* gas/config/tc-arm.c (NEON_ENC_TAB): Add entries for VSEL.
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rm_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rd_rn (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397 }
7398
7399 static void
7400 do_rn_rd (void)
7401 {
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404 }
7405
7406 static bfd_boolean
7407 check_obsolete (const arm_feature_set *feature, const char *msg)
7408 {
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421 }
7422
7423 static void
7424 do_rd_rm_rn (void)
7425 {
7426 unsigned Rn = inst.operands[2].reg;
7427 /* Enforce restrictions on SWP instruction. */
7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7440 }
7441
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
7444 inst.instruction |= Rn << 16;
7445 }
7446
7447 static void
7448 do_rd_rn_rm (void)
7449 {
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453 }
7454
7455 static void
7456 do_rm_rd_rn (void)
7457 {
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466 }
7467
7468 static void
7469 do_imm0 (void)
7470 {
7471 inst.instruction |= inst.operands[0].imm;
7472 }
7473
7474 static void
7475 do_rd_cpaddr (void)
7476 {
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
7479 }
7480
7481 /* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
7484
7485 /* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
7487
7488 static void
7489 do_adr (void)
7490 {
7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7492
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7496 inst.reloc.pc_rel = 1;
7497 inst.reloc.exp.X_add_number -= 8;
7498 }
7499
7500 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
7504
7505 static void
7506 do_adrl (void)
7507 {
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7509
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
7515 inst.reloc.exp.X_add_number -= 8;
7516 }
7517
7518 static void
7519 do_arit (void)
7520 {
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526 }
7527
7528 static void
7529 do_barrier (void)
7530 {
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
7536 _("bad barrier type"));
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541 }
7542
7543 static void
7544 do_bfc (void)
7545 {
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553 }
7554
7555 static void
7556 do_bfi (void)
7557 {
7558 unsigned int msb;
7559
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
7564
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
7573 }
7574
7575 static void
7576 do_bfx (void)
7577 {
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584 }
7585
7586 /* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
7591
7592 static void
7593 do_bkpt (void)
7594 {
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7597
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600 }
7601
7602 static void
7603 encode_branch (int default_reloc)
7604 {
7605 if (inst.operands[0].hasreloc)
7606 {
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7613 }
7614 else
7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7616 inst.reloc.pc_rel = 1;
7617 }
7618
7619 static void
7620 do_branch (void)
7621 {
7622 #ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626 #endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628 }
7629
7630 static void
7631 do_bl (void)
7632 {
7633 #ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642 #endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7644 }
7645
7646 /* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7653
7654 static void
7655 do_blx (void)
7656 {
7657 if (inst.operands[0].isreg)
7658 {
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7663
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
7667 {
7668 /* Arg is an address; this instruction cannot be executed
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7673 inst.instruction = 0xfa000000;
7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7675 }
7676 }
7677
7678 static void
7679 do_bx (void)
7680 {
7681 bfd_boolean want_reloc;
7682
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7685
7686 inst.instruction |= inst.operands[0].reg;
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
7693 #ifdef OBJ_ELF
7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7695 #endif
7696 want_reloc = FALSE;
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7700 }
7701
7702
7703 /* ARM v5TEJ. Jump to Jazelle code. */
7704
7705 static void
7706 do_bxj (void)
7707 {
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
7712 }
7713
7714 /* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717 static void
7718 do_cdp (void)
7719 {
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726 }
7727
7728 static void
7729 do_cmp (void)
7730 {
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
7733 }
7734
7735 /* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
7742
7743 struct deprecated_coproc_regs_s
7744 {
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754 };
7755
7756 #define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759 /* Table of all deprecated coprocessor registers. */
7760 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761 {
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777 };
7778
7779 #undef DEPR_ACCESS_V8
7780
7781 static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
7784 static void
7785 do_co_reg (void)
7786 {
7787 unsigned Rd;
7788 size_t i;
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
7825
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
7828 inst.instruction |= Rd << 12;
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832 }
7833
7834 /* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
7839
7840 Two XScale instructions are special cases of these:
7841
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7844
7845 Result unpredictable if Rd or Rn is R15. */
7846
7847 static void
7848 do_co_reg2c (void)
7849 {
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
7870 inst.instruction |= inst.operands[4].reg;
7871 }
7872
7873 static void
7874 do_cpsi (void)
7875 {
7876 inst.instruction |= inst.operands[0].imm << 6;
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
7882 }
7883
7884 static void
7885 do_dbg (void)
7886 {
7887 inst.instruction |= inst.operands[0].imm;
7888 }
7889
7890 static void
7891 do_div (void)
7892 {
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907 }
7908
7909 static void
7910 do_it (void)
7911 {
7912 /* There is no IT instruction in ARM mode. We
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
7917 inst.size = 0;
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
7924 }
7925
7926 /* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928 static int
7929 only_one_reg_in_list (int range)
7930 {
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933 }
7934
7935 static void
7936 encode_ldmstm(int from_push_pop_mnem)
7937 {
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
7940 int one_reg;
7941
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
7944
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
7947
7948 if (inst.operands[0].writeback)
7949 {
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
7953 {
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7971 }
7972 }
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984 }
7985
7986 static void
7987 do_ldmstm (void)
7988 {
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7990 }
7991
7992 /* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
7998 static void
7999 do_ldrd (void)
8000 {
8001 constraint (inst.operands[0].reg % 2 != 0,
8002 _("first transfer register must be even"));
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
8005 _("can only transfer two consecutive registers"));
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
8008
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
8011
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
8015
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
8020
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
8023 /* For an index-register load, the index register must not overlap the
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
8029 }
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8032 }
8033
8034 static void
8035 do_ldrex (void)
8036 {
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
8054
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
8058
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
8064 }
8065
8066 static void
8067 do_ldrexd (void)
8068 {
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8077
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
8080 }
8081
8082 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084 static void
8085 check_ldr_r15_aligned (void)
8086 {
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092 }
8093
8094 static void
8095 do_ldst (void)
8096 {
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8100 return;
8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8102 check_ldr_r15_aligned ();
8103 }
8104
8105 static void
8106 do_ldstt (void)
8107 {
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
8111 {
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
8114 _("this instruction requires a post-indexed address"));
8115
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
8119 }
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122 }
8123
8124 /* Halfword and signed-byte load/store operations. */
8125
8126 static void
8127 do_ldstv4 (void)
8128 {
8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8133 return;
8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8135 }
8136
8137 static void
8138 do_ldsttv4 (void)
8139 {
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
8143 {
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
8146 _("this instruction requires a post-indexed address"));
8147
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
8151 }
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154 }
8155
8156 /* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158 static void
8159 do_lstc (void)
8160 {
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
8164 }
8165
8166 static void
8167 do_mlas (void)
8168 {
8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8170 if (inst.operands[0].reg == inst.operands[1].reg
8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8172 && !(inst.instruction & 0x00400000))
8173 as_tsktsk (_("Rd and Rm should be different in mla"));
8174
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
8179 }
8180
8181 static void
8182 do_mov (void)
8183 {
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186 }
8187
8188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189 static void
8190 do_mov16 (void)
8191 {
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
8208 }
8209
8210 static void do_vfp_nsyn_opcode (const char *);
8211
8212 static int
8213 do_vfp_nsyn_mrs (void)
8214 {
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
8227
8228 return SUCCESS;
8229 }
8230
8231 static int
8232 do_vfp_nsyn_msr (void)
8233 {
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240 }
8241
8242 static void
8243 do_vmrs (void)
8244 {
8245 unsigned Rt = inst.operands[0].reg;
8246
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
8272
8273 inst.instruction |= (Rt << 12);
8274 }
8275
8276 static void
8277 do_vmsr (void)
8278 {
8279 unsigned Rt = inst.operands[1].reg;
8280
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
8299
8300 inst.instruction |= (Rt << 12);
8301 }
8302
8303 static void
8304 do_mrs (void)
8305 {
8306 unsigned br;
8307
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8312 inst.instruction |= inst.operands[0].reg << 12;
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
8330 }
8331
8332 /* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
8335
8336 static void
8337 do_msr (void)
8338 {
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
8346 {
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
8350 }
8351 }
8352
8353 static void
8354 do_mul (void)
8355 {
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
8367 }
8368
8369 /* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
8374
8375 static void
8376 do_mull (void)
8377 {
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
8382
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
8389 || inst.operands[1].reg == inst.operands[2].reg)
8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392 }
8393
8394 static void
8395 do_nop (void)
8396 {
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
8405 }
8406 }
8407
8408 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
8412
8413 static void
8414 do_pkhbt (void)
8415 {
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421 }
8422
8423 /* ARM V6 PKHTB (Argument Parse). */
8424
8425 static void
8426 do_pkhtb (void)
8427 {
8428 if (!inst.operands[3].present)
8429 {
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
8436 }
8437 else
8438 {
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
8443 }
8444 }
8445
8446 /* ARMv5TE: Preload-Cache
8447 MP Extensions: Preload for write
8448
8449 PLD(W) <addr_mode>
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
8452
8453 static void
8454 do_pld (void)
8455 {
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465 }
8466
8467 /* ARMv7: PLI <addr_mode> */
8468 static void
8469 do_pli (void)
8470 {
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481 }
8482
8483 static void
8484 do_push_pop (void)
8485 {
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8492 }
8493
8494 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
8499
8500 static void
8501 do_rfe (void)
8502 {
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506 }
8507
8508 /* ARM V6 ssat (argument parse). */
8509
8510 static void
8511 do_ssat (void)
8512 {
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
8516
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
8519 }
8520
8521 /* ARM V6 usat (argument parse). */
8522
8523 static void
8524 do_usat (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
8529
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
8532 }
8533
8534 /* ARM V6 ssat16 (argument parse). */
8535
8536 static void
8537 do_ssat16 (void)
8538 {
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
8542 }
8543
8544 static void
8545 do_usat16 (void)
8546 {
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550 }
8551
8552 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
8554
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
8557
8558 static void
8559 do_setend (void)
8560 {
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
8567 }
8568
8569 static void
8570 do_shift (void)
8571 {
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
8575
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8579 {
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
8585 }
8586 else
8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8588 }
8589
8590 static void
8591 do_smc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_hvc (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 static void
8605 do_swi (void)
8606 {
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
8609 }
8610
8611 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
8615
8616 static void
8617 do_smla (void)
8618 {
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623 }
8624
8625 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
8629
8630 static void
8631 do_smlal (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
8637
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640 }
8641
8642 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
8645
8646 static void
8647 do_smul (void)
8648 {
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652 }
8653
8654 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
8656
8657 static void
8658 do_srs (void)
8659 {
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
8666 }
8667 else
8668 reg = REG_SP;
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
8673 inst.instruction |= WRITE_BACK;
8674 }
8675
8676 /* ARM V6 strex (argument parse). */
8677
8678 static void
8679 do_strex (void)
8680 {
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
8688
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8691
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
8695
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
8700 }
8701
8702 static void
8703 do_t_strexbh (void)
8704 {
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715 }
8716
8717 static void
8718 do_strexd (void)
8719 {
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8728
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
8733
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
8737 }
8738
8739 /* ARM V8 STRL. */
8740 static void
8741 do_strlex (void)
8742 {
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747 }
8748
8749 static void
8750 do_t_strlex (void)
8751 {
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756 }
8757
8758 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
8766 static void
8767 do_sxtah (void)
8768 {
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773 }
8774
8775 /* ARM V6 SXTH.
8776
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
8780
8781 static void
8782 do_sxth (void)
8783 {
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
8787 }
8788 \f
8789 /* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
8791
8792 static void
8793 do_vfp_sp_monadic (void)
8794 {
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8797 }
8798
8799 static void
8800 do_vfp_sp_dyadic (void)
8801 {
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8805 }
8806
8807 static void
8808 do_vfp_sp_compare_z (void)
8809 {
8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8811 }
8812
8813 static void
8814 do_vfp_dp_sp_cvt (void)
8815 {
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8818 }
8819
8820 static void
8821 do_vfp_sp_dp_cvt (void)
8822 {
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8825 }
8826
8827 static void
8828 do_vfp_reg_from_sp (void)
8829 {
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8832 }
8833
8834 static void
8835 do_vfp_reg2_from_sp2 (void)
8836 {
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8842 }
8843
8844 static void
8845 do_vfp_sp_from_reg (void)
8846 {
8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8848 inst.instruction |= inst.operands[1].reg << 12;
8849 }
8850
8851 static void
8852 do_vfp_sp2_from_reg2 (void)
8853 {
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
8859 }
8860
8861 static void
8862 do_vfp_sp_ldst (void)
8863 {
8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
8866 }
8867
8868 static void
8869 do_vfp_dp_ldst (void)
8870 {
8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
8873 }
8874
8875
8876 static void
8877 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8878 {
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8886 inst.instruction |= inst.operands[1].imm;
8887 }
8888
8889 static void
8890 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8891 {
8892 int count;
8893
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
8899
8900 inst.instruction |= inst.operands[0].reg << 16;
8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8902
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
8906
8907 inst.instruction |= count;
8908 }
8909
8910 static void
8911 do_vfp_sp_ldstmia (void)
8912 {
8913 vfp_sp_ldstm (VFP_LDSTMIA);
8914 }
8915
8916 static void
8917 do_vfp_sp_ldstmdb (void)
8918 {
8919 vfp_sp_ldstm (VFP_LDSTMDB);
8920 }
8921
8922 static void
8923 do_vfp_dp_ldstmia (void)
8924 {
8925 vfp_dp_ldstm (VFP_LDSTMIA);
8926 }
8927
8928 static void
8929 do_vfp_dp_ldstmdb (void)
8930 {
8931 vfp_dp_ldstm (VFP_LDSTMDB);
8932 }
8933
8934 static void
8935 do_vfp_xp_ldstmia (void)
8936 {
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938 }
8939
8940 static void
8941 do_vfp_xp_ldstmdb (void)
8942 {
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
8944 }
8945
8946 static void
8947 do_vfp_dp_rd_rm (void)
8948 {
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951 }
8952
8953 static void
8954 do_vfp_dp_rn_rd (void)
8955 {
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958 }
8959
8960 static void
8961 do_vfp_dp_rd_rn (void)
8962 {
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965 }
8966
8967 static void
8968 do_vfp_dp_rd_rn_rm (void)
8969 {
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973 }
8974
8975 static void
8976 do_vfp_dp_rd (void)
8977 {
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979 }
8980
8981 static void
8982 do_vfp_dp_rm_rd_rn (void)
8983 {
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987 }
8988
8989 /* VFPv3 instructions. */
8990 static void
8991 do_vfp_sp_const (void)
8992 {
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
8996 }
8997
8998 static void
8999 do_vfp_dp_const (void)
9000 {
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
9004 }
9005
9006 static void
9007 vfp_conv (int srcsize)
9008 {
9009 int immbits = srcsize - inst.operands[1].imm;
9010
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028 }
9029
9030 static void
9031 do_vfp_sp_conv_16 (void)
9032 {
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035 }
9036
9037 static void
9038 do_vfp_dp_conv_16 (void)
9039 {
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042 }
9043
9044 static void
9045 do_vfp_sp_conv_32 (void)
9046 {
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049 }
9050
9051 static void
9052 do_vfp_dp_conv_32 (void)
9053 {
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056 }
9057 \f
9058 /* FPA instructions. Also in a logical order. */
9059
9060 static void
9061 do_fpa_cmp (void)
9062 {
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065 }
9066
9067 static void
9068 do_fpa_ldmstm (void)
9069 {
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
9079
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
9089
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9092
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9095
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
9102
9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
9104 }
9105 \f
9106 /* iWMMXt instructions: strictly in alphabetical order. */
9107
9108 static void
9109 do_iwmmxt_tandorc (void)
9110 {
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112 }
9113
9114 static void
9115 do_iwmmxt_textrc (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119 }
9120
9121 static void
9122 do_iwmmxt_textrm (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127 }
9128
9129 static void
9130 do_iwmmxt_tinsr (void)
9131 {
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135 }
9136
9137 static void
9138 do_iwmmxt_tmia (void)
9139 {
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143 }
9144
9145 static void
9146 do_iwmmxt_waligni (void)
9147 {
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152 }
9153
9154 static void
9155 do_iwmmxt_wmerge (void)
9156 {
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161 }
9162
9163 static void
9164 do_iwmmxt_wmov (void)
9165 {
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstbh (void)
9174 {
9175 int reloc;
9176 inst.instruction |= inst.operands[0].reg << 12;
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9182 }
9183
9184 static void
9185 do_iwmmxt_wldstw (void)
9186 {
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
9193
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196 }
9197
9198 static void
9199 do_iwmmxt_wldstd (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
9219 }
9220
9221 static void
9222 do_iwmmxt_wshufh (void)
9223 {
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228 }
9229
9230 static void
9231 do_iwmmxt_wzero (void)
9232 {
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237 }
9238
9239 static void
9240 do_iwmmxt_wrwrwr_or_imm5 (void)
9241 {
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
9255 case 7:
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287 }
9288 \f
9289 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
9291
9292 /* Insns like "foo X,Y,Z". */
9293
9294 static void
9295 do_mav_triple (void)
9296 {
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300 }
9301
9302 /* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9304
9305 static void
9306 do_mav_quad (void)
9307 {
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
9312 }
9313
9314 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315 static void
9316 do_mav_dspsc (void)
9317 {
9318 inst.instruction |= inst.operands[1].reg << 12;
9319 }
9320
9321 /* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9324
9325 static void
9326 do_mav_shift (void)
9327 {
9328 int imm = inst.operands[2].imm;
9329
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
9332
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9337
9338 inst.instruction |= imm;
9339 }
9340 \f
9341 /* XScale instructions. Also sorted arithmetic before move. */
9342
9343 /* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
9347
9348 static void
9349 do_xsc_mia (void)
9350 {
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353 }
9354
9355 /* Xscale move-accumulator-register (argument parse)
9356
9357 MARcc acc0,RdLo,RdHi. */
9358
9359 static void
9360 do_xsc_mar (void)
9361 {
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
9364 }
9365
9366 /* Xscale move-register-accumulator (argument parse)
9367
9368 MRAcc RdLo,RdHi,acc0. */
9369
9370 static void
9371 do_xsc_mra (void)
9372 {
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376 }
9377 \f
9378 /* Encoding functions relevant only to Thumb. */
9379
9380 /* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383 static void
9384 encode_thumb32_shifted_operand (int i)
9385 {
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
9388
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
9395 {
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
9412 }
9413 }
9414
9415
9416 /* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
9422
9423 static void
9424 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425 {
9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9427
9428 constraint (!inst.operands[i].isreg,
9429 _("Instruction does not support =N addresses"));
9430
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
9433 {
9434 constraint (is_pc, BAD_PC_ADDRESSING);
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
9444
9445 inst.instruction |= inst.operands[i].imm;
9446 if (inst.operands[i].shifted)
9447 {
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
9452 _("shift out of range"));
9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9460 constraint (is_t && inst.operands[i].writeback,
9461 _("cannot use writeback with this instruction"));
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
9470 }
9471 else
9472 {
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
9476 }
9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9478 }
9479 else if (inst.operands[i].postind)
9480 {
9481 gas_assert (inst.operands[i].writeback);
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493 }
9494
9495 /* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
9501 #define T16_32_TAB \
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
9580
9581 /* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
9584 #define X(a,b,c) T_MNEM##a
9585 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586 #undef X
9587
9588 #define X(a,b,c) 0x##b
9589 static const unsigned short thumb_op16[] = { T16_32_TAB };
9590 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591 #undef X
9592
9593 #define X(a,b,c) 0x##c
9594 static const unsigned int thumb_op32[] = { T16_32_TAB };
9595 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9597 #undef X
9598 #undef T16_32_TAB
9599
9600 /* Thumb instruction encoders, in alphabetical order. */
9601
9602 /* ADDW or SUBW. */
9603
9604 static void
9605 do_t_add_sub_w (void)
9606 {
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
9618
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621 }
9622
9623 /* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626 static void
9627 do_t_add_sub (void)
9628 {
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
9639 if (unified_syntax)
9640 {
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
9648 narrow = !in_it_block ();
9649 else
9650 narrow = in_it_block ();
9651 if (!inst.operands[2].isreg)
9652 {
9653 int add;
9654
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
9691 if (Rd == REG_PC)
9692 {
9693 constraint (add, BAD_PC);
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
9724 }
9725 }
9726 else
9727 {
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
9739 {
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
9747
9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9749 {
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9755 {
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
9767 }
9768 }
9769
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
9793
9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9795 {
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9804 return;
9805 }
9806
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
9809
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
9812 {
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9830 }
9831 }
9832 }
9833
9834 static void
9835 do_t_adr (void)
9836 {
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
9847 inst.instruction |= Rd << 4;
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
9850 {
9851 /* Generate a 32-bit opcode. */
9852 inst.instruction = THUMB_OP32 (inst.instruction);
9853 inst.instruction |= Rd << 8;
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
9859 /* Generate a 16-bit opcode. */
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
9864
9865 inst.instruction |= Rd << 4;
9866 }
9867 }
9868
9869 /* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
9875 static void
9876 do_t_arit3 (void)
9877 {
9878 int Rd, Rs, Rn;
9879
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
9885
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
9891 if (unified_syntax)
9892 {
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
9905 bfd_boolean narrow;
9906
9907 /* See if we can do this with a 16-bit instruction. */
9908 if (THUMB_SETS_FLAGS (inst.instruction))
9909 narrow = !in_it_block ();
9910 else
9911 narrow = in_it_block ();
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
9928
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
9938 }
9939 else
9940 {
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9945
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
9951
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
9955 }
9956 }
9957
9958 /* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963 static void
9964 do_t_arit3c (void)
9965 {
9966 int Rd, Rs, Rn;
9967
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
9973
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
9978
9979 if (unified_syntax)
9980 {
9981 if (!inst.operands[2].isreg)
9982 {
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9990 }
9991 else
9992 {
9993 bfd_boolean narrow;
9994
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (THUMB_SETS_FLAGS (inst.instruction))
9997 narrow = !in_it_block ();
9998 else
9999 narrow = in_it_block ();
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
10009 {
10010 if (Rd == Rs)
10011 {
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
10016 }
10017 if (Rd == Rn)
10018 {
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
10023 }
10024 }
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
10034 }
10035 }
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10042
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
10057 }
10058
10059 static void
10060 do_t_barrier (void)
10061 {
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
10067 _("bad barrier type"));
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072 }
10073
10074 static void
10075 do_t_bfc (void)
10076 {
10077 unsigned Rd;
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
10088 }
10089
10090 static void
10091 do_t_bfi (void)
10092 {
10093 int Rd, Rn;
10094 unsigned int msb;
10095
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
10108
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
10118 }
10119
10120 static void
10121 do_t_bfx (void)
10122 {
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138 }
10139
10140 /* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
10146
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
10149
10150 static void
10151 do_t_blx (void)
10152 {
10153 set_it_insn_type_last ();
10154
10155 if (inst.operands[0].isreg)
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
10161 else
10162 {
10163 /* No register. This must be BLX(1). */
10164 inst.instruction = 0xf000e800;
10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10166 }
10167 }
10168
10169 static void
10170 do_t_branch (void)
10171 {
10172 int opcode;
10173 int cond;
10174 int reloc;
10175
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
10193 if (unified_syntax
10194 && (inst.size_req == 4
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
10198 {
10199 inst.instruction = THUMB_OP32(opcode);
10200 if (cond == COND_ALWAYS)
10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10202 else
10203 {
10204 gas_assert (cond != 0xF);
10205 inst.instruction |= cond << 22;
10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10207 }
10208 }
10209 else
10210 {
10211 inst.instruction = THUMB_OP16(opcode);
10212 if (cond == COND_ALWAYS)
10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10214 else
10215 {
10216 inst.instruction |= cond << 8;
10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10218 }
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
10222 }
10223 inst.reloc.type = reloc;
10224 inst.reloc.pc_rel = 1;
10225 }
10226
10227 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
10230 static void
10231 do_t_bkpt_hlt1 (int range)
10232 {
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
10235 if (inst.operands[0].present)
10236 {
10237 constraint (inst.operands[0].imm > range,
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
10240 }
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243 }
10244
10245 static void
10246 do_t_hlt (void)
10247 {
10248 do_t_bkpt_hlt1 (63);
10249 }
10250
10251 static void
10252 do_t_bkpt (void)
10253 {
10254 do_t_bkpt_hlt1 (255);
10255 }
10256
10257 static void
10258 do_t_branch23 (void)
10259 {
10260 set_it_insn_type_last ();
10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10262
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10270
10271 #if defined(OBJ_COFF)
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
10282 #endif
10283 }
10284
10285 static void
10286 do_t_bx (void)
10287 {
10288 set_it_insn_type_last ();
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293 }
10294
10295 static void
10296 do_t_bxj (void)
10297 {
10298 int Rm;
10299
10300 set_it_insn_type_last ();
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
10304 }
10305
10306 static void
10307 do_t_clz (void)
10308 {
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
10321 }
10322
10323 static void
10324 do_t_cps (void)
10325 {
10326 set_it_insn_type (OUTSIDE_IT_INSN);
10327 inst.instruction |= inst.operands[0].imm;
10328 }
10329
10330 static void
10331 do_t_cpsi (void)
10332 {
10333 set_it_insn_type (OUTSIDE_IT_INSN);
10334 if (unified_syntax
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10337 {
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
10344 }
10345 else
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
10355 }
10356 }
10357
10358 /* THUMB CPY instruction (argument parse). */
10359
10360 static void
10361 do_t_cpy (void)
10362 {
10363 if (inst.size_req == 4)
10364 {
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
10368 }
10369 else
10370 {
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
10374 }
10375 }
10376
10377 static void
10378 do_t_cbz (void)
10379 {
10380 set_it_insn_type (OUTSIDE_IT_INSN);
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385 }
10386
10387 static void
10388 do_t_dbg (void)
10389 {
10390 inst.instruction |= inst.operands[0].imm;
10391 }
10392
10393 static void
10394 do_t_div (void)
10395 {
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
10410 }
10411
10412 static void
10413 do_t_hint (void)
10414 {
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419 }
10420
10421 static void
10422 do_t_it (void)
10423 {
10424 unsigned int cond = inst.operands[0].imm;
10425
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
10429 now_it.warn_deprecated = FALSE;
10430
10431 /* If the condition is a negative condition, invert the mask. */
10432 if ((cond & 0x1) == 0x0)
10433 {
10434 unsigned int mask = inst.instruction & 0x000f;
10435
10436 if ((mask & 0x7) == 0)
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
10441 else if ((mask & 0x3) == 0)
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
10446 else if ((mask & 0x1) == 0)
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
10451 else
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
10456
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
10459 }
10460
10461 inst.instruction |= cond << 4;
10462 }
10463
10464 /* Helper function used for both push/pop and ldm/stm. */
10465 static void
10466 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467 {
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
10480 if (load)
10481 {
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
10518 mask = ffs (mask) - 1;
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526 }
10527
10528 static void
10529 do_t_ldmstm (void)
10530 {
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
10536
10537 if (unified_syntax)
10538 {
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
10546 && !(inst.operands[1].imm & ~0xff))
10547 {
10548 mask = 1 << inst.operands[0].reg;
10549
10550 if (inst.operands[0].reg <= 7)
10551 {
10552 if (inst.instruction == T_MNEM_stmia
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
10562
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
10582 inst.error =
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
10593 }
10594 else if (inst.operands[0] .reg == REG_SP)
10595 {
10596 if (inst.operands[0].writeback)
10597 {
10598 inst.instruction =
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
10606 inst.instruction =
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
10612 }
10613 }
10614
10615 if (!narrow)
10616 {
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
10619
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
10622 }
10623 }
10624 else
10625 {
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
10631 if (inst.instruction == T_MNEM_stmia)
10632 {
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10637 as_warn (_("value stored for r%d is UNKNOWN"),
10638 inst.operands[0].reg);
10639 }
10640 else
10641 {
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
10648 }
10649
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654 }
10655
10656 static void
10657 do_t_ldrex (void)
10658 {
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
10663 BAD_ADDR_MODE);
10664
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670 }
10671
10672 static void
10673 do_t_ldrexd (void)
10674 {
10675 if (!inst.operands[1].present)
10676 {
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
10681 }
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
10684
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
10688 }
10689
10690 static void
10691 do_t_ldst (void)
10692 {
10693 unsigned long opcode;
10694 int Rn;
10695
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
10701 opcode = inst.instruction;
10702 if (unified_syntax)
10703 {
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
10717 {
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
10723 /* [Rn, Rik] */
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
10765 }
10766 /* Definitely a 32-bit variant. */
10767
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
10783 /* Do some validations regarding addressing modes. */
10784 if (inst.operands[1].immisreg)
10785 reject_bad_reg (inst.operands[1].imm);
10786
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
10791 inst.instruction = THUMB_OP32 (opcode);
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10794 check_ldr_r15_aligned ();
10795 return;
10796 }
10797
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10801 {
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
10810 }
10811
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
10816
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10822 {
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
10830
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
10837
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
10842
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
10852
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
10857
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
10871
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875 }
10876
10877 static void
10878 do_t_ldstd (void)
10879 {
10880 if (!inst.operands[1].present)
10881 {
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
10887 }
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10898 }
10899
10900 static void
10901 do_t_ldstt (void)
10902 {
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905 }
10906
10907 static void
10908 do_t_mla (void)
10909 {
10910 unsigned Rd, Rn, Rm, Ra;
10911
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
10926 }
10927
10928 static void
10929 do_t_mlal (void)
10930 {
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
10947 }
10948
10949 static void
10950 do_t_mov_cmp (void)
10951 {
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
10960 if (unified_syntax)
10961 {
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10964 unsigned long opcode;
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
10968 low_regs = (Rn <= 7 && Rm <= 7);
10969 opcode = inst.instruction;
10970 if (in_it_block ())
10971 narrow = opcode != T_MNEM_movs;
10972 else
10973 narrow = opcode != T_MNEM_movs || low_regs;
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
11037 if (!inst.operands[1].isreg)
11038 {
11039 /* Immediate operand. */
11040 if (!in_it_block () && opcode == T_MNEM_mov)
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
11045 inst.instruction |= Rn << 8;
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11055 inst.instruction |= Rn << r0off;
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
11058 }
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
11066 if (in_it_block ())
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
11077 if (Rn != Rm)
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
11095 abort ();
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
11101 inst.instruction |= Rn;
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
11114 else if (!narrow)
11115 {
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
11122 if (in_it_block ())
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
11148 inst.instruction |= Rn << r0off;
11149 encode_thumb32_shifted_operand (1);
11150 }
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
11156 /* In v4t or v5t a move of two lowregs produces unpredictable
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11164 arm_ext_v6);
11165 }
11166
11167 inst.instruction = T_OPCODE_MOV_HR;
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
11171 break;
11172
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
11179 break;
11180
11181 case T_MNEM_cmp:
11182 if (low_regs)
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
11194 }
11195 break;
11196 }
11197 return;
11198 }
11199
11200 inst.instruction = THUMB_OP16 (inst.instruction);
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
11206 if (inst.operands[1].isreg)
11207 {
11208 if (Rn < 8 && Rm < 8)
11209 {
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
11214 else
11215 inst.instruction = T_OPCODE_CMP_LR;
11216
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
11219 }
11220 else
11221 {
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
11227 }
11228 }
11229 else
11230 {
11231 constraint (Rn > 7,
11232 _("only lo regs allowed with immediate"));
11233 inst.instruction |= Rn << 8;
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236 }
11237
11238 static void
11239 do_t_mov16 (void)
11240 {
11241 unsigned Rd;
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
11269 }
11270
11271 static void
11272 do_t_mvn_tst (void)
11273 {
11274 unsigned Rn, Rm;
11275
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
11295 || Rn > 7 || Rm > 7)
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
11300 narrow = !in_it_block ();
11301 else
11302 narrow = in_it_block ();
11303
11304 if (!inst.operands[1].isreg)
11305 {
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11311 inst.instruction |= Rn << r0off;
11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11313 }
11314 else
11315 {
11316 /* See if we can do this with a 16-bit instruction. */
11317 if (narrow)
11318 {
11319 inst.instruction = THUMB_OP16 (inst.instruction);
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
11322 }
11323 else
11324 {
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
11330 inst.instruction |= Rn << r0off;
11331 encode_thumb32_shifted_operand (1);
11332 }
11333 }
11334 }
11335 else
11336 {
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
11341 constraint (Rn > 7 || Rm > 7,
11342 BAD_HIREG);
11343
11344 inst.instruction = THUMB_OP16 (inst.instruction);
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
11347 }
11348 }
11349
11350 static void
11351 do_t_mrs (void)
11352 {
11353 unsigned Rd;
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
11363 {
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
11371 }
11372 else
11373 {
11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11375
11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
11385 else
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
11390
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
11395 }
11396
11397 static void
11398 do_t_msr (void)
11399 {
11400 int flags;
11401 unsigned Rn;
11402
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11415 {
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
11428 }
11429 else
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
11432
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
11439 inst.instruction |= (flags & 0xff);
11440 inst.instruction |= Rn << 16;
11441 }
11442
11443 static void
11444 do_t_mul (void)
11445 {
11446 bfd_boolean narrow;
11447 unsigned Rd, Rn, Rm;
11448
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
11451
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
11456 if (unified_syntax)
11457 {
11458 if (inst.size_req == 4
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
11465 narrow = !in_it_block ();
11466 else
11467 narrow = in_it_block ();
11468 }
11469 else
11470 {
11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11472 constraint (Rn > 7 || Rm > 7,
11473 BAD_HIREG);
11474 narrow = TRUE;
11475 }
11476
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
11480 inst.instruction = THUMB_OP16 (inst.instruction);
11481 inst.instruction |= Rd;
11482
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
11490 else
11491 {
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
11503 }
11504 }
11505
11506 static void
11507 do_t_mull (void)
11508 {
11509 unsigned RdLo, RdHi, Rn, Rm;
11510
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528 }
11529
11530 static void
11531 do_t_nop (void)
11532 {
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11538 {
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561 }
11562
11563 static void
11564 do_t_neg (void)
11565 {
11566 if (unified_syntax)
11567 {
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
11571 narrow = !in_it_block ();
11572 else
11573 narrow = in_it_block ();
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
11584 }
11585 else
11586 {
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
11590 }
11591 }
11592 else
11593 {
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602 }
11603
11604 static void
11605 do_t_orn (void)
11606 {
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
11629 reject_bad_reg (Rm);
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636 }
11637
11638 static void
11639 do_t_pkhbt (void)
11640 {
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
11661 }
11662 }
11663
11664 static void
11665 do_t_pkhtb (void)
11666 {
11667 if (!inst.operands[3].present)
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
11678 do_t_pkhbt ();
11679 }
11680
11681 static void
11682 do_t_pld (void)
11683 {
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688 }
11689
11690 static void
11691 do_t_push_pop (void)
11692 {
11693 unsigned mask;
11694
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
11699
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11703 else if ((inst.instruction == T_MNEM_push
11704 && (mask & ~0xff) == 1 << REG_LR)
11705 || (inst.instruction == T_MNEM_pop
11706 && (mask & ~0xff) == 1 << REG_PC))
11707 {
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
11710 inst.instruction |= mask & 0xff;
11711 }
11712 else if (unified_syntax)
11713 {
11714 inst.instruction = THUMB_OP32 (inst.instruction);
11715 encode_thumb2_ldmstm (13, mask, TRUE);
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
11722 }
11723
11724 static void
11725 do_t_rbit (void)
11726 {
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
11738 }
11739
11740 static void
11741 do_t_rev (void)
11742 {
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767 }
11768
11769 static void
11770 do_t_rrx (void)
11771 {
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
11779
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782 }
11783
11784 static void
11785 do_t_rsb (void)
11786 {
11787 unsigned Rd, Rs;
11788
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11793
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
11806 narrow = !in_it_block ();
11807 else
11808 narrow = in_it_block ();
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837 }
11838
11839 static void
11840 do_t_setend (void)
11841 {
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
11846 set_it_insn_type (OUTSIDE_IT_INSN);
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849 }
11850
11851 static void
11852 do_t_shift (void)
11853 {
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
11876 narrow = !in_it_block ();
11877 else
11878 narrow = in_it_block ();
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
11892
11893 if (!narrow)
11894 {
11895 if (inst.operands[2].isreg)
11896 {
11897 reject_bad_reg (inst.operands[2].reg);
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
11910 inst.operands[1].shift_kind = shift_kind;
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
11917 }
11918 }
11919 else
11920 {
11921 if (inst.operands[2].isreg)
11922 {
11923 switch (shift_kind)
11924 {
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11929 default: abort ();
11930 }
11931
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
11938 }
11939 else
11940 {
11941 switch (shift_kind)
11942 {
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11946 default: abort ();
11947 }
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
11951 }
11952 }
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11959
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
11965
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
11974
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
11981 }
11982 else
11983 {
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
11995 }
11996 }
11997 }
11998
11999 static void
12000 do_t_simd (void)
12001 {
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
12015 }
12016
12017 static void
12018 do_t_simd2 (void)
12019 {
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033 }
12034
12035 static void
12036 do_t_smc (void)
12037 {
12038 unsigned int value = inst.reloc.exp.X_add_number;
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047 }
12048
12049 static void
12050 do_t_hvc (void)
12051 {
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057 }
12058
12059 static void
12060 do_t_ssat_usat (int bias)
12061 {
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
12071 inst.instruction |= inst.operands[1].imm - bias;
12072 inst.instruction |= Rn << 16;
12073
12074 if (inst.operands[3].present)
12075 {
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
12082
12083 if (shift_amount != 0)
12084 {
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
12093 }
12094 }
12095 }
12096
12097 static void
12098 do_t_ssat (void)
12099 {
12100 do_t_ssat_usat (1);
12101 }
12102
12103 static void
12104 do_t_ssat16 (void)
12105 {
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
12115 inst.instruction |= inst.operands[1].imm - 1;
12116 inst.instruction |= Rn << 16;
12117 }
12118
12119 static void
12120 do_t_strex (void)
12121 {
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
12126 BAD_ADDR_MODE);
12127
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12134 }
12135
12136 static void
12137 do_t_strexd (void)
12138 {
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
12141
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
12144 || inst.operands[0].reg == inst.operands[3].reg,
12145 BAD_OVERLAP);
12146
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
12151 }
12152
12153 static void
12154 do_t_sxtah (void)
12155 {
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
12169 inst.instruction |= inst.operands[3].imm << 4;
12170 }
12171
12172 static void
12173 do_t_sxth (void)
12174 {
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
12185 && Rd <= 7 && Rm <= 7
12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12187 {
12188 inst.instruction = THUMB_OP16 (inst.instruction);
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
12191 }
12192 else if (unified_syntax)
12193 {
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
12198 inst.instruction |= inst.operands[2].imm << 4;
12199 }
12200 else
12201 {
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
12205 }
12206 }
12207
12208 static void
12209 do_t_swi (void)
12210 {
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223 }
12224
12225 static void
12226 do_t_tb (void)
12227 {
12228 unsigned Rn, Rm;
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
12232 set_it_insn_type_last ();
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
12238
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
12244 inst.instruction |= (Rn << 16) | Rm;
12245 }
12246
12247 static void
12248 do_t_usat (void)
12249 {
12250 do_t_ssat_usat (0);
12251 }
12252
12253 static void
12254 do_t_usat16 (void)
12255 {
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
12265 inst.instruction |= inst.operands[1].imm;
12266 inst.instruction |= Rn << 16;
12267 }
12268
12269 /* Neon instruction encoder helpers. */
12270
12271 /* Encodings for the different types for various Neon opcodes. */
12272
12273 /* An "invalid" code for the following tables. */
12274 #define N_INV -1u
12275
12276 struct neon_tab_entry
12277 {
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281 };
12282
12283 /* Map overloaded Neon opcodes to their respective encodings. */
12284 #define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
12297 vcge / vcgt with the operands reversed. */ \
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
12348 X(vselgt, 0xe300a00, N_INV, N_INV)
12349
12350 enum neon_opc
12351 {
12352 #define X(OPC,I,F,S) N_MNEM_##OPC
12353 NEON_ENC_TAB
12354 #undef X
12355 };
12356
12357 static const struct neon_tab_entry neon_enc_tab[] =
12358 {
12359 #define X(OPC,I,F,S) { (I), (F), (S) }
12360 NEON_ENC_TAB
12361 #undef X
12362 };
12363
12364 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12365 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12366 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12367 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12368 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12369 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12370 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12371 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12372 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12373 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12374 #define NEON_ENC_SINGLE_(X) \
12375 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12376 #define NEON_ENC_DOUBLE_(X) \
12377 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12378 #define NEON_ENC_FPV8_(X) \
12379 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12380
12381 #define NEON_ENCODE(type, inst) \
12382 do \
12383 { \
12384 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12385 inst.is_neon = 1; \
12386 } \
12387 while (0)
12388
12389 #define check_neon_suffixes \
12390 do \
12391 { \
12392 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12393 { \
12394 as_bad (_("invalid neon suffix for non neon instruction")); \
12395 return; \
12396 } \
12397 } \
12398 while (0)
12399
12400 /* Define shapes for instruction operands. The following mnemonic characters
12401 are used in this table:
12402
12403 F - VFP S<n> register
12404 D - Neon D<n> register
12405 Q - Neon Q<n> register
12406 I - Immediate
12407 S - Scalar
12408 R - ARM register
12409 L - D<n> register list
12410
12411 This table is used to generate various data:
12412 - enumerations of the form NS_DDR to be used as arguments to
12413 neon_select_shape.
12414 - a table classifying shapes into single, double, quad, mixed.
12415 - a table used to drive neon_select_shape. */
12416
12417 #define NEON_SHAPE_DEF \
12418 X(3, (D, D, D), DOUBLE), \
12419 X(3, (Q, Q, Q), QUAD), \
12420 X(3, (D, D, I), DOUBLE), \
12421 X(3, (Q, Q, I), QUAD), \
12422 X(3, (D, D, S), DOUBLE), \
12423 X(3, (Q, Q, S), QUAD), \
12424 X(2, (D, D), DOUBLE), \
12425 X(2, (Q, Q), QUAD), \
12426 X(2, (D, S), DOUBLE), \
12427 X(2, (Q, S), QUAD), \
12428 X(2, (D, R), DOUBLE), \
12429 X(2, (Q, R), QUAD), \
12430 X(2, (D, I), DOUBLE), \
12431 X(2, (Q, I), QUAD), \
12432 X(3, (D, L, D), DOUBLE), \
12433 X(2, (D, Q), MIXED), \
12434 X(2, (Q, D), MIXED), \
12435 X(3, (D, Q, I), MIXED), \
12436 X(3, (Q, D, I), MIXED), \
12437 X(3, (Q, D, D), MIXED), \
12438 X(3, (D, Q, Q), MIXED), \
12439 X(3, (Q, Q, D), MIXED), \
12440 X(3, (Q, D, S), MIXED), \
12441 X(3, (D, Q, S), MIXED), \
12442 X(4, (D, D, D, I), DOUBLE), \
12443 X(4, (Q, Q, Q, I), QUAD), \
12444 X(2, (F, F), SINGLE), \
12445 X(3, (F, F, F), SINGLE), \
12446 X(2, (F, I), SINGLE), \
12447 X(2, (F, D), MIXED), \
12448 X(2, (D, F), MIXED), \
12449 X(3, (F, F, I), MIXED), \
12450 X(4, (R, R, F, F), SINGLE), \
12451 X(4, (F, F, R, R), SINGLE), \
12452 X(3, (D, R, R), DOUBLE), \
12453 X(3, (R, R, D), DOUBLE), \
12454 X(2, (S, R), SINGLE), \
12455 X(2, (R, S), SINGLE), \
12456 X(2, (F, R), SINGLE), \
12457 X(2, (R, F), SINGLE)
12458
12459 #define S2(A,B) NS_##A##B
12460 #define S3(A,B,C) NS_##A##B##C
12461 #define S4(A,B,C,D) NS_##A##B##C##D
12462
12463 #define X(N, L, C) S##N L
12464
12465 enum neon_shape
12466 {
12467 NEON_SHAPE_DEF,
12468 NS_NULL
12469 };
12470
12471 #undef X
12472 #undef S2
12473 #undef S3
12474 #undef S4
12475
12476 enum neon_shape_class
12477 {
12478 SC_SINGLE,
12479 SC_DOUBLE,
12480 SC_QUAD,
12481 SC_MIXED
12482 };
12483
12484 #define X(N, L, C) SC_##C
12485
12486 static enum neon_shape_class neon_shape_class[] =
12487 {
12488 NEON_SHAPE_DEF
12489 };
12490
12491 #undef X
12492
12493 enum neon_shape_el
12494 {
12495 SE_F,
12496 SE_D,
12497 SE_Q,
12498 SE_I,
12499 SE_S,
12500 SE_R,
12501 SE_L
12502 };
12503
12504 /* Register widths of above. */
12505 static unsigned neon_shape_el_size[] =
12506 {
12507 32,
12508 64,
12509 128,
12510 0,
12511 32,
12512 32,
12513 0
12514 };
12515
12516 struct neon_shape_info
12517 {
12518 unsigned els;
12519 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12520 };
12521
12522 #define S2(A,B) { SE_##A, SE_##B }
12523 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12524 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12525
12526 #define X(N, L, C) { N, S##N L }
12527
12528 static struct neon_shape_info neon_shape_tab[] =
12529 {
12530 NEON_SHAPE_DEF
12531 };
12532
12533 #undef X
12534 #undef S2
12535 #undef S3
12536 #undef S4
12537
12538 /* Bit masks used in type checking given instructions.
12539 'N_EQK' means the type must be the same as (or based on in some way) the key
12540 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12541 set, various other bits can be set as well in order to modify the meaning of
12542 the type constraint. */
12543
12544 enum neon_type_mask
12545 {
12546 N_S8 = 0x0000001,
12547 N_S16 = 0x0000002,
12548 N_S32 = 0x0000004,
12549 N_S64 = 0x0000008,
12550 N_U8 = 0x0000010,
12551 N_U16 = 0x0000020,
12552 N_U32 = 0x0000040,
12553 N_U64 = 0x0000080,
12554 N_I8 = 0x0000100,
12555 N_I16 = 0x0000200,
12556 N_I32 = 0x0000400,
12557 N_I64 = 0x0000800,
12558 N_8 = 0x0001000,
12559 N_16 = 0x0002000,
12560 N_32 = 0x0004000,
12561 N_64 = 0x0008000,
12562 N_P8 = 0x0010000,
12563 N_P16 = 0x0020000,
12564 N_F16 = 0x0040000,
12565 N_F32 = 0x0080000,
12566 N_F64 = 0x0100000,
12567 N_KEY = 0x1000000, /* Key element (main type specifier). */
12568 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12569 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12570 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12571 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12572 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12573 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12574 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12575 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12576 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12577 N_UTYP = 0,
12578 N_MAX_NONSPECIAL = N_F64
12579 };
12580
12581 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12582
12583 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12584 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12585 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12586 #define N_SUF_32 (N_SU_32 | N_F32)
12587 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12588 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12589
12590 /* Pass this as the first type argument to neon_check_type to ignore types
12591 altogether. */
12592 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12593
12594 /* Select a "shape" for the current instruction (describing register types or
12595 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12596 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12597 function of operand parsing, so this function doesn't need to be called.
12598 Shapes should be listed in order of decreasing length. */
12599
12600 static enum neon_shape
12601 neon_select_shape (enum neon_shape shape, ...)
12602 {
12603 va_list ap;
12604 enum neon_shape first_shape = shape;
12605
12606 /* Fix missing optional operands. FIXME: we don't know at this point how
12607 many arguments we should have, so this makes the assumption that we have
12608 > 1. This is true of all current Neon opcodes, I think, but may not be
12609 true in the future. */
12610 if (!inst.operands[1].present)
12611 inst.operands[1] = inst.operands[0];
12612
12613 va_start (ap, shape);
12614
12615 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12616 {
12617 unsigned j;
12618 int matches = 1;
12619
12620 for (j = 0; j < neon_shape_tab[shape].els; j++)
12621 {
12622 if (!inst.operands[j].present)
12623 {
12624 matches = 0;
12625 break;
12626 }
12627
12628 switch (neon_shape_tab[shape].el[j])
12629 {
12630 case SE_F:
12631 if (!(inst.operands[j].isreg
12632 && inst.operands[j].isvec
12633 && inst.operands[j].issingle
12634 && !inst.operands[j].isquad))
12635 matches = 0;
12636 break;
12637
12638 case SE_D:
12639 if (!(inst.operands[j].isreg
12640 && inst.operands[j].isvec
12641 && !inst.operands[j].isquad
12642 && !inst.operands[j].issingle))
12643 matches = 0;
12644 break;
12645
12646 case SE_R:
12647 if (!(inst.operands[j].isreg
12648 && !inst.operands[j].isvec))
12649 matches = 0;
12650 break;
12651
12652 case SE_Q:
12653 if (!(inst.operands[j].isreg
12654 && inst.operands[j].isvec
12655 && inst.operands[j].isquad
12656 && !inst.operands[j].issingle))
12657 matches = 0;
12658 break;
12659
12660 case SE_I:
12661 if (!(!inst.operands[j].isreg
12662 && !inst.operands[j].isscalar))
12663 matches = 0;
12664 break;
12665
12666 case SE_S:
12667 if (!(!inst.operands[j].isreg
12668 && inst.operands[j].isscalar))
12669 matches = 0;
12670 break;
12671
12672 case SE_L:
12673 break;
12674 }
12675 if (!matches)
12676 break;
12677 }
12678 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12679 /* We've matched all the entries in the shape table, and we don't
12680 have any left over operands which have not been matched. */
12681 break;
12682 }
12683
12684 va_end (ap);
12685
12686 if (shape == NS_NULL && first_shape != NS_NULL)
12687 first_error (_("invalid instruction shape"));
12688
12689 return shape;
12690 }
12691
12692 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12693 means the Q bit should be set). */
12694
12695 static int
12696 neon_quad (enum neon_shape shape)
12697 {
12698 return neon_shape_class[shape] == SC_QUAD;
12699 }
12700
12701 static void
12702 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12703 unsigned *g_size)
12704 {
12705 /* Allow modification to be made to types which are constrained to be
12706 based on the key element, based on bits set alongside N_EQK. */
12707 if ((typebits & N_EQK) != 0)
12708 {
12709 if ((typebits & N_HLF) != 0)
12710 *g_size /= 2;
12711 else if ((typebits & N_DBL) != 0)
12712 *g_size *= 2;
12713 if ((typebits & N_SGN) != 0)
12714 *g_type = NT_signed;
12715 else if ((typebits & N_UNS) != 0)
12716 *g_type = NT_unsigned;
12717 else if ((typebits & N_INT) != 0)
12718 *g_type = NT_integer;
12719 else if ((typebits & N_FLT) != 0)
12720 *g_type = NT_float;
12721 else if ((typebits & N_SIZ) != 0)
12722 *g_type = NT_untyped;
12723 }
12724 }
12725
12726 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12727 operand type, i.e. the single type specified in a Neon instruction when it
12728 is the only one given. */
12729
12730 static struct neon_type_el
12731 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12732 {
12733 struct neon_type_el dest = *key;
12734
12735 gas_assert ((thisarg & N_EQK) != 0);
12736
12737 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12738
12739 return dest;
12740 }
12741
12742 /* Convert Neon type and size into compact bitmask representation. */
12743
12744 static enum neon_type_mask
12745 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12746 {
12747 switch (type)
12748 {
12749 case NT_untyped:
12750 switch (size)
12751 {
12752 case 8: return N_8;
12753 case 16: return N_16;
12754 case 32: return N_32;
12755 case 64: return N_64;
12756 default: ;
12757 }
12758 break;
12759
12760 case NT_integer:
12761 switch (size)
12762 {
12763 case 8: return N_I8;
12764 case 16: return N_I16;
12765 case 32: return N_I32;
12766 case 64: return N_I64;
12767 default: ;
12768 }
12769 break;
12770
12771 case NT_float:
12772 switch (size)
12773 {
12774 case 16: return N_F16;
12775 case 32: return N_F32;
12776 case 64: return N_F64;
12777 default: ;
12778 }
12779 break;
12780
12781 case NT_poly:
12782 switch (size)
12783 {
12784 case 8: return N_P8;
12785 case 16: return N_P16;
12786 default: ;
12787 }
12788 break;
12789
12790 case NT_signed:
12791 switch (size)
12792 {
12793 case 8: return N_S8;
12794 case 16: return N_S16;
12795 case 32: return N_S32;
12796 case 64: return N_S64;
12797 default: ;
12798 }
12799 break;
12800
12801 case NT_unsigned:
12802 switch (size)
12803 {
12804 case 8: return N_U8;
12805 case 16: return N_U16;
12806 case 32: return N_U32;
12807 case 64: return N_U64;
12808 default: ;
12809 }
12810 break;
12811
12812 default: ;
12813 }
12814
12815 return N_UTYP;
12816 }
12817
12818 /* Convert compact Neon bitmask type representation to a type and size. Only
12819 handles the case where a single bit is set in the mask. */
12820
12821 static int
12822 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12823 enum neon_type_mask mask)
12824 {
12825 if ((mask & N_EQK) != 0)
12826 return FAIL;
12827
12828 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12829 *size = 8;
12830 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12831 *size = 16;
12832 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12833 *size = 32;
12834 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12835 *size = 64;
12836 else
12837 return FAIL;
12838
12839 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12840 *type = NT_signed;
12841 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12842 *type = NT_unsigned;
12843 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12844 *type = NT_integer;
12845 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12846 *type = NT_untyped;
12847 else if ((mask & (N_P8 | N_P16)) != 0)
12848 *type = NT_poly;
12849 else if ((mask & (N_F32 | N_F64)) != 0)
12850 *type = NT_float;
12851 else
12852 return FAIL;
12853
12854 return SUCCESS;
12855 }
12856
12857 /* Modify a bitmask of allowed types. This is only needed for type
12858 relaxation. */
12859
12860 static unsigned
12861 modify_types_allowed (unsigned allowed, unsigned mods)
12862 {
12863 unsigned size;
12864 enum neon_el_type type;
12865 unsigned destmask;
12866 int i;
12867
12868 destmask = 0;
12869
12870 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12871 {
12872 if (el_type_of_type_chk (&type, &size,
12873 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12874 {
12875 neon_modify_type_size (mods, &type, &size);
12876 destmask |= type_chk_of_el_type (type, size);
12877 }
12878 }
12879
12880 return destmask;
12881 }
12882
12883 /* Check type and return type classification.
12884 The manual states (paraphrase): If one datatype is given, it indicates the
12885 type given in:
12886 - the second operand, if there is one
12887 - the operand, if there is no second operand
12888 - the result, if there are no operands.
12889 This isn't quite good enough though, so we use a concept of a "key" datatype
12890 which is set on a per-instruction basis, which is the one which matters when
12891 only one data type is written.
12892 Note: this function has side-effects (e.g. filling in missing operands). All
12893 Neon instructions should call it before performing bit encoding. */
12894
12895 static struct neon_type_el
12896 neon_check_type (unsigned els, enum neon_shape ns, ...)
12897 {
12898 va_list ap;
12899 unsigned i, pass, key_el = 0;
12900 unsigned types[NEON_MAX_TYPE_ELS];
12901 enum neon_el_type k_type = NT_invtype;
12902 unsigned k_size = -1u;
12903 struct neon_type_el badtype = {NT_invtype, -1};
12904 unsigned key_allowed = 0;
12905
12906 /* Optional registers in Neon instructions are always (not) in operand 1.
12907 Fill in the missing operand here, if it was omitted. */
12908 if (els > 1 && !inst.operands[1].present)
12909 inst.operands[1] = inst.operands[0];
12910
12911 /* Suck up all the varargs. */
12912 va_start (ap, ns);
12913 for (i = 0; i < els; i++)
12914 {
12915 unsigned thisarg = va_arg (ap, unsigned);
12916 if (thisarg == N_IGNORE_TYPE)
12917 {
12918 va_end (ap);
12919 return badtype;
12920 }
12921 types[i] = thisarg;
12922 if ((thisarg & N_KEY) != 0)
12923 key_el = i;
12924 }
12925 va_end (ap);
12926
12927 if (inst.vectype.elems > 0)
12928 for (i = 0; i < els; i++)
12929 if (inst.operands[i].vectype.type != NT_invtype)
12930 {
12931 first_error (_("types specified in both the mnemonic and operands"));
12932 return badtype;
12933 }
12934
12935 /* Duplicate inst.vectype elements here as necessary.
12936 FIXME: No idea if this is exactly the same as the ARM assembler,
12937 particularly when an insn takes one register and one non-register
12938 operand. */
12939 if (inst.vectype.elems == 1 && els > 1)
12940 {
12941 unsigned j;
12942 inst.vectype.elems = els;
12943 inst.vectype.el[key_el] = inst.vectype.el[0];
12944 for (j = 0; j < els; j++)
12945 if (j != key_el)
12946 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12947 types[j]);
12948 }
12949 else if (inst.vectype.elems == 0 && els > 0)
12950 {
12951 unsigned j;
12952 /* No types were given after the mnemonic, so look for types specified
12953 after each operand. We allow some flexibility here; as long as the
12954 "key" operand has a type, we can infer the others. */
12955 for (j = 0; j < els; j++)
12956 if (inst.operands[j].vectype.type != NT_invtype)
12957 inst.vectype.el[j] = inst.operands[j].vectype;
12958
12959 if (inst.operands[key_el].vectype.type != NT_invtype)
12960 {
12961 for (j = 0; j < els; j++)
12962 if (inst.operands[j].vectype.type == NT_invtype)
12963 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12964 types[j]);
12965 }
12966 else
12967 {
12968 first_error (_("operand types can't be inferred"));
12969 return badtype;
12970 }
12971 }
12972 else if (inst.vectype.elems != els)
12973 {
12974 first_error (_("type specifier has the wrong number of parts"));
12975 return badtype;
12976 }
12977
12978 for (pass = 0; pass < 2; pass++)
12979 {
12980 for (i = 0; i < els; i++)
12981 {
12982 unsigned thisarg = types[i];
12983 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12984 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12985 enum neon_el_type g_type = inst.vectype.el[i].type;
12986 unsigned g_size = inst.vectype.el[i].size;
12987
12988 /* Decay more-specific signed & unsigned types to sign-insensitive
12989 integer types if sign-specific variants are unavailable. */
12990 if ((g_type == NT_signed || g_type == NT_unsigned)
12991 && (types_allowed & N_SU_ALL) == 0)
12992 g_type = NT_integer;
12993
12994 /* If only untyped args are allowed, decay any more specific types to
12995 them. Some instructions only care about signs for some element
12996 sizes, so handle that properly. */
12997 if ((g_size == 8 && (types_allowed & N_8) != 0)
12998 || (g_size == 16 && (types_allowed & N_16) != 0)
12999 || (g_size == 32 && (types_allowed & N_32) != 0)
13000 || (g_size == 64 && (types_allowed & N_64) != 0))
13001 g_type = NT_untyped;
13002
13003 if (pass == 0)
13004 {
13005 if ((thisarg & N_KEY) != 0)
13006 {
13007 k_type = g_type;
13008 k_size = g_size;
13009 key_allowed = thisarg & ~N_KEY;
13010 }
13011 }
13012 else
13013 {
13014 if ((thisarg & N_VFP) != 0)
13015 {
13016 enum neon_shape_el regshape;
13017 unsigned regwidth, match;
13018
13019 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13020 if (ns == NS_NULL)
13021 {
13022 first_error (_("invalid instruction shape"));
13023 return badtype;
13024 }
13025 regshape = neon_shape_tab[ns].el[i];
13026 regwidth = neon_shape_el_size[regshape];
13027
13028 /* In VFP mode, operands must match register widths. If we
13029 have a key operand, use its width, else use the width of
13030 the current operand. */
13031 if (k_size != -1u)
13032 match = k_size;
13033 else
13034 match = g_size;
13035
13036 if (regwidth != match)
13037 {
13038 first_error (_("operand size must match register width"));
13039 return badtype;
13040 }
13041 }
13042
13043 if ((thisarg & N_EQK) == 0)
13044 {
13045 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13046
13047 if ((given_type & types_allowed) == 0)
13048 {
13049 first_error (_("bad type in Neon instruction"));
13050 return badtype;
13051 }
13052 }
13053 else
13054 {
13055 enum neon_el_type mod_k_type = k_type;
13056 unsigned mod_k_size = k_size;
13057 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13058 if (g_type != mod_k_type || g_size != mod_k_size)
13059 {
13060 first_error (_("inconsistent types in Neon instruction"));
13061 return badtype;
13062 }
13063 }
13064 }
13065 }
13066 }
13067
13068 return inst.vectype.el[key_el];
13069 }
13070
13071 /* Neon-style VFP instruction forwarding. */
13072
13073 /* Thumb VFP instructions have 0xE in the condition field. */
13074
13075 static void
13076 do_vfp_cond_or_thumb (void)
13077 {
13078 inst.is_neon = 1;
13079
13080 if (thumb_mode)
13081 inst.instruction |= 0xe0000000;
13082 else
13083 inst.instruction |= inst.cond << 28;
13084 }
13085
13086 /* Look up and encode a simple mnemonic, for use as a helper function for the
13087 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13088 etc. It is assumed that operand parsing has already been done, and that the
13089 operands are in the form expected by the given opcode (this isn't necessarily
13090 the same as the form in which they were parsed, hence some massaging must
13091 take place before this function is called).
13092 Checks current arch version against that in the looked-up opcode. */
13093
13094 static void
13095 do_vfp_nsyn_opcode (const char *opname)
13096 {
13097 const struct asm_opcode *opcode;
13098
13099 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13100
13101 if (!opcode)
13102 abort ();
13103
13104 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13105 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13106 _(BAD_FPU));
13107
13108 inst.is_neon = 1;
13109
13110 if (thumb_mode)
13111 {
13112 inst.instruction = opcode->tvalue;
13113 opcode->tencode ();
13114 }
13115 else
13116 {
13117 inst.instruction = (inst.cond << 28) | opcode->avalue;
13118 opcode->aencode ();
13119 }
13120 }
13121
13122 static void
13123 do_vfp_nsyn_add_sub (enum neon_shape rs)
13124 {
13125 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13126
13127 if (rs == NS_FFF)
13128 {
13129 if (is_add)
13130 do_vfp_nsyn_opcode ("fadds");
13131 else
13132 do_vfp_nsyn_opcode ("fsubs");
13133 }
13134 else
13135 {
13136 if (is_add)
13137 do_vfp_nsyn_opcode ("faddd");
13138 else
13139 do_vfp_nsyn_opcode ("fsubd");
13140 }
13141 }
13142
13143 /* Check operand types to see if this is a VFP instruction, and if so call
13144 PFN (). */
13145
13146 static int
13147 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13148 {
13149 enum neon_shape rs;
13150 struct neon_type_el et;
13151
13152 switch (args)
13153 {
13154 case 2:
13155 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13156 et = neon_check_type (2, rs,
13157 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13158 break;
13159
13160 case 3:
13161 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13162 et = neon_check_type (3, rs,
13163 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13164 break;
13165
13166 default:
13167 abort ();
13168 }
13169
13170 if (et.type != NT_invtype)
13171 {
13172 pfn (rs);
13173 return SUCCESS;
13174 }
13175
13176 inst.error = NULL;
13177 return FAIL;
13178 }
13179
13180 static void
13181 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13182 {
13183 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13184
13185 if (rs == NS_FFF)
13186 {
13187 if (is_mla)
13188 do_vfp_nsyn_opcode ("fmacs");
13189 else
13190 do_vfp_nsyn_opcode ("fnmacs");
13191 }
13192 else
13193 {
13194 if (is_mla)
13195 do_vfp_nsyn_opcode ("fmacd");
13196 else
13197 do_vfp_nsyn_opcode ("fnmacd");
13198 }
13199 }
13200
13201 static void
13202 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13203 {
13204 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13205
13206 if (rs == NS_FFF)
13207 {
13208 if (is_fma)
13209 do_vfp_nsyn_opcode ("ffmas");
13210 else
13211 do_vfp_nsyn_opcode ("ffnmas");
13212 }
13213 else
13214 {
13215 if (is_fma)
13216 do_vfp_nsyn_opcode ("ffmad");
13217 else
13218 do_vfp_nsyn_opcode ("ffnmad");
13219 }
13220 }
13221
13222 static void
13223 do_vfp_nsyn_mul (enum neon_shape rs)
13224 {
13225 if (rs == NS_FFF)
13226 do_vfp_nsyn_opcode ("fmuls");
13227 else
13228 do_vfp_nsyn_opcode ("fmuld");
13229 }
13230
13231 static void
13232 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13233 {
13234 int is_neg = (inst.instruction & 0x80) != 0;
13235 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13236
13237 if (rs == NS_FF)
13238 {
13239 if (is_neg)
13240 do_vfp_nsyn_opcode ("fnegs");
13241 else
13242 do_vfp_nsyn_opcode ("fabss");
13243 }
13244 else
13245 {
13246 if (is_neg)
13247 do_vfp_nsyn_opcode ("fnegd");
13248 else
13249 do_vfp_nsyn_opcode ("fabsd");
13250 }
13251 }
13252
13253 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13254 insns belong to Neon, and are handled elsewhere. */
13255
13256 static void
13257 do_vfp_nsyn_ldm_stm (int is_dbmode)
13258 {
13259 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13260 if (is_ldm)
13261 {
13262 if (is_dbmode)
13263 do_vfp_nsyn_opcode ("fldmdbs");
13264 else
13265 do_vfp_nsyn_opcode ("fldmias");
13266 }
13267 else
13268 {
13269 if (is_dbmode)
13270 do_vfp_nsyn_opcode ("fstmdbs");
13271 else
13272 do_vfp_nsyn_opcode ("fstmias");
13273 }
13274 }
13275
13276 static void
13277 do_vfp_nsyn_sqrt (void)
13278 {
13279 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13280 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13281
13282 if (rs == NS_FF)
13283 do_vfp_nsyn_opcode ("fsqrts");
13284 else
13285 do_vfp_nsyn_opcode ("fsqrtd");
13286 }
13287
13288 static void
13289 do_vfp_nsyn_div (void)
13290 {
13291 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13292 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13293 N_F32 | N_F64 | N_KEY | N_VFP);
13294
13295 if (rs == NS_FFF)
13296 do_vfp_nsyn_opcode ("fdivs");
13297 else
13298 do_vfp_nsyn_opcode ("fdivd");
13299 }
13300
13301 static void
13302 do_vfp_nsyn_nmul (void)
13303 {
13304 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13305 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13306 N_F32 | N_F64 | N_KEY | N_VFP);
13307
13308 if (rs == NS_FFF)
13309 {
13310 NEON_ENCODE (SINGLE, inst);
13311 do_vfp_sp_dyadic ();
13312 }
13313 else
13314 {
13315 NEON_ENCODE (DOUBLE, inst);
13316 do_vfp_dp_rd_rn_rm ();
13317 }
13318 do_vfp_cond_or_thumb ();
13319 }
13320
13321 static void
13322 do_vfp_nsyn_cmp (void)
13323 {
13324 if (inst.operands[1].isreg)
13325 {
13326 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13327 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13328
13329 if (rs == NS_FF)
13330 {
13331 NEON_ENCODE (SINGLE, inst);
13332 do_vfp_sp_monadic ();
13333 }
13334 else
13335 {
13336 NEON_ENCODE (DOUBLE, inst);
13337 do_vfp_dp_rd_rm ();
13338 }
13339 }
13340 else
13341 {
13342 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13343 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13344
13345 switch (inst.instruction & 0x0fffffff)
13346 {
13347 case N_MNEM_vcmp:
13348 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13349 break;
13350 case N_MNEM_vcmpe:
13351 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13352 break;
13353 default:
13354 abort ();
13355 }
13356
13357 if (rs == NS_FI)
13358 {
13359 NEON_ENCODE (SINGLE, inst);
13360 do_vfp_sp_compare_z ();
13361 }
13362 else
13363 {
13364 NEON_ENCODE (DOUBLE, inst);
13365 do_vfp_dp_rd ();
13366 }
13367 }
13368 do_vfp_cond_or_thumb ();
13369 }
13370
13371 static void
13372 nsyn_insert_sp (void)
13373 {
13374 inst.operands[1] = inst.operands[0];
13375 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13376 inst.operands[0].reg = REG_SP;
13377 inst.operands[0].isreg = 1;
13378 inst.operands[0].writeback = 1;
13379 inst.operands[0].present = 1;
13380 }
13381
13382 static void
13383 do_vfp_nsyn_push (void)
13384 {
13385 nsyn_insert_sp ();
13386 if (inst.operands[1].issingle)
13387 do_vfp_nsyn_opcode ("fstmdbs");
13388 else
13389 do_vfp_nsyn_opcode ("fstmdbd");
13390 }
13391
13392 static void
13393 do_vfp_nsyn_pop (void)
13394 {
13395 nsyn_insert_sp ();
13396 if (inst.operands[1].issingle)
13397 do_vfp_nsyn_opcode ("fldmias");
13398 else
13399 do_vfp_nsyn_opcode ("fldmiad");
13400 }
13401
13402 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13403 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13404
13405 static void
13406 neon_dp_fixup (struct arm_it* insn)
13407 {
13408 unsigned int i = insn->instruction;
13409 insn->is_neon = 1;
13410
13411 if (thumb_mode)
13412 {
13413 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13414 if (i & (1 << 24))
13415 i |= 1 << 28;
13416
13417 i &= ~(1 << 24);
13418
13419 i |= 0xef000000;
13420 }
13421 else
13422 i |= 0xf2000000;
13423
13424 insn->instruction = i;
13425 }
13426
13427 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13428 (0, 1, 2, 3). */
13429
13430 static unsigned
13431 neon_logbits (unsigned x)
13432 {
13433 return ffs (x) - 4;
13434 }
13435
13436 #define LOW4(R) ((R) & 0xf)
13437 #define HI1(R) (((R) >> 4) & 1)
13438
13439 /* Encode insns with bit pattern:
13440
13441 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13442 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13443
13444 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13445 different meaning for some instruction. */
13446
13447 static void
13448 neon_three_same (int isquad, int ubit, int size)
13449 {
13450 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13451 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13452 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13453 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13454 inst.instruction |= LOW4 (inst.operands[2].reg);
13455 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13456 inst.instruction |= (isquad != 0) << 6;
13457 inst.instruction |= (ubit != 0) << 24;
13458 if (size != -1)
13459 inst.instruction |= neon_logbits (size) << 20;
13460
13461 neon_dp_fixup (&inst);
13462 }
13463
13464 /* Encode instructions of the form:
13465
13466 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13467 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13468
13469 Don't write size if SIZE == -1. */
13470
13471 static void
13472 neon_two_same (int qbit, int ubit, int size)
13473 {
13474 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13475 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13476 inst.instruction |= LOW4 (inst.operands[1].reg);
13477 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13478 inst.instruction |= (qbit != 0) << 6;
13479 inst.instruction |= (ubit != 0) << 24;
13480
13481 if (size != -1)
13482 inst.instruction |= neon_logbits (size) << 18;
13483
13484 neon_dp_fixup (&inst);
13485 }
13486
13487 /* Neon instruction encoders, in approximate order of appearance. */
13488
13489 static void
13490 do_neon_dyadic_i_su (void)
13491 {
13492 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13493 struct neon_type_el et = neon_check_type (3, rs,
13494 N_EQK, N_EQK, N_SU_32 | N_KEY);
13495 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13496 }
13497
13498 static void
13499 do_neon_dyadic_i64_su (void)
13500 {
13501 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13502 struct neon_type_el et = neon_check_type (3, rs,
13503 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13504 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13505 }
13506
13507 static void
13508 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13509 unsigned immbits)
13510 {
13511 unsigned size = et.size >> 3;
13512 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13513 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13514 inst.instruction |= LOW4 (inst.operands[1].reg);
13515 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13516 inst.instruction |= (isquad != 0) << 6;
13517 inst.instruction |= immbits << 16;
13518 inst.instruction |= (size >> 3) << 7;
13519 inst.instruction |= (size & 0x7) << 19;
13520 if (write_ubit)
13521 inst.instruction |= (uval != 0) << 24;
13522
13523 neon_dp_fixup (&inst);
13524 }
13525
13526 static void
13527 do_neon_shl_imm (void)
13528 {
13529 if (!inst.operands[2].isreg)
13530 {
13531 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13532 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13533 NEON_ENCODE (IMMED, inst);
13534 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13535 }
13536 else
13537 {
13538 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13539 struct neon_type_el et = neon_check_type (3, rs,
13540 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13541 unsigned int tmp;
13542
13543 /* VSHL/VQSHL 3-register variants have syntax such as:
13544 vshl.xx Dd, Dm, Dn
13545 whereas other 3-register operations encoded by neon_three_same have
13546 syntax like:
13547 vadd.xx Dd, Dn, Dm
13548 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13549 here. */
13550 tmp = inst.operands[2].reg;
13551 inst.operands[2].reg = inst.operands[1].reg;
13552 inst.operands[1].reg = tmp;
13553 NEON_ENCODE (INTEGER, inst);
13554 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13555 }
13556 }
13557
13558 static void
13559 do_neon_qshl_imm (void)
13560 {
13561 if (!inst.operands[2].isreg)
13562 {
13563 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13564 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13565
13566 NEON_ENCODE (IMMED, inst);
13567 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13568 inst.operands[2].imm);
13569 }
13570 else
13571 {
13572 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13573 struct neon_type_el et = neon_check_type (3, rs,
13574 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13575 unsigned int tmp;
13576
13577 /* See note in do_neon_shl_imm. */
13578 tmp = inst.operands[2].reg;
13579 inst.operands[2].reg = inst.operands[1].reg;
13580 inst.operands[1].reg = tmp;
13581 NEON_ENCODE (INTEGER, inst);
13582 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13583 }
13584 }
13585
13586 static void
13587 do_neon_rshl (void)
13588 {
13589 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13590 struct neon_type_el et = neon_check_type (3, rs,
13591 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13592 unsigned int tmp;
13593
13594 tmp = inst.operands[2].reg;
13595 inst.operands[2].reg = inst.operands[1].reg;
13596 inst.operands[1].reg = tmp;
13597 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13598 }
13599
13600 static int
13601 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13602 {
13603 /* Handle .I8 pseudo-instructions. */
13604 if (size == 8)
13605 {
13606 /* Unfortunately, this will make everything apart from zero out-of-range.
13607 FIXME is this the intended semantics? There doesn't seem much point in
13608 accepting .I8 if so. */
13609 immediate |= immediate << 8;
13610 size = 16;
13611 }
13612
13613 if (size >= 32)
13614 {
13615 if (immediate == (immediate & 0x000000ff))
13616 {
13617 *immbits = immediate;
13618 return 0x1;
13619 }
13620 else if (immediate == (immediate & 0x0000ff00))
13621 {
13622 *immbits = immediate >> 8;
13623 return 0x3;
13624 }
13625 else if (immediate == (immediate & 0x00ff0000))
13626 {
13627 *immbits = immediate >> 16;
13628 return 0x5;
13629 }
13630 else if (immediate == (immediate & 0xff000000))
13631 {
13632 *immbits = immediate >> 24;
13633 return 0x7;
13634 }
13635 if ((immediate & 0xffff) != (immediate >> 16))
13636 goto bad_immediate;
13637 immediate &= 0xffff;
13638 }
13639
13640 if (immediate == (immediate & 0x000000ff))
13641 {
13642 *immbits = immediate;
13643 return 0x9;
13644 }
13645 else if (immediate == (immediate & 0x0000ff00))
13646 {
13647 *immbits = immediate >> 8;
13648 return 0xb;
13649 }
13650
13651 bad_immediate:
13652 first_error (_("immediate value out of range"));
13653 return FAIL;
13654 }
13655
13656 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13657 A, B, C, D. */
13658
13659 static int
13660 neon_bits_same_in_bytes (unsigned imm)
13661 {
13662 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13663 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13664 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13665 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13666 }
13667
13668 /* For immediate of above form, return 0bABCD. */
13669
13670 static unsigned
13671 neon_squash_bits (unsigned imm)
13672 {
13673 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13674 | ((imm & 0x01000000) >> 21);
13675 }
13676
13677 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13678
13679 static unsigned
13680 neon_qfloat_bits (unsigned imm)
13681 {
13682 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13683 }
13684
13685 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13686 the instruction. *OP is passed as the initial value of the op field, and
13687 may be set to a different value depending on the constant (i.e.
13688 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13689 MVN). If the immediate looks like a repeated pattern then also
13690 try smaller element sizes. */
13691
13692 static int
13693 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13694 unsigned *immbits, int *op, int size,
13695 enum neon_el_type type)
13696 {
13697 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13698 float. */
13699 if (type == NT_float && !float_p)
13700 return FAIL;
13701
13702 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13703 {
13704 if (size != 32 || *op == 1)
13705 return FAIL;
13706 *immbits = neon_qfloat_bits (immlo);
13707 return 0xf;
13708 }
13709
13710 if (size == 64)
13711 {
13712 if (neon_bits_same_in_bytes (immhi)
13713 && neon_bits_same_in_bytes (immlo))
13714 {
13715 if (*op == 1)
13716 return FAIL;
13717 *immbits = (neon_squash_bits (immhi) << 4)
13718 | neon_squash_bits (immlo);
13719 *op = 1;
13720 return 0xe;
13721 }
13722
13723 if (immhi != immlo)
13724 return FAIL;
13725 }
13726
13727 if (size >= 32)
13728 {
13729 if (immlo == (immlo & 0x000000ff))
13730 {
13731 *immbits = immlo;
13732 return 0x0;
13733 }
13734 else if (immlo == (immlo & 0x0000ff00))
13735 {
13736 *immbits = immlo >> 8;
13737 return 0x2;
13738 }
13739 else if (immlo == (immlo & 0x00ff0000))
13740 {
13741 *immbits = immlo >> 16;
13742 return 0x4;
13743 }
13744 else if (immlo == (immlo & 0xff000000))
13745 {
13746 *immbits = immlo >> 24;
13747 return 0x6;
13748 }
13749 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13750 {
13751 *immbits = (immlo >> 8) & 0xff;
13752 return 0xc;
13753 }
13754 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13755 {
13756 *immbits = (immlo >> 16) & 0xff;
13757 return 0xd;
13758 }
13759
13760 if ((immlo & 0xffff) != (immlo >> 16))
13761 return FAIL;
13762 immlo &= 0xffff;
13763 }
13764
13765 if (size >= 16)
13766 {
13767 if (immlo == (immlo & 0x000000ff))
13768 {
13769 *immbits = immlo;
13770 return 0x8;
13771 }
13772 else if (immlo == (immlo & 0x0000ff00))
13773 {
13774 *immbits = immlo >> 8;
13775 return 0xa;
13776 }
13777
13778 if ((immlo & 0xff) != (immlo >> 8))
13779 return FAIL;
13780 immlo &= 0xff;
13781 }
13782
13783 if (immlo == (immlo & 0x000000ff))
13784 {
13785 /* Don't allow MVN with 8-bit immediate. */
13786 if (*op == 1)
13787 return FAIL;
13788 *immbits = immlo;
13789 return 0xe;
13790 }
13791
13792 return FAIL;
13793 }
13794
13795 /* Write immediate bits [7:0] to the following locations:
13796
13797 |28/24|23 19|18 16|15 4|3 0|
13798 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13799
13800 This function is used by VMOV/VMVN/VORR/VBIC. */
13801
13802 static void
13803 neon_write_immbits (unsigned immbits)
13804 {
13805 inst.instruction |= immbits & 0xf;
13806 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13807 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13808 }
13809
13810 /* Invert low-order SIZE bits of XHI:XLO. */
13811
13812 static void
13813 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13814 {
13815 unsigned immlo = xlo ? *xlo : 0;
13816 unsigned immhi = xhi ? *xhi : 0;
13817
13818 switch (size)
13819 {
13820 case 8:
13821 immlo = (~immlo) & 0xff;
13822 break;
13823
13824 case 16:
13825 immlo = (~immlo) & 0xffff;
13826 break;
13827
13828 case 64:
13829 immhi = (~immhi) & 0xffffffff;
13830 /* fall through. */
13831
13832 case 32:
13833 immlo = (~immlo) & 0xffffffff;
13834 break;
13835
13836 default:
13837 abort ();
13838 }
13839
13840 if (xlo)
13841 *xlo = immlo;
13842
13843 if (xhi)
13844 *xhi = immhi;
13845 }
13846
13847 static void
13848 do_neon_logic (void)
13849 {
13850 if (inst.operands[2].present && inst.operands[2].isreg)
13851 {
13852 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13853 neon_check_type (3, rs, N_IGNORE_TYPE);
13854 /* U bit and size field were set as part of the bitmask. */
13855 NEON_ENCODE (INTEGER, inst);
13856 neon_three_same (neon_quad (rs), 0, -1);
13857 }
13858 else
13859 {
13860 const int three_ops_form = (inst.operands[2].present
13861 && !inst.operands[2].isreg);
13862 const int immoperand = (three_ops_form ? 2 : 1);
13863 enum neon_shape rs = (three_ops_form
13864 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13865 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13866 struct neon_type_el et = neon_check_type (2, rs,
13867 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13868 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13869 unsigned immbits;
13870 int cmode;
13871
13872 if (et.type == NT_invtype)
13873 return;
13874
13875 if (three_ops_form)
13876 constraint (inst.operands[0].reg != inst.operands[1].reg,
13877 _("first and second operands shall be the same register"));
13878
13879 NEON_ENCODE (IMMED, inst);
13880
13881 immbits = inst.operands[immoperand].imm;
13882 if (et.size == 64)
13883 {
13884 /* .i64 is a pseudo-op, so the immediate must be a repeating
13885 pattern. */
13886 if (immbits != (inst.operands[immoperand].regisimm ?
13887 inst.operands[immoperand].reg : 0))
13888 {
13889 /* Set immbits to an invalid constant. */
13890 immbits = 0xdeadbeef;
13891 }
13892 }
13893
13894 switch (opcode)
13895 {
13896 case N_MNEM_vbic:
13897 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13898 break;
13899
13900 case N_MNEM_vorr:
13901 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13902 break;
13903
13904 case N_MNEM_vand:
13905 /* Pseudo-instruction for VBIC. */
13906 neon_invert_size (&immbits, 0, et.size);
13907 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13908 break;
13909
13910 case N_MNEM_vorn:
13911 /* Pseudo-instruction for VORR. */
13912 neon_invert_size (&immbits, 0, et.size);
13913 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13914 break;
13915
13916 default:
13917 abort ();
13918 }
13919
13920 if (cmode == FAIL)
13921 return;
13922
13923 inst.instruction |= neon_quad (rs) << 6;
13924 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13925 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13926 inst.instruction |= cmode << 8;
13927 neon_write_immbits (immbits);
13928
13929 neon_dp_fixup (&inst);
13930 }
13931 }
13932
13933 static void
13934 do_neon_bitfield (void)
13935 {
13936 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13937 neon_check_type (3, rs, N_IGNORE_TYPE);
13938 neon_three_same (neon_quad (rs), 0, -1);
13939 }
13940
13941 static void
13942 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13943 unsigned destbits)
13944 {
13945 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13946 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13947 types | N_KEY);
13948 if (et.type == NT_float)
13949 {
13950 NEON_ENCODE (FLOAT, inst);
13951 neon_three_same (neon_quad (rs), 0, -1);
13952 }
13953 else
13954 {
13955 NEON_ENCODE (INTEGER, inst);
13956 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13957 }
13958 }
13959
13960 static void
13961 do_neon_dyadic_if_su (void)
13962 {
13963 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13964 }
13965
13966 static void
13967 do_neon_dyadic_if_su_d (void)
13968 {
13969 /* This version only allow D registers, but that constraint is enforced during
13970 operand parsing so we don't need to do anything extra here. */
13971 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13972 }
13973
13974 static void
13975 do_neon_dyadic_if_i_d (void)
13976 {
13977 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13978 affected if we specify unsigned args. */
13979 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13980 }
13981
13982 enum vfp_or_neon_is_neon_bits
13983 {
13984 NEON_CHECK_CC = 1,
13985 NEON_CHECK_ARCH = 2
13986 };
13987
13988 /* Call this function if an instruction which may have belonged to the VFP or
13989 Neon instruction sets, but turned out to be a Neon instruction (due to the
13990 operand types involved, etc.). We have to check and/or fix-up a couple of
13991 things:
13992
13993 - Make sure the user hasn't attempted to make a Neon instruction
13994 conditional.
13995 - Alter the value in the condition code field if necessary.
13996 - Make sure that the arch supports Neon instructions.
13997
13998 Which of these operations take place depends on bits from enum
13999 vfp_or_neon_is_neon_bits.
14000
14001 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14002 current instruction's condition is COND_ALWAYS, the condition field is
14003 changed to inst.uncond_value. This is necessary because instructions shared
14004 between VFP and Neon may be conditional for the VFP variants only, and the
14005 unconditional Neon version must have, e.g., 0xF in the condition field. */
14006
14007 static int
14008 vfp_or_neon_is_neon (unsigned check)
14009 {
14010 /* Conditions are always legal in Thumb mode (IT blocks). */
14011 if (!thumb_mode && (check & NEON_CHECK_CC))
14012 {
14013 if (inst.cond != COND_ALWAYS)
14014 {
14015 first_error (_(BAD_COND));
14016 return FAIL;
14017 }
14018 if (inst.uncond_value != -1)
14019 inst.instruction |= inst.uncond_value << 28;
14020 }
14021
14022 if ((check & NEON_CHECK_ARCH)
14023 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
14024 {
14025 first_error (_(BAD_FPU));
14026 return FAIL;
14027 }
14028
14029 return SUCCESS;
14030 }
14031
14032 static void
14033 do_neon_addsub_if_i (void)
14034 {
14035 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14036 return;
14037
14038 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14039 return;
14040
14041 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14042 affected if we specify unsigned args. */
14043 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14044 }
14045
14046 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14047 result to be:
14048 V<op> A,B (A is operand 0, B is operand 2)
14049 to mean:
14050 V<op> A,B,A
14051 not:
14052 V<op> A,B,B
14053 so handle that case specially. */
14054
14055 static void
14056 neon_exchange_operands (void)
14057 {
14058 void *scratch = alloca (sizeof (inst.operands[0]));
14059 if (inst.operands[1].present)
14060 {
14061 /* Swap operands[1] and operands[2]. */
14062 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14063 inst.operands[1] = inst.operands[2];
14064 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14065 }
14066 else
14067 {
14068 inst.operands[1] = inst.operands[2];
14069 inst.operands[2] = inst.operands[0];
14070 }
14071 }
14072
14073 static void
14074 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14075 {
14076 if (inst.operands[2].isreg)
14077 {
14078 if (invert)
14079 neon_exchange_operands ();
14080 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14081 }
14082 else
14083 {
14084 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14085 struct neon_type_el et = neon_check_type (2, rs,
14086 N_EQK | N_SIZ, immtypes | N_KEY);
14087
14088 NEON_ENCODE (IMMED, inst);
14089 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14090 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14091 inst.instruction |= LOW4 (inst.operands[1].reg);
14092 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14093 inst.instruction |= neon_quad (rs) << 6;
14094 inst.instruction |= (et.type == NT_float) << 10;
14095 inst.instruction |= neon_logbits (et.size) << 18;
14096
14097 neon_dp_fixup (&inst);
14098 }
14099 }
14100
14101 static void
14102 do_neon_cmp (void)
14103 {
14104 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14105 }
14106
14107 static void
14108 do_neon_cmp_inv (void)
14109 {
14110 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14111 }
14112
14113 static void
14114 do_neon_ceq (void)
14115 {
14116 neon_compare (N_IF_32, N_IF_32, FALSE);
14117 }
14118
14119 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14120 scalars, which are encoded in 5 bits, M : Rm.
14121 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14122 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14123 index in M. */
14124
14125 static unsigned
14126 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14127 {
14128 unsigned regno = NEON_SCALAR_REG (scalar);
14129 unsigned elno = NEON_SCALAR_INDEX (scalar);
14130
14131 switch (elsize)
14132 {
14133 case 16:
14134 if (regno > 7 || elno > 3)
14135 goto bad_scalar;
14136 return regno | (elno << 3);
14137
14138 case 32:
14139 if (regno > 15 || elno > 1)
14140 goto bad_scalar;
14141 return regno | (elno << 4);
14142
14143 default:
14144 bad_scalar:
14145 first_error (_("scalar out of range for multiply instruction"));
14146 }
14147
14148 return 0;
14149 }
14150
14151 /* Encode multiply / multiply-accumulate scalar instructions. */
14152
14153 static void
14154 neon_mul_mac (struct neon_type_el et, int ubit)
14155 {
14156 unsigned scalar;
14157
14158 /* Give a more helpful error message if we have an invalid type. */
14159 if (et.type == NT_invtype)
14160 return;
14161
14162 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14163 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14164 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14165 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14166 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14167 inst.instruction |= LOW4 (scalar);
14168 inst.instruction |= HI1 (scalar) << 5;
14169 inst.instruction |= (et.type == NT_float) << 8;
14170 inst.instruction |= neon_logbits (et.size) << 20;
14171 inst.instruction |= (ubit != 0) << 24;
14172
14173 neon_dp_fixup (&inst);
14174 }
14175
14176 static void
14177 do_neon_mac_maybe_scalar (void)
14178 {
14179 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14180 return;
14181
14182 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14183 return;
14184
14185 if (inst.operands[2].isscalar)
14186 {
14187 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14188 struct neon_type_el et = neon_check_type (3, rs,
14189 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14190 NEON_ENCODE (SCALAR, inst);
14191 neon_mul_mac (et, neon_quad (rs));
14192 }
14193 else
14194 {
14195 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14196 affected if we specify unsigned args. */
14197 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14198 }
14199 }
14200
14201 static void
14202 do_neon_fmac (void)
14203 {
14204 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14205 return;
14206
14207 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14208 return;
14209
14210 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14211 }
14212
14213 static void
14214 do_neon_tst (void)
14215 {
14216 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14217 struct neon_type_el et = neon_check_type (3, rs,
14218 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14219 neon_three_same (neon_quad (rs), 0, et.size);
14220 }
14221
14222 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14223 same types as the MAC equivalents. The polynomial type for this instruction
14224 is encoded the same as the integer type. */
14225
14226 static void
14227 do_neon_mul (void)
14228 {
14229 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14230 return;
14231
14232 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14233 return;
14234
14235 if (inst.operands[2].isscalar)
14236 do_neon_mac_maybe_scalar ();
14237 else
14238 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14239 }
14240
14241 static void
14242 do_neon_qdmulh (void)
14243 {
14244 if (inst.operands[2].isscalar)
14245 {
14246 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14247 struct neon_type_el et = neon_check_type (3, rs,
14248 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14249 NEON_ENCODE (SCALAR, inst);
14250 neon_mul_mac (et, neon_quad (rs));
14251 }
14252 else
14253 {
14254 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14255 struct neon_type_el et = neon_check_type (3, rs,
14256 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14257 NEON_ENCODE (INTEGER, inst);
14258 /* The U bit (rounding) comes from bit mask. */
14259 neon_three_same (neon_quad (rs), 0, et.size);
14260 }
14261 }
14262
14263 static void
14264 do_neon_fcmp_absolute (void)
14265 {
14266 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14267 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14268 /* Size field comes from bit mask. */
14269 neon_three_same (neon_quad (rs), 1, -1);
14270 }
14271
14272 static void
14273 do_neon_fcmp_absolute_inv (void)
14274 {
14275 neon_exchange_operands ();
14276 do_neon_fcmp_absolute ();
14277 }
14278
14279 static void
14280 do_neon_step (void)
14281 {
14282 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14283 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14284 neon_three_same (neon_quad (rs), 0, -1);
14285 }
14286
14287 static void
14288 do_neon_abs_neg (void)
14289 {
14290 enum neon_shape rs;
14291 struct neon_type_el et;
14292
14293 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14294 return;
14295
14296 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14297 return;
14298
14299 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14300 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14301
14302 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14303 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14304 inst.instruction |= LOW4 (inst.operands[1].reg);
14305 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14306 inst.instruction |= neon_quad (rs) << 6;
14307 inst.instruction |= (et.type == NT_float) << 10;
14308 inst.instruction |= neon_logbits (et.size) << 18;
14309
14310 neon_dp_fixup (&inst);
14311 }
14312
14313 static void
14314 do_neon_sli (void)
14315 {
14316 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14317 struct neon_type_el et = neon_check_type (2, rs,
14318 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14319 int imm = inst.operands[2].imm;
14320 constraint (imm < 0 || (unsigned)imm >= et.size,
14321 _("immediate out of range for insert"));
14322 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14323 }
14324
14325 static void
14326 do_neon_sri (void)
14327 {
14328 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14329 struct neon_type_el et = neon_check_type (2, rs,
14330 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14331 int imm = inst.operands[2].imm;
14332 constraint (imm < 1 || (unsigned)imm > et.size,
14333 _("immediate out of range for insert"));
14334 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14335 }
14336
14337 static void
14338 do_neon_qshlu_imm (void)
14339 {
14340 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14341 struct neon_type_el et = neon_check_type (2, rs,
14342 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14343 int imm = inst.operands[2].imm;
14344 constraint (imm < 0 || (unsigned)imm >= et.size,
14345 _("immediate out of range for shift"));
14346 /* Only encodes the 'U present' variant of the instruction.
14347 In this case, signed types have OP (bit 8) set to 0.
14348 Unsigned types have OP set to 1. */
14349 inst.instruction |= (et.type == NT_unsigned) << 8;
14350 /* The rest of the bits are the same as other immediate shifts. */
14351 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14352 }
14353
14354 static void
14355 do_neon_qmovn (void)
14356 {
14357 struct neon_type_el et = neon_check_type (2, NS_DQ,
14358 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14359 /* Saturating move where operands can be signed or unsigned, and the
14360 destination has the same signedness. */
14361 NEON_ENCODE (INTEGER, inst);
14362 if (et.type == NT_unsigned)
14363 inst.instruction |= 0xc0;
14364 else
14365 inst.instruction |= 0x80;
14366 neon_two_same (0, 1, et.size / 2);
14367 }
14368
14369 static void
14370 do_neon_qmovun (void)
14371 {
14372 struct neon_type_el et = neon_check_type (2, NS_DQ,
14373 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14374 /* Saturating move with unsigned results. Operands must be signed. */
14375 NEON_ENCODE (INTEGER, inst);
14376 neon_two_same (0, 1, et.size / 2);
14377 }
14378
14379 static void
14380 do_neon_rshift_sat_narrow (void)
14381 {
14382 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14383 or unsigned. If operands are unsigned, results must also be unsigned. */
14384 struct neon_type_el et = neon_check_type (2, NS_DQI,
14385 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14386 int imm = inst.operands[2].imm;
14387 /* This gets the bounds check, size encoding and immediate bits calculation
14388 right. */
14389 et.size /= 2;
14390
14391 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14392 VQMOVN.I<size> <Dd>, <Qm>. */
14393 if (imm == 0)
14394 {
14395 inst.operands[2].present = 0;
14396 inst.instruction = N_MNEM_vqmovn;
14397 do_neon_qmovn ();
14398 return;
14399 }
14400
14401 constraint (imm < 1 || (unsigned)imm > et.size,
14402 _("immediate out of range"));
14403 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14404 }
14405
14406 static void
14407 do_neon_rshift_sat_narrow_u (void)
14408 {
14409 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14410 or unsigned. If operands are unsigned, results must also be unsigned. */
14411 struct neon_type_el et = neon_check_type (2, NS_DQI,
14412 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14413 int imm = inst.operands[2].imm;
14414 /* This gets the bounds check, size encoding and immediate bits calculation
14415 right. */
14416 et.size /= 2;
14417
14418 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14419 VQMOVUN.I<size> <Dd>, <Qm>. */
14420 if (imm == 0)
14421 {
14422 inst.operands[2].present = 0;
14423 inst.instruction = N_MNEM_vqmovun;
14424 do_neon_qmovun ();
14425 return;
14426 }
14427
14428 constraint (imm < 1 || (unsigned)imm > et.size,
14429 _("immediate out of range"));
14430 /* FIXME: The manual is kind of unclear about what value U should have in
14431 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14432 must be 1. */
14433 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14434 }
14435
14436 static void
14437 do_neon_movn (void)
14438 {
14439 struct neon_type_el et = neon_check_type (2, NS_DQ,
14440 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14441 NEON_ENCODE (INTEGER, inst);
14442 neon_two_same (0, 1, et.size / 2);
14443 }
14444
14445 static void
14446 do_neon_rshift_narrow (void)
14447 {
14448 struct neon_type_el et = neon_check_type (2, NS_DQI,
14449 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14450 int imm = inst.operands[2].imm;
14451 /* This gets the bounds check, size encoding and immediate bits calculation
14452 right. */
14453 et.size /= 2;
14454
14455 /* If immediate is zero then we are a pseudo-instruction for
14456 VMOVN.I<size> <Dd>, <Qm> */
14457 if (imm == 0)
14458 {
14459 inst.operands[2].present = 0;
14460 inst.instruction = N_MNEM_vmovn;
14461 do_neon_movn ();
14462 return;
14463 }
14464
14465 constraint (imm < 1 || (unsigned)imm > et.size,
14466 _("immediate out of range for narrowing operation"));
14467 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14468 }
14469
14470 static void
14471 do_neon_shll (void)
14472 {
14473 /* FIXME: Type checking when lengthening. */
14474 struct neon_type_el et = neon_check_type (2, NS_QDI,
14475 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14476 unsigned imm = inst.operands[2].imm;
14477
14478 if (imm == et.size)
14479 {
14480 /* Maximum shift variant. */
14481 NEON_ENCODE (INTEGER, inst);
14482 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14483 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14484 inst.instruction |= LOW4 (inst.operands[1].reg);
14485 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14486 inst.instruction |= neon_logbits (et.size) << 18;
14487
14488 neon_dp_fixup (&inst);
14489 }
14490 else
14491 {
14492 /* A more-specific type check for non-max versions. */
14493 et = neon_check_type (2, NS_QDI,
14494 N_EQK | N_DBL, N_SU_32 | N_KEY);
14495 NEON_ENCODE (IMMED, inst);
14496 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14497 }
14498 }
14499
14500 /* Check the various types for the VCVT instruction, and return which version
14501 the current instruction is. */
14502
14503 static int
14504 neon_cvt_flavour (enum neon_shape rs)
14505 {
14506 #define CVT_VAR(C,X,Y) \
14507 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14508 if (et.type != NT_invtype) \
14509 { \
14510 inst.error = NULL; \
14511 return (C); \
14512 }
14513 struct neon_type_el et;
14514 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14515 || rs == NS_FF) ? N_VFP : 0;
14516 /* The instruction versions which take an immediate take one register
14517 argument, which is extended to the width of the full register. Thus the
14518 "source" and "destination" registers must have the same width. Hack that
14519 here by making the size equal to the key (wider, in this case) operand. */
14520 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14521
14522 CVT_VAR (0, N_S32, N_F32);
14523 CVT_VAR (1, N_U32, N_F32);
14524 CVT_VAR (2, N_F32, N_S32);
14525 CVT_VAR (3, N_F32, N_U32);
14526 /* Half-precision conversions. */
14527 CVT_VAR (4, N_F32, N_F16);
14528 CVT_VAR (5, N_F16, N_F32);
14529
14530 whole_reg = N_VFP;
14531
14532 /* VFP instructions. */
14533 CVT_VAR (6, N_F32, N_F64);
14534 CVT_VAR (7, N_F64, N_F32);
14535 CVT_VAR (8, N_S32, N_F64 | key);
14536 CVT_VAR (9, N_U32, N_F64 | key);
14537 CVT_VAR (10, N_F64 | key, N_S32);
14538 CVT_VAR (11, N_F64 | key, N_U32);
14539 /* VFP instructions with bitshift. */
14540 CVT_VAR (12, N_F32 | key, N_S16);
14541 CVT_VAR (13, N_F32 | key, N_U16);
14542 CVT_VAR (14, N_F64 | key, N_S16);
14543 CVT_VAR (15, N_F64 | key, N_U16);
14544 CVT_VAR (16, N_S16, N_F32 | key);
14545 CVT_VAR (17, N_U16, N_F32 | key);
14546 CVT_VAR (18, N_S16, N_F64 | key);
14547 CVT_VAR (19, N_U16, N_F64 | key);
14548
14549 return -1;
14550 #undef CVT_VAR
14551 }
14552
14553 /* Neon-syntax VFP conversions. */
14554
14555 static void
14556 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14557 {
14558 const char *opname = 0;
14559
14560 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14561 {
14562 /* Conversions with immediate bitshift. */
14563 const char *enc[] =
14564 {
14565 "ftosls",
14566 "ftouls",
14567 "fsltos",
14568 "fultos",
14569 NULL,
14570 NULL,
14571 NULL,
14572 NULL,
14573 "ftosld",
14574 "ftould",
14575 "fsltod",
14576 "fultod",
14577 "fshtos",
14578 "fuhtos",
14579 "fshtod",
14580 "fuhtod",
14581 "ftoshs",
14582 "ftouhs",
14583 "ftoshd",
14584 "ftouhd"
14585 };
14586
14587 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14588 {
14589 opname = enc[flavour];
14590 constraint (inst.operands[0].reg != inst.operands[1].reg,
14591 _("operands 0 and 1 must be the same register"));
14592 inst.operands[1] = inst.operands[2];
14593 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14594 }
14595 }
14596 else
14597 {
14598 /* Conversions without bitshift. */
14599 const char *enc[] =
14600 {
14601 "ftosis",
14602 "ftouis",
14603 "fsitos",
14604 "fuitos",
14605 "NULL",
14606 "NULL",
14607 "fcvtsd",
14608 "fcvtds",
14609 "ftosid",
14610 "ftouid",
14611 "fsitod",
14612 "fuitod"
14613 };
14614
14615 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14616 opname = enc[flavour];
14617 }
14618
14619 if (opname)
14620 do_vfp_nsyn_opcode (opname);
14621 }
14622
14623 static void
14624 do_vfp_nsyn_cvtz (void)
14625 {
14626 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14627 int flavour = neon_cvt_flavour (rs);
14628 const char *enc[] =
14629 {
14630 "ftosizs",
14631 "ftouizs",
14632 NULL,
14633 NULL,
14634 NULL,
14635 NULL,
14636 NULL,
14637 NULL,
14638 "ftosizd",
14639 "ftouizd"
14640 };
14641
14642 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14643 do_vfp_nsyn_opcode (enc[flavour]);
14644 }
14645
14646 static void
14647 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14648 {
14649 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14650 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14651 int flavour = neon_cvt_flavour (rs);
14652
14653 /* PR11109: Handle round-to-zero for VCVT conversions. */
14654 if (round_to_zero
14655 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14656 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14657 && (rs == NS_FD || rs == NS_FF))
14658 {
14659 do_vfp_nsyn_cvtz ();
14660 return;
14661 }
14662
14663 /* VFP rather than Neon conversions. */
14664 if (flavour >= 6)
14665 {
14666 do_vfp_nsyn_cvt (rs, flavour);
14667 return;
14668 }
14669
14670 switch (rs)
14671 {
14672 case NS_DDI:
14673 case NS_QQI:
14674 {
14675 unsigned immbits;
14676 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14677
14678 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14679 return;
14680
14681 /* Fixed-point conversion with #0 immediate is encoded as an
14682 integer conversion. */
14683 if (inst.operands[2].present && inst.operands[2].imm == 0)
14684 goto int_encode;
14685 immbits = 32 - inst.operands[2].imm;
14686 NEON_ENCODE (IMMED, inst);
14687 if (flavour != -1)
14688 inst.instruction |= enctab[flavour];
14689 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14690 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14691 inst.instruction |= LOW4 (inst.operands[1].reg);
14692 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14693 inst.instruction |= neon_quad (rs) << 6;
14694 inst.instruction |= 1 << 21;
14695 inst.instruction |= immbits << 16;
14696
14697 neon_dp_fixup (&inst);
14698 }
14699 break;
14700
14701 case NS_DD:
14702 case NS_QQ:
14703 int_encode:
14704 {
14705 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14706
14707 NEON_ENCODE (INTEGER, inst);
14708
14709 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14710 return;
14711
14712 if (flavour != -1)
14713 inst.instruction |= enctab[flavour];
14714
14715 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14716 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14717 inst.instruction |= LOW4 (inst.operands[1].reg);
14718 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14719 inst.instruction |= neon_quad (rs) << 6;
14720 inst.instruction |= 2 << 18;
14721
14722 neon_dp_fixup (&inst);
14723 }
14724 break;
14725
14726 /* Half-precision conversions for Advanced SIMD -- neon. */
14727 case NS_QD:
14728 case NS_DQ:
14729
14730 if ((rs == NS_DQ)
14731 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14732 {
14733 as_bad (_("operand size must match register width"));
14734 break;
14735 }
14736
14737 if ((rs == NS_QD)
14738 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14739 {
14740 as_bad (_("operand size must match register width"));
14741 break;
14742 }
14743
14744 if (rs == NS_DQ)
14745 inst.instruction = 0x3b60600;
14746 else
14747 inst.instruction = 0x3b60700;
14748
14749 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14750 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14751 inst.instruction |= LOW4 (inst.operands[1].reg);
14752 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14753 neon_dp_fixup (&inst);
14754 break;
14755
14756 default:
14757 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14758 do_vfp_nsyn_cvt (rs, flavour);
14759 }
14760 }
14761
14762 static void
14763 do_neon_cvtr (void)
14764 {
14765 do_neon_cvt_1 (FALSE);
14766 }
14767
14768 static void
14769 do_neon_cvt (void)
14770 {
14771 do_neon_cvt_1 (TRUE);
14772 }
14773
14774 static void
14775 do_neon_cvtb (void)
14776 {
14777 inst.instruction = 0xeb20a40;
14778
14779 /* The sizes are attached to the mnemonic. */
14780 if (inst.vectype.el[0].type != NT_invtype
14781 && inst.vectype.el[0].size == 16)
14782 inst.instruction |= 0x00010000;
14783
14784 /* Programmer's syntax: the sizes are attached to the operands. */
14785 else if (inst.operands[0].vectype.type != NT_invtype
14786 && inst.operands[0].vectype.size == 16)
14787 inst.instruction |= 0x00010000;
14788
14789 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14790 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14791 do_vfp_cond_or_thumb ();
14792 }
14793
14794
14795 static void
14796 do_neon_cvtt (void)
14797 {
14798 do_neon_cvtb ();
14799 inst.instruction |= 0x80;
14800 }
14801
14802 static void
14803 neon_move_immediate (void)
14804 {
14805 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14806 struct neon_type_el et = neon_check_type (2, rs,
14807 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14808 unsigned immlo, immhi = 0, immbits;
14809 int op, cmode, float_p;
14810
14811 constraint (et.type == NT_invtype,
14812 _("operand size must be specified for immediate VMOV"));
14813
14814 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14815 op = (inst.instruction & (1 << 5)) != 0;
14816
14817 immlo = inst.operands[1].imm;
14818 if (inst.operands[1].regisimm)
14819 immhi = inst.operands[1].reg;
14820
14821 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14822 _("immediate has bits set outside the operand size"));
14823
14824 float_p = inst.operands[1].immisfloat;
14825
14826 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14827 et.size, et.type)) == FAIL)
14828 {
14829 /* Invert relevant bits only. */
14830 neon_invert_size (&immlo, &immhi, et.size);
14831 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14832 with one or the other; those cases are caught by
14833 neon_cmode_for_move_imm. */
14834 op = !op;
14835 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14836 &op, et.size, et.type)) == FAIL)
14837 {
14838 first_error (_("immediate out of range"));
14839 return;
14840 }
14841 }
14842
14843 inst.instruction &= ~(1 << 5);
14844 inst.instruction |= op << 5;
14845
14846 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14847 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14848 inst.instruction |= neon_quad (rs) << 6;
14849 inst.instruction |= cmode << 8;
14850
14851 neon_write_immbits (immbits);
14852 }
14853
14854 static void
14855 do_neon_mvn (void)
14856 {
14857 if (inst.operands[1].isreg)
14858 {
14859 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14860
14861 NEON_ENCODE (INTEGER, inst);
14862 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14863 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14864 inst.instruction |= LOW4 (inst.operands[1].reg);
14865 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14866 inst.instruction |= neon_quad (rs) << 6;
14867 }
14868 else
14869 {
14870 NEON_ENCODE (IMMED, inst);
14871 neon_move_immediate ();
14872 }
14873
14874 neon_dp_fixup (&inst);
14875 }
14876
14877 /* Encode instructions of form:
14878
14879 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14880 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14881
14882 static void
14883 neon_mixed_length (struct neon_type_el et, unsigned size)
14884 {
14885 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14886 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14887 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14888 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14889 inst.instruction |= LOW4 (inst.operands[2].reg);
14890 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14891 inst.instruction |= (et.type == NT_unsigned) << 24;
14892 inst.instruction |= neon_logbits (size) << 20;
14893
14894 neon_dp_fixup (&inst);
14895 }
14896
14897 static void
14898 do_neon_dyadic_long (void)
14899 {
14900 /* FIXME: Type checking for lengthening op. */
14901 struct neon_type_el et = neon_check_type (3, NS_QDD,
14902 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14903 neon_mixed_length (et, et.size);
14904 }
14905
14906 static void
14907 do_neon_abal (void)
14908 {
14909 struct neon_type_el et = neon_check_type (3, NS_QDD,
14910 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14911 neon_mixed_length (et, et.size);
14912 }
14913
14914 static void
14915 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14916 {
14917 if (inst.operands[2].isscalar)
14918 {
14919 struct neon_type_el et = neon_check_type (3, NS_QDS,
14920 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14921 NEON_ENCODE (SCALAR, inst);
14922 neon_mul_mac (et, et.type == NT_unsigned);
14923 }
14924 else
14925 {
14926 struct neon_type_el et = neon_check_type (3, NS_QDD,
14927 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14928 NEON_ENCODE (INTEGER, inst);
14929 neon_mixed_length (et, et.size);
14930 }
14931 }
14932
14933 static void
14934 do_neon_mac_maybe_scalar_long (void)
14935 {
14936 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14937 }
14938
14939 static void
14940 do_neon_dyadic_wide (void)
14941 {
14942 struct neon_type_el et = neon_check_type (3, NS_QQD,
14943 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14944 neon_mixed_length (et, et.size);
14945 }
14946
14947 static void
14948 do_neon_dyadic_narrow (void)
14949 {
14950 struct neon_type_el et = neon_check_type (3, NS_QDD,
14951 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14952 /* Operand sign is unimportant, and the U bit is part of the opcode,
14953 so force the operand type to integer. */
14954 et.type = NT_integer;
14955 neon_mixed_length (et, et.size / 2);
14956 }
14957
14958 static void
14959 do_neon_mul_sat_scalar_long (void)
14960 {
14961 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14962 }
14963
14964 static void
14965 do_neon_vmull (void)
14966 {
14967 if (inst.operands[2].isscalar)
14968 do_neon_mac_maybe_scalar_long ();
14969 else
14970 {
14971 struct neon_type_el et = neon_check_type (3, NS_QDD,
14972 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14973 if (et.type == NT_poly)
14974 NEON_ENCODE (POLY, inst);
14975 else
14976 NEON_ENCODE (INTEGER, inst);
14977 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14978 zero. Should be OK as-is. */
14979 neon_mixed_length (et, et.size);
14980 }
14981 }
14982
14983 static void
14984 do_neon_ext (void)
14985 {
14986 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14987 struct neon_type_el et = neon_check_type (3, rs,
14988 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14989 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14990
14991 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14992 _("shift out of range"));
14993 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14994 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14995 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14996 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14997 inst.instruction |= LOW4 (inst.operands[2].reg);
14998 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14999 inst.instruction |= neon_quad (rs) << 6;
15000 inst.instruction |= imm << 8;
15001
15002 neon_dp_fixup (&inst);
15003 }
15004
15005 static void
15006 do_neon_rev (void)
15007 {
15008 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15009 struct neon_type_el et = neon_check_type (2, rs,
15010 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15011 unsigned op = (inst.instruction >> 7) & 3;
15012 /* N (width of reversed regions) is encoded as part of the bitmask. We
15013 extract it here to check the elements to be reversed are smaller.
15014 Otherwise we'd get a reserved instruction. */
15015 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15016 gas_assert (elsize != 0);
15017 constraint (et.size >= elsize,
15018 _("elements must be smaller than reversal region"));
15019 neon_two_same (neon_quad (rs), 1, et.size);
15020 }
15021
15022 static void
15023 do_neon_dup (void)
15024 {
15025 if (inst.operands[1].isscalar)
15026 {
15027 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15028 struct neon_type_el et = neon_check_type (2, rs,
15029 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15030 unsigned sizebits = et.size >> 3;
15031 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15032 int logsize = neon_logbits (et.size);
15033 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15034
15035 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15036 return;
15037
15038 NEON_ENCODE (SCALAR, inst);
15039 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15040 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15041 inst.instruction |= LOW4 (dm);
15042 inst.instruction |= HI1 (dm) << 5;
15043 inst.instruction |= neon_quad (rs) << 6;
15044 inst.instruction |= x << 17;
15045 inst.instruction |= sizebits << 16;
15046
15047 neon_dp_fixup (&inst);
15048 }
15049 else
15050 {
15051 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15052 struct neon_type_el et = neon_check_type (2, rs,
15053 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15054 /* Duplicate ARM register to lanes of vector. */
15055 NEON_ENCODE (ARMREG, inst);
15056 switch (et.size)
15057 {
15058 case 8: inst.instruction |= 0x400000; break;
15059 case 16: inst.instruction |= 0x000020; break;
15060 case 32: inst.instruction |= 0x000000; break;
15061 default: break;
15062 }
15063 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15064 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15065 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15066 inst.instruction |= neon_quad (rs) << 21;
15067 /* The encoding for this instruction is identical for the ARM and Thumb
15068 variants, except for the condition field. */
15069 do_vfp_cond_or_thumb ();
15070 }
15071 }
15072
15073 /* VMOV has particularly many variations. It can be one of:
15074 0. VMOV<c><q> <Qd>, <Qm>
15075 1. VMOV<c><q> <Dd>, <Dm>
15076 (Register operations, which are VORR with Rm = Rn.)
15077 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15078 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15079 (Immediate loads.)
15080 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15081 (ARM register to scalar.)
15082 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15083 (Two ARM registers to vector.)
15084 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15085 (Scalar to ARM register.)
15086 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15087 (Vector to two ARM registers.)
15088 8. VMOV.F32 <Sd>, <Sm>
15089 9. VMOV.F64 <Dd>, <Dm>
15090 (VFP register moves.)
15091 10. VMOV.F32 <Sd>, #imm
15092 11. VMOV.F64 <Dd>, #imm
15093 (VFP float immediate load.)
15094 12. VMOV <Rd>, <Sm>
15095 (VFP single to ARM reg.)
15096 13. VMOV <Sd>, <Rm>
15097 (ARM reg to VFP single.)
15098 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15099 (Two ARM regs to two VFP singles.)
15100 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15101 (Two VFP singles to two ARM regs.)
15102
15103 These cases can be disambiguated using neon_select_shape, except cases 1/9
15104 and 3/11 which depend on the operand type too.
15105
15106 All the encoded bits are hardcoded by this function.
15107
15108 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15109 Cases 5, 7 may be used with VFPv2 and above.
15110
15111 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15112 can specify a type where it doesn't make sense to, and is ignored). */
15113
15114 static void
15115 do_neon_mov (void)
15116 {
15117 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15118 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15119 NS_NULL);
15120 struct neon_type_el et;
15121 const char *ldconst = 0;
15122
15123 switch (rs)
15124 {
15125 case NS_DD: /* case 1/9. */
15126 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15127 /* It is not an error here if no type is given. */
15128 inst.error = NULL;
15129 if (et.type == NT_float && et.size == 64)
15130 {
15131 do_vfp_nsyn_opcode ("fcpyd");
15132 break;
15133 }
15134 /* fall through. */
15135
15136 case NS_QQ: /* case 0/1. */
15137 {
15138 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15139 return;
15140 /* The architecture manual I have doesn't explicitly state which
15141 value the U bit should have for register->register moves, but
15142 the equivalent VORR instruction has U = 0, so do that. */
15143 inst.instruction = 0x0200110;
15144 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15145 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15146 inst.instruction |= LOW4 (inst.operands[1].reg);
15147 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15148 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15149 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15150 inst.instruction |= neon_quad (rs) << 6;
15151
15152 neon_dp_fixup (&inst);
15153 }
15154 break;
15155
15156 case NS_DI: /* case 3/11. */
15157 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15158 inst.error = NULL;
15159 if (et.type == NT_float && et.size == 64)
15160 {
15161 /* case 11 (fconstd). */
15162 ldconst = "fconstd";
15163 goto encode_fconstd;
15164 }
15165 /* fall through. */
15166
15167 case NS_QI: /* case 2/3. */
15168 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15169 return;
15170 inst.instruction = 0x0800010;
15171 neon_move_immediate ();
15172 neon_dp_fixup (&inst);
15173 break;
15174
15175 case NS_SR: /* case 4. */
15176 {
15177 unsigned bcdebits = 0;
15178 int logsize;
15179 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15180 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15181
15182 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15183 logsize = neon_logbits (et.size);
15184
15185 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15186 _(BAD_FPU));
15187 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15188 && et.size != 32, _(BAD_FPU));
15189 constraint (et.type == NT_invtype, _("bad type for scalar"));
15190 constraint (x >= 64 / et.size, _("scalar index out of range"));
15191
15192 switch (et.size)
15193 {
15194 case 8: bcdebits = 0x8; break;
15195 case 16: bcdebits = 0x1; break;
15196 case 32: bcdebits = 0x0; break;
15197 default: ;
15198 }
15199
15200 bcdebits |= x << logsize;
15201
15202 inst.instruction = 0xe000b10;
15203 do_vfp_cond_or_thumb ();
15204 inst.instruction |= LOW4 (dn) << 16;
15205 inst.instruction |= HI1 (dn) << 7;
15206 inst.instruction |= inst.operands[1].reg << 12;
15207 inst.instruction |= (bcdebits & 3) << 5;
15208 inst.instruction |= (bcdebits >> 2) << 21;
15209 }
15210 break;
15211
15212 case NS_DRR: /* case 5 (fmdrr). */
15213 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15214 _(BAD_FPU));
15215
15216 inst.instruction = 0xc400b10;
15217 do_vfp_cond_or_thumb ();
15218 inst.instruction |= LOW4 (inst.operands[0].reg);
15219 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15220 inst.instruction |= inst.operands[1].reg << 12;
15221 inst.instruction |= inst.operands[2].reg << 16;
15222 break;
15223
15224 case NS_RS: /* case 6. */
15225 {
15226 unsigned logsize;
15227 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15228 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15229 unsigned abcdebits = 0;
15230
15231 et = neon_check_type (2, NS_NULL,
15232 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15233 logsize = neon_logbits (et.size);
15234
15235 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15236 _(BAD_FPU));
15237 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15238 && et.size != 32, _(BAD_FPU));
15239 constraint (et.type == NT_invtype, _("bad type for scalar"));
15240 constraint (x >= 64 / et.size, _("scalar index out of range"));
15241
15242 switch (et.size)
15243 {
15244 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15245 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15246 case 32: abcdebits = 0x00; break;
15247 default: ;
15248 }
15249
15250 abcdebits |= x << logsize;
15251 inst.instruction = 0xe100b10;
15252 do_vfp_cond_or_thumb ();
15253 inst.instruction |= LOW4 (dn) << 16;
15254 inst.instruction |= HI1 (dn) << 7;
15255 inst.instruction |= inst.operands[0].reg << 12;
15256 inst.instruction |= (abcdebits & 3) << 5;
15257 inst.instruction |= (abcdebits >> 2) << 21;
15258 }
15259 break;
15260
15261 case NS_RRD: /* case 7 (fmrrd). */
15262 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15263 _(BAD_FPU));
15264
15265 inst.instruction = 0xc500b10;
15266 do_vfp_cond_or_thumb ();
15267 inst.instruction |= inst.operands[0].reg << 12;
15268 inst.instruction |= inst.operands[1].reg << 16;
15269 inst.instruction |= LOW4 (inst.operands[2].reg);
15270 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15271 break;
15272
15273 case NS_FF: /* case 8 (fcpys). */
15274 do_vfp_nsyn_opcode ("fcpys");
15275 break;
15276
15277 case NS_FI: /* case 10 (fconsts). */
15278 ldconst = "fconsts";
15279 encode_fconstd:
15280 if (is_quarter_float (inst.operands[1].imm))
15281 {
15282 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15283 do_vfp_nsyn_opcode (ldconst);
15284 }
15285 else
15286 first_error (_("immediate out of range"));
15287 break;
15288
15289 case NS_RF: /* case 12 (fmrs). */
15290 do_vfp_nsyn_opcode ("fmrs");
15291 break;
15292
15293 case NS_FR: /* case 13 (fmsr). */
15294 do_vfp_nsyn_opcode ("fmsr");
15295 break;
15296
15297 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15298 (one of which is a list), but we have parsed four. Do some fiddling to
15299 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15300 expect. */
15301 case NS_RRFF: /* case 14 (fmrrs). */
15302 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15303 _("VFP registers must be adjacent"));
15304 inst.operands[2].imm = 2;
15305 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15306 do_vfp_nsyn_opcode ("fmrrs");
15307 break;
15308
15309 case NS_FFRR: /* case 15 (fmsrr). */
15310 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15311 _("VFP registers must be adjacent"));
15312 inst.operands[1] = inst.operands[2];
15313 inst.operands[2] = inst.operands[3];
15314 inst.operands[0].imm = 2;
15315 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15316 do_vfp_nsyn_opcode ("fmsrr");
15317 break;
15318
15319 default:
15320 abort ();
15321 }
15322 }
15323
15324 static void
15325 do_neon_rshift_round_imm (void)
15326 {
15327 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15328 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15329 int imm = inst.operands[2].imm;
15330
15331 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15332 if (imm == 0)
15333 {
15334 inst.operands[2].present = 0;
15335 do_neon_mov ();
15336 return;
15337 }
15338
15339 constraint (imm < 1 || (unsigned)imm > et.size,
15340 _("immediate out of range for shift"));
15341 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15342 et.size - imm);
15343 }
15344
15345 static void
15346 do_neon_movl (void)
15347 {
15348 struct neon_type_el et = neon_check_type (2, NS_QD,
15349 N_EQK | N_DBL, N_SU_32 | N_KEY);
15350 unsigned sizebits = et.size >> 3;
15351 inst.instruction |= sizebits << 19;
15352 neon_two_same (0, et.type == NT_unsigned, -1);
15353 }
15354
15355 static void
15356 do_neon_trn (void)
15357 {
15358 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15359 struct neon_type_el et = neon_check_type (2, rs,
15360 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15361 NEON_ENCODE (INTEGER, inst);
15362 neon_two_same (neon_quad (rs), 1, et.size);
15363 }
15364
15365 static void
15366 do_neon_zip_uzp (void)
15367 {
15368 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15369 struct neon_type_el et = neon_check_type (2, rs,
15370 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15371 if (rs == NS_DD && et.size == 32)
15372 {
15373 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15374 inst.instruction = N_MNEM_vtrn;
15375 do_neon_trn ();
15376 return;
15377 }
15378 neon_two_same (neon_quad (rs), 1, et.size);
15379 }
15380
15381 static void
15382 do_neon_sat_abs_neg (void)
15383 {
15384 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15385 struct neon_type_el et = neon_check_type (2, rs,
15386 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15387 neon_two_same (neon_quad (rs), 1, et.size);
15388 }
15389
15390 static void
15391 do_neon_pair_long (void)
15392 {
15393 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15394 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15395 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15396 inst.instruction |= (et.type == NT_unsigned) << 7;
15397 neon_two_same (neon_quad (rs), 1, et.size);
15398 }
15399
15400 static void
15401 do_neon_recip_est (void)
15402 {
15403 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15404 struct neon_type_el et = neon_check_type (2, rs,
15405 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15406 inst.instruction |= (et.type == NT_float) << 8;
15407 neon_two_same (neon_quad (rs), 1, et.size);
15408 }
15409
15410 static void
15411 do_neon_cls (void)
15412 {
15413 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15414 struct neon_type_el et = neon_check_type (2, rs,
15415 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15416 neon_two_same (neon_quad (rs), 1, et.size);
15417 }
15418
15419 static void
15420 do_neon_clz (void)
15421 {
15422 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15423 struct neon_type_el et = neon_check_type (2, rs,
15424 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15425 neon_two_same (neon_quad (rs), 1, et.size);
15426 }
15427
15428 static void
15429 do_neon_cnt (void)
15430 {
15431 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15432 struct neon_type_el et = neon_check_type (2, rs,
15433 N_EQK | N_INT, N_8 | N_KEY);
15434 neon_two_same (neon_quad (rs), 1, et.size);
15435 }
15436
15437 static void
15438 do_neon_swp (void)
15439 {
15440 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15441 neon_two_same (neon_quad (rs), 1, -1);
15442 }
15443
15444 static void
15445 do_neon_tbl_tbx (void)
15446 {
15447 unsigned listlenbits;
15448 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15449
15450 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15451 {
15452 first_error (_("bad list length for table lookup"));
15453 return;
15454 }
15455
15456 listlenbits = inst.operands[1].imm - 1;
15457 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15458 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15459 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15460 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15461 inst.instruction |= LOW4 (inst.operands[2].reg);
15462 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15463 inst.instruction |= listlenbits << 8;
15464
15465 neon_dp_fixup (&inst);
15466 }
15467
15468 static void
15469 do_neon_ldm_stm (void)
15470 {
15471 /* P, U and L bits are part of bitmask. */
15472 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15473 unsigned offsetbits = inst.operands[1].imm * 2;
15474
15475 if (inst.operands[1].issingle)
15476 {
15477 do_vfp_nsyn_ldm_stm (is_dbmode);
15478 return;
15479 }
15480
15481 constraint (is_dbmode && !inst.operands[0].writeback,
15482 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15483
15484 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15485 _("register list must contain at least 1 and at most 16 "
15486 "registers"));
15487
15488 inst.instruction |= inst.operands[0].reg << 16;
15489 inst.instruction |= inst.operands[0].writeback << 21;
15490 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15491 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15492
15493 inst.instruction |= offsetbits;
15494
15495 do_vfp_cond_or_thumb ();
15496 }
15497
15498 static void
15499 do_neon_ldr_str (void)
15500 {
15501 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15502
15503 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15504 And is UNPREDICTABLE in thumb mode. */
15505 if (!is_ldr
15506 && inst.operands[1].reg == REG_PC
15507 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15508 {
15509 if (!thumb_mode && warn_on_deprecated)
15510 as_warn (_("Use of PC here is deprecated"));
15511 else
15512 inst.error = _("Use of PC here is UNPREDICTABLE");
15513 }
15514
15515 if (inst.operands[0].issingle)
15516 {
15517 if (is_ldr)
15518 do_vfp_nsyn_opcode ("flds");
15519 else
15520 do_vfp_nsyn_opcode ("fsts");
15521 }
15522 else
15523 {
15524 if (is_ldr)
15525 do_vfp_nsyn_opcode ("fldd");
15526 else
15527 do_vfp_nsyn_opcode ("fstd");
15528 }
15529 }
15530
15531 /* "interleave" version also handles non-interleaving register VLD1/VST1
15532 instructions. */
15533
15534 static void
15535 do_neon_ld_st_interleave (void)
15536 {
15537 struct neon_type_el et = neon_check_type (1, NS_NULL,
15538 N_8 | N_16 | N_32 | N_64);
15539 unsigned alignbits = 0;
15540 unsigned idx;
15541 /* The bits in this table go:
15542 0: register stride of one (0) or two (1)
15543 1,2: register list length, minus one (1, 2, 3, 4).
15544 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15545 We use -1 for invalid entries. */
15546 const int typetable[] =
15547 {
15548 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15549 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15550 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15551 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15552 };
15553 int typebits;
15554
15555 if (et.type == NT_invtype)
15556 return;
15557
15558 if (inst.operands[1].immisalign)
15559 switch (inst.operands[1].imm >> 8)
15560 {
15561 case 64: alignbits = 1; break;
15562 case 128:
15563 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15564 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15565 goto bad_alignment;
15566 alignbits = 2;
15567 break;
15568 case 256:
15569 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15570 goto bad_alignment;
15571 alignbits = 3;
15572 break;
15573 default:
15574 bad_alignment:
15575 first_error (_("bad alignment"));
15576 return;
15577 }
15578
15579 inst.instruction |= alignbits << 4;
15580 inst.instruction |= neon_logbits (et.size) << 6;
15581
15582 /* Bits [4:6] of the immediate in a list specifier encode register stride
15583 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15584 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15585 up the right value for "type" in a table based on this value and the given
15586 list style, then stick it back. */
15587 idx = ((inst.operands[0].imm >> 4) & 7)
15588 | (((inst.instruction >> 8) & 3) << 3);
15589
15590 typebits = typetable[idx];
15591
15592 constraint (typebits == -1, _("bad list type for instruction"));
15593
15594 inst.instruction &= ~0xf00;
15595 inst.instruction |= typebits << 8;
15596 }
15597
15598 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15599 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15600 otherwise. The variable arguments are a list of pairs of legal (size, align)
15601 values, terminated with -1. */
15602
15603 static int
15604 neon_alignment_bit (int size, int align, int *do_align, ...)
15605 {
15606 va_list ap;
15607 int result = FAIL, thissize, thisalign;
15608
15609 if (!inst.operands[1].immisalign)
15610 {
15611 *do_align = 0;
15612 return SUCCESS;
15613 }
15614
15615 va_start (ap, do_align);
15616
15617 do
15618 {
15619 thissize = va_arg (ap, int);
15620 if (thissize == -1)
15621 break;
15622 thisalign = va_arg (ap, int);
15623
15624 if (size == thissize && align == thisalign)
15625 result = SUCCESS;
15626 }
15627 while (result != SUCCESS);
15628
15629 va_end (ap);
15630
15631 if (result == SUCCESS)
15632 *do_align = 1;
15633 else
15634 first_error (_("unsupported alignment for instruction"));
15635
15636 return result;
15637 }
15638
15639 static void
15640 do_neon_ld_st_lane (void)
15641 {
15642 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15643 int align_good, do_align = 0;
15644 int logsize = neon_logbits (et.size);
15645 int align = inst.operands[1].imm >> 8;
15646 int n = (inst.instruction >> 8) & 3;
15647 int max_el = 64 / et.size;
15648
15649 if (et.type == NT_invtype)
15650 return;
15651
15652 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15653 _("bad list length"));
15654 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15655 _("scalar index out of range"));
15656 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15657 && et.size == 8,
15658 _("stride of 2 unavailable when element size is 8"));
15659
15660 switch (n)
15661 {
15662 case 0: /* VLD1 / VST1. */
15663 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15664 32, 32, -1);
15665 if (align_good == FAIL)
15666 return;
15667 if (do_align)
15668 {
15669 unsigned alignbits = 0;
15670 switch (et.size)
15671 {
15672 case 16: alignbits = 0x1; break;
15673 case 32: alignbits = 0x3; break;
15674 default: ;
15675 }
15676 inst.instruction |= alignbits << 4;
15677 }
15678 break;
15679
15680 case 1: /* VLD2 / VST2. */
15681 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15682 32, 64, -1);
15683 if (align_good == FAIL)
15684 return;
15685 if (do_align)
15686 inst.instruction |= 1 << 4;
15687 break;
15688
15689 case 2: /* VLD3 / VST3. */
15690 constraint (inst.operands[1].immisalign,
15691 _("can't use alignment with this instruction"));
15692 break;
15693
15694 case 3: /* VLD4 / VST4. */
15695 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15696 16, 64, 32, 64, 32, 128, -1);
15697 if (align_good == FAIL)
15698 return;
15699 if (do_align)
15700 {
15701 unsigned alignbits = 0;
15702 switch (et.size)
15703 {
15704 case 8: alignbits = 0x1; break;
15705 case 16: alignbits = 0x1; break;
15706 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15707 default: ;
15708 }
15709 inst.instruction |= alignbits << 4;
15710 }
15711 break;
15712
15713 default: ;
15714 }
15715
15716 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15717 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15718 inst.instruction |= 1 << (4 + logsize);
15719
15720 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15721 inst.instruction |= logsize << 10;
15722 }
15723
15724 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15725
15726 static void
15727 do_neon_ld_dup (void)
15728 {
15729 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15730 int align_good, do_align = 0;
15731
15732 if (et.type == NT_invtype)
15733 return;
15734
15735 switch ((inst.instruction >> 8) & 3)
15736 {
15737 case 0: /* VLD1. */
15738 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15739 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15740 &do_align, 16, 16, 32, 32, -1);
15741 if (align_good == FAIL)
15742 return;
15743 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15744 {
15745 case 1: break;
15746 case 2: inst.instruction |= 1 << 5; break;
15747 default: first_error (_("bad list length")); return;
15748 }
15749 inst.instruction |= neon_logbits (et.size) << 6;
15750 break;
15751
15752 case 1: /* VLD2. */
15753 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15754 &do_align, 8, 16, 16, 32, 32, 64, -1);
15755 if (align_good == FAIL)
15756 return;
15757 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15758 _("bad list length"));
15759 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15760 inst.instruction |= 1 << 5;
15761 inst.instruction |= neon_logbits (et.size) << 6;
15762 break;
15763
15764 case 2: /* VLD3. */
15765 constraint (inst.operands[1].immisalign,
15766 _("can't use alignment with this instruction"));
15767 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15768 _("bad list length"));
15769 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15770 inst.instruction |= 1 << 5;
15771 inst.instruction |= neon_logbits (et.size) << 6;
15772 break;
15773
15774 case 3: /* VLD4. */
15775 {
15776 int align = inst.operands[1].imm >> 8;
15777 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15778 16, 64, 32, 64, 32, 128, -1);
15779 if (align_good == FAIL)
15780 return;
15781 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15782 _("bad list length"));
15783 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15784 inst.instruction |= 1 << 5;
15785 if (et.size == 32 && align == 128)
15786 inst.instruction |= 0x3 << 6;
15787 else
15788 inst.instruction |= neon_logbits (et.size) << 6;
15789 }
15790 break;
15791
15792 default: ;
15793 }
15794
15795 inst.instruction |= do_align << 4;
15796 }
15797
15798 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15799 apart from bits [11:4]. */
15800
15801 static void
15802 do_neon_ldx_stx (void)
15803 {
15804 if (inst.operands[1].isreg)
15805 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15806
15807 switch (NEON_LANE (inst.operands[0].imm))
15808 {
15809 case NEON_INTERLEAVE_LANES:
15810 NEON_ENCODE (INTERLV, inst);
15811 do_neon_ld_st_interleave ();
15812 break;
15813
15814 case NEON_ALL_LANES:
15815 NEON_ENCODE (DUP, inst);
15816 do_neon_ld_dup ();
15817 break;
15818
15819 default:
15820 NEON_ENCODE (LANE, inst);
15821 do_neon_ld_st_lane ();
15822 }
15823
15824 /* L bit comes from bit mask. */
15825 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15826 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15827 inst.instruction |= inst.operands[1].reg << 16;
15828
15829 if (inst.operands[1].postind)
15830 {
15831 int postreg = inst.operands[1].imm & 0xf;
15832 constraint (!inst.operands[1].immisreg,
15833 _("post-index must be a register"));
15834 constraint (postreg == 0xd || postreg == 0xf,
15835 _("bad register for post-index"));
15836 inst.instruction |= postreg;
15837 }
15838 else if (inst.operands[1].writeback)
15839 {
15840 inst.instruction |= 0xd;
15841 }
15842 else
15843 inst.instruction |= 0xf;
15844
15845 if (thumb_mode)
15846 inst.instruction |= 0xf9000000;
15847 else
15848 inst.instruction |= 0xf4000000;
15849 }
15850
15851 /* FP v8. */
15852 static void
15853 do_vfp_nsyn_fpv8 (enum neon_shape rs)
15854 {
15855 NEON_ENCODE (FPV8, inst);
15856
15857 if (rs == NS_FFF)
15858 do_vfp_sp_dyadic ();
15859 else
15860 do_vfp_dp_rd_rn_rm ();
15861
15862 if (rs == NS_DDD)
15863 inst.instruction |= 0x100;
15864
15865 inst.instruction |= 0xf0000000;
15866 }
15867
15868 static void
15869 do_vsel (void)
15870 {
15871 set_it_insn_type (OUTSIDE_IT_INSN);
15872
15873 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
15874 first_error (_("invalid instruction shape"));
15875 }
15876
15877 \f
15878 /* Overall per-instruction processing. */
15879
15880 /* We need to be able to fix up arbitrary expressions in some statements.
15881 This is so that we can handle symbols that are an arbitrary distance from
15882 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15883 which returns part of an address in a form which will be valid for
15884 a data instruction. We do this by pushing the expression into a symbol
15885 in the expr_section, and creating a fix for that. */
15886
15887 static void
15888 fix_new_arm (fragS * frag,
15889 int where,
15890 short int size,
15891 expressionS * exp,
15892 int pc_rel,
15893 int reloc)
15894 {
15895 fixS * new_fix;
15896
15897 switch (exp->X_op)
15898 {
15899 case O_constant:
15900 if (pc_rel)
15901 {
15902 /* Create an absolute valued symbol, so we have something to
15903 refer to in the object file. Unfortunately for us, gas's
15904 generic expression parsing will already have folded out
15905 any use of .set foo/.type foo %function that may have
15906 been used to set type information of the target location,
15907 that's being specified symbolically. We have to presume
15908 the user knows what they are doing. */
15909 char name[16 + 8];
15910 symbolS *symbol;
15911
15912 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15913
15914 symbol = symbol_find_or_make (name);
15915 S_SET_SEGMENT (symbol, absolute_section);
15916 symbol_set_frag (symbol, &zero_address_frag);
15917 S_SET_VALUE (symbol, exp->X_add_number);
15918 exp->X_op = O_symbol;
15919 exp->X_add_symbol = symbol;
15920 exp->X_add_number = 0;
15921 }
15922 /* FALLTHROUGH */
15923 case O_symbol:
15924 case O_add:
15925 case O_subtract:
15926 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15927 (enum bfd_reloc_code_real) reloc);
15928 break;
15929
15930 default:
15931 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15932 pc_rel, (enum bfd_reloc_code_real) reloc);
15933 break;
15934 }
15935
15936 /* Mark whether the fix is to a THUMB instruction, or an ARM
15937 instruction. */
15938 new_fix->tc_fix_data = thumb_mode;
15939 }
15940
15941 /* Create a frg for an instruction requiring relaxation. */
15942 static void
15943 output_relax_insn (void)
15944 {
15945 char * to;
15946 symbolS *sym;
15947 int offset;
15948
15949 /* The size of the instruction is unknown, so tie the debug info to the
15950 start of the instruction. */
15951 dwarf2_emit_insn (0);
15952
15953 switch (inst.reloc.exp.X_op)
15954 {
15955 case O_symbol:
15956 sym = inst.reloc.exp.X_add_symbol;
15957 offset = inst.reloc.exp.X_add_number;
15958 break;
15959 case O_constant:
15960 sym = NULL;
15961 offset = inst.reloc.exp.X_add_number;
15962 break;
15963 default:
15964 sym = make_expr_symbol (&inst.reloc.exp);
15965 offset = 0;
15966 break;
15967 }
15968 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15969 inst.relax, sym, offset, NULL/*offset, opcode*/);
15970 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15971 }
15972
15973 /* Write a 32-bit thumb instruction to buf. */
15974 static void
15975 put_thumb32_insn (char * buf, unsigned long insn)
15976 {
15977 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15978 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15979 }
15980
15981 static void
15982 output_inst (const char * str)
15983 {
15984 char * to = NULL;
15985
15986 if (inst.error)
15987 {
15988 as_bad ("%s -- `%s'", inst.error, str);
15989 return;
15990 }
15991 if (inst.relax)
15992 {
15993 output_relax_insn ();
15994 return;
15995 }
15996 if (inst.size == 0)
15997 return;
15998
15999 to = frag_more (inst.size);
16000 /* PR 9814: Record the thumb mode into the current frag so that we know
16001 what type of NOP padding to use, if necessary. We override any previous
16002 setting so that if the mode has changed then the NOPS that we use will
16003 match the encoding of the last instruction in the frag. */
16004 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16005
16006 if (thumb_mode && (inst.size > THUMB_SIZE))
16007 {
16008 gas_assert (inst.size == (2 * THUMB_SIZE));
16009 put_thumb32_insn (to, inst.instruction);
16010 }
16011 else if (inst.size > INSN_SIZE)
16012 {
16013 gas_assert (inst.size == (2 * INSN_SIZE));
16014 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16015 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16016 }
16017 else
16018 md_number_to_chars (to, inst.instruction, inst.size);
16019
16020 if (inst.reloc.type != BFD_RELOC_UNUSED)
16021 fix_new_arm (frag_now, to - frag_now->fr_literal,
16022 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16023 inst.reloc.type);
16024
16025 dwarf2_emit_insn (inst.size);
16026 }
16027
16028 static char *
16029 output_it_inst (int cond, int mask, char * to)
16030 {
16031 unsigned long instruction = 0xbf00;
16032
16033 mask &= 0xf;
16034 instruction |= mask;
16035 instruction |= cond << 4;
16036
16037 if (to == NULL)
16038 {
16039 to = frag_more (2);
16040 #ifdef OBJ_ELF
16041 dwarf2_emit_insn (2);
16042 #endif
16043 }
16044
16045 md_number_to_chars (to, instruction, 2);
16046
16047 return to;
16048 }
16049
16050 /* Tag values used in struct asm_opcode's tag field. */
16051 enum opcode_tag
16052 {
16053 OT_unconditional, /* Instruction cannot be conditionalized.
16054 The ARM condition field is still 0xE. */
16055 OT_unconditionalF, /* Instruction cannot be conditionalized
16056 and carries 0xF in its ARM condition field. */
16057 OT_csuffix, /* Instruction takes a conditional suffix. */
16058 OT_csuffixF, /* Some forms of the instruction take a conditional
16059 suffix, others place 0xF where the condition field
16060 would be. */
16061 OT_cinfix3, /* Instruction takes a conditional infix,
16062 beginning at character index 3. (In
16063 unified mode, it becomes a suffix.) */
16064 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16065 tsts, cmps, cmns, and teqs. */
16066 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16067 character index 3, even in unified mode. Used for
16068 legacy instructions where suffix and infix forms
16069 may be ambiguous. */
16070 OT_csuf_or_in3, /* Instruction takes either a conditional
16071 suffix or an infix at character index 3. */
16072 OT_odd_infix_unc, /* This is the unconditional variant of an
16073 instruction that takes a conditional infix
16074 at an unusual position. In unified mode,
16075 this variant will accept a suffix. */
16076 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16077 are the conditional variants of instructions that
16078 take conditional infixes in unusual positions.
16079 The infix appears at character index
16080 (tag - OT_odd_infix_0). These are not accepted
16081 in unified mode. */
16082 };
16083
16084 /* Subroutine of md_assemble, responsible for looking up the primary
16085 opcode from the mnemonic the user wrote. STR points to the
16086 beginning of the mnemonic.
16087
16088 This is not simply a hash table lookup, because of conditional
16089 variants. Most instructions have conditional variants, which are
16090 expressed with a _conditional affix_ to the mnemonic. If we were
16091 to encode each conditional variant as a literal string in the opcode
16092 table, it would have approximately 20,000 entries.
16093
16094 Most mnemonics take this affix as a suffix, and in unified syntax,
16095 'most' is upgraded to 'all'. However, in the divided syntax, some
16096 instructions take the affix as an infix, notably the s-variants of
16097 the arithmetic instructions. Of those instructions, all but six
16098 have the infix appear after the third character of the mnemonic.
16099
16100 Accordingly, the algorithm for looking up primary opcodes given
16101 an identifier is:
16102
16103 1. Look up the identifier in the opcode table.
16104 If we find a match, go to step U.
16105
16106 2. Look up the last two characters of the identifier in the
16107 conditions table. If we find a match, look up the first N-2
16108 characters of the identifier in the opcode table. If we
16109 find a match, go to step CE.
16110
16111 3. Look up the fourth and fifth characters of the identifier in
16112 the conditions table. If we find a match, extract those
16113 characters from the identifier, and look up the remaining
16114 characters in the opcode table. If we find a match, go
16115 to step CM.
16116
16117 4. Fail.
16118
16119 U. Examine the tag field of the opcode structure, in case this is
16120 one of the six instructions with its conditional infix in an
16121 unusual place. If it is, the tag tells us where to find the
16122 infix; look it up in the conditions table and set inst.cond
16123 accordingly. Otherwise, this is an unconditional instruction.
16124 Again set inst.cond accordingly. Return the opcode structure.
16125
16126 CE. Examine the tag field to make sure this is an instruction that
16127 should receive a conditional suffix. If it is not, fail.
16128 Otherwise, set inst.cond from the suffix we already looked up,
16129 and return the opcode structure.
16130
16131 CM. Examine the tag field to make sure this is an instruction that
16132 should receive a conditional infix after the third character.
16133 If it is not, fail. Otherwise, undo the edits to the current
16134 line of input and proceed as for case CE. */
16135
16136 static const struct asm_opcode *
16137 opcode_lookup (char **str)
16138 {
16139 char *end, *base;
16140 char *affix;
16141 const struct asm_opcode *opcode;
16142 const struct asm_cond *cond;
16143 char save[2];
16144
16145 /* Scan up to the end of the mnemonic, which must end in white space,
16146 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16147 for (base = end = *str; *end != '\0'; end++)
16148 if (*end == ' ' || *end == '.')
16149 break;
16150
16151 if (end == base)
16152 return NULL;
16153
16154 /* Handle a possible width suffix and/or Neon type suffix. */
16155 if (end[0] == '.')
16156 {
16157 int offset = 2;
16158
16159 /* The .w and .n suffixes are only valid if the unified syntax is in
16160 use. */
16161 if (unified_syntax && end[1] == 'w')
16162 inst.size_req = 4;
16163 else if (unified_syntax && end[1] == 'n')
16164 inst.size_req = 2;
16165 else
16166 offset = 0;
16167
16168 inst.vectype.elems = 0;
16169
16170 *str = end + offset;
16171
16172 if (end[offset] == '.')
16173 {
16174 /* See if we have a Neon type suffix (possible in either unified or
16175 non-unified ARM syntax mode). */
16176 if (parse_neon_type (&inst.vectype, str) == FAIL)
16177 return NULL;
16178 }
16179 else if (end[offset] != '\0' && end[offset] != ' ')
16180 return NULL;
16181 }
16182 else
16183 *str = end;
16184
16185 /* Look for unaffixed or special-case affixed mnemonic. */
16186 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16187 end - base);
16188 if (opcode)
16189 {
16190 /* step U */
16191 if (opcode->tag < OT_odd_infix_0)
16192 {
16193 inst.cond = COND_ALWAYS;
16194 return opcode;
16195 }
16196
16197 if (warn_on_deprecated && unified_syntax)
16198 as_warn (_("conditional infixes are deprecated in unified syntax"));
16199 affix = base + (opcode->tag - OT_odd_infix_0);
16200 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16201 gas_assert (cond);
16202
16203 inst.cond = cond->value;
16204 return opcode;
16205 }
16206
16207 /* Cannot have a conditional suffix on a mnemonic of less than two
16208 characters. */
16209 if (end - base < 3)
16210 return NULL;
16211
16212 /* Look for suffixed mnemonic. */
16213 affix = end - 2;
16214 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16215 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16216 affix - base);
16217 if (opcode && cond)
16218 {
16219 /* step CE */
16220 switch (opcode->tag)
16221 {
16222 case OT_cinfix3_legacy:
16223 /* Ignore conditional suffixes matched on infix only mnemonics. */
16224 break;
16225
16226 case OT_cinfix3:
16227 case OT_cinfix3_deprecated:
16228 case OT_odd_infix_unc:
16229 if (!unified_syntax)
16230 return 0;
16231 /* else fall through */
16232
16233 case OT_csuffix:
16234 case OT_csuffixF:
16235 case OT_csuf_or_in3:
16236 inst.cond = cond->value;
16237 return opcode;
16238
16239 case OT_unconditional:
16240 case OT_unconditionalF:
16241 if (thumb_mode)
16242 inst.cond = cond->value;
16243 else
16244 {
16245 /* Delayed diagnostic. */
16246 inst.error = BAD_COND;
16247 inst.cond = COND_ALWAYS;
16248 }
16249 return opcode;
16250
16251 default:
16252 return NULL;
16253 }
16254 }
16255
16256 /* Cannot have a usual-position infix on a mnemonic of less than
16257 six characters (five would be a suffix). */
16258 if (end - base < 6)
16259 return NULL;
16260
16261 /* Look for infixed mnemonic in the usual position. */
16262 affix = base + 3;
16263 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16264 if (!cond)
16265 return NULL;
16266
16267 memcpy (save, affix, 2);
16268 memmove (affix, affix + 2, (end - affix) - 2);
16269 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16270 (end - base) - 2);
16271 memmove (affix + 2, affix, (end - affix) - 2);
16272 memcpy (affix, save, 2);
16273
16274 if (opcode
16275 && (opcode->tag == OT_cinfix3
16276 || opcode->tag == OT_cinfix3_deprecated
16277 || opcode->tag == OT_csuf_or_in3
16278 || opcode->tag == OT_cinfix3_legacy))
16279 {
16280 /* Step CM. */
16281 if (warn_on_deprecated && unified_syntax
16282 && (opcode->tag == OT_cinfix3
16283 || opcode->tag == OT_cinfix3_deprecated))
16284 as_warn (_("conditional infixes are deprecated in unified syntax"));
16285
16286 inst.cond = cond->value;
16287 return opcode;
16288 }
16289
16290 return NULL;
16291 }
16292
16293 /* This function generates an initial IT instruction, leaving its block
16294 virtually open for the new instructions. Eventually,
16295 the mask will be updated by now_it_add_mask () each time
16296 a new instruction needs to be included in the IT block.
16297 Finally, the block is closed with close_automatic_it_block ().
16298 The block closure can be requested either from md_assemble (),
16299 a tencode (), or due to a label hook. */
16300
16301 static void
16302 new_automatic_it_block (int cond)
16303 {
16304 now_it.state = AUTOMATIC_IT_BLOCK;
16305 now_it.mask = 0x18;
16306 now_it.cc = cond;
16307 now_it.block_length = 1;
16308 mapping_state (MAP_THUMB);
16309 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16310 now_it.warn_deprecated = FALSE;
16311 now_it.insn_cond = TRUE;
16312 }
16313
16314 /* Close an automatic IT block.
16315 See comments in new_automatic_it_block (). */
16316
16317 static void
16318 close_automatic_it_block (void)
16319 {
16320 now_it.mask = 0x10;
16321 now_it.block_length = 0;
16322 }
16323
16324 /* Update the mask of the current automatically-generated IT
16325 instruction. See comments in new_automatic_it_block (). */
16326
16327 static void
16328 now_it_add_mask (int cond)
16329 {
16330 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16331 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16332 | ((bitvalue) << (nbit)))
16333 const int resulting_bit = (cond & 1);
16334
16335 now_it.mask &= 0xf;
16336 now_it.mask = SET_BIT_VALUE (now_it.mask,
16337 resulting_bit,
16338 (5 - now_it.block_length));
16339 now_it.mask = SET_BIT_VALUE (now_it.mask,
16340 1,
16341 ((5 - now_it.block_length) - 1) );
16342 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16343
16344 #undef CLEAR_BIT
16345 #undef SET_BIT_VALUE
16346 }
16347
16348 /* The IT blocks handling machinery is accessed through the these functions:
16349 it_fsm_pre_encode () from md_assemble ()
16350 set_it_insn_type () optional, from the tencode functions
16351 set_it_insn_type_last () ditto
16352 in_it_block () ditto
16353 it_fsm_post_encode () from md_assemble ()
16354 force_automatic_it_block_close () from label habdling functions
16355
16356 Rationale:
16357 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16358 initializing the IT insn type with a generic initial value depending
16359 on the inst.condition.
16360 2) During the tencode function, two things may happen:
16361 a) The tencode function overrides the IT insn type by
16362 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16363 b) The tencode function queries the IT block state by
16364 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16365
16366 Both set_it_insn_type and in_it_block run the internal FSM state
16367 handling function (handle_it_state), because: a) setting the IT insn
16368 type may incur in an invalid state (exiting the function),
16369 and b) querying the state requires the FSM to be updated.
16370 Specifically we want to avoid creating an IT block for conditional
16371 branches, so it_fsm_pre_encode is actually a guess and we can't
16372 determine whether an IT block is required until the tencode () routine
16373 has decided what type of instruction this actually it.
16374 Because of this, if set_it_insn_type and in_it_block have to be used,
16375 set_it_insn_type has to be called first.
16376
16377 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16378 determines the insn IT type depending on the inst.cond code.
16379 When a tencode () routine encodes an instruction that can be
16380 either outside an IT block, or, in the case of being inside, has to be
16381 the last one, set_it_insn_type_last () will determine the proper
16382 IT instruction type based on the inst.cond code. Otherwise,
16383 set_it_insn_type can be called for overriding that logic or
16384 for covering other cases.
16385
16386 Calling handle_it_state () may not transition the IT block state to
16387 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16388 still queried. Instead, if the FSM determines that the state should
16389 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16390 after the tencode () function: that's what it_fsm_post_encode () does.
16391
16392 Since in_it_block () calls the state handling function to get an
16393 updated state, an error may occur (due to invalid insns combination).
16394 In that case, inst.error is set.
16395 Therefore, inst.error has to be checked after the execution of
16396 the tencode () routine.
16397
16398 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16399 any pending state change (if any) that didn't take place in
16400 handle_it_state () as explained above. */
16401
16402 static void
16403 it_fsm_pre_encode (void)
16404 {
16405 if (inst.cond != COND_ALWAYS)
16406 inst.it_insn_type = INSIDE_IT_INSN;
16407 else
16408 inst.it_insn_type = OUTSIDE_IT_INSN;
16409
16410 now_it.state_handled = 0;
16411 }
16412
16413 /* IT state FSM handling function. */
16414
16415 static int
16416 handle_it_state (void)
16417 {
16418 now_it.state_handled = 1;
16419 now_it.insn_cond = FALSE;
16420
16421 switch (now_it.state)
16422 {
16423 case OUTSIDE_IT_BLOCK:
16424 switch (inst.it_insn_type)
16425 {
16426 case OUTSIDE_IT_INSN:
16427 break;
16428
16429 case INSIDE_IT_INSN:
16430 case INSIDE_IT_LAST_INSN:
16431 if (thumb_mode == 0)
16432 {
16433 if (unified_syntax
16434 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16435 as_tsktsk (_("Warning: conditional outside an IT block"\
16436 " for Thumb."));
16437 }
16438 else
16439 {
16440 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16441 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16442 {
16443 /* Automatically generate the IT instruction. */
16444 new_automatic_it_block (inst.cond);
16445 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16446 close_automatic_it_block ();
16447 }
16448 else
16449 {
16450 inst.error = BAD_OUT_IT;
16451 return FAIL;
16452 }
16453 }
16454 break;
16455
16456 case IF_INSIDE_IT_LAST_INSN:
16457 case NEUTRAL_IT_INSN:
16458 break;
16459
16460 case IT_INSN:
16461 now_it.state = MANUAL_IT_BLOCK;
16462 now_it.block_length = 0;
16463 break;
16464 }
16465 break;
16466
16467 case AUTOMATIC_IT_BLOCK:
16468 /* Three things may happen now:
16469 a) We should increment current it block size;
16470 b) We should close current it block (closing insn or 4 insns);
16471 c) We should close current it block and start a new one (due
16472 to incompatible conditions or
16473 4 insns-length block reached). */
16474
16475 switch (inst.it_insn_type)
16476 {
16477 case OUTSIDE_IT_INSN:
16478 /* The closure of the block shall happen immediatelly,
16479 so any in_it_block () call reports the block as closed. */
16480 force_automatic_it_block_close ();
16481 break;
16482
16483 case INSIDE_IT_INSN:
16484 case INSIDE_IT_LAST_INSN:
16485 case IF_INSIDE_IT_LAST_INSN:
16486 now_it.block_length++;
16487
16488 if (now_it.block_length > 4
16489 || !now_it_compatible (inst.cond))
16490 {
16491 force_automatic_it_block_close ();
16492 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16493 new_automatic_it_block (inst.cond);
16494 }
16495 else
16496 {
16497 now_it.insn_cond = TRUE;
16498 now_it_add_mask (inst.cond);
16499 }
16500
16501 if (now_it.state == AUTOMATIC_IT_BLOCK
16502 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16503 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16504 close_automatic_it_block ();
16505 break;
16506
16507 case NEUTRAL_IT_INSN:
16508 now_it.block_length++;
16509 now_it.insn_cond = TRUE;
16510
16511 if (now_it.block_length > 4)
16512 force_automatic_it_block_close ();
16513 else
16514 now_it_add_mask (now_it.cc & 1);
16515 break;
16516
16517 case IT_INSN:
16518 close_automatic_it_block ();
16519 now_it.state = MANUAL_IT_BLOCK;
16520 break;
16521 }
16522 break;
16523
16524 case MANUAL_IT_BLOCK:
16525 {
16526 /* Check conditional suffixes. */
16527 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16528 int is_last;
16529 now_it.mask <<= 1;
16530 now_it.mask &= 0x1f;
16531 is_last = (now_it.mask == 0x10);
16532 now_it.insn_cond = TRUE;
16533
16534 switch (inst.it_insn_type)
16535 {
16536 case OUTSIDE_IT_INSN:
16537 inst.error = BAD_NOT_IT;
16538 return FAIL;
16539
16540 case INSIDE_IT_INSN:
16541 if (cond != inst.cond)
16542 {
16543 inst.error = BAD_IT_COND;
16544 return FAIL;
16545 }
16546 break;
16547
16548 case INSIDE_IT_LAST_INSN:
16549 case IF_INSIDE_IT_LAST_INSN:
16550 if (cond != inst.cond)
16551 {
16552 inst.error = BAD_IT_COND;
16553 return FAIL;
16554 }
16555 if (!is_last)
16556 {
16557 inst.error = BAD_BRANCH;
16558 return FAIL;
16559 }
16560 break;
16561
16562 case NEUTRAL_IT_INSN:
16563 /* The BKPT instruction is unconditional even in an IT block. */
16564 break;
16565
16566 case IT_INSN:
16567 inst.error = BAD_IT_IT;
16568 return FAIL;
16569 }
16570 }
16571 break;
16572 }
16573
16574 return SUCCESS;
16575 }
16576
16577 struct depr_insn_mask
16578 {
16579 unsigned long pattern;
16580 unsigned long mask;
16581 const char* description;
16582 };
16583
16584 /* List of 16-bit instruction patterns deprecated in an IT block in
16585 ARMv8. */
16586 static const struct depr_insn_mask depr_it_insns[] = {
16587 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16588 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16589 { 0xa000, 0xb800, N_("ADR") },
16590 { 0x4800, 0xf800, N_("Literal loads") },
16591 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16592 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16593 { 0, 0, NULL }
16594 };
16595
16596 static void
16597 it_fsm_post_encode (void)
16598 {
16599 int is_last;
16600
16601 if (!now_it.state_handled)
16602 handle_it_state ();
16603
16604 if (now_it.insn_cond
16605 && !now_it.warn_deprecated
16606 && warn_on_deprecated
16607 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16608 {
16609 if (inst.instruction >= 0x10000)
16610 {
16611 as_warn (_("it blocks containing wide Thumb instructions are "
16612 "deprecated in ARMv8"));
16613 now_it.warn_deprecated = TRUE;
16614 }
16615 else
16616 {
16617 const struct depr_insn_mask *p = depr_it_insns;
16618
16619 while (p->mask != 0)
16620 {
16621 if ((inst.instruction & p->mask) == p->pattern)
16622 {
16623 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16624 "of the following class are deprecated in ARMv8: "
16625 "%s"), p->description);
16626 now_it.warn_deprecated = TRUE;
16627 break;
16628 }
16629
16630 ++p;
16631 }
16632 }
16633
16634 if (now_it.block_length > 1)
16635 {
16636 as_warn (_("it blocks of more than one conditional instruction are "
16637 "deprecated in ARMv8"));
16638 now_it.warn_deprecated = TRUE;
16639 }
16640 }
16641
16642 is_last = (now_it.mask == 0x10);
16643 if (is_last)
16644 {
16645 now_it.state = OUTSIDE_IT_BLOCK;
16646 now_it.mask = 0;
16647 }
16648 }
16649
16650 static void
16651 force_automatic_it_block_close (void)
16652 {
16653 if (now_it.state == AUTOMATIC_IT_BLOCK)
16654 {
16655 close_automatic_it_block ();
16656 now_it.state = OUTSIDE_IT_BLOCK;
16657 now_it.mask = 0;
16658 }
16659 }
16660
16661 static int
16662 in_it_block (void)
16663 {
16664 if (!now_it.state_handled)
16665 handle_it_state ();
16666
16667 return now_it.state != OUTSIDE_IT_BLOCK;
16668 }
16669
16670 void
16671 md_assemble (char *str)
16672 {
16673 char *p = str;
16674 const struct asm_opcode * opcode;
16675
16676 /* Align the previous label if needed. */
16677 if (last_label_seen != NULL)
16678 {
16679 symbol_set_frag (last_label_seen, frag_now);
16680 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16681 S_SET_SEGMENT (last_label_seen, now_seg);
16682 }
16683
16684 memset (&inst, '\0', sizeof (inst));
16685 inst.reloc.type = BFD_RELOC_UNUSED;
16686
16687 opcode = opcode_lookup (&p);
16688 if (!opcode)
16689 {
16690 /* It wasn't an instruction, but it might be a register alias of
16691 the form alias .req reg, or a Neon .dn/.qn directive. */
16692 if (! create_register_alias (str, p)
16693 && ! create_neon_reg_alias (str, p))
16694 as_bad (_("bad instruction `%s'"), str);
16695
16696 return;
16697 }
16698
16699 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16700 as_warn (_("s suffix on comparison instruction is deprecated"));
16701
16702 /* The value which unconditional instructions should have in place of the
16703 condition field. */
16704 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16705
16706 if (thumb_mode)
16707 {
16708 arm_feature_set variant;
16709
16710 variant = cpu_variant;
16711 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16712 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16713 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16714 /* Check that this instruction is supported for this CPU. */
16715 if (!opcode->tvariant
16716 || (thumb_mode == 1
16717 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16718 {
16719 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16720 return;
16721 }
16722 if (inst.cond != COND_ALWAYS && !unified_syntax
16723 && opcode->tencode != do_t_branch)
16724 {
16725 as_bad (_("Thumb does not support conditional execution"));
16726 return;
16727 }
16728
16729 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16730 {
16731 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16732 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16733 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16734 {
16735 /* Two things are addressed here.
16736 1) Implicit require narrow instructions on Thumb-1.
16737 This avoids relaxation accidentally introducing Thumb-2
16738 instructions.
16739 2) Reject wide instructions in non Thumb-2 cores. */
16740 if (inst.size_req == 0)
16741 inst.size_req = 2;
16742 else if (inst.size_req == 4)
16743 {
16744 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16745 return;
16746 }
16747 }
16748 }
16749
16750 inst.instruction = opcode->tvalue;
16751
16752 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16753 {
16754 /* Prepare the it_insn_type for those encodings that don't set
16755 it. */
16756 it_fsm_pre_encode ();
16757
16758 opcode->tencode ();
16759
16760 it_fsm_post_encode ();
16761 }
16762
16763 if (!(inst.error || inst.relax))
16764 {
16765 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16766 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16767 if (inst.size_req && inst.size_req != inst.size)
16768 {
16769 as_bad (_("cannot honor width suffix -- `%s'"), str);
16770 return;
16771 }
16772 }
16773
16774 /* Something has gone badly wrong if we try to relax a fixed size
16775 instruction. */
16776 gas_assert (inst.size_req == 0 || !inst.relax);
16777
16778 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16779 *opcode->tvariant);
16780 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16781 set those bits when Thumb-2 32-bit instructions are seen. ie.
16782 anything other than bl/blx and v6-M instructions.
16783 This is overly pessimistic for relaxable instructions. */
16784 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16785 || inst.relax)
16786 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16787 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16788 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16789 arm_ext_v6t2);
16790
16791 check_neon_suffixes;
16792
16793 if (!inst.error)
16794 {
16795 mapping_state (MAP_THUMB);
16796 }
16797 }
16798 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16799 {
16800 bfd_boolean is_bx;
16801
16802 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16803 is_bx = (opcode->aencode == do_bx);
16804
16805 /* Check that this instruction is supported for this CPU. */
16806 if (!(is_bx && fix_v4bx)
16807 && !(opcode->avariant &&
16808 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16809 {
16810 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16811 return;
16812 }
16813 if (inst.size_req)
16814 {
16815 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16816 return;
16817 }
16818
16819 inst.instruction = opcode->avalue;
16820 if (opcode->tag == OT_unconditionalF)
16821 inst.instruction |= 0xF << 28;
16822 else
16823 inst.instruction |= inst.cond << 28;
16824 inst.size = INSN_SIZE;
16825 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16826 {
16827 it_fsm_pre_encode ();
16828 opcode->aencode ();
16829 it_fsm_post_encode ();
16830 }
16831 /* Arm mode bx is marked as both v4T and v5 because it's still required
16832 on a hypothetical non-thumb v5 core. */
16833 if (is_bx)
16834 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16835 else
16836 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16837 *opcode->avariant);
16838
16839 check_neon_suffixes;
16840
16841 if (!inst.error)
16842 {
16843 mapping_state (MAP_ARM);
16844 }
16845 }
16846 else
16847 {
16848 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16849 "-- `%s'"), str);
16850 return;
16851 }
16852 output_inst (str);
16853 }
16854
16855 static void
16856 check_it_blocks_finished (void)
16857 {
16858 #ifdef OBJ_ELF
16859 asection *sect;
16860
16861 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16862 if (seg_info (sect)->tc_segment_info_data.current_it.state
16863 == MANUAL_IT_BLOCK)
16864 {
16865 as_warn (_("section '%s' finished with an open IT block."),
16866 sect->name);
16867 }
16868 #else
16869 if (now_it.state == MANUAL_IT_BLOCK)
16870 as_warn (_("file finished with an open IT block."));
16871 #endif
16872 }
16873
16874 /* Various frobbings of labels and their addresses. */
16875
16876 void
16877 arm_start_line_hook (void)
16878 {
16879 last_label_seen = NULL;
16880 }
16881
16882 void
16883 arm_frob_label (symbolS * sym)
16884 {
16885 last_label_seen = sym;
16886
16887 ARM_SET_THUMB (sym, thumb_mode);
16888
16889 #if defined OBJ_COFF || defined OBJ_ELF
16890 ARM_SET_INTERWORK (sym, support_interwork);
16891 #endif
16892
16893 force_automatic_it_block_close ();
16894
16895 /* Note - do not allow local symbols (.Lxxx) to be labelled
16896 as Thumb functions. This is because these labels, whilst
16897 they exist inside Thumb code, are not the entry points for
16898 possible ARM->Thumb calls. Also, these labels can be used
16899 as part of a computed goto or switch statement. eg gcc
16900 can generate code that looks like this:
16901
16902 ldr r2, [pc, .Laaa]
16903 lsl r3, r3, #2
16904 ldr r2, [r3, r2]
16905 mov pc, r2
16906
16907 .Lbbb: .word .Lxxx
16908 .Lccc: .word .Lyyy
16909 ..etc...
16910 .Laaa: .word Lbbb
16911
16912 The first instruction loads the address of the jump table.
16913 The second instruction converts a table index into a byte offset.
16914 The third instruction gets the jump address out of the table.
16915 The fourth instruction performs the jump.
16916
16917 If the address stored at .Laaa is that of a symbol which has the
16918 Thumb_Func bit set, then the linker will arrange for this address
16919 to have the bottom bit set, which in turn would mean that the
16920 address computation performed by the third instruction would end
16921 up with the bottom bit set. Since the ARM is capable of unaligned
16922 word loads, the instruction would then load the incorrect address
16923 out of the jump table, and chaos would ensue. */
16924 if (label_is_thumb_function_name
16925 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16926 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16927 {
16928 /* When the address of a Thumb function is taken the bottom
16929 bit of that address should be set. This will allow
16930 interworking between Arm and Thumb functions to work
16931 correctly. */
16932
16933 THUMB_SET_FUNC (sym, 1);
16934
16935 label_is_thumb_function_name = FALSE;
16936 }
16937
16938 dwarf2_emit_label (sym);
16939 }
16940
16941 bfd_boolean
16942 arm_data_in_code (void)
16943 {
16944 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16945 {
16946 *input_line_pointer = '/';
16947 input_line_pointer += 5;
16948 *input_line_pointer = 0;
16949 return TRUE;
16950 }
16951
16952 return FALSE;
16953 }
16954
16955 char *
16956 arm_canonicalize_symbol_name (char * name)
16957 {
16958 int len;
16959
16960 if (thumb_mode && (len = strlen (name)) > 5
16961 && streq (name + len - 5, "/data"))
16962 *(name + len - 5) = 0;
16963
16964 return name;
16965 }
16966 \f
16967 /* Table of all register names defined by default. The user can
16968 define additional names with .req. Note that all register names
16969 should appear in both upper and lowercase variants. Some registers
16970 also have mixed-case names. */
16971
16972 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16973 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16974 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16975 #define REGSET(p,t) \
16976 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16977 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16978 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16979 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16980 #define REGSETH(p,t) \
16981 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16982 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16983 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16984 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16985 #define REGSET2(p,t) \
16986 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16987 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16988 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16989 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16990 #define SPLRBANK(base,bank,t) \
16991 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16992 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16993 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16994 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16995 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16996 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16997
16998 static const struct reg_entry reg_names[] =
16999 {
17000 /* ARM integer registers. */
17001 REGSET(r, RN), REGSET(R, RN),
17002
17003 /* ATPCS synonyms. */
17004 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17005 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17006 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17007
17008 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17009 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17010 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17011
17012 /* Well-known aliases. */
17013 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17014 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17015
17016 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17017 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17018
17019 /* Coprocessor numbers. */
17020 REGSET(p, CP), REGSET(P, CP),
17021
17022 /* Coprocessor register numbers. The "cr" variants are for backward
17023 compatibility. */
17024 REGSET(c, CN), REGSET(C, CN),
17025 REGSET(cr, CN), REGSET(CR, CN),
17026
17027 /* ARM banked registers. */
17028 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17029 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17030 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17031 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17032 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17033 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17034 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17035
17036 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17037 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17038 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17039 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17040 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17041 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17042 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17043 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17044
17045 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17046 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17047 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17048 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17049 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17050 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17051 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17052 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17053 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17054
17055 /* FPA registers. */
17056 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17057 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17058
17059 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17060 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17061
17062 /* VFP SP registers. */
17063 REGSET(s,VFS), REGSET(S,VFS),
17064 REGSETH(s,VFS), REGSETH(S,VFS),
17065
17066 /* VFP DP Registers. */
17067 REGSET(d,VFD), REGSET(D,VFD),
17068 /* Extra Neon DP registers. */
17069 REGSETH(d,VFD), REGSETH(D,VFD),
17070
17071 /* Neon QP registers. */
17072 REGSET2(q,NQ), REGSET2(Q,NQ),
17073
17074 /* VFP control registers. */
17075 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17076 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17077 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17078 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17079 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17080 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17081
17082 /* Maverick DSP coprocessor registers. */
17083 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17084 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17085
17086 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17087 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17088 REGDEF(dspsc,0,DSPSC),
17089
17090 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17091 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17092 REGDEF(DSPSC,0,DSPSC),
17093
17094 /* iWMMXt data registers - p0, c0-15. */
17095 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17096
17097 /* iWMMXt control registers - p1, c0-3. */
17098 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17099 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17100 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17101 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17102
17103 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17104 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17105 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17106 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17107 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17108
17109 /* XScale accumulator registers. */
17110 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17111 };
17112 #undef REGDEF
17113 #undef REGNUM
17114 #undef REGSET
17115
17116 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17117 within psr_required_here. */
17118 static const struct asm_psr psrs[] =
17119 {
17120 /* Backward compatibility notation. Note that "all" is no longer
17121 truly all possible PSR bits. */
17122 {"all", PSR_c | PSR_f},
17123 {"flg", PSR_f},
17124 {"ctl", PSR_c},
17125
17126 /* Individual flags. */
17127 {"f", PSR_f},
17128 {"c", PSR_c},
17129 {"x", PSR_x},
17130 {"s", PSR_s},
17131
17132 /* Combinations of flags. */
17133 {"fs", PSR_f | PSR_s},
17134 {"fx", PSR_f | PSR_x},
17135 {"fc", PSR_f | PSR_c},
17136 {"sf", PSR_s | PSR_f},
17137 {"sx", PSR_s | PSR_x},
17138 {"sc", PSR_s | PSR_c},
17139 {"xf", PSR_x | PSR_f},
17140 {"xs", PSR_x | PSR_s},
17141 {"xc", PSR_x | PSR_c},
17142 {"cf", PSR_c | PSR_f},
17143 {"cs", PSR_c | PSR_s},
17144 {"cx", PSR_c | PSR_x},
17145 {"fsx", PSR_f | PSR_s | PSR_x},
17146 {"fsc", PSR_f | PSR_s | PSR_c},
17147 {"fxs", PSR_f | PSR_x | PSR_s},
17148 {"fxc", PSR_f | PSR_x | PSR_c},
17149 {"fcs", PSR_f | PSR_c | PSR_s},
17150 {"fcx", PSR_f | PSR_c | PSR_x},
17151 {"sfx", PSR_s | PSR_f | PSR_x},
17152 {"sfc", PSR_s | PSR_f | PSR_c},
17153 {"sxf", PSR_s | PSR_x | PSR_f},
17154 {"sxc", PSR_s | PSR_x | PSR_c},
17155 {"scf", PSR_s | PSR_c | PSR_f},
17156 {"scx", PSR_s | PSR_c | PSR_x},
17157 {"xfs", PSR_x | PSR_f | PSR_s},
17158 {"xfc", PSR_x | PSR_f | PSR_c},
17159 {"xsf", PSR_x | PSR_s | PSR_f},
17160 {"xsc", PSR_x | PSR_s | PSR_c},
17161 {"xcf", PSR_x | PSR_c | PSR_f},
17162 {"xcs", PSR_x | PSR_c | PSR_s},
17163 {"cfs", PSR_c | PSR_f | PSR_s},
17164 {"cfx", PSR_c | PSR_f | PSR_x},
17165 {"csf", PSR_c | PSR_s | PSR_f},
17166 {"csx", PSR_c | PSR_s | PSR_x},
17167 {"cxf", PSR_c | PSR_x | PSR_f},
17168 {"cxs", PSR_c | PSR_x | PSR_s},
17169 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17170 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17171 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17172 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17173 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17174 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17175 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17176 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17177 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17178 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17179 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17180 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17181 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17182 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17183 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17184 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17185 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17186 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17187 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17188 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17189 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17190 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17191 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17192 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17193 };
17194
17195 /* Table of V7M psr names. */
17196 static const struct asm_psr v7m_psrs[] =
17197 {
17198 {"apsr", 0 }, {"APSR", 0 },
17199 {"iapsr", 1 }, {"IAPSR", 1 },
17200 {"eapsr", 2 }, {"EAPSR", 2 },
17201 {"psr", 3 }, {"PSR", 3 },
17202 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17203 {"ipsr", 5 }, {"IPSR", 5 },
17204 {"epsr", 6 }, {"EPSR", 6 },
17205 {"iepsr", 7 }, {"IEPSR", 7 },
17206 {"msp", 8 }, {"MSP", 8 },
17207 {"psp", 9 }, {"PSP", 9 },
17208 {"primask", 16}, {"PRIMASK", 16},
17209 {"basepri", 17}, {"BASEPRI", 17},
17210 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17211 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17212 {"faultmask", 19}, {"FAULTMASK", 19},
17213 {"control", 20}, {"CONTROL", 20}
17214 };
17215
17216 /* Table of all shift-in-operand names. */
17217 static const struct asm_shift_name shift_names [] =
17218 {
17219 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17220 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17221 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17222 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17223 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17224 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17225 };
17226
17227 /* Table of all explicit relocation names. */
17228 #ifdef OBJ_ELF
17229 static struct reloc_entry reloc_names[] =
17230 {
17231 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17232 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17233 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17234 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17235 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17236 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17237 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17238 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17239 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17240 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17241 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17242 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17243 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17244 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17245 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17246 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17247 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17248 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17249 };
17250 #endif
17251
17252 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17253 static const struct asm_cond conds[] =
17254 {
17255 {"eq", 0x0},
17256 {"ne", 0x1},
17257 {"cs", 0x2}, {"hs", 0x2},
17258 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17259 {"mi", 0x4},
17260 {"pl", 0x5},
17261 {"vs", 0x6},
17262 {"vc", 0x7},
17263 {"hi", 0x8},
17264 {"ls", 0x9},
17265 {"ge", 0xa},
17266 {"lt", 0xb},
17267 {"gt", 0xc},
17268 {"le", 0xd},
17269 {"al", 0xe}
17270 };
17271
17272 #define UL_BARRIER(L,U,CODE,FEAT) \
17273 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17274 { U, CODE, ARM_FEATURE (FEAT, 0) }
17275
17276 static struct asm_barrier_opt barrier_opt_names[] =
17277 {
17278 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17279 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17280 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17281 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17282 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17283 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17284 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17285 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17286 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17287 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17288 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17289 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17290 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17291 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17292 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17293 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17294 };
17295
17296 #undef UL_BARRIER
17297
17298 /* Table of ARM-format instructions. */
17299
17300 /* Macros for gluing together operand strings. N.B. In all cases
17301 other than OPS0, the trailing OP_stop comes from default
17302 zero-initialization of the unspecified elements of the array. */
17303 #define OPS0() { OP_stop, }
17304 #define OPS1(a) { OP_##a, }
17305 #define OPS2(a,b) { OP_##a,OP_##b, }
17306 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17307 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17308 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17309 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17310
17311 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17312 This is useful when mixing operands for ARM and THUMB, i.e. using the
17313 MIX_ARM_THUMB_OPERANDS macro.
17314 In order to use these macros, prefix the number of operands with _
17315 e.g. _3. */
17316 #define OPS_1(a) { a, }
17317 #define OPS_2(a,b) { a,b, }
17318 #define OPS_3(a,b,c) { a,b,c, }
17319 #define OPS_4(a,b,c,d) { a,b,c,d, }
17320 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17321 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17322
17323 /* These macros abstract out the exact format of the mnemonic table and
17324 save some repeated characters. */
17325
17326 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17327 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17328 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17329 THUMB_VARIANT, do_##ae, do_##te }
17330
17331 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17332 a T_MNEM_xyz enumerator. */
17333 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17334 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17335 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17336 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17337
17338 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17339 infix after the third character. */
17340 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17341 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17342 THUMB_VARIANT, do_##ae, do_##te }
17343 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17344 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17345 THUMB_VARIANT, do_##ae, do_##te }
17346 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17347 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17348 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17349 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17350 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17351 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17352 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17353 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17354
17355 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17356 appear in the condition table. */
17357 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17358 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17359 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17360
17361 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17362 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17363 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17364 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17365 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17366 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17367 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17368 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17369 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17370 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17371 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17372 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17373 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17374 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17375 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17376 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17377 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17378 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17379 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17380 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17381
17382 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17383 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17384 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17385 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17386
17387 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17388 field is still 0xE. Many of the Thumb variants can be executed
17389 conditionally, so this is checked separately. */
17390 #define TUE(mnem, op, top, nops, ops, ae, te) \
17391 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17392 THUMB_VARIANT, do_##ae, do_##te }
17393
17394 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17395 condition code field. */
17396 #define TUF(mnem, op, top, nops, ops, ae, te) \
17397 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17398 THUMB_VARIANT, do_##ae, do_##te }
17399
17400 /* ARM-only variants of all the above. */
17401 #define CE(mnem, op, nops, ops, ae) \
17402 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17403
17404 #define C3(mnem, op, nops, ops, ae) \
17405 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17406
17407 /* Legacy mnemonics that always have conditional infix after the third
17408 character. */
17409 #define CL(mnem, op, nops, ops, ae) \
17410 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17411 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17412
17413 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17414 #define cCE(mnem, op, nops, ops, ae) \
17415 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17416
17417 /* Legacy coprocessor instructions where conditional infix and conditional
17418 suffix are ambiguous. For consistency this includes all FPA instructions,
17419 not just the potentially ambiguous ones. */
17420 #define cCL(mnem, op, nops, ops, ae) \
17421 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17422 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17423
17424 /* Coprocessor, takes either a suffix or a position-3 infix
17425 (for an FPA corner case). */
17426 #define C3E(mnem, op, nops, ops, ae) \
17427 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17428 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17429
17430 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17431 { m1 #m2 m3, OPS##nops ops, \
17432 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17433 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17434
17435 #define CM(m1, m2, op, nops, ops, ae) \
17436 xCM_ (m1, , m2, op, nops, ops, ae), \
17437 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17438 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17439 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17440 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17441 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17442 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17443 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17444 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17445 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17446 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17447 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17448 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17449 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17450 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17451 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17452 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17453 xCM_ (m1, le, m2, op, nops, ops, ae), \
17454 xCM_ (m1, al, m2, op, nops, ops, ae)
17455
17456 #define UE(mnem, op, nops, ops, ae) \
17457 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17458
17459 #define UF(mnem, op, nops, ops, ae) \
17460 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17461
17462 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17463 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17464 use the same encoding function for each. */
17465 #define NUF(mnem, op, nops, ops, enc) \
17466 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17467 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17468
17469 /* Neon data processing, version which indirects through neon_enc_tab for
17470 the various overloaded versions of opcodes. */
17471 #define nUF(mnem, op, nops, ops, enc) \
17472 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17473 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17474
17475 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17476 version. */
17477 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17478 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17479 THUMB_VARIANT, do_##enc, do_##enc }
17480
17481 #define NCE(mnem, op, nops, ops, enc) \
17482 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17483
17484 #define NCEF(mnem, op, nops, ops, enc) \
17485 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17486
17487 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17488 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17489 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17490 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17491
17492 #define nCE(mnem, op, nops, ops, enc) \
17493 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17494
17495 #define nCEF(mnem, op, nops, ops, enc) \
17496 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17497
17498 #define do_0 0
17499
17500 static const struct asm_opcode insns[] =
17501 {
17502 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17503 #define THUMB_VARIANT &arm_ext_v4t
17504 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17505 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17506 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17507 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17508 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17509 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17510 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17511 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17512 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17513 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17514 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17515 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17516 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17517 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17518 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17519 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17520
17521 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17522 for setting PSR flag bits. They are obsolete in V6 and do not
17523 have Thumb equivalents. */
17524 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17525 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17526 CL("tstp", 110f000, 2, (RR, SH), cmp),
17527 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17528 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17529 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17530 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17531 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17532 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17533
17534 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17535 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17536 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17537 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17538
17539 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17540 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17541 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17542 OP_RRnpc),
17543 OP_ADDRGLDR),ldst, t_ldst),
17544 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17545
17546 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17547 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17548 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17549 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17550 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17551 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17552
17553 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17554 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17555 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17556 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17557
17558 /* Pseudo ops. */
17559 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17560 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17561 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17562
17563 /* Thumb-compatibility pseudo ops. */
17564 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17565 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17566 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17567 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17568 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17569 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17570 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17571 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17572 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17573 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17574 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17575 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17576
17577 /* These may simplify to neg. */
17578 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17579 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17580
17581 #undef THUMB_VARIANT
17582 #define THUMB_VARIANT & arm_ext_v6
17583
17584 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17585
17586 /* V1 instructions with no Thumb analogue prior to V6T2. */
17587 #undef THUMB_VARIANT
17588 #define THUMB_VARIANT & arm_ext_v6t2
17589
17590 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17591 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17592 CL("teqp", 130f000, 2, (RR, SH), cmp),
17593
17594 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17595 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17596 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17597 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17598
17599 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17600 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17601
17602 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17603 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17604
17605 /* V1 instructions with no Thumb analogue at all. */
17606 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17607 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17608
17609 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17610 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17611 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17612 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17613 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17614 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17615 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17616 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17617
17618 #undef ARM_VARIANT
17619 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17620 #undef THUMB_VARIANT
17621 #define THUMB_VARIANT & arm_ext_v4t
17622
17623 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17624 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17625
17626 #undef THUMB_VARIANT
17627 #define THUMB_VARIANT & arm_ext_v6t2
17628
17629 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17630 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17631
17632 /* Generic coprocessor instructions. */
17633 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17634 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17635 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17636 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17637 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17638 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17639 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17640
17641 #undef ARM_VARIANT
17642 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17643
17644 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17645 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17646
17647 #undef ARM_VARIANT
17648 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17649 #undef THUMB_VARIANT
17650 #define THUMB_VARIANT & arm_ext_msr
17651
17652 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17653 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17654
17655 #undef ARM_VARIANT
17656 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17657 #undef THUMB_VARIANT
17658 #define THUMB_VARIANT & arm_ext_v6t2
17659
17660 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17661 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17662 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17663 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17664 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17665 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17666 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17667 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17668
17669 #undef ARM_VARIANT
17670 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17671 #undef THUMB_VARIANT
17672 #define THUMB_VARIANT & arm_ext_v4t
17673
17674 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17675 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17676 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17677 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17678 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17679 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17680
17681 #undef ARM_VARIANT
17682 #define ARM_VARIANT & arm_ext_v4t_5
17683
17684 /* ARM Architecture 4T. */
17685 /* Note: bx (and blx) are required on V5, even if the processor does
17686 not support Thumb. */
17687 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17688
17689 #undef ARM_VARIANT
17690 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17691 #undef THUMB_VARIANT
17692 #define THUMB_VARIANT & arm_ext_v5t
17693
17694 /* Note: blx has 2 variants; the .value coded here is for
17695 BLX(2). Only this variant has conditional execution. */
17696 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17697 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17698
17699 #undef THUMB_VARIANT
17700 #define THUMB_VARIANT & arm_ext_v6t2
17701
17702 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17703 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17704 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17705 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17706 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17707 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17708 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17709 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17710
17711 #undef ARM_VARIANT
17712 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17713 #undef THUMB_VARIANT
17714 #define THUMB_VARIANT &arm_ext_v5exp
17715
17716 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17717 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17718 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17719 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17720
17721 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17722 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17723
17724 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17725 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17726 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17727 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17728
17729 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17730 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17731 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17732 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17733
17734 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17735 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17736
17737 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17738 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17739 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17740 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17741
17742 #undef ARM_VARIANT
17743 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17744 #undef THUMB_VARIANT
17745 #define THUMB_VARIANT &arm_ext_v6t2
17746
17747 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17748 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17749 ldrd, t_ldstd),
17750 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17751 ADDRGLDRS), ldrd, t_ldstd),
17752
17753 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17754 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17755
17756 #undef ARM_VARIANT
17757 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17758
17759 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17760
17761 #undef ARM_VARIANT
17762 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17763 #undef THUMB_VARIANT
17764 #define THUMB_VARIANT & arm_ext_v6
17765
17766 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17767 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17768 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17769 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17770 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17771 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17772 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17773 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17774 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17775 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17776
17777 #undef THUMB_VARIANT
17778 #define THUMB_VARIANT & arm_ext_v6t2
17779
17780 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17781 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17782 strex, t_strex),
17783 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17784 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17785
17786 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17787 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17788
17789 /* ARM V6 not included in V7M. */
17790 #undef THUMB_VARIANT
17791 #define THUMB_VARIANT & arm_ext_v6_notm
17792 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17793 UF(rfeib, 9900a00, 1, (RRw), rfe),
17794 UF(rfeda, 8100a00, 1, (RRw), rfe),
17795 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17796 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17797 UF(rfefa, 9900a00, 1, (RRw), rfe),
17798 UF(rfeea, 8100a00, 1, (RRw), rfe),
17799 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17800 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17801 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17802 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17803 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17804
17805 /* ARM V6 not included in V7M (eg. integer SIMD). */
17806 #undef THUMB_VARIANT
17807 #define THUMB_VARIANT & arm_ext_v6_dsp
17808 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17809 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17810 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17811 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17812 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17813 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17814 /* Old name for QASX. */
17815 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17816 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17817 /* Old name for QSAX. */
17818 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17819 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17820 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17821 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17822 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17823 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17824 /* Old name for SASX. */
17825 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17826 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17827 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17828 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17829 /* Old name for SHASX. */
17830 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17831 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17832 /* Old name for SHSAX. */
17833 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17834 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17835 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17836 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17837 /* Old name for SSAX. */
17838 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17839 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17840 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17841 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17842 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17843 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17844 /* Old name for UASX. */
17845 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17846 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17847 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17848 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17849 /* Old name for UHASX. */
17850 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17851 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17852 /* Old name for UHSAX. */
17853 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17854 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17855 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17856 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17857 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17858 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17859 /* Old name for UQASX. */
17860 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17861 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17862 /* Old name for UQSAX. */
17863 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17864 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17865 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17866 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17867 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17868 /* Old name for USAX. */
17869 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17870 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17871 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17872 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17873 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17874 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17875 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17876 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17877 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17878 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17879 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17880 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17881 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17882 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17883 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17884 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17885 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17886 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17887 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17888 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17889 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17890 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17891 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17892 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17893 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17894 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17895 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17896 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17897 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17898 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17899 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17900 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17901 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17902 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17903
17904 #undef ARM_VARIANT
17905 #define ARM_VARIANT & arm_ext_v6k
17906 #undef THUMB_VARIANT
17907 #define THUMB_VARIANT & arm_ext_v6k
17908
17909 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17910 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17911 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17912 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17913
17914 #undef THUMB_VARIANT
17915 #define THUMB_VARIANT & arm_ext_v6_notm
17916 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17917 ldrexd, t_ldrexd),
17918 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17919 RRnpcb), strexd, t_strexd),
17920
17921 #undef THUMB_VARIANT
17922 #define THUMB_VARIANT & arm_ext_v6t2
17923 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17924 rd_rn, rd_rn),
17925 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17926 rd_rn, rd_rn),
17927 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17928 strex, t_strexbh),
17929 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17930 strex, t_strexbh),
17931 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17932
17933 #undef ARM_VARIANT
17934 #define ARM_VARIANT & arm_ext_sec
17935 #undef THUMB_VARIANT
17936 #define THUMB_VARIANT & arm_ext_sec
17937
17938 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17939
17940 #undef ARM_VARIANT
17941 #define ARM_VARIANT & arm_ext_virt
17942 #undef THUMB_VARIANT
17943 #define THUMB_VARIANT & arm_ext_virt
17944
17945 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17946 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17947
17948 #undef ARM_VARIANT
17949 #define ARM_VARIANT & arm_ext_v6t2
17950 #undef THUMB_VARIANT
17951 #define THUMB_VARIANT & arm_ext_v6t2
17952
17953 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17954 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17955 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17956 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17957
17958 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17959 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17960 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17961 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17962
17963 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17964 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17965 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17966 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17967
17968 /* Thumb-only instructions. */
17969 #undef ARM_VARIANT
17970 #define ARM_VARIANT NULL
17971 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17972 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17973
17974 /* ARM does not really have an IT instruction, so always allow it.
17975 The opcode is copied from Thumb in order to allow warnings in
17976 -mimplicit-it=[never | arm] modes. */
17977 #undef ARM_VARIANT
17978 #define ARM_VARIANT & arm_ext_v1
17979
17980 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17981 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17982 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17983 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17984 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17985 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17986 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17987 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17988 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17989 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17990 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17991 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17992 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17993 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17994 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17995 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17996 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17997 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17998
17999 /* Thumb2 only instructions. */
18000 #undef ARM_VARIANT
18001 #define ARM_VARIANT NULL
18002
18003 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18004 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18005 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18006 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18007 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18008 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18009
18010 /* Hardware division instructions. */
18011 #undef ARM_VARIANT
18012 #define ARM_VARIANT & arm_ext_adiv
18013 #undef THUMB_VARIANT
18014 #define THUMB_VARIANT & arm_ext_div
18015
18016 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18017 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18018
18019 /* ARM V6M/V7 instructions. */
18020 #undef ARM_VARIANT
18021 #define ARM_VARIANT & arm_ext_barrier
18022 #undef THUMB_VARIANT
18023 #define THUMB_VARIANT & arm_ext_barrier
18024
18025 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18026 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18027 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
18028
18029 /* ARM V7 instructions. */
18030 #undef ARM_VARIANT
18031 #define ARM_VARIANT & arm_ext_v7
18032 #undef THUMB_VARIANT
18033 #define THUMB_VARIANT & arm_ext_v7
18034
18035 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18036 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18037
18038 #undef ARM_VARIANT
18039 #define ARM_VARIANT & arm_ext_mp
18040 #undef THUMB_VARIANT
18041 #define THUMB_VARIANT & arm_ext_mp
18042
18043 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18044
18045 /* AArchv8 instructions. */
18046 #undef ARM_VARIANT
18047 #define ARM_VARIANT & arm_ext_v8
18048 #undef THUMB_VARIANT
18049 #define THUMB_VARIANT & arm_ext_v8
18050
18051 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18052 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18053 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18054 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18055 ldrexd, t_ldrexd),
18056 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18057 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18058 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18059 strlex, t_strlex),
18060 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18061 strexd, t_strexd),
18062 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18063 strlex, t_strlex),
18064 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18065 strlex, t_strlex),
18066 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18067 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18068 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18069 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18070 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18071 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18072
18073 /* ARMv8 T32 only. */
18074 #undef ARM_VARIANT
18075 #define ARM_VARIANT NULL
18076 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18077 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18078 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18079
18080 /* FP for ARMv8. */
18081 #undef ARM_VARIANT
18082 #define ARM_VARIANT & fpu_vfp_ext_armv8
18083 #undef THUMB_VARIANT
18084 #define THUMB_VARIANT & fpu_vfp_ext_armv8
18085
18086 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18087 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18088 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18089 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18090
18091 #undef ARM_VARIANT
18092 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18093 #undef THUMB_VARIANT
18094 #define THUMB_VARIANT NULL
18095
18096 cCE("wfs", e200110, 1, (RR), rd),
18097 cCE("rfs", e300110, 1, (RR), rd),
18098 cCE("wfc", e400110, 1, (RR), rd),
18099 cCE("rfc", e500110, 1, (RR), rd),
18100
18101 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18102 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18103 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18104 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18105
18106 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18107 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18108 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18109 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18110
18111 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18112 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18113 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18114 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18115 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18116 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18117 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18118 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18119 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18120 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18121 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18122 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18123
18124 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18125 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18126 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18127 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18128 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18129 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18130 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18131 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18132 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18133 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18134 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18135 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18136
18137 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18138 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18139 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18140 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18141 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18142 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18143 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18144 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18145 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18146 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18147 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18148 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18149
18150 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18151 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18152 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18153 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18154 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18155 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18156 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18157 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18158 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18159 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18160 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18161 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18162
18163 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18164 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18165 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18166 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18167 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18168 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18169 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18170 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18171 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18172 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18173 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18174 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18175
18176 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18177 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18178 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18179 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18180 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18181 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18182 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18183 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18184 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18185 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18186 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18187 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18188
18189 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18190 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18191 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18192 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18193 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18194 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18195 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18196 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18197 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18198 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18199 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18200 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18201
18202 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18203 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18204 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18205 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18206 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18207 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18208 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18209 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18210 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18211 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18212 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18213 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18214
18215 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18216 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18217 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18218 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18219 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18220 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18221 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18222 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18223 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18224 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18225 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18226 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18227
18228 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18229 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18230 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18231 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18232 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18233 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18234 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18235 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18236 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18237 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18238 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18239 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18240
18241 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18242 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18243 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18244 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18245 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18246 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18247 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18248 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18249 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18250 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18251 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18252 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18253
18254 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18255 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18256 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18257 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18258 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18259 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18260 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18261 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18262 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18263 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18264 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18265 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18266
18267 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18268 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18269 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18270 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18271 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18272 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18273 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18274 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18275 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18276 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18277 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18278 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18279
18280 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18281 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18282 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18283 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18284 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18285 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18286 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18287 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18288 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18289 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18290 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18291 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18292
18293 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18294 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18295 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18296 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18297 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18298 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18299 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18300 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18301 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18302 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18303 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18304 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18305
18306 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18307 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18308 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18309 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18310 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18311 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18312 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18313 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18314 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18315 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18316 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18317 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18318
18319 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18320 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18321 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18322 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18323 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18324 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18325 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18326 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18327 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18331
18332 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18333 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18334 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18335 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18336 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18344
18345 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18346 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18347 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18348 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18349 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18357
18358 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18359 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18360 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18361 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18362 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18365 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18366 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18370
18371 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18372 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18373 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18374 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18375 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18376 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18377 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18378 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18379 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18380 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18381 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18382 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18383
18384 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18385 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18386 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18387 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18388 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18389 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18390 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18391 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18392 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18393 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18394 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18395 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18396
18397 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18398 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18399 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18400 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18401 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18402 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18403 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18404 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18405 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18406 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18407 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18408 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18409
18410 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18411 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18412 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18413 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18414 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18415 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18416 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18417 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18418 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18419 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18420 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18421 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18422
18423 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18424 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18425 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18426 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18427 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18428 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18429 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18430 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18431 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18432 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18433 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18434 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18435
18436 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18437 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18438 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18439 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18440 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18441 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18442 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18443 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18444 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18445 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18446 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18447 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18448
18449 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18450 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18451 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18452 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18453 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18454 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18455 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18456 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18457 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18458 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18459 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18460 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18461
18462 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18463 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18464 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18465 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18466 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18467 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18468 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18469 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18470 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18471 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18472 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18473 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18474
18475 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18476 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18477 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18478 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18479 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18480 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18481 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18482 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18483 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18484 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18485 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18486 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18487
18488 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18489 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18490 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18491 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18492
18493 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18494 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18495 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18496 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18497 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18498 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18499 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18500 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18501 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18502 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18503 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18504 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18505
18506 /* The implementation of the FIX instruction is broken on some
18507 assemblers, in that it accepts a precision specifier as well as a
18508 rounding specifier, despite the fact that this is meaningless.
18509 To be more compatible, we accept it as well, though of course it
18510 does not set any bits. */
18511 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18512 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18513 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18514 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18515 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18516 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18517 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18518 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18519 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18520 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18521 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18522 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18523 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18524
18525 /* Instructions that were new with the real FPA, call them V2. */
18526 #undef ARM_VARIANT
18527 #define ARM_VARIANT & fpu_fpa_ext_v2
18528
18529 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18530 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18531 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18532 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18533 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18534 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18535
18536 #undef ARM_VARIANT
18537 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18538
18539 /* Moves and type conversions. */
18540 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18541 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18542 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18543 cCE("fmstat", ef1fa10, 0, (), noargs),
18544 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18545 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18546 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18547 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18548 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18549 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18550 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18551 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18552 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18553 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18554
18555 /* Memory operations. */
18556 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18557 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18558 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18559 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18560 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18561 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18562 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18563 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18564 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18565 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18566 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18567 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18568 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18569 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18570 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18571 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18572 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18573 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18574
18575 /* Monadic operations. */
18576 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18577 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18578 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18579
18580 /* Dyadic operations. */
18581 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18582 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18583 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18584 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18585 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18586 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18587 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18588 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18589 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18590
18591 /* Comparisons. */
18592 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18593 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18594 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18595 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18596
18597 /* Double precision load/store are still present on single precision
18598 implementations. */
18599 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18600 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18601 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18602 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18603 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18604 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18605 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18606 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18607 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18608 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18609
18610 #undef ARM_VARIANT
18611 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18612
18613 /* Moves and type conversions. */
18614 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18615 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18616 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18617 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18618 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18619 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18620 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18621 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18622 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18623 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18624 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18625 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18626 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18627
18628 /* Monadic operations. */
18629 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18630 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18631 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18632
18633 /* Dyadic operations. */
18634 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18635 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18636 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18637 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18638 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18639 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18640 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18641 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18642 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18643
18644 /* Comparisons. */
18645 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18646 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18647 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18648 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18649
18650 #undef ARM_VARIANT
18651 #define ARM_VARIANT & fpu_vfp_ext_v2
18652
18653 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18654 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18655 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18656 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18657
18658 /* Instructions which may belong to either the Neon or VFP instruction sets.
18659 Individual encoder functions perform additional architecture checks. */
18660 #undef ARM_VARIANT
18661 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18662 #undef THUMB_VARIANT
18663 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18664
18665 /* These mnemonics are unique to VFP. */
18666 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18667 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18668 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18669 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18670 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18671 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18672 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18673 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18674 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18675 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18676
18677 /* Mnemonics shared by Neon and VFP. */
18678 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18679 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18680 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18681
18682 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18683 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18684
18685 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18686 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18687
18688 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18689 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18690 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18691 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18692 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18693 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18694 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18695 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18696
18697 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18698 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18699 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18700 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18701
18702
18703 /* NOTE: All VMOV encoding is special-cased! */
18704 NCE(vmov, 0, 1, (VMOV), neon_mov),
18705 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18706
18707 #undef THUMB_VARIANT
18708 #define THUMB_VARIANT & fpu_neon_ext_v1
18709 #undef ARM_VARIANT
18710 #define ARM_VARIANT & fpu_neon_ext_v1
18711
18712 /* Data processing with three registers of the same length. */
18713 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18714 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18715 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18716 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18717 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18718 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18719 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18720 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18721 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18722 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18723 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18724 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18725 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18726 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18727 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18728 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18729 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18730 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18731 /* If not immediate, fall back to neon_dyadic_i64_su.
18732 shl_imm should accept I8 I16 I32 I64,
18733 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18734 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18735 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18736 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18737 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18738 /* Logic ops, types optional & ignored. */
18739 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18740 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18741 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18742 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18743 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18744 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18745 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18746 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18747 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18748 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18749 /* Bitfield ops, untyped. */
18750 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18751 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18752 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18753 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18754 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18755 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18756 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18757 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18758 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18759 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18760 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18761 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18762 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18763 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18764 back to neon_dyadic_if_su. */
18765 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18766 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18767 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18768 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18769 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18770 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18771 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18772 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18773 /* Comparison. Type I8 I16 I32 F32. */
18774 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18775 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18776 /* As above, D registers only. */
18777 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18778 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18779 /* Int and float variants, signedness unimportant. */
18780 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18781 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18782 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18783 /* Add/sub take types I8 I16 I32 I64 F32. */
18784 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18785 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18786 /* vtst takes sizes 8, 16, 32. */
18787 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18788 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18789 /* VMUL takes I8 I16 I32 F32 P8. */
18790 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18791 /* VQD{R}MULH takes S16 S32. */
18792 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18793 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18794 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18795 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18796 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18797 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18798 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18799 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18800 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18801 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18802 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18803 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18804 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18805 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18806 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18807 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18808
18809 /* Two address, int/float. Types S8 S16 S32 F32. */
18810 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18811 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18812
18813 /* Data processing with two registers and a shift amount. */
18814 /* Right shifts, and variants with rounding.
18815 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18816 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18817 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18818 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18819 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18820 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18821 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18822 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18823 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18824 /* Shift and insert. Sizes accepted 8 16 32 64. */
18825 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18826 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18827 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18828 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18829 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18830 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18831 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18832 /* Right shift immediate, saturating & narrowing, with rounding variants.
18833 Types accepted S16 S32 S64 U16 U32 U64. */
18834 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18835 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18836 /* As above, unsigned. Types accepted S16 S32 S64. */
18837 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18838 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18839 /* Right shift narrowing. Types accepted I16 I32 I64. */
18840 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18841 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18842 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18843 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18844 /* CVT with optional immediate for fixed-point variant. */
18845 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18846
18847 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18848 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18849
18850 /* Data processing, three registers of different lengths. */
18851 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18852 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18853 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18854 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18855 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18856 /* If not scalar, fall back to neon_dyadic_long.
18857 Vector types as above, scalar types S16 S32 U16 U32. */
18858 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18859 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18860 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18861 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18862 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18863 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18864 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18865 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18866 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18867 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18868 /* Saturating doubling multiplies. Types S16 S32. */
18869 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18870 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18871 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18872 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18873 S16 S32 U16 U32. */
18874 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18875
18876 /* Extract. Size 8. */
18877 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18878 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18879
18880 /* Two registers, miscellaneous. */
18881 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18882 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18883 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18884 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18885 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18886 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18887 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18888 /* Vector replicate. Sizes 8 16 32. */
18889 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18890 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18891 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18892 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18893 /* VMOVN. Types I16 I32 I64. */
18894 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18895 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18896 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18897 /* VQMOVUN. Types S16 S32 S64. */
18898 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18899 /* VZIP / VUZP. Sizes 8 16 32. */
18900 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18901 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18902 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18903 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18904 /* VQABS / VQNEG. Types S8 S16 S32. */
18905 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18906 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18907 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18908 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18909 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18910 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18911 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18912 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18913 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18914 /* Reciprocal estimates. Types U32 F32. */
18915 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18916 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18917 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18918 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18919 /* VCLS. Types S8 S16 S32. */
18920 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18921 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18922 /* VCLZ. Types I8 I16 I32. */
18923 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18924 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18925 /* VCNT. Size 8. */
18926 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18927 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18928 /* Two address, untyped. */
18929 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18930 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18931 /* VTRN. Sizes 8 16 32. */
18932 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18933 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18934
18935 /* Table lookup. Size 8. */
18936 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18937 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18938
18939 #undef THUMB_VARIANT
18940 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18941 #undef ARM_VARIANT
18942 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18943
18944 /* Neon element/structure load/store. */
18945 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18946 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18947 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18948 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18949 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18950 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18951 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18952 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18953
18954 #undef THUMB_VARIANT
18955 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18956 #undef ARM_VARIANT
18957 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18958 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18959 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18960 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18961 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18962 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18963 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18964 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18965 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18966 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18967
18968 #undef THUMB_VARIANT
18969 #define THUMB_VARIANT & fpu_vfp_ext_v3
18970 #undef ARM_VARIANT
18971 #define ARM_VARIANT & fpu_vfp_ext_v3
18972
18973 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18974 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18975 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18976 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18977 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18978 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18979 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18980 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18981 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18982
18983 #undef ARM_VARIANT
18984 #define ARM_VARIANT &fpu_vfp_ext_fma
18985 #undef THUMB_VARIANT
18986 #define THUMB_VARIANT &fpu_vfp_ext_fma
18987 /* Mnemonics shared by Neon and VFP. These are included in the
18988 VFP FMA variant; NEON and VFP FMA always includes the NEON
18989 FMA instructions. */
18990 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18991 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18992 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18993 the v form should always be used. */
18994 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18995 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18996 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18997 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18998 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18999 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19000
19001 #undef THUMB_VARIANT
19002 #undef ARM_VARIANT
19003 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19004
19005 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19006 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19007 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19008 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19009 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19010 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19011 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19012 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19013
19014 #undef ARM_VARIANT
19015 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19016
19017 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19018 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19019 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19020 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19021 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19022 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19023 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19024 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19025 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19026 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19027 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19028 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19029 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19030 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19031 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19032 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19033 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19034 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19035 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19036 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19037 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19038 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19039 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19040 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19041 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19042 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19043 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19044 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19045 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19046 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19047 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19048 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19049 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19050 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19051 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19052 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19053 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19054 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19055 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19056 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19057 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19058 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19059 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19060 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19061 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19062 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19064 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19066 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19067 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19068 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19069 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19070 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19071 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19072 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19073 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19074 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19075 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19076 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19077 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19080 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19081 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19082 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19083 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19084 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19085 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19086 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19087 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19090 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19091 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19092 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19093 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19094 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19095 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19096 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19097 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19098 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19099 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19100 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19106 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19115 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19117 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19118 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19119 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19120 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19121 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19122 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19123 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19125 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19126 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19127 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19128 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19129 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19130 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19131 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19132 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19133 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19134 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19135 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19136 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19137 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19138 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19139 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19140 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19141 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19142 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19143 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19144 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19145 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19146 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19147 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19148 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19149 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19150 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19151 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19152 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19153 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19154 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19155 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19156 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19157 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19158 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19159 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19160 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19161 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19162 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19163 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19164 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19165 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19166 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19167 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19168 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19169 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19170 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19171 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19172 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19173 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19174 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19175 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19176 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19177 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19178 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19179
19180 #undef ARM_VARIANT
19181 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19182
19183 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19184 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19185 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19186 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19187 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19188 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19189 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19190 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19191 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19192 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19193 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19194 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19195 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19196 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19197 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19198 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19199 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19200 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19201 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19202 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19203 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19204 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19205 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19206 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19207 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19208 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19209 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19210 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19211 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19212 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19213 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19214 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19215 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19216 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19217 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19218 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19219 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19220 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19221 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19222 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19223 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19224 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19225 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19226 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19227 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19228 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19229 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19230 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19231 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19232 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19233 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19234 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19235 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19236 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19237 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19238 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19239 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19240
19241 #undef ARM_VARIANT
19242 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19243
19244 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19245 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19246 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19247 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19248 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19249 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19250 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19251 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19252 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19253 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19254 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19255 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19256 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19257 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19258 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19259 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19260 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19261 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19262 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19263 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19264 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19265 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19266 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19267 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19268 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19269 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19270 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19271 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19272 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19273 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19274 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19275 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19276 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19277 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19278 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19279 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19280 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19281 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19282 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19283 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19284 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19285 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19286 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19287 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19288 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19289 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19290 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19291 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19292 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19293 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19294 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19295 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19296 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19297 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19298 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19299 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19300 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19301 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19302 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19303 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19304 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19305 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19306 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19307 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19308 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19309 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19310 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19311 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19312 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19313 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19314 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19315 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19316 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19317 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19318 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19319 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19320 };
19321 #undef ARM_VARIANT
19322 #undef THUMB_VARIANT
19323 #undef TCE
19324 #undef TCM
19325 #undef TUE
19326 #undef TUF
19327 #undef TCC
19328 #undef cCE
19329 #undef cCL
19330 #undef C3E
19331 #undef CE
19332 #undef CM
19333 #undef UE
19334 #undef UF
19335 #undef UT
19336 #undef NUF
19337 #undef nUF
19338 #undef NCE
19339 #undef nCE
19340 #undef OPS0
19341 #undef OPS1
19342 #undef OPS2
19343 #undef OPS3
19344 #undef OPS4
19345 #undef OPS5
19346 #undef OPS6
19347 #undef do_0
19348 \f
19349 /* MD interface: bits in the object file. */
19350
19351 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19352 for use in the a.out file, and stores them in the array pointed to by buf.
19353 This knows about the endian-ness of the target machine and does
19354 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19355 2 (short) and 4 (long) Floating numbers are put out as a series of
19356 LITTLENUMS (shorts, here at least). */
19357
19358 void
19359 md_number_to_chars (char * buf, valueT val, int n)
19360 {
19361 if (target_big_endian)
19362 number_to_chars_bigendian (buf, val, n);
19363 else
19364 number_to_chars_littleendian (buf, val, n);
19365 }
19366
19367 static valueT
19368 md_chars_to_number (char * buf, int n)
19369 {
19370 valueT result = 0;
19371 unsigned char * where = (unsigned char *) buf;
19372
19373 if (target_big_endian)
19374 {
19375 while (n--)
19376 {
19377 result <<= 8;
19378 result |= (*where++ & 255);
19379 }
19380 }
19381 else
19382 {
19383 while (n--)
19384 {
19385 result <<= 8;
19386 result |= (where[n] & 255);
19387 }
19388 }
19389
19390 return result;
19391 }
19392
19393 /* MD interface: Sections. */
19394
19395 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19396 that an rs_machine_dependent frag may reach. */
19397
19398 unsigned int
19399 arm_frag_max_var (fragS *fragp)
19400 {
19401 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19402 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19403
19404 Note that we generate relaxable instructions even for cases that don't
19405 really need it, like an immediate that's a trivial constant. So we're
19406 overestimating the instruction size for some of those cases. Rather
19407 than putting more intelligence here, it would probably be better to
19408 avoid generating a relaxation frag in the first place when it can be
19409 determined up front that a short instruction will suffice. */
19410
19411 gas_assert (fragp->fr_type == rs_machine_dependent);
19412 return INSN_SIZE;
19413 }
19414
19415 /* Estimate the size of a frag before relaxing. Assume everything fits in
19416 2 bytes. */
19417
19418 int
19419 md_estimate_size_before_relax (fragS * fragp,
19420 segT segtype ATTRIBUTE_UNUSED)
19421 {
19422 fragp->fr_var = 2;
19423 return 2;
19424 }
19425
19426 /* Convert a machine dependent frag. */
19427
19428 void
19429 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19430 {
19431 unsigned long insn;
19432 unsigned long old_op;
19433 char *buf;
19434 expressionS exp;
19435 fixS *fixp;
19436 int reloc_type;
19437 int pc_rel;
19438 int opcode;
19439
19440 buf = fragp->fr_literal + fragp->fr_fix;
19441
19442 old_op = bfd_get_16(abfd, buf);
19443 if (fragp->fr_symbol)
19444 {
19445 exp.X_op = O_symbol;
19446 exp.X_add_symbol = fragp->fr_symbol;
19447 }
19448 else
19449 {
19450 exp.X_op = O_constant;
19451 }
19452 exp.X_add_number = fragp->fr_offset;
19453 opcode = fragp->fr_subtype;
19454 switch (opcode)
19455 {
19456 case T_MNEM_ldr_pc:
19457 case T_MNEM_ldr_pc2:
19458 case T_MNEM_ldr_sp:
19459 case T_MNEM_str_sp:
19460 case T_MNEM_ldr:
19461 case T_MNEM_ldrb:
19462 case T_MNEM_ldrh:
19463 case T_MNEM_str:
19464 case T_MNEM_strb:
19465 case T_MNEM_strh:
19466 if (fragp->fr_var == 4)
19467 {
19468 insn = THUMB_OP32 (opcode);
19469 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19470 {
19471 insn |= (old_op & 0x700) << 4;
19472 }
19473 else
19474 {
19475 insn |= (old_op & 7) << 12;
19476 insn |= (old_op & 0x38) << 13;
19477 }
19478 insn |= 0x00000c00;
19479 put_thumb32_insn (buf, insn);
19480 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19481 }
19482 else
19483 {
19484 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19485 }
19486 pc_rel = (opcode == T_MNEM_ldr_pc2);
19487 break;
19488 case T_MNEM_adr:
19489 if (fragp->fr_var == 4)
19490 {
19491 insn = THUMB_OP32 (opcode);
19492 insn |= (old_op & 0xf0) << 4;
19493 put_thumb32_insn (buf, insn);
19494 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19495 }
19496 else
19497 {
19498 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19499 exp.X_add_number -= 4;
19500 }
19501 pc_rel = 1;
19502 break;
19503 case T_MNEM_mov:
19504 case T_MNEM_movs:
19505 case T_MNEM_cmp:
19506 case T_MNEM_cmn:
19507 if (fragp->fr_var == 4)
19508 {
19509 int r0off = (opcode == T_MNEM_mov
19510 || opcode == T_MNEM_movs) ? 0 : 8;
19511 insn = THUMB_OP32 (opcode);
19512 insn = (insn & 0xe1ffffff) | 0x10000000;
19513 insn |= (old_op & 0x700) << r0off;
19514 put_thumb32_insn (buf, insn);
19515 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19516 }
19517 else
19518 {
19519 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19520 }
19521 pc_rel = 0;
19522 break;
19523 case T_MNEM_b:
19524 if (fragp->fr_var == 4)
19525 {
19526 insn = THUMB_OP32(opcode);
19527 put_thumb32_insn (buf, insn);
19528 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19529 }
19530 else
19531 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19532 pc_rel = 1;
19533 break;
19534 case T_MNEM_bcond:
19535 if (fragp->fr_var == 4)
19536 {
19537 insn = THUMB_OP32(opcode);
19538 insn |= (old_op & 0xf00) << 14;
19539 put_thumb32_insn (buf, insn);
19540 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19541 }
19542 else
19543 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19544 pc_rel = 1;
19545 break;
19546 case T_MNEM_add_sp:
19547 case T_MNEM_add_pc:
19548 case T_MNEM_inc_sp:
19549 case T_MNEM_dec_sp:
19550 if (fragp->fr_var == 4)
19551 {
19552 /* ??? Choose between add and addw. */
19553 insn = THUMB_OP32 (opcode);
19554 insn |= (old_op & 0xf0) << 4;
19555 put_thumb32_insn (buf, insn);
19556 if (opcode == T_MNEM_add_pc)
19557 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19558 else
19559 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19560 }
19561 else
19562 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19563 pc_rel = 0;
19564 break;
19565
19566 case T_MNEM_addi:
19567 case T_MNEM_addis:
19568 case T_MNEM_subi:
19569 case T_MNEM_subis:
19570 if (fragp->fr_var == 4)
19571 {
19572 insn = THUMB_OP32 (opcode);
19573 insn |= (old_op & 0xf0) << 4;
19574 insn |= (old_op & 0xf) << 16;
19575 put_thumb32_insn (buf, insn);
19576 if (insn & (1 << 20))
19577 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19578 else
19579 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19580 }
19581 else
19582 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19583 pc_rel = 0;
19584 break;
19585 default:
19586 abort ();
19587 }
19588 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19589 (enum bfd_reloc_code_real) reloc_type);
19590 fixp->fx_file = fragp->fr_file;
19591 fixp->fx_line = fragp->fr_line;
19592 fragp->fr_fix += fragp->fr_var;
19593 }
19594
19595 /* Return the size of a relaxable immediate operand instruction.
19596 SHIFT and SIZE specify the form of the allowable immediate. */
19597 static int
19598 relax_immediate (fragS *fragp, int size, int shift)
19599 {
19600 offsetT offset;
19601 offsetT mask;
19602 offsetT low;
19603
19604 /* ??? Should be able to do better than this. */
19605 if (fragp->fr_symbol)
19606 return 4;
19607
19608 low = (1 << shift) - 1;
19609 mask = (1 << (shift + size)) - (1 << shift);
19610 offset = fragp->fr_offset;
19611 /* Force misaligned offsets to 32-bit variant. */
19612 if (offset & low)
19613 return 4;
19614 if (offset & ~mask)
19615 return 4;
19616 return 2;
19617 }
19618
19619 /* Get the address of a symbol during relaxation. */
19620 static addressT
19621 relaxed_symbol_addr (fragS *fragp, long stretch)
19622 {
19623 fragS *sym_frag;
19624 addressT addr;
19625 symbolS *sym;
19626
19627 sym = fragp->fr_symbol;
19628 sym_frag = symbol_get_frag (sym);
19629 know (S_GET_SEGMENT (sym) != absolute_section
19630 || sym_frag == &zero_address_frag);
19631 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19632
19633 /* If frag has yet to be reached on this pass, assume it will
19634 move by STRETCH just as we did. If this is not so, it will
19635 be because some frag between grows, and that will force
19636 another pass. */
19637
19638 if (stretch != 0
19639 && sym_frag->relax_marker != fragp->relax_marker)
19640 {
19641 fragS *f;
19642
19643 /* Adjust stretch for any alignment frag. Note that if have
19644 been expanding the earlier code, the symbol may be
19645 defined in what appears to be an earlier frag. FIXME:
19646 This doesn't handle the fr_subtype field, which specifies
19647 a maximum number of bytes to skip when doing an
19648 alignment. */
19649 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19650 {
19651 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19652 {
19653 if (stretch < 0)
19654 stretch = - ((- stretch)
19655 & ~ ((1 << (int) f->fr_offset) - 1));
19656 else
19657 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19658 if (stretch == 0)
19659 break;
19660 }
19661 }
19662 if (f != NULL)
19663 addr += stretch;
19664 }
19665
19666 return addr;
19667 }
19668
19669 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19670 load. */
19671 static int
19672 relax_adr (fragS *fragp, asection *sec, long stretch)
19673 {
19674 addressT addr;
19675 offsetT val;
19676
19677 /* Assume worst case for symbols not known to be in the same section. */
19678 if (fragp->fr_symbol == NULL
19679 || !S_IS_DEFINED (fragp->fr_symbol)
19680 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19681 || S_IS_WEAK (fragp->fr_symbol))
19682 return 4;
19683
19684 val = relaxed_symbol_addr (fragp, stretch);
19685 addr = fragp->fr_address + fragp->fr_fix;
19686 addr = (addr + 4) & ~3;
19687 /* Force misaligned targets to 32-bit variant. */
19688 if (val & 3)
19689 return 4;
19690 val -= addr;
19691 if (val < 0 || val > 1020)
19692 return 4;
19693 return 2;
19694 }
19695
19696 /* Return the size of a relaxable add/sub immediate instruction. */
19697 static int
19698 relax_addsub (fragS *fragp, asection *sec)
19699 {
19700 char *buf;
19701 int op;
19702
19703 buf = fragp->fr_literal + fragp->fr_fix;
19704 op = bfd_get_16(sec->owner, buf);
19705 if ((op & 0xf) == ((op >> 4) & 0xf))
19706 return relax_immediate (fragp, 8, 0);
19707 else
19708 return relax_immediate (fragp, 3, 0);
19709 }
19710
19711
19712 /* Return the size of a relaxable branch instruction. BITS is the
19713 size of the offset field in the narrow instruction. */
19714
19715 static int
19716 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19717 {
19718 addressT addr;
19719 offsetT val;
19720 offsetT limit;
19721
19722 /* Assume worst case for symbols not known to be in the same section. */
19723 if (!S_IS_DEFINED (fragp->fr_symbol)
19724 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19725 || S_IS_WEAK (fragp->fr_symbol))
19726 return 4;
19727
19728 #ifdef OBJ_ELF
19729 if (S_IS_DEFINED (fragp->fr_symbol)
19730 && ARM_IS_FUNC (fragp->fr_symbol))
19731 return 4;
19732
19733 /* PR 12532. Global symbols with default visibility might
19734 be preempted, so do not relax relocations to them. */
19735 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19736 && (! S_IS_LOCAL (fragp->fr_symbol)))
19737 return 4;
19738 #endif
19739
19740 val = relaxed_symbol_addr (fragp, stretch);
19741 addr = fragp->fr_address + fragp->fr_fix + 4;
19742 val -= addr;
19743
19744 /* Offset is a signed value *2 */
19745 limit = 1 << bits;
19746 if (val >= limit || val < -limit)
19747 return 4;
19748 return 2;
19749 }
19750
19751
19752 /* Relax a machine dependent frag. This returns the amount by which
19753 the current size of the frag should change. */
19754
19755 int
19756 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19757 {
19758 int oldsize;
19759 int newsize;
19760
19761 oldsize = fragp->fr_var;
19762 switch (fragp->fr_subtype)
19763 {
19764 case T_MNEM_ldr_pc2:
19765 newsize = relax_adr (fragp, sec, stretch);
19766 break;
19767 case T_MNEM_ldr_pc:
19768 case T_MNEM_ldr_sp:
19769 case T_MNEM_str_sp:
19770 newsize = relax_immediate (fragp, 8, 2);
19771 break;
19772 case T_MNEM_ldr:
19773 case T_MNEM_str:
19774 newsize = relax_immediate (fragp, 5, 2);
19775 break;
19776 case T_MNEM_ldrh:
19777 case T_MNEM_strh:
19778 newsize = relax_immediate (fragp, 5, 1);
19779 break;
19780 case T_MNEM_ldrb:
19781 case T_MNEM_strb:
19782 newsize = relax_immediate (fragp, 5, 0);
19783 break;
19784 case T_MNEM_adr:
19785 newsize = relax_adr (fragp, sec, stretch);
19786 break;
19787 case T_MNEM_mov:
19788 case T_MNEM_movs:
19789 case T_MNEM_cmp:
19790 case T_MNEM_cmn:
19791 newsize = relax_immediate (fragp, 8, 0);
19792 break;
19793 case T_MNEM_b:
19794 newsize = relax_branch (fragp, sec, 11, stretch);
19795 break;
19796 case T_MNEM_bcond:
19797 newsize = relax_branch (fragp, sec, 8, stretch);
19798 break;
19799 case T_MNEM_add_sp:
19800 case T_MNEM_add_pc:
19801 newsize = relax_immediate (fragp, 8, 2);
19802 break;
19803 case T_MNEM_inc_sp:
19804 case T_MNEM_dec_sp:
19805 newsize = relax_immediate (fragp, 7, 2);
19806 break;
19807 case T_MNEM_addi:
19808 case T_MNEM_addis:
19809 case T_MNEM_subi:
19810 case T_MNEM_subis:
19811 newsize = relax_addsub (fragp, sec);
19812 break;
19813 default:
19814 abort ();
19815 }
19816
19817 fragp->fr_var = newsize;
19818 /* Freeze wide instructions that are at or before the same location as
19819 in the previous pass. This avoids infinite loops.
19820 Don't freeze them unconditionally because targets may be artificially
19821 misaligned by the expansion of preceding frags. */
19822 if (stretch <= 0 && newsize > 2)
19823 {
19824 md_convert_frag (sec->owner, sec, fragp);
19825 frag_wane (fragp);
19826 }
19827
19828 return newsize - oldsize;
19829 }
19830
19831 /* Round up a section size to the appropriate boundary. */
19832
19833 valueT
19834 md_section_align (segT segment ATTRIBUTE_UNUSED,
19835 valueT size)
19836 {
19837 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19838 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19839 {
19840 /* For a.out, force the section size to be aligned. If we don't do
19841 this, BFD will align it for us, but it will not write out the
19842 final bytes of the section. This may be a bug in BFD, but it is
19843 easier to fix it here since that is how the other a.out targets
19844 work. */
19845 int align;
19846
19847 align = bfd_get_section_alignment (stdoutput, segment);
19848 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19849 }
19850 #endif
19851
19852 return size;
19853 }
19854
19855 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19856 of an rs_align_code fragment. */
19857
19858 void
19859 arm_handle_align (fragS * fragP)
19860 {
19861 static char const arm_noop[2][2][4] =
19862 {
19863 { /* ARMv1 */
19864 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19865 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19866 },
19867 { /* ARMv6k */
19868 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19869 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19870 },
19871 };
19872 static char const thumb_noop[2][2][2] =
19873 {
19874 { /* Thumb-1 */
19875 {0xc0, 0x46}, /* LE */
19876 {0x46, 0xc0}, /* BE */
19877 },
19878 { /* Thumb-2 */
19879 {0x00, 0xbf}, /* LE */
19880 {0xbf, 0x00} /* BE */
19881 }
19882 };
19883 static char const wide_thumb_noop[2][4] =
19884 { /* Wide Thumb-2 */
19885 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19886 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19887 };
19888
19889 unsigned bytes, fix, noop_size;
19890 char * p;
19891 const char * noop;
19892 const char *narrow_noop = NULL;
19893 #ifdef OBJ_ELF
19894 enum mstate state;
19895 #endif
19896
19897 if (fragP->fr_type != rs_align_code)
19898 return;
19899
19900 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19901 p = fragP->fr_literal + fragP->fr_fix;
19902 fix = 0;
19903
19904 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19905 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19906
19907 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19908
19909 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19910 {
19911 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19912 {
19913 narrow_noop = thumb_noop[1][target_big_endian];
19914 noop = wide_thumb_noop[target_big_endian];
19915 }
19916 else
19917 noop = thumb_noop[0][target_big_endian];
19918 noop_size = 2;
19919 #ifdef OBJ_ELF
19920 state = MAP_THUMB;
19921 #endif
19922 }
19923 else
19924 {
19925 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19926 [target_big_endian];
19927 noop_size = 4;
19928 #ifdef OBJ_ELF
19929 state = MAP_ARM;
19930 #endif
19931 }
19932
19933 fragP->fr_var = noop_size;
19934
19935 if (bytes & (noop_size - 1))
19936 {
19937 fix = bytes & (noop_size - 1);
19938 #ifdef OBJ_ELF
19939 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19940 #endif
19941 memset (p, 0, fix);
19942 p += fix;
19943 bytes -= fix;
19944 }
19945
19946 if (narrow_noop)
19947 {
19948 if (bytes & noop_size)
19949 {
19950 /* Insert a narrow noop. */
19951 memcpy (p, narrow_noop, noop_size);
19952 p += noop_size;
19953 bytes -= noop_size;
19954 fix += noop_size;
19955 }
19956
19957 /* Use wide noops for the remainder */
19958 noop_size = 4;
19959 }
19960
19961 while (bytes >= noop_size)
19962 {
19963 memcpy (p, noop, noop_size);
19964 p += noop_size;
19965 bytes -= noop_size;
19966 fix += noop_size;
19967 }
19968
19969 fragP->fr_fix += fix;
19970 }
19971
19972 /* Called from md_do_align. Used to create an alignment
19973 frag in a code section. */
19974
19975 void
19976 arm_frag_align_code (int n, int max)
19977 {
19978 char * p;
19979
19980 /* We assume that there will never be a requirement
19981 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19982 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19983 {
19984 char err_msg[128];
19985
19986 sprintf (err_msg,
19987 _("alignments greater than %d bytes not supported in .text sections."),
19988 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19989 as_fatal ("%s", err_msg);
19990 }
19991
19992 p = frag_var (rs_align_code,
19993 MAX_MEM_FOR_RS_ALIGN_CODE,
19994 1,
19995 (relax_substateT) max,
19996 (symbolS *) NULL,
19997 (offsetT) n,
19998 (char *) NULL);
19999 *p = 0;
20000 }
20001
20002 /* Perform target specific initialisation of a frag.
20003 Note - despite the name this initialisation is not done when the frag
20004 is created, but only when its type is assigned. A frag can be created
20005 and used a long time before its type is set, so beware of assuming that
20006 this initialisationis performed first. */
20007
20008 #ifndef OBJ_ELF
20009 void
20010 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20011 {
20012 /* Record whether this frag is in an ARM or a THUMB area. */
20013 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20014 }
20015
20016 #else /* OBJ_ELF is defined. */
20017 void
20018 arm_init_frag (fragS * fragP, int max_chars)
20019 {
20020 /* If the current ARM vs THUMB mode has not already
20021 been recorded into this frag then do so now. */
20022 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20023 {
20024 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20025
20026 /* Record a mapping symbol for alignment frags. We will delete this
20027 later if the alignment ends up empty. */
20028 switch (fragP->fr_type)
20029 {
20030 case rs_align:
20031 case rs_align_test:
20032 case rs_fill:
20033 mapping_state_2 (MAP_DATA, max_chars);
20034 break;
20035 case rs_align_code:
20036 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20037 break;
20038 default:
20039 break;
20040 }
20041 }
20042 }
20043
20044 /* When we change sections we need to issue a new mapping symbol. */
20045
20046 void
20047 arm_elf_change_section (void)
20048 {
20049 /* Link an unlinked unwind index table section to the .text section. */
20050 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20051 && elf_linked_to_section (now_seg) == NULL)
20052 elf_linked_to_section (now_seg) = text_section;
20053 }
20054
20055 int
20056 arm_elf_section_type (const char * str, size_t len)
20057 {
20058 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20059 return SHT_ARM_EXIDX;
20060
20061 return -1;
20062 }
20063 \f
20064 /* Code to deal with unwinding tables. */
20065
20066 static void add_unwind_adjustsp (offsetT);
20067
20068 /* Generate any deferred unwind frame offset. */
20069
20070 static void
20071 flush_pending_unwind (void)
20072 {
20073 offsetT offset;
20074
20075 offset = unwind.pending_offset;
20076 unwind.pending_offset = 0;
20077 if (offset != 0)
20078 add_unwind_adjustsp (offset);
20079 }
20080
20081 /* Add an opcode to this list for this function. Two-byte opcodes should
20082 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20083 order. */
20084
20085 static void
20086 add_unwind_opcode (valueT op, int length)
20087 {
20088 /* Add any deferred stack adjustment. */
20089 if (unwind.pending_offset)
20090 flush_pending_unwind ();
20091
20092 unwind.sp_restored = 0;
20093
20094 if (unwind.opcode_count + length > unwind.opcode_alloc)
20095 {
20096 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20097 if (unwind.opcodes)
20098 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20099 unwind.opcode_alloc);
20100 else
20101 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20102 }
20103 while (length > 0)
20104 {
20105 length--;
20106 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20107 op >>= 8;
20108 unwind.opcode_count++;
20109 }
20110 }
20111
20112 /* Add unwind opcodes to adjust the stack pointer. */
20113
20114 static void
20115 add_unwind_adjustsp (offsetT offset)
20116 {
20117 valueT op;
20118
20119 if (offset > 0x200)
20120 {
20121 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20122 char bytes[5];
20123 int n;
20124 valueT o;
20125
20126 /* Long form: 0xb2, uleb128. */
20127 /* This might not fit in a word so add the individual bytes,
20128 remembering the list is built in reverse order. */
20129 o = (valueT) ((offset - 0x204) >> 2);
20130 if (o == 0)
20131 add_unwind_opcode (0, 1);
20132
20133 /* Calculate the uleb128 encoding of the offset. */
20134 n = 0;
20135 while (o)
20136 {
20137 bytes[n] = o & 0x7f;
20138 o >>= 7;
20139 if (o)
20140 bytes[n] |= 0x80;
20141 n++;
20142 }
20143 /* Add the insn. */
20144 for (; n; n--)
20145 add_unwind_opcode (bytes[n - 1], 1);
20146 add_unwind_opcode (0xb2, 1);
20147 }
20148 else if (offset > 0x100)
20149 {
20150 /* Two short opcodes. */
20151 add_unwind_opcode (0x3f, 1);
20152 op = (offset - 0x104) >> 2;
20153 add_unwind_opcode (op, 1);
20154 }
20155 else if (offset > 0)
20156 {
20157 /* Short opcode. */
20158 op = (offset - 4) >> 2;
20159 add_unwind_opcode (op, 1);
20160 }
20161 else if (offset < 0)
20162 {
20163 offset = -offset;
20164 while (offset > 0x100)
20165 {
20166 add_unwind_opcode (0x7f, 1);
20167 offset -= 0x100;
20168 }
20169 op = ((offset - 4) >> 2) | 0x40;
20170 add_unwind_opcode (op, 1);
20171 }
20172 }
20173
20174 /* Finish the list of unwind opcodes for this function. */
20175 static void
20176 finish_unwind_opcodes (void)
20177 {
20178 valueT op;
20179
20180 if (unwind.fp_used)
20181 {
20182 /* Adjust sp as necessary. */
20183 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20184 flush_pending_unwind ();
20185
20186 /* After restoring sp from the frame pointer. */
20187 op = 0x90 | unwind.fp_reg;
20188 add_unwind_opcode (op, 1);
20189 }
20190 else
20191 flush_pending_unwind ();
20192 }
20193
20194
20195 /* Start an exception table entry. If idx is nonzero this is an index table
20196 entry. */
20197
20198 static void
20199 start_unwind_section (const segT text_seg, int idx)
20200 {
20201 const char * text_name;
20202 const char * prefix;
20203 const char * prefix_once;
20204 const char * group_name;
20205 size_t prefix_len;
20206 size_t text_len;
20207 char * sec_name;
20208 size_t sec_name_len;
20209 int type;
20210 int flags;
20211 int linkonce;
20212
20213 if (idx)
20214 {
20215 prefix = ELF_STRING_ARM_unwind;
20216 prefix_once = ELF_STRING_ARM_unwind_once;
20217 type = SHT_ARM_EXIDX;
20218 }
20219 else
20220 {
20221 prefix = ELF_STRING_ARM_unwind_info;
20222 prefix_once = ELF_STRING_ARM_unwind_info_once;
20223 type = SHT_PROGBITS;
20224 }
20225
20226 text_name = segment_name (text_seg);
20227 if (streq (text_name, ".text"))
20228 text_name = "";
20229
20230 if (strncmp (text_name, ".gnu.linkonce.t.",
20231 strlen (".gnu.linkonce.t.")) == 0)
20232 {
20233 prefix = prefix_once;
20234 text_name += strlen (".gnu.linkonce.t.");
20235 }
20236
20237 prefix_len = strlen (prefix);
20238 text_len = strlen (text_name);
20239 sec_name_len = prefix_len + text_len;
20240 sec_name = (char *) xmalloc (sec_name_len + 1);
20241 memcpy (sec_name, prefix, prefix_len);
20242 memcpy (sec_name + prefix_len, text_name, text_len);
20243 sec_name[prefix_len + text_len] = '\0';
20244
20245 flags = SHF_ALLOC;
20246 linkonce = 0;
20247 group_name = 0;
20248
20249 /* Handle COMDAT group. */
20250 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20251 {
20252 group_name = elf_group_name (text_seg);
20253 if (group_name == NULL)
20254 {
20255 as_bad (_("Group section `%s' has no group signature"),
20256 segment_name (text_seg));
20257 ignore_rest_of_line ();
20258 return;
20259 }
20260 flags |= SHF_GROUP;
20261 linkonce = 1;
20262 }
20263
20264 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20265
20266 /* Set the section link for index tables. */
20267 if (idx)
20268 elf_linked_to_section (now_seg) = text_seg;
20269 }
20270
20271
20272 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20273 personality routine data. Returns zero, or the index table value for
20274 and inline entry. */
20275
20276 static valueT
20277 create_unwind_entry (int have_data)
20278 {
20279 int size;
20280 addressT where;
20281 char *ptr;
20282 /* The current word of data. */
20283 valueT data;
20284 /* The number of bytes left in this word. */
20285 int n;
20286
20287 finish_unwind_opcodes ();
20288
20289 /* Remember the current text section. */
20290 unwind.saved_seg = now_seg;
20291 unwind.saved_subseg = now_subseg;
20292
20293 start_unwind_section (now_seg, 0);
20294
20295 if (unwind.personality_routine == NULL)
20296 {
20297 if (unwind.personality_index == -2)
20298 {
20299 if (have_data)
20300 as_bad (_("handlerdata in cantunwind frame"));
20301 return 1; /* EXIDX_CANTUNWIND. */
20302 }
20303
20304 /* Use a default personality routine if none is specified. */
20305 if (unwind.personality_index == -1)
20306 {
20307 if (unwind.opcode_count > 3)
20308 unwind.personality_index = 1;
20309 else
20310 unwind.personality_index = 0;
20311 }
20312
20313 /* Space for the personality routine entry. */
20314 if (unwind.personality_index == 0)
20315 {
20316 if (unwind.opcode_count > 3)
20317 as_bad (_("too many unwind opcodes for personality routine 0"));
20318
20319 if (!have_data)
20320 {
20321 /* All the data is inline in the index table. */
20322 data = 0x80;
20323 n = 3;
20324 while (unwind.opcode_count > 0)
20325 {
20326 unwind.opcode_count--;
20327 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20328 n--;
20329 }
20330
20331 /* Pad with "finish" opcodes. */
20332 while (n--)
20333 data = (data << 8) | 0xb0;
20334
20335 return data;
20336 }
20337 size = 0;
20338 }
20339 else
20340 /* We get two opcodes "free" in the first word. */
20341 size = unwind.opcode_count - 2;
20342 }
20343 else
20344 {
20345 gas_assert (unwind.personality_index == -1);
20346
20347 /* An extra byte is required for the opcode count. */
20348 size = unwind.opcode_count + 1;
20349 }
20350
20351 size = (size + 3) >> 2;
20352 if (size > 0xff)
20353 as_bad (_("too many unwind opcodes"));
20354
20355 frag_align (2, 0, 0);
20356 record_alignment (now_seg, 2);
20357 unwind.table_entry = expr_build_dot ();
20358
20359 /* Allocate the table entry. */
20360 ptr = frag_more ((size << 2) + 4);
20361 /* PR 13449: Zero the table entries in case some of them are not used. */
20362 memset (ptr, 0, (size << 2) + 4);
20363 where = frag_now_fix () - ((size << 2) + 4);
20364
20365 switch (unwind.personality_index)
20366 {
20367 case -1:
20368 /* ??? Should this be a PLT generating relocation? */
20369 /* Custom personality routine. */
20370 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20371 BFD_RELOC_ARM_PREL31);
20372
20373 where += 4;
20374 ptr += 4;
20375
20376 /* Set the first byte to the number of additional words. */
20377 data = size > 0 ? size - 1 : 0;
20378 n = 3;
20379 break;
20380
20381 /* ABI defined personality routines. */
20382 case 0:
20383 /* Three opcodes bytes are packed into the first word. */
20384 data = 0x80;
20385 n = 3;
20386 break;
20387
20388 case 1:
20389 case 2:
20390 /* The size and first two opcode bytes go in the first word. */
20391 data = ((0x80 + unwind.personality_index) << 8) | size;
20392 n = 2;
20393 break;
20394
20395 default:
20396 /* Should never happen. */
20397 abort ();
20398 }
20399
20400 /* Pack the opcodes into words (MSB first), reversing the list at the same
20401 time. */
20402 while (unwind.opcode_count > 0)
20403 {
20404 if (n == 0)
20405 {
20406 md_number_to_chars (ptr, data, 4);
20407 ptr += 4;
20408 n = 4;
20409 data = 0;
20410 }
20411 unwind.opcode_count--;
20412 n--;
20413 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20414 }
20415
20416 /* Finish off the last word. */
20417 if (n < 4)
20418 {
20419 /* Pad with "finish" opcodes. */
20420 while (n--)
20421 data = (data << 8) | 0xb0;
20422
20423 md_number_to_chars (ptr, data, 4);
20424 }
20425
20426 if (!have_data)
20427 {
20428 /* Add an empty descriptor if there is no user-specified data. */
20429 ptr = frag_more (4);
20430 md_number_to_chars (ptr, 0, 4);
20431 }
20432
20433 return 0;
20434 }
20435
20436
20437 /* Initialize the DWARF-2 unwind information for this procedure. */
20438
20439 void
20440 tc_arm_frame_initial_instructions (void)
20441 {
20442 cfi_add_CFA_def_cfa (REG_SP, 0);
20443 }
20444 #endif /* OBJ_ELF */
20445
20446 /* Convert REGNAME to a DWARF-2 register number. */
20447
20448 int
20449 tc_arm_regname_to_dw2regnum (char *regname)
20450 {
20451 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20452
20453 if (reg == FAIL)
20454 return -1;
20455
20456 return reg;
20457 }
20458
20459 #ifdef TE_PE
20460 void
20461 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20462 {
20463 expressionS exp;
20464
20465 exp.X_op = O_secrel;
20466 exp.X_add_symbol = symbol;
20467 exp.X_add_number = 0;
20468 emit_expr (&exp, size);
20469 }
20470 #endif
20471
20472 /* MD interface: Symbol and relocation handling. */
20473
20474 /* Return the address within the segment that a PC-relative fixup is
20475 relative to. For ARM, PC-relative fixups applied to instructions
20476 are generally relative to the location of the fixup plus 8 bytes.
20477 Thumb branches are offset by 4, and Thumb loads relative to PC
20478 require special handling. */
20479
20480 long
20481 md_pcrel_from_section (fixS * fixP, segT seg)
20482 {
20483 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20484
20485 /* If this is pc-relative and we are going to emit a relocation
20486 then we just want to put out any pipeline compensation that the linker
20487 will need. Otherwise we want to use the calculated base.
20488 For WinCE we skip the bias for externals as well, since this
20489 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20490 if (fixP->fx_pcrel
20491 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20492 || (arm_force_relocation (fixP)
20493 #ifdef TE_WINCE
20494 && !S_IS_EXTERNAL (fixP->fx_addsy)
20495 #endif
20496 )))
20497 base = 0;
20498
20499
20500 switch (fixP->fx_r_type)
20501 {
20502 /* PC relative addressing on the Thumb is slightly odd as the
20503 bottom two bits of the PC are forced to zero for the
20504 calculation. This happens *after* application of the
20505 pipeline offset. However, Thumb adrl already adjusts for
20506 this, so we need not do it again. */
20507 case BFD_RELOC_ARM_THUMB_ADD:
20508 return base & ~3;
20509
20510 case BFD_RELOC_ARM_THUMB_OFFSET:
20511 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20512 case BFD_RELOC_ARM_T32_ADD_PC12:
20513 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20514 return (base + 4) & ~3;
20515
20516 /* Thumb branches are simply offset by +4. */
20517 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20518 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20519 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20520 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20521 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20522 return base + 4;
20523
20524 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20525 if (fixP->fx_addsy
20526 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20527 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20528 && ARM_IS_FUNC (fixP->fx_addsy)
20529 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20530 base = fixP->fx_where + fixP->fx_frag->fr_address;
20531 return base + 4;
20532
20533 /* BLX is like branches above, but forces the low two bits of PC to
20534 zero. */
20535 case BFD_RELOC_THUMB_PCREL_BLX:
20536 if (fixP->fx_addsy
20537 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20538 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20539 && THUMB_IS_FUNC (fixP->fx_addsy)
20540 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20541 base = fixP->fx_where + fixP->fx_frag->fr_address;
20542 return (base + 4) & ~3;
20543
20544 /* ARM mode branches are offset by +8. However, the Windows CE
20545 loader expects the relocation not to take this into account. */
20546 case BFD_RELOC_ARM_PCREL_BLX:
20547 if (fixP->fx_addsy
20548 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20549 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20550 && ARM_IS_FUNC (fixP->fx_addsy)
20551 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20552 base = fixP->fx_where + fixP->fx_frag->fr_address;
20553 return base + 8;
20554
20555 case BFD_RELOC_ARM_PCREL_CALL:
20556 if (fixP->fx_addsy
20557 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20559 && THUMB_IS_FUNC (fixP->fx_addsy)
20560 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20561 base = fixP->fx_where + fixP->fx_frag->fr_address;
20562 return base + 8;
20563
20564 case BFD_RELOC_ARM_PCREL_BRANCH:
20565 case BFD_RELOC_ARM_PCREL_JUMP:
20566 case BFD_RELOC_ARM_PLT32:
20567 #ifdef TE_WINCE
20568 /* When handling fixups immediately, because we have already
20569 discovered the value of a symbol, or the address of the frag involved
20570 we must account for the offset by +8, as the OS loader will never see the reloc.
20571 see fixup_segment() in write.c
20572 The S_IS_EXTERNAL test handles the case of global symbols.
20573 Those need the calculated base, not just the pipe compensation the linker will need. */
20574 if (fixP->fx_pcrel
20575 && fixP->fx_addsy != NULL
20576 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20577 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20578 return base + 8;
20579 return base;
20580 #else
20581 return base + 8;
20582 #endif
20583
20584
20585 /* ARM mode loads relative to PC are also offset by +8. Unlike
20586 branches, the Windows CE loader *does* expect the relocation
20587 to take this into account. */
20588 case BFD_RELOC_ARM_OFFSET_IMM:
20589 case BFD_RELOC_ARM_OFFSET_IMM8:
20590 case BFD_RELOC_ARM_HWLITERAL:
20591 case BFD_RELOC_ARM_LITERAL:
20592 case BFD_RELOC_ARM_CP_OFF_IMM:
20593 return base + 8;
20594
20595
20596 /* Other PC-relative relocations are un-offset. */
20597 default:
20598 return base;
20599 }
20600 }
20601
20602 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20603 Otherwise we have no need to default values of symbols. */
20604
20605 symbolS *
20606 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20607 {
20608 #ifdef OBJ_ELF
20609 if (name[0] == '_' && name[1] == 'G'
20610 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20611 {
20612 if (!GOT_symbol)
20613 {
20614 if (symbol_find (name))
20615 as_bad (_("GOT already in the symbol table"));
20616
20617 GOT_symbol = symbol_new (name, undefined_section,
20618 (valueT) 0, & zero_address_frag);
20619 }
20620
20621 return GOT_symbol;
20622 }
20623 #endif
20624
20625 return NULL;
20626 }
20627
20628 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20629 computed as two separate immediate values, added together. We
20630 already know that this value cannot be computed by just one ARM
20631 instruction. */
20632
20633 static unsigned int
20634 validate_immediate_twopart (unsigned int val,
20635 unsigned int * highpart)
20636 {
20637 unsigned int a;
20638 unsigned int i;
20639
20640 for (i = 0; i < 32; i += 2)
20641 if (((a = rotate_left (val, i)) & 0xff) != 0)
20642 {
20643 if (a & 0xff00)
20644 {
20645 if (a & ~ 0xffff)
20646 continue;
20647 * highpart = (a >> 8) | ((i + 24) << 7);
20648 }
20649 else if (a & 0xff0000)
20650 {
20651 if (a & 0xff000000)
20652 continue;
20653 * highpart = (a >> 16) | ((i + 16) << 7);
20654 }
20655 else
20656 {
20657 gas_assert (a & 0xff000000);
20658 * highpart = (a >> 24) | ((i + 8) << 7);
20659 }
20660
20661 return (a & 0xff) | (i << 7);
20662 }
20663
20664 return FAIL;
20665 }
20666
20667 static int
20668 validate_offset_imm (unsigned int val, int hwse)
20669 {
20670 if ((hwse && val > 255) || val > 4095)
20671 return FAIL;
20672 return val;
20673 }
20674
20675 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20676 negative immediate constant by altering the instruction. A bit of
20677 a hack really.
20678 MOV <-> MVN
20679 AND <-> BIC
20680 ADC <-> SBC
20681 by inverting the second operand, and
20682 ADD <-> SUB
20683 CMP <-> CMN
20684 by negating the second operand. */
20685
20686 static int
20687 negate_data_op (unsigned long * instruction,
20688 unsigned long value)
20689 {
20690 int op, new_inst;
20691 unsigned long negated, inverted;
20692
20693 negated = encode_arm_immediate (-value);
20694 inverted = encode_arm_immediate (~value);
20695
20696 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20697 switch (op)
20698 {
20699 /* First negates. */
20700 case OPCODE_SUB: /* ADD <-> SUB */
20701 new_inst = OPCODE_ADD;
20702 value = negated;
20703 break;
20704
20705 case OPCODE_ADD:
20706 new_inst = OPCODE_SUB;
20707 value = negated;
20708 break;
20709
20710 case OPCODE_CMP: /* CMP <-> CMN */
20711 new_inst = OPCODE_CMN;
20712 value = negated;
20713 break;
20714
20715 case OPCODE_CMN:
20716 new_inst = OPCODE_CMP;
20717 value = negated;
20718 break;
20719
20720 /* Now Inverted ops. */
20721 case OPCODE_MOV: /* MOV <-> MVN */
20722 new_inst = OPCODE_MVN;
20723 value = inverted;
20724 break;
20725
20726 case OPCODE_MVN:
20727 new_inst = OPCODE_MOV;
20728 value = inverted;
20729 break;
20730
20731 case OPCODE_AND: /* AND <-> BIC */
20732 new_inst = OPCODE_BIC;
20733 value = inverted;
20734 break;
20735
20736 case OPCODE_BIC:
20737 new_inst = OPCODE_AND;
20738 value = inverted;
20739 break;
20740
20741 case OPCODE_ADC: /* ADC <-> SBC */
20742 new_inst = OPCODE_SBC;
20743 value = inverted;
20744 break;
20745
20746 case OPCODE_SBC:
20747 new_inst = OPCODE_ADC;
20748 value = inverted;
20749 break;
20750
20751 /* We cannot do anything. */
20752 default:
20753 return FAIL;
20754 }
20755
20756 if (value == (unsigned) FAIL)
20757 return FAIL;
20758
20759 *instruction &= OPCODE_MASK;
20760 *instruction |= new_inst << DATA_OP_SHIFT;
20761 return value;
20762 }
20763
20764 /* Like negate_data_op, but for Thumb-2. */
20765
20766 static unsigned int
20767 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20768 {
20769 int op, new_inst;
20770 int rd;
20771 unsigned int negated, inverted;
20772
20773 negated = encode_thumb32_immediate (-value);
20774 inverted = encode_thumb32_immediate (~value);
20775
20776 rd = (*instruction >> 8) & 0xf;
20777 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20778 switch (op)
20779 {
20780 /* ADD <-> SUB. Includes CMP <-> CMN. */
20781 case T2_OPCODE_SUB:
20782 new_inst = T2_OPCODE_ADD;
20783 value = negated;
20784 break;
20785
20786 case T2_OPCODE_ADD:
20787 new_inst = T2_OPCODE_SUB;
20788 value = negated;
20789 break;
20790
20791 /* ORR <-> ORN. Includes MOV <-> MVN. */
20792 case T2_OPCODE_ORR:
20793 new_inst = T2_OPCODE_ORN;
20794 value = inverted;
20795 break;
20796
20797 case T2_OPCODE_ORN:
20798 new_inst = T2_OPCODE_ORR;
20799 value = inverted;
20800 break;
20801
20802 /* AND <-> BIC. TST has no inverted equivalent. */
20803 case T2_OPCODE_AND:
20804 new_inst = T2_OPCODE_BIC;
20805 if (rd == 15)
20806 value = FAIL;
20807 else
20808 value = inverted;
20809 break;
20810
20811 case T2_OPCODE_BIC:
20812 new_inst = T2_OPCODE_AND;
20813 value = inverted;
20814 break;
20815
20816 /* ADC <-> SBC */
20817 case T2_OPCODE_ADC:
20818 new_inst = T2_OPCODE_SBC;
20819 value = inverted;
20820 break;
20821
20822 case T2_OPCODE_SBC:
20823 new_inst = T2_OPCODE_ADC;
20824 value = inverted;
20825 break;
20826
20827 /* We cannot do anything. */
20828 default:
20829 return FAIL;
20830 }
20831
20832 if (value == (unsigned int)FAIL)
20833 return FAIL;
20834
20835 *instruction &= T2_OPCODE_MASK;
20836 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20837 return value;
20838 }
20839
20840 /* Read a 32-bit thumb instruction from buf. */
20841 static unsigned long
20842 get_thumb32_insn (char * buf)
20843 {
20844 unsigned long insn;
20845 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20846 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20847
20848 return insn;
20849 }
20850
20851
20852 /* We usually want to set the low bit on the address of thumb function
20853 symbols. In particular .word foo - . should have the low bit set.
20854 Generic code tries to fold the difference of two symbols to
20855 a constant. Prevent this and force a relocation when the first symbols
20856 is a thumb function. */
20857
20858 bfd_boolean
20859 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20860 {
20861 if (op == O_subtract
20862 && l->X_op == O_symbol
20863 && r->X_op == O_symbol
20864 && THUMB_IS_FUNC (l->X_add_symbol))
20865 {
20866 l->X_op = O_subtract;
20867 l->X_op_symbol = r->X_add_symbol;
20868 l->X_add_number -= r->X_add_number;
20869 return TRUE;
20870 }
20871
20872 /* Process as normal. */
20873 return FALSE;
20874 }
20875
20876 /* Encode Thumb2 unconditional branches and calls. The encoding
20877 for the 2 are identical for the immediate values. */
20878
20879 static void
20880 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20881 {
20882 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20883 offsetT newval;
20884 offsetT newval2;
20885 addressT S, I1, I2, lo, hi;
20886
20887 S = (value >> 24) & 0x01;
20888 I1 = (value >> 23) & 0x01;
20889 I2 = (value >> 22) & 0x01;
20890 hi = (value >> 12) & 0x3ff;
20891 lo = (value >> 1) & 0x7ff;
20892 newval = md_chars_to_number (buf, THUMB_SIZE);
20893 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20894 newval |= (S << 10) | hi;
20895 newval2 &= ~T2I1I2MASK;
20896 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20897 md_number_to_chars (buf, newval, THUMB_SIZE);
20898 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20899 }
20900
20901 void
20902 md_apply_fix (fixS * fixP,
20903 valueT * valP,
20904 segT seg)
20905 {
20906 offsetT value = * valP;
20907 offsetT newval;
20908 unsigned int newimm;
20909 unsigned long temp;
20910 int sign;
20911 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20912
20913 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20914
20915 /* Note whether this will delete the relocation. */
20916
20917 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20918 fixP->fx_done = 1;
20919
20920 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20921 consistency with the behaviour on 32-bit hosts. Remember value
20922 for emit_reloc. */
20923 value &= 0xffffffff;
20924 value ^= 0x80000000;
20925 value -= 0x80000000;
20926
20927 *valP = value;
20928 fixP->fx_addnumber = value;
20929
20930 /* Same treatment for fixP->fx_offset. */
20931 fixP->fx_offset &= 0xffffffff;
20932 fixP->fx_offset ^= 0x80000000;
20933 fixP->fx_offset -= 0x80000000;
20934
20935 switch (fixP->fx_r_type)
20936 {
20937 case BFD_RELOC_NONE:
20938 /* This will need to go in the object file. */
20939 fixP->fx_done = 0;
20940 break;
20941
20942 case BFD_RELOC_ARM_IMMEDIATE:
20943 /* We claim that this fixup has been processed here,
20944 even if in fact we generate an error because we do
20945 not have a reloc for it, so tc_gen_reloc will reject it. */
20946 fixP->fx_done = 1;
20947
20948 if (fixP->fx_addsy)
20949 {
20950 const char *msg = 0;
20951
20952 if (! S_IS_DEFINED (fixP->fx_addsy))
20953 msg = _("undefined symbol %s used as an immediate value");
20954 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20955 msg = _("symbol %s is in a different section");
20956 else if (S_IS_WEAK (fixP->fx_addsy))
20957 msg = _("symbol %s is weak and may be overridden later");
20958
20959 if (msg)
20960 {
20961 as_bad_where (fixP->fx_file, fixP->fx_line,
20962 msg, S_GET_NAME (fixP->fx_addsy));
20963 break;
20964 }
20965 }
20966
20967 temp = md_chars_to_number (buf, INSN_SIZE);
20968
20969 /* If the offset is negative, we should use encoding A2 for ADR. */
20970 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20971 newimm = negate_data_op (&temp, value);
20972 else
20973 {
20974 newimm = encode_arm_immediate (value);
20975
20976 /* If the instruction will fail, see if we can fix things up by
20977 changing the opcode. */
20978 if (newimm == (unsigned int) FAIL)
20979 newimm = negate_data_op (&temp, value);
20980 }
20981
20982 if (newimm == (unsigned int) FAIL)
20983 {
20984 as_bad_where (fixP->fx_file, fixP->fx_line,
20985 _("invalid constant (%lx) after fixup"),
20986 (unsigned long) value);
20987 break;
20988 }
20989
20990 newimm |= (temp & 0xfffff000);
20991 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20992 break;
20993
20994 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20995 {
20996 unsigned int highpart = 0;
20997 unsigned int newinsn = 0xe1a00000; /* nop. */
20998
20999 if (fixP->fx_addsy)
21000 {
21001 const char *msg = 0;
21002
21003 if (! S_IS_DEFINED (fixP->fx_addsy))
21004 msg = _("undefined symbol %s used as an immediate value");
21005 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21006 msg = _("symbol %s is in a different section");
21007 else if (S_IS_WEAK (fixP->fx_addsy))
21008 msg = _("symbol %s is weak and may be overridden later");
21009
21010 if (msg)
21011 {
21012 as_bad_where (fixP->fx_file, fixP->fx_line,
21013 msg, S_GET_NAME (fixP->fx_addsy));
21014 break;
21015 }
21016 }
21017
21018 newimm = encode_arm_immediate (value);
21019 temp = md_chars_to_number (buf, INSN_SIZE);
21020
21021 /* If the instruction will fail, see if we can fix things up by
21022 changing the opcode. */
21023 if (newimm == (unsigned int) FAIL
21024 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21025 {
21026 /* No ? OK - try using two ADD instructions to generate
21027 the value. */
21028 newimm = validate_immediate_twopart (value, & highpart);
21029
21030 /* Yes - then make sure that the second instruction is
21031 also an add. */
21032 if (newimm != (unsigned int) FAIL)
21033 newinsn = temp;
21034 /* Still No ? Try using a negated value. */
21035 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21036 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21037 /* Otherwise - give up. */
21038 else
21039 {
21040 as_bad_where (fixP->fx_file, fixP->fx_line,
21041 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21042 (long) value);
21043 break;
21044 }
21045
21046 /* Replace the first operand in the 2nd instruction (which
21047 is the PC) with the destination register. We have
21048 already added in the PC in the first instruction and we
21049 do not want to do it again. */
21050 newinsn &= ~ 0xf0000;
21051 newinsn |= ((newinsn & 0x0f000) << 4);
21052 }
21053
21054 newimm |= (temp & 0xfffff000);
21055 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21056
21057 highpart |= (newinsn & 0xfffff000);
21058 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21059 }
21060 break;
21061
21062 case BFD_RELOC_ARM_OFFSET_IMM:
21063 if (!fixP->fx_done && seg->use_rela_p)
21064 value = 0;
21065
21066 case BFD_RELOC_ARM_LITERAL:
21067 sign = value > 0;
21068
21069 if (value < 0)
21070 value = - value;
21071
21072 if (validate_offset_imm (value, 0) == FAIL)
21073 {
21074 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21075 as_bad_where (fixP->fx_file, fixP->fx_line,
21076 _("invalid literal constant: pool needs to be closer"));
21077 else
21078 as_bad_where (fixP->fx_file, fixP->fx_line,
21079 _("bad immediate value for offset (%ld)"),
21080 (long) value);
21081 break;
21082 }
21083
21084 newval = md_chars_to_number (buf, INSN_SIZE);
21085 if (value == 0)
21086 newval &= 0xfffff000;
21087 else
21088 {
21089 newval &= 0xff7ff000;
21090 newval |= value | (sign ? INDEX_UP : 0);
21091 }
21092 md_number_to_chars (buf, newval, INSN_SIZE);
21093 break;
21094
21095 case BFD_RELOC_ARM_OFFSET_IMM8:
21096 case BFD_RELOC_ARM_HWLITERAL:
21097 sign = value > 0;
21098
21099 if (value < 0)
21100 value = - value;
21101
21102 if (validate_offset_imm (value, 1) == FAIL)
21103 {
21104 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21105 as_bad_where (fixP->fx_file, fixP->fx_line,
21106 _("invalid literal constant: pool needs to be closer"));
21107 else
21108 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21109 (long) value);
21110 break;
21111 }
21112
21113 newval = md_chars_to_number (buf, INSN_SIZE);
21114 if (value == 0)
21115 newval &= 0xfffff0f0;
21116 else
21117 {
21118 newval &= 0xff7ff0f0;
21119 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21120 }
21121 md_number_to_chars (buf, newval, INSN_SIZE);
21122 break;
21123
21124 case BFD_RELOC_ARM_T32_OFFSET_U8:
21125 if (value < 0 || value > 1020 || value % 4 != 0)
21126 as_bad_where (fixP->fx_file, fixP->fx_line,
21127 _("bad immediate value for offset (%ld)"), (long) value);
21128 value /= 4;
21129
21130 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21131 newval |= value;
21132 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21133 break;
21134
21135 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21136 /* This is a complicated relocation used for all varieties of Thumb32
21137 load/store instruction with immediate offset:
21138
21139 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21140 *4, optional writeback(W)
21141 (doubleword load/store)
21142
21143 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21144 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21145 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21146 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21147 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21148
21149 Uppercase letters indicate bits that are already encoded at
21150 this point. Lowercase letters are our problem. For the
21151 second block of instructions, the secondary opcode nybble
21152 (bits 8..11) is present, and bit 23 is zero, even if this is
21153 a PC-relative operation. */
21154 newval = md_chars_to_number (buf, THUMB_SIZE);
21155 newval <<= 16;
21156 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21157
21158 if ((newval & 0xf0000000) == 0xe0000000)
21159 {
21160 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21161 if (value >= 0)
21162 newval |= (1 << 23);
21163 else
21164 value = -value;
21165 if (value % 4 != 0)
21166 {
21167 as_bad_where (fixP->fx_file, fixP->fx_line,
21168 _("offset not a multiple of 4"));
21169 break;
21170 }
21171 value /= 4;
21172 if (value > 0xff)
21173 {
21174 as_bad_where (fixP->fx_file, fixP->fx_line,
21175 _("offset out of range"));
21176 break;
21177 }
21178 newval &= ~0xff;
21179 }
21180 else if ((newval & 0x000f0000) == 0x000f0000)
21181 {
21182 /* PC-relative, 12-bit offset. */
21183 if (value >= 0)
21184 newval |= (1 << 23);
21185 else
21186 value = -value;
21187 if (value > 0xfff)
21188 {
21189 as_bad_where (fixP->fx_file, fixP->fx_line,
21190 _("offset out of range"));
21191 break;
21192 }
21193 newval &= ~0xfff;
21194 }
21195 else if ((newval & 0x00000100) == 0x00000100)
21196 {
21197 /* Writeback: 8-bit, +/- offset. */
21198 if (value >= 0)
21199 newval |= (1 << 9);
21200 else
21201 value = -value;
21202 if (value > 0xff)
21203 {
21204 as_bad_where (fixP->fx_file, fixP->fx_line,
21205 _("offset out of range"));
21206 break;
21207 }
21208 newval &= ~0xff;
21209 }
21210 else if ((newval & 0x00000f00) == 0x00000e00)
21211 {
21212 /* T-instruction: positive 8-bit offset. */
21213 if (value < 0 || value > 0xff)
21214 {
21215 as_bad_where (fixP->fx_file, fixP->fx_line,
21216 _("offset out of range"));
21217 break;
21218 }
21219 newval &= ~0xff;
21220 newval |= value;
21221 }
21222 else
21223 {
21224 /* Positive 12-bit or negative 8-bit offset. */
21225 int limit;
21226 if (value >= 0)
21227 {
21228 newval |= (1 << 23);
21229 limit = 0xfff;
21230 }
21231 else
21232 {
21233 value = -value;
21234 limit = 0xff;
21235 }
21236 if (value > limit)
21237 {
21238 as_bad_where (fixP->fx_file, fixP->fx_line,
21239 _("offset out of range"));
21240 break;
21241 }
21242 newval &= ~limit;
21243 }
21244
21245 newval |= value;
21246 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21247 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21248 break;
21249
21250 case BFD_RELOC_ARM_SHIFT_IMM:
21251 newval = md_chars_to_number (buf, INSN_SIZE);
21252 if (((unsigned long) value) > 32
21253 || (value == 32
21254 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21255 {
21256 as_bad_where (fixP->fx_file, fixP->fx_line,
21257 _("shift expression is too large"));
21258 break;
21259 }
21260
21261 if (value == 0)
21262 /* Shifts of zero must be done as lsl. */
21263 newval &= ~0x60;
21264 else if (value == 32)
21265 value = 0;
21266 newval &= 0xfffff07f;
21267 newval |= (value & 0x1f) << 7;
21268 md_number_to_chars (buf, newval, INSN_SIZE);
21269 break;
21270
21271 case BFD_RELOC_ARM_T32_IMMEDIATE:
21272 case BFD_RELOC_ARM_T32_ADD_IMM:
21273 case BFD_RELOC_ARM_T32_IMM12:
21274 case BFD_RELOC_ARM_T32_ADD_PC12:
21275 /* We claim that this fixup has been processed here,
21276 even if in fact we generate an error because we do
21277 not have a reloc for it, so tc_gen_reloc will reject it. */
21278 fixP->fx_done = 1;
21279
21280 if (fixP->fx_addsy
21281 && ! S_IS_DEFINED (fixP->fx_addsy))
21282 {
21283 as_bad_where (fixP->fx_file, fixP->fx_line,
21284 _("undefined symbol %s used as an immediate value"),
21285 S_GET_NAME (fixP->fx_addsy));
21286 break;
21287 }
21288
21289 newval = md_chars_to_number (buf, THUMB_SIZE);
21290 newval <<= 16;
21291 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21292
21293 newimm = FAIL;
21294 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21295 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21296 {
21297 newimm = encode_thumb32_immediate (value);
21298 if (newimm == (unsigned int) FAIL)
21299 newimm = thumb32_negate_data_op (&newval, value);
21300 }
21301 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21302 && newimm == (unsigned int) FAIL)
21303 {
21304 /* Turn add/sum into addw/subw. */
21305 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21306 newval = (newval & 0xfeffffff) | 0x02000000;
21307 /* No flat 12-bit imm encoding for addsw/subsw. */
21308 if ((newval & 0x00100000) == 0)
21309 {
21310 /* 12 bit immediate for addw/subw. */
21311 if (value < 0)
21312 {
21313 value = -value;
21314 newval ^= 0x00a00000;
21315 }
21316 if (value > 0xfff)
21317 newimm = (unsigned int) FAIL;
21318 else
21319 newimm = value;
21320 }
21321 }
21322
21323 if (newimm == (unsigned int)FAIL)
21324 {
21325 as_bad_where (fixP->fx_file, fixP->fx_line,
21326 _("invalid constant (%lx) after fixup"),
21327 (unsigned long) value);
21328 break;
21329 }
21330
21331 newval |= (newimm & 0x800) << 15;
21332 newval |= (newimm & 0x700) << 4;
21333 newval |= (newimm & 0x0ff);
21334
21335 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21336 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21337 break;
21338
21339 case BFD_RELOC_ARM_SMC:
21340 if (((unsigned long) value) > 0xffff)
21341 as_bad_where (fixP->fx_file, fixP->fx_line,
21342 _("invalid smc expression"));
21343 newval = md_chars_to_number (buf, INSN_SIZE);
21344 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21345 md_number_to_chars (buf, newval, INSN_SIZE);
21346 break;
21347
21348 case BFD_RELOC_ARM_HVC:
21349 if (((unsigned long) value) > 0xffff)
21350 as_bad_where (fixP->fx_file, fixP->fx_line,
21351 _("invalid hvc expression"));
21352 newval = md_chars_to_number (buf, INSN_SIZE);
21353 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21354 md_number_to_chars (buf, newval, INSN_SIZE);
21355 break;
21356
21357 case BFD_RELOC_ARM_SWI:
21358 if (fixP->tc_fix_data != 0)
21359 {
21360 if (((unsigned long) value) > 0xff)
21361 as_bad_where (fixP->fx_file, fixP->fx_line,
21362 _("invalid swi expression"));
21363 newval = md_chars_to_number (buf, THUMB_SIZE);
21364 newval |= value;
21365 md_number_to_chars (buf, newval, THUMB_SIZE);
21366 }
21367 else
21368 {
21369 if (((unsigned long) value) > 0x00ffffff)
21370 as_bad_where (fixP->fx_file, fixP->fx_line,
21371 _("invalid swi expression"));
21372 newval = md_chars_to_number (buf, INSN_SIZE);
21373 newval |= value;
21374 md_number_to_chars (buf, newval, INSN_SIZE);
21375 }
21376 break;
21377
21378 case BFD_RELOC_ARM_MULTI:
21379 if (((unsigned long) value) > 0xffff)
21380 as_bad_where (fixP->fx_file, fixP->fx_line,
21381 _("invalid expression in load/store multiple"));
21382 newval = value | md_chars_to_number (buf, INSN_SIZE);
21383 md_number_to_chars (buf, newval, INSN_SIZE);
21384 break;
21385
21386 #ifdef OBJ_ELF
21387 case BFD_RELOC_ARM_PCREL_CALL:
21388
21389 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21390 && fixP->fx_addsy
21391 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21392 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21393 && THUMB_IS_FUNC (fixP->fx_addsy))
21394 /* Flip the bl to blx. This is a simple flip
21395 bit here because we generate PCREL_CALL for
21396 unconditional bls. */
21397 {
21398 newval = md_chars_to_number (buf, INSN_SIZE);
21399 newval = newval | 0x10000000;
21400 md_number_to_chars (buf, newval, INSN_SIZE);
21401 temp = 1;
21402 fixP->fx_done = 1;
21403 }
21404 else
21405 temp = 3;
21406 goto arm_branch_common;
21407
21408 case BFD_RELOC_ARM_PCREL_JUMP:
21409 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21410 && fixP->fx_addsy
21411 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21412 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21413 && THUMB_IS_FUNC (fixP->fx_addsy))
21414 {
21415 /* This would map to a bl<cond>, b<cond>,
21416 b<always> to a Thumb function. We
21417 need to force a relocation for this particular
21418 case. */
21419 newval = md_chars_to_number (buf, INSN_SIZE);
21420 fixP->fx_done = 0;
21421 }
21422
21423 case BFD_RELOC_ARM_PLT32:
21424 #endif
21425 case BFD_RELOC_ARM_PCREL_BRANCH:
21426 temp = 3;
21427 goto arm_branch_common;
21428
21429 case BFD_RELOC_ARM_PCREL_BLX:
21430
21431 temp = 1;
21432 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21433 && fixP->fx_addsy
21434 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21435 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21436 && ARM_IS_FUNC (fixP->fx_addsy))
21437 {
21438 /* Flip the blx to a bl and warn. */
21439 const char *name = S_GET_NAME (fixP->fx_addsy);
21440 newval = 0xeb000000;
21441 as_warn_where (fixP->fx_file, fixP->fx_line,
21442 _("blx to '%s' an ARM ISA state function changed to bl"),
21443 name);
21444 md_number_to_chars (buf, newval, INSN_SIZE);
21445 temp = 3;
21446 fixP->fx_done = 1;
21447 }
21448
21449 #ifdef OBJ_ELF
21450 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21451 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21452 #endif
21453
21454 arm_branch_common:
21455 /* We are going to store value (shifted right by two) in the
21456 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21457 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21458 also be be clear. */
21459 if (value & temp)
21460 as_bad_where (fixP->fx_file, fixP->fx_line,
21461 _("misaligned branch destination"));
21462 if ((value & (offsetT)0xfe000000) != (offsetT)0
21463 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21464 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21465
21466 if (fixP->fx_done || !seg->use_rela_p)
21467 {
21468 newval = md_chars_to_number (buf, INSN_SIZE);
21469 newval |= (value >> 2) & 0x00ffffff;
21470 /* Set the H bit on BLX instructions. */
21471 if (temp == 1)
21472 {
21473 if (value & 2)
21474 newval |= 0x01000000;
21475 else
21476 newval &= ~0x01000000;
21477 }
21478 md_number_to_chars (buf, newval, INSN_SIZE);
21479 }
21480 break;
21481
21482 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21483 /* CBZ can only branch forward. */
21484
21485 /* Attempts to use CBZ to branch to the next instruction
21486 (which, strictly speaking, are prohibited) will be turned into
21487 no-ops.
21488
21489 FIXME: It may be better to remove the instruction completely and
21490 perform relaxation. */
21491 if (value == -2)
21492 {
21493 newval = md_chars_to_number (buf, THUMB_SIZE);
21494 newval = 0xbf00; /* NOP encoding T1 */
21495 md_number_to_chars (buf, newval, THUMB_SIZE);
21496 }
21497 else
21498 {
21499 if (value & ~0x7e)
21500 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21501
21502 if (fixP->fx_done || !seg->use_rela_p)
21503 {
21504 newval = md_chars_to_number (buf, THUMB_SIZE);
21505 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21506 md_number_to_chars (buf, newval, THUMB_SIZE);
21507 }
21508 }
21509 break;
21510
21511 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21512 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21513 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21514
21515 if (fixP->fx_done || !seg->use_rela_p)
21516 {
21517 newval = md_chars_to_number (buf, THUMB_SIZE);
21518 newval |= (value & 0x1ff) >> 1;
21519 md_number_to_chars (buf, newval, THUMB_SIZE);
21520 }
21521 break;
21522
21523 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21524 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21525 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21526
21527 if (fixP->fx_done || !seg->use_rela_p)
21528 {
21529 newval = md_chars_to_number (buf, THUMB_SIZE);
21530 newval |= (value & 0xfff) >> 1;
21531 md_number_to_chars (buf, newval, THUMB_SIZE);
21532 }
21533 break;
21534
21535 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21536 if (fixP->fx_addsy
21537 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21538 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21539 && ARM_IS_FUNC (fixP->fx_addsy)
21540 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21541 {
21542 /* Force a relocation for a branch 20 bits wide. */
21543 fixP->fx_done = 0;
21544 }
21545 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21546 as_bad_where (fixP->fx_file, fixP->fx_line,
21547 _("conditional branch out of range"));
21548
21549 if (fixP->fx_done || !seg->use_rela_p)
21550 {
21551 offsetT newval2;
21552 addressT S, J1, J2, lo, hi;
21553
21554 S = (value & 0x00100000) >> 20;
21555 J2 = (value & 0x00080000) >> 19;
21556 J1 = (value & 0x00040000) >> 18;
21557 hi = (value & 0x0003f000) >> 12;
21558 lo = (value & 0x00000ffe) >> 1;
21559
21560 newval = md_chars_to_number (buf, THUMB_SIZE);
21561 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21562 newval |= (S << 10) | hi;
21563 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21564 md_number_to_chars (buf, newval, THUMB_SIZE);
21565 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21566 }
21567 break;
21568
21569 case BFD_RELOC_THUMB_PCREL_BLX:
21570 /* If there is a blx from a thumb state function to
21571 another thumb function flip this to a bl and warn
21572 about it. */
21573
21574 if (fixP->fx_addsy
21575 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21576 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21577 && THUMB_IS_FUNC (fixP->fx_addsy))
21578 {
21579 const char *name = S_GET_NAME (fixP->fx_addsy);
21580 as_warn_where (fixP->fx_file, fixP->fx_line,
21581 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21582 name);
21583 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21584 newval = newval | 0x1000;
21585 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21586 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21587 fixP->fx_done = 1;
21588 }
21589
21590
21591 goto thumb_bl_common;
21592
21593 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21594 /* A bl from Thumb state ISA to an internal ARM state function
21595 is converted to a blx. */
21596 if (fixP->fx_addsy
21597 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21598 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21599 && ARM_IS_FUNC (fixP->fx_addsy)
21600 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21601 {
21602 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21603 newval = newval & ~0x1000;
21604 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21605 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21606 fixP->fx_done = 1;
21607 }
21608
21609 thumb_bl_common:
21610
21611 #ifdef OBJ_ELF
21612 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21613 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21614 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21615 #endif
21616
21617 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21618 /* For a BLX instruction, make sure that the relocation is rounded up
21619 to a word boundary. This follows the semantics of the instruction
21620 which specifies that bit 1 of the target address will come from bit
21621 1 of the base address. */
21622 value = (value + 1) & ~ 1;
21623
21624 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21625 {
21626 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21627 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21628 else if ((value & ~0x1ffffff)
21629 && ((value & ~0x1ffffff) != ~0x1ffffff))
21630 as_bad_where (fixP->fx_file, fixP->fx_line,
21631 _("Thumb2 branch out of range"));
21632 }
21633
21634 if (fixP->fx_done || !seg->use_rela_p)
21635 encode_thumb2_b_bl_offset (buf, value);
21636
21637 break;
21638
21639 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21640 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21641 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21642
21643 if (fixP->fx_done || !seg->use_rela_p)
21644 encode_thumb2_b_bl_offset (buf, value);
21645
21646 break;
21647
21648 case BFD_RELOC_8:
21649 if (fixP->fx_done || !seg->use_rela_p)
21650 md_number_to_chars (buf, value, 1);
21651 break;
21652
21653 case BFD_RELOC_16:
21654 if (fixP->fx_done || !seg->use_rela_p)
21655 md_number_to_chars (buf, value, 2);
21656 break;
21657
21658 #ifdef OBJ_ELF
21659 case BFD_RELOC_ARM_TLS_CALL:
21660 case BFD_RELOC_ARM_THM_TLS_CALL:
21661 case BFD_RELOC_ARM_TLS_DESCSEQ:
21662 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21663 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21664 break;
21665
21666 case BFD_RELOC_ARM_TLS_GOTDESC:
21667 case BFD_RELOC_ARM_TLS_GD32:
21668 case BFD_RELOC_ARM_TLS_LE32:
21669 case BFD_RELOC_ARM_TLS_IE32:
21670 case BFD_RELOC_ARM_TLS_LDM32:
21671 case BFD_RELOC_ARM_TLS_LDO32:
21672 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21673 /* fall through */
21674
21675 case BFD_RELOC_ARM_GOT32:
21676 case BFD_RELOC_ARM_GOTOFF:
21677 if (fixP->fx_done || !seg->use_rela_p)
21678 md_number_to_chars (buf, 0, 4);
21679 break;
21680
21681 case BFD_RELOC_ARM_GOT_PREL:
21682 if (fixP->fx_done || !seg->use_rela_p)
21683 md_number_to_chars (buf, value, 4);
21684 break;
21685
21686 case BFD_RELOC_ARM_TARGET2:
21687 /* TARGET2 is not partial-inplace, so we need to write the
21688 addend here for REL targets, because it won't be written out
21689 during reloc processing later. */
21690 if (fixP->fx_done || !seg->use_rela_p)
21691 md_number_to_chars (buf, fixP->fx_offset, 4);
21692 break;
21693 #endif
21694
21695 case BFD_RELOC_RVA:
21696 case BFD_RELOC_32:
21697 case BFD_RELOC_ARM_TARGET1:
21698 case BFD_RELOC_ARM_ROSEGREL32:
21699 case BFD_RELOC_ARM_SBREL32:
21700 case BFD_RELOC_32_PCREL:
21701 #ifdef TE_PE
21702 case BFD_RELOC_32_SECREL:
21703 #endif
21704 if (fixP->fx_done || !seg->use_rela_p)
21705 #ifdef TE_WINCE
21706 /* For WinCE we only do this for pcrel fixups. */
21707 if (fixP->fx_done || fixP->fx_pcrel)
21708 #endif
21709 md_number_to_chars (buf, value, 4);
21710 break;
21711
21712 #ifdef OBJ_ELF
21713 case BFD_RELOC_ARM_PREL31:
21714 if (fixP->fx_done || !seg->use_rela_p)
21715 {
21716 newval = md_chars_to_number (buf, 4) & 0x80000000;
21717 if ((value ^ (value >> 1)) & 0x40000000)
21718 {
21719 as_bad_where (fixP->fx_file, fixP->fx_line,
21720 _("rel31 relocation overflow"));
21721 }
21722 newval |= value & 0x7fffffff;
21723 md_number_to_chars (buf, newval, 4);
21724 }
21725 break;
21726 #endif
21727
21728 case BFD_RELOC_ARM_CP_OFF_IMM:
21729 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21730 if (value < -1023 || value > 1023 || (value & 3))
21731 as_bad_where (fixP->fx_file, fixP->fx_line,
21732 _("co-processor offset out of range"));
21733 cp_off_common:
21734 sign = value > 0;
21735 if (value < 0)
21736 value = -value;
21737 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21738 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21739 newval = md_chars_to_number (buf, INSN_SIZE);
21740 else
21741 newval = get_thumb32_insn (buf);
21742 if (value == 0)
21743 newval &= 0xffffff00;
21744 else
21745 {
21746 newval &= 0xff7fff00;
21747 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21748 }
21749 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21750 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21751 md_number_to_chars (buf, newval, INSN_SIZE);
21752 else
21753 put_thumb32_insn (buf, newval);
21754 break;
21755
21756 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21757 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21758 if (value < -255 || value > 255)
21759 as_bad_where (fixP->fx_file, fixP->fx_line,
21760 _("co-processor offset out of range"));
21761 value *= 4;
21762 goto cp_off_common;
21763
21764 case BFD_RELOC_ARM_THUMB_OFFSET:
21765 newval = md_chars_to_number (buf, THUMB_SIZE);
21766 /* Exactly what ranges, and where the offset is inserted depends
21767 on the type of instruction, we can establish this from the
21768 top 4 bits. */
21769 switch (newval >> 12)
21770 {
21771 case 4: /* PC load. */
21772 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21773 forced to zero for these loads; md_pcrel_from has already
21774 compensated for this. */
21775 if (value & 3)
21776 as_bad_where (fixP->fx_file, fixP->fx_line,
21777 _("invalid offset, target not word aligned (0x%08lX)"),
21778 (((unsigned long) fixP->fx_frag->fr_address
21779 + (unsigned long) fixP->fx_where) & ~3)
21780 + (unsigned long) value);
21781
21782 if (value & ~0x3fc)
21783 as_bad_where (fixP->fx_file, fixP->fx_line,
21784 _("invalid offset, value too big (0x%08lX)"),
21785 (long) value);
21786
21787 newval |= value >> 2;
21788 break;
21789
21790 case 9: /* SP load/store. */
21791 if (value & ~0x3fc)
21792 as_bad_where (fixP->fx_file, fixP->fx_line,
21793 _("invalid offset, value too big (0x%08lX)"),
21794 (long) value);
21795 newval |= value >> 2;
21796 break;
21797
21798 case 6: /* Word load/store. */
21799 if (value & ~0x7c)
21800 as_bad_where (fixP->fx_file, fixP->fx_line,
21801 _("invalid offset, value too big (0x%08lX)"),
21802 (long) value);
21803 newval |= value << 4; /* 6 - 2. */
21804 break;
21805
21806 case 7: /* Byte load/store. */
21807 if (value & ~0x1f)
21808 as_bad_where (fixP->fx_file, fixP->fx_line,
21809 _("invalid offset, value too big (0x%08lX)"),
21810 (long) value);
21811 newval |= value << 6;
21812 break;
21813
21814 case 8: /* Halfword load/store. */
21815 if (value & ~0x3e)
21816 as_bad_where (fixP->fx_file, fixP->fx_line,
21817 _("invalid offset, value too big (0x%08lX)"),
21818 (long) value);
21819 newval |= value << 5; /* 6 - 1. */
21820 break;
21821
21822 default:
21823 as_bad_where (fixP->fx_file, fixP->fx_line,
21824 "Unable to process relocation for thumb opcode: %lx",
21825 (unsigned long) newval);
21826 break;
21827 }
21828 md_number_to_chars (buf, newval, THUMB_SIZE);
21829 break;
21830
21831 case BFD_RELOC_ARM_THUMB_ADD:
21832 /* This is a complicated relocation, since we use it for all of
21833 the following immediate relocations:
21834
21835 3bit ADD/SUB
21836 8bit ADD/SUB
21837 9bit ADD/SUB SP word-aligned
21838 10bit ADD PC/SP word-aligned
21839
21840 The type of instruction being processed is encoded in the
21841 instruction field:
21842
21843 0x8000 SUB
21844 0x00F0 Rd
21845 0x000F Rs
21846 */
21847 newval = md_chars_to_number (buf, THUMB_SIZE);
21848 {
21849 int rd = (newval >> 4) & 0xf;
21850 int rs = newval & 0xf;
21851 int subtract = !!(newval & 0x8000);
21852
21853 /* Check for HI regs, only very restricted cases allowed:
21854 Adjusting SP, and using PC or SP to get an address. */
21855 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21856 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21857 as_bad_where (fixP->fx_file, fixP->fx_line,
21858 _("invalid Hi register with immediate"));
21859
21860 /* If value is negative, choose the opposite instruction. */
21861 if (value < 0)
21862 {
21863 value = -value;
21864 subtract = !subtract;
21865 if (value < 0)
21866 as_bad_where (fixP->fx_file, fixP->fx_line,
21867 _("immediate value out of range"));
21868 }
21869
21870 if (rd == REG_SP)
21871 {
21872 if (value & ~0x1fc)
21873 as_bad_where (fixP->fx_file, fixP->fx_line,
21874 _("invalid immediate for stack address calculation"));
21875 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21876 newval |= value >> 2;
21877 }
21878 else if (rs == REG_PC || rs == REG_SP)
21879 {
21880 if (subtract || value & ~0x3fc)
21881 as_bad_where (fixP->fx_file, fixP->fx_line,
21882 _("invalid immediate for address calculation (value = 0x%08lX)"),
21883 (unsigned long) value);
21884 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21885 newval |= rd << 8;
21886 newval |= value >> 2;
21887 }
21888 else if (rs == rd)
21889 {
21890 if (value & ~0xff)
21891 as_bad_where (fixP->fx_file, fixP->fx_line,
21892 _("immediate value out of range"));
21893 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21894 newval |= (rd << 8) | value;
21895 }
21896 else
21897 {
21898 if (value & ~0x7)
21899 as_bad_where (fixP->fx_file, fixP->fx_line,
21900 _("immediate value out of range"));
21901 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21902 newval |= rd | (rs << 3) | (value << 6);
21903 }
21904 }
21905 md_number_to_chars (buf, newval, THUMB_SIZE);
21906 break;
21907
21908 case BFD_RELOC_ARM_THUMB_IMM:
21909 newval = md_chars_to_number (buf, THUMB_SIZE);
21910 if (value < 0 || value > 255)
21911 as_bad_where (fixP->fx_file, fixP->fx_line,
21912 _("invalid immediate: %ld is out of range"),
21913 (long) value);
21914 newval |= value;
21915 md_number_to_chars (buf, newval, THUMB_SIZE);
21916 break;
21917
21918 case BFD_RELOC_ARM_THUMB_SHIFT:
21919 /* 5bit shift value (0..32). LSL cannot take 32. */
21920 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21921 temp = newval & 0xf800;
21922 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21923 as_bad_where (fixP->fx_file, fixP->fx_line,
21924 _("invalid shift value: %ld"), (long) value);
21925 /* Shifts of zero must be encoded as LSL. */
21926 if (value == 0)
21927 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21928 /* Shifts of 32 are encoded as zero. */
21929 else if (value == 32)
21930 value = 0;
21931 newval |= value << 6;
21932 md_number_to_chars (buf, newval, THUMB_SIZE);
21933 break;
21934
21935 case BFD_RELOC_VTABLE_INHERIT:
21936 case BFD_RELOC_VTABLE_ENTRY:
21937 fixP->fx_done = 0;
21938 return;
21939
21940 case BFD_RELOC_ARM_MOVW:
21941 case BFD_RELOC_ARM_MOVT:
21942 case BFD_RELOC_ARM_THUMB_MOVW:
21943 case BFD_RELOC_ARM_THUMB_MOVT:
21944 if (fixP->fx_done || !seg->use_rela_p)
21945 {
21946 /* REL format relocations are limited to a 16-bit addend. */
21947 if (!fixP->fx_done)
21948 {
21949 if (value < -0x8000 || value > 0x7fff)
21950 as_bad_where (fixP->fx_file, fixP->fx_line,
21951 _("offset out of range"));
21952 }
21953 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21954 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21955 {
21956 value >>= 16;
21957 }
21958
21959 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21960 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21961 {
21962 newval = get_thumb32_insn (buf);
21963 newval &= 0xfbf08f00;
21964 newval |= (value & 0xf000) << 4;
21965 newval |= (value & 0x0800) << 15;
21966 newval |= (value & 0x0700) << 4;
21967 newval |= (value & 0x00ff);
21968 put_thumb32_insn (buf, newval);
21969 }
21970 else
21971 {
21972 newval = md_chars_to_number (buf, 4);
21973 newval &= 0xfff0f000;
21974 newval |= value & 0x0fff;
21975 newval |= (value & 0xf000) << 4;
21976 md_number_to_chars (buf, newval, 4);
21977 }
21978 }
21979 return;
21980
21981 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21982 case BFD_RELOC_ARM_ALU_PC_G0:
21983 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21984 case BFD_RELOC_ARM_ALU_PC_G1:
21985 case BFD_RELOC_ARM_ALU_PC_G2:
21986 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21987 case BFD_RELOC_ARM_ALU_SB_G0:
21988 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21989 case BFD_RELOC_ARM_ALU_SB_G1:
21990 case BFD_RELOC_ARM_ALU_SB_G2:
21991 gas_assert (!fixP->fx_done);
21992 if (!seg->use_rela_p)
21993 {
21994 bfd_vma insn;
21995 bfd_vma encoded_addend;
21996 bfd_vma addend_abs = abs (value);
21997
21998 /* Check that the absolute value of the addend can be
21999 expressed as an 8-bit constant plus a rotation. */
22000 encoded_addend = encode_arm_immediate (addend_abs);
22001 if (encoded_addend == (unsigned int) FAIL)
22002 as_bad_where (fixP->fx_file, fixP->fx_line,
22003 _("the offset 0x%08lX is not representable"),
22004 (unsigned long) addend_abs);
22005
22006 /* Extract the instruction. */
22007 insn = md_chars_to_number (buf, INSN_SIZE);
22008
22009 /* If the addend is positive, use an ADD instruction.
22010 Otherwise use a SUB. Take care not to destroy the S bit. */
22011 insn &= 0xff1fffff;
22012 if (value < 0)
22013 insn |= 1 << 22;
22014 else
22015 insn |= 1 << 23;
22016
22017 /* Place the encoded addend into the first 12 bits of the
22018 instruction. */
22019 insn &= 0xfffff000;
22020 insn |= encoded_addend;
22021
22022 /* Update the instruction. */
22023 md_number_to_chars (buf, insn, INSN_SIZE);
22024 }
22025 break;
22026
22027 case BFD_RELOC_ARM_LDR_PC_G0:
22028 case BFD_RELOC_ARM_LDR_PC_G1:
22029 case BFD_RELOC_ARM_LDR_PC_G2:
22030 case BFD_RELOC_ARM_LDR_SB_G0:
22031 case BFD_RELOC_ARM_LDR_SB_G1:
22032 case BFD_RELOC_ARM_LDR_SB_G2:
22033 gas_assert (!fixP->fx_done);
22034 if (!seg->use_rela_p)
22035 {
22036 bfd_vma insn;
22037 bfd_vma addend_abs = abs (value);
22038
22039 /* Check that the absolute value of the addend can be
22040 encoded in 12 bits. */
22041 if (addend_abs >= 0x1000)
22042 as_bad_where (fixP->fx_file, fixP->fx_line,
22043 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22044 (unsigned long) addend_abs);
22045
22046 /* Extract the instruction. */
22047 insn = md_chars_to_number (buf, INSN_SIZE);
22048
22049 /* If the addend is negative, clear bit 23 of the instruction.
22050 Otherwise set it. */
22051 if (value < 0)
22052 insn &= ~(1 << 23);
22053 else
22054 insn |= 1 << 23;
22055
22056 /* Place the absolute value of the addend into the first 12 bits
22057 of the instruction. */
22058 insn &= 0xfffff000;
22059 insn |= addend_abs;
22060
22061 /* Update the instruction. */
22062 md_number_to_chars (buf, insn, INSN_SIZE);
22063 }
22064 break;
22065
22066 case BFD_RELOC_ARM_LDRS_PC_G0:
22067 case BFD_RELOC_ARM_LDRS_PC_G1:
22068 case BFD_RELOC_ARM_LDRS_PC_G2:
22069 case BFD_RELOC_ARM_LDRS_SB_G0:
22070 case BFD_RELOC_ARM_LDRS_SB_G1:
22071 case BFD_RELOC_ARM_LDRS_SB_G2:
22072 gas_assert (!fixP->fx_done);
22073 if (!seg->use_rela_p)
22074 {
22075 bfd_vma insn;
22076 bfd_vma addend_abs = abs (value);
22077
22078 /* Check that the absolute value of the addend can be
22079 encoded in 8 bits. */
22080 if (addend_abs >= 0x100)
22081 as_bad_where (fixP->fx_file, fixP->fx_line,
22082 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22083 (unsigned long) addend_abs);
22084
22085 /* Extract the instruction. */
22086 insn = md_chars_to_number (buf, INSN_SIZE);
22087
22088 /* If the addend is negative, clear bit 23 of the instruction.
22089 Otherwise set it. */
22090 if (value < 0)
22091 insn &= ~(1 << 23);
22092 else
22093 insn |= 1 << 23;
22094
22095 /* Place the first four bits of the absolute value of the addend
22096 into the first 4 bits of the instruction, and the remaining
22097 four into bits 8 .. 11. */
22098 insn &= 0xfffff0f0;
22099 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22100
22101 /* Update the instruction. */
22102 md_number_to_chars (buf, insn, INSN_SIZE);
22103 }
22104 break;
22105
22106 case BFD_RELOC_ARM_LDC_PC_G0:
22107 case BFD_RELOC_ARM_LDC_PC_G1:
22108 case BFD_RELOC_ARM_LDC_PC_G2:
22109 case BFD_RELOC_ARM_LDC_SB_G0:
22110 case BFD_RELOC_ARM_LDC_SB_G1:
22111 case BFD_RELOC_ARM_LDC_SB_G2:
22112 gas_assert (!fixP->fx_done);
22113 if (!seg->use_rela_p)
22114 {
22115 bfd_vma insn;
22116 bfd_vma addend_abs = abs (value);
22117
22118 /* Check that the absolute value of the addend is a multiple of
22119 four and, when divided by four, fits in 8 bits. */
22120 if (addend_abs & 0x3)
22121 as_bad_where (fixP->fx_file, fixP->fx_line,
22122 _("bad offset 0x%08lX (must be word-aligned)"),
22123 (unsigned long) addend_abs);
22124
22125 if ((addend_abs >> 2) > 0xff)
22126 as_bad_where (fixP->fx_file, fixP->fx_line,
22127 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22128 (unsigned long) addend_abs);
22129
22130 /* Extract the instruction. */
22131 insn = md_chars_to_number (buf, INSN_SIZE);
22132
22133 /* If the addend is negative, clear bit 23 of the instruction.
22134 Otherwise set it. */
22135 if (value < 0)
22136 insn &= ~(1 << 23);
22137 else
22138 insn |= 1 << 23;
22139
22140 /* Place the addend (divided by four) into the first eight
22141 bits of the instruction. */
22142 insn &= 0xfffffff0;
22143 insn |= addend_abs >> 2;
22144
22145 /* Update the instruction. */
22146 md_number_to_chars (buf, insn, INSN_SIZE);
22147 }
22148 break;
22149
22150 case BFD_RELOC_ARM_V4BX:
22151 /* This will need to go in the object file. */
22152 fixP->fx_done = 0;
22153 break;
22154
22155 case BFD_RELOC_UNUSED:
22156 default:
22157 as_bad_where (fixP->fx_file, fixP->fx_line,
22158 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22159 }
22160 }
22161
22162 /* Translate internal representation of relocation info to BFD target
22163 format. */
22164
22165 arelent *
22166 tc_gen_reloc (asection *section, fixS *fixp)
22167 {
22168 arelent * reloc;
22169 bfd_reloc_code_real_type code;
22170
22171 reloc = (arelent *) xmalloc (sizeof (arelent));
22172
22173 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22174 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22175 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22176
22177 if (fixp->fx_pcrel)
22178 {
22179 if (section->use_rela_p)
22180 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22181 else
22182 fixp->fx_offset = reloc->address;
22183 }
22184 reloc->addend = fixp->fx_offset;
22185
22186 switch (fixp->fx_r_type)
22187 {
22188 case BFD_RELOC_8:
22189 if (fixp->fx_pcrel)
22190 {
22191 code = BFD_RELOC_8_PCREL;
22192 break;
22193 }
22194
22195 case BFD_RELOC_16:
22196 if (fixp->fx_pcrel)
22197 {
22198 code = BFD_RELOC_16_PCREL;
22199 break;
22200 }
22201
22202 case BFD_RELOC_32:
22203 if (fixp->fx_pcrel)
22204 {
22205 code = BFD_RELOC_32_PCREL;
22206 break;
22207 }
22208
22209 case BFD_RELOC_ARM_MOVW:
22210 if (fixp->fx_pcrel)
22211 {
22212 code = BFD_RELOC_ARM_MOVW_PCREL;
22213 break;
22214 }
22215
22216 case BFD_RELOC_ARM_MOVT:
22217 if (fixp->fx_pcrel)
22218 {
22219 code = BFD_RELOC_ARM_MOVT_PCREL;
22220 break;
22221 }
22222
22223 case BFD_RELOC_ARM_THUMB_MOVW:
22224 if (fixp->fx_pcrel)
22225 {
22226 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22227 break;
22228 }
22229
22230 case BFD_RELOC_ARM_THUMB_MOVT:
22231 if (fixp->fx_pcrel)
22232 {
22233 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22234 break;
22235 }
22236
22237 case BFD_RELOC_NONE:
22238 case BFD_RELOC_ARM_PCREL_BRANCH:
22239 case BFD_RELOC_ARM_PCREL_BLX:
22240 case BFD_RELOC_RVA:
22241 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22242 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22243 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22244 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22245 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22246 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22247 case BFD_RELOC_VTABLE_ENTRY:
22248 case BFD_RELOC_VTABLE_INHERIT:
22249 #ifdef TE_PE
22250 case BFD_RELOC_32_SECREL:
22251 #endif
22252 code = fixp->fx_r_type;
22253 break;
22254
22255 case BFD_RELOC_THUMB_PCREL_BLX:
22256 #ifdef OBJ_ELF
22257 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22258 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22259 else
22260 #endif
22261 code = BFD_RELOC_THUMB_PCREL_BLX;
22262 break;
22263
22264 case BFD_RELOC_ARM_LITERAL:
22265 case BFD_RELOC_ARM_HWLITERAL:
22266 /* If this is called then the a literal has
22267 been referenced across a section boundary. */
22268 as_bad_where (fixp->fx_file, fixp->fx_line,
22269 _("literal referenced across section boundary"));
22270 return NULL;
22271
22272 #ifdef OBJ_ELF
22273 case BFD_RELOC_ARM_TLS_CALL:
22274 case BFD_RELOC_ARM_THM_TLS_CALL:
22275 case BFD_RELOC_ARM_TLS_DESCSEQ:
22276 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22277 case BFD_RELOC_ARM_GOT32:
22278 case BFD_RELOC_ARM_GOTOFF:
22279 case BFD_RELOC_ARM_GOT_PREL:
22280 case BFD_RELOC_ARM_PLT32:
22281 case BFD_RELOC_ARM_TARGET1:
22282 case BFD_RELOC_ARM_ROSEGREL32:
22283 case BFD_RELOC_ARM_SBREL32:
22284 case BFD_RELOC_ARM_PREL31:
22285 case BFD_RELOC_ARM_TARGET2:
22286 case BFD_RELOC_ARM_TLS_LE32:
22287 case BFD_RELOC_ARM_TLS_LDO32:
22288 case BFD_RELOC_ARM_PCREL_CALL:
22289 case BFD_RELOC_ARM_PCREL_JUMP:
22290 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22291 case BFD_RELOC_ARM_ALU_PC_G0:
22292 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22293 case BFD_RELOC_ARM_ALU_PC_G1:
22294 case BFD_RELOC_ARM_ALU_PC_G2:
22295 case BFD_RELOC_ARM_LDR_PC_G0:
22296 case BFD_RELOC_ARM_LDR_PC_G1:
22297 case BFD_RELOC_ARM_LDR_PC_G2:
22298 case BFD_RELOC_ARM_LDRS_PC_G0:
22299 case BFD_RELOC_ARM_LDRS_PC_G1:
22300 case BFD_RELOC_ARM_LDRS_PC_G2:
22301 case BFD_RELOC_ARM_LDC_PC_G0:
22302 case BFD_RELOC_ARM_LDC_PC_G1:
22303 case BFD_RELOC_ARM_LDC_PC_G2:
22304 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22305 case BFD_RELOC_ARM_ALU_SB_G0:
22306 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22307 case BFD_RELOC_ARM_ALU_SB_G1:
22308 case BFD_RELOC_ARM_ALU_SB_G2:
22309 case BFD_RELOC_ARM_LDR_SB_G0:
22310 case BFD_RELOC_ARM_LDR_SB_G1:
22311 case BFD_RELOC_ARM_LDR_SB_G2:
22312 case BFD_RELOC_ARM_LDRS_SB_G0:
22313 case BFD_RELOC_ARM_LDRS_SB_G1:
22314 case BFD_RELOC_ARM_LDRS_SB_G2:
22315 case BFD_RELOC_ARM_LDC_SB_G0:
22316 case BFD_RELOC_ARM_LDC_SB_G1:
22317 case BFD_RELOC_ARM_LDC_SB_G2:
22318 case BFD_RELOC_ARM_V4BX:
22319 code = fixp->fx_r_type;
22320 break;
22321
22322 case BFD_RELOC_ARM_TLS_GOTDESC:
22323 case BFD_RELOC_ARM_TLS_GD32:
22324 case BFD_RELOC_ARM_TLS_IE32:
22325 case BFD_RELOC_ARM_TLS_LDM32:
22326 /* BFD will include the symbol's address in the addend.
22327 But we don't want that, so subtract it out again here. */
22328 if (!S_IS_COMMON (fixp->fx_addsy))
22329 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22330 code = fixp->fx_r_type;
22331 break;
22332 #endif
22333
22334 case BFD_RELOC_ARM_IMMEDIATE:
22335 as_bad_where (fixp->fx_file, fixp->fx_line,
22336 _("internal relocation (type: IMMEDIATE) not fixed up"));
22337 return NULL;
22338
22339 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22340 as_bad_where (fixp->fx_file, fixp->fx_line,
22341 _("ADRL used for a symbol not defined in the same file"));
22342 return NULL;
22343
22344 case BFD_RELOC_ARM_OFFSET_IMM:
22345 if (section->use_rela_p)
22346 {
22347 code = fixp->fx_r_type;
22348 break;
22349 }
22350
22351 if (fixp->fx_addsy != NULL
22352 && !S_IS_DEFINED (fixp->fx_addsy)
22353 && S_IS_LOCAL (fixp->fx_addsy))
22354 {
22355 as_bad_where (fixp->fx_file, fixp->fx_line,
22356 _("undefined local label `%s'"),
22357 S_GET_NAME (fixp->fx_addsy));
22358 return NULL;
22359 }
22360
22361 as_bad_where (fixp->fx_file, fixp->fx_line,
22362 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22363 return NULL;
22364
22365 default:
22366 {
22367 char * type;
22368
22369 switch (fixp->fx_r_type)
22370 {
22371 case BFD_RELOC_NONE: type = "NONE"; break;
22372 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22373 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22374 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22375 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22376 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22377 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22378 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22379 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22380 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22381 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22382 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22383 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22384 default: type = _("<unknown>"); break;
22385 }
22386 as_bad_where (fixp->fx_file, fixp->fx_line,
22387 _("cannot represent %s relocation in this object file format"),
22388 type);
22389 return NULL;
22390 }
22391 }
22392
22393 #ifdef OBJ_ELF
22394 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22395 && GOT_symbol
22396 && fixp->fx_addsy == GOT_symbol)
22397 {
22398 code = BFD_RELOC_ARM_GOTPC;
22399 reloc->addend = fixp->fx_offset = reloc->address;
22400 }
22401 #endif
22402
22403 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22404
22405 if (reloc->howto == NULL)
22406 {
22407 as_bad_where (fixp->fx_file, fixp->fx_line,
22408 _("cannot represent %s relocation in this object file format"),
22409 bfd_get_reloc_code_name (code));
22410 return NULL;
22411 }
22412
22413 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22414 vtable entry to be used in the relocation's section offset. */
22415 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22416 reloc->address = fixp->fx_offset;
22417
22418 return reloc;
22419 }
22420
22421 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22422
22423 void
22424 cons_fix_new_arm (fragS * frag,
22425 int where,
22426 int size,
22427 expressionS * exp)
22428 {
22429 bfd_reloc_code_real_type type;
22430 int pcrel = 0;
22431
22432 /* Pick a reloc.
22433 FIXME: @@ Should look at CPU word size. */
22434 switch (size)
22435 {
22436 case 1:
22437 type = BFD_RELOC_8;
22438 break;
22439 case 2:
22440 type = BFD_RELOC_16;
22441 break;
22442 case 4:
22443 default:
22444 type = BFD_RELOC_32;
22445 break;
22446 case 8:
22447 type = BFD_RELOC_64;
22448 break;
22449 }
22450
22451 #ifdef TE_PE
22452 if (exp->X_op == O_secrel)
22453 {
22454 exp->X_op = O_symbol;
22455 type = BFD_RELOC_32_SECREL;
22456 }
22457 #endif
22458
22459 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22460 }
22461
22462 #if defined (OBJ_COFF)
22463 void
22464 arm_validate_fix (fixS * fixP)
22465 {
22466 /* If the destination of the branch is a defined symbol which does not have
22467 the THUMB_FUNC attribute, then we must be calling a function which has
22468 the (interfacearm) attribute. We look for the Thumb entry point to that
22469 function and change the branch to refer to that function instead. */
22470 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22471 && fixP->fx_addsy != NULL
22472 && S_IS_DEFINED (fixP->fx_addsy)
22473 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22474 {
22475 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22476 }
22477 }
22478 #endif
22479
22480
22481 int
22482 arm_force_relocation (struct fix * fixp)
22483 {
22484 #if defined (OBJ_COFF) && defined (TE_PE)
22485 if (fixp->fx_r_type == BFD_RELOC_RVA)
22486 return 1;
22487 #endif
22488
22489 /* In case we have a call or a branch to a function in ARM ISA mode from
22490 a thumb function or vice-versa force the relocation. These relocations
22491 are cleared off for some cores that might have blx and simple transformations
22492 are possible. */
22493
22494 #ifdef OBJ_ELF
22495 switch (fixp->fx_r_type)
22496 {
22497 case BFD_RELOC_ARM_PCREL_JUMP:
22498 case BFD_RELOC_ARM_PCREL_CALL:
22499 case BFD_RELOC_THUMB_PCREL_BLX:
22500 if (THUMB_IS_FUNC (fixp->fx_addsy))
22501 return 1;
22502 break;
22503
22504 case BFD_RELOC_ARM_PCREL_BLX:
22505 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22506 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22507 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22508 if (ARM_IS_FUNC (fixp->fx_addsy))
22509 return 1;
22510 break;
22511
22512 default:
22513 break;
22514 }
22515 #endif
22516
22517 /* Resolve these relocations even if the symbol is extern or weak.
22518 Technically this is probably wrong due to symbol preemption.
22519 In practice these relocations do not have enough range to be useful
22520 at dynamic link time, and some code (e.g. in the Linux kernel)
22521 expects these references to be resolved. */
22522 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22523 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22524 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22525 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22526 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22527 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22528 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22529 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22530 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22531 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22532 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22533 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22534 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22535 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22536 return 0;
22537
22538 /* Always leave these relocations for the linker. */
22539 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22540 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22541 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22542 return 1;
22543
22544 /* Always generate relocations against function symbols. */
22545 if (fixp->fx_r_type == BFD_RELOC_32
22546 && fixp->fx_addsy
22547 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22548 return 1;
22549
22550 return generic_force_reloc (fixp);
22551 }
22552
22553 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22554 /* Relocations against function names must be left unadjusted,
22555 so that the linker can use this information to generate interworking
22556 stubs. The MIPS version of this function
22557 also prevents relocations that are mips-16 specific, but I do not
22558 know why it does this.
22559
22560 FIXME:
22561 There is one other problem that ought to be addressed here, but
22562 which currently is not: Taking the address of a label (rather
22563 than a function) and then later jumping to that address. Such
22564 addresses also ought to have their bottom bit set (assuming that
22565 they reside in Thumb code), but at the moment they will not. */
22566
22567 bfd_boolean
22568 arm_fix_adjustable (fixS * fixP)
22569 {
22570 if (fixP->fx_addsy == NULL)
22571 return 1;
22572
22573 /* Preserve relocations against symbols with function type. */
22574 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22575 return FALSE;
22576
22577 if (THUMB_IS_FUNC (fixP->fx_addsy)
22578 && fixP->fx_subsy == NULL)
22579 return FALSE;
22580
22581 /* We need the symbol name for the VTABLE entries. */
22582 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22583 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22584 return FALSE;
22585
22586 /* Don't allow symbols to be discarded on GOT related relocs. */
22587 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22588 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22589 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22590 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22591 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22592 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22593 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22594 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22595 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22596 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22597 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22598 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22599 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22600 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22601 return FALSE;
22602
22603 /* Similarly for group relocations. */
22604 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22605 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22606 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22607 return FALSE;
22608
22609 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22610 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22611 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22612 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22613 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22614 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22615 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22616 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22617 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22618 return FALSE;
22619
22620 return TRUE;
22621 }
22622 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22623
22624 #ifdef OBJ_ELF
22625
22626 const char *
22627 elf32_arm_target_format (void)
22628 {
22629 #ifdef TE_SYMBIAN
22630 return (target_big_endian
22631 ? "elf32-bigarm-symbian"
22632 : "elf32-littlearm-symbian");
22633 #elif defined (TE_VXWORKS)
22634 return (target_big_endian
22635 ? "elf32-bigarm-vxworks"
22636 : "elf32-littlearm-vxworks");
22637 #elif defined (TE_NACL)
22638 return (target_big_endian
22639 ? "elf32-bigarm-nacl"
22640 : "elf32-littlearm-nacl");
22641 #else
22642 if (target_big_endian)
22643 return "elf32-bigarm";
22644 else
22645 return "elf32-littlearm";
22646 #endif
22647 }
22648
22649 void
22650 armelf_frob_symbol (symbolS * symp,
22651 int * puntp)
22652 {
22653 elf_frob_symbol (symp, puntp);
22654 }
22655 #endif
22656
22657 /* MD interface: Finalization. */
22658
22659 void
22660 arm_cleanup (void)
22661 {
22662 literal_pool * pool;
22663
22664 /* Ensure that all the IT blocks are properly closed. */
22665 check_it_blocks_finished ();
22666
22667 for (pool = list_of_pools; pool; pool = pool->next)
22668 {
22669 /* Put it at the end of the relevant section. */
22670 subseg_set (pool->section, pool->sub_section);
22671 #ifdef OBJ_ELF
22672 arm_elf_change_section ();
22673 #endif
22674 s_ltorg (0);
22675 }
22676 }
22677
22678 #ifdef OBJ_ELF
22679 /* Remove any excess mapping symbols generated for alignment frags in
22680 SEC. We may have created a mapping symbol before a zero byte
22681 alignment; remove it if there's a mapping symbol after the
22682 alignment. */
22683 static void
22684 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22685 void *dummy ATTRIBUTE_UNUSED)
22686 {
22687 segment_info_type *seginfo = seg_info (sec);
22688 fragS *fragp;
22689
22690 if (seginfo == NULL || seginfo->frchainP == NULL)
22691 return;
22692
22693 for (fragp = seginfo->frchainP->frch_root;
22694 fragp != NULL;
22695 fragp = fragp->fr_next)
22696 {
22697 symbolS *sym = fragp->tc_frag_data.last_map;
22698 fragS *next = fragp->fr_next;
22699
22700 /* Variable-sized frags have been converted to fixed size by
22701 this point. But if this was variable-sized to start with,
22702 there will be a fixed-size frag after it. So don't handle
22703 next == NULL. */
22704 if (sym == NULL || next == NULL)
22705 continue;
22706
22707 if (S_GET_VALUE (sym) < next->fr_address)
22708 /* Not at the end of this frag. */
22709 continue;
22710 know (S_GET_VALUE (sym) == next->fr_address);
22711
22712 do
22713 {
22714 if (next->tc_frag_data.first_map != NULL)
22715 {
22716 /* Next frag starts with a mapping symbol. Discard this
22717 one. */
22718 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22719 break;
22720 }
22721
22722 if (next->fr_next == NULL)
22723 {
22724 /* This mapping symbol is at the end of the section. Discard
22725 it. */
22726 know (next->fr_fix == 0 && next->fr_var == 0);
22727 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22728 break;
22729 }
22730
22731 /* As long as we have empty frags without any mapping symbols,
22732 keep looking. */
22733 /* If the next frag is non-empty and does not start with a
22734 mapping symbol, then this mapping symbol is required. */
22735 if (next->fr_address != next->fr_next->fr_address)
22736 break;
22737
22738 next = next->fr_next;
22739 }
22740 while (next != NULL);
22741 }
22742 }
22743 #endif
22744
22745 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22746 ARM ones. */
22747
22748 void
22749 arm_adjust_symtab (void)
22750 {
22751 #ifdef OBJ_COFF
22752 symbolS * sym;
22753
22754 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22755 {
22756 if (ARM_IS_THUMB (sym))
22757 {
22758 if (THUMB_IS_FUNC (sym))
22759 {
22760 /* Mark the symbol as a Thumb function. */
22761 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22762 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22763 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22764
22765 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22766 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22767 else
22768 as_bad (_("%s: unexpected function type: %d"),
22769 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22770 }
22771 else switch (S_GET_STORAGE_CLASS (sym))
22772 {
22773 case C_EXT:
22774 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22775 break;
22776 case C_STAT:
22777 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22778 break;
22779 case C_LABEL:
22780 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22781 break;
22782 default:
22783 /* Do nothing. */
22784 break;
22785 }
22786 }
22787
22788 if (ARM_IS_INTERWORK (sym))
22789 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22790 }
22791 #endif
22792 #ifdef OBJ_ELF
22793 symbolS * sym;
22794 char bind;
22795
22796 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22797 {
22798 if (ARM_IS_THUMB (sym))
22799 {
22800 elf_symbol_type * elf_sym;
22801
22802 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22803 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22804
22805 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22806 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22807 {
22808 /* If it's a .thumb_func, declare it as so,
22809 otherwise tag label as .code 16. */
22810 if (THUMB_IS_FUNC (sym))
22811 elf_sym->internal_elf_sym.st_target_internal
22812 = ST_BRANCH_TO_THUMB;
22813 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22814 elf_sym->internal_elf_sym.st_info =
22815 ELF_ST_INFO (bind, STT_ARM_16BIT);
22816 }
22817 }
22818 }
22819
22820 /* Remove any overlapping mapping symbols generated by alignment frags. */
22821 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22822 /* Now do generic ELF adjustments. */
22823 elf_adjust_symtab ();
22824 #endif
22825 }
22826
22827 /* MD interface: Initialization. */
22828
22829 static void
22830 set_constant_flonums (void)
22831 {
22832 int i;
22833
22834 for (i = 0; i < NUM_FLOAT_VALS; i++)
22835 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22836 abort ();
22837 }
22838
22839 /* Auto-select Thumb mode if it's the only available instruction set for the
22840 given architecture. */
22841
22842 static void
22843 autoselect_thumb_from_cpu_variant (void)
22844 {
22845 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22846 opcode_select (16);
22847 }
22848
22849 void
22850 md_begin (void)
22851 {
22852 unsigned mach;
22853 unsigned int i;
22854
22855 if ( (arm_ops_hsh = hash_new ()) == NULL
22856 || (arm_cond_hsh = hash_new ()) == NULL
22857 || (arm_shift_hsh = hash_new ()) == NULL
22858 || (arm_psr_hsh = hash_new ()) == NULL
22859 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22860 || (arm_reg_hsh = hash_new ()) == NULL
22861 || (arm_reloc_hsh = hash_new ()) == NULL
22862 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22863 as_fatal (_("virtual memory exhausted"));
22864
22865 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22866 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22867 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22868 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22869 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22870 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22871 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22872 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22873 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22874 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22875 (void *) (v7m_psrs + i));
22876 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22877 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22878 for (i = 0;
22879 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22880 i++)
22881 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22882 (void *) (barrier_opt_names + i));
22883 #ifdef OBJ_ELF
22884 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22885 {
22886 struct reloc_entry * entry = reloc_names + i;
22887
22888 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22889 /* This makes encode_branch() use the EABI versions of this relocation. */
22890 entry->reloc = BFD_RELOC_UNUSED;
22891
22892 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22893 }
22894 #endif
22895
22896 set_constant_flonums ();
22897
22898 /* Set the cpu variant based on the command-line options. We prefer
22899 -mcpu= over -march= if both are set (as for GCC); and we prefer
22900 -mfpu= over any other way of setting the floating point unit.
22901 Use of legacy options with new options are faulted. */
22902 if (legacy_cpu)
22903 {
22904 if (mcpu_cpu_opt || march_cpu_opt)
22905 as_bad (_("use of old and new-style options to set CPU type"));
22906
22907 mcpu_cpu_opt = legacy_cpu;
22908 }
22909 else if (!mcpu_cpu_opt)
22910 mcpu_cpu_opt = march_cpu_opt;
22911
22912 if (legacy_fpu)
22913 {
22914 if (mfpu_opt)
22915 as_bad (_("use of old and new-style options to set FPU type"));
22916
22917 mfpu_opt = legacy_fpu;
22918 }
22919 else if (!mfpu_opt)
22920 {
22921 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22922 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22923 /* Some environments specify a default FPU. If they don't, infer it
22924 from the processor. */
22925 if (mcpu_fpu_opt)
22926 mfpu_opt = mcpu_fpu_opt;
22927 else
22928 mfpu_opt = march_fpu_opt;
22929 #else
22930 mfpu_opt = &fpu_default;
22931 #endif
22932 }
22933
22934 if (!mfpu_opt)
22935 {
22936 if (mcpu_cpu_opt != NULL)
22937 mfpu_opt = &fpu_default;
22938 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22939 mfpu_opt = &fpu_arch_vfp_v2;
22940 else
22941 mfpu_opt = &fpu_arch_fpa;
22942 }
22943
22944 #ifdef CPU_DEFAULT
22945 if (!mcpu_cpu_opt)
22946 {
22947 mcpu_cpu_opt = &cpu_default;
22948 selected_cpu = cpu_default;
22949 }
22950 #else
22951 if (mcpu_cpu_opt)
22952 selected_cpu = *mcpu_cpu_opt;
22953 else
22954 mcpu_cpu_opt = &arm_arch_any;
22955 #endif
22956
22957 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22958
22959 autoselect_thumb_from_cpu_variant ();
22960
22961 arm_arch_used = thumb_arch_used = arm_arch_none;
22962
22963 #if defined OBJ_COFF || defined OBJ_ELF
22964 {
22965 unsigned int flags = 0;
22966
22967 #if defined OBJ_ELF
22968 flags = meabi_flags;
22969
22970 switch (meabi_flags)
22971 {
22972 case EF_ARM_EABI_UNKNOWN:
22973 #endif
22974 /* Set the flags in the private structure. */
22975 if (uses_apcs_26) flags |= F_APCS26;
22976 if (support_interwork) flags |= F_INTERWORK;
22977 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22978 if (pic_code) flags |= F_PIC;
22979 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22980 flags |= F_SOFT_FLOAT;
22981
22982 switch (mfloat_abi_opt)
22983 {
22984 case ARM_FLOAT_ABI_SOFT:
22985 case ARM_FLOAT_ABI_SOFTFP:
22986 flags |= F_SOFT_FLOAT;
22987 break;
22988
22989 case ARM_FLOAT_ABI_HARD:
22990 if (flags & F_SOFT_FLOAT)
22991 as_bad (_("hard-float conflicts with specified fpu"));
22992 break;
22993 }
22994
22995 /* Using pure-endian doubles (even if soft-float). */
22996 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22997 flags |= F_VFP_FLOAT;
22998
22999 #if defined OBJ_ELF
23000 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
23001 flags |= EF_ARM_MAVERICK_FLOAT;
23002 break;
23003
23004 case EF_ARM_EABI_VER4:
23005 case EF_ARM_EABI_VER5:
23006 /* No additional flags to set. */
23007 break;
23008
23009 default:
23010 abort ();
23011 }
23012 #endif
23013 bfd_set_private_flags (stdoutput, flags);
23014
23015 /* We have run out flags in the COFF header to encode the
23016 status of ATPCS support, so instead we create a dummy,
23017 empty, debug section called .arm.atpcs. */
23018 if (atpcs)
23019 {
23020 asection * sec;
23021
23022 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23023
23024 if (sec != NULL)
23025 {
23026 bfd_set_section_flags
23027 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23028 bfd_set_section_size (stdoutput, sec, 0);
23029 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23030 }
23031 }
23032 }
23033 #endif
23034
23035 /* Record the CPU type as well. */
23036 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23037 mach = bfd_mach_arm_iWMMXt2;
23038 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
23039 mach = bfd_mach_arm_iWMMXt;
23040 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
23041 mach = bfd_mach_arm_XScale;
23042 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
23043 mach = bfd_mach_arm_ep9312;
23044 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23045 mach = bfd_mach_arm_5TE;
23046 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23047 {
23048 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23049 mach = bfd_mach_arm_5T;
23050 else
23051 mach = bfd_mach_arm_5;
23052 }
23053 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23054 {
23055 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23056 mach = bfd_mach_arm_4T;
23057 else
23058 mach = bfd_mach_arm_4;
23059 }
23060 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23061 mach = bfd_mach_arm_3M;
23062 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23063 mach = bfd_mach_arm_3;
23064 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23065 mach = bfd_mach_arm_2a;
23066 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23067 mach = bfd_mach_arm_2;
23068 else
23069 mach = bfd_mach_arm_unknown;
23070
23071 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23072 }
23073
23074 /* Command line processing. */
23075
23076 /* md_parse_option
23077 Invocation line includes a switch not recognized by the base assembler.
23078 See if it's a processor-specific option.
23079
23080 This routine is somewhat complicated by the need for backwards
23081 compatibility (since older releases of gcc can't be changed).
23082 The new options try to make the interface as compatible as
23083 possible with GCC.
23084
23085 New options (supported) are:
23086
23087 -mcpu=<cpu name> Assemble for selected processor
23088 -march=<architecture name> Assemble for selected architecture
23089 -mfpu=<fpu architecture> Assemble for selected FPU.
23090 -EB/-mbig-endian Big-endian
23091 -EL/-mlittle-endian Little-endian
23092 -k Generate PIC code
23093 -mthumb Start in Thumb mode
23094 -mthumb-interwork Code supports ARM/Thumb interworking
23095
23096 -m[no-]warn-deprecated Warn about deprecated features
23097
23098 For now we will also provide support for:
23099
23100 -mapcs-32 32-bit Program counter
23101 -mapcs-26 26-bit Program counter
23102 -macps-float Floats passed in FP registers
23103 -mapcs-reentrant Reentrant code
23104 -matpcs
23105 (sometime these will probably be replaced with -mapcs=<list of options>
23106 and -matpcs=<list of options>)
23107
23108 The remaining options are only supported for back-wards compatibility.
23109 Cpu variants, the arm part is optional:
23110 -m[arm]1 Currently not supported.
23111 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23112 -m[arm]3 Arm 3 processor
23113 -m[arm]6[xx], Arm 6 processors
23114 -m[arm]7[xx][t][[d]m] Arm 7 processors
23115 -m[arm]8[10] Arm 8 processors
23116 -m[arm]9[20][tdmi] Arm 9 processors
23117 -mstrongarm[110[0]] StrongARM processors
23118 -mxscale XScale processors
23119 -m[arm]v[2345[t[e]]] Arm architectures
23120 -mall All (except the ARM1)
23121 FP variants:
23122 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23123 -mfpe-old (No float load/store multiples)
23124 -mvfpxd VFP Single precision
23125 -mvfp All VFP
23126 -mno-fpu Disable all floating point instructions
23127
23128 The following CPU names are recognized:
23129 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23130 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23131 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23132 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23133 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23134 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23135 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23136
23137 */
23138
23139 const char * md_shortopts = "m:k";
23140
23141 #ifdef ARM_BI_ENDIAN
23142 #define OPTION_EB (OPTION_MD_BASE + 0)
23143 #define OPTION_EL (OPTION_MD_BASE + 1)
23144 #else
23145 #if TARGET_BYTES_BIG_ENDIAN
23146 #define OPTION_EB (OPTION_MD_BASE + 0)
23147 #else
23148 #define OPTION_EL (OPTION_MD_BASE + 1)
23149 #endif
23150 #endif
23151 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23152
23153 struct option md_longopts[] =
23154 {
23155 #ifdef OPTION_EB
23156 {"EB", no_argument, NULL, OPTION_EB},
23157 #endif
23158 #ifdef OPTION_EL
23159 {"EL", no_argument, NULL, OPTION_EL},
23160 #endif
23161 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23162 {NULL, no_argument, NULL, 0}
23163 };
23164
23165 size_t md_longopts_size = sizeof (md_longopts);
23166
23167 struct arm_option_table
23168 {
23169 char *option; /* Option name to match. */
23170 char *help; /* Help information. */
23171 int *var; /* Variable to change. */
23172 int value; /* What to change it to. */
23173 char *deprecated; /* If non-null, print this message. */
23174 };
23175
23176 struct arm_option_table arm_opts[] =
23177 {
23178 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23179 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23180 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23181 &support_interwork, 1, NULL},
23182 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23183 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23184 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23185 1, NULL},
23186 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23187 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23188 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23189 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23190 NULL},
23191
23192 /* These are recognized by the assembler, but have no affect on code. */
23193 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23194 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23195
23196 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23197 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23198 &warn_on_deprecated, 0, NULL},
23199 {NULL, NULL, NULL, 0, NULL}
23200 };
23201
23202 struct arm_legacy_option_table
23203 {
23204 char *option; /* Option name to match. */
23205 const arm_feature_set **var; /* Variable to change. */
23206 const arm_feature_set value; /* What to change it to. */
23207 char *deprecated; /* If non-null, print this message. */
23208 };
23209
23210 const struct arm_legacy_option_table arm_legacy_opts[] =
23211 {
23212 /* DON'T add any new processors to this list -- we want the whole list
23213 to go away... Add them to the processors table instead. */
23214 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23215 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23216 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23217 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23218 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23219 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23220 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23221 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23222 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23223 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23224 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23225 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23226 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23227 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23228 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23229 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23230 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23231 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23232 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23233 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23234 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23235 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23236 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23237 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23238 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23239 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23240 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23241 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23242 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23243 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23244 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23245 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23246 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23247 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23248 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23249 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23250 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23251 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23252 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23253 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23254 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23255 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23256 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23257 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23258 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23259 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23260 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23261 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23262 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23263 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23264 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23265 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23266 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23267 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23268 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23269 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23270 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23271 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23272 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23273 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23274 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23275 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23276 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23277 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23278 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23279 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23280 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23281 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23282 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23283 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23284 N_("use -mcpu=strongarm110")},
23285 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23286 N_("use -mcpu=strongarm1100")},
23287 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23288 N_("use -mcpu=strongarm1110")},
23289 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23290 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23291 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23292
23293 /* Architecture variants -- don't add any more to this list either. */
23294 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23295 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23296 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23297 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23298 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23299 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23300 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23301 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23302 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23303 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23304 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23305 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23306 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23307 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23308 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23309 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23310 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23311 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23312
23313 /* Floating point variants -- don't add any more to this list either. */
23314 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23315 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23316 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23317 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23318 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23319
23320 {NULL, NULL, ARM_ARCH_NONE, NULL}
23321 };
23322
23323 struct arm_cpu_option_table
23324 {
23325 char *name;
23326 size_t name_len;
23327 const arm_feature_set value;
23328 /* For some CPUs we assume an FPU unless the user explicitly sets
23329 -mfpu=... */
23330 const arm_feature_set default_fpu;
23331 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23332 case. */
23333 const char *canonical_name;
23334 };
23335
23336 /* This list should, at a minimum, contain all the cpu names
23337 recognized by GCC. */
23338 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23339 static const struct arm_cpu_option_table arm_cpus[] =
23340 {
23341 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23342 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23343 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23344 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23345 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23346 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23347 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23348 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23349 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23350 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23351 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23352 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23353 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23354 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23355 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23356 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23357 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23358 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23359 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23360 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23361 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23362 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23363 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23364 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23365 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23366 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23367 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23368 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23369 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23370 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23371 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23372 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23373 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23374 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23375 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23376 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23377 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23378 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23379 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23380 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23381 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23382 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23383 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23384 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23385 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23386 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23387 /* For V5 or later processors we default to using VFP; but the user
23388 should really set the FPU type explicitly. */
23389 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23390 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23391 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23392 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23393 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23394 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23395 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23396 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23397 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23398 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23399 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23400 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23401 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23402 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23403 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23404 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23405 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23406 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23407 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23408 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23409 "ARM1026EJ-S"),
23410 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23411 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23412 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23413 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23414 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23415 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23416 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23417 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23418 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23419 "ARM1136JF-S"),
23420 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23421 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23422 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23423 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23424 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23425 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23426 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23427 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23428 FPU_NONE, "Cortex-A5"),
23429 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23430 FPU_ARCH_NEON_VFP_V4,
23431 "Cortex-A7"),
23432 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23433 ARM_FEATURE (0, FPU_VFP_V3
23434 | FPU_NEON_EXT_V1),
23435 "Cortex-A8"),
23436 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23437 ARM_FEATURE (0, FPU_VFP_V3
23438 | FPU_NEON_EXT_V1),
23439 "Cortex-A9"),
23440 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23441 FPU_ARCH_NEON_VFP_V4,
23442 "Cortex-A15"),
23443 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23444 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23445 "Cortex-R4F"),
23446 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23447 FPU_NONE, "Cortex-R5"),
23448 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23449 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23450 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23451 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23452 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23453 /* ??? XSCALE is really an architecture. */
23454 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23455 /* ??? iwmmxt is not a processor. */
23456 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23457 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23458 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23459 /* Maverick */
23460 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23461 FPU_ARCH_MAVERICK,
23462 "ARM920T"),
23463 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23464 };
23465 #undef ARM_CPU_OPT
23466
23467 struct arm_arch_option_table
23468 {
23469 char *name;
23470 size_t name_len;
23471 const arm_feature_set value;
23472 const arm_feature_set default_fpu;
23473 };
23474
23475 /* This list should, at a minimum, contain all the architecture names
23476 recognized by GCC. */
23477 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23478 static const struct arm_arch_option_table arm_archs[] =
23479 {
23480 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23481 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23482 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23483 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23484 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23485 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23486 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23487 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23488 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23489 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23490 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23491 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23492 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23493 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23494 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23495 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23496 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23497 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23498 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23499 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23500 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23501 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23502 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23503 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23504 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23505 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23506 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23507 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23508 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23509 /* The official spelling of the ARMv7 profile variants is the dashed form.
23510 Accept the non-dashed form for compatibility with old toolchains. */
23511 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23512 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23513 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23514 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23515 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23516 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23517 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23518 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23519 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23520 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23521 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23522 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23523 };
23524 #undef ARM_ARCH_OPT
23525
23526 /* ISA extensions in the co-processor and main instruction set space. */
23527 struct arm_option_extension_value_table
23528 {
23529 char *name;
23530 size_t name_len;
23531 const arm_feature_set value;
23532 const arm_feature_set allowed_archs;
23533 };
23534
23535 /* The following table must be in alphabetical order with a NULL last entry.
23536 */
23537 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23538 static const struct arm_option_extension_value_table arm_extensions[] =
23539 {
23540 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23541 ARM_FEATURE (ARM_EXT_V8, 0)),
23542 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23543 ARM_FEATURE (ARM_EXT_V8, 0)),
23544 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23545 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23546 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23547 ARM_EXT_OPT ("iwmmxt2",
23548 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23549 ARM_EXT_OPT ("maverick",
23550 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23551 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23552 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23553 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23554 ARM_FEATURE (ARM_EXT_V8, 0)),
23555 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23556 ARM_FEATURE (ARM_EXT_V6M, 0)),
23557 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23558 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23559 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23560 | ARM_EXT_DIV, 0),
23561 ARM_FEATURE (ARM_EXT_V7A, 0)),
23562 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23563 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23564 };
23565 #undef ARM_EXT_OPT
23566
23567 /* ISA floating-point and Advanced SIMD extensions. */
23568 struct arm_option_fpu_value_table
23569 {
23570 char *name;
23571 const arm_feature_set value;
23572 };
23573
23574 /* This list should, at a minimum, contain all the fpu names
23575 recognized by GCC. */
23576 static const struct arm_option_fpu_value_table arm_fpus[] =
23577 {
23578 {"softfpa", FPU_NONE},
23579 {"fpe", FPU_ARCH_FPE},
23580 {"fpe2", FPU_ARCH_FPE},
23581 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23582 {"fpa", FPU_ARCH_FPA},
23583 {"fpa10", FPU_ARCH_FPA},
23584 {"fpa11", FPU_ARCH_FPA},
23585 {"arm7500fe", FPU_ARCH_FPA},
23586 {"softvfp", FPU_ARCH_VFP},
23587 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23588 {"vfp", FPU_ARCH_VFP_V2},
23589 {"vfp9", FPU_ARCH_VFP_V2},
23590 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23591 {"vfp10", FPU_ARCH_VFP_V2},
23592 {"vfp10-r0", FPU_ARCH_VFP_V1},
23593 {"vfpxd", FPU_ARCH_VFP_V1xD},
23594 {"vfpv2", FPU_ARCH_VFP_V2},
23595 {"vfpv3", FPU_ARCH_VFP_V3},
23596 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23597 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23598 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23599 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23600 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23601 {"arm1020t", FPU_ARCH_VFP_V1},
23602 {"arm1020e", FPU_ARCH_VFP_V2},
23603 {"arm1136jfs", FPU_ARCH_VFP_V2},
23604 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23605 {"maverick", FPU_ARCH_MAVERICK},
23606 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23607 {"neon-fp16", FPU_ARCH_NEON_FP16},
23608 {"vfpv4", FPU_ARCH_VFP_V4},
23609 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23610 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23611 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23612 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23613 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23614 {"crypto-neon-fp-armv8",
23615 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23616 {NULL, ARM_ARCH_NONE}
23617 };
23618
23619 struct arm_option_value_table
23620 {
23621 char *name;
23622 long value;
23623 };
23624
23625 static const struct arm_option_value_table arm_float_abis[] =
23626 {
23627 {"hard", ARM_FLOAT_ABI_HARD},
23628 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23629 {"soft", ARM_FLOAT_ABI_SOFT},
23630 {NULL, 0}
23631 };
23632
23633 #ifdef OBJ_ELF
23634 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23635 static const struct arm_option_value_table arm_eabis[] =
23636 {
23637 {"gnu", EF_ARM_EABI_UNKNOWN},
23638 {"4", EF_ARM_EABI_VER4},
23639 {"5", EF_ARM_EABI_VER5},
23640 {NULL, 0}
23641 };
23642 #endif
23643
23644 struct arm_long_option_table
23645 {
23646 char * option; /* Substring to match. */
23647 char * help; /* Help information. */
23648 int (* func) (char * subopt); /* Function to decode sub-option. */
23649 char * deprecated; /* If non-null, print this message. */
23650 };
23651
23652 static bfd_boolean
23653 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23654 {
23655 arm_feature_set *ext_set = (arm_feature_set *)
23656 xmalloc (sizeof (arm_feature_set));
23657
23658 /* We insist on extensions being specified in alphabetical order, and with
23659 extensions being added before being removed. We achieve this by having
23660 the global ARM_EXTENSIONS table in alphabetical order, and using the
23661 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23662 or removing it (0) and only allowing it to change in the order
23663 -1 -> 1 -> 0. */
23664 const struct arm_option_extension_value_table * opt = NULL;
23665 int adding_value = -1;
23666
23667 /* Copy the feature set, so that we can modify it. */
23668 *ext_set = **opt_p;
23669 *opt_p = ext_set;
23670
23671 while (str != NULL && *str != 0)
23672 {
23673 char *ext;
23674 size_t len;
23675
23676 if (*str != '+')
23677 {
23678 as_bad (_("invalid architectural extension"));
23679 return FALSE;
23680 }
23681
23682 str++;
23683 ext = strchr (str, '+');
23684
23685 if (ext != NULL)
23686 len = ext - str;
23687 else
23688 len = strlen (str);
23689
23690 if (len >= 2 && strncmp (str, "no", 2) == 0)
23691 {
23692 if (adding_value != 0)
23693 {
23694 adding_value = 0;
23695 opt = arm_extensions;
23696 }
23697
23698 len -= 2;
23699 str += 2;
23700 }
23701 else if (len > 0)
23702 {
23703 if (adding_value == -1)
23704 {
23705 adding_value = 1;
23706 opt = arm_extensions;
23707 }
23708 else if (adding_value != 1)
23709 {
23710 as_bad (_("must specify extensions to add before specifying "
23711 "those to remove"));
23712 return FALSE;
23713 }
23714 }
23715
23716 if (len == 0)
23717 {
23718 as_bad (_("missing architectural extension"));
23719 return FALSE;
23720 }
23721
23722 gas_assert (adding_value != -1);
23723 gas_assert (opt != NULL);
23724
23725 /* Scan over the options table trying to find an exact match. */
23726 for (; opt->name != NULL; opt++)
23727 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23728 {
23729 /* Check we can apply the extension to this architecture. */
23730 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23731 {
23732 as_bad (_("extension does not apply to the base architecture"));
23733 return FALSE;
23734 }
23735
23736 /* Add or remove the extension. */
23737 if (adding_value)
23738 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23739 else
23740 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23741
23742 break;
23743 }
23744
23745 if (opt->name == NULL)
23746 {
23747 /* Did we fail to find an extension because it wasn't specified in
23748 alphabetical order, or because it does not exist? */
23749
23750 for (opt = arm_extensions; opt->name != NULL; opt++)
23751 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23752 break;
23753
23754 if (opt->name == NULL)
23755 as_bad (_("unknown architectural extension `%s'"), str);
23756 else
23757 as_bad (_("architectural extensions must be specified in "
23758 "alphabetical order"));
23759
23760 return FALSE;
23761 }
23762 else
23763 {
23764 /* We should skip the extension we've just matched the next time
23765 round. */
23766 opt++;
23767 }
23768
23769 str = ext;
23770 };
23771
23772 return TRUE;
23773 }
23774
23775 static bfd_boolean
23776 arm_parse_cpu (char *str)
23777 {
23778 const struct arm_cpu_option_table *opt;
23779 char *ext = strchr (str, '+');
23780 size_t len;
23781
23782 if (ext != NULL)
23783 len = ext - str;
23784 else
23785 len = strlen (str);
23786
23787 if (len == 0)
23788 {
23789 as_bad (_("missing cpu name `%s'"), str);
23790 return FALSE;
23791 }
23792
23793 for (opt = arm_cpus; opt->name != NULL; opt++)
23794 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23795 {
23796 mcpu_cpu_opt = &opt->value;
23797 mcpu_fpu_opt = &opt->default_fpu;
23798 if (opt->canonical_name)
23799 strcpy (selected_cpu_name, opt->canonical_name);
23800 else
23801 {
23802 size_t i;
23803
23804 for (i = 0; i < len; i++)
23805 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23806 selected_cpu_name[i] = 0;
23807 }
23808
23809 if (ext != NULL)
23810 return arm_parse_extension (ext, &mcpu_cpu_opt);
23811
23812 return TRUE;
23813 }
23814
23815 as_bad (_("unknown cpu `%s'"), str);
23816 return FALSE;
23817 }
23818
23819 static bfd_boolean
23820 arm_parse_arch (char *str)
23821 {
23822 const struct arm_arch_option_table *opt;
23823 char *ext = strchr (str, '+');
23824 size_t len;
23825
23826 if (ext != NULL)
23827 len = ext - str;
23828 else
23829 len = strlen (str);
23830
23831 if (len == 0)
23832 {
23833 as_bad (_("missing architecture name `%s'"), str);
23834 return FALSE;
23835 }
23836
23837 for (opt = arm_archs; opt->name != NULL; opt++)
23838 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23839 {
23840 march_cpu_opt = &opt->value;
23841 march_fpu_opt = &opt->default_fpu;
23842 strcpy (selected_cpu_name, opt->name);
23843
23844 if (ext != NULL)
23845 return arm_parse_extension (ext, &march_cpu_opt);
23846
23847 return TRUE;
23848 }
23849
23850 as_bad (_("unknown architecture `%s'\n"), str);
23851 return FALSE;
23852 }
23853
23854 static bfd_boolean
23855 arm_parse_fpu (char * str)
23856 {
23857 const struct arm_option_fpu_value_table * opt;
23858
23859 for (opt = arm_fpus; opt->name != NULL; opt++)
23860 if (streq (opt->name, str))
23861 {
23862 mfpu_opt = &opt->value;
23863 return TRUE;
23864 }
23865
23866 as_bad (_("unknown floating point format `%s'\n"), str);
23867 return FALSE;
23868 }
23869
23870 static bfd_boolean
23871 arm_parse_float_abi (char * str)
23872 {
23873 const struct arm_option_value_table * opt;
23874
23875 for (opt = arm_float_abis; opt->name != NULL; opt++)
23876 if (streq (opt->name, str))
23877 {
23878 mfloat_abi_opt = opt->value;
23879 return TRUE;
23880 }
23881
23882 as_bad (_("unknown floating point abi `%s'\n"), str);
23883 return FALSE;
23884 }
23885
23886 #ifdef OBJ_ELF
23887 static bfd_boolean
23888 arm_parse_eabi (char * str)
23889 {
23890 const struct arm_option_value_table *opt;
23891
23892 for (opt = arm_eabis; opt->name != NULL; opt++)
23893 if (streq (opt->name, str))
23894 {
23895 meabi_flags = opt->value;
23896 return TRUE;
23897 }
23898 as_bad (_("unknown EABI `%s'\n"), str);
23899 return FALSE;
23900 }
23901 #endif
23902
23903 static bfd_boolean
23904 arm_parse_it_mode (char * str)
23905 {
23906 bfd_boolean ret = TRUE;
23907
23908 if (streq ("arm", str))
23909 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23910 else if (streq ("thumb", str))
23911 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23912 else if (streq ("always", str))
23913 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23914 else if (streq ("never", str))
23915 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23916 else
23917 {
23918 as_bad (_("unknown implicit IT mode `%s', should be "\
23919 "arm, thumb, always, or never."), str);
23920 ret = FALSE;
23921 }
23922
23923 return ret;
23924 }
23925
23926 struct arm_long_option_table arm_long_opts[] =
23927 {
23928 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23929 arm_parse_cpu, NULL},
23930 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23931 arm_parse_arch, NULL},
23932 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23933 arm_parse_fpu, NULL},
23934 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23935 arm_parse_float_abi, NULL},
23936 #ifdef OBJ_ELF
23937 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23938 arm_parse_eabi, NULL},
23939 #endif
23940 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23941 arm_parse_it_mode, NULL},
23942 {NULL, NULL, 0, NULL}
23943 };
23944
23945 int
23946 md_parse_option (int c, char * arg)
23947 {
23948 struct arm_option_table *opt;
23949 const struct arm_legacy_option_table *fopt;
23950 struct arm_long_option_table *lopt;
23951
23952 switch (c)
23953 {
23954 #ifdef OPTION_EB
23955 case OPTION_EB:
23956 target_big_endian = 1;
23957 break;
23958 #endif
23959
23960 #ifdef OPTION_EL
23961 case OPTION_EL:
23962 target_big_endian = 0;
23963 break;
23964 #endif
23965
23966 case OPTION_FIX_V4BX:
23967 fix_v4bx = TRUE;
23968 break;
23969
23970 case 'a':
23971 /* Listing option. Just ignore these, we don't support additional
23972 ones. */
23973 return 0;
23974
23975 default:
23976 for (opt = arm_opts; opt->option != NULL; opt++)
23977 {
23978 if (c == opt->option[0]
23979 && ((arg == NULL && opt->option[1] == 0)
23980 || streq (arg, opt->option + 1)))
23981 {
23982 /* If the option is deprecated, tell the user. */
23983 if (warn_on_deprecated && opt->deprecated != NULL)
23984 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23985 arg ? arg : "", _(opt->deprecated));
23986
23987 if (opt->var != NULL)
23988 *opt->var = opt->value;
23989
23990 return 1;
23991 }
23992 }
23993
23994 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23995 {
23996 if (c == fopt->option[0]
23997 && ((arg == NULL && fopt->option[1] == 0)
23998 || streq (arg, fopt->option + 1)))
23999 {
24000 /* If the option is deprecated, tell the user. */
24001 if (warn_on_deprecated && fopt->deprecated != NULL)
24002 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24003 arg ? arg : "", _(fopt->deprecated));
24004
24005 if (fopt->var != NULL)
24006 *fopt->var = &fopt->value;
24007
24008 return 1;
24009 }
24010 }
24011
24012 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24013 {
24014 /* These options are expected to have an argument. */
24015 if (c == lopt->option[0]
24016 && arg != NULL
24017 && strncmp (arg, lopt->option + 1,
24018 strlen (lopt->option + 1)) == 0)
24019 {
24020 /* If the option is deprecated, tell the user. */
24021 if (warn_on_deprecated && lopt->deprecated != NULL)
24022 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24023 _(lopt->deprecated));
24024
24025 /* Call the sup-option parser. */
24026 return lopt->func (arg + strlen (lopt->option) - 1);
24027 }
24028 }
24029
24030 return 0;
24031 }
24032
24033 return 1;
24034 }
24035
24036 void
24037 md_show_usage (FILE * fp)
24038 {
24039 struct arm_option_table *opt;
24040 struct arm_long_option_table *lopt;
24041
24042 fprintf (fp, _(" ARM-specific assembler options:\n"));
24043
24044 for (opt = arm_opts; opt->option != NULL; opt++)
24045 if (opt->help != NULL)
24046 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24047
24048 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24049 if (lopt->help != NULL)
24050 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24051
24052 #ifdef OPTION_EB
24053 fprintf (fp, _("\
24054 -EB assemble code for a big-endian cpu\n"));
24055 #endif
24056
24057 #ifdef OPTION_EL
24058 fprintf (fp, _("\
24059 -EL assemble code for a little-endian cpu\n"));
24060 #endif
24061
24062 fprintf (fp, _("\
24063 --fix-v4bx Allow BX in ARMv4 code\n"));
24064 }
24065
24066
24067 #ifdef OBJ_ELF
24068 typedef struct
24069 {
24070 int val;
24071 arm_feature_set flags;
24072 } cpu_arch_ver_table;
24073
24074 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24075 least features first. */
24076 static const cpu_arch_ver_table cpu_arch_ver[] =
24077 {
24078 {1, ARM_ARCH_V4},
24079 {2, ARM_ARCH_V4T},
24080 {3, ARM_ARCH_V5},
24081 {3, ARM_ARCH_V5T},
24082 {4, ARM_ARCH_V5TE},
24083 {5, ARM_ARCH_V5TEJ},
24084 {6, ARM_ARCH_V6},
24085 {9, ARM_ARCH_V6K},
24086 {7, ARM_ARCH_V6Z},
24087 {11, ARM_ARCH_V6M},
24088 {12, ARM_ARCH_V6SM},
24089 {8, ARM_ARCH_V6T2},
24090 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24091 {10, ARM_ARCH_V7R},
24092 {10, ARM_ARCH_V7M},
24093 {14, ARM_ARCH_V8A},
24094 {0, ARM_ARCH_NONE}
24095 };
24096
24097 /* Set an attribute if it has not already been set by the user. */
24098 static void
24099 aeabi_set_attribute_int (int tag, int value)
24100 {
24101 if (tag < 1
24102 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24103 || !attributes_set_explicitly[tag])
24104 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24105 }
24106
24107 static void
24108 aeabi_set_attribute_string (int tag, const char *value)
24109 {
24110 if (tag < 1
24111 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24112 || !attributes_set_explicitly[tag])
24113 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24114 }
24115
24116 /* Set the public EABI object attributes. */
24117 static void
24118 aeabi_set_public_attributes (void)
24119 {
24120 int arch;
24121 char profile;
24122 int virt_sec = 0;
24123 int fp16_optional = 0;
24124 arm_feature_set flags;
24125 arm_feature_set tmp;
24126 const cpu_arch_ver_table *p;
24127
24128 /* Choose the architecture based on the capabilities of the requested cpu
24129 (if any) and/or the instructions actually used. */
24130 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24131 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24132 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24133
24134 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24135 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24136
24137 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24138 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24139
24140 /* Allow the user to override the reported architecture. */
24141 if (object_arch)
24142 {
24143 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24144 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24145 }
24146
24147 /* We need to make sure that the attributes do not identify us as v6S-M
24148 when the only v6S-M feature in use is the Operating System Extensions. */
24149 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24150 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24151 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24152
24153 tmp = flags;
24154 arch = 0;
24155 for (p = cpu_arch_ver; p->val; p++)
24156 {
24157 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24158 {
24159 arch = p->val;
24160 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24161 }
24162 }
24163
24164 /* The table lookup above finds the last architecture to contribute
24165 a new feature. Unfortunately, Tag13 is a subset of the union of
24166 v6T2 and v7-M, so it is never seen as contributing a new feature.
24167 We can not search for the last entry which is entirely used,
24168 because if no CPU is specified we build up only those flags
24169 actually used. Perhaps we should separate out the specified
24170 and implicit cases. Avoid taking this path for -march=all by
24171 checking for contradictory v7-A / v7-M features. */
24172 if (arch == 10
24173 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24174 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24175 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24176 arch = 13;
24177
24178 /* Tag_CPU_name. */
24179 if (selected_cpu_name[0])
24180 {
24181 char *q;
24182
24183 q = selected_cpu_name;
24184 if (strncmp (q, "armv", 4) == 0)
24185 {
24186 int i;
24187
24188 q += 4;
24189 for (i = 0; q[i]; i++)
24190 q[i] = TOUPPER (q[i]);
24191 }
24192 aeabi_set_attribute_string (Tag_CPU_name, q);
24193 }
24194
24195 /* Tag_CPU_arch. */
24196 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24197
24198 /* Tag_CPU_arch_profile. */
24199 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24200 profile = 'A';
24201 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24202 profile = 'R';
24203 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24204 profile = 'M';
24205 else
24206 profile = '\0';
24207
24208 if (profile != '\0')
24209 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24210
24211 /* Tag_ARM_ISA_use. */
24212 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24213 || arch == 0)
24214 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24215
24216 /* Tag_THUMB_ISA_use. */
24217 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24218 || arch == 0)
24219 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24220 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24221
24222 /* Tag_VFP_arch. */
24223 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24224 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24225 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24226 aeabi_set_attribute_int (Tag_VFP_arch,
24227 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24228 ? 5 : 6);
24229 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24230 {
24231 fp16_optional = 1;
24232 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24233 }
24234 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24235 {
24236 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24237 fp16_optional = 1;
24238 }
24239 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24240 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24241 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24242 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24243 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24244
24245 /* Tag_ABI_HardFP_use. */
24246 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24247 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24248 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24249
24250 /* Tag_WMMX_arch. */
24251 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24252 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24253 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24254 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24255
24256 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24257 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24258 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24259 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24260 {
24261 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24262 {
24263 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24264 }
24265 else
24266 {
24267 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24268 fp16_optional = 1;
24269 }
24270 }
24271
24272 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24273 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24274 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24275
24276 /* Tag_DIV_use.
24277
24278 We set Tag_DIV_use to two when integer divide instructions have been used
24279 in ARM state, or when Thumb integer divide instructions have been used,
24280 but we have no architecture profile set, nor have we any ARM instructions.
24281
24282 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24283 architecture.
24284
24285 For new architectures we will have to check these tests. */
24286 gas_assert (arch <= TAG_CPU_ARCH_V8);
24287 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24288 aeabi_set_attribute_int (Tag_DIV_use, 0);
24289 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24290 || (profile == '\0'
24291 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24292 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24293 aeabi_set_attribute_int (Tag_DIV_use, 2);
24294
24295 /* Tag_MP_extension_use. */
24296 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24297 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24298
24299 /* Tag Virtualization_use. */
24300 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24301 virt_sec |= 1;
24302 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24303 virt_sec |= 2;
24304 if (virt_sec != 0)
24305 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24306 }
24307
24308 /* Add the default contents for the .ARM.attributes section. */
24309 void
24310 arm_md_end (void)
24311 {
24312 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24313 return;
24314
24315 aeabi_set_public_attributes ();
24316 }
24317 #endif /* OBJ_ELF */
24318
24319
24320 /* Parse a .cpu directive. */
24321
24322 static void
24323 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24324 {
24325 const struct arm_cpu_option_table *opt;
24326 char *name;
24327 char saved_char;
24328
24329 name = input_line_pointer;
24330 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24331 input_line_pointer++;
24332 saved_char = *input_line_pointer;
24333 *input_line_pointer = 0;
24334
24335 /* Skip the first "all" entry. */
24336 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24337 if (streq (opt->name, name))
24338 {
24339 mcpu_cpu_opt = &opt->value;
24340 selected_cpu = opt->value;
24341 if (opt->canonical_name)
24342 strcpy (selected_cpu_name, opt->canonical_name);
24343 else
24344 {
24345 int i;
24346 for (i = 0; opt->name[i]; i++)
24347 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24348
24349 selected_cpu_name[i] = 0;
24350 }
24351 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24352 *input_line_pointer = saved_char;
24353 demand_empty_rest_of_line ();
24354 return;
24355 }
24356 as_bad (_("unknown cpu `%s'"), name);
24357 *input_line_pointer = saved_char;
24358 ignore_rest_of_line ();
24359 }
24360
24361
24362 /* Parse a .arch directive. */
24363
24364 static void
24365 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24366 {
24367 const struct arm_arch_option_table *opt;
24368 char saved_char;
24369 char *name;
24370
24371 name = input_line_pointer;
24372 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24373 input_line_pointer++;
24374 saved_char = *input_line_pointer;
24375 *input_line_pointer = 0;
24376
24377 /* Skip the first "all" entry. */
24378 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24379 if (streq (opt->name, name))
24380 {
24381 mcpu_cpu_opt = &opt->value;
24382 selected_cpu = opt->value;
24383 strcpy (selected_cpu_name, opt->name);
24384 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24385 *input_line_pointer = saved_char;
24386 demand_empty_rest_of_line ();
24387 return;
24388 }
24389
24390 as_bad (_("unknown architecture `%s'\n"), name);
24391 *input_line_pointer = saved_char;
24392 ignore_rest_of_line ();
24393 }
24394
24395
24396 /* Parse a .object_arch directive. */
24397
24398 static void
24399 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24400 {
24401 const struct arm_arch_option_table *opt;
24402 char saved_char;
24403 char *name;
24404
24405 name = input_line_pointer;
24406 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24407 input_line_pointer++;
24408 saved_char = *input_line_pointer;
24409 *input_line_pointer = 0;
24410
24411 /* Skip the first "all" entry. */
24412 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24413 if (streq (opt->name, name))
24414 {
24415 object_arch = &opt->value;
24416 *input_line_pointer = saved_char;
24417 demand_empty_rest_of_line ();
24418 return;
24419 }
24420
24421 as_bad (_("unknown architecture `%s'\n"), name);
24422 *input_line_pointer = saved_char;
24423 ignore_rest_of_line ();
24424 }
24425
24426 /* Parse a .arch_extension directive. */
24427
24428 static void
24429 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24430 {
24431 const struct arm_option_extension_value_table *opt;
24432 char saved_char;
24433 char *name;
24434 int adding_value = 1;
24435
24436 name = input_line_pointer;
24437 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24438 input_line_pointer++;
24439 saved_char = *input_line_pointer;
24440 *input_line_pointer = 0;
24441
24442 if (strlen (name) >= 2
24443 && strncmp (name, "no", 2) == 0)
24444 {
24445 adding_value = 0;
24446 name += 2;
24447 }
24448
24449 for (opt = arm_extensions; opt->name != NULL; opt++)
24450 if (streq (opt->name, name))
24451 {
24452 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24453 {
24454 as_bad (_("architectural extension `%s' is not allowed for the "
24455 "current base architecture"), name);
24456 break;
24457 }
24458
24459 if (adding_value)
24460 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24461 else
24462 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24463
24464 mcpu_cpu_opt = &selected_cpu;
24465 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24466 *input_line_pointer = saved_char;
24467 demand_empty_rest_of_line ();
24468 return;
24469 }
24470
24471 if (opt->name == NULL)
24472 as_bad (_("unknown architecture `%s'\n"), name);
24473
24474 *input_line_pointer = saved_char;
24475 ignore_rest_of_line ();
24476 }
24477
24478 /* Parse a .fpu directive. */
24479
24480 static void
24481 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24482 {
24483 const struct arm_option_fpu_value_table *opt;
24484 char saved_char;
24485 char *name;
24486
24487 name = input_line_pointer;
24488 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24489 input_line_pointer++;
24490 saved_char = *input_line_pointer;
24491 *input_line_pointer = 0;
24492
24493 for (opt = arm_fpus; opt->name != NULL; opt++)
24494 if (streq (opt->name, name))
24495 {
24496 mfpu_opt = &opt->value;
24497 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24498 *input_line_pointer = saved_char;
24499 demand_empty_rest_of_line ();
24500 return;
24501 }
24502
24503 as_bad (_("unknown floating point format `%s'\n"), name);
24504 *input_line_pointer = saved_char;
24505 ignore_rest_of_line ();
24506 }
24507
24508 /* Copy symbol information. */
24509
24510 void
24511 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24512 {
24513 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24514 }
24515
24516 #ifdef OBJ_ELF
24517 /* Given a symbolic attribute NAME, return the proper integer value.
24518 Returns -1 if the attribute is not known. */
24519
24520 int
24521 arm_convert_symbolic_attribute (const char *name)
24522 {
24523 static const struct
24524 {
24525 const char * name;
24526 const int tag;
24527 }
24528 attribute_table[] =
24529 {
24530 /* When you modify this table you should
24531 also modify the list in doc/c-arm.texi. */
24532 #define T(tag) {#tag, tag}
24533 T (Tag_CPU_raw_name),
24534 T (Tag_CPU_name),
24535 T (Tag_CPU_arch),
24536 T (Tag_CPU_arch_profile),
24537 T (Tag_ARM_ISA_use),
24538 T (Tag_THUMB_ISA_use),
24539 T (Tag_FP_arch),
24540 T (Tag_VFP_arch),
24541 T (Tag_WMMX_arch),
24542 T (Tag_Advanced_SIMD_arch),
24543 T (Tag_PCS_config),
24544 T (Tag_ABI_PCS_R9_use),
24545 T (Tag_ABI_PCS_RW_data),
24546 T (Tag_ABI_PCS_RO_data),
24547 T (Tag_ABI_PCS_GOT_use),
24548 T (Tag_ABI_PCS_wchar_t),
24549 T (Tag_ABI_FP_rounding),
24550 T (Tag_ABI_FP_denormal),
24551 T (Tag_ABI_FP_exceptions),
24552 T (Tag_ABI_FP_user_exceptions),
24553 T (Tag_ABI_FP_number_model),
24554 T (Tag_ABI_align_needed),
24555 T (Tag_ABI_align8_needed),
24556 T (Tag_ABI_align_preserved),
24557 T (Tag_ABI_align8_preserved),
24558 T (Tag_ABI_enum_size),
24559 T (Tag_ABI_HardFP_use),
24560 T (Tag_ABI_VFP_args),
24561 T (Tag_ABI_WMMX_args),
24562 T (Tag_ABI_optimization_goals),
24563 T (Tag_ABI_FP_optimization_goals),
24564 T (Tag_compatibility),
24565 T (Tag_CPU_unaligned_access),
24566 T (Tag_FP_HP_extension),
24567 T (Tag_VFP_HP_extension),
24568 T (Tag_ABI_FP_16bit_format),
24569 T (Tag_MPextension_use),
24570 T (Tag_DIV_use),
24571 T (Tag_nodefaults),
24572 T (Tag_also_compatible_with),
24573 T (Tag_conformance),
24574 T (Tag_T2EE_use),
24575 T (Tag_Virtualization_use),
24576 /* We deliberately do not include Tag_MPextension_use_legacy. */
24577 #undef T
24578 };
24579 unsigned int i;
24580
24581 if (name == NULL)
24582 return -1;
24583
24584 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24585 if (streq (name, attribute_table[i].name))
24586 return attribute_table[i].tag;
24587
24588 return -1;
24589 }
24590
24591
24592 /* Apply sym value for relocations only in the case that
24593 they are for local symbols and you have the respective
24594 architectural feature for blx and simple switches. */
24595 int
24596 arm_apply_sym_value (struct fix * fixP)
24597 {
24598 if (fixP->fx_addsy
24599 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24600 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24601 {
24602 switch (fixP->fx_r_type)
24603 {
24604 case BFD_RELOC_ARM_PCREL_BLX:
24605 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24606 if (ARM_IS_FUNC (fixP->fx_addsy))
24607 return 1;
24608 break;
24609
24610 case BFD_RELOC_ARM_PCREL_CALL:
24611 case BFD_RELOC_THUMB_PCREL_BLX:
24612 if (THUMB_IS_FUNC (fixP->fx_addsy))
24613 return 1;
24614 break;
24615
24616 default:
24617 break;
24618 }
24619
24620 }
24621 return 0;
24622 }
24623 #endif /* OBJ_ELF */