* gas/config/tc-arm.c (neon_type_mask): Add P64 type.
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rm_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rd_rn (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 12;
7396 inst.instruction |= inst.operands[1].reg << 16;
7397 }
7398
7399 static void
7400 do_rn_rd (void)
7401 {
7402 inst.instruction |= inst.operands[0].reg << 16;
7403 inst.instruction |= inst.operands[1].reg << 12;
7404 }
7405
7406 static bfd_boolean
7407 check_obsolete (const arm_feature_set *feature, const char *msg)
7408 {
7409 if (ARM_CPU_IS_ANY (cpu_variant))
7410 {
7411 as_warn ("%s", msg);
7412 return TRUE;
7413 }
7414 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7415 {
7416 as_bad ("%s", msg);
7417 return TRUE;
7418 }
7419
7420 return FALSE;
7421 }
7422
7423 static void
7424 do_rd_rm_rn (void)
7425 {
7426 unsigned Rn = inst.operands[2].reg;
7427 /* Enforce restrictions on SWP instruction. */
7428 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7429 {
7430 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7431 _("Rn must not overlap other operands"));
7432
7433 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7434 */
7435 if (!check_obsolete (&arm_ext_v8,
7436 _("swp{b} use is obsoleted for ARMv8 and later"))
7437 && warn_on_deprecated
7438 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7439 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7440 }
7441
7442 inst.instruction |= inst.operands[0].reg << 12;
7443 inst.instruction |= inst.operands[1].reg;
7444 inst.instruction |= Rn << 16;
7445 }
7446
7447 static void
7448 do_rd_rn_rm (void)
7449 {
7450 inst.instruction |= inst.operands[0].reg << 12;
7451 inst.instruction |= inst.operands[1].reg << 16;
7452 inst.instruction |= inst.operands[2].reg;
7453 }
7454
7455 static void
7456 do_rm_rd_rn (void)
7457 {
7458 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7459 constraint (((inst.reloc.exp.X_op != O_constant
7460 && inst.reloc.exp.X_op != O_illegal)
7461 || inst.reloc.exp.X_add_number != 0),
7462 BAD_ADDR_MODE);
7463 inst.instruction |= inst.operands[0].reg;
7464 inst.instruction |= inst.operands[1].reg << 12;
7465 inst.instruction |= inst.operands[2].reg << 16;
7466 }
7467
7468 static void
7469 do_imm0 (void)
7470 {
7471 inst.instruction |= inst.operands[0].imm;
7472 }
7473
7474 static void
7475 do_rd_cpaddr (void)
7476 {
7477 inst.instruction |= inst.operands[0].reg << 12;
7478 encode_arm_cp_address (1, TRUE, TRUE, 0);
7479 }
7480
7481 /* ARM instructions, in alphabetical order by function name (except
7482 that wrapper functions appear immediately after the function they
7483 wrap). */
7484
7485 /* This is a pseudo-op of the form "adr rd, label" to be converted
7486 into a relative address of the form "add rd, pc, #label-.-8". */
7487
7488 static void
7489 do_adr (void)
7490 {
7491 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7492
7493 /* Frag hacking will turn this into a sub instruction if the offset turns
7494 out to be negative. */
7495 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7496 inst.reloc.pc_rel = 1;
7497 inst.reloc.exp.X_add_number -= 8;
7498 }
7499
7500 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7501 into a relative address of the form:
7502 add rd, pc, #low(label-.-8)"
7503 add rd, rd, #high(label-.-8)" */
7504
7505 static void
7506 do_adrl (void)
7507 {
7508 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7509
7510 /* Frag hacking will turn this into a sub instruction if the offset turns
7511 out to be negative. */
7512 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7513 inst.reloc.pc_rel = 1;
7514 inst.size = INSN_SIZE * 2;
7515 inst.reloc.exp.X_add_number -= 8;
7516 }
7517
7518 static void
7519 do_arit (void)
7520 {
7521 if (!inst.operands[1].present)
7522 inst.operands[1].reg = inst.operands[0].reg;
7523 inst.instruction |= inst.operands[0].reg << 12;
7524 inst.instruction |= inst.operands[1].reg << 16;
7525 encode_arm_shifter_operand (2);
7526 }
7527
7528 static void
7529 do_barrier (void)
7530 {
7531 if (inst.operands[0].present)
7532 {
7533 constraint ((inst.instruction & 0xf0) != 0x40
7534 && inst.operands[0].imm > 0xf
7535 && inst.operands[0].imm < 0x0,
7536 _("bad barrier type"));
7537 inst.instruction |= inst.operands[0].imm;
7538 }
7539 else
7540 inst.instruction |= 0xf;
7541 }
7542
7543 static void
7544 do_bfc (void)
7545 {
7546 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7547 constraint (msb > 32, _("bit-field extends past end of register"));
7548 /* The instruction encoding stores the LSB and MSB,
7549 not the LSB and width. */
7550 inst.instruction |= inst.operands[0].reg << 12;
7551 inst.instruction |= inst.operands[1].imm << 7;
7552 inst.instruction |= (msb - 1) << 16;
7553 }
7554
7555 static void
7556 do_bfi (void)
7557 {
7558 unsigned int msb;
7559
7560 /* #0 in second position is alternative syntax for bfc, which is
7561 the same instruction but with REG_PC in the Rm field. */
7562 if (!inst.operands[1].isreg)
7563 inst.operands[1].reg = REG_PC;
7564
7565 msb = inst.operands[2].imm + inst.operands[3].imm;
7566 constraint (msb > 32, _("bit-field extends past end of register"));
7567 /* The instruction encoding stores the LSB and MSB,
7568 not the LSB and width. */
7569 inst.instruction |= inst.operands[0].reg << 12;
7570 inst.instruction |= inst.operands[1].reg;
7571 inst.instruction |= inst.operands[2].imm << 7;
7572 inst.instruction |= (msb - 1) << 16;
7573 }
7574
7575 static void
7576 do_bfx (void)
7577 {
7578 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7579 _("bit-field extends past end of register"));
7580 inst.instruction |= inst.operands[0].reg << 12;
7581 inst.instruction |= inst.operands[1].reg;
7582 inst.instruction |= inst.operands[2].imm << 7;
7583 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7584 }
7585
7586 /* ARM V5 breakpoint instruction (argument parse)
7587 BKPT <16 bit unsigned immediate>
7588 Instruction is not conditional.
7589 The bit pattern given in insns[] has the COND_ALWAYS condition,
7590 and it is an error if the caller tried to override that. */
7591
7592 static void
7593 do_bkpt (void)
7594 {
7595 /* Top 12 of 16 bits to bits 19:8. */
7596 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7597
7598 /* Bottom 4 of 16 bits to bits 3:0. */
7599 inst.instruction |= inst.operands[0].imm & 0xf;
7600 }
7601
7602 static void
7603 encode_branch (int default_reloc)
7604 {
7605 if (inst.operands[0].hasreloc)
7606 {
7607 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7608 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7609 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7610 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7611 ? BFD_RELOC_ARM_PLT32
7612 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7613 }
7614 else
7615 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7616 inst.reloc.pc_rel = 1;
7617 }
7618
7619 static void
7620 do_branch (void)
7621 {
7622 #ifdef OBJ_ELF
7623 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7624 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7625 else
7626 #endif
7627 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7628 }
7629
7630 static void
7631 do_bl (void)
7632 {
7633 #ifdef OBJ_ELF
7634 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7635 {
7636 if (inst.cond == COND_ALWAYS)
7637 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7638 else
7639 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7640 }
7641 else
7642 #endif
7643 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7644 }
7645
7646 /* ARM V5 branch-link-exchange instruction (argument parse)
7647 BLX <target_addr> ie BLX(1)
7648 BLX{<condition>} <Rm> ie BLX(2)
7649 Unfortunately, there are two different opcodes for this mnemonic.
7650 So, the insns[].value is not used, and the code here zaps values
7651 into inst.instruction.
7652 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7653
7654 static void
7655 do_blx (void)
7656 {
7657 if (inst.operands[0].isreg)
7658 {
7659 /* Arg is a register; the opcode provided by insns[] is correct.
7660 It is not illegal to do "blx pc", just useless. */
7661 if (inst.operands[0].reg == REG_PC)
7662 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7663
7664 inst.instruction |= inst.operands[0].reg;
7665 }
7666 else
7667 {
7668 /* Arg is an address; this instruction cannot be executed
7669 conditionally, and the opcode must be adjusted.
7670 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7671 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7672 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7673 inst.instruction = 0xfa000000;
7674 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7675 }
7676 }
7677
7678 static void
7679 do_bx (void)
7680 {
7681 bfd_boolean want_reloc;
7682
7683 if (inst.operands[0].reg == REG_PC)
7684 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7685
7686 inst.instruction |= inst.operands[0].reg;
7687 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7688 it is for ARMv4t or earlier. */
7689 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7690 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7691 want_reloc = TRUE;
7692
7693 #ifdef OBJ_ELF
7694 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7695 #endif
7696 want_reloc = FALSE;
7697
7698 if (want_reloc)
7699 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7700 }
7701
7702
7703 /* ARM v5TEJ. Jump to Jazelle code. */
7704
7705 static void
7706 do_bxj (void)
7707 {
7708 if (inst.operands[0].reg == REG_PC)
7709 as_tsktsk (_("use of r15 in bxj is not really useful"));
7710
7711 inst.instruction |= inst.operands[0].reg;
7712 }
7713
7714 /* Co-processor data operation:
7715 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7716 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7717 static void
7718 do_cdp (void)
7719 {
7720 inst.instruction |= inst.operands[0].reg << 8;
7721 inst.instruction |= inst.operands[1].imm << 20;
7722 inst.instruction |= inst.operands[2].reg << 12;
7723 inst.instruction |= inst.operands[3].reg << 16;
7724 inst.instruction |= inst.operands[4].reg;
7725 inst.instruction |= inst.operands[5].imm << 5;
7726 }
7727
7728 static void
7729 do_cmp (void)
7730 {
7731 inst.instruction |= inst.operands[0].reg << 16;
7732 encode_arm_shifter_operand (1);
7733 }
7734
7735 /* Transfer between coprocessor and ARM registers.
7736 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7737 MRC2
7738 MCR{cond}
7739 MCR2
7740
7741 No special properties. */
7742
7743 struct deprecated_coproc_regs_s
7744 {
7745 unsigned cp;
7746 int opc1;
7747 unsigned crn;
7748 unsigned crm;
7749 int opc2;
7750 arm_feature_set deprecated;
7751 arm_feature_set obsoleted;
7752 const char *dep_msg;
7753 const char *obs_msg;
7754 };
7755
7756 #define DEPR_ACCESS_V8 \
7757 N_("This coprocessor register access is deprecated in ARMv8")
7758
7759 /* Table of all deprecated coprocessor registers. */
7760 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7761 {
7762 {15, 0, 7, 10, 5, /* CP15DMB. */
7763 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7764 DEPR_ACCESS_V8, NULL},
7765 {15, 0, 7, 10, 4, /* CP15DSB. */
7766 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7767 DEPR_ACCESS_V8, NULL},
7768 {15, 0, 7, 5, 4, /* CP15ISB. */
7769 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7770 DEPR_ACCESS_V8, NULL},
7771 {14, 6, 1, 0, 0, /* TEEHBR. */
7772 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7773 DEPR_ACCESS_V8, NULL},
7774 {14, 6, 0, 0, 0, /* TEECR. */
7775 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7776 DEPR_ACCESS_V8, NULL},
7777 };
7778
7779 #undef DEPR_ACCESS_V8
7780
7781 static const size_t deprecated_coproc_reg_count =
7782 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7783
7784 static void
7785 do_co_reg (void)
7786 {
7787 unsigned Rd;
7788 size_t i;
7789
7790 Rd = inst.operands[2].reg;
7791 if (thumb_mode)
7792 {
7793 if (inst.instruction == 0xee000010
7794 || inst.instruction == 0xfe000010)
7795 /* MCR, MCR2 */
7796 reject_bad_reg (Rd);
7797 else
7798 /* MRC, MRC2 */
7799 constraint (Rd == REG_SP, BAD_SP);
7800 }
7801 else
7802 {
7803 /* MCR */
7804 if (inst.instruction == 0xe000010)
7805 constraint (Rd == REG_PC, BAD_PC);
7806 }
7807
7808 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7809 {
7810 const struct deprecated_coproc_regs_s *r =
7811 deprecated_coproc_regs + i;
7812
7813 if (inst.operands[0].reg == r->cp
7814 && inst.operands[1].imm == r->opc1
7815 && inst.operands[3].reg == r->crn
7816 && inst.operands[4].reg == r->crm
7817 && inst.operands[5].imm == r->opc2)
7818 {
7819 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7820 && warn_on_deprecated
7821 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7822 as_warn ("%s", r->dep_msg);
7823 }
7824 }
7825
7826 inst.instruction |= inst.operands[0].reg << 8;
7827 inst.instruction |= inst.operands[1].imm << 21;
7828 inst.instruction |= Rd << 12;
7829 inst.instruction |= inst.operands[3].reg << 16;
7830 inst.instruction |= inst.operands[4].reg;
7831 inst.instruction |= inst.operands[5].imm << 5;
7832 }
7833
7834 /* Transfer between coprocessor register and pair of ARM registers.
7835 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7836 MCRR2
7837 MRRC{cond}
7838 MRRC2
7839
7840 Two XScale instructions are special cases of these:
7841
7842 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7843 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7844
7845 Result unpredictable if Rd or Rn is R15. */
7846
7847 static void
7848 do_co_reg2c (void)
7849 {
7850 unsigned Rd, Rn;
7851
7852 Rd = inst.operands[2].reg;
7853 Rn = inst.operands[3].reg;
7854
7855 if (thumb_mode)
7856 {
7857 reject_bad_reg (Rd);
7858 reject_bad_reg (Rn);
7859 }
7860 else
7861 {
7862 constraint (Rd == REG_PC, BAD_PC);
7863 constraint (Rn == REG_PC, BAD_PC);
7864 }
7865
7866 inst.instruction |= inst.operands[0].reg << 8;
7867 inst.instruction |= inst.operands[1].imm << 4;
7868 inst.instruction |= Rd << 12;
7869 inst.instruction |= Rn << 16;
7870 inst.instruction |= inst.operands[4].reg;
7871 }
7872
7873 static void
7874 do_cpsi (void)
7875 {
7876 inst.instruction |= inst.operands[0].imm << 6;
7877 if (inst.operands[1].present)
7878 {
7879 inst.instruction |= CPSI_MMOD;
7880 inst.instruction |= inst.operands[1].imm;
7881 }
7882 }
7883
7884 static void
7885 do_dbg (void)
7886 {
7887 inst.instruction |= inst.operands[0].imm;
7888 }
7889
7890 static void
7891 do_div (void)
7892 {
7893 unsigned Rd, Rn, Rm;
7894
7895 Rd = inst.operands[0].reg;
7896 Rn = (inst.operands[1].present
7897 ? inst.operands[1].reg : Rd);
7898 Rm = inst.operands[2].reg;
7899
7900 constraint ((Rd == REG_PC), BAD_PC);
7901 constraint ((Rn == REG_PC), BAD_PC);
7902 constraint ((Rm == REG_PC), BAD_PC);
7903
7904 inst.instruction |= Rd << 16;
7905 inst.instruction |= Rn << 0;
7906 inst.instruction |= Rm << 8;
7907 }
7908
7909 static void
7910 do_it (void)
7911 {
7912 /* There is no IT instruction in ARM mode. We
7913 process it to do the validation as if in
7914 thumb mode, just in case the code gets
7915 assembled for thumb using the unified syntax. */
7916
7917 inst.size = 0;
7918 if (unified_syntax)
7919 {
7920 set_it_insn_type (IT_INSN);
7921 now_it.mask = (inst.instruction & 0xf) | 0x10;
7922 now_it.cc = inst.operands[0].imm;
7923 }
7924 }
7925
7926 /* If there is only one register in the register list,
7927 then return its register number. Otherwise return -1. */
7928 static int
7929 only_one_reg_in_list (int range)
7930 {
7931 int i = ffs (range) - 1;
7932 return (i > 15 || range != (1 << i)) ? -1 : i;
7933 }
7934
7935 static void
7936 encode_ldmstm(int from_push_pop_mnem)
7937 {
7938 int base_reg = inst.operands[0].reg;
7939 int range = inst.operands[1].imm;
7940 int one_reg;
7941
7942 inst.instruction |= base_reg << 16;
7943 inst.instruction |= range;
7944
7945 if (inst.operands[1].writeback)
7946 inst.instruction |= LDM_TYPE_2_OR_3;
7947
7948 if (inst.operands[0].writeback)
7949 {
7950 inst.instruction |= WRITE_BACK;
7951 /* Check for unpredictable uses of writeback. */
7952 if (inst.instruction & LOAD_BIT)
7953 {
7954 /* Not allowed in LDM type 2. */
7955 if ((inst.instruction & LDM_TYPE_2_OR_3)
7956 && ((range & (1 << REG_PC)) == 0))
7957 as_warn (_("writeback of base register is UNPREDICTABLE"));
7958 /* Only allowed if base reg not in list for other types. */
7959 else if (range & (1 << base_reg))
7960 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7961 }
7962 else /* STM. */
7963 {
7964 /* Not allowed for type 2. */
7965 if (inst.instruction & LDM_TYPE_2_OR_3)
7966 as_warn (_("writeback of base register is UNPREDICTABLE"));
7967 /* Only allowed if base reg not in list, or first in list. */
7968 else if ((range & (1 << base_reg))
7969 && (range & ((1 << base_reg) - 1)))
7970 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7971 }
7972 }
7973
7974 /* If PUSH/POP has only one register, then use the A2 encoding. */
7975 one_reg = only_one_reg_in_list (range);
7976 if (from_push_pop_mnem && one_reg >= 0)
7977 {
7978 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7979
7980 inst.instruction &= A_COND_MASK;
7981 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7982 inst.instruction |= one_reg << 12;
7983 }
7984 }
7985
7986 static void
7987 do_ldmstm (void)
7988 {
7989 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7990 }
7991
7992 /* ARMv5TE load-consecutive (argument parse)
7993 Mode is like LDRH.
7994
7995 LDRccD R, mode
7996 STRccD R, mode. */
7997
7998 static void
7999 do_ldrd (void)
8000 {
8001 constraint (inst.operands[0].reg % 2 != 0,
8002 _("first transfer register must be even"));
8003 constraint (inst.operands[1].present
8004 && inst.operands[1].reg != inst.operands[0].reg + 1,
8005 _("can only transfer two consecutive registers"));
8006 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8007 constraint (!inst.operands[2].isreg, _("'[' expected"));
8008
8009 if (!inst.operands[1].present)
8010 inst.operands[1].reg = inst.operands[0].reg + 1;
8011
8012 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8013 register and the first register written; we have to diagnose
8014 overlap between the base and the second register written here. */
8015
8016 if (inst.operands[2].reg == inst.operands[1].reg
8017 && (inst.operands[2].writeback || inst.operands[2].postind))
8018 as_warn (_("base register written back, and overlaps "
8019 "second transfer register"));
8020
8021 if (!(inst.instruction & V4_STR_BIT))
8022 {
8023 /* For an index-register load, the index register must not overlap the
8024 destination (even if not write-back). */
8025 if (inst.operands[2].immisreg
8026 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8027 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8028 as_warn (_("index register overlaps transfer register"));
8029 }
8030 inst.instruction |= inst.operands[0].reg << 12;
8031 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8032 }
8033
8034 static void
8035 do_ldrex (void)
8036 {
8037 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8038 || inst.operands[1].postind || inst.operands[1].writeback
8039 || inst.operands[1].immisreg || inst.operands[1].shifted
8040 || inst.operands[1].negative
8041 /* This can arise if the programmer has written
8042 strex rN, rM, foo
8043 or if they have mistakenly used a register name as the last
8044 operand, eg:
8045 strex rN, rM, rX
8046 It is very difficult to distinguish between these two cases
8047 because "rX" might actually be a label. ie the register
8048 name has been occluded by a symbol of the same name. So we
8049 just generate a general 'bad addressing mode' type error
8050 message and leave it up to the programmer to discover the
8051 true cause and fix their mistake. */
8052 || (inst.operands[1].reg == REG_PC),
8053 BAD_ADDR_MODE);
8054
8055 constraint (inst.reloc.exp.X_op != O_constant
8056 || inst.reloc.exp.X_add_number != 0,
8057 _("offset must be zero in ARM encoding"));
8058
8059 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8060
8061 inst.instruction |= inst.operands[0].reg << 12;
8062 inst.instruction |= inst.operands[1].reg << 16;
8063 inst.reloc.type = BFD_RELOC_UNUSED;
8064 }
8065
8066 static void
8067 do_ldrexd (void)
8068 {
8069 constraint (inst.operands[0].reg % 2 != 0,
8070 _("even register required"));
8071 constraint (inst.operands[1].present
8072 && inst.operands[1].reg != inst.operands[0].reg + 1,
8073 _("can only load two consecutive registers"));
8074 /* If op 1 were present and equal to PC, this function wouldn't
8075 have been called in the first place. */
8076 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8077
8078 inst.instruction |= inst.operands[0].reg << 12;
8079 inst.instruction |= inst.operands[2].reg << 16;
8080 }
8081
8082 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8083 which is not a multiple of four is UNPREDICTABLE. */
8084 static void
8085 check_ldr_r15_aligned (void)
8086 {
8087 constraint (!(inst.operands[1].immisreg)
8088 && (inst.operands[0].reg == REG_PC
8089 && inst.operands[1].reg == REG_PC
8090 && (inst.reloc.exp.X_add_number & 0x3)),
8091 _("ldr to register 15 must be 4-byte alligned"));
8092 }
8093
8094 static void
8095 do_ldst (void)
8096 {
8097 inst.instruction |= inst.operands[0].reg << 12;
8098 if (!inst.operands[1].isreg)
8099 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8100 return;
8101 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8102 check_ldr_r15_aligned ();
8103 }
8104
8105 static void
8106 do_ldstt (void)
8107 {
8108 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8109 reject [Rn,...]. */
8110 if (inst.operands[1].preind)
8111 {
8112 constraint (inst.reloc.exp.X_op != O_constant
8113 || inst.reloc.exp.X_add_number != 0,
8114 _("this instruction requires a post-indexed address"));
8115
8116 inst.operands[1].preind = 0;
8117 inst.operands[1].postind = 1;
8118 inst.operands[1].writeback = 1;
8119 }
8120 inst.instruction |= inst.operands[0].reg << 12;
8121 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8122 }
8123
8124 /* Halfword and signed-byte load/store operations. */
8125
8126 static void
8127 do_ldstv4 (void)
8128 {
8129 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8130 inst.instruction |= inst.operands[0].reg << 12;
8131 if (!inst.operands[1].isreg)
8132 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8133 return;
8134 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8135 }
8136
8137 static void
8138 do_ldsttv4 (void)
8139 {
8140 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8141 reject [Rn,...]. */
8142 if (inst.operands[1].preind)
8143 {
8144 constraint (inst.reloc.exp.X_op != O_constant
8145 || inst.reloc.exp.X_add_number != 0,
8146 _("this instruction requires a post-indexed address"));
8147
8148 inst.operands[1].preind = 0;
8149 inst.operands[1].postind = 1;
8150 inst.operands[1].writeback = 1;
8151 }
8152 inst.instruction |= inst.operands[0].reg << 12;
8153 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8154 }
8155
8156 /* Co-processor register load/store.
8157 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8158 static void
8159 do_lstc (void)
8160 {
8161 inst.instruction |= inst.operands[0].reg << 8;
8162 inst.instruction |= inst.operands[1].reg << 12;
8163 encode_arm_cp_address (2, TRUE, TRUE, 0);
8164 }
8165
8166 static void
8167 do_mlas (void)
8168 {
8169 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8170 if (inst.operands[0].reg == inst.operands[1].reg
8171 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8172 && !(inst.instruction & 0x00400000))
8173 as_tsktsk (_("Rd and Rm should be different in mla"));
8174
8175 inst.instruction |= inst.operands[0].reg << 16;
8176 inst.instruction |= inst.operands[1].reg;
8177 inst.instruction |= inst.operands[2].reg << 8;
8178 inst.instruction |= inst.operands[3].reg << 12;
8179 }
8180
8181 static void
8182 do_mov (void)
8183 {
8184 inst.instruction |= inst.operands[0].reg << 12;
8185 encode_arm_shifter_operand (1);
8186 }
8187
8188 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8189 static void
8190 do_mov16 (void)
8191 {
8192 bfd_vma imm;
8193 bfd_boolean top;
8194
8195 top = (inst.instruction & 0x00400000) != 0;
8196 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8197 _(":lower16: not allowed this instruction"));
8198 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8199 _(":upper16: not allowed instruction"));
8200 inst.instruction |= inst.operands[0].reg << 12;
8201 if (inst.reloc.type == BFD_RELOC_UNUSED)
8202 {
8203 imm = inst.reloc.exp.X_add_number;
8204 /* The value is in two pieces: 0:11, 16:19. */
8205 inst.instruction |= (imm & 0x00000fff);
8206 inst.instruction |= (imm & 0x0000f000) << 4;
8207 }
8208 }
8209
8210 static void do_vfp_nsyn_opcode (const char *);
8211
8212 static int
8213 do_vfp_nsyn_mrs (void)
8214 {
8215 if (inst.operands[0].isvec)
8216 {
8217 if (inst.operands[1].reg != 1)
8218 first_error (_("operand 1 must be FPSCR"));
8219 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8220 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8221 do_vfp_nsyn_opcode ("fmstat");
8222 }
8223 else if (inst.operands[1].isvec)
8224 do_vfp_nsyn_opcode ("fmrx");
8225 else
8226 return FAIL;
8227
8228 return SUCCESS;
8229 }
8230
8231 static int
8232 do_vfp_nsyn_msr (void)
8233 {
8234 if (inst.operands[0].isvec)
8235 do_vfp_nsyn_opcode ("fmxr");
8236 else
8237 return FAIL;
8238
8239 return SUCCESS;
8240 }
8241
8242 static void
8243 do_vmrs (void)
8244 {
8245 unsigned Rt = inst.operands[0].reg;
8246
8247 if (thumb_mode && inst.operands[0].reg == REG_SP)
8248 {
8249 inst.error = BAD_SP;
8250 return;
8251 }
8252
8253 /* APSR_ sets isvec. All other refs to PC are illegal. */
8254 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8255 {
8256 inst.error = BAD_PC;
8257 return;
8258 }
8259
8260 switch (inst.operands[1].reg)
8261 {
8262 case 0: /* FPSID */
8263 case 1: /* FPSCR */
8264 case 6: /* MVFR1 */
8265 case 7: /* MVFR0 */
8266 case 8: /* FPEXC */
8267 inst.instruction |= (inst.operands[1].reg << 16);
8268 break;
8269 default:
8270 first_error (_("operand 1 must be a VFP extension System Register"));
8271 }
8272
8273 inst.instruction |= (Rt << 12);
8274 }
8275
8276 static void
8277 do_vmsr (void)
8278 {
8279 unsigned Rt = inst.operands[1].reg;
8280
8281 if (thumb_mode)
8282 reject_bad_reg (Rt);
8283 else if (Rt == REG_PC)
8284 {
8285 inst.error = BAD_PC;
8286 return;
8287 }
8288
8289 switch (inst.operands[0].reg)
8290 {
8291 case 0: /* FPSID */
8292 case 1: /* FPSCR */
8293 case 8: /* FPEXC */
8294 inst.instruction |= (inst.operands[0].reg << 16);
8295 break;
8296 default:
8297 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8298 }
8299
8300 inst.instruction |= (Rt << 12);
8301 }
8302
8303 static void
8304 do_mrs (void)
8305 {
8306 unsigned br;
8307
8308 if (do_vfp_nsyn_mrs () == SUCCESS)
8309 return;
8310
8311 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8312 inst.instruction |= inst.operands[0].reg << 12;
8313
8314 if (inst.operands[1].isreg)
8315 {
8316 br = inst.operands[1].reg;
8317 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8318 as_bad (_("bad register for mrs"));
8319 }
8320 else
8321 {
8322 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8323 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8324 != (PSR_c|PSR_f),
8325 _("'APSR', 'CPSR' or 'SPSR' expected"));
8326 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8327 }
8328
8329 inst.instruction |= br;
8330 }
8331
8332 /* Two possible forms:
8333 "{C|S}PSR_<field>, Rm",
8334 "{C|S}PSR_f, #expression". */
8335
8336 static void
8337 do_msr (void)
8338 {
8339 if (do_vfp_nsyn_msr () == SUCCESS)
8340 return;
8341
8342 inst.instruction |= inst.operands[0].imm;
8343 if (inst.operands[1].isreg)
8344 inst.instruction |= inst.operands[1].reg;
8345 else
8346 {
8347 inst.instruction |= INST_IMMEDIATE;
8348 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8349 inst.reloc.pc_rel = 0;
8350 }
8351 }
8352
8353 static void
8354 do_mul (void)
8355 {
8356 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8357
8358 if (!inst.operands[2].present)
8359 inst.operands[2].reg = inst.operands[0].reg;
8360 inst.instruction |= inst.operands[0].reg << 16;
8361 inst.instruction |= inst.operands[1].reg;
8362 inst.instruction |= inst.operands[2].reg << 8;
8363
8364 if (inst.operands[0].reg == inst.operands[1].reg
8365 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8366 as_tsktsk (_("Rd and Rm should be different in mul"));
8367 }
8368
8369 /* Long Multiply Parser
8370 UMULL RdLo, RdHi, Rm, Rs
8371 SMULL RdLo, RdHi, Rm, Rs
8372 UMLAL RdLo, RdHi, Rm, Rs
8373 SMLAL RdLo, RdHi, Rm, Rs. */
8374
8375 static void
8376 do_mull (void)
8377 {
8378 inst.instruction |= inst.operands[0].reg << 12;
8379 inst.instruction |= inst.operands[1].reg << 16;
8380 inst.instruction |= inst.operands[2].reg;
8381 inst.instruction |= inst.operands[3].reg << 8;
8382
8383 /* rdhi and rdlo must be different. */
8384 if (inst.operands[0].reg == inst.operands[1].reg)
8385 as_tsktsk (_("rdhi and rdlo must be different"));
8386
8387 /* rdhi, rdlo and rm must all be different before armv6. */
8388 if ((inst.operands[0].reg == inst.operands[2].reg
8389 || inst.operands[1].reg == inst.operands[2].reg)
8390 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8391 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8392 }
8393
8394 static void
8395 do_nop (void)
8396 {
8397 if (inst.operands[0].present
8398 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8399 {
8400 /* Architectural NOP hints are CPSR sets with no bits selected. */
8401 inst.instruction &= 0xf0000000;
8402 inst.instruction |= 0x0320f000;
8403 if (inst.operands[0].present)
8404 inst.instruction |= inst.operands[0].imm;
8405 }
8406 }
8407
8408 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8409 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8410 Condition defaults to COND_ALWAYS.
8411 Error if Rd, Rn or Rm are R15. */
8412
8413 static void
8414 do_pkhbt (void)
8415 {
8416 inst.instruction |= inst.operands[0].reg << 12;
8417 inst.instruction |= inst.operands[1].reg << 16;
8418 inst.instruction |= inst.operands[2].reg;
8419 if (inst.operands[3].present)
8420 encode_arm_shift (3);
8421 }
8422
8423 /* ARM V6 PKHTB (Argument Parse). */
8424
8425 static void
8426 do_pkhtb (void)
8427 {
8428 if (!inst.operands[3].present)
8429 {
8430 /* If the shift specifier is omitted, turn the instruction
8431 into pkhbt rd, rm, rn. */
8432 inst.instruction &= 0xfff00010;
8433 inst.instruction |= inst.operands[0].reg << 12;
8434 inst.instruction |= inst.operands[1].reg;
8435 inst.instruction |= inst.operands[2].reg << 16;
8436 }
8437 else
8438 {
8439 inst.instruction |= inst.operands[0].reg << 12;
8440 inst.instruction |= inst.operands[1].reg << 16;
8441 inst.instruction |= inst.operands[2].reg;
8442 encode_arm_shift (3);
8443 }
8444 }
8445
8446 /* ARMv5TE: Preload-Cache
8447 MP Extensions: Preload for write
8448
8449 PLD(W) <addr_mode>
8450
8451 Syntactically, like LDR with B=1, W=0, L=1. */
8452
8453 static void
8454 do_pld (void)
8455 {
8456 constraint (!inst.operands[0].isreg,
8457 _("'[' expected after PLD mnemonic"));
8458 constraint (inst.operands[0].postind,
8459 _("post-indexed expression used in preload instruction"));
8460 constraint (inst.operands[0].writeback,
8461 _("writeback used in preload instruction"));
8462 constraint (!inst.operands[0].preind,
8463 _("unindexed addressing used in preload instruction"));
8464 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8465 }
8466
8467 /* ARMv7: PLI <addr_mode> */
8468 static void
8469 do_pli (void)
8470 {
8471 constraint (!inst.operands[0].isreg,
8472 _("'[' expected after PLI mnemonic"));
8473 constraint (inst.operands[0].postind,
8474 _("post-indexed expression used in preload instruction"));
8475 constraint (inst.operands[0].writeback,
8476 _("writeback used in preload instruction"));
8477 constraint (!inst.operands[0].preind,
8478 _("unindexed addressing used in preload instruction"));
8479 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8480 inst.instruction &= ~PRE_INDEX;
8481 }
8482
8483 static void
8484 do_push_pop (void)
8485 {
8486 inst.operands[1] = inst.operands[0];
8487 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8488 inst.operands[0].isreg = 1;
8489 inst.operands[0].writeback = 1;
8490 inst.operands[0].reg = REG_SP;
8491 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8492 }
8493
8494 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8495 word at the specified address and the following word
8496 respectively.
8497 Unconditionally executed.
8498 Error if Rn is R15. */
8499
8500 static void
8501 do_rfe (void)
8502 {
8503 inst.instruction |= inst.operands[0].reg << 16;
8504 if (inst.operands[0].writeback)
8505 inst.instruction |= WRITE_BACK;
8506 }
8507
8508 /* ARM V6 ssat (argument parse). */
8509
8510 static void
8511 do_ssat (void)
8512 {
8513 inst.instruction |= inst.operands[0].reg << 12;
8514 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8515 inst.instruction |= inst.operands[2].reg;
8516
8517 if (inst.operands[3].present)
8518 encode_arm_shift (3);
8519 }
8520
8521 /* ARM V6 usat (argument parse). */
8522
8523 static void
8524 do_usat (void)
8525 {
8526 inst.instruction |= inst.operands[0].reg << 12;
8527 inst.instruction |= inst.operands[1].imm << 16;
8528 inst.instruction |= inst.operands[2].reg;
8529
8530 if (inst.operands[3].present)
8531 encode_arm_shift (3);
8532 }
8533
8534 /* ARM V6 ssat16 (argument parse). */
8535
8536 static void
8537 do_ssat16 (void)
8538 {
8539 inst.instruction |= inst.operands[0].reg << 12;
8540 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8541 inst.instruction |= inst.operands[2].reg;
8542 }
8543
8544 static void
8545 do_usat16 (void)
8546 {
8547 inst.instruction |= inst.operands[0].reg << 12;
8548 inst.instruction |= inst.operands[1].imm << 16;
8549 inst.instruction |= inst.operands[2].reg;
8550 }
8551
8552 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8553 preserving the other bits.
8554
8555 setend <endian_specifier>, where <endian_specifier> is either
8556 BE or LE. */
8557
8558 static void
8559 do_setend (void)
8560 {
8561 if (warn_on_deprecated
8562 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8563 as_warn (_("setend use is deprecated for ARMv8"));
8564
8565 if (inst.operands[0].imm)
8566 inst.instruction |= 0x200;
8567 }
8568
8569 static void
8570 do_shift (void)
8571 {
8572 unsigned int Rm = (inst.operands[1].present
8573 ? inst.operands[1].reg
8574 : inst.operands[0].reg);
8575
8576 inst.instruction |= inst.operands[0].reg << 12;
8577 inst.instruction |= Rm;
8578 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8579 {
8580 inst.instruction |= inst.operands[2].reg << 8;
8581 inst.instruction |= SHIFT_BY_REG;
8582 /* PR 12854: Error on extraneous shifts. */
8583 constraint (inst.operands[2].shifted,
8584 _("extraneous shift as part of operand to shift insn"));
8585 }
8586 else
8587 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8588 }
8589
8590 static void
8591 do_smc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_SMC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_hvc (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_HVC;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 static void
8605 do_swi (void)
8606 {
8607 inst.reloc.type = BFD_RELOC_ARM_SWI;
8608 inst.reloc.pc_rel = 0;
8609 }
8610
8611 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8612 SMLAxy{cond} Rd,Rm,Rs,Rn
8613 SMLAWy{cond} Rd,Rm,Rs,Rn
8614 Error if any register is R15. */
8615
8616 static void
8617 do_smla (void)
8618 {
8619 inst.instruction |= inst.operands[0].reg << 16;
8620 inst.instruction |= inst.operands[1].reg;
8621 inst.instruction |= inst.operands[2].reg << 8;
8622 inst.instruction |= inst.operands[3].reg << 12;
8623 }
8624
8625 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8626 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8627 Error if any register is R15.
8628 Warning if Rdlo == Rdhi. */
8629
8630 static void
8631 do_smlal (void)
8632 {
8633 inst.instruction |= inst.operands[0].reg << 12;
8634 inst.instruction |= inst.operands[1].reg << 16;
8635 inst.instruction |= inst.operands[2].reg;
8636 inst.instruction |= inst.operands[3].reg << 8;
8637
8638 if (inst.operands[0].reg == inst.operands[1].reg)
8639 as_tsktsk (_("rdhi and rdlo must be different"));
8640 }
8641
8642 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8643 SMULxy{cond} Rd,Rm,Rs
8644 Error if any register is R15. */
8645
8646 static void
8647 do_smul (void)
8648 {
8649 inst.instruction |= inst.operands[0].reg << 16;
8650 inst.instruction |= inst.operands[1].reg;
8651 inst.instruction |= inst.operands[2].reg << 8;
8652 }
8653
8654 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8655 the same for both ARM and Thumb-2. */
8656
8657 static void
8658 do_srs (void)
8659 {
8660 int reg;
8661
8662 if (inst.operands[0].present)
8663 {
8664 reg = inst.operands[0].reg;
8665 constraint (reg != REG_SP, _("SRS base register must be r13"));
8666 }
8667 else
8668 reg = REG_SP;
8669
8670 inst.instruction |= reg << 16;
8671 inst.instruction |= inst.operands[1].imm;
8672 if (inst.operands[0].writeback || inst.operands[1].writeback)
8673 inst.instruction |= WRITE_BACK;
8674 }
8675
8676 /* ARM V6 strex (argument parse). */
8677
8678 static void
8679 do_strex (void)
8680 {
8681 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8682 || inst.operands[2].postind || inst.operands[2].writeback
8683 || inst.operands[2].immisreg || inst.operands[2].shifted
8684 || inst.operands[2].negative
8685 /* See comment in do_ldrex(). */
8686 || (inst.operands[2].reg == REG_PC),
8687 BAD_ADDR_MODE);
8688
8689 constraint (inst.operands[0].reg == inst.operands[1].reg
8690 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8691
8692 constraint (inst.reloc.exp.X_op != O_constant
8693 || inst.reloc.exp.X_add_number != 0,
8694 _("offset must be zero in ARM encoding"));
8695
8696 inst.instruction |= inst.operands[0].reg << 12;
8697 inst.instruction |= inst.operands[1].reg;
8698 inst.instruction |= inst.operands[2].reg << 16;
8699 inst.reloc.type = BFD_RELOC_UNUSED;
8700 }
8701
8702 static void
8703 do_t_strexbh (void)
8704 {
8705 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8706 || inst.operands[2].postind || inst.operands[2].writeback
8707 || inst.operands[2].immisreg || inst.operands[2].shifted
8708 || inst.operands[2].negative,
8709 BAD_ADDR_MODE);
8710
8711 constraint (inst.operands[0].reg == inst.operands[1].reg
8712 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8713
8714 do_rm_rd_rn ();
8715 }
8716
8717 static void
8718 do_strexd (void)
8719 {
8720 constraint (inst.operands[1].reg % 2 != 0,
8721 _("even register required"));
8722 constraint (inst.operands[2].present
8723 && inst.operands[2].reg != inst.operands[1].reg + 1,
8724 _("can only store two consecutive registers"));
8725 /* If op 2 were present and equal to PC, this function wouldn't
8726 have been called in the first place. */
8727 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8728
8729 constraint (inst.operands[0].reg == inst.operands[1].reg
8730 || inst.operands[0].reg == inst.operands[1].reg + 1
8731 || inst.operands[0].reg == inst.operands[3].reg,
8732 BAD_OVERLAP);
8733
8734 inst.instruction |= inst.operands[0].reg << 12;
8735 inst.instruction |= inst.operands[1].reg;
8736 inst.instruction |= inst.operands[3].reg << 16;
8737 }
8738
8739 /* ARM V8 STRL. */
8740 static void
8741 do_strlex (void)
8742 {
8743 constraint (inst.operands[0].reg == inst.operands[1].reg
8744 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8745
8746 do_rd_rm_rn ();
8747 }
8748
8749 static void
8750 do_t_strlex (void)
8751 {
8752 constraint (inst.operands[0].reg == inst.operands[1].reg
8753 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8754
8755 do_rm_rd_rn ();
8756 }
8757
8758 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8759 extends it to 32-bits, and adds the result to a value in another
8760 register. You can specify a rotation by 0, 8, 16, or 24 bits
8761 before extracting the 16-bit value.
8762 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8763 Condition defaults to COND_ALWAYS.
8764 Error if any register uses R15. */
8765
8766 static void
8767 do_sxtah (void)
8768 {
8769 inst.instruction |= inst.operands[0].reg << 12;
8770 inst.instruction |= inst.operands[1].reg << 16;
8771 inst.instruction |= inst.operands[2].reg;
8772 inst.instruction |= inst.operands[3].imm << 10;
8773 }
8774
8775 /* ARM V6 SXTH.
8776
8777 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8778 Condition defaults to COND_ALWAYS.
8779 Error if any register uses R15. */
8780
8781 static void
8782 do_sxth (void)
8783 {
8784 inst.instruction |= inst.operands[0].reg << 12;
8785 inst.instruction |= inst.operands[1].reg;
8786 inst.instruction |= inst.operands[2].imm << 10;
8787 }
8788 \f
8789 /* VFP instructions. In a logical order: SP variant first, monad
8790 before dyad, arithmetic then move then load/store. */
8791
8792 static void
8793 do_vfp_sp_monadic (void)
8794 {
8795 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8796 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8797 }
8798
8799 static void
8800 do_vfp_sp_dyadic (void)
8801 {
8802 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8803 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8804 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8805 }
8806
8807 static void
8808 do_vfp_sp_compare_z (void)
8809 {
8810 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8811 }
8812
8813 static void
8814 do_vfp_dp_sp_cvt (void)
8815 {
8816 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8817 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8818 }
8819
8820 static void
8821 do_vfp_sp_dp_cvt (void)
8822 {
8823 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8824 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8825 }
8826
8827 static void
8828 do_vfp_reg_from_sp (void)
8829 {
8830 inst.instruction |= inst.operands[0].reg << 12;
8831 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8832 }
8833
8834 static void
8835 do_vfp_reg2_from_sp2 (void)
8836 {
8837 constraint (inst.operands[2].imm != 2,
8838 _("only two consecutive VFP SP registers allowed here"));
8839 inst.instruction |= inst.operands[0].reg << 12;
8840 inst.instruction |= inst.operands[1].reg << 16;
8841 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8842 }
8843
8844 static void
8845 do_vfp_sp_from_reg (void)
8846 {
8847 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8848 inst.instruction |= inst.operands[1].reg << 12;
8849 }
8850
8851 static void
8852 do_vfp_sp2_from_reg2 (void)
8853 {
8854 constraint (inst.operands[0].imm != 2,
8855 _("only two consecutive VFP SP registers allowed here"));
8856 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8857 inst.instruction |= inst.operands[1].reg << 12;
8858 inst.instruction |= inst.operands[2].reg << 16;
8859 }
8860
8861 static void
8862 do_vfp_sp_ldst (void)
8863 {
8864 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8865 encode_arm_cp_address (1, FALSE, TRUE, 0);
8866 }
8867
8868 static void
8869 do_vfp_dp_ldst (void)
8870 {
8871 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8872 encode_arm_cp_address (1, FALSE, TRUE, 0);
8873 }
8874
8875
8876 static void
8877 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8878 {
8879 if (inst.operands[0].writeback)
8880 inst.instruction |= WRITE_BACK;
8881 else
8882 constraint (ldstm_type != VFP_LDSTMIA,
8883 _("this addressing mode requires base-register writeback"));
8884 inst.instruction |= inst.operands[0].reg << 16;
8885 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8886 inst.instruction |= inst.operands[1].imm;
8887 }
8888
8889 static void
8890 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8891 {
8892 int count;
8893
8894 if (inst.operands[0].writeback)
8895 inst.instruction |= WRITE_BACK;
8896 else
8897 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8898 _("this addressing mode requires base-register writeback"));
8899
8900 inst.instruction |= inst.operands[0].reg << 16;
8901 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8902
8903 count = inst.operands[1].imm << 1;
8904 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8905 count += 1;
8906
8907 inst.instruction |= count;
8908 }
8909
8910 static void
8911 do_vfp_sp_ldstmia (void)
8912 {
8913 vfp_sp_ldstm (VFP_LDSTMIA);
8914 }
8915
8916 static void
8917 do_vfp_sp_ldstmdb (void)
8918 {
8919 vfp_sp_ldstm (VFP_LDSTMDB);
8920 }
8921
8922 static void
8923 do_vfp_dp_ldstmia (void)
8924 {
8925 vfp_dp_ldstm (VFP_LDSTMIA);
8926 }
8927
8928 static void
8929 do_vfp_dp_ldstmdb (void)
8930 {
8931 vfp_dp_ldstm (VFP_LDSTMDB);
8932 }
8933
8934 static void
8935 do_vfp_xp_ldstmia (void)
8936 {
8937 vfp_dp_ldstm (VFP_LDSTMIAX);
8938 }
8939
8940 static void
8941 do_vfp_xp_ldstmdb (void)
8942 {
8943 vfp_dp_ldstm (VFP_LDSTMDBX);
8944 }
8945
8946 static void
8947 do_vfp_dp_rd_rm (void)
8948 {
8949 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8950 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8951 }
8952
8953 static void
8954 do_vfp_dp_rn_rd (void)
8955 {
8956 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8957 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8958 }
8959
8960 static void
8961 do_vfp_dp_rd_rn (void)
8962 {
8963 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8964 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8965 }
8966
8967 static void
8968 do_vfp_dp_rd_rn_rm (void)
8969 {
8970 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8971 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8972 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8973 }
8974
8975 static void
8976 do_vfp_dp_rd (void)
8977 {
8978 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8979 }
8980
8981 static void
8982 do_vfp_dp_rm_rd_rn (void)
8983 {
8984 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8985 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8986 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8987 }
8988
8989 /* VFPv3 instructions. */
8990 static void
8991 do_vfp_sp_const (void)
8992 {
8993 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8994 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8995 inst.instruction |= (inst.operands[1].imm & 0x0f);
8996 }
8997
8998 static void
8999 do_vfp_dp_const (void)
9000 {
9001 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9002 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
9003 inst.instruction |= (inst.operands[1].imm & 0x0f);
9004 }
9005
9006 static void
9007 vfp_conv (int srcsize)
9008 {
9009 int immbits = srcsize - inst.operands[1].imm;
9010
9011 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
9012 {
9013 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
9014 i.e. immbits must be in range 0 - 16. */
9015 inst.error = _("immediate value out of range, expected range [0, 16]");
9016 return;
9017 }
9018 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
9019 {
9020 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
9021 i.e. immbits must be in range 0 - 31. */
9022 inst.error = _("immediate value out of range, expected range [1, 32]");
9023 return;
9024 }
9025
9026 inst.instruction |= (immbits & 1) << 5;
9027 inst.instruction |= (immbits >> 1);
9028 }
9029
9030 static void
9031 do_vfp_sp_conv_16 (void)
9032 {
9033 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9034 vfp_conv (16);
9035 }
9036
9037 static void
9038 do_vfp_dp_conv_16 (void)
9039 {
9040 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9041 vfp_conv (16);
9042 }
9043
9044 static void
9045 do_vfp_sp_conv_32 (void)
9046 {
9047 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9048 vfp_conv (32);
9049 }
9050
9051 static void
9052 do_vfp_dp_conv_32 (void)
9053 {
9054 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9055 vfp_conv (32);
9056 }
9057 \f
9058 /* FPA instructions. Also in a logical order. */
9059
9060 static void
9061 do_fpa_cmp (void)
9062 {
9063 inst.instruction |= inst.operands[0].reg << 16;
9064 inst.instruction |= inst.operands[1].reg;
9065 }
9066
9067 static void
9068 do_fpa_ldmstm (void)
9069 {
9070 inst.instruction |= inst.operands[0].reg << 12;
9071 switch (inst.operands[1].imm)
9072 {
9073 case 1: inst.instruction |= CP_T_X; break;
9074 case 2: inst.instruction |= CP_T_Y; break;
9075 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9076 case 4: break;
9077 default: abort ();
9078 }
9079
9080 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9081 {
9082 /* The instruction specified "ea" or "fd", so we can only accept
9083 [Rn]{!}. The instruction does not really support stacking or
9084 unstacking, so we have to emulate these by setting appropriate
9085 bits and offsets. */
9086 constraint (inst.reloc.exp.X_op != O_constant
9087 || inst.reloc.exp.X_add_number != 0,
9088 _("this instruction does not support indexing"));
9089
9090 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9091 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9092
9093 if (!(inst.instruction & INDEX_UP))
9094 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9095
9096 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9097 {
9098 inst.operands[2].preind = 0;
9099 inst.operands[2].postind = 1;
9100 }
9101 }
9102
9103 encode_arm_cp_address (2, TRUE, TRUE, 0);
9104 }
9105 \f
9106 /* iWMMXt instructions: strictly in alphabetical order. */
9107
9108 static void
9109 do_iwmmxt_tandorc (void)
9110 {
9111 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9112 }
9113
9114 static void
9115 do_iwmmxt_textrc (void)
9116 {
9117 inst.instruction |= inst.operands[0].reg << 12;
9118 inst.instruction |= inst.operands[1].imm;
9119 }
9120
9121 static void
9122 do_iwmmxt_textrm (void)
9123 {
9124 inst.instruction |= inst.operands[0].reg << 12;
9125 inst.instruction |= inst.operands[1].reg << 16;
9126 inst.instruction |= inst.operands[2].imm;
9127 }
9128
9129 static void
9130 do_iwmmxt_tinsr (void)
9131 {
9132 inst.instruction |= inst.operands[0].reg << 16;
9133 inst.instruction |= inst.operands[1].reg << 12;
9134 inst.instruction |= inst.operands[2].imm;
9135 }
9136
9137 static void
9138 do_iwmmxt_tmia (void)
9139 {
9140 inst.instruction |= inst.operands[0].reg << 5;
9141 inst.instruction |= inst.operands[1].reg;
9142 inst.instruction |= inst.operands[2].reg << 12;
9143 }
9144
9145 static void
9146 do_iwmmxt_waligni (void)
9147 {
9148 inst.instruction |= inst.operands[0].reg << 12;
9149 inst.instruction |= inst.operands[1].reg << 16;
9150 inst.instruction |= inst.operands[2].reg;
9151 inst.instruction |= inst.operands[3].imm << 20;
9152 }
9153
9154 static void
9155 do_iwmmxt_wmerge (void)
9156 {
9157 inst.instruction |= inst.operands[0].reg << 12;
9158 inst.instruction |= inst.operands[1].reg << 16;
9159 inst.instruction |= inst.operands[2].reg;
9160 inst.instruction |= inst.operands[3].imm << 21;
9161 }
9162
9163 static void
9164 do_iwmmxt_wmov (void)
9165 {
9166 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9167 inst.instruction |= inst.operands[0].reg << 12;
9168 inst.instruction |= inst.operands[1].reg << 16;
9169 inst.instruction |= inst.operands[1].reg;
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstbh (void)
9174 {
9175 int reloc;
9176 inst.instruction |= inst.operands[0].reg << 12;
9177 if (thumb_mode)
9178 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9179 else
9180 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9181 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9182 }
9183
9184 static void
9185 do_iwmmxt_wldstw (void)
9186 {
9187 /* RIWR_RIWC clears .isreg for a control register. */
9188 if (!inst.operands[0].isreg)
9189 {
9190 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9191 inst.instruction |= 0xf0000000;
9192 }
9193
9194 inst.instruction |= inst.operands[0].reg << 12;
9195 encode_arm_cp_address (1, TRUE, TRUE, 0);
9196 }
9197
9198 static void
9199 do_iwmmxt_wldstd (void)
9200 {
9201 inst.instruction |= inst.operands[0].reg << 12;
9202 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9203 && inst.operands[1].immisreg)
9204 {
9205 inst.instruction &= ~0x1a000ff;
9206 inst.instruction |= (0xf << 28);
9207 if (inst.operands[1].preind)
9208 inst.instruction |= PRE_INDEX;
9209 if (!inst.operands[1].negative)
9210 inst.instruction |= INDEX_UP;
9211 if (inst.operands[1].writeback)
9212 inst.instruction |= WRITE_BACK;
9213 inst.instruction |= inst.operands[1].reg << 16;
9214 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9215 inst.instruction |= inst.operands[1].imm;
9216 }
9217 else
9218 encode_arm_cp_address (1, TRUE, FALSE, 0);
9219 }
9220
9221 static void
9222 do_iwmmxt_wshufh (void)
9223 {
9224 inst.instruction |= inst.operands[0].reg << 12;
9225 inst.instruction |= inst.operands[1].reg << 16;
9226 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9227 inst.instruction |= (inst.operands[2].imm & 0x0f);
9228 }
9229
9230 static void
9231 do_iwmmxt_wzero (void)
9232 {
9233 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9234 inst.instruction |= inst.operands[0].reg;
9235 inst.instruction |= inst.operands[0].reg << 12;
9236 inst.instruction |= inst.operands[0].reg << 16;
9237 }
9238
9239 static void
9240 do_iwmmxt_wrwrwr_or_imm5 (void)
9241 {
9242 if (inst.operands[2].isreg)
9243 do_rd_rn_rm ();
9244 else {
9245 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9246 _("immediate operand requires iWMMXt2"));
9247 do_rd_rn ();
9248 if (inst.operands[2].imm == 0)
9249 {
9250 switch ((inst.instruction >> 20) & 0xf)
9251 {
9252 case 4:
9253 case 5:
9254 case 6:
9255 case 7:
9256 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9257 inst.operands[2].imm = 16;
9258 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9259 break;
9260 case 8:
9261 case 9:
9262 case 10:
9263 case 11:
9264 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9265 inst.operands[2].imm = 32;
9266 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9267 break;
9268 case 12:
9269 case 13:
9270 case 14:
9271 case 15:
9272 {
9273 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9274 unsigned long wrn;
9275 wrn = (inst.instruction >> 16) & 0xf;
9276 inst.instruction &= 0xff0fff0f;
9277 inst.instruction |= wrn;
9278 /* Bail out here; the instruction is now assembled. */
9279 return;
9280 }
9281 }
9282 }
9283 /* Map 32 -> 0, etc. */
9284 inst.operands[2].imm &= 0x1f;
9285 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9286 }
9287 }
9288 \f
9289 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9290 operations first, then control, shift, and load/store. */
9291
9292 /* Insns like "foo X,Y,Z". */
9293
9294 static void
9295 do_mav_triple (void)
9296 {
9297 inst.instruction |= inst.operands[0].reg << 16;
9298 inst.instruction |= inst.operands[1].reg;
9299 inst.instruction |= inst.operands[2].reg << 12;
9300 }
9301
9302 /* Insns like "foo W,X,Y,Z".
9303 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9304
9305 static void
9306 do_mav_quad (void)
9307 {
9308 inst.instruction |= inst.operands[0].reg << 5;
9309 inst.instruction |= inst.operands[1].reg << 12;
9310 inst.instruction |= inst.operands[2].reg << 16;
9311 inst.instruction |= inst.operands[3].reg;
9312 }
9313
9314 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9315 static void
9316 do_mav_dspsc (void)
9317 {
9318 inst.instruction |= inst.operands[1].reg << 12;
9319 }
9320
9321 /* Maverick shift immediate instructions.
9322 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9323 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9324
9325 static void
9326 do_mav_shift (void)
9327 {
9328 int imm = inst.operands[2].imm;
9329
9330 inst.instruction |= inst.operands[0].reg << 12;
9331 inst.instruction |= inst.operands[1].reg << 16;
9332
9333 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9334 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9335 Bit 4 should be 0. */
9336 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9337
9338 inst.instruction |= imm;
9339 }
9340 \f
9341 /* XScale instructions. Also sorted arithmetic before move. */
9342
9343 /* Xscale multiply-accumulate (argument parse)
9344 MIAcc acc0,Rm,Rs
9345 MIAPHcc acc0,Rm,Rs
9346 MIAxycc acc0,Rm,Rs. */
9347
9348 static void
9349 do_xsc_mia (void)
9350 {
9351 inst.instruction |= inst.operands[1].reg;
9352 inst.instruction |= inst.operands[2].reg << 12;
9353 }
9354
9355 /* Xscale move-accumulator-register (argument parse)
9356
9357 MARcc acc0,RdLo,RdHi. */
9358
9359 static void
9360 do_xsc_mar (void)
9361 {
9362 inst.instruction |= inst.operands[1].reg << 12;
9363 inst.instruction |= inst.operands[2].reg << 16;
9364 }
9365
9366 /* Xscale move-register-accumulator (argument parse)
9367
9368 MRAcc RdLo,RdHi,acc0. */
9369
9370 static void
9371 do_xsc_mra (void)
9372 {
9373 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9374 inst.instruction |= inst.operands[0].reg << 12;
9375 inst.instruction |= inst.operands[1].reg << 16;
9376 }
9377 \f
9378 /* Encoding functions relevant only to Thumb. */
9379
9380 /* inst.operands[i] is a shifted-register operand; encode
9381 it into inst.instruction in the format used by Thumb32. */
9382
9383 static void
9384 encode_thumb32_shifted_operand (int i)
9385 {
9386 unsigned int value = inst.reloc.exp.X_add_number;
9387 unsigned int shift = inst.operands[i].shift_kind;
9388
9389 constraint (inst.operands[i].immisreg,
9390 _("shift by register not allowed in thumb mode"));
9391 inst.instruction |= inst.operands[i].reg;
9392 if (shift == SHIFT_RRX)
9393 inst.instruction |= SHIFT_ROR << 4;
9394 else
9395 {
9396 constraint (inst.reloc.exp.X_op != O_constant,
9397 _("expression too complex"));
9398
9399 constraint (value > 32
9400 || (value == 32 && (shift == SHIFT_LSL
9401 || shift == SHIFT_ROR)),
9402 _("shift expression is too large"));
9403
9404 if (value == 0)
9405 shift = SHIFT_LSL;
9406 else if (value == 32)
9407 value = 0;
9408
9409 inst.instruction |= shift << 4;
9410 inst.instruction |= (value & 0x1c) << 10;
9411 inst.instruction |= (value & 0x03) << 6;
9412 }
9413 }
9414
9415
9416 /* inst.operands[i] was set up by parse_address. Encode it into a
9417 Thumb32 format load or store instruction. Reject forms that cannot
9418 be used with such instructions. If is_t is true, reject forms that
9419 cannot be used with a T instruction; if is_d is true, reject forms
9420 that cannot be used with a D instruction. If it is a store insn,
9421 reject PC in Rn. */
9422
9423 static void
9424 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9425 {
9426 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9427
9428 constraint (!inst.operands[i].isreg,
9429 _("Instruction does not support =N addresses"));
9430
9431 inst.instruction |= inst.operands[i].reg << 16;
9432 if (inst.operands[i].immisreg)
9433 {
9434 constraint (is_pc, BAD_PC_ADDRESSING);
9435 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9436 constraint (inst.operands[i].negative,
9437 _("Thumb does not support negative register indexing"));
9438 constraint (inst.operands[i].postind,
9439 _("Thumb does not support register post-indexing"));
9440 constraint (inst.operands[i].writeback,
9441 _("Thumb does not support register indexing with writeback"));
9442 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9443 _("Thumb supports only LSL in shifted register indexing"));
9444
9445 inst.instruction |= inst.operands[i].imm;
9446 if (inst.operands[i].shifted)
9447 {
9448 constraint (inst.reloc.exp.X_op != O_constant,
9449 _("expression too complex"));
9450 constraint (inst.reloc.exp.X_add_number < 0
9451 || inst.reloc.exp.X_add_number > 3,
9452 _("shift out of range"));
9453 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9454 }
9455 inst.reloc.type = BFD_RELOC_UNUSED;
9456 }
9457 else if (inst.operands[i].preind)
9458 {
9459 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9460 constraint (is_t && inst.operands[i].writeback,
9461 _("cannot use writeback with this instruction"));
9462 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9463 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9464
9465 if (is_d)
9466 {
9467 inst.instruction |= 0x01000000;
9468 if (inst.operands[i].writeback)
9469 inst.instruction |= 0x00200000;
9470 }
9471 else
9472 {
9473 inst.instruction |= 0x00000c00;
9474 if (inst.operands[i].writeback)
9475 inst.instruction |= 0x00000100;
9476 }
9477 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9478 }
9479 else if (inst.operands[i].postind)
9480 {
9481 gas_assert (inst.operands[i].writeback);
9482 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9483 constraint (is_t, _("cannot use post-indexing with this instruction"));
9484
9485 if (is_d)
9486 inst.instruction |= 0x00200000;
9487 else
9488 inst.instruction |= 0x00000900;
9489 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9490 }
9491 else /* unindexed - only for coprocessor */
9492 inst.error = _("instruction does not accept unindexed addressing");
9493 }
9494
9495 /* Table of Thumb instructions which exist in both 16- and 32-bit
9496 encodings (the latter only in post-V6T2 cores). The index is the
9497 value used in the insns table below. When there is more than one
9498 possible 16-bit encoding for the instruction, this table always
9499 holds variant (1).
9500 Also contains several pseudo-instructions used during relaxation. */
9501 #define T16_32_TAB \
9502 X(_adc, 4140, eb400000), \
9503 X(_adcs, 4140, eb500000), \
9504 X(_add, 1c00, eb000000), \
9505 X(_adds, 1c00, eb100000), \
9506 X(_addi, 0000, f1000000), \
9507 X(_addis, 0000, f1100000), \
9508 X(_add_pc,000f, f20f0000), \
9509 X(_add_sp,000d, f10d0000), \
9510 X(_adr, 000f, f20f0000), \
9511 X(_and, 4000, ea000000), \
9512 X(_ands, 4000, ea100000), \
9513 X(_asr, 1000, fa40f000), \
9514 X(_asrs, 1000, fa50f000), \
9515 X(_b, e000, f000b000), \
9516 X(_bcond, d000, f0008000), \
9517 X(_bic, 4380, ea200000), \
9518 X(_bics, 4380, ea300000), \
9519 X(_cmn, 42c0, eb100f00), \
9520 X(_cmp, 2800, ebb00f00), \
9521 X(_cpsie, b660, f3af8400), \
9522 X(_cpsid, b670, f3af8600), \
9523 X(_cpy, 4600, ea4f0000), \
9524 X(_dec_sp,80dd, f1ad0d00), \
9525 X(_eor, 4040, ea800000), \
9526 X(_eors, 4040, ea900000), \
9527 X(_inc_sp,00dd, f10d0d00), \
9528 X(_ldmia, c800, e8900000), \
9529 X(_ldr, 6800, f8500000), \
9530 X(_ldrb, 7800, f8100000), \
9531 X(_ldrh, 8800, f8300000), \
9532 X(_ldrsb, 5600, f9100000), \
9533 X(_ldrsh, 5e00, f9300000), \
9534 X(_ldr_pc,4800, f85f0000), \
9535 X(_ldr_pc2,4800, f85f0000), \
9536 X(_ldr_sp,9800, f85d0000), \
9537 X(_lsl, 0000, fa00f000), \
9538 X(_lsls, 0000, fa10f000), \
9539 X(_lsr, 0800, fa20f000), \
9540 X(_lsrs, 0800, fa30f000), \
9541 X(_mov, 2000, ea4f0000), \
9542 X(_movs, 2000, ea5f0000), \
9543 X(_mul, 4340, fb00f000), \
9544 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9545 X(_mvn, 43c0, ea6f0000), \
9546 X(_mvns, 43c0, ea7f0000), \
9547 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9548 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9549 X(_orr, 4300, ea400000), \
9550 X(_orrs, 4300, ea500000), \
9551 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9552 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9553 X(_rev, ba00, fa90f080), \
9554 X(_rev16, ba40, fa90f090), \
9555 X(_revsh, bac0, fa90f0b0), \
9556 X(_ror, 41c0, fa60f000), \
9557 X(_rors, 41c0, fa70f000), \
9558 X(_sbc, 4180, eb600000), \
9559 X(_sbcs, 4180, eb700000), \
9560 X(_stmia, c000, e8800000), \
9561 X(_str, 6000, f8400000), \
9562 X(_strb, 7000, f8000000), \
9563 X(_strh, 8000, f8200000), \
9564 X(_str_sp,9000, f84d0000), \
9565 X(_sub, 1e00, eba00000), \
9566 X(_subs, 1e00, ebb00000), \
9567 X(_subi, 8000, f1a00000), \
9568 X(_subis, 8000, f1b00000), \
9569 X(_sxtb, b240, fa4ff080), \
9570 X(_sxth, b200, fa0ff080), \
9571 X(_tst, 4200, ea100f00), \
9572 X(_uxtb, b2c0, fa5ff080), \
9573 X(_uxth, b280, fa1ff080), \
9574 X(_nop, bf00, f3af8000), \
9575 X(_yield, bf10, f3af8001), \
9576 X(_wfe, bf20, f3af8002), \
9577 X(_wfi, bf30, f3af8003), \
9578 X(_sev, bf40, f3af8004), \
9579 X(_sevl, bf50, f3af8005)
9580
9581 /* To catch errors in encoding functions, the codes are all offset by
9582 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9583 as 16-bit instructions. */
9584 #define X(a,b,c) T_MNEM##a
9585 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9586 #undef X
9587
9588 #define X(a,b,c) 0x##b
9589 static const unsigned short thumb_op16[] = { T16_32_TAB };
9590 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9591 #undef X
9592
9593 #define X(a,b,c) 0x##c
9594 static const unsigned int thumb_op32[] = { T16_32_TAB };
9595 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9596 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9597 #undef X
9598 #undef T16_32_TAB
9599
9600 /* Thumb instruction encoders, in alphabetical order. */
9601
9602 /* ADDW or SUBW. */
9603
9604 static void
9605 do_t_add_sub_w (void)
9606 {
9607 int Rd, Rn;
9608
9609 Rd = inst.operands[0].reg;
9610 Rn = inst.operands[1].reg;
9611
9612 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9613 is the SP-{plus,minus}-immediate form of the instruction. */
9614 if (Rn == REG_SP)
9615 constraint (Rd == REG_PC, BAD_PC);
9616 else
9617 reject_bad_reg (Rd);
9618
9619 inst.instruction |= (Rn << 16) | (Rd << 8);
9620 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9621 }
9622
9623 /* Parse an add or subtract instruction. We get here with inst.instruction
9624 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9625
9626 static void
9627 do_t_add_sub (void)
9628 {
9629 int Rd, Rs, Rn;
9630
9631 Rd = inst.operands[0].reg;
9632 Rs = (inst.operands[1].present
9633 ? inst.operands[1].reg /* Rd, Rs, foo */
9634 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9635
9636 if (Rd == REG_PC)
9637 set_it_insn_type_last ();
9638
9639 if (unified_syntax)
9640 {
9641 bfd_boolean flags;
9642 bfd_boolean narrow;
9643 int opcode;
9644
9645 flags = (inst.instruction == T_MNEM_adds
9646 || inst.instruction == T_MNEM_subs);
9647 if (flags)
9648 narrow = !in_it_block ();
9649 else
9650 narrow = in_it_block ();
9651 if (!inst.operands[2].isreg)
9652 {
9653 int add;
9654
9655 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9656
9657 add = (inst.instruction == T_MNEM_add
9658 || inst.instruction == T_MNEM_adds);
9659 opcode = 0;
9660 if (inst.size_req != 4)
9661 {
9662 /* Attempt to use a narrow opcode, with relaxation if
9663 appropriate. */
9664 if (Rd == REG_SP && Rs == REG_SP && !flags)
9665 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9666 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9667 opcode = T_MNEM_add_sp;
9668 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9669 opcode = T_MNEM_add_pc;
9670 else if (Rd <= 7 && Rs <= 7 && narrow)
9671 {
9672 if (flags)
9673 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9674 else
9675 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9676 }
9677 if (opcode)
9678 {
9679 inst.instruction = THUMB_OP16(opcode);
9680 inst.instruction |= (Rd << 4) | Rs;
9681 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9682 if (inst.size_req != 2)
9683 inst.relax = opcode;
9684 }
9685 else
9686 constraint (inst.size_req == 2, BAD_HIREG);
9687 }
9688 if (inst.size_req == 4
9689 || (inst.size_req != 2 && !opcode))
9690 {
9691 if (Rd == REG_PC)
9692 {
9693 constraint (add, BAD_PC);
9694 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9695 _("only SUBS PC, LR, #const allowed"));
9696 constraint (inst.reloc.exp.X_op != O_constant,
9697 _("expression too complex"));
9698 constraint (inst.reloc.exp.X_add_number < 0
9699 || inst.reloc.exp.X_add_number > 0xff,
9700 _("immediate value out of range"));
9701 inst.instruction = T2_SUBS_PC_LR
9702 | inst.reloc.exp.X_add_number;
9703 inst.reloc.type = BFD_RELOC_UNUSED;
9704 return;
9705 }
9706 else if (Rs == REG_PC)
9707 {
9708 /* Always use addw/subw. */
9709 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9710 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9711 }
9712 else
9713 {
9714 inst.instruction = THUMB_OP32 (inst.instruction);
9715 inst.instruction = (inst.instruction & 0xe1ffffff)
9716 | 0x10000000;
9717 if (flags)
9718 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9719 else
9720 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9721 }
9722 inst.instruction |= Rd << 8;
9723 inst.instruction |= Rs << 16;
9724 }
9725 }
9726 else
9727 {
9728 unsigned int value = inst.reloc.exp.X_add_number;
9729 unsigned int shift = inst.operands[2].shift_kind;
9730
9731 Rn = inst.operands[2].reg;
9732 /* See if we can do this with a 16-bit instruction. */
9733 if (!inst.operands[2].shifted && inst.size_req != 4)
9734 {
9735 if (Rd > 7 || Rs > 7 || Rn > 7)
9736 narrow = FALSE;
9737
9738 if (narrow)
9739 {
9740 inst.instruction = ((inst.instruction == T_MNEM_adds
9741 || inst.instruction == T_MNEM_add)
9742 ? T_OPCODE_ADD_R3
9743 : T_OPCODE_SUB_R3);
9744 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9745 return;
9746 }
9747
9748 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9749 {
9750 /* Thumb-1 cores (except v6-M) require at least one high
9751 register in a narrow non flag setting add. */
9752 if (Rd > 7 || Rn > 7
9753 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9754 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9755 {
9756 if (Rd == Rn)
9757 {
9758 Rn = Rs;
9759 Rs = Rd;
9760 }
9761 inst.instruction = T_OPCODE_ADD_HI;
9762 inst.instruction |= (Rd & 8) << 4;
9763 inst.instruction |= (Rd & 7);
9764 inst.instruction |= Rn << 3;
9765 return;
9766 }
9767 }
9768 }
9769
9770 constraint (Rd == REG_PC, BAD_PC);
9771 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9772 constraint (Rs == REG_PC, BAD_PC);
9773 reject_bad_reg (Rn);
9774
9775 /* If we get here, it can't be done in 16 bits. */
9776 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9777 _("shift must be constant"));
9778 inst.instruction = THUMB_OP32 (inst.instruction);
9779 inst.instruction |= Rd << 8;
9780 inst.instruction |= Rs << 16;
9781 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9782 _("shift value over 3 not allowed in thumb mode"));
9783 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9784 _("only LSL shift allowed in thumb mode"));
9785 encode_thumb32_shifted_operand (2);
9786 }
9787 }
9788 else
9789 {
9790 constraint (inst.instruction == T_MNEM_adds
9791 || inst.instruction == T_MNEM_subs,
9792 BAD_THUMB32);
9793
9794 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9795 {
9796 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9797 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9798 BAD_HIREG);
9799
9800 inst.instruction = (inst.instruction == T_MNEM_add
9801 ? 0x0000 : 0x8000);
9802 inst.instruction |= (Rd << 4) | Rs;
9803 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9804 return;
9805 }
9806
9807 Rn = inst.operands[2].reg;
9808 constraint (inst.operands[2].shifted, _("unshifted register required"));
9809
9810 /* We now have Rd, Rs, and Rn set to registers. */
9811 if (Rd > 7 || Rs > 7 || Rn > 7)
9812 {
9813 /* Can't do this for SUB. */
9814 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9815 inst.instruction = T_OPCODE_ADD_HI;
9816 inst.instruction |= (Rd & 8) << 4;
9817 inst.instruction |= (Rd & 7);
9818 if (Rs == Rd)
9819 inst.instruction |= Rn << 3;
9820 else if (Rn == Rd)
9821 inst.instruction |= Rs << 3;
9822 else
9823 constraint (1, _("dest must overlap one source register"));
9824 }
9825 else
9826 {
9827 inst.instruction = (inst.instruction == T_MNEM_add
9828 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9829 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9830 }
9831 }
9832 }
9833
9834 static void
9835 do_t_adr (void)
9836 {
9837 unsigned Rd;
9838
9839 Rd = inst.operands[0].reg;
9840 reject_bad_reg (Rd);
9841
9842 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9843 {
9844 /* Defer to section relaxation. */
9845 inst.relax = inst.instruction;
9846 inst.instruction = THUMB_OP16 (inst.instruction);
9847 inst.instruction |= Rd << 4;
9848 }
9849 else if (unified_syntax && inst.size_req != 2)
9850 {
9851 /* Generate a 32-bit opcode. */
9852 inst.instruction = THUMB_OP32 (inst.instruction);
9853 inst.instruction |= Rd << 8;
9854 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9855 inst.reloc.pc_rel = 1;
9856 }
9857 else
9858 {
9859 /* Generate a 16-bit opcode. */
9860 inst.instruction = THUMB_OP16 (inst.instruction);
9861 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9862 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9863 inst.reloc.pc_rel = 1;
9864
9865 inst.instruction |= Rd << 4;
9866 }
9867 }
9868
9869 /* Arithmetic instructions for which there is just one 16-bit
9870 instruction encoding, and it allows only two low registers.
9871 For maximal compatibility with ARM syntax, we allow three register
9872 operands even when Thumb-32 instructions are not available, as long
9873 as the first two are identical. For instance, both "sbc r0,r1" and
9874 "sbc r0,r0,r1" are allowed. */
9875 static void
9876 do_t_arit3 (void)
9877 {
9878 int Rd, Rs, Rn;
9879
9880 Rd = inst.operands[0].reg;
9881 Rs = (inst.operands[1].present
9882 ? inst.operands[1].reg /* Rd, Rs, foo */
9883 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9884 Rn = inst.operands[2].reg;
9885
9886 reject_bad_reg (Rd);
9887 reject_bad_reg (Rs);
9888 if (inst.operands[2].isreg)
9889 reject_bad_reg (Rn);
9890
9891 if (unified_syntax)
9892 {
9893 if (!inst.operands[2].isreg)
9894 {
9895 /* For an immediate, we always generate a 32-bit opcode;
9896 section relaxation will shrink it later if possible. */
9897 inst.instruction = THUMB_OP32 (inst.instruction);
9898 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9899 inst.instruction |= Rd << 8;
9900 inst.instruction |= Rs << 16;
9901 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9902 }
9903 else
9904 {
9905 bfd_boolean narrow;
9906
9907 /* See if we can do this with a 16-bit instruction. */
9908 if (THUMB_SETS_FLAGS (inst.instruction))
9909 narrow = !in_it_block ();
9910 else
9911 narrow = in_it_block ();
9912
9913 if (Rd > 7 || Rn > 7 || Rs > 7)
9914 narrow = FALSE;
9915 if (inst.operands[2].shifted)
9916 narrow = FALSE;
9917 if (inst.size_req == 4)
9918 narrow = FALSE;
9919
9920 if (narrow
9921 && Rd == Rs)
9922 {
9923 inst.instruction = THUMB_OP16 (inst.instruction);
9924 inst.instruction |= Rd;
9925 inst.instruction |= Rn << 3;
9926 return;
9927 }
9928
9929 /* If we get here, it can't be done in 16 bits. */
9930 constraint (inst.operands[2].shifted
9931 && inst.operands[2].immisreg,
9932 _("shift must be constant"));
9933 inst.instruction = THUMB_OP32 (inst.instruction);
9934 inst.instruction |= Rd << 8;
9935 inst.instruction |= Rs << 16;
9936 encode_thumb32_shifted_operand (2);
9937 }
9938 }
9939 else
9940 {
9941 /* On its face this is a lie - the instruction does set the
9942 flags. However, the only supported mnemonic in this mode
9943 says it doesn't. */
9944 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9945
9946 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9947 _("unshifted register required"));
9948 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9949 constraint (Rd != Rs,
9950 _("dest and source1 must be the same register"));
9951
9952 inst.instruction = THUMB_OP16 (inst.instruction);
9953 inst.instruction |= Rd;
9954 inst.instruction |= Rn << 3;
9955 }
9956 }
9957
9958 /* Similarly, but for instructions where the arithmetic operation is
9959 commutative, so we can allow either of them to be different from
9960 the destination operand in a 16-bit instruction. For instance, all
9961 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9962 accepted. */
9963 static void
9964 do_t_arit3c (void)
9965 {
9966 int Rd, Rs, Rn;
9967
9968 Rd = inst.operands[0].reg;
9969 Rs = (inst.operands[1].present
9970 ? inst.operands[1].reg /* Rd, Rs, foo */
9971 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9972 Rn = inst.operands[2].reg;
9973
9974 reject_bad_reg (Rd);
9975 reject_bad_reg (Rs);
9976 if (inst.operands[2].isreg)
9977 reject_bad_reg (Rn);
9978
9979 if (unified_syntax)
9980 {
9981 if (!inst.operands[2].isreg)
9982 {
9983 /* For an immediate, we always generate a 32-bit opcode;
9984 section relaxation will shrink it later if possible. */
9985 inst.instruction = THUMB_OP32 (inst.instruction);
9986 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9987 inst.instruction |= Rd << 8;
9988 inst.instruction |= Rs << 16;
9989 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9990 }
9991 else
9992 {
9993 bfd_boolean narrow;
9994
9995 /* See if we can do this with a 16-bit instruction. */
9996 if (THUMB_SETS_FLAGS (inst.instruction))
9997 narrow = !in_it_block ();
9998 else
9999 narrow = in_it_block ();
10000
10001 if (Rd > 7 || Rn > 7 || Rs > 7)
10002 narrow = FALSE;
10003 if (inst.operands[2].shifted)
10004 narrow = FALSE;
10005 if (inst.size_req == 4)
10006 narrow = FALSE;
10007
10008 if (narrow)
10009 {
10010 if (Rd == Rs)
10011 {
10012 inst.instruction = THUMB_OP16 (inst.instruction);
10013 inst.instruction |= Rd;
10014 inst.instruction |= Rn << 3;
10015 return;
10016 }
10017 if (Rd == Rn)
10018 {
10019 inst.instruction = THUMB_OP16 (inst.instruction);
10020 inst.instruction |= Rd;
10021 inst.instruction |= Rs << 3;
10022 return;
10023 }
10024 }
10025
10026 /* If we get here, it can't be done in 16 bits. */
10027 constraint (inst.operands[2].shifted
10028 && inst.operands[2].immisreg,
10029 _("shift must be constant"));
10030 inst.instruction = THUMB_OP32 (inst.instruction);
10031 inst.instruction |= Rd << 8;
10032 inst.instruction |= Rs << 16;
10033 encode_thumb32_shifted_operand (2);
10034 }
10035 }
10036 else
10037 {
10038 /* On its face this is a lie - the instruction does set the
10039 flags. However, the only supported mnemonic in this mode
10040 says it doesn't. */
10041 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10042
10043 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10044 _("unshifted register required"));
10045 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10046
10047 inst.instruction = THUMB_OP16 (inst.instruction);
10048 inst.instruction |= Rd;
10049
10050 if (Rd == Rs)
10051 inst.instruction |= Rn << 3;
10052 else if (Rd == Rn)
10053 inst.instruction |= Rs << 3;
10054 else
10055 constraint (1, _("dest must overlap one source register"));
10056 }
10057 }
10058
10059 static void
10060 do_t_barrier (void)
10061 {
10062 if (inst.operands[0].present)
10063 {
10064 constraint ((inst.instruction & 0xf0) != 0x40
10065 && inst.operands[0].imm > 0xf
10066 && inst.operands[0].imm < 0x0,
10067 _("bad barrier type"));
10068 inst.instruction |= inst.operands[0].imm;
10069 }
10070 else
10071 inst.instruction |= 0xf;
10072 }
10073
10074 static void
10075 do_t_bfc (void)
10076 {
10077 unsigned Rd;
10078 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10079 constraint (msb > 32, _("bit-field extends past end of register"));
10080 /* The instruction encoding stores the LSB and MSB,
10081 not the LSB and width. */
10082 Rd = inst.operands[0].reg;
10083 reject_bad_reg (Rd);
10084 inst.instruction |= Rd << 8;
10085 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10086 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10087 inst.instruction |= msb - 1;
10088 }
10089
10090 static void
10091 do_t_bfi (void)
10092 {
10093 int Rd, Rn;
10094 unsigned int msb;
10095
10096 Rd = inst.operands[0].reg;
10097 reject_bad_reg (Rd);
10098
10099 /* #0 in second position is alternative syntax for bfc, which is
10100 the same instruction but with REG_PC in the Rm field. */
10101 if (!inst.operands[1].isreg)
10102 Rn = REG_PC;
10103 else
10104 {
10105 Rn = inst.operands[1].reg;
10106 reject_bad_reg (Rn);
10107 }
10108
10109 msb = inst.operands[2].imm + inst.operands[3].imm;
10110 constraint (msb > 32, _("bit-field extends past end of register"));
10111 /* The instruction encoding stores the LSB and MSB,
10112 not the LSB and width. */
10113 inst.instruction |= Rd << 8;
10114 inst.instruction |= Rn << 16;
10115 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10116 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10117 inst.instruction |= msb - 1;
10118 }
10119
10120 static void
10121 do_t_bfx (void)
10122 {
10123 unsigned Rd, Rn;
10124
10125 Rd = inst.operands[0].reg;
10126 Rn = inst.operands[1].reg;
10127
10128 reject_bad_reg (Rd);
10129 reject_bad_reg (Rn);
10130
10131 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10132 _("bit-field extends past end of register"));
10133 inst.instruction |= Rd << 8;
10134 inst.instruction |= Rn << 16;
10135 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10136 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10137 inst.instruction |= inst.operands[3].imm - 1;
10138 }
10139
10140 /* ARM V5 Thumb BLX (argument parse)
10141 BLX <target_addr> which is BLX(1)
10142 BLX <Rm> which is BLX(2)
10143 Unfortunately, there are two different opcodes for this mnemonic.
10144 So, the insns[].value is not used, and the code here zaps values
10145 into inst.instruction.
10146
10147 ??? How to take advantage of the additional two bits of displacement
10148 available in Thumb32 mode? Need new relocation? */
10149
10150 static void
10151 do_t_blx (void)
10152 {
10153 set_it_insn_type_last ();
10154
10155 if (inst.operands[0].isreg)
10156 {
10157 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10158 /* We have a register, so this is BLX(2). */
10159 inst.instruction |= inst.operands[0].reg << 3;
10160 }
10161 else
10162 {
10163 /* No register. This must be BLX(1). */
10164 inst.instruction = 0xf000e800;
10165 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10166 }
10167 }
10168
10169 static void
10170 do_t_branch (void)
10171 {
10172 int opcode;
10173 int cond;
10174 int reloc;
10175
10176 cond = inst.cond;
10177 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10178
10179 if (in_it_block ())
10180 {
10181 /* Conditional branches inside IT blocks are encoded as unconditional
10182 branches. */
10183 cond = COND_ALWAYS;
10184 }
10185 else
10186 cond = inst.cond;
10187
10188 if (cond != COND_ALWAYS)
10189 opcode = T_MNEM_bcond;
10190 else
10191 opcode = inst.instruction;
10192
10193 if (unified_syntax
10194 && (inst.size_req == 4
10195 || (inst.size_req != 2
10196 && (inst.operands[0].hasreloc
10197 || inst.reloc.exp.X_op == O_constant))))
10198 {
10199 inst.instruction = THUMB_OP32(opcode);
10200 if (cond == COND_ALWAYS)
10201 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10202 else
10203 {
10204 gas_assert (cond != 0xF);
10205 inst.instruction |= cond << 22;
10206 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10207 }
10208 }
10209 else
10210 {
10211 inst.instruction = THUMB_OP16(opcode);
10212 if (cond == COND_ALWAYS)
10213 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10214 else
10215 {
10216 inst.instruction |= cond << 8;
10217 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10218 }
10219 /* Allow section relaxation. */
10220 if (unified_syntax && inst.size_req != 2)
10221 inst.relax = opcode;
10222 }
10223 inst.reloc.type = reloc;
10224 inst.reloc.pc_rel = 1;
10225 }
10226
10227 /* Actually do the work for Thumb state bkpt and hlt. The only difference
10228 between the two is the maximum immediate allowed - which is passed in
10229 RANGE. */
10230 static void
10231 do_t_bkpt_hlt1 (int range)
10232 {
10233 constraint (inst.cond != COND_ALWAYS,
10234 _("instruction is always unconditional"));
10235 if (inst.operands[0].present)
10236 {
10237 constraint (inst.operands[0].imm > range,
10238 _("immediate value out of range"));
10239 inst.instruction |= inst.operands[0].imm;
10240 }
10241
10242 set_it_insn_type (NEUTRAL_IT_INSN);
10243 }
10244
10245 static void
10246 do_t_hlt (void)
10247 {
10248 do_t_bkpt_hlt1 (63);
10249 }
10250
10251 static void
10252 do_t_bkpt (void)
10253 {
10254 do_t_bkpt_hlt1 (255);
10255 }
10256
10257 static void
10258 do_t_branch23 (void)
10259 {
10260 set_it_insn_type_last ();
10261 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10262
10263 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10264 this file. We used to simply ignore the PLT reloc type here --
10265 the branch encoding is now needed to deal with TLSCALL relocs.
10266 So if we see a PLT reloc now, put it back to how it used to be to
10267 keep the preexisting behaviour. */
10268 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10269 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10270
10271 #if defined(OBJ_COFF)
10272 /* If the destination of the branch is a defined symbol which does not have
10273 the THUMB_FUNC attribute, then we must be calling a function which has
10274 the (interfacearm) attribute. We look for the Thumb entry point to that
10275 function and change the branch to refer to that function instead. */
10276 if ( inst.reloc.exp.X_op == O_symbol
10277 && inst.reloc.exp.X_add_symbol != NULL
10278 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10279 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10280 inst.reloc.exp.X_add_symbol =
10281 find_real_start (inst.reloc.exp.X_add_symbol);
10282 #endif
10283 }
10284
10285 static void
10286 do_t_bx (void)
10287 {
10288 set_it_insn_type_last ();
10289 inst.instruction |= inst.operands[0].reg << 3;
10290 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10291 should cause the alignment to be checked once it is known. This is
10292 because BX PC only works if the instruction is word aligned. */
10293 }
10294
10295 static void
10296 do_t_bxj (void)
10297 {
10298 int Rm;
10299
10300 set_it_insn_type_last ();
10301 Rm = inst.operands[0].reg;
10302 reject_bad_reg (Rm);
10303 inst.instruction |= Rm << 16;
10304 }
10305
10306 static void
10307 do_t_clz (void)
10308 {
10309 unsigned Rd;
10310 unsigned Rm;
10311
10312 Rd = inst.operands[0].reg;
10313 Rm = inst.operands[1].reg;
10314
10315 reject_bad_reg (Rd);
10316 reject_bad_reg (Rm);
10317
10318 inst.instruction |= Rd << 8;
10319 inst.instruction |= Rm << 16;
10320 inst.instruction |= Rm;
10321 }
10322
10323 static void
10324 do_t_cps (void)
10325 {
10326 set_it_insn_type (OUTSIDE_IT_INSN);
10327 inst.instruction |= inst.operands[0].imm;
10328 }
10329
10330 static void
10331 do_t_cpsi (void)
10332 {
10333 set_it_insn_type (OUTSIDE_IT_INSN);
10334 if (unified_syntax
10335 && (inst.operands[1].present || inst.size_req == 4)
10336 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10337 {
10338 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10339 inst.instruction = 0xf3af8000;
10340 inst.instruction |= imod << 9;
10341 inst.instruction |= inst.operands[0].imm << 5;
10342 if (inst.operands[1].present)
10343 inst.instruction |= 0x100 | inst.operands[1].imm;
10344 }
10345 else
10346 {
10347 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10348 && (inst.operands[0].imm & 4),
10349 _("selected processor does not support 'A' form "
10350 "of this instruction"));
10351 constraint (inst.operands[1].present || inst.size_req == 4,
10352 _("Thumb does not support the 2-argument "
10353 "form of this instruction"));
10354 inst.instruction |= inst.operands[0].imm;
10355 }
10356 }
10357
10358 /* THUMB CPY instruction (argument parse). */
10359
10360 static void
10361 do_t_cpy (void)
10362 {
10363 if (inst.size_req == 4)
10364 {
10365 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10366 inst.instruction |= inst.operands[0].reg << 8;
10367 inst.instruction |= inst.operands[1].reg;
10368 }
10369 else
10370 {
10371 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10372 inst.instruction |= (inst.operands[0].reg & 0x7);
10373 inst.instruction |= inst.operands[1].reg << 3;
10374 }
10375 }
10376
10377 static void
10378 do_t_cbz (void)
10379 {
10380 set_it_insn_type (OUTSIDE_IT_INSN);
10381 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10382 inst.instruction |= inst.operands[0].reg;
10383 inst.reloc.pc_rel = 1;
10384 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10385 }
10386
10387 static void
10388 do_t_dbg (void)
10389 {
10390 inst.instruction |= inst.operands[0].imm;
10391 }
10392
10393 static void
10394 do_t_div (void)
10395 {
10396 unsigned Rd, Rn, Rm;
10397
10398 Rd = inst.operands[0].reg;
10399 Rn = (inst.operands[1].present
10400 ? inst.operands[1].reg : Rd);
10401 Rm = inst.operands[2].reg;
10402
10403 reject_bad_reg (Rd);
10404 reject_bad_reg (Rn);
10405 reject_bad_reg (Rm);
10406
10407 inst.instruction |= Rd << 8;
10408 inst.instruction |= Rn << 16;
10409 inst.instruction |= Rm;
10410 }
10411
10412 static void
10413 do_t_hint (void)
10414 {
10415 if (unified_syntax && inst.size_req == 4)
10416 inst.instruction = THUMB_OP32 (inst.instruction);
10417 else
10418 inst.instruction = THUMB_OP16 (inst.instruction);
10419 }
10420
10421 static void
10422 do_t_it (void)
10423 {
10424 unsigned int cond = inst.operands[0].imm;
10425
10426 set_it_insn_type (IT_INSN);
10427 now_it.mask = (inst.instruction & 0xf) | 0x10;
10428 now_it.cc = cond;
10429 now_it.warn_deprecated = FALSE;
10430
10431 /* If the condition is a negative condition, invert the mask. */
10432 if ((cond & 0x1) == 0x0)
10433 {
10434 unsigned int mask = inst.instruction & 0x000f;
10435
10436 if ((mask & 0x7) == 0)
10437 {
10438 /* No conversion needed. */
10439 now_it.block_length = 1;
10440 }
10441 else if ((mask & 0x3) == 0)
10442 {
10443 mask ^= 0x8;
10444 now_it.block_length = 2;
10445 }
10446 else if ((mask & 0x1) == 0)
10447 {
10448 mask ^= 0xC;
10449 now_it.block_length = 3;
10450 }
10451 else
10452 {
10453 mask ^= 0xE;
10454 now_it.block_length = 4;
10455 }
10456
10457 inst.instruction &= 0xfff0;
10458 inst.instruction |= mask;
10459 }
10460
10461 inst.instruction |= cond << 4;
10462 }
10463
10464 /* Helper function used for both push/pop and ldm/stm. */
10465 static void
10466 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10467 {
10468 bfd_boolean load;
10469
10470 load = (inst.instruction & (1 << 20)) != 0;
10471
10472 if (mask & (1 << 13))
10473 inst.error = _("SP not allowed in register list");
10474
10475 if ((mask & (1 << base)) != 0
10476 && writeback)
10477 inst.error = _("having the base register in the register list when "
10478 "using write back is UNPREDICTABLE");
10479
10480 if (load)
10481 {
10482 if (mask & (1 << 15))
10483 {
10484 if (mask & (1 << 14))
10485 inst.error = _("LR and PC should not both be in register list");
10486 else
10487 set_it_insn_type_last ();
10488 }
10489 }
10490 else
10491 {
10492 if (mask & (1 << 15))
10493 inst.error = _("PC not allowed in register list");
10494 }
10495
10496 if ((mask & (mask - 1)) == 0)
10497 {
10498 /* Single register transfers implemented as str/ldr. */
10499 if (writeback)
10500 {
10501 if (inst.instruction & (1 << 23))
10502 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10503 else
10504 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10505 }
10506 else
10507 {
10508 if (inst.instruction & (1 << 23))
10509 inst.instruction = 0x00800000; /* ia -> [base] */
10510 else
10511 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10512 }
10513
10514 inst.instruction |= 0xf8400000;
10515 if (load)
10516 inst.instruction |= 0x00100000;
10517
10518 mask = ffs (mask) - 1;
10519 mask <<= 12;
10520 }
10521 else if (writeback)
10522 inst.instruction |= WRITE_BACK;
10523
10524 inst.instruction |= mask;
10525 inst.instruction |= base << 16;
10526 }
10527
10528 static void
10529 do_t_ldmstm (void)
10530 {
10531 /* This really doesn't seem worth it. */
10532 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10533 _("expression too complex"));
10534 constraint (inst.operands[1].writeback,
10535 _("Thumb load/store multiple does not support {reglist}^"));
10536
10537 if (unified_syntax)
10538 {
10539 bfd_boolean narrow;
10540 unsigned mask;
10541
10542 narrow = FALSE;
10543 /* See if we can use a 16-bit instruction. */
10544 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10545 && inst.size_req != 4
10546 && !(inst.operands[1].imm & ~0xff))
10547 {
10548 mask = 1 << inst.operands[0].reg;
10549
10550 if (inst.operands[0].reg <= 7)
10551 {
10552 if (inst.instruction == T_MNEM_stmia
10553 ? inst.operands[0].writeback
10554 : (inst.operands[0].writeback
10555 == !(inst.operands[1].imm & mask)))
10556 {
10557 if (inst.instruction == T_MNEM_stmia
10558 && (inst.operands[1].imm & mask)
10559 && (inst.operands[1].imm & (mask - 1)))
10560 as_warn (_("value stored for r%d is UNKNOWN"),
10561 inst.operands[0].reg);
10562
10563 inst.instruction = THUMB_OP16 (inst.instruction);
10564 inst.instruction |= inst.operands[0].reg << 8;
10565 inst.instruction |= inst.operands[1].imm;
10566 narrow = TRUE;
10567 }
10568 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10569 {
10570 /* This means 1 register in reg list one of 3 situations:
10571 1. Instruction is stmia, but without writeback.
10572 2. lmdia without writeback, but with Rn not in
10573 reglist.
10574 3. ldmia with writeback, but with Rn in reglist.
10575 Case 3 is UNPREDICTABLE behaviour, so we handle
10576 case 1 and 2 which can be converted into a 16-bit
10577 str or ldr. The SP cases are handled below. */
10578 unsigned long opcode;
10579 /* First, record an error for Case 3. */
10580 if (inst.operands[1].imm & mask
10581 && inst.operands[0].writeback)
10582 inst.error =
10583 _("having the base register in the register list when "
10584 "using write back is UNPREDICTABLE");
10585
10586 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10587 : T_MNEM_ldr);
10588 inst.instruction = THUMB_OP16 (opcode);
10589 inst.instruction |= inst.operands[0].reg << 3;
10590 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10591 narrow = TRUE;
10592 }
10593 }
10594 else if (inst.operands[0] .reg == REG_SP)
10595 {
10596 if (inst.operands[0].writeback)
10597 {
10598 inst.instruction =
10599 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10600 ? T_MNEM_push : T_MNEM_pop);
10601 inst.instruction |= inst.operands[1].imm;
10602 narrow = TRUE;
10603 }
10604 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10605 {
10606 inst.instruction =
10607 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10608 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10609 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10610 narrow = TRUE;
10611 }
10612 }
10613 }
10614
10615 if (!narrow)
10616 {
10617 if (inst.instruction < 0xffff)
10618 inst.instruction = THUMB_OP32 (inst.instruction);
10619
10620 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10621 inst.operands[0].writeback);
10622 }
10623 }
10624 else
10625 {
10626 constraint (inst.operands[0].reg > 7
10627 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10628 constraint (inst.instruction != T_MNEM_ldmia
10629 && inst.instruction != T_MNEM_stmia,
10630 _("Thumb-2 instruction only valid in unified syntax"));
10631 if (inst.instruction == T_MNEM_stmia)
10632 {
10633 if (!inst.operands[0].writeback)
10634 as_warn (_("this instruction will write back the base register"));
10635 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10636 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10637 as_warn (_("value stored for r%d is UNKNOWN"),
10638 inst.operands[0].reg);
10639 }
10640 else
10641 {
10642 if (!inst.operands[0].writeback
10643 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10644 as_warn (_("this instruction will write back the base register"));
10645 else if (inst.operands[0].writeback
10646 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10647 as_warn (_("this instruction will not write back the base register"));
10648 }
10649
10650 inst.instruction = THUMB_OP16 (inst.instruction);
10651 inst.instruction |= inst.operands[0].reg << 8;
10652 inst.instruction |= inst.operands[1].imm;
10653 }
10654 }
10655
10656 static void
10657 do_t_ldrex (void)
10658 {
10659 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10660 || inst.operands[1].postind || inst.operands[1].writeback
10661 || inst.operands[1].immisreg || inst.operands[1].shifted
10662 || inst.operands[1].negative,
10663 BAD_ADDR_MODE);
10664
10665 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10666
10667 inst.instruction |= inst.operands[0].reg << 12;
10668 inst.instruction |= inst.operands[1].reg << 16;
10669 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10670 }
10671
10672 static void
10673 do_t_ldrexd (void)
10674 {
10675 if (!inst.operands[1].present)
10676 {
10677 constraint (inst.operands[0].reg == REG_LR,
10678 _("r14 not allowed as first register "
10679 "when second register is omitted"));
10680 inst.operands[1].reg = inst.operands[0].reg + 1;
10681 }
10682 constraint (inst.operands[0].reg == inst.operands[1].reg,
10683 BAD_OVERLAP);
10684
10685 inst.instruction |= inst.operands[0].reg << 12;
10686 inst.instruction |= inst.operands[1].reg << 8;
10687 inst.instruction |= inst.operands[2].reg << 16;
10688 }
10689
10690 static void
10691 do_t_ldst (void)
10692 {
10693 unsigned long opcode;
10694 int Rn;
10695
10696 if (inst.operands[0].isreg
10697 && !inst.operands[0].preind
10698 && inst.operands[0].reg == REG_PC)
10699 set_it_insn_type_last ();
10700
10701 opcode = inst.instruction;
10702 if (unified_syntax)
10703 {
10704 if (!inst.operands[1].isreg)
10705 {
10706 if (opcode <= 0xffff)
10707 inst.instruction = THUMB_OP32 (opcode);
10708 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10709 return;
10710 }
10711 if (inst.operands[1].isreg
10712 && !inst.operands[1].writeback
10713 && !inst.operands[1].shifted && !inst.operands[1].postind
10714 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10715 && opcode <= 0xffff
10716 && inst.size_req != 4)
10717 {
10718 /* Insn may have a 16-bit form. */
10719 Rn = inst.operands[1].reg;
10720 if (inst.operands[1].immisreg)
10721 {
10722 inst.instruction = THUMB_OP16 (opcode);
10723 /* [Rn, Rik] */
10724 if (Rn <= 7 && inst.operands[1].imm <= 7)
10725 goto op16;
10726 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10727 reject_bad_reg (inst.operands[1].imm);
10728 }
10729 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10730 && opcode != T_MNEM_ldrsb)
10731 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10732 || (Rn == REG_SP && opcode == T_MNEM_str))
10733 {
10734 /* [Rn, #const] */
10735 if (Rn > 7)
10736 {
10737 if (Rn == REG_PC)
10738 {
10739 if (inst.reloc.pc_rel)
10740 opcode = T_MNEM_ldr_pc2;
10741 else
10742 opcode = T_MNEM_ldr_pc;
10743 }
10744 else
10745 {
10746 if (opcode == T_MNEM_ldr)
10747 opcode = T_MNEM_ldr_sp;
10748 else
10749 opcode = T_MNEM_str_sp;
10750 }
10751 inst.instruction = inst.operands[0].reg << 8;
10752 }
10753 else
10754 {
10755 inst.instruction = inst.operands[0].reg;
10756 inst.instruction |= inst.operands[1].reg << 3;
10757 }
10758 inst.instruction |= THUMB_OP16 (opcode);
10759 if (inst.size_req == 2)
10760 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10761 else
10762 inst.relax = opcode;
10763 return;
10764 }
10765 }
10766 /* Definitely a 32-bit variant. */
10767
10768 /* Warning for Erratum 752419. */
10769 if (opcode == T_MNEM_ldr
10770 && inst.operands[0].reg == REG_SP
10771 && inst.operands[1].writeback == 1
10772 && !inst.operands[1].immisreg)
10773 {
10774 if (no_cpu_selected ()
10775 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10776 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10777 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10778 as_warn (_("This instruction may be unpredictable "
10779 "if executed on M-profile cores "
10780 "with interrupts enabled."));
10781 }
10782
10783 /* Do some validations regarding addressing modes. */
10784 if (inst.operands[1].immisreg)
10785 reject_bad_reg (inst.operands[1].imm);
10786
10787 constraint (inst.operands[1].writeback == 1
10788 && inst.operands[0].reg == inst.operands[1].reg,
10789 BAD_OVERLAP);
10790
10791 inst.instruction = THUMB_OP32 (opcode);
10792 inst.instruction |= inst.operands[0].reg << 12;
10793 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10794 check_ldr_r15_aligned ();
10795 return;
10796 }
10797
10798 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10799
10800 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10801 {
10802 /* Only [Rn,Rm] is acceptable. */
10803 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10804 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10805 || inst.operands[1].postind || inst.operands[1].shifted
10806 || inst.operands[1].negative,
10807 _("Thumb does not support this addressing mode"));
10808 inst.instruction = THUMB_OP16 (inst.instruction);
10809 goto op16;
10810 }
10811
10812 inst.instruction = THUMB_OP16 (inst.instruction);
10813 if (!inst.operands[1].isreg)
10814 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10815 return;
10816
10817 constraint (!inst.operands[1].preind
10818 || inst.operands[1].shifted
10819 || inst.operands[1].writeback,
10820 _("Thumb does not support this addressing mode"));
10821 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10822 {
10823 constraint (inst.instruction & 0x0600,
10824 _("byte or halfword not valid for base register"));
10825 constraint (inst.operands[1].reg == REG_PC
10826 && !(inst.instruction & THUMB_LOAD_BIT),
10827 _("r15 based store not allowed"));
10828 constraint (inst.operands[1].immisreg,
10829 _("invalid base register for register offset"));
10830
10831 if (inst.operands[1].reg == REG_PC)
10832 inst.instruction = T_OPCODE_LDR_PC;
10833 else if (inst.instruction & THUMB_LOAD_BIT)
10834 inst.instruction = T_OPCODE_LDR_SP;
10835 else
10836 inst.instruction = T_OPCODE_STR_SP;
10837
10838 inst.instruction |= inst.operands[0].reg << 8;
10839 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10840 return;
10841 }
10842
10843 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10844 if (!inst.operands[1].immisreg)
10845 {
10846 /* Immediate offset. */
10847 inst.instruction |= inst.operands[0].reg;
10848 inst.instruction |= inst.operands[1].reg << 3;
10849 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10850 return;
10851 }
10852
10853 /* Register offset. */
10854 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10855 constraint (inst.operands[1].negative,
10856 _("Thumb does not support this addressing mode"));
10857
10858 op16:
10859 switch (inst.instruction)
10860 {
10861 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10862 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10863 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10864 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10865 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10866 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10867 case 0x5600 /* ldrsb */:
10868 case 0x5e00 /* ldrsh */: break;
10869 default: abort ();
10870 }
10871
10872 inst.instruction |= inst.operands[0].reg;
10873 inst.instruction |= inst.operands[1].reg << 3;
10874 inst.instruction |= inst.operands[1].imm << 6;
10875 }
10876
10877 static void
10878 do_t_ldstd (void)
10879 {
10880 if (!inst.operands[1].present)
10881 {
10882 inst.operands[1].reg = inst.operands[0].reg + 1;
10883 constraint (inst.operands[0].reg == REG_LR,
10884 _("r14 not allowed here"));
10885 constraint (inst.operands[0].reg == REG_R12,
10886 _("r12 not allowed here"));
10887 }
10888
10889 if (inst.operands[2].writeback
10890 && (inst.operands[0].reg == inst.operands[2].reg
10891 || inst.operands[1].reg == inst.operands[2].reg))
10892 as_warn (_("base register written back, and overlaps "
10893 "one of transfer registers"));
10894
10895 inst.instruction |= inst.operands[0].reg << 12;
10896 inst.instruction |= inst.operands[1].reg << 8;
10897 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10898 }
10899
10900 static void
10901 do_t_ldstt (void)
10902 {
10903 inst.instruction |= inst.operands[0].reg << 12;
10904 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10905 }
10906
10907 static void
10908 do_t_mla (void)
10909 {
10910 unsigned Rd, Rn, Rm, Ra;
10911
10912 Rd = inst.operands[0].reg;
10913 Rn = inst.operands[1].reg;
10914 Rm = inst.operands[2].reg;
10915 Ra = inst.operands[3].reg;
10916
10917 reject_bad_reg (Rd);
10918 reject_bad_reg (Rn);
10919 reject_bad_reg (Rm);
10920 reject_bad_reg (Ra);
10921
10922 inst.instruction |= Rd << 8;
10923 inst.instruction |= Rn << 16;
10924 inst.instruction |= Rm;
10925 inst.instruction |= Ra << 12;
10926 }
10927
10928 static void
10929 do_t_mlal (void)
10930 {
10931 unsigned RdLo, RdHi, Rn, Rm;
10932
10933 RdLo = inst.operands[0].reg;
10934 RdHi = inst.operands[1].reg;
10935 Rn = inst.operands[2].reg;
10936 Rm = inst.operands[3].reg;
10937
10938 reject_bad_reg (RdLo);
10939 reject_bad_reg (RdHi);
10940 reject_bad_reg (Rn);
10941 reject_bad_reg (Rm);
10942
10943 inst.instruction |= RdLo << 12;
10944 inst.instruction |= RdHi << 8;
10945 inst.instruction |= Rn << 16;
10946 inst.instruction |= Rm;
10947 }
10948
10949 static void
10950 do_t_mov_cmp (void)
10951 {
10952 unsigned Rn, Rm;
10953
10954 Rn = inst.operands[0].reg;
10955 Rm = inst.operands[1].reg;
10956
10957 if (Rn == REG_PC)
10958 set_it_insn_type_last ();
10959
10960 if (unified_syntax)
10961 {
10962 int r0off = (inst.instruction == T_MNEM_mov
10963 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10964 unsigned long opcode;
10965 bfd_boolean narrow;
10966 bfd_boolean low_regs;
10967
10968 low_regs = (Rn <= 7 && Rm <= 7);
10969 opcode = inst.instruction;
10970 if (in_it_block ())
10971 narrow = opcode != T_MNEM_movs;
10972 else
10973 narrow = opcode != T_MNEM_movs || low_regs;
10974 if (inst.size_req == 4
10975 || inst.operands[1].shifted)
10976 narrow = FALSE;
10977
10978 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10979 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10980 && !inst.operands[1].shifted
10981 && Rn == REG_PC
10982 && Rm == REG_LR)
10983 {
10984 inst.instruction = T2_SUBS_PC_LR;
10985 return;
10986 }
10987
10988 if (opcode == T_MNEM_cmp)
10989 {
10990 constraint (Rn == REG_PC, BAD_PC);
10991 if (narrow)
10992 {
10993 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10994 but valid. */
10995 warn_deprecated_sp (Rm);
10996 /* R15 was documented as a valid choice for Rm in ARMv6,
10997 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10998 tools reject R15, so we do too. */
10999 constraint (Rm == REG_PC, BAD_PC);
11000 }
11001 else
11002 reject_bad_reg (Rm);
11003 }
11004 else if (opcode == T_MNEM_mov
11005 || opcode == T_MNEM_movs)
11006 {
11007 if (inst.operands[1].isreg)
11008 {
11009 if (opcode == T_MNEM_movs)
11010 {
11011 reject_bad_reg (Rn);
11012 reject_bad_reg (Rm);
11013 }
11014 else if (narrow)
11015 {
11016 /* This is mov.n. */
11017 if ((Rn == REG_SP || Rn == REG_PC)
11018 && (Rm == REG_SP || Rm == REG_PC))
11019 {
11020 as_warn (_("Use of r%u as a source register is "
11021 "deprecated when r%u is the destination "
11022 "register."), Rm, Rn);
11023 }
11024 }
11025 else
11026 {
11027 /* This is mov.w. */
11028 constraint (Rn == REG_PC, BAD_PC);
11029 constraint (Rm == REG_PC, BAD_PC);
11030 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
11031 }
11032 }
11033 else
11034 reject_bad_reg (Rn);
11035 }
11036
11037 if (!inst.operands[1].isreg)
11038 {
11039 /* Immediate operand. */
11040 if (!in_it_block () && opcode == T_MNEM_mov)
11041 narrow = 0;
11042 if (low_regs && narrow)
11043 {
11044 inst.instruction = THUMB_OP16 (opcode);
11045 inst.instruction |= Rn << 8;
11046 if (inst.size_req == 2)
11047 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11048 else
11049 inst.relax = opcode;
11050 }
11051 else
11052 {
11053 inst.instruction = THUMB_OP32 (inst.instruction);
11054 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11055 inst.instruction |= Rn << r0off;
11056 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11057 }
11058 }
11059 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11060 && (inst.instruction == T_MNEM_mov
11061 || inst.instruction == T_MNEM_movs))
11062 {
11063 /* Register shifts are encoded as separate shift instructions. */
11064 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11065
11066 if (in_it_block ())
11067 narrow = !flags;
11068 else
11069 narrow = flags;
11070
11071 if (inst.size_req == 4)
11072 narrow = FALSE;
11073
11074 if (!low_regs || inst.operands[1].imm > 7)
11075 narrow = FALSE;
11076
11077 if (Rn != Rm)
11078 narrow = FALSE;
11079
11080 switch (inst.operands[1].shift_kind)
11081 {
11082 case SHIFT_LSL:
11083 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11084 break;
11085 case SHIFT_ASR:
11086 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11087 break;
11088 case SHIFT_LSR:
11089 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11090 break;
11091 case SHIFT_ROR:
11092 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11093 break;
11094 default:
11095 abort ();
11096 }
11097
11098 inst.instruction = opcode;
11099 if (narrow)
11100 {
11101 inst.instruction |= Rn;
11102 inst.instruction |= inst.operands[1].imm << 3;
11103 }
11104 else
11105 {
11106 if (flags)
11107 inst.instruction |= CONDS_BIT;
11108
11109 inst.instruction |= Rn << 8;
11110 inst.instruction |= Rm << 16;
11111 inst.instruction |= inst.operands[1].imm;
11112 }
11113 }
11114 else if (!narrow)
11115 {
11116 /* Some mov with immediate shift have narrow variants.
11117 Register shifts are handled above. */
11118 if (low_regs && inst.operands[1].shifted
11119 && (inst.instruction == T_MNEM_mov
11120 || inst.instruction == T_MNEM_movs))
11121 {
11122 if (in_it_block ())
11123 narrow = (inst.instruction == T_MNEM_mov);
11124 else
11125 narrow = (inst.instruction == T_MNEM_movs);
11126 }
11127
11128 if (narrow)
11129 {
11130 switch (inst.operands[1].shift_kind)
11131 {
11132 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11133 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11134 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11135 default: narrow = FALSE; break;
11136 }
11137 }
11138
11139 if (narrow)
11140 {
11141 inst.instruction |= Rn;
11142 inst.instruction |= Rm << 3;
11143 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11144 }
11145 else
11146 {
11147 inst.instruction = THUMB_OP32 (inst.instruction);
11148 inst.instruction |= Rn << r0off;
11149 encode_thumb32_shifted_operand (1);
11150 }
11151 }
11152 else
11153 switch (inst.instruction)
11154 {
11155 case T_MNEM_mov:
11156 /* In v4t or v5t a move of two lowregs produces unpredictable
11157 results. Don't allow this. */
11158 if (low_regs)
11159 {
11160 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11161 "MOV Rd, Rs with two low registers is not "
11162 "permitted on this architecture");
11163 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11164 arm_ext_v6);
11165 }
11166
11167 inst.instruction = T_OPCODE_MOV_HR;
11168 inst.instruction |= (Rn & 0x8) << 4;
11169 inst.instruction |= (Rn & 0x7);
11170 inst.instruction |= Rm << 3;
11171 break;
11172
11173 case T_MNEM_movs:
11174 /* We know we have low registers at this point.
11175 Generate LSLS Rd, Rs, #0. */
11176 inst.instruction = T_OPCODE_LSL_I;
11177 inst.instruction |= Rn;
11178 inst.instruction |= Rm << 3;
11179 break;
11180
11181 case T_MNEM_cmp:
11182 if (low_regs)
11183 {
11184 inst.instruction = T_OPCODE_CMP_LR;
11185 inst.instruction |= Rn;
11186 inst.instruction |= Rm << 3;
11187 }
11188 else
11189 {
11190 inst.instruction = T_OPCODE_CMP_HR;
11191 inst.instruction |= (Rn & 0x8) << 4;
11192 inst.instruction |= (Rn & 0x7);
11193 inst.instruction |= Rm << 3;
11194 }
11195 break;
11196 }
11197 return;
11198 }
11199
11200 inst.instruction = THUMB_OP16 (inst.instruction);
11201
11202 /* PR 10443: Do not silently ignore shifted operands. */
11203 constraint (inst.operands[1].shifted,
11204 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11205
11206 if (inst.operands[1].isreg)
11207 {
11208 if (Rn < 8 && Rm < 8)
11209 {
11210 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11211 since a MOV instruction produces unpredictable results. */
11212 if (inst.instruction == T_OPCODE_MOV_I8)
11213 inst.instruction = T_OPCODE_ADD_I3;
11214 else
11215 inst.instruction = T_OPCODE_CMP_LR;
11216
11217 inst.instruction |= Rn;
11218 inst.instruction |= Rm << 3;
11219 }
11220 else
11221 {
11222 if (inst.instruction == T_OPCODE_MOV_I8)
11223 inst.instruction = T_OPCODE_MOV_HR;
11224 else
11225 inst.instruction = T_OPCODE_CMP_HR;
11226 do_t_cpy ();
11227 }
11228 }
11229 else
11230 {
11231 constraint (Rn > 7,
11232 _("only lo regs allowed with immediate"));
11233 inst.instruction |= Rn << 8;
11234 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11235 }
11236 }
11237
11238 static void
11239 do_t_mov16 (void)
11240 {
11241 unsigned Rd;
11242 bfd_vma imm;
11243 bfd_boolean top;
11244
11245 top = (inst.instruction & 0x00800000) != 0;
11246 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11247 {
11248 constraint (top, _(":lower16: not allowed this instruction"));
11249 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11250 }
11251 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11252 {
11253 constraint (!top, _(":upper16: not allowed this instruction"));
11254 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11255 }
11256
11257 Rd = inst.operands[0].reg;
11258 reject_bad_reg (Rd);
11259
11260 inst.instruction |= Rd << 8;
11261 if (inst.reloc.type == BFD_RELOC_UNUSED)
11262 {
11263 imm = inst.reloc.exp.X_add_number;
11264 inst.instruction |= (imm & 0xf000) << 4;
11265 inst.instruction |= (imm & 0x0800) << 15;
11266 inst.instruction |= (imm & 0x0700) << 4;
11267 inst.instruction |= (imm & 0x00ff);
11268 }
11269 }
11270
11271 static void
11272 do_t_mvn_tst (void)
11273 {
11274 unsigned Rn, Rm;
11275
11276 Rn = inst.operands[0].reg;
11277 Rm = inst.operands[1].reg;
11278
11279 if (inst.instruction == T_MNEM_cmp
11280 || inst.instruction == T_MNEM_cmn)
11281 constraint (Rn == REG_PC, BAD_PC);
11282 else
11283 reject_bad_reg (Rn);
11284 reject_bad_reg (Rm);
11285
11286 if (unified_syntax)
11287 {
11288 int r0off = (inst.instruction == T_MNEM_mvn
11289 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11290 bfd_boolean narrow;
11291
11292 if (inst.size_req == 4
11293 || inst.instruction > 0xffff
11294 || inst.operands[1].shifted
11295 || Rn > 7 || Rm > 7)
11296 narrow = FALSE;
11297 else if (inst.instruction == T_MNEM_cmn)
11298 narrow = TRUE;
11299 else if (THUMB_SETS_FLAGS (inst.instruction))
11300 narrow = !in_it_block ();
11301 else
11302 narrow = in_it_block ();
11303
11304 if (!inst.operands[1].isreg)
11305 {
11306 /* For an immediate, we always generate a 32-bit opcode;
11307 section relaxation will shrink it later if possible. */
11308 if (inst.instruction < 0xffff)
11309 inst.instruction = THUMB_OP32 (inst.instruction);
11310 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11311 inst.instruction |= Rn << r0off;
11312 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11313 }
11314 else
11315 {
11316 /* See if we can do this with a 16-bit instruction. */
11317 if (narrow)
11318 {
11319 inst.instruction = THUMB_OP16 (inst.instruction);
11320 inst.instruction |= Rn;
11321 inst.instruction |= Rm << 3;
11322 }
11323 else
11324 {
11325 constraint (inst.operands[1].shifted
11326 && inst.operands[1].immisreg,
11327 _("shift must be constant"));
11328 if (inst.instruction < 0xffff)
11329 inst.instruction = THUMB_OP32 (inst.instruction);
11330 inst.instruction |= Rn << r0off;
11331 encode_thumb32_shifted_operand (1);
11332 }
11333 }
11334 }
11335 else
11336 {
11337 constraint (inst.instruction > 0xffff
11338 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11339 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11340 _("unshifted register required"));
11341 constraint (Rn > 7 || Rm > 7,
11342 BAD_HIREG);
11343
11344 inst.instruction = THUMB_OP16 (inst.instruction);
11345 inst.instruction |= Rn;
11346 inst.instruction |= Rm << 3;
11347 }
11348 }
11349
11350 static void
11351 do_t_mrs (void)
11352 {
11353 unsigned Rd;
11354
11355 if (do_vfp_nsyn_mrs () == SUCCESS)
11356 return;
11357
11358 Rd = inst.operands[0].reg;
11359 reject_bad_reg (Rd);
11360 inst.instruction |= Rd << 8;
11361
11362 if (inst.operands[1].isreg)
11363 {
11364 unsigned br = inst.operands[1].reg;
11365 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11366 as_bad (_("bad register for mrs"));
11367
11368 inst.instruction |= br & (0xf << 16);
11369 inst.instruction |= (br & 0x300) >> 4;
11370 inst.instruction |= (br & SPSR_BIT) >> 2;
11371 }
11372 else
11373 {
11374 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11375
11376 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11377 {
11378 /* PR gas/12698: The constraint is only applied for m_profile.
11379 If the user has specified -march=all, we want to ignore it as
11380 we are building for any CPU type, including non-m variants. */
11381 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11382 constraint ((flags != 0) && m_profile, _("selected processor does "
11383 "not support requested special purpose register"));
11384 }
11385 else
11386 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11387 devices). */
11388 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11389 _("'APSR', 'CPSR' or 'SPSR' expected"));
11390
11391 inst.instruction |= (flags & SPSR_BIT) >> 2;
11392 inst.instruction |= inst.operands[1].imm & 0xff;
11393 inst.instruction |= 0xf0000;
11394 }
11395 }
11396
11397 static void
11398 do_t_msr (void)
11399 {
11400 int flags;
11401 unsigned Rn;
11402
11403 if (do_vfp_nsyn_msr () == SUCCESS)
11404 return;
11405
11406 constraint (!inst.operands[1].isreg,
11407 _("Thumb encoding does not support an immediate here"));
11408
11409 if (inst.operands[0].isreg)
11410 flags = (int)(inst.operands[0].reg);
11411 else
11412 flags = inst.operands[0].imm;
11413
11414 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11415 {
11416 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11417
11418 /* PR gas/12698: The constraint is only applied for m_profile.
11419 If the user has specified -march=all, we want to ignore it as
11420 we are building for any CPU type, including non-m variants. */
11421 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11422 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11423 && (bits & ~(PSR_s | PSR_f)) != 0)
11424 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11425 && bits != PSR_f)) && m_profile,
11426 _("selected processor does not support requested special "
11427 "purpose register"));
11428 }
11429 else
11430 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11431 "requested special purpose register"));
11432
11433 Rn = inst.operands[1].reg;
11434 reject_bad_reg (Rn);
11435
11436 inst.instruction |= (flags & SPSR_BIT) >> 2;
11437 inst.instruction |= (flags & 0xf0000) >> 8;
11438 inst.instruction |= (flags & 0x300) >> 4;
11439 inst.instruction |= (flags & 0xff);
11440 inst.instruction |= Rn << 16;
11441 }
11442
11443 static void
11444 do_t_mul (void)
11445 {
11446 bfd_boolean narrow;
11447 unsigned Rd, Rn, Rm;
11448
11449 if (!inst.operands[2].present)
11450 inst.operands[2].reg = inst.operands[0].reg;
11451
11452 Rd = inst.operands[0].reg;
11453 Rn = inst.operands[1].reg;
11454 Rm = inst.operands[2].reg;
11455
11456 if (unified_syntax)
11457 {
11458 if (inst.size_req == 4
11459 || (Rd != Rn
11460 && Rd != Rm)
11461 || Rn > 7
11462 || Rm > 7)
11463 narrow = FALSE;
11464 else if (inst.instruction == T_MNEM_muls)
11465 narrow = !in_it_block ();
11466 else
11467 narrow = in_it_block ();
11468 }
11469 else
11470 {
11471 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11472 constraint (Rn > 7 || Rm > 7,
11473 BAD_HIREG);
11474 narrow = TRUE;
11475 }
11476
11477 if (narrow)
11478 {
11479 /* 16-bit MULS/Conditional MUL. */
11480 inst.instruction = THUMB_OP16 (inst.instruction);
11481 inst.instruction |= Rd;
11482
11483 if (Rd == Rn)
11484 inst.instruction |= Rm << 3;
11485 else if (Rd == Rm)
11486 inst.instruction |= Rn << 3;
11487 else
11488 constraint (1, _("dest must overlap one source register"));
11489 }
11490 else
11491 {
11492 constraint (inst.instruction != T_MNEM_mul,
11493 _("Thumb-2 MUL must not set flags"));
11494 /* 32-bit MUL. */
11495 inst.instruction = THUMB_OP32 (inst.instruction);
11496 inst.instruction |= Rd << 8;
11497 inst.instruction |= Rn << 16;
11498 inst.instruction |= Rm << 0;
11499
11500 reject_bad_reg (Rd);
11501 reject_bad_reg (Rn);
11502 reject_bad_reg (Rm);
11503 }
11504 }
11505
11506 static void
11507 do_t_mull (void)
11508 {
11509 unsigned RdLo, RdHi, Rn, Rm;
11510
11511 RdLo = inst.operands[0].reg;
11512 RdHi = inst.operands[1].reg;
11513 Rn = inst.operands[2].reg;
11514 Rm = inst.operands[3].reg;
11515
11516 reject_bad_reg (RdLo);
11517 reject_bad_reg (RdHi);
11518 reject_bad_reg (Rn);
11519 reject_bad_reg (Rm);
11520
11521 inst.instruction |= RdLo << 12;
11522 inst.instruction |= RdHi << 8;
11523 inst.instruction |= Rn << 16;
11524 inst.instruction |= Rm;
11525
11526 if (RdLo == RdHi)
11527 as_tsktsk (_("rdhi and rdlo must be different"));
11528 }
11529
11530 static void
11531 do_t_nop (void)
11532 {
11533 set_it_insn_type (NEUTRAL_IT_INSN);
11534
11535 if (unified_syntax)
11536 {
11537 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11538 {
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].imm;
11541 }
11542 else
11543 {
11544 /* PR9722: Check for Thumb2 availability before
11545 generating a thumb2 nop instruction. */
11546 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11547 {
11548 inst.instruction = THUMB_OP16 (inst.instruction);
11549 inst.instruction |= inst.operands[0].imm << 4;
11550 }
11551 else
11552 inst.instruction = 0x46c0;
11553 }
11554 }
11555 else
11556 {
11557 constraint (inst.operands[0].present,
11558 _("Thumb does not support NOP with hints"));
11559 inst.instruction = 0x46c0;
11560 }
11561 }
11562
11563 static void
11564 do_t_neg (void)
11565 {
11566 if (unified_syntax)
11567 {
11568 bfd_boolean narrow;
11569
11570 if (THUMB_SETS_FLAGS (inst.instruction))
11571 narrow = !in_it_block ();
11572 else
11573 narrow = in_it_block ();
11574 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11575 narrow = FALSE;
11576 if (inst.size_req == 4)
11577 narrow = FALSE;
11578
11579 if (!narrow)
11580 {
11581 inst.instruction = THUMB_OP32 (inst.instruction);
11582 inst.instruction |= inst.operands[0].reg << 8;
11583 inst.instruction |= inst.operands[1].reg << 16;
11584 }
11585 else
11586 {
11587 inst.instruction = THUMB_OP16 (inst.instruction);
11588 inst.instruction |= inst.operands[0].reg;
11589 inst.instruction |= inst.operands[1].reg << 3;
11590 }
11591 }
11592 else
11593 {
11594 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11595 BAD_HIREG);
11596 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11597
11598 inst.instruction = THUMB_OP16 (inst.instruction);
11599 inst.instruction |= inst.operands[0].reg;
11600 inst.instruction |= inst.operands[1].reg << 3;
11601 }
11602 }
11603
11604 static void
11605 do_t_orn (void)
11606 {
11607 unsigned Rd, Rn;
11608
11609 Rd = inst.operands[0].reg;
11610 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11611
11612 reject_bad_reg (Rd);
11613 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11614 reject_bad_reg (Rn);
11615
11616 inst.instruction |= Rd << 8;
11617 inst.instruction |= Rn << 16;
11618
11619 if (!inst.operands[2].isreg)
11620 {
11621 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11622 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11623 }
11624 else
11625 {
11626 unsigned Rm;
11627
11628 Rm = inst.operands[2].reg;
11629 reject_bad_reg (Rm);
11630
11631 constraint (inst.operands[2].shifted
11632 && inst.operands[2].immisreg,
11633 _("shift must be constant"));
11634 encode_thumb32_shifted_operand (2);
11635 }
11636 }
11637
11638 static void
11639 do_t_pkhbt (void)
11640 {
11641 unsigned Rd, Rn, Rm;
11642
11643 Rd = inst.operands[0].reg;
11644 Rn = inst.operands[1].reg;
11645 Rm = inst.operands[2].reg;
11646
11647 reject_bad_reg (Rd);
11648 reject_bad_reg (Rn);
11649 reject_bad_reg (Rm);
11650
11651 inst.instruction |= Rd << 8;
11652 inst.instruction |= Rn << 16;
11653 inst.instruction |= Rm;
11654 if (inst.operands[3].present)
11655 {
11656 unsigned int val = inst.reloc.exp.X_add_number;
11657 constraint (inst.reloc.exp.X_op != O_constant,
11658 _("expression too complex"));
11659 inst.instruction |= (val & 0x1c) << 10;
11660 inst.instruction |= (val & 0x03) << 6;
11661 }
11662 }
11663
11664 static void
11665 do_t_pkhtb (void)
11666 {
11667 if (!inst.operands[3].present)
11668 {
11669 unsigned Rtmp;
11670
11671 inst.instruction &= ~0x00000020;
11672
11673 /* PR 10168. Swap the Rm and Rn registers. */
11674 Rtmp = inst.operands[1].reg;
11675 inst.operands[1].reg = inst.operands[2].reg;
11676 inst.operands[2].reg = Rtmp;
11677 }
11678 do_t_pkhbt ();
11679 }
11680
11681 static void
11682 do_t_pld (void)
11683 {
11684 if (inst.operands[0].immisreg)
11685 reject_bad_reg (inst.operands[0].imm);
11686
11687 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11688 }
11689
11690 static void
11691 do_t_push_pop (void)
11692 {
11693 unsigned mask;
11694
11695 constraint (inst.operands[0].writeback,
11696 _("push/pop do not support {reglist}^"));
11697 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11698 _("expression too complex"));
11699
11700 mask = inst.operands[0].imm;
11701 if ((mask & ~0xff) == 0)
11702 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11703 else if ((inst.instruction == T_MNEM_push
11704 && (mask & ~0xff) == 1 << REG_LR)
11705 || (inst.instruction == T_MNEM_pop
11706 && (mask & ~0xff) == 1 << REG_PC))
11707 {
11708 inst.instruction = THUMB_OP16 (inst.instruction);
11709 inst.instruction |= THUMB_PP_PC_LR;
11710 inst.instruction |= mask & 0xff;
11711 }
11712 else if (unified_syntax)
11713 {
11714 inst.instruction = THUMB_OP32 (inst.instruction);
11715 encode_thumb2_ldmstm (13, mask, TRUE);
11716 }
11717 else
11718 {
11719 inst.error = _("invalid register list to push/pop instruction");
11720 return;
11721 }
11722 }
11723
11724 static void
11725 do_t_rbit (void)
11726 {
11727 unsigned Rd, Rm;
11728
11729 Rd = inst.operands[0].reg;
11730 Rm = inst.operands[1].reg;
11731
11732 reject_bad_reg (Rd);
11733 reject_bad_reg (Rm);
11734
11735 inst.instruction |= Rd << 8;
11736 inst.instruction |= Rm << 16;
11737 inst.instruction |= Rm;
11738 }
11739
11740 static void
11741 do_t_rev (void)
11742 {
11743 unsigned Rd, Rm;
11744
11745 Rd = inst.operands[0].reg;
11746 Rm = inst.operands[1].reg;
11747
11748 reject_bad_reg (Rd);
11749 reject_bad_reg (Rm);
11750
11751 if (Rd <= 7 && Rm <= 7
11752 && inst.size_req != 4)
11753 {
11754 inst.instruction = THUMB_OP16 (inst.instruction);
11755 inst.instruction |= Rd;
11756 inst.instruction |= Rm << 3;
11757 }
11758 else if (unified_syntax)
11759 {
11760 inst.instruction = THUMB_OP32 (inst.instruction);
11761 inst.instruction |= Rd << 8;
11762 inst.instruction |= Rm << 16;
11763 inst.instruction |= Rm;
11764 }
11765 else
11766 inst.error = BAD_HIREG;
11767 }
11768
11769 static void
11770 do_t_rrx (void)
11771 {
11772 unsigned Rd, Rm;
11773
11774 Rd = inst.operands[0].reg;
11775 Rm = inst.operands[1].reg;
11776
11777 reject_bad_reg (Rd);
11778 reject_bad_reg (Rm);
11779
11780 inst.instruction |= Rd << 8;
11781 inst.instruction |= Rm;
11782 }
11783
11784 static void
11785 do_t_rsb (void)
11786 {
11787 unsigned Rd, Rs;
11788
11789 Rd = inst.operands[0].reg;
11790 Rs = (inst.operands[1].present
11791 ? inst.operands[1].reg /* Rd, Rs, foo */
11792 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11793
11794 reject_bad_reg (Rd);
11795 reject_bad_reg (Rs);
11796 if (inst.operands[2].isreg)
11797 reject_bad_reg (inst.operands[2].reg);
11798
11799 inst.instruction |= Rd << 8;
11800 inst.instruction |= Rs << 16;
11801 if (!inst.operands[2].isreg)
11802 {
11803 bfd_boolean narrow;
11804
11805 if ((inst.instruction & 0x00100000) != 0)
11806 narrow = !in_it_block ();
11807 else
11808 narrow = in_it_block ();
11809
11810 if (Rd > 7 || Rs > 7)
11811 narrow = FALSE;
11812
11813 if (inst.size_req == 4 || !unified_syntax)
11814 narrow = FALSE;
11815
11816 if (inst.reloc.exp.X_op != O_constant
11817 || inst.reloc.exp.X_add_number != 0)
11818 narrow = FALSE;
11819
11820 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11821 relaxation, but it doesn't seem worth the hassle. */
11822 if (narrow)
11823 {
11824 inst.reloc.type = BFD_RELOC_UNUSED;
11825 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11826 inst.instruction |= Rs << 3;
11827 inst.instruction |= Rd;
11828 }
11829 else
11830 {
11831 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11832 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11833 }
11834 }
11835 else
11836 encode_thumb32_shifted_operand (2);
11837 }
11838
11839 static void
11840 do_t_setend (void)
11841 {
11842 if (warn_on_deprecated
11843 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11844 as_warn (_("setend use is deprecated for ARMv8"));
11845
11846 set_it_insn_type (OUTSIDE_IT_INSN);
11847 if (inst.operands[0].imm)
11848 inst.instruction |= 0x8;
11849 }
11850
11851 static void
11852 do_t_shift (void)
11853 {
11854 if (!inst.operands[1].present)
11855 inst.operands[1].reg = inst.operands[0].reg;
11856
11857 if (unified_syntax)
11858 {
11859 bfd_boolean narrow;
11860 int shift_kind;
11861
11862 switch (inst.instruction)
11863 {
11864 case T_MNEM_asr:
11865 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11866 case T_MNEM_lsl:
11867 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11868 case T_MNEM_lsr:
11869 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11870 case T_MNEM_ror:
11871 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11872 default: abort ();
11873 }
11874
11875 if (THUMB_SETS_FLAGS (inst.instruction))
11876 narrow = !in_it_block ();
11877 else
11878 narrow = in_it_block ();
11879 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11880 narrow = FALSE;
11881 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11882 narrow = FALSE;
11883 if (inst.operands[2].isreg
11884 && (inst.operands[1].reg != inst.operands[0].reg
11885 || inst.operands[2].reg > 7))
11886 narrow = FALSE;
11887 if (inst.size_req == 4)
11888 narrow = FALSE;
11889
11890 reject_bad_reg (inst.operands[0].reg);
11891 reject_bad_reg (inst.operands[1].reg);
11892
11893 if (!narrow)
11894 {
11895 if (inst.operands[2].isreg)
11896 {
11897 reject_bad_reg (inst.operands[2].reg);
11898 inst.instruction = THUMB_OP32 (inst.instruction);
11899 inst.instruction |= inst.operands[0].reg << 8;
11900 inst.instruction |= inst.operands[1].reg << 16;
11901 inst.instruction |= inst.operands[2].reg;
11902
11903 /* PR 12854: Error on extraneous shifts. */
11904 constraint (inst.operands[2].shifted,
11905 _("extraneous shift as part of operand to shift insn"));
11906 }
11907 else
11908 {
11909 inst.operands[1].shifted = 1;
11910 inst.operands[1].shift_kind = shift_kind;
11911 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11912 ? T_MNEM_movs : T_MNEM_mov);
11913 inst.instruction |= inst.operands[0].reg << 8;
11914 encode_thumb32_shifted_operand (1);
11915 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11916 inst.reloc.type = BFD_RELOC_UNUSED;
11917 }
11918 }
11919 else
11920 {
11921 if (inst.operands[2].isreg)
11922 {
11923 switch (shift_kind)
11924 {
11925 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11926 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11927 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11928 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11929 default: abort ();
11930 }
11931
11932 inst.instruction |= inst.operands[0].reg;
11933 inst.instruction |= inst.operands[2].reg << 3;
11934
11935 /* PR 12854: Error on extraneous shifts. */
11936 constraint (inst.operands[2].shifted,
11937 _("extraneous shift as part of operand to shift insn"));
11938 }
11939 else
11940 {
11941 switch (shift_kind)
11942 {
11943 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11944 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11945 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11946 default: abort ();
11947 }
11948 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11949 inst.instruction |= inst.operands[0].reg;
11950 inst.instruction |= inst.operands[1].reg << 3;
11951 }
11952 }
11953 }
11954 else
11955 {
11956 constraint (inst.operands[0].reg > 7
11957 || inst.operands[1].reg > 7, BAD_HIREG);
11958 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11959
11960 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11961 {
11962 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11963 constraint (inst.operands[0].reg != inst.operands[1].reg,
11964 _("source1 and dest must be same register"));
11965
11966 switch (inst.instruction)
11967 {
11968 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11969 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11970 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11971 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11972 default: abort ();
11973 }
11974
11975 inst.instruction |= inst.operands[0].reg;
11976 inst.instruction |= inst.operands[2].reg << 3;
11977
11978 /* PR 12854: Error on extraneous shifts. */
11979 constraint (inst.operands[2].shifted,
11980 _("extraneous shift as part of operand to shift insn"));
11981 }
11982 else
11983 {
11984 switch (inst.instruction)
11985 {
11986 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11987 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11988 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11989 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11990 default: abort ();
11991 }
11992 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11993 inst.instruction |= inst.operands[0].reg;
11994 inst.instruction |= inst.operands[1].reg << 3;
11995 }
11996 }
11997 }
11998
11999 static void
12000 do_t_simd (void)
12001 {
12002 unsigned Rd, Rn, Rm;
12003
12004 Rd = inst.operands[0].reg;
12005 Rn = inst.operands[1].reg;
12006 Rm = inst.operands[2].reg;
12007
12008 reject_bad_reg (Rd);
12009 reject_bad_reg (Rn);
12010 reject_bad_reg (Rm);
12011
12012 inst.instruction |= Rd << 8;
12013 inst.instruction |= Rn << 16;
12014 inst.instruction |= Rm;
12015 }
12016
12017 static void
12018 do_t_simd2 (void)
12019 {
12020 unsigned Rd, Rn, Rm;
12021
12022 Rd = inst.operands[0].reg;
12023 Rm = inst.operands[1].reg;
12024 Rn = inst.operands[2].reg;
12025
12026 reject_bad_reg (Rd);
12027 reject_bad_reg (Rn);
12028 reject_bad_reg (Rm);
12029
12030 inst.instruction |= Rd << 8;
12031 inst.instruction |= Rn << 16;
12032 inst.instruction |= Rm;
12033 }
12034
12035 static void
12036 do_t_smc (void)
12037 {
12038 unsigned int value = inst.reloc.exp.X_add_number;
12039 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
12040 _("SMC is not permitted on this architecture"));
12041 constraint (inst.reloc.exp.X_op != O_constant,
12042 _("expression too complex"));
12043 inst.reloc.type = BFD_RELOC_UNUSED;
12044 inst.instruction |= (value & 0xf000) >> 12;
12045 inst.instruction |= (value & 0x0ff0);
12046 inst.instruction |= (value & 0x000f) << 16;
12047 }
12048
12049 static void
12050 do_t_hvc (void)
12051 {
12052 unsigned int value = inst.reloc.exp.X_add_number;
12053
12054 inst.reloc.type = BFD_RELOC_UNUSED;
12055 inst.instruction |= (value & 0x0fff);
12056 inst.instruction |= (value & 0xf000) << 4;
12057 }
12058
12059 static void
12060 do_t_ssat_usat (int bias)
12061 {
12062 unsigned Rd, Rn;
12063
12064 Rd = inst.operands[0].reg;
12065 Rn = inst.operands[2].reg;
12066
12067 reject_bad_reg (Rd);
12068 reject_bad_reg (Rn);
12069
12070 inst.instruction |= Rd << 8;
12071 inst.instruction |= inst.operands[1].imm - bias;
12072 inst.instruction |= Rn << 16;
12073
12074 if (inst.operands[3].present)
12075 {
12076 offsetT shift_amount = inst.reloc.exp.X_add_number;
12077
12078 inst.reloc.type = BFD_RELOC_UNUSED;
12079
12080 constraint (inst.reloc.exp.X_op != O_constant,
12081 _("expression too complex"));
12082
12083 if (shift_amount != 0)
12084 {
12085 constraint (shift_amount > 31,
12086 _("shift expression is too large"));
12087
12088 if (inst.operands[3].shift_kind == SHIFT_ASR)
12089 inst.instruction |= 0x00200000; /* sh bit. */
12090
12091 inst.instruction |= (shift_amount & 0x1c) << 10;
12092 inst.instruction |= (shift_amount & 0x03) << 6;
12093 }
12094 }
12095 }
12096
12097 static void
12098 do_t_ssat (void)
12099 {
12100 do_t_ssat_usat (1);
12101 }
12102
12103 static void
12104 do_t_ssat16 (void)
12105 {
12106 unsigned Rd, Rn;
12107
12108 Rd = inst.operands[0].reg;
12109 Rn = inst.operands[2].reg;
12110
12111 reject_bad_reg (Rd);
12112 reject_bad_reg (Rn);
12113
12114 inst.instruction |= Rd << 8;
12115 inst.instruction |= inst.operands[1].imm - 1;
12116 inst.instruction |= Rn << 16;
12117 }
12118
12119 static void
12120 do_t_strex (void)
12121 {
12122 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12123 || inst.operands[2].postind || inst.operands[2].writeback
12124 || inst.operands[2].immisreg || inst.operands[2].shifted
12125 || inst.operands[2].negative,
12126 BAD_ADDR_MODE);
12127
12128 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12129
12130 inst.instruction |= inst.operands[0].reg << 8;
12131 inst.instruction |= inst.operands[1].reg << 12;
12132 inst.instruction |= inst.operands[2].reg << 16;
12133 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12134 }
12135
12136 static void
12137 do_t_strexd (void)
12138 {
12139 if (!inst.operands[2].present)
12140 inst.operands[2].reg = inst.operands[1].reg + 1;
12141
12142 constraint (inst.operands[0].reg == inst.operands[1].reg
12143 || inst.operands[0].reg == inst.operands[2].reg
12144 || inst.operands[0].reg == inst.operands[3].reg,
12145 BAD_OVERLAP);
12146
12147 inst.instruction |= inst.operands[0].reg;
12148 inst.instruction |= inst.operands[1].reg << 12;
12149 inst.instruction |= inst.operands[2].reg << 8;
12150 inst.instruction |= inst.operands[3].reg << 16;
12151 }
12152
12153 static void
12154 do_t_sxtah (void)
12155 {
12156 unsigned Rd, Rn, Rm;
12157
12158 Rd = inst.operands[0].reg;
12159 Rn = inst.operands[1].reg;
12160 Rm = inst.operands[2].reg;
12161
12162 reject_bad_reg (Rd);
12163 reject_bad_reg (Rn);
12164 reject_bad_reg (Rm);
12165
12166 inst.instruction |= Rd << 8;
12167 inst.instruction |= Rn << 16;
12168 inst.instruction |= Rm;
12169 inst.instruction |= inst.operands[3].imm << 4;
12170 }
12171
12172 static void
12173 do_t_sxth (void)
12174 {
12175 unsigned Rd, Rm;
12176
12177 Rd = inst.operands[0].reg;
12178 Rm = inst.operands[1].reg;
12179
12180 reject_bad_reg (Rd);
12181 reject_bad_reg (Rm);
12182
12183 if (inst.instruction <= 0xffff
12184 && inst.size_req != 4
12185 && Rd <= 7 && Rm <= 7
12186 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12187 {
12188 inst.instruction = THUMB_OP16 (inst.instruction);
12189 inst.instruction |= Rd;
12190 inst.instruction |= Rm << 3;
12191 }
12192 else if (unified_syntax)
12193 {
12194 if (inst.instruction <= 0xffff)
12195 inst.instruction = THUMB_OP32 (inst.instruction);
12196 inst.instruction |= Rd << 8;
12197 inst.instruction |= Rm;
12198 inst.instruction |= inst.operands[2].imm << 4;
12199 }
12200 else
12201 {
12202 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12203 _("Thumb encoding does not support rotation"));
12204 constraint (1, BAD_HIREG);
12205 }
12206 }
12207
12208 static void
12209 do_t_swi (void)
12210 {
12211 /* We have to do the following check manually as ARM_EXT_OS only applies
12212 to ARM_EXT_V6M. */
12213 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12214 {
12215 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12216 /* This only applies to the v6m howver, not later architectures. */
12217 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12218 as_bad (_("SVC is not permitted on this architecture"));
12219 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12220 }
12221
12222 inst.reloc.type = BFD_RELOC_ARM_SWI;
12223 }
12224
12225 static void
12226 do_t_tb (void)
12227 {
12228 unsigned Rn, Rm;
12229 int half;
12230
12231 half = (inst.instruction & 0x10) != 0;
12232 set_it_insn_type_last ();
12233 constraint (inst.operands[0].immisreg,
12234 _("instruction requires register index"));
12235
12236 Rn = inst.operands[0].reg;
12237 Rm = inst.operands[0].imm;
12238
12239 constraint (Rn == REG_SP, BAD_SP);
12240 reject_bad_reg (Rm);
12241
12242 constraint (!half && inst.operands[0].shifted,
12243 _("instruction does not allow shifted index"));
12244 inst.instruction |= (Rn << 16) | Rm;
12245 }
12246
12247 static void
12248 do_t_usat (void)
12249 {
12250 do_t_ssat_usat (0);
12251 }
12252
12253 static void
12254 do_t_usat16 (void)
12255 {
12256 unsigned Rd, Rn;
12257
12258 Rd = inst.operands[0].reg;
12259 Rn = inst.operands[2].reg;
12260
12261 reject_bad_reg (Rd);
12262 reject_bad_reg (Rn);
12263
12264 inst.instruction |= Rd << 8;
12265 inst.instruction |= inst.operands[1].imm;
12266 inst.instruction |= Rn << 16;
12267 }
12268
12269 /* Neon instruction encoder helpers. */
12270
12271 /* Encodings for the different types for various Neon opcodes. */
12272
12273 /* An "invalid" code for the following tables. */
12274 #define N_INV -1u
12275
12276 struct neon_tab_entry
12277 {
12278 unsigned integer;
12279 unsigned float_or_poly;
12280 unsigned scalar_or_imm;
12281 };
12282
12283 /* Map overloaded Neon opcodes to their respective encodings. */
12284 #define NEON_ENC_TAB \
12285 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12286 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12287 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12288 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12289 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12290 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12291 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12292 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12293 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12294 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12295 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12296 /* Register variants of the following two instructions are encoded as
12297 vcge / vcgt with the operands reversed. */ \
12298 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12299 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12300 X(vfma, N_INV, 0x0000c10, N_INV), \
12301 X(vfms, N_INV, 0x0200c10, N_INV), \
12302 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12303 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12304 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12305 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12306 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12307 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12308 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12309 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12310 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12311 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12312 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12313 X(vshl, 0x0000400, N_INV, 0x0800510), \
12314 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12315 X(vand, 0x0000110, N_INV, 0x0800030), \
12316 X(vbic, 0x0100110, N_INV, 0x0800030), \
12317 X(veor, 0x1000110, N_INV, N_INV), \
12318 X(vorn, 0x0300110, N_INV, 0x0800010), \
12319 X(vorr, 0x0200110, N_INV, 0x0800010), \
12320 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12321 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12322 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12323 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12324 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12325 X(vst1, 0x0000000, 0x0800000, N_INV), \
12326 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12327 X(vst2, 0x0000100, 0x0800100, N_INV), \
12328 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12329 X(vst3, 0x0000200, 0x0800200, N_INV), \
12330 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12331 X(vst4, 0x0000300, 0x0800300, N_INV), \
12332 X(vmovn, 0x1b20200, N_INV, N_INV), \
12333 X(vtrn, 0x1b20080, N_INV, N_INV), \
12334 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12335 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12336 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12337 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12338 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12339 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12340 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12341 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12342 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12343 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12344 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV), \
12345 X(vseleq, 0xe000a00, N_INV, N_INV), \
12346 X(vselvs, 0xe100a00, N_INV, N_INV), \
12347 X(vselge, 0xe200a00, N_INV, N_INV), \
12348 X(vselgt, 0xe300a00, N_INV, N_INV), \
12349 X(vmaxnm, 0xe800a00, 0x3000f10, N_INV), \
12350 X(vminnm, 0xe800a40, 0x3200f10, N_INV), \
12351 X(vcvta, 0xebc0a40, 0x3bb0000, N_INV), \
12352 X(vrintr, 0xeb60a40, 0x3ba0400, N_INV), \
12353 X(vrinta, 0xeb80a40, 0x3ba0400, N_INV), \
12354 X(aes, 0x3b00300, N_INV, N_INV)
12355
12356 enum neon_opc
12357 {
12358 #define X(OPC,I,F,S) N_MNEM_##OPC
12359 NEON_ENC_TAB
12360 #undef X
12361 };
12362
12363 static const struct neon_tab_entry neon_enc_tab[] =
12364 {
12365 #define X(OPC,I,F,S) { (I), (F), (S) }
12366 NEON_ENC_TAB
12367 #undef X
12368 };
12369
12370 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12371 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12372 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12373 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12374 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12375 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12376 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12377 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12378 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12379 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12380 #define NEON_ENC_SINGLE_(X) \
12381 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12382 #define NEON_ENC_DOUBLE_(X) \
12383 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12384 #define NEON_ENC_FPV8_(X) \
12385 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf000000))
12386
12387 #define NEON_ENCODE(type, inst) \
12388 do \
12389 { \
12390 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12391 inst.is_neon = 1; \
12392 } \
12393 while (0)
12394
12395 #define check_neon_suffixes \
12396 do \
12397 { \
12398 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12399 { \
12400 as_bad (_("invalid neon suffix for non neon instruction")); \
12401 return; \
12402 } \
12403 } \
12404 while (0)
12405
12406 /* Define shapes for instruction operands. The following mnemonic characters
12407 are used in this table:
12408
12409 F - VFP S<n> register
12410 D - Neon D<n> register
12411 Q - Neon Q<n> register
12412 I - Immediate
12413 S - Scalar
12414 R - ARM register
12415 L - D<n> register list
12416
12417 This table is used to generate various data:
12418 - enumerations of the form NS_DDR to be used as arguments to
12419 neon_select_shape.
12420 - a table classifying shapes into single, double, quad, mixed.
12421 - a table used to drive neon_select_shape. */
12422
12423 #define NEON_SHAPE_DEF \
12424 X(3, (D, D, D), DOUBLE), \
12425 X(3, (Q, Q, Q), QUAD), \
12426 X(3, (D, D, I), DOUBLE), \
12427 X(3, (Q, Q, I), QUAD), \
12428 X(3, (D, D, S), DOUBLE), \
12429 X(3, (Q, Q, S), QUAD), \
12430 X(2, (D, D), DOUBLE), \
12431 X(2, (Q, Q), QUAD), \
12432 X(2, (D, S), DOUBLE), \
12433 X(2, (Q, S), QUAD), \
12434 X(2, (D, R), DOUBLE), \
12435 X(2, (Q, R), QUAD), \
12436 X(2, (D, I), DOUBLE), \
12437 X(2, (Q, I), QUAD), \
12438 X(3, (D, L, D), DOUBLE), \
12439 X(2, (D, Q), MIXED), \
12440 X(2, (Q, D), MIXED), \
12441 X(3, (D, Q, I), MIXED), \
12442 X(3, (Q, D, I), MIXED), \
12443 X(3, (Q, D, D), MIXED), \
12444 X(3, (D, Q, Q), MIXED), \
12445 X(3, (Q, Q, D), MIXED), \
12446 X(3, (Q, D, S), MIXED), \
12447 X(3, (D, Q, S), MIXED), \
12448 X(4, (D, D, D, I), DOUBLE), \
12449 X(4, (Q, Q, Q, I), QUAD), \
12450 X(2, (F, F), SINGLE), \
12451 X(3, (F, F, F), SINGLE), \
12452 X(2, (F, I), SINGLE), \
12453 X(2, (F, D), MIXED), \
12454 X(2, (D, F), MIXED), \
12455 X(3, (F, F, I), MIXED), \
12456 X(4, (R, R, F, F), SINGLE), \
12457 X(4, (F, F, R, R), SINGLE), \
12458 X(3, (D, R, R), DOUBLE), \
12459 X(3, (R, R, D), DOUBLE), \
12460 X(2, (S, R), SINGLE), \
12461 X(2, (R, S), SINGLE), \
12462 X(2, (F, R), SINGLE), \
12463 X(2, (R, F), SINGLE)
12464
12465 #define S2(A,B) NS_##A##B
12466 #define S3(A,B,C) NS_##A##B##C
12467 #define S4(A,B,C,D) NS_##A##B##C##D
12468
12469 #define X(N, L, C) S##N L
12470
12471 enum neon_shape
12472 {
12473 NEON_SHAPE_DEF,
12474 NS_NULL
12475 };
12476
12477 #undef X
12478 #undef S2
12479 #undef S3
12480 #undef S4
12481
12482 enum neon_shape_class
12483 {
12484 SC_SINGLE,
12485 SC_DOUBLE,
12486 SC_QUAD,
12487 SC_MIXED
12488 };
12489
12490 #define X(N, L, C) SC_##C
12491
12492 static enum neon_shape_class neon_shape_class[] =
12493 {
12494 NEON_SHAPE_DEF
12495 };
12496
12497 #undef X
12498
12499 enum neon_shape_el
12500 {
12501 SE_F,
12502 SE_D,
12503 SE_Q,
12504 SE_I,
12505 SE_S,
12506 SE_R,
12507 SE_L
12508 };
12509
12510 /* Register widths of above. */
12511 static unsigned neon_shape_el_size[] =
12512 {
12513 32,
12514 64,
12515 128,
12516 0,
12517 32,
12518 32,
12519 0
12520 };
12521
12522 struct neon_shape_info
12523 {
12524 unsigned els;
12525 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12526 };
12527
12528 #define S2(A,B) { SE_##A, SE_##B }
12529 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12530 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12531
12532 #define X(N, L, C) { N, S##N L }
12533
12534 static struct neon_shape_info neon_shape_tab[] =
12535 {
12536 NEON_SHAPE_DEF
12537 };
12538
12539 #undef X
12540 #undef S2
12541 #undef S3
12542 #undef S4
12543
12544 /* Bit masks used in type checking given instructions.
12545 'N_EQK' means the type must be the same as (or based on in some way) the key
12546 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12547 set, various other bits can be set as well in order to modify the meaning of
12548 the type constraint. */
12549
12550 enum neon_type_mask
12551 {
12552 N_S8 = 0x0000001,
12553 N_S16 = 0x0000002,
12554 N_S32 = 0x0000004,
12555 N_S64 = 0x0000008,
12556 N_U8 = 0x0000010,
12557 N_U16 = 0x0000020,
12558 N_U32 = 0x0000040,
12559 N_U64 = 0x0000080,
12560 N_I8 = 0x0000100,
12561 N_I16 = 0x0000200,
12562 N_I32 = 0x0000400,
12563 N_I64 = 0x0000800,
12564 N_8 = 0x0001000,
12565 N_16 = 0x0002000,
12566 N_32 = 0x0004000,
12567 N_64 = 0x0008000,
12568 N_P8 = 0x0010000,
12569 N_P16 = 0x0020000,
12570 N_F16 = 0x0040000,
12571 N_F32 = 0x0080000,
12572 N_F64 = 0x0100000,
12573 N_P64 = 0x0200000,
12574 N_KEY = 0x1000000, /* Key element (main type specifier). */
12575 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12576 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12577 N_UNT = 0x8000000, /* Must be explicitly untyped. */
12578 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12579 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12580 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12581 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12582 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12583 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12584 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12585 N_UTYP = 0,
12586 N_MAX_NONSPECIAL = N_P64
12587 };
12588
12589 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12590
12591 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12592 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12593 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12594 #define N_SUF_32 (N_SU_32 | N_F32)
12595 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12596 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12597
12598 /* Pass this as the first type argument to neon_check_type to ignore types
12599 altogether. */
12600 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12601
12602 /* Select a "shape" for the current instruction (describing register types or
12603 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12604 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12605 function of operand parsing, so this function doesn't need to be called.
12606 Shapes should be listed in order of decreasing length. */
12607
12608 static enum neon_shape
12609 neon_select_shape (enum neon_shape shape, ...)
12610 {
12611 va_list ap;
12612 enum neon_shape first_shape = shape;
12613
12614 /* Fix missing optional operands. FIXME: we don't know at this point how
12615 many arguments we should have, so this makes the assumption that we have
12616 > 1. This is true of all current Neon opcodes, I think, but may not be
12617 true in the future. */
12618 if (!inst.operands[1].present)
12619 inst.operands[1] = inst.operands[0];
12620
12621 va_start (ap, shape);
12622
12623 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12624 {
12625 unsigned j;
12626 int matches = 1;
12627
12628 for (j = 0; j < neon_shape_tab[shape].els; j++)
12629 {
12630 if (!inst.operands[j].present)
12631 {
12632 matches = 0;
12633 break;
12634 }
12635
12636 switch (neon_shape_tab[shape].el[j])
12637 {
12638 case SE_F:
12639 if (!(inst.operands[j].isreg
12640 && inst.operands[j].isvec
12641 && inst.operands[j].issingle
12642 && !inst.operands[j].isquad))
12643 matches = 0;
12644 break;
12645
12646 case SE_D:
12647 if (!(inst.operands[j].isreg
12648 && inst.operands[j].isvec
12649 && !inst.operands[j].isquad
12650 && !inst.operands[j].issingle))
12651 matches = 0;
12652 break;
12653
12654 case SE_R:
12655 if (!(inst.operands[j].isreg
12656 && !inst.operands[j].isvec))
12657 matches = 0;
12658 break;
12659
12660 case SE_Q:
12661 if (!(inst.operands[j].isreg
12662 && inst.operands[j].isvec
12663 && inst.operands[j].isquad
12664 && !inst.operands[j].issingle))
12665 matches = 0;
12666 break;
12667
12668 case SE_I:
12669 if (!(!inst.operands[j].isreg
12670 && !inst.operands[j].isscalar))
12671 matches = 0;
12672 break;
12673
12674 case SE_S:
12675 if (!(!inst.operands[j].isreg
12676 && inst.operands[j].isscalar))
12677 matches = 0;
12678 break;
12679
12680 case SE_L:
12681 break;
12682 }
12683 if (!matches)
12684 break;
12685 }
12686 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12687 /* We've matched all the entries in the shape table, and we don't
12688 have any left over operands which have not been matched. */
12689 break;
12690 }
12691
12692 va_end (ap);
12693
12694 if (shape == NS_NULL && first_shape != NS_NULL)
12695 first_error (_("invalid instruction shape"));
12696
12697 return shape;
12698 }
12699
12700 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12701 means the Q bit should be set). */
12702
12703 static int
12704 neon_quad (enum neon_shape shape)
12705 {
12706 return neon_shape_class[shape] == SC_QUAD;
12707 }
12708
12709 static void
12710 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12711 unsigned *g_size)
12712 {
12713 /* Allow modification to be made to types which are constrained to be
12714 based on the key element, based on bits set alongside N_EQK. */
12715 if ((typebits & N_EQK) != 0)
12716 {
12717 if ((typebits & N_HLF) != 0)
12718 *g_size /= 2;
12719 else if ((typebits & N_DBL) != 0)
12720 *g_size *= 2;
12721 if ((typebits & N_SGN) != 0)
12722 *g_type = NT_signed;
12723 else if ((typebits & N_UNS) != 0)
12724 *g_type = NT_unsigned;
12725 else if ((typebits & N_INT) != 0)
12726 *g_type = NT_integer;
12727 else if ((typebits & N_FLT) != 0)
12728 *g_type = NT_float;
12729 else if ((typebits & N_SIZ) != 0)
12730 *g_type = NT_untyped;
12731 }
12732 }
12733
12734 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12735 operand type, i.e. the single type specified in a Neon instruction when it
12736 is the only one given. */
12737
12738 static struct neon_type_el
12739 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12740 {
12741 struct neon_type_el dest = *key;
12742
12743 gas_assert ((thisarg & N_EQK) != 0);
12744
12745 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12746
12747 return dest;
12748 }
12749
12750 /* Convert Neon type and size into compact bitmask representation. */
12751
12752 static enum neon_type_mask
12753 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12754 {
12755 switch (type)
12756 {
12757 case NT_untyped:
12758 switch (size)
12759 {
12760 case 8: return N_8;
12761 case 16: return N_16;
12762 case 32: return N_32;
12763 case 64: return N_64;
12764 default: ;
12765 }
12766 break;
12767
12768 case NT_integer:
12769 switch (size)
12770 {
12771 case 8: return N_I8;
12772 case 16: return N_I16;
12773 case 32: return N_I32;
12774 case 64: return N_I64;
12775 default: ;
12776 }
12777 break;
12778
12779 case NT_float:
12780 switch (size)
12781 {
12782 case 16: return N_F16;
12783 case 32: return N_F32;
12784 case 64: return N_F64;
12785 default: ;
12786 }
12787 break;
12788
12789 case NT_poly:
12790 switch (size)
12791 {
12792 case 8: return N_P8;
12793 case 16: return N_P16;
12794 case 64: return N_P64;
12795 default: ;
12796 }
12797 break;
12798
12799 case NT_signed:
12800 switch (size)
12801 {
12802 case 8: return N_S8;
12803 case 16: return N_S16;
12804 case 32: return N_S32;
12805 case 64: return N_S64;
12806 default: ;
12807 }
12808 break;
12809
12810 case NT_unsigned:
12811 switch (size)
12812 {
12813 case 8: return N_U8;
12814 case 16: return N_U16;
12815 case 32: return N_U32;
12816 case 64: return N_U64;
12817 default: ;
12818 }
12819 break;
12820
12821 default: ;
12822 }
12823
12824 return N_UTYP;
12825 }
12826
12827 /* Convert compact Neon bitmask type representation to a type and size. Only
12828 handles the case where a single bit is set in the mask. */
12829
12830 static int
12831 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12832 enum neon_type_mask mask)
12833 {
12834 if ((mask & N_EQK) != 0)
12835 return FAIL;
12836
12837 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12838 *size = 8;
12839 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_F16 | N_P16)) != 0)
12840 *size = 16;
12841 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12842 *size = 32;
12843 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64 | N_P64)) != 0)
12844 *size = 64;
12845 else
12846 return FAIL;
12847
12848 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12849 *type = NT_signed;
12850 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12851 *type = NT_unsigned;
12852 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12853 *type = NT_integer;
12854 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12855 *type = NT_untyped;
12856 else if ((mask & (N_P8 | N_P16 | N_P64)) != 0)
12857 *type = NT_poly;
12858 else if ((mask & (N_F16 | N_F32 | N_F64)) != 0)
12859 *type = NT_float;
12860 else
12861 return FAIL;
12862
12863 return SUCCESS;
12864 }
12865
12866 /* Modify a bitmask of allowed types. This is only needed for type
12867 relaxation. */
12868
12869 static unsigned
12870 modify_types_allowed (unsigned allowed, unsigned mods)
12871 {
12872 unsigned size;
12873 enum neon_el_type type;
12874 unsigned destmask;
12875 int i;
12876
12877 destmask = 0;
12878
12879 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12880 {
12881 if (el_type_of_type_chk (&type, &size,
12882 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12883 {
12884 neon_modify_type_size (mods, &type, &size);
12885 destmask |= type_chk_of_el_type (type, size);
12886 }
12887 }
12888
12889 return destmask;
12890 }
12891
12892 /* Check type and return type classification.
12893 The manual states (paraphrase): If one datatype is given, it indicates the
12894 type given in:
12895 - the second operand, if there is one
12896 - the operand, if there is no second operand
12897 - the result, if there are no operands.
12898 This isn't quite good enough though, so we use a concept of a "key" datatype
12899 which is set on a per-instruction basis, which is the one which matters when
12900 only one data type is written.
12901 Note: this function has side-effects (e.g. filling in missing operands). All
12902 Neon instructions should call it before performing bit encoding. */
12903
12904 static struct neon_type_el
12905 neon_check_type (unsigned els, enum neon_shape ns, ...)
12906 {
12907 va_list ap;
12908 unsigned i, pass, key_el = 0;
12909 unsigned types[NEON_MAX_TYPE_ELS];
12910 enum neon_el_type k_type = NT_invtype;
12911 unsigned k_size = -1u;
12912 struct neon_type_el badtype = {NT_invtype, -1};
12913 unsigned key_allowed = 0;
12914
12915 /* Optional registers in Neon instructions are always (not) in operand 1.
12916 Fill in the missing operand here, if it was omitted. */
12917 if (els > 1 && !inst.operands[1].present)
12918 inst.operands[1] = inst.operands[0];
12919
12920 /* Suck up all the varargs. */
12921 va_start (ap, ns);
12922 for (i = 0; i < els; i++)
12923 {
12924 unsigned thisarg = va_arg (ap, unsigned);
12925 if (thisarg == N_IGNORE_TYPE)
12926 {
12927 va_end (ap);
12928 return badtype;
12929 }
12930 types[i] = thisarg;
12931 if ((thisarg & N_KEY) != 0)
12932 key_el = i;
12933 }
12934 va_end (ap);
12935
12936 if (inst.vectype.elems > 0)
12937 for (i = 0; i < els; i++)
12938 if (inst.operands[i].vectype.type != NT_invtype)
12939 {
12940 first_error (_("types specified in both the mnemonic and operands"));
12941 return badtype;
12942 }
12943
12944 /* Duplicate inst.vectype elements here as necessary.
12945 FIXME: No idea if this is exactly the same as the ARM assembler,
12946 particularly when an insn takes one register and one non-register
12947 operand. */
12948 if (inst.vectype.elems == 1 && els > 1)
12949 {
12950 unsigned j;
12951 inst.vectype.elems = els;
12952 inst.vectype.el[key_el] = inst.vectype.el[0];
12953 for (j = 0; j < els; j++)
12954 if (j != key_el)
12955 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12956 types[j]);
12957 }
12958 else if (inst.vectype.elems == 0 && els > 0)
12959 {
12960 unsigned j;
12961 /* No types were given after the mnemonic, so look for types specified
12962 after each operand. We allow some flexibility here; as long as the
12963 "key" operand has a type, we can infer the others. */
12964 for (j = 0; j < els; j++)
12965 if (inst.operands[j].vectype.type != NT_invtype)
12966 inst.vectype.el[j] = inst.operands[j].vectype;
12967
12968 if (inst.operands[key_el].vectype.type != NT_invtype)
12969 {
12970 for (j = 0; j < els; j++)
12971 if (inst.operands[j].vectype.type == NT_invtype)
12972 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12973 types[j]);
12974 }
12975 else
12976 {
12977 first_error (_("operand types can't be inferred"));
12978 return badtype;
12979 }
12980 }
12981 else if (inst.vectype.elems != els)
12982 {
12983 first_error (_("type specifier has the wrong number of parts"));
12984 return badtype;
12985 }
12986
12987 for (pass = 0; pass < 2; pass++)
12988 {
12989 for (i = 0; i < els; i++)
12990 {
12991 unsigned thisarg = types[i];
12992 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12993 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12994 enum neon_el_type g_type = inst.vectype.el[i].type;
12995 unsigned g_size = inst.vectype.el[i].size;
12996
12997 /* Decay more-specific signed & unsigned types to sign-insensitive
12998 integer types if sign-specific variants are unavailable. */
12999 if ((g_type == NT_signed || g_type == NT_unsigned)
13000 && (types_allowed & N_SU_ALL) == 0)
13001 g_type = NT_integer;
13002
13003 /* If only untyped args are allowed, decay any more specific types to
13004 them. Some instructions only care about signs for some element
13005 sizes, so handle that properly. */
13006 if (((types_allowed & N_UNT) == 0)
13007 && ((g_size == 8 && (types_allowed & N_8) != 0)
13008 || (g_size == 16 && (types_allowed & N_16) != 0)
13009 || (g_size == 32 && (types_allowed & N_32) != 0)
13010 || (g_size == 64 && (types_allowed & N_64) != 0)))
13011 g_type = NT_untyped;
13012
13013 if (pass == 0)
13014 {
13015 if ((thisarg & N_KEY) != 0)
13016 {
13017 k_type = g_type;
13018 k_size = g_size;
13019 key_allowed = thisarg & ~N_KEY;
13020 }
13021 }
13022 else
13023 {
13024 if ((thisarg & N_VFP) != 0)
13025 {
13026 enum neon_shape_el regshape;
13027 unsigned regwidth, match;
13028
13029 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
13030 if (ns == NS_NULL)
13031 {
13032 first_error (_("invalid instruction shape"));
13033 return badtype;
13034 }
13035 regshape = neon_shape_tab[ns].el[i];
13036 regwidth = neon_shape_el_size[regshape];
13037
13038 /* In VFP mode, operands must match register widths. If we
13039 have a key operand, use its width, else use the width of
13040 the current operand. */
13041 if (k_size != -1u)
13042 match = k_size;
13043 else
13044 match = g_size;
13045
13046 if (regwidth != match)
13047 {
13048 first_error (_("operand size must match register width"));
13049 return badtype;
13050 }
13051 }
13052
13053 if ((thisarg & N_EQK) == 0)
13054 {
13055 unsigned given_type = type_chk_of_el_type (g_type, g_size);
13056
13057 if ((given_type & types_allowed) == 0)
13058 {
13059 first_error (_("bad type in Neon instruction"));
13060 return badtype;
13061 }
13062 }
13063 else
13064 {
13065 enum neon_el_type mod_k_type = k_type;
13066 unsigned mod_k_size = k_size;
13067 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13068 if (g_type != mod_k_type || g_size != mod_k_size)
13069 {
13070 first_error (_("inconsistent types in Neon instruction"));
13071 return badtype;
13072 }
13073 }
13074 }
13075 }
13076 }
13077
13078 return inst.vectype.el[key_el];
13079 }
13080
13081 /* Neon-style VFP instruction forwarding. */
13082
13083 /* Thumb VFP instructions have 0xE in the condition field. */
13084
13085 static void
13086 do_vfp_cond_or_thumb (void)
13087 {
13088 inst.is_neon = 1;
13089
13090 if (thumb_mode)
13091 inst.instruction |= 0xe0000000;
13092 else
13093 inst.instruction |= inst.cond << 28;
13094 }
13095
13096 /* Look up and encode a simple mnemonic, for use as a helper function for the
13097 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13098 etc. It is assumed that operand parsing has already been done, and that the
13099 operands are in the form expected by the given opcode (this isn't necessarily
13100 the same as the form in which they were parsed, hence some massaging must
13101 take place before this function is called).
13102 Checks current arch version against that in the looked-up opcode. */
13103
13104 static void
13105 do_vfp_nsyn_opcode (const char *opname)
13106 {
13107 const struct asm_opcode *opcode;
13108
13109 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13110
13111 if (!opcode)
13112 abort ();
13113
13114 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13115 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13116 _(BAD_FPU));
13117
13118 inst.is_neon = 1;
13119
13120 if (thumb_mode)
13121 {
13122 inst.instruction = opcode->tvalue;
13123 opcode->tencode ();
13124 }
13125 else
13126 {
13127 inst.instruction = (inst.cond << 28) | opcode->avalue;
13128 opcode->aencode ();
13129 }
13130 }
13131
13132 static void
13133 do_vfp_nsyn_add_sub (enum neon_shape rs)
13134 {
13135 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13136
13137 if (rs == NS_FFF)
13138 {
13139 if (is_add)
13140 do_vfp_nsyn_opcode ("fadds");
13141 else
13142 do_vfp_nsyn_opcode ("fsubs");
13143 }
13144 else
13145 {
13146 if (is_add)
13147 do_vfp_nsyn_opcode ("faddd");
13148 else
13149 do_vfp_nsyn_opcode ("fsubd");
13150 }
13151 }
13152
13153 /* Check operand types to see if this is a VFP instruction, and if so call
13154 PFN (). */
13155
13156 static int
13157 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13158 {
13159 enum neon_shape rs;
13160 struct neon_type_el et;
13161
13162 switch (args)
13163 {
13164 case 2:
13165 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13166 et = neon_check_type (2, rs,
13167 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13168 break;
13169
13170 case 3:
13171 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13172 et = neon_check_type (3, rs,
13173 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13174 break;
13175
13176 default:
13177 abort ();
13178 }
13179
13180 if (et.type != NT_invtype)
13181 {
13182 pfn (rs);
13183 return SUCCESS;
13184 }
13185
13186 inst.error = NULL;
13187 return FAIL;
13188 }
13189
13190 static void
13191 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13192 {
13193 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13194
13195 if (rs == NS_FFF)
13196 {
13197 if (is_mla)
13198 do_vfp_nsyn_opcode ("fmacs");
13199 else
13200 do_vfp_nsyn_opcode ("fnmacs");
13201 }
13202 else
13203 {
13204 if (is_mla)
13205 do_vfp_nsyn_opcode ("fmacd");
13206 else
13207 do_vfp_nsyn_opcode ("fnmacd");
13208 }
13209 }
13210
13211 static void
13212 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13213 {
13214 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13215
13216 if (rs == NS_FFF)
13217 {
13218 if (is_fma)
13219 do_vfp_nsyn_opcode ("ffmas");
13220 else
13221 do_vfp_nsyn_opcode ("ffnmas");
13222 }
13223 else
13224 {
13225 if (is_fma)
13226 do_vfp_nsyn_opcode ("ffmad");
13227 else
13228 do_vfp_nsyn_opcode ("ffnmad");
13229 }
13230 }
13231
13232 static void
13233 do_vfp_nsyn_mul (enum neon_shape rs)
13234 {
13235 if (rs == NS_FFF)
13236 do_vfp_nsyn_opcode ("fmuls");
13237 else
13238 do_vfp_nsyn_opcode ("fmuld");
13239 }
13240
13241 static void
13242 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13243 {
13244 int is_neg = (inst.instruction & 0x80) != 0;
13245 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13246
13247 if (rs == NS_FF)
13248 {
13249 if (is_neg)
13250 do_vfp_nsyn_opcode ("fnegs");
13251 else
13252 do_vfp_nsyn_opcode ("fabss");
13253 }
13254 else
13255 {
13256 if (is_neg)
13257 do_vfp_nsyn_opcode ("fnegd");
13258 else
13259 do_vfp_nsyn_opcode ("fabsd");
13260 }
13261 }
13262
13263 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13264 insns belong to Neon, and are handled elsewhere. */
13265
13266 static void
13267 do_vfp_nsyn_ldm_stm (int is_dbmode)
13268 {
13269 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13270 if (is_ldm)
13271 {
13272 if (is_dbmode)
13273 do_vfp_nsyn_opcode ("fldmdbs");
13274 else
13275 do_vfp_nsyn_opcode ("fldmias");
13276 }
13277 else
13278 {
13279 if (is_dbmode)
13280 do_vfp_nsyn_opcode ("fstmdbs");
13281 else
13282 do_vfp_nsyn_opcode ("fstmias");
13283 }
13284 }
13285
13286 static void
13287 do_vfp_nsyn_sqrt (void)
13288 {
13289 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13290 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13291
13292 if (rs == NS_FF)
13293 do_vfp_nsyn_opcode ("fsqrts");
13294 else
13295 do_vfp_nsyn_opcode ("fsqrtd");
13296 }
13297
13298 static void
13299 do_vfp_nsyn_div (void)
13300 {
13301 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13302 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13303 N_F32 | N_F64 | N_KEY | N_VFP);
13304
13305 if (rs == NS_FFF)
13306 do_vfp_nsyn_opcode ("fdivs");
13307 else
13308 do_vfp_nsyn_opcode ("fdivd");
13309 }
13310
13311 static void
13312 do_vfp_nsyn_nmul (void)
13313 {
13314 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13315 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13316 N_F32 | N_F64 | N_KEY | N_VFP);
13317
13318 if (rs == NS_FFF)
13319 {
13320 NEON_ENCODE (SINGLE, inst);
13321 do_vfp_sp_dyadic ();
13322 }
13323 else
13324 {
13325 NEON_ENCODE (DOUBLE, inst);
13326 do_vfp_dp_rd_rn_rm ();
13327 }
13328 do_vfp_cond_or_thumb ();
13329 }
13330
13331 static void
13332 do_vfp_nsyn_cmp (void)
13333 {
13334 if (inst.operands[1].isreg)
13335 {
13336 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13337 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13338
13339 if (rs == NS_FF)
13340 {
13341 NEON_ENCODE (SINGLE, inst);
13342 do_vfp_sp_monadic ();
13343 }
13344 else
13345 {
13346 NEON_ENCODE (DOUBLE, inst);
13347 do_vfp_dp_rd_rm ();
13348 }
13349 }
13350 else
13351 {
13352 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13353 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13354
13355 switch (inst.instruction & 0x0fffffff)
13356 {
13357 case N_MNEM_vcmp:
13358 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13359 break;
13360 case N_MNEM_vcmpe:
13361 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13362 break;
13363 default:
13364 abort ();
13365 }
13366
13367 if (rs == NS_FI)
13368 {
13369 NEON_ENCODE (SINGLE, inst);
13370 do_vfp_sp_compare_z ();
13371 }
13372 else
13373 {
13374 NEON_ENCODE (DOUBLE, inst);
13375 do_vfp_dp_rd ();
13376 }
13377 }
13378 do_vfp_cond_or_thumb ();
13379 }
13380
13381 static void
13382 nsyn_insert_sp (void)
13383 {
13384 inst.operands[1] = inst.operands[0];
13385 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13386 inst.operands[0].reg = REG_SP;
13387 inst.operands[0].isreg = 1;
13388 inst.operands[0].writeback = 1;
13389 inst.operands[0].present = 1;
13390 }
13391
13392 static void
13393 do_vfp_nsyn_push (void)
13394 {
13395 nsyn_insert_sp ();
13396 if (inst.operands[1].issingle)
13397 do_vfp_nsyn_opcode ("fstmdbs");
13398 else
13399 do_vfp_nsyn_opcode ("fstmdbd");
13400 }
13401
13402 static void
13403 do_vfp_nsyn_pop (void)
13404 {
13405 nsyn_insert_sp ();
13406 if (inst.operands[1].issingle)
13407 do_vfp_nsyn_opcode ("fldmias");
13408 else
13409 do_vfp_nsyn_opcode ("fldmiad");
13410 }
13411
13412 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13413 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13414
13415 static void
13416 neon_dp_fixup (struct arm_it* insn)
13417 {
13418 unsigned int i = insn->instruction;
13419 insn->is_neon = 1;
13420
13421 if (thumb_mode)
13422 {
13423 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13424 if (i & (1 << 24))
13425 i |= 1 << 28;
13426
13427 i &= ~(1 << 24);
13428
13429 i |= 0xef000000;
13430 }
13431 else
13432 i |= 0xf2000000;
13433
13434 insn->instruction = i;
13435 }
13436
13437 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13438 (0, 1, 2, 3). */
13439
13440 static unsigned
13441 neon_logbits (unsigned x)
13442 {
13443 return ffs (x) - 4;
13444 }
13445
13446 #define LOW4(R) ((R) & 0xf)
13447 #define HI1(R) (((R) >> 4) & 1)
13448
13449 /* Encode insns with bit pattern:
13450
13451 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13452 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13453
13454 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13455 different meaning for some instruction. */
13456
13457 static void
13458 neon_three_same (int isquad, int ubit, int size)
13459 {
13460 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13461 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13462 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13463 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13464 inst.instruction |= LOW4 (inst.operands[2].reg);
13465 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13466 inst.instruction |= (isquad != 0) << 6;
13467 inst.instruction |= (ubit != 0) << 24;
13468 if (size != -1)
13469 inst.instruction |= neon_logbits (size) << 20;
13470
13471 neon_dp_fixup (&inst);
13472 }
13473
13474 /* Encode instructions of the form:
13475
13476 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13477 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13478
13479 Don't write size if SIZE == -1. */
13480
13481 static void
13482 neon_two_same (int qbit, int ubit, int size)
13483 {
13484 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13485 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13486 inst.instruction |= LOW4 (inst.operands[1].reg);
13487 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13488 inst.instruction |= (qbit != 0) << 6;
13489 inst.instruction |= (ubit != 0) << 24;
13490
13491 if (size != -1)
13492 inst.instruction |= neon_logbits (size) << 18;
13493
13494 neon_dp_fixup (&inst);
13495 }
13496
13497 /* Neon instruction encoders, in approximate order of appearance. */
13498
13499 static void
13500 do_neon_dyadic_i_su (void)
13501 {
13502 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13503 struct neon_type_el et = neon_check_type (3, rs,
13504 N_EQK, N_EQK, N_SU_32 | N_KEY);
13505 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13506 }
13507
13508 static void
13509 do_neon_dyadic_i64_su (void)
13510 {
13511 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13512 struct neon_type_el et = neon_check_type (3, rs,
13513 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13514 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13515 }
13516
13517 static void
13518 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13519 unsigned immbits)
13520 {
13521 unsigned size = et.size >> 3;
13522 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13523 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13524 inst.instruction |= LOW4 (inst.operands[1].reg);
13525 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13526 inst.instruction |= (isquad != 0) << 6;
13527 inst.instruction |= immbits << 16;
13528 inst.instruction |= (size >> 3) << 7;
13529 inst.instruction |= (size & 0x7) << 19;
13530 if (write_ubit)
13531 inst.instruction |= (uval != 0) << 24;
13532
13533 neon_dp_fixup (&inst);
13534 }
13535
13536 static void
13537 do_neon_shl_imm (void)
13538 {
13539 if (!inst.operands[2].isreg)
13540 {
13541 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13542 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13543 NEON_ENCODE (IMMED, inst);
13544 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13545 }
13546 else
13547 {
13548 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13549 struct neon_type_el et = neon_check_type (3, rs,
13550 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13551 unsigned int tmp;
13552
13553 /* VSHL/VQSHL 3-register variants have syntax such as:
13554 vshl.xx Dd, Dm, Dn
13555 whereas other 3-register operations encoded by neon_three_same have
13556 syntax like:
13557 vadd.xx Dd, Dn, Dm
13558 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13559 here. */
13560 tmp = inst.operands[2].reg;
13561 inst.operands[2].reg = inst.operands[1].reg;
13562 inst.operands[1].reg = tmp;
13563 NEON_ENCODE (INTEGER, inst);
13564 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13565 }
13566 }
13567
13568 static void
13569 do_neon_qshl_imm (void)
13570 {
13571 if (!inst.operands[2].isreg)
13572 {
13573 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13574 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13575
13576 NEON_ENCODE (IMMED, inst);
13577 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13578 inst.operands[2].imm);
13579 }
13580 else
13581 {
13582 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13583 struct neon_type_el et = neon_check_type (3, rs,
13584 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13585 unsigned int tmp;
13586
13587 /* See note in do_neon_shl_imm. */
13588 tmp = inst.operands[2].reg;
13589 inst.operands[2].reg = inst.operands[1].reg;
13590 inst.operands[1].reg = tmp;
13591 NEON_ENCODE (INTEGER, inst);
13592 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13593 }
13594 }
13595
13596 static void
13597 do_neon_rshl (void)
13598 {
13599 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13600 struct neon_type_el et = neon_check_type (3, rs,
13601 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13602 unsigned int tmp;
13603
13604 tmp = inst.operands[2].reg;
13605 inst.operands[2].reg = inst.operands[1].reg;
13606 inst.operands[1].reg = tmp;
13607 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13608 }
13609
13610 static int
13611 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13612 {
13613 /* Handle .I8 pseudo-instructions. */
13614 if (size == 8)
13615 {
13616 /* Unfortunately, this will make everything apart from zero out-of-range.
13617 FIXME is this the intended semantics? There doesn't seem much point in
13618 accepting .I8 if so. */
13619 immediate |= immediate << 8;
13620 size = 16;
13621 }
13622
13623 if (size >= 32)
13624 {
13625 if (immediate == (immediate & 0x000000ff))
13626 {
13627 *immbits = immediate;
13628 return 0x1;
13629 }
13630 else if (immediate == (immediate & 0x0000ff00))
13631 {
13632 *immbits = immediate >> 8;
13633 return 0x3;
13634 }
13635 else if (immediate == (immediate & 0x00ff0000))
13636 {
13637 *immbits = immediate >> 16;
13638 return 0x5;
13639 }
13640 else if (immediate == (immediate & 0xff000000))
13641 {
13642 *immbits = immediate >> 24;
13643 return 0x7;
13644 }
13645 if ((immediate & 0xffff) != (immediate >> 16))
13646 goto bad_immediate;
13647 immediate &= 0xffff;
13648 }
13649
13650 if (immediate == (immediate & 0x000000ff))
13651 {
13652 *immbits = immediate;
13653 return 0x9;
13654 }
13655 else if (immediate == (immediate & 0x0000ff00))
13656 {
13657 *immbits = immediate >> 8;
13658 return 0xb;
13659 }
13660
13661 bad_immediate:
13662 first_error (_("immediate value out of range"));
13663 return FAIL;
13664 }
13665
13666 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13667 A, B, C, D. */
13668
13669 static int
13670 neon_bits_same_in_bytes (unsigned imm)
13671 {
13672 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13673 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13674 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13675 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13676 }
13677
13678 /* For immediate of above form, return 0bABCD. */
13679
13680 static unsigned
13681 neon_squash_bits (unsigned imm)
13682 {
13683 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13684 | ((imm & 0x01000000) >> 21);
13685 }
13686
13687 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13688
13689 static unsigned
13690 neon_qfloat_bits (unsigned imm)
13691 {
13692 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13693 }
13694
13695 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13696 the instruction. *OP is passed as the initial value of the op field, and
13697 may be set to a different value depending on the constant (i.e.
13698 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13699 MVN). If the immediate looks like a repeated pattern then also
13700 try smaller element sizes. */
13701
13702 static int
13703 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13704 unsigned *immbits, int *op, int size,
13705 enum neon_el_type type)
13706 {
13707 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13708 float. */
13709 if (type == NT_float && !float_p)
13710 return FAIL;
13711
13712 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13713 {
13714 if (size != 32 || *op == 1)
13715 return FAIL;
13716 *immbits = neon_qfloat_bits (immlo);
13717 return 0xf;
13718 }
13719
13720 if (size == 64)
13721 {
13722 if (neon_bits_same_in_bytes (immhi)
13723 && neon_bits_same_in_bytes (immlo))
13724 {
13725 if (*op == 1)
13726 return FAIL;
13727 *immbits = (neon_squash_bits (immhi) << 4)
13728 | neon_squash_bits (immlo);
13729 *op = 1;
13730 return 0xe;
13731 }
13732
13733 if (immhi != immlo)
13734 return FAIL;
13735 }
13736
13737 if (size >= 32)
13738 {
13739 if (immlo == (immlo & 0x000000ff))
13740 {
13741 *immbits = immlo;
13742 return 0x0;
13743 }
13744 else if (immlo == (immlo & 0x0000ff00))
13745 {
13746 *immbits = immlo >> 8;
13747 return 0x2;
13748 }
13749 else if (immlo == (immlo & 0x00ff0000))
13750 {
13751 *immbits = immlo >> 16;
13752 return 0x4;
13753 }
13754 else if (immlo == (immlo & 0xff000000))
13755 {
13756 *immbits = immlo >> 24;
13757 return 0x6;
13758 }
13759 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13760 {
13761 *immbits = (immlo >> 8) & 0xff;
13762 return 0xc;
13763 }
13764 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13765 {
13766 *immbits = (immlo >> 16) & 0xff;
13767 return 0xd;
13768 }
13769
13770 if ((immlo & 0xffff) != (immlo >> 16))
13771 return FAIL;
13772 immlo &= 0xffff;
13773 }
13774
13775 if (size >= 16)
13776 {
13777 if (immlo == (immlo & 0x000000ff))
13778 {
13779 *immbits = immlo;
13780 return 0x8;
13781 }
13782 else if (immlo == (immlo & 0x0000ff00))
13783 {
13784 *immbits = immlo >> 8;
13785 return 0xa;
13786 }
13787
13788 if ((immlo & 0xff) != (immlo >> 8))
13789 return FAIL;
13790 immlo &= 0xff;
13791 }
13792
13793 if (immlo == (immlo & 0x000000ff))
13794 {
13795 /* Don't allow MVN with 8-bit immediate. */
13796 if (*op == 1)
13797 return FAIL;
13798 *immbits = immlo;
13799 return 0xe;
13800 }
13801
13802 return FAIL;
13803 }
13804
13805 /* Write immediate bits [7:0] to the following locations:
13806
13807 |28/24|23 19|18 16|15 4|3 0|
13808 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13809
13810 This function is used by VMOV/VMVN/VORR/VBIC. */
13811
13812 static void
13813 neon_write_immbits (unsigned immbits)
13814 {
13815 inst.instruction |= immbits & 0xf;
13816 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13817 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13818 }
13819
13820 /* Invert low-order SIZE bits of XHI:XLO. */
13821
13822 static void
13823 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13824 {
13825 unsigned immlo = xlo ? *xlo : 0;
13826 unsigned immhi = xhi ? *xhi : 0;
13827
13828 switch (size)
13829 {
13830 case 8:
13831 immlo = (~immlo) & 0xff;
13832 break;
13833
13834 case 16:
13835 immlo = (~immlo) & 0xffff;
13836 break;
13837
13838 case 64:
13839 immhi = (~immhi) & 0xffffffff;
13840 /* fall through. */
13841
13842 case 32:
13843 immlo = (~immlo) & 0xffffffff;
13844 break;
13845
13846 default:
13847 abort ();
13848 }
13849
13850 if (xlo)
13851 *xlo = immlo;
13852
13853 if (xhi)
13854 *xhi = immhi;
13855 }
13856
13857 static void
13858 do_neon_logic (void)
13859 {
13860 if (inst.operands[2].present && inst.operands[2].isreg)
13861 {
13862 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13863 neon_check_type (3, rs, N_IGNORE_TYPE);
13864 /* U bit and size field were set as part of the bitmask. */
13865 NEON_ENCODE (INTEGER, inst);
13866 neon_three_same (neon_quad (rs), 0, -1);
13867 }
13868 else
13869 {
13870 const int three_ops_form = (inst.operands[2].present
13871 && !inst.operands[2].isreg);
13872 const int immoperand = (three_ops_form ? 2 : 1);
13873 enum neon_shape rs = (three_ops_form
13874 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13875 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13876 struct neon_type_el et = neon_check_type (2, rs,
13877 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13878 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13879 unsigned immbits;
13880 int cmode;
13881
13882 if (et.type == NT_invtype)
13883 return;
13884
13885 if (three_ops_form)
13886 constraint (inst.operands[0].reg != inst.operands[1].reg,
13887 _("first and second operands shall be the same register"));
13888
13889 NEON_ENCODE (IMMED, inst);
13890
13891 immbits = inst.operands[immoperand].imm;
13892 if (et.size == 64)
13893 {
13894 /* .i64 is a pseudo-op, so the immediate must be a repeating
13895 pattern. */
13896 if (immbits != (inst.operands[immoperand].regisimm ?
13897 inst.operands[immoperand].reg : 0))
13898 {
13899 /* Set immbits to an invalid constant. */
13900 immbits = 0xdeadbeef;
13901 }
13902 }
13903
13904 switch (opcode)
13905 {
13906 case N_MNEM_vbic:
13907 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13908 break;
13909
13910 case N_MNEM_vorr:
13911 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13912 break;
13913
13914 case N_MNEM_vand:
13915 /* Pseudo-instruction for VBIC. */
13916 neon_invert_size (&immbits, 0, et.size);
13917 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13918 break;
13919
13920 case N_MNEM_vorn:
13921 /* Pseudo-instruction for VORR. */
13922 neon_invert_size (&immbits, 0, et.size);
13923 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13924 break;
13925
13926 default:
13927 abort ();
13928 }
13929
13930 if (cmode == FAIL)
13931 return;
13932
13933 inst.instruction |= neon_quad (rs) << 6;
13934 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13935 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13936 inst.instruction |= cmode << 8;
13937 neon_write_immbits (immbits);
13938
13939 neon_dp_fixup (&inst);
13940 }
13941 }
13942
13943 static void
13944 do_neon_bitfield (void)
13945 {
13946 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13947 neon_check_type (3, rs, N_IGNORE_TYPE);
13948 neon_three_same (neon_quad (rs), 0, -1);
13949 }
13950
13951 static void
13952 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13953 unsigned destbits)
13954 {
13955 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13956 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13957 types | N_KEY);
13958 if (et.type == NT_float)
13959 {
13960 NEON_ENCODE (FLOAT, inst);
13961 neon_three_same (neon_quad (rs), 0, -1);
13962 }
13963 else
13964 {
13965 NEON_ENCODE (INTEGER, inst);
13966 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13967 }
13968 }
13969
13970 static void
13971 do_neon_dyadic_if_su (void)
13972 {
13973 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13974 }
13975
13976 static void
13977 do_neon_dyadic_if_su_d (void)
13978 {
13979 /* This version only allow D registers, but that constraint is enforced during
13980 operand parsing so we don't need to do anything extra here. */
13981 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13982 }
13983
13984 static void
13985 do_neon_dyadic_if_i_d (void)
13986 {
13987 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13988 affected if we specify unsigned args. */
13989 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13990 }
13991
13992 enum vfp_or_neon_is_neon_bits
13993 {
13994 NEON_CHECK_CC = 1,
13995 NEON_CHECK_ARCH = 2,
13996 NEON_CHECK_ARCH8 = 4
13997 };
13998
13999 /* Call this function if an instruction which may have belonged to the VFP or
14000 Neon instruction sets, but turned out to be a Neon instruction (due to the
14001 operand types involved, etc.). We have to check and/or fix-up a couple of
14002 things:
14003
14004 - Make sure the user hasn't attempted to make a Neon instruction
14005 conditional.
14006 - Alter the value in the condition code field if necessary.
14007 - Make sure that the arch supports Neon instructions.
14008
14009 Which of these operations take place depends on bits from enum
14010 vfp_or_neon_is_neon_bits.
14011
14012 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
14013 current instruction's condition is COND_ALWAYS, the condition field is
14014 changed to inst.uncond_value. This is necessary because instructions shared
14015 between VFP and Neon may be conditional for the VFP variants only, and the
14016 unconditional Neon version must have, e.g., 0xF in the condition field. */
14017
14018 static int
14019 vfp_or_neon_is_neon (unsigned check)
14020 {
14021 /* Conditions are always legal in Thumb mode (IT blocks). */
14022 if (!thumb_mode && (check & NEON_CHECK_CC))
14023 {
14024 if (inst.cond != COND_ALWAYS)
14025 {
14026 first_error (_(BAD_COND));
14027 return FAIL;
14028 }
14029 if (inst.uncond_value != -1)
14030 inst.instruction |= inst.uncond_value << 28;
14031 }
14032
14033 if ((check & NEON_CHECK_ARCH)
14034 && !mark_feature_used (&fpu_neon_ext_v1))
14035 {
14036 first_error (_(BAD_FPU));
14037 return FAIL;
14038 }
14039
14040 if ((check & NEON_CHECK_ARCH8)
14041 && !mark_feature_used (&fpu_neon_ext_armv8))
14042 {
14043 first_error (_(BAD_FPU));
14044 return FAIL;
14045 }
14046
14047 return SUCCESS;
14048 }
14049
14050 static void
14051 do_neon_addsub_if_i (void)
14052 {
14053 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
14054 return;
14055
14056 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14057 return;
14058
14059 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14060 affected if we specify unsigned args. */
14061 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
14062 }
14063
14064 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
14065 result to be:
14066 V<op> A,B (A is operand 0, B is operand 2)
14067 to mean:
14068 V<op> A,B,A
14069 not:
14070 V<op> A,B,B
14071 so handle that case specially. */
14072
14073 static void
14074 neon_exchange_operands (void)
14075 {
14076 void *scratch = alloca (sizeof (inst.operands[0]));
14077 if (inst.operands[1].present)
14078 {
14079 /* Swap operands[1] and operands[2]. */
14080 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14081 inst.operands[1] = inst.operands[2];
14082 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14083 }
14084 else
14085 {
14086 inst.operands[1] = inst.operands[2];
14087 inst.operands[2] = inst.operands[0];
14088 }
14089 }
14090
14091 static void
14092 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14093 {
14094 if (inst.operands[2].isreg)
14095 {
14096 if (invert)
14097 neon_exchange_operands ();
14098 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14099 }
14100 else
14101 {
14102 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14103 struct neon_type_el et = neon_check_type (2, rs,
14104 N_EQK | N_SIZ, immtypes | N_KEY);
14105
14106 NEON_ENCODE (IMMED, inst);
14107 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14108 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14109 inst.instruction |= LOW4 (inst.operands[1].reg);
14110 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14111 inst.instruction |= neon_quad (rs) << 6;
14112 inst.instruction |= (et.type == NT_float) << 10;
14113 inst.instruction |= neon_logbits (et.size) << 18;
14114
14115 neon_dp_fixup (&inst);
14116 }
14117 }
14118
14119 static void
14120 do_neon_cmp (void)
14121 {
14122 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14123 }
14124
14125 static void
14126 do_neon_cmp_inv (void)
14127 {
14128 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14129 }
14130
14131 static void
14132 do_neon_ceq (void)
14133 {
14134 neon_compare (N_IF_32, N_IF_32, FALSE);
14135 }
14136
14137 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14138 scalars, which are encoded in 5 bits, M : Rm.
14139 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14140 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14141 index in M. */
14142
14143 static unsigned
14144 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14145 {
14146 unsigned regno = NEON_SCALAR_REG (scalar);
14147 unsigned elno = NEON_SCALAR_INDEX (scalar);
14148
14149 switch (elsize)
14150 {
14151 case 16:
14152 if (regno > 7 || elno > 3)
14153 goto bad_scalar;
14154 return regno | (elno << 3);
14155
14156 case 32:
14157 if (regno > 15 || elno > 1)
14158 goto bad_scalar;
14159 return regno | (elno << 4);
14160
14161 default:
14162 bad_scalar:
14163 first_error (_("scalar out of range for multiply instruction"));
14164 }
14165
14166 return 0;
14167 }
14168
14169 /* Encode multiply / multiply-accumulate scalar instructions. */
14170
14171 static void
14172 neon_mul_mac (struct neon_type_el et, int ubit)
14173 {
14174 unsigned scalar;
14175
14176 /* Give a more helpful error message if we have an invalid type. */
14177 if (et.type == NT_invtype)
14178 return;
14179
14180 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14181 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14182 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14183 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14184 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14185 inst.instruction |= LOW4 (scalar);
14186 inst.instruction |= HI1 (scalar) << 5;
14187 inst.instruction |= (et.type == NT_float) << 8;
14188 inst.instruction |= neon_logbits (et.size) << 20;
14189 inst.instruction |= (ubit != 0) << 24;
14190
14191 neon_dp_fixup (&inst);
14192 }
14193
14194 static void
14195 do_neon_mac_maybe_scalar (void)
14196 {
14197 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14198 return;
14199
14200 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14201 return;
14202
14203 if (inst.operands[2].isscalar)
14204 {
14205 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14206 struct neon_type_el et = neon_check_type (3, rs,
14207 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14208 NEON_ENCODE (SCALAR, inst);
14209 neon_mul_mac (et, neon_quad (rs));
14210 }
14211 else
14212 {
14213 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14214 affected if we specify unsigned args. */
14215 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14216 }
14217 }
14218
14219 static void
14220 do_neon_fmac (void)
14221 {
14222 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14223 return;
14224
14225 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14226 return;
14227
14228 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14229 }
14230
14231 static void
14232 do_neon_tst (void)
14233 {
14234 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14235 struct neon_type_el et = neon_check_type (3, rs,
14236 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14237 neon_three_same (neon_quad (rs), 0, et.size);
14238 }
14239
14240 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14241 same types as the MAC equivalents. The polynomial type for this instruction
14242 is encoded the same as the integer type. */
14243
14244 static void
14245 do_neon_mul (void)
14246 {
14247 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14248 return;
14249
14250 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14251 return;
14252
14253 if (inst.operands[2].isscalar)
14254 do_neon_mac_maybe_scalar ();
14255 else
14256 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14257 }
14258
14259 static void
14260 do_neon_qdmulh (void)
14261 {
14262 if (inst.operands[2].isscalar)
14263 {
14264 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14265 struct neon_type_el et = neon_check_type (3, rs,
14266 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14267 NEON_ENCODE (SCALAR, inst);
14268 neon_mul_mac (et, neon_quad (rs));
14269 }
14270 else
14271 {
14272 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14273 struct neon_type_el et = neon_check_type (3, rs,
14274 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14275 NEON_ENCODE (INTEGER, inst);
14276 /* The U bit (rounding) comes from bit mask. */
14277 neon_three_same (neon_quad (rs), 0, et.size);
14278 }
14279 }
14280
14281 static void
14282 do_neon_fcmp_absolute (void)
14283 {
14284 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14285 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14286 /* Size field comes from bit mask. */
14287 neon_three_same (neon_quad (rs), 1, -1);
14288 }
14289
14290 static void
14291 do_neon_fcmp_absolute_inv (void)
14292 {
14293 neon_exchange_operands ();
14294 do_neon_fcmp_absolute ();
14295 }
14296
14297 static void
14298 do_neon_step (void)
14299 {
14300 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14301 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14302 neon_three_same (neon_quad (rs), 0, -1);
14303 }
14304
14305 static void
14306 do_neon_abs_neg (void)
14307 {
14308 enum neon_shape rs;
14309 struct neon_type_el et;
14310
14311 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14312 return;
14313
14314 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14315 return;
14316
14317 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14318 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14319
14320 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14321 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14322 inst.instruction |= LOW4 (inst.operands[1].reg);
14323 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14324 inst.instruction |= neon_quad (rs) << 6;
14325 inst.instruction |= (et.type == NT_float) << 10;
14326 inst.instruction |= neon_logbits (et.size) << 18;
14327
14328 neon_dp_fixup (&inst);
14329 }
14330
14331 static void
14332 do_neon_sli (void)
14333 {
14334 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14335 struct neon_type_el et = neon_check_type (2, rs,
14336 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14337 int imm = inst.operands[2].imm;
14338 constraint (imm < 0 || (unsigned)imm >= et.size,
14339 _("immediate out of range for insert"));
14340 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14341 }
14342
14343 static void
14344 do_neon_sri (void)
14345 {
14346 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14347 struct neon_type_el et = neon_check_type (2, rs,
14348 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14349 int imm = inst.operands[2].imm;
14350 constraint (imm < 1 || (unsigned)imm > et.size,
14351 _("immediate out of range for insert"));
14352 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14353 }
14354
14355 static void
14356 do_neon_qshlu_imm (void)
14357 {
14358 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14359 struct neon_type_el et = neon_check_type (2, rs,
14360 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14361 int imm = inst.operands[2].imm;
14362 constraint (imm < 0 || (unsigned)imm >= et.size,
14363 _("immediate out of range for shift"));
14364 /* Only encodes the 'U present' variant of the instruction.
14365 In this case, signed types have OP (bit 8) set to 0.
14366 Unsigned types have OP set to 1. */
14367 inst.instruction |= (et.type == NT_unsigned) << 8;
14368 /* The rest of the bits are the same as other immediate shifts. */
14369 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14370 }
14371
14372 static void
14373 do_neon_qmovn (void)
14374 {
14375 struct neon_type_el et = neon_check_type (2, NS_DQ,
14376 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14377 /* Saturating move where operands can be signed or unsigned, and the
14378 destination has the same signedness. */
14379 NEON_ENCODE (INTEGER, inst);
14380 if (et.type == NT_unsigned)
14381 inst.instruction |= 0xc0;
14382 else
14383 inst.instruction |= 0x80;
14384 neon_two_same (0, 1, et.size / 2);
14385 }
14386
14387 static void
14388 do_neon_qmovun (void)
14389 {
14390 struct neon_type_el et = neon_check_type (2, NS_DQ,
14391 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14392 /* Saturating move with unsigned results. Operands must be signed. */
14393 NEON_ENCODE (INTEGER, inst);
14394 neon_two_same (0, 1, et.size / 2);
14395 }
14396
14397 static void
14398 do_neon_rshift_sat_narrow (void)
14399 {
14400 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14401 or unsigned. If operands are unsigned, results must also be unsigned. */
14402 struct neon_type_el et = neon_check_type (2, NS_DQI,
14403 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14404 int imm = inst.operands[2].imm;
14405 /* This gets the bounds check, size encoding and immediate bits calculation
14406 right. */
14407 et.size /= 2;
14408
14409 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14410 VQMOVN.I<size> <Dd>, <Qm>. */
14411 if (imm == 0)
14412 {
14413 inst.operands[2].present = 0;
14414 inst.instruction = N_MNEM_vqmovn;
14415 do_neon_qmovn ();
14416 return;
14417 }
14418
14419 constraint (imm < 1 || (unsigned)imm > et.size,
14420 _("immediate out of range"));
14421 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14422 }
14423
14424 static void
14425 do_neon_rshift_sat_narrow_u (void)
14426 {
14427 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14428 or unsigned. If operands are unsigned, results must also be unsigned. */
14429 struct neon_type_el et = neon_check_type (2, NS_DQI,
14430 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14431 int imm = inst.operands[2].imm;
14432 /* This gets the bounds check, size encoding and immediate bits calculation
14433 right. */
14434 et.size /= 2;
14435
14436 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14437 VQMOVUN.I<size> <Dd>, <Qm>. */
14438 if (imm == 0)
14439 {
14440 inst.operands[2].present = 0;
14441 inst.instruction = N_MNEM_vqmovun;
14442 do_neon_qmovun ();
14443 return;
14444 }
14445
14446 constraint (imm < 1 || (unsigned)imm > et.size,
14447 _("immediate out of range"));
14448 /* FIXME: The manual is kind of unclear about what value U should have in
14449 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14450 must be 1. */
14451 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14452 }
14453
14454 static void
14455 do_neon_movn (void)
14456 {
14457 struct neon_type_el et = neon_check_type (2, NS_DQ,
14458 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14459 NEON_ENCODE (INTEGER, inst);
14460 neon_two_same (0, 1, et.size / 2);
14461 }
14462
14463 static void
14464 do_neon_rshift_narrow (void)
14465 {
14466 struct neon_type_el et = neon_check_type (2, NS_DQI,
14467 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14468 int imm = inst.operands[2].imm;
14469 /* This gets the bounds check, size encoding and immediate bits calculation
14470 right. */
14471 et.size /= 2;
14472
14473 /* If immediate is zero then we are a pseudo-instruction for
14474 VMOVN.I<size> <Dd>, <Qm> */
14475 if (imm == 0)
14476 {
14477 inst.operands[2].present = 0;
14478 inst.instruction = N_MNEM_vmovn;
14479 do_neon_movn ();
14480 return;
14481 }
14482
14483 constraint (imm < 1 || (unsigned)imm > et.size,
14484 _("immediate out of range for narrowing operation"));
14485 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14486 }
14487
14488 static void
14489 do_neon_shll (void)
14490 {
14491 /* FIXME: Type checking when lengthening. */
14492 struct neon_type_el et = neon_check_type (2, NS_QDI,
14493 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14494 unsigned imm = inst.operands[2].imm;
14495
14496 if (imm == et.size)
14497 {
14498 /* Maximum shift variant. */
14499 NEON_ENCODE (INTEGER, inst);
14500 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14501 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14502 inst.instruction |= LOW4 (inst.operands[1].reg);
14503 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14504 inst.instruction |= neon_logbits (et.size) << 18;
14505
14506 neon_dp_fixup (&inst);
14507 }
14508 else
14509 {
14510 /* A more-specific type check for non-max versions. */
14511 et = neon_check_type (2, NS_QDI,
14512 N_EQK | N_DBL, N_SU_32 | N_KEY);
14513 NEON_ENCODE (IMMED, inst);
14514 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14515 }
14516 }
14517
14518 /* Check the various types for the VCVT instruction, and return which version
14519 the current instruction is. */
14520
14521 #define CVT_FLAVOUR_VAR \
14522 CVT_VAR (s32_f32, N_S32, N_F32, whole_reg, "ftosls", "ftosis", "ftosizs") \
14523 CVT_VAR (u32_f32, N_U32, N_F32, whole_reg, "ftouls", "ftouis", "ftouizs") \
14524 CVT_VAR (f32_s32, N_F32, N_S32, whole_reg, "fsltos", "fsitos", NULL) \
14525 CVT_VAR (f32_u32, N_F32, N_U32, whole_reg, "fultos", "fuitos", NULL) \
14526 /* Half-precision conversions. */ \
14527 CVT_VAR (f32_f16, N_F32, N_F16, whole_reg, NULL, NULL, NULL) \
14528 CVT_VAR (f16_f32, N_F16, N_F32, whole_reg, NULL, NULL, NULL) \
14529 /* VFP instructions. */ \
14530 CVT_VAR (f32_f64, N_F32, N_F64, N_VFP, NULL, "fcvtsd", NULL) \
14531 CVT_VAR (f64_f32, N_F64, N_F32, N_VFP, NULL, "fcvtds", NULL) \
14532 CVT_VAR (s32_f64, N_S32, N_F64 | key, N_VFP, "ftosld", "ftosid", "ftosizd") \
14533 CVT_VAR (u32_f64, N_U32, N_F64 | key, N_VFP, "ftould", "ftouid", "ftouizd") \
14534 CVT_VAR (f64_s32, N_F64 | key, N_S32, N_VFP, "fsltod", "fsitod", NULL) \
14535 CVT_VAR (f64_u32, N_F64 | key, N_U32, N_VFP, "fultod", "fuitod", NULL) \
14536 /* VFP instructions with bitshift. */ \
14537 CVT_VAR (f32_s16, N_F32 | key, N_S16, N_VFP, "fshtos", NULL, NULL) \
14538 CVT_VAR (f32_u16, N_F32 | key, N_U16, N_VFP, "fuhtos", NULL, NULL) \
14539 CVT_VAR (f64_s16, N_F64 | key, N_S16, N_VFP, "fshtod", NULL, NULL) \
14540 CVT_VAR (f64_u16, N_F64 | key, N_U16, N_VFP, "fuhtod", NULL, NULL) \
14541 CVT_VAR (s16_f32, N_S16, N_F32 | key, N_VFP, "ftoshs", NULL, NULL) \
14542 CVT_VAR (u16_f32, N_U16, N_F32 | key, N_VFP, "ftouhs", NULL, NULL) \
14543 CVT_VAR (s16_f64, N_S16, N_F64 | key, N_VFP, "ftoshd", NULL, NULL) \
14544 CVT_VAR (u16_f64, N_U16, N_F64 | key, N_VFP, "ftouhd", NULL, NULL)
14545
14546 #define CVT_VAR(C, X, Y, R, BSN, CN, ZN) \
14547 neon_cvt_flavour_##C,
14548
14549 /* The different types of conversions we can do. */
14550 enum neon_cvt_flavour
14551 {
14552 CVT_FLAVOUR_VAR
14553 neon_cvt_flavour_invalid,
14554 neon_cvt_flavour_first_fp = neon_cvt_flavour_f32_f64
14555 };
14556
14557 #undef CVT_VAR
14558
14559 static enum neon_cvt_flavour
14560 get_neon_cvt_flavour (enum neon_shape rs)
14561 {
14562 #define CVT_VAR(C,X,Y,R,BSN,CN,ZN) \
14563 et = neon_check_type (2, rs, (R) | (X), (R) | (Y)); \
14564 if (et.type != NT_invtype) \
14565 { \
14566 inst.error = NULL; \
14567 return (neon_cvt_flavour_##C); \
14568 }
14569
14570 struct neon_type_el et;
14571 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14572 || rs == NS_FF) ? N_VFP : 0;
14573 /* The instruction versions which take an immediate take one register
14574 argument, which is extended to the width of the full register. Thus the
14575 "source" and "destination" registers must have the same width. Hack that
14576 here by making the size equal to the key (wider, in this case) operand. */
14577 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14578
14579 CVT_FLAVOUR_VAR;
14580
14581 return neon_cvt_flavour_invalid;
14582 #undef CVT_VAR
14583 }
14584
14585 enum neon_cvt_mode
14586 {
14587 neon_cvt_mode_a,
14588 neon_cvt_mode_n,
14589 neon_cvt_mode_p,
14590 neon_cvt_mode_m,
14591 neon_cvt_mode_z,
14592 neon_cvt_mode_x,
14593 neon_cvt_mode_r
14594 };
14595
14596 /* Neon-syntax VFP conversions. */
14597
14598 static void
14599 do_vfp_nsyn_cvt (enum neon_shape rs, enum neon_cvt_flavour flavour)
14600 {
14601 const char *opname = 0;
14602
14603 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14604 {
14605 /* Conversions with immediate bitshift. */
14606 const char *enc[] =
14607 {
14608 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) BSN,
14609 CVT_FLAVOUR_VAR
14610 NULL
14611 #undef CVT_VAR
14612 };
14613
14614 if (flavour < (int) ARRAY_SIZE (enc))
14615 {
14616 opname = enc[flavour];
14617 constraint (inst.operands[0].reg != inst.operands[1].reg,
14618 _("operands 0 and 1 must be the same register"));
14619 inst.operands[1] = inst.operands[2];
14620 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14621 }
14622 }
14623 else
14624 {
14625 /* Conversions without bitshift. */
14626 const char *enc[] =
14627 {
14628 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) CN,
14629 CVT_FLAVOUR_VAR
14630 NULL
14631 #undef CVT_VAR
14632 };
14633
14634 if (flavour < (int) ARRAY_SIZE (enc))
14635 opname = enc[flavour];
14636 }
14637
14638 if (opname)
14639 do_vfp_nsyn_opcode (opname);
14640 }
14641
14642 static void
14643 do_vfp_nsyn_cvtz (void)
14644 {
14645 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14646 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14647 const char *enc[] =
14648 {
14649 #define CVT_VAR(C,A,B,R,BSN,CN,ZN) ZN,
14650 CVT_FLAVOUR_VAR
14651 NULL
14652 #undef CVT_VAR
14653 };
14654
14655 if (flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14656 do_vfp_nsyn_opcode (enc[flavour]);
14657 }
14658
14659 static void
14660 do_vfp_nsyn_cvt_fpv8 (enum neon_cvt_flavour flavour,
14661 enum neon_cvt_mode mode)
14662 {
14663 int sz, op;
14664 int rm;
14665
14666 set_it_insn_type (OUTSIDE_IT_INSN);
14667
14668 switch (flavour)
14669 {
14670 case neon_cvt_flavour_s32_f64:
14671 sz = 1;
14672 op = 0;
14673 break;
14674 case neon_cvt_flavour_s32_f32:
14675 sz = 0;
14676 op = 1;
14677 break;
14678 case neon_cvt_flavour_u32_f64:
14679 sz = 1;
14680 op = 0;
14681 break;
14682 case neon_cvt_flavour_u32_f32:
14683 sz = 0;
14684 op = 0;
14685 break;
14686 default:
14687 first_error (_("invalid instruction shape"));
14688 return;
14689 }
14690
14691 switch (mode)
14692 {
14693 case neon_cvt_mode_a: rm = 0; break;
14694 case neon_cvt_mode_n: rm = 1; break;
14695 case neon_cvt_mode_p: rm = 2; break;
14696 case neon_cvt_mode_m: rm = 3; break;
14697 default: first_error (_("invalid rounding mode")); return;
14698 }
14699
14700 NEON_ENCODE (FPV8, inst);
14701 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14702 encode_arm_vfp_reg (inst.operands[1].reg, sz == 1 ? VFP_REG_Dm : VFP_REG_Sm);
14703 inst.instruction |= sz << 8;
14704 inst.instruction |= op << 7;
14705 inst.instruction |= rm << 16;
14706 inst.instruction |= 0xf0000000;
14707 inst.is_neon = TRUE;
14708 }
14709
14710 static void
14711 do_neon_cvt_1 (enum neon_cvt_mode mode)
14712 {
14713 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14714 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14715 enum neon_cvt_flavour flavour = get_neon_cvt_flavour (rs);
14716
14717 /* PR11109: Handle round-to-zero for VCVT conversions. */
14718 if (mode == neon_cvt_mode_z
14719 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14720 && (flavour == neon_cvt_flavour_s32_f32
14721 || flavour == neon_cvt_flavour_u32_f32
14722 || flavour == neon_cvt_flavour_s32_f64
14723 || flavour == neon_cvt_flavour_u32_f64)
14724 && (rs == NS_FD || rs == NS_FF))
14725 {
14726 do_vfp_nsyn_cvtz ();
14727 return;
14728 }
14729
14730 /* VFP rather than Neon conversions. */
14731 if (flavour >= neon_cvt_flavour_first_fp)
14732 {
14733 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14734 do_vfp_nsyn_cvt (rs, flavour);
14735 else
14736 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14737
14738 return;
14739 }
14740
14741 switch (rs)
14742 {
14743 case NS_DDI:
14744 case NS_QQI:
14745 {
14746 unsigned immbits;
14747 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14748
14749 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14750 return;
14751
14752 /* Fixed-point conversion with #0 immediate is encoded as an
14753 integer conversion. */
14754 if (inst.operands[2].present && inst.operands[2].imm == 0)
14755 goto int_encode;
14756 immbits = 32 - inst.operands[2].imm;
14757 NEON_ENCODE (IMMED, inst);
14758 if (flavour != neon_cvt_flavour_invalid)
14759 inst.instruction |= enctab[flavour];
14760 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14761 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14762 inst.instruction |= LOW4 (inst.operands[1].reg);
14763 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14764 inst.instruction |= neon_quad (rs) << 6;
14765 inst.instruction |= 1 << 21;
14766 inst.instruction |= immbits << 16;
14767
14768 neon_dp_fixup (&inst);
14769 }
14770 break;
14771
14772 case NS_DD:
14773 case NS_QQ:
14774 if (mode != neon_cvt_mode_x && mode != neon_cvt_mode_z)
14775 {
14776 NEON_ENCODE (FLOAT, inst);
14777 set_it_insn_type (OUTSIDE_IT_INSN);
14778
14779 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
14780 return;
14781
14782 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14783 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14784 inst.instruction |= LOW4 (inst.operands[1].reg);
14785 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14786 inst.instruction |= neon_quad (rs) << 6;
14787 inst.instruction |= (flavour == neon_cvt_flavour_u32_f32) << 7;
14788 inst.instruction |= mode << 8;
14789 if (thumb_mode)
14790 inst.instruction |= 0xfc000000;
14791 else
14792 inst.instruction |= 0xf0000000;
14793 }
14794 else
14795 {
14796 int_encode:
14797 {
14798 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14799
14800 NEON_ENCODE (INTEGER, inst);
14801
14802 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14803 return;
14804
14805 if (flavour != neon_cvt_flavour_invalid)
14806 inst.instruction |= enctab[flavour];
14807
14808 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14809 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14810 inst.instruction |= LOW4 (inst.operands[1].reg);
14811 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14812 inst.instruction |= neon_quad (rs) << 6;
14813 inst.instruction |= 2 << 18;
14814
14815 neon_dp_fixup (&inst);
14816 }
14817 }
14818 break;
14819
14820 /* Half-precision conversions for Advanced SIMD -- neon. */
14821 case NS_QD:
14822 case NS_DQ:
14823
14824 if ((rs == NS_DQ)
14825 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14826 {
14827 as_bad (_("operand size must match register width"));
14828 break;
14829 }
14830
14831 if ((rs == NS_QD)
14832 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14833 {
14834 as_bad (_("operand size must match register width"));
14835 break;
14836 }
14837
14838 if (rs == NS_DQ)
14839 inst.instruction = 0x3b60600;
14840 else
14841 inst.instruction = 0x3b60700;
14842
14843 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14844 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14845 inst.instruction |= LOW4 (inst.operands[1].reg);
14846 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14847 neon_dp_fixup (&inst);
14848 break;
14849
14850 default:
14851 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14852 if (mode == neon_cvt_mode_x || mode == neon_cvt_mode_z)
14853 do_vfp_nsyn_cvt (rs, flavour);
14854 else
14855 do_vfp_nsyn_cvt_fpv8 (flavour, mode);
14856 }
14857 }
14858
14859 static void
14860 do_neon_cvtr (void)
14861 {
14862 do_neon_cvt_1 (neon_cvt_mode_x);
14863 }
14864
14865 static void
14866 do_neon_cvt (void)
14867 {
14868 do_neon_cvt_1 (neon_cvt_mode_z);
14869 }
14870
14871 static void
14872 do_neon_cvta (void)
14873 {
14874 do_neon_cvt_1 (neon_cvt_mode_a);
14875 }
14876
14877 static void
14878 do_neon_cvtn (void)
14879 {
14880 do_neon_cvt_1 (neon_cvt_mode_n);
14881 }
14882
14883 static void
14884 do_neon_cvtp (void)
14885 {
14886 do_neon_cvt_1 (neon_cvt_mode_p);
14887 }
14888
14889 static void
14890 do_neon_cvtm (void)
14891 {
14892 do_neon_cvt_1 (neon_cvt_mode_m);
14893 }
14894
14895 static void
14896 do_neon_cvttb_2 (bfd_boolean t, bfd_boolean to, bfd_boolean is_double)
14897 {
14898 if (is_double)
14899 mark_feature_used (&fpu_vfp_ext_armv8);
14900
14901 encode_arm_vfp_reg (inst.operands[0].reg,
14902 (is_double && !to) ? VFP_REG_Dd : VFP_REG_Sd);
14903 encode_arm_vfp_reg (inst.operands[1].reg,
14904 (is_double && to) ? VFP_REG_Dm : VFP_REG_Sm);
14905 inst.instruction |= to ? 0x10000 : 0;
14906 inst.instruction |= t ? 0x80 : 0;
14907 inst.instruction |= is_double ? 0x100 : 0;
14908 do_vfp_cond_or_thumb ();
14909 }
14910
14911 static void
14912 do_neon_cvttb_1 (bfd_boolean t)
14913 {
14914 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_DF, NS_NULL);
14915
14916 if (rs == NS_NULL)
14917 return;
14918 else if (neon_check_type (2, rs, N_F16, N_F32 | N_VFP).type != NT_invtype)
14919 {
14920 inst.error = NULL;
14921 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/FALSE);
14922 }
14923 else if (neon_check_type (2, rs, N_F32 | N_VFP, N_F16).type != NT_invtype)
14924 {
14925 inst.error = NULL;
14926 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/FALSE);
14927 }
14928 else if (neon_check_type (2, rs, N_F16, N_F64 | N_VFP).type != NT_invtype)
14929 {
14930 inst.error = NULL;
14931 do_neon_cvttb_2 (t, /*to=*/TRUE, /*is_double=*/TRUE);
14932 }
14933 else if (neon_check_type (2, rs, N_F64 | N_VFP, N_F16).type != NT_invtype)
14934 {
14935 inst.error = NULL;
14936 do_neon_cvttb_2 (t, /*to=*/FALSE, /*is_double=*/TRUE);
14937 }
14938 else
14939 return;
14940 }
14941
14942 static void
14943 do_neon_cvtb (void)
14944 {
14945 do_neon_cvttb_1 (FALSE);
14946 }
14947
14948
14949 static void
14950 do_neon_cvtt (void)
14951 {
14952 do_neon_cvttb_1 (TRUE);
14953 }
14954
14955 static void
14956 neon_move_immediate (void)
14957 {
14958 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14959 struct neon_type_el et = neon_check_type (2, rs,
14960 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14961 unsigned immlo, immhi = 0, immbits;
14962 int op, cmode, float_p;
14963
14964 constraint (et.type == NT_invtype,
14965 _("operand size must be specified for immediate VMOV"));
14966
14967 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14968 op = (inst.instruction & (1 << 5)) != 0;
14969
14970 immlo = inst.operands[1].imm;
14971 if (inst.operands[1].regisimm)
14972 immhi = inst.operands[1].reg;
14973
14974 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14975 _("immediate has bits set outside the operand size"));
14976
14977 float_p = inst.operands[1].immisfloat;
14978
14979 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14980 et.size, et.type)) == FAIL)
14981 {
14982 /* Invert relevant bits only. */
14983 neon_invert_size (&immlo, &immhi, et.size);
14984 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14985 with one or the other; those cases are caught by
14986 neon_cmode_for_move_imm. */
14987 op = !op;
14988 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14989 &op, et.size, et.type)) == FAIL)
14990 {
14991 first_error (_("immediate out of range"));
14992 return;
14993 }
14994 }
14995
14996 inst.instruction &= ~(1 << 5);
14997 inst.instruction |= op << 5;
14998
14999 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15000 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15001 inst.instruction |= neon_quad (rs) << 6;
15002 inst.instruction |= cmode << 8;
15003
15004 neon_write_immbits (immbits);
15005 }
15006
15007 static void
15008 do_neon_mvn (void)
15009 {
15010 if (inst.operands[1].isreg)
15011 {
15012 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15013
15014 NEON_ENCODE (INTEGER, inst);
15015 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15016 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15017 inst.instruction |= LOW4 (inst.operands[1].reg);
15018 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15019 inst.instruction |= neon_quad (rs) << 6;
15020 }
15021 else
15022 {
15023 NEON_ENCODE (IMMED, inst);
15024 neon_move_immediate ();
15025 }
15026
15027 neon_dp_fixup (&inst);
15028 }
15029
15030 /* Encode instructions of form:
15031
15032 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
15033 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
15034
15035 static void
15036 neon_mixed_length (struct neon_type_el et, unsigned size)
15037 {
15038 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15039 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15040 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15041 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15042 inst.instruction |= LOW4 (inst.operands[2].reg);
15043 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15044 inst.instruction |= (et.type == NT_unsigned) << 24;
15045 inst.instruction |= neon_logbits (size) << 20;
15046
15047 neon_dp_fixup (&inst);
15048 }
15049
15050 static void
15051 do_neon_dyadic_long (void)
15052 {
15053 /* FIXME: Type checking for lengthening op. */
15054 struct neon_type_el et = neon_check_type (3, NS_QDD,
15055 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
15056 neon_mixed_length (et, et.size);
15057 }
15058
15059 static void
15060 do_neon_abal (void)
15061 {
15062 struct neon_type_el et = neon_check_type (3, NS_QDD,
15063 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
15064 neon_mixed_length (et, et.size);
15065 }
15066
15067 static void
15068 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
15069 {
15070 if (inst.operands[2].isscalar)
15071 {
15072 struct neon_type_el et = neon_check_type (3, NS_QDS,
15073 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
15074 NEON_ENCODE (SCALAR, inst);
15075 neon_mul_mac (et, et.type == NT_unsigned);
15076 }
15077 else
15078 {
15079 struct neon_type_el et = neon_check_type (3, NS_QDD,
15080 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
15081 NEON_ENCODE (INTEGER, inst);
15082 neon_mixed_length (et, et.size);
15083 }
15084 }
15085
15086 static void
15087 do_neon_mac_maybe_scalar_long (void)
15088 {
15089 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
15090 }
15091
15092 static void
15093 do_neon_dyadic_wide (void)
15094 {
15095 struct neon_type_el et = neon_check_type (3, NS_QQD,
15096 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
15097 neon_mixed_length (et, et.size);
15098 }
15099
15100 static void
15101 do_neon_dyadic_narrow (void)
15102 {
15103 struct neon_type_el et = neon_check_type (3, NS_QDD,
15104 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
15105 /* Operand sign is unimportant, and the U bit is part of the opcode,
15106 so force the operand type to integer. */
15107 et.type = NT_integer;
15108 neon_mixed_length (et, et.size / 2);
15109 }
15110
15111 static void
15112 do_neon_mul_sat_scalar_long (void)
15113 {
15114 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
15115 }
15116
15117 static void
15118 do_neon_vmull (void)
15119 {
15120 if (inst.operands[2].isscalar)
15121 do_neon_mac_maybe_scalar_long ();
15122 else
15123 {
15124 struct neon_type_el et = neon_check_type (3, NS_QDD,
15125 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_P64 | N_KEY);
15126
15127 if (et.type == NT_poly)
15128 NEON_ENCODE (POLY, inst);
15129 else
15130 NEON_ENCODE (INTEGER, inst);
15131
15132 /* For polynomial encoding the U bit must be zero, and the size must
15133 be 8 (encoded as 0b00) or, on ARMv8 or later 64 (encoded, non
15134 obviously, as 0b10). */
15135 if (et.size == 64)
15136 {
15137 /* Check we're on the correct architecture. */
15138 if (!mark_feature_used (&fpu_crypto_ext_armv8))
15139 inst.error =
15140 _("Instruction form not available on this architecture.");
15141
15142 et.size = 32;
15143 }
15144
15145 neon_mixed_length (et, et.size);
15146 }
15147 }
15148
15149 static void
15150 do_neon_ext (void)
15151 {
15152 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
15153 struct neon_type_el et = neon_check_type (3, rs,
15154 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
15155 unsigned imm = (inst.operands[3].imm * et.size) / 8;
15156
15157 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
15158 _("shift out of range"));
15159 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15160 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15161 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15162 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15163 inst.instruction |= LOW4 (inst.operands[2].reg);
15164 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15165 inst.instruction |= neon_quad (rs) << 6;
15166 inst.instruction |= imm << 8;
15167
15168 neon_dp_fixup (&inst);
15169 }
15170
15171 static void
15172 do_neon_rev (void)
15173 {
15174 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15175 struct neon_type_el et = neon_check_type (2, rs,
15176 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15177 unsigned op = (inst.instruction >> 7) & 3;
15178 /* N (width of reversed regions) is encoded as part of the bitmask. We
15179 extract it here to check the elements to be reversed are smaller.
15180 Otherwise we'd get a reserved instruction. */
15181 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
15182 gas_assert (elsize != 0);
15183 constraint (et.size >= elsize,
15184 _("elements must be smaller than reversal region"));
15185 neon_two_same (neon_quad (rs), 1, et.size);
15186 }
15187
15188 static void
15189 do_neon_dup (void)
15190 {
15191 if (inst.operands[1].isscalar)
15192 {
15193 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
15194 struct neon_type_el et = neon_check_type (2, rs,
15195 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15196 unsigned sizebits = et.size >> 3;
15197 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
15198 int logsize = neon_logbits (et.size);
15199 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
15200
15201 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
15202 return;
15203
15204 NEON_ENCODE (SCALAR, inst);
15205 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15206 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15207 inst.instruction |= LOW4 (dm);
15208 inst.instruction |= HI1 (dm) << 5;
15209 inst.instruction |= neon_quad (rs) << 6;
15210 inst.instruction |= x << 17;
15211 inst.instruction |= sizebits << 16;
15212
15213 neon_dp_fixup (&inst);
15214 }
15215 else
15216 {
15217 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15218 struct neon_type_el et = neon_check_type (2, rs,
15219 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15220 /* Duplicate ARM register to lanes of vector. */
15221 NEON_ENCODE (ARMREG, inst);
15222 switch (et.size)
15223 {
15224 case 8: inst.instruction |= 0x400000; break;
15225 case 16: inst.instruction |= 0x000020; break;
15226 case 32: inst.instruction |= 0x000000; break;
15227 default: break;
15228 }
15229 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15230 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15231 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15232 inst.instruction |= neon_quad (rs) << 21;
15233 /* The encoding for this instruction is identical for the ARM and Thumb
15234 variants, except for the condition field. */
15235 do_vfp_cond_or_thumb ();
15236 }
15237 }
15238
15239 /* VMOV has particularly many variations. It can be one of:
15240 0. VMOV<c><q> <Qd>, <Qm>
15241 1. VMOV<c><q> <Dd>, <Dm>
15242 (Register operations, which are VORR with Rm = Rn.)
15243 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15244 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15245 (Immediate loads.)
15246 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15247 (ARM register to scalar.)
15248 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15249 (Two ARM registers to vector.)
15250 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15251 (Scalar to ARM register.)
15252 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15253 (Vector to two ARM registers.)
15254 8. VMOV.F32 <Sd>, <Sm>
15255 9. VMOV.F64 <Dd>, <Dm>
15256 (VFP register moves.)
15257 10. VMOV.F32 <Sd>, #imm
15258 11. VMOV.F64 <Dd>, #imm
15259 (VFP float immediate load.)
15260 12. VMOV <Rd>, <Sm>
15261 (VFP single to ARM reg.)
15262 13. VMOV <Sd>, <Rm>
15263 (ARM reg to VFP single.)
15264 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15265 (Two ARM regs to two VFP singles.)
15266 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15267 (Two VFP singles to two ARM regs.)
15268
15269 These cases can be disambiguated using neon_select_shape, except cases 1/9
15270 and 3/11 which depend on the operand type too.
15271
15272 All the encoded bits are hardcoded by this function.
15273
15274 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15275 Cases 5, 7 may be used with VFPv2 and above.
15276
15277 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15278 can specify a type where it doesn't make sense to, and is ignored). */
15279
15280 static void
15281 do_neon_mov (void)
15282 {
15283 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15284 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15285 NS_NULL);
15286 struct neon_type_el et;
15287 const char *ldconst = 0;
15288
15289 switch (rs)
15290 {
15291 case NS_DD: /* case 1/9. */
15292 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15293 /* It is not an error here if no type is given. */
15294 inst.error = NULL;
15295 if (et.type == NT_float && et.size == 64)
15296 {
15297 do_vfp_nsyn_opcode ("fcpyd");
15298 break;
15299 }
15300 /* fall through. */
15301
15302 case NS_QQ: /* case 0/1. */
15303 {
15304 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15305 return;
15306 /* The architecture manual I have doesn't explicitly state which
15307 value the U bit should have for register->register moves, but
15308 the equivalent VORR instruction has U = 0, so do that. */
15309 inst.instruction = 0x0200110;
15310 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15311 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15312 inst.instruction |= LOW4 (inst.operands[1].reg);
15313 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15314 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15315 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15316 inst.instruction |= neon_quad (rs) << 6;
15317
15318 neon_dp_fixup (&inst);
15319 }
15320 break;
15321
15322 case NS_DI: /* case 3/11. */
15323 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15324 inst.error = NULL;
15325 if (et.type == NT_float && et.size == 64)
15326 {
15327 /* case 11 (fconstd). */
15328 ldconst = "fconstd";
15329 goto encode_fconstd;
15330 }
15331 /* fall through. */
15332
15333 case NS_QI: /* case 2/3. */
15334 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15335 return;
15336 inst.instruction = 0x0800010;
15337 neon_move_immediate ();
15338 neon_dp_fixup (&inst);
15339 break;
15340
15341 case NS_SR: /* case 4. */
15342 {
15343 unsigned bcdebits = 0;
15344 int logsize;
15345 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15346 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15347
15348 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15349 logsize = neon_logbits (et.size);
15350
15351 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15352 _(BAD_FPU));
15353 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15354 && et.size != 32, _(BAD_FPU));
15355 constraint (et.type == NT_invtype, _("bad type for scalar"));
15356 constraint (x >= 64 / et.size, _("scalar index out of range"));
15357
15358 switch (et.size)
15359 {
15360 case 8: bcdebits = 0x8; break;
15361 case 16: bcdebits = 0x1; break;
15362 case 32: bcdebits = 0x0; break;
15363 default: ;
15364 }
15365
15366 bcdebits |= x << logsize;
15367
15368 inst.instruction = 0xe000b10;
15369 do_vfp_cond_or_thumb ();
15370 inst.instruction |= LOW4 (dn) << 16;
15371 inst.instruction |= HI1 (dn) << 7;
15372 inst.instruction |= inst.operands[1].reg << 12;
15373 inst.instruction |= (bcdebits & 3) << 5;
15374 inst.instruction |= (bcdebits >> 2) << 21;
15375 }
15376 break;
15377
15378 case NS_DRR: /* case 5 (fmdrr). */
15379 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15380 _(BAD_FPU));
15381
15382 inst.instruction = 0xc400b10;
15383 do_vfp_cond_or_thumb ();
15384 inst.instruction |= LOW4 (inst.operands[0].reg);
15385 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15386 inst.instruction |= inst.operands[1].reg << 12;
15387 inst.instruction |= inst.operands[2].reg << 16;
15388 break;
15389
15390 case NS_RS: /* case 6. */
15391 {
15392 unsigned logsize;
15393 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15394 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15395 unsigned abcdebits = 0;
15396
15397 et = neon_check_type (2, NS_NULL,
15398 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15399 logsize = neon_logbits (et.size);
15400
15401 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15402 _(BAD_FPU));
15403 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15404 && et.size != 32, _(BAD_FPU));
15405 constraint (et.type == NT_invtype, _("bad type for scalar"));
15406 constraint (x >= 64 / et.size, _("scalar index out of range"));
15407
15408 switch (et.size)
15409 {
15410 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15411 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15412 case 32: abcdebits = 0x00; break;
15413 default: ;
15414 }
15415
15416 abcdebits |= x << logsize;
15417 inst.instruction = 0xe100b10;
15418 do_vfp_cond_or_thumb ();
15419 inst.instruction |= LOW4 (dn) << 16;
15420 inst.instruction |= HI1 (dn) << 7;
15421 inst.instruction |= inst.operands[0].reg << 12;
15422 inst.instruction |= (abcdebits & 3) << 5;
15423 inst.instruction |= (abcdebits >> 2) << 21;
15424 }
15425 break;
15426
15427 case NS_RRD: /* case 7 (fmrrd). */
15428 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15429 _(BAD_FPU));
15430
15431 inst.instruction = 0xc500b10;
15432 do_vfp_cond_or_thumb ();
15433 inst.instruction |= inst.operands[0].reg << 12;
15434 inst.instruction |= inst.operands[1].reg << 16;
15435 inst.instruction |= LOW4 (inst.operands[2].reg);
15436 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15437 break;
15438
15439 case NS_FF: /* case 8 (fcpys). */
15440 do_vfp_nsyn_opcode ("fcpys");
15441 break;
15442
15443 case NS_FI: /* case 10 (fconsts). */
15444 ldconst = "fconsts";
15445 encode_fconstd:
15446 if (is_quarter_float (inst.operands[1].imm))
15447 {
15448 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15449 do_vfp_nsyn_opcode (ldconst);
15450 }
15451 else
15452 first_error (_("immediate out of range"));
15453 break;
15454
15455 case NS_RF: /* case 12 (fmrs). */
15456 do_vfp_nsyn_opcode ("fmrs");
15457 break;
15458
15459 case NS_FR: /* case 13 (fmsr). */
15460 do_vfp_nsyn_opcode ("fmsr");
15461 break;
15462
15463 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15464 (one of which is a list), but we have parsed four. Do some fiddling to
15465 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15466 expect. */
15467 case NS_RRFF: /* case 14 (fmrrs). */
15468 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15469 _("VFP registers must be adjacent"));
15470 inst.operands[2].imm = 2;
15471 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15472 do_vfp_nsyn_opcode ("fmrrs");
15473 break;
15474
15475 case NS_FFRR: /* case 15 (fmsrr). */
15476 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15477 _("VFP registers must be adjacent"));
15478 inst.operands[1] = inst.operands[2];
15479 inst.operands[2] = inst.operands[3];
15480 inst.operands[0].imm = 2;
15481 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15482 do_vfp_nsyn_opcode ("fmsrr");
15483 break;
15484
15485 default:
15486 abort ();
15487 }
15488 }
15489
15490 static void
15491 do_neon_rshift_round_imm (void)
15492 {
15493 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15494 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15495 int imm = inst.operands[2].imm;
15496
15497 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15498 if (imm == 0)
15499 {
15500 inst.operands[2].present = 0;
15501 do_neon_mov ();
15502 return;
15503 }
15504
15505 constraint (imm < 1 || (unsigned)imm > et.size,
15506 _("immediate out of range for shift"));
15507 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15508 et.size - imm);
15509 }
15510
15511 static void
15512 do_neon_movl (void)
15513 {
15514 struct neon_type_el et = neon_check_type (2, NS_QD,
15515 N_EQK | N_DBL, N_SU_32 | N_KEY);
15516 unsigned sizebits = et.size >> 3;
15517 inst.instruction |= sizebits << 19;
15518 neon_two_same (0, et.type == NT_unsigned, -1);
15519 }
15520
15521 static void
15522 do_neon_trn (void)
15523 {
15524 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15525 struct neon_type_el et = neon_check_type (2, rs,
15526 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15527 NEON_ENCODE (INTEGER, inst);
15528 neon_two_same (neon_quad (rs), 1, et.size);
15529 }
15530
15531 static void
15532 do_neon_zip_uzp (void)
15533 {
15534 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15535 struct neon_type_el et = neon_check_type (2, rs,
15536 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15537 if (rs == NS_DD && et.size == 32)
15538 {
15539 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15540 inst.instruction = N_MNEM_vtrn;
15541 do_neon_trn ();
15542 return;
15543 }
15544 neon_two_same (neon_quad (rs), 1, et.size);
15545 }
15546
15547 static void
15548 do_neon_sat_abs_neg (void)
15549 {
15550 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15551 struct neon_type_el et = neon_check_type (2, rs,
15552 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15553 neon_two_same (neon_quad (rs), 1, et.size);
15554 }
15555
15556 static void
15557 do_neon_pair_long (void)
15558 {
15559 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15560 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15561 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15562 inst.instruction |= (et.type == NT_unsigned) << 7;
15563 neon_two_same (neon_quad (rs), 1, et.size);
15564 }
15565
15566 static void
15567 do_neon_recip_est (void)
15568 {
15569 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15570 struct neon_type_el et = neon_check_type (2, rs,
15571 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15572 inst.instruction |= (et.type == NT_float) << 8;
15573 neon_two_same (neon_quad (rs), 1, et.size);
15574 }
15575
15576 static void
15577 do_neon_cls (void)
15578 {
15579 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15580 struct neon_type_el et = neon_check_type (2, rs,
15581 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15582 neon_two_same (neon_quad (rs), 1, et.size);
15583 }
15584
15585 static void
15586 do_neon_clz (void)
15587 {
15588 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15589 struct neon_type_el et = neon_check_type (2, rs,
15590 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15591 neon_two_same (neon_quad (rs), 1, et.size);
15592 }
15593
15594 static void
15595 do_neon_cnt (void)
15596 {
15597 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15598 struct neon_type_el et = neon_check_type (2, rs,
15599 N_EQK | N_INT, N_8 | N_KEY);
15600 neon_two_same (neon_quad (rs), 1, et.size);
15601 }
15602
15603 static void
15604 do_neon_swp (void)
15605 {
15606 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15607 neon_two_same (neon_quad (rs), 1, -1);
15608 }
15609
15610 static void
15611 do_neon_tbl_tbx (void)
15612 {
15613 unsigned listlenbits;
15614 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15615
15616 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15617 {
15618 first_error (_("bad list length for table lookup"));
15619 return;
15620 }
15621
15622 listlenbits = inst.operands[1].imm - 1;
15623 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15624 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15625 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15626 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15627 inst.instruction |= LOW4 (inst.operands[2].reg);
15628 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15629 inst.instruction |= listlenbits << 8;
15630
15631 neon_dp_fixup (&inst);
15632 }
15633
15634 static void
15635 do_neon_ldm_stm (void)
15636 {
15637 /* P, U and L bits are part of bitmask. */
15638 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15639 unsigned offsetbits = inst.operands[1].imm * 2;
15640
15641 if (inst.operands[1].issingle)
15642 {
15643 do_vfp_nsyn_ldm_stm (is_dbmode);
15644 return;
15645 }
15646
15647 constraint (is_dbmode && !inst.operands[0].writeback,
15648 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15649
15650 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15651 _("register list must contain at least 1 and at most 16 "
15652 "registers"));
15653
15654 inst.instruction |= inst.operands[0].reg << 16;
15655 inst.instruction |= inst.operands[0].writeback << 21;
15656 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15657 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15658
15659 inst.instruction |= offsetbits;
15660
15661 do_vfp_cond_or_thumb ();
15662 }
15663
15664 static void
15665 do_neon_ldr_str (void)
15666 {
15667 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15668
15669 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15670 And is UNPREDICTABLE in thumb mode. */
15671 if (!is_ldr
15672 && inst.operands[1].reg == REG_PC
15673 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15674 {
15675 if (!thumb_mode && warn_on_deprecated)
15676 as_warn (_("Use of PC here is deprecated"));
15677 else
15678 inst.error = _("Use of PC here is UNPREDICTABLE");
15679 }
15680
15681 if (inst.operands[0].issingle)
15682 {
15683 if (is_ldr)
15684 do_vfp_nsyn_opcode ("flds");
15685 else
15686 do_vfp_nsyn_opcode ("fsts");
15687 }
15688 else
15689 {
15690 if (is_ldr)
15691 do_vfp_nsyn_opcode ("fldd");
15692 else
15693 do_vfp_nsyn_opcode ("fstd");
15694 }
15695 }
15696
15697 /* "interleave" version also handles non-interleaving register VLD1/VST1
15698 instructions. */
15699
15700 static void
15701 do_neon_ld_st_interleave (void)
15702 {
15703 struct neon_type_el et = neon_check_type (1, NS_NULL,
15704 N_8 | N_16 | N_32 | N_64);
15705 unsigned alignbits = 0;
15706 unsigned idx;
15707 /* The bits in this table go:
15708 0: register stride of one (0) or two (1)
15709 1,2: register list length, minus one (1, 2, 3, 4).
15710 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15711 We use -1 for invalid entries. */
15712 const int typetable[] =
15713 {
15714 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15715 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15716 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15717 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15718 };
15719 int typebits;
15720
15721 if (et.type == NT_invtype)
15722 return;
15723
15724 if (inst.operands[1].immisalign)
15725 switch (inst.operands[1].imm >> 8)
15726 {
15727 case 64: alignbits = 1; break;
15728 case 128:
15729 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15730 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15731 goto bad_alignment;
15732 alignbits = 2;
15733 break;
15734 case 256:
15735 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15736 goto bad_alignment;
15737 alignbits = 3;
15738 break;
15739 default:
15740 bad_alignment:
15741 first_error (_("bad alignment"));
15742 return;
15743 }
15744
15745 inst.instruction |= alignbits << 4;
15746 inst.instruction |= neon_logbits (et.size) << 6;
15747
15748 /* Bits [4:6] of the immediate in a list specifier encode register stride
15749 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15750 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15751 up the right value for "type" in a table based on this value and the given
15752 list style, then stick it back. */
15753 idx = ((inst.operands[0].imm >> 4) & 7)
15754 | (((inst.instruction >> 8) & 3) << 3);
15755
15756 typebits = typetable[idx];
15757
15758 constraint (typebits == -1, _("bad list type for instruction"));
15759
15760 inst.instruction &= ~0xf00;
15761 inst.instruction |= typebits << 8;
15762 }
15763
15764 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15765 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15766 otherwise. The variable arguments are a list of pairs of legal (size, align)
15767 values, terminated with -1. */
15768
15769 static int
15770 neon_alignment_bit (int size, int align, int *do_align, ...)
15771 {
15772 va_list ap;
15773 int result = FAIL, thissize, thisalign;
15774
15775 if (!inst.operands[1].immisalign)
15776 {
15777 *do_align = 0;
15778 return SUCCESS;
15779 }
15780
15781 va_start (ap, do_align);
15782
15783 do
15784 {
15785 thissize = va_arg (ap, int);
15786 if (thissize == -1)
15787 break;
15788 thisalign = va_arg (ap, int);
15789
15790 if (size == thissize && align == thisalign)
15791 result = SUCCESS;
15792 }
15793 while (result != SUCCESS);
15794
15795 va_end (ap);
15796
15797 if (result == SUCCESS)
15798 *do_align = 1;
15799 else
15800 first_error (_("unsupported alignment for instruction"));
15801
15802 return result;
15803 }
15804
15805 static void
15806 do_neon_ld_st_lane (void)
15807 {
15808 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15809 int align_good, do_align = 0;
15810 int logsize = neon_logbits (et.size);
15811 int align = inst.operands[1].imm >> 8;
15812 int n = (inst.instruction >> 8) & 3;
15813 int max_el = 64 / et.size;
15814
15815 if (et.type == NT_invtype)
15816 return;
15817
15818 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15819 _("bad list length"));
15820 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15821 _("scalar index out of range"));
15822 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15823 && et.size == 8,
15824 _("stride of 2 unavailable when element size is 8"));
15825
15826 switch (n)
15827 {
15828 case 0: /* VLD1 / VST1. */
15829 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15830 32, 32, -1);
15831 if (align_good == FAIL)
15832 return;
15833 if (do_align)
15834 {
15835 unsigned alignbits = 0;
15836 switch (et.size)
15837 {
15838 case 16: alignbits = 0x1; break;
15839 case 32: alignbits = 0x3; break;
15840 default: ;
15841 }
15842 inst.instruction |= alignbits << 4;
15843 }
15844 break;
15845
15846 case 1: /* VLD2 / VST2. */
15847 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15848 32, 64, -1);
15849 if (align_good == FAIL)
15850 return;
15851 if (do_align)
15852 inst.instruction |= 1 << 4;
15853 break;
15854
15855 case 2: /* VLD3 / VST3. */
15856 constraint (inst.operands[1].immisalign,
15857 _("can't use alignment with this instruction"));
15858 break;
15859
15860 case 3: /* VLD4 / VST4. */
15861 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15862 16, 64, 32, 64, 32, 128, -1);
15863 if (align_good == FAIL)
15864 return;
15865 if (do_align)
15866 {
15867 unsigned alignbits = 0;
15868 switch (et.size)
15869 {
15870 case 8: alignbits = 0x1; break;
15871 case 16: alignbits = 0x1; break;
15872 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15873 default: ;
15874 }
15875 inst.instruction |= alignbits << 4;
15876 }
15877 break;
15878
15879 default: ;
15880 }
15881
15882 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15883 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15884 inst.instruction |= 1 << (4 + logsize);
15885
15886 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15887 inst.instruction |= logsize << 10;
15888 }
15889
15890 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15891
15892 static void
15893 do_neon_ld_dup (void)
15894 {
15895 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15896 int align_good, do_align = 0;
15897
15898 if (et.type == NT_invtype)
15899 return;
15900
15901 switch ((inst.instruction >> 8) & 3)
15902 {
15903 case 0: /* VLD1. */
15904 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15905 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15906 &do_align, 16, 16, 32, 32, -1);
15907 if (align_good == FAIL)
15908 return;
15909 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15910 {
15911 case 1: break;
15912 case 2: inst.instruction |= 1 << 5; break;
15913 default: first_error (_("bad list length")); return;
15914 }
15915 inst.instruction |= neon_logbits (et.size) << 6;
15916 break;
15917
15918 case 1: /* VLD2. */
15919 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15920 &do_align, 8, 16, 16, 32, 32, 64, -1);
15921 if (align_good == FAIL)
15922 return;
15923 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15924 _("bad list length"));
15925 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15926 inst.instruction |= 1 << 5;
15927 inst.instruction |= neon_logbits (et.size) << 6;
15928 break;
15929
15930 case 2: /* VLD3. */
15931 constraint (inst.operands[1].immisalign,
15932 _("can't use alignment with this instruction"));
15933 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15934 _("bad list length"));
15935 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15936 inst.instruction |= 1 << 5;
15937 inst.instruction |= neon_logbits (et.size) << 6;
15938 break;
15939
15940 case 3: /* VLD4. */
15941 {
15942 int align = inst.operands[1].imm >> 8;
15943 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15944 16, 64, 32, 64, 32, 128, -1);
15945 if (align_good == FAIL)
15946 return;
15947 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15948 _("bad list length"));
15949 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15950 inst.instruction |= 1 << 5;
15951 if (et.size == 32 && align == 128)
15952 inst.instruction |= 0x3 << 6;
15953 else
15954 inst.instruction |= neon_logbits (et.size) << 6;
15955 }
15956 break;
15957
15958 default: ;
15959 }
15960
15961 inst.instruction |= do_align << 4;
15962 }
15963
15964 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15965 apart from bits [11:4]. */
15966
15967 static void
15968 do_neon_ldx_stx (void)
15969 {
15970 if (inst.operands[1].isreg)
15971 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15972
15973 switch (NEON_LANE (inst.operands[0].imm))
15974 {
15975 case NEON_INTERLEAVE_LANES:
15976 NEON_ENCODE (INTERLV, inst);
15977 do_neon_ld_st_interleave ();
15978 break;
15979
15980 case NEON_ALL_LANES:
15981 NEON_ENCODE (DUP, inst);
15982 do_neon_ld_dup ();
15983 break;
15984
15985 default:
15986 NEON_ENCODE (LANE, inst);
15987 do_neon_ld_st_lane ();
15988 }
15989
15990 /* L bit comes from bit mask. */
15991 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15992 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15993 inst.instruction |= inst.operands[1].reg << 16;
15994
15995 if (inst.operands[1].postind)
15996 {
15997 int postreg = inst.operands[1].imm & 0xf;
15998 constraint (!inst.operands[1].immisreg,
15999 _("post-index must be a register"));
16000 constraint (postreg == 0xd || postreg == 0xf,
16001 _("bad register for post-index"));
16002 inst.instruction |= postreg;
16003 }
16004 else if (inst.operands[1].writeback)
16005 {
16006 inst.instruction |= 0xd;
16007 }
16008 else
16009 inst.instruction |= 0xf;
16010
16011 if (thumb_mode)
16012 inst.instruction |= 0xf9000000;
16013 else
16014 inst.instruction |= 0xf4000000;
16015 }
16016
16017 /* FP v8. */
16018 static void
16019 do_vfp_nsyn_fpv8 (enum neon_shape rs)
16020 {
16021 NEON_ENCODE (FPV8, inst);
16022
16023 if (rs == NS_FFF)
16024 do_vfp_sp_dyadic ();
16025 else
16026 do_vfp_dp_rd_rn_rm ();
16027
16028 if (rs == NS_DDD)
16029 inst.instruction |= 0x100;
16030
16031 inst.instruction |= 0xf0000000;
16032 }
16033
16034 static void
16035 do_vsel (void)
16036 {
16037 set_it_insn_type (OUTSIDE_IT_INSN);
16038
16039 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) != SUCCESS)
16040 first_error (_("invalid instruction shape"));
16041 }
16042
16043 static void
16044 do_vmaxnm (void)
16045 {
16046 set_it_insn_type (OUTSIDE_IT_INSN);
16047
16048 if (try_vfp_nsyn (3, do_vfp_nsyn_fpv8) == SUCCESS)
16049 return;
16050
16051 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16052 return;
16053
16054 neon_dyadic_misc (NT_untyped, N_F32, 0);
16055 }
16056
16057 static void
16058 do_vrint_1 (enum neon_cvt_mode mode)
16059 {
16060 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_QQ, NS_NULL);
16061 struct neon_type_el et;
16062
16063 if (rs == NS_NULL)
16064 return;
16065
16066 et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
16067 if (et.type != NT_invtype)
16068 {
16069 /* VFP encodings. */
16070 if (mode == neon_cvt_mode_a || mode == neon_cvt_mode_n
16071 || mode == neon_cvt_mode_p || mode == neon_cvt_mode_m)
16072 set_it_insn_type (OUTSIDE_IT_INSN);
16073
16074 NEON_ENCODE (FPV8, inst);
16075 if (rs == NS_FF)
16076 do_vfp_sp_monadic ();
16077 else
16078 do_vfp_dp_rd_rm ();
16079
16080 switch (mode)
16081 {
16082 case neon_cvt_mode_r: inst.instruction |= 0x00000000; break;
16083 case neon_cvt_mode_z: inst.instruction |= 0x00000080; break;
16084 case neon_cvt_mode_x: inst.instruction |= 0x00010000; break;
16085 case neon_cvt_mode_a: inst.instruction |= 0xf0000000; break;
16086 case neon_cvt_mode_n: inst.instruction |= 0xf0010000; break;
16087 case neon_cvt_mode_p: inst.instruction |= 0xf0020000; break;
16088 case neon_cvt_mode_m: inst.instruction |= 0xf0030000; break;
16089 default: abort ();
16090 }
16091
16092 inst.instruction |= (rs == NS_DD) << 8;
16093 do_vfp_cond_or_thumb ();
16094 }
16095 else
16096 {
16097 /* Neon encodings (or something broken...). */
16098 inst.error = NULL;
16099 et = neon_check_type (2, rs, N_EQK, N_F32 | N_KEY);
16100
16101 if (et.type == NT_invtype)
16102 return;
16103
16104 set_it_insn_type (OUTSIDE_IT_INSN);
16105 NEON_ENCODE (FLOAT, inst);
16106
16107 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH8) == FAIL)
16108 return;
16109
16110 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16111 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16112 inst.instruction |= LOW4 (inst.operands[1].reg);
16113 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16114 inst.instruction |= neon_quad (rs) << 6;
16115 switch (mode)
16116 {
16117 case neon_cvt_mode_z: inst.instruction |= 3 << 7; break;
16118 case neon_cvt_mode_x: inst.instruction |= 1 << 7; break;
16119 case neon_cvt_mode_a: inst.instruction |= 2 << 7; break;
16120 case neon_cvt_mode_n: inst.instruction |= 0 << 7; break;
16121 case neon_cvt_mode_p: inst.instruction |= 7 << 7; break;
16122 case neon_cvt_mode_m: inst.instruction |= 5 << 7; break;
16123 case neon_cvt_mode_r: inst.error = _("invalid rounding mode"); break;
16124 default: abort ();
16125 }
16126
16127 if (thumb_mode)
16128 inst.instruction |= 0xfc000000;
16129 else
16130 inst.instruction |= 0xf0000000;
16131 }
16132 }
16133
16134 static void
16135 do_vrintx (void)
16136 {
16137 do_vrint_1 (neon_cvt_mode_x);
16138 }
16139
16140 static void
16141 do_vrintz (void)
16142 {
16143 do_vrint_1 (neon_cvt_mode_z);
16144 }
16145
16146 static void
16147 do_vrintr (void)
16148 {
16149 do_vrint_1 (neon_cvt_mode_r);
16150 }
16151
16152 static void
16153 do_vrinta (void)
16154 {
16155 do_vrint_1 (neon_cvt_mode_a);
16156 }
16157
16158 static void
16159 do_vrintn (void)
16160 {
16161 do_vrint_1 (neon_cvt_mode_n);
16162 }
16163
16164 static void
16165 do_vrintp (void)
16166 {
16167 do_vrint_1 (neon_cvt_mode_p);
16168 }
16169
16170 static void
16171 do_vrintm (void)
16172 {
16173 do_vrint_1 (neon_cvt_mode_m);
16174 }
16175
16176 /* Crypto v1 instructions. */
16177 static void
16178 do_crypto_2op_1 (unsigned elttype, int op)
16179 {
16180 set_it_insn_type (OUTSIDE_IT_INSN);
16181
16182 if (neon_check_type (2, NS_QQ, N_EQK | N_UNT, elttype | N_UNT | N_KEY).type
16183 == NT_invtype)
16184 return;
16185
16186 inst.error = NULL;
16187
16188 NEON_ENCODE (INTEGER, inst);
16189 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
16190 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
16191 inst.instruction |= LOW4 (inst.operands[1].reg);
16192 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
16193 if (op != -1)
16194 inst.instruction |= op << 6;
16195
16196 if (thumb_mode)
16197 inst.instruction |= 0xfc000000;
16198 else
16199 inst.instruction |= 0xf0000000;
16200 }
16201
16202 static void
16203 do_aese (void)
16204 {
16205 do_crypto_2op_1 (N_8, 0);
16206 }
16207
16208 static void
16209 do_aesd (void)
16210 {
16211 do_crypto_2op_1 (N_8, 1);
16212 }
16213
16214 static void
16215 do_aesmc (void)
16216 {
16217 do_crypto_2op_1 (N_8, 2);
16218 }
16219
16220 static void
16221 do_aesimc (void)
16222 {
16223 do_crypto_2op_1 (N_8, 3);
16224 }
16225
16226
16227 \f
16228 /* Overall per-instruction processing. */
16229
16230 /* We need to be able to fix up arbitrary expressions in some statements.
16231 This is so that we can handle symbols that are an arbitrary distance from
16232 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
16233 which returns part of an address in a form which will be valid for
16234 a data instruction. We do this by pushing the expression into a symbol
16235 in the expr_section, and creating a fix for that. */
16236
16237 static void
16238 fix_new_arm (fragS * frag,
16239 int where,
16240 short int size,
16241 expressionS * exp,
16242 int pc_rel,
16243 int reloc)
16244 {
16245 fixS * new_fix;
16246
16247 switch (exp->X_op)
16248 {
16249 case O_constant:
16250 if (pc_rel)
16251 {
16252 /* Create an absolute valued symbol, so we have something to
16253 refer to in the object file. Unfortunately for us, gas's
16254 generic expression parsing will already have folded out
16255 any use of .set foo/.type foo %function that may have
16256 been used to set type information of the target location,
16257 that's being specified symbolically. We have to presume
16258 the user knows what they are doing. */
16259 char name[16 + 8];
16260 symbolS *symbol;
16261
16262 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
16263
16264 symbol = symbol_find_or_make (name);
16265 S_SET_SEGMENT (symbol, absolute_section);
16266 symbol_set_frag (symbol, &zero_address_frag);
16267 S_SET_VALUE (symbol, exp->X_add_number);
16268 exp->X_op = O_symbol;
16269 exp->X_add_symbol = symbol;
16270 exp->X_add_number = 0;
16271 }
16272 /* FALLTHROUGH */
16273 case O_symbol:
16274 case O_add:
16275 case O_subtract:
16276 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
16277 (enum bfd_reloc_code_real) reloc);
16278 break;
16279
16280 default:
16281 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
16282 pc_rel, (enum bfd_reloc_code_real) reloc);
16283 break;
16284 }
16285
16286 /* Mark whether the fix is to a THUMB instruction, or an ARM
16287 instruction. */
16288 new_fix->tc_fix_data = thumb_mode;
16289 }
16290
16291 /* Create a frg for an instruction requiring relaxation. */
16292 static void
16293 output_relax_insn (void)
16294 {
16295 char * to;
16296 symbolS *sym;
16297 int offset;
16298
16299 /* The size of the instruction is unknown, so tie the debug info to the
16300 start of the instruction. */
16301 dwarf2_emit_insn (0);
16302
16303 switch (inst.reloc.exp.X_op)
16304 {
16305 case O_symbol:
16306 sym = inst.reloc.exp.X_add_symbol;
16307 offset = inst.reloc.exp.X_add_number;
16308 break;
16309 case O_constant:
16310 sym = NULL;
16311 offset = inst.reloc.exp.X_add_number;
16312 break;
16313 default:
16314 sym = make_expr_symbol (&inst.reloc.exp);
16315 offset = 0;
16316 break;
16317 }
16318 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
16319 inst.relax, sym, offset, NULL/*offset, opcode*/);
16320 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
16321 }
16322
16323 /* Write a 32-bit thumb instruction to buf. */
16324 static void
16325 put_thumb32_insn (char * buf, unsigned long insn)
16326 {
16327 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
16328 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
16329 }
16330
16331 static void
16332 output_inst (const char * str)
16333 {
16334 char * to = NULL;
16335
16336 if (inst.error)
16337 {
16338 as_bad ("%s -- `%s'", inst.error, str);
16339 return;
16340 }
16341 if (inst.relax)
16342 {
16343 output_relax_insn ();
16344 return;
16345 }
16346 if (inst.size == 0)
16347 return;
16348
16349 to = frag_more (inst.size);
16350 /* PR 9814: Record the thumb mode into the current frag so that we know
16351 what type of NOP padding to use, if necessary. We override any previous
16352 setting so that if the mode has changed then the NOPS that we use will
16353 match the encoding of the last instruction in the frag. */
16354 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
16355
16356 if (thumb_mode && (inst.size > THUMB_SIZE))
16357 {
16358 gas_assert (inst.size == (2 * THUMB_SIZE));
16359 put_thumb32_insn (to, inst.instruction);
16360 }
16361 else if (inst.size > INSN_SIZE)
16362 {
16363 gas_assert (inst.size == (2 * INSN_SIZE));
16364 md_number_to_chars (to, inst.instruction, INSN_SIZE);
16365 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
16366 }
16367 else
16368 md_number_to_chars (to, inst.instruction, inst.size);
16369
16370 if (inst.reloc.type != BFD_RELOC_UNUSED)
16371 fix_new_arm (frag_now, to - frag_now->fr_literal,
16372 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
16373 inst.reloc.type);
16374
16375 dwarf2_emit_insn (inst.size);
16376 }
16377
16378 static char *
16379 output_it_inst (int cond, int mask, char * to)
16380 {
16381 unsigned long instruction = 0xbf00;
16382
16383 mask &= 0xf;
16384 instruction |= mask;
16385 instruction |= cond << 4;
16386
16387 if (to == NULL)
16388 {
16389 to = frag_more (2);
16390 #ifdef OBJ_ELF
16391 dwarf2_emit_insn (2);
16392 #endif
16393 }
16394
16395 md_number_to_chars (to, instruction, 2);
16396
16397 return to;
16398 }
16399
16400 /* Tag values used in struct asm_opcode's tag field. */
16401 enum opcode_tag
16402 {
16403 OT_unconditional, /* Instruction cannot be conditionalized.
16404 The ARM condition field is still 0xE. */
16405 OT_unconditionalF, /* Instruction cannot be conditionalized
16406 and carries 0xF in its ARM condition field. */
16407 OT_csuffix, /* Instruction takes a conditional suffix. */
16408 OT_csuffixF, /* Some forms of the instruction take a conditional
16409 suffix, others place 0xF where the condition field
16410 would be. */
16411 OT_cinfix3, /* Instruction takes a conditional infix,
16412 beginning at character index 3. (In
16413 unified mode, it becomes a suffix.) */
16414 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
16415 tsts, cmps, cmns, and teqs. */
16416 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
16417 character index 3, even in unified mode. Used for
16418 legacy instructions where suffix and infix forms
16419 may be ambiguous. */
16420 OT_csuf_or_in3, /* Instruction takes either a conditional
16421 suffix or an infix at character index 3. */
16422 OT_odd_infix_unc, /* This is the unconditional variant of an
16423 instruction that takes a conditional infix
16424 at an unusual position. In unified mode,
16425 this variant will accept a suffix. */
16426 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16427 are the conditional variants of instructions that
16428 take conditional infixes in unusual positions.
16429 The infix appears at character index
16430 (tag - OT_odd_infix_0). These are not accepted
16431 in unified mode. */
16432 };
16433
16434 /* Subroutine of md_assemble, responsible for looking up the primary
16435 opcode from the mnemonic the user wrote. STR points to the
16436 beginning of the mnemonic.
16437
16438 This is not simply a hash table lookup, because of conditional
16439 variants. Most instructions have conditional variants, which are
16440 expressed with a _conditional affix_ to the mnemonic. If we were
16441 to encode each conditional variant as a literal string in the opcode
16442 table, it would have approximately 20,000 entries.
16443
16444 Most mnemonics take this affix as a suffix, and in unified syntax,
16445 'most' is upgraded to 'all'. However, in the divided syntax, some
16446 instructions take the affix as an infix, notably the s-variants of
16447 the arithmetic instructions. Of those instructions, all but six
16448 have the infix appear after the third character of the mnemonic.
16449
16450 Accordingly, the algorithm for looking up primary opcodes given
16451 an identifier is:
16452
16453 1. Look up the identifier in the opcode table.
16454 If we find a match, go to step U.
16455
16456 2. Look up the last two characters of the identifier in the
16457 conditions table. If we find a match, look up the first N-2
16458 characters of the identifier in the opcode table. If we
16459 find a match, go to step CE.
16460
16461 3. Look up the fourth and fifth characters of the identifier in
16462 the conditions table. If we find a match, extract those
16463 characters from the identifier, and look up the remaining
16464 characters in the opcode table. If we find a match, go
16465 to step CM.
16466
16467 4. Fail.
16468
16469 U. Examine the tag field of the opcode structure, in case this is
16470 one of the six instructions with its conditional infix in an
16471 unusual place. If it is, the tag tells us where to find the
16472 infix; look it up in the conditions table and set inst.cond
16473 accordingly. Otherwise, this is an unconditional instruction.
16474 Again set inst.cond accordingly. Return the opcode structure.
16475
16476 CE. Examine the tag field to make sure this is an instruction that
16477 should receive a conditional suffix. If it is not, fail.
16478 Otherwise, set inst.cond from the suffix we already looked up,
16479 and return the opcode structure.
16480
16481 CM. Examine the tag field to make sure this is an instruction that
16482 should receive a conditional infix after the third character.
16483 If it is not, fail. Otherwise, undo the edits to the current
16484 line of input and proceed as for case CE. */
16485
16486 static const struct asm_opcode *
16487 opcode_lookup (char **str)
16488 {
16489 char *end, *base;
16490 char *affix;
16491 const struct asm_opcode *opcode;
16492 const struct asm_cond *cond;
16493 char save[2];
16494
16495 /* Scan up to the end of the mnemonic, which must end in white space,
16496 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16497 for (base = end = *str; *end != '\0'; end++)
16498 if (*end == ' ' || *end == '.')
16499 break;
16500
16501 if (end == base)
16502 return NULL;
16503
16504 /* Handle a possible width suffix and/or Neon type suffix. */
16505 if (end[0] == '.')
16506 {
16507 int offset = 2;
16508
16509 /* The .w and .n suffixes are only valid if the unified syntax is in
16510 use. */
16511 if (unified_syntax && end[1] == 'w')
16512 inst.size_req = 4;
16513 else if (unified_syntax && end[1] == 'n')
16514 inst.size_req = 2;
16515 else
16516 offset = 0;
16517
16518 inst.vectype.elems = 0;
16519
16520 *str = end + offset;
16521
16522 if (end[offset] == '.')
16523 {
16524 /* See if we have a Neon type suffix (possible in either unified or
16525 non-unified ARM syntax mode). */
16526 if (parse_neon_type (&inst.vectype, str) == FAIL)
16527 return NULL;
16528 }
16529 else if (end[offset] != '\0' && end[offset] != ' ')
16530 return NULL;
16531 }
16532 else
16533 *str = end;
16534
16535 /* Look for unaffixed or special-case affixed mnemonic. */
16536 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16537 end - base);
16538 if (opcode)
16539 {
16540 /* step U */
16541 if (opcode->tag < OT_odd_infix_0)
16542 {
16543 inst.cond = COND_ALWAYS;
16544 return opcode;
16545 }
16546
16547 if (warn_on_deprecated && unified_syntax)
16548 as_warn (_("conditional infixes are deprecated in unified syntax"));
16549 affix = base + (opcode->tag - OT_odd_infix_0);
16550 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16551 gas_assert (cond);
16552
16553 inst.cond = cond->value;
16554 return opcode;
16555 }
16556
16557 /* Cannot have a conditional suffix on a mnemonic of less than two
16558 characters. */
16559 if (end - base < 3)
16560 return NULL;
16561
16562 /* Look for suffixed mnemonic. */
16563 affix = end - 2;
16564 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16565 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16566 affix - base);
16567 if (opcode && cond)
16568 {
16569 /* step CE */
16570 switch (opcode->tag)
16571 {
16572 case OT_cinfix3_legacy:
16573 /* Ignore conditional suffixes matched on infix only mnemonics. */
16574 break;
16575
16576 case OT_cinfix3:
16577 case OT_cinfix3_deprecated:
16578 case OT_odd_infix_unc:
16579 if (!unified_syntax)
16580 return 0;
16581 /* else fall through */
16582
16583 case OT_csuffix:
16584 case OT_csuffixF:
16585 case OT_csuf_or_in3:
16586 inst.cond = cond->value;
16587 return opcode;
16588
16589 case OT_unconditional:
16590 case OT_unconditionalF:
16591 if (thumb_mode)
16592 inst.cond = cond->value;
16593 else
16594 {
16595 /* Delayed diagnostic. */
16596 inst.error = BAD_COND;
16597 inst.cond = COND_ALWAYS;
16598 }
16599 return opcode;
16600
16601 default:
16602 return NULL;
16603 }
16604 }
16605
16606 /* Cannot have a usual-position infix on a mnemonic of less than
16607 six characters (five would be a suffix). */
16608 if (end - base < 6)
16609 return NULL;
16610
16611 /* Look for infixed mnemonic in the usual position. */
16612 affix = base + 3;
16613 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16614 if (!cond)
16615 return NULL;
16616
16617 memcpy (save, affix, 2);
16618 memmove (affix, affix + 2, (end - affix) - 2);
16619 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16620 (end - base) - 2);
16621 memmove (affix + 2, affix, (end - affix) - 2);
16622 memcpy (affix, save, 2);
16623
16624 if (opcode
16625 && (opcode->tag == OT_cinfix3
16626 || opcode->tag == OT_cinfix3_deprecated
16627 || opcode->tag == OT_csuf_or_in3
16628 || opcode->tag == OT_cinfix3_legacy))
16629 {
16630 /* Step CM. */
16631 if (warn_on_deprecated && unified_syntax
16632 && (opcode->tag == OT_cinfix3
16633 || opcode->tag == OT_cinfix3_deprecated))
16634 as_warn (_("conditional infixes are deprecated in unified syntax"));
16635
16636 inst.cond = cond->value;
16637 return opcode;
16638 }
16639
16640 return NULL;
16641 }
16642
16643 /* This function generates an initial IT instruction, leaving its block
16644 virtually open for the new instructions. Eventually,
16645 the mask will be updated by now_it_add_mask () each time
16646 a new instruction needs to be included in the IT block.
16647 Finally, the block is closed with close_automatic_it_block ().
16648 The block closure can be requested either from md_assemble (),
16649 a tencode (), or due to a label hook. */
16650
16651 static void
16652 new_automatic_it_block (int cond)
16653 {
16654 now_it.state = AUTOMATIC_IT_BLOCK;
16655 now_it.mask = 0x18;
16656 now_it.cc = cond;
16657 now_it.block_length = 1;
16658 mapping_state (MAP_THUMB);
16659 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16660 now_it.warn_deprecated = FALSE;
16661 now_it.insn_cond = TRUE;
16662 }
16663
16664 /* Close an automatic IT block.
16665 See comments in new_automatic_it_block (). */
16666
16667 static void
16668 close_automatic_it_block (void)
16669 {
16670 now_it.mask = 0x10;
16671 now_it.block_length = 0;
16672 }
16673
16674 /* Update the mask of the current automatically-generated IT
16675 instruction. See comments in new_automatic_it_block (). */
16676
16677 static void
16678 now_it_add_mask (int cond)
16679 {
16680 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16681 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16682 | ((bitvalue) << (nbit)))
16683 const int resulting_bit = (cond & 1);
16684
16685 now_it.mask &= 0xf;
16686 now_it.mask = SET_BIT_VALUE (now_it.mask,
16687 resulting_bit,
16688 (5 - now_it.block_length));
16689 now_it.mask = SET_BIT_VALUE (now_it.mask,
16690 1,
16691 ((5 - now_it.block_length) - 1) );
16692 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16693
16694 #undef CLEAR_BIT
16695 #undef SET_BIT_VALUE
16696 }
16697
16698 /* The IT blocks handling machinery is accessed through the these functions:
16699 it_fsm_pre_encode () from md_assemble ()
16700 set_it_insn_type () optional, from the tencode functions
16701 set_it_insn_type_last () ditto
16702 in_it_block () ditto
16703 it_fsm_post_encode () from md_assemble ()
16704 force_automatic_it_block_close () from label habdling functions
16705
16706 Rationale:
16707 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16708 initializing the IT insn type with a generic initial value depending
16709 on the inst.condition.
16710 2) During the tencode function, two things may happen:
16711 a) The tencode function overrides the IT insn type by
16712 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16713 b) The tencode function queries the IT block state by
16714 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16715
16716 Both set_it_insn_type and in_it_block run the internal FSM state
16717 handling function (handle_it_state), because: a) setting the IT insn
16718 type may incur in an invalid state (exiting the function),
16719 and b) querying the state requires the FSM to be updated.
16720 Specifically we want to avoid creating an IT block for conditional
16721 branches, so it_fsm_pre_encode is actually a guess and we can't
16722 determine whether an IT block is required until the tencode () routine
16723 has decided what type of instruction this actually it.
16724 Because of this, if set_it_insn_type and in_it_block have to be used,
16725 set_it_insn_type has to be called first.
16726
16727 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16728 determines the insn IT type depending on the inst.cond code.
16729 When a tencode () routine encodes an instruction that can be
16730 either outside an IT block, or, in the case of being inside, has to be
16731 the last one, set_it_insn_type_last () will determine the proper
16732 IT instruction type based on the inst.cond code. Otherwise,
16733 set_it_insn_type can be called for overriding that logic or
16734 for covering other cases.
16735
16736 Calling handle_it_state () may not transition the IT block state to
16737 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16738 still queried. Instead, if the FSM determines that the state should
16739 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16740 after the tencode () function: that's what it_fsm_post_encode () does.
16741
16742 Since in_it_block () calls the state handling function to get an
16743 updated state, an error may occur (due to invalid insns combination).
16744 In that case, inst.error is set.
16745 Therefore, inst.error has to be checked after the execution of
16746 the tencode () routine.
16747
16748 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16749 any pending state change (if any) that didn't take place in
16750 handle_it_state () as explained above. */
16751
16752 static void
16753 it_fsm_pre_encode (void)
16754 {
16755 if (inst.cond != COND_ALWAYS)
16756 inst.it_insn_type = INSIDE_IT_INSN;
16757 else
16758 inst.it_insn_type = OUTSIDE_IT_INSN;
16759
16760 now_it.state_handled = 0;
16761 }
16762
16763 /* IT state FSM handling function. */
16764
16765 static int
16766 handle_it_state (void)
16767 {
16768 now_it.state_handled = 1;
16769 now_it.insn_cond = FALSE;
16770
16771 switch (now_it.state)
16772 {
16773 case OUTSIDE_IT_BLOCK:
16774 switch (inst.it_insn_type)
16775 {
16776 case OUTSIDE_IT_INSN:
16777 break;
16778
16779 case INSIDE_IT_INSN:
16780 case INSIDE_IT_LAST_INSN:
16781 if (thumb_mode == 0)
16782 {
16783 if (unified_syntax
16784 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16785 as_tsktsk (_("Warning: conditional outside an IT block"\
16786 " for Thumb."));
16787 }
16788 else
16789 {
16790 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16791 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16792 {
16793 /* Automatically generate the IT instruction. */
16794 new_automatic_it_block (inst.cond);
16795 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16796 close_automatic_it_block ();
16797 }
16798 else
16799 {
16800 inst.error = BAD_OUT_IT;
16801 return FAIL;
16802 }
16803 }
16804 break;
16805
16806 case IF_INSIDE_IT_LAST_INSN:
16807 case NEUTRAL_IT_INSN:
16808 break;
16809
16810 case IT_INSN:
16811 now_it.state = MANUAL_IT_BLOCK;
16812 now_it.block_length = 0;
16813 break;
16814 }
16815 break;
16816
16817 case AUTOMATIC_IT_BLOCK:
16818 /* Three things may happen now:
16819 a) We should increment current it block size;
16820 b) We should close current it block (closing insn or 4 insns);
16821 c) We should close current it block and start a new one (due
16822 to incompatible conditions or
16823 4 insns-length block reached). */
16824
16825 switch (inst.it_insn_type)
16826 {
16827 case OUTSIDE_IT_INSN:
16828 /* The closure of the block shall happen immediatelly,
16829 so any in_it_block () call reports the block as closed. */
16830 force_automatic_it_block_close ();
16831 break;
16832
16833 case INSIDE_IT_INSN:
16834 case INSIDE_IT_LAST_INSN:
16835 case IF_INSIDE_IT_LAST_INSN:
16836 now_it.block_length++;
16837
16838 if (now_it.block_length > 4
16839 || !now_it_compatible (inst.cond))
16840 {
16841 force_automatic_it_block_close ();
16842 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16843 new_automatic_it_block (inst.cond);
16844 }
16845 else
16846 {
16847 now_it.insn_cond = TRUE;
16848 now_it_add_mask (inst.cond);
16849 }
16850
16851 if (now_it.state == AUTOMATIC_IT_BLOCK
16852 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16853 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16854 close_automatic_it_block ();
16855 break;
16856
16857 case NEUTRAL_IT_INSN:
16858 now_it.block_length++;
16859 now_it.insn_cond = TRUE;
16860
16861 if (now_it.block_length > 4)
16862 force_automatic_it_block_close ();
16863 else
16864 now_it_add_mask (now_it.cc & 1);
16865 break;
16866
16867 case IT_INSN:
16868 close_automatic_it_block ();
16869 now_it.state = MANUAL_IT_BLOCK;
16870 break;
16871 }
16872 break;
16873
16874 case MANUAL_IT_BLOCK:
16875 {
16876 /* Check conditional suffixes. */
16877 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16878 int is_last;
16879 now_it.mask <<= 1;
16880 now_it.mask &= 0x1f;
16881 is_last = (now_it.mask == 0x10);
16882 now_it.insn_cond = TRUE;
16883
16884 switch (inst.it_insn_type)
16885 {
16886 case OUTSIDE_IT_INSN:
16887 inst.error = BAD_NOT_IT;
16888 return FAIL;
16889
16890 case INSIDE_IT_INSN:
16891 if (cond != inst.cond)
16892 {
16893 inst.error = BAD_IT_COND;
16894 return FAIL;
16895 }
16896 break;
16897
16898 case INSIDE_IT_LAST_INSN:
16899 case IF_INSIDE_IT_LAST_INSN:
16900 if (cond != inst.cond)
16901 {
16902 inst.error = BAD_IT_COND;
16903 return FAIL;
16904 }
16905 if (!is_last)
16906 {
16907 inst.error = BAD_BRANCH;
16908 return FAIL;
16909 }
16910 break;
16911
16912 case NEUTRAL_IT_INSN:
16913 /* The BKPT instruction is unconditional even in an IT block. */
16914 break;
16915
16916 case IT_INSN:
16917 inst.error = BAD_IT_IT;
16918 return FAIL;
16919 }
16920 }
16921 break;
16922 }
16923
16924 return SUCCESS;
16925 }
16926
16927 struct depr_insn_mask
16928 {
16929 unsigned long pattern;
16930 unsigned long mask;
16931 const char* description;
16932 };
16933
16934 /* List of 16-bit instruction patterns deprecated in an IT block in
16935 ARMv8. */
16936 static const struct depr_insn_mask depr_it_insns[] = {
16937 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16938 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16939 { 0xa000, 0xb800, N_("ADR") },
16940 { 0x4800, 0xf800, N_("Literal loads") },
16941 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16942 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16943 { 0, 0, NULL }
16944 };
16945
16946 static void
16947 it_fsm_post_encode (void)
16948 {
16949 int is_last;
16950
16951 if (!now_it.state_handled)
16952 handle_it_state ();
16953
16954 if (now_it.insn_cond
16955 && !now_it.warn_deprecated
16956 && warn_on_deprecated
16957 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16958 {
16959 if (inst.instruction >= 0x10000)
16960 {
16961 as_warn (_("it blocks containing wide Thumb instructions are "
16962 "deprecated in ARMv8"));
16963 now_it.warn_deprecated = TRUE;
16964 }
16965 else
16966 {
16967 const struct depr_insn_mask *p = depr_it_insns;
16968
16969 while (p->mask != 0)
16970 {
16971 if ((inst.instruction & p->mask) == p->pattern)
16972 {
16973 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16974 "of the following class are deprecated in ARMv8: "
16975 "%s"), p->description);
16976 now_it.warn_deprecated = TRUE;
16977 break;
16978 }
16979
16980 ++p;
16981 }
16982 }
16983
16984 if (now_it.block_length > 1)
16985 {
16986 as_warn (_("it blocks of more than one conditional instruction are "
16987 "deprecated in ARMv8"));
16988 now_it.warn_deprecated = TRUE;
16989 }
16990 }
16991
16992 is_last = (now_it.mask == 0x10);
16993 if (is_last)
16994 {
16995 now_it.state = OUTSIDE_IT_BLOCK;
16996 now_it.mask = 0;
16997 }
16998 }
16999
17000 static void
17001 force_automatic_it_block_close (void)
17002 {
17003 if (now_it.state == AUTOMATIC_IT_BLOCK)
17004 {
17005 close_automatic_it_block ();
17006 now_it.state = OUTSIDE_IT_BLOCK;
17007 now_it.mask = 0;
17008 }
17009 }
17010
17011 static int
17012 in_it_block (void)
17013 {
17014 if (!now_it.state_handled)
17015 handle_it_state ();
17016
17017 return now_it.state != OUTSIDE_IT_BLOCK;
17018 }
17019
17020 void
17021 md_assemble (char *str)
17022 {
17023 char *p = str;
17024 const struct asm_opcode * opcode;
17025
17026 /* Align the previous label if needed. */
17027 if (last_label_seen != NULL)
17028 {
17029 symbol_set_frag (last_label_seen, frag_now);
17030 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
17031 S_SET_SEGMENT (last_label_seen, now_seg);
17032 }
17033
17034 memset (&inst, '\0', sizeof (inst));
17035 inst.reloc.type = BFD_RELOC_UNUSED;
17036
17037 opcode = opcode_lookup (&p);
17038 if (!opcode)
17039 {
17040 /* It wasn't an instruction, but it might be a register alias of
17041 the form alias .req reg, or a Neon .dn/.qn directive. */
17042 if (! create_register_alias (str, p)
17043 && ! create_neon_reg_alias (str, p))
17044 as_bad (_("bad instruction `%s'"), str);
17045
17046 return;
17047 }
17048
17049 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
17050 as_warn (_("s suffix on comparison instruction is deprecated"));
17051
17052 /* The value which unconditional instructions should have in place of the
17053 condition field. */
17054 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
17055
17056 if (thumb_mode)
17057 {
17058 arm_feature_set variant;
17059
17060 variant = cpu_variant;
17061 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
17062 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
17063 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
17064 /* Check that this instruction is supported for this CPU. */
17065 if (!opcode->tvariant
17066 || (thumb_mode == 1
17067 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
17068 {
17069 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
17070 return;
17071 }
17072 if (inst.cond != COND_ALWAYS && !unified_syntax
17073 && opcode->tencode != do_t_branch)
17074 {
17075 as_bad (_("Thumb does not support conditional execution"));
17076 return;
17077 }
17078
17079 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
17080 {
17081 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
17082 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
17083 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
17084 {
17085 /* Two things are addressed here.
17086 1) Implicit require narrow instructions on Thumb-1.
17087 This avoids relaxation accidentally introducing Thumb-2
17088 instructions.
17089 2) Reject wide instructions in non Thumb-2 cores. */
17090 if (inst.size_req == 0)
17091 inst.size_req = 2;
17092 else if (inst.size_req == 4)
17093 {
17094 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
17095 return;
17096 }
17097 }
17098 }
17099
17100 inst.instruction = opcode->tvalue;
17101
17102 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
17103 {
17104 /* Prepare the it_insn_type for those encodings that don't set
17105 it. */
17106 it_fsm_pre_encode ();
17107
17108 opcode->tencode ();
17109
17110 it_fsm_post_encode ();
17111 }
17112
17113 if (!(inst.error || inst.relax))
17114 {
17115 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
17116 inst.size = (inst.instruction > 0xffff ? 4 : 2);
17117 if (inst.size_req && inst.size_req != inst.size)
17118 {
17119 as_bad (_("cannot honor width suffix -- `%s'"), str);
17120 return;
17121 }
17122 }
17123
17124 /* Something has gone badly wrong if we try to relax a fixed size
17125 instruction. */
17126 gas_assert (inst.size_req == 0 || !inst.relax);
17127
17128 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17129 *opcode->tvariant);
17130 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
17131 set those bits when Thumb-2 32-bit instructions are seen. ie.
17132 anything other than bl/blx and v6-M instructions.
17133 This is overly pessimistic for relaxable instructions. */
17134 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
17135 || inst.relax)
17136 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
17137 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
17138 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
17139 arm_ext_v6t2);
17140
17141 check_neon_suffixes;
17142
17143 if (!inst.error)
17144 {
17145 mapping_state (MAP_THUMB);
17146 }
17147 }
17148 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
17149 {
17150 bfd_boolean is_bx;
17151
17152 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
17153 is_bx = (opcode->aencode == do_bx);
17154
17155 /* Check that this instruction is supported for this CPU. */
17156 if (!(is_bx && fix_v4bx)
17157 && !(opcode->avariant &&
17158 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
17159 {
17160 as_bad (_("selected processor does not support ARM mode `%s'"), str);
17161 return;
17162 }
17163 if (inst.size_req)
17164 {
17165 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
17166 return;
17167 }
17168
17169 inst.instruction = opcode->avalue;
17170 if (opcode->tag == OT_unconditionalF)
17171 inst.instruction |= 0xF << 28;
17172 else
17173 inst.instruction |= inst.cond << 28;
17174 inst.size = INSN_SIZE;
17175 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
17176 {
17177 it_fsm_pre_encode ();
17178 opcode->aencode ();
17179 it_fsm_post_encode ();
17180 }
17181 /* Arm mode bx is marked as both v4T and v5 because it's still required
17182 on a hypothetical non-thumb v5 core. */
17183 if (is_bx)
17184 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
17185 else
17186 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
17187 *opcode->avariant);
17188
17189 check_neon_suffixes;
17190
17191 if (!inst.error)
17192 {
17193 mapping_state (MAP_ARM);
17194 }
17195 }
17196 else
17197 {
17198 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
17199 "-- `%s'"), str);
17200 return;
17201 }
17202 output_inst (str);
17203 }
17204
17205 static void
17206 check_it_blocks_finished (void)
17207 {
17208 #ifdef OBJ_ELF
17209 asection *sect;
17210
17211 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
17212 if (seg_info (sect)->tc_segment_info_data.current_it.state
17213 == MANUAL_IT_BLOCK)
17214 {
17215 as_warn (_("section '%s' finished with an open IT block."),
17216 sect->name);
17217 }
17218 #else
17219 if (now_it.state == MANUAL_IT_BLOCK)
17220 as_warn (_("file finished with an open IT block."));
17221 #endif
17222 }
17223
17224 /* Various frobbings of labels and their addresses. */
17225
17226 void
17227 arm_start_line_hook (void)
17228 {
17229 last_label_seen = NULL;
17230 }
17231
17232 void
17233 arm_frob_label (symbolS * sym)
17234 {
17235 last_label_seen = sym;
17236
17237 ARM_SET_THUMB (sym, thumb_mode);
17238
17239 #if defined OBJ_COFF || defined OBJ_ELF
17240 ARM_SET_INTERWORK (sym, support_interwork);
17241 #endif
17242
17243 force_automatic_it_block_close ();
17244
17245 /* Note - do not allow local symbols (.Lxxx) to be labelled
17246 as Thumb functions. This is because these labels, whilst
17247 they exist inside Thumb code, are not the entry points for
17248 possible ARM->Thumb calls. Also, these labels can be used
17249 as part of a computed goto or switch statement. eg gcc
17250 can generate code that looks like this:
17251
17252 ldr r2, [pc, .Laaa]
17253 lsl r3, r3, #2
17254 ldr r2, [r3, r2]
17255 mov pc, r2
17256
17257 .Lbbb: .word .Lxxx
17258 .Lccc: .word .Lyyy
17259 ..etc...
17260 .Laaa: .word Lbbb
17261
17262 The first instruction loads the address of the jump table.
17263 The second instruction converts a table index into a byte offset.
17264 The third instruction gets the jump address out of the table.
17265 The fourth instruction performs the jump.
17266
17267 If the address stored at .Laaa is that of a symbol which has the
17268 Thumb_Func bit set, then the linker will arrange for this address
17269 to have the bottom bit set, which in turn would mean that the
17270 address computation performed by the third instruction would end
17271 up with the bottom bit set. Since the ARM is capable of unaligned
17272 word loads, the instruction would then load the incorrect address
17273 out of the jump table, and chaos would ensue. */
17274 if (label_is_thumb_function_name
17275 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
17276 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
17277 {
17278 /* When the address of a Thumb function is taken the bottom
17279 bit of that address should be set. This will allow
17280 interworking between Arm and Thumb functions to work
17281 correctly. */
17282
17283 THUMB_SET_FUNC (sym, 1);
17284
17285 label_is_thumb_function_name = FALSE;
17286 }
17287
17288 dwarf2_emit_label (sym);
17289 }
17290
17291 bfd_boolean
17292 arm_data_in_code (void)
17293 {
17294 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
17295 {
17296 *input_line_pointer = '/';
17297 input_line_pointer += 5;
17298 *input_line_pointer = 0;
17299 return TRUE;
17300 }
17301
17302 return FALSE;
17303 }
17304
17305 char *
17306 arm_canonicalize_symbol_name (char * name)
17307 {
17308 int len;
17309
17310 if (thumb_mode && (len = strlen (name)) > 5
17311 && streq (name + len - 5, "/data"))
17312 *(name + len - 5) = 0;
17313
17314 return name;
17315 }
17316 \f
17317 /* Table of all register names defined by default. The user can
17318 define additional names with .req. Note that all register names
17319 should appear in both upper and lowercase variants. Some registers
17320 also have mixed-case names. */
17321
17322 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
17323 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
17324 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
17325 #define REGSET(p,t) \
17326 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
17327 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
17328 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
17329 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
17330 #define REGSETH(p,t) \
17331 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
17332 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
17333 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
17334 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
17335 #define REGSET2(p,t) \
17336 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
17337 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
17338 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
17339 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
17340 #define SPLRBANK(base,bank,t) \
17341 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
17342 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
17343 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
17344 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
17345 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
17346 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
17347
17348 static const struct reg_entry reg_names[] =
17349 {
17350 /* ARM integer registers. */
17351 REGSET(r, RN), REGSET(R, RN),
17352
17353 /* ATPCS synonyms. */
17354 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
17355 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
17356 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
17357
17358 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
17359 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
17360 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
17361
17362 /* Well-known aliases. */
17363 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
17364 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
17365
17366 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
17367 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
17368
17369 /* Coprocessor numbers. */
17370 REGSET(p, CP), REGSET(P, CP),
17371
17372 /* Coprocessor register numbers. The "cr" variants are for backward
17373 compatibility. */
17374 REGSET(c, CN), REGSET(C, CN),
17375 REGSET(cr, CN), REGSET(CR, CN),
17376
17377 /* ARM banked registers. */
17378 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
17379 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
17380 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
17381 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
17382 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
17383 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
17384 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
17385
17386 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
17387 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
17388 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
17389 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
17390 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
17391 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
17392 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
17393 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
17394
17395 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
17396 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
17397 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
17398 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
17399 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
17400 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
17401 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
17402 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
17403 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
17404
17405 /* FPA registers. */
17406 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
17407 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
17408
17409 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
17410 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
17411
17412 /* VFP SP registers. */
17413 REGSET(s,VFS), REGSET(S,VFS),
17414 REGSETH(s,VFS), REGSETH(S,VFS),
17415
17416 /* VFP DP Registers. */
17417 REGSET(d,VFD), REGSET(D,VFD),
17418 /* Extra Neon DP registers. */
17419 REGSETH(d,VFD), REGSETH(D,VFD),
17420
17421 /* Neon QP registers. */
17422 REGSET2(q,NQ), REGSET2(Q,NQ),
17423
17424 /* VFP control registers. */
17425 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17426 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17427 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17428 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17429 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17430 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17431
17432 /* Maverick DSP coprocessor registers. */
17433 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17434 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17435
17436 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17437 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17438 REGDEF(dspsc,0,DSPSC),
17439
17440 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17441 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17442 REGDEF(DSPSC,0,DSPSC),
17443
17444 /* iWMMXt data registers - p0, c0-15. */
17445 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17446
17447 /* iWMMXt control registers - p1, c0-3. */
17448 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17449 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17450 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17451 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17452
17453 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17454 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17455 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17456 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17457 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17458
17459 /* XScale accumulator registers. */
17460 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17461 };
17462 #undef REGDEF
17463 #undef REGNUM
17464 #undef REGSET
17465
17466 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17467 within psr_required_here. */
17468 static const struct asm_psr psrs[] =
17469 {
17470 /* Backward compatibility notation. Note that "all" is no longer
17471 truly all possible PSR bits. */
17472 {"all", PSR_c | PSR_f},
17473 {"flg", PSR_f},
17474 {"ctl", PSR_c},
17475
17476 /* Individual flags. */
17477 {"f", PSR_f},
17478 {"c", PSR_c},
17479 {"x", PSR_x},
17480 {"s", PSR_s},
17481
17482 /* Combinations of flags. */
17483 {"fs", PSR_f | PSR_s},
17484 {"fx", PSR_f | PSR_x},
17485 {"fc", PSR_f | PSR_c},
17486 {"sf", PSR_s | PSR_f},
17487 {"sx", PSR_s | PSR_x},
17488 {"sc", PSR_s | PSR_c},
17489 {"xf", PSR_x | PSR_f},
17490 {"xs", PSR_x | PSR_s},
17491 {"xc", PSR_x | PSR_c},
17492 {"cf", PSR_c | PSR_f},
17493 {"cs", PSR_c | PSR_s},
17494 {"cx", PSR_c | PSR_x},
17495 {"fsx", PSR_f | PSR_s | PSR_x},
17496 {"fsc", PSR_f | PSR_s | PSR_c},
17497 {"fxs", PSR_f | PSR_x | PSR_s},
17498 {"fxc", PSR_f | PSR_x | PSR_c},
17499 {"fcs", PSR_f | PSR_c | PSR_s},
17500 {"fcx", PSR_f | PSR_c | PSR_x},
17501 {"sfx", PSR_s | PSR_f | PSR_x},
17502 {"sfc", PSR_s | PSR_f | PSR_c},
17503 {"sxf", PSR_s | PSR_x | PSR_f},
17504 {"sxc", PSR_s | PSR_x | PSR_c},
17505 {"scf", PSR_s | PSR_c | PSR_f},
17506 {"scx", PSR_s | PSR_c | PSR_x},
17507 {"xfs", PSR_x | PSR_f | PSR_s},
17508 {"xfc", PSR_x | PSR_f | PSR_c},
17509 {"xsf", PSR_x | PSR_s | PSR_f},
17510 {"xsc", PSR_x | PSR_s | PSR_c},
17511 {"xcf", PSR_x | PSR_c | PSR_f},
17512 {"xcs", PSR_x | PSR_c | PSR_s},
17513 {"cfs", PSR_c | PSR_f | PSR_s},
17514 {"cfx", PSR_c | PSR_f | PSR_x},
17515 {"csf", PSR_c | PSR_s | PSR_f},
17516 {"csx", PSR_c | PSR_s | PSR_x},
17517 {"cxf", PSR_c | PSR_x | PSR_f},
17518 {"cxs", PSR_c | PSR_x | PSR_s},
17519 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17520 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17521 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17522 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17523 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17524 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17525 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17526 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17527 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17528 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17529 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17530 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17531 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17532 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17533 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17534 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17535 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17536 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17537 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17538 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17539 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17540 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17541 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17542 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17543 };
17544
17545 /* Table of V7M psr names. */
17546 static const struct asm_psr v7m_psrs[] =
17547 {
17548 {"apsr", 0 }, {"APSR", 0 },
17549 {"iapsr", 1 }, {"IAPSR", 1 },
17550 {"eapsr", 2 }, {"EAPSR", 2 },
17551 {"psr", 3 }, {"PSR", 3 },
17552 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17553 {"ipsr", 5 }, {"IPSR", 5 },
17554 {"epsr", 6 }, {"EPSR", 6 },
17555 {"iepsr", 7 }, {"IEPSR", 7 },
17556 {"msp", 8 }, {"MSP", 8 },
17557 {"psp", 9 }, {"PSP", 9 },
17558 {"primask", 16}, {"PRIMASK", 16},
17559 {"basepri", 17}, {"BASEPRI", 17},
17560 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17561 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17562 {"faultmask", 19}, {"FAULTMASK", 19},
17563 {"control", 20}, {"CONTROL", 20}
17564 };
17565
17566 /* Table of all shift-in-operand names. */
17567 static const struct asm_shift_name shift_names [] =
17568 {
17569 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17570 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17571 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17572 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17573 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17574 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17575 };
17576
17577 /* Table of all explicit relocation names. */
17578 #ifdef OBJ_ELF
17579 static struct reloc_entry reloc_names[] =
17580 {
17581 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17582 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17583 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17584 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17585 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17586 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17587 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17588 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17589 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17590 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17591 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17592 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17593 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17594 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17595 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17596 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17597 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17598 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17599 };
17600 #endif
17601
17602 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17603 static const struct asm_cond conds[] =
17604 {
17605 {"eq", 0x0},
17606 {"ne", 0x1},
17607 {"cs", 0x2}, {"hs", 0x2},
17608 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17609 {"mi", 0x4},
17610 {"pl", 0x5},
17611 {"vs", 0x6},
17612 {"vc", 0x7},
17613 {"hi", 0x8},
17614 {"ls", 0x9},
17615 {"ge", 0xa},
17616 {"lt", 0xb},
17617 {"gt", 0xc},
17618 {"le", 0xd},
17619 {"al", 0xe}
17620 };
17621
17622 #define UL_BARRIER(L,U,CODE,FEAT) \
17623 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17624 { U, CODE, ARM_FEATURE (FEAT, 0) }
17625
17626 static struct asm_barrier_opt barrier_opt_names[] =
17627 {
17628 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17629 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17630 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17631 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17632 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17633 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17634 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17635 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17636 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17637 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17638 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17639 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17640 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17641 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17642 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17643 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17644 };
17645
17646 #undef UL_BARRIER
17647
17648 /* Table of ARM-format instructions. */
17649
17650 /* Macros for gluing together operand strings. N.B. In all cases
17651 other than OPS0, the trailing OP_stop comes from default
17652 zero-initialization of the unspecified elements of the array. */
17653 #define OPS0() { OP_stop, }
17654 #define OPS1(a) { OP_##a, }
17655 #define OPS2(a,b) { OP_##a,OP_##b, }
17656 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17657 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17658 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17659 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17660
17661 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17662 This is useful when mixing operands for ARM and THUMB, i.e. using the
17663 MIX_ARM_THUMB_OPERANDS macro.
17664 In order to use these macros, prefix the number of operands with _
17665 e.g. _3. */
17666 #define OPS_1(a) { a, }
17667 #define OPS_2(a,b) { a,b, }
17668 #define OPS_3(a,b,c) { a,b,c, }
17669 #define OPS_4(a,b,c,d) { a,b,c,d, }
17670 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17671 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17672
17673 /* These macros abstract out the exact format of the mnemonic table and
17674 save some repeated characters. */
17675
17676 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17677 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17678 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17679 THUMB_VARIANT, do_##ae, do_##te }
17680
17681 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17682 a T_MNEM_xyz enumerator. */
17683 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17684 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17685 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17686 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17687
17688 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17689 infix after the third character. */
17690 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17691 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17692 THUMB_VARIANT, do_##ae, do_##te }
17693 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17694 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17695 THUMB_VARIANT, do_##ae, do_##te }
17696 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17697 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17698 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17699 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17700 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17701 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17702 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17703 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17704
17705 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17706 appear in the condition table. */
17707 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17708 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17709 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17710
17711 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17712 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17713 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17714 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17715 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17716 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17717 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17718 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17719 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17720 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17721 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17722 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17723 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17724 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17725 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17726 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17727 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17728 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17729 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17730 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17731
17732 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17733 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17734 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17735 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17736
17737 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17738 field is still 0xE. Many of the Thumb variants can be executed
17739 conditionally, so this is checked separately. */
17740 #define TUE(mnem, op, top, nops, ops, ae, te) \
17741 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17742 THUMB_VARIANT, do_##ae, do_##te }
17743
17744 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17745 condition code field. */
17746 #define TUF(mnem, op, top, nops, ops, ae, te) \
17747 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17748 THUMB_VARIANT, do_##ae, do_##te }
17749
17750 /* ARM-only variants of all the above. */
17751 #define CE(mnem, op, nops, ops, ae) \
17752 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17753
17754 #define C3(mnem, op, nops, ops, ae) \
17755 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17756
17757 /* Legacy mnemonics that always have conditional infix after the third
17758 character. */
17759 #define CL(mnem, op, nops, ops, ae) \
17760 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17761 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17762
17763 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17764 #define cCE(mnem, op, nops, ops, ae) \
17765 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17766
17767 /* Legacy coprocessor instructions where conditional infix and conditional
17768 suffix are ambiguous. For consistency this includes all FPA instructions,
17769 not just the potentially ambiguous ones. */
17770 #define cCL(mnem, op, nops, ops, ae) \
17771 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17772 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17773
17774 /* Coprocessor, takes either a suffix or a position-3 infix
17775 (for an FPA corner case). */
17776 #define C3E(mnem, op, nops, ops, ae) \
17777 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17778 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17779
17780 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17781 { m1 #m2 m3, OPS##nops ops, \
17782 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17783 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17784
17785 #define CM(m1, m2, op, nops, ops, ae) \
17786 xCM_ (m1, , m2, op, nops, ops, ae), \
17787 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17788 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17789 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17790 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17791 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17792 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17793 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17794 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17795 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17796 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17797 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17798 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17799 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17800 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17801 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17802 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17803 xCM_ (m1, le, m2, op, nops, ops, ae), \
17804 xCM_ (m1, al, m2, op, nops, ops, ae)
17805
17806 #define UE(mnem, op, nops, ops, ae) \
17807 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17808
17809 #define UF(mnem, op, nops, ops, ae) \
17810 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17811
17812 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17813 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17814 use the same encoding function for each. */
17815 #define NUF(mnem, op, nops, ops, enc) \
17816 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17817 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17818
17819 /* Neon data processing, version which indirects through neon_enc_tab for
17820 the various overloaded versions of opcodes. */
17821 #define nUF(mnem, op, nops, ops, enc) \
17822 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17823 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17824
17825 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17826 version. */
17827 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17828 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17829 THUMB_VARIANT, do_##enc, do_##enc }
17830
17831 #define NCE(mnem, op, nops, ops, enc) \
17832 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17833
17834 #define NCEF(mnem, op, nops, ops, enc) \
17835 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17836
17837 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17838 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17839 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17840 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17841
17842 #define nCE(mnem, op, nops, ops, enc) \
17843 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17844
17845 #define nCEF(mnem, op, nops, ops, enc) \
17846 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17847
17848 #define do_0 0
17849
17850 static const struct asm_opcode insns[] =
17851 {
17852 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17853 #define THUMB_VARIANT &arm_ext_v4t
17854 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17855 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17856 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17857 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17858 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17859 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17860 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17861 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17862 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17863 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17864 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17865 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17866 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17867 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17868 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17869 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17870
17871 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17872 for setting PSR flag bits. They are obsolete in V6 and do not
17873 have Thumb equivalents. */
17874 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17875 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17876 CL("tstp", 110f000, 2, (RR, SH), cmp),
17877 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17878 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17879 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17880 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17881 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17882 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17883
17884 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17885 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17886 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17887 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17888
17889 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17890 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17891 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17892 OP_RRnpc),
17893 OP_ADDRGLDR),ldst, t_ldst),
17894 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17895
17896 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17897 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17898 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17899 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17900 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17901 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17902
17903 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17904 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17905 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17906 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17907
17908 /* Pseudo ops. */
17909 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17910 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17911 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17912
17913 /* Thumb-compatibility pseudo ops. */
17914 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17915 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17916 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17917 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17918 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17919 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17920 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17921 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17922 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17923 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17924 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17925 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17926
17927 /* These may simplify to neg. */
17928 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17929 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17930
17931 #undef THUMB_VARIANT
17932 #define THUMB_VARIANT & arm_ext_v6
17933
17934 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17935
17936 /* V1 instructions with no Thumb analogue prior to V6T2. */
17937 #undef THUMB_VARIANT
17938 #define THUMB_VARIANT & arm_ext_v6t2
17939
17940 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17941 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17942 CL("teqp", 130f000, 2, (RR, SH), cmp),
17943
17944 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17945 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17946 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17947 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17948
17949 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17950 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17951
17952 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17953 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17954
17955 /* V1 instructions with no Thumb analogue at all. */
17956 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17957 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17958
17959 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17960 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17961 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17962 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17963 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17964 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17965 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17966 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17967
17968 #undef ARM_VARIANT
17969 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17970 #undef THUMB_VARIANT
17971 #define THUMB_VARIANT & arm_ext_v4t
17972
17973 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17974 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17975
17976 #undef THUMB_VARIANT
17977 #define THUMB_VARIANT & arm_ext_v6t2
17978
17979 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17980 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17981
17982 /* Generic coprocessor instructions. */
17983 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17984 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17985 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17986 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17987 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17988 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17989 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17990
17991 #undef ARM_VARIANT
17992 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17993
17994 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17995 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17996
17997 #undef ARM_VARIANT
17998 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17999 #undef THUMB_VARIANT
18000 #define THUMB_VARIANT & arm_ext_msr
18001
18002 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
18003 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
18004
18005 #undef ARM_VARIANT
18006 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
18007 #undef THUMB_VARIANT
18008 #define THUMB_VARIANT & arm_ext_v6t2
18009
18010 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18011 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18012 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18013 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18014 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18015 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18016 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
18017 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
18018
18019 #undef ARM_VARIANT
18020 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
18021 #undef THUMB_VARIANT
18022 #define THUMB_VARIANT & arm_ext_v4t
18023
18024 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18025 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18026 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18027 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18028 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18029 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
18030
18031 #undef ARM_VARIANT
18032 #define ARM_VARIANT & arm_ext_v4t_5
18033
18034 /* ARM Architecture 4T. */
18035 /* Note: bx (and blx) are required on V5, even if the processor does
18036 not support Thumb. */
18037 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
18038
18039 #undef ARM_VARIANT
18040 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
18041 #undef THUMB_VARIANT
18042 #define THUMB_VARIANT & arm_ext_v5t
18043
18044 /* Note: blx has 2 variants; the .value coded here is for
18045 BLX(2). Only this variant has conditional execution. */
18046 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
18047 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
18048
18049 #undef THUMB_VARIANT
18050 #define THUMB_VARIANT & arm_ext_v6t2
18051
18052 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
18053 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18054 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18055 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18056 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
18057 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
18058 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18059 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
18060
18061 #undef ARM_VARIANT
18062 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
18063 #undef THUMB_VARIANT
18064 #define THUMB_VARIANT &arm_ext_v5exp
18065
18066 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18067 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18068 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18069 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18070
18071 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18072 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
18073
18074 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18075 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18076 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18077 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
18078
18079 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18080 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18081 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18082 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18083
18084 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18085 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18086
18087 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18088 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18089 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18090 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
18091
18092 #undef ARM_VARIANT
18093 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
18094 #undef THUMB_VARIANT
18095 #define THUMB_VARIANT &arm_ext_v6t2
18096
18097 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
18098 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
18099 ldrd, t_ldstd),
18100 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
18101 ADDRGLDRS), ldrd, t_ldstd),
18102
18103 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18104 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18105
18106 #undef ARM_VARIANT
18107 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
18108
18109 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
18110
18111 #undef ARM_VARIANT
18112 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
18113 #undef THUMB_VARIANT
18114 #define THUMB_VARIANT & arm_ext_v6
18115
18116 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
18117 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
18118 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18119 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18120 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
18121 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18122 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18123 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18124 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18125 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
18126
18127 #undef THUMB_VARIANT
18128 #define THUMB_VARIANT & arm_ext_v6t2
18129
18130 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
18131 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18132 strex, t_strex),
18133 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18134 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
18135
18136 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
18137 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
18138
18139 /* ARM V6 not included in V7M. */
18140 #undef THUMB_VARIANT
18141 #define THUMB_VARIANT & arm_ext_v6_notm
18142 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18143 UF(rfeib, 9900a00, 1, (RRw), rfe),
18144 UF(rfeda, 8100a00, 1, (RRw), rfe),
18145 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18146 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
18147 UF(rfefa, 9900a00, 1, (RRw), rfe),
18148 UF(rfeea, 8100a00, 1, (RRw), rfe),
18149 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
18150 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
18151 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
18152 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
18153 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
18154
18155 /* ARM V6 not included in V7M (eg. integer SIMD). */
18156 #undef THUMB_VARIANT
18157 #define THUMB_VARIANT & arm_ext_v6_dsp
18158 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
18159 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
18160 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
18161 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18162 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18163 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18164 /* Old name for QASX. */
18165 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18166 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18167 /* Old name for QSAX. */
18168 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18169 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18170 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18171 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18172 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18173 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18174 /* Old name for SASX. */
18175 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18176 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18177 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18178 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18179 /* Old name for SHASX. */
18180 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18181 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18182 /* Old name for SHSAX. */
18183 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18184 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18185 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18186 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18187 /* Old name for SSAX. */
18188 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18189 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18190 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18191 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18192 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18193 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18194 /* Old name for UASX. */
18195 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18196 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18197 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18198 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18199 /* Old name for UHASX. */
18200 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18201 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18202 /* Old name for UHSAX. */
18203 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18204 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18205 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18206 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18207 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18208 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18209 /* Old name for UQASX. */
18210 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18211 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18212 /* Old name for UQSAX. */
18213 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18214 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18215 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18216 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18217 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18218 /* Old name for USAX. */
18219 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18220 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18221 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18222 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18223 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18224 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18225 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18226 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18227 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
18228 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
18229 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
18230 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18231 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18232 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18233 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18234 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18235 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18236 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18237 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
18238 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18239 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18240 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18241 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18242 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18243 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18244 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18245 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18246 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18247 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18248 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
18249 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
18250 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
18251 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
18252 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
18253
18254 #undef ARM_VARIANT
18255 #define ARM_VARIANT & arm_ext_v6k
18256 #undef THUMB_VARIANT
18257 #define THUMB_VARIANT & arm_ext_v6k
18258
18259 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
18260 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
18261 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
18262 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
18263
18264 #undef THUMB_VARIANT
18265 #define THUMB_VARIANT & arm_ext_v6_notm
18266 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
18267 ldrexd, t_ldrexd),
18268 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
18269 RRnpcb), strexd, t_strexd),
18270
18271 #undef THUMB_VARIANT
18272 #define THUMB_VARIANT & arm_ext_v6t2
18273 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
18274 rd_rn, rd_rn),
18275 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
18276 rd_rn, rd_rn),
18277 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18278 strex, t_strexbh),
18279 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
18280 strex, t_strexbh),
18281 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
18282
18283 #undef ARM_VARIANT
18284 #define ARM_VARIANT & arm_ext_sec
18285 #undef THUMB_VARIANT
18286 #define THUMB_VARIANT & arm_ext_sec
18287
18288 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
18289
18290 #undef ARM_VARIANT
18291 #define ARM_VARIANT & arm_ext_virt
18292 #undef THUMB_VARIANT
18293 #define THUMB_VARIANT & arm_ext_virt
18294
18295 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
18296 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
18297
18298 #undef ARM_VARIANT
18299 #define ARM_VARIANT & arm_ext_v6t2
18300 #undef THUMB_VARIANT
18301 #define THUMB_VARIANT & arm_ext_v6t2
18302
18303 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
18304 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
18305 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18306 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
18307
18308 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
18309 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
18310 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
18311 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
18312
18313 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18314 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18315 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18316 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
18317
18318 /* Thumb-only instructions. */
18319 #undef ARM_VARIANT
18320 #define ARM_VARIANT NULL
18321 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
18322 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
18323
18324 /* ARM does not really have an IT instruction, so always allow it.
18325 The opcode is copied from Thumb in order to allow warnings in
18326 -mimplicit-it=[never | arm] modes. */
18327 #undef ARM_VARIANT
18328 #define ARM_VARIANT & arm_ext_v1
18329
18330 TUE("it", bf08, bf08, 1, (COND), it, t_it),
18331 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
18332 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
18333 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
18334 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
18335 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
18336 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
18337 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
18338 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
18339 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
18340 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
18341 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
18342 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
18343 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
18344 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
18345 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
18346 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
18347 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
18348
18349 /* Thumb2 only instructions. */
18350 #undef ARM_VARIANT
18351 #define ARM_VARIANT NULL
18352
18353 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18354 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
18355 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
18356 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
18357 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
18358 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
18359
18360 /* Hardware division instructions. */
18361 #undef ARM_VARIANT
18362 #define ARM_VARIANT & arm_ext_adiv
18363 #undef THUMB_VARIANT
18364 #define THUMB_VARIANT & arm_ext_div
18365
18366 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
18367 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
18368
18369 /* ARM V6M/V7 instructions. */
18370 #undef ARM_VARIANT
18371 #define ARM_VARIANT & arm_ext_barrier
18372 #undef THUMB_VARIANT
18373 #define THUMB_VARIANT & arm_ext_barrier
18374
18375 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
18376 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
18377 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
18378
18379 /* ARM V7 instructions. */
18380 #undef ARM_VARIANT
18381 #define ARM_VARIANT & arm_ext_v7
18382 #undef THUMB_VARIANT
18383 #define THUMB_VARIANT & arm_ext_v7
18384
18385 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
18386 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
18387
18388 #undef ARM_VARIANT
18389 #define ARM_VARIANT & arm_ext_mp
18390 #undef THUMB_VARIANT
18391 #define THUMB_VARIANT & arm_ext_mp
18392
18393 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
18394
18395 /* AArchv8 instructions. */
18396 #undef ARM_VARIANT
18397 #define ARM_VARIANT & arm_ext_v8
18398 #undef THUMB_VARIANT
18399 #define THUMB_VARIANT & arm_ext_v8
18400
18401 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
18402 TUE("hlt", 1000070, ba80, 1, (oIffffb), bkpt, t_hlt),
18403 TCE("ldraex", 1900e9f, e8d00fef, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18404 TCE("ldraexd", 1b00e9f, e8d000ff, 3, (RRnpc, oRRnpc, RRnpcb),
18405 ldrexd, t_ldrexd),
18406 TCE("ldraexb", 1d00e9f, e8d00fcf, 2, (RRnpc,RRnpcb), rd_rn, rd_rn),
18407 TCE("ldraexh", 1f00e9f, e8d00fdf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18408 TCE("strlex", 1800e90, e8c00fe0, 3, (RRnpc, RRnpc, RRnpcb),
18409 strlex, t_strlex),
18410 TCE("strlexd", 1a00e90, e8c000f0, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb),
18411 strexd, t_strexd),
18412 TCE("strlexb", 1c00e90, e8c00fc0, 3, (RRnpc, RRnpc, RRnpcb),
18413 strlex, t_strlex),
18414 TCE("strlexh", 1e00e90, e8c00fd0, 3, (RRnpc, RRnpc, RRnpcb),
18415 strlex, t_strlex),
18416 TCE("ldra", 1900c9f, e8d00faf, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18417 TCE("ldrab", 1d00c9f, e8d00f8f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18418 TCE("ldrah", 1f00c9f, e8d00f9f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn),
18419 TCE("strl", 180fc90, e8c00faf, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18420 TCE("strlb", 1c0fc90, e8c00f8f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18421 TCE("strlh", 1e0fc90, e8c00f9f, 2, (RRnpc, RRnpcb), rm_rn, rd_rn),
18422
18423 /* ARMv8 T32 only. */
18424 #undef ARM_VARIANT
18425 #define ARM_VARIANT NULL
18426 TUF("dcps1", 0, f78f8001, 0, (), noargs, noargs),
18427 TUF("dcps2", 0, f78f8002, 0, (), noargs, noargs),
18428 TUF("dcps3", 0, f78f8003, 0, (), noargs, noargs),
18429
18430 /* FP for ARMv8. */
18431 #undef ARM_VARIANT
18432 #define ARM_VARIANT & fpu_vfp_ext_armv8
18433 #undef THUMB_VARIANT
18434 #define THUMB_VARIANT & fpu_vfp_ext_armv8
18435
18436 nUF(vseleq, _vseleq, 3, (RVSD, RVSD, RVSD), vsel),
18437 nUF(vselvs, _vselvs, 3, (RVSD, RVSD, RVSD), vsel),
18438 nUF(vselge, _vselge, 3, (RVSD, RVSD, RVSD), vsel),
18439 nUF(vselgt, _vselgt, 3, (RVSD, RVSD, RVSD), vsel),
18440 nUF(vmaxnm, _vmaxnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18441 nUF(vminnm, _vminnm, 3, (RNSDQ, oRNSDQ, RNSDQ), vmaxnm),
18442 nUF(vcvta, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvta),
18443 nUF(vcvtn, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtn),
18444 nUF(vcvtp, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtp),
18445 nUF(vcvtm, _vcvta, 2, (RNSDQ, oRNSDQ), neon_cvtm),
18446 nCE(vrintr, _vrintr, 2, (RNSDQ, oRNSDQ), vrintr),
18447 nCE(vrintz, _vrintr, 2, (RNSDQ, oRNSDQ), vrintz),
18448 nCE(vrintx, _vrintr, 2, (RNSDQ, oRNSDQ), vrintx),
18449 nUF(vrinta, _vrinta, 2, (RNSDQ, oRNSDQ), vrinta),
18450 nUF(vrintn, _vrinta, 2, (RNSDQ, oRNSDQ), vrintn),
18451 nUF(vrintp, _vrinta, 2, (RNSDQ, oRNSDQ), vrintp),
18452 nUF(vrintm, _vrinta, 2, (RNSDQ, oRNSDQ), vrintm),
18453
18454 /* Crypto v1 extensions. */
18455 #undef ARM_VARIANT
18456 #define ARM_VARIANT & fpu_crypto_ext_armv8
18457 #undef THUMB_VARIANT
18458 #define THUMB_VARIANT & fpu_crypto_ext_armv8
18459
18460 nUF(aese, _aes, 2, (RNQ, RNQ), aese),
18461 nUF(aesd, _aes, 2, (RNQ, RNQ), aesd),
18462 nUF(aesmc, _aes, 2, (RNQ, RNQ), aesmc),
18463 nUF(aesimc, _aes, 2, (RNQ, RNQ), aesimc),
18464
18465
18466 #undef ARM_VARIANT
18467 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
18468 #undef THUMB_VARIANT
18469 #define THUMB_VARIANT NULL
18470
18471 cCE("wfs", e200110, 1, (RR), rd),
18472 cCE("rfs", e300110, 1, (RR), rd),
18473 cCE("wfc", e400110, 1, (RR), rd),
18474 cCE("rfc", e500110, 1, (RR), rd),
18475
18476 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
18477 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
18478 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
18479 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
18480
18481 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
18482 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
18483 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
18484 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
18485
18486 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
18487 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18488 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18489 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18490 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18491 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18492 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18493 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18494 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18495 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18496 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18497 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18498
18499 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18500 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18501 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18502 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18503 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18504 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18505 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18506 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18507 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18508 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18509 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18510 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18511
18512 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18513 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18514 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18515 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18516 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18517 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18518 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18519 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18520 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18521 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18522 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18523 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18524
18525 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18526 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18527 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18528 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18529 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18530 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18531 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18532 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18533 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18534 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18535 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18536 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18537
18538 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18539 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18540 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18541 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18542 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18543 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18544 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18545 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18546 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18547 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18548 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18549 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18550
18551 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18552 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18553 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18554 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18555 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18556 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18557 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18558 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18559 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18560 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18561 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18562 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18563
18564 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18565 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18566 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18567 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18568 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18569 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18570 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18571 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18572 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18573 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18574 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18575 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18576
18577 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18578 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18579 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18580 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18581 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18582 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18583 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18584 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18585 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18586 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18587 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18588 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18589
18590 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18591 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18592 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18593 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18594 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18595 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18596 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18597 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18598 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18599 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18600 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18601 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18602
18603 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18604 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18605 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18606 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18607 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18608 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18609 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18610 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18611 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18612 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18613 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18614 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18615
18616 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18617 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18618 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18619 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18620 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18621 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18622 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18623 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18624 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18625 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18626 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18627 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18628
18629 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18630 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18631 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18632 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18633 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18634 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18635 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18636 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18637 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18638 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18639 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18640 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18641
18642 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18643 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18644 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18645 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18646 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18647 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18648 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18649 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18650 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18651 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18652 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18653 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18654
18655 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18656 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18657 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18658 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18659 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18660 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18661 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18662 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18663 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18664 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18665 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18666 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18667
18668 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18669 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18670 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18671 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18672 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18673 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18674 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18675 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18676 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18677 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18678 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18679 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18680
18681 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18682 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18683 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18684 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18685 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18686 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18687 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18688 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18689 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18690 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18691 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18692 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18693
18694 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18695 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18696 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18697 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18698 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18699 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18700 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18701 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18702 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18703 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18704 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18705 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18706
18707 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18708 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18709 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18710 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18711 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18712 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18713 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18714 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18715 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18716 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18717 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18718 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18719
18720 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18721 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18722 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18723 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18724 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18725 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18726 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18727 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18728 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18729 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18730 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18731 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18732
18733 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18734 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18735 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18736 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18737 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18738 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18739 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18740 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18741 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18742 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18743 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18744 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18745
18746 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18747 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18748 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18749 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18750 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18751 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18752 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18753 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18754 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18755 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18756 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18757 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18758
18759 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18760 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18761 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18762 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18763 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18764 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18765 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18766 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18767 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18768 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18769 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18770 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18771
18772 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18773 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18774 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18775 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18776 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18777 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18778 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18779 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18780 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18781 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18782 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18783 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18784
18785 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18786 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18787 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18788 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18789 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18790 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18791 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18792 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18793 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18794 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18795 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18796 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18797
18798 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18799 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18800 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18801 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18802 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18803 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18804 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18805 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18806 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18807 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18808 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18809 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18810
18811 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18812 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18813 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18814 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18815 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18816 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18817 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18818 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18819 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18820 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18821 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18822 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18823
18824 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18825 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18826 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18827 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18828 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18829 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18830 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18831 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18832 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18833 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18834 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18835 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18836
18837 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18838 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18839 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18840 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18841 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18842 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18843 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18844 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18845 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18846 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18847 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18848 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18849
18850 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18851 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18852 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18853 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18854 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18855 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18856 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18857 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18858 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18859 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18860 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18861 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18862
18863 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18864 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18865 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18866 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18867
18868 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18869 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18870 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18871 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18872 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18873 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18874 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18875 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18876 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18877 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18878 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18879 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18880
18881 /* The implementation of the FIX instruction is broken on some
18882 assemblers, in that it accepts a precision specifier as well as a
18883 rounding specifier, despite the fact that this is meaningless.
18884 To be more compatible, we accept it as well, though of course it
18885 does not set any bits. */
18886 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18887 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18888 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18889 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18890 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18891 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18892 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18893 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18894 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18895 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18896 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18897 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18898 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18899
18900 /* Instructions that were new with the real FPA, call them V2. */
18901 #undef ARM_VARIANT
18902 #define ARM_VARIANT & fpu_fpa_ext_v2
18903
18904 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18905 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18906 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18907 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18908 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18909 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18910
18911 #undef ARM_VARIANT
18912 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18913
18914 /* Moves and type conversions. */
18915 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18916 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18917 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18918 cCE("fmstat", ef1fa10, 0, (), noargs),
18919 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18920 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18921 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18922 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18923 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18924 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18925 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18926 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18927 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18928 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18929
18930 /* Memory operations. */
18931 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18932 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18933 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18934 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18935 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18936 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18937 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18938 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18939 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18940 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18941 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18942 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18943 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18944 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18945 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18946 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18947 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18948 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18949
18950 /* Monadic operations. */
18951 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18952 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18953 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18954
18955 /* Dyadic operations. */
18956 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18957 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18958 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18959 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18960 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18961 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18962 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18963 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18964 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18965
18966 /* Comparisons. */
18967 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18968 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18969 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18970 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18971
18972 /* Double precision load/store are still present on single precision
18973 implementations. */
18974 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18975 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18976 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18977 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18978 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18979 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18980 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18981 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18982 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18983 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18984
18985 #undef ARM_VARIANT
18986 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18987
18988 /* Moves and type conversions. */
18989 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18990 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18991 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18992 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18993 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18994 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18995 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18996 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18997 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18998 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18999 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19000 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
19001 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
19002
19003 /* Monadic operations. */
19004 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19005 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19006 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19007
19008 /* Dyadic operations. */
19009 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19010 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19011 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19012 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19013 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19014 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19015 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19016 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19017 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19018
19019 /* Comparisons. */
19020 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
19021 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
19022 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
19023 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
19024
19025 #undef ARM_VARIANT
19026 #define ARM_VARIANT & fpu_vfp_ext_v2
19027
19028 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
19029 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
19030 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
19031 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
19032
19033 /* Instructions which may belong to either the Neon or VFP instruction sets.
19034 Individual encoder functions perform additional architecture checks. */
19035 #undef ARM_VARIANT
19036 #define ARM_VARIANT & fpu_vfp_ext_v1xd
19037 #undef THUMB_VARIANT
19038 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
19039
19040 /* These mnemonics are unique to VFP. */
19041 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
19042 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
19043 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19044 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19045 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19046 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19047 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
19048 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
19049 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
19050 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
19051
19052 /* Mnemonics shared by Neon and VFP. */
19053 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
19054 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19055 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
19056
19057 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19058 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
19059
19060 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19061 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
19062
19063 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19064 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19065 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19066 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19067 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19068 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
19069 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19070 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
19071
19072 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
19073 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
19074 NCEF(vcvtb, eb20a40, 2, (RVSD, RVSD), neon_cvtb),
19075 NCEF(vcvtt, eb20a40, 2, (RVSD, RVSD), neon_cvtt),
19076
19077
19078 /* NOTE: All VMOV encoding is special-cased! */
19079 NCE(vmov, 0, 1, (VMOV), neon_mov),
19080 NCE(vmovq, 0, 1, (VMOV), neon_mov),
19081
19082 #undef THUMB_VARIANT
19083 #define THUMB_VARIANT & fpu_neon_ext_v1
19084 #undef ARM_VARIANT
19085 #define ARM_VARIANT & fpu_neon_ext_v1
19086
19087 /* Data processing with three registers of the same length. */
19088 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
19089 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
19090 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
19091 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19092 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19093 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19094 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19095 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
19096 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
19097 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
19098 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19099 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19100 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
19101 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
19102 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19103 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19104 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
19105 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
19106 /* If not immediate, fall back to neon_dyadic_i64_su.
19107 shl_imm should accept I8 I16 I32 I64,
19108 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
19109 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
19110 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
19111 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
19112 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
19113 /* Logic ops, types optional & ignored. */
19114 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19115 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19116 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19117 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19118 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19119 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19120 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
19121 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
19122 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
19123 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
19124 /* Bitfield ops, untyped. */
19125 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19126 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19127 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19128 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19129 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
19130 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
19131 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
19132 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19133 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19134 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19135 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19136 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
19137 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
19138 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
19139 back to neon_dyadic_if_su. */
19140 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19141 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19142 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
19143 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
19144 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19145 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19146 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
19147 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
19148 /* Comparison. Type I8 I16 I32 F32. */
19149 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
19150 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
19151 /* As above, D registers only. */
19152 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19153 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
19154 /* Int and float variants, signedness unimportant. */
19155 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19156 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
19157 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
19158 /* Add/sub take types I8 I16 I32 I64 F32. */
19159 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19160 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
19161 /* vtst takes sizes 8, 16, 32. */
19162 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
19163 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
19164 /* VMUL takes I8 I16 I32 F32 P8. */
19165 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
19166 /* VQD{R}MULH takes S16 S32. */
19167 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19168 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19169 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
19170 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
19171 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19172 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19173 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
19174 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
19175 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19176 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19177 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
19178 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
19179 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19180 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19181 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
19182 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
19183
19184 /* Two address, int/float. Types S8 S16 S32 F32. */
19185 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
19186 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
19187
19188 /* Data processing with two registers and a shift amount. */
19189 /* Right shifts, and variants with rounding.
19190 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
19191 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19192 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19193 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
19194 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
19195 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19196 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19197 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
19198 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
19199 /* Shift and insert. Sizes accepted 8 16 32 64. */
19200 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
19201 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
19202 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
19203 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
19204 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
19205 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
19206 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
19207 /* Right shift immediate, saturating & narrowing, with rounding variants.
19208 Types accepted S16 S32 S64 U16 U32 U64. */
19209 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19210 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
19211 /* As above, unsigned. Types accepted S16 S32 S64. */
19212 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19213 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
19214 /* Right shift narrowing. Types accepted I16 I32 I64. */
19215 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19216 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
19217 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
19218 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
19219 /* CVT with optional immediate for fixed-point variant. */
19220 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
19221
19222 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
19223 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
19224
19225 /* Data processing, three registers of different lengths. */
19226 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
19227 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
19228 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
19229 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
19230 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
19231 /* If not scalar, fall back to neon_dyadic_long.
19232 Vector types as above, scalar types S16 S32 U16 U32. */
19233 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19234 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
19235 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
19236 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19237 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
19238 /* Dyadic, narrowing insns. Types I16 I32 I64. */
19239 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19240 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19241 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19242 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
19243 /* Saturating doubling multiplies. Types S16 S32. */
19244 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19245 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19246 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
19247 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
19248 S16 S32 U16 U32. */
19249 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
19250
19251 /* Extract. Size 8. */
19252 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
19253 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
19254
19255 /* Two registers, miscellaneous. */
19256 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
19257 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
19258 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
19259 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
19260 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
19261 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
19262 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
19263 /* Vector replicate. Sizes 8 16 32. */
19264 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
19265 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
19266 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
19267 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
19268 /* VMOVN. Types I16 I32 I64. */
19269 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
19270 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
19271 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
19272 /* VQMOVUN. Types S16 S32 S64. */
19273 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
19274 /* VZIP / VUZP. Sizes 8 16 32. */
19275 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
19276 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
19277 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
19278 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
19279 /* VQABS / VQNEG. Types S8 S16 S32. */
19280 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19281 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
19282 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
19283 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
19284 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
19285 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
19286 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
19287 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
19288 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
19289 /* Reciprocal estimates. Types U32 F32. */
19290 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
19291 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
19292 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
19293 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
19294 /* VCLS. Types S8 S16 S32. */
19295 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
19296 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
19297 /* VCLZ. Types I8 I16 I32. */
19298 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
19299 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
19300 /* VCNT. Size 8. */
19301 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
19302 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
19303 /* Two address, untyped. */
19304 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
19305 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
19306 /* VTRN. Sizes 8 16 32. */
19307 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
19308 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
19309
19310 /* Table lookup. Size 8. */
19311 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19312 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
19313
19314 #undef THUMB_VARIANT
19315 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
19316 #undef ARM_VARIANT
19317 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
19318
19319 /* Neon element/structure load/store. */
19320 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19321 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
19322 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19323 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
19324 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19325 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
19326 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19327 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
19328
19329 #undef THUMB_VARIANT
19330 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
19331 #undef ARM_VARIANT
19332 #define ARM_VARIANT &fpu_vfp_ext_v3xd
19333 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
19334 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19335 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19336 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19337 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19338 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19339 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19340 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
19341 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
19342
19343 #undef THUMB_VARIANT
19344 #define THUMB_VARIANT & fpu_vfp_ext_v3
19345 #undef ARM_VARIANT
19346 #define ARM_VARIANT & fpu_vfp_ext_v3
19347
19348 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
19349 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19350 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19351 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19352 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19353 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19354 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19355 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
19356 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
19357
19358 #undef ARM_VARIANT
19359 #define ARM_VARIANT &fpu_vfp_ext_fma
19360 #undef THUMB_VARIANT
19361 #define THUMB_VARIANT &fpu_vfp_ext_fma
19362 /* Mnemonics shared by Neon and VFP. These are included in the
19363 VFP FMA variant; NEON and VFP FMA always includes the NEON
19364 FMA instructions. */
19365 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19366 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
19367 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
19368 the v form should always be used. */
19369 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19370 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
19371 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19372 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
19373 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19374 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
19375
19376 #undef THUMB_VARIANT
19377 #undef ARM_VARIANT
19378 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
19379
19380 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19381 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19382 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19383 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19384 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19385 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
19386 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
19387 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
19388
19389 #undef ARM_VARIANT
19390 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
19391
19392 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
19393 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
19394 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
19395 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
19396 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
19397 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
19398 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
19399 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
19400 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
19401 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19402 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19403 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
19404 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19405 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19406 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
19407 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19408 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19409 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
19410 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
19411 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
19412 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19413 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19414 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19415 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19416 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19417 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
19418 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
19419 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
19420 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
19421 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
19422 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
19423 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
19424 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
19425 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
19426 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
19427 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
19428 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
19429 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19430 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19431 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19432 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19433 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19434 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19435 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19436 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19437 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19438 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
19439 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19440 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19441 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19442 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19443 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19444 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19445 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19446 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19447 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19448 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19449 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19450 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19451 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19452 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19453 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19454 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19455 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19456 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19457 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19458 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19459 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19460 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19461 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19462 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19463 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19464 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19465 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19466 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19467 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19468 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19469 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19470 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19471 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19472 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19473 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19474 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19475 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19476 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19477 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19478 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19479 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19480 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
19481 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19482 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19483 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19484 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19485 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19486 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19487 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19488 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19489 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19490 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19491 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19492 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19493 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19494 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19495 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19496 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19497 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19498 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19499 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19500 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19501 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19502 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19503 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19504 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19505 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19506 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19507 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19508 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19509 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19510 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19511 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19512 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19513 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19514 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19515 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19516 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19517 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19518 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19519 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19520 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19521 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19522 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19523 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19524 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19525 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19526 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19527 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19528 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19529 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19530 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19531 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19532 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19533 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19534 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19535 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19536 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19537 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19538 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19539 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19540 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19541 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19542 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19543 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19544 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19545 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19546 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19547 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19548 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19549 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19550 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19551 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19552 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19553 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19554
19555 #undef ARM_VARIANT
19556 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19557
19558 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19559 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19560 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19561 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19562 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19563 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19564 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19565 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19566 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19567 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19568 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19569 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19570 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19571 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19572 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19573 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19574 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19575 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19576 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19577 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19578 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19579 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19580 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19581 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19582 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19583 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19584 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19585 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19586 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19587 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19588 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19589 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19590 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19591 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19592 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19593 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19594 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19595 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19596 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19597 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19598 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19599 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19600 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19601 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19602 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19603 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19604 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19605 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19606 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19607 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19608 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19609 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19610 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19611 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19612 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19613 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19614 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19615
19616 #undef ARM_VARIANT
19617 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19618
19619 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19620 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19621 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19622 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19623 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19624 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19625 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19626 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19627 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19628 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19629 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19630 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19631 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19632 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19633 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19634 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19635 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19636 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19637 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19638 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19639 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19640 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19641 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19642 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19643 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19644 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19645 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19646 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19647 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19648 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19649 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19650 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19651 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19652 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19653 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19654 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19655 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19656 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19657 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19658 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19659 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19660 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19661 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19662 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19663 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19664 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19665 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19666 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19667 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19668 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19669 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19670 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19671 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19672 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19673 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19674 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19675 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19676 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19677 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19678 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19679 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19680 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19681 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19682 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19683 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19684 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19685 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19686 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19687 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19688 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19689 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19690 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19691 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19692 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19693 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19694 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19695 };
19696 #undef ARM_VARIANT
19697 #undef THUMB_VARIANT
19698 #undef TCE
19699 #undef TCM
19700 #undef TUE
19701 #undef TUF
19702 #undef TCC
19703 #undef cCE
19704 #undef cCL
19705 #undef C3E
19706 #undef CE
19707 #undef CM
19708 #undef UE
19709 #undef UF
19710 #undef UT
19711 #undef NUF
19712 #undef nUF
19713 #undef NCE
19714 #undef nCE
19715 #undef OPS0
19716 #undef OPS1
19717 #undef OPS2
19718 #undef OPS3
19719 #undef OPS4
19720 #undef OPS5
19721 #undef OPS6
19722 #undef do_0
19723 \f
19724 /* MD interface: bits in the object file. */
19725
19726 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19727 for use in the a.out file, and stores them in the array pointed to by buf.
19728 This knows about the endian-ness of the target machine and does
19729 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19730 2 (short) and 4 (long) Floating numbers are put out as a series of
19731 LITTLENUMS (shorts, here at least). */
19732
19733 void
19734 md_number_to_chars (char * buf, valueT val, int n)
19735 {
19736 if (target_big_endian)
19737 number_to_chars_bigendian (buf, val, n);
19738 else
19739 number_to_chars_littleendian (buf, val, n);
19740 }
19741
19742 static valueT
19743 md_chars_to_number (char * buf, int n)
19744 {
19745 valueT result = 0;
19746 unsigned char * where = (unsigned char *) buf;
19747
19748 if (target_big_endian)
19749 {
19750 while (n--)
19751 {
19752 result <<= 8;
19753 result |= (*where++ & 255);
19754 }
19755 }
19756 else
19757 {
19758 while (n--)
19759 {
19760 result <<= 8;
19761 result |= (where[n] & 255);
19762 }
19763 }
19764
19765 return result;
19766 }
19767
19768 /* MD interface: Sections. */
19769
19770 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19771 that an rs_machine_dependent frag may reach. */
19772
19773 unsigned int
19774 arm_frag_max_var (fragS *fragp)
19775 {
19776 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19777 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19778
19779 Note that we generate relaxable instructions even for cases that don't
19780 really need it, like an immediate that's a trivial constant. So we're
19781 overestimating the instruction size for some of those cases. Rather
19782 than putting more intelligence here, it would probably be better to
19783 avoid generating a relaxation frag in the first place when it can be
19784 determined up front that a short instruction will suffice. */
19785
19786 gas_assert (fragp->fr_type == rs_machine_dependent);
19787 return INSN_SIZE;
19788 }
19789
19790 /* Estimate the size of a frag before relaxing. Assume everything fits in
19791 2 bytes. */
19792
19793 int
19794 md_estimate_size_before_relax (fragS * fragp,
19795 segT segtype ATTRIBUTE_UNUSED)
19796 {
19797 fragp->fr_var = 2;
19798 return 2;
19799 }
19800
19801 /* Convert a machine dependent frag. */
19802
19803 void
19804 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19805 {
19806 unsigned long insn;
19807 unsigned long old_op;
19808 char *buf;
19809 expressionS exp;
19810 fixS *fixp;
19811 int reloc_type;
19812 int pc_rel;
19813 int opcode;
19814
19815 buf = fragp->fr_literal + fragp->fr_fix;
19816
19817 old_op = bfd_get_16(abfd, buf);
19818 if (fragp->fr_symbol)
19819 {
19820 exp.X_op = O_symbol;
19821 exp.X_add_symbol = fragp->fr_symbol;
19822 }
19823 else
19824 {
19825 exp.X_op = O_constant;
19826 }
19827 exp.X_add_number = fragp->fr_offset;
19828 opcode = fragp->fr_subtype;
19829 switch (opcode)
19830 {
19831 case T_MNEM_ldr_pc:
19832 case T_MNEM_ldr_pc2:
19833 case T_MNEM_ldr_sp:
19834 case T_MNEM_str_sp:
19835 case T_MNEM_ldr:
19836 case T_MNEM_ldrb:
19837 case T_MNEM_ldrh:
19838 case T_MNEM_str:
19839 case T_MNEM_strb:
19840 case T_MNEM_strh:
19841 if (fragp->fr_var == 4)
19842 {
19843 insn = THUMB_OP32 (opcode);
19844 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19845 {
19846 insn |= (old_op & 0x700) << 4;
19847 }
19848 else
19849 {
19850 insn |= (old_op & 7) << 12;
19851 insn |= (old_op & 0x38) << 13;
19852 }
19853 insn |= 0x00000c00;
19854 put_thumb32_insn (buf, insn);
19855 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19856 }
19857 else
19858 {
19859 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19860 }
19861 pc_rel = (opcode == T_MNEM_ldr_pc2);
19862 break;
19863 case T_MNEM_adr:
19864 if (fragp->fr_var == 4)
19865 {
19866 insn = THUMB_OP32 (opcode);
19867 insn |= (old_op & 0xf0) << 4;
19868 put_thumb32_insn (buf, insn);
19869 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19870 }
19871 else
19872 {
19873 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19874 exp.X_add_number -= 4;
19875 }
19876 pc_rel = 1;
19877 break;
19878 case T_MNEM_mov:
19879 case T_MNEM_movs:
19880 case T_MNEM_cmp:
19881 case T_MNEM_cmn:
19882 if (fragp->fr_var == 4)
19883 {
19884 int r0off = (opcode == T_MNEM_mov
19885 || opcode == T_MNEM_movs) ? 0 : 8;
19886 insn = THUMB_OP32 (opcode);
19887 insn = (insn & 0xe1ffffff) | 0x10000000;
19888 insn |= (old_op & 0x700) << r0off;
19889 put_thumb32_insn (buf, insn);
19890 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19891 }
19892 else
19893 {
19894 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19895 }
19896 pc_rel = 0;
19897 break;
19898 case T_MNEM_b:
19899 if (fragp->fr_var == 4)
19900 {
19901 insn = THUMB_OP32(opcode);
19902 put_thumb32_insn (buf, insn);
19903 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19904 }
19905 else
19906 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19907 pc_rel = 1;
19908 break;
19909 case T_MNEM_bcond:
19910 if (fragp->fr_var == 4)
19911 {
19912 insn = THUMB_OP32(opcode);
19913 insn |= (old_op & 0xf00) << 14;
19914 put_thumb32_insn (buf, insn);
19915 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19916 }
19917 else
19918 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19919 pc_rel = 1;
19920 break;
19921 case T_MNEM_add_sp:
19922 case T_MNEM_add_pc:
19923 case T_MNEM_inc_sp:
19924 case T_MNEM_dec_sp:
19925 if (fragp->fr_var == 4)
19926 {
19927 /* ??? Choose between add and addw. */
19928 insn = THUMB_OP32 (opcode);
19929 insn |= (old_op & 0xf0) << 4;
19930 put_thumb32_insn (buf, insn);
19931 if (opcode == T_MNEM_add_pc)
19932 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19933 else
19934 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19935 }
19936 else
19937 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19938 pc_rel = 0;
19939 break;
19940
19941 case T_MNEM_addi:
19942 case T_MNEM_addis:
19943 case T_MNEM_subi:
19944 case T_MNEM_subis:
19945 if (fragp->fr_var == 4)
19946 {
19947 insn = THUMB_OP32 (opcode);
19948 insn |= (old_op & 0xf0) << 4;
19949 insn |= (old_op & 0xf) << 16;
19950 put_thumb32_insn (buf, insn);
19951 if (insn & (1 << 20))
19952 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19953 else
19954 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19955 }
19956 else
19957 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19958 pc_rel = 0;
19959 break;
19960 default:
19961 abort ();
19962 }
19963 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19964 (enum bfd_reloc_code_real) reloc_type);
19965 fixp->fx_file = fragp->fr_file;
19966 fixp->fx_line = fragp->fr_line;
19967 fragp->fr_fix += fragp->fr_var;
19968 }
19969
19970 /* Return the size of a relaxable immediate operand instruction.
19971 SHIFT and SIZE specify the form of the allowable immediate. */
19972 static int
19973 relax_immediate (fragS *fragp, int size, int shift)
19974 {
19975 offsetT offset;
19976 offsetT mask;
19977 offsetT low;
19978
19979 /* ??? Should be able to do better than this. */
19980 if (fragp->fr_symbol)
19981 return 4;
19982
19983 low = (1 << shift) - 1;
19984 mask = (1 << (shift + size)) - (1 << shift);
19985 offset = fragp->fr_offset;
19986 /* Force misaligned offsets to 32-bit variant. */
19987 if (offset & low)
19988 return 4;
19989 if (offset & ~mask)
19990 return 4;
19991 return 2;
19992 }
19993
19994 /* Get the address of a symbol during relaxation. */
19995 static addressT
19996 relaxed_symbol_addr (fragS *fragp, long stretch)
19997 {
19998 fragS *sym_frag;
19999 addressT addr;
20000 symbolS *sym;
20001
20002 sym = fragp->fr_symbol;
20003 sym_frag = symbol_get_frag (sym);
20004 know (S_GET_SEGMENT (sym) != absolute_section
20005 || sym_frag == &zero_address_frag);
20006 addr = S_GET_VALUE (sym) + fragp->fr_offset;
20007
20008 /* If frag has yet to be reached on this pass, assume it will
20009 move by STRETCH just as we did. If this is not so, it will
20010 be because some frag between grows, and that will force
20011 another pass. */
20012
20013 if (stretch != 0
20014 && sym_frag->relax_marker != fragp->relax_marker)
20015 {
20016 fragS *f;
20017
20018 /* Adjust stretch for any alignment frag. Note that if have
20019 been expanding the earlier code, the symbol may be
20020 defined in what appears to be an earlier frag. FIXME:
20021 This doesn't handle the fr_subtype field, which specifies
20022 a maximum number of bytes to skip when doing an
20023 alignment. */
20024 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
20025 {
20026 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
20027 {
20028 if (stretch < 0)
20029 stretch = - ((- stretch)
20030 & ~ ((1 << (int) f->fr_offset) - 1));
20031 else
20032 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
20033 if (stretch == 0)
20034 break;
20035 }
20036 }
20037 if (f != NULL)
20038 addr += stretch;
20039 }
20040
20041 return addr;
20042 }
20043
20044 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
20045 load. */
20046 static int
20047 relax_adr (fragS *fragp, asection *sec, long stretch)
20048 {
20049 addressT addr;
20050 offsetT val;
20051
20052 /* Assume worst case for symbols not known to be in the same section. */
20053 if (fragp->fr_symbol == NULL
20054 || !S_IS_DEFINED (fragp->fr_symbol)
20055 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20056 || S_IS_WEAK (fragp->fr_symbol))
20057 return 4;
20058
20059 val = relaxed_symbol_addr (fragp, stretch);
20060 addr = fragp->fr_address + fragp->fr_fix;
20061 addr = (addr + 4) & ~3;
20062 /* Force misaligned targets to 32-bit variant. */
20063 if (val & 3)
20064 return 4;
20065 val -= addr;
20066 if (val < 0 || val > 1020)
20067 return 4;
20068 return 2;
20069 }
20070
20071 /* Return the size of a relaxable add/sub immediate instruction. */
20072 static int
20073 relax_addsub (fragS *fragp, asection *sec)
20074 {
20075 char *buf;
20076 int op;
20077
20078 buf = fragp->fr_literal + fragp->fr_fix;
20079 op = bfd_get_16(sec->owner, buf);
20080 if ((op & 0xf) == ((op >> 4) & 0xf))
20081 return relax_immediate (fragp, 8, 0);
20082 else
20083 return relax_immediate (fragp, 3, 0);
20084 }
20085
20086
20087 /* Return the size of a relaxable branch instruction. BITS is the
20088 size of the offset field in the narrow instruction. */
20089
20090 static int
20091 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
20092 {
20093 addressT addr;
20094 offsetT val;
20095 offsetT limit;
20096
20097 /* Assume worst case for symbols not known to be in the same section. */
20098 if (!S_IS_DEFINED (fragp->fr_symbol)
20099 || sec != S_GET_SEGMENT (fragp->fr_symbol)
20100 || S_IS_WEAK (fragp->fr_symbol))
20101 return 4;
20102
20103 #ifdef OBJ_ELF
20104 if (S_IS_DEFINED (fragp->fr_symbol)
20105 && ARM_IS_FUNC (fragp->fr_symbol))
20106 return 4;
20107
20108 /* PR 12532. Global symbols with default visibility might
20109 be preempted, so do not relax relocations to them. */
20110 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
20111 && (! S_IS_LOCAL (fragp->fr_symbol)))
20112 return 4;
20113 #endif
20114
20115 val = relaxed_symbol_addr (fragp, stretch);
20116 addr = fragp->fr_address + fragp->fr_fix + 4;
20117 val -= addr;
20118
20119 /* Offset is a signed value *2 */
20120 limit = 1 << bits;
20121 if (val >= limit || val < -limit)
20122 return 4;
20123 return 2;
20124 }
20125
20126
20127 /* Relax a machine dependent frag. This returns the amount by which
20128 the current size of the frag should change. */
20129
20130 int
20131 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
20132 {
20133 int oldsize;
20134 int newsize;
20135
20136 oldsize = fragp->fr_var;
20137 switch (fragp->fr_subtype)
20138 {
20139 case T_MNEM_ldr_pc2:
20140 newsize = relax_adr (fragp, sec, stretch);
20141 break;
20142 case T_MNEM_ldr_pc:
20143 case T_MNEM_ldr_sp:
20144 case T_MNEM_str_sp:
20145 newsize = relax_immediate (fragp, 8, 2);
20146 break;
20147 case T_MNEM_ldr:
20148 case T_MNEM_str:
20149 newsize = relax_immediate (fragp, 5, 2);
20150 break;
20151 case T_MNEM_ldrh:
20152 case T_MNEM_strh:
20153 newsize = relax_immediate (fragp, 5, 1);
20154 break;
20155 case T_MNEM_ldrb:
20156 case T_MNEM_strb:
20157 newsize = relax_immediate (fragp, 5, 0);
20158 break;
20159 case T_MNEM_adr:
20160 newsize = relax_adr (fragp, sec, stretch);
20161 break;
20162 case T_MNEM_mov:
20163 case T_MNEM_movs:
20164 case T_MNEM_cmp:
20165 case T_MNEM_cmn:
20166 newsize = relax_immediate (fragp, 8, 0);
20167 break;
20168 case T_MNEM_b:
20169 newsize = relax_branch (fragp, sec, 11, stretch);
20170 break;
20171 case T_MNEM_bcond:
20172 newsize = relax_branch (fragp, sec, 8, stretch);
20173 break;
20174 case T_MNEM_add_sp:
20175 case T_MNEM_add_pc:
20176 newsize = relax_immediate (fragp, 8, 2);
20177 break;
20178 case T_MNEM_inc_sp:
20179 case T_MNEM_dec_sp:
20180 newsize = relax_immediate (fragp, 7, 2);
20181 break;
20182 case T_MNEM_addi:
20183 case T_MNEM_addis:
20184 case T_MNEM_subi:
20185 case T_MNEM_subis:
20186 newsize = relax_addsub (fragp, sec);
20187 break;
20188 default:
20189 abort ();
20190 }
20191
20192 fragp->fr_var = newsize;
20193 /* Freeze wide instructions that are at or before the same location as
20194 in the previous pass. This avoids infinite loops.
20195 Don't freeze them unconditionally because targets may be artificially
20196 misaligned by the expansion of preceding frags. */
20197 if (stretch <= 0 && newsize > 2)
20198 {
20199 md_convert_frag (sec->owner, sec, fragp);
20200 frag_wane (fragp);
20201 }
20202
20203 return newsize - oldsize;
20204 }
20205
20206 /* Round up a section size to the appropriate boundary. */
20207
20208 valueT
20209 md_section_align (segT segment ATTRIBUTE_UNUSED,
20210 valueT size)
20211 {
20212 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
20213 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
20214 {
20215 /* For a.out, force the section size to be aligned. If we don't do
20216 this, BFD will align it for us, but it will not write out the
20217 final bytes of the section. This may be a bug in BFD, but it is
20218 easier to fix it here since that is how the other a.out targets
20219 work. */
20220 int align;
20221
20222 align = bfd_get_section_alignment (stdoutput, segment);
20223 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
20224 }
20225 #endif
20226
20227 return size;
20228 }
20229
20230 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
20231 of an rs_align_code fragment. */
20232
20233 void
20234 arm_handle_align (fragS * fragP)
20235 {
20236 static char const arm_noop[2][2][4] =
20237 {
20238 { /* ARMv1 */
20239 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
20240 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
20241 },
20242 { /* ARMv6k */
20243 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
20244 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
20245 },
20246 };
20247 static char const thumb_noop[2][2][2] =
20248 {
20249 { /* Thumb-1 */
20250 {0xc0, 0x46}, /* LE */
20251 {0x46, 0xc0}, /* BE */
20252 },
20253 { /* Thumb-2 */
20254 {0x00, 0xbf}, /* LE */
20255 {0xbf, 0x00} /* BE */
20256 }
20257 };
20258 static char const wide_thumb_noop[2][4] =
20259 { /* Wide Thumb-2 */
20260 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
20261 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
20262 };
20263
20264 unsigned bytes, fix, noop_size;
20265 char * p;
20266 const char * noop;
20267 const char *narrow_noop = NULL;
20268 #ifdef OBJ_ELF
20269 enum mstate state;
20270 #endif
20271
20272 if (fragP->fr_type != rs_align_code)
20273 return;
20274
20275 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
20276 p = fragP->fr_literal + fragP->fr_fix;
20277 fix = 0;
20278
20279 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
20280 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
20281
20282 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
20283
20284 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
20285 {
20286 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
20287 {
20288 narrow_noop = thumb_noop[1][target_big_endian];
20289 noop = wide_thumb_noop[target_big_endian];
20290 }
20291 else
20292 noop = thumb_noop[0][target_big_endian];
20293 noop_size = 2;
20294 #ifdef OBJ_ELF
20295 state = MAP_THUMB;
20296 #endif
20297 }
20298 else
20299 {
20300 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
20301 [target_big_endian];
20302 noop_size = 4;
20303 #ifdef OBJ_ELF
20304 state = MAP_ARM;
20305 #endif
20306 }
20307
20308 fragP->fr_var = noop_size;
20309
20310 if (bytes & (noop_size - 1))
20311 {
20312 fix = bytes & (noop_size - 1);
20313 #ifdef OBJ_ELF
20314 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
20315 #endif
20316 memset (p, 0, fix);
20317 p += fix;
20318 bytes -= fix;
20319 }
20320
20321 if (narrow_noop)
20322 {
20323 if (bytes & noop_size)
20324 {
20325 /* Insert a narrow noop. */
20326 memcpy (p, narrow_noop, noop_size);
20327 p += noop_size;
20328 bytes -= noop_size;
20329 fix += noop_size;
20330 }
20331
20332 /* Use wide noops for the remainder */
20333 noop_size = 4;
20334 }
20335
20336 while (bytes >= noop_size)
20337 {
20338 memcpy (p, noop, noop_size);
20339 p += noop_size;
20340 bytes -= noop_size;
20341 fix += noop_size;
20342 }
20343
20344 fragP->fr_fix += fix;
20345 }
20346
20347 /* Called from md_do_align. Used to create an alignment
20348 frag in a code section. */
20349
20350 void
20351 arm_frag_align_code (int n, int max)
20352 {
20353 char * p;
20354
20355 /* We assume that there will never be a requirement
20356 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
20357 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
20358 {
20359 char err_msg[128];
20360
20361 sprintf (err_msg,
20362 _("alignments greater than %d bytes not supported in .text sections."),
20363 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
20364 as_fatal ("%s", err_msg);
20365 }
20366
20367 p = frag_var (rs_align_code,
20368 MAX_MEM_FOR_RS_ALIGN_CODE,
20369 1,
20370 (relax_substateT) max,
20371 (symbolS *) NULL,
20372 (offsetT) n,
20373 (char *) NULL);
20374 *p = 0;
20375 }
20376
20377 /* Perform target specific initialisation of a frag.
20378 Note - despite the name this initialisation is not done when the frag
20379 is created, but only when its type is assigned. A frag can be created
20380 and used a long time before its type is set, so beware of assuming that
20381 this initialisationis performed first. */
20382
20383 #ifndef OBJ_ELF
20384 void
20385 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
20386 {
20387 /* Record whether this frag is in an ARM or a THUMB area. */
20388 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20389 }
20390
20391 #else /* OBJ_ELF is defined. */
20392 void
20393 arm_init_frag (fragS * fragP, int max_chars)
20394 {
20395 /* If the current ARM vs THUMB mode has not already
20396 been recorded into this frag then do so now. */
20397 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
20398 {
20399 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
20400
20401 /* Record a mapping symbol for alignment frags. We will delete this
20402 later if the alignment ends up empty. */
20403 switch (fragP->fr_type)
20404 {
20405 case rs_align:
20406 case rs_align_test:
20407 case rs_fill:
20408 mapping_state_2 (MAP_DATA, max_chars);
20409 break;
20410 case rs_align_code:
20411 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
20412 break;
20413 default:
20414 break;
20415 }
20416 }
20417 }
20418
20419 /* When we change sections we need to issue a new mapping symbol. */
20420
20421 void
20422 arm_elf_change_section (void)
20423 {
20424 /* Link an unlinked unwind index table section to the .text section. */
20425 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
20426 && elf_linked_to_section (now_seg) == NULL)
20427 elf_linked_to_section (now_seg) = text_section;
20428 }
20429
20430 int
20431 arm_elf_section_type (const char * str, size_t len)
20432 {
20433 if (len == 5 && strncmp (str, "exidx", 5) == 0)
20434 return SHT_ARM_EXIDX;
20435
20436 return -1;
20437 }
20438 \f
20439 /* Code to deal with unwinding tables. */
20440
20441 static void add_unwind_adjustsp (offsetT);
20442
20443 /* Generate any deferred unwind frame offset. */
20444
20445 static void
20446 flush_pending_unwind (void)
20447 {
20448 offsetT offset;
20449
20450 offset = unwind.pending_offset;
20451 unwind.pending_offset = 0;
20452 if (offset != 0)
20453 add_unwind_adjustsp (offset);
20454 }
20455
20456 /* Add an opcode to this list for this function. Two-byte opcodes should
20457 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
20458 order. */
20459
20460 static void
20461 add_unwind_opcode (valueT op, int length)
20462 {
20463 /* Add any deferred stack adjustment. */
20464 if (unwind.pending_offset)
20465 flush_pending_unwind ();
20466
20467 unwind.sp_restored = 0;
20468
20469 if (unwind.opcode_count + length > unwind.opcode_alloc)
20470 {
20471 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
20472 if (unwind.opcodes)
20473 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
20474 unwind.opcode_alloc);
20475 else
20476 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
20477 }
20478 while (length > 0)
20479 {
20480 length--;
20481 unwind.opcodes[unwind.opcode_count] = op & 0xff;
20482 op >>= 8;
20483 unwind.opcode_count++;
20484 }
20485 }
20486
20487 /* Add unwind opcodes to adjust the stack pointer. */
20488
20489 static void
20490 add_unwind_adjustsp (offsetT offset)
20491 {
20492 valueT op;
20493
20494 if (offset > 0x200)
20495 {
20496 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20497 char bytes[5];
20498 int n;
20499 valueT o;
20500
20501 /* Long form: 0xb2, uleb128. */
20502 /* This might not fit in a word so add the individual bytes,
20503 remembering the list is built in reverse order. */
20504 o = (valueT) ((offset - 0x204) >> 2);
20505 if (o == 0)
20506 add_unwind_opcode (0, 1);
20507
20508 /* Calculate the uleb128 encoding of the offset. */
20509 n = 0;
20510 while (o)
20511 {
20512 bytes[n] = o & 0x7f;
20513 o >>= 7;
20514 if (o)
20515 bytes[n] |= 0x80;
20516 n++;
20517 }
20518 /* Add the insn. */
20519 for (; n; n--)
20520 add_unwind_opcode (bytes[n - 1], 1);
20521 add_unwind_opcode (0xb2, 1);
20522 }
20523 else if (offset > 0x100)
20524 {
20525 /* Two short opcodes. */
20526 add_unwind_opcode (0x3f, 1);
20527 op = (offset - 0x104) >> 2;
20528 add_unwind_opcode (op, 1);
20529 }
20530 else if (offset > 0)
20531 {
20532 /* Short opcode. */
20533 op = (offset - 4) >> 2;
20534 add_unwind_opcode (op, 1);
20535 }
20536 else if (offset < 0)
20537 {
20538 offset = -offset;
20539 while (offset > 0x100)
20540 {
20541 add_unwind_opcode (0x7f, 1);
20542 offset -= 0x100;
20543 }
20544 op = ((offset - 4) >> 2) | 0x40;
20545 add_unwind_opcode (op, 1);
20546 }
20547 }
20548
20549 /* Finish the list of unwind opcodes for this function. */
20550 static void
20551 finish_unwind_opcodes (void)
20552 {
20553 valueT op;
20554
20555 if (unwind.fp_used)
20556 {
20557 /* Adjust sp as necessary. */
20558 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20559 flush_pending_unwind ();
20560
20561 /* After restoring sp from the frame pointer. */
20562 op = 0x90 | unwind.fp_reg;
20563 add_unwind_opcode (op, 1);
20564 }
20565 else
20566 flush_pending_unwind ();
20567 }
20568
20569
20570 /* Start an exception table entry. If idx is nonzero this is an index table
20571 entry. */
20572
20573 static void
20574 start_unwind_section (const segT text_seg, int idx)
20575 {
20576 const char * text_name;
20577 const char * prefix;
20578 const char * prefix_once;
20579 const char * group_name;
20580 size_t prefix_len;
20581 size_t text_len;
20582 char * sec_name;
20583 size_t sec_name_len;
20584 int type;
20585 int flags;
20586 int linkonce;
20587
20588 if (idx)
20589 {
20590 prefix = ELF_STRING_ARM_unwind;
20591 prefix_once = ELF_STRING_ARM_unwind_once;
20592 type = SHT_ARM_EXIDX;
20593 }
20594 else
20595 {
20596 prefix = ELF_STRING_ARM_unwind_info;
20597 prefix_once = ELF_STRING_ARM_unwind_info_once;
20598 type = SHT_PROGBITS;
20599 }
20600
20601 text_name = segment_name (text_seg);
20602 if (streq (text_name, ".text"))
20603 text_name = "";
20604
20605 if (strncmp (text_name, ".gnu.linkonce.t.",
20606 strlen (".gnu.linkonce.t.")) == 0)
20607 {
20608 prefix = prefix_once;
20609 text_name += strlen (".gnu.linkonce.t.");
20610 }
20611
20612 prefix_len = strlen (prefix);
20613 text_len = strlen (text_name);
20614 sec_name_len = prefix_len + text_len;
20615 sec_name = (char *) xmalloc (sec_name_len + 1);
20616 memcpy (sec_name, prefix, prefix_len);
20617 memcpy (sec_name + prefix_len, text_name, text_len);
20618 sec_name[prefix_len + text_len] = '\0';
20619
20620 flags = SHF_ALLOC;
20621 linkonce = 0;
20622 group_name = 0;
20623
20624 /* Handle COMDAT group. */
20625 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20626 {
20627 group_name = elf_group_name (text_seg);
20628 if (group_name == NULL)
20629 {
20630 as_bad (_("Group section `%s' has no group signature"),
20631 segment_name (text_seg));
20632 ignore_rest_of_line ();
20633 return;
20634 }
20635 flags |= SHF_GROUP;
20636 linkonce = 1;
20637 }
20638
20639 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20640
20641 /* Set the section link for index tables. */
20642 if (idx)
20643 elf_linked_to_section (now_seg) = text_seg;
20644 }
20645
20646
20647 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20648 personality routine data. Returns zero, or the index table value for
20649 and inline entry. */
20650
20651 static valueT
20652 create_unwind_entry (int have_data)
20653 {
20654 int size;
20655 addressT where;
20656 char *ptr;
20657 /* The current word of data. */
20658 valueT data;
20659 /* The number of bytes left in this word. */
20660 int n;
20661
20662 finish_unwind_opcodes ();
20663
20664 /* Remember the current text section. */
20665 unwind.saved_seg = now_seg;
20666 unwind.saved_subseg = now_subseg;
20667
20668 start_unwind_section (now_seg, 0);
20669
20670 if (unwind.personality_routine == NULL)
20671 {
20672 if (unwind.personality_index == -2)
20673 {
20674 if (have_data)
20675 as_bad (_("handlerdata in cantunwind frame"));
20676 return 1; /* EXIDX_CANTUNWIND. */
20677 }
20678
20679 /* Use a default personality routine if none is specified. */
20680 if (unwind.personality_index == -1)
20681 {
20682 if (unwind.opcode_count > 3)
20683 unwind.personality_index = 1;
20684 else
20685 unwind.personality_index = 0;
20686 }
20687
20688 /* Space for the personality routine entry. */
20689 if (unwind.personality_index == 0)
20690 {
20691 if (unwind.opcode_count > 3)
20692 as_bad (_("too many unwind opcodes for personality routine 0"));
20693
20694 if (!have_data)
20695 {
20696 /* All the data is inline in the index table. */
20697 data = 0x80;
20698 n = 3;
20699 while (unwind.opcode_count > 0)
20700 {
20701 unwind.opcode_count--;
20702 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20703 n--;
20704 }
20705
20706 /* Pad with "finish" opcodes. */
20707 while (n--)
20708 data = (data << 8) | 0xb0;
20709
20710 return data;
20711 }
20712 size = 0;
20713 }
20714 else
20715 /* We get two opcodes "free" in the first word. */
20716 size = unwind.opcode_count - 2;
20717 }
20718 else
20719 {
20720 gas_assert (unwind.personality_index == -1);
20721
20722 /* An extra byte is required for the opcode count. */
20723 size = unwind.opcode_count + 1;
20724 }
20725
20726 size = (size + 3) >> 2;
20727 if (size > 0xff)
20728 as_bad (_("too many unwind opcodes"));
20729
20730 frag_align (2, 0, 0);
20731 record_alignment (now_seg, 2);
20732 unwind.table_entry = expr_build_dot ();
20733
20734 /* Allocate the table entry. */
20735 ptr = frag_more ((size << 2) + 4);
20736 /* PR 13449: Zero the table entries in case some of them are not used. */
20737 memset (ptr, 0, (size << 2) + 4);
20738 where = frag_now_fix () - ((size << 2) + 4);
20739
20740 switch (unwind.personality_index)
20741 {
20742 case -1:
20743 /* ??? Should this be a PLT generating relocation? */
20744 /* Custom personality routine. */
20745 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20746 BFD_RELOC_ARM_PREL31);
20747
20748 where += 4;
20749 ptr += 4;
20750
20751 /* Set the first byte to the number of additional words. */
20752 data = size > 0 ? size - 1 : 0;
20753 n = 3;
20754 break;
20755
20756 /* ABI defined personality routines. */
20757 case 0:
20758 /* Three opcodes bytes are packed into the first word. */
20759 data = 0x80;
20760 n = 3;
20761 break;
20762
20763 case 1:
20764 case 2:
20765 /* The size and first two opcode bytes go in the first word. */
20766 data = ((0x80 + unwind.personality_index) << 8) | size;
20767 n = 2;
20768 break;
20769
20770 default:
20771 /* Should never happen. */
20772 abort ();
20773 }
20774
20775 /* Pack the opcodes into words (MSB first), reversing the list at the same
20776 time. */
20777 while (unwind.opcode_count > 0)
20778 {
20779 if (n == 0)
20780 {
20781 md_number_to_chars (ptr, data, 4);
20782 ptr += 4;
20783 n = 4;
20784 data = 0;
20785 }
20786 unwind.opcode_count--;
20787 n--;
20788 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20789 }
20790
20791 /* Finish off the last word. */
20792 if (n < 4)
20793 {
20794 /* Pad with "finish" opcodes. */
20795 while (n--)
20796 data = (data << 8) | 0xb0;
20797
20798 md_number_to_chars (ptr, data, 4);
20799 }
20800
20801 if (!have_data)
20802 {
20803 /* Add an empty descriptor if there is no user-specified data. */
20804 ptr = frag_more (4);
20805 md_number_to_chars (ptr, 0, 4);
20806 }
20807
20808 return 0;
20809 }
20810
20811
20812 /* Initialize the DWARF-2 unwind information for this procedure. */
20813
20814 void
20815 tc_arm_frame_initial_instructions (void)
20816 {
20817 cfi_add_CFA_def_cfa (REG_SP, 0);
20818 }
20819 #endif /* OBJ_ELF */
20820
20821 /* Convert REGNAME to a DWARF-2 register number. */
20822
20823 int
20824 tc_arm_regname_to_dw2regnum (char *regname)
20825 {
20826 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20827
20828 if (reg == FAIL)
20829 return -1;
20830
20831 return reg;
20832 }
20833
20834 #ifdef TE_PE
20835 void
20836 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20837 {
20838 expressionS exp;
20839
20840 exp.X_op = O_secrel;
20841 exp.X_add_symbol = symbol;
20842 exp.X_add_number = 0;
20843 emit_expr (&exp, size);
20844 }
20845 #endif
20846
20847 /* MD interface: Symbol and relocation handling. */
20848
20849 /* Return the address within the segment that a PC-relative fixup is
20850 relative to. For ARM, PC-relative fixups applied to instructions
20851 are generally relative to the location of the fixup plus 8 bytes.
20852 Thumb branches are offset by 4, and Thumb loads relative to PC
20853 require special handling. */
20854
20855 long
20856 md_pcrel_from_section (fixS * fixP, segT seg)
20857 {
20858 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20859
20860 /* If this is pc-relative and we are going to emit a relocation
20861 then we just want to put out any pipeline compensation that the linker
20862 will need. Otherwise we want to use the calculated base.
20863 For WinCE we skip the bias for externals as well, since this
20864 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20865 if (fixP->fx_pcrel
20866 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20867 || (arm_force_relocation (fixP)
20868 #ifdef TE_WINCE
20869 && !S_IS_EXTERNAL (fixP->fx_addsy)
20870 #endif
20871 )))
20872 base = 0;
20873
20874
20875 switch (fixP->fx_r_type)
20876 {
20877 /* PC relative addressing on the Thumb is slightly odd as the
20878 bottom two bits of the PC are forced to zero for the
20879 calculation. This happens *after* application of the
20880 pipeline offset. However, Thumb adrl already adjusts for
20881 this, so we need not do it again. */
20882 case BFD_RELOC_ARM_THUMB_ADD:
20883 return base & ~3;
20884
20885 case BFD_RELOC_ARM_THUMB_OFFSET:
20886 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20887 case BFD_RELOC_ARM_T32_ADD_PC12:
20888 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20889 return (base + 4) & ~3;
20890
20891 /* Thumb branches are simply offset by +4. */
20892 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20893 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20894 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20895 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20896 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20897 return base + 4;
20898
20899 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20900 if (fixP->fx_addsy
20901 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20902 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20903 && ARM_IS_FUNC (fixP->fx_addsy)
20904 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20905 base = fixP->fx_where + fixP->fx_frag->fr_address;
20906 return base + 4;
20907
20908 /* BLX is like branches above, but forces the low two bits of PC to
20909 zero. */
20910 case BFD_RELOC_THUMB_PCREL_BLX:
20911 if (fixP->fx_addsy
20912 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20913 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20914 && THUMB_IS_FUNC (fixP->fx_addsy)
20915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20916 base = fixP->fx_where + fixP->fx_frag->fr_address;
20917 return (base + 4) & ~3;
20918
20919 /* ARM mode branches are offset by +8. However, the Windows CE
20920 loader expects the relocation not to take this into account. */
20921 case BFD_RELOC_ARM_PCREL_BLX:
20922 if (fixP->fx_addsy
20923 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20924 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20925 && ARM_IS_FUNC (fixP->fx_addsy)
20926 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20927 base = fixP->fx_where + fixP->fx_frag->fr_address;
20928 return base + 8;
20929
20930 case BFD_RELOC_ARM_PCREL_CALL:
20931 if (fixP->fx_addsy
20932 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20933 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20934 && THUMB_IS_FUNC (fixP->fx_addsy)
20935 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20936 base = fixP->fx_where + fixP->fx_frag->fr_address;
20937 return base + 8;
20938
20939 case BFD_RELOC_ARM_PCREL_BRANCH:
20940 case BFD_RELOC_ARM_PCREL_JUMP:
20941 case BFD_RELOC_ARM_PLT32:
20942 #ifdef TE_WINCE
20943 /* When handling fixups immediately, because we have already
20944 discovered the value of a symbol, or the address of the frag involved
20945 we must account for the offset by +8, as the OS loader will never see the reloc.
20946 see fixup_segment() in write.c
20947 The S_IS_EXTERNAL test handles the case of global symbols.
20948 Those need the calculated base, not just the pipe compensation the linker will need. */
20949 if (fixP->fx_pcrel
20950 && fixP->fx_addsy != NULL
20951 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20952 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20953 return base + 8;
20954 return base;
20955 #else
20956 return base + 8;
20957 #endif
20958
20959
20960 /* ARM mode loads relative to PC are also offset by +8. Unlike
20961 branches, the Windows CE loader *does* expect the relocation
20962 to take this into account. */
20963 case BFD_RELOC_ARM_OFFSET_IMM:
20964 case BFD_RELOC_ARM_OFFSET_IMM8:
20965 case BFD_RELOC_ARM_HWLITERAL:
20966 case BFD_RELOC_ARM_LITERAL:
20967 case BFD_RELOC_ARM_CP_OFF_IMM:
20968 return base + 8;
20969
20970
20971 /* Other PC-relative relocations are un-offset. */
20972 default:
20973 return base;
20974 }
20975 }
20976
20977 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20978 Otherwise we have no need to default values of symbols. */
20979
20980 symbolS *
20981 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20982 {
20983 #ifdef OBJ_ELF
20984 if (name[0] == '_' && name[1] == 'G'
20985 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20986 {
20987 if (!GOT_symbol)
20988 {
20989 if (symbol_find (name))
20990 as_bad (_("GOT already in the symbol table"));
20991
20992 GOT_symbol = symbol_new (name, undefined_section,
20993 (valueT) 0, & zero_address_frag);
20994 }
20995
20996 return GOT_symbol;
20997 }
20998 #endif
20999
21000 return NULL;
21001 }
21002
21003 /* Subroutine of md_apply_fix. Check to see if an immediate can be
21004 computed as two separate immediate values, added together. We
21005 already know that this value cannot be computed by just one ARM
21006 instruction. */
21007
21008 static unsigned int
21009 validate_immediate_twopart (unsigned int val,
21010 unsigned int * highpart)
21011 {
21012 unsigned int a;
21013 unsigned int i;
21014
21015 for (i = 0; i < 32; i += 2)
21016 if (((a = rotate_left (val, i)) & 0xff) != 0)
21017 {
21018 if (a & 0xff00)
21019 {
21020 if (a & ~ 0xffff)
21021 continue;
21022 * highpart = (a >> 8) | ((i + 24) << 7);
21023 }
21024 else if (a & 0xff0000)
21025 {
21026 if (a & 0xff000000)
21027 continue;
21028 * highpart = (a >> 16) | ((i + 16) << 7);
21029 }
21030 else
21031 {
21032 gas_assert (a & 0xff000000);
21033 * highpart = (a >> 24) | ((i + 8) << 7);
21034 }
21035
21036 return (a & 0xff) | (i << 7);
21037 }
21038
21039 return FAIL;
21040 }
21041
21042 static int
21043 validate_offset_imm (unsigned int val, int hwse)
21044 {
21045 if ((hwse && val > 255) || val > 4095)
21046 return FAIL;
21047 return val;
21048 }
21049
21050 /* Subroutine of md_apply_fix. Do those data_ops which can take a
21051 negative immediate constant by altering the instruction. A bit of
21052 a hack really.
21053 MOV <-> MVN
21054 AND <-> BIC
21055 ADC <-> SBC
21056 by inverting the second operand, and
21057 ADD <-> SUB
21058 CMP <-> CMN
21059 by negating the second operand. */
21060
21061 static int
21062 negate_data_op (unsigned long * instruction,
21063 unsigned long value)
21064 {
21065 int op, new_inst;
21066 unsigned long negated, inverted;
21067
21068 negated = encode_arm_immediate (-value);
21069 inverted = encode_arm_immediate (~value);
21070
21071 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
21072 switch (op)
21073 {
21074 /* First negates. */
21075 case OPCODE_SUB: /* ADD <-> SUB */
21076 new_inst = OPCODE_ADD;
21077 value = negated;
21078 break;
21079
21080 case OPCODE_ADD:
21081 new_inst = OPCODE_SUB;
21082 value = negated;
21083 break;
21084
21085 case OPCODE_CMP: /* CMP <-> CMN */
21086 new_inst = OPCODE_CMN;
21087 value = negated;
21088 break;
21089
21090 case OPCODE_CMN:
21091 new_inst = OPCODE_CMP;
21092 value = negated;
21093 break;
21094
21095 /* Now Inverted ops. */
21096 case OPCODE_MOV: /* MOV <-> MVN */
21097 new_inst = OPCODE_MVN;
21098 value = inverted;
21099 break;
21100
21101 case OPCODE_MVN:
21102 new_inst = OPCODE_MOV;
21103 value = inverted;
21104 break;
21105
21106 case OPCODE_AND: /* AND <-> BIC */
21107 new_inst = OPCODE_BIC;
21108 value = inverted;
21109 break;
21110
21111 case OPCODE_BIC:
21112 new_inst = OPCODE_AND;
21113 value = inverted;
21114 break;
21115
21116 case OPCODE_ADC: /* ADC <-> SBC */
21117 new_inst = OPCODE_SBC;
21118 value = inverted;
21119 break;
21120
21121 case OPCODE_SBC:
21122 new_inst = OPCODE_ADC;
21123 value = inverted;
21124 break;
21125
21126 /* We cannot do anything. */
21127 default:
21128 return FAIL;
21129 }
21130
21131 if (value == (unsigned) FAIL)
21132 return FAIL;
21133
21134 *instruction &= OPCODE_MASK;
21135 *instruction |= new_inst << DATA_OP_SHIFT;
21136 return value;
21137 }
21138
21139 /* Like negate_data_op, but for Thumb-2. */
21140
21141 static unsigned int
21142 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
21143 {
21144 int op, new_inst;
21145 int rd;
21146 unsigned int negated, inverted;
21147
21148 negated = encode_thumb32_immediate (-value);
21149 inverted = encode_thumb32_immediate (~value);
21150
21151 rd = (*instruction >> 8) & 0xf;
21152 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
21153 switch (op)
21154 {
21155 /* ADD <-> SUB. Includes CMP <-> CMN. */
21156 case T2_OPCODE_SUB:
21157 new_inst = T2_OPCODE_ADD;
21158 value = negated;
21159 break;
21160
21161 case T2_OPCODE_ADD:
21162 new_inst = T2_OPCODE_SUB;
21163 value = negated;
21164 break;
21165
21166 /* ORR <-> ORN. Includes MOV <-> MVN. */
21167 case T2_OPCODE_ORR:
21168 new_inst = T2_OPCODE_ORN;
21169 value = inverted;
21170 break;
21171
21172 case T2_OPCODE_ORN:
21173 new_inst = T2_OPCODE_ORR;
21174 value = inverted;
21175 break;
21176
21177 /* AND <-> BIC. TST has no inverted equivalent. */
21178 case T2_OPCODE_AND:
21179 new_inst = T2_OPCODE_BIC;
21180 if (rd == 15)
21181 value = FAIL;
21182 else
21183 value = inverted;
21184 break;
21185
21186 case T2_OPCODE_BIC:
21187 new_inst = T2_OPCODE_AND;
21188 value = inverted;
21189 break;
21190
21191 /* ADC <-> SBC */
21192 case T2_OPCODE_ADC:
21193 new_inst = T2_OPCODE_SBC;
21194 value = inverted;
21195 break;
21196
21197 case T2_OPCODE_SBC:
21198 new_inst = T2_OPCODE_ADC;
21199 value = inverted;
21200 break;
21201
21202 /* We cannot do anything. */
21203 default:
21204 return FAIL;
21205 }
21206
21207 if (value == (unsigned int)FAIL)
21208 return FAIL;
21209
21210 *instruction &= T2_OPCODE_MASK;
21211 *instruction |= new_inst << T2_DATA_OP_SHIFT;
21212 return value;
21213 }
21214
21215 /* Read a 32-bit thumb instruction from buf. */
21216 static unsigned long
21217 get_thumb32_insn (char * buf)
21218 {
21219 unsigned long insn;
21220 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
21221 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21222
21223 return insn;
21224 }
21225
21226
21227 /* We usually want to set the low bit on the address of thumb function
21228 symbols. In particular .word foo - . should have the low bit set.
21229 Generic code tries to fold the difference of two symbols to
21230 a constant. Prevent this and force a relocation when the first symbols
21231 is a thumb function. */
21232
21233 bfd_boolean
21234 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
21235 {
21236 if (op == O_subtract
21237 && l->X_op == O_symbol
21238 && r->X_op == O_symbol
21239 && THUMB_IS_FUNC (l->X_add_symbol))
21240 {
21241 l->X_op = O_subtract;
21242 l->X_op_symbol = r->X_add_symbol;
21243 l->X_add_number -= r->X_add_number;
21244 return TRUE;
21245 }
21246
21247 /* Process as normal. */
21248 return FALSE;
21249 }
21250
21251 /* Encode Thumb2 unconditional branches and calls. The encoding
21252 for the 2 are identical for the immediate values. */
21253
21254 static void
21255 encode_thumb2_b_bl_offset (char * buf, offsetT value)
21256 {
21257 #define T2I1I2MASK ((1 << 13) | (1 << 11))
21258 offsetT newval;
21259 offsetT newval2;
21260 addressT S, I1, I2, lo, hi;
21261
21262 S = (value >> 24) & 0x01;
21263 I1 = (value >> 23) & 0x01;
21264 I2 = (value >> 22) & 0x01;
21265 hi = (value >> 12) & 0x3ff;
21266 lo = (value >> 1) & 0x7ff;
21267 newval = md_chars_to_number (buf, THUMB_SIZE);
21268 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21269 newval |= (S << 10) | hi;
21270 newval2 &= ~T2I1I2MASK;
21271 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
21272 md_number_to_chars (buf, newval, THUMB_SIZE);
21273 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21274 }
21275
21276 void
21277 md_apply_fix (fixS * fixP,
21278 valueT * valP,
21279 segT seg)
21280 {
21281 offsetT value = * valP;
21282 offsetT newval;
21283 unsigned int newimm;
21284 unsigned long temp;
21285 int sign;
21286 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
21287
21288 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
21289
21290 /* Note whether this will delete the relocation. */
21291
21292 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
21293 fixP->fx_done = 1;
21294
21295 /* On a 64-bit host, silently truncate 'value' to 32 bits for
21296 consistency with the behaviour on 32-bit hosts. Remember value
21297 for emit_reloc. */
21298 value &= 0xffffffff;
21299 value ^= 0x80000000;
21300 value -= 0x80000000;
21301
21302 *valP = value;
21303 fixP->fx_addnumber = value;
21304
21305 /* Same treatment for fixP->fx_offset. */
21306 fixP->fx_offset &= 0xffffffff;
21307 fixP->fx_offset ^= 0x80000000;
21308 fixP->fx_offset -= 0x80000000;
21309
21310 switch (fixP->fx_r_type)
21311 {
21312 case BFD_RELOC_NONE:
21313 /* This will need to go in the object file. */
21314 fixP->fx_done = 0;
21315 break;
21316
21317 case BFD_RELOC_ARM_IMMEDIATE:
21318 /* We claim that this fixup has been processed here,
21319 even if in fact we generate an error because we do
21320 not have a reloc for it, so tc_gen_reloc will reject it. */
21321 fixP->fx_done = 1;
21322
21323 if (fixP->fx_addsy)
21324 {
21325 const char *msg = 0;
21326
21327 if (! S_IS_DEFINED (fixP->fx_addsy))
21328 msg = _("undefined symbol %s used as an immediate value");
21329 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21330 msg = _("symbol %s is in a different section");
21331 else if (S_IS_WEAK (fixP->fx_addsy))
21332 msg = _("symbol %s is weak and may be overridden later");
21333
21334 if (msg)
21335 {
21336 as_bad_where (fixP->fx_file, fixP->fx_line,
21337 msg, S_GET_NAME (fixP->fx_addsy));
21338 break;
21339 }
21340 }
21341
21342 temp = md_chars_to_number (buf, INSN_SIZE);
21343
21344 /* If the offset is negative, we should use encoding A2 for ADR. */
21345 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
21346 newimm = negate_data_op (&temp, value);
21347 else
21348 {
21349 newimm = encode_arm_immediate (value);
21350
21351 /* If the instruction will fail, see if we can fix things up by
21352 changing the opcode. */
21353 if (newimm == (unsigned int) FAIL)
21354 newimm = negate_data_op (&temp, value);
21355 }
21356
21357 if (newimm == (unsigned int) FAIL)
21358 {
21359 as_bad_where (fixP->fx_file, fixP->fx_line,
21360 _("invalid constant (%lx) after fixup"),
21361 (unsigned long) value);
21362 break;
21363 }
21364
21365 newimm |= (temp & 0xfffff000);
21366 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21367 break;
21368
21369 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
21370 {
21371 unsigned int highpart = 0;
21372 unsigned int newinsn = 0xe1a00000; /* nop. */
21373
21374 if (fixP->fx_addsy)
21375 {
21376 const char *msg = 0;
21377
21378 if (! S_IS_DEFINED (fixP->fx_addsy))
21379 msg = _("undefined symbol %s used as an immediate value");
21380 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
21381 msg = _("symbol %s is in a different section");
21382 else if (S_IS_WEAK (fixP->fx_addsy))
21383 msg = _("symbol %s is weak and may be overridden later");
21384
21385 if (msg)
21386 {
21387 as_bad_where (fixP->fx_file, fixP->fx_line,
21388 msg, S_GET_NAME (fixP->fx_addsy));
21389 break;
21390 }
21391 }
21392
21393 newimm = encode_arm_immediate (value);
21394 temp = md_chars_to_number (buf, INSN_SIZE);
21395
21396 /* If the instruction will fail, see if we can fix things up by
21397 changing the opcode. */
21398 if (newimm == (unsigned int) FAIL
21399 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
21400 {
21401 /* No ? OK - try using two ADD instructions to generate
21402 the value. */
21403 newimm = validate_immediate_twopart (value, & highpart);
21404
21405 /* Yes - then make sure that the second instruction is
21406 also an add. */
21407 if (newimm != (unsigned int) FAIL)
21408 newinsn = temp;
21409 /* Still No ? Try using a negated value. */
21410 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
21411 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
21412 /* Otherwise - give up. */
21413 else
21414 {
21415 as_bad_where (fixP->fx_file, fixP->fx_line,
21416 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
21417 (long) value);
21418 break;
21419 }
21420
21421 /* Replace the first operand in the 2nd instruction (which
21422 is the PC) with the destination register. We have
21423 already added in the PC in the first instruction and we
21424 do not want to do it again. */
21425 newinsn &= ~ 0xf0000;
21426 newinsn |= ((newinsn & 0x0f000) << 4);
21427 }
21428
21429 newimm |= (temp & 0xfffff000);
21430 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
21431
21432 highpart |= (newinsn & 0xfffff000);
21433 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
21434 }
21435 break;
21436
21437 case BFD_RELOC_ARM_OFFSET_IMM:
21438 if (!fixP->fx_done && seg->use_rela_p)
21439 value = 0;
21440
21441 case BFD_RELOC_ARM_LITERAL:
21442 sign = value > 0;
21443
21444 if (value < 0)
21445 value = - value;
21446
21447 if (validate_offset_imm (value, 0) == FAIL)
21448 {
21449 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
21450 as_bad_where (fixP->fx_file, fixP->fx_line,
21451 _("invalid literal constant: pool needs to be closer"));
21452 else
21453 as_bad_where (fixP->fx_file, fixP->fx_line,
21454 _("bad immediate value for offset (%ld)"),
21455 (long) value);
21456 break;
21457 }
21458
21459 newval = md_chars_to_number (buf, INSN_SIZE);
21460 if (value == 0)
21461 newval &= 0xfffff000;
21462 else
21463 {
21464 newval &= 0xff7ff000;
21465 newval |= value | (sign ? INDEX_UP : 0);
21466 }
21467 md_number_to_chars (buf, newval, INSN_SIZE);
21468 break;
21469
21470 case BFD_RELOC_ARM_OFFSET_IMM8:
21471 case BFD_RELOC_ARM_HWLITERAL:
21472 sign = value > 0;
21473
21474 if (value < 0)
21475 value = - value;
21476
21477 if (validate_offset_imm (value, 1) == FAIL)
21478 {
21479 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
21480 as_bad_where (fixP->fx_file, fixP->fx_line,
21481 _("invalid literal constant: pool needs to be closer"));
21482 else
21483 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
21484 (long) value);
21485 break;
21486 }
21487
21488 newval = md_chars_to_number (buf, INSN_SIZE);
21489 if (value == 0)
21490 newval &= 0xfffff0f0;
21491 else
21492 {
21493 newval &= 0xff7ff0f0;
21494 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21495 }
21496 md_number_to_chars (buf, newval, INSN_SIZE);
21497 break;
21498
21499 case BFD_RELOC_ARM_T32_OFFSET_U8:
21500 if (value < 0 || value > 1020 || value % 4 != 0)
21501 as_bad_where (fixP->fx_file, fixP->fx_line,
21502 _("bad immediate value for offset (%ld)"), (long) value);
21503 value /= 4;
21504
21505 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21506 newval |= value;
21507 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21508 break;
21509
21510 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21511 /* This is a complicated relocation used for all varieties of Thumb32
21512 load/store instruction with immediate offset:
21513
21514 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21515 *4, optional writeback(W)
21516 (doubleword load/store)
21517
21518 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21519 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21520 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21521 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21522 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21523
21524 Uppercase letters indicate bits that are already encoded at
21525 this point. Lowercase letters are our problem. For the
21526 second block of instructions, the secondary opcode nybble
21527 (bits 8..11) is present, and bit 23 is zero, even if this is
21528 a PC-relative operation. */
21529 newval = md_chars_to_number (buf, THUMB_SIZE);
21530 newval <<= 16;
21531 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21532
21533 if ((newval & 0xf0000000) == 0xe0000000)
21534 {
21535 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21536 if (value >= 0)
21537 newval |= (1 << 23);
21538 else
21539 value = -value;
21540 if (value % 4 != 0)
21541 {
21542 as_bad_where (fixP->fx_file, fixP->fx_line,
21543 _("offset not a multiple of 4"));
21544 break;
21545 }
21546 value /= 4;
21547 if (value > 0xff)
21548 {
21549 as_bad_where (fixP->fx_file, fixP->fx_line,
21550 _("offset out of range"));
21551 break;
21552 }
21553 newval &= ~0xff;
21554 }
21555 else if ((newval & 0x000f0000) == 0x000f0000)
21556 {
21557 /* PC-relative, 12-bit offset. */
21558 if (value >= 0)
21559 newval |= (1 << 23);
21560 else
21561 value = -value;
21562 if (value > 0xfff)
21563 {
21564 as_bad_where (fixP->fx_file, fixP->fx_line,
21565 _("offset out of range"));
21566 break;
21567 }
21568 newval &= ~0xfff;
21569 }
21570 else if ((newval & 0x00000100) == 0x00000100)
21571 {
21572 /* Writeback: 8-bit, +/- offset. */
21573 if (value >= 0)
21574 newval |= (1 << 9);
21575 else
21576 value = -value;
21577 if (value > 0xff)
21578 {
21579 as_bad_where (fixP->fx_file, fixP->fx_line,
21580 _("offset out of range"));
21581 break;
21582 }
21583 newval &= ~0xff;
21584 }
21585 else if ((newval & 0x00000f00) == 0x00000e00)
21586 {
21587 /* T-instruction: positive 8-bit offset. */
21588 if (value < 0 || value > 0xff)
21589 {
21590 as_bad_where (fixP->fx_file, fixP->fx_line,
21591 _("offset out of range"));
21592 break;
21593 }
21594 newval &= ~0xff;
21595 newval |= value;
21596 }
21597 else
21598 {
21599 /* Positive 12-bit or negative 8-bit offset. */
21600 int limit;
21601 if (value >= 0)
21602 {
21603 newval |= (1 << 23);
21604 limit = 0xfff;
21605 }
21606 else
21607 {
21608 value = -value;
21609 limit = 0xff;
21610 }
21611 if (value > limit)
21612 {
21613 as_bad_where (fixP->fx_file, fixP->fx_line,
21614 _("offset out of range"));
21615 break;
21616 }
21617 newval &= ~limit;
21618 }
21619
21620 newval |= value;
21621 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21622 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21623 break;
21624
21625 case BFD_RELOC_ARM_SHIFT_IMM:
21626 newval = md_chars_to_number (buf, INSN_SIZE);
21627 if (((unsigned long) value) > 32
21628 || (value == 32
21629 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21630 {
21631 as_bad_where (fixP->fx_file, fixP->fx_line,
21632 _("shift expression is too large"));
21633 break;
21634 }
21635
21636 if (value == 0)
21637 /* Shifts of zero must be done as lsl. */
21638 newval &= ~0x60;
21639 else if (value == 32)
21640 value = 0;
21641 newval &= 0xfffff07f;
21642 newval |= (value & 0x1f) << 7;
21643 md_number_to_chars (buf, newval, INSN_SIZE);
21644 break;
21645
21646 case BFD_RELOC_ARM_T32_IMMEDIATE:
21647 case BFD_RELOC_ARM_T32_ADD_IMM:
21648 case BFD_RELOC_ARM_T32_IMM12:
21649 case BFD_RELOC_ARM_T32_ADD_PC12:
21650 /* We claim that this fixup has been processed here,
21651 even if in fact we generate an error because we do
21652 not have a reloc for it, so tc_gen_reloc will reject it. */
21653 fixP->fx_done = 1;
21654
21655 if (fixP->fx_addsy
21656 && ! S_IS_DEFINED (fixP->fx_addsy))
21657 {
21658 as_bad_where (fixP->fx_file, fixP->fx_line,
21659 _("undefined symbol %s used as an immediate value"),
21660 S_GET_NAME (fixP->fx_addsy));
21661 break;
21662 }
21663
21664 newval = md_chars_to_number (buf, THUMB_SIZE);
21665 newval <<= 16;
21666 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21667
21668 newimm = FAIL;
21669 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21670 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21671 {
21672 newimm = encode_thumb32_immediate (value);
21673 if (newimm == (unsigned int) FAIL)
21674 newimm = thumb32_negate_data_op (&newval, value);
21675 }
21676 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21677 && newimm == (unsigned int) FAIL)
21678 {
21679 /* Turn add/sum into addw/subw. */
21680 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21681 newval = (newval & 0xfeffffff) | 0x02000000;
21682 /* No flat 12-bit imm encoding for addsw/subsw. */
21683 if ((newval & 0x00100000) == 0)
21684 {
21685 /* 12 bit immediate for addw/subw. */
21686 if (value < 0)
21687 {
21688 value = -value;
21689 newval ^= 0x00a00000;
21690 }
21691 if (value > 0xfff)
21692 newimm = (unsigned int) FAIL;
21693 else
21694 newimm = value;
21695 }
21696 }
21697
21698 if (newimm == (unsigned int)FAIL)
21699 {
21700 as_bad_where (fixP->fx_file, fixP->fx_line,
21701 _("invalid constant (%lx) after fixup"),
21702 (unsigned long) value);
21703 break;
21704 }
21705
21706 newval |= (newimm & 0x800) << 15;
21707 newval |= (newimm & 0x700) << 4;
21708 newval |= (newimm & 0x0ff);
21709
21710 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21711 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21712 break;
21713
21714 case BFD_RELOC_ARM_SMC:
21715 if (((unsigned long) value) > 0xffff)
21716 as_bad_where (fixP->fx_file, fixP->fx_line,
21717 _("invalid smc expression"));
21718 newval = md_chars_to_number (buf, INSN_SIZE);
21719 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21720 md_number_to_chars (buf, newval, INSN_SIZE);
21721 break;
21722
21723 case BFD_RELOC_ARM_HVC:
21724 if (((unsigned long) value) > 0xffff)
21725 as_bad_where (fixP->fx_file, fixP->fx_line,
21726 _("invalid hvc expression"));
21727 newval = md_chars_to_number (buf, INSN_SIZE);
21728 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21729 md_number_to_chars (buf, newval, INSN_SIZE);
21730 break;
21731
21732 case BFD_RELOC_ARM_SWI:
21733 if (fixP->tc_fix_data != 0)
21734 {
21735 if (((unsigned long) value) > 0xff)
21736 as_bad_where (fixP->fx_file, fixP->fx_line,
21737 _("invalid swi expression"));
21738 newval = md_chars_to_number (buf, THUMB_SIZE);
21739 newval |= value;
21740 md_number_to_chars (buf, newval, THUMB_SIZE);
21741 }
21742 else
21743 {
21744 if (((unsigned long) value) > 0x00ffffff)
21745 as_bad_where (fixP->fx_file, fixP->fx_line,
21746 _("invalid swi expression"));
21747 newval = md_chars_to_number (buf, INSN_SIZE);
21748 newval |= value;
21749 md_number_to_chars (buf, newval, INSN_SIZE);
21750 }
21751 break;
21752
21753 case BFD_RELOC_ARM_MULTI:
21754 if (((unsigned long) value) > 0xffff)
21755 as_bad_where (fixP->fx_file, fixP->fx_line,
21756 _("invalid expression in load/store multiple"));
21757 newval = value | md_chars_to_number (buf, INSN_SIZE);
21758 md_number_to_chars (buf, newval, INSN_SIZE);
21759 break;
21760
21761 #ifdef OBJ_ELF
21762 case BFD_RELOC_ARM_PCREL_CALL:
21763
21764 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21765 && fixP->fx_addsy
21766 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21767 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21768 && THUMB_IS_FUNC (fixP->fx_addsy))
21769 /* Flip the bl to blx. This is a simple flip
21770 bit here because we generate PCREL_CALL for
21771 unconditional bls. */
21772 {
21773 newval = md_chars_to_number (buf, INSN_SIZE);
21774 newval = newval | 0x10000000;
21775 md_number_to_chars (buf, newval, INSN_SIZE);
21776 temp = 1;
21777 fixP->fx_done = 1;
21778 }
21779 else
21780 temp = 3;
21781 goto arm_branch_common;
21782
21783 case BFD_RELOC_ARM_PCREL_JUMP:
21784 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21785 && fixP->fx_addsy
21786 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21787 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21788 && THUMB_IS_FUNC (fixP->fx_addsy))
21789 {
21790 /* This would map to a bl<cond>, b<cond>,
21791 b<always> to a Thumb function. We
21792 need to force a relocation for this particular
21793 case. */
21794 newval = md_chars_to_number (buf, INSN_SIZE);
21795 fixP->fx_done = 0;
21796 }
21797
21798 case BFD_RELOC_ARM_PLT32:
21799 #endif
21800 case BFD_RELOC_ARM_PCREL_BRANCH:
21801 temp = 3;
21802 goto arm_branch_common;
21803
21804 case BFD_RELOC_ARM_PCREL_BLX:
21805
21806 temp = 1;
21807 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21808 && fixP->fx_addsy
21809 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21810 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21811 && ARM_IS_FUNC (fixP->fx_addsy))
21812 {
21813 /* Flip the blx to a bl and warn. */
21814 const char *name = S_GET_NAME (fixP->fx_addsy);
21815 newval = 0xeb000000;
21816 as_warn_where (fixP->fx_file, fixP->fx_line,
21817 _("blx to '%s' an ARM ISA state function changed to bl"),
21818 name);
21819 md_number_to_chars (buf, newval, INSN_SIZE);
21820 temp = 3;
21821 fixP->fx_done = 1;
21822 }
21823
21824 #ifdef OBJ_ELF
21825 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21826 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21827 #endif
21828
21829 arm_branch_common:
21830 /* We are going to store value (shifted right by two) in the
21831 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21832 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21833 also be be clear. */
21834 if (value & temp)
21835 as_bad_where (fixP->fx_file, fixP->fx_line,
21836 _("misaligned branch destination"));
21837 if ((value & (offsetT)0xfe000000) != (offsetT)0
21838 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21839 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21840
21841 if (fixP->fx_done || !seg->use_rela_p)
21842 {
21843 newval = md_chars_to_number (buf, INSN_SIZE);
21844 newval |= (value >> 2) & 0x00ffffff;
21845 /* Set the H bit on BLX instructions. */
21846 if (temp == 1)
21847 {
21848 if (value & 2)
21849 newval |= 0x01000000;
21850 else
21851 newval &= ~0x01000000;
21852 }
21853 md_number_to_chars (buf, newval, INSN_SIZE);
21854 }
21855 break;
21856
21857 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21858 /* CBZ can only branch forward. */
21859
21860 /* Attempts to use CBZ to branch to the next instruction
21861 (which, strictly speaking, are prohibited) will be turned into
21862 no-ops.
21863
21864 FIXME: It may be better to remove the instruction completely and
21865 perform relaxation. */
21866 if (value == -2)
21867 {
21868 newval = md_chars_to_number (buf, THUMB_SIZE);
21869 newval = 0xbf00; /* NOP encoding T1 */
21870 md_number_to_chars (buf, newval, THUMB_SIZE);
21871 }
21872 else
21873 {
21874 if (value & ~0x7e)
21875 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21876
21877 if (fixP->fx_done || !seg->use_rela_p)
21878 {
21879 newval = md_chars_to_number (buf, THUMB_SIZE);
21880 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21881 md_number_to_chars (buf, newval, THUMB_SIZE);
21882 }
21883 }
21884 break;
21885
21886 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21887 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21888 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21889
21890 if (fixP->fx_done || !seg->use_rela_p)
21891 {
21892 newval = md_chars_to_number (buf, THUMB_SIZE);
21893 newval |= (value & 0x1ff) >> 1;
21894 md_number_to_chars (buf, newval, THUMB_SIZE);
21895 }
21896 break;
21897
21898 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21899 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21900 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21901
21902 if (fixP->fx_done || !seg->use_rela_p)
21903 {
21904 newval = md_chars_to_number (buf, THUMB_SIZE);
21905 newval |= (value & 0xfff) >> 1;
21906 md_number_to_chars (buf, newval, THUMB_SIZE);
21907 }
21908 break;
21909
21910 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21911 if (fixP->fx_addsy
21912 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21913 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21914 && ARM_IS_FUNC (fixP->fx_addsy)
21915 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21916 {
21917 /* Force a relocation for a branch 20 bits wide. */
21918 fixP->fx_done = 0;
21919 }
21920 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21921 as_bad_where (fixP->fx_file, fixP->fx_line,
21922 _("conditional branch out of range"));
21923
21924 if (fixP->fx_done || !seg->use_rela_p)
21925 {
21926 offsetT newval2;
21927 addressT S, J1, J2, lo, hi;
21928
21929 S = (value & 0x00100000) >> 20;
21930 J2 = (value & 0x00080000) >> 19;
21931 J1 = (value & 0x00040000) >> 18;
21932 hi = (value & 0x0003f000) >> 12;
21933 lo = (value & 0x00000ffe) >> 1;
21934
21935 newval = md_chars_to_number (buf, THUMB_SIZE);
21936 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21937 newval |= (S << 10) | hi;
21938 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21939 md_number_to_chars (buf, newval, THUMB_SIZE);
21940 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21941 }
21942 break;
21943
21944 case BFD_RELOC_THUMB_PCREL_BLX:
21945 /* If there is a blx from a thumb state function to
21946 another thumb function flip this to a bl and warn
21947 about it. */
21948
21949 if (fixP->fx_addsy
21950 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21951 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21952 && THUMB_IS_FUNC (fixP->fx_addsy))
21953 {
21954 const char *name = S_GET_NAME (fixP->fx_addsy);
21955 as_warn_where (fixP->fx_file, fixP->fx_line,
21956 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21957 name);
21958 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21959 newval = newval | 0x1000;
21960 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21961 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21962 fixP->fx_done = 1;
21963 }
21964
21965
21966 goto thumb_bl_common;
21967
21968 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21969 /* A bl from Thumb state ISA to an internal ARM state function
21970 is converted to a blx. */
21971 if (fixP->fx_addsy
21972 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21973 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21974 && ARM_IS_FUNC (fixP->fx_addsy)
21975 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21976 {
21977 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21978 newval = newval & ~0x1000;
21979 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21980 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21981 fixP->fx_done = 1;
21982 }
21983
21984 thumb_bl_common:
21985
21986 #ifdef OBJ_ELF
21987 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21988 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21989 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21990 #endif
21991
21992 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21993 /* For a BLX instruction, make sure that the relocation is rounded up
21994 to a word boundary. This follows the semantics of the instruction
21995 which specifies that bit 1 of the target address will come from bit
21996 1 of the base address. */
21997 value = (value + 1) & ~ 1;
21998
21999 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
22000 {
22001 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
22002 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22003 else if ((value & ~0x1ffffff)
22004 && ((value & ~0x1ffffff) != ~0x1ffffff))
22005 as_bad_where (fixP->fx_file, fixP->fx_line,
22006 _("Thumb2 branch out of range"));
22007 }
22008
22009 if (fixP->fx_done || !seg->use_rela_p)
22010 encode_thumb2_b_bl_offset (buf, value);
22011
22012 break;
22013
22014 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22015 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
22016 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
22017
22018 if (fixP->fx_done || !seg->use_rela_p)
22019 encode_thumb2_b_bl_offset (buf, value);
22020
22021 break;
22022
22023 case BFD_RELOC_8:
22024 if (fixP->fx_done || !seg->use_rela_p)
22025 md_number_to_chars (buf, value, 1);
22026 break;
22027
22028 case BFD_RELOC_16:
22029 if (fixP->fx_done || !seg->use_rela_p)
22030 md_number_to_chars (buf, value, 2);
22031 break;
22032
22033 #ifdef OBJ_ELF
22034 case BFD_RELOC_ARM_TLS_CALL:
22035 case BFD_RELOC_ARM_THM_TLS_CALL:
22036 case BFD_RELOC_ARM_TLS_DESCSEQ:
22037 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22038 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22039 break;
22040
22041 case BFD_RELOC_ARM_TLS_GOTDESC:
22042 case BFD_RELOC_ARM_TLS_GD32:
22043 case BFD_RELOC_ARM_TLS_LE32:
22044 case BFD_RELOC_ARM_TLS_IE32:
22045 case BFD_RELOC_ARM_TLS_LDM32:
22046 case BFD_RELOC_ARM_TLS_LDO32:
22047 S_SET_THREAD_LOCAL (fixP->fx_addsy);
22048 /* fall through */
22049
22050 case BFD_RELOC_ARM_GOT32:
22051 case BFD_RELOC_ARM_GOTOFF:
22052 if (fixP->fx_done || !seg->use_rela_p)
22053 md_number_to_chars (buf, 0, 4);
22054 break;
22055
22056 case BFD_RELOC_ARM_GOT_PREL:
22057 if (fixP->fx_done || !seg->use_rela_p)
22058 md_number_to_chars (buf, value, 4);
22059 break;
22060
22061 case BFD_RELOC_ARM_TARGET2:
22062 /* TARGET2 is not partial-inplace, so we need to write the
22063 addend here for REL targets, because it won't be written out
22064 during reloc processing later. */
22065 if (fixP->fx_done || !seg->use_rela_p)
22066 md_number_to_chars (buf, fixP->fx_offset, 4);
22067 break;
22068 #endif
22069
22070 case BFD_RELOC_RVA:
22071 case BFD_RELOC_32:
22072 case BFD_RELOC_ARM_TARGET1:
22073 case BFD_RELOC_ARM_ROSEGREL32:
22074 case BFD_RELOC_ARM_SBREL32:
22075 case BFD_RELOC_32_PCREL:
22076 #ifdef TE_PE
22077 case BFD_RELOC_32_SECREL:
22078 #endif
22079 if (fixP->fx_done || !seg->use_rela_p)
22080 #ifdef TE_WINCE
22081 /* For WinCE we only do this for pcrel fixups. */
22082 if (fixP->fx_done || fixP->fx_pcrel)
22083 #endif
22084 md_number_to_chars (buf, value, 4);
22085 break;
22086
22087 #ifdef OBJ_ELF
22088 case BFD_RELOC_ARM_PREL31:
22089 if (fixP->fx_done || !seg->use_rela_p)
22090 {
22091 newval = md_chars_to_number (buf, 4) & 0x80000000;
22092 if ((value ^ (value >> 1)) & 0x40000000)
22093 {
22094 as_bad_where (fixP->fx_file, fixP->fx_line,
22095 _("rel31 relocation overflow"));
22096 }
22097 newval |= value & 0x7fffffff;
22098 md_number_to_chars (buf, newval, 4);
22099 }
22100 break;
22101 #endif
22102
22103 case BFD_RELOC_ARM_CP_OFF_IMM:
22104 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
22105 if (value < -1023 || value > 1023 || (value & 3))
22106 as_bad_where (fixP->fx_file, fixP->fx_line,
22107 _("co-processor offset out of range"));
22108 cp_off_common:
22109 sign = value > 0;
22110 if (value < 0)
22111 value = -value;
22112 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22113 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22114 newval = md_chars_to_number (buf, INSN_SIZE);
22115 else
22116 newval = get_thumb32_insn (buf);
22117 if (value == 0)
22118 newval &= 0xffffff00;
22119 else
22120 {
22121 newval &= 0xff7fff00;
22122 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
22123 }
22124 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22125 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
22126 md_number_to_chars (buf, newval, INSN_SIZE);
22127 else
22128 put_thumb32_insn (buf, newval);
22129 break;
22130
22131 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
22132 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
22133 if (value < -255 || value > 255)
22134 as_bad_where (fixP->fx_file, fixP->fx_line,
22135 _("co-processor offset out of range"));
22136 value *= 4;
22137 goto cp_off_common;
22138
22139 case BFD_RELOC_ARM_THUMB_OFFSET:
22140 newval = md_chars_to_number (buf, THUMB_SIZE);
22141 /* Exactly what ranges, and where the offset is inserted depends
22142 on the type of instruction, we can establish this from the
22143 top 4 bits. */
22144 switch (newval >> 12)
22145 {
22146 case 4: /* PC load. */
22147 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
22148 forced to zero for these loads; md_pcrel_from has already
22149 compensated for this. */
22150 if (value & 3)
22151 as_bad_where (fixP->fx_file, fixP->fx_line,
22152 _("invalid offset, target not word aligned (0x%08lX)"),
22153 (((unsigned long) fixP->fx_frag->fr_address
22154 + (unsigned long) fixP->fx_where) & ~3)
22155 + (unsigned long) value);
22156
22157 if (value & ~0x3fc)
22158 as_bad_where (fixP->fx_file, fixP->fx_line,
22159 _("invalid offset, value too big (0x%08lX)"),
22160 (long) value);
22161
22162 newval |= value >> 2;
22163 break;
22164
22165 case 9: /* SP load/store. */
22166 if (value & ~0x3fc)
22167 as_bad_where (fixP->fx_file, fixP->fx_line,
22168 _("invalid offset, value too big (0x%08lX)"),
22169 (long) value);
22170 newval |= value >> 2;
22171 break;
22172
22173 case 6: /* Word load/store. */
22174 if (value & ~0x7c)
22175 as_bad_where (fixP->fx_file, fixP->fx_line,
22176 _("invalid offset, value too big (0x%08lX)"),
22177 (long) value);
22178 newval |= value << 4; /* 6 - 2. */
22179 break;
22180
22181 case 7: /* Byte load/store. */
22182 if (value & ~0x1f)
22183 as_bad_where (fixP->fx_file, fixP->fx_line,
22184 _("invalid offset, value too big (0x%08lX)"),
22185 (long) value);
22186 newval |= value << 6;
22187 break;
22188
22189 case 8: /* Halfword load/store. */
22190 if (value & ~0x3e)
22191 as_bad_where (fixP->fx_file, fixP->fx_line,
22192 _("invalid offset, value too big (0x%08lX)"),
22193 (long) value);
22194 newval |= value << 5; /* 6 - 1. */
22195 break;
22196
22197 default:
22198 as_bad_where (fixP->fx_file, fixP->fx_line,
22199 "Unable to process relocation for thumb opcode: %lx",
22200 (unsigned long) newval);
22201 break;
22202 }
22203 md_number_to_chars (buf, newval, THUMB_SIZE);
22204 break;
22205
22206 case BFD_RELOC_ARM_THUMB_ADD:
22207 /* This is a complicated relocation, since we use it for all of
22208 the following immediate relocations:
22209
22210 3bit ADD/SUB
22211 8bit ADD/SUB
22212 9bit ADD/SUB SP word-aligned
22213 10bit ADD PC/SP word-aligned
22214
22215 The type of instruction being processed is encoded in the
22216 instruction field:
22217
22218 0x8000 SUB
22219 0x00F0 Rd
22220 0x000F Rs
22221 */
22222 newval = md_chars_to_number (buf, THUMB_SIZE);
22223 {
22224 int rd = (newval >> 4) & 0xf;
22225 int rs = newval & 0xf;
22226 int subtract = !!(newval & 0x8000);
22227
22228 /* Check for HI regs, only very restricted cases allowed:
22229 Adjusting SP, and using PC or SP to get an address. */
22230 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
22231 || (rs > 7 && rs != REG_SP && rs != REG_PC))
22232 as_bad_where (fixP->fx_file, fixP->fx_line,
22233 _("invalid Hi register with immediate"));
22234
22235 /* If value is negative, choose the opposite instruction. */
22236 if (value < 0)
22237 {
22238 value = -value;
22239 subtract = !subtract;
22240 if (value < 0)
22241 as_bad_where (fixP->fx_file, fixP->fx_line,
22242 _("immediate value out of range"));
22243 }
22244
22245 if (rd == REG_SP)
22246 {
22247 if (value & ~0x1fc)
22248 as_bad_where (fixP->fx_file, fixP->fx_line,
22249 _("invalid immediate for stack address calculation"));
22250 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
22251 newval |= value >> 2;
22252 }
22253 else if (rs == REG_PC || rs == REG_SP)
22254 {
22255 if (subtract || value & ~0x3fc)
22256 as_bad_where (fixP->fx_file, fixP->fx_line,
22257 _("invalid immediate for address calculation (value = 0x%08lX)"),
22258 (unsigned long) value);
22259 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
22260 newval |= rd << 8;
22261 newval |= value >> 2;
22262 }
22263 else if (rs == rd)
22264 {
22265 if (value & ~0xff)
22266 as_bad_where (fixP->fx_file, fixP->fx_line,
22267 _("immediate value out of range"));
22268 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
22269 newval |= (rd << 8) | value;
22270 }
22271 else
22272 {
22273 if (value & ~0x7)
22274 as_bad_where (fixP->fx_file, fixP->fx_line,
22275 _("immediate value out of range"));
22276 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
22277 newval |= rd | (rs << 3) | (value << 6);
22278 }
22279 }
22280 md_number_to_chars (buf, newval, THUMB_SIZE);
22281 break;
22282
22283 case BFD_RELOC_ARM_THUMB_IMM:
22284 newval = md_chars_to_number (buf, THUMB_SIZE);
22285 if (value < 0 || value > 255)
22286 as_bad_where (fixP->fx_file, fixP->fx_line,
22287 _("invalid immediate: %ld is out of range"),
22288 (long) value);
22289 newval |= value;
22290 md_number_to_chars (buf, newval, THUMB_SIZE);
22291 break;
22292
22293 case BFD_RELOC_ARM_THUMB_SHIFT:
22294 /* 5bit shift value (0..32). LSL cannot take 32. */
22295 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
22296 temp = newval & 0xf800;
22297 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
22298 as_bad_where (fixP->fx_file, fixP->fx_line,
22299 _("invalid shift value: %ld"), (long) value);
22300 /* Shifts of zero must be encoded as LSL. */
22301 if (value == 0)
22302 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
22303 /* Shifts of 32 are encoded as zero. */
22304 else if (value == 32)
22305 value = 0;
22306 newval |= value << 6;
22307 md_number_to_chars (buf, newval, THUMB_SIZE);
22308 break;
22309
22310 case BFD_RELOC_VTABLE_INHERIT:
22311 case BFD_RELOC_VTABLE_ENTRY:
22312 fixP->fx_done = 0;
22313 return;
22314
22315 case BFD_RELOC_ARM_MOVW:
22316 case BFD_RELOC_ARM_MOVT:
22317 case BFD_RELOC_ARM_THUMB_MOVW:
22318 case BFD_RELOC_ARM_THUMB_MOVT:
22319 if (fixP->fx_done || !seg->use_rela_p)
22320 {
22321 /* REL format relocations are limited to a 16-bit addend. */
22322 if (!fixP->fx_done)
22323 {
22324 if (value < -0x8000 || value > 0x7fff)
22325 as_bad_where (fixP->fx_file, fixP->fx_line,
22326 _("offset out of range"));
22327 }
22328 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22329 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22330 {
22331 value >>= 16;
22332 }
22333
22334 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22335 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
22336 {
22337 newval = get_thumb32_insn (buf);
22338 newval &= 0xfbf08f00;
22339 newval |= (value & 0xf000) << 4;
22340 newval |= (value & 0x0800) << 15;
22341 newval |= (value & 0x0700) << 4;
22342 newval |= (value & 0x00ff);
22343 put_thumb32_insn (buf, newval);
22344 }
22345 else
22346 {
22347 newval = md_chars_to_number (buf, 4);
22348 newval &= 0xfff0f000;
22349 newval |= value & 0x0fff;
22350 newval |= (value & 0xf000) << 4;
22351 md_number_to_chars (buf, newval, 4);
22352 }
22353 }
22354 return;
22355
22356 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22357 case BFD_RELOC_ARM_ALU_PC_G0:
22358 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22359 case BFD_RELOC_ARM_ALU_PC_G1:
22360 case BFD_RELOC_ARM_ALU_PC_G2:
22361 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22362 case BFD_RELOC_ARM_ALU_SB_G0:
22363 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22364 case BFD_RELOC_ARM_ALU_SB_G1:
22365 case BFD_RELOC_ARM_ALU_SB_G2:
22366 gas_assert (!fixP->fx_done);
22367 if (!seg->use_rela_p)
22368 {
22369 bfd_vma insn;
22370 bfd_vma encoded_addend;
22371 bfd_vma addend_abs = abs (value);
22372
22373 /* Check that the absolute value of the addend can be
22374 expressed as an 8-bit constant plus a rotation. */
22375 encoded_addend = encode_arm_immediate (addend_abs);
22376 if (encoded_addend == (unsigned int) FAIL)
22377 as_bad_where (fixP->fx_file, fixP->fx_line,
22378 _("the offset 0x%08lX is not representable"),
22379 (unsigned long) addend_abs);
22380
22381 /* Extract the instruction. */
22382 insn = md_chars_to_number (buf, INSN_SIZE);
22383
22384 /* If the addend is positive, use an ADD instruction.
22385 Otherwise use a SUB. Take care not to destroy the S bit. */
22386 insn &= 0xff1fffff;
22387 if (value < 0)
22388 insn |= 1 << 22;
22389 else
22390 insn |= 1 << 23;
22391
22392 /* Place the encoded addend into the first 12 bits of the
22393 instruction. */
22394 insn &= 0xfffff000;
22395 insn |= encoded_addend;
22396
22397 /* Update the instruction. */
22398 md_number_to_chars (buf, insn, INSN_SIZE);
22399 }
22400 break;
22401
22402 case BFD_RELOC_ARM_LDR_PC_G0:
22403 case BFD_RELOC_ARM_LDR_PC_G1:
22404 case BFD_RELOC_ARM_LDR_PC_G2:
22405 case BFD_RELOC_ARM_LDR_SB_G0:
22406 case BFD_RELOC_ARM_LDR_SB_G1:
22407 case BFD_RELOC_ARM_LDR_SB_G2:
22408 gas_assert (!fixP->fx_done);
22409 if (!seg->use_rela_p)
22410 {
22411 bfd_vma insn;
22412 bfd_vma addend_abs = abs (value);
22413
22414 /* Check that the absolute value of the addend can be
22415 encoded in 12 bits. */
22416 if (addend_abs >= 0x1000)
22417 as_bad_where (fixP->fx_file, fixP->fx_line,
22418 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
22419 (unsigned long) addend_abs);
22420
22421 /* Extract the instruction. */
22422 insn = md_chars_to_number (buf, INSN_SIZE);
22423
22424 /* If the addend is negative, clear bit 23 of the instruction.
22425 Otherwise set it. */
22426 if (value < 0)
22427 insn &= ~(1 << 23);
22428 else
22429 insn |= 1 << 23;
22430
22431 /* Place the absolute value of the addend into the first 12 bits
22432 of the instruction. */
22433 insn &= 0xfffff000;
22434 insn |= addend_abs;
22435
22436 /* Update the instruction. */
22437 md_number_to_chars (buf, insn, INSN_SIZE);
22438 }
22439 break;
22440
22441 case BFD_RELOC_ARM_LDRS_PC_G0:
22442 case BFD_RELOC_ARM_LDRS_PC_G1:
22443 case BFD_RELOC_ARM_LDRS_PC_G2:
22444 case BFD_RELOC_ARM_LDRS_SB_G0:
22445 case BFD_RELOC_ARM_LDRS_SB_G1:
22446 case BFD_RELOC_ARM_LDRS_SB_G2:
22447 gas_assert (!fixP->fx_done);
22448 if (!seg->use_rela_p)
22449 {
22450 bfd_vma insn;
22451 bfd_vma addend_abs = abs (value);
22452
22453 /* Check that the absolute value of the addend can be
22454 encoded in 8 bits. */
22455 if (addend_abs >= 0x100)
22456 as_bad_where (fixP->fx_file, fixP->fx_line,
22457 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
22458 (unsigned long) addend_abs);
22459
22460 /* Extract the instruction. */
22461 insn = md_chars_to_number (buf, INSN_SIZE);
22462
22463 /* If the addend is negative, clear bit 23 of the instruction.
22464 Otherwise set it. */
22465 if (value < 0)
22466 insn &= ~(1 << 23);
22467 else
22468 insn |= 1 << 23;
22469
22470 /* Place the first four bits of the absolute value of the addend
22471 into the first 4 bits of the instruction, and the remaining
22472 four into bits 8 .. 11. */
22473 insn &= 0xfffff0f0;
22474 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
22475
22476 /* Update the instruction. */
22477 md_number_to_chars (buf, insn, INSN_SIZE);
22478 }
22479 break;
22480
22481 case BFD_RELOC_ARM_LDC_PC_G0:
22482 case BFD_RELOC_ARM_LDC_PC_G1:
22483 case BFD_RELOC_ARM_LDC_PC_G2:
22484 case BFD_RELOC_ARM_LDC_SB_G0:
22485 case BFD_RELOC_ARM_LDC_SB_G1:
22486 case BFD_RELOC_ARM_LDC_SB_G2:
22487 gas_assert (!fixP->fx_done);
22488 if (!seg->use_rela_p)
22489 {
22490 bfd_vma insn;
22491 bfd_vma addend_abs = abs (value);
22492
22493 /* Check that the absolute value of the addend is a multiple of
22494 four and, when divided by four, fits in 8 bits. */
22495 if (addend_abs & 0x3)
22496 as_bad_where (fixP->fx_file, fixP->fx_line,
22497 _("bad offset 0x%08lX (must be word-aligned)"),
22498 (unsigned long) addend_abs);
22499
22500 if ((addend_abs >> 2) > 0xff)
22501 as_bad_where (fixP->fx_file, fixP->fx_line,
22502 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22503 (unsigned long) addend_abs);
22504
22505 /* Extract the instruction. */
22506 insn = md_chars_to_number (buf, INSN_SIZE);
22507
22508 /* If the addend is negative, clear bit 23 of the instruction.
22509 Otherwise set it. */
22510 if (value < 0)
22511 insn &= ~(1 << 23);
22512 else
22513 insn |= 1 << 23;
22514
22515 /* Place the addend (divided by four) into the first eight
22516 bits of the instruction. */
22517 insn &= 0xfffffff0;
22518 insn |= addend_abs >> 2;
22519
22520 /* Update the instruction. */
22521 md_number_to_chars (buf, insn, INSN_SIZE);
22522 }
22523 break;
22524
22525 case BFD_RELOC_ARM_V4BX:
22526 /* This will need to go in the object file. */
22527 fixP->fx_done = 0;
22528 break;
22529
22530 case BFD_RELOC_UNUSED:
22531 default:
22532 as_bad_where (fixP->fx_file, fixP->fx_line,
22533 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22534 }
22535 }
22536
22537 /* Translate internal representation of relocation info to BFD target
22538 format. */
22539
22540 arelent *
22541 tc_gen_reloc (asection *section, fixS *fixp)
22542 {
22543 arelent * reloc;
22544 bfd_reloc_code_real_type code;
22545
22546 reloc = (arelent *) xmalloc (sizeof (arelent));
22547
22548 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22549 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22550 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22551
22552 if (fixp->fx_pcrel)
22553 {
22554 if (section->use_rela_p)
22555 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22556 else
22557 fixp->fx_offset = reloc->address;
22558 }
22559 reloc->addend = fixp->fx_offset;
22560
22561 switch (fixp->fx_r_type)
22562 {
22563 case BFD_RELOC_8:
22564 if (fixp->fx_pcrel)
22565 {
22566 code = BFD_RELOC_8_PCREL;
22567 break;
22568 }
22569
22570 case BFD_RELOC_16:
22571 if (fixp->fx_pcrel)
22572 {
22573 code = BFD_RELOC_16_PCREL;
22574 break;
22575 }
22576
22577 case BFD_RELOC_32:
22578 if (fixp->fx_pcrel)
22579 {
22580 code = BFD_RELOC_32_PCREL;
22581 break;
22582 }
22583
22584 case BFD_RELOC_ARM_MOVW:
22585 if (fixp->fx_pcrel)
22586 {
22587 code = BFD_RELOC_ARM_MOVW_PCREL;
22588 break;
22589 }
22590
22591 case BFD_RELOC_ARM_MOVT:
22592 if (fixp->fx_pcrel)
22593 {
22594 code = BFD_RELOC_ARM_MOVT_PCREL;
22595 break;
22596 }
22597
22598 case BFD_RELOC_ARM_THUMB_MOVW:
22599 if (fixp->fx_pcrel)
22600 {
22601 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22602 break;
22603 }
22604
22605 case BFD_RELOC_ARM_THUMB_MOVT:
22606 if (fixp->fx_pcrel)
22607 {
22608 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22609 break;
22610 }
22611
22612 case BFD_RELOC_NONE:
22613 case BFD_RELOC_ARM_PCREL_BRANCH:
22614 case BFD_RELOC_ARM_PCREL_BLX:
22615 case BFD_RELOC_RVA:
22616 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22617 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22618 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22619 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22620 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22621 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22622 case BFD_RELOC_VTABLE_ENTRY:
22623 case BFD_RELOC_VTABLE_INHERIT:
22624 #ifdef TE_PE
22625 case BFD_RELOC_32_SECREL:
22626 #endif
22627 code = fixp->fx_r_type;
22628 break;
22629
22630 case BFD_RELOC_THUMB_PCREL_BLX:
22631 #ifdef OBJ_ELF
22632 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22633 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22634 else
22635 #endif
22636 code = BFD_RELOC_THUMB_PCREL_BLX;
22637 break;
22638
22639 case BFD_RELOC_ARM_LITERAL:
22640 case BFD_RELOC_ARM_HWLITERAL:
22641 /* If this is called then the a literal has
22642 been referenced across a section boundary. */
22643 as_bad_where (fixp->fx_file, fixp->fx_line,
22644 _("literal referenced across section boundary"));
22645 return NULL;
22646
22647 #ifdef OBJ_ELF
22648 case BFD_RELOC_ARM_TLS_CALL:
22649 case BFD_RELOC_ARM_THM_TLS_CALL:
22650 case BFD_RELOC_ARM_TLS_DESCSEQ:
22651 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22652 case BFD_RELOC_ARM_GOT32:
22653 case BFD_RELOC_ARM_GOTOFF:
22654 case BFD_RELOC_ARM_GOT_PREL:
22655 case BFD_RELOC_ARM_PLT32:
22656 case BFD_RELOC_ARM_TARGET1:
22657 case BFD_RELOC_ARM_ROSEGREL32:
22658 case BFD_RELOC_ARM_SBREL32:
22659 case BFD_RELOC_ARM_PREL31:
22660 case BFD_RELOC_ARM_TARGET2:
22661 case BFD_RELOC_ARM_TLS_LE32:
22662 case BFD_RELOC_ARM_TLS_LDO32:
22663 case BFD_RELOC_ARM_PCREL_CALL:
22664 case BFD_RELOC_ARM_PCREL_JUMP:
22665 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22666 case BFD_RELOC_ARM_ALU_PC_G0:
22667 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22668 case BFD_RELOC_ARM_ALU_PC_G1:
22669 case BFD_RELOC_ARM_ALU_PC_G2:
22670 case BFD_RELOC_ARM_LDR_PC_G0:
22671 case BFD_RELOC_ARM_LDR_PC_G1:
22672 case BFD_RELOC_ARM_LDR_PC_G2:
22673 case BFD_RELOC_ARM_LDRS_PC_G0:
22674 case BFD_RELOC_ARM_LDRS_PC_G1:
22675 case BFD_RELOC_ARM_LDRS_PC_G2:
22676 case BFD_RELOC_ARM_LDC_PC_G0:
22677 case BFD_RELOC_ARM_LDC_PC_G1:
22678 case BFD_RELOC_ARM_LDC_PC_G2:
22679 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22680 case BFD_RELOC_ARM_ALU_SB_G0:
22681 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22682 case BFD_RELOC_ARM_ALU_SB_G1:
22683 case BFD_RELOC_ARM_ALU_SB_G2:
22684 case BFD_RELOC_ARM_LDR_SB_G0:
22685 case BFD_RELOC_ARM_LDR_SB_G1:
22686 case BFD_RELOC_ARM_LDR_SB_G2:
22687 case BFD_RELOC_ARM_LDRS_SB_G0:
22688 case BFD_RELOC_ARM_LDRS_SB_G1:
22689 case BFD_RELOC_ARM_LDRS_SB_G2:
22690 case BFD_RELOC_ARM_LDC_SB_G0:
22691 case BFD_RELOC_ARM_LDC_SB_G1:
22692 case BFD_RELOC_ARM_LDC_SB_G2:
22693 case BFD_RELOC_ARM_V4BX:
22694 code = fixp->fx_r_type;
22695 break;
22696
22697 case BFD_RELOC_ARM_TLS_GOTDESC:
22698 case BFD_RELOC_ARM_TLS_GD32:
22699 case BFD_RELOC_ARM_TLS_IE32:
22700 case BFD_RELOC_ARM_TLS_LDM32:
22701 /* BFD will include the symbol's address in the addend.
22702 But we don't want that, so subtract it out again here. */
22703 if (!S_IS_COMMON (fixp->fx_addsy))
22704 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22705 code = fixp->fx_r_type;
22706 break;
22707 #endif
22708
22709 case BFD_RELOC_ARM_IMMEDIATE:
22710 as_bad_where (fixp->fx_file, fixp->fx_line,
22711 _("internal relocation (type: IMMEDIATE) not fixed up"));
22712 return NULL;
22713
22714 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22715 as_bad_where (fixp->fx_file, fixp->fx_line,
22716 _("ADRL used for a symbol not defined in the same file"));
22717 return NULL;
22718
22719 case BFD_RELOC_ARM_OFFSET_IMM:
22720 if (section->use_rela_p)
22721 {
22722 code = fixp->fx_r_type;
22723 break;
22724 }
22725
22726 if (fixp->fx_addsy != NULL
22727 && !S_IS_DEFINED (fixp->fx_addsy)
22728 && S_IS_LOCAL (fixp->fx_addsy))
22729 {
22730 as_bad_where (fixp->fx_file, fixp->fx_line,
22731 _("undefined local label `%s'"),
22732 S_GET_NAME (fixp->fx_addsy));
22733 return NULL;
22734 }
22735
22736 as_bad_where (fixp->fx_file, fixp->fx_line,
22737 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22738 return NULL;
22739
22740 default:
22741 {
22742 char * type;
22743
22744 switch (fixp->fx_r_type)
22745 {
22746 case BFD_RELOC_NONE: type = "NONE"; break;
22747 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22748 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22749 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22750 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22751 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22752 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22753 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22754 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22755 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22756 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22757 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22758 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22759 default: type = _("<unknown>"); break;
22760 }
22761 as_bad_where (fixp->fx_file, fixp->fx_line,
22762 _("cannot represent %s relocation in this object file format"),
22763 type);
22764 return NULL;
22765 }
22766 }
22767
22768 #ifdef OBJ_ELF
22769 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22770 && GOT_symbol
22771 && fixp->fx_addsy == GOT_symbol)
22772 {
22773 code = BFD_RELOC_ARM_GOTPC;
22774 reloc->addend = fixp->fx_offset = reloc->address;
22775 }
22776 #endif
22777
22778 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22779
22780 if (reloc->howto == NULL)
22781 {
22782 as_bad_where (fixp->fx_file, fixp->fx_line,
22783 _("cannot represent %s relocation in this object file format"),
22784 bfd_get_reloc_code_name (code));
22785 return NULL;
22786 }
22787
22788 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22789 vtable entry to be used in the relocation's section offset. */
22790 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22791 reloc->address = fixp->fx_offset;
22792
22793 return reloc;
22794 }
22795
22796 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22797
22798 void
22799 cons_fix_new_arm (fragS * frag,
22800 int where,
22801 int size,
22802 expressionS * exp)
22803 {
22804 bfd_reloc_code_real_type type;
22805 int pcrel = 0;
22806
22807 /* Pick a reloc.
22808 FIXME: @@ Should look at CPU word size. */
22809 switch (size)
22810 {
22811 case 1:
22812 type = BFD_RELOC_8;
22813 break;
22814 case 2:
22815 type = BFD_RELOC_16;
22816 break;
22817 case 4:
22818 default:
22819 type = BFD_RELOC_32;
22820 break;
22821 case 8:
22822 type = BFD_RELOC_64;
22823 break;
22824 }
22825
22826 #ifdef TE_PE
22827 if (exp->X_op == O_secrel)
22828 {
22829 exp->X_op = O_symbol;
22830 type = BFD_RELOC_32_SECREL;
22831 }
22832 #endif
22833
22834 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22835 }
22836
22837 #if defined (OBJ_COFF)
22838 void
22839 arm_validate_fix (fixS * fixP)
22840 {
22841 /* If the destination of the branch is a defined symbol which does not have
22842 the THUMB_FUNC attribute, then we must be calling a function which has
22843 the (interfacearm) attribute. We look for the Thumb entry point to that
22844 function and change the branch to refer to that function instead. */
22845 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22846 && fixP->fx_addsy != NULL
22847 && S_IS_DEFINED (fixP->fx_addsy)
22848 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22849 {
22850 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22851 }
22852 }
22853 #endif
22854
22855
22856 int
22857 arm_force_relocation (struct fix * fixp)
22858 {
22859 #if defined (OBJ_COFF) && defined (TE_PE)
22860 if (fixp->fx_r_type == BFD_RELOC_RVA)
22861 return 1;
22862 #endif
22863
22864 /* In case we have a call or a branch to a function in ARM ISA mode from
22865 a thumb function or vice-versa force the relocation. These relocations
22866 are cleared off for some cores that might have blx and simple transformations
22867 are possible. */
22868
22869 #ifdef OBJ_ELF
22870 switch (fixp->fx_r_type)
22871 {
22872 case BFD_RELOC_ARM_PCREL_JUMP:
22873 case BFD_RELOC_ARM_PCREL_CALL:
22874 case BFD_RELOC_THUMB_PCREL_BLX:
22875 if (THUMB_IS_FUNC (fixp->fx_addsy))
22876 return 1;
22877 break;
22878
22879 case BFD_RELOC_ARM_PCREL_BLX:
22880 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22881 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22882 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22883 if (ARM_IS_FUNC (fixp->fx_addsy))
22884 return 1;
22885 break;
22886
22887 default:
22888 break;
22889 }
22890 #endif
22891
22892 /* Resolve these relocations even if the symbol is extern or weak.
22893 Technically this is probably wrong due to symbol preemption.
22894 In practice these relocations do not have enough range to be useful
22895 at dynamic link time, and some code (e.g. in the Linux kernel)
22896 expects these references to be resolved. */
22897 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22898 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22899 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22900 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22901 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22902 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22903 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22904 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22905 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22906 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22907 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22908 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22909 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22910 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22911 return 0;
22912
22913 /* Always leave these relocations for the linker. */
22914 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22915 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22916 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22917 return 1;
22918
22919 /* Always generate relocations against function symbols. */
22920 if (fixp->fx_r_type == BFD_RELOC_32
22921 && fixp->fx_addsy
22922 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22923 return 1;
22924
22925 return generic_force_reloc (fixp);
22926 }
22927
22928 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22929 /* Relocations against function names must be left unadjusted,
22930 so that the linker can use this information to generate interworking
22931 stubs. The MIPS version of this function
22932 also prevents relocations that are mips-16 specific, but I do not
22933 know why it does this.
22934
22935 FIXME:
22936 There is one other problem that ought to be addressed here, but
22937 which currently is not: Taking the address of a label (rather
22938 than a function) and then later jumping to that address. Such
22939 addresses also ought to have their bottom bit set (assuming that
22940 they reside in Thumb code), but at the moment they will not. */
22941
22942 bfd_boolean
22943 arm_fix_adjustable (fixS * fixP)
22944 {
22945 if (fixP->fx_addsy == NULL)
22946 return 1;
22947
22948 /* Preserve relocations against symbols with function type. */
22949 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22950 return FALSE;
22951
22952 if (THUMB_IS_FUNC (fixP->fx_addsy)
22953 && fixP->fx_subsy == NULL)
22954 return FALSE;
22955
22956 /* We need the symbol name for the VTABLE entries. */
22957 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22959 return FALSE;
22960
22961 /* Don't allow symbols to be discarded on GOT related relocs. */
22962 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22963 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22964 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22965 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22966 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22967 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22968 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22969 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22970 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22971 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22972 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22973 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22974 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22975 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22976 return FALSE;
22977
22978 /* Similarly for group relocations. */
22979 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22980 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22981 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22982 return FALSE;
22983
22984 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22985 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22986 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22987 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22988 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22989 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22990 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22991 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22992 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22993 return FALSE;
22994
22995 return TRUE;
22996 }
22997 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22998
22999 #ifdef OBJ_ELF
23000
23001 const char *
23002 elf32_arm_target_format (void)
23003 {
23004 #ifdef TE_SYMBIAN
23005 return (target_big_endian
23006 ? "elf32-bigarm-symbian"
23007 : "elf32-littlearm-symbian");
23008 #elif defined (TE_VXWORKS)
23009 return (target_big_endian
23010 ? "elf32-bigarm-vxworks"
23011 : "elf32-littlearm-vxworks");
23012 #elif defined (TE_NACL)
23013 return (target_big_endian
23014 ? "elf32-bigarm-nacl"
23015 : "elf32-littlearm-nacl");
23016 #else
23017 if (target_big_endian)
23018 return "elf32-bigarm";
23019 else
23020 return "elf32-littlearm";
23021 #endif
23022 }
23023
23024 void
23025 armelf_frob_symbol (symbolS * symp,
23026 int * puntp)
23027 {
23028 elf_frob_symbol (symp, puntp);
23029 }
23030 #endif
23031
23032 /* MD interface: Finalization. */
23033
23034 void
23035 arm_cleanup (void)
23036 {
23037 literal_pool * pool;
23038
23039 /* Ensure that all the IT blocks are properly closed. */
23040 check_it_blocks_finished ();
23041
23042 for (pool = list_of_pools; pool; pool = pool->next)
23043 {
23044 /* Put it at the end of the relevant section. */
23045 subseg_set (pool->section, pool->sub_section);
23046 #ifdef OBJ_ELF
23047 arm_elf_change_section ();
23048 #endif
23049 s_ltorg (0);
23050 }
23051 }
23052
23053 #ifdef OBJ_ELF
23054 /* Remove any excess mapping symbols generated for alignment frags in
23055 SEC. We may have created a mapping symbol before a zero byte
23056 alignment; remove it if there's a mapping symbol after the
23057 alignment. */
23058 static void
23059 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
23060 void *dummy ATTRIBUTE_UNUSED)
23061 {
23062 segment_info_type *seginfo = seg_info (sec);
23063 fragS *fragp;
23064
23065 if (seginfo == NULL || seginfo->frchainP == NULL)
23066 return;
23067
23068 for (fragp = seginfo->frchainP->frch_root;
23069 fragp != NULL;
23070 fragp = fragp->fr_next)
23071 {
23072 symbolS *sym = fragp->tc_frag_data.last_map;
23073 fragS *next = fragp->fr_next;
23074
23075 /* Variable-sized frags have been converted to fixed size by
23076 this point. But if this was variable-sized to start with,
23077 there will be a fixed-size frag after it. So don't handle
23078 next == NULL. */
23079 if (sym == NULL || next == NULL)
23080 continue;
23081
23082 if (S_GET_VALUE (sym) < next->fr_address)
23083 /* Not at the end of this frag. */
23084 continue;
23085 know (S_GET_VALUE (sym) == next->fr_address);
23086
23087 do
23088 {
23089 if (next->tc_frag_data.first_map != NULL)
23090 {
23091 /* Next frag starts with a mapping symbol. Discard this
23092 one. */
23093 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23094 break;
23095 }
23096
23097 if (next->fr_next == NULL)
23098 {
23099 /* This mapping symbol is at the end of the section. Discard
23100 it. */
23101 know (next->fr_fix == 0 && next->fr_var == 0);
23102 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
23103 break;
23104 }
23105
23106 /* As long as we have empty frags without any mapping symbols,
23107 keep looking. */
23108 /* If the next frag is non-empty and does not start with a
23109 mapping symbol, then this mapping symbol is required. */
23110 if (next->fr_address != next->fr_next->fr_address)
23111 break;
23112
23113 next = next->fr_next;
23114 }
23115 while (next != NULL);
23116 }
23117 }
23118 #endif
23119
23120 /* Adjust the symbol table. This marks Thumb symbols as distinct from
23121 ARM ones. */
23122
23123 void
23124 arm_adjust_symtab (void)
23125 {
23126 #ifdef OBJ_COFF
23127 symbolS * sym;
23128
23129 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23130 {
23131 if (ARM_IS_THUMB (sym))
23132 {
23133 if (THUMB_IS_FUNC (sym))
23134 {
23135 /* Mark the symbol as a Thumb function. */
23136 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
23137 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
23138 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
23139
23140 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
23141 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
23142 else
23143 as_bad (_("%s: unexpected function type: %d"),
23144 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
23145 }
23146 else switch (S_GET_STORAGE_CLASS (sym))
23147 {
23148 case C_EXT:
23149 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
23150 break;
23151 case C_STAT:
23152 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
23153 break;
23154 case C_LABEL:
23155 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
23156 break;
23157 default:
23158 /* Do nothing. */
23159 break;
23160 }
23161 }
23162
23163 if (ARM_IS_INTERWORK (sym))
23164 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
23165 }
23166 #endif
23167 #ifdef OBJ_ELF
23168 symbolS * sym;
23169 char bind;
23170
23171 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
23172 {
23173 if (ARM_IS_THUMB (sym))
23174 {
23175 elf_symbol_type * elf_sym;
23176
23177 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
23178 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
23179
23180 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
23181 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
23182 {
23183 /* If it's a .thumb_func, declare it as so,
23184 otherwise tag label as .code 16. */
23185 if (THUMB_IS_FUNC (sym))
23186 elf_sym->internal_elf_sym.st_target_internal
23187 = ST_BRANCH_TO_THUMB;
23188 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
23189 elf_sym->internal_elf_sym.st_info =
23190 ELF_ST_INFO (bind, STT_ARM_16BIT);
23191 }
23192 }
23193 }
23194
23195 /* Remove any overlapping mapping symbols generated by alignment frags. */
23196 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
23197 /* Now do generic ELF adjustments. */
23198 elf_adjust_symtab ();
23199 #endif
23200 }
23201
23202 /* MD interface: Initialization. */
23203
23204 static void
23205 set_constant_flonums (void)
23206 {
23207 int i;
23208
23209 for (i = 0; i < NUM_FLOAT_VALS; i++)
23210 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
23211 abort ();
23212 }
23213
23214 /* Auto-select Thumb mode if it's the only available instruction set for the
23215 given architecture. */
23216
23217 static void
23218 autoselect_thumb_from_cpu_variant (void)
23219 {
23220 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
23221 opcode_select (16);
23222 }
23223
23224 void
23225 md_begin (void)
23226 {
23227 unsigned mach;
23228 unsigned int i;
23229
23230 if ( (arm_ops_hsh = hash_new ()) == NULL
23231 || (arm_cond_hsh = hash_new ()) == NULL
23232 || (arm_shift_hsh = hash_new ()) == NULL
23233 || (arm_psr_hsh = hash_new ()) == NULL
23234 || (arm_v7m_psr_hsh = hash_new ()) == NULL
23235 || (arm_reg_hsh = hash_new ()) == NULL
23236 || (arm_reloc_hsh = hash_new ()) == NULL
23237 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
23238 as_fatal (_("virtual memory exhausted"));
23239
23240 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
23241 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
23242 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
23243 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
23244 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
23245 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
23246 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
23247 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
23248 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
23249 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
23250 (void *) (v7m_psrs + i));
23251 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
23252 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
23253 for (i = 0;
23254 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
23255 i++)
23256 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
23257 (void *) (barrier_opt_names + i));
23258 #ifdef OBJ_ELF
23259 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
23260 {
23261 struct reloc_entry * entry = reloc_names + i;
23262
23263 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
23264 /* This makes encode_branch() use the EABI versions of this relocation. */
23265 entry->reloc = BFD_RELOC_UNUSED;
23266
23267 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
23268 }
23269 #endif
23270
23271 set_constant_flonums ();
23272
23273 /* Set the cpu variant based on the command-line options. We prefer
23274 -mcpu= over -march= if both are set (as for GCC); and we prefer
23275 -mfpu= over any other way of setting the floating point unit.
23276 Use of legacy options with new options are faulted. */
23277 if (legacy_cpu)
23278 {
23279 if (mcpu_cpu_opt || march_cpu_opt)
23280 as_bad (_("use of old and new-style options to set CPU type"));
23281
23282 mcpu_cpu_opt = legacy_cpu;
23283 }
23284 else if (!mcpu_cpu_opt)
23285 mcpu_cpu_opt = march_cpu_opt;
23286
23287 if (legacy_fpu)
23288 {
23289 if (mfpu_opt)
23290 as_bad (_("use of old and new-style options to set FPU type"));
23291
23292 mfpu_opt = legacy_fpu;
23293 }
23294 else if (!mfpu_opt)
23295 {
23296 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
23297 || defined (TE_NetBSD) || defined (TE_VXWORKS))
23298 /* Some environments specify a default FPU. If they don't, infer it
23299 from the processor. */
23300 if (mcpu_fpu_opt)
23301 mfpu_opt = mcpu_fpu_opt;
23302 else
23303 mfpu_opt = march_fpu_opt;
23304 #else
23305 mfpu_opt = &fpu_default;
23306 #endif
23307 }
23308
23309 if (!mfpu_opt)
23310 {
23311 if (mcpu_cpu_opt != NULL)
23312 mfpu_opt = &fpu_default;
23313 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
23314 mfpu_opt = &fpu_arch_vfp_v2;
23315 else
23316 mfpu_opt = &fpu_arch_fpa;
23317 }
23318
23319 #ifdef CPU_DEFAULT
23320 if (!mcpu_cpu_opt)
23321 {
23322 mcpu_cpu_opt = &cpu_default;
23323 selected_cpu = cpu_default;
23324 }
23325 #else
23326 if (mcpu_cpu_opt)
23327 selected_cpu = *mcpu_cpu_opt;
23328 else
23329 mcpu_cpu_opt = &arm_arch_any;
23330 #endif
23331
23332 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
23333
23334 autoselect_thumb_from_cpu_variant ();
23335
23336 arm_arch_used = thumb_arch_used = arm_arch_none;
23337
23338 #if defined OBJ_COFF || defined OBJ_ELF
23339 {
23340 unsigned int flags = 0;
23341
23342 #if defined OBJ_ELF
23343 flags = meabi_flags;
23344
23345 switch (meabi_flags)
23346 {
23347 case EF_ARM_EABI_UNKNOWN:
23348 #endif
23349 /* Set the flags in the private structure. */
23350 if (uses_apcs_26) flags |= F_APCS26;
23351 if (support_interwork) flags |= F_INTERWORK;
23352 if (uses_apcs_float) flags |= F_APCS_FLOAT;
23353 if (pic_code) flags |= F_PIC;
23354 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
23355 flags |= F_SOFT_FLOAT;
23356
23357 switch (mfloat_abi_opt)
23358 {
23359 case ARM_FLOAT_ABI_SOFT:
23360 case ARM_FLOAT_ABI_SOFTFP:
23361 flags |= F_SOFT_FLOAT;
23362 break;
23363
23364 case ARM_FLOAT_ABI_HARD:
23365 if (flags & F_SOFT_FLOAT)
23366 as_bad (_("hard-float conflicts with specified fpu"));
23367 break;
23368 }
23369
23370 /* Using pure-endian doubles (even if soft-float). */
23371 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
23372 flags |= F_VFP_FLOAT;
23373
23374 #if defined OBJ_ELF
23375 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
23376 flags |= EF_ARM_MAVERICK_FLOAT;
23377 break;
23378
23379 case EF_ARM_EABI_VER4:
23380 case EF_ARM_EABI_VER5:
23381 /* No additional flags to set. */
23382 break;
23383
23384 default:
23385 abort ();
23386 }
23387 #endif
23388 bfd_set_private_flags (stdoutput, flags);
23389
23390 /* We have run out flags in the COFF header to encode the
23391 status of ATPCS support, so instead we create a dummy,
23392 empty, debug section called .arm.atpcs. */
23393 if (atpcs)
23394 {
23395 asection * sec;
23396
23397 sec = bfd_make_section (stdoutput, ".arm.atpcs");
23398
23399 if (sec != NULL)
23400 {
23401 bfd_set_section_flags
23402 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
23403 bfd_set_section_size (stdoutput, sec, 0);
23404 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
23405 }
23406 }
23407 }
23408 #endif
23409
23410 /* Record the CPU type as well. */
23411 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
23412 mach = bfd_mach_arm_iWMMXt2;
23413 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
23414 mach = bfd_mach_arm_iWMMXt;
23415 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
23416 mach = bfd_mach_arm_XScale;
23417 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
23418 mach = bfd_mach_arm_ep9312;
23419 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
23420 mach = bfd_mach_arm_5TE;
23421 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
23422 {
23423 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23424 mach = bfd_mach_arm_5T;
23425 else
23426 mach = bfd_mach_arm_5;
23427 }
23428 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
23429 {
23430 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
23431 mach = bfd_mach_arm_4T;
23432 else
23433 mach = bfd_mach_arm_4;
23434 }
23435 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
23436 mach = bfd_mach_arm_3M;
23437 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
23438 mach = bfd_mach_arm_3;
23439 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
23440 mach = bfd_mach_arm_2a;
23441 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
23442 mach = bfd_mach_arm_2;
23443 else
23444 mach = bfd_mach_arm_unknown;
23445
23446 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
23447 }
23448
23449 /* Command line processing. */
23450
23451 /* md_parse_option
23452 Invocation line includes a switch not recognized by the base assembler.
23453 See if it's a processor-specific option.
23454
23455 This routine is somewhat complicated by the need for backwards
23456 compatibility (since older releases of gcc can't be changed).
23457 The new options try to make the interface as compatible as
23458 possible with GCC.
23459
23460 New options (supported) are:
23461
23462 -mcpu=<cpu name> Assemble for selected processor
23463 -march=<architecture name> Assemble for selected architecture
23464 -mfpu=<fpu architecture> Assemble for selected FPU.
23465 -EB/-mbig-endian Big-endian
23466 -EL/-mlittle-endian Little-endian
23467 -k Generate PIC code
23468 -mthumb Start in Thumb mode
23469 -mthumb-interwork Code supports ARM/Thumb interworking
23470
23471 -m[no-]warn-deprecated Warn about deprecated features
23472
23473 For now we will also provide support for:
23474
23475 -mapcs-32 32-bit Program counter
23476 -mapcs-26 26-bit Program counter
23477 -macps-float Floats passed in FP registers
23478 -mapcs-reentrant Reentrant code
23479 -matpcs
23480 (sometime these will probably be replaced with -mapcs=<list of options>
23481 and -matpcs=<list of options>)
23482
23483 The remaining options are only supported for back-wards compatibility.
23484 Cpu variants, the arm part is optional:
23485 -m[arm]1 Currently not supported.
23486 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
23487 -m[arm]3 Arm 3 processor
23488 -m[arm]6[xx], Arm 6 processors
23489 -m[arm]7[xx][t][[d]m] Arm 7 processors
23490 -m[arm]8[10] Arm 8 processors
23491 -m[arm]9[20][tdmi] Arm 9 processors
23492 -mstrongarm[110[0]] StrongARM processors
23493 -mxscale XScale processors
23494 -m[arm]v[2345[t[e]]] Arm architectures
23495 -mall All (except the ARM1)
23496 FP variants:
23497 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23498 -mfpe-old (No float load/store multiples)
23499 -mvfpxd VFP Single precision
23500 -mvfp All VFP
23501 -mno-fpu Disable all floating point instructions
23502
23503 The following CPU names are recognized:
23504 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23505 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23506 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23507 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23508 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23509 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23510 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23511
23512 */
23513
23514 const char * md_shortopts = "m:k";
23515
23516 #ifdef ARM_BI_ENDIAN
23517 #define OPTION_EB (OPTION_MD_BASE + 0)
23518 #define OPTION_EL (OPTION_MD_BASE + 1)
23519 #else
23520 #if TARGET_BYTES_BIG_ENDIAN
23521 #define OPTION_EB (OPTION_MD_BASE + 0)
23522 #else
23523 #define OPTION_EL (OPTION_MD_BASE + 1)
23524 #endif
23525 #endif
23526 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23527
23528 struct option md_longopts[] =
23529 {
23530 #ifdef OPTION_EB
23531 {"EB", no_argument, NULL, OPTION_EB},
23532 #endif
23533 #ifdef OPTION_EL
23534 {"EL", no_argument, NULL, OPTION_EL},
23535 #endif
23536 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23537 {NULL, no_argument, NULL, 0}
23538 };
23539
23540 size_t md_longopts_size = sizeof (md_longopts);
23541
23542 struct arm_option_table
23543 {
23544 char *option; /* Option name to match. */
23545 char *help; /* Help information. */
23546 int *var; /* Variable to change. */
23547 int value; /* What to change it to. */
23548 char *deprecated; /* If non-null, print this message. */
23549 };
23550
23551 struct arm_option_table arm_opts[] =
23552 {
23553 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23554 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23555 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23556 &support_interwork, 1, NULL},
23557 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23558 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23559 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23560 1, NULL},
23561 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23562 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23563 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23564 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23565 NULL},
23566
23567 /* These are recognized by the assembler, but have no affect on code. */
23568 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23569 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23570
23571 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23572 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23573 &warn_on_deprecated, 0, NULL},
23574 {NULL, NULL, NULL, 0, NULL}
23575 };
23576
23577 struct arm_legacy_option_table
23578 {
23579 char *option; /* Option name to match. */
23580 const arm_feature_set **var; /* Variable to change. */
23581 const arm_feature_set value; /* What to change it to. */
23582 char *deprecated; /* If non-null, print this message. */
23583 };
23584
23585 const struct arm_legacy_option_table arm_legacy_opts[] =
23586 {
23587 /* DON'T add any new processors to this list -- we want the whole list
23588 to go away... Add them to the processors table instead. */
23589 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23590 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23591 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23592 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23593 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23594 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23595 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23596 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23597 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23598 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23599 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23600 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23601 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23602 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23603 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23604 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23605 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23606 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23607 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23608 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23609 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23610 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23611 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23612 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23613 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23614 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23615 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23616 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23617 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23618 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23619 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23620 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23621 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23622 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23623 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23624 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23625 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23626 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23627 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23628 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23629 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23630 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23631 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23632 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23633 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23634 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23635 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23636 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23637 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23638 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23639 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23640 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23641 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23642 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23643 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23644 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23645 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23646 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23647 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23648 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23649 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23650 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23651 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23652 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23653 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23654 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23655 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23656 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23657 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23658 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23659 N_("use -mcpu=strongarm110")},
23660 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23661 N_("use -mcpu=strongarm1100")},
23662 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23663 N_("use -mcpu=strongarm1110")},
23664 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23665 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23666 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23667
23668 /* Architecture variants -- don't add any more to this list either. */
23669 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23670 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23671 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23672 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23673 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23674 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23675 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23676 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23677 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23678 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23679 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23680 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23681 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23682 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23683 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23684 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23685 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23686 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23687
23688 /* Floating point variants -- don't add any more to this list either. */
23689 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23690 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23691 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23692 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23693 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23694
23695 {NULL, NULL, ARM_ARCH_NONE, NULL}
23696 };
23697
23698 struct arm_cpu_option_table
23699 {
23700 char *name;
23701 size_t name_len;
23702 const arm_feature_set value;
23703 /* For some CPUs we assume an FPU unless the user explicitly sets
23704 -mfpu=... */
23705 const arm_feature_set default_fpu;
23706 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23707 case. */
23708 const char *canonical_name;
23709 };
23710
23711 /* This list should, at a minimum, contain all the cpu names
23712 recognized by GCC. */
23713 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23714 static const struct arm_cpu_option_table arm_cpus[] =
23715 {
23716 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23717 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23718 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23719 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23720 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23721 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23722 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23723 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23724 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23725 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23726 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23727 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23728 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23729 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23730 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23731 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23732 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23733 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23734 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23735 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23736 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23737 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23738 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23739 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23740 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23741 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23742 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23743 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23744 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23745 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23746 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23747 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23748 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23749 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23750 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23751 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23752 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23753 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23754 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23755 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23756 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23757 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23758 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23759 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23760 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23761 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23762 /* For V5 or later processors we default to using VFP; but the user
23763 should really set the FPU type explicitly. */
23764 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23765 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23766 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23767 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23768 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23769 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23770 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23771 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23772 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23773 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23774 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23775 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23776 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23777 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23778 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23779 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23780 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23781 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23782 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23783 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23784 "ARM1026EJ-S"),
23785 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23786 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23787 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23788 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23789 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23790 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23791 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23792 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23793 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23794 "ARM1136JF-S"),
23795 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23796 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23797 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23798 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23799 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23800 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23801 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23802 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23803 FPU_NONE, "Cortex-A5"),
23804 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23805 FPU_ARCH_NEON_VFP_V4,
23806 "Cortex-A7"),
23807 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23808 ARM_FEATURE (0, FPU_VFP_V3
23809 | FPU_NEON_EXT_V1),
23810 "Cortex-A8"),
23811 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23812 ARM_FEATURE (0, FPU_VFP_V3
23813 | FPU_NEON_EXT_V1),
23814 "Cortex-A9"),
23815 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23816 FPU_ARCH_NEON_VFP_V4,
23817 "Cortex-A15"),
23818 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23819 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23820 "Cortex-R4F"),
23821 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23822 FPU_NONE, "Cortex-R5"),
23823 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23824 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23825 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23826 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23827 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23828 /* ??? XSCALE is really an architecture. */
23829 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23830 /* ??? iwmmxt is not a processor. */
23831 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23832 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23833 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23834 /* Maverick */
23835 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23836 FPU_ARCH_MAVERICK,
23837 "ARM920T"),
23838 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23839 };
23840 #undef ARM_CPU_OPT
23841
23842 struct arm_arch_option_table
23843 {
23844 char *name;
23845 size_t name_len;
23846 const arm_feature_set value;
23847 const arm_feature_set default_fpu;
23848 };
23849
23850 /* This list should, at a minimum, contain all the architecture names
23851 recognized by GCC. */
23852 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23853 static const struct arm_arch_option_table arm_archs[] =
23854 {
23855 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23856 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23857 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23858 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23859 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23860 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23861 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23862 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23863 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23864 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23865 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23866 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23867 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23868 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23869 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23870 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23871 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23872 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23873 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23874 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23875 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23876 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23877 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23878 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23879 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23880 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23881 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23882 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23883 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23884 /* The official spelling of the ARMv7 profile variants is the dashed form.
23885 Accept the non-dashed form for compatibility with old toolchains. */
23886 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23887 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23888 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23889 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23890 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23891 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23892 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23893 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23894 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23895 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23896 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23897 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23898 };
23899 #undef ARM_ARCH_OPT
23900
23901 /* ISA extensions in the co-processor and main instruction set space. */
23902 struct arm_option_extension_value_table
23903 {
23904 char *name;
23905 size_t name_len;
23906 const arm_feature_set value;
23907 const arm_feature_set allowed_archs;
23908 };
23909
23910 /* The following table must be in alphabetical order with a NULL last entry.
23911 */
23912 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23913 static const struct arm_option_extension_value_table arm_extensions[] =
23914 {
23915 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23916 ARM_FEATURE (ARM_EXT_V8, 0)),
23917 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23918 ARM_FEATURE (ARM_EXT_V8, 0)),
23919 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23920 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23921 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23922 ARM_EXT_OPT ("iwmmxt2",
23923 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23924 ARM_EXT_OPT ("maverick",
23925 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23926 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23927 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23928 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23929 ARM_FEATURE (ARM_EXT_V8, 0)),
23930 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23931 ARM_FEATURE (ARM_EXT_V6M, 0)),
23932 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23933 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23934 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23935 | ARM_EXT_DIV, 0),
23936 ARM_FEATURE (ARM_EXT_V7A, 0)),
23937 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23938 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23939 };
23940 #undef ARM_EXT_OPT
23941
23942 /* ISA floating-point and Advanced SIMD extensions. */
23943 struct arm_option_fpu_value_table
23944 {
23945 char *name;
23946 const arm_feature_set value;
23947 };
23948
23949 /* This list should, at a minimum, contain all the fpu names
23950 recognized by GCC. */
23951 static const struct arm_option_fpu_value_table arm_fpus[] =
23952 {
23953 {"softfpa", FPU_NONE},
23954 {"fpe", FPU_ARCH_FPE},
23955 {"fpe2", FPU_ARCH_FPE},
23956 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23957 {"fpa", FPU_ARCH_FPA},
23958 {"fpa10", FPU_ARCH_FPA},
23959 {"fpa11", FPU_ARCH_FPA},
23960 {"arm7500fe", FPU_ARCH_FPA},
23961 {"softvfp", FPU_ARCH_VFP},
23962 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23963 {"vfp", FPU_ARCH_VFP_V2},
23964 {"vfp9", FPU_ARCH_VFP_V2},
23965 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23966 {"vfp10", FPU_ARCH_VFP_V2},
23967 {"vfp10-r0", FPU_ARCH_VFP_V1},
23968 {"vfpxd", FPU_ARCH_VFP_V1xD},
23969 {"vfpv2", FPU_ARCH_VFP_V2},
23970 {"vfpv3", FPU_ARCH_VFP_V3},
23971 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23972 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23973 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23974 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23975 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23976 {"arm1020t", FPU_ARCH_VFP_V1},
23977 {"arm1020e", FPU_ARCH_VFP_V2},
23978 {"arm1136jfs", FPU_ARCH_VFP_V2},
23979 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23980 {"maverick", FPU_ARCH_MAVERICK},
23981 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23982 {"neon-fp16", FPU_ARCH_NEON_FP16},
23983 {"vfpv4", FPU_ARCH_VFP_V4},
23984 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23985 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23986 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23987 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23988 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23989 {"crypto-neon-fp-armv8",
23990 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23991 {NULL, ARM_ARCH_NONE}
23992 };
23993
23994 struct arm_option_value_table
23995 {
23996 char *name;
23997 long value;
23998 };
23999
24000 static const struct arm_option_value_table arm_float_abis[] =
24001 {
24002 {"hard", ARM_FLOAT_ABI_HARD},
24003 {"softfp", ARM_FLOAT_ABI_SOFTFP},
24004 {"soft", ARM_FLOAT_ABI_SOFT},
24005 {NULL, 0}
24006 };
24007
24008 #ifdef OBJ_ELF
24009 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
24010 static const struct arm_option_value_table arm_eabis[] =
24011 {
24012 {"gnu", EF_ARM_EABI_UNKNOWN},
24013 {"4", EF_ARM_EABI_VER4},
24014 {"5", EF_ARM_EABI_VER5},
24015 {NULL, 0}
24016 };
24017 #endif
24018
24019 struct arm_long_option_table
24020 {
24021 char * option; /* Substring to match. */
24022 char * help; /* Help information. */
24023 int (* func) (char * subopt); /* Function to decode sub-option. */
24024 char * deprecated; /* If non-null, print this message. */
24025 };
24026
24027 static bfd_boolean
24028 arm_parse_extension (char *str, const arm_feature_set **opt_p)
24029 {
24030 arm_feature_set *ext_set = (arm_feature_set *)
24031 xmalloc (sizeof (arm_feature_set));
24032
24033 /* We insist on extensions being specified in alphabetical order, and with
24034 extensions being added before being removed. We achieve this by having
24035 the global ARM_EXTENSIONS table in alphabetical order, and using the
24036 ADDING_VALUE variable to indicate whether we are adding an extension (1)
24037 or removing it (0) and only allowing it to change in the order
24038 -1 -> 1 -> 0. */
24039 const struct arm_option_extension_value_table * opt = NULL;
24040 int adding_value = -1;
24041
24042 /* Copy the feature set, so that we can modify it. */
24043 *ext_set = **opt_p;
24044 *opt_p = ext_set;
24045
24046 while (str != NULL && *str != 0)
24047 {
24048 char *ext;
24049 size_t len;
24050
24051 if (*str != '+')
24052 {
24053 as_bad (_("invalid architectural extension"));
24054 return FALSE;
24055 }
24056
24057 str++;
24058 ext = strchr (str, '+');
24059
24060 if (ext != NULL)
24061 len = ext - str;
24062 else
24063 len = strlen (str);
24064
24065 if (len >= 2 && strncmp (str, "no", 2) == 0)
24066 {
24067 if (adding_value != 0)
24068 {
24069 adding_value = 0;
24070 opt = arm_extensions;
24071 }
24072
24073 len -= 2;
24074 str += 2;
24075 }
24076 else if (len > 0)
24077 {
24078 if (adding_value == -1)
24079 {
24080 adding_value = 1;
24081 opt = arm_extensions;
24082 }
24083 else if (adding_value != 1)
24084 {
24085 as_bad (_("must specify extensions to add before specifying "
24086 "those to remove"));
24087 return FALSE;
24088 }
24089 }
24090
24091 if (len == 0)
24092 {
24093 as_bad (_("missing architectural extension"));
24094 return FALSE;
24095 }
24096
24097 gas_assert (adding_value != -1);
24098 gas_assert (opt != NULL);
24099
24100 /* Scan over the options table trying to find an exact match. */
24101 for (; opt->name != NULL; opt++)
24102 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24103 {
24104 /* Check we can apply the extension to this architecture. */
24105 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
24106 {
24107 as_bad (_("extension does not apply to the base architecture"));
24108 return FALSE;
24109 }
24110
24111 /* Add or remove the extension. */
24112 if (adding_value)
24113 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
24114 else
24115 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
24116
24117 break;
24118 }
24119
24120 if (opt->name == NULL)
24121 {
24122 /* Did we fail to find an extension because it wasn't specified in
24123 alphabetical order, or because it does not exist? */
24124
24125 for (opt = arm_extensions; opt->name != NULL; opt++)
24126 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24127 break;
24128
24129 if (opt->name == NULL)
24130 as_bad (_("unknown architectural extension `%s'"), str);
24131 else
24132 as_bad (_("architectural extensions must be specified in "
24133 "alphabetical order"));
24134
24135 return FALSE;
24136 }
24137 else
24138 {
24139 /* We should skip the extension we've just matched the next time
24140 round. */
24141 opt++;
24142 }
24143
24144 str = ext;
24145 };
24146
24147 return TRUE;
24148 }
24149
24150 static bfd_boolean
24151 arm_parse_cpu (char *str)
24152 {
24153 const struct arm_cpu_option_table *opt;
24154 char *ext = strchr (str, '+');
24155 size_t len;
24156
24157 if (ext != NULL)
24158 len = ext - str;
24159 else
24160 len = strlen (str);
24161
24162 if (len == 0)
24163 {
24164 as_bad (_("missing cpu name `%s'"), str);
24165 return FALSE;
24166 }
24167
24168 for (opt = arm_cpus; opt->name != NULL; opt++)
24169 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24170 {
24171 mcpu_cpu_opt = &opt->value;
24172 mcpu_fpu_opt = &opt->default_fpu;
24173 if (opt->canonical_name)
24174 strcpy (selected_cpu_name, opt->canonical_name);
24175 else
24176 {
24177 size_t i;
24178
24179 for (i = 0; i < len; i++)
24180 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24181 selected_cpu_name[i] = 0;
24182 }
24183
24184 if (ext != NULL)
24185 return arm_parse_extension (ext, &mcpu_cpu_opt);
24186
24187 return TRUE;
24188 }
24189
24190 as_bad (_("unknown cpu `%s'"), str);
24191 return FALSE;
24192 }
24193
24194 static bfd_boolean
24195 arm_parse_arch (char *str)
24196 {
24197 const struct arm_arch_option_table *opt;
24198 char *ext = strchr (str, '+');
24199 size_t len;
24200
24201 if (ext != NULL)
24202 len = ext - str;
24203 else
24204 len = strlen (str);
24205
24206 if (len == 0)
24207 {
24208 as_bad (_("missing architecture name `%s'"), str);
24209 return FALSE;
24210 }
24211
24212 for (opt = arm_archs; opt->name != NULL; opt++)
24213 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
24214 {
24215 march_cpu_opt = &opt->value;
24216 march_fpu_opt = &opt->default_fpu;
24217 strcpy (selected_cpu_name, opt->name);
24218
24219 if (ext != NULL)
24220 return arm_parse_extension (ext, &march_cpu_opt);
24221
24222 return TRUE;
24223 }
24224
24225 as_bad (_("unknown architecture `%s'\n"), str);
24226 return FALSE;
24227 }
24228
24229 static bfd_boolean
24230 arm_parse_fpu (char * str)
24231 {
24232 const struct arm_option_fpu_value_table * opt;
24233
24234 for (opt = arm_fpus; opt->name != NULL; opt++)
24235 if (streq (opt->name, str))
24236 {
24237 mfpu_opt = &opt->value;
24238 return TRUE;
24239 }
24240
24241 as_bad (_("unknown floating point format `%s'\n"), str);
24242 return FALSE;
24243 }
24244
24245 static bfd_boolean
24246 arm_parse_float_abi (char * str)
24247 {
24248 const struct arm_option_value_table * opt;
24249
24250 for (opt = arm_float_abis; opt->name != NULL; opt++)
24251 if (streq (opt->name, str))
24252 {
24253 mfloat_abi_opt = opt->value;
24254 return TRUE;
24255 }
24256
24257 as_bad (_("unknown floating point abi `%s'\n"), str);
24258 return FALSE;
24259 }
24260
24261 #ifdef OBJ_ELF
24262 static bfd_boolean
24263 arm_parse_eabi (char * str)
24264 {
24265 const struct arm_option_value_table *opt;
24266
24267 for (opt = arm_eabis; opt->name != NULL; opt++)
24268 if (streq (opt->name, str))
24269 {
24270 meabi_flags = opt->value;
24271 return TRUE;
24272 }
24273 as_bad (_("unknown EABI `%s'\n"), str);
24274 return FALSE;
24275 }
24276 #endif
24277
24278 static bfd_boolean
24279 arm_parse_it_mode (char * str)
24280 {
24281 bfd_boolean ret = TRUE;
24282
24283 if (streq ("arm", str))
24284 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
24285 else if (streq ("thumb", str))
24286 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
24287 else if (streq ("always", str))
24288 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
24289 else if (streq ("never", str))
24290 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
24291 else
24292 {
24293 as_bad (_("unknown implicit IT mode `%s', should be "\
24294 "arm, thumb, always, or never."), str);
24295 ret = FALSE;
24296 }
24297
24298 return ret;
24299 }
24300
24301 struct arm_long_option_table arm_long_opts[] =
24302 {
24303 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
24304 arm_parse_cpu, NULL},
24305 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
24306 arm_parse_arch, NULL},
24307 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
24308 arm_parse_fpu, NULL},
24309 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
24310 arm_parse_float_abi, NULL},
24311 #ifdef OBJ_ELF
24312 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
24313 arm_parse_eabi, NULL},
24314 #endif
24315 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
24316 arm_parse_it_mode, NULL},
24317 {NULL, NULL, 0, NULL}
24318 };
24319
24320 int
24321 md_parse_option (int c, char * arg)
24322 {
24323 struct arm_option_table *opt;
24324 const struct arm_legacy_option_table *fopt;
24325 struct arm_long_option_table *lopt;
24326
24327 switch (c)
24328 {
24329 #ifdef OPTION_EB
24330 case OPTION_EB:
24331 target_big_endian = 1;
24332 break;
24333 #endif
24334
24335 #ifdef OPTION_EL
24336 case OPTION_EL:
24337 target_big_endian = 0;
24338 break;
24339 #endif
24340
24341 case OPTION_FIX_V4BX:
24342 fix_v4bx = TRUE;
24343 break;
24344
24345 case 'a':
24346 /* Listing option. Just ignore these, we don't support additional
24347 ones. */
24348 return 0;
24349
24350 default:
24351 for (opt = arm_opts; opt->option != NULL; opt++)
24352 {
24353 if (c == opt->option[0]
24354 && ((arg == NULL && opt->option[1] == 0)
24355 || streq (arg, opt->option + 1)))
24356 {
24357 /* If the option is deprecated, tell the user. */
24358 if (warn_on_deprecated && opt->deprecated != NULL)
24359 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24360 arg ? arg : "", _(opt->deprecated));
24361
24362 if (opt->var != NULL)
24363 *opt->var = opt->value;
24364
24365 return 1;
24366 }
24367 }
24368
24369 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
24370 {
24371 if (c == fopt->option[0]
24372 && ((arg == NULL && fopt->option[1] == 0)
24373 || streq (arg, fopt->option + 1)))
24374 {
24375 /* If the option is deprecated, tell the user. */
24376 if (warn_on_deprecated && fopt->deprecated != NULL)
24377 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
24378 arg ? arg : "", _(fopt->deprecated));
24379
24380 if (fopt->var != NULL)
24381 *fopt->var = &fopt->value;
24382
24383 return 1;
24384 }
24385 }
24386
24387 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24388 {
24389 /* These options are expected to have an argument. */
24390 if (c == lopt->option[0]
24391 && arg != NULL
24392 && strncmp (arg, lopt->option + 1,
24393 strlen (lopt->option + 1)) == 0)
24394 {
24395 /* If the option is deprecated, tell the user. */
24396 if (warn_on_deprecated && lopt->deprecated != NULL)
24397 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
24398 _(lopt->deprecated));
24399
24400 /* Call the sup-option parser. */
24401 return lopt->func (arg + strlen (lopt->option) - 1);
24402 }
24403 }
24404
24405 return 0;
24406 }
24407
24408 return 1;
24409 }
24410
24411 void
24412 md_show_usage (FILE * fp)
24413 {
24414 struct arm_option_table *opt;
24415 struct arm_long_option_table *lopt;
24416
24417 fprintf (fp, _(" ARM-specific assembler options:\n"));
24418
24419 for (opt = arm_opts; opt->option != NULL; opt++)
24420 if (opt->help != NULL)
24421 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
24422
24423 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
24424 if (lopt->help != NULL)
24425 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
24426
24427 #ifdef OPTION_EB
24428 fprintf (fp, _("\
24429 -EB assemble code for a big-endian cpu\n"));
24430 #endif
24431
24432 #ifdef OPTION_EL
24433 fprintf (fp, _("\
24434 -EL assemble code for a little-endian cpu\n"));
24435 #endif
24436
24437 fprintf (fp, _("\
24438 --fix-v4bx Allow BX in ARMv4 code\n"));
24439 }
24440
24441
24442 #ifdef OBJ_ELF
24443 typedef struct
24444 {
24445 int val;
24446 arm_feature_set flags;
24447 } cpu_arch_ver_table;
24448
24449 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
24450 least features first. */
24451 static const cpu_arch_ver_table cpu_arch_ver[] =
24452 {
24453 {1, ARM_ARCH_V4},
24454 {2, ARM_ARCH_V4T},
24455 {3, ARM_ARCH_V5},
24456 {3, ARM_ARCH_V5T},
24457 {4, ARM_ARCH_V5TE},
24458 {5, ARM_ARCH_V5TEJ},
24459 {6, ARM_ARCH_V6},
24460 {9, ARM_ARCH_V6K},
24461 {7, ARM_ARCH_V6Z},
24462 {11, ARM_ARCH_V6M},
24463 {12, ARM_ARCH_V6SM},
24464 {8, ARM_ARCH_V6T2},
24465 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
24466 {10, ARM_ARCH_V7R},
24467 {10, ARM_ARCH_V7M},
24468 {14, ARM_ARCH_V8A},
24469 {0, ARM_ARCH_NONE}
24470 };
24471
24472 /* Set an attribute if it has not already been set by the user. */
24473 static void
24474 aeabi_set_attribute_int (int tag, int value)
24475 {
24476 if (tag < 1
24477 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24478 || !attributes_set_explicitly[tag])
24479 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
24480 }
24481
24482 static void
24483 aeabi_set_attribute_string (int tag, const char *value)
24484 {
24485 if (tag < 1
24486 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
24487 || !attributes_set_explicitly[tag])
24488 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24489 }
24490
24491 /* Set the public EABI object attributes. */
24492 static void
24493 aeabi_set_public_attributes (void)
24494 {
24495 int arch;
24496 char profile;
24497 int virt_sec = 0;
24498 int fp16_optional = 0;
24499 arm_feature_set flags;
24500 arm_feature_set tmp;
24501 const cpu_arch_ver_table *p;
24502
24503 /* Choose the architecture based on the capabilities of the requested cpu
24504 (if any) and/or the instructions actually used. */
24505 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24506 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24507 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24508
24509 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24510 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24511
24512 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24513 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24514
24515 /* Allow the user to override the reported architecture. */
24516 if (object_arch)
24517 {
24518 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24519 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24520 }
24521
24522 /* We need to make sure that the attributes do not identify us as v6S-M
24523 when the only v6S-M feature in use is the Operating System Extensions. */
24524 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24525 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24526 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24527
24528 tmp = flags;
24529 arch = 0;
24530 for (p = cpu_arch_ver; p->val; p++)
24531 {
24532 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24533 {
24534 arch = p->val;
24535 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24536 }
24537 }
24538
24539 /* The table lookup above finds the last architecture to contribute
24540 a new feature. Unfortunately, Tag13 is a subset of the union of
24541 v6T2 and v7-M, so it is never seen as contributing a new feature.
24542 We can not search for the last entry which is entirely used,
24543 because if no CPU is specified we build up only those flags
24544 actually used. Perhaps we should separate out the specified
24545 and implicit cases. Avoid taking this path for -march=all by
24546 checking for contradictory v7-A / v7-M features. */
24547 if (arch == 10
24548 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24549 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24550 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24551 arch = 13;
24552
24553 /* Tag_CPU_name. */
24554 if (selected_cpu_name[0])
24555 {
24556 char *q;
24557
24558 q = selected_cpu_name;
24559 if (strncmp (q, "armv", 4) == 0)
24560 {
24561 int i;
24562
24563 q += 4;
24564 for (i = 0; q[i]; i++)
24565 q[i] = TOUPPER (q[i]);
24566 }
24567 aeabi_set_attribute_string (Tag_CPU_name, q);
24568 }
24569
24570 /* Tag_CPU_arch. */
24571 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24572
24573 /* Tag_CPU_arch_profile. */
24574 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24575 profile = 'A';
24576 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24577 profile = 'R';
24578 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24579 profile = 'M';
24580 else
24581 profile = '\0';
24582
24583 if (profile != '\0')
24584 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24585
24586 /* Tag_ARM_ISA_use. */
24587 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24588 || arch == 0)
24589 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24590
24591 /* Tag_THUMB_ISA_use. */
24592 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24593 || arch == 0)
24594 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24595 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24596
24597 /* Tag_VFP_arch. */
24598 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24599 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24600 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24601 aeabi_set_attribute_int (Tag_VFP_arch,
24602 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24603 ? 5 : 6);
24604 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24605 {
24606 fp16_optional = 1;
24607 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24608 }
24609 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24610 {
24611 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24612 fp16_optional = 1;
24613 }
24614 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24615 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24616 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24617 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24618 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24619
24620 /* Tag_ABI_HardFP_use. */
24621 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24622 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24623 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24624
24625 /* Tag_WMMX_arch. */
24626 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24627 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24628 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24629 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24630
24631 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24632 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24633 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24634 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24635 {
24636 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24637 {
24638 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24639 }
24640 else
24641 {
24642 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24643 fp16_optional = 1;
24644 }
24645 }
24646
24647 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24648 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24649 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24650
24651 /* Tag_DIV_use.
24652
24653 We set Tag_DIV_use to two when integer divide instructions have been used
24654 in ARM state, or when Thumb integer divide instructions have been used,
24655 but we have no architecture profile set, nor have we any ARM instructions.
24656
24657 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24658 architecture.
24659
24660 For new architectures we will have to check these tests. */
24661 gas_assert (arch <= TAG_CPU_ARCH_V8);
24662 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24663 aeabi_set_attribute_int (Tag_DIV_use, 0);
24664 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24665 || (profile == '\0'
24666 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24667 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24668 aeabi_set_attribute_int (Tag_DIV_use, 2);
24669
24670 /* Tag_MP_extension_use. */
24671 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24672 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24673
24674 /* Tag Virtualization_use. */
24675 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24676 virt_sec |= 1;
24677 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24678 virt_sec |= 2;
24679 if (virt_sec != 0)
24680 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24681 }
24682
24683 /* Add the default contents for the .ARM.attributes section. */
24684 void
24685 arm_md_end (void)
24686 {
24687 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24688 return;
24689
24690 aeabi_set_public_attributes ();
24691 }
24692 #endif /* OBJ_ELF */
24693
24694
24695 /* Parse a .cpu directive. */
24696
24697 static void
24698 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24699 {
24700 const struct arm_cpu_option_table *opt;
24701 char *name;
24702 char saved_char;
24703
24704 name = input_line_pointer;
24705 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24706 input_line_pointer++;
24707 saved_char = *input_line_pointer;
24708 *input_line_pointer = 0;
24709
24710 /* Skip the first "all" entry. */
24711 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24712 if (streq (opt->name, name))
24713 {
24714 mcpu_cpu_opt = &opt->value;
24715 selected_cpu = opt->value;
24716 if (opt->canonical_name)
24717 strcpy (selected_cpu_name, opt->canonical_name);
24718 else
24719 {
24720 int i;
24721 for (i = 0; opt->name[i]; i++)
24722 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24723
24724 selected_cpu_name[i] = 0;
24725 }
24726 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24727 *input_line_pointer = saved_char;
24728 demand_empty_rest_of_line ();
24729 return;
24730 }
24731 as_bad (_("unknown cpu `%s'"), name);
24732 *input_line_pointer = saved_char;
24733 ignore_rest_of_line ();
24734 }
24735
24736
24737 /* Parse a .arch directive. */
24738
24739 static void
24740 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24741 {
24742 const struct arm_arch_option_table *opt;
24743 char saved_char;
24744 char *name;
24745
24746 name = input_line_pointer;
24747 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24748 input_line_pointer++;
24749 saved_char = *input_line_pointer;
24750 *input_line_pointer = 0;
24751
24752 /* Skip the first "all" entry. */
24753 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24754 if (streq (opt->name, name))
24755 {
24756 mcpu_cpu_opt = &opt->value;
24757 selected_cpu = opt->value;
24758 strcpy (selected_cpu_name, opt->name);
24759 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24760 *input_line_pointer = saved_char;
24761 demand_empty_rest_of_line ();
24762 return;
24763 }
24764
24765 as_bad (_("unknown architecture `%s'\n"), name);
24766 *input_line_pointer = saved_char;
24767 ignore_rest_of_line ();
24768 }
24769
24770
24771 /* Parse a .object_arch directive. */
24772
24773 static void
24774 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24775 {
24776 const struct arm_arch_option_table *opt;
24777 char saved_char;
24778 char *name;
24779
24780 name = input_line_pointer;
24781 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24782 input_line_pointer++;
24783 saved_char = *input_line_pointer;
24784 *input_line_pointer = 0;
24785
24786 /* Skip the first "all" entry. */
24787 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24788 if (streq (opt->name, name))
24789 {
24790 object_arch = &opt->value;
24791 *input_line_pointer = saved_char;
24792 demand_empty_rest_of_line ();
24793 return;
24794 }
24795
24796 as_bad (_("unknown architecture `%s'\n"), name);
24797 *input_line_pointer = saved_char;
24798 ignore_rest_of_line ();
24799 }
24800
24801 /* Parse a .arch_extension directive. */
24802
24803 static void
24804 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24805 {
24806 const struct arm_option_extension_value_table *opt;
24807 char saved_char;
24808 char *name;
24809 int adding_value = 1;
24810
24811 name = input_line_pointer;
24812 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24813 input_line_pointer++;
24814 saved_char = *input_line_pointer;
24815 *input_line_pointer = 0;
24816
24817 if (strlen (name) >= 2
24818 && strncmp (name, "no", 2) == 0)
24819 {
24820 adding_value = 0;
24821 name += 2;
24822 }
24823
24824 for (opt = arm_extensions; opt->name != NULL; opt++)
24825 if (streq (opt->name, name))
24826 {
24827 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24828 {
24829 as_bad (_("architectural extension `%s' is not allowed for the "
24830 "current base architecture"), name);
24831 break;
24832 }
24833
24834 if (adding_value)
24835 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24836 else
24837 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24838
24839 mcpu_cpu_opt = &selected_cpu;
24840 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24841 *input_line_pointer = saved_char;
24842 demand_empty_rest_of_line ();
24843 return;
24844 }
24845
24846 if (opt->name == NULL)
24847 as_bad (_("unknown architecture `%s'\n"), name);
24848
24849 *input_line_pointer = saved_char;
24850 ignore_rest_of_line ();
24851 }
24852
24853 /* Parse a .fpu directive. */
24854
24855 static void
24856 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24857 {
24858 const struct arm_option_fpu_value_table *opt;
24859 char saved_char;
24860 char *name;
24861
24862 name = input_line_pointer;
24863 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24864 input_line_pointer++;
24865 saved_char = *input_line_pointer;
24866 *input_line_pointer = 0;
24867
24868 for (opt = arm_fpus; opt->name != NULL; opt++)
24869 if (streq (opt->name, name))
24870 {
24871 mfpu_opt = &opt->value;
24872 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24873 *input_line_pointer = saved_char;
24874 demand_empty_rest_of_line ();
24875 return;
24876 }
24877
24878 as_bad (_("unknown floating point format `%s'\n"), name);
24879 *input_line_pointer = saved_char;
24880 ignore_rest_of_line ();
24881 }
24882
24883 /* Copy symbol information. */
24884
24885 void
24886 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24887 {
24888 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24889 }
24890
24891 #ifdef OBJ_ELF
24892 /* Given a symbolic attribute NAME, return the proper integer value.
24893 Returns -1 if the attribute is not known. */
24894
24895 int
24896 arm_convert_symbolic_attribute (const char *name)
24897 {
24898 static const struct
24899 {
24900 const char * name;
24901 const int tag;
24902 }
24903 attribute_table[] =
24904 {
24905 /* When you modify this table you should
24906 also modify the list in doc/c-arm.texi. */
24907 #define T(tag) {#tag, tag}
24908 T (Tag_CPU_raw_name),
24909 T (Tag_CPU_name),
24910 T (Tag_CPU_arch),
24911 T (Tag_CPU_arch_profile),
24912 T (Tag_ARM_ISA_use),
24913 T (Tag_THUMB_ISA_use),
24914 T (Tag_FP_arch),
24915 T (Tag_VFP_arch),
24916 T (Tag_WMMX_arch),
24917 T (Tag_Advanced_SIMD_arch),
24918 T (Tag_PCS_config),
24919 T (Tag_ABI_PCS_R9_use),
24920 T (Tag_ABI_PCS_RW_data),
24921 T (Tag_ABI_PCS_RO_data),
24922 T (Tag_ABI_PCS_GOT_use),
24923 T (Tag_ABI_PCS_wchar_t),
24924 T (Tag_ABI_FP_rounding),
24925 T (Tag_ABI_FP_denormal),
24926 T (Tag_ABI_FP_exceptions),
24927 T (Tag_ABI_FP_user_exceptions),
24928 T (Tag_ABI_FP_number_model),
24929 T (Tag_ABI_align_needed),
24930 T (Tag_ABI_align8_needed),
24931 T (Tag_ABI_align_preserved),
24932 T (Tag_ABI_align8_preserved),
24933 T (Tag_ABI_enum_size),
24934 T (Tag_ABI_HardFP_use),
24935 T (Tag_ABI_VFP_args),
24936 T (Tag_ABI_WMMX_args),
24937 T (Tag_ABI_optimization_goals),
24938 T (Tag_ABI_FP_optimization_goals),
24939 T (Tag_compatibility),
24940 T (Tag_CPU_unaligned_access),
24941 T (Tag_FP_HP_extension),
24942 T (Tag_VFP_HP_extension),
24943 T (Tag_ABI_FP_16bit_format),
24944 T (Tag_MPextension_use),
24945 T (Tag_DIV_use),
24946 T (Tag_nodefaults),
24947 T (Tag_also_compatible_with),
24948 T (Tag_conformance),
24949 T (Tag_T2EE_use),
24950 T (Tag_Virtualization_use),
24951 /* We deliberately do not include Tag_MPextension_use_legacy. */
24952 #undef T
24953 };
24954 unsigned int i;
24955
24956 if (name == NULL)
24957 return -1;
24958
24959 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24960 if (streq (name, attribute_table[i].name))
24961 return attribute_table[i].tag;
24962
24963 return -1;
24964 }
24965
24966
24967 /* Apply sym value for relocations only in the case that
24968 they are for local symbols and you have the respective
24969 architectural feature for blx and simple switches. */
24970 int
24971 arm_apply_sym_value (struct fix * fixP)
24972 {
24973 if (fixP->fx_addsy
24974 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24975 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24976 {
24977 switch (fixP->fx_r_type)
24978 {
24979 case BFD_RELOC_ARM_PCREL_BLX:
24980 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24981 if (ARM_IS_FUNC (fixP->fx_addsy))
24982 return 1;
24983 break;
24984
24985 case BFD_RELOC_ARM_PCREL_CALL:
24986 case BFD_RELOC_THUMB_PCREL_BLX:
24987 if (THUMB_IS_FUNC (fixP->fx_addsy))
24988 return 1;
24989 break;
24990
24991 default:
24992 break;
24993 }
24994
24995 }
24996 return 0;
24997 }
24998 #endif /* OBJ_ELF */