
14395 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14396
14397 /* Neon data processing, version which indirects through neon_enc_tab for
14398 the various overloaded versions of opcodes. */
14399 #define nUF(mnem, op, nops, ops, enc) \
14400 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \
14401 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14402
14403 /* Neon insn with conditional suffix for the ARM version, non-overloaded
14404 version. */
14405 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
14406 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
14407 THUMB_VARIANT, do_##enc, do_##enc }
14408
14409 #define NCE(mnem, op, nops, ops, enc) \
14410 NCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14411
14412 #define NCEF(mnem, op, nops, ops, enc) \
14413 NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14414
14415 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
14416 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
14417 { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \
14418 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
14419
14420 #define nCE(mnem, op, nops, ops, enc) \
14421 nCE_tag(mnem, op, nops, ops, enc, OT_csuffix)
14422
14423 #define nCEF(mnem, op, nops, ops, enc) \
14424 nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF)
14425
14426 #define do_0 0
14427
14428 /* Thumb-only, unconditional. */
14429 #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te)
14430
14431 static const struct asm_opcode insns[] =
14432 {
14433 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
14434 #define THUMB_VARIANT &arm_ext_v4t
14435 tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c),
14436 tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c),
14437 tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c),
14438 tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c),
14439 tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub),
14440 tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub),
14441 tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub),
14442 tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub),
14443 tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c),
14444 tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c),
14445 tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3),
14446 tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3),
14447 tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c),
14448 tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c),
14449 tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3),
14450 tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3),
14451
14452 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
14453 for setting PSR flag bits. They are obsolete in V6 and do not
14454 have Thumb equivalents. */
14455 tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14456 tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst),
14457 CL(tstp, 110f000, 2, (RR, SH), cmp),
14458 tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14459 tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp),
14460 CL(cmpp, 150f000, 2, (RR, SH), cmp),
14461 tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14462 tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst),
14463 CL(cmnp, 170f000, 2, (RR, SH), cmp),
14464
14465 tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp),
14466 tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp),
14467 tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst),
14468 tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst),
14469
14470 tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
14471 tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14472 tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst),
14473 tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst),
14474
14475 tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14476 tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14477 tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14478 tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14479 tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14480 tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14481
14482 TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi),
14483 TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi),
14484 tCE(b, a000000, b, 1, (EXPr), branch, t_branch),
14485 TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23),
14486
14487 /* Pseudo ops. */
14488 tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr),
14489 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
14490 tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop),
14491
14492 /* Thumb-compatibility pseudo ops. */
14493 tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift),
14494 tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift),
14495 tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift),
14496 tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift),
14497 tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift),
14498 tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift),
14499 tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift),
14500 tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift),
14501 tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg),
14502 tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg),
14503 tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop),
14504 tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop),
14505
14506 #undef THUMB_VARIANT
14507 #define THUMB_VARIANT &arm_ext_v6
14508 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
14509
14510 /* V1 instructions with no Thumb analogue prior to V6T2. */
14511 #undef THUMB_VARIANT
14512 #define THUMB_VARIANT &arm_ext_v6t2
14513 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
14514 TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
14515 TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14516 TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
14517 CL(teqp, 130f000, 2, (RR, SH), cmp),
14518
14519 TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt),
14520 TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt),
14521 TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt),
14522 TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt),
14523
14524 TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14525 TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14526
14527 TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14528 TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
14529
14530 /* V1 instructions with no Thumb analogue at all. */
14531 CE(rsc, 0e00000, 3, (RR, oRR, SH), arit),
14532 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
14533
14534 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
14535 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
14536 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
14537 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
14538 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
14539 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
14540 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
14541 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
14542
14543 #undef ARM_VARIANT
14544 #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */
14545 #undef THUMB_VARIANT
14546 #define THUMB_VARIANT &arm_ext_v4t
14547 tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14548 tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
14549
14550 #undef THUMB_VARIANT
14551 #define THUMB_VARIANT &arm_ext_v6t2
14552 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14553 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
14554
14555 /* Generic coprocessor instructions. */
14556 TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14557 TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14558 TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14559 TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14560 TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14561 TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14562 TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14563
14564 #undef ARM_VARIANT
14565 #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */
14566 CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14567 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
14568
14569 #undef ARM_VARIANT
14570 #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */
14571 TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs),
14572 TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr),
14573
14574 #undef ARM_VARIANT
14575 #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */
14576 TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14577 CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14578 TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14579 CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14580 TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14581 CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14582 TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
14583 CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
14584
14585 #undef ARM_VARIANT
14586 #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */
14587 #undef THUMB_VARIANT
14588 #define THUMB_VARIANT &arm_ext_v4t
14589 tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14590 tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14591 tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14592 tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14593 tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14594 tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst),
14595
14596 #undef ARM_VARIANT
14597 #define ARM_VARIANT &arm_ext_v4t_5
14598 /* ARM Architecture 4T. */
14599 /* Note: bx (and blx) are required on V5, even if the processor does
14600 not support Thumb. */
14601 TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx),
14602
14603 #undef ARM_VARIANT
14604 #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */
14605 #undef THUMB_VARIANT
14606 #define THUMB_VARIANT &arm_ext_v5t
14607 /* Note: blx has 2 variants; the .value coded here is for
14608 BLX(2). Only this variant has conditional execution. */
14609 TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
14610 TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
14611
14612 #undef THUMB_VARIANT
14613 #define THUMB_VARIANT &arm_ext_v6t2
14614 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
14615 TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14616 TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14617 TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14618 TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
14619 TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
14620 TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14621 TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
14622
14623 #undef ARM_VARIANT
14624 #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */
14625 TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14626 TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14627 TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14628 TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14629
14630 TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14631 TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
14632
14633 TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14634 TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14635 TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14636 TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
14637
14638 TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14639 TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14640 TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14641 TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14642
14643 TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14644 TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14645
14646 TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14647 TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14648 TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14649 TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn),
14650
14651 #undef ARM_VARIANT
14652 #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */
14653 TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld),
14654 TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14655 TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd),
14656
14657 TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14658 TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14659
14660 #undef ARM_VARIANT
14661 #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */
14662 TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
14663
14664 #undef ARM_VARIANT
14665 #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */
14666 #undef THUMB_VARIANT
14667 #define THUMB_VARIANT &arm_ext_v6
14668 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
14669 TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
14670 tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14671 tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14672 tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
14673 tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14674 tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14675 tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14676 tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14677 TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend),
14678
14679 #undef THUMB_VARIANT
14680 #define THUMB_VARIANT &arm_ext_v6t2
14681 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex),
14682 TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14683 TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
14684
14685 TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
14686 TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
14687
14688 /* ARM V6 not included in V7M (eg. integer SIMD). */
14689 #undef THUMB_VARIANT
14690 #define THUMB_VARIANT &arm_ext_v6_notm
14691 TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps),
14692 TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
14693 TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
14694 TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14695 TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14696 TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14697 TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14698 TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14699 TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14700 TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14701 TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14702 TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14703 TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14704 TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14705 TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14706 TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14707 TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14708 TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14709 TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14710 TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14711 TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14712 TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14713 TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14714 TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14715 TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14716 TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14717 TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14718 TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14719 TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14720 TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14721 TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14722 TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14723 TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14724 TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14725 TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14726 TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14727 TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14728 TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14729 TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14730 TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14731 UF(rfeib, 9900a00, 1, (RRw), rfe),
14732 UF(rfeda, 8100a00, 1, (RRw), rfe),
14733 TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14734 TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe),
14735 UF(rfefa, 9900a00, 1, (RRw), rfe),
14736 UF(rfeea, 8100a00, 1, (RRw), rfe),
14737 TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe),
14738 TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14739 TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14740 TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14741 TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14742 TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14743 TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14744 TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
14745 TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
14746 TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
14747 TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14748 TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14749 TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14750 TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14751 TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14752 TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14753 TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14754 TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
14755 TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14756 TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14757 TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14758 TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14759 TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14760 TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14761 TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14762 TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14763 TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14764 TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14765 TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs),
14766 UF(srsib, 9cd0500, 1, (I31w), srs),
14767 UF(srsda, 84d0500, 1, (I31w), srs),
14768 TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs),
14769 TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
14770 TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex),
14771 TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
14772 TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
14773 TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
14774 TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
14775
14776 #undef ARM_VARIANT
14777 #define ARM_VARIANT &arm_ext_v6k
14778 #undef THUMB_VARIANT
14779 #define THUMB_VARIANT &arm_ext_v6k
14780 tCE(yield, 320f001, yield, 0, (), noargs, t_hint),
14781 tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint),
14782 tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint),
14783 tCE(sev, 320f004, sev, 0, (), noargs, t_hint),
14784
14785 #undef THUMB_VARIANT
14786 #define THUMB_VARIANT &arm_ext_v6_notm
14787 TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd),
14788 TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd),
14789
14790 #undef THUMB_VARIANT
14791 #define THUMB_VARIANT &arm_ext_v6t2
14792 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14793 TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
14794 TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14795 TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn),
14796 TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
14797
14798 #undef ARM_VARIANT
14799 #define ARM_VARIANT &arm_ext_v6z
14800 TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc),
14801
14802 #undef ARM_VARIANT
14803 #define ARM_VARIANT &arm_ext_v6t2
14804 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
14805 TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
14806 TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14807 TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
14808
14809 TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
14810 TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
14811 TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
14812 TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
14813
14814 TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14815 TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14816 TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14817 TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt),
14818
14819 UT(cbnz, b900, 2, (RR, EXP), t_czb),
14820 UT(cbz, b100, 2, (RR, EXP), t_czb),
14821 /* ARM does not really have an IT instruction. */
14822 TUE(it, 0, bf08, 1, (COND), it, t_it),
14823 TUE(itt, 0, bf0c, 1, (COND), it, t_it),
14824 TUE(ite, 0, bf04, 1, (COND), it, t_it),
14825 TUE(ittt, 0, bf0e, 1, (COND), it, t_it),
14826 TUE(itet, 0, bf06, 1, (COND), it, t_it),
14827 TUE(itte, 0, bf0a, 1, (COND), it, t_it),
14828 TUE(itee, 0, bf02, 1, (COND), it, t_it),
14829 TUE(itttt, 0, bf0f, 1, (COND), it, t_it),
14830 TUE(itett, 0, bf07, 1, (COND), it, t_it),
14831 TUE(ittet, 0, bf0b, 1, (COND), it, t_it),
14832 TUE(iteet, 0, bf03, 1, (COND), it, t_it),
14833 TUE(ittte, 0, bf0d, 1, (COND), it, t_it),
14834 TUE(itete, 0, bf05, 1, (COND), it, t_it),
14835 TUE(ittee, 0, bf09, 1, (COND), it, t_it),
14836 TUE(iteee, 0, bf01, 1, (COND), it, t_it),
14837
14838 /* Thumb2 only instructions. */
14839 #undef ARM_VARIANT
14840 #define ARM_VARIANT NULL
14841
14842 TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14843 TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
14844 TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb),
14845 TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb),
14846
14847 /* Thumb-2 hardware division instructions (R and M profiles only). */
14848 #undef THUMB_VARIANT
14849 #define THUMB_VARIANT &arm_ext_div
14850 TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div),
14851 TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div),
14852
14853 /* ARM V7 instructions. */
14854 #undef ARM_VARIANT
14855 #define ARM_VARIANT &arm_ext_v7
14856 #undef THUMB_VARIANT
14857 #define THUMB_VARIANT &arm_ext_v7
14858 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld),
14859 TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
14860 TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier),
14861 TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier),
14862 TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier),
14863
14864 #undef ARM_VARIANT
14865 #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
14866 cCE(wfs, e200110, 1, (RR), rd),
14867 cCE(rfs, e300110, 1, (RR), rd),
14868 cCE(wfc, e400110, 1, (RR), rd),
14869 cCE(rfc, e500110, 1, (RR), rd),
14870
14871 cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
14872 cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
14873 cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
14874 cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
14875
14876 cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
14877 cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
14878 cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
14879 cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
14880
14881 cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm),
14882 cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm),
14883 cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm),
14884 cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm),
14885 cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm),
14886 cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm),
14887 cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm),
14888 cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm),
14889 cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm),
14890 cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm),
14891 cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm),
14892 cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm),
14893
14894 cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm),
14895 cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm),
14896 cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm),
14897 cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm),
14898 cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm),
14899 cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm),
14900 cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm),
14901 cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm),
14902 cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm),
14903 cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm),
14904 cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm),
14905 cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm),
14906
14907 cCL(abss, e208100, 2, (RF, RF_IF), rd_rm),
14908 cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm),
14909 cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm),
14910 cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm),
14911 cCL(absd, e208180, 2, (RF, RF_IF), rd_rm),
14912 cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm),
14913 cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm),
14914 cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm),
14915 cCL(abse, e288100, 2, (RF, RF_IF), rd_rm),
14916 cCL(absep, e288120, 2, (RF, RF_IF), rd_rm),
14917 cCL(absem, e288140, 2, (RF, RF_IF), rd_rm),
14918 cCL(absez, e288160, 2, (RF, RF_IF), rd_rm),
14919
14920 cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm),
14921 cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm),
14922 cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm),
14923 cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm),
14924 cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm),
14925 cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm),
14926 cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm),
14927 cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm),
14928 cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm),
14929 cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm),
14930 cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm),
14931 cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm),
14932
14933 cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm),
14934 cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm),
14935 cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm),
14936 cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm),
14937 cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm),
14938 cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm),
14939 cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm),
14940 cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm),
14941 cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm),
14942 cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm),
14943 cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm),
14944 cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm),
14945
14946 cCL(logs, e508100, 2, (RF, RF_IF), rd_rm),
14947 cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm),
14948 cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm),
14949 cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm),
14950 cCL(logd, e508180, 2, (RF, RF_IF), rd_rm),
14951 cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm),
14952 cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm),
14953 cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm),
14954 cCL(loge, e588100, 2, (RF, RF_IF), rd_rm),
14955 cCL(logep, e588120, 2, (RF, RF_IF), rd_rm),
14956 cCL(logem, e588140, 2, (RF, RF_IF), rd_rm),
14957 cCL(logez, e588160, 2, (RF, RF_IF), rd_rm),
14958
14959 cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm),
14960 cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm),
14961 cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm),
14962 cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm),
14963 cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm),
14964 cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm),
14965 cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm),
14966 cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm),
14967 cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm),
14968 cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm),
14969 cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm),
14970 cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm),
14971
14972 cCL(exps, e708100, 2, (RF, RF_IF), rd_rm),
14973 cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm),
14974 cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm),
14975 cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm),
14976 cCL(expd, e708180, 2, (RF, RF_IF), rd_rm),
14977 cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm),
14978 cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm),
14979 cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm),
14980 cCL(expe, e788100, 2, (RF, RF_IF), rd_rm),
14981 cCL(expep, e788120, 2, (RF, RF_IF), rd_rm),
14982 cCL(expem, e788140, 2, (RF, RF_IF), rd_rm),
14983 cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm),
14984
14985 cCL(sins, e808100, 2, (RF, RF_IF), rd_rm),
14986 cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm),
14987 cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm),
14988 cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm),
14989 cCL(sind, e808180, 2, (RF, RF_IF), rd_rm),
14990 cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm),
14991 cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm),
14992 cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm),
14993 cCL(sine, e888100, 2, (RF, RF_IF), rd_rm),
14994 cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm),
14995 cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm),
14996 cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm),
14997
14998 cCL(coss, e908100, 2, (RF, RF_IF), rd_rm),
14999 cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm),
15000 cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm),
15001 cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm),
15002 cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm),
15003 cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm),
15004 cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm),
15005 cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm),
15006 cCL(cose, e988100, 2, (RF, RF_IF), rd_rm),
15007 cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm),
15008 cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm),
15009 cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm),
15010
15011 cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm),
15012 cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm),
15013 cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm),
15014 cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm),
15015 cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm),
15016 cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm),
15017 cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm),
15018 cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm),
15019 cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm),
15020 cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm),
15021 cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm),
15022 cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm),
15023
15024 cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm),
15025 cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm),
15026 cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm),
15027 cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm),
15028 cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm),
15029 cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm),
15030 cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm),
15031 cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm),
15032 cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm),
15033 cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm),
15034 cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm),
15035 cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm),
15036
15037 cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm),
15038 cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm),
15039 cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm),
15040 cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm),
15041 cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm),
15042 cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm),
15043 cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm),
15044 cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm),
15045 cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm),
15046 cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm),
15047 cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm),
15048 cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm),
15049
15050 cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm),
15051 cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm),
15052 cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm),
15053 cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm),
15054 cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm),
15055 cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm),
15056 cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm),
15057 cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm),
15058 cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm),
15059 cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm),
15060 cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm),
15061 cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm),
15062
15063 cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm),
15064 cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm),
15065 cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm),
15066 cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm),
15067 cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm),
15068 cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm),
15069 cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm),
15070 cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm),
15071 cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm),
15072 cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm),
15073 cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm),
15074 cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm),
15075
15076 cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm),
15077 cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm),
15078 cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm),
15079 cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm),
15080 cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm),
15081 cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm),
15082 cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm),
15083 cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm),
15084 cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm),
15085 cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm),
15086 cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm),
15087 cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm),
15088
15089 cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
15090 cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
15091 cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
15092 cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
15093 cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
15094 cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15095 cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15096 cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15097 cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
15098 cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
15099 cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
15100 cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
15101
15102 cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
15103 cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
15104 cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
15105 cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
15106 cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
15107 cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15108 cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15109 cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15110 cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
15111 cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
15112 cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
15113 cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
15114
15115 cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
15116 cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
15117 cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
15118 cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
15119 cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
15120 cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15121 cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15122 cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15123 cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
15124 cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
15125 cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
15126 cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
15127
15128 cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
15129 cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
15130 cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
15131 cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
15132 cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
15133 cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15134 cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15135 cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15136 cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
15137 cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
15138 cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
15139 cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
15140
15141 cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
15142 cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
15143 cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
15144 cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
15145 cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
15146 cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15147 cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15148 cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15149 cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
15150 cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
15151 cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
15152 cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
15153
15154 cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
15155 cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
15156 cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
15157 cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
15158 cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
15159 cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15160 cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15161 cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15162 cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
15163 cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
15164 cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
15165 cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
15166
15167 cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
15168 cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
15169 cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
15170 cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
15171 cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
15172 cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15173 cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15174 cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15175 cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
15176 cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
15177 cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
15178 cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
15179
15180 cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
15181 cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
15182 cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
15183 cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
15184 cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
15185 cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15186 cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15187 cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15188 cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
15189 cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
15190 cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
15191 cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
15192
15193 cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
15194 cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
15195 cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
15196 cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
15197 cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
15198 cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15199 cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15200 cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15201 cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
15202 cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
15203 cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
15204 cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
15205
15206 cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
15207 cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
15208 cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
15209 cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
15210 cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
15211 cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15212 cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15213 cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15214 cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
15215 cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
15216 cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
15217 cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
15218
15219 cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15220 cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15221 cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15222 cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15223 cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15224 cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15225 cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15226 cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15227 cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15228 cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15229 cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15230 cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15231
15232 cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15233 cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15234 cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15235 cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15236 cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15237 cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15238 cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15239 cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15240 cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15241 cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15242 cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15243 cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15244
15245 cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
15246 cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
15247 cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
15248 cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
15249 cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
15250 cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
15251 cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
15252 cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
15253 cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
15254 cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
15255 cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
15256 cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
15257
15258 cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp),
15259 C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp),
15260 cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp),
15261 C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp),
15262
15263 cCL(flts, e000110, 2, (RF, RR), rn_rd),
15264 cCL(fltsp, e000130, 2, (RF, RR), rn_rd),
15265 cCL(fltsm, e000150, 2, (RF, RR), rn_rd),
15266 cCL(fltsz, e000170, 2, (RF, RR), rn_rd),
15267 cCL(fltd, e000190, 2, (RF, RR), rn_rd),
15268 cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd),
15269 cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd),
15270 cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd),
15271 cCL(flte, e080110, 2, (RF, RR), rn_rd),
15272 cCL(fltep, e080130, 2, (RF, RR), rn_rd),
15273 cCL(fltem, e080150, 2, (RF, RR), rn_rd),
15274 cCL(fltez, e080170, 2, (RF, RR), rn_rd),
15275
15276 /* The implementation of the FIX instruction is broken on some
15277 assemblers, in that it accepts a precision specifier as well as a
15278 rounding specifier, despite the fact that this is meaningless.
15279 To be more compatible, we accept it as well, though of course it
15280 does not set any bits. */
15281 cCE(fix, e100110, 2, (RR, RF), rd_rm),
15282 cCL(fixp, e100130, 2, (RR, RF), rd_rm),
15283 cCL(fixm, e100150, 2, (RR, RF), rd_rm),
15284 cCL(fixz, e100170, 2, (RR, RF), rd_rm),
15285 cCL(fixsp, e100130, 2, (RR, RF), rd_rm),
15286 cCL(fixsm, e100150, 2, (RR, RF), rd_rm),
15287 cCL(fixsz, e100170, 2, (RR, RF), rd_rm),
15288 cCL(fixdp, e100130, 2, (RR, RF), rd_rm),
15289 cCL(fixdm, e100150, 2, (RR, RF), rd_rm),
15290 cCL(fixdz, e100170, 2, (RR, RF), rd_rm),
15291 cCL(fixep, e100130, 2, (RR, RF), rd_rm),
15292 cCL(fixem, e100150, 2, (RR, RF), rd_rm),
15293 cCL(fixez, e100170, 2, (RR, RF), rd_rm),
15294
15295 /* Instructions that were new with the real FPA, call them V2. */
15296 #undef ARM_VARIANT
15297 #define ARM_VARIANT &fpu_fpa_ext_v2
15298 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15299 cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15300 cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15301 cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15302 cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15303 cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
15304
15305 #undef ARM_VARIANT
15306 #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
15307 /* Moves and type conversions. */
15308 cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
15309 cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp),
15310 cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg),
15311 cCE(fmstat, ef1fa10, 0, (), noargs),
15312 cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
15313 cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
15314 cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
15315 cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15316 cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
15317 cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
15318 cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn),
15319 cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd),
15320
15321 /* Memory operations. */
15322 cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15323 cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
15324 cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15325 cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15326 cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15327 cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15328 cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15329 cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15330 cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15331 cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15332 cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15333 cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia),
15334 cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15335 cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb),
15336 cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15337 cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia),
15338 cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15339 cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb),
15340
15341 /* Monadic operations. */
15342 cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
15343 cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
15344 cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
15345
15346 /* Dyadic operations. */
15347 cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15348 cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15349 cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15350 cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15351 cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15352 cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15353 cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15354 cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15355 cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
15356
15357 /* Comparisons. */
15358 cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
15359 cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z),
15360 cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
15361 cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z),
15362
15363 #undef ARM_VARIANT
15364 #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
15365 /* Moves and type conversions. */
15366 cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15367 cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15368 cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15369 cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
15370 cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
15371 cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
15372 cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
15373 cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
15374 cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
15375 cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15376 cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15377 cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
15378 cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
15379
15380 /* Memory operations. */
15381 cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15382 cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
15383 cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15384 cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15385 cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15386 cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15387 cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15388 cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia),
15389 cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15390 cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb),
15391
15392 /* Monadic operations. */
15393 cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15394 cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15395 cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15396
15397 /* Dyadic operations. */
15398 cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15399 cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15400 cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15401 cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15402 cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15403 cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15404 cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15405 cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15406 cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
15407
15408 /* Comparisons. */
15409 cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
15410 cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd),
15411 cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
15412 cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd),
15413
15414 #undef ARM_VARIANT
15415 #define ARM_VARIANT &fpu_vfp_ext_v2
15416 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
15417 cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
15418 cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
15419 cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
15420
15421 /* Instructions which may belong to either the Neon or VFP instruction sets.
15422 Individual encoder functions perform additional architecture checks. */
15423 #undef ARM_VARIANT
15424 #define ARM_VARIANT &fpu_vfp_ext_v1xd
15425 #undef THUMB_VARIANT
15426 #define THUMB_VARIANT &fpu_vfp_ext_v1xd
15427 /* These mnemonics are unique to VFP. */
15428 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
15429 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
15430 nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15431 nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15432 nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
15433 nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15434 nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
15435 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
15436 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
15437 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
15438
15439 /* Mnemonics shared by Neon and VFP. */
15440 nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
15441 nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15442 nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
15443
15444 nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15445 nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
15446
15447 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15448 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
15449
15450 NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15451 NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15452 NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15453 NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15454 NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15455 NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm),
15456 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15457 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
15458
15459 nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt),
15460
15461 /* NOTE: All VMOV encoding is special-cased! */
15462 NCE(vmov, 0, 1, (VMOV), neon_mov),
15463 NCE(vmovq, 0, 1, (VMOV), neon_mov),
15464
15465 #undef THUMB_VARIANT
15466 #define THUMB_VARIANT &fpu_neon_ext_v1
15467 #undef ARM_VARIANT
15468 #define ARM_VARIANT &fpu_neon_ext_v1
15469 /* Data processing with three registers of the same length. */
15470 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
15471 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
15472 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
15473 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15474 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15475 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15476 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15477 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
15478 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
15479 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
15480 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15481 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15482 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15483 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15484 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15485 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15486 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
15487 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
15488 /* If not immediate, fall back to neon_dyadic_i64_su.
15489 shl_imm should accept I8 I16 I32 I64,
15490 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
15491 nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
15492 nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
15493 nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
15494 nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
15495 /* Logic ops, types optional & ignored. */
15496 nUF(vand, vand, 2, (RNDQ, NILO), neon_logic),
15497 nUF(vandq, vand, 2, (RNQ, NILO), neon_logic),
15498 nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic),
15499 nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic),
15500 nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic),
15501 nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic),
15502 nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic),
15503 nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic),
15504 nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
15505 nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
15506 /* Bitfield ops, untyped. */
15507 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15508 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15509 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15510 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15511 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
15512 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
15513 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
15514 nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15515 nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15516 nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15517 nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15518 nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
15519 nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
15520 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
15521 back to neon_dyadic_if_su. */
15522 nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15523 nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15524 nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
15525 nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
15526 nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15527 nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15528 nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
15529 nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
15530 /* Comparison. Type I8 I16 I32 F32. Non-immediate -> neon_dyadic_if_i. */
15531 nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
15532 nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
15533 /* As above, D registers only. */
15534 nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15535 nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
15536 /* Int and float variants, signedness unimportant. */
15537 /* If not scalar, fall back to neon_dyadic_if_i. */
15538 nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15539 nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
15540 nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
15541 /* Add/sub take types I8 I16 I32 I64 F32. */
15542 nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15543 nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
15544 /* vtst takes sizes 8, 16, 32. */
15545 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
15546 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
15547 /* VMUL takes I8 I16 I32 F32 P8. */
15548 nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
15549 /* VQD{R}MULH takes S16 S32. */
15550 nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15551 nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15552 nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
15553 nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
15554 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15555 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15556 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
15557 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
15558 NUF(vaclt, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15559 NUF(vacltq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15560 NUF(vacle, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
15561 NUF(vacleq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
15562 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15563 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15564 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
15565 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
15566
15567 /* Two address, int/float. Types S8 S16 S32 F32. */
15568 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
15569 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
15570
15571 /* Data processing with two registers and a shift amount. */
15572 /* Right shifts, and variants with rounding.
15573 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
15574 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15575 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15576 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
15577 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
15578 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15579 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15580 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
15581 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
15582 /* Shift and insert. Sizes accepted 8 16 32 64. */
15583 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
15584 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
15585 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
15586 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
15587 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
15588 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
15589 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
15590 /* Right shift immediate, saturating & narrowing, with rounding variants.
15591 Types accepted S16 S32 S64 U16 U32 U64. */
15592 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15593 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
15594 /* As above, unsigned. Types accepted S16 S32 S64. */
15595 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15596 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
15597 /* Right shift narrowing. Types accepted I16 I32 I64. */
15598 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15599 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
15600 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
15601 nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll),
15602 /* CVT with optional immediate for fixed-point variant. */
15603 nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
15604
15605 nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn),
15606 nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn),
15607
15608 /* Data processing, three registers of different lengths. */
15609 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
15610 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
15611 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
15612 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
15613 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
15614 /* If not scalar, fall back to neon_dyadic_long.
15615 Vector types as above, scalar types S16 S32 U16 U32. */
15616 nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15617 nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
15618 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
15619 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15620 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
15621 /* Dyadic, narrowing insns. Types I16 I32 I64. */
15622 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15623 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15624 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15625 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
15626 /* Saturating doubling multiplies. Types S16 S32. */
15627 nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15628 nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15629 nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
15630 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
15631 S16 S32 U16 U32. */
15632 nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
15633
15634 /* Extract. Size 8. */
15635 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext),
15636 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext),
15637
15638 /* Two registers, miscellaneous. */
15639 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
15640 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
15641 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
15642 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
15643 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
15644 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
15645 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
15646 /* Vector replicate. Sizes 8 16 32. */
15647 nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup),
15648 nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup),
15649 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
15650 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
15651 /* VMOVN. Types I16 I32 I64. */
15652 nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn),
15653 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
15654 nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn),
15655 /* VQMOVUN. Types S16 S32 S64. */
15656 nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun),
15657 /* VZIP / VUZP. Sizes 8 16 32. */
15658 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
15659 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
15660 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
15661 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
15662 /* VQABS / VQNEG. Types S8 S16 S32. */
15663 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15664 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
15665 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
15666 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
15667 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
15668 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
15669 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
15670 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
15671 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
15672 /* Reciprocal estimates. Types U32 F32. */
15673 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
15674 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
15675 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
15676 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
15677 /* VCLS. Types S8 S16 S32. */
15678 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
15679 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
15680 /* VCLZ. Types I8 I16 I32. */
15681 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
15682 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
15683 /* VCNT. Size 8. */
15684 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
15685 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
15686 /* Two address, untyped. */
15687 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
15688 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
15689 /* VTRN. Sizes 8 16 32. */
15690 nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn),
15691 nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn),
15692
15693 /* Table lookup. Size 8. */
15694 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15695 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
15696
15697 #undef THUMB_VARIANT
15698 #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext
15699 #undef ARM_VARIANT
15700 #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext
15701 /* Neon element/structure load/store. */
15702 nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15703 nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
15704 nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15705 nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
15706 nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15707 nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
15708 nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15709 nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
15710
15711 #undef THUMB_VARIANT
15712 #define THUMB_VARIANT &fpu_vfp_ext_v3
15713 #undef ARM_VARIANT
15714 #define ARM_VARIANT &fpu_vfp_ext_v3
15715 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const),
15716 cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const),
15717 cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15718 cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15719 cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15720 cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15721 cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15722 cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15723 cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15724 cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15725 cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15726 cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15727 cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15728 cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15729 cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
15730 cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
15731 cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
15732 cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
15733
15734 #undef THUMB_VARIANT
15735 #undef ARM_VARIANT
15736 #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */
15737 cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15738 cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15739 cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15740 cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15741 cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15742 cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
15743 cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
15744 cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
15745
15746 #undef ARM_VARIANT
15747 #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */
15748 cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc),
15749 cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc),
15750 cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc),
15751 cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd),
15752 cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd),
15753 cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd),
15754 cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc),
15755 cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc),
15756 cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc),
15757 cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15758 cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15759 cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
15760 cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15761 cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15762 cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
15763 cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15764 cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15765 cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
15766 cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd),
15767 cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn),
15768 cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15769 cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15770 cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15771 cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15772 cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15773 cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
15774 cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn),
15775 cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn),
15776 cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn),
15777 cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn),
15778 cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm),
15779 cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc),
15780 cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc),
15781 cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc),
15782 cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn),
15783 cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn),
15784 cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn),
15785 cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15786 cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15787 cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15788 cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15789 cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15790 cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15791 cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15792 cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15793 cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15794 cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
15795 cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15796 cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15797 cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15798 cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15799 cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15800 cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15801 cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15802 cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15803 cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15804 cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15805 cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15806 cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15807 cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15808 cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15809 cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15810 cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15811 cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15812 cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15813 cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15814 cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15815 cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15816 cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15817 cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15818 cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15819 cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15820 cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15821 cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15822 cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15823 cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15824 cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15825 cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15826 cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15827 cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15828 cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15829 cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15830 cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15831 cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15832 cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15833 cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15834 cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15835 cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15836 cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
15837 cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15838 cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15839 cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15840 cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15841 cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15842 cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15843 cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15844 cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15845 cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15846 cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15847 cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15848 cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15849 cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15850 cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15851 cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15852 cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15853 cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15854 cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15855 cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15856 cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15857 cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15858 cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
15859 cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15860 cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15861 cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15862 cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15863 cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15864 cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15865 cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15866 cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15867 cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15868 cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15869 cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15870 cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15871 cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15872 cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15873 cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15874 cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15875 cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15876 cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
15877 cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15878 cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
15879 cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
15880 cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
15881 cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15882 cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15883 cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15884 cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15885 cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15886 cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15887 cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15888 cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15889 cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15890 cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn),
15891 cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn),
15892 cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn),
15893 cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn),
15894 cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn),
15895 cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn),
15896 cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15897 cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15898 cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15899 cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn),
15900 cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn),
15901 cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn),
15902 cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn),
15903 cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn),
15904 cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn),
15905 cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15906 cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15907 cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15908 cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
15909 cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero),
15910
15911 #undef ARM_VARIANT
15912 #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */
15913 cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15914 cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15915 cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15916 cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15917 cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
15918 cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
15919 cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
15920 cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
15921 cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd),
15922 cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn),
15923 cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd),
15924 cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn),
15925 cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd),
15926 cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn),
15927 cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd),
15928 cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn),
15929 cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd),
15930 cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn),
15931 cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn),
15932 cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn),
15933 cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn),
15934 cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn),
15935 cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn),
15936 cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn),
15937 cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn),
15938 cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn),
15939 cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn),
15940 cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn),
15941 cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc),
15942 cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd),
15943 cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn),
15944 cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn),
15945 cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn),
15946 cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn),
15947 cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn),
15948 cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn),
15949 cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn),
15950 cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn),
15951 cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn),
15952 cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn),
15953 cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn),
15954 cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn),
15955 cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple),
15956 cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple),
15957 cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift),
15958 cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift),
15959 cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm),
15960 cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
15961 cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
15962 cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
15963 cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn),
15964 cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn),
15965 cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn),
15966 cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn),
15967 cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
15968 cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
15969 cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
15970 cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
15971 cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
15972 cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
15973 cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn),
15974 cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn),
15975 cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn),
15976 cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn),
15977 cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15978 cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15979 cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15980 cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15981 cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15982 cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
15983 cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15984 cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
15985 cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15986 cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
15987 cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
15988 cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
15989 };
15990 #undef ARM_VARIANT
15991 #undef THUMB_VARIANT
15992 #undef TCE
15993 #undef TCM
15994 #undef TUE
15995 #undef TUF
15996 #undef TCC
15997 #undef cCE
15998 #undef cCL
15999 #undef C3E
16000 #undef CE
16001 #undef CM
16002 #undef UE
16003 #undef UF
16004 #undef UT
16005 #undef NUF
16006 #undef nUF
16007 #undef NCE
16008 #undef nCE
16009 #undef OPS0
16010 #undef OPS1
16011 #undef OPS2
16012 #undef OPS3
16013 #undef OPS4
16014 #undef OPS5
16015 #undef OPS6
16016 #undef do_0
16017 \f
16018 /* MD interface: bits in the object file. */
16019
16020 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
16021 for use in the a.out file, and stores them in the array pointed to by buf.
16022 This knows about the endian-ness of the target machine and does
16023 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
16024 2 (short) and 4 (long) Floating numbers are put out as a series of
16025 LITTLENUMS (shorts, here at least). */
16026
16027 void
16028 md_number_to_chars (char * buf, valueT val, int n)
16029 {
16030 if (target_big_endian)
16031 number_to_chars_bigendian (buf, val, n);
16032 else
16033 number_to_chars_littleendian (buf, val, n);
16034 }
16035
16036 static valueT
16037 md_chars_to_number (char * buf, int n)
16038 {
16039 valueT result = 0;
16040 unsigned char * where = (unsigned char *) buf;
16041
16042 if (target_big_endian)
16043 {
16044 while (n--)
16045 {
16046 result <<= 8;
16047 result |= (*where++ & 255);
16048 }
16049 }
16050 else
16051 {
16052 while (n--)
16053 {
16054 result <<= 8;
16055 result |= (where[n] & 255);
16056 }
16057 }
16058
16059 return result;
16060 }
16061
16062 /* MD interface: Sections. */
16063
16064 /* Estimate the size of a frag before relaxing. Assume everything fits in
16065 2 bytes. */
16066
16067 int
16068 md_estimate_size_before_relax (fragS * fragp,
16069 segT segtype ATTRIBUTE_UNUSED)
16070 {
16071 fragp->fr_var = 2;
16072 return 2;
16073 }
16074
16075 /* Convert a machine dependent frag. */
16076
16077 void
16078 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
16079 {
16080 unsigned long insn;
16081 unsigned long old_op;
16082 char *buf;
16083 expressionS exp;
16084 fixS *fixp;
16085 int reloc_type;
16086 int pc_rel;
16087 int opcode;
16088
16089 buf = fragp->fr_literal + fragp->fr_fix;
16090
16091 old_op = bfd_get_16(abfd, buf);
16092 if (fragp->fr_symbol) {
16093 exp.X_op = O_symbol;
16094 exp.X_add_symbol = fragp->fr_symbol;
16095 } else {
16096 exp.X_op = O_constant;
16097 }
16098 exp.X_add_number = fragp->fr_offset;
16099 opcode = fragp->fr_subtype;
16100 switch (opcode)
16101 {
16102 case T_MNEM_ldr_pc:
16103 case T_MNEM_ldr_pc2:
16104 case T_MNEM_ldr_sp:
16105 case T_MNEM_str_sp:
16106 case T_MNEM_ldr:
16107 case T_MNEM_ldrb:
16108 case T_MNEM_ldrh:
16109 case T_MNEM_str:
16110 case T_MNEM_strb:
16111 case T_MNEM_strh:
16112 if (fragp->fr_var == 4)
16113 {
16114 insn = THUMB_OP32(opcode);
16115 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
16116 {
16117 insn |= (old_op & 0x700) << 4;
16118 }
16119 else
16120 {
16121 insn |= (old_op & 7) << 12;
16122 insn |= (old_op & 0x38) << 13;
16123 }
16124 insn |= 0x00000c00;
16125 put_thumb32_insn (buf, insn);
16126 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
16127 }
16128 else
16129 {
16130 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
16131 }
16132 pc_rel = (opcode == T_MNEM_ldr_pc2);
16133 break;
16134 case T_MNEM_adr:
16135 if (fragp->fr_var == 4)
16136 {
16137 insn = THUMB_OP32 (opcode);
16138 insn |= (old_op & 0xf0) << 4;
16139 put_thumb32_insn (buf, insn);
16140 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
16141 }
16142 else
16143 {
16144 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16145 exp.X_add_number -= 4;
16146 }
16147 pc_rel = 1;
16148 break;
16149 case T_MNEM_mov:
16150 case T_MNEM_movs:
16151 case T_MNEM_cmp:
16152 case T_MNEM_cmn:
16153 if (fragp->fr_var == 4)
16154 {
16155 int r0off = (opcode == T_MNEM_mov
16156 || opcode == T_MNEM_movs) ? 0 : 8;
16157 insn = THUMB_OP32 (opcode);
16158 insn = (insn & 0xe1ffffff) | 0x10000000;
16159 insn |= (old_op & 0x700) << r0off;
16160 put_thumb32_insn (buf, insn);
16161 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16162 }
16163 else
16164 {
16165 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
16166 }
16167 pc_rel = 0;
16168 break;
16169 case T_MNEM_b:
16170 if (fragp->fr_var == 4)
16171 {
16172 insn = THUMB_OP32(opcode);
16173 put_thumb32_insn (buf, insn);
16174 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
16175 }
16176 else
16177 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
16178 pc_rel = 1;
16179 break;
16180 case T_MNEM_bcond:
16181 if (fragp->fr_var == 4)
16182 {
16183 insn = THUMB_OP32(opcode);
16184 insn |= (old_op & 0xf00) << 14;
16185 put_thumb32_insn (buf, insn);
16186 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
16187 }
16188 else
16189 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
16190 pc_rel = 1;
16191 break;
16192 case T_MNEM_add_sp:
16193 case T_MNEM_add_pc:
16194 case T_MNEM_inc_sp:
16195 case T_MNEM_dec_sp:
16196 if (fragp->fr_var == 4)
16197 {
16198 /* ??? Choose between add and addw. */
16199 insn = THUMB_OP32 (opcode);
16200 insn |= (old_op & 0xf0) << 4;
16201 put_thumb32_insn (buf, insn);
16202 if (opcode == T_MNEM_add_pc)
16203 reloc_type = BFD_RELOC_ARM_T32_IMM12;
16204 else
16205 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16206 }
16207 else
16208 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16209 pc_rel = 0;
16210 break;
16211
16212 case T_MNEM_addi:
16213 case T_MNEM_addis:
16214 case T_MNEM_subi:
16215 case T_MNEM_subis:
16216 if (fragp->fr_var == 4)
16217 {
16218 insn = THUMB_OP32 (opcode);
16219 insn |= (old_op & 0xf0) << 4;
16220 insn |= (old_op & 0xf) << 16;
16221 put_thumb32_insn (buf, insn);
16222 if (insn & (1 << 20))
16223 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
16224 else
16225 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
16226 }
16227 else
16228 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
16229 pc_rel = 0;
16230 break;
16231 default:
16232 abort();
16233 }
16234 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
16235 reloc_type);
16236 fixp->fx_file = fragp->fr_file;
16237 fixp->fx_line = fragp->fr_line;
16238 fragp->fr_fix += fragp->fr_var;
16239 }
16240
16241 /* Return the size of a relaxable immediate operand instruction.
16242 SHIFT and SIZE specify the form of the allowable immediate. */
16243 static int
16244 relax_immediate (fragS *fragp, int size, int shift)
16245 {
16246 offsetT offset;
16247 offsetT mask;
16248 offsetT low;
16249
16250 /* ??? Should be able to do better than this. */
16251 if (fragp->fr_symbol)
16252 return 4;
16253
16254 low = (1 << shift) - 1;
16255 mask = (1 << (shift + size)) - (1 << shift);
16256 offset = fragp->fr_offset;
16257 /* Force misaligned offsets to 32-bit variant. */
16258 if (offset & low)
16259 return -4;
16260 if (offset & ~mask)
16261 return 4;
16262 return 2;
16263 }
16264
16265 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
16266 load. */
16267 static int
16268 relax_adr (fragS *fragp, asection *sec)
16269 {
16270 addressT addr;
16271 offsetT val;
16272
16273 /* Assume worst case for symbols not known to be in the same section. */
16274 if (!S_IS_DEFINED(fragp->fr_symbol)
16275 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16276 return 4;
16277
16278 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16279 addr = fragp->fr_address + fragp->fr_fix;
16280 addr = (addr + 4) & ~3;
16281 /* Fix the insn as the 4-byte version if the target address is not
16282 sufficiently aligned. This is prevents an infinite loop when two
16283 instructions have contradictory range/alignment requirements. */
16284 if (val & 3)
16285 return -4;
16286 val -= addr;
16287 if (val < 0 || val > 1020)
16288 return 4;
16289 return 2;
16290 }
16291
16292 /* Return the size of a relaxable add/sub immediate instruction. */
16293 static int
16294 relax_addsub (fragS *fragp, asection *sec)
16295 {
16296 char *buf;
16297 int op;
16298
16299 buf = fragp->fr_literal + fragp->fr_fix;
16300 op = bfd_get_16(sec->owner, buf);
16301 if ((op & 0xf) == ((op >> 4) & 0xf))
16302 return relax_immediate (fragp, 8, 0);
16303 else
16304 return relax_immediate (fragp, 3, 0);
16305 }
16306
16307
16308 /* Return the size of a relaxable branch instruction. BITS is the
16309 size of the offset field in the narrow instruction. */
16310
16311 static int
16312 relax_branch (fragS *fragp, asection *sec, int bits)
16313 {
16314 addressT addr;
16315 offsetT val;
16316 offsetT limit;
16317
16318 /* Assume worst case for symbols not known to be in the same section. */
16319 if (!S_IS_DEFINED(fragp->fr_symbol)
16320 || sec != S_GET_SEGMENT (fragp->fr_symbol))
16321 return 4;
16322
16323 val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset;
16324 addr = fragp->fr_address + fragp->fr_fix + 4;
16325 val -= addr;
16326
16327 /* Offset is a signed value *2 */
16328 limit = 1 << bits;
16329 if (val >= limit || val < -limit)
16330 return 4;
16331 return 2;
16332 }
16333
16334
16335 /* Relax a machine dependent frag. This returns the amount by which
16336 the current size of the frag should change. */
16337
16338 int
16339 arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED)
16340 {
16341 int oldsize;
16342 int newsize;
16343
16344 oldsize = fragp->fr_var;
16345 switch (fragp->fr_subtype)
16346 {
16347 case T_MNEM_ldr_pc2:
16348 newsize = relax_adr(fragp, sec);
16349 break;
16350 case T_MNEM_ldr_pc:
16351 case T_MNEM_ldr_sp:
16352 case T_MNEM_str_sp:
16353 newsize = relax_immediate(fragp, 8, 2);
16354 break;
16355 case T_MNEM_ldr:
16356 case T_MNEM_str:
16357 newsize = relax_immediate(fragp, 5, 2);
16358 break;
16359 case T_MNEM_ldrh:
16360 case T_MNEM_strh:
16361 newsize = relax_immediate(fragp, 5, 1);
16362 break;
16363 case T_MNEM_ldrb:
16364 case T_MNEM_strb:
16365 newsize = relax_immediate(fragp, 5, 0);
16366 break;
16367 case T_MNEM_adr:
16368 newsize = relax_adr(fragp, sec);
16369 break;
16370 case T_MNEM_mov:
16371 case T_MNEM_movs:
16372 case T_MNEM_cmp:
16373 case T_MNEM_cmn:
16374 newsize = relax_immediate(fragp, 8, 0);
16375 break;
16376 case T_MNEM_b:
16377 newsize = relax_branch(fragp, sec, 11);
16378 break;
16379 case T_MNEM_bcond:
16380 newsize = relax_branch(fragp, sec, 8);
16381 break;
16382 case T_MNEM_add_sp:
16383 case T_MNEM_add_pc:
16384 newsize = relax_immediate (fragp, 8, 2);
16385 break;
16386 case T_MNEM_inc_sp:
16387 case T_MNEM_dec_sp:
16388 newsize = relax_immediate (fragp, 7, 2);
16389 break;
16390 case T_MNEM_addi:
16391 case T_MNEM_addis:
16392 case T_MNEM_subi:
16393 case T_MNEM_subis:
16394 newsize = relax_addsub (fragp, sec);
16395 break;
16396 default:
16397 abort();
16398 }
16399 if (newsize < 0)
16400 {
16401 fragp->fr_var = -newsize;
16402 md_convert_frag (sec->owner, sec, fragp);
16403 frag_wane(fragp);
16404 return -(newsize + oldsize);
16405 }
16406 fragp->fr_var = newsize;
16407 return newsize - oldsize;
16408 }
16409
16410 /* Round up a section size to the appropriate boundary. */
16411
16412 valueT
16413 md_section_align (segT segment ATTRIBUTE_UNUSED,
16414 valueT size)
16415 {
16416 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
16417 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
16418 {
16419 /* For a.out, force the section size to be aligned. If we don't do
16420 this, BFD will align it for us, but it will not write out the
16421 final bytes of the section. This may be a bug in BFD, but it is
16422 easier to fix it here since that is how the other a.out targets
16423 work. */
16424 int align;
16425
16426 align = bfd_get_section_alignment (stdoutput, segment);
16427 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
16428 }
16429 #endif
16430
16431 return size;
16432 }
16433
16434 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
16435 of an rs_align_code fragment. */
16436
16437 void
16438 arm_handle_align (fragS * fragP)
16439 {
16440 static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
16441 static char const thumb_noop[2] = { 0xc0, 0x46 };
16442 static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
16443 static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
16444
16445 int bytes, fix, noop_size;
16446 char * p;
16447 const char * noop;
16448
16449 if (fragP->fr_type != rs_align_code)
16450 return;
16451
16452 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
16453 p = fragP->fr_literal + fragP->fr_fix;
16454 fix = 0;
16455
16456 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
16457 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
16458
16459 if (fragP->tc_frag_data)
16460 {
16461 if (target_big_endian)
16462 noop = thumb_bigend_noop;
16463 else
16464 noop = thumb_noop;
16465 noop_size = sizeof (thumb_noop);
16466 }
16467 else
16468 {
16469 if (target_big_endian)
16470 noop = arm_bigend_noop;
16471 else
16472 noop = arm_noop;
16473 noop_size = sizeof (arm_noop);
16474 }
16475
16476 if (bytes & (noop_size - 1))
16477 {
16478 fix = bytes & (noop_size - 1);
16479 memset (p, 0, fix);
16480 p += fix;
16481 bytes -= fix;
16482 }
16483
16484 while (bytes >= noop_size)
16485 {
16486 memcpy (p, noop, noop_size);
16487 p += noop_size;
16488 bytes -= noop_size;
16489 fix += noop_size;
16490 }
16491
16492 fragP->fr_fix += fix;
16493 fragP->fr_var = noop_size;
16494 }
16495
16496 /* Called from md_do_align. Used to create an alignment
16497 frag in a code section. */
16498
16499 void
16500 arm_frag_align_code (int n, int max)
16501 {
16502 char * p;
16503
16504 /* We assume that there will never be a requirement
16505 to support alignments greater than 32 bytes. */
16506 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
16507 as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
16508
16509 p = frag_var (rs_align_code,
16510 MAX_MEM_FOR_RS_ALIGN_CODE,
16511 1,
16512 (relax_substateT) max,
16513 (symbolS *) NULL,
16514 (offsetT) n,
16515 (char *) NULL);
16516 *p = 0;
16517 }
16518
16519 /* Perform target specific initialisation of a frag. */
16520
16521 void
16522 arm_init_frag (fragS * fragP)
16523 {
16524 /* Record whether this frag is in an ARM or a THUMB area. */
16525 fragP->tc_frag_data = thumb_mode;
16526 }
16527
16528 #ifdef OBJ_ELF
16529 /* When we change sections we need to issue a new mapping symbol. */
16530
16531 void
16532 arm_elf_change_section (void)
16533 {
16534 flagword flags;
16535 segment_info_type *seginfo;
16536
16537 /* Link an unlinked unwind index table section to the .text section. */
16538 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
16539 && elf_linked_to_section (now_seg) == NULL)
16540 elf_linked_to_section (now_seg) = text_section;
16541
16542 if (!SEG_NORMAL (now_seg))
16543 return;
16544
16545 flags = bfd_get_section_flags (stdoutput, now_seg);
16546
16547 /* We can ignore sections that only contain debug info. */
16548 if ((flags & SEC_ALLOC) == 0)
16549 return;
16550
16551 seginfo = seg_info (now_seg);
16552 mapstate = seginfo->tc_segment_info_data.mapstate;
16553 marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency;
16554 }
16555
16556 int
16557 arm_elf_section_type (const char * str, size_t len)
16558 {
16559 if (len == 5 && strncmp (str, "exidx", 5) == 0)
16560 return SHT_ARM_EXIDX;
16561
16562 return -1;
16563 }
16564 \f
16565 /* Code to deal with unwinding tables. */
16566
16567 static void add_unwind_adjustsp (offsetT);
16568
16569 /* Cenerate and deferred unwind frame offset. */
16570
16571 static void
16572 flush_pending_unwind (void)
16573 {
16574 offsetT offset;
16575
16576 offset = unwind.pending_offset;
16577 unwind.pending_offset = 0;
16578 if (offset != 0)
16579 add_unwind_adjustsp (offset);
16580 }
16581
16582 /* Add an opcode to this list for this function. Two-byte opcodes should
16583 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
16584 order. */
16585
16586 static void
16587 add_unwind_opcode (valueT op, int length)
16588 {
16589 /* Add any deferred stack adjustment. */
16590 if (unwind.pending_offset)
16591 flush_pending_unwind ();
16592
16593 unwind.sp_restored = 0;
16594
16595 if (unwind.opcode_count + length > unwind.opcode_alloc)
16596 {
16597 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
16598 if (unwind.opcodes)
16599 unwind.opcodes = xrealloc (unwind.opcodes,
16600 unwind.opcode_alloc);
16601 else
16602 unwind.opcodes = xmalloc (unwind.opcode_alloc);
16603 }
16604 while (length > 0)
16605 {
16606 length--;
16607 unwind.opcodes[unwind.opcode_count] = op & 0xff;
16608 op >>= 8;
16609 unwind.opcode_count++;
16610 }
16611 }
16612
16613 /* Add unwind opcodes to adjust the stack pointer. */
16614
16615 static void
16616 add_unwind_adjustsp (offsetT offset)
16617 {
16618 valueT op;
16619
16620 if (offset > 0x200)
16621 {
16622 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
16623 char bytes[5];
16624 int n;
16625 valueT o;
16626
16627 /* Long form: 0xb2, uleb128. */
16628 /* This might not fit in a word so add the individual bytes,
16629 remembering the list is built in reverse order. */
16630 o = (valueT) ((offset - 0x204) >> 2);
16631 if (o == 0)
16632 add_unwind_opcode (0, 1);
16633
16634 /* Calculate the uleb128 encoding of the offset. */
16635 n = 0;
16636 while (o)
16637 {
16638 bytes[n] = o & 0x7f;
16639 o >>= 7;
16640 if (o)
16641 bytes[n] |= 0x80;
16642 n++;
16643 }
16644 /* Add the insn. */
16645 for (; n; n--)
16646 add_unwind_opcode (bytes[n - 1], 1);
16647 add_unwind_opcode (0xb2, 1);
16648 }
16649 else if (offset > 0x100)
16650 {
16651 /* Two short opcodes. */
16652 add_unwind_opcode (0x3f, 1);
16653 op = (offset - 0x104) >> 2;
16654 add_unwind_opcode (op, 1);
16655 }
16656 else if (offset > 0)
16657 {
16658 /* Short opcode. */
16659 op = (offset - 4) >> 2;
16660 add_unwind_opcode (op, 1);
16661 }
16662 else if (offset < 0)
16663 {
16664 offset = -offset;
16665 while (offset > 0x100)
16666 {
16667 add_unwind_opcode (0x7f, 1);
16668 offset -= 0x100;
16669 }
16670 op = ((offset - 4) >> 2) | 0x40;
16671 add_unwind_opcode (op, 1);
16672 }
16673 }
16674
16675 /* Finish the list of unwind opcodes for this function. */
16676 static void
16677 finish_unwind_opcodes (void)
16678 {
16679 valueT op;
16680
16681 if (unwind.fp_used)
16682 {
16683 /* Adjust sp as necessary. */
16684 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
16685 flush_pending_unwind ();
16686
16687 /* After restoring sp from the frame pointer. */
16688 op = 0x90 | unwind.fp_reg;
16689 add_unwind_opcode (op, 1);
16690 }
16691 else
16692 flush_pending_unwind ();
16693 }
16694
16695
16696 /* Start an exception table entry. If idx is nonzero this is an index table
16697 entry. */
16698
16699 static void
16700 start_unwind_section (const segT text_seg, int idx)
16701 {
16702 const char * text_name;
16703 const char * prefix;
16704 const char * prefix_once;
16705 const char * group_name;
16706 size_t prefix_len;
16707 size_t text_len;
16708 char * sec_name;
16709 size_t sec_name_len;
16710 int type;
16711 int flags;
16712 int linkonce;
16713
16714 if (idx)
16715 {
16716 prefix = ELF_STRING_ARM_unwind;
16717 prefix_once = ELF_STRING_ARM_unwind_once;
16718 type = SHT_ARM_EXIDX;
16719 }
16720 else
16721 {
16722 prefix = ELF_STRING_ARM_unwind_info;
16723 prefix_once = ELF_STRING_ARM_unwind_info_once;
16724 type = SHT_PROGBITS;
16725 }
16726
16727 text_name = segment_name (text_seg);
16728 if (streq (text_name, ".text"))
16729 text_name = "";
16730
16731 if (strncmp (text_name, ".gnu.linkonce.t.",
16732 strlen (".gnu.linkonce.t.")) == 0)
16733 {
16734 prefix = prefix_once;
16735 text_name += strlen (".gnu.linkonce.t.");
16736 }
16737
16738 prefix_len = strlen (prefix);
16739 text_len = strlen (text_name);
16740 sec_name_len = prefix_len + text_len;
16741 sec_name = xmalloc (sec_name_len + 1);
16742 memcpy (sec_name, prefix, prefix_len);
16743 memcpy (sec_name + prefix_len, text_name, text_len);
16744 sec_name[prefix_len + text_len] = '\0';
16745
16746 flags = SHF_ALLOC;
16747 linkonce = 0;
16748 group_name = 0;
16749
16750 /* Handle COMDAT group. */
16751 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
16752 {
16753 group_name = elf_group_name (text_seg);
16754 if (group_name == NULL)
16755 {
16756 as_bad ("Group section `%s' has no group signature",
16757 segment_name (text_seg));
16758 ignore_rest_of_line ();
16759 return;
16760 }
16761 flags |= SHF_GROUP;
16762 linkonce = 1;
16763 }
16764
16765 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
16766
16767 /* Set the setion link for index tables. */
16768 if (idx)
16769 elf_linked_to_section (now_seg) = text_seg;
16770 }
16771
16772
16773 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
16774 personality routine data. Returns zero, or the index table value for
16775 and inline entry. */
16776
16777 static valueT
16778 create_unwind_entry (int have_data)
16779 {
16780 int size;
16781 addressT where;
16782 char *ptr;
16783 /* The current word of data. */
16784 valueT data;
16785 /* The number of bytes left in this word. */
16786 int n;
16787
16788 finish_unwind_opcodes ();
16789
16790 /* Remember the current text section. */
16791 unwind.saved_seg = now_seg;
16792 unwind.saved_subseg = now_subseg;
16793
16794 start_unwind_section (now_seg, 0);
16795
16796 if (unwind.personality_routine == NULL)
16797 {
16798 if (unwind.personality_index == -2)
16799 {
16800 if (have_data)
16801 as_bad (_("handerdata in cantunwind frame"));
16802 return 1; /* EXIDX_CANTUNWIND. */
16803 }
16804
16805 /* Use a default personality routine if none is specified. */
16806 if (unwind.personality_index == -1)
16807 {
16808 if (unwind.opcode_count > 3)
16809 unwind.personality_index = 1;
16810 else
16811 unwind.personality_index = 0;
16812 }
16813
16814 /* Space for the personality routine entry. */
16815 if (unwind.personality_index == 0)
16816 {
16817 if (unwind.opcode_count > 3)
16818 as_bad (_("too many unwind opcodes for personality routine 0"));
16819
16820 if (!have_data)
16821 {
16822 /* All the data is inline in the index table. */
16823 data = 0x80;
16824 n = 3;
16825 while (unwind.opcode_count > 0)
16826 {
16827 unwind.opcode_count--;
16828 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16829 n--;
16830 }
16831
16832 /* Pad with "finish" opcodes. */
16833 while (n--)
16834 data = (data << 8) | 0xb0;
16835
16836 return data;
16837 }
16838 size = 0;
16839 }
16840 else
16841 /* We get two opcodes "free" in the first word. */
16842 size = unwind.opcode_count - 2;
16843 }
16844 else
16845 /* An extra byte is required for the opcode count. */
16846 size = unwind.opcode_count + 1;
16847
16848 size = (size + 3) >> 2;
16849 if (size > 0xff)
16850 as_bad (_("too many unwind opcodes"));
16851
16852 frag_align (2, 0, 0);
16853 record_alignment (now_seg, 2);
16854 unwind.table_entry = expr_build_dot ();
16855
16856 /* Allocate the table entry. */
16857 ptr = frag_more ((size << 2) + 4);
16858 where = frag_now_fix () - ((size << 2) + 4);
16859
16860 switch (unwind.personality_index)
16861 {
16862 case -1:
16863 /* ??? Should this be a PLT generating relocation? */
16864 /* Custom personality routine. */
16865 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
16866 BFD_RELOC_ARM_PREL31);
16867
16868 where += 4;
16869 ptr += 4;
16870
16871 /* Set the first byte to the number of additional words. */
16872 data = size - 1;
16873 n = 3;
16874 break;
16875
16876 /* ABI defined personality routines. */
16877 case 0:
16878 /* Three opcodes bytes are packed into the first word. */
16879 data = 0x80;
16880 n = 3;
16881 break;
16882
16883 case 1:
16884 case 2:
16885 /* The size and first two opcode bytes go in the first word. */
16886 data = ((0x80 + unwind.personality_index) << 8) | size;
16887 n = 2;
16888 break;
16889
16890 default:
16891 /* Should never happen. */
16892 abort ();
16893 }
16894
16895 /* Pack the opcodes into words (MSB first), reversing the list at the same
16896 time. */
16897 while (unwind.opcode_count > 0)
16898 {
16899 if (n == 0)
16900 {
16901 md_number_to_chars (ptr, data, 4);
16902 ptr += 4;
16903 n = 4;
16904 data = 0;
16905 }
16906 unwind.opcode_count--;
16907 n--;
16908 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
16909 }
16910
16911 /* Finish off the last word. */
16912 if (n < 4)
16913 {
16914 /* Pad with "finish" opcodes. */
16915 while (n--)
16916 data = (data << 8) | 0xb0;
16917
16918 md_number_to_chars (ptr, data, 4);
16919 }
16920
16921 if (!have_data)
16922 {
16923 /* Add an empty descriptor if there is no user-specified data. */
16924 ptr = frag_more (4);
16925 md_number_to_chars (ptr, 0, 4);
16926 }
16927
16928 return 0;
16929 }
16930
16931
16932 /* Initialize the DWARF-2 unwind information for this procedure. */
16933
16934 void
16935 tc_arm_frame_initial_instructions (void)
16936 {
16937 cfi_add_CFA_def_cfa (REG_SP, 0);
16938 }
16939 #endif /* OBJ_ELF */
16940
16941 /* Convert REGNAME to a DWARF-2 register number. */
16942
16943 int
16944 tc_arm_regname_to_dw2regnum (char *regname)
16945 {
16946 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
16947
16948 if (reg == FAIL)
16949 return -1;
16950
16951 return reg;
16952 }
16953
16954 #ifdef TE_PE
16955 void
16956 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
16957 {
16958 expressionS expr;
16959
16960 expr.X_op = O_secrel;
16961 expr.X_add_symbol = symbol;
16962 expr.X_add_number = 0;
16963 emit_expr (&expr, size);
16964 }
16965 #endif
16966
16967 /* MD interface: Symbol and relocation handling. */
16968
16969 /* Return the address within the segment that a PC-relative fixup is
16970 relative to. For ARM, PC-relative fixups applied to instructions
16971 are generally relative to the location of the fixup plus 8 bytes.
16972 Thumb branches are offset by 4, and Thumb loads relative to PC
16973 require special handling. */
16974
16975 long
16976 md_pcrel_from_section (fixS * fixP, segT seg)
16977 {
16978 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
16979
16980 /* If this is pc-relative and we are going to emit a relocation
16981 then we just want to put out any pipeline compensation that the linker
16982 will need. Otherwise we want to use the calculated base.
16983 For WinCE we skip the bias for externals as well, since this
16984 is how the MS ARM-CE assembler behaves and we want to be compatible. */
16985 if (fixP->fx_pcrel
16986 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
16987 || (arm_force_relocation (fixP)
16988 #ifdef TE_WINCE
16989 && !S_IS_EXTERNAL (fixP->fx_addsy)
16990 #endif
16991 )))
16992 base = 0;
16993
16994 switch (fixP->fx_r_type)
16995 {
16996 /* PC relative addressing on the Thumb is slightly odd as the
16997 bottom two bits of the PC are forced to zero for the
16998 calculation. This happens *after* application of the
16999 pipeline offset. However, Thumb adrl already adjusts for
17000 this, so we need not do it again. */
17001 case BFD_RELOC_ARM_THUMB_ADD:
17002 return base & ~3;
17003
17004 case BFD_RELOC_ARM_THUMB_OFFSET:
17005 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17006 case BFD_RELOC_ARM_T32_ADD_PC12:
17007 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17008 return (base + 4) & ~3;
17009
17010 /* Thumb branches are simply offset by +4. */
17011 case BFD_RELOC_THUMB_PCREL_BRANCH7:
17012 case BFD_RELOC_THUMB_PCREL_BRANCH9:
17013 case BFD_RELOC_THUMB_PCREL_BRANCH12:
17014 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17015 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17016 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17017 case BFD_RELOC_THUMB_PCREL_BLX:
17018 return base + 4;
17019
17020 /* ARM mode branches are offset by +8. However, the Windows CE
17021 loader expects the relocation not to take this into account. */
17022 case BFD_RELOC_ARM_PCREL_BRANCH:
17023 case BFD_RELOC_ARM_PCREL_CALL:
17024 case BFD_RELOC_ARM_PCREL_JUMP:
17025 case BFD_RELOC_ARM_PCREL_BLX:
17026 case BFD_RELOC_ARM_PLT32:
17027 #ifdef TE_WINCE
17028 /* When handling fixups immediately, because we have already
17029 discovered the value of a symbol, or the address of the frag involved
17030 we must account for the offset by +8, as the OS loader will never see the reloc.
17031 see fixup_segment() in write.c
17032 The S_IS_EXTERNAL test handles the case of global symbols.
17033 Those need the calculated base, not just the pipe compensation the linker will need. */
17034 if (fixP->fx_pcrel
17035 && fixP->fx_addsy != NULL
17036 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
17037 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
17038 return base + 8;
17039 return base;
17040 #else
17041 return base + 8;
17042 #endif
17043
17044 /* ARM mode loads relative to PC are also offset by +8. Unlike
17045 branches, the Windows CE loader *does* expect the relocation
17046 to take this into account. */
17047 case BFD_RELOC_ARM_OFFSET_IMM:
17048 case BFD_RELOC_ARM_OFFSET_IMM8:
17049 case BFD_RELOC_ARM_HWLITERAL:
17050 case BFD_RELOC_ARM_LITERAL:
17051 case BFD_RELOC_ARM_CP_OFF_IMM:
17052 return base + 8;
17053
17054
17055 /* Other PC-relative relocations are un-offset. */
17056 default:
17057 return base;
17058 }
17059 }
17060
17061 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
17062 Otherwise we have no need to default values of symbols. */
17063
17064 symbolS *
17065 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
17066 {
17067 #ifdef OBJ_ELF
17068 if (name[0] == '_' && name[1] == 'G'
17069 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
17070 {
17071 if (!GOT_symbol)
17072 {
17073 if (symbol_find (name))
17074 as_bad ("GOT already in the symbol table");
17075
17076 GOT_symbol = symbol_new (name, undefined_section,
17077 (valueT) 0, & zero_address_frag);
17078 }
17079
17080 return GOT_symbol;
17081 }
17082 #endif
17083
17084 return 0;
17085 }
17086
17087 /* Subroutine of md_apply_fix. Check to see if an immediate can be
17088 computed as two separate immediate values, added together. We
17089 already know that this value cannot be computed by just one ARM
17090 instruction. */
17091
17092 static unsigned int
17093 validate_immediate_twopart (unsigned int val,
17094 unsigned int * highpart)
17095 {
17096 unsigned int a;
17097 unsigned int i;
17098
17099 for (i = 0; i < 32; i += 2)
17100 if (((a = rotate_left (val, i)) & 0xff) != 0)
17101 {
17102 if (a & 0xff00)
17103 {
17104 if (a & ~ 0xffff)
17105 continue;
17106 * highpart = (a >> 8) | ((i + 24) << 7);
17107 }
17108 else if (a & 0xff0000)
17109 {
17110 if (a & 0xff000000)
17111 continue;
17112 * highpart = (a >> 16) | ((i + 16) << 7);
17113 }
17114 else
17115 {
17116 assert (a & 0xff000000);
17117 * highpart = (a >> 24) | ((i + 8) << 7);
17118 }
17119
17120 return (a & 0xff) | (i << 7);
17121 }
17122
17123 return FAIL;
17124 }
17125
17126 static int
17127 validate_offset_imm (unsigned int val, int hwse)
17128 {
17129 if ((hwse && val > 255) || val > 4095)
17130 return FAIL;
17131 return val;
17132 }
17133
17134 /* Subroutine of md_apply_fix. Do those data_ops which can take a
17135 negative immediate constant by altering the instruction. A bit of
17136 a hack really.
17137 MOV <-> MVN
17138 AND <-> BIC
17139 ADC <-> SBC
17140 by inverting the second operand, and
17141 ADD <-> SUB
17142 CMP <-> CMN
17143 by negating the second operand. */
17144
17145 static int
17146 negate_data_op (unsigned long * instruction,
17147 unsigned long value)
17148 {
17149 int op, new_inst;
17150 unsigned long negated, inverted;
17151
17152 negated = encode_arm_immediate (-value);
17153 inverted = encode_arm_immediate (~value);
17154
17155 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
17156 switch (op)
17157 {
17158 /* First negates. */
17159 case OPCODE_SUB: /* ADD <-> SUB */
17160 new_inst = OPCODE_ADD;
17161 value = negated;
17162 break;
17163
17164 case OPCODE_ADD:
17165 new_inst = OPCODE_SUB;
17166 value = negated;
17167 break;
17168
17169 case OPCODE_CMP: /* CMP <-> CMN */
17170 new_inst = OPCODE_CMN;
17171 value = negated;
17172 break;
17173
17174 case OPCODE_CMN:
17175 new_inst = OPCODE_CMP;
17176 value = negated;
17177 break;
17178
17179 /* Now Inverted ops. */
17180 case OPCODE_MOV: /* MOV <-> MVN */
17181 new_inst = OPCODE_MVN;
17182 value = inverted;
17183 break;
17184
17185 case OPCODE_MVN:
17186 new_inst = OPCODE_MOV;
17187 value = inverted;
17188 break;
17189
17190 case OPCODE_AND: /* AND <-> BIC */
17191 new_inst = OPCODE_BIC;
17192 value = inverted;
17193 break;
17194
17195 case OPCODE_BIC:
17196 new_inst = OPCODE_AND;
17197 value = inverted;
17198 break;
17199
17200 case OPCODE_ADC: /* ADC <-> SBC */
17201 new_inst = OPCODE_SBC;
17202 value = inverted;
17203 break;
17204
17205 case OPCODE_SBC:
17206 new_inst = OPCODE_ADC;
17207 value = inverted;
17208 break;
17209
17210 /* We cannot do anything. */
17211 default:
17212 return FAIL;
17213 }
17214
17215 if (value == (unsigned) FAIL)
17216 return FAIL;
17217
17218 *instruction &= OPCODE_MASK;
17219 *instruction |= new_inst << DATA_OP_SHIFT;
17220 return value;
17221 }
17222
17223 /* Like negate_data_op, but for Thumb-2. */
17224
17225 static unsigned int
17226 thumb32_negate_data_op (offsetT *instruction, offsetT value)
17227 {
17228 int op, new_inst;
17229 int rd;
17230 offsetT negated, inverted;
17231
17232 negated = encode_thumb32_immediate (-value);
17233 inverted = encode_thumb32_immediate (~value);
17234
17235 rd = (*instruction >> 8) & 0xf;
17236 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
17237 switch (op)
17238 {
17239 /* ADD <-> SUB. Includes CMP <-> CMN. */
17240 case T2_OPCODE_SUB:
17241 new_inst = T2_OPCODE_ADD;
17242 value = negated;
17243 break;
17244
17245 case T2_OPCODE_ADD:
17246 new_inst = T2_OPCODE_SUB;
17247 value = negated;
17248 break;
17249
17250 /* ORR <-> ORN. Includes MOV <-> MVN. */
17251 case T2_OPCODE_ORR:
17252 new_inst = T2_OPCODE_ORN;
17253 value = inverted;
17254 break;
17255
17256 case T2_OPCODE_ORN:
17257 new_inst = T2_OPCODE_ORR;
17258 value = inverted;
17259 break;
17260
17261 /* AND <-> BIC. TST has no inverted equivalent. */
17262 case T2_OPCODE_AND:
17263 new_inst = T2_OPCODE_BIC;
17264 if (rd == 15)
17265 value = FAIL;
17266 else
17267 value = inverted;
17268 break;
17269
17270 case T2_OPCODE_BIC:
17271 new_inst = T2_OPCODE_AND;
17272 value = inverted;
17273 break;
17274
17275 /* ADC <-> SBC */
17276 case T2_OPCODE_ADC:
17277 new_inst = T2_OPCODE_SBC;
17278 value = inverted;
17279 break;
17280
17281 case T2_OPCODE_SBC:
17282 new_inst = T2_OPCODE_ADC;
17283 value = inverted;
17284 break;
17285
17286 /* We cannot do anything. */
17287 default:
17288 return FAIL;
17289 }
17290
17291 if (value == FAIL)
17292 return FAIL;
17293
17294 *instruction &= T2_OPCODE_MASK;
17295 *instruction |= new_inst << T2_DATA_OP_SHIFT;
17296 return value;
17297 }
17298
17299 /* Read a 32-bit thumb instruction from buf. */
17300 static unsigned long
17301 get_thumb32_insn (char * buf)
17302 {
17303 unsigned long insn;
17304 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
17305 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17306
17307 return insn;
17308 }
17309
17310
17311 /* We usually want to set the low bit on the address of thumb function
17312 symbols. In particular .word foo - . should have the low bit set.
17313 Generic code tries to fold the difference of two symbols to
17314 a constant. Prevent this and force a relocation when the first symbols
17315 is a thumb function. */
17316 int
17317 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
17318 {
17319 if (op == O_subtract
17320 && l->X_op == O_symbol
17321 && r->X_op == O_symbol
17322 && THUMB_IS_FUNC (l->X_add_symbol))
17323 {
17324 l->X_op = O_subtract;
17325 l->X_op_symbol = r->X_add_symbol;
17326 l->X_add_number -= r->X_add_number;
17327 return 1;
17328 }
17329 /* Process as normal. */
17330 return 0;
17331 }
17332
17333 void
17334 md_apply_fix (fixS * fixP,
17335 valueT * valP,
17336 segT seg)
17337 {
17338 offsetT value = * valP;
17339 offsetT newval;
17340 unsigned int newimm;
17341 unsigned long temp;
17342 int sign;
17343 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
17344
17345 assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
17346
17347 /* Note whether this will delete the relocation. */
17348
17349 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
17350 fixP->fx_done = 1;
17351
17352 /* On a 64-bit host, silently truncate 'value' to 32 bits for
17353 consistency with the behavior on 32-bit hosts. Remember value
17354 for emit_reloc. */
17355 value &= 0xffffffff;
17356 value ^= 0x80000000;
17357 value -= 0x80000000;
17358
17359 *valP = value;
17360 fixP->fx_addnumber = value;
17361
17362 /* Same treatment for fixP->fx_offset. */
17363 fixP->fx_offset &= 0xffffffff;
17364 fixP->fx_offset ^= 0x80000000;
17365 fixP->fx_offset -= 0x80000000;
17366
17367 switch (fixP->fx_r_type)
17368 {
17369 case BFD_RELOC_NONE:
17370 /* This will need to go in the object file. */
17371 fixP->fx_done = 0;
17372 break;
17373
17374 case BFD_RELOC_ARM_IMMEDIATE:
17375 /* We claim that this fixup has been processed here,
17376 even if in fact we generate an error because we do
17377 not have a reloc for it, so tc_gen_reloc will reject it. */
17378 fixP->fx_done = 1;
17379
17380 if (fixP->fx_addsy
17381 && ! S_IS_DEFINED (fixP->fx_addsy))
17382 {
17383 as_bad_where (fixP->fx_file, fixP->fx_line,
17384 _("undefined symbol %s used as an immediate value"),
17385 S_GET_NAME (fixP->fx_addsy));
17386 break;
17387 }
17388
17389 newimm = encode_arm_immediate (value);
17390 temp = md_chars_to_number (buf, INSN_SIZE);
17391
17392 /* If the instruction will fail, see if we can fix things up by
17393 changing the opcode. */
17394 if (newimm == (unsigned int) FAIL
17395 && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
17396 {
17397 as_bad_where (fixP->fx_file, fixP->fx_line,
17398 _("invalid constant (%lx) after fixup"),
17399 (unsigned long) value);
17400 break;
17401 }
17402
17403 newimm |= (temp & 0xfffff000);
17404 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17405 break;
17406
17407 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
17408 {
17409 unsigned int highpart = 0;
17410 unsigned int newinsn = 0xe1a00000; /* nop. */
17411
17412 newimm = encode_arm_immediate (value);
17413 temp = md_chars_to_number (buf, INSN_SIZE);
17414
17415 /* If the instruction will fail, see if we can fix things up by
17416 changing the opcode. */
17417 if (newimm == (unsigned int) FAIL
17418 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
17419 {
17420 /* No ? OK - try using two ADD instructions to generate
17421 the value. */
17422 newimm = validate_immediate_twopart (value, & highpart);
17423
17424 /* Yes - then make sure that the second instruction is
17425 also an add. */
17426 if (newimm != (unsigned int) FAIL)
17427 newinsn = temp;
17428 /* Still No ? Try using a negated value. */
17429 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
17430 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
17431 /* Otherwise - give up. */
17432 else
17433 {
17434 as_bad_where (fixP->fx_file, fixP->fx_line,
17435 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
17436 (long) value);
17437 break;
17438 }
17439
17440 /* Replace the first operand in the 2nd instruction (which
17441 is the PC) with the destination register. We have
17442 already added in the PC in the first instruction and we
17443 do not want to do it again. */
17444 newinsn &= ~ 0xf0000;
17445 newinsn |= ((newinsn & 0x0f000) << 4);
17446 }
17447
17448 newimm |= (temp & 0xfffff000);
17449 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
17450
17451 highpart |= (newinsn & 0xfffff000);
17452 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
17453 }
17454 break;
17455
17456 case BFD_RELOC_ARM_OFFSET_IMM:
17457 if (!fixP->fx_done && seg->use_rela_p)
17458 value = 0;
17459
17460 case BFD_RELOC_ARM_LITERAL:
17461 sign = value >= 0;
17462
17463 if (value < 0)
17464 value = - value;
17465
17466 if (validate_offset_imm (value, 0) == FAIL)
17467 {
17468 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
17469 as_bad_where (fixP->fx_file, fixP->fx_line,
17470 _("invalid literal constant: pool needs to be closer"));
17471 else
17472 as_bad_where (fixP->fx_file, fixP->fx_line,
17473 _("bad immediate value for offset (%ld)"),
17474 (long) value);
17475 break;
17476 }
17477
17478 newval = md_chars_to_number (buf, INSN_SIZE);
17479 newval &= 0xff7ff000;
17480 newval |= value | (sign ? INDEX_UP : 0);
17481 md_number_to_chars (buf, newval, INSN_SIZE);
17482 break;
17483
17484 case BFD_RELOC_ARM_OFFSET_IMM8:
17485 case BFD_RELOC_ARM_HWLITERAL:
17486 sign = value >= 0;
17487
17488 if (value < 0)
17489 value = - value;
17490
17491 if (validate_offset_imm (value, 1) == FAIL)
17492 {
17493 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
17494 as_bad_where (fixP->fx_file, fixP->fx_line,
17495 _("invalid literal constant: pool needs to be closer"));
17496 else
17497 as_bad (_("bad immediate value for half-word offset (%ld)"),
17498 (long) value);
17499 break;
17500 }
17501
17502 newval = md_chars_to_number (buf, INSN_SIZE);
17503 newval &= 0xff7ff0f0;
17504 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
17505 md_number_to_chars (buf, newval, INSN_SIZE);
17506 break;
17507
17508 case BFD_RELOC_ARM_T32_OFFSET_U8:
17509 if (value < 0 || value > 1020 || value % 4 != 0)
17510 as_bad_where (fixP->fx_file, fixP->fx_line,
17511 _("bad immediate value for offset (%ld)"), (long) value);
17512 value /= 4;
17513
17514 newval = md_chars_to_number (buf+2, THUMB_SIZE);
17515 newval |= value;
17516 md_number_to_chars (buf+2, newval, THUMB_SIZE);
17517 break;
17518
17519 case BFD_RELOC_ARM_T32_OFFSET_IMM:
17520 /* This is a complicated relocation used for all varieties of Thumb32
17521 load/store instruction with immediate offset:
17522
17523 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
17524 *4, optional writeback(W)
17525 (doubleword load/store)
17526
17527 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
17528 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
17529 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
17530 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
17531 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
17532
17533 Uppercase letters indicate bits that are already encoded at
17534 this point. Lowercase letters are our problem. For the
17535 second block of instructions, the secondary opcode nybble
17536 (bits 8..11) is present, and bit 23 is zero, even if this is
17537 a PC-relative operation. */
17538 newval = md_chars_to_number (buf, THUMB_SIZE);
17539 newval <<= 16;
17540 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
17541
17542 if ((newval & 0xf0000000) == 0xe0000000)
17543 {
17544 /* Doubleword load/store: 8-bit offset, scaled by 4. */
17545 if (value >= 0)
17546 newval |= (1 << 23);
17547 else
17548 value = -value;
17549 if (value % 4 != 0)
17550 {
17551 as_bad_where (fixP->fx_file, fixP->fx_line,
17552 _("offset not a multiple of 4"));
17553 break;
17554 }
17555 value /= 4;
17556 if (value > 0xff)
17557 {
17558 as_bad_where (fixP->fx_file, fixP->fx_line,
17559 _("offset out of range"));
17560 break;
17561 }
17562 newval &= ~0xff;
17563 }
17564 else if ((newval & 0x000f0000) == 0x000f0000)
17565 {
17566 /* PC-relative, 12-bit offset. */
17567 if (value >= 0)
17568 newval |= (1 << 23);
17569 else
17570 value = -value;
17571 if (value > 0xfff)
17572 {
17573 as_bad_where (fixP->fx_file, fixP->fx_line,
17574 _("offset out of range"));
17575 break;
17576 }
17577 newval &= ~0xfff;
17578 }
17579 else if ((newval & 0x00000100) == 0x00000100)
17580 {
17581 /* Writeback: 8-bit, +/- offset. */
17582 if (value >= 0)
17583 newval |= (1 << 9);
17584 else
17585 value = -value;
17586 if (value > 0xff)
17587 {
17588 as_bad_where (fixP->fx_file, fixP->fx_line,
17589 _("offset out of range"));
17590 break;
17591 }
17592 newval &= ~0xff;
17593 }
17594 else if ((newval & 0x00000f00) == 0x00000e00)
17595 {
17596 /* T-instruction: positive 8-bit offset. */
17597 if (value < 0 || value > 0xff)
17598 {
17599 as_bad_where (fixP->fx_file, fixP->fx_line,
17600 _("offset out of range"));
17601 break;
17602 }
17603 newval &= ~0xff;
17604 newval |= value;
17605 }
17606 else
17607 {
17608 /* Positive 12-bit or negative 8-bit offset. */
17609 int limit;
17610 if (value >= 0)
17611 {
17612 newval |= (1 << 23);
17613 limit = 0xfff;
17614 }
17615 else
17616 {
17617 value = -value;
17618 limit = 0xff;
17619 }
17620 if (value > limit)
17621 {
17622 as_bad_where (fixP->fx_file, fixP->fx_line,
17623 _("offset out of range"));
17624 break;
17625 }
17626 newval &= ~limit;
17627 }
17628
17629 newval |= value;
17630 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
17631 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
17632 break;
17633
17634 case BFD_RELOC_ARM_SHIFT_IMM:
17635 newval = md_chars_to_number (buf, INSN_SIZE);
17636 if (((unsigned long) value) > 32
17637 || (value == 32
17638 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
17639 {
17640 as_bad_where (fixP->fx_file, fixP->fx_line,
17641 _("shift expression is too large"));
17642 break;
17643 }
17644
17645 if (value == 0)
17646 /* Shifts of zero must be done as lsl. */
17647 newval &= ~0x60;
17648 else if (value == 32)
17649 value = 0;
17650 newval &= 0xfffff07f;
17651 newval |= (value & 0x1f) << 7;
17652 md_number_to_chars (buf, newval, INSN_SIZE);
17653 break;
17654
17655 case BFD_RELOC_ARM_T32_IMMEDIATE:
17656 case BFD_RELOC_ARM_T32_ADD_IMM:
17657 case BFD_RELOC_ARM_T32_IMM12:
17658 case BFD_RELOC_ARM_T32_ADD_PC12:
17659 /* We claim that this fixup has been processed here,
17660 even if in fact we generate an error because we do
17661 not have a reloc for it, so tc_gen_reloc will reject it. */
17662 fixP->fx_done = 1;
17663
17664 if (fixP->fx_addsy
17665 && ! S_IS_DEFINED (fixP->fx_addsy))
17666 {
17667 as_bad_where (fixP->fx_file, fixP->fx_line,
17668 _("undefined symbol %s used as an immediate value"),
17669 S_GET_NAME (fixP->fx_addsy));
17670 break;
17671 }
17672
17673 newval = md_chars_to_number (buf, THUMB_SIZE);
17674 newval <<= 16;
17675 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
17676
17677 newimm = FAIL;
17678 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
17679 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
17680 {
17681 newimm = encode_thumb32_immediate (value);
17682 if (newimm == (unsigned int) FAIL)
17683 newimm = thumb32_negate_data_op (&newval, value);
17684 }
17685 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
17686 && newimm == (unsigned int) FAIL)
17687 {
17688 /* Turn add/sum into addw/subw. */
17689 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
17690 newval = (newval & 0xfeffffff) | 0x02000000;
17691
17692 /* 12 bit immediate for addw/subw. */
17693 if (value < 0)
17694 {
17695 value = -value;
17696 newval ^= 0x00a00000;
17697 }
17698 if (value > 0xfff)
17699 newimm = (unsigned int) FAIL;
17700 else
17701 newimm = value;
17702 }
17703
17704 if (newimm == (unsigned int)FAIL)
17705 {
17706 as_bad_where (fixP->fx_file, fixP->fx_line,
17707 _("invalid constant (%lx) after fixup"),
17708 (unsigned long) value);
17709 break;
17710 }
17711
17712 newval |= (newimm & 0x800) << 15;
17713 newval |= (newimm & 0x700) << 4;
17714 newval |= (newimm & 0x0ff);
17715
17716 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
17717 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
17718 break;
17719
17720 case BFD_RELOC_ARM_SMC:
17721 if (((unsigned long) value) > 0xffff)
17722 as_bad_where (fixP->fx_file, fixP->fx_line,
17723 _("invalid smc expression"));
17724 newval = md_chars_to_number (buf, INSN_SIZE);
17725 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
17726 md_number_to_chars (buf, newval, INSN_SIZE);
17727 break;
17728
17729 case BFD_RELOC_ARM_SWI:
17730 if (fixP->tc_fix_data != 0)
17731 {
17732 if (((unsigned long) value) > 0xff)
17733 as_bad_where (fixP->fx_file, fixP->fx_line,
17734 _("invalid swi expression"));
17735 newval = md_chars_to_number (buf, THUMB_SIZE);
17736 newval |= value;
17737 md_number_to_chars (buf, newval, THUMB_SIZE);
17738 }
17739 else
17740 {
17741 if (((unsigned long) value) > 0x00ffffff)
17742 as_bad_where (fixP->fx_file, fixP->fx_line,
17743 _("invalid swi expression"));
17744 newval = md_chars_to_number (buf, INSN_SIZE);
17745 newval |= value;
17746 md_number_to_chars (buf, newval, INSN_SIZE);
17747 }
17748 break;
17749
17750 case BFD_RELOC_ARM_MULTI:
17751 if (((unsigned long) value) > 0xffff)
17752 as_bad_where (fixP->fx_file, fixP->fx_line,
17753 _("invalid expression in load/store multiple"));
17754 newval = value | md_chars_to_number (buf, INSN_SIZE);
17755 md_number_to_chars (buf, newval, INSN_SIZE);
17756 break;
17757
17758 #ifdef OBJ_ELF
17759 case BFD_RELOC_ARM_PCREL_CALL:
17760 newval = md_chars_to_number (buf, INSN_SIZE);
17761 if ((newval & 0xf0000000) == 0xf0000000)
17762 temp = 1;
17763 else
17764 temp = 3;
17765 goto arm_branch_common;
17766
17767 case BFD_RELOC_ARM_PCREL_JUMP:
17768 case BFD_RELOC_ARM_PLT32:
17769 #endif
17770 case BFD_RELOC_ARM_PCREL_BRANCH:
17771 temp = 3;
17772 goto arm_branch_common;
17773
17774 case BFD_RELOC_ARM_PCREL_BLX:
17775 temp = 1;
17776 arm_branch_common:
17777 /* We are going to store value (shifted right by two) in the
17778 instruction, in a 24 bit, signed field. Bits 26 through 32 either
17779 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
17780 also be be clear. */
17781 if (value & temp)
17782 as_bad_where (fixP->fx_file, fixP->fx_line,
17783 _("misaligned branch destination"));
17784 if ((value & (offsetT)0xfe000000) != (offsetT)0
17785 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
17786 as_bad_where (fixP->fx_file, fixP->fx_line,
17787 _("branch out of range"));
17788
17789 if (fixP->fx_done || !seg->use_rela_p)
17790 {
17791 newval = md_chars_to_number (buf, INSN_SIZE);
17792 newval |= (value >> 2) & 0x00ffffff;
17793 /* Set the H bit on BLX instructions. */
17794 if (temp == 1)
17795 {
17796 if (value & 2)
17797 newval |= 0x01000000;
17798 else
17799 newval &= ~0x01000000;
17800 }
17801 md_number_to_chars (buf, newval, INSN_SIZE);
17802 }
17803 break;
17804
17805 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */
17806 /* CZB can only branch forward. */
17807 if (value & ~0x7e)
17808 as_bad_where (fixP->fx_file, fixP->fx_line,
17809 _("branch out of range"));
17810
17811 if (fixP->fx_done || !seg->use_rela_p)
17812 {
17813 newval = md_chars_to_number (buf, THUMB_SIZE);
17814 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
17815 md_number_to_chars (buf, newval, THUMB_SIZE);
17816 }
17817 break;
17818
17819 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
17820 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
17821 as_bad_where (fixP->fx_file, fixP->fx_line,
17822 _("branch out of range"));
17823
17824 if (fixP->fx_done || !seg->use_rela_p)
17825 {
17826 newval = md_chars_to_number (buf, THUMB_SIZE);
17827 newval |= (value & 0x1ff) >> 1;
17828 md_number_to_chars (buf, newval, THUMB_SIZE);
17829 }
17830 break;
17831
17832 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
17833 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
17834 as_bad_where (fixP->fx_file, fixP->fx_line,
17835 _("branch out of range"));
17836
17837 if (fixP->fx_done || !seg->use_rela_p)
17838 {
17839 newval = md_chars_to_number (buf, THUMB_SIZE);
17840 newval |= (value & 0xfff) >> 1;
17841 md_number_to_chars (buf, newval, THUMB_SIZE);
17842 }
17843 break;
17844
17845 case BFD_RELOC_THUMB_PCREL_BRANCH20:
17846 if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff))
17847 as_bad_where (fixP->fx_file, fixP->fx_line,
17848 _("conditional branch out of range"));
17849
17850 if (fixP->fx_done || !seg->use_rela_p)
17851 {
17852 offsetT newval2;
17853 addressT S, J1, J2, lo, hi;
17854
17855 S = (value & 0x00100000) >> 20;
17856 J2 = (value & 0x00080000) >> 19;
17857 J1 = (value & 0x00040000) >> 18;
17858 hi = (value & 0x0003f000) >> 12;
17859 lo = (value & 0x00000ffe) >> 1;
17860
17861 newval = md_chars_to_number (buf, THUMB_SIZE);
17862 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17863 newval |= (S << 10) | hi;
17864 newval2 |= (J1 << 13) | (J2 << 11) | lo;
17865 md_number_to_chars (buf, newval, THUMB_SIZE);
17866 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17867 }
17868 break;
17869
17870 case BFD_RELOC_THUMB_PCREL_BLX:
17871 case BFD_RELOC_THUMB_PCREL_BRANCH23:
17872 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
17873 as_bad_where (fixP->fx_file, fixP->fx_line,
17874 _("branch out of range"));
17875
17876 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
17877 /* For a BLX instruction, make sure that the relocation is rounded up
17878 to a word boundary. This follows the semantics of the instruction
17879 which specifies that bit 1 of the target address will come from bit
17880 1 of the base address. */
17881 value = (value + 1) & ~ 1;
17882
17883 if (fixP->fx_done || !seg->use_rela_p)
17884 {
17885 offsetT newval2;
17886
17887 newval = md_chars_to_number (buf, THUMB_SIZE);
17888 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17889 newval |= (value & 0x7fffff) >> 12;
17890 newval2 |= (value & 0xfff) >> 1;
17891 md_number_to_chars (buf, newval, THUMB_SIZE);
17892 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17893 }
17894 break;
17895
17896 case BFD_RELOC_THUMB_PCREL_BRANCH25:
17897 if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff))
17898 as_bad_where (fixP->fx_file, fixP->fx_line,
17899 _("branch out of range"));
17900
17901 if (fixP->fx_done || !seg->use_rela_p)
17902 {
17903 offsetT newval2;
17904 addressT S, I1, I2, lo, hi;
17905
17906 S = (value & 0x01000000) >> 24;
17907 I1 = (value & 0x00800000) >> 23;
17908 I2 = (value & 0x00400000) >> 22;
17909 hi = (value & 0x003ff000) >> 12;
17910 lo = (value & 0x00000ffe) >> 1;
17911
17912 I1 = !(I1 ^ S);
17913 I2 = !(I2 ^ S);
17914
17915 newval = md_chars_to_number (buf, THUMB_SIZE);
17916 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
17917 newval |= (S << 10) | hi;
17918 newval2 |= (I1 << 13) | (I2 << 11) | lo;
17919 md_number_to_chars (buf, newval, THUMB_SIZE);
17920 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
17921 }
17922 break;
17923
17924 case BFD_RELOC_8:
17925 if (fixP->fx_done || !seg->use_rela_p)
17926 md_number_to_chars (buf, value, 1);
17927 break;
17928
17929 case BFD_RELOC_16:
17930 if (fixP->fx_done || !seg->use_rela_p)
17931 md_number_to_chars (buf, value, 2);
17932 break;
17933
17934 #ifdef OBJ_ELF
17935 case BFD_RELOC_ARM_TLS_GD32:
17936 case BFD_RELOC_ARM_TLS_LE32:
17937 case BFD_RELOC_ARM_TLS_IE32:
17938 case BFD_RELOC_ARM_TLS_LDM32:
17939 case BFD_RELOC_ARM_TLS_LDO32:
17940 S_SET_THREAD_LOCAL (fixP->fx_addsy);
17941 /* fall through */
17942
17943 case BFD_RELOC_ARM_GOT32:
17944 case BFD_RELOC_ARM_GOTOFF:
17945 case BFD_RELOC_ARM_TARGET2:
17946 if (fixP->fx_done || !seg->use_rela_p)
17947 md_number_to_chars (buf, 0, 4);
17948 break;
17949 #endif
17950
17951 case BFD_RELOC_RVA:
17952 case BFD_RELOC_32:
17953 case BFD_RELOC_ARM_TARGET1:
17954 case BFD_RELOC_ARM_ROSEGREL32:
17955 case BFD_RELOC_ARM_SBREL32:
17956 case BFD_RELOC_32_PCREL:
17957 #ifdef TE_PE
17958 case BFD_RELOC_32_SECREL:
17959 #endif
17960 if (fixP->fx_done || !seg->use_rela_p)
17961 #ifdef TE_WINCE
17962 /* For WinCE we only do this for pcrel fixups. */
17963 if (fixP->fx_done || fixP->fx_pcrel)
17964 #endif
17965 md_number_to_chars (buf, value, 4);
17966 break;
17967
17968 #ifdef OBJ_ELF
17969 case BFD_RELOC_ARM_PREL31:
17970 if (fixP->fx_done || !seg->use_rela_p)
17971 {
17972 newval = md_chars_to_number (buf, 4) & 0x80000000;
17973 if ((value ^ (value >> 1)) & 0x40000000)
17974 {
17975 as_bad_where (fixP->fx_file, fixP->fx_line,
17976 _("rel31 relocation overflow"));
17977 }
17978 newval |= value & 0x7fffffff;
17979 md_number_to_chars (buf, newval, 4);
17980 }
17981 break;
17982 #endif
17983
17984 case BFD_RELOC_ARM_CP_OFF_IMM:
17985 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
17986 if (value < -1023 || value > 1023 || (value & 3))
17987 as_bad_where (fixP->fx_file, fixP->fx_line,
17988 _("co-processor offset out of range"));
17989 cp_off_common:
17990 sign = value >= 0;
17991 if (value < 0)
17992 value = -value;
17993 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
17994 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
17995 newval = md_chars_to_number (buf, INSN_SIZE);
17996 else
17997 newval = get_thumb32_insn (buf);
17998 newval &= 0xff7fff00;
17999 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
18000 if (value == 0)
18001 newval &= ~WRITE_BACK;
18002 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
18003 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
18004 md_number_to_chars (buf, newval, INSN_SIZE);
18005 else
18006 put_thumb32_insn (buf, newval);
18007 break;
18008
18009 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
18010 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
18011 if (value < -255 || value > 255)
18012 as_bad_where (fixP->fx_file, fixP->fx_line,
18013 _("co-processor offset out of range"));
18014 value *= 4;
18015 goto cp_off_common;
18016
18017 case BFD_RELOC_ARM_THUMB_OFFSET:
18018 newval = md_chars_to_number (buf, THUMB_SIZE);
18019 /* Exactly what ranges, and where the offset is inserted depends
18020 on the type of instruction, we can establish this from the
18021 top 4 bits. */
18022 switch (newval >> 12)
18023 {
18024 case 4: /* PC load. */
18025 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
18026 forced to zero for these loads; md_pcrel_from has already
18027 compensated for this. */
18028 if (value & 3)
18029 as_bad_where (fixP->fx_file, fixP->fx_line,
18030 _("invalid offset, target not word aligned (0x%08lX)"),
18031 (((unsigned long) fixP->fx_frag->fr_address
18032 + (unsigned long) fixP->fx_where) & ~3)
18033 + (unsigned long) value);
18034
18035 if (value & ~0x3fc)
18036 as_bad_where (fixP->fx_file, fixP->fx_line,
18037 _("invalid offset, value too big (0x%08lX)"),
18038 (long) value);
18039
18040 newval |= value >> 2;
18041 break;
18042
18043 case 9: /* SP load/store. */
18044 if (value & ~0x3fc)
18045 as_bad_where (fixP->fx_file, fixP->fx_line,
18046 _("invalid offset, value too big (0x%08lX)"),
18047 (long) value);
18048 newval |= value >> 2;
18049 break;
18050
18051 case 6: /* Word load/store. */
18052 if (value & ~0x7c)
18053 as_bad_where (fixP->fx_file, fixP->fx_line,
18054 _("invalid offset, value too big (0x%08lX)"),
18055 (long) value);
18056 newval |= value << 4; /* 6 - 2. */
18057 break;
18058
18059 case 7: /* Byte load/store. */
18060 if (value & ~0x1f)
18061 as_bad_where (fixP->fx_file, fixP->fx_line,
18062 _("invalid offset, value too big (0x%08lX)"),
18063 (long) value);
18064 newval |= value << 6;
18065 break;
18066
18067 case 8: /* Halfword load/store. */
18068 if (value & ~0x3e)
18069 as_bad_where (fixP->fx_file, fixP->fx_line,
18070 _("invalid offset, value too big (0x%08lX)"),
18071 (long) value);
18072 newval |= value << 5; /* 6 - 1. */
18073 break;
18074
18075 default:
18076 as_bad_where (fixP->fx_file, fixP->fx_line,
18077 "Unable to process relocation for thumb opcode: %lx",
18078 (unsigned long) newval);
18079 break;
18080 }
18081 md_number_to_chars (buf, newval, THUMB_SIZE);
18082 break;
18083
18084 case BFD_RELOC_ARM_THUMB_ADD:
18085 /* This is a complicated relocation, since we use it for all of
18086 the following immediate relocations:
18087
18088 3bit ADD/SUB
18089 8bit ADD/SUB
18090 9bit ADD/SUB SP word-aligned
18091 10bit ADD PC/SP word-aligned
18092
18093 The type of instruction being processed is encoded in the
18094 instruction field:
18095
18096 0x8000 SUB
18097 0x00F0 Rd
18098 0x000F Rs
18099 */
18100 newval = md_chars_to_number (buf, THUMB_SIZE);
18101 {
18102 int rd = (newval >> 4) & 0xf;
18103 int rs = newval & 0xf;
18104 int subtract = !!(newval & 0x8000);
18105
18106 /* Check for HI regs, only very restricted cases allowed:
18107 Adjusting SP, and using PC or SP to get an address. */
18108 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
18109 || (rs > 7 && rs != REG_SP && rs != REG_PC))
18110 as_bad_where (fixP->fx_file, fixP->fx_line,
18111 _("invalid Hi register with immediate"));
18112
18113 /* If value is negative, choose the opposite instruction. */
18114 if (value < 0)
18115 {
18116 value = -value;
18117 subtract = !subtract;
18118 if (value < 0)
18119 as_bad_where (fixP->fx_file, fixP->fx_line,
18120 _("immediate value out of range"));
18121 }
18122
18123 if (rd == REG_SP)
18124 {
18125 if (value & ~0x1fc)
18126 as_bad_where (fixP->fx_file, fixP->fx_line,
18127 _("invalid immediate for stack address calculation"));
18128 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
18129 newval |= value >> 2;
18130 }
18131 else if (rs == REG_PC || rs == REG_SP)
18132 {
18133 if (subtract || value & ~0x3fc)
18134 as_bad_where (fixP->fx_file, fixP->fx_line,
18135 _("invalid immediate for address calculation (value = 0x%08lX)"),
18136 (unsigned long) value);
18137 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
18138 newval |= rd << 8;
18139 newval |= value >> 2;
18140 }
18141 else if (rs == rd)
18142 {
18143 if (value & ~0xff)
18144 as_bad_where (fixP->fx_file, fixP->fx_line,
18145 _("immediate value out of range"));
18146 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
18147 newval |= (rd << 8) | value;
18148 }
18149 else
18150 {
18151 if (value & ~0x7)
18152 as_bad_where (fixP->fx_file, fixP->fx_line,
18153 _("immediate value out of range"));
18154 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
18155 newval |= rd | (rs << 3) | (value << 6);
18156 }
18157 }
18158 md_number_to_chars (buf, newval, THUMB_SIZE);
18159 break;
18160
18161 case BFD_RELOC_ARM_THUMB_IMM:
18162 newval = md_chars_to_number (buf, THUMB_SIZE);
18163 if (value < 0 || value > 255)
18164 as_bad_where (fixP->fx_file, fixP->fx_line,
18165 _("invalid immediate: %ld is too large"),
18166 (long) value);
18167 newval |= value;
18168 md_number_to_chars (buf, newval, THUMB_SIZE);
18169 break;
18170
18171 case BFD_RELOC_ARM_THUMB_SHIFT:
18172 /* 5bit shift value (0..32). LSL cannot take 32. */
18173 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
18174 temp = newval & 0xf800;
18175 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
18176 as_bad_where (fixP->fx_file, fixP->fx_line,
18177 _("invalid shift value: %ld"), (long) value);
18178 /* Shifts of zero must be encoded as LSL. */
18179 if (value == 0)
18180 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
18181 /* Shifts of 32 are encoded as zero. */
18182 else if (value == 32)
18183 value = 0;
18184 newval |= value << 6;
18185 md_number_to_chars (buf, newval, THUMB_SIZE);
18186 break;
18187
18188 case BFD_RELOC_VTABLE_INHERIT:
18189 case BFD_RELOC_VTABLE_ENTRY:
18190 fixP->fx_done = 0;
18191 return;
18192
18193 case BFD_RELOC_ARM_MOVW:
18194 case BFD_RELOC_ARM_MOVT:
18195 case BFD_RELOC_ARM_THUMB_MOVW:
18196 case BFD_RELOC_ARM_THUMB_MOVT:
18197 if (fixP->fx_done || !seg->use_rela_p)
18198 {
18199 /* REL format relocations are limited to a 16-bit addend. */
18200 if (!fixP->fx_done)
18201 {
18202 if (value < -0x1000 || value > 0xffff)
18203 as_bad_where (fixP->fx_file, fixP->fx_line,
18204 _("offset too big"));
18205 }
18206 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
18207 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18208 {
18209 value >>= 16;
18210 }
18211
18212 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
18213 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
18214 {
18215 newval = get_thumb32_insn (buf);
18216 newval &= 0xfbf08f00;
18217 newval |= (value & 0xf000) << 4;
18218 newval |= (value & 0x0800) << 15;
18219 newval |= (value & 0x0700) << 4;
18220 newval |= (value & 0x00ff);
18221 put_thumb32_insn (buf, newval);
18222 }
18223 else
18224 {
18225 newval = md_chars_to_number (buf, 4);
18226 newval &= 0xfff0f000;
18227 newval |= value & 0x0fff;
18228 newval |= (value & 0xf000) << 4;
18229 md_number_to_chars (buf, newval, 4);
18230 }
18231 }
18232 return;
18233
18234 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18235 case BFD_RELOC_ARM_ALU_PC_G0:
18236 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18237 case BFD_RELOC_ARM_ALU_PC_G1:
18238 case BFD_RELOC_ARM_ALU_PC_G2:
18239 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18240 case BFD_RELOC_ARM_ALU_SB_G0:
18241 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18242 case BFD_RELOC_ARM_ALU_SB_G1:
18243 case BFD_RELOC_ARM_ALU_SB_G2:
18244 assert (!fixP->fx_done);
18245 if (!seg->use_rela_p)
18246 {
18247 bfd_vma insn;
18248 bfd_vma encoded_addend;
18249 bfd_vma addend_abs = abs (value);
18250
18251 /* Check that the absolute value of the addend can be
18252 expressed as an 8-bit constant plus a rotation. */
18253 encoded_addend = encode_arm_immediate (addend_abs);
18254 if (encoded_addend == (unsigned int) FAIL)
18255 as_bad_where (fixP->fx_file, fixP->fx_line,
18256 _("the offset 0x%08lX is not representable"),
18257 addend_abs);
18258
18259 /* Extract the instruction. */
18260 insn = md_chars_to_number (buf, INSN_SIZE);
18261
18262 /* If the addend is positive, use an ADD instruction.
18263 Otherwise use a SUB. Take care not to destroy the S bit. */
18264 insn &= 0xff1fffff;
18265 if (value < 0)
18266 insn |= 1 << 22;
18267 else
18268 insn |= 1 << 23;
18269
18270 /* Place the encoded addend into the first 12 bits of the
18271 instruction. */
18272 insn &= 0xfffff000;
18273 insn |= encoded_addend;
18274
18275 /* Update the instruction. */
18276 md_number_to_chars (buf, insn, INSN_SIZE);
18277 }
18278 break;
18279
18280 case BFD_RELOC_ARM_LDR_PC_G0:
18281 case BFD_RELOC_ARM_LDR_PC_G1:
18282 case BFD_RELOC_ARM_LDR_PC_G2:
18283 case BFD_RELOC_ARM_LDR_SB_G0:
18284 case BFD_RELOC_ARM_LDR_SB_G1:
18285 case BFD_RELOC_ARM_LDR_SB_G2:
18286 assert (!fixP->fx_done);
18287 if (!seg->use_rela_p)
18288 {
18289 bfd_vma insn;
18290 bfd_vma addend_abs = abs (value);
18291
18292 /* Check that the absolute value of the addend can be
18293 encoded in 12 bits. */
18294 if (addend_abs >= 0x1000)
18295 as_bad_where (fixP->fx_file, fixP->fx_line,
18296 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
18297 addend_abs);
18298
18299 /* Extract the instruction. */
18300 insn = md_chars_to_number (buf, INSN_SIZE);
18301
18302 /* If the addend is negative, clear bit 23 of the instruction.
18303 Otherwise set it. */
18304 if (value < 0)
18305 insn &= ~(1 << 23);
18306 else
18307 insn |= 1 << 23;
18308
18309 /* Place the absolute value of the addend into the first 12 bits
18310 of the instruction. */
18311 insn &= 0xfffff000;
18312 insn |= addend_abs;
18313
18314 /* Update the instruction. */
18315 md_number_to_chars (buf, insn, INSN_SIZE);
18316 }
18317 break;
18318
18319 case BFD_RELOC_ARM_LDRS_PC_G0:
18320 case BFD_RELOC_ARM_LDRS_PC_G1:
18321 case BFD_RELOC_ARM_LDRS_PC_G2:
18322 case BFD_RELOC_ARM_LDRS_SB_G0:
18323 case BFD_RELOC_ARM_LDRS_SB_G1:
18324 case BFD_RELOC_ARM_LDRS_SB_G2:
18325 assert (!fixP->fx_done);
18326 if (!seg->use_rela_p)
18327 {
18328 bfd_vma insn;
18329 bfd_vma addend_abs = abs (value);
18330
18331 /* Check that the absolute value of the addend can be
18332 encoded in 8 bits. */
18333 if (addend_abs >= 0x100)
18334 as_bad_where (fixP->fx_file, fixP->fx_line,
18335 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
18336 addend_abs);
18337
18338 /* Extract the instruction. */
18339 insn = md_chars_to_number (buf, INSN_SIZE);
18340
18341 /* If the addend is negative, clear bit 23 of the instruction.
18342 Otherwise set it. */
18343 if (value < 0)
18344 insn &= ~(1 << 23);
18345 else
18346 insn |= 1 << 23;
18347
18348 /* Place the first four bits of the absolute value of the addend
18349 into the first 4 bits of the instruction, and the remaining
18350 four into bits 8 .. 11. */
18351 insn &= 0xfffff0f0;
18352 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
18353
18354 /* Update the instruction. */
18355 md_number_to_chars (buf, insn, INSN_SIZE);
18356 }
18357 break;
18358
18359 case BFD_RELOC_ARM_LDC_PC_G0:
18360 case BFD_RELOC_ARM_LDC_PC_G1:
18361 case BFD_RELOC_ARM_LDC_PC_G2:
18362 case BFD_RELOC_ARM_LDC_SB_G0:
18363 case BFD_RELOC_ARM_LDC_SB_G1:
18364 case BFD_RELOC_ARM_LDC_SB_G2:
18365 assert (!fixP->fx_done);
18366 if (!seg->use_rela_p)
18367 {
18368 bfd_vma insn;
18369 bfd_vma addend_abs = abs (value);
18370
18371 /* Check that the absolute value of the addend is a multiple of
18372 four and, when divided by four, fits in 8 bits. */
18373 if (addend_abs & 0x3)
18374 as_bad_where (fixP->fx_file, fixP->fx_line,
18375 _("bad offset 0x%08lX (must be word-aligned)"),
18376 addend_abs);
18377
18378 if ((addend_abs >> 2) > 0xff)
18379 as_bad_where (fixP->fx_file, fixP->fx_line,
18380 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
18381 addend_abs);
18382
18383 /* Extract the instruction. */
18384 insn = md_chars_to_number (buf, INSN_SIZE);
18385
18386 /* If the addend is negative, clear bit 23 of the instruction.
18387 Otherwise set it. */
18388 if (value < 0)
18389 insn &= ~(1 << 23);
18390 else
18391 insn |= 1 << 23;
18392
18393 /* Place the addend (divided by four) into the first eight
18394 bits of the instruction. */
18395 insn &= 0xfffffff0;
18396 insn |= addend_abs >> 2;
18397
18398 /* Update the instruction. */
18399 md_number_to_chars (buf, insn, INSN_SIZE);
18400 }
18401 break;
18402
18403 case BFD_RELOC_UNUSED:
18404 default:
18405 as_bad_where (fixP->fx_file, fixP->fx_line,
18406 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
18407 }
18408 }
18409
18410 /* Translate internal representation of relocation info to BFD target
18411 format. */
18412
18413 arelent *
18414 tc_gen_reloc (asection *section, fixS *fixp)
18415 {
18416 arelent * reloc;
18417 bfd_reloc_code_real_type code;
18418
18419 reloc = xmalloc (sizeof (arelent));
18420
18421 reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
18422 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18423 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18424
18425 if (fixp->fx_pcrel)
18426 {
18427 if (section->use_rela_p)
18428 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
18429 else
18430 fixp->fx_offset = reloc->address;
18431 }
18432 reloc->addend = fixp->fx_offset;
18433
18434 switch (fixp->fx_r_type)
18435 {
18436 case BFD_RELOC_8:
18437 if (fixp->fx_pcrel)
18438 {
18439 code = BFD_RELOC_8_PCREL;
18440 break;
18441 }
18442
18443 case BFD_RELOC_16:
18444 if (fixp->fx_pcrel)
18445 {
18446 code = BFD_RELOC_16_PCREL;
18447 break;
18448 }
18449
18450 case BFD_RELOC_32:
18451 if (fixp->fx_pcrel)
18452 {
18453 code = BFD_RELOC_32_PCREL;
18454 break;
18455 }
18456
18457 case BFD_RELOC_ARM_MOVW:
18458 if (fixp->fx_pcrel)
18459 {
18460 code = BFD_RELOC_ARM_MOVW_PCREL;
18461 break;
18462 }
18463
18464 case BFD_RELOC_ARM_MOVT:
18465 if (fixp->fx_pcrel)
18466 {
18467 code = BFD_RELOC_ARM_MOVT_PCREL;
18468 break;
18469 }
18470
18471 case BFD_RELOC_ARM_THUMB_MOVW:
18472 if (fixp->fx_pcrel)
18473 {
18474 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
18475 break;
18476 }
18477
18478 case BFD_RELOC_ARM_THUMB_MOVT:
18479 if (fixp->fx_pcrel)
18480 {
18481 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
18482 break;
18483 }
18484
18485 case BFD_RELOC_NONE:
18486 case BFD_RELOC_ARM_PCREL_BRANCH:
18487 case BFD_RELOC_ARM_PCREL_BLX:
18488 case BFD_RELOC_RVA:
18489 case BFD_RELOC_THUMB_PCREL_BRANCH7:
18490 case BFD_RELOC_THUMB_PCREL_BRANCH9:
18491 case BFD_RELOC_THUMB_PCREL_BRANCH12:
18492 case BFD_RELOC_THUMB_PCREL_BRANCH20:
18493 case BFD_RELOC_THUMB_PCREL_BRANCH23:
18494 case BFD_RELOC_THUMB_PCREL_BRANCH25:
18495 case BFD_RELOC_THUMB_PCREL_BLX:
18496 case BFD_RELOC_VTABLE_ENTRY:
18497 case BFD_RELOC_VTABLE_INHERIT:
18498 #ifdef TE_PE
18499 case BFD_RELOC_32_SECREL:
18500 #endif
18501 code = fixp->fx_r_type;
18502 break;
18503
18504 case BFD_RELOC_ARM_LITERAL:
18505 case BFD_RELOC_ARM_HWLITERAL:
18506 /* If this is called then the a literal has
18507 been referenced across a section boundary. */
18508 as_bad_where (fixp->fx_file, fixp->fx_line,
18509 _("literal referenced across section boundary"));
18510 return NULL;
18511
18512 #ifdef OBJ_ELF
18513 case BFD_RELOC_ARM_GOT32:
18514 case BFD_RELOC_ARM_GOTOFF:
18515 case BFD_RELOC_ARM_PLT32:
18516 case BFD_RELOC_ARM_TARGET1:
18517 case BFD_RELOC_ARM_ROSEGREL32:
18518 case BFD_RELOC_ARM_SBREL32:
18519 case BFD_RELOC_ARM_PREL31:
18520 case BFD_RELOC_ARM_TARGET2:
18521 case BFD_RELOC_ARM_TLS_LE32:
18522 case BFD_RELOC_ARM_TLS_LDO32:
18523 case BFD_RELOC_ARM_PCREL_CALL:
18524 case BFD_RELOC_ARM_PCREL_JUMP:
18525 case BFD_RELOC_ARM_ALU_PC_G0_NC:
18526 case BFD_RELOC_ARM_ALU_PC_G0:
18527 case BFD_RELOC_ARM_ALU_PC_G1_NC:
18528 case BFD_RELOC_ARM_ALU_PC_G1:
18529 case BFD_RELOC_ARM_ALU_PC_G2:
18530 case BFD_RELOC_ARM_LDR_PC_G0:
18531 case BFD_RELOC_ARM_LDR_PC_G1:
18532 case BFD_RELOC_ARM_LDR_PC_G2:
18533 case BFD_RELOC_ARM_LDRS_PC_G0:
18534 case BFD_RELOC_ARM_LDRS_PC_G1:
18535 case BFD_RELOC_ARM_LDRS_PC_G2:
18536 case BFD_RELOC_ARM_LDC_PC_G0:
18537 case BFD_RELOC_ARM_LDC_PC_G1:
18538 case BFD_RELOC_ARM_LDC_PC_G2:
18539 case BFD_RELOC_ARM_ALU_SB_G0_NC:
18540 case BFD_RELOC_ARM_ALU_SB_G0:
18541 case BFD_RELOC_ARM_ALU_SB_G1_NC:
18542 case BFD_RELOC_ARM_ALU_SB_G1:
18543 case BFD_RELOC_ARM_ALU_SB_G2:
18544 case BFD_RELOC_ARM_LDR_SB_G0:
18545 case BFD_RELOC_ARM_LDR_SB_G1:
18546 case BFD_RELOC_ARM_LDR_SB_G2:
18547 case BFD_RELOC_ARM_LDRS_SB_G0:
18548 case BFD_RELOC_ARM_LDRS_SB_G1:
18549 case BFD_RELOC_ARM_LDRS_SB_G2:
18550 case BFD_RELOC_ARM_LDC_SB_G0:
18551 case BFD_RELOC_ARM_LDC_SB_G1:
18552 case BFD_RELOC_ARM_LDC_SB_G2:
18553 code = fixp->fx_r_type;
18554 break;
18555
18556 case BFD_RELOC_ARM_TLS_GD32:
18557 case BFD_RELOC_ARM_TLS_IE32:
18558 case BFD_RELOC_ARM_TLS_LDM32:
18559 /* BFD will include the symbol's address in the addend.
18560 But we don't want that, so subtract it out again here. */
18561 if (!S_IS_COMMON (fixp->fx_addsy))
18562 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
18563 code = fixp->fx_r_type;
18564 break;
18565 #endif
18566
18567 case BFD_RELOC_ARM_IMMEDIATE:
18568 as_bad_where (fixp->fx_file, fixp->fx_line,
18569 _("internal relocation (type: IMMEDIATE) not fixed up"));
18570 return NULL;
18571
18572 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
18573 as_bad_where (fixp->fx_file, fixp->fx_line,
18574 _("ADRL used for a symbol not defined in the same file"));
18575 return NULL;
18576
18577 case BFD_RELOC_ARM_OFFSET_IMM:
18578 if (section->use_rela_p)
18579 {
18580 code = fixp->fx_r_type;
18581 break;
18582 }
18583
18584 if (fixp->fx_addsy != NULL
18585 && !S_IS_DEFINED (fixp->fx_addsy)
18586 && S_IS_LOCAL (fixp->fx_addsy))
18587 {
18588 as_bad_where (fixp->fx_file, fixp->fx_line,
18589 _("undefined local label `%s'"),
18590 S_GET_NAME (fixp->fx_addsy));
18591 return NULL;
18592 }
18593
18594 as_bad_where (fixp->fx_file, fixp->fx_line,
18595 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
18596 return NULL;
18597
18598 default:
18599 {
18600 char * type;
18601
18602 switch (fixp->fx_r_type)
18603 {
18604 case BFD_RELOC_NONE: type = "NONE"; break;
18605 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
18606 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
18607 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
18608 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
18609 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
18610 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
18611 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
18612 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
18613 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
18614 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
18615 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
18616 default: type = _("<unknown>"); break;
18617 }
18618 as_bad_where (fixp->fx_file, fixp->fx_line,
18619 _("cannot represent %s relocation in this object file format"),
18620 type);
18621 return NULL;
18622 }
18623 }
18624
18625 #ifdef OBJ_ELF
18626 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
18627 && GOT_symbol
18628 && fixp->fx_addsy == GOT_symbol)
18629 {
18630 code = BFD_RELOC_ARM_GOTPC;
18631 reloc->addend = fixp->fx_offset = reloc->address;
18632 }
18633 #endif
18634
18635 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18636
18637 if (reloc->howto == NULL)
18638 {
18639 as_bad_where (fixp->fx_file, fixp->fx_line,
18640 _("cannot represent %s relocation in this object file format"),
18641 bfd_get_reloc_code_name (code));
18642 return NULL;
18643 }
18644
18645 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
18646 vtable entry to be used in the relocation's section offset. */
18647 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18648 reloc->address = fixp->fx_offset;
18649
18650 return reloc;
18651 }
18652
18653 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
18654
18655 void
18656 cons_fix_new_arm (fragS * frag,
18657 int where,
18658 int size,
18659 expressionS * exp)
18660 {
18661 bfd_reloc_code_real_type type;
18662 int pcrel = 0;
18663
18664 /* Pick a reloc.
18665 FIXME: @@ Should look at CPU word size. */
18666 switch (size)
18667 {
18668 case 1:
18669 type = BFD_RELOC_8;
18670 break;
18671 case 2:
18672 type = BFD_RELOC_16;
18673 break;
18674 case 4:
18675 default:
18676 type = BFD_RELOC_32;
18677 break;
18678 case 8:
18679 type = BFD_RELOC_64;
18680 break;
18681 }
18682
18683 #ifdef TE_PE
18684 if (exp->X_op == O_secrel)
18685 {
18686 exp->X_op = O_symbol;
18687 type = BFD_RELOC_32_SECREL;
18688 }
18689 #endif
18690
18691 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
18692 }
18693
18694 #if defined OBJ_COFF || defined OBJ_ELF
18695 void
18696 arm_validate_fix (fixS * fixP)
18697 {
18698 /* If the destination of the branch is a defined symbol which does not have
18699 the THUMB_FUNC attribute, then we must be calling a function which has
18700 the (interfacearm) attribute. We look for the Thumb entry point to that
18701 function and change the branch to refer to that function instead. */
18702 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
18703 && fixP->fx_addsy != NULL
18704 && S_IS_DEFINED (fixP->fx_addsy)
18705 && ! THUMB_IS_FUNC (fixP->fx_addsy))
18706 {
18707 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
18708 }
18709 }
18710 #endif
18711
18712 int
18713 arm_force_relocation (struct fix * fixp)
18714 {
18715 #if defined (OBJ_COFF) && defined (TE_PE)
18716 if (fixp->fx_r_type == BFD_RELOC_RVA)
18717 return 1;
18718 #endif
18719
18720 /* Resolve these relocations even if the symbol is extern or weak. */
18721 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
18722 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
18723 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
18724 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
18725 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
18726 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
18727 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12)
18728 return 0;
18729
18730 /* Always leave these relocations for the linker. */
18731 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18732 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18733 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18734 return 1;
18735
18736 return generic_force_reloc (fixp);
18737 }
18738
18739 #ifdef OBJ_COFF
18740 bfd_boolean
18741 arm_fix_adjustable (fixS * fixP)
18742 {
18743 /* This is a little hack to help the gas/arm/adrl.s test. It prevents
18744 local labels from being added to the output symbol table when they
18745 are used with the ADRL pseudo op. The ADRL relocation should always
18746 be resolved before the binbary is emitted, so it is safe to say that
18747 it is adjustable. */
18748 if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
18749 return 1;
18750
18751 /* This is a hack for the gas/all/redef2.s test. This test causes symbols
18752 to be cloned, and without this test relocs would still be generated
18753 against the original, pre-cloned symbol. Such symbols would not appear
18754 in the symbol table however, and so a valid reloc could not be
18755 generated. So check to see if the fixup is against a symbol which has
18756 been removed from the symbol chain, and if it is, then allow it to be
18757 adjusted into a reloc against a section symbol. */
18758 if (fixP->fx_addsy != NULL
18759 && ! S_IS_LOCAL (fixP->fx_addsy)
18760 && symbol_next (fixP->fx_addsy) == NULL
18761 && symbol_next (fixP->fx_addsy) == symbol_previous (fixP->fx_addsy))
18762 return 1;
18763
18764 return 0;
18765 }
18766 #endif
18767
18768 #ifdef OBJ_ELF
18769 /* Relocations against function names must be left unadjusted,
18770 so that the linker can use this information to generate interworking
18771 stubs. The MIPS version of this function
18772 also prevents relocations that are mips-16 specific, but I do not
18773 know why it does this.
18774
18775 FIXME:
18776 There is one other problem that ought to be addressed here, but
18777 which currently is not: Taking the address of a label (rather
18778 than a function) and then later jumping to that address. Such
18779 addresses also ought to have their bottom bit set (assuming that
18780 they reside in Thumb code), but at the moment they will not. */
18781
18782 bfd_boolean
18783 arm_fix_adjustable (fixS * fixP)
18784 {
18785 if (fixP->fx_addsy == NULL)
18786 return 1;
18787
18788 /* Preserve relocations against symbols with function type. */
18789 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
18790 return 0;
18791
18792 if (THUMB_IS_FUNC (fixP->fx_addsy)
18793 && fixP->fx_subsy == NULL)
18794 return 0;
18795
18796 /* We need the symbol name for the VTABLE entries. */
18797 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18798 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18799 return 0;
18800
18801 /* Don't allow symbols to be discarded on GOT related relocs. */
18802 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
18803 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
18804 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
18805 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
18806 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
18807 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
18808 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
18809 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
18810 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
18811 return 0;
18812
18813 /* Similarly for group relocations. */
18814 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
18815 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
18816 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
18817 return 0;
18818
18819 return 1;
18820 }
18821
18822 const char *
18823 elf32_arm_target_format (void)
18824 {
18825 #ifdef TE_SYMBIAN
18826 return (target_big_endian
18827 ? "elf32-bigarm-symbian"
18828 : "elf32-littlearm-symbian");
18829 #elif defined (TE_VXWORKS)
18830 return (target_big_endian
18831 ? "elf32-bigarm-vxworks"
18832 : "elf32-littlearm-vxworks");
18833 #else
18834 if (target_big_endian)
18835 return "elf32-bigarm";
18836 else
18837 return "elf32-littlearm";
18838 #endif
18839 }
18840
18841 void
18842 armelf_frob_symbol (symbolS * symp,
18843 int * puntp)
18844 {
18845 elf_frob_symbol (symp, puntp);
18846 }
18847 #endif
18848
18849 /* MD interface: Finalization. */
18850
18851 /* A good place to do this, although this was probably not intended
18852 for this kind of use. We need to dump the literal pool before
18853 references are made to a null symbol pointer. */
18854
18855 void
18856 arm_cleanup (void)
18857 {
18858 literal_pool * pool;
18859
18860 for (pool = list_of_pools; pool; pool = pool->next)
18861 {
18862 /* Put it at the end of the relevent section. */
18863 subseg_set (pool->section, pool->sub_section);
18864 #ifdef OBJ_ELF
18865 arm_elf_change_section ();
18866 #endif
18867 s_ltorg (0);
18868 }
18869 }
18870
18871 /* Adjust the symbol table. This marks Thumb symbols as distinct from
18872 ARM ones. */
18873
18874 void
18875 arm_adjust_symtab (void)
18876 {
18877 #ifdef OBJ_COFF
18878 symbolS * sym;
18879
18880 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18881 {
18882 if (ARM_IS_THUMB (sym))
18883 {
18884 if (THUMB_IS_FUNC (sym))
18885 {
18886 /* Mark the symbol as a Thumb function. */
18887 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
18888 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
18889 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
18890
18891 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
18892 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
18893 else
18894 as_bad (_("%s: unexpected function type: %d"),
18895 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
18896 }
18897 else switch (S_GET_STORAGE_CLASS (sym))
18898 {
18899 case C_EXT:
18900 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
18901 break;
18902 case C_STAT:
18903 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
18904 break;
18905 case C_LABEL:
18906 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
18907 break;
18908 default:
18909 /* Do nothing. */
18910 break;
18911 }
18912 }
18913
18914 if (ARM_IS_INTERWORK (sym))
18915 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
18916 }
18917 #endif
18918 #ifdef OBJ_ELF
18919 symbolS * sym;
18920 char bind;
18921
18922 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
18923 {
18924 if (ARM_IS_THUMB (sym))
18925 {
18926 elf_symbol_type * elf_sym;
18927
18928 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
18929 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
18930
18931 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
18932 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
18933 {
18934 /* If it's a .thumb_func, declare it as so,
18935 otherwise tag label as .code 16. */
18936 if (THUMB_IS_FUNC (sym))
18937 elf_sym->internal_elf_sym.st_info =
18938 ELF_ST_INFO (bind, STT_ARM_TFUNC);
18939 else
18940 elf_sym->internal_elf_sym.st_info =
18941 ELF_ST_INFO (bind, STT_ARM_16BIT);
18942 }
18943 }
18944 }
18945 #endif
18946 }
18947
18948 /* MD interface: Initialization. */
18949
18950 static void
18951 set_constant_flonums (void)
18952 {
18953 int i;
18954
18955 for (i = 0; i < NUM_FLOAT_VALS; i++)
18956 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
18957 abort ();
18958 }
18959
18960 void
18961 md_begin (void)
18962 {
18963 unsigned mach;
18964 unsigned int i;
18965
18966 if ( (arm_ops_hsh = hash_new ()) == NULL
18967 || (arm_cond_hsh = hash_new ()) == NULL
18968 || (arm_shift_hsh = hash_new ()) == NULL
18969 || (arm_psr_hsh = hash_new ()) == NULL
18970 || (arm_v7m_psr_hsh = hash_new ()) == NULL
18971 || (arm_reg_hsh = hash_new ()) == NULL
18972 || (arm_reloc_hsh = hash_new ()) == NULL
18973 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
18974 as_fatal (_("virtual memory exhausted"));
18975
18976 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
18977 hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
18978 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
18979 hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
18980 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
18981 hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
18982 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
18983 hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
18984 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
18985 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i));
18986 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
18987 hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i));
18988 for (i = 0;
18989 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
18990 i++)
18991 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template,
18992 (PTR) (barrier_opt_names + i));
18993 #ifdef OBJ_ELF
18994 for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++)
18995 hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i));
18996 #endif
18997
18998 set_constant_flonums ();
18999
19000 /* Set the cpu variant based on the command-line options. We prefer
19001 -mcpu= over -march= if both are set (as for GCC); and we prefer
19002 -mfpu= over any other way of setting the floating point unit.
19003 Use of legacy options with new options are faulted. */
19004 if (legacy_cpu)
19005 {
19006 if (mcpu_cpu_opt || march_cpu_opt)
19007 as_bad (_("use of old and new-style options to set CPU type"));
19008
19009 mcpu_cpu_opt = legacy_cpu;
19010 }
19011 else if (!mcpu_cpu_opt)
19012 mcpu_cpu_opt = march_cpu_opt;
19013
19014 if (legacy_fpu)
19015 {
19016 if (mfpu_opt)
19017 as_bad (_("use of old and new-style options to set FPU type"));
19018
19019 mfpu_opt = legacy_fpu;
19020 }
19021 else if (!mfpu_opt)
19022 {
19023 #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS))
19024 /* Some environments specify a default FPU. If they don't, infer it
19025 from the processor. */
19026 if (mcpu_fpu_opt)
19027 mfpu_opt = mcpu_fpu_opt;
19028 else
19029 mfpu_opt = march_fpu_opt;
19030 #else
19031 mfpu_opt = &fpu_default;
19032 #endif
19033 }
19034
19035 if (!mfpu_opt)
19036 {
19037 if (!mcpu_cpu_opt)
19038 mfpu_opt = &fpu_default;
19039 else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
19040 mfpu_opt = &fpu_arch_vfp_v2;
19041 else
19042 mfpu_opt = &fpu_arch_fpa;
19043 }
19044
19045 #ifdef CPU_DEFAULT
19046 if (!mcpu_cpu_opt)
19047 {
19048 mcpu_cpu_opt = &cpu_default;
19049 selected_cpu = cpu_default;
19050 }
19051 #else
19052 if (mcpu_cpu_opt)
19053 selected_cpu = *mcpu_cpu_opt;
19054 else
19055 mcpu_cpu_opt = &arm_arch_any;
19056 #endif
19057
19058 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
19059
19060 arm_arch_used = thumb_arch_used = arm_arch_none;
19061
19062 #if defined OBJ_COFF || defined OBJ_ELF
19063 {
19064 unsigned int flags = 0;
19065
19066 #if defined OBJ_ELF
19067 flags = meabi_flags;
19068
19069 switch (meabi_flags)
19070 {
19071 case EF_ARM_EABI_UNKNOWN:
19072 #endif
19073 /* Set the flags in the private structure. */
19074 if (uses_apcs_26) flags |= F_APCS26;
19075 if (support_interwork) flags |= F_INTERWORK;
19076 if (uses_apcs_float) flags |= F_APCS_FLOAT;
19077 if (pic_code) flags |= F_PIC;
19078 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
19079 flags |= F_SOFT_FLOAT;
19080
19081 switch (mfloat_abi_opt)
19082 {
19083 case ARM_FLOAT_ABI_SOFT:
19084 case ARM_FLOAT_ABI_SOFTFP:
19085 flags |= F_SOFT_FLOAT;
19086 break;
19087
19088 case ARM_FLOAT_ABI_HARD:
19089 if (flags & F_SOFT_FLOAT)
19090 as_bad (_("hard-float conflicts with specified fpu"));
19091 break;
19092 }
19093
19094 /* Using pure-endian doubles (even if soft-float). */
19095 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
19096 flags |= F_VFP_FLOAT;
19097
19098 #if defined OBJ_ELF
19099 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
19100 flags |= EF_ARM_MAVERICK_FLOAT;
19101 break;
19102
19103 case EF_ARM_EABI_VER4:
19104 case EF_ARM_EABI_VER5:
19105 /* No additional flags to set. */
19106 break;
19107
19108 default:
19109 abort ();
19110 }
19111 #endif
19112 bfd_set_private_flags (stdoutput, flags);
19113
19114 /* We have run out flags in the COFF header to encode the
19115 status of ATPCS support, so instead we create a dummy,
19116 empty, debug section called .arm.atpcs. */
19117 if (atpcs)
19118 {
19119 asection * sec;
19120
19121 sec = bfd_make_section (stdoutput, ".arm.atpcs");
19122
19123 if (sec != NULL)
19124 {
19125 bfd_set_section_flags
19126 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
19127 bfd_set_section_size (stdoutput, sec, 0);
19128 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
19129 }
19130 }
19131 }
19132 #endif
19133
19134 /* Record the CPU type as well. */
19135 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
19136 mach = bfd_mach_arm_iWMMXt;
19137 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
19138 mach = bfd_mach_arm_XScale;
19139 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
19140 mach = bfd_mach_arm_ep9312;
19141 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
19142 mach = bfd_mach_arm_5TE;
19143 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
19144 {
19145 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19146 mach = bfd_mach_arm_5T;
19147 else
19148 mach = bfd_mach_arm_5;
19149 }
19150 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
19151 {
19152 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
19153 mach = bfd_mach_arm_4T;
19154 else
19155 mach = bfd_mach_arm_4;
19156 }
19157 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
19158 mach = bfd_mach_arm_3M;
19159 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
19160 mach = bfd_mach_arm_3;
19161 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
19162 mach = bfd_mach_arm_2a;
19163 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
19164 mach = bfd_mach_arm_2;
19165 else
19166 mach = bfd_mach_arm_unknown;
19167
19168 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
19169 }
19170
19171 /* Command line processing. */
19172
19173 /* md_parse_option
19174 Invocation line includes a switch not recognized by the base assembler.
19175 See if it's a processor-specific option.
19176
19177 This routine is somewhat complicated by the need for backwards
19178 compatibility (since older releases of gcc can't be changed).
19179 The new options try to make the interface as compatible as
19180 possible with GCC.
19181
19182 New options (supported) are:
19183
19184 -mcpu=<cpu name> Assemble for selected processor
19185 -march=<architecture name> Assemble for selected architecture
19186 -mfpu=<fpu architecture> Assemble for selected FPU.
19187 -EB/-mbig-endian Big-endian
19188 -EL/-mlittle-endian Little-endian
19189 -k Generate PIC code
19190 -mthumb Start in Thumb mode
19191 -mthumb-interwork Code supports ARM/Thumb interworking
19192
19193 For now we will also provide support for:
19194
19195 -mapcs-32 32-bit Program counter
19196 -mapcs-26 26-bit Program counter
19197 -macps-float Floats passed in FP registers
19198 -mapcs-reentrant Reentrant code
19199 -matpcs
19200 (sometime these will probably be replaced with -mapcs=<list of options>
19201 and -matpcs=<list of options>)
19202
19203 The remaining options are only supported for back-wards compatibility.
19204 Cpu variants, the arm part is optional:
19205 -m[arm]1 Currently not supported.
19206 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
19207 -m[arm]3 Arm 3 processor
19208 -m[arm]6[xx], Arm 6 processors
19209 -m[arm]7[xx][t][[d]m] Arm 7 processors
19210 -m[arm]8[10] Arm 8 processors
19211 -m[arm]9[20][tdmi] Arm 9 processors
19212 -mstrongarm[110[0]] StrongARM processors
19213 -mxscale XScale processors
19214 -m[arm]v[2345[t[e]]] Arm architectures
19215 -mall All (except the ARM1)
19216 FP variants:
19217 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
19218 -mfpe-old (No float load/store multiples)
19219 -mvfpxd VFP Single precision
19220 -mvfp All VFP
19221 -mno-fpu Disable all floating point instructions
19222
19223 The following CPU names are recognized:
19224 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
19225 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
19226 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
19227 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
19228 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
19229 arm10t arm10e, arm1020t, arm1020e, arm10200e,
19230 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
19231
19232 */
19233
19234 const char * md_shortopts = "m:k";
19235
19236 #ifdef ARM_BI_ENDIAN
19237 #define OPTION_EB (OPTION_MD_BASE + 0)
19238 #define OPTION_EL (OPTION_MD_BASE + 1)
19239 #else
19240 #if TARGET_BYTES_BIG_ENDIAN
19241 #define OPTION_EB (OPTION_MD_BASE + 0)
19242 #else
19243 #define OPTION_EL (OPTION_MD_BASE + 1)
19244 #endif
19245 #endif
19246
19247 struct option md_longopts[] =
19248 {
19249 #ifdef OPTION_EB
19250 {"EB", no_argument, NULL, OPTION_EB},
19251 #endif
19252 #ifdef OPTION_EL
19253 {"EL", no_argument, NULL, OPTION_EL},
19254 #endif
19255 {NULL, no_argument, NULL, 0}
19256 };
19257
19258 size_t md_longopts_size = sizeof (md_longopts);
19259
19260 struct arm_option_table
19261 {
19262 char *option; /* Option name to match. */
19263 char *help; /* Help information. */
19264 int *var; /* Variable to change. */
19265 int value; /* What to change it to. */
19266 char *deprecated; /* If non-null, print this message. */
19267 };
19268
19269 struct arm_option_table arm_opts[] =
19270 {
19271 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
19272 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
19273 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
19274 &support_interwork, 1, NULL},
19275 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
19276 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
19277 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
19278 1, NULL},
19279 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
19280 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
19281 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
19282 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
19283 NULL},
19284
19285 /* These are recognized by the assembler, but have no affect on code. */
19286 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
19287 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
19288 {NULL, NULL, NULL, 0, NULL}
19289 };
19290
19291 struct arm_legacy_option_table
19292 {
19293 char *option; /* Option name to match. */
19294 const arm_feature_set **var; /* Variable to change. */
19295 const arm_feature_set value; /* What to change it to. */
19296 char *deprecated; /* If non-null, print this message. */
19297 };
19298
19299 const struct arm_legacy_option_table arm_legacy_opts[] =
19300 {
19301 /* DON'T add any new processors to this list -- we want the whole list
19302 to go away... Add them to the processors table instead. */
19303 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19304 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
19305 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19306 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
19307 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19308 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
19309 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19310 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
19311 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19312 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
19313 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19314 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
19315 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19316 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
19317 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19318 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
19319 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19320 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
19321 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19322 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
19323 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19324 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
19325 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19326 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
19327 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19328 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
19329 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19330 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
19331 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19332 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
19333 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19334 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
19335 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19336 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
19337 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19338 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
19339 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19340 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
19341 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19342 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
19343 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19344 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
19345 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19346 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
19347 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19348 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
19349 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19350 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19351 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19352 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
19353 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19354 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
19355 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19356 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
19357 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19358 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
19359 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19360 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
19361 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19362 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
19363 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19364 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
19365 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19366 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
19367 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19368 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
19369 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19370 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
19371 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
19372 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
19373 N_("use -mcpu=strongarm110")},
19374 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
19375 N_("use -mcpu=strongarm1100")},
19376 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
19377 N_("use -mcpu=strongarm1110")},
19378 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
19379 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
19380 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
19381
19382 /* Architecture variants -- don't add any more to this list either. */
19383 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19384 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
19385 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19386 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
19387 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19388 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
19389 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19390 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
19391 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19392 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
19393 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19394 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
19395 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19396 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
19397 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19398 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
19399 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19400 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
19401
19402 /* Floating point variants -- don't add any more to this list either. */
19403 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
19404 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
19405 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
19406 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
19407 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
19408
19409 {NULL, NULL, ARM_ARCH_NONE, NULL}
19410 };
19411
19412 struct arm_cpu_option_table
19413 {
19414 char *name;
19415 const arm_feature_set value;
19416 /* For some CPUs we assume an FPU unless the user explicitly sets
19417 -mfpu=... */
19418 const arm_feature_set default_fpu;
19419 /* The canonical name of the CPU, or NULL to use NAME converted to upper
19420 case. */
19421 const char *canonical_name;
19422 };
19423
19424 /* This list should, at a minimum, contain all the cpu names
19425 recognized by GCC. */
19426 static const struct arm_cpu_option_table arm_cpus[] =
19427 {
19428 {"all", ARM_ANY, FPU_ARCH_FPA, NULL},
19429 {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL},
19430 {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL},
19431 {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19432 {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL},
19433 {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19434 {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19435 {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19436 {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19437 {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19438 {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19439 {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19440 {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19441 {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19442 {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19443 {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL},
19444 {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19445 {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19446 {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19447 {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19448 {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19449 {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19450 {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19451 {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19452 {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19453 {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19454 {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19455 {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL},
19456 {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19457 {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19458 {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19459 {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19460 {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19461 {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19462 {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19463 {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19464 {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19465 {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL},
19466 {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19467 {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"},
19468 {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19469 {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19470 {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19471 {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL},
19472 /* For V5 or later processors we default to using VFP; but the user
19473 should really set the FPU type explicitly. */
19474 {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19475 {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19476 {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19477 {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"},
19478 {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19479 {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19480 {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"},
19481 {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19482 {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL},
19483 {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"},
19484 {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19485 {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19486 {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19487 {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19488 {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19489 {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"},
19490 {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL},
19491 {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19492 {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL},
19493 {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"},
19494 {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL},
19495 {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"},
19496 {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL},
19497 {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"},
19498 {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL},
19499 {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL},
19500 {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL},
19501 {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL},
19502 {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL},
19503 {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL},
19504 {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL},
19505 {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3
19506 | FPU_NEON_EXT_V1),
19507 NULL},
19508 {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL},
19509 {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL},
19510 /* ??? XSCALE is really an architecture. */
19511 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
19512 /* ??? iwmmxt is not a processor. */
19513 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL},
19514 {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL},
19515 /* Maverick */
19516 {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"},
19517 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL}
19518 };
19519
19520 struct arm_arch_option_table
19521 {
19522 char *name;
19523 const arm_feature_set value;
19524 const arm_feature_set default_fpu;
19525 };
19526
19527 /* This list should, at a minimum, contain all the architecture names
19528 recognized by GCC. */
19529 static const struct arm_arch_option_table arm_archs[] =
19530 {
19531 {"all", ARM_ANY, FPU_ARCH_FPA},
19532 {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA},
19533 {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA},
19534 {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA},
19535 {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA},
19536 {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA},
19537 {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA},
19538 {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA},
19539 {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA},
19540 {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA},
19541 {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA},
19542 {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP},
19543 {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP},
19544 {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP},
19545 {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP},
19546 {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP},
19547 {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP},
19548 {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP},
19549 {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP},
19550 {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP},
19551 {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP},
19552 {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP},
19553 {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP},
19554 {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP},
19555 {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP},
19556 {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP},
19557 {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP},
19558 {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP},
19559 {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP},
19560 {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP},
19561 {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP},
19562 {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP},
19563 {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE}
19564 };
19565
19566 /* ISA extensions in the co-processor space. */
19567 struct arm_option_cpu_value_table
19568 {
19569 char *name;
19570 const arm_feature_set value;
19571 };
19572
19573 static const struct arm_option_cpu_value_table arm_extensions[] =
19574 {
19575 {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)},
19576 {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)},
19577 {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)},
19578 {NULL, ARM_ARCH_NONE}
19579 };
19580
19581 /* This list should, at a minimum, contain all the fpu names
19582 recognized by GCC. */
19583 static const struct arm_option_cpu_value_table arm_fpus[] =
19584 {
19585 {"softfpa", FPU_NONE},
19586 {"fpe", FPU_ARCH_FPE},
19587 {"fpe2", FPU_ARCH_FPE},
19588 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
19589 {"fpa", FPU_ARCH_FPA},
19590 {"fpa10", FPU_ARCH_FPA},
19591 {"fpa11", FPU_ARCH_FPA},
19592 {"arm7500fe", FPU_ARCH_FPA},
19593 {"softvfp", FPU_ARCH_VFP},
19594 {"softvfp+vfp", FPU_ARCH_VFP_V2},
19595 {"vfp", FPU_ARCH_VFP_V2},
19596 {"vfp9", FPU_ARCH_VFP_V2},
19597 {"vfp3", FPU_ARCH_VFP_V3},
19598 {"vfp10", FPU_ARCH_VFP_V2},
19599 {"vfp10-r0", FPU_ARCH_VFP_V1},
19600 {"vfpxd", FPU_ARCH_VFP_V1xD},
19601 {"arm1020t", FPU_ARCH_VFP_V1},
19602 {"arm1020e", FPU_ARCH_VFP_V2},
19603 {"arm1136jfs", FPU_ARCH_VFP_V2},
19604 {"arm1136jf-s", FPU_ARCH_VFP_V2},
19605 {"maverick", FPU_ARCH_MAVERICK},
19606 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
19607 {NULL, ARM_ARCH_NONE}
19608 };
19609
19610 struct arm_option_value_table
19611 {
19612 char *name;
19613 long value;
19614 };
19615
19616 static const struct arm_option_value_table arm_float_abis[] =
19617 {
19618 {"hard", ARM_FLOAT_ABI_HARD},
19619 {"softfp", ARM_FLOAT_ABI_SOFTFP},
19620 {"soft", ARM_FLOAT_ABI_SOFT},
19621 {NULL, 0}
19622 };
19623
19624 #ifdef OBJ_ELF
19625 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
19626 static const struct arm_option_value_table arm_eabis[] =
19627 {
19628 {"gnu", EF_ARM_EABI_UNKNOWN},
19629 {"4", EF_ARM_EABI_VER4},
19630 {"5", EF_ARM_EABI_VER5},
19631 {NULL, 0}
19632 };
19633 #endif
19634
19635 struct arm_long_option_table
19636 {
19637 char * option; /* Substring to match. */
19638 char * help; /* Help information. */
19639 int (* func) (char * subopt); /* Function to decode sub-option. */
19640 char * deprecated; /* If non-null, print this message. */
19641 };
19642
19643 static int
19644 arm_parse_extension (char * str, const arm_feature_set **opt_p)
19645 {
19646 arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set));
19647
19648 /* Copy the feature set, so that we can modify it. */
19649 *ext_set = **opt_p;
19650 *opt_p = ext_set;
19651
19652 while (str != NULL && *str != 0)
19653 {
19654 const struct arm_option_cpu_value_table * opt;
19655 char * ext;
19656 int optlen;
19657
19658 if (*str != '+')
19659 {
19660 as_bad (_("invalid architectural extension"));
19661 return 0;
19662 }
19663
19664 str++;
19665 ext = strchr (str, '+');
19666
19667 if (ext != NULL)
19668 optlen = ext - str;
19669 else
19670 optlen = strlen (str);
19671
19672 if (optlen == 0)
19673 {
19674 as_bad (_("missing architectural extension"));
19675 return 0;
19676 }
19677
19678 for (opt = arm_extensions; opt->name != NULL; opt++)
19679 if (strncmp (opt->name, str, optlen) == 0)
19680 {
19681 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
19682 break;
19683 }
19684
19685 if (opt->name == NULL)
19686 {
19687 as_bad (_("unknown architectural extnsion `%s'"), str);
19688 return 0;
19689 }
19690
19691 str = ext;
19692 };
19693
19694 return 1;
19695 }
19696
19697 static int
19698 arm_parse_cpu (char * str)
19699 {
19700 const struct arm_cpu_option_table * opt;
19701 char * ext = strchr (str, '+');
19702 int optlen;
19703
19704 if (ext != NULL)
19705 optlen = ext - str;
19706 else
19707 optlen = strlen (str);
19708
19709 if (optlen == 0)
19710 {
19711 as_bad (_("missing cpu name `%s'"), str);
19712 return 0;
19713 }
19714
19715 for (opt = arm_cpus; opt->name != NULL; opt++)
19716 if (strncmp (opt->name, str, optlen) == 0)
19717 {
19718 mcpu_cpu_opt = &opt->value;
19719 mcpu_fpu_opt = &opt->default_fpu;
19720 if (opt->canonical_name)
19721 strcpy(selected_cpu_name, opt->canonical_name);
19722 else
19723 {
19724 int i;
19725 for (i = 0; i < optlen; i++)
19726 selected_cpu_name[i] = TOUPPER (opt->name[i]);
19727 selected_cpu_name[i] = 0;
19728 }
19729
19730 if (ext != NULL)
19731 return arm_parse_extension (ext, &mcpu_cpu_opt);
19732
19733 return 1;
19734 }
19735
19736 as_bad (_("unknown cpu `%s'"), str);
19737 return 0;
19738 }
19739
19740 static int
19741 arm_parse_arch (char * str)
19742 {
19743 const struct arm_arch_option_table *opt;
19744 char *ext = strchr (str, '+');
19745 int optlen;
19746
19747 if (ext != NULL)
19748 optlen = ext - str;
19749 else
19750 optlen = strlen (str);
19751
19752 if (optlen == 0)
19753 {
19754 as_bad (_("missing architecture name `%s'"), str);
19755 return 0;
19756 }
19757
19758 for (opt = arm_archs; opt->name != NULL; opt++)
19759 if (streq (opt->name, str))
19760 {
19761 march_cpu_opt = &opt->value;
19762 march_fpu_opt = &opt->default_fpu;
19763 strcpy(selected_cpu_name, opt->name);
19764
19765 if (ext != NULL)
19766 return arm_parse_extension (ext, &march_cpu_opt);
19767
19768 return 1;
19769 }
19770
19771 as_bad (_("unknown architecture `%s'\n"), str);
19772 return 0;
19773 }
19774
19775 static int
19776 arm_parse_fpu (char * str)
19777 {
19778 const struct arm_option_cpu_value_table * opt;
19779
19780 for (opt = arm_fpus; opt->name != NULL; opt++)
19781 if (streq (opt->name, str))
19782 {
19783 mfpu_opt = &opt->value;
19784 return 1;
19785 }
19786
19787 as_bad (_("unknown floating point format `%s'\n"), str);
19788 return 0;
19789 }
19790
19791 static int
19792 arm_parse_float_abi (char * str)
19793 {
19794 const struct arm_option_value_table * opt;
19795
19796 for (opt = arm_float_abis; opt->name != NULL; opt++)
19797 if (streq (opt->name, str))
19798 {
19799 mfloat_abi_opt = opt->value;
19800 return 1;
19801 }
19802
19803 as_bad (_("unknown floating point abi `%s'\n"), str);
19804 return 0;
19805 }
19806
19807 #ifdef OBJ_ELF
19808 static int
19809 arm_parse_eabi (char * str)
19810 {
19811 const struct arm_option_value_table *opt;
19812
19813 for (opt = arm_eabis; opt->name != NULL; opt++)
19814 if (streq (opt->name, str))
19815 {
19816 meabi_flags = opt->value;
19817 return 1;
19818 }
19819 as_bad (_("unknown EABI `%s'\n"), str);
19820 return 0;
19821 }
19822 #endif
19823
19824 struct arm_long_option_table arm_long_opts[] =
19825 {
19826 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
19827 arm_parse_cpu, NULL},
19828 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
19829 arm_parse_arch, NULL},
19830 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
19831 arm_parse_fpu, NULL},
19832 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
19833 arm_parse_float_abi, NULL},
19834 #ifdef OBJ_ELF
19835 {"meabi=", N_("<ver>\t assemble for eabi version <ver>"),
19836 arm_parse_eabi, NULL},
19837 #endif
19838 {NULL, NULL, 0, NULL}
19839 };
19840
19841 int
19842 md_parse_option (int c, char * arg)
19843 {
19844 struct arm_option_table *opt;
19845 const struct arm_legacy_option_table *fopt;
19846 struct arm_long_option_table *lopt;
19847
19848 switch (c)
19849 {
19850 #ifdef OPTION_EB
19851 case OPTION_EB:
19852 target_big_endian = 1;
19853 break;
19854 #endif
19855
19856 #ifdef OPTION_EL
19857 case OPTION_EL:
19858 target_big_endian = 0;
19859 break;
19860 #endif
19861
19862 case 'a':
19863 /* Listing option. Just ignore these, we don't support additional
19864 ones. */
19865 return 0;
19866
19867 default:
19868 for (opt = arm_opts; opt->option != NULL; opt++)
19869 {
19870 if (c == opt->option[0]
19871 && ((arg == NULL && opt->option[1] == 0)
19872 || streq (arg, opt->option + 1)))
19873 {
19874 #if WARN_DEPRECATED
19875 /* If the option is deprecated, tell the user. */
19876 if (opt->deprecated != NULL)
19877 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19878 arg ? arg : "", _(opt->deprecated));
19879 #endif
19880
19881 if (opt->var != NULL)
19882 *opt->var = opt->value;
19883
19884 return 1;
19885 }
19886 }
19887
19888 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
19889 {
19890 if (c == fopt->option[0]
19891 && ((arg == NULL && fopt->option[1] == 0)
19892 || streq (arg, fopt->option + 1)))
19893 {
19894 #if WARN_DEPRECATED
19895 /* If the option is deprecated, tell the user. */
19896 if (fopt->deprecated != NULL)
19897 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
19898 arg ? arg : "", _(fopt->deprecated));
19899 #endif
19900
19901 if (fopt->var != NULL)
19902 *fopt->var = &fopt->value;
19903
19904 return 1;
19905 }
19906 }
19907
19908 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19909 {
19910 /* These options are expected to have an argument. */
19911 if (c == lopt->option[0]
19912 && arg != NULL
19913 && strncmp (arg, lopt->option + 1,
19914 strlen (lopt->option + 1)) == 0)
19915 {
19916 #if WARN_DEPRECATED
19917 /* If the option is deprecated, tell the user. */
19918 if (lopt->deprecated != NULL)
19919 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
19920 _(lopt->deprecated));
19921 #endif
19922
19923 /* Call the sup-option parser. */
19924 return lopt->func (arg + strlen (lopt->option) - 1);
19925 }
19926 }
19927
19928 return 0;
19929 }
19930
19931 return 1;
19932 }
19933
19934 void
19935 md_show_usage (FILE * fp)
19936 {
19937 struct arm_option_table *opt;
19938 struct arm_long_option_table *lopt;
19939
19940 fprintf (fp, _(" ARM-specific assembler options:\n"));
19941
19942 for (opt = arm_opts; opt->option != NULL; opt++)
19943 if (opt->help != NULL)
19944 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
19945
19946 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
19947 if (lopt->help != NULL)
19948 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
19949
19950 #ifdef OPTION_EB
19951 fprintf (fp, _("\
19952 -EB assemble code for a big-endian cpu\n"));
19953 #endif
19954
19955 #ifdef OPTION_EL
19956 fprintf (fp, _("\
19957 -EL assemble code for a little-endian cpu\n"));
19958 #endif
19959 }
19960
19961
19962 #ifdef OBJ_ELF
19963 typedef struct
19964 {
19965 int val;
19966 arm_feature_set flags;
19967 } cpu_arch_ver_table;
19968
19969 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
19970 least features first. */
19971 static const cpu_arch_ver_table cpu_arch_ver[] =
19972 {
19973 {1, ARM_ARCH_V4},
19974 {2, ARM_ARCH_V4T},
19975 {3, ARM_ARCH_V5},
19976 {4, ARM_ARCH_V5TE},
19977 {5, ARM_ARCH_V5TEJ},
19978 {6, ARM_ARCH_V6},
19979 {7, ARM_ARCH_V6Z},
19980 {8, ARM_ARCH_V6K},
19981 {9, ARM_ARCH_V6T2},
19982 {10, ARM_ARCH_V7A},
19983 {10, ARM_ARCH_V7R},
19984 {10, ARM_ARCH_V7M},
19985 {0, ARM_ARCH_NONE}
19986 };
19987
19988 /* Set the public EABI object attributes. */
19989 static void
19990 aeabi_set_public_attributes (void)
19991 {
19992 int arch;
19993 arm_feature_set flags;
19994 arm_feature_set tmp;
19995 const cpu_arch_ver_table *p;
19996
19997 /* Choose the architecture based on the capabilities of the requested cpu
19998 (if any) and/or the instructions actually used. */
19999 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
20000 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
20001 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
20002
20003 tmp = flags;
20004 arch = 0;
20005 for (p = cpu_arch_ver; p->val; p++)
20006 {
20007 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
20008 {
20009 arch = p->val;
20010 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
20011 }
20012 }
20013
20014 /* Tag_CPU_name. */
20015 if (selected_cpu_name[0])
20016 {
20017 char *p;
20018
20019 p = selected_cpu_name;
20020 if (strncmp(p, "armv", 4) == 0)
20021 {
20022 int i;
20023
20024 p += 4;
20025 for (i = 0; p[i]; i++)
20026 p[i] = TOUPPER (p[i]);
20027 }
20028 elf32_arm_add_eabi_attr_string (stdoutput, 5, p);
20029 }
20030 /* Tag_CPU_arch. */
20031 elf32_arm_add_eabi_attr_int (stdoutput, 6, arch);
20032 /* Tag_CPU_arch_profile. */
20033 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
20034 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A');
20035 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
20036 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R');
20037 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m))
20038 elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M');
20039 /* Tag_ARM_ISA_use. */
20040 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full))
20041 elf32_arm_add_eabi_attr_int (stdoutput, 8, 1);
20042 /* Tag_THUMB_ISA_use. */
20043 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full))
20044 elf32_arm_add_eabi_attr_int (stdoutput, 9,
20045 ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1);
20046 /* Tag_VFP_arch. */
20047 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3)
20048 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3))
20049 elf32_arm_add_eabi_attr_int (stdoutput, 10, 3);
20050 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2)
20051 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2))
20052 elf32_arm_add_eabi_attr_int (stdoutput, 10, 2);
20053 else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1)
20054 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1)
20055 || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd)
20056 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd))
20057 elf32_arm_add_eabi_attr_int (stdoutput, 10, 1);
20058 /* Tag_WMMX_arch. */
20059 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt)
20060 || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt))
20061 elf32_arm_add_eabi_attr_int (stdoutput, 11, 1);
20062 /* Tag_NEON_arch. */
20063 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1)
20064 || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1))
20065 elf32_arm_add_eabi_attr_int (stdoutput, 12, 1);
20066 }
20067
20068 /* Add the .ARM.attributes section. */
20069 void
20070 arm_md_end (void)
20071 {
20072 segT s;
20073 char *p;
20074 addressT addr;
20075 offsetT size;
20076
20077 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
20078 return;
20079
20080 aeabi_set_public_attributes ();
20081 size = elf32_arm_eabi_attr_size (stdoutput);
20082 s = subseg_new (".ARM.attributes", 0);
20083 bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA);
20084 addr = frag_now_fix ();
20085 p = frag_more (size);
20086 elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size);
20087 }
20088 #endif /* OBJ_ELF */
20089
20090
20091 /* Parse a .cpu directive. */
20092
20093 static void
20094 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
20095 {
20096 const struct arm_cpu_option_table *opt;
20097 char *name;
20098 char saved_char;
20099
20100 name = input_line_pointer;
20101 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20102 input_line_pointer++;
20103 saved_char = *input_line_pointer;
20104 *input_line_pointer = 0;
20105
20106 /* Skip the first "all" entry. */
20107 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
20108 if (streq (opt->name, name))
20109 {
20110 mcpu_cpu_opt = &opt->value;
20111 selected_cpu = opt->value;
20112 if (opt->canonical_name)
20113 strcpy(selected_cpu_name, opt->canonical_name);
20114 else
20115 {
20116 int i;
20117 for (i = 0; opt->name[i]; i++)
20118 selected_cpu_name[i] = TOUPPER (opt->name[i]);
20119 selected_cpu_name[i] = 0;
20120 }
20121 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20122 *input_line_pointer = saved_char;
20123 demand_empty_rest_of_line ();
20124 return;
20125 }
20126 as_bad (_("unknown cpu `%s'"), name);
20127 *input_line_pointer = saved_char;
20128 ignore_rest_of_line ();
20129 }
20130
20131
20132 /* Parse a .arch directive. */
20133
20134 static void
20135 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
20136 {
20137 const struct arm_arch_option_table *opt;
20138 char saved_char;
20139 char *name;
20140
20141 name = input_line_pointer;
20142 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20143 input_line_pointer++;
20144 saved_char = *input_line_pointer;
20145 *input_line_pointer = 0;
20146
20147 /* Skip the first "all" entry. */
20148 for (opt = arm_archs + 1; opt->name != NULL; opt++)
20149 if (streq (opt->name, name))
20150 {
20151 mcpu_cpu_opt = &opt->value;
20152 selected_cpu = opt->value;
20153 strcpy(selected_cpu_name, opt->name);
20154 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20155 *input_line_pointer = saved_char;
20156 demand_empty_rest_of_line ();
20157 return;
20158 }
20159
20160 as_bad (_("unknown architecture `%s'\n"), name);
20161 *input_line_pointer = saved_char;
20162 ignore_rest_of_line ();
20163 }
20164
20165
20166 /* Parse a .fpu directive. */
20167
20168 static void
20169 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
20170 {
20171 const struct arm_option_cpu_value_table *opt;
20172 char saved_char;
20173 char *name;
20174
20175 name = input_line_pointer;
20176 while (*input_line_pointer && !ISSPACE(*input_line_pointer))
20177 input_line_pointer++;
20178 saved_char = *input_line_pointer;
20179 *input_line_pointer = 0;
20180
20181 for (opt = arm_fpus; opt->name != NULL; opt++)
20182 if (streq (opt->name, name))
20183 {
20184 mfpu_opt = &opt->value;
20185 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
20186 *input_line_pointer = saved_char;
20187 demand_empty_rest_of_line ();
20188 return;
20189 }
20190
20191 as_bad (_("unknown floating point format `%s'\n"), name);
20192 *input_line_pointer = saved_char;
20193 ignore_rest_of_line ();
20194 }
20195