* gas/config/tc-arm.c (T16_32_TAB): Add _sevl.
[binutils-gdb.git] / gas / config / tc-arm.c
1 /* tc-arm.c -- Assemble for the ARM
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5 Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
6 Modified by David Taylor (dtaylor@armltd.co.uk)
7 Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com)
8 Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com)
9 Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com)
10
11 This file is part of GAS, the GNU Assembler.
12
13 GAS is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3, or (at your option)
16 any later version.
17
18 GAS is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GAS; see the file COPYING. If not, write to the Free
25 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
26 02110-1301, USA. */
27
28 #include "as.h"
29 #include <limits.h>
30 #include <stdarg.h>
31 #define NO_RELOC 0
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "obstack.h"
35 #include "libiberty.h"
36 #include "opcode/arm.h"
37
38 #ifdef OBJ_ELF
39 #include "elf/arm.h"
40 #include "dw2gencfi.h"
41 #endif
42
43 #include "dwarf2dbg.h"
44
45 #ifdef OBJ_ELF
46 /* Must be at least the size of the largest unwind opcode (currently two). */
47 #define ARM_OPCODE_CHUNK_SIZE 8
48
49 /* This structure holds the unwinding state. */
50
51 static struct
52 {
53 symbolS * proc_start;
54 symbolS * table_entry;
55 symbolS * personality_routine;
56 int personality_index;
57 /* The segment containing the function. */
58 segT saved_seg;
59 subsegT saved_subseg;
60 /* Opcodes generated from this function. */
61 unsigned char * opcodes;
62 int opcode_count;
63 int opcode_alloc;
64 /* The number of bytes pushed to the stack. */
65 offsetT frame_size;
66 /* We don't add stack adjustment opcodes immediately so that we can merge
67 multiple adjustments. We can also omit the final adjustment
68 when using a frame pointer. */
69 offsetT pending_offset;
70 /* These two fields are set by both unwind_movsp and unwind_setfp. They
71 hold the reg+offset to use when restoring sp from a frame pointer. */
72 offsetT fp_offset;
73 int fp_reg;
74 /* Nonzero if an unwind_setfp directive has been seen. */
75 unsigned fp_used:1;
76 /* Nonzero if the last opcode restores sp from fp_reg. */
77 unsigned sp_restored:1;
78 } unwind;
79
80 #endif /* OBJ_ELF */
81
82 /* Results from operand parsing worker functions. */
83
84 typedef enum
85 {
86 PARSE_OPERAND_SUCCESS,
87 PARSE_OPERAND_FAIL,
88 PARSE_OPERAND_FAIL_NO_BACKTRACK
89 } parse_operand_result;
90
91 enum arm_float_abi
92 {
93 ARM_FLOAT_ABI_HARD,
94 ARM_FLOAT_ABI_SOFTFP,
95 ARM_FLOAT_ABI_SOFT
96 };
97
98 /* Types of processor to assemble for. */
99 #ifndef CPU_DEFAULT
100 /* The code that was here used to select a default CPU depending on compiler
101 pre-defines which were only present when doing native builds, thus
102 changing gas' default behaviour depending upon the build host.
103
104 If you have a target that requires a default CPU option then the you
105 should define CPU_DEFAULT here. */
106 #endif
107
108 #ifndef FPU_DEFAULT
109 # ifdef TE_LINUX
110 # define FPU_DEFAULT FPU_ARCH_FPA
111 # elif defined (TE_NetBSD)
112 # ifdef OBJ_ELF
113 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */
114 # else
115 /* Legacy a.out format. */
116 # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */
117 # endif
118 # elif defined (TE_VXWORKS)
119 # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */
120 # else
121 /* For backwards compatibility, default to FPA. */
122 # define FPU_DEFAULT FPU_ARCH_FPA
123 # endif
124 #endif /* ifndef FPU_DEFAULT */
125
126 #define streq(a, b) (strcmp (a, b) == 0)
127
128 static arm_feature_set cpu_variant;
129 static arm_feature_set arm_arch_used;
130 static arm_feature_set thumb_arch_used;
131
132 /* Flags stored in private area of BFD structure. */
133 static int uses_apcs_26 = FALSE;
134 static int atpcs = FALSE;
135 static int support_interwork = FALSE;
136 static int uses_apcs_float = FALSE;
137 static int pic_code = FALSE;
138 static int fix_v4bx = FALSE;
139 /* Warn on using deprecated features. */
140 static int warn_on_deprecated = TRUE;
141
142
143 /* Variables that we set while parsing command-line options. Once all
144 options have been read we re-process these values to set the real
145 assembly flags. */
146 static const arm_feature_set *legacy_cpu = NULL;
147 static const arm_feature_set *legacy_fpu = NULL;
148
149 static const arm_feature_set *mcpu_cpu_opt = NULL;
150 static const arm_feature_set *mcpu_fpu_opt = NULL;
151 static const arm_feature_set *march_cpu_opt = NULL;
152 static const arm_feature_set *march_fpu_opt = NULL;
153 static const arm_feature_set *mfpu_opt = NULL;
154 static const arm_feature_set *object_arch = NULL;
155
156 /* Constants for known architecture features. */
157 static const arm_feature_set fpu_default = FPU_DEFAULT;
158 static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1;
159 static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2;
160 static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3;
161 static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1;
162 static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA;
163 static const arm_feature_set fpu_any_hard = FPU_ANY_HARD;
164 static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK;
165 static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE;
166
167 #ifdef CPU_DEFAULT
168 static const arm_feature_set cpu_default = CPU_DEFAULT;
169 #endif
170
171 static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0);
172 static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0);
173 static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0);
174 static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0);
175 static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0);
176 static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0);
177 static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0);
178 static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0);
179 static const arm_feature_set arm_ext_v4t_5 =
180 ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0);
181 static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0);
182 static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0);
183 static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0);
184 static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0);
185 static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0);
186 static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0);
187 static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0);
188 static const arm_feature_set arm_ext_v6m = ARM_FEATURE (ARM_EXT_V6M, 0);
189 static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0);
190 static const arm_feature_set arm_ext_v6_dsp = ARM_FEATURE (ARM_EXT_V6_DSP, 0);
191 static const arm_feature_set arm_ext_barrier = ARM_FEATURE (ARM_EXT_BARRIER, 0);
192 static const arm_feature_set arm_ext_msr = ARM_FEATURE (ARM_EXT_THUMB_MSR, 0);
193 static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0);
194 static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0);
195 static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0);
196 static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0);
197 static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0);
198 static const arm_feature_set arm_ext_v8 = ARM_FEATURE (ARM_EXT_V8, 0);
199 static const arm_feature_set arm_ext_m =
200 ARM_FEATURE (ARM_EXT_V6M | ARM_EXT_OS | ARM_EXT_V7M, 0);
201 static const arm_feature_set arm_ext_mp = ARM_FEATURE (ARM_EXT_MP, 0);
202 static const arm_feature_set arm_ext_sec = ARM_FEATURE (ARM_EXT_SEC, 0);
203 static const arm_feature_set arm_ext_os = ARM_FEATURE (ARM_EXT_OS, 0);
204 static const arm_feature_set arm_ext_adiv = ARM_FEATURE (ARM_EXT_ADIV, 0);
205 static const arm_feature_set arm_ext_virt = ARM_FEATURE (ARM_EXT_VIRT, 0);
206
207 static const arm_feature_set arm_arch_any = ARM_ANY;
208 static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1);
209 static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2;
210 static const arm_feature_set arm_arch_none = ARM_ARCH_NONE;
211 static const arm_feature_set arm_arch_v6m_only = ARM_ARCH_V6M_ONLY;
212
213 static const arm_feature_set arm_cext_iwmmxt2 =
214 ARM_FEATURE (0, ARM_CEXT_IWMMXT2);
215 static const arm_feature_set arm_cext_iwmmxt =
216 ARM_FEATURE (0, ARM_CEXT_IWMMXT);
217 static const arm_feature_set arm_cext_xscale =
218 ARM_FEATURE (0, ARM_CEXT_XSCALE);
219 static const arm_feature_set arm_cext_maverick =
220 ARM_FEATURE (0, ARM_CEXT_MAVERICK);
221 static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1);
222 static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2);
223 static const arm_feature_set fpu_vfp_ext_v1xd =
224 ARM_FEATURE (0, FPU_VFP_EXT_V1xD);
225 static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1);
226 static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2);
227 static const arm_feature_set fpu_vfp_ext_v3xd = ARM_FEATURE (0, FPU_VFP_EXT_V3xD);
228 static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3);
229 static const arm_feature_set fpu_vfp_ext_d32 =
230 ARM_FEATURE (0, FPU_VFP_EXT_D32);
231 static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1);
232 static const arm_feature_set fpu_vfp_v3_or_neon_ext =
233 ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3);
234 static const arm_feature_set fpu_vfp_fp16 = ARM_FEATURE (0, FPU_VFP_EXT_FP16);
235 static const arm_feature_set fpu_neon_ext_fma = ARM_FEATURE (0, FPU_NEON_EXT_FMA);
236 static const arm_feature_set fpu_vfp_ext_fma = ARM_FEATURE (0, FPU_VFP_EXT_FMA);
237 static const arm_feature_set fpu_vfp_ext_armv8 =
238 ARM_FEATURE (0, FPU_VFP_EXT_ARMV8);
239 static const arm_feature_set fpu_neon_ext_armv8 =
240 ARM_FEATURE (0, FPU_NEON_EXT_ARMV8);
241 static const arm_feature_set fpu_crypto_ext_armv8 =
242 ARM_FEATURE (0, FPU_CRYPTO_EXT_ARMV8);
243
244 static int mfloat_abi_opt = -1;
245 /* Record user cpu selection for object attributes. */
246 static arm_feature_set selected_cpu = ARM_ARCH_NONE;
247 /* Must be long enough to hold any of the names in arm_cpus. */
248 static char selected_cpu_name[16];
249
250 /* Return if no cpu was selected on command-line. */
251 static bfd_boolean
252 no_cpu_selected (void)
253 {
254 return selected_cpu.core == arm_arch_none.core
255 && selected_cpu.coproc == arm_arch_none.coproc;
256 }
257
258 #ifdef OBJ_ELF
259 # ifdef EABI_DEFAULT
260 static int meabi_flags = EABI_DEFAULT;
261 # else
262 static int meabi_flags = EF_ARM_EABI_UNKNOWN;
263 # endif
264
265 static int attributes_set_explicitly[NUM_KNOWN_OBJ_ATTRIBUTES];
266
267 bfd_boolean
268 arm_is_eabi (void)
269 {
270 return (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4);
271 }
272 #endif
273
274 #ifdef OBJ_ELF
275 /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
276 symbolS * GOT_symbol;
277 #endif
278
279 /* 0: assemble for ARM,
280 1: assemble for Thumb,
281 2: assemble for Thumb even though target CPU does not support thumb
282 instructions. */
283 static int thumb_mode = 0;
284 /* A value distinct from the possible values for thumb_mode that we
285 can use to record whether thumb_mode has been copied into the
286 tc_frag_data field of a frag. */
287 #define MODE_RECORDED (1 << 4)
288
289 /* Specifies the intrinsic IT insn behavior mode. */
290 enum implicit_it_mode
291 {
292 IMPLICIT_IT_MODE_NEVER = 0x00,
293 IMPLICIT_IT_MODE_ARM = 0x01,
294 IMPLICIT_IT_MODE_THUMB = 0x02,
295 IMPLICIT_IT_MODE_ALWAYS = (IMPLICIT_IT_MODE_ARM | IMPLICIT_IT_MODE_THUMB)
296 };
297 static int implicit_it_mode = IMPLICIT_IT_MODE_ARM;
298
299 /* If unified_syntax is true, we are processing the new unified
300 ARM/Thumb syntax. Important differences from the old ARM mode:
301
302 - Immediate operands do not require a # prefix.
303 - Conditional affixes always appear at the end of the
304 instruction. (For backward compatibility, those instructions
305 that formerly had them in the middle, continue to accept them
306 there.)
307 - The IT instruction may appear, and if it does is validated
308 against subsequent conditional affixes. It does not generate
309 machine code.
310
311 Important differences from the old Thumb mode:
312
313 - Immediate operands do not require a # prefix.
314 - Most of the V6T2 instructions are only available in unified mode.
315 - The .N and .W suffixes are recognized and honored (it is an error
316 if they cannot be honored).
317 - All instructions set the flags if and only if they have an 's' affix.
318 - Conditional affixes may be used. They are validated against
319 preceding IT instructions. Unlike ARM mode, you cannot use a
320 conditional affix except in the scope of an IT instruction. */
321
322 static bfd_boolean unified_syntax = FALSE;
323
324 enum neon_el_type
325 {
326 NT_invtype,
327 NT_untyped,
328 NT_integer,
329 NT_float,
330 NT_poly,
331 NT_signed,
332 NT_unsigned
333 };
334
335 struct neon_type_el
336 {
337 enum neon_el_type type;
338 unsigned size;
339 };
340
341 #define NEON_MAX_TYPE_ELS 4
342
343 struct neon_type
344 {
345 struct neon_type_el el[NEON_MAX_TYPE_ELS];
346 unsigned elems;
347 };
348
349 enum it_instruction_type
350 {
351 OUTSIDE_IT_INSN,
352 INSIDE_IT_INSN,
353 INSIDE_IT_LAST_INSN,
354 IF_INSIDE_IT_LAST_INSN, /* Either outside or inside;
355 if inside, should be the last one. */
356 NEUTRAL_IT_INSN, /* This could be either inside or outside,
357 i.e. BKPT and NOP. */
358 IT_INSN /* The IT insn has been parsed. */
359 };
360
361 /* The maximum number of operands we need. */
362 #define ARM_IT_MAX_OPERANDS 6
363
364 struct arm_it
365 {
366 const char * error;
367 unsigned long instruction;
368 int size;
369 int size_req;
370 int cond;
371 /* "uncond_value" is set to the value in place of the conditional field in
372 unconditional versions of the instruction, or -1 if nothing is
373 appropriate. */
374 int uncond_value;
375 struct neon_type vectype;
376 /* This does not indicate an actual NEON instruction, only that
377 the mnemonic accepts neon-style type suffixes. */
378 int is_neon;
379 /* Set to the opcode if the instruction needs relaxation.
380 Zero if the instruction is not relaxed. */
381 unsigned long relax;
382 struct
383 {
384 bfd_reloc_code_real_type type;
385 expressionS exp;
386 int pc_rel;
387 } reloc;
388
389 enum it_instruction_type it_insn_type;
390
391 struct
392 {
393 unsigned reg;
394 signed int imm;
395 struct neon_type_el vectype;
396 unsigned present : 1; /* Operand present. */
397 unsigned isreg : 1; /* Operand was a register. */
398 unsigned immisreg : 1; /* .imm field is a second register. */
399 unsigned isscalar : 1; /* Operand is a (Neon) scalar. */
400 unsigned immisalign : 1; /* Immediate is an alignment specifier. */
401 unsigned immisfloat : 1; /* Immediate was parsed as a float. */
402 /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV
403 instructions. This allows us to disambiguate ARM <-> vector insns. */
404 unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */
405 unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */
406 unsigned isquad : 1; /* Operand is Neon quad-precision register. */
407 unsigned issingle : 1; /* Operand is VFP single-precision register. */
408 unsigned hasreloc : 1; /* Operand has relocation suffix. */
409 unsigned writeback : 1; /* Operand has trailing ! */
410 unsigned preind : 1; /* Preindexed address. */
411 unsigned postind : 1; /* Postindexed address. */
412 unsigned negative : 1; /* Index register was negated. */
413 unsigned shifted : 1; /* Shift applied to operation. */
414 unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */
415 } operands[ARM_IT_MAX_OPERANDS];
416 };
417
418 static struct arm_it inst;
419
420 #define NUM_FLOAT_VALS 8
421
422 const char * fp_const[] =
423 {
424 "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
425 };
426
427 /* Number of littlenums required to hold an extended precision number. */
428 #define MAX_LITTLENUMS 6
429
430 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
431
432 #define FAIL (-1)
433 #define SUCCESS (0)
434
435 #define SUFF_S 1
436 #define SUFF_D 2
437 #define SUFF_E 3
438 #define SUFF_P 4
439
440 #define CP_T_X 0x00008000
441 #define CP_T_Y 0x00400000
442
443 #define CONDS_BIT 0x00100000
444 #define LOAD_BIT 0x00100000
445
446 #define DOUBLE_LOAD_FLAG 0x00000001
447
448 struct asm_cond
449 {
450 const char * template_name;
451 unsigned long value;
452 };
453
454 #define COND_ALWAYS 0xE
455
456 struct asm_psr
457 {
458 const char * template_name;
459 unsigned long field;
460 };
461
462 struct asm_barrier_opt
463 {
464 const char * template_name;
465 unsigned long value;
466 const arm_feature_set arch;
467 };
468
469 /* The bit that distinguishes CPSR and SPSR. */
470 #define SPSR_BIT (1 << 22)
471
472 /* The individual PSR flag bits. */
473 #define PSR_c (1 << 16)
474 #define PSR_x (1 << 17)
475 #define PSR_s (1 << 18)
476 #define PSR_f (1 << 19)
477
478 struct reloc_entry
479 {
480 char * name;
481 bfd_reloc_code_real_type reloc;
482 };
483
484 enum vfp_reg_pos
485 {
486 VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn,
487 VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn
488 };
489
490 enum vfp_ldstm_type
491 {
492 VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX
493 };
494
495 /* Bits for DEFINED field in neon_typed_alias. */
496 #define NTA_HASTYPE 1
497 #define NTA_HASINDEX 2
498
499 struct neon_typed_alias
500 {
501 unsigned char defined;
502 unsigned char index;
503 struct neon_type_el eltype;
504 };
505
506 /* ARM register categories. This includes coprocessor numbers and various
507 architecture extensions' registers. */
508 enum arm_reg_type
509 {
510 REG_TYPE_RN,
511 REG_TYPE_CP,
512 REG_TYPE_CN,
513 REG_TYPE_FN,
514 REG_TYPE_VFS,
515 REG_TYPE_VFD,
516 REG_TYPE_NQ,
517 REG_TYPE_VFSD,
518 REG_TYPE_NDQ,
519 REG_TYPE_NSDQ,
520 REG_TYPE_VFC,
521 REG_TYPE_MVF,
522 REG_TYPE_MVD,
523 REG_TYPE_MVFX,
524 REG_TYPE_MVDX,
525 REG_TYPE_MVAX,
526 REG_TYPE_DSPSC,
527 REG_TYPE_MMXWR,
528 REG_TYPE_MMXWC,
529 REG_TYPE_MMXWCG,
530 REG_TYPE_XSCALE,
531 REG_TYPE_RNB
532 };
533
534 /* Structure for a hash table entry for a register.
535 If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra
536 information which states whether a vector type or index is specified (for a
537 register alias created with .dn or .qn). Otherwise NEON should be NULL. */
538 struct reg_entry
539 {
540 const char * name;
541 unsigned int number;
542 unsigned char type;
543 unsigned char builtin;
544 struct neon_typed_alias * neon;
545 };
546
547 /* Diagnostics used when we don't get a register of the expected type. */
548 const char * const reg_expected_msgs[] =
549 {
550 N_("ARM register expected"),
551 N_("bad or missing co-processor number"),
552 N_("co-processor register expected"),
553 N_("FPA register expected"),
554 N_("VFP single precision register expected"),
555 N_("VFP/Neon double precision register expected"),
556 N_("Neon quad precision register expected"),
557 N_("VFP single or double precision register expected"),
558 N_("Neon double or quad precision register expected"),
559 N_("VFP single, double or Neon quad precision register expected"),
560 N_("VFP system register expected"),
561 N_("Maverick MVF register expected"),
562 N_("Maverick MVD register expected"),
563 N_("Maverick MVFX register expected"),
564 N_("Maverick MVDX register expected"),
565 N_("Maverick MVAX register expected"),
566 N_("Maverick DSPSC register expected"),
567 N_("iWMMXt data register expected"),
568 N_("iWMMXt control register expected"),
569 N_("iWMMXt scalar register expected"),
570 N_("XScale accumulator register expected"),
571 };
572
573 /* Some well known registers that we refer to directly elsewhere. */
574 #define REG_R12 12
575 #define REG_SP 13
576 #define REG_LR 14
577 #define REG_PC 15
578
579 /* ARM instructions take 4bytes in the object file, Thumb instructions
580 take 2: */
581 #define INSN_SIZE 4
582
583 struct asm_opcode
584 {
585 /* Basic string to match. */
586 const char * template_name;
587
588 /* Parameters to instruction. */
589 unsigned int operands[8];
590
591 /* Conditional tag - see opcode_lookup. */
592 unsigned int tag : 4;
593
594 /* Basic instruction code. */
595 unsigned int avalue : 28;
596
597 /* Thumb-format instruction code. */
598 unsigned int tvalue;
599
600 /* Which architecture variant provides this instruction. */
601 const arm_feature_set * avariant;
602 const arm_feature_set * tvariant;
603
604 /* Function to call to encode instruction in ARM format. */
605 void (* aencode) (void);
606
607 /* Function to call to encode instruction in Thumb format. */
608 void (* tencode) (void);
609 };
610
611 /* Defines for various bits that we will want to toggle. */
612 #define INST_IMMEDIATE 0x02000000
613 #define OFFSET_REG 0x02000000
614 #define HWOFFSET_IMM 0x00400000
615 #define SHIFT_BY_REG 0x00000010
616 #define PRE_INDEX 0x01000000
617 #define INDEX_UP 0x00800000
618 #define WRITE_BACK 0x00200000
619 #define LDM_TYPE_2_OR_3 0x00400000
620 #define CPSI_MMOD 0x00020000
621
622 #define LITERAL_MASK 0xf000f000
623 #define OPCODE_MASK 0xfe1fffff
624 #define V4_STR_BIT 0x00000020
625
626 #define T2_SUBS_PC_LR 0xf3de8f00
627
628 #define DATA_OP_SHIFT 21
629
630 #define T2_OPCODE_MASK 0xfe1fffff
631 #define T2_DATA_OP_SHIFT 21
632
633 #define A_COND_MASK 0xf0000000
634 #define A_PUSH_POP_OP_MASK 0x0fff0000
635
636 /* Opcodes for pushing/poping registers to/from the stack. */
637 #define A1_OPCODE_PUSH 0x092d0000
638 #define A2_OPCODE_PUSH 0x052d0004
639 #define A2_OPCODE_POP 0x049d0004
640
641 /* Codes to distinguish the arithmetic instructions. */
642 #define OPCODE_AND 0
643 #define OPCODE_EOR 1
644 #define OPCODE_SUB 2
645 #define OPCODE_RSB 3
646 #define OPCODE_ADD 4
647 #define OPCODE_ADC 5
648 #define OPCODE_SBC 6
649 #define OPCODE_RSC 7
650 #define OPCODE_TST 8
651 #define OPCODE_TEQ 9
652 #define OPCODE_CMP 10
653 #define OPCODE_CMN 11
654 #define OPCODE_ORR 12
655 #define OPCODE_MOV 13
656 #define OPCODE_BIC 14
657 #define OPCODE_MVN 15
658
659 #define T2_OPCODE_AND 0
660 #define T2_OPCODE_BIC 1
661 #define T2_OPCODE_ORR 2
662 #define T2_OPCODE_ORN 3
663 #define T2_OPCODE_EOR 4
664 #define T2_OPCODE_ADD 8
665 #define T2_OPCODE_ADC 10
666 #define T2_OPCODE_SBC 11
667 #define T2_OPCODE_SUB 13
668 #define T2_OPCODE_RSB 14
669
670 #define T_OPCODE_MUL 0x4340
671 #define T_OPCODE_TST 0x4200
672 #define T_OPCODE_CMN 0x42c0
673 #define T_OPCODE_NEG 0x4240
674 #define T_OPCODE_MVN 0x43c0
675
676 #define T_OPCODE_ADD_R3 0x1800
677 #define T_OPCODE_SUB_R3 0x1a00
678 #define T_OPCODE_ADD_HI 0x4400
679 #define T_OPCODE_ADD_ST 0xb000
680 #define T_OPCODE_SUB_ST 0xb080
681 #define T_OPCODE_ADD_SP 0xa800
682 #define T_OPCODE_ADD_PC 0xa000
683 #define T_OPCODE_ADD_I8 0x3000
684 #define T_OPCODE_SUB_I8 0x3800
685 #define T_OPCODE_ADD_I3 0x1c00
686 #define T_OPCODE_SUB_I3 0x1e00
687
688 #define T_OPCODE_ASR_R 0x4100
689 #define T_OPCODE_LSL_R 0x4080
690 #define T_OPCODE_LSR_R 0x40c0
691 #define T_OPCODE_ROR_R 0x41c0
692 #define T_OPCODE_ASR_I 0x1000
693 #define T_OPCODE_LSL_I 0x0000
694 #define T_OPCODE_LSR_I 0x0800
695
696 #define T_OPCODE_MOV_I8 0x2000
697 #define T_OPCODE_CMP_I8 0x2800
698 #define T_OPCODE_CMP_LR 0x4280
699 #define T_OPCODE_MOV_HR 0x4600
700 #define T_OPCODE_CMP_HR 0x4500
701
702 #define T_OPCODE_LDR_PC 0x4800
703 #define T_OPCODE_LDR_SP 0x9800
704 #define T_OPCODE_STR_SP 0x9000
705 #define T_OPCODE_LDR_IW 0x6800
706 #define T_OPCODE_STR_IW 0x6000
707 #define T_OPCODE_LDR_IH 0x8800
708 #define T_OPCODE_STR_IH 0x8000
709 #define T_OPCODE_LDR_IB 0x7800
710 #define T_OPCODE_STR_IB 0x7000
711 #define T_OPCODE_LDR_RW 0x5800
712 #define T_OPCODE_STR_RW 0x5000
713 #define T_OPCODE_LDR_RH 0x5a00
714 #define T_OPCODE_STR_RH 0x5200
715 #define T_OPCODE_LDR_RB 0x5c00
716 #define T_OPCODE_STR_RB 0x5400
717
718 #define T_OPCODE_PUSH 0xb400
719 #define T_OPCODE_POP 0xbc00
720
721 #define T_OPCODE_BRANCH 0xe000
722
723 #define THUMB_SIZE 2 /* Size of thumb instruction. */
724 #define THUMB_PP_PC_LR 0x0100
725 #define THUMB_LOAD_BIT 0x0800
726 #define THUMB2_LOAD_BIT 0x00100000
727
728 #define BAD_ARGS _("bad arguments to instruction")
729 #define BAD_SP _("r13 not allowed here")
730 #define BAD_PC _("r15 not allowed here")
731 #define BAD_COND _("instruction cannot be conditional")
732 #define BAD_OVERLAP _("registers may not be the same")
733 #define BAD_HIREG _("lo register required")
734 #define BAD_THUMB32 _("instruction not supported in Thumb16 mode")
735 #define BAD_ADDR_MODE _("instruction does not accept this addressing mode");
736 #define BAD_BRANCH _("branch must be last instruction in IT block")
737 #define BAD_NOT_IT _("instruction not allowed in IT block")
738 #define BAD_FPU _("selected FPU does not support instruction")
739 #define BAD_OUT_IT _("thumb conditional instruction should be in IT block")
740 #define BAD_IT_COND _("incorrect condition in IT block")
741 #define BAD_IT_IT _("IT falling in the range of a previous IT block")
742 #define MISSING_FNSTART _("missing .fnstart before unwinding directive")
743 #define BAD_PC_ADDRESSING \
744 _("cannot use register index with PC-relative addressing")
745 #define BAD_PC_WRITEBACK \
746 _("cannot use writeback with PC-relative addressing")
747 #define BAD_RANGE _("branch out of range")
748
749 static struct hash_control * arm_ops_hsh;
750 static struct hash_control * arm_cond_hsh;
751 static struct hash_control * arm_shift_hsh;
752 static struct hash_control * arm_psr_hsh;
753 static struct hash_control * arm_v7m_psr_hsh;
754 static struct hash_control * arm_reg_hsh;
755 static struct hash_control * arm_reloc_hsh;
756 static struct hash_control * arm_barrier_opt_hsh;
757
758 /* Stuff needed to resolve the label ambiguity
759 As:
760 ...
761 label: <insn>
762 may differ from:
763 ...
764 label:
765 <insn> */
766
767 symbolS * last_label_seen;
768 static int label_is_thumb_function_name = FALSE;
769
770 /* Literal pool structure. Held on a per-section
771 and per-sub-section basis. */
772
773 #define MAX_LITERAL_POOL_SIZE 1024
774 typedef struct literal_pool
775 {
776 expressionS literals [MAX_LITERAL_POOL_SIZE];
777 unsigned int next_free_entry;
778 unsigned int id;
779 symbolS * symbol;
780 segT section;
781 subsegT sub_section;
782 #ifdef OBJ_ELF
783 struct dwarf2_line_info locs [MAX_LITERAL_POOL_SIZE];
784 #endif
785 struct literal_pool * next;
786 } literal_pool;
787
788 /* Pointer to a linked list of literal pools. */
789 literal_pool * list_of_pools = NULL;
790
791 #ifdef OBJ_ELF
792 # define now_it seg_info (now_seg)->tc_segment_info_data.current_it
793 #else
794 static struct current_it now_it;
795 #endif
796
797 static inline int
798 now_it_compatible (int cond)
799 {
800 return (cond & ~1) == (now_it.cc & ~1);
801 }
802
803 static inline int
804 conditional_insn (void)
805 {
806 return inst.cond != COND_ALWAYS;
807 }
808
809 static int in_it_block (void);
810
811 static int handle_it_state (void);
812
813 static void force_automatic_it_block_close (void);
814
815 static void it_fsm_post_encode (void);
816
817 #define set_it_insn_type(type) \
818 do \
819 { \
820 inst.it_insn_type = type; \
821 if (handle_it_state () == FAIL) \
822 return; \
823 } \
824 while (0)
825
826 #define set_it_insn_type_nonvoid(type, failret) \
827 do \
828 { \
829 inst.it_insn_type = type; \
830 if (handle_it_state () == FAIL) \
831 return failret; \
832 } \
833 while(0)
834
835 #define set_it_insn_type_last() \
836 do \
837 { \
838 if (inst.cond == COND_ALWAYS) \
839 set_it_insn_type (IF_INSIDE_IT_LAST_INSN); \
840 else \
841 set_it_insn_type (INSIDE_IT_LAST_INSN); \
842 } \
843 while (0)
844
845 /* Pure syntax. */
846
847 /* This array holds the chars that always start a comment. If the
848 pre-processor is disabled, these aren't very useful. */
849 const char comment_chars[] = "@";
850
851 /* This array holds the chars that only start a comment at the beginning of
852 a line. If the line seems to have the form '# 123 filename'
853 .line and .file directives will appear in the pre-processed output. */
854 /* Note that input_file.c hand checks for '#' at the beginning of the
855 first line of the input file. This is because the compiler outputs
856 #NO_APP at the beginning of its output. */
857 /* Also note that comments like this one will always work. */
858 const char line_comment_chars[] = "#";
859
860 const char line_separator_chars[] = ";";
861
862 /* Chars that can be used to separate mant
863 from exp in floating point numbers. */
864 const char EXP_CHARS[] = "eE";
865
866 /* Chars that mean this number is a floating point constant. */
867 /* As in 0f12.456 */
868 /* or 0d1.2345e12 */
869
870 const char FLT_CHARS[] = "rRsSfFdDxXeEpP";
871
872 /* Prefix characters that indicate the start of an immediate
873 value. */
874 #define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
875
876 /* Separator character handling. */
877
878 #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0)
879
880 static inline int
881 skip_past_char (char ** str, char c)
882 {
883 if (**str == c)
884 {
885 (*str)++;
886 return SUCCESS;
887 }
888 else
889 return FAIL;
890 }
891
892 #define skip_past_comma(str) skip_past_char (str, ',')
893
894 /* Arithmetic expressions (possibly involving symbols). */
895
896 /* Return TRUE if anything in the expression is a bignum. */
897
898 static int
899 walk_no_bignums (symbolS * sp)
900 {
901 if (symbol_get_value_expression (sp)->X_op == O_big)
902 return 1;
903
904 if (symbol_get_value_expression (sp)->X_add_symbol)
905 {
906 return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
907 || (symbol_get_value_expression (sp)->X_op_symbol
908 && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
909 }
910
911 return 0;
912 }
913
914 static int in_my_get_expression = 0;
915
916 /* Third argument to my_get_expression. */
917 #define GE_NO_PREFIX 0
918 #define GE_IMM_PREFIX 1
919 #define GE_OPT_PREFIX 2
920 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit)
921 immediates, as can be used in Neon VMVN and VMOV immediate instructions. */
922 #define GE_OPT_PREFIX_BIG 3
923
924 static int
925 my_get_expression (expressionS * ep, char ** str, int prefix_mode)
926 {
927 char * save_in;
928 segT seg;
929
930 /* In unified syntax, all prefixes are optional. */
931 if (unified_syntax)
932 prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode
933 : GE_OPT_PREFIX;
934
935 switch (prefix_mode)
936 {
937 case GE_NO_PREFIX: break;
938 case GE_IMM_PREFIX:
939 if (!is_immediate_prefix (**str))
940 {
941 inst.error = _("immediate expression requires a # prefix");
942 return FAIL;
943 }
944 (*str)++;
945 break;
946 case GE_OPT_PREFIX:
947 case GE_OPT_PREFIX_BIG:
948 if (is_immediate_prefix (**str))
949 (*str)++;
950 break;
951 default: abort ();
952 }
953
954 memset (ep, 0, sizeof (expressionS));
955
956 save_in = input_line_pointer;
957 input_line_pointer = *str;
958 in_my_get_expression = 1;
959 seg = expression (ep);
960 in_my_get_expression = 0;
961
962 if (ep->X_op == O_illegal || ep->X_op == O_absent)
963 {
964 /* We found a bad or missing expression in md_operand(). */
965 *str = input_line_pointer;
966 input_line_pointer = save_in;
967 if (inst.error == NULL)
968 inst.error = (ep->X_op == O_absent
969 ? _("missing expression") :_("bad expression"));
970 return 1;
971 }
972
973 #ifdef OBJ_AOUT
974 if (seg != absolute_section
975 && seg != text_section
976 && seg != data_section
977 && seg != bss_section
978 && seg != undefined_section)
979 {
980 inst.error = _("bad segment");
981 *str = input_line_pointer;
982 input_line_pointer = save_in;
983 return 1;
984 }
985 #else
986 (void) seg;
987 #endif
988
989 /* Get rid of any bignums now, so that we don't generate an error for which
990 we can't establish a line number later on. Big numbers are never valid
991 in instructions, which is where this routine is always called. */
992 if (prefix_mode != GE_OPT_PREFIX_BIG
993 && (ep->X_op == O_big
994 || (ep->X_add_symbol
995 && (walk_no_bignums (ep->X_add_symbol)
996 || (ep->X_op_symbol
997 && walk_no_bignums (ep->X_op_symbol))))))
998 {
999 inst.error = _("invalid constant");
1000 *str = input_line_pointer;
1001 input_line_pointer = save_in;
1002 return 1;
1003 }
1004
1005 *str = input_line_pointer;
1006 input_line_pointer = save_in;
1007 return 0;
1008 }
1009
1010 /* Turn a string in input_line_pointer into a floating point constant
1011 of type TYPE, and store the appropriate bytes in *LITP. The number
1012 of LITTLENUMS emitted is stored in *SIZEP. An error message is
1013 returned, or NULL on OK.
1014
1015 Note that fp constants aren't represent in the normal way on the ARM.
1016 In big endian mode, things are as expected. However, in little endian
1017 mode fp constants are big-endian word-wise, and little-endian byte-wise
1018 within the words. For example, (double) 1.1 in big endian mode is
1019 the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
1020 the byte sequence 99 99 f1 3f 9a 99 99 99.
1021
1022 ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
1023
1024 char *
1025 md_atof (int type, char * litP, int * sizeP)
1026 {
1027 int prec;
1028 LITTLENUM_TYPE words[MAX_LITTLENUMS];
1029 char *t;
1030 int i;
1031
1032 switch (type)
1033 {
1034 case 'f':
1035 case 'F':
1036 case 's':
1037 case 'S':
1038 prec = 2;
1039 break;
1040
1041 case 'd':
1042 case 'D':
1043 case 'r':
1044 case 'R':
1045 prec = 4;
1046 break;
1047
1048 case 'x':
1049 case 'X':
1050 prec = 5;
1051 break;
1052
1053 case 'p':
1054 case 'P':
1055 prec = 5;
1056 break;
1057
1058 default:
1059 *sizeP = 0;
1060 return _("Unrecognized or unsupported floating point constant");
1061 }
1062
1063 t = atof_ieee (input_line_pointer, type, words);
1064 if (t)
1065 input_line_pointer = t;
1066 *sizeP = prec * sizeof (LITTLENUM_TYPE);
1067
1068 if (target_big_endian)
1069 {
1070 for (i = 0; i < prec; i++)
1071 {
1072 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1073 litP += sizeof (LITTLENUM_TYPE);
1074 }
1075 }
1076 else
1077 {
1078 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
1079 for (i = prec - 1; i >= 0; i--)
1080 {
1081 md_number_to_chars (litP, (valueT) words[i], sizeof (LITTLENUM_TYPE));
1082 litP += sizeof (LITTLENUM_TYPE);
1083 }
1084 else
1085 /* For a 4 byte float the order of elements in `words' is 1 0.
1086 For an 8 byte float the order is 1 0 3 2. */
1087 for (i = 0; i < prec; i += 2)
1088 {
1089 md_number_to_chars (litP, (valueT) words[i + 1],
1090 sizeof (LITTLENUM_TYPE));
1091 md_number_to_chars (litP + sizeof (LITTLENUM_TYPE),
1092 (valueT) words[i], sizeof (LITTLENUM_TYPE));
1093 litP += 2 * sizeof (LITTLENUM_TYPE);
1094 }
1095 }
1096
1097 return NULL;
1098 }
1099
1100 /* We handle all bad expressions here, so that we can report the faulty
1101 instruction in the error message. */
1102 void
1103 md_operand (expressionS * exp)
1104 {
1105 if (in_my_get_expression)
1106 exp->X_op = O_illegal;
1107 }
1108
1109 /* Immediate values. */
1110
1111 /* Generic immediate-value read function for use in directives.
1112 Accepts anything that 'expression' can fold to a constant.
1113 *val receives the number. */
1114 #ifdef OBJ_ELF
1115 static int
1116 immediate_for_directive (int *val)
1117 {
1118 expressionS exp;
1119 exp.X_op = O_illegal;
1120
1121 if (is_immediate_prefix (*input_line_pointer))
1122 {
1123 input_line_pointer++;
1124 expression (&exp);
1125 }
1126
1127 if (exp.X_op != O_constant)
1128 {
1129 as_bad (_("expected #constant"));
1130 ignore_rest_of_line ();
1131 return FAIL;
1132 }
1133 *val = exp.X_add_number;
1134 return SUCCESS;
1135 }
1136 #endif
1137
1138 /* Register parsing. */
1139
1140 /* Generic register parser. CCP points to what should be the
1141 beginning of a register name. If it is indeed a valid register
1142 name, advance CCP over it and return the reg_entry structure;
1143 otherwise return NULL. Does not issue diagnostics. */
1144
1145 static struct reg_entry *
1146 arm_reg_parse_multi (char **ccp)
1147 {
1148 char *start = *ccp;
1149 char *p;
1150 struct reg_entry *reg;
1151
1152 #ifdef REGISTER_PREFIX
1153 if (*start != REGISTER_PREFIX)
1154 return NULL;
1155 start++;
1156 #endif
1157 #ifdef OPTIONAL_REGISTER_PREFIX
1158 if (*start == OPTIONAL_REGISTER_PREFIX)
1159 start++;
1160 #endif
1161
1162 p = start;
1163 if (!ISALPHA (*p) || !is_name_beginner (*p))
1164 return NULL;
1165
1166 do
1167 p++;
1168 while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_');
1169
1170 reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start);
1171
1172 if (!reg)
1173 return NULL;
1174
1175 *ccp = p;
1176 return reg;
1177 }
1178
1179 static int
1180 arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg,
1181 enum arm_reg_type type)
1182 {
1183 /* Alternative syntaxes are accepted for a few register classes. */
1184 switch (type)
1185 {
1186 case REG_TYPE_MVF:
1187 case REG_TYPE_MVD:
1188 case REG_TYPE_MVFX:
1189 case REG_TYPE_MVDX:
1190 /* Generic coprocessor register names are allowed for these. */
1191 if (reg && reg->type == REG_TYPE_CN)
1192 return reg->number;
1193 break;
1194
1195 case REG_TYPE_CP:
1196 /* For backward compatibility, a bare number is valid here. */
1197 {
1198 unsigned long processor = strtoul (start, ccp, 10);
1199 if (*ccp != start && processor <= 15)
1200 return processor;
1201 }
1202
1203 case REG_TYPE_MMXWC:
1204 /* WC includes WCG. ??? I'm not sure this is true for all
1205 instructions that take WC registers. */
1206 if (reg && reg->type == REG_TYPE_MMXWCG)
1207 return reg->number;
1208 break;
1209
1210 default:
1211 break;
1212 }
1213
1214 return FAIL;
1215 }
1216
1217 /* As arm_reg_parse_multi, but the register must be of type TYPE, and the
1218 return value is the register number or FAIL. */
1219
1220 static int
1221 arm_reg_parse (char **ccp, enum arm_reg_type type)
1222 {
1223 char *start = *ccp;
1224 struct reg_entry *reg = arm_reg_parse_multi (ccp);
1225 int ret;
1226
1227 /* Do not allow a scalar (reg+index) to parse as a register. */
1228 if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX))
1229 return FAIL;
1230
1231 if (reg && reg->type == type)
1232 return reg->number;
1233
1234 if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL)
1235 return ret;
1236
1237 *ccp = start;
1238 return FAIL;
1239 }
1240
1241 /* Parse a Neon type specifier. *STR should point at the leading '.'
1242 character. Does no verification at this stage that the type fits the opcode
1243 properly. E.g.,
1244
1245 .i32.i32.s16
1246 .s32.f32
1247 .u16
1248
1249 Can all be legally parsed by this function.
1250
1251 Fills in neon_type struct pointer with parsed information, and updates STR
1252 to point after the parsed type specifier. Returns SUCCESS if this was a legal
1253 type, FAIL if not. */
1254
1255 static int
1256 parse_neon_type (struct neon_type *type, char **str)
1257 {
1258 char *ptr = *str;
1259
1260 if (type)
1261 type->elems = 0;
1262
1263 while (type->elems < NEON_MAX_TYPE_ELS)
1264 {
1265 enum neon_el_type thistype = NT_untyped;
1266 unsigned thissize = -1u;
1267
1268 if (*ptr != '.')
1269 break;
1270
1271 ptr++;
1272
1273 /* Just a size without an explicit type. */
1274 if (ISDIGIT (*ptr))
1275 goto parsesize;
1276
1277 switch (TOLOWER (*ptr))
1278 {
1279 case 'i': thistype = NT_integer; break;
1280 case 'f': thistype = NT_float; break;
1281 case 'p': thistype = NT_poly; break;
1282 case 's': thistype = NT_signed; break;
1283 case 'u': thistype = NT_unsigned; break;
1284 case 'd':
1285 thistype = NT_float;
1286 thissize = 64;
1287 ptr++;
1288 goto done;
1289 default:
1290 as_bad (_("unexpected character `%c' in type specifier"), *ptr);
1291 return FAIL;
1292 }
1293
1294 ptr++;
1295
1296 /* .f is an abbreviation for .f32. */
1297 if (thistype == NT_float && !ISDIGIT (*ptr))
1298 thissize = 32;
1299 else
1300 {
1301 parsesize:
1302 thissize = strtoul (ptr, &ptr, 10);
1303
1304 if (thissize != 8 && thissize != 16 && thissize != 32
1305 && thissize != 64)
1306 {
1307 as_bad (_("bad size %d in type specifier"), thissize);
1308 return FAIL;
1309 }
1310 }
1311
1312 done:
1313 if (type)
1314 {
1315 type->el[type->elems].type = thistype;
1316 type->el[type->elems].size = thissize;
1317 type->elems++;
1318 }
1319 }
1320
1321 /* Empty/missing type is not a successful parse. */
1322 if (type->elems == 0)
1323 return FAIL;
1324
1325 *str = ptr;
1326
1327 return SUCCESS;
1328 }
1329
1330 /* Errors may be set multiple times during parsing or bit encoding
1331 (particularly in the Neon bits), but usually the earliest error which is set
1332 will be the most meaningful. Avoid overwriting it with later (cascading)
1333 errors by calling this function. */
1334
1335 static void
1336 first_error (const char *err)
1337 {
1338 if (!inst.error)
1339 inst.error = err;
1340 }
1341
1342 /* Parse a single type, e.g. ".s32", leading period included. */
1343 static int
1344 parse_neon_operand_type (struct neon_type_el *vectype, char **ccp)
1345 {
1346 char *str = *ccp;
1347 struct neon_type optype;
1348
1349 if (*str == '.')
1350 {
1351 if (parse_neon_type (&optype, &str) == SUCCESS)
1352 {
1353 if (optype.elems == 1)
1354 *vectype = optype.el[0];
1355 else
1356 {
1357 first_error (_("only one type should be specified for operand"));
1358 return FAIL;
1359 }
1360 }
1361 else
1362 {
1363 first_error (_("vector type expected"));
1364 return FAIL;
1365 }
1366 }
1367 else
1368 return FAIL;
1369
1370 *ccp = str;
1371
1372 return SUCCESS;
1373 }
1374
1375 /* Special meanings for indices (which have a range of 0-7), which will fit into
1376 a 4-bit integer. */
1377
1378 #define NEON_ALL_LANES 15
1379 #define NEON_INTERLEAVE_LANES 14
1380
1381 /* Parse either a register or a scalar, with an optional type. Return the
1382 register number, and optionally fill in the actual type of the register
1383 when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and
1384 type/index information in *TYPEINFO. */
1385
1386 static int
1387 parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type,
1388 enum arm_reg_type *rtype,
1389 struct neon_typed_alias *typeinfo)
1390 {
1391 char *str = *ccp;
1392 struct reg_entry *reg = arm_reg_parse_multi (&str);
1393 struct neon_typed_alias atype;
1394 struct neon_type_el parsetype;
1395
1396 atype.defined = 0;
1397 atype.index = -1;
1398 atype.eltype.type = NT_invtype;
1399 atype.eltype.size = -1;
1400
1401 /* Try alternate syntax for some types of register. Note these are mutually
1402 exclusive with the Neon syntax extensions. */
1403 if (reg == NULL)
1404 {
1405 int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type);
1406 if (altreg != FAIL)
1407 *ccp = str;
1408 if (typeinfo)
1409 *typeinfo = atype;
1410 return altreg;
1411 }
1412
1413 /* Undo polymorphism when a set of register types may be accepted. */
1414 if ((type == REG_TYPE_NDQ
1415 && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD))
1416 || (type == REG_TYPE_VFSD
1417 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD))
1418 || (type == REG_TYPE_NSDQ
1419 && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD
1420 || reg->type == REG_TYPE_NQ))
1421 || (type == REG_TYPE_MMXWC
1422 && (reg->type == REG_TYPE_MMXWCG)))
1423 type = (enum arm_reg_type) reg->type;
1424
1425 if (type != reg->type)
1426 return FAIL;
1427
1428 if (reg->neon)
1429 atype = *reg->neon;
1430
1431 if (parse_neon_operand_type (&parsetype, &str) == SUCCESS)
1432 {
1433 if ((atype.defined & NTA_HASTYPE) != 0)
1434 {
1435 first_error (_("can't redefine type for operand"));
1436 return FAIL;
1437 }
1438 atype.defined |= NTA_HASTYPE;
1439 atype.eltype = parsetype;
1440 }
1441
1442 if (skip_past_char (&str, '[') == SUCCESS)
1443 {
1444 if (type != REG_TYPE_VFD)
1445 {
1446 first_error (_("only D registers may be indexed"));
1447 return FAIL;
1448 }
1449
1450 if ((atype.defined & NTA_HASINDEX) != 0)
1451 {
1452 first_error (_("can't change index for operand"));
1453 return FAIL;
1454 }
1455
1456 atype.defined |= NTA_HASINDEX;
1457
1458 if (skip_past_char (&str, ']') == SUCCESS)
1459 atype.index = NEON_ALL_LANES;
1460 else
1461 {
1462 expressionS exp;
1463
1464 my_get_expression (&exp, &str, GE_NO_PREFIX);
1465
1466 if (exp.X_op != O_constant)
1467 {
1468 first_error (_("constant expression required"));
1469 return FAIL;
1470 }
1471
1472 if (skip_past_char (&str, ']') == FAIL)
1473 return FAIL;
1474
1475 atype.index = exp.X_add_number;
1476 }
1477 }
1478
1479 if (typeinfo)
1480 *typeinfo = atype;
1481
1482 if (rtype)
1483 *rtype = type;
1484
1485 *ccp = str;
1486
1487 return reg->number;
1488 }
1489
1490 /* Like arm_reg_parse, but allow allow the following extra features:
1491 - If RTYPE is non-zero, return the (possibly restricted) type of the
1492 register (e.g. Neon double or quad reg when either has been requested).
1493 - If this is a Neon vector type with additional type information, fill
1494 in the struct pointed to by VECTYPE (if non-NULL).
1495 This function will fault on encountering a scalar. */
1496
1497 static int
1498 arm_typed_reg_parse (char **ccp, enum arm_reg_type type,
1499 enum arm_reg_type *rtype, struct neon_type_el *vectype)
1500 {
1501 struct neon_typed_alias atype;
1502 char *str = *ccp;
1503 int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype);
1504
1505 if (reg == FAIL)
1506 return FAIL;
1507
1508 /* Do not allow regname(... to parse as a register. */
1509 if (*str == '(')
1510 return FAIL;
1511
1512 /* Do not allow a scalar (reg+index) to parse as a register. */
1513 if ((atype.defined & NTA_HASINDEX) != 0)
1514 {
1515 first_error (_("register operand expected, but got scalar"));
1516 return FAIL;
1517 }
1518
1519 if (vectype)
1520 *vectype = atype.eltype;
1521
1522 *ccp = str;
1523
1524 return reg;
1525 }
1526
1527 #define NEON_SCALAR_REG(X) ((X) >> 4)
1528 #define NEON_SCALAR_INDEX(X) ((X) & 15)
1529
1530 /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't
1531 have enough information to be able to do a good job bounds-checking. So, we
1532 just do easy checks here, and do further checks later. */
1533
1534 static int
1535 parse_scalar (char **ccp, int elsize, struct neon_type_el *type)
1536 {
1537 int reg;
1538 char *str = *ccp;
1539 struct neon_typed_alias atype;
1540
1541 reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype);
1542
1543 if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0)
1544 return FAIL;
1545
1546 if (atype.index == NEON_ALL_LANES)
1547 {
1548 first_error (_("scalar must have an index"));
1549 return FAIL;
1550 }
1551 else if (atype.index >= 64 / elsize)
1552 {
1553 first_error (_("scalar index out of range"));
1554 return FAIL;
1555 }
1556
1557 if (type)
1558 *type = atype.eltype;
1559
1560 *ccp = str;
1561
1562 return reg * 16 + atype.index;
1563 }
1564
1565 /* Parse an ARM register list. Returns the bitmask, or FAIL. */
1566
1567 static long
1568 parse_reg_list (char ** strp)
1569 {
1570 char * str = * strp;
1571 long range = 0;
1572 int another_range;
1573
1574 /* We come back here if we get ranges concatenated by '+' or '|'. */
1575 do
1576 {
1577 another_range = 0;
1578
1579 if (*str == '{')
1580 {
1581 int in_range = 0;
1582 int cur_reg = -1;
1583
1584 str++;
1585 do
1586 {
1587 int reg;
1588
1589 if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL)
1590 {
1591 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
1592 return FAIL;
1593 }
1594
1595 if (in_range)
1596 {
1597 int i;
1598
1599 if (reg <= cur_reg)
1600 {
1601 first_error (_("bad range in register list"));
1602 return FAIL;
1603 }
1604
1605 for (i = cur_reg + 1; i < reg; i++)
1606 {
1607 if (range & (1 << i))
1608 as_tsktsk
1609 (_("Warning: duplicated register (r%d) in register list"),
1610 i);
1611 else
1612 range |= 1 << i;
1613 }
1614 in_range = 0;
1615 }
1616
1617 if (range & (1 << reg))
1618 as_tsktsk (_("Warning: duplicated register (r%d) in register list"),
1619 reg);
1620 else if (reg <= cur_reg)
1621 as_tsktsk (_("Warning: register range not in ascending order"));
1622
1623 range |= 1 << reg;
1624 cur_reg = reg;
1625 }
1626 while (skip_past_comma (&str) != FAIL
1627 || (in_range = 1, *str++ == '-'));
1628 str--;
1629
1630 if (*str++ != '}')
1631 {
1632 first_error (_("missing `}'"));
1633 return FAIL;
1634 }
1635 }
1636 else
1637 {
1638 expressionS exp;
1639
1640 if (my_get_expression (&exp, &str, GE_NO_PREFIX))
1641 return FAIL;
1642
1643 if (exp.X_op == O_constant)
1644 {
1645 if (exp.X_add_number
1646 != (exp.X_add_number & 0x0000ffff))
1647 {
1648 inst.error = _("invalid register mask");
1649 return FAIL;
1650 }
1651
1652 if ((range & exp.X_add_number) != 0)
1653 {
1654 int regno = range & exp.X_add_number;
1655
1656 regno &= -regno;
1657 regno = (1 << regno) - 1;
1658 as_tsktsk
1659 (_("Warning: duplicated register (r%d) in register list"),
1660 regno);
1661 }
1662
1663 range |= exp.X_add_number;
1664 }
1665 else
1666 {
1667 if (inst.reloc.type != 0)
1668 {
1669 inst.error = _("expression too complex");
1670 return FAIL;
1671 }
1672
1673 memcpy (&inst.reloc.exp, &exp, sizeof (expressionS));
1674 inst.reloc.type = BFD_RELOC_ARM_MULTI;
1675 inst.reloc.pc_rel = 0;
1676 }
1677 }
1678
1679 if (*str == '|' || *str == '+')
1680 {
1681 str++;
1682 another_range = 1;
1683 }
1684 }
1685 while (another_range);
1686
1687 *strp = str;
1688 return range;
1689 }
1690
1691 /* Types of registers in a list. */
1692
1693 enum reg_list_els
1694 {
1695 REGLIST_VFP_S,
1696 REGLIST_VFP_D,
1697 REGLIST_NEON_D
1698 };
1699
1700 /* Parse a VFP register list. If the string is invalid return FAIL.
1701 Otherwise return the number of registers, and set PBASE to the first
1702 register. Parses registers of type ETYPE.
1703 If REGLIST_NEON_D is used, several syntax enhancements are enabled:
1704 - Q registers can be used to specify pairs of D registers
1705 - { } can be omitted from around a singleton register list
1706 FIXME: This is not implemented, as it would require backtracking in
1707 some cases, e.g.:
1708 vtbl.8 d3,d4,d5
1709 This could be done (the meaning isn't really ambiguous), but doesn't
1710 fit in well with the current parsing framework.
1711 - 32 D registers may be used (also true for VFPv3).
1712 FIXME: Types are ignored in these register lists, which is probably a
1713 bug. */
1714
1715 static int
1716 parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype)
1717 {
1718 char *str = *ccp;
1719 int base_reg;
1720 int new_base;
1721 enum arm_reg_type regtype = (enum arm_reg_type) 0;
1722 int max_regs = 0;
1723 int count = 0;
1724 int warned = 0;
1725 unsigned long mask = 0;
1726 int i;
1727
1728 if (*str != '{')
1729 {
1730 inst.error = _("expecting {");
1731 return FAIL;
1732 }
1733
1734 str++;
1735
1736 switch (etype)
1737 {
1738 case REGLIST_VFP_S:
1739 regtype = REG_TYPE_VFS;
1740 max_regs = 32;
1741 break;
1742
1743 case REGLIST_VFP_D:
1744 regtype = REG_TYPE_VFD;
1745 break;
1746
1747 case REGLIST_NEON_D:
1748 regtype = REG_TYPE_NDQ;
1749 break;
1750 }
1751
1752 if (etype != REGLIST_VFP_S)
1753 {
1754 /* VFPv3 allows 32 D registers, except for the VFPv3-D16 variant. */
1755 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
1756 {
1757 max_regs = 32;
1758 if (thumb_mode)
1759 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
1760 fpu_vfp_ext_d32);
1761 else
1762 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
1763 fpu_vfp_ext_d32);
1764 }
1765 else
1766 max_regs = 16;
1767 }
1768
1769 base_reg = max_regs;
1770
1771 do
1772 {
1773 int setmask = 1, addregs = 1;
1774
1775 new_base = arm_typed_reg_parse (&str, regtype, &regtype, NULL);
1776
1777 if (new_base == FAIL)
1778 {
1779 first_error (_(reg_expected_msgs[regtype]));
1780 return FAIL;
1781 }
1782
1783 if (new_base >= max_regs)
1784 {
1785 first_error (_("register out of range in list"));
1786 return FAIL;
1787 }
1788
1789 /* Note: a value of 2 * n is returned for the register Q<n>. */
1790 if (regtype == REG_TYPE_NQ)
1791 {
1792 setmask = 3;
1793 addregs = 2;
1794 }
1795
1796 if (new_base < base_reg)
1797 base_reg = new_base;
1798
1799 if (mask & (setmask << new_base))
1800 {
1801 first_error (_("invalid register list"));
1802 return FAIL;
1803 }
1804
1805 if ((mask >> new_base) != 0 && ! warned)
1806 {
1807 as_tsktsk (_("register list not in ascending order"));
1808 warned = 1;
1809 }
1810
1811 mask |= setmask << new_base;
1812 count += addregs;
1813
1814 if (*str == '-') /* We have the start of a range expression */
1815 {
1816 int high_range;
1817
1818 str++;
1819
1820 if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL))
1821 == FAIL)
1822 {
1823 inst.error = gettext (reg_expected_msgs[regtype]);
1824 return FAIL;
1825 }
1826
1827 if (high_range >= max_regs)
1828 {
1829 first_error (_("register out of range in list"));
1830 return FAIL;
1831 }
1832
1833 if (regtype == REG_TYPE_NQ)
1834 high_range = high_range + 1;
1835
1836 if (high_range <= new_base)
1837 {
1838 inst.error = _("register range not in ascending order");
1839 return FAIL;
1840 }
1841
1842 for (new_base += addregs; new_base <= high_range; new_base += addregs)
1843 {
1844 if (mask & (setmask << new_base))
1845 {
1846 inst.error = _("invalid register list");
1847 return FAIL;
1848 }
1849
1850 mask |= setmask << new_base;
1851 count += addregs;
1852 }
1853 }
1854 }
1855 while (skip_past_comma (&str) != FAIL);
1856
1857 str++;
1858
1859 /* Sanity check -- should have raised a parse error above. */
1860 if (count == 0 || count > max_regs)
1861 abort ();
1862
1863 *pbase = base_reg;
1864
1865 /* Final test -- the registers must be consecutive. */
1866 mask >>= base_reg;
1867 for (i = 0; i < count; i++)
1868 {
1869 if ((mask & (1u << i)) == 0)
1870 {
1871 inst.error = _("non-contiguous register range");
1872 return FAIL;
1873 }
1874 }
1875
1876 *ccp = str;
1877
1878 return count;
1879 }
1880
1881 /* True if two alias types are the same. */
1882
1883 static bfd_boolean
1884 neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b)
1885 {
1886 if (!a && !b)
1887 return TRUE;
1888
1889 if (!a || !b)
1890 return FALSE;
1891
1892 if (a->defined != b->defined)
1893 return FALSE;
1894
1895 if ((a->defined & NTA_HASTYPE) != 0
1896 && (a->eltype.type != b->eltype.type
1897 || a->eltype.size != b->eltype.size))
1898 return FALSE;
1899
1900 if ((a->defined & NTA_HASINDEX) != 0
1901 && (a->index != b->index))
1902 return FALSE;
1903
1904 return TRUE;
1905 }
1906
1907 /* Parse element/structure lists for Neon VLD<n> and VST<n> instructions.
1908 The base register is put in *PBASE.
1909 The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of
1910 the return value.
1911 The register stride (minus one) is put in bit 4 of the return value.
1912 Bits [6:5] encode the list length (minus one).
1913 The type of the list elements is put in *ELTYPE, if non-NULL. */
1914
1915 #define NEON_LANE(X) ((X) & 0xf)
1916 #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1)
1917 #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1)
1918
1919 static int
1920 parse_neon_el_struct_list (char **str, unsigned *pbase,
1921 struct neon_type_el *eltype)
1922 {
1923 char *ptr = *str;
1924 int base_reg = -1;
1925 int reg_incr = -1;
1926 int count = 0;
1927 int lane = -1;
1928 int leading_brace = 0;
1929 enum arm_reg_type rtype = REG_TYPE_NDQ;
1930 const char *const incr_error = _("register stride must be 1 or 2");
1931 const char *const type_error = _("mismatched element/structure types in list");
1932 struct neon_typed_alias firsttype;
1933
1934 if (skip_past_char (&ptr, '{') == SUCCESS)
1935 leading_brace = 1;
1936
1937 do
1938 {
1939 struct neon_typed_alias atype;
1940 int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype);
1941
1942 if (getreg == FAIL)
1943 {
1944 first_error (_(reg_expected_msgs[rtype]));
1945 return FAIL;
1946 }
1947
1948 if (base_reg == -1)
1949 {
1950 base_reg = getreg;
1951 if (rtype == REG_TYPE_NQ)
1952 {
1953 reg_incr = 1;
1954 }
1955 firsttype = atype;
1956 }
1957 else if (reg_incr == -1)
1958 {
1959 reg_incr = getreg - base_reg;
1960 if (reg_incr < 1 || reg_incr > 2)
1961 {
1962 first_error (_(incr_error));
1963 return FAIL;
1964 }
1965 }
1966 else if (getreg != base_reg + reg_incr * count)
1967 {
1968 first_error (_(incr_error));
1969 return FAIL;
1970 }
1971
1972 if (! neon_alias_types_same (&atype, &firsttype))
1973 {
1974 first_error (_(type_error));
1975 return FAIL;
1976 }
1977
1978 /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list
1979 modes. */
1980 if (ptr[0] == '-')
1981 {
1982 struct neon_typed_alias htype;
1983 int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1;
1984 if (lane == -1)
1985 lane = NEON_INTERLEAVE_LANES;
1986 else if (lane != NEON_INTERLEAVE_LANES)
1987 {
1988 first_error (_(type_error));
1989 return FAIL;
1990 }
1991 if (reg_incr == -1)
1992 reg_incr = 1;
1993 else if (reg_incr != 1)
1994 {
1995 first_error (_("don't use Rn-Rm syntax with non-unit stride"));
1996 return FAIL;
1997 }
1998 ptr++;
1999 hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype);
2000 if (hireg == FAIL)
2001 {
2002 first_error (_(reg_expected_msgs[rtype]));
2003 return FAIL;
2004 }
2005 if (! neon_alias_types_same (&htype, &firsttype))
2006 {
2007 first_error (_(type_error));
2008 return FAIL;
2009 }
2010 count += hireg + dregs - getreg;
2011 continue;
2012 }
2013
2014 /* If we're using Q registers, we can't use [] or [n] syntax. */
2015 if (rtype == REG_TYPE_NQ)
2016 {
2017 count += 2;
2018 continue;
2019 }
2020
2021 if ((atype.defined & NTA_HASINDEX) != 0)
2022 {
2023 if (lane == -1)
2024 lane = atype.index;
2025 else if (lane != atype.index)
2026 {
2027 first_error (_(type_error));
2028 return FAIL;
2029 }
2030 }
2031 else if (lane == -1)
2032 lane = NEON_INTERLEAVE_LANES;
2033 else if (lane != NEON_INTERLEAVE_LANES)
2034 {
2035 first_error (_(type_error));
2036 return FAIL;
2037 }
2038 count++;
2039 }
2040 while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL);
2041
2042 /* No lane set by [x]. We must be interleaving structures. */
2043 if (lane == -1)
2044 lane = NEON_INTERLEAVE_LANES;
2045
2046 /* Sanity check. */
2047 if (lane == -1 || base_reg == -1 || count < 1 || count > 4
2048 || (count > 1 && reg_incr == -1))
2049 {
2050 first_error (_("error parsing element/structure list"));
2051 return FAIL;
2052 }
2053
2054 if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL)
2055 {
2056 first_error (_("expected }"));
2057 return FAIL;
2058 }
2059
2060 if (reg_incr == -1)
2061 reg_incr = 1;
2062
2063 if (eltype)
2064 *eltype = firsttype.eltype;
2065
2066 *pbase = base_reg;
2067 *str = ptr;
2068
2069 return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5);
2070 }
2071
2072 /* Parse an explicit relocation suffix on an expression. This is
2073 either nothing, or a word in parentheses. Note that if !OBJ_ELF,
2074 arm_reloc_hsh contains no entries, so this function can only
2075 succeed if there is no () after the word. Returns -1 on error,
2076 BFD_RELOC_UNUSED if there wasn't any suffix. */
2077
2078 static int
2079 parse_reloc (char **str)
2080 {
2081 struct reloc_entry *r;
2082 char *p, *q;
2083
2084 if (**str != '(')
2085 return BFD_RELOC_UNUSED;
2086
2087 p = *str + 1;
2088 q = p;
2089
2090 while (*q && *q != ')' && *q != ',')
2091 q++;
2092 if (*q != ')')
2093 return -1;
2094
2095 if ((r = (struct reloc_entry *)
2096 hash_find_n (arm_reloc_hsh, p, q - p)) == NULL)
2097 return -1;
2098
2099 *str = q + 1;
2100 return r->reloc;
2101 }
2102
2103 /* Directives: register aliases. */
2104
2105 static struct reg_entry *
2106 insert_reg_alias (char *str, unsigned number, int type)
2107 {
2108 struct reg_entry *new_reg;
2109 const char *name;
2110
2111 if ((new_reg = (struct reg_entry *) hash_find (arm_reg_hsh, str)) != 0)
2112 {
2113 if (new_reg->builtin)
2114 as_warn (_("ignoring attempt to redefine built-in register '%s'"), str);
2115
2116 /* Only warn about a redefinition if it's not defined as the
2117 same register. */
2118 else if (new_reg->number != number || new_reg->type != type)
2119 as_warn (_("ignoring redefinition of register alias '%s'"), str);
2120
2121 return NULL;
2122 }
2123
2124 name = xstrdup (str);
2125 new_reg = (struct reg_entry *) xmalloc (sizeof (struct reg_entry));
2126
2127 new_reg->name = name;
2128 new_reg->number = number;
2129 new_reg->type = type;
2130 new_reg->builtin = FALSE;
2131 new_reg->neon = NULL;
2132
2133 if (hash_insert (arm_reg_hsh, name, (void *) new_reg))
2134 abort ();
2135
2136 return new_reg;
2137 }
2138
2139 static void
2140 insert_neon_reg_alias (char *str, int number, int type,
2141 struct neon_typed_alias *atype)
2142 {
2143 struct reg_entry *reg = insert_reg_alias (str, number, type);
2144
2145 if (!reg)
2146 {
2147 first_error (_("attempt to redefine typed alias"));
2148 return;
2149 }
2150
2151 if (atype)
2152 {
2153 reg->neon = (struct neon_typed_alias *)
2154 xmalloc (sizeof (struct neon_typed_alias));
2155 *reg->neon = *atype;
2156 }
2157 }
2158
2159 /* Look for the .req directive. This is of the form:
2160
2161 new_register_name .req existing_register_name
2162
2163 If we find one, or if it looks sufficiently like one that we want to
2164 handle any error here, return TRUE. Otherwise return FALSE. */
2165
2166 static bfd_boolean
2167 create_register_alias (char * newname, char *p)
2168 {
2169 struct reg_entry *old;
2170 char *oldname, *nbuf;
2171 size_t nlen;
2172
2173 /* The input scrubber ensures that whitespace after the mnemonic is
2174 collapsed to single spaces. */
2175 oldname = p;
2176 if (strncmp (oldname, " .req ", 6) != 0)
2177 return FALSE;
2178
2179 oldname += 6;
2180 if (*oldname == '\0')
2181 return FALSE;
2182
2183 old = (struct reg_entry *) hash_find (arm_reg_hsh, oldname);
2184 if (!old)
2185 {
2186 as_warn (_("unknown register '%s' -- .req ignored"), oldname);
2187 return TRUE;
2188 }
2189
2190 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2191 the desired alias name, and p points to its end. If not, then
2192 the desired alias name is in the global original_case_string. */
2193 #ifdef TC_CASE_SENSITIVE
2194 nlen = p - newname;
2195 #else
2196 newname = original_case_string;
2197 nlen = strlen (newname);
2198 #endif
2199
2200 nbuf = (char *) alloca (nlen + 1);
2201 memcpy (nbuf, newname, nlen);
2202 nbuf[nlen] = '\0';
2203
2204 /* Create aliases under the new name as stated; an all-lowercase
2205 version of the new name; and an all-uppercase version of the new
2206 name. */
2207 if (insert_reg_alias (nbuf, old->number, old->type) != NULL)
2208 {
2209 for (p = nbuf; *p; p++)
2210 *p = TOUPPER (*p);
2211
2212 if (strncmp (nbuf, newname, nlen))
2213 {
2214 /* If this attempt to create an additional alias fails, do not bother
2215 trying to create the all-lower case alias. We will fail and issue
2216 a second, duplicate error message. This situation arises when the
2217 programmer does something like:
2218 foo .req r0
2219 Foo .req r1
2220 The second .req creates the "Foo" alias but then fails to create
2221 the artificial FOO alias because it has already been created by the
2222 first .req. */
2223 if (insert_reg_alias (nbuf, old->number, old->type) == NULL)
2224 return TRUE;
2225 }
2226
2227 for (p = nbuf; *p; p++)
2228 *p = TOLOWER (*p);
2229
2230 if (strncmp (nbuf, newname, nlen))
2231 insert_reg_alias (nbuf, old->number, old->type);
2232 }
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a Neon typed/indexed register alias using directives, e.g.:
2238 X .dn d5.s32[1]
2239 Y .qn 6.s16
2240 Z .dn d7
2241 T .dn Z[0]
2242 These typed registers can be used instead of the types specified after the
2243 Neon mnemonic, so long as all operands given have types. Types can also be
2244 specified directly, e.g.:
2245 vadd d0.s32, d1.s32, d2.s32 */
2246
2247 static bfd_boolean
2248 create_neon_reg_alias (char *newname, char *p)
2249 {
2250 enum arm_reg_type basetype;
2251 struct reg_entry *basereg;
2252 struct reg_entry mybasereg;
2253 struct neon_type ntype;
2254 struct neon_typed_alias typeinfo;
2255 char *namebuf, *nameend ATTRIBUTE_UNUSED;
2256 int namelen;
2257
2258 typeinfo.defined = 0;
2259 typeinfo.eltype.type = NT_invtype;
2260 typeinfo.eltype.size = -1;
2261 typeinfo.index = -1;
2262
2263 nameend = p;
2264
2265 if (strncmp (p, " .dn ", 5) == 0)
2266 basetype = REG_TYPE_VFD;
2267 else if (strncmp (p, " .qn ", 5) == 0)
2268 basetype = REG_TYPE_NQ;
2269 else
2270 return FALSE;
2271
2272 p += 5;
2273
2274 if (*p == '\0')
2275 return FALSE;
2276
2277 basereg = arm_reg_parse_multi (&p);
2278
2279 if (basereg && basereg->type != basetype)
2280 {
2281 as_bad (_("bad type for register"));
2282 return FALSE;
2283 }
2284
2285 if (basereg == NULL)
2286 {
2287 expressionS exp;
2288 /* Try parsing as an integer. */
2289 my_get_expression (&exp, &p, GE_NO_PREFIX);
2290 if (exp.X_op != O_constant)
2291 {
2292 as_bad (_("expression must be constant"));
2293 return FALSE;
2294 }
2295 basereg = &mybasereg;
2296 basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2
2297 : exp.X_add_number;
2298 basereg->neon = 0;
2299 }
2300
2301 if (basereg->neon)
2302 typeinfo = *basereg->neon;
2303
2304 if (parse_neon_type (&ntype, &p) == SUCCESS)
2305 {
2306 /* We got a type. */
2307 if (typeinfo.defined & NTA_HASTYPE)
2308 {
2309 as_bad (_("can't redefine the type of a register alias"));
2310 return FALSE;
2311 }
2312
2313 typeinfo.defined |= NTA_HASTYPE;
2314 if (ntype.elems != 1)
2315 {
2316 as_bad (_("you must specify a single type only"));
2317 return FALSE;
2318 }
2319 typeinfo.eltype = ntype.el[0];
2320 }
2321
2322 if (skip_past_char (&p, '[') == SUCCESS)
2323 {
2324 expressionS exp;
2325 /* We got a scalar index. */
2326
2327 if (typeinfo.defined & NTA_HASINDEX)
2328 {
2329 as_bad (_("can't redefine the index of a scalar alias"));
2330 return FALSE;
2331 }
2332
2333 my_get_expression (&exp, &p, GE_NO_PREFIX);
2334
2335 if (exp.X_op != O_constant)
2336 {
2337 as_bad (_("scalar index must be constant"));
2338 return FALSE;
2339 }
2340
2341 typeinfo.defined |= NTA_HASINDEX;
2342 typeinfo.index = exp.X_add_number;
2343
2344 if (skip_past_char (&p, ']') == FAIL)
2345 {
2346 as_bad (_("expecting ]"));
2347 return FALSE;
2348 }
2349 }
2350
2351 /* If TC_CASE_SENSITIVE is defined, then newname already points to
2352 the desired alias name, and p points to its end. If not, then
2353 the desired alias name is in the global original_case_string. */
2354 #ifdef TC_CASE_SENSITIVE
2355 namelen = nameend - newname;
2356 #else
2357 newname = original_case_string;
2358 namelen = strlen (newname);
2359 #endif
2360
2361 namebuf = (char *) alloca (namelen + 1);
2362 strncpy (namebuf, newname, namelen);
2363 namebuf[namelen] = '\0';
2364
2365 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2366 typeinfo.defined != 0 ? &typeinfo : NULL);
2367
2368 /* Insert name in all uppercase. */
2369 for (p = namebuf; *p; p++)
2370 *p = TOUPPER (*p);
2371
2372 if (strncmp (namebuf, newname, namelen))
2373 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2374 typeinfo.defined != 0 ? &typeinfo : NULL);
2375
2376 /* Insert name in all lowercase. */
2377 for (p = namebuf; *p; p++)
2378 *p = TOLOWER (*p);
2379
2380 if (strncmp (namebuf, newname, namelen))
2381 insert_neon_reg_alias (namebuf, basereg->number, basetype,
2382 typeinfo.defined != 0 ? &typeinfo : NULL);
2383
2384 return TRUE;
2385 }
2386
2387 /* Should never be called, as .req goes between the alias and the
2388 register name, not at the beginning of the line. */
2389
2390 static void
2391 s_req (int a ATTRIBUTE_UNUSED)
2392 {
2393 as_bad (_("invalid syntax for .req directive"));
2394 }
2395
2396 static void
2397 s_dn (int a ATTRIBUTE_UNUSED)
2398 {
2399 as_bad (_("invalid syntax for .dn directive"));
2400 }
2401
2402 static void
2403 s_qn (int a ATTRIBUTE_UNUSED)
2404 {
2405 as_bad (_("invalid syntax for .qn directive"));
2406 }
2407
2408 /* The .unreq directive deletes an alias which was previously defined
2409 by .req. For example:
2410
2411 my_alias .req r11
2412 .unreq my_alias */
2413
2414 static void
2415 s_unreq (int a ATTRIBUTE_UNUSED)
2416 {
2417 char * name;
2418 char saved_char;
2419
2420 name = input_line_pointer;
2421
2422 while (*input_line_pointer != 0
2423 && *input_line_pointer != ' '
2424 && *input_line_pointer != '\n')
2425 ++input_line_pointer;
2426
2427 saved_char = *input_line_pointer;
2428 *input_line_pointer = 0;
2429
2430 if (!*name)
2431 as_bad (_("invalid syntax for .unreq directive"));
2432 else
2433 {
2434 struct reg_entry *reg = (struct reg_entry *) hash_find (arm_reg_hsh,
2435 name);
2436
2437 if (!reg)
2438 as_bad (_("unknown register alias '%s'"), name);
2439 else if (reg->builtin)
2440 as_warn (_("ignoring attempt to use .unreq on fixed register name: '%s'"),
2441 name);
2442 else
2443 {
2444 char * p;
2445 char * nbuf;
2446
2447 hash_delete (arm_reg_hsh, name, FALSE);
2448 free ((char *) reg->name);
2449 if (reg->neon)
2450 free (reg->neon);
2451 free (reg);
2452
2453 /* Also locate the all upper case and all lower case versions.
2454 Do not complain if we cannot find one or the other as it
2455 was probably deleted above. */
2456
2457 nbuf = strdup (name);
2458 for (p = nbuf; *p; p++)
2459 *p = TOUPPER (*p);
2460 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2461 if (reg)
2462 {
2463 hash_delete (arm_reg_hsh, nbuf, FALSE);
2464 free ((char *) reg->name);
2465 if (reg->neon)
2466 free (reg->neon);
2467 free (reg);
2468 }
2469
2470 for (p = nbuf; *p; p++)
2471 *p = TOLOWER (*p);
2472 reg = (struct reg_entry *) hash_find (arm_reg_hsh, nbuf);
2473 if (reg)
2474 {
2475 hash_delete (arm_reg_hsh, nbuf, FALSE);
2476 free ((char *) reg->name);
2477 if (reg->neon)
2478 free (reg->neon);
2479 free (reg);
2480 }
2481
2482 free (nbuf);
2483 }
2484 }
2485
2486 *input_line_pointer = saved_char;
2487 demand_empty_rest_of_line ();
2488 }
2489
2490 /* Directives: Instruction set selection. */
2491
2492 #ifdef OBJ_ELF
2493 /* This code is to handle mapping symbols as defined in the ARM ELF spec.
2494 (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0).
2495 Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag),
2496 and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */
2497
2498 /* Create a new mapping symbol for the transition to STATE. */
2499
2500 static void
2501 make_mapping_symbol (enum mstate state, valueT value, fragS *frag)
2502 {
2503 symbolS * symbolP;
2504 const char * symname;
2505 int type;
2506
2507 switch (state)
2508 {
2509 case MAP_DATA:
2510 symname = "$d";
2511 type = BSF_NO_FLAGS;
2512 break;
2513 case MAP_ARM:
2514 symname = "$a";
2515 type = BSF_NO_FLAGS;
2516 break;
2517 case MAP_THUMB:
2518 symname = "$t";
2519 type = BSF_NO_FLAGS;
2520 break;
2521 default:
2522 abort ();
2523 }
2524
2525 symbolP = symbol_new (symname, now_seg, value, frag);
2526 symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL;
2527
2528 switch (state)
2529 {
2530 case MAP_ARM:
2531 THUMB_SET_FUNC (symbolP, 0);
2532 ARM_SET_THUMB (symbolP, 0);
2533 ARM_SET_INTERWORK (symbolP, support_interwork);
2534 break;
2535
2536 case MAP_THUMB:
2537 THUMB_SET_FUNC (symbolP, 1);
2538 ARM_SET_THUMB (symbolP, 1);
2539 ARM_SET_INTERWORK (symbolP, support_interwork);
2540 break;
2541
2542 case MAP_DATA:
2543 default:
2544 break;
2545 }
2546
2547 /* Save the mapping symbols for future reference. Also check that
2548 we do not place two mapping symbols at the same offset within a
2549 frag. We'll handle overlap between frags in
2550 check_mapping_symbols.
2551
2552 If .fill or other data filling directive generates zero sized data,
2553 the mapping symbol for the following code will have the same value
2554 as the one generated for the data filling directive. In this case,
2555 we replace the old symbol with the new one at the same address. */
2556 if (value == 0)
2557 {
2558 if (frag->tc_frag_data.first_map != NULL)
2559 {
2560 know (S_GET_VALUE (frag->tc_frag_data.first_map) == 0);
2561 symbol_remove (frag->tc_frag_data.first_map, &symbol_rootP, &symbol_lastP);
2562 }
2563 frag->tc_frag_data.first_map = symbolP;
2564 }
2565 if (frag->tc_frag_data.last_map != NULL)
2566 {
2567 know (S_GET_VALUE (frag->tc_frag_data.last_map) <= S_GET_VALUE (symbolP));
2568 if (S_GET_VALUE (frag->tc_frag_data.last_map) == S_GET_VALUE (symbolP))
2569 symbol_remove (frag->tc_frag_data.last_map, &symbol_rootP, &symbol_lastP);
2570 }
2571 frag->tc_frag_data.last_map = symbolP;
2572 }
2573
2574 /* We must sometimes convert a region marked as code to data during
2575 code alignment, if an odd number of bytes have to be padded. The
2576 code mapping symbol is pushed to an aligned address. */
2577
2578 static void
2579 insert_data_mapping_symbol (enum mstate state,
2580 valueT value, fragS *frag, offsetT bytes)
2581 {
2582 /* If there was already a mapping symbol, remove it. */
2583 if (frag->tc_frag_data.last_map != NULL
2584 && S_GET_VALUE (frag->tc_frag_data.last_map) == frag->fr_address + value)
2585 {
2586 symbolS *symp = frag->tc_frag_data.last_map;
2587
2588 if (value == 0)
2589 {
2590 know (frag->tc_frag_data.first_map == symp);
2591 frag->tc_frag_data.first_map = NULL;
2592 }
2593 frag->tc_frag_data.last_map = NULL;
2594 symbol_remove (symp, &symbol_rootP, &symbol_lastP);
2595 }
2596
2597 make_mapping_symbol (MAP_DATA, value, frag);
2598 make_mapping_symbol (state, value + bytes, frag);
2599 }
2600
2601 static void mapping_state_2 (enum mstate state, int max_chars);
2602
2603 /* Set the mapping state to STATE. Only call this when about to
2604 emit some STATE bytes to the file. */
2605
2606 void
2607 mapping_state (enum mstate state)
2608 {
2609 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2610
2611 #define TRANSITION(from, to) (mapstate == (from) && state == (to))
2612
2613 if (mapstate == state)
2614 /* The mapping symbol has already been emitted.
2615 There is nothing else to do. */
2616 return;
2617
2618 if (state == MAP_ARM || state == MAP_THUMB)
2619 /* PR gas/12931
2620 All ARM instructions require 4-byte alignment.
2621 (Almost) all Thumb instructions require 2-byte alignment.
2622
2623 When emitting instructions into any section, mark the section
2624 appropriately.
2625
2626 Some Thumb instructions are alignment-sensitive modulo 4 bytes,
2627 but themselves require 2-byte alignment; this applies to some
2628 PC- relative forms. However, these cases will invovle implicit
2629 literal pool generation or an explicit .align >=2, both of
2630 which will cause the section to me marked with sufficient
2631 alignment. Thus, we don't handle those cases here. */
2632 record_alignment (now_seg, state == MAP_ARM ? 2 : 1);
2633
2634 if (TRANSITION (MAP_UNDEFINED, MAP_DATA))
2635 /* This case will be evaluated later in the next else. */
2636 return;
2637 else if (TRANSITION (MAP_UNDEFINED, MAP_ARM)
2638 || TRANSITION (MAP_UNDEFINED, MAP_THUMB))
2639 {
2640 /* Only add the symbol if the offset is > 0:
2641 if we're at the first frag, check it's size > 0;
2642 if we're not at the first frag, then for sure
2643 the offset is > 0. */
2644 struct frag * const frag_first = seg_info (now_seg)->frchainP->frch_root;
2645 const int add_symbol = (frag_now != frag_first) || (frag_now_fix () > 0);
2646
2647 if (add_symbol)
2648 make_mapping_symbol (MAP_DATA, (valueT) 0, frag_first);
2649 }
2650
2651 mapping_state_2 (state, 0);
2652 #undef TRANSITION
2653 }
2654
2655 /* Same as mapping_state, but MAX_CHARS bytes have already been
2656 allocated. Put the mapping symbol that far back. */
2657
2658 static void
2659 mapping_state_2 (enum mstate state, int max_chars)
2660 {
2661 enum mstate mapstate = seg_info (now_seg)->tc_segment_info_data.mapstate;
2662
2663 if (!SEG_NORMAL (now_seg))
2664 return;
2665
2666 if (mapstate == state)
2667 /* The mapping symbol has already been emitted.
2668 There is nothing else to do. */
2669 return;
2670
2671 seg_info (now_seg)->tc_segment_info_data.mapstate = state;
2672 make_mapping_symbol (state, (valueT) frag_now_fix () - max_chars, frag_now);
2673 }
2674 #else
2675 #define mapping_state(x) ((void)0)
2676 #define mapping_state_2(x, y) ((void)0)
2677 #endif
2678
2679 /* Find the real, Thumb encoded start of a Thumb function. */
2680
2681 #ifdef OBJ_COFF
2682 static symbolS *
2683 find_real_start (symbolS * symbolP)
2684 {
2685 char * real_start;
2686 const char * name = S_GET_NAME (symbolP);
2687 symbolS * new_target;
2688
2689 /* This definition must agree with the one in gcc/config/arm/thumb.c. */
2690 #define STUB_NAME ".real_start_of"
2691
2692 if (name == NULL)
2693 abort ();
2694
2695 /* The compiler may generate BL instructions to local labels because
2696 it needs to perform a branch to a far away location. These labels
2697 do not have a corresponding ".real_start_of" label. We check
2698 both for S_IS_LOCAL and for a leading dot, to give a way to bypass
2699 the ".real_start_of" convention for nonlocal branches. */
2700 if (S_IS_LOCAL (symbolP) || name[0] == '.')
2701 return symbolP;
2702
2703 real_start = ACONCAT ((STUB_NAME, name, NULL));
2704 new_target = symbol_find (real_start);
2705
2706 if (new_target == NULL)
2707 {
2708 as_warn (_("Failed to find real start of function: %s\n"), name);
2709 new_target = symbolP;
2710 }
2711
2712 return new_target;
2713 }
2714 #endif
2715
2716 static void
2717 opcode_select (int width)
2718 {
2719 switch (width)
2720 {
2721 case 16:
2722 if (! thumb_mode)
2723 {
2724 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
2725 as_bad (_("selected processor does not support THUMB opcodes"));
2726
2727 thumb_mode = 1;
2728 /* No need to force the alignment, since we will have been
2729 coming from ARM mode, which is word-aligned. */
2730 record_alignment (now_seg, 1);
2731 }
2732 break;
2733
2734 case 32:
2735 if (thumb_mode)
2736 {
2737 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
2738 as_bad (_("selected processor does not support ARM opcodes"));
2739
2740 thumb_mode = 0;
2741
2742 if (!need_pass_2)
2743 frag_align (2, 0, 0);
2744
2745 record_alignment (now_seg, 1);
2746 }
2747 break;
2748
2749 default:
2750 as_bad (_("invalid instruction size selected (%d)"), width);
2751 }
2752 }
2753
2754 static void
2755 s_arm (int ignore ATTRIBUTE_UNUSED)
2756 {
2757 opcode_select (32);
2758 demand_empty_rest_of_line ();
2759 }
2760
2761 static void
2762 s_thumb (int ignore ATTRIBUTE_UNUSED)
2763 {
2764 opcode_select (16);
2765 demand_empty_rest_of_line ();
2766 }
2767
2768 static void
2769 s_code (int unused ATTRIBUTE_UNUSED)
2770 {
2771 int temp;
2772
2773 temp = get_absolute_expression ();
2774 switch (temp)
2775 {
2776 case 16:
2777 case 32:
2778 opcode_select (temp);
2779 break;
2780
2781 default:
2782 as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
2783 }
2784 }
2785
2786 static void
2787 s_force_thumb (int ignore ATTRIBUTE_UNUSED)
2788 {
2789 /* If we are not already in thumb mode go into it, EVEN if
2790 the target processor does not support thumb instructions.
2791 This is used by gcc/config/arm/lib1funcs.asm for example
2792 to compile interworking support functions even if the
2793 target processor should not support interworking. */
2794 if (! thumb_mode)
2795 {
2796 thumb_mode = 2;
2797 record_alignment (now_seg, 1);
2798 }
2799
2800 demand_empty_rest_of_line ();
2801 }
2802
2803 static void
2804 s_thumb_func (int ignore ATTRIBUTE_UNUSED)
2805 {
2806 s_thumb (0);
2807
2808 /* The following label is the name/address of the start of a Thumb function.
2809 We need to know this for the interworking support. */
2810 label_is_thumb_function_name = TRUE;
2811 }
2812
2813 /* Perform a .set directive, but also mark the alias as
2814 being a thumb function. */
2815
2816 static void
2817 s_thumb_set (int equiv)
2818 {
2819 /* XXX the following is a duplicate of the code for s_set() in read.c
2820 We cannot just call that code as we need to get at the symbol that
2821 is created. */
2822 char * name;
2823 char delim;
2824 char * end_name;
2825 symbolS * symbolP;
2826
2827 /* Especial apologies for the random logic:
2828 This just grew, and could be parsed much more simply!
2829 Dean - in haste. */
2830 name = input_line_pointer;
2831 delim = get_symbol_end ();
2832 end_name = input_line_pointer;
2833 *end_name = delim;
2834
2835 if (*input_line_pointer != ',')
2836 {
2837 *end_name = 0;
2838 as_bad (_("expected comma after name \"%s\""), name);
2839 *end_name = delim;
2840 ignore_rest_of_line ();
2841 return;
2842 }
2843
2844 input_line_pointer++;
2845 *end_name = 0;
2846
2847 if (name[0] == '.' && name[1] == '\0')
2848 {
2849 /* XXX - this should not happen to .thumb_set. */
2850 abort ();
2851 }
2852
2853 if ((symbolP = symbol_find (name)) == NULL
2854 && (symbolP = md_undefined_symbol (name)) == NULL)
2855 {
2856 #ifndef NO_LISTING
2857 /* When doing symbol listings, play games with dummy fragments living
2858 outside the normal fragment chain to record the file and line info
2859 for this symbol. */
2860 if (listing & LISTING_SYMBOLS)
2861 {
2862 extern struct list_info_struct * listing_tail;
2863 fragS * dummy_frag = (fragS * ) xmalloc (sizeof (fragS));
2864
2865 memset (dummy_frag, 0, sizeof (fragS));
2866 dummy_frag->fr_type = rs_fill;
2867 dummy_frag->line = listing_tail;
2868 symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
2869 dummy_frag->fr_symbol = symbolP;
2870 }
2871 else
2872 #endif
2873 symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
2874
2875 #ifdef OBJ_COFF
2876 /* "set" symbols are local unless otherwise specified. */
2877 SF_SET_LOCAL (symbolP);
2878 #endif /* OBJ_COFF */
2879 } /* Make a new symbol. */
2880
2881 symbol_table_insert (symbolP);
2882
2883 * end_name = delim;
2884
2885 if (equiv
2886 && S_IS_DEFINED (symbolP)
2887 && S_GET_SEGMENT (symbolP) != reg_section)
2888 as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
2889
2890 pseudo_set (symbolP);
2891
2892 demand_empty_rest_of_line ();
2893
2894 /* XXX Now we come to the Thumb specific bit of code. */
2895
2896 THUMB_SET_FUNC (symbolP, 1);
2897 ARM_SET_THUMB (symbolP, 1);
2898 #if defined OBJ_ELF || defined OBJ_COFF
2899 ARM_SET_INTERWORK (symbolP, support_interwork);
2900 #endif
2901 }
2902
2903 /* Directives: Mode selection. */
2904
2905 /* .syntax [unified|divided] - choose the new unified syntax
2906 (same for Arm and Thumb encoding, modulo slight differences in what
2907 can be represented) or the old divergent syntax for each mode. */
2908 static void
2909 s_syntax (int unused ATTRIBUTE_UNUSED)
2910 {
2911 char *name, delim;
2912
2913 name = input_line_pointer;
2914 delim = get_symbol_end ();
2915
2916 if (!strcasecmp (name, "unified"))
2917 unified_syntax = TRUE;
2918 else if (!strcasecmp (name, "divided"))
2919 unified_syntax = FALSE;
2920 else
2921 {
2922 as_bad (_("unrecognized syntax mode \"%s\""), name);
2923 return;
2924 }
2925 *input_line_pointer = delim;
2926 demand_empty_rest_of_line ();
2927 }
2928
2929 /* Directives: sectioning and alignment. */
2930
2931 /* Same as s_align_ptwo but align 0 => align 2. */
2932
2933 static void
2934 s_align (int unused ATTRIBUTE_UNUSED)
2935 {
2936 int temp;
2937 bfd_boolean fill_p;
2938 long temp_fill;
2939 long max_alignment = 15;
2940
2941 temp = get_absolute_expression ();
2942 if (temp > max_alignment)
2943 as_bad (_("alignment too large: %d assumed"), temp = max_alignment);
2944 else if (temp < 0)
2945 {
2946 as_bad (_("alignment negative. 0 assumed."));
2947 temp = 0;
2948 }
2949
2950 if (*input_line_pointer == ',')
2951 {
2952 input_line_pointer++;
2953 temp_fill = get_absolute_expression ();
2954 fill_p = TRUE;
2955 }
2956 else
2957 {
2958 fill_p = FALSE;
2959 temp_fill = 0;
2960 }
2961
2962 if (!temp)
2963 temp = 2;
2964
2965 /* Only make a frag if we HAVE to. */
2966 if (temp && !need_pass_2)
2967 {
2968 if (!fill_p && subseg_text_p (now_seg))
2969 frag_align_code (temp, 0);
2970 else
2971 frag_align (temp, (int) temp_fill, 0);
2972 }
2973 demand_empty_rest_of_line ();
2974
2975 record_alignment (now_seg, temp);
2976 }
2977
2978 static void
2979 s_bss (int ignore ATTRIBUTE_UNUSED)
2980 {
2981 /* We don't support putting frags in the BSS segment, we fake it by
2982 marking in_bss, then looking at s_skip for clues. */
2983 subseg_set (bss_section, 0);
2984 demand_empty_rest_of_line ();
2985
2986 #ifdef md_elf_section_change_hook
2987 md_elf_section_change_hook ();
2988 #endif
2989 }
2990
2991 static void
2992 s_even (int ignore ATTRIBUTE_UNUSED)
2993 {
2994 /* Never make frag if expect extra pass. */
2995 if (!need_pass_2)
2996 frag_align (1, 0, 0);
2997
2998 record_alignment (now_seg, 1);
2999
3000 demand_empty_rest_of_line ();
3001 }
3002
3003 /* Directives: Literal pools. */
3004
3005 static literal_pool *
3006 find_literal_pool (void)
3007 {
3008 literal_pool * pool;
3009
3010 for (pool = list_of_pools; pool != NULL; pool = pool->next)
3011 {
3012 if (pool->section == now_seg
3013 && pool->sub_section == now_subseg)
3014 break;
3015 }
3016
3017 return pool;
3018 }
3019
3020 static literal_pool *
3021 find_or_make_literal_pool (void)
3022 {
3023 /* Next literal pool ID number. */
3024 static unsigned int latest_pool_num = 1;
3025 literal_pool * pool;
3026
3027 pool = find_literal_pool ();
3028
3029 if (pool == NULL)
3030 {
3031 /* Create a new pool. */
3032 pool = (literal_pool *) xmalloc (sizeof (* pool));
3033 if (! pool)
3034 return NULL;
3035
3036 pool->next_free_entry = 0;
3037 pool->section = now_seg;
3038 pool->sub_section = now_subseg;
3039 pool->next = list_of_pools;
3040 pool->symbol = NULL;
3041
3042 /* Add it to the list. */
3043 list_of_pools = pool;
3044 }
3045
3046 /* New pools, and emptied pools, will have a NULL symbol. */
3047 if (pool->symbol == NULL)
3048 {
3049 pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section,
3050 (valueT) 0, &zero_address_frag);
3051 pool->id = latest_pool_num ++;
3052 }
3053
3054 /* Done. */
3055 return pool;
3056 }
3057
3058 /* Add the literal in the global 'inst'
3059 structure to the relevant literal pool. */
3060
3061 static int
3062 add_to_lit_pool (void)
3063 {
3064 literal_pool * pool;
3065 unsigned int entry;
3066
3067 pool = find_or_make_literal_pool ();
3068
3069 /* Check if this literal value is already in the pool. */
3070 for (entry = 0; entry < pool->next_free_entry; entry ++)
3071 {
3072 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3073 && (inst.reloc.exp.X_op == O_constant)
3074 && (pool->literals[entry].X_add_number
3075 == inst.reloc.exp.X_add_number)
3076 && (pool->literals[entry].X_unsigned
3077 == inst.reloc.exp.X_unsigned))
3078 break;
3079
3080 if ((pool->literals[entry].X_op == inst.reloc.exp.X_op)
3081 && (inst.reloc.exp.X_op == O_symbol)
3082 && (pool->literals[entry].X_add_number
3083 == inst.reloc.exp.X_add_number)
3084 && (pool->literals[entry].X_add_symbol
3085 == inst.reloc.exp.X_add_symbol)
3086 && (pool->literals[entry].X_op_symbol
3087 == inst.reloc.exp.X_op_symbol))
3088 break;
3089 }
3090
3091 /* Do we need to create a new entry? */
3092 if (entry == pool->next_free_entry)
3093 {
3094 if (entry >= MAX_LITERAL_POOL_SIZE)
3095 {
3096 inst.error = _("literal pool overflow");
3097 return FAIL;
3098 }
3099
3100 pool->literals[entry] = inst.reloc.exp;
3101 #ifdef OBJ_ELF
3102 /* PR ld/12974: Record the location of the first source line to reference
3103 this entry in the literal pool. If it turns out during linking that the
3104 symbol does not exist we will be able to give an accurate line number for
3105 the (first use of the) missing reference. */
3106 if (debug_type == DEBUG_DWARF2)
3107 dwarf2_where (pool->locs + entry);
3108 #endif
3109 pool->next_free_entry += 1;
3110 }
3111
3112 inst.reloc.exp.X_op = O_symbol;
3113 inst.reloc.exp.X_add_number = ((int) entry) * 4;
3114 inst.reloc.exp.X_add_symbol = pool->symbol;
3115
3116 return SUCCESS;
3117 }
3118
3119 /* Can't use symbol_new here, so have to create a symbol and then at
3120 a later date assign it a value. Thats what these functions do. */
3121
3122 static void
3123 symbol_locate (symbolS * symbolP,
3124 const char * name, /* It is copied, the caller can modify. */
3125 segT segment, /* Segment identifier (SEG_<something>). */
3126 valueT valu, /* Symbol value. */
3127 fragS * frag) /* Associated fragment. */
3128 {
3129 unsigned int name_length;
3130 char * preserved_copy_of_name;
3131
3132 name_length = strlen (name) + 1; /* +1 for \0. */
3133 obstack_grow (&notes, name, name_length);
3134 preserved_copy_of_name = (char *) obstack_finish (&notes);
3135
3136 #ifdef tc_canonicalize_symbol_name
3137 preserved_copy_of_name =
3138 tc_canonicalize_symbol_name (preserved_copy_of_name);
3139 #endif
3140
3141 S_SET_NAME (symbolP, preserved_copy_of_name);
3142
3143 S_SET_SEGMENT (symbolP, segment);
3144 S_SET_VALUE (symbolP, valu);
3145 symbol_clear_list_pointers (symbolP);
3146
3147 symbol_set_frag (symbolP, frag);
3148
3149 /* Link to end of symbol chain. */
3150 {
3151 extern int symbol_table_frozen;
3152
3153 if (symbol_table_frozen)
3154 abort ();
3155 }
3156
3157 symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
3158
3159 obj_symbol_new_hook (symbolP);
3160
3161 #ifdef tc_symbol_new_hook
3162 tc_symbol_new_hook (symbolP);
3163 #endif
3164
3165 #ifdef DEBUG_SYMS
3166 verify_symbol_chain (symbol_rootP, symbol_lastP);
3167 #endif /* DEBUG_SYMS */
3168 }
3169
3170
3171 static void
3172 s_ltorg (int ignored ATTRIBUTE_UNUSED)
3173 {
3174 unsigned int entry;
3175 literal_pool * pool;
3176 char sym_name[20];
3177
3178 pool = find_literal_pool ();
3179 if (pool == NULL
3180 || pool->symbol == NULL
3181 || pool->next_free_entry == 0)
3182 return;
3183
3184 mapping_state (MAP_DATA);
3185
3186 /* Align pool as you have word accesses.
3187 Only make a frag if we have to. */
3188 if (!need_pass_2)
3189 frag_align (2, 0, 0);
3190
3191 record_alignment (now_seg, 2);
3192
3193 sprintf (sym_name, "$$lit_\002%x", pool->id);
3194
3195 symbol_locate (pool->symbol, sym_name, now_seg,
3196 (valueT) frag_now_fix (), frag_now);
3197 symbol_table_insert (pool->symbol);
3198
3199 ARM_SET_THUMB (pool->symbol, thumb_mode);
3200
3201 #if defined OBJ_COFF || defined OBJ_ELF
3202 ARM_SET_INTERWORK (pool->symbol, support_interwork);
3203 #endif
3204
3205 for (entry = 0; entry < pool->next_free_entry; entry ++)
3206 {
3207 #ifdef OBJ_ELF
3208 if (debug_type == DEBUG_DWARF2)
3209 dwarf2_gen_line_info (frag_now_fix (), pool->locs + entry);
3210 #endif
3211 /* First output the expression in the instruction to the pool. */
3212 emit_expr (&(pool->literals[entry]), 4); /* .word */
3213 }
3214
3215 /* Mark the pool as empty. */
3216 pool->next_free_entry = 0;
3217 pool->symbol = NULL;
3218 }
3219
3220 #ifdef OBJ_ELF
3221 /* Forward declarations for functions below, in the MD interface
3222 section. */
3223 static void fix_new_arm (fragS *, int, short, expressionS *, int, int);
3224 static valueT create_unwind_entry (int);
3225 static void start_unwind_section (const segT, int);
3226 static void add_unwind_opcode (valueT, int);
3227 static void flush_pending_unwind (void);
3228
3229 /* Directives: Data. */
3230
3231 static void
3232 s_arm_elf_cons (int nbytes)
3233 {
3234 expressionS exp;
3235
3236 #ifdef md_flush_pending_output
3237 md_flush_pending_output ();
3238 #endif
3239
3240 if (is_it_end_of_statement ())
3241 {
3242 demand_empty_rest_of_line ();
3243 return;
3244 }
3245
3246 #ifdef md_cons_align
3247 md_cons_align (nbytes);
3248 #endif
3249
3250 mapping_state (MAP_DATA);
3251 do
3252 {
3253 int reloc;
3254 char *base = input_line_pointer;
3255
3256 expression (& exp);
3257
3258 if (exp.X_op != O_symbol)
3259 emit_expr (&exp, (unsigned int) nbytes);
3260 else
3261 {
3262 char *before_reloc = input_line_pointer;
3263 reloc = parse_reloc (&input_line_pointer);
3264 if (reloc == -1)
3265 {
3266 as_bad (_("unrecognized relocation suffix"));
3267 ignore_rest_of_line ();
3268 return;
3269 }
3270 else if (reloc == BFD_RELOC_UNUSED)
3271 emit_expr (&exp, (unsigned int) nbytes);
3272 else
3273 {
3274 reloc_howto_type *howto = (reloc_howto_type *)
3275 bfd_reloc_type_lookup (stdoutput,
3276 (bfd_reloc_code_real_type) reloc);
3277 int size = bfd_get_reloc_size (howto);
3278
3279 if (reloc == BFD_RELOC_ARM_PLT32)
3280 {
3281 as_bad (_("(plt) is only valid on branch targets"));
3282 reloc = BFD_RELOC_UNUSED;
3283 size = 0;
3284 }
3285
3286 if (size > nbytes)
3287 as_bad (_("%s relocations do not fit in %d bytes"),
3288 howto->name, nbytes);
3289 else
3290 {
3291 /* We've parsed an expression stopping at O_symbol.
3292 But there may be more expression left now that we
3293 have parsed the relocation marker. Parse it again.
3294 XXX Surely there is a cleaner way to do this. */
3295 char *p = input_line_pointer;
3296 int offset;
3297 char *save_buf = (char *) alloca (input_line_pointer - base);
3298 memcpy (save_buf, base, input_line_pointer - base);
3299 memmove (base + (input_line_pointer - before_reloc),
3300 base, before_reloc - base);
3301
3302 input_line_pointer = base + (input_line_pointer-before_reloc);
3303 expression (&exp);
3304 memcpy (base, save_buf, p - base);
3305
3306 offset = nbytes - size;
3307 p = frag_more ((int) nbytes);
3308 fix_new_exp (frag_now, p - frag_now->fr_literal + offset,
3309 size, &exp, 0, (enum bfd_reloc_code_real) reloc);
3310 }
3311 }
3312 }
3313 }
3314 while (*input_line_pointer++ == ',');
3315
3316 /* Put terminator back into stream. */
3317 input_line_pointer --;
3318 demand_empty_rest_of_line ();
3319 }
3320
3321 /* Emit an expression containing a 32-bit thumb instruction.
3322 Implementation based on put_thumb32_insn. */
3323
3324 static void
3325 emit_thumb32_expr (expressionS * exp)
3326 {
3327 expressionS exp_high = *exp;
3328
3329 exp_high.X_add_number = (unsigned long)exp_high.X_add_number >> 16;
3330 emit_expr (& exp_high, (unsigned int) THUMB_SIZE);
3331 exp->X_add_number &= 0xffff;
3332 emit_expr (exp, (unsigned int) THUMB_SIZE);
3333 }
3334
3335 /* Guess the instruction size based on the opcode. */
3336
3337 static int
3338 thumb_insn_size (int opcode)
3339 {
3340 if ((unsigned int) opcode < 0xe800u)
3341 return 2;
3342 else if ((unsigned int) opcode >= 0xe8000000u)
3343 return 4;
3344 else
3345 return 0;
3346 }
3347
3348 static bfd_boolean
3349 emit_insn (expressionS *exp, int nbytes)
3350 {
3351 int size = 0;
3352
3353 if (exp->X_op == O_constant)
3354 {
3355 size = nbytes;
3356
3357 if (size == 0)
3358 size = thumb_insn_size (exp->X_add_number);
3359
3360 if (size != 0)
3361 {
3362 if (size == 2 && (unsigned int)exp->X_add_number > 0xffffu)
3363 {
3364 as_bad (_(".inst.n operand too big. "\
3365 "Use .inst.w instead"));
3366 size = 0;
3367 }
3368 else
3369 {
3370 if (now_it.state == AUTOMATIC_IT_BLOCK)
3371 set_it_insn_type_nonvoid (OUTSIDE_IT_INSN, 0);
3372 else
3373 set_it_insn_type_nonvoid (NEUTRAL_IT_INSN, 0);
3374
3375 if (thumb_mode && (size > THUMB_SIZE) && !target_big_endian)
3376 emit_thumb32_expr (exp);
3377 else
3378 emit_expr (exp, (unsigned int) size);
3379
3380 it_fsm_post_encode ();
3381 }
3382 }
3383 else
3384 as_bad (_("cannot determine Thumb instruction size. " \
3385 "Use .inst.n/.inst.w instead"));
3386 }
3387 else
3388 as_bad (_("constant expression required"));
3389
3390 return (size != 0);
3391 }
3392
3393 /* Like s_arm_elf_cons but do not use md_cons_align and
3394 set the mapping state to MAP_ARM/MAP_THUMB. */
3395
3396 static void
3397 s_arm_elf_inst (int nbytes)
3398 {
3399 if (is_it_end_of_statement ())
3400 {
3401 demand_empty_rest_of_line ();
3402 return;
3403 }
3404
3405 /* Calling mapping_state () here will not change ARM/THUMB,
3406 but will ensure not to be in DATA state. */
3407
3408 if (thumb_mode)
3409 mapping_state (MAP_THUMB);
3410 else
3411 {
3412 if (nbytes != 0)
3413 {
3414 as_bad (_("width suffixes are invalid in ARM mode"));
3415 ignore_rest_of_line ();
3416 return;
3417 }
3418
3419 nbytes = 4;
3420
3421 mapping_state (MAP_ARM);
3422 }
3423
3424 do
3425 {
3426 expressionS exp;
3427
3428 expression (& exp);
3429
3430 if (! emit_insn (& exp, nbytes))
3431 {
3432 ignore_rest_of_line ();
3433 return;
3434 }
3435 }
3436 while (*input_line_pointer++ == ',');
3437
3438 /* Put terminator back into stream. */
3439 input_line_pointer --;
3440 demand_empty_rest_of_line ();
3441 }
3442
3443 /* Parse a .rel31 directive. */
3444
3445 static void
3446 s_arm_rel31 (int ignored ATTRIBUTE_UNUSED)
3447 {
3448 expressionS exp;
3449 char *p;
3450 valueT highbit;
3451
3452 highbit = 0;
3453 if (*input_line_pointer == '1')
3454 highbit = 0x80000000;
3455 else if (*input_line_pointer != '0')
3456 as_bad (_("expected 0 or 1"));
3457
3458 input_line_pointer++;
3459 if (*input_line_pointer != ',')
3460 as_bad (_("missing comma"));
3461 input_line_pointer++;
3462
3463 #ifdef md_flush_pending_output
3464 md_flush_pending_output ();
3465 #endif
3466
3467 #ifdef md_cons_align
3468 md_cons_align (4);
3469 #endif
3470
3471 mapping_state (MAP_DATA);
3472
3473 expression (&exp);
3474
3475 p = frag_more (4);
3476 md_number_to_chars (p, highbit, 4);
3477 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1,
3478 BFD_RELOC_ARM_PREL31);
3479
3480 demand_empty_rest_of_line ();
3481 }
3482
3483 /* Directives: AEABI stack-unwind tables. */
3484
3485 /* Parse an unwind_fnstart directive. Simply records the current location. */
3486
3487 static void
3488 s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED)
3489 {
3490 demand_empty_rest_of_line ();
3491 if (unwind.proc_start)
3492 {
3493 as_bad (_("duplicate .fnstart directive"));
3494 return;
3495 }
3496
3497 /* Mark the start of the function. */
3498 unwind.proc_start = expr_build_dot ();
3499
3500 /* Reset the rest of the unwind info. */
3501 unwind.opcode_count = 0;
3502 unwind.table_entry = NULL;
3503 unwind.personality_routine = NULL;
3504 unwind.personality_index = -1;
3505 unwind.frame_size = 0;
3506 unwind.fp_offset = 0;
3507 unwind.fp_reg = REG_SP;
3508 unwind.fp_used = 0;
3509 unwind.sp_restored = 0;
3510 }
3511
3512
3513 /* Parse a handlerdata directive. Creates the exception handling table entry
3514 for the function. */
3515
3516 static void
3517 s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED)
3518 {
3519 demand_empty_rest_of_line ();
3520 if (!unwind.proc_start)
3521 as_bad (MISSING_FNSTART);
3522
3523 if (unwind.table_entry)
3524 as_bad (_("duplicate .handlerdata directive"));
3525
3526 create_unwind_entry (1);
3527 }
3528
3529 /* Parse an unwind_fnend directive. Generates the index table entry. */
3530
3531 static void
3532 s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED)
3533 {
3534 long where;
3535 char *ptr;
3536 valueT val;
3537 unsigned int marked_pr_dependency;
3538
3539 demand_empty_rest_of_line ();
3540
3541 if (!unwind.proc_start)
3542 {
3543 as_bad (_(".fnend directive without .fnstart"));
3544 return;
3545 }
3546
3547 /* Add eh table entry. */
3548 if (unwind.table_entry == NULL)
3549 val = create_unwind_entry (0);
3550 else
3551 val = 0;
3552
3553 /* Add index table entry. This is two words. */
3554 start_unwind_section (unwind.saved_seg, 1);
3555 frag_align (2, 0, 0);
3556 record_alignment (now_seg, 2);
3557
3558 ptr = frag_more (8);
3559 memset (ptr, 0, 8);
3560 where = frag_now_fix () - 8;
3561
3562 /* Self relative offset of the function start. */
3563 fix_new (frag_now, where, 4, unwind.proc_start, 0, 1,
3564 BFD_RELOC_ARM_PREL31);
3565
3566 /* Indicate dependency on EHABI-defined personality routines to the
3567 linker, if it hasn't been done already. */
3568 marked_pr_dependency
3569 = seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency;
3570 if (unwind.personality_index >= 0 && unwind.personality_index < 3
3571 && !(marked_pr_dependency & (1 << unwind.personality_index)))
3572 {
3573 static const char *const name[] =
3574 {
3575 "__aeabi_unwind_cpp_pr0",
3576 "__aeabi_unwind_cpp_pr1",
3577 "__aeabi_unwind_cpp_pr2"
3578 };
3579 symbolS *pr = symbol_find_or_make (name[unwind.personality_index]);
3580 fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE);
3581 seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency
3582 |= 1 << unwind.personality_index;
3583 }
3584
3585 if (val)
3586 /* Inline exception table entry. */
3587 md_number_to_chars (ptr + 4, val, 4);
3588 else
3589 /* Self relative offset of the table entry. */
3590 fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1,
3591 BFD_RELOC_ARM_PREL31);
3592
3593 /* Restore the original section. */
3594 subseg_set (unwind.saved_seg, unwind.saved_subseg);
3595
3596 unwind.proc_start = NULL;
3597 }
3598
3599
3600 /* Parse an unwind_cantunwind directive. */
3601
3602 static void
3603 s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED)
3604 {
3605 demand_empty_rest_of_line ();
3606 if (!unwind.proc_start)
3607 as_bad (MISSING_FNSTART);
3608
3609 if (unwind.personality_routine || unwind.personality_index != -1)
3610 as_bad (_("personality routine specified for cantunwind frame"));
3611
3612 unwind.personality_index = -2;
3613 }
3614
3615
3616 /* Parse a personalityindex directive. */
3617
3618 static void
3619 s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED)
3620 {
3621 expressionS exp;
3622
3623 if (!unwind.proc_start)
3624 as_bad (MISSING_FNSTART);
3625
3626 if (unwind.personality_routine || unwind.personality_index != -1)
3627 as_bad (_("duplicate .personalityindex directive"));
3628
3629 expression (&exp);
3630
3631 if (exp.X_op != O_constant
3632 || exp.X_add_number < 0 || exp.X_add_number > 15)
3633 {
3634 as_bad (_("bad personality routine number"));
3635 ignore_rest_of_line ();
3636 return;
3637 }
3638
3639 unwind.personality_index = exp.X_add_number;
3640
3641 demand_empty_rest_of_line ();
3642 }
3643
3644
3645 /* Parse a personality directive. */
3646
3647 static void
3648 s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED)
3649 {
3650 char *name, *p, c;
3651
3652 if (!unwind.proc_start)
3653 as_bad (MISSING_FNSTART);
3654
3655 if (unwind.personality_routine || unwind.personality_index != -1)
3656 as_bad (_("duplicate .personality directive"));
3657
3658 name = input_line_pointer;
3659 c = get_symbol_end ();
3660 p = input_line_pointer;
3661 unwind.personality_routine = symbol_find_or_make (name);
3662 *p = c;
3663 demand_empty_rest_of_line ();
3664 }
3665
3666
3667 /* Parse a directive saving core registers. */
3668
3669 static void
3670 s_arm_unwind_save_core (void)
3671 {
3672 valueT op;
3673 long range;
3674 int n;
3675
3676 range = parse_reg_list (&input_line_pointer);
3677 if (range == FAIL)
3678 {
3679 as_bad (_("expected register list"));
3680 ignore_rest_of_line ();
3681 return;
3682 }
3683
3684 demand_empty_rest_of_line ();
3685
3686 /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...}
3687 into .unwind_save {..., sp...}. We aren't bothered about the value of
3688 ip because it is clobbered by calls. */
3689 if (unwind.sp_restored && unwind.fp_reg == 12
3690 && (range & 0x3000) == 0x1000)
3691 {
3692 unwind.opcode_count--;
3693 unwind.sp_restored = 0;
3694 range = (range | 0x2000) & ~0x1000;
3695 unwind.pending_offset = 0;
3696 }
3697
3698 /* Pop r4-r15. */
3699 if (range & 0xfff0)
3700 {
3701 /* See if we can use the short opcodes. These pop a block of up to 8
3702 registers starting with r4, plus maybe r14. */
3703 for (n = 0; n < 8; n++)
3704 {
3705 /* Break at the first non-saved register. */
3706 if ((range & (1 << (n + 4))) == 0)
3707 break;
3708 }
3709 /* See if there are any other bits set. */
3710 if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0)
3711 {
3712 /* Use the long form. */
3713 op = 0x8000 | ((range >> 4) & 0xfff);
3714 add_unwind_opcode (op, 2);
3715 }
3716 else
3717 {
3718 /* Use the short form. */
3719 if (range & 0x4000)
3720 op = 0xa8; /* Pop r14. */
3721 else
3722 op = 0xa0; /* Do not pop r14. */
3723 op |= (n - 1);
3724 add_unwind_opcode (op, 1);
3725 }
3726 }
3727
3728 /* Pop r0-r3. */
3729 if (range & 0xf)
3730 {
3731 op = 0xb100 | (range & 0xf);
3732 add_unwind_opcode (op, 2);
3733 }
3734
3735 /* Record the number of bytes pushed. */
3736 for (n = 0; n < 16; n++)
3737 {
3738 if (range & (1 << n))
3739 unwind.frame_size += 4;
3740 }
3741 }
3742
3743
3744 /* Parse a directive saving FPA registers. */
3745
3746 static void
3747 s_arm_unwind_save_fpa (int reg)
3748 {
3749 expressionS exp;
3750 int num_regs;
3751 valueT op;
3752
3753 /* Get Number of registers to transfer. */
3754 if (skip_past_comma (&input_line_pointer) != FAIL)
3755 expression (&exp);
3756 else
3757 exp.X_op = O_illegal;
3758
3759 if (exp.X_op != O_constant)
3760 {
3761 as_bad (_("expected , <constant>"));
3762 ignore_rest_of_line ();
3763 return;
3764 }
3765
3766 num_regs = exp.X_add_number;
3767
3768 if (num_regs < 1 || num_regs > 4)
3769 {
3770 as_bad (_("number of registers must be in the range [1:4]"));
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774
3775 demand_empty_rest_of_line ();
3776
3777 if (reg == 4)
3778 {
3779 /* Short form. */
3780 op = 0xb4 | (num_regs - 1);
3781 add_unwind_opcode (op, 1);
3782 }
3783 else
3784 {
3785 /* Long form. */
3786 op = 0xc800 | (reg << 4) | (num_regs - 1);
3787 add_unwind_opcode (op, 2);
3788 }
3789 unwind.frame_size += num_regs * 12;
3790 }
3791
3792
3793 /* Parse a directive saving VFP registers for ARMv6 and above. */
3794
3795 static void
3796 s_arm_unwind_save_vfp_armv6 (void)
3797 {
3798 int count;
3799 unsigned int start;
3800 valueT op;
3801 int num_vfpv3_regs = 0;
3802 int num_regs_below_16;
3803
3804 count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D);
3805 if (count == FAIL)
3806 {
3807 as_bad (_("expected register list"));
3808 ignore_rest_of_line ();
3809 return;
3810 }
3811
3812 demand_empty_rest_of_line ();
3813
3814 /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather
3815 than FSTMX/FLDMX-style ones). */
3816
3817 /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */
3818 if (start >= 16)
3819 num_vfpv3_regs = count;
3820 else if (start + count > 16)
3821 num_vfpv3_regs = start + count - 16;
3822
3823 if (num_vfpv3_regs > 0)
3824 {
3825 int start_offset = start > 16 ? start - 16 : 0;
3826 op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1);
3827 add_unwind_opcode (op, 2);
3828 }
3829
3830 /* Generate opcode for registers numbered in the range 0 .. 15. */
3831 num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count;
3832 gas_assert (num_regs_below_16 + num_vfpv3_regs == count);
3833 if (num_regs_below_16 > 0)
3834 {
3835 op = 0xc900 | (start << 4) | (num_regs_below_16 - 1);
3836 add_unwind_opcode (op, 2);
3837 }
3838
3839 unwind.frame_size += count * 8;
3840 }
3841
3842
3843 /* Parse a directive saving VFP registers for pre-ARMv6. */
3844
3845 static void
3846 s_arm_unwind_save_vfp (void)
3847 {
3848 int count;
3849 unsigned int reg;
3850 valueT op;
3851
3852 count = parse_vfp_reg_list (&input_line_pointer, &reg, REGLIST_VFP_D);
3853 if (count == FAIL)
3854 {
3855 as_bad (_("expected register list"));
3856 ignore_rest_of_line ();
3857 return;
3858 }
3859
3860 demand_empty_rest_of_line ();
3861
3862 if (reg == 8)
3863 {
3864 /* Short form. */
3865 op = 0xb8 | (count - 1);
3866 add_unwind_opcode (op, 1);
3867 }
3868 else
3869 {
3870 /* Long form. */
3871 op = 0xb300 | (reg << 4) | (count - 1);
3872 add_unwind_opcode (op, 2);
3873 }
3874 unwind.frame_size += count * 8 + 4;
3875 }
3876
3877
3878 /* Parse a directive saving iWMMXt data registers. */
3879
3880 static void
3881 s_arm_unwind_save_mmxwr (void)
3882 {
3883 int reg;
3884 int hi_reg;
3885 int i;
3886 unsigned mask = 0;
3887 valueT op;
3888
3889 if (*input_line_pointer == '{')
3890 input_line_pointer++;
3891
3892 do
3893 {
3894 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3895
3896 if (reg == FAIL)
3897 {
3898 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3899 goto error;
3900 }
3901
3902 if (mask >> reg)
3903 as_tsktsk (_("register list not in ascending order"));
3904 mask |= 1 << reg;
3905
3906 if (*input_line_pointer == '-')
3907 {
3908 input_line_pointer++;
3909 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR);
3910 if (hi_reg == FAIL)
3911 {
3912 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWR]));
3913 goto error;
3914 }
3915 else if (reg >= hi_reg)
3916 {
3917 as_bad (_("bad register range"));
3918 goto error;
3919 }
3920 for (; reg < hi_reg; reg++)
3921 mask |= 1 << reg;
3922 }
3923 }
3924 while (skip_past_comma (&input_line_pointer) != FAIL);
3925
3926 if (*input_line_pointer == '}')
3927 input_line_pointer++;
3928
3929 demand_empty_rest_of_line ();
3930
3931 /* Generate any deferred opcodes because we're going to be looking at
3932 the list. */
3933 flush_pending_unwind ();
3934
3935 for (i = 0; i < 16; i++)
3936 {
3937 if (mask & (1 << i))
3938 unwind.frame_size += 8;
3939 }
3940
3941 /* Attempt to combine with a previous opcode. We do this because gcc
3942 likes to output separate unwind directives for a single block of
3943 registers. */
3944 if (unwind.opcode_count > 0)
3945 {
3946 i = unwind.opcodes[unwind.opcode_count - 1];
3947 if ((i & 0xf8) == 0xc0)
3948 {
3949 i &= 7;
3950 /* Only merge if the blocks are contiguous. */
3951 if (i < 6)
3952 {
3953 if ((mask & 0xfe00) == (1 << 9))
3954 {
3955 mask |= ((1 << (i + 11)) - 1) & 0xfc00;
3956 unwind.opcode_count--;
3957 }
3958 }
3959 else if (i == 6 && unwind.opcode_count >= 2)
3960 {
3961 i = unwind.opcodes[unwind.opcode_count - 2];
3962 reg = i >> 4;
3963 i &= 0xf;
3964
3965 op = 0xffff << (reg - 1);
3966 if (reg > 0
3967 && ((mask & op) == (1u << (reg - 1))))
3968 {
3969 op = (1 << (reg + i + 1)) - 1;
3970 op &= ~((1 << reg) - 1);
3971 mask |= op;
3972 unwind.opcode_count -= 2;
3973 }
3974 }
3975 }
3976 }
3977
3978 hi_reg = 15;
3979 /* We want to generate opcodes in the order the registers have been
3980 saved, ie. descending order. */
3981 for (reg = 15; reg >= -1; reg--)
3982 {
3983 /* Save registers in blocks. */
3984 if (reg < 0
3985 || !(mask & (1 << reg)))
3986 {
3987 /* We found an unsaved reg. Generate opcodes to save the
3988 preceding block. */
3989 if (reg != hi_reg)
3990 {
3991 if (reg == 9)
3992 {
3993 /* Short form. */
3994 op = 0xc0 | (hi_reg - 10);
3995 add_unwind_opcode (op, 1);
3996 }
3997 else
3998 {
3999 /* Long form. */
4000 op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1);
4001 add_unwind_opcode (op, 2);
4002 }
4003 }
4004 hi_reg = reg - 1;
4005 }
4006 }
4007
4008 return;
4009 error:
4010 ignore_rest_of_line ();
4011 }
4012
4013 static void
4014 s_arm_unwind_save_mmxwcg (void)
4015 {
4016 int reg;
4017 int hi_reg;
4018 unsigned mask = 0;
4019 valueT op;
4020
4021 if (*input_line_pointer == '{')
4022 input_line_pointer++;
4023
4024 do
4025 {
4026 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4027
4028 if (reg == FAIL)
4029 {
4030 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4031 goto error;
4032 }
4033
4034 reg -= 8;
4035 if (mask >> reg)
4036 as_tsktsk (_("register list not in ascending order"));
4037 mask |= 1 << reg;
4038
4039 if (*input_line_pointer == '-')
4040 {
4041 input_line_pointer++;
4042 hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG);
4043 if (hi_reg == FAIL)
4044 {
4045 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_MMXWCG]));
4046 goto error;
4047 }
4048 else if (reg >= hi_reg)
4049 {
4050 as_bad (_("bad register range"));
4051 goto error;
4052 }
4053 for (; reg < hi_reg; reg++)
4054 mask |= 1 << reg;
4055 }
4056 }
4057 while (skip_past_comma (&input_line_pointer) != FAIL);
4058
4059 if (*input_line_pointer == '}')
4060 input_line_pointer++;
4061
4062 demand_empty_rest_of_line ();
4063
4064 /* Generate any deferred opcodes because we're going to be looking at
4065 the list. */
4066 flush_pending_unwind ();
4067
4068 for (reg = 0; reg < 16; reg++)
4069 {
4070 if (mask & (1 << reg))
4071 unwind.frame_size += 4;
4072 }
4073 op = 0xc700 | mask;
4074 add_unwind_opcode (op, 2);
4075 return;
4076 error:
4077 ignore_rest_of_line ();
4078 }
4079
4080
4081 /* Parse an unwind_save directive.
4082 If the argument is non-zero, this is a .vsave directive. */
4083
4084 static void
4085 s_arm_unwind_save (int arch_v6)
4086 {
4087 char *peek;
4088 struct reg_entry *reg;
4089 bfd_boolean had_brace = FALSE;
4090
4091 if (!unwind.proc_start)
4092 as_bad (MISSING_FNSTART);
4093
4094 /* Figure out what sort of save we have. */
4095 peek = input_line_pointer;
4096
4097 if (*peek == '{')
4098 {
4099 had_brace = TRUE;
4100 peek++;
4101 }
4102
4103 reg = arm_reg_parse_multi (&peek);
4104
4105 if (!reg)
4106 {
4107 as_bad (_("register expected"));
4108 ignore_rest_of_line ();
4109 return;
4110 }
4111
4112 switch (reg->type)
4113 {
4114 case REG_TYPE_FN:
4115 if (had_brace)
4116 {
4117 as_bad (_("FPA .unwind_save does not take a register list"));
4118 ignore_rest_of_line ();
4119 return;
4120 }
4121 input_line_pointer = peek;
4122 s_arm_unwind_save_fpa (reg->number);
4123 return;
4124
4125 case REG_TYPE_RN: s_arm_unwind_save_core (); return;
4126 case REG_TYPE_VFD:
4127 if (arch_v6)
4128 s_arm_unwind_save_vfp_armv6 ();
4129 else
4130 s_arm_unwind_save_vfp ();
4131 return;
4132 case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return;
4133 case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return;
4134
4135 default:
4136 as_bad (_(".unwind_save does not support this kind of register"));
4137 ignore_rest_of_line ();
4138 }
4139 }
4140
4141
4142 /* Parse an unwind_movsp directive. */
4143
4144 static void
4145 s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED)
4146 {
4147 int reg;
4148 valueT op;
4149 int offset;
4150
4151 if (!unwind.proc_start)
4152 as_bad (MISSING_FNSTART);
4153
4154 reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4155 if (reg == FAIL)
4156 {
4157 as_bad ("%s", _(reg_expected_msgs[REG_TYPE_RN]));
4158 ignore_rest_of_line ();
4159 return;
4160 }
4161
4162 /* Optional constant. */
4163 if (skip_past_comma (&input_line_pointer) != FAIL)
4164 {
4165 if (immediate_for_directive (&offset) == FAIL)
4166 return;
4167 }
4168 else
4169 offset = 0;
4170
4171 demand_empty_rest_of_line ();
4172
4173 if (reg == REG_SP || reg == REG_PC)
4174 {
4175 as_bad (_("SP and PC not permitted in .unwind_movsp directive"));
4176 return;
4177 }
4178
4179 if (unwind.fp_reg != REG_SP)
4180 as_bad (_("unexpected .unwind_movsp directive"));
4181
4182 /* Generate opcode to restore the value. */
4183 op = 0x90 | reg;
4184 add_unwind_opcode (op, 1);
4185
4186 /* Record the information for later. */
4187 unwind.fp_reg = reg;
4188 unwind.fp_offset = unwind.frame_size - offset;
4189 unwind.sp_restored = 1;
4190 }
4191
4192 /* Parse an unwind_pad directive. */
4193
4194 static void
4195 s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED)
4196 {
4197 int offset;
4198
4199 if (!unwind.proc_start)
4200 as_bad (MISSING_FNSTART);
4201
4202 if (immediate_for_directive (&offset) == FAIL)
4203 return;
4204
4205 if (offset & 3)
4206 {
4207 as_bad (_("stack increment must be multiple of 4"));
4208 ignore_rest_of_line ();
4209 return;
4210 }
4211
4212 /* Don't generate any opcodes, just record the details for later. */
4213 unwind.frame_size += offset;
4214 unwind.pending_offset += offset;
4215
4216 demand_empty_rest_of_line ();
4217 }
4218
4219 /* Parse an unwind_setfp directive. */
4220
4221 static void
4222 s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED)
4223 {
4224 int sp_reg;
4225 int fp_reg;
4226 int offset;
4227
4228 if (!unwind.proc_start)
4229 as_bad (MISSING_FNSTART);
4230
4231 fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4232 if (skip_past_comma (&input_line_pointer) == FAIL)
4233 sp_reg = FAIL;
4234 else
4235 sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN);
4236
4237 if (fp_reg == FAIL || sp_reg == FAIL)
4238 {
4239 as_bad (_("expected <reg>, <reg>"));
4240 ignore_rest_of_line ();
4241 return;
4242 }
4243
4244 /* Optional constant. */
4245 if (skip_past_comma (&input_line_pointer) != FAIL)
4246 {
4247 if (immediate_for_directive (&offset) == FAIL)
4248 return;
4249 }
4250 else
4251 offset = 0;
4252
4253 demand_empty_rest_of_line ();
4254
4255 if (sp_reg != REG_SP && sp_reg != unwind.fp_reg)
4256 {
4257 as_bad (_("register must be either sp or set by a previous"
4258 "unwind_movsp directive"));
4259 return;
4260 }
4261
4262 /* Don't generate any opcodes, just record the information for later. */
4263 unwind.fp_reg = fp_reg;
4264 unwind.fp_used = 1;
4265 if (sp_reg == REG_SP)
4266 unwind.fp_offset = unwind.frame_size - offset;
4267 else
4268 unwind.fp_offset -= offset;
4269 }
4270
4271 /* Parse an unwind_raw directive. */
4272
4273 static void
4274 s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED)
4275 {
4276 expressionS exp;
4277 /* This is an arbitrary limit. */
4278 unsigned char op[16];
4279 int count;
4280
4281 if (!unwind.proc_start)
4282 as_bad (MISSING_FNSTART);
4283
4284 expression (&exp);
4285 if (exp.X_op == O_constant
4286 && skip_past_comma (&input_line_pointer) != FAIL)
4287 {
4288 unwind.frame_size += exp.X_add_number;
4289 expression (&exp);
4290 }
4291 else
4292 exp.X_op = O_illegal;
4293
4294 if (exp.X_op != O_constant)
4295 {
4296 as_bad (_("expected <offset>, <opcode>"));
4297 ignore_rest_of_line ();
4298 return;
4299 }
4300
4301 count = 0;
4302
4303 /* Parse the opcode. */
4304 for (;;)
4305 {
4306 if (count >= 16)
4307 {
4308 as_bad (_("unwind opcode too long"));
4309 ignore_rest_of_line ();
4310 }
4311 if (exp.X_op != O_constant || exp.X_add_number & ~0xff)
4312 {
4313 as_bad (_("invalid unwind opcode"));
4314 ignore_rest_of_line ();
4315 return;
4316 }
4317 op[count++] = exp.X_add_number;
4318
4319 /* Parse the next byte. */
4320 if (skip_past_comma (&input_line_pointer) == FAIL)
4321 break;
4322
4323 expression (&exp);
4324 }
4325
4326 /* Add the opcode bytes in reverse order. */
4327 while (count--)
4328 add_unwind_opcode (op[count], 1);
4329
4330 demand_empty_rest_of_line ();
4331 }
4332
4333
4334 /* Parse a .eabi_attribute directive. */
4335
4336 static void
4337 s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED)
4338 {
4339 int tag = s_vendor_attribute (OBJ_ATTR_PROC);
4340
4341 if (tag < NUM_KNOWN_OBJ_ATTRIBUTES)
4342 attributes_set_explicitly[tag] = 1;
4343 }
4344
4345 /* Emit a tls fix for the symbol. */
4346
4347 static void
4348 s_arm_tls_descseq (int ignored ATTRIBUTE_UNUSED)
4349 {
4350 char *p;
4351 expressionS exp;
4352 #ifdef md_flush_pending_output
4353 md_flush_pending_output ();
4354 #endif
4355
4356 #ifdef md_cons_align
4357 md_cons_align (4);
4358 #endif
4359
4360 /* Since we're just labelling the code, there's no need to define a
4361 mapping symbol. */
4362 expression (&exp);
4363 p = obstack_next_free (&frchain_now->frch_obstack);
4364 fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 0,
4365 thumb_mode ? BFD_RELOC_ARM_THM_TLS_DESCSEQ
4366 : BFD_RELOC_ARM_TLS_DESCSEQ);
4367 }
4368 #endif /* OBJ_ELF */
4369
4370 static void s_arm_arch (int);
4371 static void s_arm_object_arch (int);
4372 static void s_arm_cpu (int);
4373 static void s_arm_fpu (int);
4374 static void s_arm_arch_extension (int);
4375
4376 #ifdef TE_PE
4377
4378 static void
4379 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
4380 {
4381 expressionS exp;
4382
4383 do
4384 {
4385 expression (&exp);
4386 if (exp.X_op == O_symbol)
4387 exp.X_op = O_secrel;
4388
4389 emit_expr (&exp, 4);
4390 }
4391 while (*input_line_pointer++ == ',');
4392
4393 input_line_pointer--;
4394 demand_empty_rest_of_line ();
4395 }
4396 #endif /* TE_PE */
4397
4398 /* This table describes all the machine specific pseudo-ops the assembler
4399 has to support. The fields are:
4400 pseudo-op name without dot
4401 function to call to execute this pseudo-op
4402 Integer arg to pass to the function. */
4403
4404 const pseudo_typeS md_pseudo_table[] =
4405 {
4406 /* Never called because '.req' does not start a line. */
4407 { "req", s_req, 0 },
4408 /* Following two are likewise never called. */
4409 { "dn", s_dn, 0 },
4410 { "qn", s_qn, 0 },
4411 { "unreq", s_unreq, 0 },
4412 { "bss", s_bss, 0 },
4413 { "align", s_align, 0 },
4414 { "arm", s_arm, 0 },
4415 { "thumb", s_thumb, 0 },
4416 { "code", s_code, 0 },
4417 { "force_thumb", s_force_thumb, 0 },
4418 { "thumb_func", s_thumb_func, 0 },
4419 { "thumb_set", s_thumb_set, 0 },
4420 { "even", s_even, 0 },
4421 { "ltorg", s_ltorg, 0 },
4422 { "pool", s_ltorg, 0 },
4423 { "syntax", s_syntax, 0 },
4424 { "cpu", s_arm_cpu, 0 },
4425 { "arch", s_arm_arch, 0 },
4426 { "object_arch", s_arm_object_arch, 0 },
4427 { "fpu", s_arm_fpu, 0 },
4428 { "arch_extension", s_arm_arch_extension, 0 },
4429 #ifdef OBJ_ELF
4430 { "word", s_arm_elf_cons, 4 },
4431 { "long", s_arm_elf_cons, 4 },
4432 { "inst.n", s_arm_elf_inst, 2 },
4433 { "inst.w", s_arm_elf_inst, 4 },
4434 { "inst", s_arm_elf_inst, 0 },
4435 { "rel31", s_arm_rel31, 0 },
4436 { "fnstart", s_arm_unwind_fnstart, 0 },
4437 { "fnend", s_arm_unwind_fnend, 0 },
4438 { "cantunwind", s_arm_unwind_cantunwind, 0 },
4439 { "personality", s_arm_unwind_personality, 0 },
4440 { "personalityindex", s_arm_unwind_personalityindex, 0 },
4441 { "handlerdata", s_arm_unwind_handlerdata, 0 },
4442 { "save", s_arm_unwind_save, 0 },
4443 { "vsave", s_arm_unwind_save, 1 },
4444 { "movsp", s_arm_unwind_movsp, 0 },
4445 { "pad", s_arm_unwind_pad, 0 },
4446 { "setfp", s_arm_unwind_setfp, 0 },
4447 { "unwind_raw", s_arm_unwind_raw, 0 },
4448 { "eabi_attribute", s_arm_eabi_attribute, 0 },
4449 { "tlsdescseq", s_arm_tls_descseq, 0 },
4450 #else
4451 { "word", cons, 4},
4452
4453 /* These are used for dwarf. */
4454 {"2byte", cons, 2},
4455 {"4byte", cons, 4},
4456 {"8byte", cons, 8},
4457 /* These are used for dwarf2. */
4458 { "file", (void (*) (int)) dwarf2_directive_file, 0 },
4459 { "loc", dwarf2_directive_loc, 0 },
4460 { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 },
4461 #endif
4462 { "extend", float_cons, 'x' },
4463 { "ldouble", float_cons, 'x' },
4464 { "packed", float_cons, 'p' },
4465 #ifdef TE_PE
4466 {"secrel32", pe_directive_secrel, 0},
4467 #endif
4468 { 0, 0, 0 }
4469 };
4470 \f
4471 /* Parser functions used exclusively in instruction operands. */
4472
4473 /* Generic immediate-value read function for use in insn parsing.
4474 STR points to the beginning of the immediate (the leading #);
4475 VAL receives the value; if the value is outside [MIN, MAX]
4476 issue an error. PREFIX_OPT is true if the immediate prefix is
4477 optional. */
4478
4479 static int
4480 parse_immediate (char **str, int *val, int min, int max,
4481 bfd_boolean prefix_opt)
4482 {
4483 expressionS exp;
4484 my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX);
4485 if (exp.X_op != O_constant)
4486 {
4487 inst.error = _("constant expression required");
4488 return FAIL;
4489 }
4490
4491 if (exp.X_add_number < min || exp.X_add_number > max)
4492 {
4493 inst.error = _("immediate value out of range");
4494 return FAIL;
4495 }
4496
4497 *val = exp.X_add_number;
4498 return SUCCESS;
4499 }
4500
4501 /* Less-generic immediate-value read function with the possibility of loading a
4502 big (64-bit) immediate, as required by Neon VMOV, VMVN and logic immediate
4503 instructions. Puts the result directly in inst.operands[i]. */
4504
4505 static int
4506 parse_big_immediate (char **str, int i)
4507 {
4508 expressionS exp;
4509 char *ptr = *str;
4510
4511 my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG);
4512
4513 if (exp.X_op == O_constant)
4514 {
4515 inst.operands[i].imm = exp.X_add_number & 0xffffffff;
4516 /* If we're on a 64-bit host, then a 64-bit number can be returned using
4517 O_constant. We have to be careful not to break compilation for
4518 32-bit X_add_number, though. */
4519 if ((exp.X_add_number & ~(offsetT)(0xffffffffU)) != 0)
4520 {
4521 /* X >> 32 is illegal if sizeof (exp.X_add_number) == 4. */
4522 inst.operands[i].reg = ((exp.X_add_number >> 16) >> 16) & 0xffffffff;
4523 inst.operands[i].regisimm = 1;
4524 }
4525 }
4526 else if (exp.X_op == O_big
4527 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32)
4528 {
4529 unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0;
4530
4531 /* Bignums have their least significant bits in
4532 generic_bignum[0]. Make sure we put 32 bits in imm and
4533 32 bits in reg, in a (hopefully) portable way. */
4534 gas_assert (parts != 0);
4535
4536 /* Make sure that the number is not too big.
4537 PR 11972: Bignums can now be sign-extended to the
4538 size of a .octa so check that the out of range bits
4539 are all zero or all one. */
4540 if (LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 64)
4541 {
4542 LITTLENUM_TYPE m = -1;
4543
4544 if (generic_bignum[parts * 2] != 0
4545 && generic_bignum[parts * 2] != m)
4546 return FAIL;
4547
4548 for (j = parts * 2 + 1; j < (unsigned) exp.X_add_number; j++)
4549 if (generic_bignum[j] != generic_bignum[j-1])
4550 return FAIL;
4551 }
4552
4553 inst.operands[i].imm = 0;
4554 for (j = 0; j < parts; j++, idx++)
4555 inst.operands[i].imm |= generic_bignum[idx]
4556 << (LITTLENUM_NUMBER_OF_BITS * j);
4557 inst.operands[i].reg = 0;
4558 for (j = 0; j < parts; j++, idx++)
4559 inst.operands[i].reg |= generic_bignum[idx]
4560 << (LITTLENUM_NUMBER_OF_BITS * j);
4561 inst.operands[i].regisimm = 1;
4562 }
4563 else
4564 return FAIL;
4565
4566 *str = ptr;
4567
4568 return SUCCESS;
4569 }
4570
4571 /* Returns the pseudo-register number of an FPA immediate constant,
4572 or FAIL if there isn't a valid constant here. */
4573
4574 static int
4575 parse_fpa_immediate (char ** str)
4576 {
4577 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4578 char * save_in;
4579 expressionS exp;
4580 int i;
4581 int j;
4582
4583 /* First try and match exact strings, this is to guarantee
4584 that some formats will work even for cross assembly. */
4585
4586 for (i = 0; fp_const[i]; i++)
4587 {
4588 if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
4589 {
4590 char *start = *str;
4591
4592 *str += strlen (fp_const[i]);
4593 if (is_end_of_line[(unsigned char) **str])
4594 return i + 8;
4595 *str = start;
4596 }
4597 }
4598
4599 /* Just because we didn't get a match doesn't mean that the constant
4600 isn't valid, just that it is in a format that we don't
4601 automatically recognize. Try parsing it with the standard
4602 expression routines. */
4603
4604 memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
4605
4606 /* Look for a raw floating point number. */
4607 if ((save_in = atof_ieee (*str, 'x', words)) != NULL
4608 && is_end_of_line[(unsigned char) *save_in])
4609 {
4610 for (i = 0; i < NUM_FLOAT_VALS; i++)
4611 {
4612 for (j = 0; j < MAX_LITTLENUMS; j++)
4613 {
4614 if (words[j] != fp_values[i][j])
4615 break;
4616 }
4617
4618 if (j == MAX_LITTLENUMS)
4619 {
4620 *str = save_in;
4621 return i + 8;
4622 }
4623 }
4624 }
4625
4626 /* Try and parse a more complex expression, this will probably fail
4627 unless the code uses a floating point prefix (eg "0f"). */
4628 save_in = input_line_pointer;
4629 input_line_pointer = *str;
4630 if (expression (&exp) == absolute_section
4631 && exp.X_op == O_big
4632 && exp.X_add_number < 0)
4633 {
4634 /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
4635 Ditto for 15. */
4636 if (gen_to_words (words, 5, (long) 15) == 0)
4637 {
4638 for (i = 0; i < NUM_FLOAT_VALS; i++)
4639 {
4640 for (j = 0; j < MAX_LITTLENUMS; j++)
4641 {
4642 if (words[j] != fp_values[i][j])
4643 break;
4644 }
4645
4646 if (j == MAX_LITTLENUMS)
4647 {
4648 *str = input_line_pointer;
4649 input_line_pointer = save_in;
4650 return i + 8;
4651 }
4652 }
4653 }
4654 }
4655
4656 *str = input_line_pointer;
4657 input_line_pointer = save_in;
4658 inst.error = _("invalid FPA immediate expression");
4659 return FAIL;
4660 }
4661
4662 /* Returns 1 if a number has "quarter-precision" float format
4663 0baBbbbbbc defgh000 00000000 00000000. */
4664
4665 static int
4666 is_quarter_float (unsigned imm)
4667 {
4668 int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000;
4669 return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0;
4670 }
4671
4672 /* Parse an 8-bit "quarter-precision" floating point number of the form:
4673 0baBbbbbbc defgh000 00000000 00000000.
4674 The zero and minus-zero cases need special handling, since they can't be
4675 encoded in the "quarter-precision" float format, but can nonetheless be
4676 loaded as integer constants. */
4677
4678 static unsigned
4679 parse_qfloat_immediate (char **ccp, int *immed)
4680 {
4681 char *str = *ccp;
4682 char *fpnum;
4683 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4684 int found_fpchar = 0;
4685
4686 skip_past_char (&str, '#');
4687
4688 /* We must not accidentally parse an integer as a floating-point number. Make
4689 sure that the value we parse is not an integer by checking for special
4690 characters '.' or 'e'.
4691 FIXME: This is a horrible hack, but doing better is tricky because type
4692 information isn't in a very usable state at parse time. */
4693 fpnum = str;
4694 skip_whitespace (fpnum);
4695
4696 if (strncmp (fpnum, "0x", 2) == 0)
4697 return FAIL;
4698 else
4699 {
4700 for (; *fpnum != '\0' && *fpnum != ' ' && *fpnum != '\n'; fpnum++)
4701 if (*fpnum == '.' || *fpnum == 'e' || *fpnum == 'E')
4702 {
4703 found_fpchar = 1;
4704 break;
4705 }
4706
4707 if (!found_fpchar)
4708 return FAIL;
4709 }
4710
4711 if ((str = atof_ieee (str, 's', words)) != NULL)
4712 {
4713 unsigned fpword = 0;
4714 int i;
4715
4716 /* Our FP word must be 32 bits (single-precision FP). */
4717 for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++)
4718 {
4719 fpword <<= LITTLENUM_NUMBER_OF_BITS;
4720 fpword |= words[i];
4721 }
4722
4723 if (is_quarter_float (fpword) || (fpword & 0x7fffffff) == 0)
4724 *immed = fpword;
4725 else
4726 return FAIL;
4727
4728 *ccp = str;
4729
4730 return SUCCESS;
4731 }
4732
4733 return FAIL;
4734 }
4735
4736 /* Shift operands. */
4737 enum shift_kind
4738 {
4739 SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX
4740 };
4741
4742 struct asm_shift_name
4743 {
4744 const char *name;
4745 enum shift_kind kind;
4746 };
4747
4748 /* Third argument to parse_shift. */
4749 enum parse_shift_mode
4750 {
4751 NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */
4752 SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */
4753 SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */
4754 SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */
4755 SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */
4756 };
4757
4758 /* Parse a <shift> specifier on an ARM data processing instruction.
4759 This has three forms:
4760
4761 (LSL|LSR|ASL|ASR|ROR) Rs
4762 (LSL|LSR|ASL|ASR|ROR) #imm
4763 RRX
4764
4765 Note that ASL is assimilated to LSL in the instruction encoding, and
4766 RRX to ROR #0 (which cannot be written as such). */
4767
4768 static int
4769 parse_shift (char **str, int i, enum parse_shift_mode mode)
4770 {
4771 const struct asm_shift_name *shift_name;
4772 enum shift_kind shift;
4773 char *s = *str;
4774 char *p = s;
4775 int reg;
4776
4777 for (p = *str; ISALPHA (*p); p++)
4778 ;
4779
4780 if (p == *str)
4781 {
4782 inst.error = _("shift expression expected");
4783 return FAIL;
4784 }
4785
4786 shift_name = (const struct asm_shift_name *) hash_find_n (arm_shift_hsh, *str,
4787 p - *str);
4788
4789 if (shift_name == NULL)
4790 {
4791 inst.error = _("shift expression expected");
4792 return FAIL;
4793 }
4794
4795 shift = shift_name->kind;
4796
4797 switch (mode)
4798 {
4799 case NO_SHIFT_RESTRICT:
4800 case SHIFT_IMMEDIATE: break;
4801
4802 case SHIFT_LSL_OR_ASR_IMMEDIATE:
4803 if (shift != SHIFT_LSL && shift != SHIFT_ASR)
4804 {
4805 inst.error = _("'LSL' or 'ASR' required");
4806 return FAIL;
4807 }
4808 break;
4809
4810 case SHIFT_LSL_IMMEDIATE:
4811 if (shift != SHIFT_LSL)
4812 {
4813 inst.error = _("'LSL' required");
4814 return FAIL;
4815 }
4816 break;
4817
4818 case SHIFT_ASR_IMMEDIATE:
4819 if (shift != SHIFT_ASR)
4820 {
4821 inst.error = _("'ASR' required");
4822 return FAIL;
4823 }
4824 break;
4825
4826 default: abort ();
4827 }
4828
4829 if (shift != SHIFT_RRX)
4830 {
4831 /* Whitespace can appear here if the next thing is a bare digit. */
4832 skip_whitespace (p);
4833
4834 if (mode == NO_SHIFT_RESTRICT
4835 && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
4836 {
4837 inst.operands[i].imm = reg;
4838 inst.operands[i].immisreg = 1;
4839 }
4840 else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
4841 return FAIL;
4842 }
4843 inst.operands[i].shift_kind = shift;
4844 inst.operands[i].shifted = 1;
4845 *str = p;
4846 return SUCCESS;
4847 }
4848
4849 /* Parse a <shifter_operand> for an ARM data processing instruction:
4850
4851 #<immediate>
4852 #<immediate>, <rotate>
4853 <Rm>
4854 <Rm>, <shift>
4855
4856 where <shift> is defined by parse_shift above, and <rotate> is a
4857 multiple of 2 between 0 and 30. Validation of immediate operands
4858 is deferred to md_apply_fix. */
4859
4860 static int
4861 parse_shifter_operand (char **str, int i)
4862 {
4863 int value;
4864 expressionS exp;
4865
4866 if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL)
4867 {
4868 inst.operands[i].reg = value;
4869 inst.operands[i].isreg = 1;
4870
4871 /* parse_shift will override this if appropriate */
4872 inst.reloc.exp.X_op = O_constant;
4873 inst.reloc.exp.X_add_number = 0;
4874
4875 if (skip_past_comma (str) == FAIL)
4876 return SUCCESS;
4877
4878 /* Shift operation on register. */
4879 return parse_shift (str, i, NO_SHIFT_RESTRICT);
4880 }
4881
4882 if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX))
4883 return FAIL;
4884
4885 if (skip_past_comma (str) == SUCCESS)
4886 {
4887 /* #x, y -- ie explicit rotation by Y. */
4888 if (my_get_expression (&exp, str, GE_NO_PREFIX))
4889 return FAIL;
4890
4891 if (exp.X_op != O_constant || inst.reloc.exp.X_op != O_constant)
4892 {
4893 inst.error = _("constant expression expected");
4894 return FAIL;
4895 }
4896
4897 value = exp.X_add_number;
4898 if (value < 0 || value > 30 || value % 2 != 0)
4899 {
4900 inst.error = _("invalid rotation");
4901 return FAIL;
4902 }
4903 if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255)
4904 {
4905 inst.error = _("invalid constant");
4906 return FAIL;
4907 }
4908
4909 /* Encode as specified. */
4910 inst.operands[i].imm = inst.reloc.exp.X_add_number | value << 7;
4911 return SUCCESS;
4912 }
4913
4914 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
4915 inst.reloc.pc_rel = 0;
4916 return SUCCESS;
4917 }
4918
4919 /* Group relocation information. Each entry in the table contains the
4920 textual name of the relocation as may appear in assembler source
4921 and must end with a colon.
4922 Along with this textual name are the relocation codes to be used if
4923 the corresponding instruction is an ALU instruction (ADD or SUB only),
4924 an LDR, an LDRS, or an LDC. */
4925
4926 struct group_reloc_table_entry
4927 {
4928 const char *name;
4929 int alu_code;
4930 int ldr_code;
4931 int ldrs_code;
4932 int ldc_code;
4933 };
4934
4935 typedef enum
4936 {
4937 /* Varieties of non-ALU group relocation. */
4938
4939 GROUP_LDR,
4940 GROUP_LDRS,
4941 GROUP_LDC
4942 } group_reloc_type;
4943
4944 static struct group_reloc_table_entry group_reloc_table[] =
4945 { /* Program counter relative: */
4946 { "pc_g0_nc",
4947 BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */
4948 0, /* LDR */
4949 0, /* LDRS */
4950 0 }, /* LDC */
4951 { "pc_g0",
4952 BFD_RELOC_ARM_ALU_PC_G0, /* ALU */
4953 BFD_RELOC_ARM_LDR_PC_G0, /* LDR */
4954 BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */
4955 BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */
4956 { "pc_g1_nc",
4957 BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */
4958 0, /* LDR */
4959 0, /* LDRS */
4960 0 }, /* LDC */
4961 { "pc_g1",
4962 BFD_RELOC_ARM_ALU_PC_G1, /* ALU */
4963 BFD_RELOC_ARM_LDR_PC_G1, /* LDR */
4964 BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */
4965 BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */
4966 { "pc_g2",
4967 BFD_RELOC_ARM_ALU_PC_G2, /* ALU */
4968 BFD_RELOC_ARM_LDR_PC_G2, /* LDR */
4969 BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */
4970 BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */
4971 /* Section base relative */
4972 { "sb_g0_nc",
4973 BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */
4974 0, /* LDR */
4975 0, /* LDRS */
4976 0 }, /* LDC */
4977 { "sb_g0",
4978 BFD_RELOC_ARM_ALU_SB_G0, /* ALU */
4979 BFD_RELOC_ARM_LDR_SB_G0, /* LDR */
4980 BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */
4981 BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */
4982 { "sb_g1_nc",
4983 BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */
4984 0, /* LDR */
4985 0, /* LDRS */
4986 0 }, /* LDC */
4987 { "sb_g1",
4988 BFD_RELOC_ARM_ALU_SB_G1, /* ALU */
4989 BFD_RELOC_ARM_LDR_SB_G1, /* LDR */
4990 BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */
4991 BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */
4992 { "sb_g2",
4993 BFD_RELOC_ARM_ALU_SB_G2, /* ALU */
4994 BFD_RELOC_ARM_LDR_SB_G2, /* LDR */
4995 BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */
4996 BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */
4997
4998 /* Given the address of a pointer pointing to the textual name of a group
4999 relocation as may appear in assembler source, attempt to find its details
5000 in group_reloc_table. The pointer will be updated to the character after
5001 the trailing colon. On failure, FAIL will be returned; SUCCESS
5002 otherwise. On success, *entry will be updated to point at the relevant
5003 group_reloc_table entry. */
5004
5005 static int
5006 find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out)
5007 {
5008 unsigned int i;
5009 for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++)
5010 {
5011 int length = strlen (group_reloc_table[i].name);
5012
5013 if (strncasecmp (group_reloc_table[i].name, *str, length) == 0
5014 && (*str)[length] == ':')
5015 {
5016 *out = &group_reloc_table[i];
5017 *str += (length + 1);
5018 return SUCCESS;
5019 }
5020 }
5021
5022 return FAIL;
5023 }
5024
5025 /* Parse a <shifter_operand> for an ARM data processing instruction
5026 (as for parse_shifter_operand) where group relocations are allowed:
5027
5028 #<immediate>
5029 #<immediate>, <rotate>
5030 #:<group_reloc>:<expression>
5031 <Rm>
5032 <Rm>, <shift>
5033
5034 where <group_reloc> is one of the strings defined in group_reloc_table.
5035 The hashes are optional.
5036
5037 Everything else is as for parse_shifter_operand. */
5038
5039 static parse_operand_result
5040 parse_shifter_operand_group_reloc (char **str, int i)
5041 {
5042 /* Determine if we have the sequence of characters #: or just :
5043 coming next. If we do, then we check for a group relocation.
5044 If we don't, punt the whole lot to parse_shifter_operand. */
5045
5046 if (((*str)[0] == '#' && (*str)[1] == ':')
5047 || (*str)[0] == ':')
5048 {
5049 struct group_reloc_table_entry *entry;
5050
5051 if ((*str)[0] == '#')
5052 (*str) += 2;
5053 else
5054 (*str)++;
5055
5056 /* Try to parse a group relocation. Anything else is an error. */
5057 if (find_group_reloc_table_entry (str, &entry) == FAIL)
5058 {
5059 inst.error = _("unknown group relocation");
5060 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5061 }
5062
5063 /* We now have the group relocation table entry corresponding to
5064 the name in the assembler source. Next, we parse the expression. */
5065 if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX))
5066 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5067
5068 /* Record the relocation type (always the ALU variant here). */
5069 inst.reloc.type = (bfd_reloc_code_real_type) entry->alu_code;
5070 gas_assert (inst.reloc.type != 0);
5071
5072 return PARSE_OPERAND_SUCCESS;
5073 }
5074 else
5075 return parse_shifter_operand (str, i) == SUCCESS
5076 ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL;
5077
5078 /* Never reached. */
5079 }
5080
5081 /* Parse a Neon alignment expression. Information is written to
5082 inst.operands[i]. We assume the initial ':' has been skipped.
5083
5084 align .imm = align << 8, .immisalign=1, .preind=0 */
5085 static parse_operand_result
5086 parse_neon_alignment (char **str, int i)
5087 {
5088 char *p = *str;
5089 expressionS exp;
5090
5091 my_get_expression (&exp, &p, GE_NO_PREFIX);
5092
5093 if (exp.X_op != O_constant)
5094 {
5095 inst.error = _("alignment must be constant");
5096 return PARSE_OPERAND_FAIL;
5097 }
5098
5099 inst.operands[i].imm = exp.X_add_number << 8;
5100 inst.operands[i].immisalign = 1;
5101 /* Alignments are not pre-indexes. */
5102 inst.operands[i].preind = 0;
5103
5104 *str = p;
5105 return PARSE_OPERAND_SUCCESS;
5106 }
5107
5108 /* Parse all forms of an ARM address expression. Information is written
5109 to inst.operands[i] and/or inst.reloc.
5110
5111 Preindexed addressing (.preind=1):
5112
5113 [Rn, #offset] .reg=Rn .reloc.exp=offset
5114 [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5115 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5116 .shift_kind=shift .reloc.exp=shift_imm
5117
5118 These three may have a trailing ! which causes .writeback to be set also.
5119
5120 Postindexed addressing (.postind=1, .writeback=1):
5121
5122 [Rn], #offset .reg=Rn .reloc.exp=offset
5123 [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5124 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1
5125 .shift_kind=shift .reloc.exp=shift_imm
5126
5127 Unindexed addressing (.preind=0, .postind=0):
5128
5129 [Rn], {option} .reg=Rn .imm=option .immisreg=0
5130
5131 Other:
5132
5133 [Rn]{!} shorthand for [Rn,#0]{!}
5134 =immediate .isreg=0 .reloc.exp=immediate
5135 label .reg=PC .reloc.pc_rel=1 .reloc.exp=label
5136
5137 It is the caller's responsibility to check for addressing modes not
5138 supported by the instruction, and to set inst.reloc.type. */
5139
5140 static parse_operand_result
5141 parse_address_main (char **str, int i, int group_relocations,
5142 group_reloc_type group_type)
5143 {
5144 char *p = *str;
5145 int reg;
5146
5147 if (skip_past_char (&p, '[') == FAIL)
5148 {
5149 if (skip_past_char (&p, '=') == FAIL)
5150 {
5151 /* Bare address - translate to PC-relative offset. */
5152 inst.reloc.pc_rel = 1;
5153 inst.operands[i].reg = REG_PC;
5154 inst.operands[i].isreg = 1;
5155 inst.operands[i].preind = 1;
5156 }
5157 /* Otherwise a load-constant pseudo op, no special treatment needed here. */
5158
5159 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5160 return PARSE_OPERAND_FAIL;
5161
5162 *str = p;
5163 return PARSE_OPERAND_SUCCESS;
5164 }
5165
5166 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5167 {
5168 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5169 return PARSE_OPERAND_FAIL;
5170 }
5171 inst.operands[i].reg = reg;
5172 inst.operands[i].isreg = 1;
5173
5174 if (skip_past_comma (&p) == SUCCESS)
5175 {
5176 inst.operands[i].preind = 1;
5177
5178 if (*p == '+') p++;
5179 else if (*p == '-') p++, inst.operands[i].negative = 1;
5180
5181 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5182 {
5183 inst.operands[i].imm = reg;
5184 inst.operands[i].immisreg = 1;
5185
5186 if (skip_past_comma (&p) == SUCCESS)
5187 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5188 return PARSE_OPERAND_FAIL;
5189 }
5190 else if (skip_past_char (&p, ':') == SUCCESS)
5191 {
5192 /* FIXME: '@' should be used here, but it's filtered out by generic
5193 code before we get to see it here. This may be subject to
5194 change. */
5195 parse_operand_result result = parse_neon_alignment (&p, i);
5196
5197 if (result != PARSE_OPERAND_SUCCESS)
5198 return result;
5199 }
5200 else
5201 {
5202 if (inst.operands[i].negative)
5203 {
5204 inst.operands[i].negative = 0;
5205 p--;
5206 }
5207
5208 if (group_relocations
5209 && ((*p == '#' && *(p + 1) == ':') || *p == ':'))
5210 {
5211 struct group_reloc_table_entry *entry;
5212
5213 /* Skip over the #: or : sequence. */
5214 if (*p == '#')
5215 p += 2;
5216 else
5217 p++;
5218
5219 /* Try to parse a group relocation. Anything else is an
5220 error. */
5221 if (find_group_reloc_table_entry (&p, &entry) == FAIL)
5222 {
5223 inst.error = _("unknown group relocation");
5224 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5225 }
5226
5227 /* We now have the group relocation table entry corresponding to
5228 the name in the assembler source. Next, we parse the
5229 expression. */
5230 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5231 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5232
5233 /* Record the relocation type. */
5234 switch (group_type)
5235 {
5236 case GROUP_LDR:
5237 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldr_code;
5238 break;
5239
5240 case GROUP_LDRS:
5241 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldrs_code;
5242 break;
5243
5244 case GROUP_LDC:
5245 inst.reloc.type = (bfd_reloc_code_real_type) entry->ldc_code;
5246 break;
5247
5248 default:
5249 gas_assert (0);
5250 }
5251
5252 if (inst.reloc.type == 0)
5253 {
5254 inst.error = _("this group relocation is not allowed on this instruction");
5255 return PARSE_OPERAND_FAIL_NO_BACKTRACK;
5256 }
5257 }
5258 else
5259 {
5260 char *q = p;
5261 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5262 return PARSE_OPERAND_FAIL;
5263 /* If the offset is 0, find out if it's a +0 or -0. */
5264 if (inst.reloc.exp.X_op == O_constant
5265 && inst.reloc.exp.X_add_number == 0)
5266 {
5267 skip_whitespace (q);
5268 if (*q == '#')
5269 {
5270 q++;
5271 skip_whitespace (q);
5272 }
5273 if (*q == '-')
5274 inst.operands[i].negative = 1;
5275 }
5276 }
5277 }
5278 }
5279 else if (skip_past_char (&p, ':') == SUCCESS)
5280 {
5281 /* FIXME: '@' should be used here, but it's filtered out by generic code
5282 before we get to see it here. This may be subject to change. */
5283 parse_operand_result result = parse_neon_alignment (&p, i);
5284
5285 if (result != PARSE_OPERAND_SUCCESS)
5286 return result;
5287 }
5288
5289 if (skip_past_char (&p, ']') == FAIL)
5290 {
5291 inst.error = _("']' expected");
5292 return PARSE_OPERAND_FAIL;
5293 }
5294
5295 if (skip_past_char (&p, '!') == SUCCESS)
5296 inst.operands[i].writeback = 1;
5297
5298 else if (skip_past_comma (&p) == SUCCESS)
5299 {
5300 if (skip_past_char (&p, '{') == SUCCESS)
5301 {
5302 /* [Rn], {expr} - unindexed, with option */
5303 if (parse_immediate (&p, &inst.operands[i].imm,
5304 0, 255, TRUE) == FAIL)
5305 return PARSE_OPERAND_FAIL;
5306
5307 if (skip_past_char (&p, '}') == FAIL)
5308 {
5309 inst.error = _("'}' expected at end of 'option' field");
5310 return PARSE_OPERAND_FAIL;
5311 }
5312 if (inst.operands[i].preind)
5313 {
5314 inst.error = _("cannot combine index with option");
5315 return PARSE_OPERAND_FAIL;
5316 }
5317 *str = p;
5318 return PARSE_OPERAND_SUCCESS;
5319 }
5320 else
5321 {
5322 inst.operands[i].postind = 1;
5323 inst.operands[i].writeback = 1;
5324
5325 if (inst.operands[i].preind)
5326 {
5327 inst.error = _("cannot combine pre- and post-indexing");
5328 return PARSE_OPERAND_FAIL;
5329 }
5330
5331 if (*p == '+') p++;
5332 else if (*p == '-') p++, inst.operands[i].negative = 1;
5333
5334 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL)
5335 {
5336 /* We might be using the immediate for alignment already. If we
5337 are, OR the register number into the low-order bits. */
5338 if (inst.operands[i].immisalign)
5339 inst.operands[i].imm |= reg;
5340 else
5341 inst.operands[i].imm = reg;
5342 inst.operands[i].immisreg = 1;
5343
5344 if (skip_past_comma (&p) == SUCCESS)
5345 if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL)
5346 return PARSE_OPERAND_FAIL;
5347 }
5348 else
5349 {
5350 char *q = p;
5351 if (inst.operands[i].negative)
5352 {
5353 inst.operands[i].negative = 0;
5354 p--;
5355 }
5356 if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX))
5357 return PARSE_OPERAND_FAIL;
5358 /* If the offset is 0, find out if it's a +0 or -0. */
5359 if (inst.reloc.exp.X_op == O_constant
5360 && inst.reloc.exp.X_add_number == 0)
5361 {
5362 skip_whitespace (q);
5363 if (*q == '#')
5364 {
5365 q++;
5366 skip_whitespace (q);
5367 }
5368 if (*q == '-')
5369 inst.operands[i].negative = 1;
5370 }
5371 }
5372 }
5373 }
5374
5375 /* If at this point neither .preind nor .postind is set, we have a
5376 bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */
5377 if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0)
5378 {
5379 inst.operands[i].preind = 1;
5380 inst.reloc.exp.X_op = O_constant;
5381 inst.reloc.exp.X_add_number = 0;
5382 }
5383 *str = p;
5384 return PARSE_OPERAND_SUCCESS;
5385 }
5386
5387 static int
5388 parse_address (char **str, int i)
5389 {
5390 return parse_address_main (str, i, 0, GROUP_LDR) == PARSE_OPERAND_SUCCESS
5391 ? SUCCESS : FAIL;
5392 }
5393
5394 static parse_operand_result
5395 parse_address_group_reloc (char **str, int i, group_reloc_type type)
5396 {
5397 return parse_address_main (str, i, 1, type);
5398 }
5399
5400 /* Parse an operand for a MOVW or MOVT instruction. */
5401 static int
5402 parse_half (char **str)
5403 {
5404 char * p;
5405
5406 p = *str;
5407 skip_past_char (&p, '#');
5408 if (strncasecmp (p, ":lower16:", 9) == 0)
5409 inst.reloc.type = BFD_RELOC_ARM_MOVW;
5410 else if (strncasecmp (p, ":upper16:", 9) == 0)
5411 inst.reloc.type = BFD_RELOC_ARM_MOVT;
5412
5413 if (inst.reloc.type != BFD_RELOC_UNUSED)
5414 {
5415 p += 9;
5416 skip_whitespace (p);
5417 }
5418
5419 if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX))
5420 return FAIL;
5421
5422 if (inst.reloc.type == BFD_RELOC_UNUSED)
5423 {
5424 if (inst.reloc.exp.X_op != O_constant)
5425 {
5426 inst.error = _("constant expression expected");
5427 return FAIL;
5428 }
5429 if (inst.reloc.exp.X_add_number < 0
5430 || inst.reloc.exp.X_add_number > 0xffff)
5431 {
5432 inst.error = _("immediate value out of range");
5433 return FAIL;
5434 }
5435 }
5436 *str = p;
5437 return SUCCESS;
5438 }
5439
5440 /* Miscellaneous. */
5441
5442 /* Parse a PSR flag operand. The value returned is FAIL on syntax error,
5443 or a bitmask suitable to be or-ed into the ARM msr instruction. */
5444 static int
5445 parse_psr (char **str, bfd_boolean lhs)
5446 {
5447 char *p;
5448 unsigned long psr_field;
5449 const struct asm_psr *psr;
5450 char *start;
5451 bfd_boolean is_apsr = FALSE;
5452 bfd_boolean m_profile = ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m);
5453
5454 /* PR gas/12698: If the user has specified -march=all then m_profile will
5455 be TRUE, but we want to ignore it in this case as we are building for any
5456 CPU type, including non-m variants. */
5457 if (selected_cpu.core == arm_arch_any.core)
5458 m_profile = FALSE;
5459
5460 /* CPSR's and SPSR's can now be lowercase. This is just a convenience
5461 feature for ease of use and backwards compatibility. */
5462 p = *str;
5463 if (strncasecmp (p, "SPSR", 4) == 0)
5464 {
5465 if (m_profile)
5466 goto unsupported_psr;
5467
5468 psr_field = SPSR_BIT;
5469 }
5470 else if (strncasecmp (p, "CPSR", 4) == 0)
5471 {
5472 if (m_profile)
5473 goto unsupported_psr;
5474
5475 psr_field = 0;
5476 }
5477 else if (strncasecmp (p, "APSR", 4) == 0)
5478 {
5479 /* APSR[_<bits>] can be used as a synonym for CPSR[_<flags>] on ARMv7-A
5480 and ARMv7-R architecture CPUs. */
5481 is_apsr = TRUE;
5482 psr_field = 0;
5483 }
5484 else if (m_profile)
5485 {
5486 start = p;
5487 do
5488 p++;
5489 while (ISALNUM (*p) || *p == '_');
5490
5491 if (strncasecmp (start, "iapsr", 5) == 0
5492 || strncasecmp (start, "eapsr", 5) == 0
5493 || strncasecmp (start, "xpsr", 4) == 0
5494 || strncasecmp (start, "psr", 3) == 0)
5495 p = start + strcspn (start, "rR") + 1;
5496
5497 psr = (const struct asm_psr *) hash_find_n (arm_v7m_psr_hsh, start,
5498 p - start);
5499
5500 if (!psr)
5501 return FAIL;
5502
5503 /* If APSR is being written, a bitfield may be specified. Note that
5504 APSR itself is handled above. */
5505 if (psr->field <= 3)
5506 {
5507 psr_field = psr->field;
5508 is_apsr = TRUE;
5509 goto check_suffix;
5510 }
5511
5512 *str = p;
5513 /* M-profile MSR instructions have the mask field set to "10", except
5514 *PSR variants which modify APSR, which may use a different mask (and
5515 have been handled already). Do that by setting the PSR_f field
5516 here. */
5517 return psr->field | (lhs ? PSR_f : 0);
5518 }
5519 else
5520 goto unsupported_psr;
5521
5522 p += 4;
5523 check_suffix:
5524 if (*p == '_')
5525 {
5526 /* A suffix follows. */
5527 p++;
5528 start = p;
5529
5530 do
5531 p++;
5532 while (ISALNUM (*p) || *p == '_');
5533
5534 if (is_apsr)
5535 {
5536 /* APSR uses a notation for bits, rather than fields. */
5537 unsigned int nzcvq_bits = 0;
5538 unsigned int g_bit = 0;
5539 char *bit;
5540
5541 for (bit = start; bit != p; bit++)
5542 {
5543 switch (TOLOWER (*bit))
5544 {
5545 case 'n':
5546 nzcvq_bits |= (nzcvq_bits & 0x01) ? 0x20 : 0x01;
5547 break;
5548
5549 case 'z':
5550 nzcvq_bits |= (nzcvq_bits & 0x02) ? 0x20 : 0x02;
5551 break;
5552
5553 case 'c':
5554 nzcvq_bits |= (nzcvq_bits & 0x04) ? 0x20 : 0x04;
5555 break;
5556
5557 case 'v':
5558 nzcvq_bits |= (nzcvq_bits & 0x08) ? 0x20 : 0x08;
5559 break;
5560
5561 case 'q':
5562 nzcvq_bits |= (nzcvq_bits & 0x10) ? 0x20 : 0x10;
5563 break;
5564
5565 case 'g':
5566 g_bit |= (g_bit & 0x1) ? 0x2 : 0x1;
5567 break;
5568
5569 default:
5570 inst.error = _("unexpected bit specified after APSR");
5571 return FAIL;
5572 }
5573 }
5574
5575 if (nzcvq_bits == 0x1f)
5576 psr_field |= PSR_f;
5577
5578 if (g_bit == 0x1)
5579 {
5580 if (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp))
5581 {
5582 inst.error = _("selected processor does not "
5583 "support DSP extension");
5584 return FAIL;
5585 }
5586
5587 psr_field |= PSR_s;
5588 }
5589
5590 if ((nzcvq_bits & 0x20) != 0
5591 || (nzcvq_bits != 0x1f && nzcvq_bits != 0)
5592 || (g_bit & 0x2) != 0)
5593 {
5594 inst.error = _("bad bitmask specified after APSR");
5595 return FAIL;
5596 }
5597 }
5598 else
5599 {
5600 psr = (const struct asm_psr *) hash_find_n (arm_psr_hsh, start,
5601 p - start);
5602 if (!psr)
5603 goto error;
5604
5605 psr_field |= psr->field;
5606 }
5607 }
5608 else
5609 {
5610 if (ISALNUM (*p))
5611 goto error; /* Garbage after "[CS]PSR". */
5612
5613 /* Unadorned APSR is equivalent to APSR_nzcvq/CPSR_f (for writes). This
5614 is deprecated, but allow it anyway. */
5615 if (is_apsr && lhs)
5616 {
5617 psr_field |= PSR_f;
5618 as_tsktsk (_("writing to APSR without specifying a bitmask is "
5619 "deprecated"));
5620 }
5621 else if (!m_profile)
5622 /* These bits are never right for M-profile devices: don't set them
5623 (only code paths which read/write APSR reach here). */
5624 psr_field |= (PSR_c | PSR_f);
5625 }
5626 *str = p;
5627 return psr_field;
5628
5629 unsupported_psr:
5630 inst.error = _("selected processor does not support requested special "
5631 "purpose register");
5632 return FAIL;
5633
5634 error:
5635 inst.error = _("flag for {c}psr instruction expected");
5636 return FAIL;
5637 }
5638
5639 /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a
5640 value suitable for splatting into the AIF field of the instruction. */
5641
5642 static int
5643 parse_cps_flags (char **str)
5644 {
5645 int val = 0;
5646 int saw_a_flag = 0;
5647 char *s = *str;
5648
5649 for (;;)
5650 switch (*s++)
5651 {
5652 case '\0': case ',':
5653 goto done;
5654
5655 case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break;
5656 case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break;
5657 case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break;
5658
5659 default:
5660 inst.error = _("unrecognized CPS flag");
5661 return FAIL;
5662 }
5663
5664 done:
5665 if (saw_a_flag == 0)
5666 {
5667 inst.error = _("missing CPS flags");
5668 return FAIL;
5669 }
5670
5671 *str = s - 1;
5672 return val;
5673 }
5674
5675 /* Parse an endian specifier ("BE" or "LE", case insensitive);
5676 returns 0 for big-endian, 1 for little-endian, FAIL for an error. */
5677
5678 static int
5679 parse_endian_specifier (char **str)
5680 {
5681 int little_endian;
5682 char *s = *str;
5683
5684 if (strncasecmp (s, "BE", 2))
5685 little_endian = 0;
5686 else if (strncasecmp (s, "LE", 2))
5687 little_endian = 1;
5688 else
5689 {
5690 inst.error = _("valid endian specifiers are be or le");
5691 return FAIL;
5692 }
5693
5694 if (ISALNUM (s[2]) || s[2] == '_')
5695 {
5696 inst.error = _("valid endian specifiers are be or le");
5697 return FAIL;
5698 }
5699
5700 *str = s + 2;
5701 return little_endian;
5702 }
5703
5704 /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a
5705 value suitable for poking into the rotate field of an sxt or sxta
5706 instruction, or FAIL on error. */
5707
5708 static int
5709 parse_ror (char **str)
5710 {
5711 int rot;
5712 char *s = *str;
5713
5714 if (strncasecmp (s, "ROR", 3) == 0)
5715 s += 3;
5716 else
5717 {
5718 inst.error = _("missing rotation field after comma");
5719 return FAIL;
5720 }
5721
5722 if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL)
5723 return FAIL;
5724
5725 switch (rot)
5726 {
5727 case 0: *str = s; return 0x0;
5728 case 8: *str = s; return 0x1;
5729 case 16: *str = s; return 0x2;
5730 case 24: *str = s; return 0x3;
5731
5732 default:
5733 inst.error = _("rotation can only be 0, 8, 16, or 24");
5734 return FAIL;
5735 }
5736 }
5737
5738 /* Parse a conditional code (from conds[] below). The value returned is in the
5739 range 0 .. 14, or FAIL. */
5740 static int
5741 parse_cond (char **str)
5742 {
5743 char *q;
5744 const struct asm_cond *c;
5745 int n;
5746 /* Condition codes are always 2 characters, so matching up to
5747 3 characters is sufficient. */
5748 char cond[3];
5749
5750 q = *str;
5751 n = 0;
5752 while (ISALPHA (*q) && n < 3)
5753 {
5754 cond[n] = TOLOWER (*q);
5755 q++;
5756 n++;
5757 }
5758
5759 c = (const struct asm_cond *) hash_find_n (arm_cond_hsh, cond, n);
5760 if (!c)
5761 {
5762 inst.error = _("condition required");
5763 return FAIL;
5764 }
5765
5766 *str = q;
5767 return c->value;
5768 }
5769
5770 /* If the given feature available in the selected CPU, mark it as used.
5771 Returns TRUE iff feature is available. */
5772 static bfd_boolean
5773 mark_feature_used (const arm_feature_set *feature)
5774 {
5775 /* Ensure the option is valid on the current architecture. */
5776 if (!ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
5777 return FALSE;
5778
5779 /* Add the appropriate architecture feature for the barrier option used.
5780 */
5781 if (thumb_mode)
5782 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *feature);
5783 else
5784 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *feature);
5785
5786 return TRUE;
5787 }
5788
5789 /* Parse an option for a barrier instruction. Returns the encoding for the
5790 option, or FAIL. */
5791 static int
5792 parse_barrier (char **str)
5793 {
5794 char *p, *q;
5795 const struct asm_barrier_opt *o;
5796
5797 p = q = *str;
5798 while (ISALPHA (*q))
5799 q++;
5800
5801 o = (const struct asm_barrier_opt *) hash_find_n (arm_barrier_opt_hsh, p,
5802 q - p);
5803 if (!o)
5804 return FAIL;
5805
5806 if (!mark_feature_used (&o->arch))
5807 return FAIL;
5808
5809 *str = q;
5810 return o->value;
5811 }
5812
5813 /* Parse the operands of a table branch instruction. Similar to a memory
5814 operand. */
5815 static int
5816 parse_tb (char **str)
5817 {
5818 char * p = *str;
5819 int reg;
5820
5821 if (skip_past_char (&p, '[') == FAIL)
5822 {
5823 inst.error = _("'[' expected");
5824 return FAIL;
5825 }
5826
5827 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5828 {
5829 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5830 return FAIL;
5831 }
5832 inst.operands[0].reg = reg;
5833
5834 if (skip_past_comma (&p) == FAIL)
5835 {
5836 inst.error = _("',' expected");
5837 return FAIL;
5838 }
5839
5840 if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL)
5841 {
5842 inst.error = _(reg_expected_msgs[REG_TYPE_RN]);
5843 return FAIL;
5844 }
5845 inst.operands[0].imm = reg;
5846
5847 if (skip_past_comma (&p) == SUCCESS)
5848 {
5849 if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL)
5850 return FAIL;
5851 if (inst.reloc.exp.X_add_number != 1)
5852 {
5853 inst.error = _("invalid shift");
5854 return FAIL;
5855 }
5856 inst.operands[0].shifted = 1;
5857 }
5858
5859 if (skip_past_char (&p, ']') == FAIL)
5860 {
5861 inst.error = _("']' expected");
5862 return FAIL;
5863 }
5864 *str = p;
5865 return SUCCESS;
5866 }
5867
5868 /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more
5869 information on the types the operands can take and how they are encoded.
5870 Up to four operands may be read; this function handles setting the
5871 ".present" field for each read operand itself.
5872 Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS,
5873 else returns FAIL. */
5874
5875 static int
5876 parse_neon_mov (char **str, int *which_operand)
5877 {
5878 int i = *which_operand, val;
5879 enum arm_reg_type rtype;
5880 char *ptr = *str;
5881 struct neon_type_el optype;
5882
5883 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
5884 {
5885 /* Case 4: VMOV<c><q>.<size> <Dn[x]>, <Rd>. */
5886 inst.operands[i].reg = val;
5887 inst.operands[i].isscalar = 1;
5888 inst.operands[i].vectype = optype;
5889 inst.operands[i++].present = 1;
5890
5891 if (skip_past_comma (&ptr) == FAIL)
5892 goto wanted_comma;
5893
5894 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5895 goto wanted_arm;
5896
5897 inst.operands[i].reg = val;
5898 inst.operands[i].isreg = 1;
5899 inst.operands[i].present = 1;
5900 }
5901 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype))
5902 != FAIL)
5903 {
5904 /* Cases 0, 1, 2, 3, 5 (D only). */
5905 if (skip_past_comma (&ptr) == FAIL)
5906 goto wanted_comma;
5907
5908 inst.operands[i].reg = val;
5909 inst.operands[i].isreg = 1;
5910 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5911 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5912 inst.operands[i].isvec = 1;
5913 inst.operands[i].vectype = optype;
5914 inst.operands[i++].present = 1;
5915
5916 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5917 {
5918 /* Case 5: VMOV<c><q> <Dm>, <Rd>, <Rn>.
5919 Case 13: VMOV <Sd>, <Rm> */
5920 inst.operands[i].reg = val;
5921 inst.operands[i].isreg = 1;
5922 inst.operands[i].present = 1;
5923
5924 if (rtype == REG_TYPE_NQ)
5925 {
5926 first_error (_("can't use Neon quad register here"));
5927 return FAIL;
5928 }
5929 else if (rtype != REG_TYPE_VFS)
5930 {
5931 i++;
5932 if (skip_past_comma (&ptr) == FAIL)
5933 goto wanted_comma;
5934 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5935 goto wanted_arm;
5936 inst.operands[i].reg = val;
5937 inst.operands[i].isreg = 1;
5938 inst.operands[i].present = 1;
5939 }
5940 }
5941 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype,
5942 &optype)) != FAIL)
5943 {
5944 /* Case 0: VMOV<c><q> <Qd>, <Qm>
5945 Case 1: VMOV<c><q> <Dd>, <Dm>
5946 Case 8: VMOV.F32 <Sd>, <Sm>
5947 Case 15: VMOV <Sd>, <Se>, <Rn>, <Rm> */
5948
5949 inst.operands[i].reg = val;
5950 inst.operands[i].isreg = 1;
5951 inst.operands[i].isquad = (rtype == REG_TYPE_NQ);
5952 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
5953 inst.operands[i].isvec = 1;
5954 inst.operands[i].vectype = optype;
5955 inst.operands[i].present = 1;
5956
5957 if (skip_past_comma (&ptr) == SUCCESS)
5958 {
5959 /* Case 15. */
5960 i++;
5961
5962 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5963 goto wanted_arm;
5964
5965 inst.operands[i].reg = val;
5966 inst.operands[i].isreg = 1;
5967 inst.operands[i++].present = 1;
5968
5969 if (skip_past_comma (&ptr) == FAIL)
5970 goto wanted_comma;
5971
5972 if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL)
5973 goto wanted_arm;
5974
5975 inst.operands[i].reg = val;
5976 inst.operands[i].isreg = 1;
5977 inst.operands[i].present = 1;
5978 }
5979 }
5980 else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS)
5981 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<float-imm>
5982 Case 3: VMOV<c><q>.<dt> <Dd>, #<float-imm>
5983 Case 10: VMOV.F32 <Sd>, #<imm>
5984 Case 11: VMOV.F64 <Dd>, #<imm> */
5985 inst.operands[i].immisfloat = 1;
5986 else if (parse_big_immediate (&ptr, i) == SUCCESS)
5987 /* Case 2: VMOV<c><q>.<dt> <Qd>, #<imm>
5988 Case 3: VMOV<c><q>.<dt> <Dd>, #<imm> */
5989 ;
5990 else
5991 {
5992 first_error (_("expected <Rm> or <Dm> or <Qm> operand"));
5993 return FAIL;
5994 }
5995 }
5996 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
5997 {
5998 /* Cases 6, 7. */
5999 inst.operands[i].reg = val;
6000 inst.operands[i].isreg = 1;
6001 inst.operands[i++].present = 1;
6002
6003 if (skip_past_comma (&ptr) == FAIL)
6004 goto wanted_comma;
6005
6006 if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL)
6007 {
6008 /* Case 6: VMOV<c><q>.<dt> <Rd>, <Dn[x]> */
6009 inst.operands[i].reg = val;
6010 inst.operands[i].isscalar = 1;
6011 inst.operands[i].present = 1;
6012 inst.operands[i].vectype = optype;
6013 }
6014 else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL)
6015 {
6016 /* Case 7: VMOV<c><q> <Rd>, <Rn>, <Dm> */
6017 inst.operands[i].reg = val;
6018 inst.operands[i].isreg = 1;
6019 inst.operands[i++].present = 1;
6020
6021 if (skip_past_comma (&ptr) == FAIL)
6022 goto wanted_comma;
6023
6024 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype))
6025 == FAIL)
6026 {
6027 first_error (_(reg_expected_msgs[REG_TYPE_VFSD]));
6028 return FAIL;
6029 }
6030
6031 inst.operands[i].reg = val;
6032 inst.operands[i].isreg = 1;
6033 inst.operands[i].isvec = 1;
6034 inst.operands[i].issingle = (rtype == REG_TYPE_VFS);
6035 inst.operands[i].vectype = optype;
6036 inst.operands[i].present = 1;
6037
6038 if (rtype == REG_TYPE_VFS)
6039 {
6040 /* Case 14. */
6041 i++;
6042 if (skip_past_comma (&ptr) == FAIL)
6043 goto wanted_comma;
6044 if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL,
6045 &optype)) == FAIL)
6046 {
6047 first_error (_(reg_expected_msgs[REG_TYPE_VFS]));
6048 return FAIL;
6049 }
6050 inst.operands[i].reg = val;
6051 inst.operands[i].isreg = 1;
6052 inst.operands[i].isvec = 1;
6053 inst.operands[i].issingle = 1;
6054 inst.operands[i].vectype = optype;
6055 inst.operands[i].present = 1;
6056 }
6057 }
6058 else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype))
6059 != FAIL)
6060 {
6061 /* Case 13. */
6062 inst.operands[i].reg = val;
6063 inst.operands[i].isreg = 1;
6064 inst.operands[i].isvec = 1;
6065 inst.operands[i].issingle = 1;
6066 inst.operands[i].vectype = optype;
6067 inst.operands[i].present = 1;
6068 }
6069 }
6070 else
6071 {
6072 first_error (_("parse error"));
6073 return FAIL;
6074 }
6075
6076 /* Successfully parsed the operands. Update args. */
6077 *which_operand = i;
6078 *str = ptr;
6079 return SUCCESS;
6080
6081 wanted_comma:
6082 first_error (_("expected comma"));
6083 return FAIL;
6084
6085 wanted_arm:
6086 first_error (_(reg_expected_msgs[REG_TYPE_RN]));
6087 return FAIL;
6088 }
6089
6090 /* Use this macro when the operand constraints are different
6091 for ARM and THUMB (e.g. ldrd). */
6092 #define MIX_ARM_THUMB_OPERANDS(arm_operand, thumb_operand) \
6093 ((arm_operand) | ((thumb_operand) << 16))
6094
6095 /* Matcher codes for parse_operands. */
6096 enum operand_parse_code
6097 {
6098 OP_stop, /* end of line */
6099
6100 OP_RR, /* ARM register */
6101 OP_RRnpc, /* ARM register, not r15 */
6102 OP_RRnpcsp, /* ARM register, neither r15 nor r13 (a.k.a. 'BadReg') */
6103 OP_RRnpcb, /* ARM register, not r15, in square brackets */
6104 OP_RRnpctw, /* ARM register, not r15 in Thumb-state or with writeback,
6105 optional trailing ! */
6106 OP_RRw, /* ARM register, not r15, optional trailing ! */
6107 OP_RCP, /* Coprocessor number */
6108 OP_RCN, /* Coprocessor register */
6109 OP_RF, /* FPA register */
6110 OP_RVS, /* VFP single precision register */
6111 OP_RVD, /* VFP double precision register (0..15) */
6112 OP_RND, /* Neon double precision register (0..31) */
6113 OP_RNQ, /* Neon quad precision register */
6114 OP_RVSD, /* VFP single or double precision register */
6115 OP_RNDQ, /* Neon double or quad precision register */
6116 OP_RNSDQ, /* Neon single, double or quad precision register */
6117 OP_RNSC, /* Neon scalar D[X] */
6118 OP_RVC, /* VFP control register */
6119 OP_RMF, /* Maverick F register */
6120 OP_RMD, /* Maverick D register */
6121 OP_RMFX, /* Maverick FX register */
6122 OP_RMDX, /* Maverick DX register */
6123 OP_RMAX, /* Maverick AX register */
6124 OP_RMDS, /* Maverick DSPSC register */
6125 OP_RIWR, /* iWMMXt wR register */
6126 OP_RIWC, /* iWMMXt wC register */
6127 OP_RIWG, /* iWMMXt wCG register */
6128 OP_RXA, /* XScale accumulator register */
6129
6130 OP_REGLST, /* ARM register list */
6131 OP_VRSLST, /* VFP single-precision register list */
6132 OP_VRDLST, /* VFP double-precision register list */
6133 OP_VRSDLST, /* VFP single or double-precision register list (& quad) */
6134 OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */
6135 OP_NSTRLST, /* Neon element/structure list */
6136
6137 OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */
6138 OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */
6139 OP_RR_RNSC, /* ARM reg or Neon scalar. */
6140 OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */
6141 OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */
6142 OP_RND_RNSC, /* Neon D reg, or Neon scalar. */
6143 OP_VMOV, /* Neon VMOV operands. */
6144 OP_RNDQ_Ibig, /* Neon D or Q reg, or big immediate for logic and VMVN. */
6145 OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */
6146 OP_RIWR_I32z, /* iWMMXt wR register, or immediate 0 .. 32 for iWMMXt2. */
6147
6148 OP_I0, /* immediate zero */
6149 OP_I7, /* immediate value 0 .. 7 */
6150 OP_I15, /* 0 .. 15 */
6151 OP_I16, /* 1 .. 16 */
6152 OP_I16z, /* 0 .. 16 */
6153 OP_I31, /* 0 .. 31 */
6154 OP_I31w, /* 0 .. 31, optional trailing ! */
6155 OP_I32, /* 1 .. 32 */
6156 OP_I32z, /* 0 .. 32 */
6157 OP_I63, /* 0 .. 63 */
6158 OP_I63s, /* -64 .. 63 */
6159 OP_I64, /* 1 .. 64 */
6160 OP_I64z, /* 0 .. 64 */
6161 OP_I255, /* 0 .. 255 */
6162
6163 OP_I4b, /* immediate, prefix optional, 1 .. 4 */
6164 OP_I7b, /* 0 .. 7 */
6165 OP_I15b, /* 0 .. 15 */
6166 OP_I31b, /* 0 .. 31 */
6167
6168 OP_SH, /* shifter operand */
6169 OP_SHG, /* shifter operand with possible group relocation */
6170 OP_ADDR, /* Memory address expression (any mode) */
6171 OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */
6172 OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */
6173 OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */
6174 OP_EXP, /* arbitrary expression */
6175 OP_EXPi, /* same, with optional immediate prefix */
6176 OP_EXPr, /* same, with optional relocation suffix */
6177 OP_HALF, /* 0 .. 65535 or low/high reloc. */
6178
6179 OP_CPSF, /* CPS flags */
6180 OP_ENDI, /* Endianness specifier */
6181 OP_wPSR, /* CPSR/SPSR/APSR mask for msr (writing). */
6182 OP_rPSR, /* CPSR/SPSR/APSR mask for msr (reading). */
6183 OP_COND, /* conditional code */
6184 OP_TB, /* Table branch. */
6185
6186 OP_APSR_RR, /* ARM register or "APSR_nzcv". */
6187
6188 OP_RRnpc_I0, /* ARM register or literal 0 */
6189 OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */
6190 OP_RR_EXi, /* ARM register or expression with imm prefix */
6191 OP_RF_IF, /* FPA register or immediate */
6192 OP_RIWR_RIWC, /* iWMMXt R or C reg */
6193 OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */
6194
6195 /* Optional operands. */
6196 OP_oI7b, /* immediate, prefix optional, 0 .. 7 */
6197 OP_oI31b, /* 0 .. 31 */
6198 OP_oI32b, /* 1 .. 32 */
6199 OP_oI32z, /* 0 .. 32 */
6200 OP_oIffffb, /* 0 .. 65535 */
6201 OP_oI255c, /* curly-brace enclosed, 0 .. 255 */
6202
6203 OP_oRR, /* ARM register */
6204 OP_oRRnpc, /* ARM register, not the PC */
6205 OP_oRRnpcsp, /* ARM register, neither the PC nor the SP (a.k.a. BadReg) */
6206 OP_oRRw, /* ARM register, not r15, optional trailing ! */
6207 OP_oRND, /* Optional Neon double precision register */
6208 OP_oRNQ, /* Optional Neon quad precision register */
6209 OP_oRNDQ, /* Optional Neon double or quad precision register */
6210 OP_oRNSDQ, /* Optional single, double or quad precision vector register */
6211 OP_oSHll, /* LSL immediate */
6212 OP_oSHar, /* ASR immediate */
6213 OP_oSHllar, /* LSL or ASR immediate */
6214 OP_oROR, /* ROR 0/8/16/24 */
6215 OP_oBARRIER_I15, /* Option argument for a barrier instruction. */
6216
6217 /* Some pre-defined mixed (ARM/THUMB) operands. */
6218 OP_RR_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RR, OP_RRnpcsp),
6219 OP_RRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_RRnpc, OP_RRnpcsp),
6220 OP_oRRnpc_npcsp = MIX_ARM_THUMB_OPERANDS (OP_oRRnpc, OP_oRRnpcsp),
6221
6222 OP_FIRST_OPTIONAL = OP_oI7b
6223 };
6224
6225 /* Generic instruction operand parser. This does no encoding and no
6226 semantic validation; it merely squirrels values away in the inst
6227 structure. Returns SUCCESS or FAIL depending on whether the
6228 specified grammar matched. */
6229 static int
6230 parse_operands (char *str, const unsigned int *pattern, bfd_boolean thumb)
6231 {
6232 unsigned const int *upat = pattern;
6233 char *backtrack_pos = 0;
6234 const char *backtrack_error = 0;
6235 int i, val = 0, backtrack_index = 0;
6236 enum arm_reg_type rtype;
6237 parse_operand_result result;
6238 unsigned int op_parse_code;
6239
6240 #define po_char_or_fail(chr) \
6241 do \
6242 { \
6243 if (skip_past_char (&str, chr) == FAIL) \
6244 goto bad_args; \
6245 } \
6246 while (0)
6247
6248 #define po_reg_or_fail(regtype) \
6249 do \
6250 { \
6251 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6252 & inst.operands[i].vectype); \
6253 if (val == FAIL) \
6254 { \
6255 first_error (_(reg_expected_msgs[regtype])); \
6256 goto failure; \
6257 } \
6258 inst.operands[i].reg = val; \
6259 inst.operands[i].isreg = 1; \
6260 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6261 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6262 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6263 || rtype == REG_TYPE_VFD \
6264 || rtype == REG_TYPE_NQ); \
6265 } \
6266 while (0)
6267
6268 #define po_reg_or_goto(regtype, label) \
6269 do \
6270 { \
6271 val = arm_typed_reg_parse (& str, regtype, & rtype, \
6272 & inst.operands[i].vectype); \
6273 if (val == FAIL) \
6274 goto label; \
6275 \
6276 inst.operands[i].reg = val; \
6277 inst.operands[i].isreg = 1; \
6278 inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \
6279 inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \
6280 inst.operands[i].isvec = (rtype == REG_TYPE_VFS \
6281 || rtype == REG_TYPE_VFD \
6282 || rtype == REG_TYPE_NQ); \
6283 } \
6284 while (0)
6285
6286 #define po_imm_or_fail(min, max, popt) \
6287 do \
6288 { \
6289 if (parse_immediate (&str, &val, min, max, popt) == FAIL) \
6290 goto failure; \
6291 inst.operands[i].imm = val; \
6292 } \
6293 while (0)
6294
6295 #define po_scalar_or_goto(elsz, label) \
6296 do \
6297 { \
6298 val = parse_scalar (& str, elsz, & inst.operands[i].vectype); \
6299 if (val == FAIL) \
6300 goto label; \
6301 inst.operands[i].reg = val; \
6302 inst.operands[i].isscalar = 1; \
6303 } \
6304 while (0)
6305
6306 #define po_misc_or_fail(expr) \
6307 do \
6308 { \
6309 if (expr) \
6310 goto failure; \
6311 } \
6312 while (0)
6313
6314 #define po_misc_or_fail_no_backtrack(expr) \
6315 do \
6316 { \
6317 result = expr; \
6318 if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK) \
6319 backtrack_pos = 0; \
6320 if (result != PARSE_OPERAND_SUCCESS) \
6321 goto failure; \
6322 } \
6323 while (0)
6324
6325 #define po_barrier_or_imm(str) \
6326 do \
6327 { \
6328 val = parse_barrier (&str); \
6329 if (val == FAIL) \
6330 { \
6331 if (ISALPHA (*str)) \
6332 goto failure; \
6333 else \
6334 goto immediate; \
6335 } \
6336 else \
6337 { \
6338 if ((inst.instruction & 0xf0) == 0x60 \
6339 && val != 0xf) \
6340 { \
6341 /* ISB can only take SY as an option. */ \
6342 inst.error = _("invalid barrier type"); \
6343 goto failure; \
6344 } \
6345 } \
6346 } \
6347 while (0)
6348
6349 skip_whitespace (str);
6350
6351 for (i = 0; upat[i] != OP_stop; i++)
6352 {
6353 op_parse_code = upat[i];
6354 if (op_parse_code >= 1<<16)
6355 op_parse_code = thumb ? (op_parse_code >> 16)
6356 : (op_parse_code & ((1<<16)-1));
6357
6358 if (op_parse_code >= OP_FIRST_OPTIONAL)
6359 {
6360 /* Remember where we are in case we need to backtrack. */
6361 gas_assert (!backtrack_pos);
6362 backtrack_pos = str;
6363 backtrack_error = inst.error;
6364 backtrack_index = i;
6365 }
6366
6367 if (i > 0 && (i > 1 || inst.operands[0].present))
6368 po_char_or_fail (',');
6369
6370 switch (op_parse_code)
6371 {
6372 /* Registers */
6373 case OP_oRRnpc:
6374 case OP_oRRnpcsp:
6375 case OP_RRnpc:
6376 case OP_RRnpcsp:
6377 case OP_oRR:
6378 case OP_RR: po_reg_or_fail (REG_TYPE_RN); break;
6379 case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break;
6380 case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break;
6381 case OP_RF: po_reg_or_fail (REG_TYPE_FN); break;
6382 case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break;
6383 case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break;
6384 case OP_oRND:
6385 case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break;
6386 case OP_RVC:
6387 po_reg_or_goto (REG_TYPE_VFC, coproc_reg);
6388 break;
6389 /* Also accept generic coprocessor regs for unknown registers. */
6390 coproc_reg:
6391 po_reg_or_fail (REG_TYPE_CN);
6392 break;
6393 case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break;
6394 case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break;
6395 case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break;
6396 case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break;
6397 case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break;
6398 case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break;
6399 case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break;
6400 case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break;
6401 case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break;
6402 case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break;
6403 case OP_oRNQ:
6404 case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break;
6405 case OP_oRNDQ:
6406 case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break;
6407 case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break;
6408 case OP_oRNSDQ:
6409 case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break;
6410
6411 /* Neon scalar. Using an element size of 8 means that some invalid
6412 scalars are accepted here, so deal with those in later code. */
6413 case OP_RNSC: po_scalar_or_goto (8, failure); break;
6414
6415 case OP_RNDQ_I0:
6416 {
6417 po_reg_or_goto (REG_TYPE_NDQ, try_imm0);
6418 break;
6419 try_imm0:
6420 po_imm_or_fail (0, 0, TRUE);
6421 }
6422 break;
6423
6424 case OP_RVSD_I0:
6425 po_reg_or_goto (REG_TYPE_VFSD, try_imm0);
6426 break;
6427
6428 case OP_RR_RNSC:
6429 {
6430 po_scalar_or_goto (8, try_rr);
6431 break;
6432 try_rr:
6433 po_reg_or_fail (REG_TYPE_RN);
6434 }
6435 break;
6436
6437 case OP_RNSDQ_RNSC:
6438 {
6439 po_scalar_or_goto (8, try_nsdq);
6440 break;
6441 try_nsdq:
6442 po_reg_or_fail (REG_TYPE_NSDQ);
6443 }
6444 break;
6445
6446 case OP_RNDQ_RNSC:
6447 {
6448 po_scalar_or_goto (8, try_ndq);
6449 break;
6450 try_ndq:
6451 po_reg_or_fail (REG_TYPE_NDQ);
6452 }
6453 break;
6454
6455 case OP_RND_RNSC:
6456 {
6457 po_scalar_or_goto (8, try_vfd);
6458 break;
6459 try_vfd:
6460 po_reg_or_fail (REG_TYPE_VFD);
6461 }
6462 break;
6463
6464 case OP_VMOV:
6465 /* WARNING: parse_neon_mov can move the operand counter, i. If we're
6466 not careful then bad things might happen. */
6467 po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL);
6468 break;
6469
6470 case OP_RNDQ_Ibig:
6471 {
6472 po_reg_or_goto (REG_TYPE_NDQ, try_immbig);
6473 break;
6474 try_immbig:
6475 /* There's a possibility of getting a 64-bit immediate here, so
6476 we need special handling. */
6477 if (parse_big_immediate (&str, i) == FAIL)
6478 {
6479 inst.error = _("immediate value is out of range");
6480 goto failure;
6481 }
6482 }
6483 break;
6484
6485 case OP_RNDQ_I63b:
6486 {
6487 po_reg_or_goto (REG_TYPE_NDQ, try_shimm);
6488 break;
6489 try_shimm:
6490 po_imm_or_fail (0, 63, TRUE);
6491 }
6492 break;
6493
6494 case OP_RRnpcb:
6495 po_char_or_fail ('[');
6496 po_reg_or_fail (REG_TYPE_RN);
6497 po_char_or_fail (']');
6498 break;
6499
6500 case OP_RRnpctw:
6501 case OP_RRw:
6502 case OP_oRRw:
6503 po_reg_or_fail (REG_TYPE_RN);
6504 if (skip_past_char (&str, '!') == SUCCESS)
6505 inst.operands[i].writeback = 1;
6506 break;
6507
6508 /* Immediates */
6509 case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break;
6510 case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break;
6511 case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break;
6512 case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break;
6513 case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break;
6514 case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break;
6515 case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break;
6516 case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break;
6517 case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break;
6518 case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break;
6519 case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break;
6520 case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break;
6521
6522 case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break;
6523 case OP_oI7b:
6524 case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break;
6525 case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break;
6526 case OP_oI31b:
6527 case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break;
6528 case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break;
6529 case OP_oI32z: po_imm_or_fail ( 0, 32, TRUE); break;
6530 case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break;
6531
6532 /* Immediate variants */
6533 case OP_oI255c:
6534 po_char_or_fail ('{');
6535 po_imm_or_fail (0, 255, TRUE);
6536 po_char_or_fail ('}');
6537 break;
6538
6539 case OP_I31w:
6540 /* The expression parser chokes on a trailing !, so we have
6541 to find it first and zap it. */
6542 {
6543 char *s = str;
6544 while (*s && *s != ',')
6545 s++;
6546 if (s[-1] == '!')
6547 {
6548 s[-1] = '\0';
6549 inst.operands[i].writeback = 1;
6550 }
6551 po_imm_or_fail (0, 31, TRUE);
6552 if (str == s - 1)
6553 str = s;
6554 }
6555 break;
6556
6557 /* Expressions */
6558 case OP_EXPi: EXPi:
6559 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6560 GE_OPT_PREFIX));
6561 break;
6562
6563 case OP_EXP:
6564 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6565 GE_NO_PREFIX));
6566 break;
6567
6568 case OP_EXPr: EXPr:
6569 po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str,
6570 GE_NO_PREFIX));
6571 if (inst.reloc.exp.X_op == O_symbol)
6572 {
6573 val = parse_reloc (&str);
6574 if (val == -1)
6575 {
6576 inst.error = _("unrecognized relocation suffix");
6577 goto failure;
6578 }
6579 else if (val != BFD_RELOC_UNUSED)
6580 {
6581 inst.operands[i].imm = val;
6582 inst.operands[i].hasreloc = 1;
6583 }
6584 }
6585 break;
6586
6587 /* Operand for MOVW or MOVT. */
6588 case OP_HALF:
6589 po_misc_or_fail (parse_half (&str));
6590 break;
6591
6592 /* Register or expression. */
6593 case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break;
6594 case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break;
6595
6596 /* Register or immediate. */
6597 case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break;
6598 I0: po_imm_or_fail (0, 0, FALSE); break;
6599
6600 case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break;
6601 IF:
6602 if (!is_immediate_prefix (*str))
6603 goto bad_args;
6604 str++;
6605 val = parse_fpa_immediate (&str);
6606 if (val == FAIL)
6607 goto failure;
6608 /* FPA immediates are encoded as registers 8-15.
6609 parse_fpa_immediate has already applied the offset. */
6610 inst.operands[i].reg = val;
6611 inst.operands[i].isreg = 1;
6612 break;
6613
6614 case OP_RIWR_I32z: po_reg_or_goto (REG_TYPE_MMXWR, I32z); break;
6615 I32z: po_imm_or_fail (0, 32, FALSE); break;
6616
6617 /* Two kinds of register. */
6618 case OP_RIWR_RIWC:
6619 {
6620 struct reg_entry *rege = arm_reg_parse_multi (&str);
6621 if (!rege
6622 || (rege->type != REG_TYPE_MMXWR
6623 && rege->type != REG_TYPE_MMXWC
6624 && rege->type != REG_TYPE_MMXWCG))
6625 {
6626 inst.error = _("iWMMXt data or control register expected");
6627 goto failure;
6628 }
6629 inst.operands[i].reg = rege->number;
6630 inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR);
6631 }
6632 break;
6633
6634 case OP_RIWC_RIWG:
6635 {
6636 struct reg_entry *rege = arm_reg_parse_multi (&str);
6637 if (!rege
6638 || (rege->type != REG_TYPE_MMXWC
6639 && rege->type != REG_TYPE_MMXWCG))
6640 {
6641 inst.error = _("iWMMXt control register expected");
6642 goto failure;
6643 }
6644 inst.operands[i].reg = rege->number;
6645 inst.operands[i].isreg = 1;
6646 }
6647 break;
6648
6649 /* Misc */
6650 case OP_CPSF: val = parse_cps_flags (&str); break;
6651 case OP_ENDI: val = parse_endian_specifier (&str); break;
6652 case OP_oROR: val = parse_ror (&str); break;
6653 case OP_COND: val = parse_cond (&str); break;
6654 case OP_oBARRIER_I15:
6655 po_barrier_or_imm (str); break;
6656 immediate:
6657 if (parse_immediate (&str, &val, 0, 15, TRUE) == FAIL)
6658 goto failure;
6659 break;
6660
6661 case OP_wPSR:
6662 case OP_rPSR:
6663 po_reg_or_goto (REG_TYPE_RNB, try_psr);
6664 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_virt))
6665 {
6666 inst.error = _("Banked registers are not available with this "
6667 "architecture.");
6668 goto failure;
6669 }
6670 break;
6671 try_psr:
6672 val = parse_psr (&str, op_parse_code == OP_wPSR);
6673 break;
6674
6675 case OP_APSR_RR:
6676 po_reg_or_goto (REG_TYPE_RN, try_apsr);
6677 break;
6678 try_apsr:
6679 /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS
6680 instruction). */
6681 if (strncasecmp (str, "APSR_", 5) == 0)
6682 {
6683 unsigned found = 0;
6684 str += 5;
6685 while (found < 15)
6686 switch (*str++)
6687 {
6688 case 'c': found = (found & 1) ? 16 : found | 1; break;
6689 case 'n': found = (found & 2) ? 16 : found | 2; break;
6690 case 'z': found = (found & 4) ? 16 : found | 4; break;
6691 case 'v': found = (found & 8) ? 16 : found | 8; break;
6692 default: found = 16;
6693 }
6694 if (found != 15)
6695 goto failure;
6696 inst.operands[i].isvec = 1;
6697 /* APSR_nzcv is encoded in instructions as if it were the REG_PC. */
6698 inst.operands[i].reg = REG_PC;
6699 }
6700 else
6701 goto failure;
6702 break;
6703
6704 case OP_TB:
6705 po_misc_or_fail (parse_tb (&str));
6706 break;
6707
6708 /* Register lists. */
6709 case OP_REGLST:
6710 val = parse_reg_list (&str);
6711 if (*str == '^')
6712 {
6713 inst.operands[1].writeback = 1;
6714 str++;
6715 }
6716 break;
6717
6718 case OP_VRSLST:
6719 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S);
6720 break;
6721
6722 case OP_VRDLST:
6723 val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D);
6724 break;
6725
6726 case OP_VRSDLST:
6727 /* Allow Q registers too. */
6728 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6729 REGLIST_NEON_D);
6730 if (val == FAIL)
6731 {
6732 inst.error = NULL;
6733 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6734 REGLIST_VFP_S);
6735 inst.operands[i].issingle = 1;
6736 }
6737 break;
6738
6739 case OP_NRDLST:
6740 val = parse_vfp_reg_list (&str, &inst.operands[i].reg,
6741 REGLIST_NEON_D);
6742 break;
6743
6744 case OP_NSTRLST:
6745 val = parse_neon_el_struct_list (&str, &inst.operands[i].reg,
6746 &inst.operands[i].vectype);
6747 break;
6748
6749 /* Addressing modes */
6750 case OP_ADDR:
6751 po_misc_or_fail (parse_address (&str, i));
6752 break;
6753
6754 case OP_ADDRGLDR:
6755 po_misc_or_fail_no_backtrack (
6756 parse_address_group_reloc (&str, i, GROUP_LDR));
6757 break;
6758
6759 case OP_ADDRGLDRS:
6760 po_misc_or_fail_no_backtrack (
6761 parse_address_group_reloc (&str, i, GROUP_LDRS));
6762 break;
6763
6764 case OP_ADDRGLDC:
6765 po_misc_or_fail_no_backtrack (
6766 parse_address_group_reloc (&str, i, GROUP_LDC));
6767 break;
6768
6769 case OP_SH:
6770 po_misc_or_fail (parse_shifter_operand (&str, i));
6771 break;
6772
6773 case OP_SHG:
6774 po_misc_or_fail_no_backtrack (
6775 parse_shifter_operand_group_reloc (&str, i));
6776 break;
6777
6778 case OP_oSHll:
6779 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE));
6780 break;
6781
6782 case OP_oSHar:
6783 po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE));
6784 break;
6785
6786 case OP_oSHllar:
6787 po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE));
6788 break;
6789
6790 default:
6791 as_fatal (_("unhandled operand code %d"), op_parse_code);
6792 }
6793
6794 /* Various value-based sanity checks and shared operations. We
6795 do not signal immediate failures for the register constraints;
6796 this allows a syntax error to take precedence. */
6797 switch (op_parse_code)
6798 {
6799 case OP_oRRnpc:
6800 case OP_RRnpc:
6801 case OP_RRnpcb:
6802 case OP_RRw:
6803 case OP_oRRw:
6804 case OP_RRnpc_I0:
6805 if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC)
6806 inst.error = BAD_PC;
6807 break;
6808
6809 case OP_oRRnpcsp:
6810 case OP_RRnpcsp:
6811 if (inst.operands[i].isreg)
6812 {
6813 if (inst.operands[i].reg == REG_PC)
6814 inst.error = BAD_PC;
6815 else if (inst.operands[i].reg == REG_SP)
6816 inst.error = BAD_SP;
6817 }
6818 break;
6819
6820 case OP_RRnpctw:
6821 if (inst.operands[i].isreg
6822 && inst.operands[i].reg == REG_PC
6823 && (inst.operands[i].writeback || thumb))
6824 inst.error = BAD_PC;
6825 break;
6826
6827 case OP_CPSF:
6828 case OP_ENDI:
6829 case OP_oROR:
6830 case OP_wPSR:
6831 case OP_rPSR:
6832 case OP_COND:
6833 case OP_oBARRIER_I15:
6834 case OP_REGLST:
6835 case OP_VRSLST:
6836 case OP_VRDLST:
6837 case OP_VRSDLST:
6838 case OP_NRDLST:
6839 case OP_NSTRLST:
6840 if (val == FAIL)
6841 goto failure;
6842 inst.operands[i].imm = val;
6843 break;
6844
6845 default:
6846 break;
6847 }
6848
6849 /* If we get here, this operand was successfully parsed. */
6850 inst.operands[i].present = 1;
6851 continue;
6852
6853 bad_args:
6854 inst.error = BAD_ARGS;
6855
6856 failure:
6857 if (!backtrack_pos)
6858 {
6859 /* The parse routine should already have set inst.error, but set a
6860 default here just in case. */
6861 if (!inst.error)
6862 inst.error = _("syntax error");
6863 return FAIL;
6864 }
6865
6866 /* Do not backtrack over a trailing optional argument that
6867 absorbed some text. We will only fail again, with the
6868 'garbage following instruction' error message, which is
6869 probably less helpful than the current one. */
6870 if (backtrack_index == i && backtrack_pos != str
6871 && upat[i+1] == OP_stop)
6872 {
6873 if (!inst.error)
6874 inst.error = _("syntax error");
6875 return FAIL;
6876 }
6877
6878 /* Try again, skipping the optional argument at backtrack_pos. */
6879 str = backtrack_pos;
6880 inst.error = backtrack_error;
6881 inst.operands[backtrack_index].present = 0;
6882 i = backtrack_index;
6883 backtrack_pos = 0;
6884 }
6885
6886 /* Check that we have parsed all the arguments. */
6887 if (*str != '\0' && !inst.error)
6888 inst.error = _("garbage following instruction");
6889
6890 return inst.error ? FAIL : SUCCESS;
6891 }
6892
6893 #undef po_char_or_fail
6894 #undef po_reg_or_fail
6895 #undef po_reg_or_goto
6896 #undef po_imm_or_fail
6897 #undef po_scalar_or_fail
6898 #undef po_barrier_or_imm
6899
6900 /* Shorthand macro for instruction encoding functions issuing errors. */
6901 #define constraint(expr, err) \
6902 do \
6903 { \
6904 if (expr) \
6905 { \
6906 inst.error = err; \
6907 return; \
6908 } \
6909 } \
6910 while (0)
6911
6912 /* Reject "bad registers" for Thumb-2 instructions. Many Thumb-2
6913 instructions are unpredictable if these registers are used. This
6914 is the BadReg predicate in ARM's Thumb-2 documentation. */
6915 #define reject_bad_reg(reg) \
6916 do \
6917 if (reg == REG_SP || reg == REG_PC) \
6918 { \
6919 inst.error = (reg == REG_SP) ? BAD_SP : BAD_PC; \
6920 return; \
6921 } \
6922 while (0)
6923
6924 /* If REG is R13 (the stack pointer), warn that its use is
6925 deprecated. */
6926 #define warn_deprecated_sp(reg) \
6927 do \
6928 if (warn_on_deprecated && reg == REG_SP) \
6929 as_warn (_("use of r13 is deprecated")); \
6930 while (0)
6931
6932 /* Functions for operand encoding. ARM, then Thumb. */
6933
6934 #define rotate_left(v, n) (v << n | v >> (32 - n))
6935
6936 /* If VAL can be encoded in the immediate field of an ARM instruction,
6937 return the encoded form. Otherwise, return FAIL. */
6938
6939 static unsigned int
6940 encode_arm_immediate (unsigned int val)
6941 {
6942 unsigned int a, i;
6943
6944 for (i = 0; i < 32; i += 2)
6945 if ((a = rotate_left (val, i)) <= 0xff)
6946 return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
6947
6948 return FAIL;
6949 }
6950
6951 /* If VAL can be encoded in the immediate field of a Thumb32 instruction,
6952 return the encoded form. Otherwise, return FAIL. */
6953 static unsigned int
6954 encode_thumb32_immediate (unsigned int val)
6955 {
6956 unsigned int a, i;
6957
6958 if (val <= 0xff)
6959 return val;
6960
6961 for (i = 1; i <= 24; i++)
6962 {
6963 a = val >> i;
6964 if ((val & ~(0xff << i)) == 0)
6965 return ((val >> i) & 0x7f) | ((32 - i) << 7);
6966 }
6967
6968 a = val & 0xff;
6969 if (val == ((a << 16) | a))
6970 return 0x100 | a;
6971 if (val == ((a << 24) | (a << 16) | (a << 8) | a))
6972 return 0x300 | a;
6973
6974 a = val & 0xff00;
6975 if (val == ((a << 16) | a))
6976 return 0x200 | (a >> 8);
6977
6978 return FAIL;
6979 }
6980 /* Encode a VFP SP or DP register number into inst.instruction. */
6981
6982 static void
6983 encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos)
6984 {
6985 if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm)
6986 && reg > 15)
6987 {
6988 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_d32))
6989 {
6990 if (thumb_mode)
6991 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
6992 fpu_vfp_ext_d32);
6993 else
6994 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
6995 fpu_vfp_ext_d32);
6996 }
6997 else
6998 {
6999 first_error (_("D register out of range for selected VFP version"));
7000 return;
7001 }
7002 }
7003
7004 switch (pos)
7005 {
7006 case VFP_REG_Sd:
7007 inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22);
7008 break;
7009
7010 case VFP_REG_Sn:
7011 inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7);
7012 break;
7013
7014 case VFP_REG_Sm:
7015 inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5);
7016 break;
7017
7018 case VFP_REG_Dd:
7019 inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22);
7020 break;
7021
7022 case VFP_REG_Dn:
7023 inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7);
7024 break;
7025
7026 case VFP_REG_Dm:
7027 inst.instruction |= (reg & 15) | ((reg >> 4) << 5);
7028 break;
7029
7030 default:
7031 abort ();
7032 }
7033 }
7034
7035 /* Encode a <shift> in an ARM-format instruction. The immediate,
7036 if any, is handled by md_apply_fix. */
7037 static void
7038 encode_arm_shift (int i)
7039 {
7040 if (inst.operands[i].shift_kind == SHIFT_RRX)
7041 inst.instruction |= SHIFT_ROR << 5;
7042 else
7043 {
7044 inst.instruction |= inst.operands[i].shift_kind << 5;
7045 if (inst.operands[i].immisreg)
7046 {
7047 inst.instruction |= SHIFT_BY_REG;
7048 inst.instruction |= inst.operands[i].imm << 8;
7049 }
7050 else
7051 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7052 }
7053 }
7054
7055 static void
7056 encode_arm_shifter_operand (int i)
7057 {
7058 if (inst.operands[i].isreg)
7059 {
7060 inst.instruction |= inst.operands[i].reg;
7061 encode_arm_shift (i);
7062 }
7063 else
7064 {
7065 inst.instruction |= INST_IMMEDIATE;
7066 if (inst.reloc.type != BFD_RELOC_ARM_IMMEDIATE)
7067 inst.instruction |= inst.operands[i].imm;
7068 }
7069 }
7070
7071 /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */
7072 static void
7073 encode_arm_addr_mode_common (int i, bfd_boolean is_t)
7074 {
7075 /* PR 14260:
7076 Generate an error if the operand is not a register. */
7077 constraint (!inst.operands[i].isreg,
7078 _("Instruction does not support =N addresses"));
7079
7080 inst.instruction |= inst.operands[i].reg << 16;
7081
7082 if (inst.operands[i].preind)
7083 {
7084 if (is_t)
7085 {
7086 inst.error = _("instruction does not accept preindexed addressing");
7087 return;
7088 }
7089 inst.instruction |= PRE_INDEX;
7090 if (inst.operands[i].writeback)
7091 inst.instruction |= WRITE_BACK;
7092
7093 }
7094 else if (inst.operands[i].postind)
7095 {
7096 gas_assert (inst.operands[i].writeback);
7097 if (is_t)
7098 inst.instruction |= WRITE_BACK;
7099 }
7100 else /* unindexed - only for coprocessor */
7101 {
7102 inst.error = _("instruction does not accept unindexed addressing");
7103 return;
7104 }
7105
7106 if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX))
7107 && (((inst.instruction & 0x000f0000) >> 16)
7108 == ((inst.instruction & 0x0000f000) >> 12)))
7109 as_warn ((inst.instruction & LOAD_BIT)
7110 ? _("destination register same as write-back base")
7111 : _("source register same as write-back base"));
7112 }
7113
7114 /* inst.operands[i] was set up by parse_address. Encode it into an
7115 ARM-format mode 2 load or store instruction. If is_t is true,
7116 reject forms that cannot be used with a T instruction (i.e. not
7117 post-indexed). */
7118 static void
7119 encode_arm_addr_mode_2 (int i, bfd_boolean is_t)
7120 {
7121 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
7122
7123 encode_arm_addr_mode_common (i, is_t);
7124
7125 if (inst.operands[i].immisreg)
7126 {
7127 constraint ((inst.operands[i].imm == REG_PC
7128 || (is_pc && inst.operands[i].writeback)),
7129 BAD_PC_ADDRESSING);
7130 inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */
7131 inst.instruction |= inst.operands[i].imm;
7132 if (!inst.operands[i].negative)
7133 inst.instruction |= INDEX_UP;
7134 if (inst.operands[i].shifted)
7135 {
7136 if (inst.operands[i].shift_kind == SHIFT_RRX)
7137 inst.instruction |= SHIFT_ROR << 5;
7138 else
7139 {
7140 inst.instruction |= inst.operands[i].shift_kind << 5;
7141 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
7142 }
7143 }
7144 }
7145 else /* immediate offset in inst.reloc */
7146 {
7147 if (is_pc && !inst.reloc.pc_rel)
7148 {
7149 const bfd_boolean is_load = ((inst.instruction & LOAD_BIT) != 0);
7150
7151 /* If is_t is TRUE, it's called from do_ldstt. ldrt/strt
7152 cannot use PC in addressing.
7153 PC cannot be used in writeback addressing, either. */
7154 constraint ((is_t || inst.operands[i].writeback),
7155 BAD_PC_ADDRESSING);
7156
7157 /* Use of PC in str is deprecated for ARMv7. */
7158 if (warn_on_deprecated
7159 && !is_load
7160 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
7161 as_warn (_("use of PC in this instruction is deprecated"));
7162 }
7163
7164 if (inst.reloc.type == BFD_RELOC_UNUSED)
7165 {
7166 /* Prefer + for zero encoded value. */
7167 if (!inst.operands[i].negative)
7168 inst.instruction |= INDEX_UP;
7169 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
7170 }
7171 }
7172 }
7173
7174 /* inst.operands[i] was set up by parse_address. Encode it into an
7175 ARM-format mode 3 load or store instruction. Reject forms that
7176 cannot be used with such instructions. If is_t is true, reject
7177 forms that cannot be used with a T instruction (i.e. not
7178 post-indexed). */
7179 static void
7180 encode_arm_addr_mode_3 (int i, bfd_boolean is_t)
7181 {
7182 if (inst.operands[i].immisreg && inst.operands[i].shifted)
7183 {
7184 inst.error = _("instruction does not accept scaled register index");
7185 return;
7186 }
7187
7188 encode_arm_addr_mode_common (i, is_t);
7189
7190 if (inst.operands[i].immisreg)
7191 {
7192 constraint ((inst.operands[i].imm == REG_PC
7193 || inst.operands[i].reg == REG_PC),
7194 BAD_PC_ADDRESSING);
7195 inst.instruction |= inst.operands[i].imm;
7196 if (!inst.operands[i].negative)
7197 inst.instruction |= INDEX_UP;
7198 }
7199 else /* immediate offset in inst.reloc */
7200 {
7201 constraint ((inst.operands[i].reg == REG_PC && !inst.reloc.pc_rel
7202 && inst.operands[i].writeback),
7203 BAD_PC_WRITEBACK);
7204 inst.instruction |= HWOFFSET_IMM;
7205 if (inst.reloc.type == BFD_RELOC_UNUSED)
7206 {
7207 /* Prefer + for zero encoded value. */
7208 if (!inst.operands[i].negative)
7209 inst.instruction |= INDEX_UP;
7210
7211 inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
7212 }
7213 }
7214 }
7215
7216 /* inst.operands[i] was set up by parse_address. Encode it into an
7217 ARM-format instruction. Reject all forms which cannot be encoded
7218 into a coprocessor load/store instruction. If wb_ok is false,
7219 reject use of writeback; if unind_ok is false, reject use of
7220 unindexed addressing. If reloc_override is not 0, use it instead
7221 of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one
7222 (in which case it is preserved). */
7223
7224 static int
7225 encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override)
7226 {
7227 inst.instruction |= inst.operands[i].reg << 16;
7228
7229 gas_assert (!(inst.operands[i].preind && inst.operands[i].postind));
7230
7231 if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */
7232 {
7233 gas_assert (!inst.operands[i].writeback);
7234 if (!unind_ok)
7235 {
7236 inst.error = _("instruction does not support unindexed addressing");
7237 return FAIL;
7238 }
7239 inst.instruction |= inst.operands[i].imm;
7240 inst.instruction |= INDEX_UP;
7241 return SUCCESS;
7242 }
7243
7244 if (inst.operands[i].preind)
7245 inst.instruction |= PRE_INDEX;
7246
7247 if (inst.operands[i].writeback)
7248 {
7249 if (inst.operands[i].reg == REG_PC)
7250 {
7251 inst.error = _("pc may not be used with write-back");
7252 return FAIL;
7253 }
7254 if (!wb_ok)
7255 {
7256 inst.error = _("instruction does not support writeback");
7257 return FAIL;
7258 }
7259 inst.instruction |= WRITE_BACK;
7260 }
7261
7262 if (reloc_override)
7263 inst.reloc.type = (bfd_reloc_code_real_type) reloc_override;
7264 else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC
7265 || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2)
7266 && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0)
7267 {
7268 if (thumb_mode)
7269 inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM;
7270 else
7271 inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
7272 }
7273
7274 /* Prefer + for zero encoded value. */
7275 if (!inst.operands[i].negative)
7276 inst.instruction |= INDEX_UP;
7277
7278 return SUCCESS;
7279 }
7280
7281 /* inst.reloc.exp describes an "=expr" load pseudo-operation.
7282 Determine whether it can be performed with a move instruction; if
7283 it can, convert inst.instruction to that move instruction and
7284 return TRUE; if it can't, convert inst.instruction to a literal-pool
7285 load and return FALSE. If this is not a valid thing to do in the
7286 current context, set inst.error and return TRUE.
7287
7288 inst.operands[i] describes the destination register. */
7289
7290 static bfd_boolean
7291 move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3)
7292 {
7293 unsigned long tbit;
7294
7295 if (thumb_p)
7296 tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT;
7297 else
7298 tbit = LOAD_BIT;
7299
7300 if ((inst.instruction & tbit) == 0)
7301 {
7302 inst.error = _("invalid pseudo operation");
7303 return TRUE;
7304 }
7305 if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol)
7306 {
7307 inst.error = _("constant expression expected");
7308 return TRUE;
7309 }
7310 if (inst.reloc.exp.X_op == O_constant)
7311 {
7312 if (thumb_p)
7313 {
7314 if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0)
7315 {
7316 /* This can be done with a mov(1) instruction. */
7317 inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8);
7318 inst.instruction |= inst.reloc.exp.X_add_number;
7319 return TRUE;
7320 }
7321 }
7322 else
7323 {
7324 int value = encode_arm_immediate (inst.reloc.exp.X_add_number);
7325 if (value != FAIL)
7326 {
7327 /* This can be done with a mov instruction. */
7328 inst.instruction &= LITERAL_MASK;
7329 inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
7330 inst.instruction |= value & 0xfff;
7331 return TRUE;
7332 }
7333
7334 value = encode_arm_immediate (~inst.reloc.exp.X_add_number);
7335 if (value != FAIL)
7336 {
7337 /* This can be done with a mvn instruction. */
7338 inst.instruction &= LITERAL_MASK;
7339 inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
7340 inst.instruction |= value & 0xfff;
7341 return TRUE;
7342 }
7343 }
7344 }
7345
7346 if (add_to_lit_pool () == FAIL)
7347 {
7348 inst.error = _("literal pool insertion failed");
7349 return TRUE;
7350 }
7351 inst.operands[1].reg = REG_PC;
7352 inst.operands[1].isreg = 1;
7353 inst.operands[1].preind = 1;
7354 inst.reloc.pc_rel = 1;
7355 inst.reloc.type = (thumb_p
7356 ? BFD_RELOC_ARM_THUMB_OFFSET
7357 : (mode_3
7358 ? BFD_RELOC_ARM_HWLITERAL
7359 : BFD_RELOC_ARM_LITERAL));
7360 return FALSE;
7361 }
7362
7363 /* Functions for instruction encoding, sorted by sub-architecture.
7364 First some generics; their names are taken from the conventional
7365 bit positions for register arguments in ARM format instructions. */
7366
7367 static void
7368 do_noargs (void)
7369 {
7370 }
7371
7372 static void
7373 do_rd (void)
7374 {
7375 inst.instruction |= inst.operands[0].reg << 12;
7376 }
7377
7378 static void
7379 do_rd_rm (void)
7380 {
7381 inst.instruction |= inst.operands[0].reg << 12;
7382 inst.instruction |= inst.operands[1].reg;
7383 }
7384
7385 static void
7386 do_rd_rn (void)
7387 {
7388 inst.instruction |= inst.operands[0].reg << 12;
7389 inst.instruction |= inst.operands[1].reg << 16;
7390 }
7391
7392 static void
7393 do_rn_rd (void)
7394 {
7395 inst.instruction |= inst.operands[0].reg << 16;
7396 inst.instruction |= inst.operands[1].reg << 12;
7397 }
7398
7399 static bfd_boolean
7400 check_obsolete (const arm_feature_set *feature, const char *msg)
7401 {
7402 if (ARM_CPU_IS_ANY (cpu_variant))
7403 {
7404 as_warn ("%s", msg);
7405 return TRUE;
7406 }
7407 else if (ARM_CPU_HAS_FEATURE (cpu_variant, *feature))
7408 {
7409 as_bad ("%s", msg);
7410 return TRUE;
7411 }
7412
7413 return FALSE;
7414 }
7415
7416 static void
7417 do_rd_rm_rn (void)
7418 {
7419 unsigned Rn = inst.operands[2].reg;
7420 /* Enforce restrictions on SWP instruction. */
7421 if ((inst.instruction & 0x0fbfffff) == 0x01000090)
7422 {
7423 constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg,
7424 _("Rn must not overlap other operands"));
7425
7426 /* SWP{b} is obsolete for ARMv8-A, and deprecated for ARMv6* and ARMv7.
7427 */
7428 if (!check_obsolete (&arm_ext_v8,
7429 _("swp{b} use is obsoleted for ARMv8 and later"))
7430 && warn_on_deprecated
7431 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6))
7432 as_warn (_("swp{b} use is deprecated for ARMv6 and ARMv7"));
7433 }
7434
7435 inst.instruction |= inst.operands[0].reg << 12;
7436 inst.instruction |= inst.operands[1].reg;
7437 inst.instruction |= Rn << 16;
7438 }
7439
7440 static void
7441 do_rd_rn_rm (void)
7442 {
7443 inst.instruction |= inst.operands[0].reg << 12;
7444 inst.instruction |= inst.operands[1].reg << 16;
7445 inst.instruction |= inst.operands[2].reg;
7446 }
7447
7448 static void
7449 do_rm_rd_rn (void)
7450 {
7451 constraint ((inst.operands[2].reg == REG_PC), BAD_PC);
7452 constraint (((inst.reloc.exp.X_op != O_constant
7453 && inst.reloc.exp.X_op != O_illegal)
7454 || inst.reloc.exp.X_add_number != 0),
7455 BAD_ADDR_MODE);
7456 inst.instruction |= inst.operands[0].reg;
7457 inst.instruction |= inst.operands[1].reg << 12;
7458 inst.instruction |= inst.operands[2].reg << 16;
7459 }
7460
7461 static void
7462 do_imm0 (void)
7463 {
7464 inst.instruction |= inst.operands[0].imm;
7465 }
7466
7467 static void
7468 do_rd_cpaddr (void)
7469 {
7470 inst.instruction |= inst.operands[0].reg << 12;
7471 encode_arm_cp_address (1, TRUE, TRUE, 0);
7472 }
7473
7474 /* ARM instructions, in alphabetical order by function name (except
7475 that wrapper functions appear immediately after the function they
7476 wrap). */
7477
7478 /* This is a pseudo-op of the form "adr rd, label" to be converted
7479 into a relative address of the form "add rd, pc, #label-.-8". */
7480
7481 static void
7482 do_adr (void)
7483 {
7484 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7485
7486 /* Frag hacking will turn this into a sub instruction if the offset turns
7487 out to be negative. */
7488 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
7489 inst.reloc.pc_rel = 1;
7490 inst.reloc.exp.X_add_number -= 8;
7491 }
7492
7493 /* This is a pseudo-op of the form "adrl rd, label" to be converted
7494 into a relative address of the form:
7495 add rd, pc, #low(label-.-8)"
7496 add rd, rd, #high(label-.-8)" */
7497
7498 static void
7499 do_adrl (void)
7500 {
7501 inst.instruction |= (inst.operands[0].reg << 12); /* Rd */
7502
7503 /* Frag hacking will turn this into a sub instruction if the offset turns
7504 out to be negative. */
7505 inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
7506 inst.reloc.pc_rel = 1;
7507 inst.size = INSN_SIZE * 2;
7508 inst.reloc.exp.X_add_number -= 8;
7509 }
7510
7511 static void
7512 do_arit (void)
7513 {
7514 if (!inst.operands[1].present)
7515 inst.operands[1].reg = inst.operands[0].reg;
7516 inst.instruction |= inst.operands[0].reg << 12;
7517 inst.instruction |= inst.operands[1].reg << 16;
7518 encode_arm_shifter_operand (2);
7519 }
7520
7521 static void
7522 do_barrier (void)
7523 {
7524 if (inst.operands[0].present)
7525 {
7526 constraint ((inst.instruction & 0xf0) != 0x40
7527 && inst.operands[0].imm > 0xf
7528 && inst.operands[0].imm < 0x0,
7529 _("bad barrier type"));
7530 inst.instruction |= inst.operands[0].imm;
7531 }
7532 else
7533 inst.instruction |= 0xf;
7534 }
7535
7536 static void
7537 do_bfc (void)
7538 {
7539 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
7540 constraint (msb > 32, _("bit-field extends past end of register"));
7541 /* The instruction encoding stores the LSB and MSB,
7542 not the LSB and width. */
7543 inst.instruction |= inst.operands[0].reg << 12;
7544 inst.instruction |= inst.operands[1].imm << 7;
7545 inst.instruction |= (msb - 1) << 16;
7546 }
7547
7548 static void
7549 do_bfi (void)
7550 {
7551 unsigned int msb;
7552
7553 /* #0 in second position is alternative syntax for bfc, which is
7554 the same instruction but with REG_PC in the Rm field. */
7555 if (!inst.operands[1].isreg)
7556 inst.operands[1].reg = REG_PC;
7557
7558 msb = inst.operands[2].imm + inst.operands[3].imm;
7559 constraint (msb > 32, _("bit-field extends past end of register"));
7560 /* The instruction encoding stores the LSB and MSB,
7561 not the LSB and width. */
7562 inst.instruction |= inst.operands[0].reg << 12;
7563 inst.instruction |= inst.operands[1].reg;
7564 inst.instruction |= inst.operands[2].imm << 7;
7565 inst.instruction |= (msb - 1) << 16;
7566 }
7567
7568 static void
7569 do_bfx (void)
7570 {
7571 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
7572 _("bit-field extends past end of register"));
7573 inst.instruction |= inst.operands[0].reg << 12;
7574 inst.instruction |= inst.operands[1].reg;
7575 inst.instruction |= inst.operands[2].imm << 7;
7576 inst.instruction |= (inst.operands[3].imm - 1) << 16;
7577 }
7578
7579 /* ARM V5 breakpoint instruction (argument parse)
7580 BKPT <16 bit unsigned immediate>
7581 Instruction is not conditional.
7582 The bit pattern given in insns[] has the COND_ALWAYS condition,
7583 and it is an error if the caller tried to override that. */
7584
7585 static void
7586 do_bkpt (void)
7587 {
7588 /* Top 12 of 16 bits to bits 19:8. */
7589 inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4;
7590
7591 /* Bottom 4 of 16 bits to bits 3:0. */
7592 inst.instruction |= inst.operands[0].imm & 0xf;
7593 }
7594
7595 static void
7596 encode_branch (int default_reloc)
7597 {
7598 if (inst.operands[0].hasreloc)
7599 {
7600 constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32
7601 && inst.operands[0].imm != BFD_RELOC_ARM_TLS_CALL,
7602 _("the only valid suffixes here are '(plt)' and '(tlscall)'"));
7603 inst.reloc.type = inst.operands[0].imm == BFD_RELOC_ARM_PLT32
7604 ? BFD_RELOC_ARM_PLT32
7605 : thumb_mode ? BFD_RELOC_ARM_THM_TLS_CALL : BFD_RELOC_ARM_TLS_CALL;
7606 }
7607 else
7608 inst.reloc.type = (bfd_reloc_code_real_type) default_reloc;
7609 inst.reloc.pc_rel = 1;
7610 }
7611
7612 static void
7613 do_branch (void)
7614 {
7615 #ifdef OBJ_ELF
7616 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7617 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7618 else
7619 #endif
7620 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7621 }
7622
7623 static void
7624 do_bl (void)
7625 {
7626 #ifdef OBJ_ELF
7627 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
7628 {
7629 if (inst.cond == COND_ALWAYS)
7630 encode_branch (BFD_RELOC_ARM_PCREL_CALL);
7631 else
7632 encode_branch (BFD_RELOC_ARM_PCREL_JUMP);
7633 }
7634 else
7635 #endif
7636 encode_branch (BFD_RELOC_ARM_PCREL_BRANCH);
7637 }
7638
7639 /* ARM V5 branch-link-exchange instruction (argument parse)
7640 BLX <target_addr> ie BLX(1)
7641 BLX{<condition>} <Rm> ie BLX(2)
7642 Unfortunately, there are two different opcodes for this mnemonic.
7643 So, the insns[].value is not used, and the code here zaps values
7644 into inst.instruction.
7645 Also, the <target_addr> can be 25 bits, hence has its own reloc. */
7646
7647 static void
7648 do_blx (void)
7649 {
7650 if (inst.operands[0].isreg)
7651 {
7652 /* Arg is a register; the opcode provided by insns[] is correct.
7653 It is not illegal to do "blx pc", just useless. */
7654 if (inst.operands[0].reg == REG_PC)
7655 as_tsktsk (_("use of r15 in blx in ARM mode is not really useful"));
7656
7657 inst.instruction |= inst.operands[0].reg;
7658 }
7659 else
7660 {
7661 /* Arg is an address; this instruction cannot be executed
7662 conditionally, and the opcode must be adjusted.
7663 We retain the BFD_RELOC_ARM_PCREL_BLX till the very end
7664 where we generate out a BFD_RELOC_ARM_PCREL_CALL instead. */
7665 constraint (inst.cond != COND_ALWAYS, BAD_COND);
7666 inst.instruction = 0xfa000000;
7667 encode_branch (BFD_RELOC_ARM_PCREL_BLX);
7668 }
7669 }
7670
7671 static void
7672 do_bx (void)
7673 {
7674 bfd_boolean want_reloc;
7675
7676 if (inst.operands[0].reg == REG_PC)
7677 as_tsktsk (_("use of r15 in bx in ARM mode is not really useful"));
7678
7679 inst.instruction |= inst.operands[0].reg;
7680 /* Output R_ARM_V4BX relocations if is an EABI object that looks like
7681 it is for ARMv4t or earlier. */
7682 want_reloc = !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5);
7683 if (object_arch && !ARM_CPU_HAS_FEATURE (*object_arch, arm_ext_v5))
7684 want_reloc = TRUE;
7685
7686 #ifdef OBJ_ELF
7687 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
7688 #endif
7689 want_reloc = FALSE;
7690
7691 if (want_reloc)
7692 inst.reloc.type = BFD_RELOC_ARM_V4BX;
7693 }
7694
7695
7696 /* ARM v5TEJ. Jump to Jazelle code. */
7697
7698 static void
7699 do_bxj (void)
7700 {
7701 if (inst.operands[0].reg == REG_PC)
7702 as_tsktsk (_("use of r15 in bxj is not really useful"));
7703
7704 inst.instruction |= inst.operands[0].reg;
7705 }
7706
7707 /* Co-processor data operation:
7708 CDP{cond} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>}
7709 CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>{, <opcode_2>} */
7710 static void
7711 do_cdp (void)
7712 {
7713 inst.instruction |= inst.operands[0].reg << 8;
7714 inst.instruction |= inst.operands[1].imm << 20;
7715 inst.instruction |= inst.operands[2].reg << 12;
7716 inst.instruction |= inst.operands[3].reg << 16;
7717 inst.instruction |= inst.operands[4].reg;
7718 inst.instruction |= inst.operands[5].imm << 5;
7719 }
7720
7721 static void
7722 do_cmp (void)
7723 {
7724 inst.instruction |= inst.operands[0].reg << 16;
7725 encode_arm_shifter_operand (1);
7726 }
7727
7728 /* Transfer between coprocessor and ARM registers.
7729 MRC{cond} <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>{, <opcode_2>}
7730 MRC2
7731 MCR{cond}
7732 MCR2
7733
7734 No special properties. */
7735
7736 struct deprecated_coproc_regs_s
7737 {
7738 unsigned cp;
7739 int opc1;
7740 unsigned crn;
7741 unsigned crm;
7742 int opc2;
7743 arm_feature_set deprecated;
7744 arm_feature_set obsoleted;
7745 const char *dep_msg;
7746 const char *obs_msg;
7747 };
7748
7749 #define DEPR_ACCESS_V8 \
7750 N_("This coprocessor register access is deprecated in ARMv8")
7751
7752 /* Table of all deprecated coprocessor registers. */
7753 static struct deprecated_coproc_regs_s deprecated_coproc_regs[] =
7754 {
7755 {15, 0, 7, 10, 5, /* CP15DMB. */
7756 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7757 DEPR_ACCESS_V8, NULL},
7758 {15, 0, 7, 10, 4, /* CP15DSB. */
7759 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7760 DEPR_ACCESS_V8, NULL},
7761 {15, 0, 7, 5, 4, /* CP15ISB. */
7762 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7763 DEPR_ACCESS_V8, NULL},
7764 {14, 6, 1, 0, 0, /* TEEHBR. */
7765 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7766 DEPR_ACCESS_V8, NULL},
7767 {14, 6, 0, 0, 0, /* TEECR. */
7768 ARM_FEATURE (ARM_EXT_V8, 0), ARM_FEATURE (0, 0),
7769 DEPR_ACCESS_V8, NULL},
7770 };
7771
7772 #undef DEPR_ACCESS_V8
7773
7774 static const size_t deprecated_coproc_reg_count =
7775 sizeof (deprecated_coproc_regs) / sizeof (deprecated_coproc_regs[0]);
7776
7777 static void
7778 do_co_reg (void)
7779 {
7780 unsigned Rd;
7781 size_t i;
7782
7783 Rd = inst.operands[2].reg;
7784 if (thumb_mode)
7785 {
7786 if (inst.instruction == 0xee000010
7787 || inst.instruction == 0xfe000010)
7788 /* MCR, MCR2 */
7789 reject_bad_reg (Rd);
7790 else
7791 /* MRC, MRC2 */
7792 constraint (Rd == REG_SP, BAD_SP);
7793 }
7794 else
7795 {
7796 /* MCR */
7797 if (inst.instruction == 0xe000010)
7798 constraint (Rd == REG_PC, BAD_PC);
7799 }
7800
7801 for (i = 0; i < deprecated_coproc_reg_count; ++i)
7802 {
7803 const struct deprecated_coproc_regs_s *r =
7804 deprecated_coproc_regs + i;
7805
7806 if (inst.operands[0].reg == r->cp
7807 && inst.operands[1].imm == r->opc1
7808 && inst.operands[3].reg == r->crn
7809 && inst.operands[4].reg == r->crm
7810 && inst.operands[5].imm == r->opc2)
7811 {
7812 if (!check_obsolete (&r->obsoleted, r->obs_msg)
7813 && warn_on_deprecated
7814 && ARM_CPU_HAS_FEATURE (cpu_variant, r->deprecated))
7815 as_warn ("%s", r->dep_msg);
7816 }
7817 }
7818
7819 inst.instruction |= inst.operands[0].reg << 8;
7820 inst.instruction |= inst.operands[1].imm << 21;
7821 inst.instruction |= Rd << 12;
7822 inst.instruction |= inst.operands[3].reg << 16;
7823 inst.instruction |= inst.operands[4].reg;
7824 inst.instruction |= inst.operands[5].imm << 5;
7825 }
7826
7827 /* Transfer between coprocessor register and pair of ARM registers.
7828 MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
7829 MCRR2
7830 MRRC{cond}
7831 MRRC2
7832
7833 Two XScale instructions are special cases of these:
7834
7835 MAR{cond} acc0, <RdLo>, <RdHi> == MCRR{cond} p0, #0, <RdLo>, <RdHi>, c0
7836 MRA{cond} acc0, <RdLo>, <RdHi> == MRRC{cond} p0, #0, <RdLo>, <RdHi>, c0
7837
7838 Result unpredictable if Rd or Rn is R15. */
7839
7840 static void
7841 do_co_reg2c (void)
7842 {
7843 unsigned Rd, Rn;
7844
7845 Rd = inst.operands[2].reg;
7846 Rn = inst.operands[3].reg;
7847
7848 if (thumb_mode)
7849 {
7850 reject_bad_reg (Rd);
7851 reject_bad_reg (Rn);
7852 }
7853 else
7854 {
7855 constraint (Rd == REG_PC, BAD_PC);
7856 constraint (Rn == REG_PC, BAD_PC);
7857 }
7858
7859 inst.instruction |= inst.operands[0].reg << 8;
7860 inst.instruction |= inst.operands[1].imm << 4;
7861 inst.instruction |= Rd << 12;
7862 inst.instruction |= Rn << 16;
7863 inst.instruction |= inst.operands[4].reg;
7864 }
7865
7866 static void
7867 do_cpsi (void)
7868 {
7869 inst.instruction |= inst.operands[0].imm << 6;
7870 if (inst.operands[1].present)
7871 {
7872 inst.instruction |= CPSI_MMOD;
7873 inst.instruction |= inst.operands[1].imm;
7874 }
7875 }
7876
7877 static void
7878 do_dbg (void)
7879 {
7880 inst.instruction |= inst.operands[0].imm;
7881 }
7882
7883 static void
7884 do_div (void)
7885 {
7886 unsigned Rd, Rn, Rm;
7887
7888 Rd = inst.operands[0].reg;
7889 Rn = (inst.operands[1].present
7890 ? inst.operands[1].reg : Rd);
7891 Rm = inst.operands[2].reg;
7892
7893 constraint ((Rd == REG_PC), BAD_PC);
7894 constraint ((Rn == REG_PC), BAD_PC);
7895 constraint ((Rm == REG_PC), BAD_PC);
7896
7897 inst.instruction |= Rd << 16;
7898 inst.instruction |= Rn << 0;
7899 inst.instruction |= Rm << 8;
7900 }
7901
7902 static void
7903 do_it (void)
7904 {
7905 /* There is no IT instruction in ARM mode. We
7906 process it to do the validation as if in
7907 thumb mode, just in case the code gets
7908 assembled for thumb using the unified syntax. */
7909
7910 inst.size = 0;
7911 if (unified_syntax)
7912 {
7913 set_it_insn_type (IT_INSN);
7914 now_it.mask = (inst.instruction & 0xf) | 0x10;
7915 now_it.cc = inst.operands[0].imm;
7916 }
7917 }
7918
7919 /* If there is only one register in the register list,
7920 then return its register number. Otherwise return -1. */
7921 static int
7922 only_one_reg_in_list (int range)
7923 {
7924 int i = ffs (range) - 1;
7925 return (i > 15 || range != (1 << i)) ? -1 : i;
7926 }
7927
7928 static void
7929 encode_ldmstm(int from_push_pop_mnem)
7930 {
7931 int base_reg = inst.operands[0].reg;
7932 int range = inst.operands[1].imm;
7933 int one_reg;
7934
7935 inst.instruction |= base_reg << 16;
7936 inst.instruction |= range;
7937
7938 if (inst.operands[1].writeback)
7939 inst.instruction |= LDM_TYPE_2_OR_3;
7940
7941 if (inst.operands[0].writeback)
7942 {
7943 inst.instruction |= WRITE_BACK;
7944 /* Check for unpredictable uses of writeback. */
7945 if (inst.instruction & LOAD_BIT)
7946 {
7947 /* Not allowed in LDM type 2. */
7948 if ((inst.instruction & LDM_TYPE_2_OR_3)
7949 && ((range & (1 << REG_PC)) == 0))
7950 as_warn (_("writeback of base register is UNPREDICTABLE"));
7951 /* Only allowed if base reg not in list for other types. */
7952 else if (range & (1 << base_reg))
7953 as_warn (_("writeback of base register when in register list is UNPREDICTABLE"));
7954 }
7955 else /* STM. */
7956 {
7957 /* Not allowed for type 2. */
7958 if (inst.instruction & LDM_TYPE_2_OR_3)
7959 as_warn (_("writeback of base register is UNPREDICTABLE"));
7960 /* Only allowed if base reg not in list, or first in list. */
7961 else if ((range & (1 << base_reg))
7962 && (range & ((1 << base_reg) - 1)))
7963 as_warn (_("if writeback register is in list, it must be the lowest reg in the list"));
7964 }
7965 }
7966
7967 /* If PUSH/POP has only one register, then use the A2 encoding. */
7968 one_reg = only_one_reg_in_list (range);
7969 if (from_push_pop_mnem && one_reg >= 0)
7970 {
7971 int is_push = (inst.instruction & A_PUSH_POP_OP_MASK) == A1_OPCODE_PUSH;
7972
7973 inst.instruction &= A_COND_MASK;
7974 inst.instruction |= is_push ? A2_OPCODE_PUSH : A2_OPCODE_POP;
7975 inst.instruction |= one_reg << 12;
7976 }
7977 }
7978
7979 static void
7980 do_ldmstm (void)
7981 {
7982 encode_ldmstm (/*from_push_pop_mnem=*/FALSE);
7983 }
7984
7985 /* ARMv5TE load-consecutive (argument parse)
7986 Mode is like LDRH.
7987
7988 LDRccD R, mode
7989 STRccD R, mode. */
7990
7991 static void
7992 do_ldrd (void)
7993 {
7994 constraint (inst.operands[0].reg % 2 != 0,
7995 _("first transfer register must be even"));
7996 constraint (inst.operands[1].present
7997 && inst.operands[1].reg != inst.operands[0].reg + 1,
7998 _("can only transfer two consecutive registers"));
7999 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8000 constraint (!inst.operands[2].isreg, _("'[' expected"));
8001
8002 if (!inst.operands[1].present)
8003 inst.operands[1].reg = inst.operands[0].reg + 1;
8004
8005 /* encode_arm_addr_mode_3 will diagnose overlap between the base
8006 register and the first register written; we have to diagnose
8007 overlap between the base and the second register written here. */
8008
8009 if (inst.operands[2].reg == inst.operands[1].reg
8010 && (inst.operands[2].writeback || inst.operands[2].postind))
8011 as_warn (_("base register written back, and overlaps "
8012 "second transfer register"));
8013
8014 if (!(inst.instruction & V4_STR_BIT))
8015 {
8016 /* For an index-register load, the index register must not overlap the
8017 destination (even if not write-back). */
8018 if (inst.operands[2].immisreg
8019 && ((unsigned) inst.operands[2].imm == inst.operands[0].reg
8020 || (unsigned) inst.operands[2].imm == inst.operands[1].reg))
8021 as_warn (_("index register overlaps transfer register"));
8022 }
8023 inst.instruction |= inst.operands[0].reg << 12;
8024 encode_arm_addr_mode_3 (2, /*is_t=*/FALSE);
8025 }
8026
8027 static void
8028 do_ldrex (void)
8029 {
8030 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
8031 || inst.operands[1].postind || inst.operands[1].writeback
8032 || inst.operands[1].immisreg || inst.operands[1].shifted
8033 || inst.operands[1].negative
8034 /* This can arise if the programmer has written
8035 strex rN, rM, foo
8036 or if they have mistakenly used a register name as the last
8037 operand, eg:
8038 strex rN, rM, rX
8039 It is very difficult to distinguish between these two cases
8040 because "rX" might actually be a label. ie the register
8041 name has been occluded by a symbol of the same name. So we
8042 just generate a general 'bad addressing mode' type error
8043 message and leave it up to the programmer to discover the
8044 true cause and fix their mistake. */
8045 || (inst.operands[1].reg == REG_PC),
8046 BAD_ADDR_MODE);
8047
8048 constraint (inst.reloc.exp.X_op != O_constant
8049 || inst.reloc.exp.X_add_number != 0,
8050 _("offset must be zero in ARM encoding"));
8051
8052 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
8053
8054 inst.instruction |= inst.operands[0].reg << 12;
8055 inst.instruction |= inst.operands[1].reg << 16;
8056 inst.reloc.type = BFD_RELOC_UNUSED;
8057 }
8058
8059 static void
8060 do_ldrexd (void)
8061 {
8062 constraint (inst.operands[0].reg % 2 != 0,
8063 _("even register required"));
8064 constraint (inst.operands[1].present
8065 && inst.operands[1].reg != inst.operands[0].reg + 1,
8066 _("can only load two consecutive registers"));
8067 /* If op 1 were present and equal to PC, this function wouldn't
8068 have been called in the first place. */
8069 constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here"));
8070
8071 inst.instruction |= inst.operands[0].reg << 12;
8072 inst.instruction |= inst.operands[2].reg << 16;
8073 }
8074
8075 /* In both ARM and thumb state 'ldr pc, #imm' with an immediate
8076 which is not a multiple of four is UNPREDICTABLE. */
8077 static void
8078 check_ldr_r15_aligned (void)
8079 {
8080 constraint (!(inst.operands[1].immisreg)
8081 && (inst.operands[0].reg == REG_PC
8082 && inst.operands[1].reg == REG_PC
8083 && (inst.reloc.exp.X_add_number & 0x3)),
8084 _("ldr to register 15 must be 4-byte alligned"));
8085 }
8086
8087 static void
8088 do_ldst (void)
8089 {
8090 inst.instruction |= inst.operands[0].reg << 12;
8091 if (!inst.operands[1].isreg)
8092 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE))
8093 return;
8094 encode_arm_addr_mode_2 (1, /*is_t=*/FALSE);
8095 check_ldr_r15_aligned ();
8096 }
8097
8098 static void
8099 do_ldstt (void)
8100 {
8101 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8102 reject [Rn,...]. */
8103 if (inst.operands[1].preind)
8104 {
8105 constraint (inst.reloc.exp.X_op != O_constant
8106 || inst.reloc.exp.X_add_number != 0,
8107 _("this instruction requires a post-indexed address"));
8108
8109 inst.operands[1].preind = 0;
8110 inst.operands[1].postind = 1;
8111 inst.operands[1].writeback = 1;
8112 }
8113 inst.instruction |= inst.operands[0].reg << 12;
8114 encode_arm_addr_mode_2 (1, /*is_t=*/TRUE);
8115 }
8116
8117 /* Halfword and signed-byte load/store operations. */
8118
8119 static void
8120 do_ldstv4 (void)
8121 {
8122 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8123 inst.instruction |= inst.operands[0].reg << 12;
8124 if (!inst.operands[1].isreg)
8125 if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE))
8126 return;
8127 encode_arm_addr_mode_3 (1, /*is_t=*/FALSE);
8128 }
8129
8130 static void
8131 do_ldsttv4 (void)
8132 {
8133 /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and
8134 reject [Rn,...]. */
8135 if (inst.operands[1].preind)
8136 {
8137 constraint (inst.reloc.exp.X_op != O_constant
8138 || inst.reloc.exp.X_add_number != 0,
8139 _("this instruction requires a post-indexed address"));
8140
8141 inst.operands[1].preind = 0;
8142 inst.operands[1].postind = 1;
8143 inst.operands[1].writeback = 1;
8144 }
8145 inst.instruction |= inst.operands[0].reg << 12;
8146 encode_arm_addr_mode_3 (1, /*is_t=*/TRUE);
8147 }
8148
8149 /* Co-processor register load/store.
8150 Format: <LDC|STC>{cond}[L] CP#,CRd,<address> */
8151 static void
8152 do_lstc (void)
8153 {
8154 inst.instruction |= inst.operands[0].reg << 8;
8155 inst.instruction |= inst.operands[1].reg << 12;
8156 encode_arm_cp_address (2, TRUE, TRUE, 0);
8157 }
8158
8159 static void
8160 do_mlas (void)
8161 {
8162 /* This restriction does not apply to mls (nor to mla in v6 or later). */
8163 if (inst.operands[0].reg == inst.operands[1].reg
8164 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6)
8165 && !(inst.instruction & 0x00400000))
8166 as_tsktsk (_("Rd and Rm should be different in mla"));
8167
8168 inst.instruction |= inst.operands[0].reg << 16;
8169 inst.instruction |= inst.operands[1].reg;
8170 inst.instruction |= inst.operands[2].reg << 8;
8171 inst.instruction |= inst.operands[3].reg << 12;
8172 }
8173
8174 static void
8175 do_mov (void)
8176 {
8177 inst.instruction |= inst.operands[0].reg << 12;
8178 encode_arm_shifter_operand (1);
8179 }
8180
8181 /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #<imm16>. */
8182 static void
8183 do_mov16 (void)
8184 {
8185 bfd_vma imm;
8186 bfd_boolean top;
8187
8188 top = (inst.instruction & 0x00400000) != 0;
8189 constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW,
8190 _(":lower16: not allowed this instruction"));
8191 constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT,
8192 _(":upper16: not allowed instruction"));
8193 inst.instruction |= inst.operands[0].reg << 12;
8194 if (inst.reloc.type == BFD_RELOC_UNUSED)
8195 {
8196 imm = inst.reloc.exp.X_add_number;
8197 /* The value is in two pieces: 0:11, 16:19. */
8198 inst.instruction |= (imm & 0x00000fff);
8199 inst.instruction |= (imm & 0x0000f000) << 4;
8200 }
8201 }
8202
8203 static void do_vfp_nsyn_opcode (const char *);
8204
8205 static int
8206 do_vfp_nsyn_mrs (void)
8207 {
8208 if (inst.operands[0].isvec)
8209 {
8210 if (inst.operands[1].reg != 1)
8211 first_error (_("operand 1 must be FPSCR"));
8212 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
8213 memset (&inst.operands[1], '\0', sizeof (inst.operands[1]));
8214 do_vfp_nsyn_opcode ("fmstat");
8215 }
8216 else if (inst.operands[1].isvec)
8217 do_vfp_nsyn_opcode ("fmrx");
8218 else
8219 return FAIL;
8220
8221 return SUCCESS;
8222 }
8223
8224 static int
8225 do_vfp_nsyn_msr (void)
8226 {
8227 if (inst.operands[0].isvec)
8228 do_vfp_nsyn_opcode ("fmxr");
8229 else
8230 return FAIL;
8231
8232 return SUCCESS;
8233 }
8234
8235 static void
8236 do_vmrs (void)
8237 {
8238 unsigned Rt = inst.operands[0].reg;
8239
8240 if (thumb_mode && inst.operands[0].reg == REG_SP)
8241 {
8242 inst.error = BAD_SP;
8243 return;
8244 }
8245
8246 /* APSR_ sets isvec. All other refs to PC are illegal. */
8247 if (!inst.operands[0].isvec && inst.operands[0].reg == REG_PC)
8248 {
8249 inst.error = BAD_PC;
8250 return;
8251 }
8252
8253 switch (inst.operands[1].reg)
8254 {
8255 case 0: /* FPSID */
8256 case 1: /* FPSCR */
8257 case 6: /* MVFR1 */
8258 case 7: /* MVFR0 */
8259 case 8: /* FPEXC */
8260 inst.instruction |= (inst.operands[1].reg << 16);
8261 break;
8262 default:
8263 first_error (_("operand 1 must be a VFP extension System Register"));
8264 }
8265
8266 inst.instruction |= (Rt << 12);
8267 }
8268
8269 static void
8270 do_vmsr (void)
8271 {
8272 unsigned Rt = inst.operands[1].reg;
8273
8274 if (thumb_mode)
8275 reject_bad_reg (Rt);
8276 else if (Rt == REG_PC)
8277 {
8278 inst.error = BAD_PC;
8279 return;
8280 }
8281
8282 switch (inst.operands[0].reg)
8283 {
8284 case 0: /* FPSID */
8285 case 1: /* FPSCR */
8286 case 8: /* FPEXC */
8287 inst.instruction |= (inst.operands[0].reg << 16);
8288 break;
8289 default:
8290 first_error (_("operand 0 must be FPSID or FPSCR pr FPEXC"));
8291 }
8292
8293 inst.instruction |= (Rt << 12);
8294 }
8295
8296 static void
8297 do_mrs (void)
8298 {
8299 unsigned br;
8300
8301 if (do_vfp_nsyn_mrs () == SUCCESS)
8302 return;
8303
8304 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
8305 inst.instruction |= inst.operands[0].reg << 12;
8306
8307 if (inst.operands[1].isreg)
8308 {
8309 br = inst.operands[1].reg;
8310 if (((br & 0x200) == 0) && ((br & 0xf0000) != 0xf000))
8311 as_bad (_("bad register for mrs"));
8312 }
8313 else
8314 {
8315 /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */
8316 constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f))
8317 != (PSR_c|PSR_f),
8318 _("'APSR', 'CPSR' or 'SPSR' expected"));
8319 br = (15<<16) | (inst.operands[1].imm & SPSR_BIT);
8320 }
8321
8322 inst.instruction |= br;
8323 }
8324
8325 /* Two possible forms:
8326 "{C|S}PSR_<field>, Rm",
8327 "{C|S}PSR_f, #expression". */
8328
8329 static void
8330 do_msr (void)
8331 {
8332 if (do_vfp_nsyn_msr () == SUCCESS)
8333 return;
8334
8335 inst.instruction |= inst.operands[0].imm;
8336 if (inst.operands[1].isreg)
8337 inst.instruction |= inst.operands[1].reg;
8338 else
8339 {
8340 inst.instruction |= INST_IMMEDIATE;
8341 inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
8342 inst.reloc.pc_rel = 0;
8343 }
8344 }
8345
8346 static void
8347 do_mul (void)
8348 {
8349 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
8350
8351 if (!inst.operands[2].present)
8352 inst.operands[2].reg = inst.operands[0].reg;
8353 inst.instruction |= inst.operands[0].reg << 16;
8354 inst.instruction |= inst.operands[1].reg;
8355 inst.instruction |= inst.operands[2].reg << 8;
8356
8357 if (inst.operands[0].reg == inst.operands[1].reg
8358 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8359 as_tsktsk (_("Rd and Rm should be different in mul"));
8360 }
8361
8362 /* Long Multiply Parser
8363 UMULL RdLo, RdHi, Rm, Rs
8364 SMULL RdLo, RdHi, Rm, Rs
8365 UMLAL RdLo, RdHi, Rm, Rs
8366 SMLAL RdLo, RdHi, Rm, Rs. */
8367
8368 static void
8369 do_mull (void)
8370 {
8371 inst.instruction |= inst.operands[0].reg << 12;
8372 inst.instruction |= inst.operands[1].reg << 16;
8373 inst.instruction |= inst.operands[2].reg;
8374 inst.instruction |= inst.operands[3].reg << 8;
8375
8376 /* rdhi and rdlo must be different. */
8377 if (inst.operands[0].reg == inst.operands[1].reg)
8378 as_tsktsk (_("rdhi and rdlo must be different"));
8379
8380 /* rdhi, rdlo and rm must all be different before armv6. */
8381 if ((inst.operands[0].reg == inst.operands[2].reg
8382 || inst.operands[1].reg == inst.operands[2].reg)
8383 && !ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6))
8384 as_tsktsk (_("rdhi, rdlo and rm must all be different"));
8385 }
8386
8387 static void
8388 do_nop (void)
8389 {
8390 if (inst.operands[0].present
8391 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k))
8392 {
8393 /* Architectural NOP hints are CPSR sets with no bits selected. */
8394 inst.instruction &= 0xf0000000;
8395 inst.instruction |= 0x0320f000;
8396 if (inst.operands[0].present)
8397 inst.instruction |= inst.operands[0].imm;
8398 }
8399 }
8400
8401 /* ARM V6 Pack Halfword Bottom Top instruction (argument parse).
8402 PKHBT {<cond>} <Rd>, <Rn>, <Rm> {, LSL #<shift_imm>}
8403 Condition defaults to COND_ALWAYS.
8404 Error if Rd, Rn or Rm are R15. */
8405
8406 static void
8407 do_pkhbt (void)
8408 {
8409 inst.instruction |= inst.operands[0].reg << 12;
8410 inst.instruction |= inst.operands[1].reg << 16;
8411 inst.instruction |= inst.operands[2].reg;
8412 if (inst.operands[3].present)
8413 encode_arm_shift (3);
8414 }
8415
8416 /* ARM V6 PKHTB (Argument Parse). */
8417
8418 static void
8419 do_pkhtb (void)
8420 {
8421 if (!inst.operands[3].present)
8422 {
8423 /* If the shift specifier is omitted, turn the instruction
8424 into pkhbt rd, rm, rn. */
8425 inst.instruction &= 0xfff00010;
8426 inst.instruction |= inst.operands[0].reg << 12;
8427 inst.instruction |= inst.operands[1].reg;
8428 inst.instruction |= inst.operands[2].reg << 16;
8429 }
8430 else
8431 {
8432 inst.instruction |= inst.operands[0].reg << 12;
8433 inst.instruction |= inst.operands[1].reg << 16;
8434 inst.instruction |= inst.operands[2].reg;
8435 encode_arm_shift (3);
8436 }
8437 }
8438
8439 /* ARMv5TE: Preload-Cache
8440 MP Extensions: Preload for write
8441
8442 PLD(W) <addr_mode>
8443
8444 Syntactically, like LDR with B=1, W=0, L=1. */
8445
8446 static void
8447 do_pld (void)
8448 {
8449 constraint (!inst.operands[0].isreg,
8450 _("'[' expected after PLD mnemonic"));
8451 constraint (inst.operands[0].postind,
8452 _("post-indexed expression used in preload instruction"));
8453 constraint (inst.operands[0].writeback,
8454 _("writeback used in preload instruction"));
8455 constraint (!inst.operands[0].preind,
8456 _("unindexed addressing used in preload instruction"));
8457 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8458 }
8459
8460 /* ARMv7: PLI <addr_mode> */
8461 static void
8462 do_pli (void)
8463 {
8464 constraint (!inst.operands[0].isreg,
8465 _("'[' expected after PLI mnemonic"));
8466 constraint (inst.operands[0].postind,
8467 _("post-indexed expression used in preload instruction"));
8468 constraint (inst.operands[0].writeback,
8469 _("writeback used in preload instruction"));
8470 constraint (!inst.operands[0].preind,
8471 _("unindexed addressing used in preload instruction"));
8472 encode_arm_addr_mode_2 (0, /*is_t=*/FALSE);
8473 inst.instruction &= ~PRE_INDEX;
8474 }
8475
8476 static void
8477 do_push_pop (void)
8478 {
8479 inst.operands[1] = inst.operands[0];
8480 memset (&inst.operands[0], 0, sizeof inst.operands[0]);
8481 inst.operands[0].isreg = 1;
8482 inst.operands[0].writeback = 1;
8483 inst.operands[0].reg = REG_SP;
8484 encode_ldmstm (/*from_push_pop_mnem=*/TRUE);
8485 }
8486
8487 /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the
8488 word at the specified address and the following word
8489 respectively.
8490 Unconditionally executed.
8491 Error if Rn is R15. */
8492
8493 static void
8494 do_rfe (void)
8495 {
8496 inst.instruction |= inst.operands[0].reg << 16;
8497 if (inst.operands[0].writeback)
8498 inst.instruction |= WRITE_BACK;
8499 }
8500
8501 /* ARM V6 ssat (argument parse). */
8502
8503 static void
8504 do_ssat (void)
8505 {
8506 inst.instruction |= inst.operands[0].reg << 12;
8507 inst.instruction |= (inst.operands[1].imm - 1) << 16;
8508 inst.instruction |= inst.operands[2].reg;
8509
8510 if (inst.operands[3].present)
8511 encode_arm_shift (3);
8512 }
8513
8514 /* ARM V6 usat (argument parse). */
8515
8516 static void
8517 do_usat (void)
8518 {
8519 inst.instruction |= inst.operands[0].reg << 12;
8520 inst.instruction |= inst.operands[1].imm << 16;
8521 inst.instruction |= inst.operands[2].reg;
8522
8523 if (inst.operands[3].present)
8524 encode_arm_shift (3);
8525 }
8526
8527 /* ARM V6 ssat16 (argument parse). */
8528
8529 static void
8530 do_ssat16 (void)
8531 {
8532 inst.instruction |= inst.operands[0].reg << 12;
8533 inst.instruction |= ((inst.operands[1].imm - 1) << 16);
8534 inst.instruction |= inst.operands[2].reg;
8535 }
8536
8537 static void
8538 do_usat16 (void)
8539 {
8540 inst.instruction |= inst.operands[0].reg << 12;
8541 inst.instruction |= inst.operands[1].imm << 16;
8542 inst.instruction |= inst.operands[2].reg;
8543 }
8544
8545 /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while
8546 preserving the other bits.
8547
8548 setend <endian_specifier>, where <endian_specifier> is either
8549 BE or LE. */
8550
8551 static void
8552 do_setend (void)
8553 {
8554 if (warn_on_deprecated
8555 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
8556 as_warn (_("setend use is deprecated for ARMv8"));
8557
8558 if (inst.operands[0].imm)
8559 inst.instruction |= 0x200;
8560 }
8561
8562 static void
8563 do_shift (void)
8564 {
8565 unsigned int Rm = (inst.operands[1].present
8566 ? inst.operands[1].reg
8567 : inst.operands[0].reg);
8568
8569 inst.instruction |= inst.operands[0].reg << 12;
8570 inst.instruction |= Rm;
8571 if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */
8572 {
8573 inst.instruction |= inst.operands[2].reg << 8;
8574 inst.instruction |= SHIFT_BY_REG;
8575 /* PR 12854: Error on extraneous shifts. */
8576 constraint (inst.operands[2].shifted,
8577 _("extraneous shift as part of operand to shift insn"));
8578 }
8579 else
8580 inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
8581 }
8582
8583 static void
8584 do_smc (void)
8585 {
8586 inst.reloc.type = BFD_RELOC_ARM_SMC;
8587 inst.reloc.pc_rel = 0;
8588 }
8589
8590 static void
8591 do_hvc (void)
8592 {
8593 inst.reloc.type = BFD_RELOC_ARM_HVC;
8594 inst.reloc.pc_rel = 0;
8595 }
8596
8597 static void
8598 do_swi (void)
8599 {
8600 inst.reloc.type = BFD_RELOC_ARM_SWI;
8601 inst.reloc.pc_rel = 0;
8602 }
8603
8604 /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
8605 SMLAxy{cond} Rd,Rm,Rs,Rn
8606 SMLAWy{cond} Rd,Rm,Rs,Rn
8607 Error if any register is R15. */
8608
8609 static void
8610 do_smla (void)
8611 {
8612 inst.instruction |= inst.operands[0].reg << 16;
8613 inst.instruction |= inst.operands[1].reg;
8614 inst.instruction |= inst.operands[2].reg << 8;
8615 inst.instruction |= inst.operands[3].reg << 12;
8616 }
8617
8618 /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
8619 SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
8620 Error if any register is R15.
8621 Warning if Rdlo == Rdhi. */
8622
8623 static void
8624 do_smlal (void)
8625 {
8626 inst.instruction |= inst.operands[0].reg << 12;
8627 inst.instruction |= inst.operands[1].reg << 16;
8628 inst.instruction |= inst.operands[2].reg;
8629 inst.instruction |= inst.operands[3].reg << 8;
8630
8631 if (inst.operands[0].reg == inst.operands[1].reg)
8632 as_tsktsk (_("rdhi and rdlo must be different"));
8633 }
8634
8635 /* ARM V5E (El Segundo) signed-multiply (argument parse)
8636 SMULxy{cond} Rd,Rm,Rs
8637 Error if any register is R15. */
8638
8639 static void
8640 do_smul (void)
8641 {
8642 inst.instruction |= inst.operands[0].reg << 16;
8643 inst.instruction |= inst.operands[1].reg;
8644 inst.instruction |= inst.operands[2].reg << 8;
8645 }
8646
8647 /* ARM V6 srs (argument parse). The variable fields in the encoding are
8648 the same for both ARM and Thumb-2. */
8649
8650 static void
8651 do_srs (void)
8652 {
8653 int reg;
8654
8655 if (inst.operands[0].present)
8656 {
8657 reg = inst.operands[0].reg;
8658 constraint (reg != REG_SP, _("SRS base register must be r13"));
8659 }
8660 else
8661 reg = REG_SP;
8662
8663 inst.instruction |= reg << 16;
8664 inst.instruction |= inst.operands[1].imm;
8665 if (inst.operands[0].writeback || inst.operands[1].writeback)
8666 inst.instruction |= WRITE_BACK;
8667 }
8668
8669 /* ARM V6 strex (argument parse). */
8670
8671 static void
8672 do_strex (void)
8673 {
8674 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8675 || inst.operands[2].postind || inst.operands[2].writeback
8676 || inst.operands[2].immisreg || inst.operands[2].shifted
8677 || inst.operands[2].negative
8678 /* See comment in do_ldrex(). */
8679 || (inst.operands[2].reg == REG_PC),
8680 BAD_ADDR_MODE);
8681
8682 constraint (inst.operands[0].reg == inst.operands[1].reg
8683 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8684
8685 constraint (inst.reloc.exp.X_op != O_constant
8686 || inst.reloc.exp.X_add_number != 0,
8687 _("offset must be zero in ARM encoding"));
8688
8689 inst.instruction |= inst.operands[0].reg << 12;
8690 inst.instruction |= inst.operands[1].reg;
8691 inst.instruction |= inst.operands[2].reg << 16;
8692 inst.reloc.type = BFD_RELOC_UNUSED;
8693 }
8694
8695 static void
8696 do_t_strexbh (void)
8697 {
8698 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
8699 || inst.operands[2].postind || inst.operands[2].writeback
8700 || inst.operands[2].immisreg || inst.operands[2].shifted
8701 || inst.operands[2].negative,
8702 BAD_ADDR_MODE);
8703
8704 constraint (inst.operands[0].reg == inst.operands[1].reg
8705 || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP);
8706
8707 do_rm_rd_rn ();
8708 }
8709
8710 static void
8711 do_strexd (void)
8712 {
8713 constraint (inst.operands[1].reg % 2 != 0,
8714 _("even register required"));
8715 constraint (inst.operands[2].present
8716 && inst.operands[2].reg != inst.operands[1].reg + 1,
8717 _("can only store two consecutive registers"));
8718 /* If op 2 were present and equal to PC, this function wouldn't
8719 have been called in the first place. */
8720 constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here"));
8721
8722 constraint (inst.operands[0].reg == inst.operands[1].reg
8723 || inst.operands[0].reg == inst.operands[1].reg + 1
8724 || inst.operands[0].reg == inst.operands[3].reg,
8725 BAD_OVERLAP);
8726
8727 inst.instruction |= inst.operands[0].reg << 12;
8728 inst.instruction |= inst.operands[1].reg;
8729 inst.instruction |= inst.operands[3].reg << 16;
8730 }
8731
8732 /* ARM V6 SXTAH extracts a 16-bit value from a register, sign
8733 extends it to 32-bits, and adds the result to a value in another
8734 register. You can specify a rotation by 0, 8, 16, or 24 bits
8735 before extracting the 16-bit value.
8736 SXTAH{<cond>} <Rd>, <Rn>, <Rm>{, <rotation>}
8737 Condition defaults to COND_ALWAYS.
8738 Error if any register uses R15. */
8739
8740 static void
8741 do_sxtah (void)
8742 {
8743 inst.instruction |= inst.operands[0].reg << 12;
8744 inst.instruction |= inst.operands[1].reg << 16;
8745 inst.instruction |= inst.operands[2].reg;
8746 inst.instruction |= inst.operands[3].imm << 10;
8747 }
8748
8749 /* ARM V6 SXTH.
8750
8751 SXTH {<cond>} <Rd>, <Rm>{, <rotation>}
8752 Condition defaults to COND_ALWAYS.
8753 Error if any register uses R15. */
8754
8755 static void
8756 do_sxth (void)
8757 {
8758 inst.instruction |= inst.operands[0].reg << 12;
8759 inst.instruction |= inst.operands[1].reg;
8760 inst.instruction |= inst.operands[2].imm << 10;
8761 }
8762 \f
8763 /* VFP instructions. In a logical order: SP variant first, monad
8764 before dyad, arithmetic then move then load/store. */
8765
8766 static void
8767 do_vfp_sp_monadic (void)
8768 {
8769 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8770 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8771 }
8772
8773 static void
8774 do_vfp_sp_dyadic (void)
8775 {
8776 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8777 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8778 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8779 }
8780
8781 static void
8782 do_vfp_sp_compare_z (void)
8783 {
8784 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8785 }
8786
8787 static void
8788 do_vfp_dp_sp_cvt (void)
8789 {
8790 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8791 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
8792 }
8793
8794 static void
8795 do_vfp_sp_dp_cvt (void)
8796 {
8797 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8798 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8799 }
8800
8801 static void
8802 do_vfp_reg_from_sp (void)
8803 {
8804 inst.instruction |= inst.operands[0].reg << 12;
8805 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn);
8806 }
8807
8808 static void
8809 do_vfp_reg2_from_sp2 (void)
8810 {
8811 constraint (inst.operands[2].imm != 2,
8812 _("only two consecutive VFP SP registers allowed here"));
8813 inst.instruction |= inst.operands[0].reg << 12;
8814 inst.instruction |= inst.operands[1].reg << 16;
8815 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm);
8816 }
8817
8818 static void
8819 do_vfp_sp_from_reg (void)
8820 {
8821 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn);
8822 inst.instruction |= inst.operands[1].reg << 12;
8823 }
8824
8825 static void
8826 do_vfp_sp2_from_reg2 (void)
8827 {
8828 constraint (inst.operands[0].imm != 2,
8829 _("only two consecutive VFP SP registers allowed here"));
8830 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm);
8831 inst.instruction |= inst.operands[1].reg << 12;
8832 inst.instruction |= inst.operands[2].reg << 16;
8833 }
8834
8835 static void
8836 do_vfp_sp_ldst (void)
8837 {
8838 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8839 encode_arm_cp_address (1, FALSE, TRUE, 0);
8840 }
8841
8842 static void
8843 do_vfp_dp_ldst (void)
8844 {
8845 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8846 encode_arm_cp_address (1, FALSE, TRUE, 0);
8847 }
8848
8849
8850 static void
8851 vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type)
8852 {
8853 if (inst.operands[0].writeback)
8854 inst.instruction |= WRITE_BACK;
8855 else
8856 constraint (ldstm_type != VFP_LDSTMIA,
8857 _("this addressing mode requires base-register writeback"));
8858 inst.instruction |= inst.operands[0].reg << 16;
8859 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd);
8860 inst.instruction |= inst.operands[1].imm;
8861 }
8862
8863 static void
8864 vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type)
8865 {
8866 int count;
8867
8868 if (inst.operands[0].writeback)
8869 inst.instruction |= WRITE_BACK;
8870 else
8871 constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX,
8872 _("this addressing mode requires base-register writeback"));
8873
8874 inst.instruction |= inst.operands[0].reg << 16;
8875 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8876
8877 count = inst.operands[1].imm << 1;
8878 if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX)
8879 count += 1;
8880
8881 inst.instruction |= count;
8882 }
8883
8884 static void
8885 do_vfp_sp_ldstmia (void)
8886 {
8887 vfp_sp_ldstm (VFP_LDSTMIA);
8888 }
8889
8890 static void
8891 do_vfp_sp_ldstmdb (void)
8892 {
8893 vfp_sp_ldstm (VFP_LDSTMDB);
8894 }
8895
8896 static void
8897 do_vfp_dp_ldstmia (void)
8898 {
8899 vfp_dp_ldstm (VFP_LDSTMIA);
8900 }
8901
8902 static void
8903 do_vfp_dp_ldstmdb (void)
8904 {
8905 vfp_dp_ldstm (VFP_LDSTMDB);
8906 }
8907
8908 static void
8909 do_vfp_xp_ldstmia (void)
8910 {
8911 vfp_dp_ldstm (VFP_LDSTMIAX);
8912 }
8913
8914 static void
8915 do_vfp_xp_ldstmdb (void)
8916 {
8917 vfp_dp_ldstm (VFP_LDSTMDBX);
8918 }
8919
8920 static void
8921 do_vfp_dp_rd_rm (void)
8922 {
8923 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8924 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm);
8925 }
8926
8927 static void
8928 do_vfp_dp_rn_rd (void)
8929 {
8930 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn);
8931 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8932 }
8933
8934 static void
8935 do_vfp_dp_rd_rn (void)
8936 {
8937 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8938 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8939 }
8940
8941 static void
8942 do_vfp_dp_rd_rn_rm (void)
8943 {
8944 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8945 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn);
8946 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm);
8947 }
8948
8949 static void
8950 do_vfp_dp_rd (void)
8951 {
8952 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8953 }
8954
8955 static void
8956 do_vfp_dp_rm_rd_rn (void)
8957 {
8958 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm);
8959 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd);
8960 encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn);
8961 }
8962
8963 /* VFPv3 instructions. */
8964 static void
8965 do_vfp_sp_const (void)
8966 {
8967 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
8968 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8969 inst.instruction |= (inst.operands[1].imm & 0x0f);
8970 }
8971
8972 static void
8973 do_vfp_dp_const (void)
8974 {
8975 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
8976 inst.instruction |= (inst.operands[1].imm & 0xf0) << 12;
8977 inst.instruction |= (inst.operands[1].imm & 0x0f);
8978 }
8979
8980 static void
8981 vfp_conv (int srcsize)
8982 {
8983 int immbits = srcsize - inst.operands[1].imm;
8984
8985 if (srcsize == 16 && !(immbits >= 0 && immbits <= srcsize))
8986 {
8987 /* If srcsize is 16, inst.operands[1].imm must be in the range 0-16.
8988 i.e. immbits must be in range 0 - 16. */
8989 inst.error = _("immediate value out of range, expected range [0, 16]");
8990 return;
8991 }
8992 else if (srcsize == 32 && !(immbits >= 0 && immbits < srcsize))
8993 {
8994 /* If srcsize is 32, inst.operands[1].imm must be in the range 1-32.
8995 i.e. immbits must be in range 0 - 31. */
8996 inst.error = _("immediate value out of range, expected range [1, 32]");
8997 return;
8998 }
8999
9000 inst.instruction |= (immbits & 1) << 5;
9001 inst.instruction |= (immbits >> 1);
9002 }
9003
9004 static void
9005 do_vfp_sp_conv_16 (void)
9006 {
9007 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9008 vfp_conv (16);
9009 }
9010
9011 static void
9012 do_vfp_dp_conv_16 (void)
9013 {
9014 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9015 vfp_conv (16);
9016 }
9017
9018 static void
9019 do_vfp_sp_conv_32 (void)
9020 {
9021 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
9022 vfp_conv (32);
9023 }
9024
9025 static void
9026 do_vfp_dp_conv_32 (void)
9027 {
9028 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd);
9029 vfp_conv (32);
9030 }
9031 \f
9032 /* FPA instructions. Also in a logical order. */
9033
9034 static void
9035 do_fpa_cmp (void)
9036 {
9037 inst.instruction |= inst.operands[0].reg << 16;
9038 inst.instruction |= inst.operands[1].reg;
9039 }
9040
9041 static void
9042 do_fpa_ldmstm (void)
9043 {
9044 inst.instruction |= inst.operands[0].reg << 12;
9045 switch (inst.operands[1].imm)
9046 {
9047 case 1: inst.instruction |= CP_T_X; break;
9048 case 2: inst.instruction |= CP_T_Y; break;
9049 case 3: inst.instruction |= CP_T_Y | CP_T_X; break;
9050 case 4: break;
9051 default: abort ();
9052 }
9053
9054 if (inst.instruction & (PRE_INDEX | INDEX_UP))
9055 {
9056 /* The instruction specified "ea" or "fd", so we can only accept
9057 [Rn]{!}. The instruction does not really support stacking or
9058 unstacking, so we have to emulate these by setting appropriate
9059 bits and offsets. */
9060 constraint (inst.reloc.exp.X_op != O_constant
9061 || inst.reloc.exp.X_add_number != 0,
9062 _("this instruction does not support indexing"));
9063
9064 if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback)
9065 inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm;
9066
9067 if (!(inst.instruction & INDEX_UP))
9068 inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number;
9069
9070 if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback)
9071 {
9072 inst.operands[2].preind = 0;
9073 inst.operands[2].postind = 1;
9074 }
9075 }
9076
9077 encode_arm_cp_address (2, TRUE, TRUE, 0);
9078 }
9079 \f
9080 /* iWMMXt instructions: strictly in alphabetical order. */
9081
9082 static void
9083 do_iwmmxt_tandorc (void)
9084 {
9085 constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here"));
9086 }
9087
9088 static void
9089 do_iwmmxt_textrc (void)
9090 {
9091 inst.instruction |= inst.operands[0].reg << 12;
9092 inst.instruction |= inst.operands[1].imm;
9093 }
9094
9095 static void
9096 do_iwmmxt_textrm (void)
9097 {
9098 inst.instruction |= inst.operands[0].reg << 12;
9099 inst.instruction |= inst.operands[1].reg << 16;
9100 inst.instruction |= inst.operands[2].imm;
9101 }
9102
9103 static void
9104 do_iwmmxt_tinsr (void)
9105 {
9106 inst.instruction |= inst.operands[0].reg << 16;
9107 inst.instruction |= inst.operands[1].reg << 12;
9108 inst.instruction |= inst.operands[2].imm;
9109 }
9110
9111 static void
9112 do_iwmmxt_tmia (void)
9113 {
9114 inst.instruction |= inst.operands[0].reg << 5;
9115 inst.instruction |= inst.operands[1].reg;
9116 inst.instruction |= inst.operands[2].reg << 12;
9117 }
9118
9119 static void
9120 do_iwmmxt_waligni (void)
9121 {
9122 inst.instruction |= inst.operands[0].reg << 12;
9123 inst.instruction |= inst.operands[1].reg << 16;
9124 inst.instruction |= inst.operands[2].reg;
9125 inst.instruction |= inst.operands[3].imm << 20;
9126 }
9127
9128 static void
9129 do_iwmmxt_wmerge (void)
9130 {
9131 inst.instruction |= inst.operands[0].reg << 12;
9132 inst.instruction |= inst.operands[1].reg << 16;
9133 inst.instruction |= inst.operands[2].reg;
9134 inst.instruction |= inst.operands[3].imm << 21;
9135 }
9136
9137 static void
9138 do_iwmmxt_wmov (void)
9139 {
9140 /* WMOV rD, rN is an alias for WOR rD, rN, rN. */
9141 inst.instruction |= inst.operands[0].reg << 12;
9142 inst.instruction |= inst.operands[1].reg << 16;
9143 inst.instruction |= inst.operands[1].reg;
9144 }
9145
9146 static void
9147 do_iwmmxt_wldstbh (void)
9148 {
9149 int reloc;
9150 inst.instruction |= inst.operands[0].reg << 12;
9151 if (thumb_mode)
9152 reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2;
9153 else
9154 reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2;
9155 encode_arm_cp_address (1, TRUE, FALSE, reloc);
9156 }
9157
9158 static void
9159 do_iwmmxt_wldstw (void)
9160 {
9161 /* RIWR_RIWC clears .isreg for a control register. */
9162 if (!inst.operands[0].isreg)
9163 {
9164 constraint (inst.cond != COND_ALWAYS, BAD_COND);
9165 inst.instruction |= 0xf0000000;
9166 }
9167
9168 inst.instruction |= inst.operands[0].reg << 12;
9169 encode_arm_cp_address (1, TRUE, TRUE, 0);
9170 }
9171
9172 static void
9173 do_iwmmxt_wldstd (void)
9174 {
9175 inst.instruction |= inst.operands[0].reg << 12;
9176 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2)
9177 && inst.operands[1].immisreg)
9178 {
9179 inst.instruction &= ~0x1a000ff;
9180 inst.instruction |= (0xf << 28);
9181 if (inst.operands[1].preind)
9182 inst.instruction |= PRE_INDEX;
9183 if (!inst.operands[1].negative)
9184 inst.instruction |= INDEX_UP;
9185 if (inst.operands[1].writeback)
9186 inst.instruction |= WRITE_BACK;
9187 inst.instruction |= inst.operands[1].reg << 16;
9188 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9189 inst.instruction |= inst.operands[1].imm;
9190 }
9191 else
9192 encode_arm_cp_address (1, TRUE, FALSE, 0);
9193 }
9194
9195 static void
9196 do_iwmmxt_wshufh (void)
9197 {
9198 inst.instruction |= inst.operands[0].reg << 12;
9199 inst.instruction |= inst.operands[1].reg << 16;
9200 inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16);
9201 inst.instruction |= (inst.operands[2].imm & 0x0f);
9202 }
9203
9204 static void
9205 do_iwmmxt_wzero (void)
9206 {
9207 /* WZERO reg is an alias for WANDN reg, reg, reg. */
9208 inst.instruction |= inst.operands[0].reg;
9209 inst.instruction |= inst.operands[0].reg << 12;
9210 inst.instruction |= inst.operands[0].reg << 16;
9211 }
9212
9213 static void
9214 do_iwmmxt_wrwrwr_or_imm5 (void)
9215 {
9216 if (inst.operands[2].isreg)
9217 do_rd_rn_rm ();
9218 else {
9219 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2),
9220 _("immediate operand requires iWMMXt2"));
9221 do_rd_rn ();
9222 if (inst.operands[2].imm == 0)
9223 {
9224 switch ((inst.instruction >> 20) & 0xf)
9225 {
9226 case 4:
9227 case 5:
9228 case 6:
9229 case 7:
9230 /* w...h wrd, wrn, #0 -> wrorh wrd, wrn, #16. */
9231 inst.operands[2].imm = 16;
9232 inst.instruction = (inst.instruction & 0xff0fffff) | (0x7 << 20);
9233 break;
9234 case 8:
9235 case 9:
9236 case 10:
9237 case 11:
9238 /* w...w wrd, wrn, #0 -> wrorw wrd, wrn, #32. */
9239 inst.operands[2].imm = 32;
9240 inst.instruction = (inst.instruction & 0xff0fffff) | (0xb << 20);
9241 break;
9242 case 12:
9243 case 13:
9244 case 14:
9245 case 15:
9246 {
9247 /* w...d wrd, wrn, #0 -> wor wrd, wrn, wrn. */
9248 unsigned long wrn;
9249 wrn = (inst.instruction >> 16) & 0xf;
9250 inst.instruction &= 0xff0fff0f;
9251 inst.instruction |= wrn;
9252 /* Bail out here; the instruction is now assembled. */
9253 return;
9254 }
9255 }
9256 }
9257 /* Map 32 -> 0, etc. */
9258 inst.operands[2].imm &= 0x1f;
9259 inst.instruction |= (0xf << 28) | ((inst.operands[2].imm & 0x10) << 4) | (inst.operands[2].imm & 0xf);
9260 }
9261 }
9262 \f
9263 /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register
9264 operations first, then control, shift, and load/store. */
9265
9266 /* Insns like "foo X,Y,Z". */
9267
9268 static void
9269 do_mav_triple (void)
9270 {
9271 inst.instruction |= inst.operands[0].reg << 16;
9272 inst.instruction |= inst.operands[1].reg;
9273 inst.instruction |= inst.operands[2].reg << 12;
9274 }
9275
9276 /* Insns like "foo W,X,Y,Z".
9277 where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */
9278
9279 static void
9280 do_mav_quad (void)
9281 {
9282 inst.instruction |= inst.operands[0].reg << 5;
9283 inst.instruction |= inst.operands[1].reg << 12;
9284 inst.instruction |= inst.operands[2].reg << 16;
9285 inst.instruction |= inst.operands[3].reg;
9286 }
9287
9288 /* cfmvsc32<cond> DSPSC,MVDX[15:0]. */
9289 static void
9290 do_mav_dspsc (void)
9291 {
9292 inst.instruction |= inst.operands[1].reg << 12;
9293 }
9294
9295 /* Maverick shift immediate instructions.
9296 cfsh32<cond> MVFX[15:0],MVFX[15:0],Shift[6:0].
9297 cfsh64<cond> MVDX[15:0],MVDX[15:0],Shift[6:0]. */
9298
9299 static void
9300 do_mav_shift (void)
9301 {
9302 int imm = inst.operands[2].imm;
9303
9304 inst.instruction |= inst.operands[0].reg << 12;
9305 inst.instruction |= inst.operands[1].reg << 16;
9306
9307 /* Bits 0-3 of the insn should have bits 0-3 of the immediate.
9308 Bits 5-7 of the insn should have bits 4-6 of the immediate.
9309 Bit 4 should be 0. */
9310 imm = (imm & 0xf) | ((imm & 0x70) << 1);
9311
9312 inst.instruction |= imm;
9313 }
9314 \f
9315 /* XScale instructions. Also sorted arithmetic before move. */
9316
9317 /* Xscale multiply-accumulate (argument parse)
9318 MIAcc acc0,Rm,Rs
9319 MIAPHcc acc0,Rm,Rs
9320 MIAxycc acc0,Rm,Rs. */
9321
9322 static void
9323 do_xsc_mia (void)
9324 {
9325 inst.instruction |= inst.operands[1].reg;
9326 inst.instruction |= inst.operands[2].reg << 12;
9327 }
9328
9329 /* Xscale move-accumulator-register (argument parse)
9330
9331 MARcc acc0,RdLo,RdHi. */
9332
9333 static void
9334 do_xsc_mar (void)
9335 {
9336 inst.instruction |= inst.operands[1].reg << 12;
9337 inst.instruction |= inst.operands[2].reg << 16;
9338 }
9339
9340 /* Xscale move-register-accumulator (argument parse)
9341
9342 MRAcc RdLo,RdHi,acc0. */
9343
9344 static void
9345 do_xsc_mra (void)
9346 {
9347 constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP);
9348 inst.instruction |= inst.operands[0].reg << 12;
9349 inst.instruction |= inst.operands[1].reg << 16;
9350 }
9351 \f
9352 /* Encoding functions relevant only to Thumb. */
9353
9354 /* inst.operands[i] is a shifted-register operand; encode
9355 it into inst.instruction in the format used by Thumb32. */
9356
9357 static void
9358 encode_thumb32_shifted_operand (int i)
9359 {
9360 unsigned int value = inst.reloc.exp.X_add_number;
9361 unsigned int shift = inst.operands[i].shift_kind;
9362
9363 constraint (inst.operands[i].immisreg,
9364 _("shift by register not allowed in thumb mode"));
9365 inst.instruction |= inst.operands[i].reg;
9366 if (shift == SHIFT_RRX)
9367 inst.instruction |= SHIFT_ROR << 4;
9368 else
9369 {
9370 constraint (inst.reloc.exp.X_op != O_constant,
9371 _("expression too complex"));
9372
9373 constraint (value > 32
9374 || (value == 32 && (shift == SHIFT_LSL
9375 || shift == SHIFT_ROR)),
9376 _("shift expression is too large"));
9377
9378 if (value == 0)
9379 shift = SHIFT_LSL;
9380 else if (value == 32)
9381 value = 0;
9382
9383 inst.instruction |= shift << 4;
9384 inst.instruction |= (value & 0x1c) << 10;
9385 inst.instruction |= (value & 0x03) << 6;
9386 }
9387 }
9388
9389
9390 /* inst.operands[i] was set up by parse_address. Encode it into a
9391 Thumb32 format load or store instruction. Reject forms that cannot
9392 be used with such instructions. If is_t is true, reject forms that
9393 cannot be used with a T instruction; if is_d is true, reject forms
9394 that cannot be used with a D instruction. If it is a store insn,
9395 reject PC in Rn. */
9396
9397 static void
9398 encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d)
9399 {
9400 const bfd_boolean is_pc = (inst.operands[i].reg == REG_PC);
9401
9402 constraint (!inst.operands[i].isreg,
9403 _("Instruction does not support =N addresses"));
9404
9405 inst.instruction |= inst.operands[i].reg << 16;
9406 if (inst.operands[i].immisreg)
9407 {
9408 constraint (is_pc, BAD_PC_ADDRESSING);
9409 constraint (is_t || is_d, _("cannot use register index with this instruction"));
9410 constraint (inst.operands[i].negative,
9411 _("Thumb does not support negative register indexing"));
9412 constraint (inst.operands[i].postind,
9413 _("Thumb does not support register post-indexing"));
9414 constraint (inst.operands[i].writeback,
9415 _("Thumb does not support register indexing with writeback"));
9416 constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL,
9417 _("Thumb supports only LSL in shifted register indexing"));
9418
9419 inst.instruction |= inst.operands[i].imm;
9420 if (inst.operands[i].shifted)
9421 {
9422 constraint (inst.reloc.exp.X_op != O_constant,
9423 _("expression too complex"));
9424 constraint (inst.reloc.exp.X_add_number < 0
9425 || inst.reloc.exp.X_add_number > 3,
9426 _("shift out of range"));
9427 inst.instruction |= inst.reloc.exp.X_add_number << 4;
9428 }
9429 inst.reloc.type = BFD_RELOC_UNUSED;
9430 }
9431 else if (inst.operands[i].preind)
9432 {
9433 constraint (is_pc && inst.operands[i].writeback, BAD_PC_WRITEBACK);
9434 constraint (is_t && inst.operands[i].writeback,
9435 _("cannot use writeback with this instruction"));
9436 constraint (is_pc && ((inst.instruction & THUMB2_LOAD_BIT) == 0)
9437 && !inst.reloc.pc_rel, BAD_PC_ADDRESSING);
9438
9439 if (is_d)
9440 {
9441 inst.instruction |= 0x01000000;
9442 if (inst.operands[i].writeback)
9443 inst.instruction |= 0x00200000;
9444 }
9445 else
9446 {
9447 inst.instruction |= 0x00000c00;
9448 if (inst.operands[i].writeback)
9449 inst.instruction |= 0x00000100;
9450 }
9451 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9452 }
9453 else if (inst.operands[i].postind)
9454 {
9455 gas_assert (inst.operands[i].writeback);
9456 constraint (is_pc, _("cannot use post-indexing with PC-relative addressing"));
9457 constraint (is_t, _("cannot use post-indexing with this instruction"));
9458
9459 if (is_d)
9460 inst.instruction |= 0x00200000;
9461 else
9462 inst.instruction |= 0x00000900;
9463 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM;
9464 }
9465 else /* unindexed - only for coprocessor */
9466 inst.error = _("instruction does not accept unindexed addressing");
9467 }
9468
9469 /* Table of Thumb instructions which exist in both 16- and 32-bit
9470 encodings (the latter only in post-V6T2 cores). The index is the
9471 value used in the insns table below. When there is more than one
9472 possible 16-bit encoding for the instruction, this table always
9473 holds variant (1).
9474 Also contains several pseudo-instructions used during relaxation. */
9475 #define T16_32_TAB \
9476 X(_adc, 4140, eb400000), \
9477 X(_adcs, 4140, eb500000), \
9478 X(_add, 1c00, eb000000), \
9479 X(_adds, 1c00, eb100000), \
9480 X(_addi, 0000, f1000000), \
9481 X(_addis, 0000, f1100000), \
9482 X(_add_pc,000f, f20f0000), \
9483 X(_add_sp,000d, f10d0000), \
9484 X(_adr, 000f, f20f0000), \
9485 X(_and, 4000, ea000000), \
9486 X(_ands, 4000, ea100000), \
9487 X(_asr, 1000, fa40f000), \
9488 X(_asrs, 1000, fa50f000), \
9489 X(_b, e000, f000b000), \
9490 X(_bcond, d000, f0008000), \
9491 X(_bic, 4380, ea200000), \
9492 X(_bics, 4380, ea300000), \
9493 X(_cmn, 42c0, eb100f00), \
9494 X(_cmp, 2800, ebb00f00), \
9495 X(_cpsie, b660, f3af8400), \
9496 X(_cpsid, b670, f3af8600), \
9497 X(_cpy, 4600, ea4f0000), \
9498 X(_dec_sp,80dd, f1ad0d00), \
9499 X(_eor, 4040, ea800000), \
9500 X(_eors, 4040, ea900000), \
9501 X(_inc_sp,00dd, f10d0d00), \
9502 X(_ldmia, c800, e8900000), \
9503 X(_ldr, 6800, f8500000), \
9504 X(_ldrb, 7800, f8100000), \
9505 X(_ldrh, 8800, f8300000), \
9506 X(_ldrsb, 5600, f9100000), \
9507 X(_ldrsh, 5e00, f9300000), \
9508 X(_ldr_pc,4800, f85f0000), \
9509 X(_ldr_pc2,4800, f85f0000), \
9510 X(_ldr_sp,9800, f85d0000), \
9511 X(_lsl, 0000, fa00f000), \
9512 X(_lsls, 0000, fa10f000), \
9513 X(_lsr, 0800, fa20f000), \
9514 X(_lsrs, 0800, fa30f000), \
9515 X(_mov, 2000, ea4f0000), \
9516 X(_movs, 2000, ea5f0000), \
9517 X(_mul, 4340, fb00f000), \
9518 X(_muls, 4340, ffffffff), /* no 32b muls */ \
9519 X(_mvn, 43c0, ea6f0000), \
9520 X(_mvns, 43c0, ea7f0000), \
9521 X(_neg, 4240, f1c00000), /* rsb #0 */ \
9522 X(_negs, 4240, f1d00000), /* rsbs #0 */ \
9523 X(_orr, 4300, ea400000), \
9524 X(_orrs, 4300, ea500000), \
9525 X(_pop, bc00, e8bd0000), /* ldmia sp!,... */ \
9526 X(_push, b400, e92d0000), /* stmdb sp!,... */ \
9527 X(_rev, ba00, fa90f080), \
9528 X(_rev16, ba40, fa90f090), \
9529 X(_revsh, bac0, fa90f0b0), \
9530 X(_ror, 41c0, fa60f000), \
9531 X(_rors, 41c0, fa70f000), \
9532 X(_sbc, 4180, eb600000), \
9533 X(_sbcs, 4180, eb700000), \
9534 X(_stmia, c000, e8800000), \
9535 X(_str, 6000, f8400000), \
9536 X(_strb, 7000, f8000000), \
9537 X(_strh, 8000, f8200000), \
9538 X(_str_sp,9000, f84d0000), \
9539 X(_sub, 1e00, eba00000), \
9540 X(_subs, 1e00, ebb00000), \
9541 X(_subi, 8000, f1a00000), \
9542 X(_subis, 8000, f1b00000), \
9543 X(_sxtb, b240, fa4ff080), \
9544 X(_sxth, b200, fa0ff080), \
9545 X(_tst, 4200, ea100f00), \
9546 X(_uxtb, b2c0, fa5ff080), \
9547 X(_uxth, b280, fa1ff080), \
9548 X(_nop, bf00, f3af8000), \
9549 X(_yield, bf10, f3af8001), \
9550 X(_wfe, bf20, f3af8002), \
9551 X(_wfi, bf30, f3af8003), \
9552 X(_sev, bf40, f3af8004), \
9553 X(_sevl, bf50, f3af8005)
9554
9555 /* To catch errors in encoding functions, the codes are all offset by
9556 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined
9557 as 16-bit instructions. */
9558 #define X(a,b,c) T_MNEM##a
9559 enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB };
9560 #undef X
9561
9562 #define X(a,b,c) 0x##b
9563 static const unsigned short thumb_op16[] = { T16_32_TAB };
9564 #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)])
9565 #undef X
9566
9567 #define X(a,b,c) 0x##c
9568 static const unsigned int thumb_op32[] = { T16_32_TAB };
9569 #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)])
9570 #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000)
9571 #undef X
9572 #undef T16_32_TAB
9573
9574 /* Thumb instruction encoders, in alphabetical order. */
9575
9576 /* ADDW or SUBW. */
9577
9578 static void
9579 do_t_add_sub_w (void)
9580 {
9581 int Rd, Rn;
9582
9583 Rd = inst.operands[0].reg;
9584 Rn = inst.operands[1].reg;
9585
9586 /* If Rn is REG_PC, this is ADR; if Rn is REG_SP, then this
9587 is the SP-{plus,minus}-immediate form of the instruction. */
9588 if (Rn == REG_SP)
9589 constraint (Rd == REG_PC, BAD_PC);
9590 else
9591 reject_bad_reg (Rd);
9592
9593 inst.instruction |= (Rn << 16) | (Rd << 8);
9594 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9595 }
9596
9597 /* Parse an add or subtract instruction. We get here with inst.instruction
9598 equalling any of THUMB_OPCODE_add, adds, sub, or subs. */
9599
9600 static void
9601 do_t_add_sub (void)
9602 {
9603 int Rd, Rs, Rn;
9604
9605 Rd = inst.operands[0].reg;
9606 Rs = (inst.operands[1].present
9607 ? inst.operands[1].reg /* Rd, Rs, foo */
9608 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9609
9610 if (Rd == REG_PC)
9611 set_it_insn_type_last ();
9612
9613 if (unified_syntax)
9614 {
9615 bfd_boolean flags;
9616 bfd_boolean narrow;
9617 int opcode;
9618
9619 flags = (inst.instruction == T_MNEM_adds
9620 || inst.instruction == T_MNEM_subs);
9621 if (flags)
9622 narrow = !in_it_block ();
9623 else
9624 narrow = in_it_block ();
9625 if (!inst.operands[2].isreg)
9626 {
9627 int add;
9628
9629 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9630
9631 add = (inst.instruction == T_MNEM_add
9632 || inst.instruction == T_MNEM_adds);
9633 opcode = 0;
9634 if (inst.size_req != 4)
9635 {
9636 /* Attempt to use a narrow opcode, with relaxation if
9637 appropriate. */
9638 if (Rd == REG_SP && Rs == REG_SP && !flags)
9639 opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp;
9640 else if (Rd <= 7 && Rs == REG_SP && add && !flags)
9641 opcode = T_MNEM_add_sp;
9642 else if (Rd <= 7 && Rs == REG_PC && add && !flags)
9643 opcode = T_MNEM_add_pc;
9644 else if (Rd <= 7 && Rs <= 7 && narrow)
9645 {
9646 if (flags)
9647 opcode = add ? T_MNEM_addis : T_MNEM_subis;
9648 else
9649 opcode = add ? T_MNEM_addi : T_MNEM_subi;
9650 }
9651 if (opcode)
9652 {
9653 inst.instruction = THUMB_OP16(opcode);
9654 inst.instruction |= (Rd << 4) | Rs;
9655 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9656 if (inst.size_req != 2)
9657 inst.relax = opcode;
9658 }
9659 else
9660 constraint (inst.size_req == 2, BAD_HIREG);
9661 }
9662 if (inst.size_req == 4
9663 || (inst.size_req != 2 && !opcode))
9664 {
9665 if (Rd == REG_PC)
9666 {
9667 constraint (add, BAD_PC);
9668 constraint (Rs != REG_LR || inst.instruction != T_MNEM_subs,
9669 _("only SUBS PC, LR, #const allowed"));
9670 constraint (inst.reloc.exp.X_op != O_constant,
9671 _("expression too complex"));
9672 constraint (inst.reloc.exp.X_add_number < 0
9673 || inst.reloc.exp.X_add_number > 0xff,
9674 _("immediate value out of range"));
9675 inst.instruction = T2_SUBS_PC_LR
9676 | inst.reloc.exp.X_add_number;
9677 inst.reloc.type = BFD_RELOC_UNUSED;
9678 return;
9679 }
9680 else if (Rs == REG_PC)
9681 {
9682 /* Always use addw/subw. */
9683 inst.instruction = add ? 0xf20f0000 : 0xf2af0000;
9684 inst.reloc.type = BFD_RELOC_ARM_T32_IMM12;
9685 }
9686 else
9687 {
9688 inst.instruction = THUMB_OP32 (inst.instruction);
9689 inst.instruction = (inst.instruction & 0xe1ffffff)
9690 | 0x10000000;
9691 if (flags)
9692 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9693 else
9694 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM;
9695 }
9696 inst.instruction |= Rd << 8;
9697 inst.instruction |= Rs << 16;
9698 }
9699 }
9700 else
9701 {
9702 unsigned int value = inst.reloc.exp.X_add_number;
9703 unsigned int shift = inst.operands[2].shift_kind;
9704
9705 Rn = inst.operands[2].reg;
9706 /* See if we can do this with a 16-bit instruction. */
9707 if (!inst.operands[2].shifted && inst.size_req != 4)
9708 {
9709 if (Rd > 7 || Rs > 7 || Rn > 7)
9710 narrow = FALSE;
9711
9712 if (narrow)
9713 {
9714 inst.instruction = ((inst.instruction == T_MNEM_adds
9715 || inst.instruction == T_MNEM_add)
9716 ? T_OPCODE_ADD_R3
9717 : T_OPCODE_SUB_R3);
9718 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9719 return;
9720 }
9721
9722 if (inst.instruction == T_MNEM_add && (Rd == Rs || Rd == Rn))
9723 {
9724 /* Thumb-1 cores (except v6-M) require at least one high
9725 register in a narrow non flag setting add. */
9726 if (Rd > 7 || Rn > 7
9727 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2)
9728 || ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_msr))
9729 {
9730 if (Rd == Rn)
9731 {
9732 Rn = Rs;
9733 Rs = Rd;
9734 }
9735 inst.instruction = T_OPCODE_ADD_HI;
9736 inst.instruction |= (Rd & 8) << 4;
9737 inst.instruction |= (Rd & 7);
9738 inst.instruction |= Rn << 3;
9739 return;
9740 }
9741 }
9742 }
9743
9744 constraint (Rd == REG_PC, BAD_PC);
9745 constraint (Rd == REG_SP && Rs != REG_SP, BAD_SP);
9746 constraint (Rs == REG_PC, BAD_PC);
9747 reject_bad_reg (Rn);
9748
9749 /* If we get here, it can't be done in 16 bits. */
9750 constraint (inst.operands[2].shifted && inst.operands[2].immisreg,
9751 _("shift must be constant"));
9752 inst.instruction = THUMB_OP32 (inst.instruction);
9753 inst.instruction |= Rd << 8;
9754 inst.instruction |= Rs << 16;
9755 constraint (Rd == REG_SP && Rs == REG_SP && value > 3,
9756 _("shift value over 3 not allowed in thumb mode"));
9757 constraint (Rd == REG_SP && Rs == REG_SP && shift != SHIFT_LSL,
9758 _("only LSL shift allowed in thumb mode"));
9759 encode_thumb32_shifted_operand (2);
9760 }
9761 }
9762 else
9763 {
9764 constraint (inst.instruction == T_MNEM_adds
9765 || inst.instruction == T_MNEM_subs,
9766 BAD_THUMB32);
9767
9768 if (!inst.operands[2].isreg) /* Rd, Rs, #imm */
9769 {
9770 constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
9771 || (Rs > 7 && Rs != REG_SP && Rs != REG_PC),
9772 BAD_HIREG);
9773
9774 inst.instruction = (inst.instruction == T_MNEM_add
9775 ? 0x0000 : 0x8000);
9776 inst.instruction |= (Rd << 4) | Rs;
9777 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9778 return;
9779 }
9780
9781 Rn = inst.operands[2].reg;
9782 constraint (inst.operands[2].shifted, _("unshifted register required"));
9783
9784 /* We now have Rd, Rs, and Rn set to registers. */
9785 if (Rd > 7 || Rs > 7 || Rn > 7)
9786 {
9787 /* Can't do this for SUB. */
9788 constraint (inst.instruction == T_MNEM_sub, BAD_HIREG);
9789 inst.instruction = T_OPCODE_ADD_HI;
9790 inst.instruction |= (Rd & 8) << 4;
9791 inst.instruction |= (Rd & 7);
9792 if (Rs == Rd)
9793 inst.instruction |= Rn << 3;
9794 else if (Rn == Rd)
9795 inst.instruction |= Rs << 3;
9796 else
9797 constraint (1, _("dest must overlap one source register"));
9798 }
9799 else
9800 {
9801 inst.instruction = (inst.instruction == T_MNEM_add
9802 ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3);
9803 inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
9804 }
9805 }
9806 }
9807
9808 static void
9809 do_t_adr (void)
9810 {
9811 unsigned Rd;
9812
9813 Rd = inst.operands[0].reg;
9814 reject_bad_reg (Rd);
9815
9816 if (unified_syntax && inst.size_req == 0 && Rd <= 7)
9817 {
9818 /* Defer to section relaxation. */
9819 inst.relax = inst.instruction;
9820 inst.instruction = THUMB_OP16 (inst.instruction);
9821 inst.instruction |= Rd << 4;
9822 }
9823 else if (unified_syntax && inst.size_req != 2)
9824 {
9825 /* Generate a 32-bit opcode. */
9826 inst.instruction = THUMB_OP32 (inst.instruction);
9827 inst.instruction |= Rd << 8;
9828 inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12;
9829 inst.reloc.pc_rel = 1;
9830 }
9831 else
9832 {
9833 /* Generate a 16-bit opcode. */
9834 inst.instruction = THUMB_OP16 (inst.instruction);
9835 inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
9836 inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
9837 inst.reloc.pc_rel = 1;
9838
9839 inst.instruction |= Rd << 4;
9840 }
9841 }
9842
9843 /* Arithmetic instructions for which there is just one 16-bit
9844 instruction encoding, and it allows only two low registers.
9845 For maximal compatibility with ARM syntax, we allow three register
9846 operands even when Thumb-32 instructions are not available, as long
9847 as the first two are identical. For instance, both "sbc r0,r1" and
9848 "sbc r0,r0,r1" are allowed. */
9849 static void
9850 do_t_arit3 (void)
9851 {
9852 int Rd, Rs, Rn;
9853
9854 Rd = inst.operands[0].reg;
9855 Rs = (inst.operands[1].present
9856 ? inst.operands[1].reg /* Rd, Rs, foo */
9857 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9858 Rn = inst.operands[2].reg;
9859
9860 reject_bad_reg (Rd);
9861 reject_bad_reg (Rs);
9862 if (inst.operands[2].isreg)
9863 reject_bad_reg (Rn);
9864
9865 if (unified_syntax)
9866 {
9867 if (!inst.operands[2].isreg)
9868 {
9869 /* For an immediate, we always generate a 32-bit opcode;
9870 section relaxation will shrink it later if possible. */
9871 inst.instruction = THUMB_OP32 (inst.instruction);
9872 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9873 inst.instruction |= Rd << 8;
9874 inst.instruction |= Rs << 16;
9875 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9876 }
9877 else
9878 {
9879 bfd_boolean narrow;
9880
9881 /* See if we can do this with a 16-bit instruction. */
9882 if (THUMB_SETS_FLAGS (inst.instruction))
9883 narrow = !in_it_block ();
9884 else
9885 narrow = in_it_block ();
9886
9887 if (Rd > 7 || Rn > 7 || Rs > 7)
9888 narrow = FALSE;
9889 if (inst.operands[2].shifted)
9890 narrow = FALSE;
9891 if (inst.size_req == 4)
9892 narrow = FALSE;
9893
9894 if (narrow
9895 && Rd == Rs)
9896 {
9897 inst.instruction = THUMB_OP16 (inst.instruction);
9898 inst.instruction |= Rd;
9899 inst.instruction |= Rn << 3;
9900 return;
9901 }
9902
9903 /* If we get here, it can't be done in 16 bits. */
9904 constraint (inst.operands[2].shifted
9905 && inst.operands[2].immisreg,
9906 _("shift must be constant"));
9907 inst.instruction = THUMB_OP32 (inst.instruction);
9908 inst.instruction |= Rd << 8;
9909 inst.instruction |= Rs << 16;
9910 encode_thumb32_shifted_operand (2);
9911 }
9912 }
9913 else
9914 {
9915 /* On its face this is a lie - the instruction does set the
9916 flags. However, the only supported mnemonic in this mode
9917 says it doesn't. */
9918 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
9919
9920 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
9921 _("unshifted register required"));
9922 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
9923 constraint (Rd != Rs,
9924 _("dest and source1 must be the same register"));
9925
9926 inst.instruction = THUMB_OP16 (inst.instruction);
9927 inst.instruction |= Rd;
9928 inst.instruction |= Rn << 3;
9929 }
9930 }
9931
9932 /* Similarly, but for instructions where the arithmetic operation is
9933 commutative, so we can allow either of them to be different from
9934 the destination operand in a 16-bit instruction. For instance, all
9935 three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are
9936 accepted. */
9937 static void
9938 do_t_arit3c (void)
9939 {
9940 int Rd, Rs, Rn;
9941
9942 Rd = inst.operands[0].reg;
9943 Rs = (inst.operands[1].present
9944 ? inst.operands[1].reg /* Rd, Rs, foo */
9945 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
9946 Rn = inst.operands[2].reg;
9947
9948 reject_bad_reg (Rd);
9949 reject_bad_reg (Rs);
9950 if (inst.operands[2].isreg)
9951 reject_bad_reg (Rn);
9952
9953 if (unified_syntax)
9954 {
9955 if (!inst.operands[2].isreg)
9956 {
9957 /* For an immediate, we always generate a 32-bit opcode;
9958 section relaxation will shrink it later if possible. */
9959 inst.instruction = THUMB_OP32 (inst.instruction);
9960 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
9961 inst.instruction |= Rd << 8;
9962 inst.instruction |= Rs << 16;
9963 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
9964 }
9965 else
9966 {
9967 bfd_boolean narrow;
9968
9969 /* See if we can do this with a 16-bit instruction. */
9970 if (THUMB_SETS_FLAGS (inst.instruction))
9971 narrow = !in_it_block ();
9972 else
9973 narrow = in_it_block ();
9974
9975 if (Rd > 7 || Rn > 7 || Rs > 7)
9976 narrow = FALSE;
9977 if (inst.operands[2].shifted)
9978 narrow = FALSE;
9979 if (inst.size_req == 4)
9980 narrow = FALSE;
9981
9982 if (narrow)
9983 {
9984 if (Rd == Rs)
9985 {
9986 inst.instruction = THUMB_OP16 (inst.instruction);
9987 inst.instruction |= Rd;
9988 inst.instruction |= Rn << 3;
9989 return;
9990 }
9991 if (Rd == Rn)
9992 {
9993 inst.instruction = THUMB_OP16 (inst.instruction);
9994 inst.instruction |= Rd;
9995 inst.instruction |= Rs << 3;
9996 return;
9997 }
9998 }
9999
10000 /* If we get here, it can't be done in 16 bits. */
10001 constraint (inst.operands[2].shifted
10002 && inst.operands[2].immisreg,
10003 _("shift must be constant"));
10004 inst.instruction = THUMB_OP32 (inst.instruction);
10005 inst.instruction |= Rd << 8;
10006 inst.instruction |= Rs << 16;
10007 encode_thumb32_shifted_operand (2);
10008 }
10009 }
10010 else
10011 {
10012 /* On its face this is a lie - the instruction does set the
10013 flags. However, the only supported mnemonic in this mode
10014 says it doesn't. */
10015 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
10016
10017 constraint (!inst.operands[2].isreg || inst.operands[2].shifted,
10018 _("unshifted register required"));
10019 constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG);
10020
10021 inst.instruction = THUMB_OP16 (inst.instruction);
10022 inst.instruction |= Rd;
10023
10024 if (Rd == Rs)
10025 inst.instruction |= Rn << 3;
10026 else if (Rd == Rn)
10027 inst.instruction |= Rs << 3;
10028 else
10029 constraint (1, _("dest must overlap one source register"));
10030 }
10031 }
10032
10033 static void
10034 do_t_barrier (void)
10035 {
10036 if (inst.operands[0].present)
10037 {
10038 constraint ((inst.instruction & 0xf0) != 0x40
10039 && inst.operands[0].imm > 0xf
10040 && inst.operands[0].imm < 0x0,
10041 _("bad barrier type"));
10042 inst.instruction |= inst.operands[0].imm;
10043 }
10044 else
10045 inst.instruction |= 0xf;
10046 }
10047
10048 static void
10049 do_t_bfc (void)
10050 {
10051 unsigned Rd;
10052 unsigned int msb = inst.operands[1].imm + inst.operands[2].imm;
10053 constraint (msb > 32, _("bit-field extends past end of register"));
10054 /* The instruction encoding stores the LSB and MSB,
10055 not the LSB and width. */
10056 Rd = inst.operands[0].reg;
10057 reject_bad_reg (Rd);
10058 inst.instruction |= Rd << 8;
10059 inst.instruction |= (inst.operands[1].imm & 0x1c) << 10;
10060 inst.instruction |= (inst.operands[1].imm & 0x03) << 6;
10061 inst.instruction |= msb - 1;
10062 }
10063
10064 static void
10065 do_t_bfi (void)
10066 {
10067 int Rd, Rn;
10068 unsigned int msb;
10069
10070 Rd = inst.operands[0].reg;
10071 reject_bad_reg (Rd);
10072
10073 /* #0 in second position is alternative syntax for bfc, which is
10074 the same instruction but with REG_PC in the Rm field. */
10075 if (!inst.operands[1].isreg)
10076 Rn = REG_PC;
10077 else
10078 {
10079 Rn = inst.operands[1].reg;
10080 reject_bad_reg (Rn);
10081 }
10082
10083 msb = inst.operands[2].imm + inst.operands[3].imm;
10084 constraint (msb > 32, _("bit-field extends past end of register"));
10085 /* The instruction encoding stores the LSB and MSB,
10086 not the LSB and width. */
10087 inst.instruction |= Rd << 8;
10088 inst.instruction |= Rn << 16;
10089 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10090 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10091 inst.instruction |= msb - 1;
10092 }
10093
10094 static void
10095 do_t_bfx (void)
10096 {
10097 unsigned Rd, Rn;
10098
10099 Rd = inst.operands[0].reg;
10100 Rn = inst.operands[1].reg;
10101
10102 reject_bad_reg (Rd);
10103 reject_bad_reg (Rn);
10104
10105 constraint (inst.operands[2].imm + inst.operands[3].imm > 32,
10106 _("bit-field extends past end of register"));
10107 inst.instruction |= Rd << 8;
10108 inst.instruction |= Rn << 16;
10109 inst.instruction |= (inst.operands[2].imm & 0x1c) << 10;
10110 inst.instruction |= (inst.operands[2].imm & 0x03) << 6;
10111 inst.instruction |= inst.operands[3].imm - 1;
10112 }
10113
10114 /* ARM V5 Thumb BLX (argument parse)
10115 BLX <target_addr> which is BLX(1)
10116 BLX <Rm> which is BLX(2)
10117 Unfortunately, there are two different opcodes for this mnemonic.
10118 So, the insns[].value is not used, and the code here zaps values
10119 into inst.instruction.
10120
10121 ??? How to take advantage of the additional two bits of displacement
10122 available in Thumb32 mode? Need new relocation? */
10123
10124 static void
10125 do_t_blx (void)
10126 {
10127 set_it_insn_type_last ();
10128
10129 if (inst.operands[0].isreg)
10130 {
10131 constraint (inst.operands[0].reg == REG_PC, BAD_PC);
10132 /* We have a register, so this is BLX(2). */
10133 inst.instruction |= inst.operands[0].reg << 3;
10134 }
10135 else
10136 {
10137 /* No register. This must be BLX(1). */
10138 inst.instruction = 0xf000e800;
10139 encode_branch (BFD_RELOC_THUMB_PCREL_BLX);
10140 }
10141 }
10142
10143 static void
10144 do_t_branch (void)
10145 {
10146 int opcode;
10147 int cond;
10148 int reloc;
10149
10150 cond = inst.cond;
10151 set_it_insn_type (IF_INSIDE_IT_LAST_INSN);
10152
10153 if (in_it_block ())
10154 {
10155 /* Conditional branches inside IT blocks are encoded as unconditional
10156 branches. */
10157 cond = COND_ALWAYS;
10158 }
10159 else
10160 cond = inst.cond;
10161
10162 if (cond != COND_ALWAYS)
10163 opcode = T_MNEM_bcond;
10164 else
10165 opcode = inst.instruction;
10166
10167 if (unified_syntax
10168 && (inst.size_req == 4
10169 || (inst.size_req != 2
10170 && (inst.operands[0].hasreloc
10171 || inst.reloc.exp.X_op == O_constant))))
10172 {
10173 inst.instruction = THUMB_OP32(opcode);
10174 if (cond == COND_ALWAYS)
10175 reloc = BFD_RELOC_THUMB_PCREL_BRANCH25;
10176 else
10177 {
10178 gas_assert (cond != 0xF);
10179 inst.instruction |= cond << 22;
10180 reloc = BFD_RELOC_THUMB_PCREL_BRANCH20;
10181 }
10182 }
10183 else
10184 {
10185 inst.instruction = THUMB_OP16(opcode);
10186 if (cond == COND_ALWAYS)
10187 reloc = BFD_RELOC_THUMB_PCREL_BRANCH12;
10188 else
10189 {
10190 inst.instruction |= cond << 8;
10191 reloc = BFD_RELOC_THUMB_PCREL_BRANCH9;
10192 }
10193 /* Allow section relaxation. */
10194 if (unified_syntax && inst.size_req != 2)
10195 inst.relax = opcode;
10196 }
10197 inst.reloc.type = reloc;
10198 inst.reloc.pc_rel = 1;
10199 }
10200
10201 static void
10202 do_t_bkpt (void)
10203 {
10204 constraint (inst.cond != COND_ALWAYS,
10205 _("instruction is always unconditional"));
10206 if (inst.operands[0].present)
10207 {
10208 constraint (inst.operands[0].imm > 255,
10209 _("immediate value out of range"));
10210 inst.instruction |= inst.operands[0].imm;
10211 set_it_insn_type (NEUTRAL_IT_INSN);
10212 }
10213 }
10214
10215 static void
10216 do_t_branch23 (void)
10217 {
10218 set_it_insn_type_last ();
10219 encode_branch (BFD_RELOC_THUMB_PCREL_BRANCH23);
10220
10221 /* md_apply_fix blows up with 'bl foo(PLT)' where foo is defined in
10222 this file. We used to simply ignore the PLT reloc type here --
10223 the branch encoding is now needed to deal with TLSCALL relocs.
10224 So if we see a PLT reloc now, put it back to how it used to be to
10225 keep the preexisting behaviour. */
10226 if (inst.reloc.type == BFD_RELOC_ARM_PLT32)
10227 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
10228
10229 #if defined(OBJ_COFF)
10230 /* If the destination of the branch is a defined symbol which does not have
10231 the THUMB_FUNC attribute, then we must be calling a function which has
10232 the (interfacearm) attribute. We look for the Thumb entry point to that
10233 function and change the branch to refer to that function instead. */
10234 if ( inst.reloc.exp.X_op == O_symbol
10235 && inst.reloc.exp.X_add_symbol != NULL
10236 && S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
10237 && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
10238 inst.reloc.exp.X_add_symbol =
10239 find_real_start (inst.reloc.exp.X_add_symbol);
10240 #endif
10241 }
10242
10243 static void
10244 do_t_bx (void)
10245 {
10246 set_it_insn_type_last ();
10247 inst.instruction |= inst.operands[0].reg << 3;
10248 /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
10249 should cause the alignment to be checked once it is known. This is
10250 because BX PC only works if the instruction is word aligned. */
10251 }
10252
10253 static void
10254 do_t_bxj (void)
10255 {
10256 int Rm;
10257
10258 set_it_insn_type_last ();
10259 Rm = inst.operands[0].reg;
10260 reject_bad_reg (Rm);
10261 inst.instruction |= Rm << 16;
10262 }
10263
10264 static void
10265 do_t_clz (void)
10266 {
10267 unsigned Rd;
10268 unsigned Rm;
10269
10270 Rd = inst.operands[0].reg;
10271 Rm = inst.operands[1].reg;
10272
10273 reject_bad_reg (Rd);
10274 reject_bad_reg (Rm);
10275
10276 inst.instruction |= Rd << 8;
10277 inst.instruction |= Rm << 16;
10278 inst.instruction |= Rm;
10279 }
10280
10281 static void
10282 do_t_cps (void)
10283 {
10284 set_it_insn_type (OUTSIDE_IT_INSN);
10285 inst.instruction |= inst.operands[0].imm;
10286 }
10287
10288 static void
10289 do_t_cpsi (void)
10290 {
10291 set_it_insn_type (OUTSIDE_IT_INSN);
10292 if (unified_syntax
10293 && (inst.operands[1].present || inst.size_req == 4)
10294 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm))
10295 {
10296 unsigned int imod = (inst.instruction & 0x0030) >> 4;
10297 inst.instruction = 0xf3af8000;
10298 inst.instruction |= imod << 9;
10299 inst.instruction |= inst.operands[0].imm << 5;
10300 if (inst.operands[1].present)
10301 inst.instruction |= 0x100 | inst.operands[1].imm;
10302 }
10303 else
10304 {
10305 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)
10306 && (inst.operands[0].imm & 4),
10307 _("selected processor does not support 'A' form "
10308 "of this instruction"));
10309 constraint (inst.operands[1].present || inst.size_req == 4,
10310 _("Thumb does not support the 2-argument "
10311 "form of this instruction"));
10312 inst.instruction |= inst.operands[0].imm;
10313 }
10314 }
10315
10316 /* THUMB CPY instruction (argument parse). */
10317
10318 static void
10319 do_t_cpy (void)
10320 {
10321 if (inst.size_req == 4)
10322 {
10323 inst.instruction = THUMB_OP32 (T_MNEM_mov);
10324 inst.instruction |= inst.operands[0].reg << 8;
10325 inst.instruction |= inst.operands[1].reg;
10326 }
10327 else
10328 {
10329 inst.instruction |= (inst.operands[0].reg & 0x8) << 4;
10330 inst.instruction |= (inst.operands[0].reg & 0x7);
10331 inst.instruction |= inst.operands[1].reg << 3;
10332 }
10333 }
10334
10335 static void
10336 do_t_cbz (void)
10337 {
10338 set_it_insn_type (OUTSIDE_IT_INSN);
10339 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10340 inst.instruction |= inst.operands[0].reg;
10341 inst.reloc.pc_rel = 1;
10342 inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7;
10343 }
10344
10345 static void
10346 do_t_dbg (void)
10347 {
10348 inst.instruction |= inst.operands[0].imm;
10349 }
10350
10351 static void
10352 do_t_div (void)
10353 {
10354 unsigned Rd, Rn, Rm;
10355
10356 Rd = inst.operands[0].reg;
10357 Rn = (inst.operands[1].present
10358 ? inst.operands[1].reg : Rd);
10359 Rm = inst.operands[2].reg;
10360
10361 reject_bad_reg (Rd);
10362 reject_bad_reg (Rn);
10363 reject_bad_reg (Rm);
10364
10365 inst.instruction |= Rd << 8;
10366 inst.instruction |= Rn << 16;
10367 inst.instruction |= Rm;
10368 }
10369
10370 static void
10371 do_t_hint (void)
10372 {
10373 if (unified_syntax && inst.size_req == 4)
10374 inst.instruction = THUMB_OP32 (inst.instruction);
10375 else
10376 inst.instruction = THUMB_OP16 (inst.instruction);
10377 }
10378
10379 static void
10380 do_t_it (void)
10381 {
10382 unsigned int cond = inst.operands[0].imm;
10383
10384 set_it_insn_type (IT_INSN);
10385 now_it.mask = (inst.instruction & 0xf) | 0x10;
10386 now_it.cc = cond;
10387 now_it.warn_deprecated = FALSE;
10388
10389 /* If the condition is a negative condition, invert the mask. */
10390 if ((cond & 0x1) == 0x0)
10391 {
10392 unsigned int mask = inst.instruction & 0x000f;
10393
10394 if ((mask & 0x7) == 0)
10395 {
10396 /* No conversion needed. */
10397 now_it.block_length = 1;
10398 }
10399 else if ((mask & 0x3) == 0)
10400 {
10401 mask ^= 0x8;
10402 now_it.block_length = 2;
10403 }
10404 else if ((mask & 0x1) == 0)
10405 {
10406 mask ^= 0xC;
10407 now_it.block_length = 3;
10408 }
10409 else
10410 {
10411 mask ^= 0xE;
10412 now_it.block_length = 4;
10413 }
10414
10415 inst.instruction &= 0xfff0;
10416 inst.instruction |= mask;
10417 }
10418
10419 inst.instruction |= cond << 4;
10420 }
10421
10422 /* Helper function used for both push/pop and ldm/stm. */
10423 static void
10424 encode_thumb2_ldmstm (int base, unsigned mask, bfd_boolean writeback)
10425 {
10426 bfd_boolean load;
10427
10428 load = (inst.instruction & (1 << 20)) != 0;
10429
10430 if (mask & (1 << 13))
10431 inst.error = _("SP not allowed in register list");
10432
10433 if ((mask & (1 << base)) != 0
10434 && writeback)
10435 inst.error = _("having the base register in the register list when "
10436 "using write back is UNPREDICTABLE");
10437
10438 if (load)
10439 {
10440 if (mask & (1 << 15))
10441 {
10442 if (mask & (1 << 14))
10443 inst.error = _("LR and PC should not both be in register list");
10444 else
10445 set_it_insn_type_last ();
10446 }
10447 }
10448 else
10449 {
10450 if (mask & (1 << 15))
10451 inst.error = _("PC not allowed in register list");
10452 }
10453
10454 if ((mask & (mask - 1)) == 0)
10455 {
10456 /* Single register transfers implemented as str/ldr. */
10457 if (writeback)
10458 {
10459 if (inst.instruction & (1 << 23))
10460 inst.instruction = 0x00000b04; /* ia! -> [base], #4 */
10461 else
10462 inst.instruction = 0x00000d04; /* db! -> [base, #-4]! */
10463 }
10464 else
10465 {
10466 if (inst.instruction & (1 << 23))
10467 inst.instruction = 0x00800000; /* ia -> [base] */
10468 else
10469 inst.instruction = 0x00000c04; /* db -> [base, #-4] */
10470 }
10471
10472 inst.instruction |= 0xf8400000;
10473 if (load)
10474 inst.instruction |= 0x00100000;
10475
10476 mask = ffs (mask) - 1;
10477 mask <<= 12;
10478 }
10479 else if (writeback)
10480 inst.instruction |= WRITE_BACK;
10481
10482 inst.instruction |= mask;
10483 inst.instruction |= base << 16;
10484 }
10485
10486 static void
10487 do_t_ldmstm (void)
10488 {
10489 /* This really doesn't seem worth it. */
10490 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
10491 _("expression too complex"));
10492 constraint (inst.operands[1].writeback,
10493 _("Thumb load/store multiple does not support {reglist}^"));
10494
10495 if (unified_syntax)
10496 {
10497 bfd_boolean narrow;
10498 unsigned mask;
10499
10500 narrow = FALSE;
10501 /* See if we can use a 16-bit instruction. */
10502 if (inst.instruction < 0xffff /* not ldmdb/stmdb */
10503 && inst.size_req != 4
10504 && !(inst.operands[1].imm & ~0xff))
10505 {
10506 mask = 1 << inst.operands[0].reg;
10507
10508 if (inst.operands[0].reg <= 7)
10509 {
10510 if (inst.instruction == T_MNEM_stmia
10511 ? inst.operands[0].writeback
10512 : (inst.operands[0].writeback
10513 == !(inst.operands[1].imm & mask)))
10514 {
10515 if (inst.instruction == T_MNEM_stmia
10516 && (inst.operands[1].imm & mask)
10517 && (inst.operands[1].imm & (mask - 1)))
10518 as_warn (_("value stored for r%d is UNKNOWN"),
10519 inst.operands[0].reg);
10520
10521 inst.instruction = THUMB_OP16 (inst.instruction);
10522 inst.instruction |= inst.operands[0].reg << 8;
10523 inst.instruction |= inst.operands[1].imm;
10524 narrow = TRUE;
10525 }
10526 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10527 {
10528 /* This means 1 register in reg list one of 3 situations:
10529 1. Instruction is stmia, but without writeback.
10530 2. lmdia without writeback, but with Rn not in
10531 reglist.
10532 3. ldmia with writeback, but with Rn in reglist.
10533 Case 3 is UNPREDICTABLE behaviour, so we handle
10534 case 1 and 2 which can be converted into a 16-bit
10535 str or ldr. The SP cases are handled below. */
10536 unsigned long opcode;
10537 /* First, record an error for Case 3. */
10538 if (inst.operands[1].imm & mask
10539 && inst.operands[0].writeback)
10540 inst.error =
10541 _("having the base register in the register list when "
10542 "using write back is UNPREDICTABLE");
10543
10544 opcode = (inst.instruction == T_MNEM_stmia ? T_MNEM_str
10545 : T_MNEM_ldr);
10546 inst.instruction = THUMB_OP16 (opcode);
10547 inst.instruction |= inst.operands[0].reg << 3;
10548 inst.instruction |= (ffs (inst.operands[1].imm)-1);
10549 narrow = TRUE;
10550 }
10551 }
10552 else if (inst.operands[0] .reg == REG_SP)
10553 {
10554 if (inst.operands[0].writeback)
10555 {
10556 inst.instruction =
10557 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10558 ? T_MNEM_push : T_MNEM_pop);
10559 inst.instruction |= inst.operands[1].imm;
10560 narrow = TRUE;
10561 }
10562 else if ((inst.operands[1].imm & (inst.operands[1].imm-1)) == 0)
10563 {
10564 inst.instruction =
10565 THUMB_OP16 (inst.instruction == T_MNEM_stmia
10566 ? T_MNEM_str_sp : T_MNEM_ldr_sp);
10567 inst.instruction |= ((ffs (inst.operands[1].imm)-1) << 8);
10568 narrow = TRUE;
10569 }
10570 }
10571 }
10572
10573 if (!narrow)
10574 {
10575 if (inst.instruction < 0xffff)
10576 inst.instruction = THUMB_OP32 (inst.instruction);
10577
10578 encode_thumb2_ldmstm (inst.operands[0].reg, inst.operands[1].imm,
10579 inst.operands[0].writeback);
10580 }
10581 }
10582 else
10583 {
10584 constraint (inst.operands[0].reg > 7
10585 || (inst.operands[1].imm & ~0xff), BAD_HIREG);
10586 constraint (inst.instruction != T_MNEM_ldmia
10587 && inst.instruction != T_MNEM_stmia,
10588 _("Thumb-2 instruction only valid in unified syntax"));
10589 if (inst.instruction == T_MNEM_stmia)
10590 {
10591 if (!inst.operands[0].writeback)
10592 as_warn (_("this instruction will write back the base register"));
10593 if ((inst.operands[1].imm & (1 << inst.operands[0].reg))
10594 && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1)))
10595 as_warn (_("value stored for r%d is UNKNOWN"),
10596 inst.operands[0].reg);
10597 }
10598 else
10599 {
10600 if (!inst.operands[0].writeback
10601 && !(inst.operands[1].imm & (1 << inst.operands[0].reg)))
10602 as_warn (_("this instruction will write back the base register"));
10603 else if (inst.operands[0].writeback
10604 && (inst.operands[1].imm & (1 << inst.operands[0].reg)))
10605 as_warn (_("this instruction will not write back the base register"));
10606 }
10607
10608 inst.instruction = THUMB_OP16 (inst.instruction);
10609 inst.instruction |= inst.operands[0].reg << 8;
10610 inst.instruction |= inst.operands[1].imm;
10611 }
10612 }
10613
10614 static void
10615 do_t_ldrex (void)
10616 {
10617 constraint (!inst.operands[1].isreg || !inst.operands[1].preind
10618 || inst.operands[1].postind || inst.operands[1].writeback
10619 || inst.operands[1].immisreg || inst.operands[1].shifted
10620 || inst.operands[1].negative,
10621 BAD_ADDR_MODE);
10622
10623 constraint ((inst.operands[1].reg == REG_PC), BAD_PC);
10624
10625 inst.instruction |= inst.operands[0].reg << 12;
10626 inst.instruction |= inst.operands[1].reg << 16;
10627 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
10628 }
10629
10630 static void
10631 do_t_ldrexd (void)
10632 {
10633 if (!inst.operands[1].present)
10634 {
10635 constraint (inst.operands[0].reg == REG_LR,
10636 _("r14 not allowed as first register "
10637 "when second register is omitted"));
10638 inst.operands[1].reg = inst.operands[0].reg + 1;
10639 }
10640 constraint (inst.operands[0].reg == inst.operands[1].reg,
10641 BAD_OVERLAP);
10642
10643 inst.instruction |= inst.operands[0].reg << 12;
10644 inst.instruction |= inst.operands[1].reg << 8;
10645 inst.instruction |= inst.operands[2].reg << 16;
10646 }
10647
10648 static void
10649 do_t_ldst (void)
10650 {
10651 unsigned long opcode;
10652 int Rn;
10653
10654 if (inst.operands[0].isreg
10655 && !inst.operands[0].preind
10656 && inst.operands[0].reg == REG_PC)
10657 set_it_insn_type_last ();
10658
10659 opcode = inst.instruction;
10660 if (unified_syntax)
10661 {
10662 if (!inst.operands[1].isreg)
10663 {
10664 if (opcode <= 0xffff)
10665 inst.instruction = THUMB_OP32 (opcode);
10666 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10667 return;
10668 }
10669 if (inst.operands[1].isreg
10670 && !inst.operands[1].writeback
10671 && !inst.operands[1].shifted && !inst.operands[1].postind
10672 && !inst.operands[1].negative && inst.operands[0].reg <= 7
10673 && opcode <= 0xffff
10674 && inst.size_req != 4)
10675 {
10676 /* Insn may have a 16-bit form. */
10677 Rn = inst.operands[1].reg;
10678 if (inst.operands[1].immisreg)
10679 {
10680 inst.instruction = THUMB_OP16 (opcode);
10681 /* [Rn, Rik] */
10682 if (Rn <= 7 && inst.operands[1].imm <= 7)
10683 goto op16;
10684 else if (opcode != T_MNEM_ldr && opcode != T_MNEM_str)
10685 reject_bad_reg (inst.operands[1].imm);
10686 }
10687 else if ((Rn <= 7 && opcode != T_MNEM_ldrsh
10688 && opcode != T_MNEM_ldrsb)
10689 || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr)
10690 || (Rn == REG_SP && opcode == T_MNEM_str))
10691 {
10692 /* [Rn, #const] */
10693 if (Rn > 7)
10694 {
10695 if (Rn == REG_PC)
10696 {
10697 if (inst.reloc.pc_rel)
10698 opcode = T_MNEM_ldr_pc2;
10699 else
10700 opcode = T_MNEM_ldr_pc;
10701 }
10702 else
10703 {
10704 if (opcode == T_MNEM_ldr)
10705 opcode = T_MNEM_ldr_sp;
10706 else
10707 opcode = T_MNEM_str_sp;
10708 }
10709 inst.instruction = inst.operands[0].reg << 8;
10710 }
10711 else
10712 {
10713 inst.instruction = inst.operands[0].reg;
10714 inst.instruction |= inst.operands[1].reg << 3;
10715 }
10716 inst.instruction |= THUMB_OP16 (opcode);
10717 if (inst.size_req == 2)
10718 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10719 else
10720 inst.relax = opcode;
10721 return;
10722 }
10723 }
10724 /* Definitely a 32-bit variant. */
10725
10726 /* Warning for Erratum 752419. */
10727 if (opcode == T_MNEM_ldr
10728 && inst.operands[0].reg == REG_SP
10729 && inst.operands[1].writeback == 1
10730 && !inst.operands[1].immisreg)
10731 {
10732 if (no_cpu_selected ()
10733 || (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7)
10734 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a)
10735 && !ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7r)))
10736 as_warn (_("This instruction may be unpredictable "
10737 "if executed on M-profile cores "
10738 "with interrupts enabled."));
10739 }
10740
10741 /* Do some validations regarding addressing modes. */
10742 if (inst.operands[1].immisreg)
10743 reject_bad_reg (inst.operands[1].imm);
10744
10745 constraint (inst.operands[1].writeback == 1
10746 && inst.operands[0].reg == inst.operands[1].reg,
10747 BAD_OVERLAP);
10748
10749 inst.instruction = THUMB_OP32 (opcode);
10750 inst.instruction |= inst.operands[0].reg << 12;
10751 encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE);
10752 check_ldr_r15_aligned ();
10753 return;
10754 }
10755
10756 constraint (inst.operands[0].reg > 7, BAD_HIREG);
10757
10758 if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb)
10759 {
10760 /* Only [Rn,Rm] is acceptable. */
10761 constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG);
10762 constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg
10763 || inst.operands[1].postind || inst.operands[1].shifted
10764 || inst.operands[1].negative,
10765 _("Thumb does not support this addressing mode"));
10766 inst.instruction = THUMB_OP16 (inst.instruction);
10767 goto op16;
10768 }
10769
10770 inst.instruction = THUMB_OP16 (inst.instruction);
10771 if (!inst.operands[1].isreg)
10772 if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE))
10773 return;
10774
10775 constraint (!inst.operands[1].preind
10776 || inst.operands[1].shifted
10777 || inst.operands[1].writeback,
10778 _("Thumb does not support this addressing mode"));
10779 if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP)
10780 {
10781 constraint (inst.instruction & 0x0600,
10782 _("byte or halfword not valid for base register"));
10783 constraint (inst.operands[1].reg == REG_PC
10784 && !(inst.instruction & THUMB_LOAD_BIT),
10785 _("r15 based store not allowed"));
10786 constraint (inst.operands[1].immisreg,
10787 _("invalid base register for register offset"));
10788
10789 if (inst.operands[1].reg == REG_PC)
10790 inst.instruction = T_OPCODE_LDR_PC;
10791 else if (inst.instruction & THUMB_LOAD_BIT)
10792 inst.instruction = T_OPCODE_LDR_SP;
10793 else
10794 inst.instruction = T_OPCODE_STR_SP;
10795
10796 inst.instruction |= inst.operands[0].reg << 8;
10797 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10798 return;
10799 }
10800
10801 constraint (inst.operands[1].reg > 7, BAD_HIREG);
10802 if (!inst.operands[1].immisreg)
10803 {
10804 /* Immediate offset. */
10805 inst.instruction |= inst.operands[0].reg;
10806 inst.instruction |= inst.operands[1].reg << 3;
10807 inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
10808 return;
10809 }
10810
10811 /* Register offset. */
10812 constraint (inst.operands[1].imm > 7, BAD_HIREG);
10813 constraint (inst.operands[1].negative,
10814 _("Thumb does not support this addressing mode"));
10815
10816 op16:
10817 switch (inst.instruction)
10818 {
10819 case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break;
10820 case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break;
10821 case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break;
10822 case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break;
10823 case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break;
10824 case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break;
10825 case 0x5600 /* ldrsb */:
10826 case 0x5e00 /* ldrsh */: break;
10827 default: abort ();
10828 }
10829
10830 inst.instruction |= inst.operands[0].reg;
10831 inst.instruction |= inst.operands[1].reg << 3;
10832 inst.instruction |= inst.operands[1].imm << 6;
10833 }
10834
10835 static void
10836 do_t_ldstd (void)
10837 {
10838 if (!inst.operands[1].present)
10839 {
10840 inst.operands[1].reg = inst.operands[0].reg + 1;
10841 constraint (inst.operands[0].reg == REG_LR,
10842 _("r14 not allowed here"));
10843 constraint (inst.operands[0].reg == REG_R12,
10844 _("r12 not allowed here"));
10845 }
10846
10847 if (inst.operands[2].writeback
10848 && (inst.operands[0].reg == inst.operands[2].reg
10849 || inst.operands[1].reg == inst.operands[2].reg))
10850 as_warn (_("base register written back, and overlaps "
10851 "one of transfer registers"));
10852
10853 inst.instruction |= inst.operands[0].reg << 12;
10854 inst.instruction |= inst.operands[1].reg << 8;
10855 encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE);
10856 }
10857
10858 static void
10859 do_t_ldstt (void)
10860 {
10861 inst.instruction |= inst.operands[0].reg << 12;
10862 encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE);
10863 }
10864
10865 static void
10866 do_t_mla (void)
10867 {
10868 unsigned Rd, Rn, Rm, Ra;
10869
10870 Rd = inst.operands[0].reg;
10871 Rn = inst.operands[1].reg;
10872 Rm = inst.operands[2].reg;
10873 Ra = inst.operands[3].reg;
10874
10875 reject_bad_reg (Rd);
10876 reject_bad_reg (Rn);
10877 reject_bad_reg (Rm);
10878 reject_bad_reg (Ra);
10879
10880 inst.instruction |= Rd << 8;
10881 inst.instruction |= Rn << 16;
10882 inst.instruction |= Rm;
10883 inst.instruction |= Ra << 12;
10884 }
10885
10886 static void
10887 do_t_mlal (void)
10888 {
10889 unsigned RdLo, RdHi, Rn, Rm;
10890
10891 RdLo = inst.operands[0].reg;
10892 RdHi = inst.operands[1].reg;
10893 Rn = inst.operands[2].reg;
10894 Rm = inst.operands[3].reg;
10895
10896 reject_bad_reg (RdLo);
10897 reject_bad_reg (RdHi);
10898 reject_bad_reg (Rn);
10899 reject_bad_reg (Rm);
10900
10901 inst.instruction |= RdLo << 12;
10902 inst.instruction |= RdHi << 8;
10903 inst.instruction |= Rn << 16;
10904 inst.instruction |= Rm;
10905 }
10906
10907 static void
10908 do_t_mov_cmp (void)
10909 {
10910 unsigned Rn, Rm;
10911
10912 Rn = inst.operands[0].reg;
10913 Rm = inst.operands[1].reg;
10914
10915 if (Rn == REG_PC)
10916 set_it_insn_type_last ();
10917
10918 if (unified_syntax)
10919 {
10920 int r0off = (inst.instruction == T_MNEM_mov
10921 || inst.instruction == T_MNEM_movs) ? 8 : 16;
10922 unsigned long opcode;
10923 bfd_boolean narrow;
10924 bfd_boolean low_regs;
10925
10926 low_regs = (Rn <= 7 && Rm <= 7);
10927 opcode = inst.instruction;
10928 if (in_it_block ())
10929 narrow = opcode != T_MNEM_movs;
10930 else
10931 narrow = opcode != T_MNEM_movs || low_regs;
10932 if (inst.size_req == 4
10933 || inst.operands[1].shifted)
10934 narrow = FALSE;
10935
10936 /* MOVS PC, LR is encoded as SUBS PC, LR, #0. */
10937 if (opcode == T_MNEM_movs && inst.operands[1].isreg
10938 && !inst.operands[1].shifted
10939 && Rn == REG_PC
10940 && Rm == REG_LR)
10941 {
10942 inst.instruction = T2_SUBS_PC_LR;
10943 return;
10944 }
10945
10946 if (opcode == T_MNEM_cmp)
10947 {
10948 constraint (Rn == REG_PC, BAD_PC);
10949 if (narrow)
10950 {
10951 /* In the Thumb-2 ISA, use of R13 as Rm is deprecated,
10952 but valid. */
10953 warn_deprecated_sp (Rm);
10954 /* R15 was documented as a valid choice for Rm in ARMv6,
10955 but as UNPREDICTABLE in ARMv7. ARM's proprietary
10956 tools reject R15, so we do too. */
10957 constraint (Rm == REG_PC, BAD_PC);
10958 }
10959 else
10960 reject_bad_reg (Rm);
10961 }
10962 else if (opcode == T_MNEM_mov
10963 || opcode == T_MNEM_movs)
10964 {
10965 if (inst.operands[1].isreg)
10966 {
10967 if (opcode == T_MNEM_movs)
10968 {
10969 reject_bad_reg (Rn);
10970 reject_bad_reg (Rm);
10971 }
10972 else if (narrow)
10973 {
10974 /* This is mov.n. */
10975 if ((Rn == REG_SP || Rn == REG_PC)
10976 && (Rm == REG_SP || Rm == REG_PC))
10977 {
10978 as_warn (_("Use of r%u as a source register is "
10979 "deprecated when r%u is the destination "
10980 "register."), Rm, Rn);
10981 }
10982 }
10983 else
10984 {
10985 /* This is mov.w. */
10986 constraint (Rn == REG_PC, BAD_PC);
10987 constraint (Rm == REG_PC, BAD_PC);
10988 constraint (Rn == REG_SP && Rm == REG_SP, BAD_SP);
10989 }
10990 }
10991 else
10992 reject_bad_reg (Rn);
10993 }
10994
10995 if (!inst.operands[1].isreg)
10996 {
10997 /* Immediate operand. */
10998 if (!in_it_block () && opcode == T_MNEM_mov)
10999 narrow = 0;
11000 if (low_regs && narrow)
11001 {
11002 inst.instruction = THUMB_OP16 (opcode);
11003 inst.instruction |= Rn << 8;
11004 if (inst.size_req == 2)
11005 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11006 else
11007 inst.relax = opcode;
11008 }
11009 else
11010 {
11011 inst.instruction = THUMB_OP32 (inst.instruction);
11012 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11013 inst.instruction |= Rn << r0off;
11014 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11015 }
11016 }
11017 else if (inst.operands[1].shifted && inst.operands[1].immisreg
11018 && (inst.instruction == T_MNEM_mov
11019 || inst.instruction == T_MNEM_movs))
11020 {
11021 /* Register shifts are encoded as separate shift instructions. */
11022 bfd_boolean flags = (inst.instruction == T_MNEM_movs);
11023
11024 if (in_it_block ())
11025 narrow = !flags;
11026 else
11027 narrow = flags;
11028
11029 if (inst.size_req == 4)
11030 narrow = FALSE;
11031
11032 if (!low_regs || inst.operands[1].imm > 7)
11033 narrow = FALSE;
11034
11035 if (Rn != Rm)
11036 narrow = FALSE;
11037
11038 switch (inst.operands[1].shift_kind)
11039 {
11040 case SHIFT_LSL:
11041 opcode = narrow ? T_OPCODE_LSL_R : THUMB_OP32 (T_MNEM_lsl);
11042 break;
11043 case SHIFT_ASR:
11044 opcode = narrow ? T_OPCODE_ASR_R : THUMB_OP32 (T_MNEM_asr);
11045 break;
11046 case SHIFT_LSR:
11047 opcode = narrow ? T_OPCODE_LSR_R : THUMB_OP32 (T_MNEM_lsr);
11048 break;
11049 case SHIFT_ROR:
11050 opcode = narrow ? T_OPCODE_ROR_R : THUMB_OP32 (T_MNEM_ror);
11051 break;
11052 default:
11053 abort ();
11054 }
11055
11056 inst.instruction = opcode;
11057 if (narrow)
11058 {
11059 inst.instruction |= Rn;
11060 inst.instruction |= inst.operands[1].imm << 3;
11061 }
11062 else
11063 {
11064 if (flags)
11065 inst.instruction |= CONDS_BIT;
11066
11067 inst.instruction |= Rn << 8;
11068 inst.instruction |= Rm << 16;
11069 inst.instruction |= inst.operands[1].imm;
11070 }
11071 }
11072 else if (!narrow)
11073 {
11074 /* Some mov with immediate shift have narrow variants.
11075 Register shifts are handled above. */
11076 if (low_regs && inst.operands[1].shifted
11077 && (inst.instruction == T_MNEM_mov
11078 || inst.instruction == T_MNEM_movs))
11079 {
11080 if (in_it_block ())
11081 narrow = (inst.instruction == T_MNEM_mov);
11082 else
11083 narrow = (inst.instruction == T_MNEM_movs);
11084 }
11085
11086 if (narrow)
11087 {
11088 switch (inst.operands[1].shift_kind)
11089 {
11090 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11091 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11092 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11093 default: narrow = FALSE; break;
11094 }
11095 }
11096
11097 if (narrow)
11098 {
11099 inst.instruction |= Rn;
11100 inst.instruction |= Rm << 3;
11101 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11102 }
11103 else
11104 {
11105 inst.instruction = THUMB_OP32 (inst.instruction);
11106 inst.instruction |= Rn << r0off;
11107 encode_thumb32_shifted_operand (1);
11108 }
11109 }
11110 else
11111 switch (inst.instruction)
11112 {
11113 case T_MNEM_mov:
11114 /* In v4t or v5t a move of two lowregs produces unpredictable
11115 results. Don't allow this. */
11116 if (low_regs)
11117 {
11118 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6),
11119 "MOV Rd, Rs with two low registers is not "
11120 "permitted on this architecture");
11121 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
11122 arm_ext_v6);
11123 }
11124
11125 inst.instruction = T_OPCODE_MOV_HR;
11126 inst.instruction |= (Rn & 0x8) << 4;
11127 inst.instruction |= (Rn & 0x7);
11128 inst.instruction |= Rm << 3;
11129 break;
11130
11131 case T_MNEM_movs:
11132 /* We know we have low registers at this point.
11133 Generate LSLS Rd, Rs, #0. */
11134 inst.instruction = T_OPCODE_LSL_I;
11135 inst.instruction |= Rn;
11136 inst.instruction |= Rm << 3;
11137 break;
11138
11139 case T_MNEM_cmp:
11140 if (low_regs)
11141 {
11142 inst.instruction = T_OPCODE_CMP_LR;
11143 inst.instruction |= Rn;
11144 inst.instruction |= Rm << 3;
11145 }
11146 else
11147 {
11148 inst.instruction = T_OPCODE_CMP_HR;
11149 inst.instruction |= (Rn & 0x8) << 4;
11150 inst.instruction |= (Rn & 0x7);
11151 inst.instruction |= Rm << 3;
11152 }
11153 break;
11154 }
11155 return;
11156 }
11157
11158 inst.instruction = THUMB_OP16 (inst.instruction);
11159
11160 /* PR 10443: Do not silently ignore shifted operands. */
11161 constraint (inst.operands[1].shifted,
11162 _("shifts in CMP/MOV instructions are only supported in unified syntax"));
11163
11164 if (inst.operands[1].isreg)
11165 {
11166 if (Rn < 8 && Rm < 8)
11167 {
11168 /* A move of two lowregs is encoded as ADD Rd, Rs, #0
11169 since a MOV instruction produces unpredictable results. */
11170 if (inst.instruction == T_OPCODE_MOV_I8)
11171 inst.instruction = T_OPCODE_ADD_I3;
11172 else
11173 inst.instruction = T_OPCODE_CMP_LR;
11174
11175 inst.instruction |= Rn;
11176 inst.instruction |= Rm << 3;
11177 }
11178 else
11179 {
11180 if (inst.instruction == T_OPCODE_MOV_I8)
11181 inst.instruction = T_OPCODE_MOV_HR;
11182 else
11183 inst.instruction = T_OPCODE_CMP_HR;
11184 do_t_cpy ();
11185 }
11186 }
11187 else
11188 {
11189 constraint (Rn > 7,
11190 _("only lo regs allowed with immediate"));
11191 inst.instruction |= Rn << 8;
11192 inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
11193 }
11194 }
11195
11196 static void
11197 do_t_mov16 (void)
11198 {
11199 unsigned Rd;
11200 bfd_vma imm;
11201 bfd_boolean top;
11202
11203 top = (inst.instruction & 0x00800000) != 0;
11204 if (inst.reloc.type == BFD_RELOC_ARM_MOVW)
11205 {
11206 constraint (top, _(":lower16: not allowed this instruction"));
11207 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW;
11208 }
11209 else if (inst.reloc.type == BFD_RELOC_ARM_MOVT)
11210 {
11211 constraint (!top, _(":upper16: not allowed this instruction"));
11212 inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT;
11213 }
11214
11215 Rd = inst.operands[0].reg;
11216 reject_bad_reg (Rd);
11217
11218 inst.instruction |= Rd << 8;
11219 if (inst.reloc.type == BFD_RELOC_UNUSED)
11220 {
11221 imm = inst.reloc.exp.X_add_number;
11222 inst.instruction |= (imm & 0xf000) << 4;
11223 inst.instruction |= (imm & 0x0800) << 15;
11224 inst.instruction |= (imm & 0x0700) << 4;
11225 inst.instruction |= (imm & 0x00ff);
11226 }
11227 }
11228
11229 static void
11230 do_t_mvn_tst (void)
11231 {
11232 unsigned Rn, Rm;
11233
11234 Rn = inst.operands[0].reg;
11235 Rm = inst.operands[1].reg;
11236
11237 if (inst.instruction == T_MNEM_cmp
11238 || inst.instruction == T_MNEM_cmn)
11239 constraint (Rn == REG_PC, BAD_PC);
11240 else
11241 reject_bad_reg (Rn);
11242 reject_bad_reg (Rm);
11243
11244 if (unified_syntax)
11245 {
11246 int r0off = (inst.instruction == T_MNEM_mvn
11247 || inst.instruction == T_MNEM_mvns) ? 8 : 16;
11248 bfd_boolean narrow;
11249
11250 if (inst.size_req == 4
11251 || inst.instruction > 0xffff
11252 || inst.operands[1].shifted
11253 || Rn > 7 || Rm > 7)
11254 narrow = FALSE;
11255 else if (inst.instruction == T_MNEM_cmn)
11256 narrow = TRUE;
11257 else if (THUMB_SETS_FLAGS (inst.instruction))
11258 narrow = !in_it_block ();
11259 else
11260 narrow = in_it_block ();
11261
11262 if (!inst.operands[1].isreg)
11263 {
11264 /* For an immediate, we always generate a 32-bit opcode;
11265 section relaxation will shrink it later if possible. */
11266 if (inst.instruction < 0xffff)
11267 inst.instruction = THUMB_OP32 (inst.instruction);
11268 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11269 inst.instruction |= Rn << r0off;
11270 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11271 }
11272 else
11273 {
11274 /* See if we can do this with a 16-bit instruction. */
11275 if (narrow)
11276 {
11277 inst.instruction = THUMB_OP16 (inst.instruction);
11278 inst.instruction |= Rn;
11279 inst.instruction |= Rm << 3;
11280 }
11281 else
11282 {
11283 constraint (inst.operands[1].shifted
11284 && inst.operands[1].immisreg,
11285 _("shift must be constant"));
11286 if (inst.instruction < 0xffff)
11287 inst.instruction = THUMB_OP32 (inst.instruction);
11288 inst.instruction |= Rn << r0off;
11289 encode_thumb32_shifted_operand (1);
11290 }
11291 }
11292 }
11293 else
11294 {
11295 constraint (inst.instruction > 0xffff
11296 || inst.instruction == T_MNEM_mvns, BAD_THUMB32);
11297 constraint (!inst.operands[1].isreg || inst.operands[1].shifted,
11298 _("unshifted register required"));
11299 constraint (Rn > 7 || Rm > 7,
11300 BAD_HIREG);
11301
11302 inst.instruction = THUMB_OP16 (inst.instruction);
11303 inst.instruction |= Rn;
11304 inst.instruction |= Rm << 3;
11305 }
11306 }
11307
11308 static void
11309 do_t_mrs (void)
11310 {
11311 unsigned Rd;
11312
11313 if (do_vfp_nsyn_mrs () == SUCCESS)
11314 return;
11315
11316 Rd = inst.operands[0].reg;
11317 reject_bad_reg (Rd);
11318 inst.instruction |= Rd << 8;
11319
11320 if (inst.operands[1].isreg)
11321 {
11322 unsigned br = inst.operands[1].reg;
11323 if (((br & 0x200) == 0) && ((br & 0xf000) != 0xf000))
11324 as_bad (_("bad register for mrs"));
11325
11326 inst.instruction |= br & (0xf << 16);
11327 inst.instruction |= (br & 0x300) >> 4;
11328 inst.instruction |= (br & SPSR_BIT) >> 2;
11329 }
11330 else
11331 {
11332 int flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11333
11334 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11335 {
11336 /* PR gas/12698: The constraint is only applied for m_profile.
11337 If the user has specified -march=all, we want to ignore it as
11338 we are building for any CPU type, including non-m variants. */
11339 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11340 constraint ((flags != 0) && m_profile, _("selected processor does "
11341 "not support requested special purpose register"));
11342 }
11343 else
11344 /* mrs only accepts APSR/CPSR/SPSR/CPSR_all/SPSR_all (for non-M profile
11345 devices). */
11346 constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f),
11347 _("'APSR', 'CPSR' or 'SPSR' expected"));
11348
11349 inst.instruction |= (flags & SPSR_BIT) >> 2;
11350 inst.instruction |= inst.operands[1].imm & 0xff;
11351 inst.instruction |= 0xf0000;
11352 }
11353 }
11354
11355 static void
11356 do_t_msr (void)
11357 {
11358 int flags;
11359 unsigned Rn;
11360
11361 if (do_vfp_nsyn_msr () == SUCCESS)
11362 return;
11363
11364 constraint (!inst.operands[1].isreg,
11365 _("Thumb encoding does not support an immediate here"));
11366
11367 if (inst.operands[0].isreg)
11368 flags = (int)(inst.operands[0].reg);
11369 else
11370 flags = inst.operands[0].imm;
11371
11372 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_m))
11373 {
11374 int bits = inst.operands[0].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT);
11375
11376 /* PR gas/12698: The constraint is only applied for m_profile.
11377 If the user has specified -march=all, we want to ignore it as
11378 we are building for any CPU type, including non-m variants. */
11379 bfd_boolean m_profile = selected_cpu.core != arm_arch_any.core;
11380 constraint (((ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11381 && (bits & ~(PSR_s | PSR_f)) != 0)
11382 || (!ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6_dsp)
11383 && bits != PSR_f)) && m_profile,
11384 _("selected processor does not support requested special "
11385 "purpose register"));
11386 }
11387 else
11388 constraint ((flags & 0xff) != 0, _("selected processor does not support "
11389 "requested special purpose register"));
11390
11391 Rn = inst.operands[1].reg;
11392 reject_bad_reg (Rn);
11393
11394 inst.instruction |= (flags & SPSR_BIT) >> 2;
11395 inst.instruction |= (flags & 0xf0000) >> 8;
11396 inst.instruction |= (flags & 0x300) >> 4;
11397 inst.instruction |= (flags & 0xff);
11398 inst.instruction |= Rn << 16;
11399 }
11400
11401 static void
11402 do_t_mul (void)
11403 {
11404 bfd_boolean narrow;
11405 unsigned Rd, Rn, Rm;
11406
11407 if (!inst.operands[2].present)
11408 inst.operands[2].reg = inst.operands[0].reg;
11409
11410 Rd = inst.operands[0].reg;
11411 Rn = inst.operands[1].reg;
11412 Rm = inst.operands[2].reg;
11413
11414 if (unified_syntax)
11415 {
11416 if (inst.size_req == 4
11417 || (Rd != Rn
11418 && Rd != Rm)
11419 || Rn > 7
11420 || Rm > 7)
11421 narrow = FALSE;
11422 else if (inst.instruction == T_MNEM_muls)
11423 narrow = !in_it_block ();
11424 else
11425 narrow = in_it_block ();
11426 }
11427 else
11428 {
11429 constraint (inst.instruction == T_MNEM_muls, BAD_THUMB32);
11430 constraint (Rn > 7 || Rm > 7,
11431 BAD_HIREG);
11432 narrow = TRUE;
11433 }
11434
11435 if (narrow)
11436 {
11437 /* 16-bit MULS/Conditional MUL. */
11438 inst.instruction = THUMB_OP16 (inst.instruction);
11439 inst.instruction |= Rd;
11440
11441 if (Rd == Rn)
11442 inst.instruction |= Rm << 3;
11443 else if (Rd == Rm)
11444 inst.instruction |= Rn << 3;
11445 else
11446 constraint (1, _("dest must overlap one source register"));
11447 }
11448 else
11449 {
11450 constraint (inst.instruction != T_MNEM_mul,
11451 _("Thumb-2 MUL must not set flags"));
11452 /* 32-bit MUL. */
11453 inst.instruction = THUMB_OP32 (inst.instruction);
11454 inst.instruction |= Rd << 8;
11455 inst.instruction |= Rn << 16;
11456 inst.instruction |= Rm << 0;
11457
11458 reject_bad_reg (Rd);
11459 reject_bad_reg (Rn);
11460 reject_bad_reg (Rm);
11461 }
11462 }
11463
11464 static void
11465 do_t_mull (void)
11466 {
11467 unsigned RdLo, RdHi, Rn, Rm;
11468
11469 RdLo = inst.operands[0].reg;
11470 RdHi = inst.operands[1].reg;
11471 Rn = inst.operands[2].reg;
11472 Rm = inst.operands[3].reg;
11473
11474 reject_bad_reg (RdLo);
11475 reject_bad_reg (RdHi);
11476 reject_bad_reg (Rn);
11477 reject_bad_reg (Rm);
11478
11479 inst.instruction |= RdLo << 12;
11480 inst.instruction |= RdHi << 8;
11481 inst.instruction |= Rn << 16;
11482 inst.instruction |= Rm;
11483
11484 if (RdLo == RdHi)
11485 as_tsktsk (_("rdhi and rdlo must be different"));
11486 }
11487
11488 static void
11489 do_t_nop (void)
11490 {
11491 set_it_insn_type (NEUTRAL_IT_INSN);
11492
11493 if (unified_syntax)
11494 {
11495 if (inst.size_req == 4 || inst.operands[0].imm > 15)
11496 {
11497 inst.instruction = THUMB_OP32 (inst.instruction);
11498 inst.instruction |= inst.operands[0].imm;
11499 }
11500 else
11501 {
11502 /* PR9722: Check for Thumb2 availability before
11503 generating a thumb2 nop instruction. */
11504 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
11505 {
11506 inst.instruction = THUMB_OP16 (inst.instruction);
11507 inst.instruction |= inst.operands[0].imm << 4;
11508 }
11509 else
11510 inst.instruction = 0x46c0;
11511 }
11512 }
11513 else
11514 {
11515 constraint (inst.operands[0].present,
11516 _("Thumb does not support NOP with hints"));
11517 inst.instruction = 0x46c0;
11518 }
11519 }
11520
11521 static void
11522 do_t_neg (void)
11523 {
11524 if (unified_syntax)
11525 {
11526 bfd_boolean narrow;
11527
11528 if (THUMB_SETS_FLAGS (inst.instruction))
11529 narrow = !in_it_block ();
11530 else
11531 narrow = in_it_block ();
11532 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11533 narrow = FALSE;
11534 if (inst.size_req == 4)
11535 narrow = FALSE;
11536
11537 if (!narrow)
11538 {
11539 inst.instruction = THUMB_OP32 (inst.instruction);
11540 inst.instruction |= inst.operands[0].reg << 8;
11541 inst.instruction |= inst.operands[1].reg << 16;
11542 }
11543 else
11544 {
11545 inst.instruction = THUMB_OP16 (inst.instruction);
11546 inst.instruction |= inst.operands[0].reg;
11547 inst.instruction |= inst.operands[1].reg << 3;
11548 }
11549 }
11550 else
11551 {
11552 constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7,
11553 BAD_HIREG);
11554 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11555
11556 inst.instruction = THUMB_OP16 (inst.instruction);
11557 inst.instruction |= inst.operands[0].reg;
11558 inst.instruction |= inst.operands[1].reg << 3;
11559 }
11560 }
11561
11562 static void
11563 do_t_orn (void)
11564 {
11565 unsigned Rd, Rn;
11566
11567 Rd = inst.operands[0].reg;
11568 Rn = inst.operands[1].present ? inst.operands[1].reg : Rd;
11569
11570 reject_bad_reg (Rd);
11571 /* Rn == REG_SP is unpredictable; Rn == REG_PC is MVN. */
11572 reject_bad_reg (Rn);
11573
11574 inst.instruction |= Rd << 8;
11575 inst.instruction |= Rn << 16;
11576
11577 if (!inst.operands[2].isreg)
11578 {
11579 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11580 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11581 }
11582 else
11583 {
11584 unsigned Rm;
11585
11586 Rm = inst.operands[2].reg;
11587 reject_bad_reg (Rm);
11588
11589 constraint (inst.operands[2].shifted
11590 && inst.operands[2].immisreg,
11591 _("shift must be constant"));
11592 encode_thumb32_shifted_operand (2);
11593 }
11594 }
11595
11596 static void
11597 do_t_pkhbt (void)
11598 {
11599 unsigned Rd, Rn, Rm;
11600
11601 Rd = inst.operands[0].reg;
11602 Rn = inst.operands[1].reg;
11603 Rm = inst.operands[2].reg;
11604
11605 reject_bad_reg (Rd);
11606 reject_bad_reg (Rn);
11607 reject_bad_reg (Rm);
11608
11609 inst.instruction |= Rd << 8;
11610 inst.instruction |= Rn << 16;
11611 inst.instruction |= Rm;
11612 if (inst.operands[3].present)
11613 {
11614 unsigned int val = inst.reloc.exp.X_add_number;
11615 constraint (inst.reloc.exp.X_op != O_constant,
11616 _("expression too complex"));
11617 inst.instruction |= (val & 0x1c) << 10;
11618 inst.instruction |= (val & 0x03) << 6;
11619 }
11620 }
11621
11622 static void
11623 do_t_pkhtb (void)
11624 {
11625 if (!inst.operands[3].present)
11626 {
11627 unsigned Rtmp;
11628
11629 inst.instruction &= ~0x00000020;
11630
11631 /* PR 10168. Swap the Rm and Rn registers. */
11632 Rtmp = inst.operands[1].reg;
11633 inst.operands[1].reg = inst.operands[2].reg;
11634 inst.operands[2].reg = Rtmp;
11635 }
11636 do_t_pkhbt ();
11637 }
11638
11639 static void
11640 do_t_pld (void)
11641 {
11642 if (inst.operands[0].immisreg)
11643 reject_bad_reg (inst.operands[0].imm);
11644
11645 encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE);
11646 }
11647
11648 static void
11649 do_t_push_pop (void)
11650 {
11651 unsigned mask;
11652
11653 constraint (inst.operands[0].writeback,
11654 _("push/pop do not support {reglist}^"));
11655 constraint (inst.reloc.type != BFD_RELOC_UNUSED,
11656 _("expression too complex"));
11657
11658 mask = inst.operands[0].imm;
11659 if ((mask & ~0xff) == 0)
11660 inst.instruction = THUMB_OP16 (inst.instruction) | mask;
11661 else if ((inst.instruction == T_MNEM_push
11662 && (mask & ~0xff) == 1 << REG_LR)
11663 || (inst.instruction == T_MNEM_pop
11664 && (mask & ~0xff) == 1 << REG_PC))
11665 {
11666 inst.instruction = THUMB_OP16 (inst.instruction);
11667 inst.instruction |= THUMB_PP_PC_LR;
11668 inst.instruction |= mask & 0xff;
11669 }
11670 else if (unified_syntax)
11671 {
11672 inst.instruction = THUMB_OP32 (inst.instruction);
11673 encode_thumb2_ldmstm (13, mask, TRUE);
11674 }
11675 else
11676 {
11677 inst.error = _("invalid register list to push/pop instruction");
11678 return;
11679 }
11680 }
11681
11682 static void
11683 do_t_rbit (void)
11684 {
11685 unsigned Rd, Rm;
11686
11687 Rd = inst.operands[0].reg;
11688 Rm = inst.operands[1].reg;
11689
11690 reject_bad_reg (Rd);
11691 reject_bad_reg (Rm);
11692
11693 inst.instruction |= Rd << 8;
11694 inst.instruction |= Rm << 16;
11695 inst.instruction |= Rm;
11696 }
11697
11698 static void
11699 do_t_rev (void)
11700 {
11701 unsigned Rd, Rm;
11702
11703 Rd = inst.operands[0].reg;
11704 Rm = inst.operands[1].reg;
11705
11706 reject_bad_reg (Rd);
11707 reject_bad_reg (Rm);
11708
11709 if (Rd <= 7 && Rm <= 7
11710 && inst.size_req != 4)
11711 {
11712 inst.instruction = THUMB_OP16 (inst.instruction);
11713 inst.instruction |= Rd;
11714 inst.instruction |= Rm << 3;
11715 }
11716 else if (unified_syntax)
11717 {
11718 inst.instruction = THUMB_OP32 (inst.instruction);
11719 inst.instruction |= Rd << 8;
11720 inst.instruction |= Rm << 16;
11721 inst.instruction |= Rm;
11722 }
11723 else
11724 inst.error = BAD_HIREG;
11725 }
11726
11727 static void
11728 do_t_rrx (void)
11729 {
11730 unsigned Rd, Rm;
11731
11732 Rd = inst.operands[0].reg;
11733 Rm = inst.operands[1].reg;
11734
11735 reject_bad_reg (Rd);
11736 reject_bad_reg (Rm);
11737
11738 inst.instruction |= Rd << 8;
11739 inst.instruction |= Rm;
11740 }
11741
11742 static void
11743 do_t_rsb (void)
11744 {
11745 unsigned Rd, Rs;
11746
11747 Rd = inst.operands[0].reg;
11748 Rs = (inst.operands[1].present
11749 ? inst.operands[1].reg /* Rd, Rs, foo */
11750 : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */
11751
11752 reject_bad_reg (Rd);
11753 reject_bad_reg (Rs);
11754 if (inst.operands[2].isreg)
11755 reject_bad_reg (inst.operands[2].reg);
11756
11757 inst.instruction |= Rd << 8;
11758 inst.instruction |= Rs << 16;
11759 if (!inst.operands[2].isreg)
11760 {
11761 bfd_boolean narrow;
11762
11763 if ((inst.instruction & 0x00100000) != 0)
11764 narrow = !in_it_block ();
11765 else
11766 narrow = in_it_block ();
11767
11768 if (Rd > 7 || Rs > 7)
11769 narrow = FALSE;
11770
11771 if (inst.size_req == 4 || !unified_syntax)
11772 narrow = FALSE;
11773
11774 if (inst.reloc.exp.X_op != O_constant
11775 || inst.reloc.exp.X_add_number != 0)
11776 narrow = FALSE;
11777
11778 /* Turn rsb #0 into 16-bit neg. We should probably do this via
11779 relaxation, but it doesn't seem worth the hassle. */
11780 if (narrow)
11781 {
11782 inst.reloc.type = BFD_RELOC_UNUSED;
11783 inst.instruction = THUMB_OP16 (T_MNEM_negs);
11784 inst.instruction |= Rs << 3;
11785 inst.instruction |= Rd;
11786 }
11787 else
11788 {
11789 inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000;
11790 inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE;
11791 }
11792 }
11793 else
11794 encode_thumb32_shifted_operand (2);
11795 }
11796
11797 static void
11798 do_t_setend (void)
11799 {
11800 if (warn_on_deprecated
11801 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
11802 as_warn (_("setend use is deprecated for ARMv8"));
11803
11804 set_it_insn_type (OUTSIDE_IT_INSN);
11805 if (inst.operands[0].imm)
11806 inst.instruction |= 0x8;
11807 }
11808
11809 static void
11810 do_t_shift (void)
11811 {
11812 if (!inst.operands[1].present)
11813 inst.operands[1].reg = inst.operands[0].reg;
11814
11815 if (unified_syntax)
11816 {
11817 bfd_boolean narrow;
11818 int shift_kind;
11819
11820 switch (inst.instruction)
11821 {
11822 case T_MNEM_asr:
11823 case T_MNEM_asrs: shift_kind = SHIFT_ASR; break;
11824 case T_MNEM_lsl:
11825 case T_MNEM_lsls: shift_kind = SHIFT_LSL; break;
11826 case T_MNEM_lsr:
11827 case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break;
11828 case T_MNEM_ror:
11829 case T_MNEM_rors: shift_kind = SHIFT_ROR; break;
11830 default: abort ();
11831 }
11832
11833 if (THUMB_SETS_FLAGS (inst.instruction))
11834 narrow = !in_it_block ();
11835 else
11836 narrow = in_it_block ();
11837 if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7)
11838 narrow = FALSE;
11839 if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR)
11840 narrow = FALSE;
11841 if (inst.operands[2].isreg
11842 && (inst.operands[1].reg != inst.operands[0].reg
11843 || inst.operands[2].reg > 7))
11844 narrow = FALSE;
11845 if (inst.size_req == 4)
11846 narrow = FALSE;
11847
11848 reject_bad_reg (inst.operands[0].reg);
11849 reject_bad_reg (inst.operands[1].reg);
11850
11851 if (!narrow)
11852 {
11853 if (inst.operands[2].isreg)
11854 {
11855 reject_bad_reg (inst.operands[2].reg);
11856 inst.instruction = THUMB_OP32 (inst.instruction);
11857 inst.instruction |= inst.operands[0].reg << 8;
11858 inst.instruction |= inst.operands[1].reg << 16;
11859 inst.instruction |= inst.operands[2].reg;
11860
11861 /* PR 12854: Error on extraneous shifts. */
11862 constraint (inst.operands[2].shifted,
11863 _("extraneous shift as part of operand to shift insn"));
11864 }
11865 else
11866 {
11867 inst.operands[1].shifted = 1;
11868 inst.operands[1].shift_kind = shift_kind;
11869 inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction)
11870 ? T_MNEM_movs : T_MNEM_mov);
11871 inst.instruction |= inst.operands[0].reg << 8;
11872 encode_thumb32_shifted_operand (1);
11873 /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */
11874 inst.reloc.type = BFD_RELOC_UNUSED;
11875 }
11876 }
11877 else
11878 {
11879 if (inst.operands[2].isreg)
11880 {
11881 switch (shift_kind)
11882 {
11883 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break;
11884 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break;
11885 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break;
11886 case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break;
11887 default: abort ();
11888 }
11889
11890 inst.instruction |= inst.operands[0].reg;
11891 inst.instruction |= inst.operands[2].reg << 3;
11892
11893 /* PR 12854: Error on extraneous shifts. */
11894 constraint (inst.operands[2].shifted,
11895 _("extraneous shift as part of operand to shift insn"));
11896 }
11897 else
11898 {
11899 switch (shift_kind)
11900 {
11901 case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break;
11902 case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break;
11903 case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break;
11904 default: abort ();
11905 }
11906 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11907 inst.instruction |= inst.operands[0].reg;
11908 inst.instruction |= inst.operands[1].reg << 3;
11909 }
11910 }
11911 }
11912 else
11913 {
11914 constraint (inst.operands[0].reg > 7
11915 || inst.operands[1].reg > 7, BAD_HIREG);
11916 constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32);
11917
11918 if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */
11919 {
11920 constraint (inst.operands[2].reg > 7, BAD_HIREG);
11921 constraint (inst.operands[0].reg != inst.operands[1].reg,
11922 _("source1 and dest must be same register"));
11923
11924 switch (inst.instruction)
11925 {
11926 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break;
11927 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break;
11928 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break;
11929 case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break;
11930 default: abort ();
11931 }
11932
11933 inst.instruction |= inst.operands[0].reg;
11934 inst.instruction |= inst.operands[2].reg << 3;
11935
11936 /* PR 12854: Error on extraneous shifts. */
11937 constraint (inst.operands[2].shifted,
11938 _("extraneous shift as part of operand to shift insn"));
11939 }
11940 else
11941 {
11942 switch (inst.instruction)
11943 {
11944 case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break;
11945 case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break;
11946 case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break;
11947 case T_MNEM_ror: inst.error = _("ror #imm not supported"); return;
11948 default: abort ();
11949 }
11950 inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
11951 inst.instruction |= inst.operands[0].reg;
11952 inst.instruction |= inst.operands[1].reg << 3;
11953 }
11954 }
11955 }
11956
11957 static void
11958 do_t_simd (void)
11959 {
11960 unsigned Rd, Rn, Rm;
11961
11962 Rd = inst.operands[0].reg;
11963 Rn = inst.operands[1].reg;
11964 Rm = inst.operands[2].reg;
11965
11966 reject_bad_reg (Rd);
11967 reject_bad_reg (Rn);
11968 reject_bad_reg (Rm);
11969
11970 inst.instruction |= Rd << 8;
11971 inst.instruction |= Rn << 16;
11972 inst.instruction |= Rm;
11973 }
11974
11975 static void
11976 do_t_simd2 (void)
11977 {
11978 unsigned Rd, Rn, Rm;
11979
11980 Rd = inst.operands[0].reg;
11981 Rm = inst.operands[1].reg;
11982 Rn = inst.operands[2].reg;
11983
11984 reject_bad_reg (Rd);
11985 reject_bad_reg (Rn);
11986 reject_bad_reg (Rm);
11987
11988 inst.instruction |= Rd << 8;
11989 inst.instruction |= Rn << 16;
11990 inst.instruction |= Rm;
11991 }
11992
11993 static void
11994 do_t_smc (void)
11995 {
11996 unsigned int value = inst.reloc.exp.X_add_number;
11997 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7a),
11998 _("SMC is not permitted on this architecture"));
11999 constraint (inst.reloc.exp.X_op != O_constant,
12000 _("expression too complex"));
12001 inst.reloc.type = BFD_RELOC_UNUSED;
12002 inst.instruction |= (value & 0xf000) >> 12;
12003 inst.instruction |= (value & 0x0ff0);
12004 inst.instruction |= (value & 0x000f) << 16;
12005 }
12006
12007 static void
12008 do_t_hvc (void)
12009 {
12010 unsigned int value = inst.reloc.exp.X_add_number;
12011
12012 inst.reloc.type = BFD_RELOC_UNUSED;
12013 inst.instruction |= (value & 0x0fff);
12014 inst.instruction |= (value & 0xf000) << 4;
12015 }
12016
12017 static void
12018 do_t_ssat_usat (int bias)
12019 {
12020 unsigned Rd, Rn;
12021
12022 Rd = inst.operands[0].reg;
12023 Rn = inst.operands[2].reg;
12024
12025 reject_bad_reg (Rd);
12026 reject_bad_reg (Rn);
12027
12028 inst.instruction |= Rd << 8;
12029 inst.instruction |= inst.operands[1].imm - bias;
12030 inst.instruction |= Rn << 16;
12031
12032 if (inst.operands[3].present)
12033 {
12034 offsetT shift_amount = inst.reloc.exp.X_add_number;
12035
12036 inst.reloc.type = BFD_RELOC_UNUSED;
12037
12038 constraint (inst.reloc.exp.X_op != O_constant,
12039 _("expression too complex"));
12040
12041 if (shift_amount != 0)
12042 {
12043 constraint (shift_amount > 31,
12044 _("shift expression is too large"));
12045
12046 if (inst.operands[3].shift_kind == SHIFT_ASR)
12047 inst.instruction |= 0x00200000; /* sh bit. */
12048
12049 inst.instruction |= (shift_amount & 0x1c) << 10;
12050 inst.instruction |= (shift_amount & 0x03) << 6;
12051 }
12052 }
12053 }
12054
12055 static void
12056 do_t_ssat (void)
12057 {
12058 do_t_ssat_usat (1);
12059 }
12060
12061 static void
12062 do_t_ssat16 (void)
12063 {
12064 unsigned Rd, Rn;
12065
12066 Rd = inst.operands[0].reg;
12067 Rn = inst.operands[2].reg;
12068
12069 reject_bad_reg (Rd);
12070 reject_bad_reg (Rn);
12071
12072 inst.instruction |= Rd << 8;
12073 inst.instruction |= inst.operands[1].imm - 1;
12074 inst.instruction |= Rn << 16;
12075 }
12076
12077 static void
12078 do_t_strex (void)
12079 {
12080 constraint (!inst.operands[2].isreg || !inst.operands[2].preind
12081 || inst.operands[2].postind || inst.operands[2].writeback
12082 || inst.operands[2].immisreg || inst.operands[2].shifted
12083 || inst.operands[2].negative,
12084 BAD_ADDR_MODE);
12085
12086 constraint (inst.operands[2].reg == REG_PC, BAD_PC);
12087
12088 inst.instruction |= inst.operands[0].reg << 8;
12089 inst.instruction |= inst.operands[1].reg << 12;
12090 inst.instruction |= inst.operands[2].reg << 16;
12091 inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8;
12092 }
12093
12094 static void
12095 do_t_strexd (void)
12096 {
12097 if (!inst.operands[2].present)
12098 inst.operands[2].reg = inst.operands[1].reg + 1;
12099
12100 constraint (inst.operands[0].reg == inst.operands[1].reg
12101 || inst.operands[0].reg == inst.operands[2].reg
12102 || inst.operands[0].reg == inst.operands[3].reg,
12103 BAD_OVERLAP);
12104
12105 inst.instruction |= inst.operands[0].reg;
12106 inst.instruction |= inst.operands[1].reg << 12;
12107 inst.instruction |= inst.operands[2].reg << 8;
12108 inst.instruction |= inst.operands[3].reg << 16;
12109 }
12110
12111 static void
12112 do_t_sxtah (void)
12113 {
12114 unsigned Rd, Rn, Rm;
12115
12116 Rd = inst.operands[0].reg;
12117 Rn = inst.operands[1].reg;
12118 Rm = inst.operands[2].reg;
12119
12120 reject_bad_reg (Rd);
12121 reject_bad_reg (Rn);
12122 reject_bad_reg (Rm);
12123
12124 inst.instruction |= Rd << 8;
12125 inst.instruction |= Rn << 16;
12126 inst.instruction |= Rm;
12127 inst.instruction |= inst.operands[3].imm << 4;
12128 }
12129
12130 static void
12131 do_t_sxth (void)
12132 {
12133 unsigned Rd, Rm;
12134
12135 Rd = inst.operands[0].reg;
12136 Rm = inst.operands[1].reg;
12137
12138 reject_bad_reg (Rd);
12139 reject_bad_reg (Rm);
12140
12141 if (inst.instruction <= 0xffff
12142 && inst.size_req != 4
12143 && Rd <= 7 && Rm <= 7
12144 && (!inst.operands[2].present || inst.operands[2].imm == 0))
12145 {
12146 inst.instruction = THUMB_OP16 (inst.instruction);
12147 inst.instruction |= Rd;
12148 inst.instruction |= Rm << 3;
12149 }
12150 else if (unified_syntax)
12151 {
12152 if (inst.instruction <= 0xffff)
12153 inst.instruction = THUMB_OP32 (inst.instruction);
12154 inst.instruction |= Rd << 8;
12155 inst.instruction |= Rm;
12156 inst.instruction |= inst.operands[2].imm << 4;
12157 }
12158 else
12159 {
12160 constraint (inst.operands[2].present && inst.operands[2].imm != 0,
12161 _("Thumb encoding does not support rotation"));
12162 constraint (1, BAD_HIREG);
12163 }
12164 }
12165
12166 static void
12167 do_t_swi (void)
12168 {
12169 /* We have to do the following check manually as ARM_EXT_OS only applies
12170 to ARM_EXT_V6M. */
12171 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6m))
12172 {
12173 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_os)
12174 /* This only applies to the v6m howver, not later architectures. */
12175 && ! ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7))
12176 as_bad (_("SVC is not permitted on this architecture"));
12177 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_os);
12178 }
12179
12180 inst.reloc.type = BFD_RELOC_ARM_SWI;
12181 }
12182
12183 static void
12184 do_t_tb (void)
12185 {
12186 unsigned Rn, Rm;
12187 int half;
12188
12189 half = (inst.instruction & 0x10) != 0;
12190 set_it_insn_type_last ();
12191 constraint (inst.operands[0].immisreg,
12192 _("instruction requires register index"));
12193
12194 Rn = inst.operands[0].reg;
12195 Rm = inst.operands[0].imm;
12196
12197 constraint (Rn == REG_SP, BAD_SP);
12198 reject_bad_reg (Rm);
12199
12200 constraint (!half && inst.operands[0].shifted,
12201 _("instruction does not allow shifted index"));
12202 inst.instruction |= (Rn << 16) | Rm;
12203 }
12204
12205 static void
12206 do_t_usat (void)
12207 {
12208 do_t_ssat_usat (0);
12209 }
12210
12211 static void
12212 do_t_usat16 (void)
12213 {
12214 unsigned Rd, Rn;
12215
12216 Rd = inst.operands[0].reg;
12217 Rn = inst.operands[2].reg;
12218
12219 reject_bad_reg (Rd);
12220 reject_bad_reg (Rn);
12221
12222 inst.instruction |= Rd << 8;
12223 inst.instruction |= inst.operands[1].imm;
12224 inst.instruction |= Rn << 16;
12225 }
12226
12227 /* Neon instruction encoder helpers. */
12228
12229 /* Encodings for the different types for various Neon opcodes. */
12230
12231 /* An "invalid" code for the following tables. */
12232 #define N_INV -1u
12233
12234 struct neon_tab_entry
12235 {
12236 unsigned integer;
12237 unsigned float_or_poly;
12238 unsigned scalar_or_imm;
12239 };
12240
12241 /* Map overloaded Neon opcodes to their respective encodings. */
12242 #define NEON_ENC_TAB \
12243 X(vabd, 0x0000700, 0x1200d00, N_INV), \
12244 X(vmax, 0x0000600, 0x0000f00, N_INV), \
12245 X(vmin, 0x0000610, 0x0200f00, N_INV), \
12246 X(vpadd, 0x0000b10, 0x1000d00, N_INV), \
12247 X(vpmax, 0x0000a00, 0x1000f00, N_INV), \
12248 X(vpmin, 0x0000a10, 0x1200f00, N_INV), \
12249 X(vadd, 0x0000800, 0x0000d00, N_INV), \
12250 X(vsub, 0x1000800, 0x0200d00, N_INV), \
12251 X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \
12252 X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \
12253 X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \
12254 /* Register variants of the following two instructions are encoded as
12255 vcge / vcgt with the operands reversed. */ \
12256 X(vclt, 0x0000300, 0x1200e00, 0x1b10200), \
12257 X(vcle, 0x0000310, 0x1000e00, 0x1b10180), \
12258 X(vfma, N_INV, 0x0000c10, N_INV), \
12259 X(vfms, N_INV, 0x0200c10, N_INV), \
12260 X(vmla, 0x0000900, 0x0000d10, 0x0800040), \
12261 X(vmls, 0x1000900, 0x0200d10, 0x0800440), \
12262 X(vmul, 0x0000910, 0x1000d10, 0x0800840), \
12263 X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \
12264 X(vmlal, 0x0800800, N_INV, 0x0800240), \
12265 X(vmlsl, 0x0800a00, N_INV, 0x0800640), \
12266 X(vqdmlal, 0x0800900, N_INV, 0x0800340), \
12267 X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \
12268 X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \
12269 X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \
12270 X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \
12271 X(vshl, 0x0000400, N_INV, 0x0800510), \
12272 X(vqshl, 0x0000410, N_INV, 0x0800710), \
12273 X(vand, 0x0000110, N_INV, 0x0800030), \
12274 X(vbic, 0x0100110, N_INV, 0x0800030), \
12275 X(veor, 0x1000110, N_INV, N_INV), \
12276 X(vorn, 0x0300110, N_INV, 0x0800010), \
12277 X(vorr, 0x0200110, N_INV, 0x0800010), \
12278 X(vmvn, 0x1b00580, N_INV, 0x0800030), \
12279 X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \
12280 X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \
12281 X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \
12282 X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \
12283 X(vst1, 0x0000000, 0x0800000, N_INV), \
12284 X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \
12285 X(vst2, 0x0000100, 0x0800100, N_INV), \
12286 X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \
12287 X(vst3, 0x0000200, 0x0800200, N_INV), \
12288 X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \
12289 X(vst4, 0x0000300, 0x0800300, N_INV), \
12290 X(vmovn, 0x1b20200, N_INV, N_INV), \
12291 X(vtrn, 0x1b20080, N_INV, N_INV), \
12292 X(vqmovn, 0x1b20200, N_INV, N_INV), \
12293 X(vqmovun, 0x1b20240, N_INV, N_INV), \
12294 X(vnmul, 0xe200a40, 0xe200b40, N_INV), \
12295 X(vnmla, 0xe100a40, 0xe100b40, N_INV), \
12296 X(vnmls, 0xe100a00, 0xe100b00, N_INV), \
12297 X(vfnma, 0xe900a40, 0xe900b40, N_INV), \
12298 X(vfnms, 0xe900a00, 0xe900b00, N_INV), \
12299 X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \
12300 X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \
12301 X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \
12302 X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV)
12303
12304 enum neon_opc
12305 {
12306 #define X(OPC,I,F,S) N_MNEM_##OPC
12307 NEON_ENC_TAB
12308 #undef X
12309 };
12310
12311 static const struct neon_tab_entry neon_enc_tab[] =
12312 {
12313 #define X(OPC,I,F,S) { (I), (F), (S) }
12314 NEON_ENC_TAB
12315 #undef X
12316 };
12317
12318 /* Do not use these macros; instead, use NEON_ENCODE defined below. */
12319 #define NEON_ENC_INTEGER_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12320 #define NEON_ENC_ARMREG_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12321 #define NEON_ENC_POLY_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12322 #define NEON_ENC_FLOAT_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12323 #define NEON_ENC_SCALAR_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12324 #define NEON_ENC_IMMED_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12325 #define NEON_ENC_INTERLV_(X) (neon_enc_tab[(X) & 0x0fffffff].integer)
12326 #define NEON_ENC_LANE_(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly)
12327 #define NEON_ENC_DUP_(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm)
12328 #define NEON_ENC_SINGLE_(X) \
12329 ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000))
12330 #define NEON_ENC_DOUBLE_(X) \
12331 ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000))
12332
12333 #define NEON_ENCODE(type, inst) \
12334 do \
12335 { \
12336 inst.instruction = NEON_ENC_##type##_ (inst.instruction); \
12337 inst.is_neon = 1; \
12338 } \
12339 while (0)
12340
12341 #define check_neon_suffixes \
12342 do \
12343 { \
12344 if (!inst.error && inst.vectype.elems > 0 && !inst.is_neon) \
12345 { \
12346 as_bad (_("invalid neon suffix for non neon instruction")); \
12347 return; \
12348 } \
12349 } \
12350 while (0)
12351
12352 /* Define shapes for instruction operands. The following mnemonic characters
12353 are used in this table:
12354
12355 F - VFP S<n> register
12356 D - Neon D<n> register
12357 Q - Neon Q<n> register
12358 I - Immediate
12359 S - Scalar
12360 R - ARM register
12361 L - D<n> register list
12362
12363 This table is used to generate various data:
12364 - enumerations of the form NS_DDR to be used as arguments to
12365 neon_select_shape.
12366 - a table classifying shapes into single, double, quad, mixed.
12367 - a table used to drive neon_select_shape. */
12368
12369 #define NEON_SHAPE_DEF \
12370 X(3, (D, D, D), DOUBLE), \
12371 X(3, (Q, Q, Q), QUAD), \
12372 X(3, (D, D, I), DOUBLE), \
12373 X(3, (Q, Q, I), QUAD), \
12374 X(3, (D, D, S), DOUBLE), \
12375 X(3, (Q, Q, S), QUAD), \
12376 X(2, (D, D), DOUBLE), \
12377 X(2, (Q, Q), QUAD), \
12378 X(2, (D, S), DOUBLE), \
12379 X(2, (Q, S), QUAD), \
12380 X(2, (D, R), DOUBLE), \
12381 X(2, (Q, R), QUAD), \
12382 X(2, (D, I), DOUBLE), \
12383 X(2, (Q, I), QUAD), \
12384 X(3, (D, L, D), DOUBLE), \
12385 X(2, (D, Q), MIXED), \
12386 X(2, (Q, D), MIXED), \
12387 X(3, (D, Q, I), MIXED), \
12388 X(3, (Q, D, I), MIXED), \
12389 X(3, (Q, D, D), MIXED), \
12390 X(3, (D, Q, Q), MIXED), \
12391 X(3, (Q, Q, D), MIXED), \
12392 X(3, (Q, D, S), MIXED), \
12393 X(3, (D, Q, S), MIXED), \
12394 X(4, (D, D, D, I), DOUBLE), \
12395 X(4, (Q, Q, Q, I), QUAD), \
12396 X(2, (F, F), SINGLE), \
12397 X(3, (F, F, F), SINGLE), \
12398 X(2, (F, I), SINGLE), \
12399 X(2, (F, D), MIXED), \
12400 X(2, (D, F), MIXED), \
12401 X(3, (F, F, I), MIXED), \
12402 X(4, (R, R, F, F), SINGLE), \
12403 X(4, (F, F, R, R), SINGLE), \
12404 X(3, (D, R, R), DOUBLE), \
12405 X(3, (R, R, D), DOUBLE), \
12406 X(2, (S, R), SINGLE), \
12407 X(2, (R, S), SINGLE), \
12408 X(2, (F, R), SINGLE), \
12409 X(2, (R, F), SINGLE)
12410
12411 #define S2(A,B) NS_##A##B
12412 #define S3(A,B,C) NS_##A##B##C
12413 #define S4(A,B,C,D) NS_##A##B##C##D
12414
12415 #define X(N, L, C) S##N L
12416
12417 enum neon_shape
12418 {
12419 NEON_SHAPE_DEF,
12420 NS_NULL
12421 };
12422
12423 #undef X
12424 #undef S2
12425 #undef S3
12426 #undef S4
12427
12428 enum neon_shape_class
12429 {
12430 SC_SINGLE,
12431 SC_DOUBLE,
12432 SC_QUAD,
12433 SC_MIXED
12434 };
12435
12436 #define X(N, L, C) SC_##C
12437
12438 static enum neon_shape_class neon_shape_class[] =
12439 {
12440 NEON_SHAPE_DEF
12441 };
12442
12443 #undef X
12444
12445 enum neon_shape_el
12446 {
12447 SE_F,
12448 SE_D,
12449 SE_Q,
12450 SE_I,
12451 SE_S,
12452 SE_R,
12453 SE_L
12454 };
12455
12456 /* Register widths of above. */
12457 static unsigned neon_shape_el_size[] =
12458 {
12459 32,
12460 64,
12461 128,
12462 0,
12463 32,
12464 32,
12465 0
12466 };
12467
12468 struct neon_shape_info
12469 {
12470 unsigned els;
12471 enum neon_shape_el el[NEON_MAX_TYPE_ELS];
12472 };
12473
12474 #define S2(A,B) { SE_##A, SE_##B }
12475 #define S3(A,B,C) { SE_##A, SE_##B, SE_##C }
12476 #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D }
12477
12478 #define X(N, L, C) { N, S##N L }
12479
12480 static struct neon_shape_info neon_shape_tab[] =
12481 {
12482 NEON_SHAPE_DEF
12483 };
12484
12485 #undef X
12486 #undef S2
12487 #undef S3
12488 #undef S4
12489
12490 /* Bit masks used in type checking given instructions.
12491 'N_EQK' means the type must be the same as (or based on in some way) the key
12492 type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is
12493 set, various other bits can be set as well in order to modify the meaning of
12494 the type constraint. */
12495
12496 enum neon_type_mask
12497 {
12498 N_S8 = 0x0000001,
12499 N_S16 = 0x0000002,
12500 N_S32 = 0x0000004,
12501 N_S64 = 0x0000008,
12502 N_U8 = 0x0000010,
12503 N_U16 = 0x0000020,
12504 N_U32 = 0x0000040,
12505 N_U64 = 0x0000080,
12506 N_I8 = 0x0000100,
12507 N_I16 = 0x0000200,
12508 N_I32 = 0x0000400,
12509 N_I64 = 0x0000800,
12510 N_8 = 0x0001000,
12511 N_16 = 0x0002000,
12512 N_32 = 0x0004000,
12513 N_64 = 0x0008000,
12514 N_P8 = 0x0010000,
12515 N_P16 = 0x0020000,
12516 N_F16 = 0x0040000,
12517 N_F32 = 0x0080000,
12518 N_F64 = 0x0100000,
12519 N_KEY = 0x1000000, /* Key element (main type specifier). */
12520 N_EQK = 0x2000000, /* Given operand has the same type & size as the key. */
12521 N_VFP = 0x4000000, /* VFP mode: operand size must match register width. */
12522 N_DBL = 0x0000001, /* If N_EQK, this operand is twice the size. */
12523 N_HLF = 0x0000002, /* If N_EQK, this operand is half the size. */
12524 N_SGN = 0x0000004, /* If N_EQK, this operand is forced to be signed. */
12525 N_UNS = 0x0000008, /* If N_EQK, this operand is forced to be unsigned. */
12526 N_INT = 0x0000010, /* If N_EQK, this operand is forced to be integer. */
12527 N_FLT = 0x0000020, /* If N_EQK, this operand is forced to be float. */
12528 N_SIZ = 0x0000040, /* If N_EQK, this operand is forced to be size-only. */
12529 N_UTYP = 0,
12530 N_MAX_NONSPECIAL = N_F64
12531 };
12532
12533 #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ)
12534
12535 #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64)
12536 #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32)
12537 #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64)
12538 #define N_SUF_32 (N_SU_32 | N_F32)
12539 #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64)
12540 #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32)
12541
12542 /* Pass this as the first type argument to neon_check_type to ignore types
12543 altogether. */
12544 #define N_IGNORE_TYPE (N_KEY | N_EQK)
12545
12546 /* Select a "shape" for the current instruction (describing register types or
12547 sizes) from a list of alternatives. Return NS_NULL if the current instruction
12548 doesn't fit. For non-polymorphic shapes, checking is usually done as a
12549 function of operand parsing, so this function doesn't need to be called.
12550 Shapes should be listed in order of decreasing length. */
12551
12552 static enum neon_shape
12553 neon_select_shape (enum neon_shape shape, ...)
12554 {
12555 va_list ap;
12556 enum neon_shape first_shape = shape;
12557
12558 /* Fix missing optional operands. FIXME: we don't know at this point how
12559 many arguments we should have, so this makes the assumption that we have
12560 > 1. This is true of all current Neon opcodes, I think, but may not be
12561 true in the future. */
12562 if (!inst.operands[1].present)
12563 inst.operands[1] = inst.operands[0];
12564
12565 va_start (ap, shape);
12566
12567 for (; shape != NS_NULL; shape = (enum neon_shape) va_arg (ap, int))
12568 {
12569 unsigned j;
12570 int matches = 1;
12571
12572 for (j = 0; j < neon_shape_tab[shape].els; j++)
12573 {
12574 if (!inst.operands[j].present)
12575 {
12576 matches = 0;
12577 break;
12578 }
12579
12580 switch (neon_shape_tab[shape].el[j])
12581 {
12582 case SE_F:
12583 if (!(inst.operands[j].isreg
12584 && inst.operands[j].isvec
12585 && inst.operands[j].issingle
12586 && !inst.operands[j].isquad))
12587 matches = 0;
12588 break;
12589
12590 case SE_D:
12591 if (!(inst.operands[j].isreg
12592 && inst.operands[j].isvec
12593 && !inst.operands[j].isquad
12594 && !inst.operands[j].issingle))
12595 matches = 0;
12596 break;
12597
12598 case SE_R:
12599 if (!(inst.operands[j].isreg
12600 && !inst.operands[j].isvec))
12601 matches = 0;
12602 break;
12603
12604 case SE_Q:
12605 if (!(inst.operands[j].isreg
12606 && inst.operands[j].isvec
12607 && inst.operands[j].isquad
12608 && !inst.operands[j].issingle))
12609 matches = 0;
12610 break;
12611
12612 case SE_I:
12613 if (!(!inst.operands[j].isreg
12614 && !inst.operands[j].isscalar))
12615 matches = 0;
12616 break;
12617
12618 case SE_S:
12619 if (!(!inst.operands[j].isreg
12620 && inst.operands[j].isscalar))
12621 matches = 0;
12622 break;
12623
12624 case SE_L:
12625 break;
12626 }
12627 if (!matches)
12628 break;
12629 }
12630 if (matches && (j >= ARM_IT_MAX_OPERANDS || !inst.operands[j].present))
12631 /* We've matched all the entries in the shape table, and we don't
12632 have any left over operands which have not been matched. */
12633 break;
12634 }
12635
12636 va_end (ap);
12637
12638 if (shape == NS_NULL && first_shape != NS_NULL)
12639 first_error (_("invalid instruction shape"));
12640
12641 return shape;
12642 }
12643
12644 /* True if SHAPE is predominantly a quadword operation (most of the time, this
12645 means the Q bit should be set). */
12646
12647 static int
12648 neon_quad (enum neon_shape shape)
12649 {
12650 return neon_shape_class[shape] == SC_QUAD;
12651 }
12652
12653 static void
12654 neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type,
12655 unsigned *g_size)
12656 {
12657 /* Allow modification to be made to types which are constrained to be
12658 based on the key element, based on bits set alongside N_EQK. */
12659 if ((typebits & N_EQK) != 0)
12660 {
12661 if ((typebits & N_HLF) != 0)
12662 *g_size /= 2;
12663 else if ((typebits & N_DBL) != 0)
12664 *g_size *= 2;
12665 if ((typebits & N_SGN) != 0)
12666 *g_type = NT_signed;
12667 else if ((typebits & N_UNS) != 0)
12668 *g_type = NT_unsigned;
12669 else if ((typebits & N_INT) != 0)
12670 *g_type = NT_integer;
12671 else if ((typebits & N_FLT) != 0)
12672 *g_type = NT_float;
12673 else if ((typebits & N_SIZ) != 0)
12674 *g_type = NT_untyped;
12675 }
12676 }
12677
12678 /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key"
12679 operand type, i.e. the single type specified in a Neon instruction when it
12680 is the only one given. */
12681
12682 static struct neon_type_el
12683 neon_type_promote (struct neon_type_el *key, unsigned thisarg)
12684 {
12685 struct neon_type_el dest = *key;
12686
12687 gas_assert ((thisarg & N_EQK) != 0);
12688
12689 neon_modify_type_size (thisarg, &dest.type, &dest.size);
12690
12691 return dest;
12692 }
12693
12694 /* Convert Neon type and size into compact bitmask representation. */
12695
12696 static enum neon_type_mask
12697 type_chk_of_el_type (enum neon_el_type type, unsigned size)
12698 {
12699 switch (type)
12700 {
12701 case NT_untyped:
12702 switch (size)
12703 {
12704 case 8: return N_8;
12705 case 16: return N_16;
12706 case 32: return N_32;
12707 case 64: return N_64;
12708 default: ;
12709 }
12710 break;
12711
12712 case NT_integer:
12713 switch (size)
12714 {
12715 case 8: return N_I8;
12716 case 16: return N_I16;
12717 case 32: return N_I32;
12718 case 64: return N_I64;
12719 default: ;
12720 }
12721 break;
12722
12723 case NT_float:
12724 switch (size)
12725 {
12726 case 16: return N_F16;
12727 case 32: return N_F32;
12728 case 64: return N_F64;
12729 default: ;
12730 }
12731 break;
12732
12733 case NT_poly:
12734 switch (size)
12735 {
12736 case 8: return N_P8;
12737 case 16: return N_P16;
12738 default: ;
12739 }
12740 break;
12741
12742 case NT_signed:
12743 switch (size)
12744 {
12745 case 8: return N_S8;
12746 case 16: return N_S16;
12747 case 32: return N_S32;
12748 case 64: return N_S64;
12749 default: ;
12750 }
12751 break;
12752
12753 case NT_unsigned:
12754 switch (size)
12755 {
12756 case 8: return N_U8;
12757 case 16: return N_U16;
12758 case 32: return N_U32;
12759 case 64: return N_U64;
12760 default: ;
12761 }
12762 break;
12763
12764 default: ;
12765 }
12766
12767 return N_UTYP;
12768 }
12769
12770 /* Convert compact Neon bitmask type representation to a type and size. Only
12771 handles the case where a single bit is set in the mask. */
12772
12773 static int
12774 el_type_of_type_chk (enum neon_el_type *type, unsigned *size,
12775 enum neon_type_mask mask)
12776 {
12777 if ((mask & N_EQK) != 0)
12778 return FAIL;
12779
12780 if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0)
12781 *size = 8;
12782 else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0)
12783 *size = 16;
12784 else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0)
12785 *size = 32;
12786 else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0)
12787 *size = 64;
12788 else
12789 return FAIL;
12790
12791 if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0)
12792 *type = NT_signed;
12793 else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0)
12794 *type = NT_unsigned;
12795 else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0)
12796 *type = NT_integer;
12797 else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0)
12798 *type = NT_untyped;
12799 else if ((mask & (N_P8 | N_P16)) != 0)
12800 *type = NT_poly;
12801 else if ((mask & (N_F32 | N_F64)) != 0)
12802 *type = NT_float;
12803 else
12804 return FAIL;
12805
12806 return SUCCESS;
12807 }
12808
12809 /* Modify a bitmask of allowed types. This is only needed for type
12810 relaxation. */
12811
12812 static unsigned
12813 modify_types_allowed (unsigned allowed, unsigned mods)
12814 {
12815 unsigned size;
12816 enum neon_el_type type;
12817 unsigned destmask;
12818 int i;
12819
12820 destmask = 0;
12821
12822 for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1)
12823 {
12824 if (el_type_of_type_chk (&type, &size,
12825 (enum neon_type_mask) (allowed & i)) == SUCCESS)
12826 {
12827 neon_modify_type_size (mods, &type, &size);
12828 destmask |= type_chk_of_el_type (type, size);
12829 }
12830 }
12831
12832 return destmask;
12833 }
12834
12835 /* Check type and return type classification.
12836 The manual states (paraphrase): If one datatype is given, it indicates the
12837 type given in:
12838 - the second operand, if there is one
12839 - the operand, if there is no second operand
12840 - the result, if there are no operands.
12841 This isn't quite good enough though, so we use a concept of a "key" datatype
12842 which is set on a per-instruction basis, which is the one which matters when
12843 only one data type is written.
12844 Note: this function has side-effects (e.g. filling in missing operands). All
12845 Neon instructions should call it before performing bit encoding. */
12846
12847 static struct neon_type_el
12848 neon_check_type (unsigned els, enum neon_shape ns, ...)
12849 {
12850 va_list ap;
12851 unsigned i, pass, key_el = 0;
12852 unsigned types[NEON_MAX_TYPE_ELS];
12853 enum neon_el_type k_type = NT_invtype;
12854 unsigned k_size = -1u;
12855 struct neon_type_el badtype = {NT_invtype, -1};
12856 unsigned key_allowed = 0;
12857
12858 /* Optional registers in Neon instructions are always (not) in operand 1.
12859 Fill in the missing operand here, if it was omitted. */
12860 if (els > 1 && !inst.operands[1].present)
12861 inst.operands[1] = inst.operands[0];
12862
12863 /* Suck up all the varargs. */
12864 va_start (ap, ns);
12865 for (i = 0; i < els; i++)
12866 {
12867 unsigned thisarg = va_arg (ap, unsigned);
12868 if (thisarg == N_IGNORE_TYPE)
12869 {
12870 va_end (ap);
12871 return badtype;
12872 }
12873 types[i] = thisarg;
12874 if ((thisarg & N_KEY) != 0)
12875 key_el = i;
12876 }
12877 va_end (ap);
12878
12879 if (inst.vectype.elems > 0)
12880 for (i = 0; i < els; i++)
12881 if (inst.operands[i].vectype.type != NT_invtype)
12882 {
12883 first_error (_("types specified in both the mnemonic and operands"));
12884 return badtype;
12885 }
12886
12887 /* Duplicate inst.vectype elements here as necessary.
12888 FIXME: No idea if this is exactly the same as the ARM assembler,
12889 particularly when an insn takes one register and one non-register
12890 operand. */
12891 if (inst.vectype.elems == 1 && els > 1)
12892 {
12893 unsigned j;
12894 inst.vectype.elems = els;
12895 inst.vectype.el[key_el] = inst.vectype.el[0];
12896 for (j = 0; j < els; j++)
12897 if (j != key_el)
12898 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12899 types[j]);
12900 }
12901 else if (inst.vectype.elems == 0 && els > 0)
12902 {
12903 unsigned j;
12904 /* No types were given after the mnemonic, so look for types specified
12905 after each operand. We allow some flexibility here; as long as the
12906 "key" operand has a type, we can infer the others. */
12907 for (j = 0; j < els; j++)
12908 if (inst.operands[j].vectype.type != NT_invtype)
12909 inst.vectype.el[j] = inst.operands[j].vectype;
12910
12911 if (inst.operands[key_el].vectype.type != NT_invtype)
12912 {
12913 for (j = 0; j < els; j++)
12914 if (inst.operands[j].vectype.type == NT_invtype)
12915 inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el],
12916 types[j]);
12917 }
12918 else
12919 {
12920 first_error (_("operand types can't be inferred"));
12921 return badtype;
12922 }
12923 }
12924 else if (inst.vectype.elems != els)
12925 {
12926 first_error (_("type specifier has the wrong number of parts"));
12927 return badtype;
12928 }
12929
12930 for (pass = 0; pass < 2; pass++)
12931 {
12932 for (i = 0; i < els; i++)
12933 {
12934 unsigned thisarg = types[i];
12935 unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0)
12936 ? modify_types_allowed (key_allowed, thisarg) : thisarg;
12937 enum neon_el_type g_type = inst.vectype.el[i].type;
12938 unsigned g_size = inst.vectype.el[i].size;
12939
12940 /* Decay more-specific signed & unsigned types to sign-insensitive
12941 integer types if sign-specific variants are unavailable. */
12942 if ((g_type == NT_signed || g_type == NT_unsigned)
12943 && (types_allowed & N_SU_ALL) == 0)
12944 g_type = NT_integer;
12945
12946 /* If only untyped args are allowed, decay any more specific types to
12947 them. Some instructions only care about signs for some element
12948 sizes, so handle that properly. */
12949 if ((g_size == 8 && (types_allowed & N_8) != 0)
12950 || (g_size == 16 && (types_allowed & N_16) != 0)
12951 || (g_size == 32 && (types_allowed & N_32) != 0)
12952 || (g_size == 64 && (types_allowed & N_64) != 0))
12953 g_type = NT_untyped;
12954
12955 if (pass == 0)
12956 {
12957 if ((thisarg & N_KEY) != 0)
12958 {
12959 k_type = g_type;
12960 k_size = g_size;
12961 key_allowed = thisarg & ~N_KEY;
12962 }
12963 }
12964 else
12965 {
12966 if ((thisarg & N_VFP) != 0)
12967 {
12968 enum neon_shape_el regshape;
12969 unsigned regwidth, match;
12970
12971 /* PR 11136: Catch the case where we are passed a shape of NS_NULL. */
12972 if (ns == NS_NULL)
12973 {
12974 first_error (_("invalid instruction shape"));
12975 return badtype;
12976 }
12977 regshape = neon_shape_tab[ns].el[i];
12978 regwidth = neon_shape_el_size[regshape];
12979
12980 /* In VFP mode, operands must match register widths. If we
12981 have a key operand, use its width, else use the width of
12982 the current operand. */
12983 if (k_size != -1u)
12984 match = k_size;
12985 else
12986 match = g_size;
12987
12988 if (regwidth != match)
12989 {
12990 first_error (_("operand size must match register width"));
12991 return badtype;
12992 }
12993 }
12994
12995 if ((thisarg & N_EQK) == 0)
12996 {
12997 unsigned given_type = type_chk_of_el_type (g_type, g_size);
12998
12999 if ((given_type & types_allowed) == 0)
13000 {
13001 first_error (_("bad type in Neon instruction"));
13002 return badtype;
13003 }
13004 }
13005 else
13006 {
13007 enum neon_el_type mod_k_type = k_type;
13008 unsigned mod_k_size = k_size;
13009 neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size);
13010 if (g_type != mod_k_type || g_size != mod_k_size)
13011 {
13012 first_error (_("inconsistent types in Neon instruction"));
13013 return badtype;
13014 }
13015 }
13016 }
13017 }
13018 }
13019
13020 return inst.vectype.el[key_el];
13021 }
13022
13023 /* Neon-style VFP instruction forwarding. */
13024
13025 /* Thumb VFP instructions have 0xE in the condition field. */
13026
13027 static void
13028 do_vfp_cond_or_thumb (void)
13029 {
13030 inst.is_neon = 1;
13031
13032 if (thumb_mode)
13033 inst.instruction |= 0xe0000000;
13034 else
13035 inst.instruction |= inst.cond << 28;
13036 }
13037
13038 /* Look up and encode a simple mnemonic, for use as a helper function for the
13039 Neon-style VFP syntax. This avoids duplication of bits of the insns table,
13040 etc. It is assumed that operand parsing has already been done, and that the
13041 operands are in the form expected by the given opcode (this isn't necessarily
13042 the same as the form in which they were parsed, hence some massaging must
13043 take place before this function is called).
13044 Checks current arch version against that in the looked-up opcode. */
13045
13046 static void
13047 do_vfp_nsyn_opcode (const char *opname)
13048 {
13049 const struct asm_opcode *opcode;
13050
13051 opcode = (const struct asm_opcode *) hash_find (arm_ops_hsh, opname);
13052
13053 if (!opcode)
13054 abort ();
13055
13056 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant,
13057 thumb_mode ? *opcode->tvariant : *opcode->avariant),
13058 _(BAD_FPU));
13059
13060 inst.is_neon = 1;
13061
13062 if (thumb_mode)
13063 {
13064 inst.instruction = opcode->tvalue;
13065 opcode->tencode ();
13066 }
13067 else
13068 {
13069 inst.instruction = (inst.cond << 28) | opcode->avalue;
13070 opcode->aencode ();
13071 }
13072 }
13073
13074 static void
13075 do_vfp_nsyn_add_sub (enum neon_shape rs)
13076 {
13077 int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd;
13078
13079 if (rs == NS_FFF)
13080 {
13081 if (is_add)
13082 do_vfp_nsyn_opcode ("fadds");
13083 else
13084 do_vfp_nsyn_opcode ("fsubs");
13085 }
13086 else
13087 {
13088 if (is_add)
13089 do_vfp_nsyn_opcode ("faddd");
13090 else
13091 do_vfp_nsyn_opcode ("fsubd");
13092 }
13093 }
13094
13095 /* Check operand types to see if this is a VFP instruction, and if so call
13096 PFN (). */
13097
13098 static int
13099 try_vfp_nsyn (int args, void (*pfn) (enum neon_shape))
13100 {
13101 enum neon_shape rs;
13102 struct neon_type_el et;
13103
13104 switch (args)
13105 {
13106 case 2:
13107 rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13108 et = neon_check_type (2, rs,
13109 N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13110 break;
13111
13112 case 3:
13113 rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13114 et = neon_check_type (3, rs,
13115 N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13116 break;
13117
13118 default:
13119 abort ();
13120 }
13121
13122 if (et.type != NT_invtype)
13123 {
13124 pfn (rs);
13125 return SUCCESS;
13126 }
13127
13128 inst.error = NULL;
13129 return FAIL;
13130 }
13131
13132 static void
13133 do_vfp_nsyn_mla_mls (enum neon_shape rs)
13134 {
13135 int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla;
13136
13137 if (rs == NS_FFF)
13138 {
13139 if (is_mla)
13140 do_vfp_nsyn_opcode ("fmacs");
13141 else
13142 do_vfp_nsyn_opcode ("fnmacs");
13143 }
13144 else
13145 {
13146 if (is_mla)
13147 do_vfp_nsyn_opcode ("fmacd");
13148 else
13149 do_vfp_nsyn_opcode ("fnmacd");
13150 }
13151 }
13152
13153 static void
13154 do_vfp_nsyn_fma_fms (enum neon_shape rs)
13155 {
13156 int is_fma = (inst.instruction & 0x0fffffff) == N_MNEM_vfma;
13157
13158 if (rs == NS_FFF)
13159 {
13160 if (is_fma)
13161 do_vfp_nsyn_opcode ("ffmas");
13162 else
13163 do_vfp_nsyn_opcode ("ffnmas");
13164 }
13165 else
13166 {
13167 if (is_fma)
13168 do_vfp_nsyn_opcode ("ffmad");
13169 else
13170 do_vfp_nsyn_opcode ("ffnmad");
13171 }
13172 }
13173
13174 static void
13175 do_vfp_nsyn_mul (enum neon_shape rs)
13176 {
13177 if (rs == NS_FFF)
13178 do_vfp_nsyn_opcode ("fmuls");
13179 else
13180 do_vfp_nsyn_opcode ("fmuld");
13181 }
13182
13183 static void
13184 do_vfp_nsyn_abs_neg (enum neon_shape rs)
13185 {
13186 int is_neg = (inst.instruction & 0x80) != 0;
13187 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY);
13188
13189 if (rs == NS_FF)
13190 {
13191 if (is_neg)
13192 do_vfp_nsyn_opcode ("fnegs");
13193 else
13194 do_vfp_nsyn_opcode ("fabss");
13195 }
13196 else
13197 {
13198 if (is_neg)
13199 do_vfp_nsyn_opcode ("fnegd");
13200 else
13201 do_vfp_nsyn_opcode ("fabsd");
13202 }
13203 }
13204
13205 /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision
13206 insns belong to Neon, and are handled elsewhere. */
13207
13208 static void
13209 do_vfp_nsyn_ldm_stm (int is_dbmode)
13210 {
13211 int is_ldm = (inst.instruction & (1 << 20)) != 0;
13212 if (is_ldm)
13213 {
13214 if (is_dbmode)
13215 do_vfp_nsyn_opcode ("fldmdbs");
13216 else
13217 do_vfp_nsyn_opcode ("fldmias");
13218 }
13219 else
13220 {
13221 if (is_dbmode)
13222 do_vfp_nsyn_opcode ("fstmdbs");
13223 else
13224 do_vfp_nsyn_opcode ("fstmias");
13225 }
13226 }
13227
13228 static void
13229 do_vfp_nsyn_sqrt (void)
13230 {
13231 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13232 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13233
13234 if (rs == NS_FF)
13235 do_vfp_nsyn_opcode ("fsqrts");
13236 else
13237 do_vfp_nsyn_opcode ("fsqrtd");
13238 }
13239
13240 static void
13241 do_vfp_nsyn_div (void)
13242 {
13243 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13244 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13245 N_F32 | N_F64 | N_KEY | N_VFP);
13246
13247 if (rs == NS_FFF)
13248 do_vfp_nsyn_opcode ("fdivs");
13249 else
13250 do_vfp_nsyn_opcode ("fdivd");
13251 }
13252
13253 static void
13254 do_vfp_nsyn_nmul (void)
13255 {
13256 enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL);
13257 neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP,
13258 N_F32 | N_F64 | N_KEY | N_VFP);
13259
13260 if (rs == NS_FFF)
13261 {
13262 NEON_ENCODE (SINGLE, inst);
13263 do_vfp_sp_dyadic ();
13264 }
13265 else
13266 {
13267 NEON_ENCODE (DOUBLE, inst);
13268 do_vfp_dp_rd_rn_rm ();
13269 }
13270 do_vfp_cond_or_thumb ();
13271 }
13272
13273 static void
13274 do_vfp_nsyn_cmp (void)
13275 {
13276 if (inst.operands[1].isreg)
13277 {
13278 enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL);
13279 neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP);
13280
13281 if (rs == NS_FF)
13282 {
13283 NEON_ENCODE (SINGLE, inst);
13284 do_vfp_sp_monadic ();
13285 }
13286 else
13287 {
13288 NEON_ENCODE (DOUBLE, inst);
13289 do_vfp_dp_rd_rm ();
13290 }
13291 }
13292 else
13293 {
13294 enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL);
13295 neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK);
13296
13297 switch (inst.instruction & 0x0fffffff)
13298 {
13299 case N_MNEM_vcmp:
13300 inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp;
13301 break;
13302 case N_MNEM_vcmpe:
13303 inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe;
13304 break;
13305 default:
13306 abort ();
13307 }
13308
13309 if (rs == NS_FI)
13310 {
13311 NEON_ENCODE (SINGLE, inst);
13312 do_vfp_sp_compare_z ();
13313 }
13314 else
13315 {
13316 NEON_ENCODE (DOUBLE, inst);
13317 do_vfp_dp_rd ();
13318 }
13319 }
13320 do_vfp_cond_or_thumb ();
13321 }
13322
13323 static void
13324 nsyn_insert_sp (void)
13325 {
13326 inst.operands[1] = inst.operands[0];
13327 memset (&inst.operands[0], '\0', sizeof (inst.operands[0]));
13328 inst.operands[0].reg = REG_SP;
13329 inst.operands[0].isreg = 1;
13330 inst.operands[0].writeback = 1;
13331 inst.operands[0].present = 1;
13332 }
13333
13334 static void
13335 do_vfp_nsyn_push (void)
13336 {
13337 nsyn_insert_sp ();
13338 if (inst.operands[1].issingle)
13339 do_vfp_nsyn_opcode ("fstmdbs");
13340 else
13341 do_vfp_nsyn_opcode ("fstmdbd");
13342 }
13343
13344 static void
13345 do_vfp_nsyn_pop (void)
13346 {
13347 nsyn_insert_sp ();
13348 if (inst.operands[1].issingle)
13349 do_vfp_nsyn_opcode ("fldmias");
13350 else
13351 do_vfp_nsyn_opcode ("fldmiad");
13352 }
13353
13354 /* Fix up Neon data-processing instructions, ORing in the correct bits for
13355 ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */
13356
13357 static void
13358 neon_dp_fixup (struct arm_it* insn)
13359 {
13360 unsigned int i = insn->instruction;
13361 insn->is_neon = 1;
13362
13363 if (thumb_mode)
13364 {
13365 /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */
13366 if (i & (1 << 24))
13367 i |= 1 << 28;
13368
13369 i &= ~(1 << 24);
13370
13371 i |= 0xef000000;
13372 }
13373 else
13374 i |= 0xf2000000;
13375
13376 insn->instruction = i;
13377 }
13378
13379 /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3
13380 (0, 1, 2, 3). */
13381
13382 static unsigned
13383 neon_logbits (unsigned x)
13384 {
13385 return ffs (x) - 4;
13386 }
13387
13388 #define LOW4(R) ((R) & 0xf)
13389 #define HI1(R) (((R) >> 4) & 1)
13390
13391 /* Encode insns with bit pattern:
13392
13393 |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0|
13394 | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm |
13395
13396 SIZE is passed in bits. -1 means size field isn't changed, in case it has a
13397 different meaning for some instruction. */
13398
13399 static void
13400 neon_three_same (int isquad, int ubit, int size)
13401 {
13402 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13403 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13404 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
13405 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
13406 inst.instruction |= LOW4 (inst.operands[2].reg);
13407 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
13408 inst.instruction |= (isquad != 0) << 6;
13409 inst.instruction |= (ubit != 0) << 24;
13410 if (size != -1)
13411 inst.instruction |= neon_logbits (size) << 20;
13412
13413 neon_dp_fixup (&inst);
13414 }
13415
13416 /* Encode instructions of the form:
13417
13418 |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0|
13419 | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm |
13420
13421 Don't write size if SIZE == -1. */
13422
13423 static void
13424 neon_two_same (int qbit, int ubit, int size)
13425 {
13426 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13427 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13428 inst.instruction |= LOW4 (inst.operands[1].reg);
13429 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13430 inst.instruction |= (qbit != 0) << 6;
13431 inst.instruction |= (ubit != 0) << 24;
13432
13433 if (size != -1)
13434 inst.instruction |= neon_logbits (size) << 18;
13435
13436 neon_dp_fixup (&inst);
13437 }
13438
13439 /* Neon instruction encoders, in approximate order of appearance. */
13440
13441 static void
13442 do_neon_dyadic_i_su (void)
13443 {
13444 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13445 struct neon_type_el et = neon_check_type (3, rs,
13446 N_EQK, N_EQK, N_SU_32 | N_KEY);
13447 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13448 }
13449
13450 static void
13451 do_neon_dyadic_i64_su (void)
13452 {
13453 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13454 struct neon_type_el et = neon_check_type (3, rs,
13455 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13456 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13457 }
13458
13459 static void
13460 neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et,
13461 unsigned immbits)
13462 {
13463 unsigned size = et.size >> 3;
13464 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13465 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13466 inst.instruction |= LOW4 (inst.operands[1].reg);
13467 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
13468 inst.instruction |= (isquad != 0) << 6;
13469 inst.instruction |= immbits << 16;
13470 inst.instruction |= (size >> 3) << 7;
13471 inst.instruction |= (size & 0x7) << 19;
13472 if (write_ubit)
13473 inst.instruction |= (uval != 0) << 24;
13474
13475 neon_dp_fixup (&inst);
13476 }
13477
13478 static void
13479 do_neon_shl_imm (void)
13480 {
13481 if (!inst.operands[2].isreg)
13482 {
13483 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13484 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL);
13485 NEON_ENCODE (IMMED, inst);
13486 neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm);
13487 }
13488 else
13489 {
13490 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13491 struct neon_type_el et = neon_check_type (3, rs,
13492 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13493 unsigned int tmp;
13494
13495 /* VSHL/VQSHL 3-register variants have syntax such as:
13496 vshl.xx Dd, Dm, Dn
13497 whereas other 3-register operations encoded by neon_three_same have
13498 syntax like:
13499 vadd.xx Dd, Dn, Dm
13500 (i.e. with Dn & Dm reversed). Swap operands[1].reg and operands[2].reg
13501 here. */
13502 tmp = inst.operands[2].reg;
13503 inst.operands[2].reg = inst.operands[1].reg;
13504 inst.operands[1].reg = tmp;
13505 NEON_ENCODE (INTEGER, inst);
13506 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13507 }
13508 }
13509
13510 static void
13511 do_neon_qshl_imm (void)
13512 {
13513 if (!inst.operands[2].isreg)
13514 {
13515 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
13516 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
13517
13518 NEON_ENCODE (IMMED, inst);
13519 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
13520 inst.operands[2].imm);
13521 }
13522 else
13523 {
13524 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13525 struct neon_type_el et = neon_check_type (3, rs,
13526 N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN);
13527 unsigned int tmp;
13528
13529 /* See note in do_neon_shl_imm. */
13530 tmp = inst.operands[2].reg;
13531 inst.operands[2].reg = inst.operands[1].reg;
13532 inst.operands[1].reg = tmp;
13533 NEON_ENCODE (INTEGER, inst);
13534 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13535 }
13536 }
13537
13538 static void
13539 do_neon_rshl (void)
13540 {
13541 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13542 struct neon_type_el et = neon_check_type (3, rs,
13543 N_EQK, N_EQK, N_SU_ALL | N_KEY);
13544 unsigned int tmp;
13545
13546 tmp = inst.operands[2].reg;
13547 inst.operands[2].reg = inst.operands[1].reg;
13548 inst.operands[1].reg = tmp;
13549 neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size);
13550 }
13551
13552 static int
13553 neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size)
13554 {
13555 /* Handle .I8 pseudo-instructions. */
13556 if (size == 8)
13557 {
13558 /* Unfortunately, this will make everything apart from zero out-of-range.
13559 FIXME is this the intended semantics? There doesn't seem much point in
13560 accepting .I8 if so. */
13561 immediate |= immediate << 8;
13562 size = 16;
13563 }
13564
13565 if (size >= 32)
13566 {
13567 if (immediate == (immediate & 0x000000ff))
13568 {
13569 *immbits = immediate;
13570 return 0x1;
13571 }
13572 else if (immediate == (immediate & 0x0000ff00))
13573 {
13574 *immbits = immediate >> 8;
13575 return 0x3;
13576 }
13577 else if (immediate == (immediate & 0x00ff0000))
13578 {
13579 *immbits = immediate >> 16;
13580 return 0x5;
13581 }
13582 else if (immediate == (immediate & 0xff000000))
13583 {
13584 *immbits = immediate >> 24;
13585 return 0x7;
13586 }
13587 if ((immediate & 0xffff) != (immediate >> 16))
13588 goto bad_immediate;
13589 immediate &= 0xffff;
13590 }
13591
13592 if (immediate == (immediate & 0x000000ff))
13593 {
13594 *immbits = immediate;
13595 return 0x9;
13596 }
13597 else if (immediate == (immediate & 0x0000ff00))
13598 {
13599 *immbits = immediate >> 8;
13600 return 0xb;
13601 }
13602
13603 bad_immediate:
13604 first_error (_("immediate value out of range"));
13605 return FAIL;
13606 }
13607
13608 /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits
13609 A, B, C, D. */
13610
13611 static int
13612 neon_bits_same_in_bytes (unsigned imm)
13613 {
13614 return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff)
13615 && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00)
13616 && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000)
13617 && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000);
13618 }
13619
13620 /* For immediate of above form, return 0bABCD. */
13621
13622 static unsigned
13623 neon_squash_bits (unsigned imm)
13624 {
13625 return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14)
13626 | ((imm & 0x01000000) >> 21);
13627 }
13628
13629 /* Compress quarter-float representation to 0b...000 abcdefgh. */
13630
13631 static unsigned
13632 neon_qfloat_bits (unsigned imm)
13633 {
13634 return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80);
13635 }
13636
13637 /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into
13638 the instruction. *OP is passed as the initial value of the op field, and
13639 may be set to a different value depending on the constant (i.e.
13640 "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not
13641 MVN). If the immediate looks like a repeated pattern then also
13642 try smaller element sizes. */
13643
13644 static int
13645 neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, int float_p,
13646 unsigned *immbits, int *op, int size,
13647 enum neon_el_type type)
13648 {
13649 /* Only permit float immediates (including 0.0/-0.0) if the operand type is
13650 float. */
13651 if (type == NT_float && !float_p)
13652 return FAIL;
13653
13654 if (type == NT_float && is_quarter_float (immlo) && immhi == 0)
13655 {
13656 if (size != 32 || *op == 1)
13657 return FAIL;
13658 *immbits = neon_qfloat_bits (immlo);
13659 return 0xf;
13660 }
13661
13662 if (size == 64)
13663 {
13664 if (neon_bits_same_in_bytes (immhi)
13665 && neon_bits_same_in_bytes (immlo))
13666 {
13667 if (*op == 1)
13668 return FAIL;
13669 *immbits = (neon_squash_bits (immhi) << 4)
13670 | neon_squash_bits (immlo);
13671 *op = 1;
13672 return 0xe;
13673 }
13674
13675 if (immhi != immlo)
13676 return FAIL;
13677 }
13678
13679 if (size >= 32)
13680 {
13681 if (immlo == (immlo & 0x000000ff))
13682 {
13683 *immbits = immlo;
13684 return 0x0;
13685 }
13686 else if (immlo == (immlo & 0x0000ff00))
13687 {
13688 *immbits = immlo >> 8;
13689 return 0x2;
13690 }
13691 else if (immlo == (immlo & 0x00ff0000))
13692 {
13693 *immbits = immlo >> 16;
13694 return 0x4;
13695 }
13696 else if (immlo == (immlo & 0xff000000))
13697 {
13698 *immbits = immlo >> 24;
13699 return 0x6;
13700 }
13701 else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff))
13702 {
13703 *immbits = (immlo >> 8) & 0xff;
13704 return 0xc;
13705 }
13706 else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff))
13707 {
13708 *immbits = (immlo >> 16) & 0xff;
13709 return 0xd;
13710 }
13711
13712 if ((immlo & 0xffff) != (immlo >> 16))
13713 return FAIL;
13714 immlo &= 0xffff;
13715 }
13716
13717 if (size >= 16)
13718 {
13719 if (immlo == (immlo & 0x000000ff))
13720 {
13721 *immbits = immlo;
13722 return 0x8;
13723 }
13724 else if (immlo == (immlo & 0x0000ff00))
13725 {
13726 *immbits = immlo >> 8;
13727 return 0xa;
13728 }
13729
13730 if ((immlo & 0xff) != (immlo >> 8))
13731 return FAIL;
13732 immlo &= 0xff;
13733 }
13734
13735 if (immlo == (immlo & 0x000000ff))
13736 {
13737 /* Don't allow MVN with 8-bit immediate. */
13738 if (*op == 1)
13739 return FAIL;
13740 *immbits = immlo;
13741 return 0xe;
13742 }
13743
13744 return FAIL;
13745 }
13746
13747 /* Write immediate bits [7:0] to the following locations:
13748
13749 |28/24|23 19|18 16|15 4|3 0|
13750 | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h|
13751
13752 This function is used by VMOV/VMVN/VORR/VBIC. */
13753
13754 static void
13755 neon_write_immbits (unsigned immbits)
13756 {
13757 inst.instruction |= immbits & 0xf;
13758 inst.instruction |= ((immbits >> 4) & 0x7) << 16;
13759 inst.instruction |= ((immbits >> 7) & 0x1) << 24;
13760 }
13761
13762 /* Invert low-order SIZE bits of XHI:XLO. */
13763
13764 static void
13765 neon_invert_size (unsigned *xlo, unsigned *xhi, int size)
13766 {
13767 unsigned immlo = xlo ? *xlo : 0;
13768 unsigned immhi = xhi ? *xhi : 0;
13769
13770 switch (size)
13771 {
13772 case 8:
13773 immlo = (~immlo) & 0xff;
13774 break;
13775
13776 case 16:
13777 immlo = (~immlo) & 0xffff;
13778 break;
13779
13780 case 64:
13781 immhi = (~immhi) & 0xffffffff;
13782 /* fall through. */
13783
13784 case 32:
13785 immlo = (~immlo) & 0xffffffff;
13786 break;
13787
13788 default:
13789 abort ();
13790 }
13791
13792 if (xlo)
13793 *xlo = immlo;
13794
13795 if (xhi)
13796 *xhi = immhi;
13797 }
13798
13799 static void
13800 do_neon_logic (void)
13801 {
13802 if (inst.operands[2].present && inst.operands[2].isreg)
13803 {
13804 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13805 neon_check_type (3, rs, N_IGNORE_TYPE);
13806 /* U bit and size field were set as part of the bitmask. */
13807 NEON_ENCODE (INTEGER, inst);
13808 neon_three_same (neon_quad (rs), 0, -1);
13809 }
13810 else
13811 {
13812 const int three_ops_form = (inst.operands[2].present
13813 && !inst.operands[2].isreg);
13814 const int immoperand = (three_ops_form ? 2 : 1);
13815 enum neon_shape rs = (three_ops_form
13816 ? neon_select_shape (NS_DDI, NS_QQI, NS_NULL)
13817 : neon_select_shape (NS_DI, NS_QI, NS_NULL));
13818 struct neon_type_el et = neon_check_type (2, rs,
13819 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
13820 enum neon_opc opcode = (enum neon_opc) inst.instruction & 0x0fffffff;
13821 unsigned immbits;
13822 int cmode;
13823
13824 if (et.type == NT_invtype)
13825 return;
13826
13827 if (three_ops_form)
13828 constraint (inst.operands[0].reg != inst.operands[1].reg,
13829 _("first and second operands shall be the same register"));
13830
13831 NEON_ENCODE (IMMED, inst);
13832
13833 immbits = inst.operands[immoperand].imm;
13834 if (et.size == 64)
13835 {
13836 /* .i64 is a pseudo-op, so the immediate must be a repeating
13837 pattern. */
13838 if (immbits != (inst.operands[immoperand].regisimm ?
13839 inst.operands[immoperand].reg : 0))
13840 {
13841 /* Set immbits to an invalid constant. */
13842 immbits = 0xdeadbeef;
13843 }
13844 }
13845
13846 switch (opcode)
13847 {
13848 case N_MNEM_vbic:
13849 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13850 break;
13851
13852 case N_MNEM_vorr:
13853 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13854 break;
13855
13856 case N_MNEM_vand:
13857 /* Pseudo-instruction for VBIC. */
13858 neon_invert_size (&immbits, 0, et.size);
13859 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13860 break;
13861
13862 case N_MNEM_vorn:
13863 /* Pseudo-instruction for VORR. */
13864 neon_invert_size (&immbits, 0, et.size);
13865 cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size);
13866 break;
13867
13868 default:
13869 abort ();
13870 }
13871
13872 if (cmode == FAIL)
13873 return;
13874
13875 inst.instruction |= neon_quad (rs) << 6;
13876 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
13877 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
13878 inst.instruction |= cmode << 8;
13879 neon_write_immbits (immbits);
13880
13881 neon_dp_fixup (&inst);
13882 }
13883 }
13884
13885 static void
13886 do_neon_bitfield (void)
13887 {
13888 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13889 neon_check_type (3, rs, N_IGNORE_TYPE);
13890 neon_three_same (neon_quad (rs), 0, -1);
13891 }
13892
13893 static void
13894 neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types,
13895 unsigned destbits)
13896 {
13897 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
13898 struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK,
13899 types | N_KEY);
13900 if (et.type == NT_float)
13901 {
13902 NEON_ENCODE (FLOAT, inst);
13903 neon_three_same (neon_quad (rs), 0, -1);
13904 }
13905 else
13906 {
13907 NEON_ENCODE (INTEGER, inst);
13908 neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size);
13909 }
13910 }
13911
13912 static void
13913 do_neon_dyadic_if_su (void)
13914 {
13915 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13916 }
13917
13918 static void
13919 do_neon_dyadic_if_su_d (void)
13920 {
13921 /* This version only allow D registers, but that constraint is enforced during
13922 operand parsing so we don't need to do anything extra here. */
13923 neon_dyadic_misc (NT_unsigned, N_SUF_32, 0);
13924 }
13925
13926 static void
13927 do_neon_dyadic_if_i_d (void)
13928 {
13929 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13930 affected if we specify unsigned args. */
13931 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
13932 }
13933
13934 enum vfp_or_neon_is_neon_bits
13935 {
13936 NEON_CHECK_CC = 1,
13937 NEON_CHECK_ARCH = 2
13938 };
13939
13940 /* Call this function if an instruction which may have belonged to the VFP or
13941 Neon instruction sets, but turned out to be a Neon instruction (due to the
13942 operand types involved, etc.). We have to check and/or fix-up a couple of
13943 things:
13944
13945 - Make sure the user hasn't attempted to make a Neon instruction
13946 conditional.
13947 - Alter the value in the condition code field if necessary.
13948 - Make sure that the arch supports Neon instructions.
13949
13950 Which of these operations take place depends on bits from enum
13951 vfp_or_neon_is_neon_bits.
13952
13953 WARNING: This function has side effects! If NEON_CHECK_CC is used and the
13954 current instruction's condition is COND_ALWAYS, the condition field is
13955 changed to inst.uncond_value. This is necessary because instructions shared
13956 between VFP and Neon may be conditional for the VFP variants only, and the
13957 unconditional Neon version must have, e.g., 0xF in the condition field. */
13958
13959 static int
13960 vfp_or_neon_is_neon (unsigned check)
13961 {
13962 /* Conditions are always legal in Thumb mode (IT blocks). */
13963 if (!thumb_mode && (check & NEON_CHECK_CC))
13964 {
13965 if (inst.cond != COND_ALWAYS)
13966 {
13967 first_error (_(BAD_COND));
13968 return FAIL;
13969 }
13970 if (inst.uncond_value != -1)
13971 inst.instruction |= inst.uncond_value << 28;
13972 }
13973
13974 if ((check & NEON_CHECK_ARCH)
13975 && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1))
13976 {
13977 first_error (_(BAD_FPU));
13978 return FAIL;
13979 }
13980
13981 return SUCCESS;
13982 }
13983
13984 static void
13985 do_neon_addsub_if_i (void)
13986 {
13987 if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS)
13988 return;
13989
13990 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
13991 return;
13992
13993 /* The "untyped" case can't happen. Do this to stop the "U" bit being
13994 affected if we specify unsigned args. */
13995 neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0);
13996 }
13997
13998 /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the
13999 result to be:
14000 V<op> A,B (A is operand 0, B is operand 2)
14001 to mean:
14002 V<op> A,B,A
14003 not:
14004 V<op> A,B,B
14005 so handle that case specially. */
14006
14007 static void
14008 neon_exchange_operands (void)
14009 {
14010 void *scratch = alloca (sizeof (inst.operands[0]));
14011 if (inst.operands[1].present)
14012 {
14013 /* Swap operands[1] and operands[2]. */
14014 memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0]));
14015 inst.operands[1] = inst.operands[2];
14016 memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0]));
14017 }
14018 else
14019 {
14020 inst.operands[1] = inst.operands[2];
14021 inst.operands[2] = inst.operands[0];
14022 }
14023 }
14024
14025 static void
14026 neon_compare (unsigned regtypes, unsigned immtypes, int invert)
14027 {
14028 if (inst.operands[2].isreg)
14029 {
14030 if (invert)
14031 neon_exchange_operands ();
14032 neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ);
14033 }
14034 else
14035 {
14036 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14037 struct neon_type_el et = neon_check_type (2, rs,
14038 N_EQK | N_SIZ, immtypes | N_KEY);
14039
14040 NEON_ENCODE (IMMED, inst);
14041 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14042 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14043 inst.instruction |= LOW4 (inst.operands[1].reg);
14044 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14045 inst.instruction |= neon_quad (rs) << 6;
14046 inst.instruction |= (et.type == NT_float) << 10;
14047 inst.instruction |= neon_logbits (et.size) << 18;
14048
14049 neon_dp_fixup (&inst);
14050 }
14051 }
14052
14053 static void
14054 do_neon_cmp (void)
14055 {
14056 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE);
14057 }
14058
14059 static void
14060 do_neon_cmp_inv (void)
14061 {
14062 neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE);
14063 }
14064
14065 static void
14066 do_neon_ceq (void)
14067 {
14068 neon_compare (N_IF_32, N_IF_32, FALSE);
14069 }
14070
14071 /* For multiply instructions, we have the possibility of 16-bit or 32-bit
14072 scalars, which are encoded in 5 bits, M : Rm.
14073 For 16-bit scalars, the register is encoded in Rm[2:0] and the index in
14074 M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the
14075 index in M. */
14076
14077 static unsigned
14078 neon_scalar_for_mul (unsigned scalar, unsigned elsize)
14079 {
14080 unsigned regno = NEON_SCALAR_REG (scalar);
14081 unsigned elno = NEON_SCALAR_INDEX (scalar);
14082
14083 switch (elsize)
14084 {
14085 case 16:
14086 if (regno > 7 || elno > 3)
14087 goto bad_scalar;
14088 return regno | (elno << 3);
14089
14090 case 32:
14091 if (regno > 15 || elno > 1)
14092 goto bad_scalar;
14093 return regno | (elno << 4);
14094
14095 default:
14096 bad_scalar:
14097 first_error (_("scalar out of range for multiply instruction"));
14098 }
14099
14100 return 0;
14101 }
14102
14103 /* Encode multiply / multiply-accumulate scalar instructions. */
14104
14105 static void
14106 neon_mul_mac (struct neon_type_el et, int ubit)
14107 {
14108 unsigned scalar;
14109
14110 /* Give a more helpful error message if we have an invalid type. */
14111 if (et.type == NT_invtype)
14112 return;
14113
14114 scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size);
14115 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14116 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14117 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14118 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14119 inst.instruction |= LOW4 (scalar);
14120 inst.instruction |= HI1 (scalar) << 5;
14121 inst.instruction |= (et.type == NT_float) << 8;
14122 inst.instruction |= neon_logbits (et.size) << 20;
14123 inst.instruction |= (ubit != 0) << 24;
14124
14125 neon_dp_fixup (&inst);
14126 }
14127
14128 static void
14129 do_neon_mac_maybe_scalar (void)
14130 {
14131 if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS)
14132 return;
14133
14134 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14135 return;
14136
14137 if (inst.operands[2].isscalar)
14138 {
14139 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14140 struct neon_type_el et = neon_check_type (3, rs,
14141 N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY);
14142 NEON_ENCODE (SCALAR, inst);
14143 neon_mul_mac (et, neon_quad (rs));
14144 }
14145 else
14146 {
14147 /* The "untyped" case can't happen. Do this to stop the "U" bit being
14148 affected if we specify unsigned args. */
14149 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14150 }
14151 }
14152
14153 static void
14154 do_neon_fmac (void)
14155 {
14156 if (try_vfp_nsyn (3, do_vfp_nsyn_fma_fms) == SUCCESS)
14157 return;
14158
14159 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14160 return;
14161
14162 neon_dyadic_misc (NT_untyped, N_IF_32, 0);
14163 }
14164
14165 static void
14166 do_neon_tst (void)
14167 {
14168 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14169 struct neon_type_el et = neon_check_type (3, rs,
14170 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY);
14171 neon_three_same (neon_quad (rs), 0, et.size);
14172 }
14173
14174 /* VMUL with 3 registers allows the P8 type. The scalar version supports the
14175 same types as the MAC equivalents. The polynomial type for this instruction
14176 is encoded the same as the integer type. */
14177
14178 static void
14179 do_neon_mul (void)
14180 {
14181 if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS)
14182 return;
14183
14184 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14185 return;
14186
14187 if (inst.operands[2].isscalar)
14188 do_neon_mac_maybe_scalar ();
14189 else
14190 neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0);
14191 }
14192
14193 static void
14194 do_neon_qdmulh (void)
14195 {
14196 if (inst.operands[2].isscalar)
14197 {
14198 enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL);
14199 struct neon_type_el et = neon_check_type (3, rs,
14200 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14201 NEON_ENCODE (SCALAR, inst);
14202 neon_mul_mac (et, neon_quad (rs));
14203 }
14204 else
14205 {
14206 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14207 struct neon_type_el et = neon_check_type (3, rs,
14208 N_EQK, N_EQK, N_S16 | N_S32 | N_KEY);
14209 NEON_ENCODE (INTEGER, inst);
14210 /* The U bit (rounding) comes from bit mask. */
14211 neon_three_same (neon_quad (rs), 0, et.size);
14212 }
14213 }
14214
14215 static void
14216 do_neon_fcmp_absolute (void)
14217 {
14218 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14219 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14220 /* Size field comes from bit mask. */
14221 neon_three_same (neon_quad (rs), 1, -1);
14222 }
14223
14224 static void
14225 do_neon_fcmp_absolute_inv (void)
14226 {
14227 neon_exchange_operands ();
14228 do_neon_fcmp_absolute ();
14229 }
14230
14231 static void
14232 do_neon_step (void)
14233 {
14234 enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL);
14235 neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY);
14236 neon_three_same (neon_quad (rs), 0, -1);
14237 }
14238
14239 static void
14240 do_neon_abs_neg (void)
14241 {
14242 enum neon_shape rs;
14243 struct neon_type_el et;
14244
14245 if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS)
14246 return;
14247
14248 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14249 return;
14250
14251 rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14252 et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY);
14253
14254 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14255 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14256 inst.instruction |= LOW4 (inst.operands[1].reg);
14257 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14258 inst.instruction |= neon_quad (rs) << 6;
14259 inst.instruction |= (et.type == NT_float) << 10;
14260 inst.instruction |= neon_logbits (et.size) << 18;
14261
14262 neon_dp_fixup (&inst);
14263 }
14264
14265 static void
14266 do_neon_sli (void)
14267 {
14268 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14269 struct neon_type_el et = neon_check_type (2, rs,
14270 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14271 int imm = inst.operands[2].imm;
14272 constraint (imm < 0 || (unsigned)imm >= et.size,
14273 _("immediate out of range for insert"));
14274 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14275 }
14276
14277 static void
14278 do_neon_sri (void)
14279 {
14280 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14281 struct neon_type_el et = neon_check_type (2, rs,
14282 N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14283 int imm = inst.operands[2].imm;
14284 constraint (imm < 1 || (unsigned)imm > et.size,
14285 _("immediate out of range for insert"));
14286 neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm);
14287 }
14288
14289 static void
14290 do_neon_qshlu_imm (void)
14291 {
14292 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
14293 struct neon_type_el et = neon_check_type (2, rs,
14294 N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY);
14295 int imm = inst.operands[2].imm;
14296 constraint (imm < 0 || (unsigned)imm >= et.size,
14297 _("immediate out of range for shift"));
14298 /* Only encodes the 'U present' variant of the instruction.
14299 In this case, signed types have OP (bit 8) set to 0.
14300 Unsigned types have OP set to 1. */
14301 inst.instruction |= (et.type == NT_unsigned) << 8;
14302 /* The rest of the bits are the same as other immediate shifts. */
14303 neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm);
14304 }
14305
14306 static void
14307 do_neon_qmovn (void)
14308 {
14309 struct neon_type_el et = neon_check_type (2, NS_DQ,
14310 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14311 /* Saturating move where operands can be signed or unsigned, and the
14312 destination has the same signedness. */
14313 NEON_ENCODE (INTEGER, inst);
14314 if (et.type == NT_unsigned)
14315 inst.instruction |= 0xc0;
14316 else
14317 inst.instruction |= 0x80;
14318 neon_two_same (0, 1, et.size / 2);
14319 }
14320
14321 static void
14322 do_neon_qmovun (void)
14323 {
14324 struct neon_type_el et = neon_check_type (2, NS_DQ,
14325 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14326 /* Saturating move with unsigned results. Operands must be signed. */
14327 NEON_ENCODE (INTEGER, inst);
14328 neon_two_same (0, 1, et.size / 2);
14329 }
14330
14331 static void
14332 do_neon_rshift_sat_narrow (void)
14333 {
14334 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14335 or unsigned. If operands are unsigned, results must also be unsigned. */
14336 struct neon_type_el et = neon_check_type (2, NS_DQI,
14337 N_EQK | N_HLF, N_SU_16_64 | N_KEY);
14338 int imm = inst.operands[2].imm;
14339 /* This gets the bounds check, size encoding and immediate bits calculation
14340 right. */
14341 et.size /= 2;
14342
14343 /* VQ{R}SHRN.I<size> <Dd>, <Qm>, #0 is a synonym for
14344 VQMOVN.I<size> <Dd>, <Qm>. */
14345 if (imm == 0)
14346 {
14347 inst.operands[2].present = 0;
14348 inst.instruction = N_MNEM_vqmovn;
14349 do_neon_qmovn ();
14350 return;
14351 }
14352
14353 constraint (imm < 1 || (unsigned)imm > et.size,
14354 _("immediate out of range"));
14355 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm);
14356 }
14357
14358 static void
14359 do_neon_rshift_sat_narrow_u (void)
14360 {
14361 /* FIXME: Types for narrowing. If operands are signed, results can be signed
14362 or unsigned. If operands are unsigned, results must also be unsigned. */
14363 struct neon_type_el et = neon_check_type (2, NS_DQI,
14364 N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY);
14365 int imm = inst.operands[2].imm;
14366 /* This gets the bounds check, size encoding and immediate bits calculation
14367 right. */
14368 et.size /= 2;
14369
14370 /* VQSHRUN.I<size> <Dd>, <Qm>, #0 is a synonym for
14371 VQMOVUN.I<size> <Dd>, <Qm>. */
14372 if (imm == 0)
14373 {
14374 inst.operands[2].present = 0;
14375 inst.instruction = N_MNEM_vqmovun;
14376 do_neon_qmovun ();
14377 return;
14378 }
14379
14380 constraint (imm < 1 || (unsigned)imm > et.size,
14381 _("immediate out of range"));
14382 /* FIXME: The manual is kind of unclear about what value U should have in
14383 VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it
14384 must be 1. */
14385 neon_imm_shift (TRUE, 1, 0, et, et.size - imm);
14386 }
14387
14388 static void
14389 do_neon_movn (void)
14390 {
14391 struct neon_type_el et = neon_check_type (2, NS_DQ,
14392 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14393 NEON_ENCODE (INTEGER, inst);
14394 neon_two_same (0, 1, et.size / 2);
14395 }
14396
14397 static void
14398 do_neon_rshift_narrow (void)
14399 {
14400 struct neon_type_el et = neon_check_type (2, NS_DQI,
14401 N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY);
14402 int imm = inst.operands[2].imm;
14403 /* This gets the bounds check, size encoding and immediate bits calculation
14404 right. */
14405 et.size /= 2;
14406
14407 /* If immediate is zero then we are a pseudo-instruction for
14408 VMOVN.I<size> <Dd>, <Qm> */
14409 if (imm == 0)
14410 {
14411 inst.operands[2].present = 0;
14412 inst.instruction = N_MNEM_vmovn;
14413 do_neon_movn ();
14414 return;
14415 }
14416
14417 constraint (imm < 1 || (unsigned)imm > et.size,
14418 _("immediate out of range for narrowing operation"));
14419 neon_imm_shift (FALSE, 0, 0, et, et.size - imm);
14420 }
14421
14422 static void
14423 do_neon_shll (void)
14424 {
14425 /* FIXME: Type checking when lengthening. */
14426 struct neon_type_el et = neon_check_type (2, NS_QDI,
14427 N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY);
14428 unsigned imm = inst.operands[2].imm;
14429
14430 if (imm == et.size)
14431 {
14432 /* Maximum shift variant. */
14433 NEON_ENCODE (INTEGER, inst);
14434 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14435 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14436 inst.instruction |= LOW4 (inst.operands[1].reg);
14437 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14438 inst.instruction |= neon_logbits (et.size) << 18;
14439
14440 neon_dp_fixup (&inst);
14441 }
14442 else
14443 {
14444 /* A more-specific type check for non-max versions. */
14445 et = neon_check_type (2, NS_QDI,
14446 N_EQK | N_DBL, N_SU_32 | N_KEY);
14447 NEON_ENCODE (IMMED, inst);
14448 neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm);
14449 }
14450 }
14451
14452 /* Check the various types for the VCVT instruction, and return which version
14453 the current instruction is. */
14454
14455 static int
14456 neon_cvt_flavour (enum neon_shape rs)
14457 {
14458 #define CVT_VAR(C,X,Y) \
14459 et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \
14460 if (et.type != NT_invtype) \
14461 { \
14462 inst.error = NULL; \
14463 return (C); \
14464 }
14465 struct neon_type_el et;
14466 unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF
14467 || rs == NS_FF) ? N_VFP : 0;
14468 /* The instruction versions which take an immediate take one register
14469 argument, which is extended to the width of the full register. Thus the
14470 "source" and "destination" registers must have the same width. Hack that
14471 here by making the size equal to the key (wider, in this case) operand. */
14472 unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0;
14473
14474 CVT_VAR (0, N_S32, N_F32);
14475 CVT_VAR (1, N_U32, N_F32);
14476 CVT_VAR (2, N_F32, N_S32);
14477 CVT_VAR (3, N_F32, N_U32);
14478 /* Half-precision conversions. */
14479 CVT_VAR (4, N_F32, N_F16);
14480 CVT_VAR (5, N_F16, N_F32);
14481
14482 whole_reg = N_VFP;
14483
14484 /* VFP instructions. */
14485 CVT_VAR (6, N_F32, N_F64);
14486 CVT_VAR (7, N_F64, N_F32);
14487 CVT_VAR (8, N_S32, N_F64 | key);
14488 CVT_VAR (9, N_U32, N_F64 | key);
14489 CVT_VAR (10, N_F64 | key, N_S32);
14490 CVT_VAR (11, N_F64 | key, N_U32);
14491 /* VFP instructions with bitshift. */
14492 CVT_VAR (12, N_F32 | key, N_S16);
14493 CVT_VAR (13, N_F32 | key, N_U16);
14494 CVT_VAR (14, N_F64 | key, N_S16);
14495 CVT_VAR (15, N_F64 | key, N_U16);
14496 CVT_VAR (16, N_S16, N_F32 | key);
14497 CVT_VAR (17, N_U16, N_F32 | key);
14498 CVT_VAR (18, N_S16, N_F64 | key);
14499 CVT_VAR (19, N_U16, N_F64 | key);
14500
14501 return -1;
14502 #undef CVT_VAR
14503 }
14504
14505 /* Neon-syntax VFP conversions. */
14506
14507 static void
14508 do_vfp_nsyn_cvt (enum neon_shape rs, int flavour)
14509 {
14510 const char *opname = 0;
14511
14512 if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI)
14513 {
14514 /* Conversions with immediate bitshift. */
14515 const char *enc[] =
14516 {
14517 "ftosls",
14518 "ftouls",
14519 "fsltos",
14520 "fultos",
14521 NULL,
14522 NULL,
14523 NULL,
14524 NULL,
14525 "ftosld",
14526 "ftould",
14527 "fsltod",
14528 "fultod",
14529 "fshtos",
14530 "fuhtos",
14531 "fshtod",
14532 "fuhtod",
14533 "ftoshs",
14534 "ftouhs",
14535 "ftoshd",
14536 "ftouhd"
14537 };
14538
14539 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14540 {
14541 opname = enc[flavour];
14542 constraint (inst.operands[0].reg != inst.operands[1].reg,
14543 _("operands 0 and 1 must be the same register"));
14544 inst.operands[1] = inst.operands[2];
14545 memset (&inst.operands[2], '\0', sizeof (inst.operands[2]));
14546 }
14547 }
14548 else
14549 {
14550 /* Conversions without bitshift. */
14551 const char *enc[] =
14552 {
14553 "ftosis",
14554 "ftouis",
14555 "fsitos",
14556 "fuitos",
14557 "NULL",
14558 "NULL",
14559 "fcvtsd",
14560 "fcvtds",
14561 "ftosid",
14562 "ftouid",
14563 "fsitod",
14564 "fuitod"
14565 };
14566
14567 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc))
14568 opname = enc[flavour];
14569 }
14570
14571 if (opname)
14572 do_vfp_nsyn_opcode (opname);
14573 }
14574
14575 static void
14576 do_vfp_nsyn_cvtz (void)
14577 {
14578 enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL);
14579 int flavour = neon_cvt_flavour (rs);
14580 const char *enc[] =
14581 {
14582 "ftosizs",
14583 "ftouizs",
14584 NULL,
14585 NULL,
14586 NULL,
14587 NULL,
14588 NULL,
14589 NULL,
14590 "ftosizd",
14591 "ftouizd"
14592 };
14593
14594 if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour])
14595 do_vfp_nsyn_opcode (enc[flavour]);
14596 }
14597
14598 static void
14599 do_neon_cvt_1 (bfd_boolean round_to_zero ATTRIBUTE_UNUSED)
14600 {
14601 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ,
14602 NS_FD, NS_DF, NS_FF, NS_QD, NS_DQ, NS_NULL);
14603 int flavour = neon_cvt_flavour (rs);
14604
14605 /* PR11109: Handle round-to-zero for VCVT conversions. */
14606 if (round_to_zero
14607 && ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_vfp_v2)
14608 && (flavour == 0 || flavour == 1 || flavour == 8 || flavour == 9)
14609 && (rs == NS_FD || rs == NS_FF))
14610 {
14611 do_vfp_nsyn_cvtz ();
14612 return;
14613 }
14614
14615 /* VFP rather than Neon conversions. */
14616 if (flavour >= 6)
14617 {
14618 do_vfp_nsyn_cvt (rs, flavour);
14619 return;
14620 }
14621
14622 switch (rs)
14623 {
14624 case NS_DDI:
14625 case NS_QQI:
14626 {
14627 unsigned immbits;
14628 unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 };
14629
14630 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14631 return;
14632
14633 /* Fixed-point conversion with #0 immediate is encoded as an
14634 integer conversion. */
14635 if (inst.operands[2].present && inst.operands[2].imm == 0)
14636 goto int_encode;
14637 immbits = 32 - inst.operands[2].imm;
14638 NEON_ENCODE (IMMED, inst);
14639 if (flavour != -1)
14640 inst.instruction |= enctab[flavour];
14641 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14642 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14643 inst.instruction |= LOW4 (inst.operands[1].reg);
14644 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14645 inst.instruction |= neon_quad (rs) << 6;
14646 inst.instruction |= 1 << 21;
14647 inst.instruction |= immbits << 16;
14648
14649 neon_dp_fixup (&inst);
14650 }
14651 break;
14652
14653 case NS_DD:
14654 case NS_QQ:
14655 int_encode:
14656 {
14657 unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 };
14658
14659 NEON_ENCODE (INTEGER, inst);
14660
14661 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
14662 return;
14663
14664 if (flavour != -1)
14665 inst.instruction |= enctab[flavour];
14666
14667 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14668 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14669 inst.instruction |= LOW4 (inst.operands[1].reg);
14670 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14671 inst.instruction |= neon_quad (rs) << 6;
14672 inst.instruction |= 2 << 18;
14673
14674 neon_dp_fixup (&inst);
14675 }
14676 break;
14677
14678 /* Half-precision conversions for Advanced SIMD -- neon. */
14679 case NS_QD:
14680 case NS_DQ:
14681
14682 if ((rs == NS_DQ)
14683 && (inst.vectype.el[0].size != 16 || inst.vectype.el[1].size != 32))
14684 {
14685 as_bad (_("operand size must match register width"));
14686 break;
14687 }
14688
14689 if ((rs == NS_QD)
14690 && ((inst.vectype.el[0].size != 32 || inst.vectype.el[1].size != 16)))
14691 {
14692 as_bad (_("operand size must match register width"));
14693 break;
14694 }
14695
14696 if (rs == NS_DQ)
14697 inst.instruction = 0x3b60600;
14698 else
14699 inst.instruction = 0x3b60700;
14700
14701 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14702 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14703 inst.instruction |= LOW4 (inst.operands[1].reg);
14704 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14705 neon_dp_fixup (&inst);
14706 break;
14707
14708 default:
14709 /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */
14710 do_vfp_nsyn_cvt (rs, flavour);
14711 }
14712 }
14713
14714 static void
14715 do_neon_cvtr (void)
14716 {
14717 do_neon_cvt_1 (FALSE);
14718 }
14719
14720 static void
14721 do_neon_cvt (void)
14722 {
14723 do_neon_cvt_1 (TRUE);
14724 }
14725
14726 static void
14727 do_neon_cvtb (void)
14728 {
14729 inst.instruction = 0xeb20a40;
14730
14731 /* The sizes are attached to the mnemonic. */
14732 if (inst.vectype.el[0].type != NT_invtype
14733 && inst.vectype.el[0].size == 16)
14734 inst.instruction |= 0x00010000;
14735
14736 /* Programmer's syntax: the sizes are attached to the operands. */
14737 else if (inst.operands[0].vectype.type != NT_invtype
14738 && inst.operands[0].vectype.size == 16)
14739 inst.instruction |= 0x00010000;
14740
14741 encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd);
14742 encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm);
14743 do_vfp_cond_or_thumb ();
14744 }
14745
14746
14747 static void
14748 do_neon_cvtt (void)
14749 {
14750 do_neon_cvtb ();
14751 inst.instruction |= 0x80;
14752 }
14753
14754 static void
14755 neon_move_immediate (void)
14756 {
14757 enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL);
14758 struct neon_type_el et = neon_check_type (2, rs,
14759 N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK);
14760 unsigned immlo, immhi = 0, immbits;
14761 int op, cmode, float_p;
14762
14763 constraint (et.type == NT_invtype,
14764 _("operand size must be specified for immediate VMOV"));
14765
14766 /* We start out as an MVN instruction if OP = 1, MOV otherwise. */
14767 op = (inst.instruction & (1 << 5)) != 0;
14768
14769 immlo = inst.operands[1].imm;
14770 if (inst.operands[1].regisimm)
14771 immhi = inst.operands[1].reg;
14772
14773 constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0,
14774 _("immediate has bits set outside the operand size"));
14775
14776 float_p = inst.operands[1].immisfloat;
14777
14778 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits, &op,
14779 et.size, et.type)) == FAIL)
14780 {
14781 /* Invert relevant bits only. */
14782 neon_invert_size (&immlo, &immhi, et.size);
14783 /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable
14784 with one or the other; those cases are caught by
14785 neon_cmode_for_move_imm. */
14786 op = !op;
14787 if ((cmode = neon_cmode_for_move_imm (immlo, immhi, float_p, &immbits,
14788 &op, et.size, et.type)) == FAIL)
14789 {
14790 first_error (_("immediate out of range"));
14791 return;
14792 }
14793 }
14794
14795 inst.instruction &= ~(1 << 5);
14796 inst.instruction |= op << 5;
14797
14798 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14799 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14800 inst.instruction |= neon_quad (rs) << 6;
14801 inst.instruction |= cmode << 8;
14802
14803 neon_write_immbits (immbits);
14804 }
14805
14806 static void
14807 do_neon_mvn (void)
14808 {
14809 if (inst.operands[1].isreg)
14810 {
14811 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14812
14813 NEON_ENCODE (INTEGER, inst);
14814 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14815 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14816 inst.instruction |= LOW4 (inst.operands[1].reg);
14817 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
14818 inst.instruction |= neon_quad (rs) << 6;
14819 }
14820 else
14821 {
14822 NEON_ENCODE (IMMED, inst);
14823 neon_move_immediate ();
14824 }
14825
14826 neon_dp_fixup (&inst);
14827 }
14828
14829 /* Encode instructions of form:
14830
14831 |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0|
14832 | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */
14833
14834 static void
14835 neon_mixed_length (struct neon_type_el et, unsigned size)
14836 {
14837 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14838 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14839 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14840 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14841 inst.instruction |= LOW4 (inst.operands[2].reg);
14842 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14843 inst.instruction |= (et.type == NT_unsigned) << 24;
14844 inst.instruction |= neon_logbits (size) << 20;
14845
14846 neon_dp_fixup (&inst);
14847 }
14848
14849 static void
14850 do_neon_dyadic_long (void)
14851 {
14852 /* FIXME: Type checking for lengthening op. */
14853 struct neon_type_el et = neon_check_type (3, NS_QDD,
14854 N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY);
14855 neon_mixed_length (et, et.size);
14856 }
14857
14858 static void
14859 do_neon_abal (void)
14860 {
14861 struct neon_type_el et = neon_check_type (3, NS_QDD,
14862 N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY);
14863 neon_mixed_length (et, et.size);
14864 }
14865
14866 static void
14867 neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes)
14868 {
14869 if (inst.operands[2].isscalar)
14870 {
14871 struct neon_type_el et = neon_check_type (3, NS_QDS,
14872 N_EQK | N_DBL, N_EQK, regtypes | N_KEY);
14873 NEON_ENCODE (SCALAR, inst);
14874 neon_mul_mac (et, et.type == NT_unsigned);
14875 }
14876 else
14877 {
14878 struct neon_type_el et = neon_check_type (3, NS_QDD,
14879 N_EQK | N_DBL, N_EQK, scalartypes | N_KEY);
14880 NEON_ENCODE (INTEGER, inst);
14881 neon_mixed_length (et, et.size);
14882 }
14883 }
14884
14885 static void
14886 do_neon_mac_maybe_scalar_long (void)
14887 {
14888 neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32);
14889 }
14890
14891 static void
14892 do_neon_dyadic_wide (void)
14893 {
14894 struct neon_type_el et = neon_check_type (3, NS_QQD,
14895 N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY);
14896 neon_mixed_length (et, et.size);
14897 }
14898
14899 static void
14900 do_neon_dyadic_narrow (void)
14901 {
14902 struct neon_type_el et = neon_check_type (3, NS_QDD,
14903 N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY);
14904 /* Operand sign is unimportant, and the U bit is part of the opcode,
14905 so force the operand type to integer. */
14906 et.type = NT_integer;
14907 neon_mixed_length (et, et.size / 2);
14908 }
14909
14910 static void
14911 do_neon_mul_sat_scalar_long (void)
14912 {
14913 neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32);
14914 }
14915
14916 static void
14917 do_neon_vmull (void)
14918 {
14919 if (inst.operands[2].isscalar)
14920 do_neon_mac_maybe_scalar_long ();
14921 else
14922 {
14923 struct neon_type_el et = neon_check_type (3, NS_QDD,
14924 N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY);
14925 if (et.type == NT_poly)
14926 NEON_ENCODE (POLY, inst);
14927 else
14928 NEON_ENCODE (INTEGER, inst);
14929 /* For polynomial encoding, size field must be 0b00 and the U bit must be
14930 zero. Should be OK as-is. */
14931 neon_mixed_length (et, et.size);
14932 }
14933 }
14934
14935 static void
14936 do_neon_ext (void)
14937 {
14938 enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL);
14939 struct neon_type_el et = neon_check_type (3, rs,
14940 N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY);
14941 unsigned imm = (inst.operands[3].imm * et.size) / 8;
14942
14943 constraint (imm >= (unsigned) (neon_quad (rs) ? 16 : 8),
14944 _("shift out of range"));
14945 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14946 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14947 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
14948 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
14949 inst.instruction |= LOW4 (inst.operands[2].reg);
14950 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
14951 inst.instruction |= neon_quad (rs) << 6;
14952 inst.instruction |= imm << 8;
14953
14954 neon_dp_fixup (&inst);
14955 }
14956
14957 static void
14958 do_neon_rev (void)
14959 {
14960 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
14961 struct neon_type_el et = neon_check_type (2, rs,
14962 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14963 unsigned op = (inst.instruction >> 7) & 3;
14964 /* N (width of reversed regions) is encoded as part of the bitmask. We
14965 extract it here to check the elements to be reversed are smaller.
14966 Otherwise we'd get a reserved instruction. */
14967 unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0;
14968 gas_assert (elsize != 0);
14969 constraint (et.size >= elsize,
14970 _("elements must be smaller than reversal region"));
14971 neon_two_same (neon_quad (rs), 1, et.size);
14972 }
14973
14974 static void
14975 do_neon_dup (void)
14976 {
14977 if (inst.operands[1].isscalar)
14978 {
14979 enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL);
14980 struct neon_type_el et = neon_check_type (2, rs,
14981 N_EQK, N_8 | N_16 | N_32 | N_KEY);
14982 unsigned sizebits = et.size >> 3;
14983 unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg);
14984 int logsize = neon_logbits (et.size);
14985 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize;
14986
14987 if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL)
14988 return;
14989
14990 NEON_ENCODE (SCALAR, inst);
14991 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
14992 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
14993 inst.instruction |= LOW4 (dm);
14994 inst.instruction |= HI1 (dm) << 5;
14995 inst.instruction |= neon_quad (rs) << 6;
14996 inst.instruction |= x << 17;
14997 inst.instruction |= sizebits << 16;
14998
14999 neon_dp_fixup (&inst);
15000 }
15001 else
15002 {
15003 enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL);
15004 struct neon_type_el et = neon_check_type (2, rs,
15005 N_8 | N_16 | N_32 | N_KEY, N_EQK);
15006 /* Duplicate ARM register to lanes of vector. */
15007 NEON_ENCODE (ARMREG, inst);
15008 switch (et.size)
15009 {
15010 case 8: inst.instruction |= 0x400000; break;
15011 case 16: inst.instruction |= 0x000020; break;
15012 case 32: inst.instruction |= 0x000000; break;
15013 default: break;
15014 }
15015 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15016 inst.instruction |= LOW4 (inst.operands[0].reg) << 16;
15017 inst.instruction |= HI1 (inst.operands[0].reg) << 7;
15018 inst.instruction |= neon_quad (rs) << 21;
15019 /* The encoding for this instruction is identical for the ARM and Thumb
15020 variants, except for the condition field. */
15021 do_vfp_cond_or_thumb ();
15022 }
15023 }
15024
15025 /* VMOV has particularly many variations. It can be one of:
15026 0. VMOV<c><q> <Qd>, <Qm>
15027 1. VMOV<c><q> <Dd>, <Dm>
15028 (Register operations, which are VORR with Rm = Rn.)
15029 2. VMOV<c><q>.<dt> <Qd>, #<imm>
15030 3. VMOV<c><q>.<dt> <Dd>, #<imm>
15031 (Immediate loads.)
15032 4. VMOV<c><q>.<size> <Dn[x]>, <Rd>
15033 (ARM register to scalar.)
15034 5. VMOV<c><q> <Dm>, <Rd>, <Rn>
15035 (Two ARM registers to vector.)
15036 6. VMOV<c><q>.<dt> <Rd>, <Dn[x]>
15037 (Scalar to ARM register.)
15038 7. VMOV<c><q> <Rd>, <Rn>, <Dm>
15039 (Vector to two ARM registers.)
15040 8. VMOV.F32 <Sd>, <Sm>
15041 9. VMOV.F64 <Dd>, <Dm>
15042 (VFP register moves.)
15043 10. VMOV.F32 <Sd>, #imm
15044 11. VMOV.F64 <Dd>, #imm
15045 (VFP float immediate load.)
15046 12. VMOV <Rd>, <Sm>
15047 (VFP single to ARM reg.)
15048 13. VMOV <Sd>, <Rm>
15049 (ARM reg to VFP single.)
15050 14. VMOV <Rd>, <Re>, <Sn>, <Sm>
15051 (Two ARM regs to two VFP singles.)
15052 15. VMOV <Sd>, <Se>, <Rn>, <Rm>
15053 (Two VFP singles to two ARM regs.)
15054
15055 These cases can be disambiguated using neon_select_shape, except cases 1/9
15056 and 3/11 which depend on the operand type too.
15057
15058 All the encoded bits are hardcoded by this function.
15059
15060 Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!).
15061 Cases 5, 7 may be used with VFPv2 and above.
15062
15063 FIXME: Some of the checking may be a bit sloppy (in a couple of cases you
15064 can specify a type where it doesn't make sense to, and is ignored). */
15065
15066 static void
15067 do_neon_mov (void)
15068 {
15069 enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD,
15070 NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR,
15071 NS_NULL);
15072 struct neon_type_el et;
15073 const char *ldconst = 0;
15074
15075 switch (rs)
15076 {
15077 case NS_DD: /* case 1/9. */
15078 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15079 /* It is not an error here if no type is given. */
15080 inst.error = NULL;
15081 if (et.type == NT_float && et.size == 64)
15082 {
15083 do_vfp_nsyn_opcode ("fcpyd");
15084 break;
15085 }
15086 /* fall through. */
15087
15088 case NS_QQ: /* case 0/1. */
15089 {
15090 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15091 return;
15092 /* The architecture manual I have doesn't explicitly state which
15093 value the U bit should have for register->register moves, but
15094 the equivalent VORR instruction has U = 0, so do that. */
15095 inst.instruction = 0x0200110;
15096 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15097 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15098 inst.instruction |= LOW4 (inst.operands[1].reg);
15099 inst.instruction |= HI1 (inst.operands[1].reg) << 5;
15100 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15101 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15102 inst.instruction |= neon_quad (rs) << 6;
15103
15104 neon_dp_fixup (&inst);
15105 }
15106 break;
15107
15108 case NS_DI: /* case 3/11. */
15109 et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY);
15110 inst.error = NULL;
15111 if (et.type == NT_float && et.size == 64)
15112 {
15113 /* case 11 (fconstd). */
15114 ldconst = "fconstd";
15115 goto encode_fconstd;
15116 }
15117 /* fall through. */
15118
15119 case NS_QI: /* case 2/3. */
15120 if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL)
15121 return;
15122 inst.instruction = 0x0800010;
15123 neon_move_immediate ();
15124 neon_dp_fixup (&inst);
15125 break;
15126
15127 case NS_SR: /* case 4. */
15128 {
15129 unsigned bcdebits = 0;
15130 int logsize;
15131 unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg);
15132 unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg);
15133
15134 et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK);
15135 logsize = neon_logbits (et.size);
15136
15137 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15138 _(BAD_FPU));
15139 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15140 && et.size != 32, _(BAD_FPU));
15141 constraint (et.type == NT_invtype, _("bad type for scalar"));
15142 constraint (x >= 64 / et.size, _("scalar index out of range"));
15143
15144 switch (et.size)
15145 {
15146 case 8: bcdebits = 0x8; break;
15147 case 16: bcdebits = 0x1; break;
15148 case 32: bcdebits = 0x0; break;
15149 default: ;
15150 }
15151
15152 bcdebits |= x << logsize;
15153
15154 inst.instruction = 0xe000b10;
15155 do_vfp_cond_or_thumb ();
15156 inst.instruction |= LOW4 (dn) << 16;
15157 inst.instruction |= HI1 (dn) << 7;
15158 inst.instruction |= inst.operands[1].reg << 12;
15159 inst.instruction |= (bcdebits & 3) << 5;
15160 inst.instruction |= (bcdebits >> 2) << 21;
15161 }
15162 break;
15163
15164 case NS_DRR: /* case 5 (fmdrr). */
15165 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15166 _(BAD_FPU));
15167
15168 inst.instruction = 0xc400b10;
15169 do_vfp_cond_or_thumb ();
15170 inst.instruction |= LOW4 (inst.operands[0].reg);
15171 inst.instruction |= HI1 (inst.operands[0].reg) << 5;
15172 inst.instruction |= inst.operands[1].reg << 12;
15173 inst.instruction |= inst.operands[2].reg << 16;
15174 break;
15175
15176 case NS_RS: /* case 6. */
15177 {
15178 unsigned logsize;
15179 unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg);
15180 unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg);
15181 unsigned abcdebits = 0;
15182
15183 et = neon_check_type (2, NS_NULL,
15184 N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY);
15185 logsize = neon_logbits (et.size);
15186
15187 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1),
15188 _(BAD_FPU));
15189 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)
15190 && et.size != 32, _(BAD_FPU));
15191 constraint (et.type == NT_invtype, _("bad type for scalar"));
15192 constraint (x >= 64 / et.size, _("scalar index out of range"));
15193
15194 switch (et.size)
15195 {
15196 case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break;
15197 case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break;
15198 case 32: abcdebits = 0x00; break;
15199 default: ;
15200 }
15201
15202 abcdebits |= x << logsize;
15203 inst.instruction = 0xe100b10;
15204 do_vfp_cond_or_thumb ();
15205 inst.instruction |= LOW4 (dn) << 16;
15206 inst.instruction |= HI1 (dn) << 7;
15207 inst.instruction |= inst.operands[0].reg << 12;
15208 inst.instruction |= (abcdebits & 3) << 5;
15209 inst.instruction |= (abcdebits >> 2) << 21;
15210 }
15211 break;
15212
15213 case NS_RRD: /* case 7 (fmrrd). */
15214 constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2),
15215 _(BAD_FPU));
15216
15217 inst.instruction = 0xc500b10;
15218 do_vfp_cond_or_thumb ();
15219 inst.instruction |= inst.operands[0].reg << 12;
15220 inst.instruction |= inst.operands[1].reg << 16;
15221 inst.instruction |= LOW4 (inst.operands[2].reg);
15222 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15223 break;
15224
15225 case NS_FF: /* case 8 (fcpys). */
15226 do_vfp_nsyn_opcode ("fcpys");
15227 break;
15228
15229 case NS_FI: /* case 10 (fconsts). */
15230 ldconst = "fconsts";
15231 encode_fconstd:
15232 if (is_quarter_float (inst.operands[1].imm))
15233 {
15234 inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm);
15235 do_vfp_nsyn_opcode (ldconst);
15236 }
15237 else
15238 first_error (_("immediate out of range"));
15239 break;
15240
15241 case NS_RF: /* case 12 (fmrs). */
15242 do_vfp_nsyn_opcode ("fmrs");
15243 break;
15244
15245 case NS_FR: /* case 13 (fmsr). */
15246 do_vfp_nsyn_opcode ("fmsr");
15247 break;
15248
15249 /* The encoders for the fmrrs and fmsrr instructions expect three operands
15250 (one of which is a list), but we have parsed four. Do some fiddling to
15251 make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2
15252 expect. */
15253 case NS_RRFF: /* case 14 (fmrrs). */
15254 constraint (inst.operands[3].reg != inst.operands[2].reg + 1,
15255 _("VFP registers must be adjacent"));
15256 inst.operands[2].imm = 2;
15257 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15258 do_vfp_nsyn_opcode ("fmrrs");
15259 break;
15260
15261 case NS_FFRR: /* case 15 (fmsrr). */
15262 constraint (inst.operands[1].reg != inst.operands[0].reg + 1,
15263 _("VFP registers must be adjacent"));
15264 inst.operands[1] = inst.operands[2];
15265 inst.operands[2] = inst.operands[3];
15266 inst.operands[0].imm = 2;
15267 memset (&inst.operands[3], '\0', sizeof (inst.operands[3]));
15268 do_vfp_nsyn_opcode ("fmsrr");
15269 break;
15270
15271 default:
15272 abort ();
15273 }
15274 }
15275
15276 static void
15277 do_neon_rshift_round_imm (void)
15278 {
15279 enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL);
15280 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY);
15281 int imm = inst.operands[2].imm;
15282
15283 /* imm == 0 case is encoded as VMOV for V{R}SHR. */
15284 if (imm == 0)
15285 {
15286 inst.operands[2].present = 0;
15287 do_neon_mov ();
15288 return;
15289 }
15290
15291 constraint (imm < 1 || (unsigned)imm > et.size,
15292 _("immediate out of range for shift"));
15293 neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et,
15294 et.size - imm);
15295 }
15296
15297 static void
15298 do_neon_movl (void)
15299 {
15300 struct neon_type_el et = neon_check_type (2, NS_QD,
15301 N_EQK | N_DBL, N_SU_32 | N_KEY);
15302 unsigned sizebits = et.size >> 3;
15303 inst.instruction |= sizebits << 19;
15304 neon_two_same (0, et.type == NT_unsigned, -1);
15305 }
15306
15307 static void
15308 do_neon_trn (void)
15309 {
15310 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15311 struct neon_type_el et = neon_check_type (2, rs,
15312 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15313 NEON_ENCODE (INTEGER, inst);
15314 neon_two_same (neon_quad (rs), 1, et.size);
15315 }
15316
15317 static void
15318 do_neon_zip_uzp (void)
15319 {
15320 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15321 struct neon_type_el et = neon_check_type (2, rs,
15322 N_EQK, N_8 | N_16 | N_32 | N_KEY);
15323 if (rs == NS_DD && et.size == 32)
15324 {
15325 /* Special case: encode as VTRN.32 <Dd>, <Dm>. */
15326 inst.instruction = N_MNEM_vtrn;
15327 do_neon_trn ();
15328 return;
15329 }
15330 neon_two_same (neon_quad (rs), 1, et.size);
15331 }
15332
15333 static void
15334 do_neon_sat_abs_neg (void)
15335 {
15336 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15337 struct neon_type_el et = neon_check_type (2, rs,
15338 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15339 neon_two_same (neon_quad (rs), 1, et.size);
15340 }
15341
15342 static void
15343 do_neon_pair_long (void)
15344 {
15345 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15346 struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY);
15347 /* Unsigned is encoded in OP field (bit 7) for these instruction. */
15348 inst.instruction |= (et.type == NT_unsigned) << 7;
15349 neon_two_same (neon_quad (rs), 1, et.size);
15350 }
15351
15352 static void
15353 do_neon_recip_est (void)
15354 {
15355 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15356 struct neon_type_el et = neon_check_type (2, rs,
15357 N_EQK | N_FLT, N_F32 | N_U32 | N_KEY);
15358 inst.instruction |= (et.type == NT_float) << 8;
15359 neon_two_same (neon_quad (rs), 1, et.size);
15360 }
15361
15362 static void
15363 do_neon_cls (void)
15364 {
15365 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15366 struct neon_type_el et = neon_check_type (2, rs,
15367 N_EQK, N_S8 | N_S16 | N_S32 | N_KEY);
15368 neon_two_same (neon_quad (rs), 1, et.size);
15369 }
15370
15371 static void
15372 do_neon_clz (void)
15373 {
15374 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15375 struct neon_type_el et = neon_check_type (2, rs,
15376 N_EQK, N_I8 | N_I16 | N_I32 | N_KEY);
15377 neon_two_same (neon_quad (rs), 1, et.size);
15378 }
15379
15380 static void
15381 do_neon_cnt (void)
15382 {
15383 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15384 struct neon_type_el et = neon_check_type (2, rs,
15385 N_EQK | N_INT, N_8 | N_KEY);
15386 neon_two_same (neon_quad (rs), 1, et.size);
15387 }
15388
15389 static void
15390 do_neon_swp (void)
15391 {
15392 enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL);
15393 neon_two_same (neon_quad (rs), 1, -1);
15394 }
15395
15396 static void
15397 do_neon_tbl_tbx (void)
15398 {
15399 unsigned listlenbits;
15400 neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY);
15401
15402 if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4)
15403 {
15404 first_error (_("bad list length for table lookup"));
15405 return;
15406 }
15407
15408 listlenbits = inst.operands[1].imm - 1;
15409 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15410 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15411 inst.instruction |= LOW4 (inst.operands[1].reg) << 16;
15412 inst.instruction |= HI1 (inst.operands[1].reg) << 7;
15413 inst.instruction |= LOW4 (inst.operands[2].reg);
15414 inst.instruction |= HI1 (inst.operands[2].reg) << 5;
15415 inst.instruction |= listlenbits << 8;
15416
15417 neon_dp_fixup (&inst);
15418 }
15419
15420 static void
15421 do_neon_ldm_stm (void)
15422 {
15423 /* P, U and L bits are part of bitmask. */
15424 int is_dbmode = (inst.instruction & (1 << 24)) != 0;
15425 unsigned offsetbits = inst.operands[1].imm * 2;
15426
15427 if (inst.operands[1].issingle)
15428 {
15429 do_vfp_nsyn_ldm_stm (is_dbmode);
15430 return;
15431 }
15432
15433 constraint (is_dbmode && !inst.operands[0].writeback,
15434 _("writeback (!) must be used for VLDMDB and VSTMDB"));
15435
15436 constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16,
15437 _("register list must contain at least 1 and at most 16 "
15438 "registers"));
15439
15440 inst.instruction |= inst.operands[0].reg << 16;
15441 inst.instruction |= inst.operands[0].writeback << 21;
15442 inst.instruction |= LOW4 (inst.operands[1].reg) << 12;
15443 inst.instruction |= HI1 (inst.operands[1].reg) << 22;
15444
15445 inst.instruction |= offsetbits;
15446
15447 do_vfp_cond_or_thumb ();
15448 }
15449
15450 static void
15451 do_neon_ldr_str (void)
15452 {
15453 int is_ldr = (inst.instruction & (1 << 20)) != 0;
15454
15455 /* Use of PC in vstr in ARM mode is deprecated in ARMv7.
15456 And is UNPREDICTABLE in thumb mode. */
15457 if (!is_ldr
15458 && inst.operands[1].reg == REG_PC
15459 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v7))
15460 {
15461 if (!thumb_mode && warn_on_deprecated)
15462 as_warn (_("Use of PC here is deprecated"));
15463 else
15464 inst.error = _("Use of PC here is UNPREDICTABLE");
15465 }
15466
15467 if (inst.operands[0].issingle)
15468 {
15469 if (is_ldr)
15470 do_vfp_nsyn_opcode ("flds");
15471 else
15472 do_vfp_nsyn_opcode ("fsts");
15473 }
15474 else
15475 {
15476 if (is_ldr)
15477 do_vfp_nsyn_opcode ("fldd");
15478 else
15479 do_vfp_nsyn_opcode ("fstd");
15480 }
15481 }
15482
15483 /* "interleave" version also handles non-interleaving register VLD1/VST1
15484 instructions. */
15485
15486 static void
15487 do_neon_ld_st_interleave (void)
15488 {
15489 struct neon_type_el et = neon_check_type (1, NS_NULL,
15490 N_8 | N_16 | N_32 | N_64);
15491 unsigned alignbits = 0;
15492 unsigned idx;
15493 /* The bits in this table go:
15494 0: register stride of one (0) or two (1)
15495 1,2: register list length, minus one (1, 2, 3, 4).
15496 3,4: <n> in instruction type, minus one (VLD<n> / VST<n>).
15497 We use -1 for invalid entries. */
15498 const int typetable[] =
15499 {
15500 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */
15501 -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */
15502 -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */
15503 -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */
15504 };
15505 int typebits;
15506
15507 if (et.type == NT_invtype)
15508 return;
15509
15510 if (inst.operands[1].immisalign)
15511 switch (inst.operands[1].imm >> 8)
15512 {
15513 case 64: alignbits = 1; break;
15514 case 128:
15515 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2
15516 && NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15517 goto bad_alignment;
15518 alignbits = 2;
15519 break;
15520 case 256:
15521 if (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4)
15522 goto bad_alignment;
15523 alignbits = 3;
15524 break;
15525 default:
15526 bad_alignment:
15527 first_error (_("bad alignment"));
15528 return;
15529 }
15530
15531 inst.instruction |= alignbits << 4;
15532 inst.instruction |= neon_logbits (et.size) << 6;
15533
15534 /* Bits [4:6] of the immediate in a list specifier encode register stride
15535 (minus 1) in bit 4, and list length in bits [5:6]. We put the <n> of
15536 VLD<n>/VST<n> in bits [9:8] of the initial bitmask. Suck it out here, look
15537 up the right value for "type" in a table based on this value and the given
15538 list style, then stick it back. */
15539 idx = ((inst.operands[0].imm >> 4) & 7)
15540 | (((inst.instruction >> 8) & 3) << 3);
15541
15542 typebits = typetable[idx];
15543
15544 constraint (typebits == -1, _("bad list type for instruction"));
15545
15546 inst.instruction &= ~0xf00;
15547 inst.instruction |= typebits << 8;
15548 }
15549
15550 /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup.
15551 *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0
15552 otherwise. The variable arguments are a list of pairs of legal (size, align)
15553 values, terminated with -1. */
15554
15555 static int
15556 neon_alignment_bit (int size, int align, int *do_align, ...)
15557 {
15558 va_list ap;
15559 int result = FAIL, thissize, thisalign;
15560
15561 if (!inst.operands[1].immisalign)
15562 {
15563 *do_align = 0;
15564 return SUCCESS;
15565 }
15566
15567 va_start (ap, do_align);
15568
15569 do
15570 {
15571 thissize = va_arg (ap, int);
15572 if (thissize == -1)
15573 break;
15574 thisalign = va_arg (ap, int);
15575
15576 if (size == thissize && align == thisalign)
15577 result = SUCCESS;
15578 }
15579 while (result != SUCCESS);
15580
15581 va_end (ap);
15582
15583 if (result == SUCCESS)
15584 *do_align = 1;
15585 else
15586 first_error (_("unsupported alignment for instruction"));
15587
15588 return result;
15589 }
15590
15591 static void
15592 do_neon_ld_st_lane (void)
15593 {
15594 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15595 int align_good, do_align = 0;
15596 int logsize = neon_logbits (et.size);
15597 int align = inst.operands[1].imm >> 8;
15598 int n = (inst.instruction >> 8) & 3;
15599 int max_el = 64 / et.size;
15600
15601 if (et.type == NT_invtype)
15602 return;
15603
15604 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1,
15605 _("bad list length"));
15606 constraint (NEON_LANE (inst.operands[0].imm) >= max_el,
15607 _("scalar index out of range"));
15608 constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2
15609 && et.size == 8,
15610 _("stride of 2 unavailable when element size is 8"));
15611
15612 switch (n)
15613 {
15614 case 0: /* VLD1 / VST1. */
15615 align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16,
15616 32, 32, -1);
15617 if (align_good == FAIL)
15618 return;
15619 if (do_align)
15620 {
15621 unsigned alignbits = 0;
15622 switch (et.size)
15623 {
15624 case 16: alignbits = 0x1; break;
15625 case 32: alignbits = 0x3; break;
15626 default: ;
15627 }
15628 inst.instruction |= alignbits << 4;
15629 }
15630 break;
15631
15632 case 1: /* VLD2 / VST2. */
15633 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32,
15634 32, 64, -1);
15635 if (align_good == FAIL)
15636 return;
15637 if (do_align)
15638 inst.instruction |= 1 << 4;
15639 break;
15640
15641 case 2: /* VLD3 / VST3. */
15642 constraint (inst.operands[1].immisalign,
15643 _("can't use alignment with this instruction"));
15644 break;
15645
15646 case 3: /* VLD4 / VST4. */
15647 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15648 16, 64, 32, 64, 32, 128, -1);
15649 if (align_good == FAIL)
15650 return;
15651 if (do_align)
15652 {
15653 unsigned alignbits = 0;
15654 switch (et.size)
15655 {
15656 case 8: alignbits = 0x1; break;
15657 case 16: alignbits = 0x1; break;
15658 case 32: alignbits = (align == 64) ? 0x1 : 0x2; break;
15659 default: ;
15660 }
15661 inst.instruction |= alignbits << 4;
15662 }
15663 break;
15664
15665 default: ;
15666 }
15667
15668 /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */
15669 if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15670 inst.instruction |= 1 << (4 + logsize);
15671
15672 inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5);
15673 inst.instruction |= logsize << 10;
15674 }
15675
15676 /* Encode single n-element structure to all lanes VLD<n> instructions. */
15677
15678 static void
15679 do_neon_ld_dup (void)
15680 {
15681 struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32);
15682 int align_good, do_align = 0;
15683
15684 if (et.type == NT_invtype)
15685 return;
15686
15687 switch ((inst.instruction >> 8) & 3)
15688 {
15689 case 0: /* VLD1. */
15690 gas_assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2);
15691 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15692 &do_align, 16, 16, 32, 32, -1);
15693 if (align_good == FAIL)
15694 return;
15695 switch (NEON_REGLIST_LENGTH (inst.operands[0].imm))
15696 {
15697 case 1: break;
15698 case 2: inst.instruction |= 1 << 5; break;
15699 default: first_error (_("bad list length")); return;
15700 }
15701 inst.instruction |= neon_logbits (et.size) << 6;
15702 break;
15703
15704 case 1: /* VLD2. */
15705 align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8,
15706 &do_align, 8, 16, 16, 32, 32, 64, -1);
15707 if (align_good == FAIL)
15708 return;
15709 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2,
15710 _("bad list length"));
15711 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15712 inst.instruction |= 1 << 5;
15713 inst.instruction |= neon_logbits (et.size) << 6;
15714 break;
15715
15716 case 2: /* VLD3. */
15717 constraint (inst.operands[1].immisalign,
15718 _("can't use alignment with this instruction"));
15719 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3,
15720 _("bad list length"));
15721 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15722 inst.instruction |= 1 << 5;
15723 inst.instruction |= neon_logbits (et.size) << 6;
15724 break;
15725
15726 case 3: /* VLD4. */
15727 {
15728 int align = inst.operands[1].imm >> 8;
15729 align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32,
15730 16, 64, 32, 64, 32, 128, -1);
15731 if (align_good == FAIL)
15732 return;
15733 constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4,
15734 _("bad list length"));
15735 if (NEON_REG_STRIDE (inst.operands[0].imm) == 2)
15736 inst.instruction |= 1 << 5;
15737 if (et.size == 32 && align == 128)
15738 inst.instruction |= 0x3 << 6;
15739 else
15740 inst.instruction |= neon_logbits (et.size) << 6;
15741 }
15742 break;
15743
15744 default: ;
15745 }
15746
15747 inst.instruction |= do_align << 4;
15748 }
15749
15750 /* Disambiguate VLD<n> and VST<n> instructions, and fill in common bits (those
15751 apart from bits [11:4]. */
15752
15753 static void
15754 do_neon_ldx_stx (void)
15755 {
15756 if (inst.operands[1].isreg)
15757 constraint (inst.operands[1].reg == REG_PC, BAD_PC);
15758
15759 switch (NEON_LANE (inst.operands[0].imm))
15760 {
15761 case NEON_INTERLEAVE_LANES:
15762 NEON_ENCODE (INTERLV, inst);
15763 do_neon_ld_st_interleave ();
15764 break;
15765
15766 case NEON_ALL_LANES:
15767 NEON_ENCODE (DUP, inst);
15768 do_neon_ld_dup ();
15769 break;
15770
15771 default:
15772 NEON_ENCODE (LANE, inst);
15773 do_neon_ld_st_lane ();
15774 }
15775
15776 /* L bit comes from bit mask. */
15777 inst.instruction |= LOW4 (inst.operands[0].reg) << 12;
15778 inst.instruction |= HI1 (inst.operands[0].reg) << 22;
15779 inst.instruction |= inst.operands[1].reg << 16;
15780
15781 if (inst.operands[1].postind)
15782 {
15783 int postreg = inst.operands[1].imm & 0xf;
15784 constraint (!inst.operands[1].immisreg,
15785 _("post-index must be a register"));
15786 constraint (postreg == 0xd || postreg == 0xf,
15787 _("bad register for post-index"));
15788 inst.instruction |= postreg;
15789 }
15790 else if (inst.operands[1].writeback)
15791 {
15792 inst.instruction |= 0xd;
15793 }
15794 else
15795 inst.instruction |= 0xf;
15796
15797 if (thumb_mode)
15798 inst.instruction |= 0xf9000000;
15799 else
15800 inst.instruction |= 0xf4000000;
15801 }
15802 \f
15803 /* Overall per-instruction processing. */
15804
15805 /* We need to be able to fix up arbitrary expressions in some statements.
15806 This is so that we can handle symbols that are an arbitrary distance from
15807 the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
15808 which returns part of an address in a form which will be valid for
15809 a data instruction. We do this by pushing the expression into a symbol
15810 in the expr_section, and creating a fix for that. */
15811
15812 static void
15813 fix_new_arm (fragS * frag,
15814 int where,
15815 short int size,
15816 expressionS * exp,
15817 int pc_rel,
15818 int reloc)
15819 {
15820 fixS * new_fix;
15821
15822 switch (exp->X_op)
15823 {
15824 case O_constant:
15825 if (pc_rel)
15826 {
15827 /* Create an absolute valued symbol, so we have something to
15828 refer to in the object file. Unfortunately for us, gas's
15829 generic expression parsing will already have folded out
15830 any use of .set foo/.type foo %function that may have
15831 been used to set type information of the target location,
15832 that's being specified symbolically. We have to presume
15833 the user knows what they are doing. */
15834 char name[16 + 8];
15835 symbolS *symbol;
15836
15837 sprintf (name, "*ABS*0x%lx", (unsigned long)exp->X_add_number);
15838
15839 symbol = symbol_find_or_make (name);
15840 S_SET_SEGMENT (symbol, absolute_section);
15841 symbol_set_frag (symbol, &zero_address_frag);
15842 S_SET_VALUE (symbol, exp->X_add_number);
15843 exp->X_op = O_symbol;
15844 exp->X_add_symbol = symbol;
15845 exp->X_add_number = 0;
15846 }
15847 /* FALLTHROUGH */
15848 case O_symbol:
15849 case O_add:
15850 case O_subtract:
15851 new_fix = fix_new_exp (frag, where, size, exp, pc_rel,
15852 (enum bfd_reloc_code_real) reloc);
15853 break;
15854
15855 default:
15856 new_fix = (fixS *) fix_new (frag, where, size, make_expr_symbol (exp), 0,
15857 pc_rel, (enum bfd_reloc_code_real) reloc);
15858 break;
15859 }
15860
15861 /* Mark whether the fix is to a THUMB instruction, or an ARM
15862 instruction. */
15863 new_fix->tc_fix_data = thumb_mode;
15864 }
15865
15866 /* Create a frg for an instruction requiring relaxation. */
15867 static void
15868 output_relax_insn (void)
15869 {
15870 char * to;
15871 symbolS *sym;
15872 int offset;
15873
15874 /* The size of the instruction is unknown, so tie the debug info to the
15875 start of the instruction. */
15876 dwarf2_emit_insn (0);
15877
15878 switch (inst.reloc.exp.X_op)
15879 {
15880 case O_symbol:
15881 sym = inst.reloc.exp.X_add_symbol;
15882 offset = inst.reloc.exp.X_add_number;
15883 break;
15884 case O_constant:
15885 sym = NULL;
15886 offset = inst.reloc.exp.X_add_number;
15887 break;
15888 default:
15889 sym = make_expr_symbol (&inst.reloc.exp);
15890 offset = 0;
15891 break;
15892 }
15893 to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE,
15894 inst.relax, sym, offset, NULL/*offset, opcode*/);
15895 md_number_to_chars (to, inst.instruction, THUMB_SIZE);
15896 }
15897
15898 /* Write a 32-bit thumb instruction to buf. */
15899 static void
15900 put_thumb32_insn (char * buf, unsigned long insn)
15901 {
15902 md_number_to_chars (buf, insn >> 16, THUMB_SIZE);
15903 md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE);
15904 }
15905
15906 static void
15907 output_inst (const char * str)
15908 {
15909 char * to = NULL;
15910
15911 if (inst.error)
15912 {
15913 as_bad ("%s -- `%s'", inst.error, str);
15914 return;
15915 }
15916 if (inst.relax)
15917 {
15918 output_relax_insn ();
15919 return;
15920 }
15921 if (inst.size == 0)
15922 return;
15923
15924 to = frag_more (inst.size);
15925 /* PR 9814: Record the thumb mode into the current frag so that we know
15926 what type of NOP padding to use, if necessary. We override any previous
15927 setting so that if the mode has changed then the NOPS that we use will
15928 match the encoding of the last instruction in the frag. */
15929 frag_now->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
15930
15931 if (thumb_mode && (inst.size > THUMB_SIZE))
15932 {
15933 gas_assert (inst.size == (2 * THUMB_SIZE));
15934 put_thumb32_insn (to, inst.instruction);
15935 }
15936 else if (inst.size > INSN_SIZE)
15937 {
15938 gas_assert (inst.size == (2 * INSN_SIZE));
15939 md_number_to_chars (to, inst.instruction, INSN_SIZE);
15940 md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
15941 }
15942 else
15943 md_number_to_chars (to, inst.instruction, inst.size);
15944
15945 if (inst.reloc.type != BFD_RELOC_UNUSED)
15946 fix_new_arm (frag_now, to - frag_now->fr_literal,
15947 inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
15948 inst.reloc.type);
15949
15950 dwarf2_emit_insn (inst.size);
15951 }
15952
15953 static char *
15954 output_it_inst (int cond, int mask, char * to)
15955 {
15956 unsigned long instruction = 0xbf00;
15957
15958 mask &= 0xf;
15959 instruction |= mask;
15960 instruction |= cond << 4;
15961
15962 if (to == NULL)
15963 {
15964 to = frag_more (2);
15965 #ifdef OBJ_ELF
15966 dwarf2_emit_insn (2);
15967 #endif
15968 }
15969
15970 md_number_to_chars (to, instruction, 2);
15971
15972 return to;
15973 }
15974
15975 /* Tag values used in struct asm_opcode's tag field. */
15976 enum opcode_tag
15977 {
15978 OT_unconditional, /* Instruction cannot be conditionalized.
15979 The ARM condition field is still 0xE. */
15980 OT_unconditionalF, /* Instruction cannot be conditionalized
15981 and carries 0xF in its ARM condition field. */
15982 OT_csuffix, /* Instruction takes a conditional suffix. */
15983 OT_csuffixF, /* Some forms of the instruction take a conditional
15984 suffix, others place 0xF where the condition field
15985 would be. */
15986 OT_cinfix3, /* Instruction takes a conditional infix,
15987 beginning at character index 3. (In
15988 unified mode, it becomes a suffix.) */
15989 OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for
15990 tsts, cmps, cmns, and teqs. */
15991 OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at
15992 character index 3, even in unified mode. Used for
15993 legacy instructions where suffix and infix forms
15994 may be ambiguous. */
15995 OT_csuf_or_in3, /* Instruction takes either a conditional
15996 suffix or an infix at character index 3. */
15997 OT_odd_infix_unc, /* This is the unconditional variant of an
15998 instruction that takes a conditional infix
15999 at an unusual position. In unified mode,
16000 this variant will accept a suffix. */
16001 OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0
16002 are the conditional variants of instructions that
16003 take conditional infixes in unusual positions.
16004 The infix appears at character index
16005 (tag - OT_odd_infix_0). These are not accepted
16006 in unified mode. */
16007 };
16008
16009 /* Subroutine of md_assemble, responsible for looking up the primary
16010 opcode from the mnemonic the user wrote. STR points to the
16011 beginning of the mnemonic.
16012
16013 This is not simply a hash table lookup, because of conditional
16014 variants. Most instructions have conditional variants, which are
16015 expressed with a _conditional affix_ to the mnemonic. If we were
16016 to encode each conditional variant as a literal string in the opcode
16017 table, it would have approximately 20,000 entries.
16018
16019 Most mnemonics take this affix as a suffix, and in unified syntax,
16020 'most' is upgraded to 'all'. However, in the divided syntax, some
16021 instructions take the affix as an infix, notably the s-variants of
16022 the arithmetic instructions. Of those instructions, all but six
16023 have the infix appear after the third character of the mnemonic.
16024
16025 Accordingly, the algorithm for looking up primary opcodes given
16026 an identifier is:
16027
16028 1. Look up the identifier in the opcode table.
16029 If we find a match, go to step U.
16030
16031 2. Look up the last two characters of the identifier in the
16032 conditions table. If we find a match, look up the first N-2
16033 characters of the identifier in the opcode table. If we
16034 find a match, go to step CE.
16035
16036 3. Look up the fourth and fifth characters of the identifier in
16037 the conditions table. If we find a match, extract those
16038 characters from the identifier, and look up the remaining
16039 characters in the opcode table. If we find a match, go
16040 to step CM.
16041
16042 4. Fail.
16043
16044 U. Examine the tag field of the opcode structure, in case this is
16045 one of the six instructions with its conditional infix in an
16046 unusual place. If it is, the tag tells us where to find the
16047 infix; look it up in the conditions table and set inst.cond
16048 accordingly. Otherwise, this is an unconditional instruction.
16049 Again set inst.cond accordingly. Return the opcode structure.
16050
16051 CE. Examine the tag field to make sure this is an instruction that
16052 should receive a conditional suffix. If it is not, fail.
16053 Otherwise, set inst.cond from the suffix we already looked up,
16054 and return the opcode structure.
16055
16056 CM. Examine the tag field to make sure this is an instruction that
16057 should receive a conditional infix after the third character.
16058 If it is not, fail. Otherwise, undo the edits to the current
16059 line of input and proceed as for case CE. */
16060
16061 static const struct asm_opcode *
16062 opcode_lookup (char **str)
16063 {
16064 char *end, *base;
16065 char *affix;
16066 const struct asm_opcode *opcode;
16067 const struct asm_cond *cond;
16068 char save[2];
16069
16070 /* Scan up to the end of the mnemonic, which must end in white space,
16071 '.' (in unified mode, or for Neon/VFP instructions), or end of string. */
16072 for (base = end = *str; *end != '\0'; end++)
16073 if (*end == ' ' || *end == '.')
16074 break;
16075
16076 if (end == base)
16077 return NULL;
16078
16079 /* Handle a possible width suffix and/or Neon type suffix. */
16080 if (end[0] == '.')
16081 {
16082 int offset = 2;
16083
16084 /* The .w and .n suffixes are only valid if the unified syntax is in
16085 use. */
16086 if (unified_syntax && end[1] == 'w')
16087 inst.size_req = 4;
16088 else if (unified_syntax && end[1] == 'n')
16089 inst.size_req = 2;
16090 else
16091 offset = 0;
16092
16093 inst.vectype.elems = 0;
16094
16095 *str = end + offset;
16096
16097 if (end[offset] == '.')
16098 {
16099 /* See if we have a Neon type suffix (possible in either unified or
16100 non-unified ARM syntax mode). */
16101 if (parse_neon_type (&inst.vectype, str) == FAIL)
16102 return NULL;
16103 }
16104 else if (end[offset] != '\0' && end[offset] != ' ')
16105 return NULL;
16106 }
16107 else
16108 *str = end;
16109
16110 /* Look for unaffixed or special-case affixed mnemonic. */
16111 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16112 end - base);
16113 if (opcode)
16114 {
16115 /* step U */
16116 if (opcode->tag < OT_odd_infix_0)
16117 {
16118 inst.cond = COND_ALWAYS;
16119 return opcode;
16120 }
16121
16122 if (warn_on_deprecated && unified_syntax)
16123 as_warn (_("conditional infixes are deprecated in unified syntax"));
16124 affix = base + (opcode->tag - OT_odd_infix_0);
16125 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16126 gas_assert (cond);
16127
16128 inst.cond = cond->value;
16129 return opcode;
16130 }
16131
16132 /* Cannot have a conditional suffix on a mnemonic of less than two
16133 characters. */
16134 if (end - base < 3)
16135 return NULL;
16136
16137 /* Look for suffixed mnemonic. */
16138 affix = end - 2;
16139 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16140 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16141 affix - base);
16142 if (opcode && cond)
16143 {
16144 /* step CE */
16145 switch (opcode->tag)
16146 {
16147 case OT_cinfix3_legacy:
16148 /* Ignore conditional suffixes matched on infix only mnemonics. */
16149 break;
16150
16151 case OT_cinfix3:
16152 case OT_cinfix3_deprecated:
16153 case OT_odd_infix_unc:
16154 if (!unified_syntax)
16155 return 0;
16156 /* else fall through */
16157
16158 case OT_csuffix:
16159 case OT_csuffixF:
16160 case OT_csuf_or_in3:
16161 inst.cond = cond->value;
16162 return opcode;
16163
16164 case OT_unconditional:
16165 case OT_unconditionalF:
16166 if (thumb_mode)
16167 inst.cond = cond->value;
16168 else
16169 {
16170 /* Delayed diagnostic. */
16171 inst.error = BAD_COND;
16172 inst.cond = COND_ALWAYS;
16173 }
16174 return opcode;
16175
16176 default:
16177 return NULL;
16178 }
16179 }
16180
16181 /* Cannot have a usual-position infix on a mnemonic of less than
16182 six characters (five would be a suffix). */
16183 if (end - base < 6)
16184 return NULL;
16185
16186 /* Look for infixed mnemonic in the usual position. */
16187 affix = base + 3;
16188 cond = (const struct asm_cond *) hash_find_n (arm_cond_hsh, affix, 2);
16189 if (!cond)
16190 return NULL;
16191
16192 memcpy (save, affix, 2);
16193 memmove (affix, affix + 2, (end - affix) - 2);
16194 opcode = (const struct asm_opcode *) hash_find_n (arm_ops_hsh, base,
16195 (end - base) - 2);
16196 memmove (affix + 2, affix, (end - affix) - 2);
16197 memcpy (affix, save, 2);
16198
16199 if (opcode
16200 && (opcode->tag == OT_cinfix3
16201 || opcode->tag == OT_cinfix3_deprecated
16202 || opcode->tag == OT_csuf_or_in3
16203 || opcode->tag == OT_cinfix3_legacy))
16204 {
16205 /* Step CM. */
16206 if (warn_on_deprecated && unified_syntax
16207 && (opcode->tag == OT_cinfix3
16208 || opcode->tag == OT_cinfix3_deprecated))
16209 as_warn (_("conditional infixes are deprecated in unified syntax"));
16210
16211 inst.cond = cond->value;
16212 return opcode;
16213 }
16214
16215 return NULL;
16216 }
16217
16218 /* This function generates an initial IT instruction, leaving its block
16219 virtually open for the new instructions. Eventually,
16220 the mask will be updated by now_it_add_mask () each time
16221 a new instruction needs to be included in the IT block.
16222 Finally, the block is closed with close_automatic_it_block ().
16223 The block closure can be requested either from md_assemble (),
16224 a tencode (), or due to a label hook. */
16225
16226 static void
16227 new_automatic_it_block (int cond)
16228 {
16229 now_it.state = AUTOMATIC_IT_BLOCK;
16230 now_it.mask = 0x18;
16231 now_it.cc = cond;
16232 now_it.block_length = 1;
16233 mapping_state (MAP_THUMB);
16234 now_it.insn = output_it_inst (cond, now_it.mask, NULL);
16235 now_it.warn_deprecated = FALSE;
16236 now_it.insn_cond = TRUE;
16237 }
16238
16239 /* Close an automatic IT block.
16240 See comments in new_automatic_it_block (). */
16241
16242 static void
16243 close_automatic_it_block (void)
16244 {
16245 now_it.mask = 0x10;
16246 now_it.block_length = 0;
16247 }
16248
16249 /* Update the mask of the current automatically-generated IT
16250 instruction. See comments in new_automatic_it_block (). */
16251
16252 static void
16253 now_it_add_mask (int cond)
16254 {
16255 #define CLEAR_BIT(value, nbit) ((value) & ~(1 << (nbit)))
16256 #define SET_BIT_VALUE(value, bitvalue, nbit) (CLEAR_BIT (value, nbit) \
16257 | ((bitvalue) << (nbit)))
16258 const int resulting_bit = (cond & 1);
16259
16260 now_it.mask &= 0xf;
16261 now_it.mask = SET_BIT_VALUE (now_it.mask,
16262 resulting_bit,
16263 (5 - now_it.block_length));
16264 now_it.mask = SET_BIT_VALUE (now_it.mask,
16265 1,
16266 ((5 - now_it.block_length) - 1) );
16267 output_it_inst (now_it.cc, now_it.mask, now_it.insn);
16268
16269 #undef CLEAR_BIT
16270 #undef SET_BIT_VALUE
16271 }
16272
16273 /* The IT blocks handling machinery is accessed through the these functions:
16274 it_fsm_pre_encode () from md_assemble ()
16275 set_it_insn_type () optional, from the tencode functions
16276 set_it_insn_type_last () ditto
16277 in_it_block () ditto
16278 it_fsm_post_encode () from md_assemble ()
16279 force_automatic_it_block_close () from label habdling functions
16280
16281 Rationale:
16282 1) md_assemble () calls it_fsm_pre_encode () before calling tencode (),
16283 initializing the IT insn type with a generic initial value depending
16284 on the inst.condition.
16285 2) During the tencode function, two things may happen:
16286 a) The tencode function overrides the IT insn type by
16287 calling either set_it_insn_type (type) or set_it_insn_type_last ().
16288 b) The tencode function queries the IT block state by
16289 calling in_it_block () (i.e. to determine narrow/not narrow mode).
16290
16291 Both set_it_insn_type and in_it_block run the internal FSM state
16292 handling function (handle_it_state), because: a) setting the IT insn
16293 type may incur in an invalid state (exiting the function),
16294 and b) querying the state requires the FSM to be updated.
16295 Specifically we want to avoid creating an IT block for conditional
16296 branches, so it_fsm_pre_encode is actually a guess and we can't
16297 determine whether an IT block is required until the tencode () routine
16298 has decided what type of instruction this actually it.
16299 Because of this, if set_it_insn_type and in_it_block have to be used,
16300 set_it_insn_type has to be called first.
16301
16302 set_it_insn_type_last () is a wrapper of set_it_insn_type (type), that
16303 determines the insn IT type depending on the inst.cond code.
16304 When a tencode () routine encodes an instruction that can be
16305 either outside an IT block, or, in the case of being inside, has to be
16306 the last one, set_it_insn_type_last () will determine the proper
16307 IT instruction type based on the inst.cond code. Otherwise,
16308 set_it_insn_type can be called for overriding that logic or
16309 for covering other cases.
16310
16311 Calling handle_it_state () may not transition the IT block state to
16312 OUTSIDE_IT_BLOCK immediatelly, since the (current) state could be
16313 still queried. Instead, if the FSM determines that the state should
16314 be transitioned to OUTSIDE_IT_BLOCK, a flag is marked to be closed
16315 after the tencode () function: that's what it_fsm_post_encode () does.
16316
16317 Since in_it_block () calls the state handling function to get an
16318 updated state, an error may occur (due to invalid insns combination).
16319 In that case, inst.error is set.
16320 Therefore, inst.error has to be checked after the execution of
16321 the tencode () routine.
16322
16323 3) Back in md_assemble(), it_fsm_post_encode () is called to commit
16324 any pending state change (if any) that didn't take place in
16325 handle_it_state () as explained above. */
16326
16327 static void
16328 it_fsm_pre_encode (void)
16329 {
16330 if (inst.cond != COND_ALWAYS)
16331 inst.it_insn_type = INSIDE_IT_INSN;
16332 else
16333 inst.it_insn_type = OUTSIDE_IT_INSN;
16334
16335 now_it.state_handled = 0;
16336 }
16337
16338 /* IT state FSM handling function. */
16339
16340 static int
16341 handle_it_state (void)
16342 {
16343 now_it.state_handled = 1;
16344 now_it.insn_cond = FALSE;
16345
16346 switch (now_it.state)
16347 {
16348 case OUTSIDE_IT_BLOCK:
16349 switch (inst.it_insn_type)
16350 {
16351 case OUTSIDE_IT_INSN:
16352 break;
16353
16354 case INSIDE_IT_INSN:
16355 case INSIDE_IT_LAST_INSN:
16356 if (thumb_mode == 0)
16357 {
16358 if (unified_syntax
16359 && !(implicit_it_mode & IMPLICIT_IT_MODE_ARM))
16360 as_tsktsk (_("Warning: conditional outside an IT block"\
16361 " for Thumb."));
16362 }
16363 else
16364 {
16365 if ((implicit_it_mode & IMPLICIT_IT_MODE_THUMB)
16366 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2))
16367 {
16368 /* Automatically generate the IT instruction. */
16369 new_automatic_it_block (inst.cond);
16370 if (inst.it_insn_type == INSIDE_IT_LAST_INSN)
16371 close_automatic_it_block ();
16372 }
16373 else
16374 {
16375 inst.error = BAD_OUT_IT;
16376 return FAIL;
16377 }
16378 }
16379 break;
16380
16381 case IF_INSIDE_IT_LAST_INSN:
16382 case NEUTRAL_IT_INSN:
16383 break;
16384
16385 case IT_INSN:
16386 now_it.state = MANUAL_IT_BLOCK;
16387 now_it.block_length = 0;
16388 break;
16389 }
16390 break;
16391
16392 case AUTOMATIC_IT_BLOCK:
16393 /* Three things may happen now:
16394 a) We should increment current it block size;
16395 b) We should close current it block (closing insn or 4 insns);
16396 c) We should close current it block and start a new one (due
16397 to incompatible conditions or
16398 4 insns-length block reached). */
16399
16400 switch (inst.it_insn_type)
16401 {
16402 case OUTSIDE_IT_INSN:
16403 /* The closure of the block shall happen immediatelly,
16404 so any in_it_block () call reports the block as closed. */
16405 force_automatic_it_block_close ();
16406 break;
16407
16408 case INSIDE_IT_INSN:
16409 case INSIDE_IT_LAST_INSN:
16410 case IF_INSIDE_IT_LAST_INSN:
16411 now_it.block_length++;
16412
16413 if (now_it.block_length > 4
16414 || !now_it_compatible (inst.cond))
16415 {
16416 force_automatic_it_block_close ();
16417 if (inst.it_insn_type != IF_INSIDE_IT_LAST_INSN)
16418 new_automatic_it_block (inst.cond);
16419 }
16420 else
16421 {
16422 now_it.insn_cond = TRUE;
16423 now_it_add_mask (inst.cond);
16424 }
16425
16426 if (now_it.state == AUTOMATIC_IT_BLOCK
16427 && (inst.it_insn_type == INSIDE_IT_LAST_INSN
16428 || inst.it_insn_type == IF_INSIDE_IT_LAST_INSN))
16429 close_automatic_it_block ();
16430 break;
16431
16432 case NEUTRAL_IT_INSN:
16433 now_it.block_length++;
16434 now_it.insn_cond = TRUE;
16435
16436 if (now_it.block_length > 4)
16437 force_automatic_it_block_close ();
16438 else
16439 now_it_add_mask (now_it.cc & 1);
16440 break;
16441
16442 case IT_INSN:
16443 close_automatic_it_block ();
16444 now_it.state = MANUAL_IT_BLOCK;
16445 break;
16446 }
16447 break;
16448
16449 case MANUAL_IT_BLOCK:
16450 {
16451 /* Check conditional suffixes. */
16452 const int cond = now_it.cc ^ ((now_it.mask >> 4) & 1) ^ 1;
16453 int is_last;
16454 now_it.mask <<= 1;
16455 now_it.mask &= 0x1f;
16456 is_last = (now_it.mask == 0x10);
16457 now_it.insn_cond = TRUE;
16458
16459 switch (inst.it_insn_type)
16460 {
16461 case OUTSIDE_IT_INSN:
16462 inst.error = BAD_NOT_IT;
16463 return FAIL;
16464
16465 case INSIDE_IT_INSN:
16466 if (cond != inst.cond)
16467 {
16468 inst.error = BAD_IT_COND;
16469 return FAIL;
16470 }
16471 break;
16472
16473 case INSIDE_IT_LAST_INSN:
16474 case IF_INSIDE_IT_LAST_INSN:
16475 if (cond != inst.cond)
16476 {
16477 inst.error = BAD_IT_COND;
16478 return FAIL;
16479 }
16480 if (!is_last)
16481 {
16482 inst.error = BAD_BRANCH;
16483 return FAIL;
16484 }
16485 break;
16486
16487 case NEUTRAL_IT_INSN:
16488 /* The BKPT instruction is unconditional even in an IT block. */
16489 break;
16490
16491 case IT_INSN:
16492 inst.error = BAD_IT_IT;
16493 return FAIL;
16494 }
16495 }
16496 break;
16497 }
16498
16499 return SUCCESS;
16500 }
16501
16502 struct depr_insn_mask
16503 {
16504 unsigned long pattern;
16505 unsigned long mask;
16506 const char* description;
16507 };
16508
16509 /* List of 16-bit instruction patterns deprecated in an IT block in
16510 ARMv8. */
16511 static const struct depr_insn_mask depr_it_insns[] = {
16512 { 0xc000, 0xc000, N_("Short branches, Undefined, SVC, LDM/STM") },
16513 { 0xb000, 0xb000, N_("Miscellaneous 16-bit instructions") },
16514 { 0xa000, 0xb800, N_("ADR") },
16515 { 0x4800, 0xf800, N_("Literal loads") },
16516 { 0x4478, 0xf478, N_("Hi-register ADD, MOV, CMP, BX, BLX using pc") },
16517 { 0x4487, 0xfc87, N_("Hi-register ADD, MOV, CMP using pc") },
16518 { 0, 0, NULL }
16519 };
16520
16521 static void
16522 it_fsm_post_encode (void)
16523 {
16524 int is_last;
16525
16526 if (!now_it.state_handled)
16527 handle_it_state ();
16528
16529 if (now_it.insn_cond
16530 && !now_it.warn_deprecated
16531 && warn_on_deprecated
16532 && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v8))
16533 {
16534 if (inst.instruction >= 0x10000)
16535 {
16536 as_warn (_("it blocks containing wide Thumb instructions are "
16537 "deprecated in ARMv8"));
16538 now_it.warn_deprecated = TRUE;
16539 }
16540 else
16541 {
16542 const struct depr_insn_mask *p = depr_it_insns;
16543
16544 while (p->mask != 0)
16545 {
16546 if ((inst.instruction & p->mask) == p->pattern)
16547 {
16548 as_warn (_("it blocks containing 16-bit Thumb intsructions "
16549 "of the following class are deprecated in ARMv8: "
16550 "%s"), p->description);
16551 now_it.warn_deprecated = TRUE;
16552 break;
16553 }
16554
16555 ++p;
16556 }
16557 }
16558
16559 if (now_it.block_length > 1)
16560 {
16561 as_warn (_("it blocks of more than one conditional instruction are "
16562 "deprecated in ARMv8"));
16563 now_it.warn_deprecated = TRUE;
16564 }
16565 }
16566
16567 is_last = (now_it.mask == 0x10);
16568 if (is_last)
16569 {
16570 now_it.state = OUTSIDE_IT_BLOCK;
16571 now_it.mask = 0;
16572 }
16573 }
16574
16575 static void
16576 force_automatic_it_block_close (void)
16577 {
16578 if (now_it.state == AUTOMATIC_IT_BLOCK)
16579 {
16580 close_automatic_it_block ();
16581 now_it.state = OUTSIDE_IT_BLOCK;
16582 now_it.mask = 0;
16583 }
16584 }
16585
16586 static int
16587 in_it_block (void)
16588 {
16589 if (!now_it.state_handled)
16590 handle_it_state ();
16591
16592 return now_it.state != OUTSIDE_IT_BLOCK;
16593 }
16594
16595 void
16596 md_assemble (char *str)
16597 {
16598 char *p = str;
16599 const struct asm_opcode * opcode;
16600
16601 /* Align the previous label if needed. */
16602 if (last_label_seen != NULL)
16603 {
16604 symbol_set_frag (last_label_seen, frag_now);
16605 S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
16606 S_SET_SEGMENT (last_label_seen, now_seg);
16607 }
16608
16609 memset (&inst, '\0', sizeof (inst));
16610 inst.reloc.type = BFD_RELOC_UNUSED;
16611
16612 opcode = opcode_lookup (&p);
16613 if (!opcode)
16614 {
16615 /* It wasn't an instruction, but it might be a register alias of
16616 the form alias .req reg, or a Neon .dn/.qn directive. */
16617 if (! create_register_alias (str, p)
16618 && ! create_neon_reg_alias (str, p))
16619 as_bad (_("bad instruction `%s'"), str);
16620
16621 return;
16622 }
16623
16624 if (warn_on_deprecated && opcode->tag == OT_cinfix3_deprecated)
16625 as_warn (_("s suffix on comparison instruction is deprecated"));
16626
16627 /* The value which unconditional instructions should have in place of the
16628 condition field. */
16629 inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1;
16630
16631 if (thumb_mode)
16632 {
16633 arm_feature_set variant;
16634
16635 variant = cpu_variant;
16636 /* Only allow coprocessor instructions on Thumb-2 capable devices. */
16637 if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2))
16638 ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard);
16639 /* Check that this instruction is supported for this CPU. */
16640 if (!opcode->tvariant
16641 || (thumb_mode == 1
16642 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant)))
16643 {
16644 as_bad (_("selected processor does not support Thumb mode `%s'"), str);
16645 return;
16646 }
16647 if (inst.cond != COND_ALWAYS && !unified_syntax
16648 && opcode->tencode != do_t_branch)
16649 {
16650 as_bad (_("Thumb does not support conditional execution"));
16651 return;
16652 }
16653
16654 if (!ARM_CPU_HAS_FEATURE (variant, arm_ext_v6t2))
16655 {
16656 if (opcode->tencode != do_t_blx && opcode->tencode != do_t_branch23
16657 && !(ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_msr)
16658 || ARM_CPU_HAS_FEATURE(*opcode->tvariant, arm_ext_barrier)))
16659 {
16660 /* Two things are addressed here.
16661 1) Implicit require narrow instructions on Thumb-1.
16662 This avoids relaxation accidentally introducing Thumb-2
16663 instructions.
16664 2) Reject wide instructions in non Thumb-2 cores. */
16665 if (inst.size_req == 0)
16666 inst.size_req = 2;
16667 else if (inst.size_req == 4)
16668 {
16669 as_bad (_("selected processor does not support Thumb-2 mode `%s'"), str);
16670 return;
16671 }
16672 }
16673 }
16674
16675 inst.instruction = opcode->tvalue;
16676
16677 if (!parse_operands (p, opcode->operands, /*thumb=*/TRUE))
16678 {
16679 /* Prepare the it_insn_type for those encodings that don't set
16680 it. */
16681 it_fsm_pre_encode ();
16682
16683 opcode->tencode ();
16684
16685 it_fsm_post_encode ();
16686 }
16687
16688 if (!(inst.error || inst.relax))
16689 {
16690 gas_assert (inst.instruction < 0xe800 || inst.instruction > 0xffff);
16691 inst.size = (inst.instruction > 0xffff ? 4 : 2);
16692 if (inst.size_req && inst.size_req != inst.size)
16693 {
16694 as_bad (_("cannot honor width suffix -- `%s'"), str);
16695 return;
16696 }
16697 }
16698
16699 /* Something has gone badly wrong if we try to relax a fixed size
16700 instruction. */
16701 gas_assert (inst.size_req == 0 || !inst.relax);
16702
16703 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16704 *opcode->tvariant);
16705 /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly
16706 set those bits when Thumb-2 32-bit instructions are seen. ie.
16707 anything other than bl/blx and v6-M instructions.
16708 This is overly pessimistic for relaxable instructions. */
16709 if (((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800)
16710 || inst.relax)
16711 && !(ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_msr)
16712 || ARM_CPU_HAS_FEATURE (*opcode->tvariant, arm_ext_barrier)))
16713 ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used,
16714 arm_ext_v6t2);
16715
16716 check_neon_suffixes;
16717
16718 if (!inst.error)
16719 {
16720 mapping_state (MAP_THUMB);
16721 }
16722 }
16723 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
16724 {
16725 bfd_boolean is_bx;
16726
16727 /* bx is allowed on v5 cores, and sometimes on v4 cores. */
16728 is_bx = (opcode->aencode == do_bx);
16729
16730 /* Check that this instruction is supported for this CPU. */
16731 if (!(is_bx && fix_v4bx)
16732 && !(opcode->avariant &&
16733 ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)))
16734 {
16735 as_bad (_("selected processor does not support ARM mode `%s'"), str);
16736 return;
16737 }
16738 if (inst.size_req)
16739 {
16740 as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str);
16741 return;
16742 }
16743
16744 inst.instruction = opcode->avalue;
16745 if (opcode->tag == OT_unconditionalF)
16746 inst.instruction |= 0xF << 28;
16747 else
16748 inst.instruction |= inst.cond << 28;
16749 inst.size = INSN_SIZE;
16750 if (!parse_operands (p, opcode->operands, /*thumb=*/FALSE))
16751 {
16752 it_fsm_pre_encode ();
16753 opcode->aencode ();
16754 it_fsm_post_encode ();
16755 }
16756 /* Arm mode bx is marked as both v4T and v5 because it's still required
16757 on a hypothetical non-thumb v5 core. */
16758 if (is_bx)
16759 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t);
16760 else
16761 ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used,
16762 *opcode->avariant);
16763
16764 check_neon_suffixes;
16765
16766 if (!inst.error)
16767 {
16768 mapping_state (MAP_ARM);
16769 }
16770 }
16771 else
16772 {
16773 as_bad (_("attempt to use an ARM instruction on a Thumb-only processor "
16774 "-- `%s'"), str);
16775 return;
16776 }
16777 output_inst (str);
16778 }
16779
16780 static void
16781 check_it_blocks_finished (void)
16782 {
16783 #ifdef OBJ_ELF
16784 asection *sect;
16785
16786 for (sect = stdoutput->sections; sect != NULL; sect = sect->next)
16787 if (seg_info (sect)->tc_segment_info_data.current_it.state
16788 == MANUAL_IT_BLOCK)
16789 {
16790 as_warn (_("section '%s' finished with an open IT block."),
16791 sect->name);
16792 }
16793 #else
16794 if (now_it.state == MANUAL_IT_BLOCK)
16795 as_warn (_("file finished with an open IT block."));
16796 #endif
16797 }
16798
16799 /* Various frobbings of labels and their addresses. */
16800
16801 void
16802 arm_start_line_hook (void)
16803 {
16804 last_label_seen = NULL;
16805 }
16806
16807 void
16808 arm_frob_label (symbolS * sym)
16809 {
16810 last_label_seen = sym;
16811
16812 ARM_SET_THUMB (sym, thumb_mode);
16813
16814 #if defined OBJ_COFF || defined OBJ_ELF
16815 ARM_SET_INTERWORK (sym, support_interwork);
16816 #endif
16817
16818 force_automatic_it_block_close ();
16819
16820 /* Note - do not allow local symbols (.Lxxx) to be labelled
16821 as Thumb functions. This is because these labels, whilst
16822 they exist inside Thumb code, are not the entry points for
16823 possible ARM->Thumb calls. Also, these labels can be used
16824 as part of a computed goto or switch statement. eg gcc
16825 can generate code that looks like this:
16826
16827 ldr r2, [pc, .Laaa]
16828 lsl r3, r3, #2
16829 ldr r2, [r3, r2]
16830 mov pc, r2
16831
16832 .Lbbb: .word .Lxxx
16833 .Lccc: .word .Lyyy
16834 ..etc...
16835 .Laaa: .word Lbbb
16836
16837 The first instruction loads the address of the jump table.
16838 The second instruction converts a table index into a byte offset.
16839 The third instruction gets the jump address out of the table.
16840 The fourth instruction performs the jump.
16841
16842 If the address stored at .Laaa is that of a symbol which has the
16843 Thumb_Func bit set, then the linker will arrange for this address
16844 to have the bottom bit set, which in turn would mean that the
16845 address computation performed by the third instruction would end
16846 up with the bottom bit set. Since the ARM is capable of unaligned
16847 word loads, the instruction would then load the incorrect address
16848 out of the jump table, and chaos would ensue. */
16849 if (label_is_thumb_function_name
16850 && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
16851 && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
16852 {
16853 /* When the address of a Thumb function is taken the bottom
16854 bit of that address should be set. This will allow
16855 interworking between Arm and Thumb functions to work
16856 correctly. */
16857
16858 THUMB_SET_FUNC (sym, 1);
16859
16860 label_is_thumb_function_name = FALSE;
16861 }
16862
16863 dwarf2_emit_label (sym);
16864 }
16865
16866 bfd_boolean
16867 arm_data_in_code (void)
16868 {
16869 if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
16870 {
16871 *input_line_pointer = '/';
16872 input_line_pointer += 5;
16873 *input_line_pointer = 0;
16874 return TRUE;
16875 }
16876
16877 return FALSE;
16878 }
16879
16880 char *
16881 arm_canonicalize_symbol_name (char * name)
16882 {
16883 int len;
16884
16885 if (thumb_mode && (len = strlen (name)) > 5
16886 && streq (name + len - 5, "/data"))
16887 *(name + len - 5) = 0;
16888
16889 return name;
16890 }
16891 \f
16892 /* Table of all register names defined by default. The user can
16893 define additional names with .req. Note that all register names
16894 should appear in both upper and lowercase variants. Some registers
16895 also have mixed-case names. */
16896
16897 #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 }
16898 #define REGNUM(p,n,t) REGDEF(p##n, n, t)
16899 #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t)
16900 #define REGSET(p,t) \
16901 REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \
16902 REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \
16903 REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \
16904 REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t)
16905 #define REGSETH(p,t) \
16906 REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \
16907 REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \
16908 REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \
16909 REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t)
16910 #define REGSET2(p,t) \
16911 REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \
16912 REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \
16913 REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \
16914 REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t)
16915 #define SPLRBANK(base,bank,t) \
16916 REGDEF(lr_##bank, 768|((base+0)<<16), t), \
16917 REGDEF(sp_##bank, 768|((base+1)<<16), t), \
16918 REGDEF(spsr_##bank, 768|(base<<16)|SPSR_BIT, t), \
16919 REGDEF(LR_##bank, 768|((base+0)<<16), t), \
16920 REGDEF(SP_##bank, 768|((base+1)<<16), t), \
16921 REGDEF(SPSR_##bank, 768|(base<<16)|SPSR_BIT, t)
16922
16923 static const struct reg_entry reg_names[] =
16924 {
16925 /* ARM integer registers. */
16926 REGSET(r, RN), REGSET(R, RN),
16927
16928 /* ATPCS synonyms. */
16929 REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN),
16930 REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN),
16931 REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN),
16932
16933 REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN),
16934 REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN),
16935 REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN),
16936
16937 /* Well-known aliases. */
16938 REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN),
16939 REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN),
16940
16941 REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN),
16942 REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN),
16943
16944 /* Coprocessor numbers. */
16945 REGSET(p, CP), REGSET(P, CP),
16946
16947 /* Coprocessor register numbers. The "cr" variants are for backward
16948 compatibility. */
16949 REGSET(c, CN), REGSET(C, CN),
16950 REGSET(cr, CN), REGSET(CR, CN),
16951
16952 /* ARM banked registers. */
16953 REGDEF(R8_usr,512|(0<<16),RNB), REGDEF(r8_usr,512|(0<<16),RNB),
16954 REGDEF(R9_usr,512|(1<<16),RNB), REGDEF(r9_usr,512|(1<<16),RNB),
16955 REGDEF(R10_usr,512|(2<<16),RNB), REGDEF(r10_usr,512|(2<<16),RNB),
16956 REGDEF(R11_usr,512|(3<<16),RNB), REGDEF(r11_usr,512|(3<<16),RNB),
16957 REGDEF(R12_usr,512|(4<<16),RNB), REGDEF(r12_usr,512|(4<<16),RNB),
16958 REGDEF(SP_usr,512|(5<<16),RNB), REGDEF(sp_usr,512|(5<<16),RNB),
16959 REGDEF(LR_usr,512|(6<<16),RNB), REGDEF(lr_usr,512|(6<<16),RNB),
16960
16961 REGDEF(R8_fiq,512|(8<<16),RNB), REGDEF(r8_fiq,512|(8<<16),RNB),
16962 REGDEF(R9_fiq,512|(9<<16),RNB), REGDEF(r9_fiq,512|(9<<16),RNB),
16963 REGDEF(R10_fiq,512|(10<<16),RNB), REGDEF(r10_fiq,512|(10<<16),RNB),
16964 REGDEF(R11_fiq,512|(11<<16),RNB), REGDEF(r11_fiq,512|(11<<16),RNB),
16965 REGDEF(R12_fiq,512|(12<<16),RNB), REGDEF(r12_fiq,512|(12<<16),RNB),
16966 REGDEF(SP_fiq,512|(13<<16),RNB), REGDEF(SP_fiq,512|(13<<16),RNB),
16967 REGDEF(LR_fiq,512|(14<<16),RNB), REGDEF(lr_fiq,512|(14<<16),RNB),
16968 REGDEF(SPSR_fiq,512|(14<<16)|SPSR_BIT,RNB), REGDEF(spsr_fiq,512|(14<<16)|SPSR_BIT,RNB),
16969
16970 SPLRBANK(0,IRQ,RNB), SPLRBANK(0,irq,RNB),
16971 SPLRBANK(2,SVC,RNB), SPLRBANK(2,svc,RNB),
16972 SPLRBANK(4,ABT,RNB), SPLRBANK(4,abt,RNB),
16973 SPLRBANK(6,UND,RNB), SPLRBANK(6,und,RNB),
16974 SPLRBANK(12,MON,RNB), SPLRBANK(12,mon,RNB),
16975 REGDEF(elr_hyp,768|(14<<16),RNB), REGDEF(ELR_hyp,768|(14<<16),RNB),
16976 REGDEF(sp_hyp,768|(15<<16),RNB), REGDEF(SP_hyp,768|(15<<16),RNB),
16977 REGDEF(spsr_hyp,768|(14<<16)|SPSR_BIT,RNB),
16978 REGDEF(SPSR_hyp,768|(14<<16)|SPSR_BIT,RNB),
16979
16980 /* FPA registers. */
16981 REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN),
16982 REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN),
16983
16984 REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN),
16985 REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN),
16986
16987 /* VFP SP registers. */
16988 REGSET(s,VFS), REGSET(S,VFS),
16989 REGSETH(s,VFS), REGSETH(S,VFS),
16990
16991 /* VFP DP Registers. */
16992 REGSET(d,VFD), REGSET(D,VFD),
16993 /* Extra Neon DP registers. */
16994 REGSETH(d,VFD), REGSETH(D,VFD),
16995
16996 /* Neon QP registers. */
16997 REGSET2(q,NQ), REGSET2(Q,NQ),
16998
16999 /* VFP control registers. */
17000 REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC),
17001 REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC),
17002 REGDEF(fpinst,9,VFC), REGDEF(fpinst2,10,VFC),
17003 REGDEF(FPINST,9,VFC), REGDEF(FPINST2,10,VFC),
17004 REGDEF(mvfr0,7,VFC), REGDEF(mvfr1,6,VFC),
17005 REGDEF(MVFR0,7,VFC), REGDEF(MVFR1,6,VFC),
17006
17007 /* Maverick DSP coprocessor registers. */
17008 REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX),
17009 REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX),
17010
17011 REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX),
17012 REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX),
17013 REGDEF(dspsc,0,DSPSC),
17014
17015 REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX),
17016 REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX),
17017 REGDEF(DSPSC,0,DSPSC),
17018
17019 /* iWMMXt data registers - p0, c0-15. */
17020 REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR),
17021
17022 /* iWMMXt control registers - p1, c0-3. */
17023 REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC),
17024 REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC),
17025 REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC),
17026 REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC),
17027
17028 /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */
17029 REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG),
17030 REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG),
17031 REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG),
17032 REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG),
17033
17034 /* XScale accumulator registers. */
17035 REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE),
17036 };
17037 #undef REGDEF
17038 #undef REGNUM
17039 #undef REGSET
17040
17041 /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled
17042 within psr_required_here. */
17043 static const struct asm_psr psrs[] =
17044 {
17045 /* Backward compatibility notation. Note that "all" is no longer
17046 truly all possible PSR bits. */
17047 {"all", PSR_c | PSR_f},
17048 {"flg", PSR_f},
17049 {"ctl", PSR_c},
17050
17051 /* Individual flags. */
17052 {"f", PSR_f},
17053 {"c", PSR_c},
17054 {"x", PSR_x},
17055 {"s", PSR_s},
17056
17057 /* Combinations of flags. */
17058 {"fs", PSR_f | PSR_s},
17059 {"fx", PSR_f | PSR_x},
17060 {"fc", PSR_f | PSR_c},
17061 {"sf", PSR_s | PSR_f},
17062 {"sx", PSR_s | PSR_x},
17063 {"sc", PSR_s | PSR_c},
17064 {"xf", PSR_x | PSR_f},
17065 {"xs", PSR_x | PSR_s},
17066 {"xc", PSR_x | PSR_c},
17067 {"cf", PSR_c | PSR_f},
17068 {"cs", PSR_c | PSR_s},
17069 {"cx", PSR_c | PSR_x},
17070 {"fsx", PSR_f | PSR_s | PSR_x},
17071 {"fsc", PSR_f | PSR_s | PSR_c},
17072 {"fxs", PSR_f | PSR_x | PSR_s},
17073 {"fxc", PSR_f | PSR_x | PSR_c},
17074 {"fcs", PSR_f | PSR_c | PSR_s},
17075 {"fcx", PSR_f | PSR_c | PSR_x},
17076 {"sfx", PSR_s | PSR_f | PSR_x},
17077 {"sfc", PSR_s | PSR_f | PSR_c},
17078 {"sxf", PSR_s | PSR_x | PSR_f},
17079 {"sxc", PSR_s | PSR_x | PSR_c},
17080 {"scf", PSR_s | PSR_c | PSR_f},
17081 {"scx", PSR_s | PSR_c | PSR_x},
17082 {"xfs", PSR_x | PSR_f | PSR_s},
17083 {"xfc", PSR_x | PSR_f | PSR_c},
17084 {"xsf", PSR_x | PSR_s | PSR_f},
17085 {"xsc", PSR_x | PSR_s | PSR_c},
17086 {"xcf", PSR_x | PSR_c | PSR_f},
17087 {"xcs", PSR_x | PSR_c | PSR_s},
17088 {"cfs", PSR_c | PSR_f | PSR_s},
17089 {"cfx", PSR_c | PSR_f | PSR_x},
17090 {"csf", PSR_c | PSR_s | PSR_f},
17091 {"csx", PSR_c | PSR_s | PSR_x},
17092 {"cxf", PSR_c | PSR_x | PSR_f},
17093 {"cxs", PSR_c | PSR_x | PSR_s},
17094 {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c},
17095 {"fscx", PSR_f | PSR_s | PSR_c | PSR_x},
17096 {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c},
17097 {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s},
17098 {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x},
17099 {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s},
17100 {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c},
17101 {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x},
17102 {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c},
17103 {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f},
17104 {"scfx", PSR_s | PSR_c | PSR_f | PSR_x},
17105 {"scxf", PSR_s | PSR_c | PSR_x | PSR_f},
17106 {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c},
17107 {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s},
17108 {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c},
17109 {"xscf", PSR_x | PSR_s | PSR_c | PSR_f},
17110 {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s},
17111 {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f},
17112 {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x},
17113 {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s},
17114 {"csfx", PSR_c | PSR_s | PSR_f | PSR_x},
17115 {"csxf", PSR_c | PSR_s | PSR_x | PSR_f},
17116 {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s},
17117 {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f},
17118 };
17119
17120 /* Table of V7M psr names. */
17121 static const struct asm_psr v7m_psrs[] =
17122 {
17123 {"apsr", 0 }, {"APSR", 0 },
17124 {"iapsr", 1 }, {"IAPSR", 1 },
17125 {"eapsr", 2 }, {"EAPSR", 2 },
17126 {"psr", 3 }, {"PSR", 3 },
17127 {"xpsr", 3 }, {"XPSR", 3 }, {"xPSR", 3 },
17128 {"ipsr", 5 }, {"IPSR", 5 },
17129 {"epsr", 6 }, {"EPSR", 6 },
17130 {"iepsr", 7 }, {"IEPSR", 7 },
17131 {"msp", 8 }, {"MSP", 8 },
17132 {"psp", 9 }, {"PSP", 9 },
17133 {"primask", 16}, {"PRIMASK", 16},
17134 {"basepri", 17}, {"BASEPRI", 17},
17135 {"basepri_max", 18}, {"BASEPRI_MAX", 18},
17136 {"basepri_max", 18}, {"BASEPRI_MASK", 18}, /* Typo, preserved for backwards compatibility. */
17137 {"faultmask", 19}, {"FAULTMASK", 19},
17138 {"control", 20}, {"CONTROL", 20}
17139 };
17140
17141 /* Table of all shift-in-operand names. */
17142 static const struct asm_shift_name shift_names [] =
17143 {
17144 { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL },
17145 { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL },
17146 { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR },
17147 { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR },
17148 { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR },
17149 { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX }
17150 };
17151
17152 /* Table of all explicit relocation names. */
17153 #ifdef OBJ_ELF
17154 static struct reloc_entry reloc_names[] =
17155 {
17156 { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 },
17157 { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF },
17158 { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 },
17159 { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 },
17160 { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 },
17161 { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 },
17162 { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32},
17163 { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32},
17164 { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32},
17165 { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32},
17166 { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32},
17167 { "got_prel", BFD_RELOC_ARM_GOT_PREL}, { "GOT_PREL", BFD_RELOC_ARM_GOT_PREL},
17168 { "tlsdesc", BFD_RELOC_ARM_TLS_GOTDESC},
17169 { "TLSDESC", BFD_RELOC_ARM_TLS_GOTDESC},
17170 { "tlscall", BFD_RELOC_ARM_TLS_CALL},
17171 { "TLSCALL", BFD_RELOC_ARM_TLS_CALL},
17172 { "tlsdescseq", BFD_RELOC_ARM_TLS_DESCSEQ},
17173 { "TLSDESCSEQ", BFD_RELOC_ARM_TLS_DESCSEQ}
17174 };
17175 #endif
17176
17177 /* Table of all conditional affixes. 0xF is not defined as a condition code. */
17178 static const struct asm_cond conds[] =
17179 {
17180 {"eq", 0x0},
17181 {"ne", 0x1},
17182 {"cs", 0x2}, {"hs", 0x2},
17183 {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3},
17184 {"mi", 0x4},
17185 {"pl", 0x5},
17186 {"vs", 0x6},
17187 {"vc", 0x7},
17188 {"hi", 0x8},
17189 {"ls", 0x9},
17190 {"ge", 0xa},
17191 {"lt", 0xb},
17192 {"gt", 0xc},
17193 {"le", 0xd},
17194 {"al", 0xe}
17195 };
17196
17197 #define UL_BARRIER(L,U,CODE,FEAT) \
17198 { L, CODE, ARM_FEATURE (FEAT, 0) }, \
17199 { U, CODE, ARM_FEATURE (FEAT, 0) }
17200
17201 static struct asm_barrier_opt barrier_opt_names[] =
17202 {
17203 UL_BARRIER ("sy", "SY", 0xf, ARM_EXT_BARRIER),
17204 UL_BARRIER ("st", "ST", 0xe, ARM_EXT_BARRIER),
17205 UL_BARRIER ("ld", "LD", 0xd, ARM_EXT_V8),
17206 UL_BARRIER ("ish", "ISH", 0xb, ARM_EXT_BARRIER),
17207 UL_BARRIER ("sh", "SH", 0xb, ARM_EXT_BARRIER),
17208 UL_BARRIER ("ishst", "ISHST", 0xa, ARM_EXT_BARRIER),
17209 UL_BARRIER ("shst", "SHST", 0xa, ARM_EXT_BARRIER),
17210 UL_BARRIER ("ishld", "ISHLD", 0x9, ARM_EXT_V8),
17211 UL_BARRIER ("un", "UN", 0x7, ARM_EXT_BARRIER),
17212 UL_BARRIER ("nsh", "NSH", 0x7, ARM_EXT_BARRIER),
17213 UL_BARRIER ("unst", "UNST", 0x6, ARM_EXT_BARRIER),
17214 UL_BARRIER ("nshst", "NSHST", 0x6, ARM_EXT_BARRIER),
17215 UL_BARRIER ("nshld", "NSHLD", 0x5, ARM_EXT_V8),
17216 UL_BARRIER ("osh", "OSH", 0x3, ARM_EXT_BARRIER),
17217 UL_BARRIER ("oshst", "OSHST", 0x2, ARM_EXT_BARRIER),
17218 UL_BARRIER ("oshld", "OSHLD", 0x1, ARM_EXT_V8)
17219 };
17220
17221 #undef UL_BARRIER
17222
17223 /* Table of ARM-format instructions. */
17224
17225 /* Macros for gluing together operand strings. N.B. In all cases
17226 other than OPS0, the trailing OP_stop comes from default
17227 zero-initialization of the unspecified elements of the array. */
17228 #define OPS0() { OP_stop, }
17229 #define OPS1(a) { OP_##a, }
17230 #define OPS2(a,b) { OP_##a,OP_##b, }
17231 #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, }
17232 #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, }
17233 #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, }
17234 #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, }
17235
17236 /* These macros are similar to the OPSn, but do not prepend the OP_ prefix.
17237 This is useful when mixing operands for ARM and THUMB, i.e. using the
17238 MIX_ARM_THUMB_OPERANDS macro.
17239 In order to use these macros, prefix the number of operands with _
17240 e.g. _3. */
17241 #define OPS_1(a) { a, }
17242 #define OPS_2(a,b) { a,b, }
17243 #define OPS_3(a,b,c) { a,b,c, }
17244 #define OPS_4(a,b,c,d) { a,b,c,d, }
17245 #define OPS_5(a,b,c,d,e) { a,b,c,d,e, }
17246 #define OPS_6(a,b,c,d,e,f) { a,b,c,d,e,f, }
17247
17248 /* These macros abstract out the exact format of the mnemonic table and
17249 save some repeated characters. */
17250
17251 /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */
17252 #define TxCE(mnem, op, top, nops, ops, ae, te) \
17253 { mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \
17254 THUMB_VARIANT, do_##ae, do_##te }
17255
17256 /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for
17257 a T_MNEM_xyz enumerator. */
17258 #define TCE(mnem, aop, top, nops, ops, ae, te) \
17259 TxCE (mnem, aop, 0x##top, nops, ops, ae, te)
17260 #define tCE(mnem, aop, top, nops, ops, ae, te) \
17261 TxCE (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17262
17263 /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional
17264 infix after the third character. */
17265 #define TxC3(mnem, op, top, nops, ops, ae, te) \
17266 { mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \
17267 THUMB_VARIANT, do_##ae, do_##te }
17268 #define TxC3w(mnem, op, top, nops, ops, ae, te) \
17269 { mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \
17270 THUMB_VARIANT, do_##ae, do_##te }
17271 #define TC3(mnem, aop, top, nops, ops, ae, te) \
17272 TxC3 (mnem, aop, 0x##top, nops, ops, ae, te)
17273 #define TC3w(mnem, aop, top, nops, ops, ae, te) \
17274 TxC3w (mnem, aop, 0x##top, nops, ops, ae, te)
17275 #define tC3(mnem, aop, top, nops, ops, ae, te) \
17276 TxC3 (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17277 #define tC3w(mnem, aop, top, nops, ops, ae, te) \
17278 TxC3w (mnem, aop, T_MNEM##top, nops, ops, ae, te)
17279
17280 /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to
17281 appear in the condition table. */
17282 #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \
17283 { m1 #m2 m3, OPS##nops ops, sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17284 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te }
17285
17286 #define TxCM(m1, m2, op, top, nops, ops, ae, te) \
17287 TxCM_ (m1, , m2, op, top, nops, ops, ae, te), \
17288 TxCM_ (m1, eq, m2, op, top, nops, ops, ae, te), \
17289 TxCM_ (m1, ne, m2, op, top, nops, ops, ae, te), \
17290 TxCM_ (m1, cs, m2, op, top, nops, ops, ae, te), \
17291 TxCM_ (m1, hs, m2, op, top, nops, ops, ae, te), \
17292 TxCM_ (m1, cc, m2, op, top, nops, ops, ae, te), \
17293 TxCM_ (m1, ul, m2, op, top, nops, ops, ae, te), \
17294 TxCM_ (m1, lo, m2, op, top, nops, ops, ae, te), \
17295 TxCM_ (m1, mi, m2, op, top, nops, ops, ae, te), \
17296 TxCM_ (m1, pl, m2, op, top, nops, ops, ae, te), \
17297 TxCM_ (m1, vs, m2, op, top, nops, ops, ae, te), \
17298 TxCM_ (m1, vc, m2, op, top, nops, ops, ae, te), \
17299 TxCM_ (m1, hi, m2, op, top, nops, ops, ae, te), \
17300 TxCM_ (m1, ls, m2, op, top, nops, ops, ae, te), \
17301 TxCM_ (m1, ge, m2, op, top, nops, ops, ae, te), \
17302 TxCM_ (m1, lt, m2, op, top, nops, ops, ae, te), \
17303 TxCM_ (m1, gt, m2, op, top, nops, ops, ae, te), \
17304 TxCM_ (m1, le, m2, op, top, nops, ops, ae, te), \
17305 TxCM_ (m1, al, m2, op, top, nops, ops, ae, te)
17306
17307 #define TCM(m1,m2, aop, top, nops, ops, ae, te) \
17308 TxCM (m1,m2, aop, 0x##top, nops, ops, ae, te)
17309 #define tCM(m1,m2, aop, top, nops, ops, ae, te) \
17310 TxCM (m1,m2, aop, T_MNEM##top, nops, ops, ae, te)
17311
17312 /* Mnemonic that cannot be conditionalized. The ARM condition-code
17313 field is still 0xE. Many of the Thumb variants can be executed
17314 conditionally, so this is checked separately. */
17315 #define TUE(mnem, op, top, nops, ops, ae, te) \
17316 { mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \
17317 THUMB_VARIANT, do_##ae, do_##te }
17318
17319 /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM
17320 condition code field. */
17321 #define TUF(mnem, op, top, nops, ops, ae, te) \
17322 { mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \
17323 THUMB_VARIANT, do_##ae, do_##te }
17324
17325 /* ARM-only variants of all the above. */
17326 #define CE(mnem, op, nops, ops, ae) \
17327 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17328
17329 #define C3(mnem, op, nops, ops, ae) \
17330 { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17331
17332 /* Legacy mnemonics that always have conditional infix after the third
17333 character. */
17334 #define CL(mnem, op, nops, ops, ae) \
17335 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17336 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17337
17338 /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */
17339 #define cCE(mnem, op, nops, ops, ae) \
17340 { mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17341
17342 /* Legacy coprocessor instructions where conditional infix and conditional
17343 suffix are ambiguous. For consistency this includes all FPA instructions,
17344 not just the potentially ambiguous ones. */
17345 #define cCL(mnem, op, nops, ops, ae) \
17346 { mnem, OPS##nops ops, OT_cinfix3_legacy, \
17347 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17348
17349 /* Coprocessor, takes either a suffix or a position-3 infix
17350 (for an FPA corner case). */
17351 #define C3E(mnem, op, nops, ops, ae) \
17352 { mnem, OPS##nops ops, OT_csuf_or_in3, \
17353 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae }
17354
17355 #define xCM_(m1, m2, m3, op, nops, ops, ae) \
17356 { m1 #m2 m3, OPS##nops ops, \
17357 sizeof (#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof (m1) - 1, \
17358 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL }
17359
17360 #define CM(m1, m2, op, nops, ops, ae) \
17361 xCM_ (m1, , m2, op, nops, ops, ae), \
17362 xCM_ (m1, eq, m2, op, nops, ops, ae), \
17363 xCM_ (m1, ne, m2, op, nops, ops, ae), \
17364 xCM_ (m1, cs, m2, op, nops, ops, ae), \
17365 xCM_ (m1, hs, m2, op, nops, ops, ae), \
17366 xCM_ (m1, cc, m2, op, nops, ops, ae), \
17367 xCM_ (m1, ul, m2, op, nops, ops, ae), \
17368 xCM_ (m1, lo, m2, op, nops, ops, ae), \
17369 xCM_ (m1, mi, m2, op, nops, ops, ae), \
17370 xCM_ (m1, pl, m2, op, nops, ops, ae), \
17371 xCM_ (m1, vs, m2, op, nops, ops, ae), \
17372 xCM_ (m1, vc, m2, op, nops, ops, ae), \
17373 xCM_ (m1, hi, m2, op, nops, ops, ae), \
17374 xCM_ (m1, ls, m2, op, nops, ops, ae), \
17375 xCM_ (m1, ge, m2, op, nops, ops, ae), \
17376 xCM_ (m1, lt, m2, op, nops, ops, ae), \
17377 xCM_ (m1, gt, m2, op, nops, ops, ae), \
17378 xCM_ (m1, le, m2, op, nops, ops, ae), \
17379 xCM_ (m1, al, m2, op, nops, ops, ae)
17380
17381 #define UE(mnem, op, nops, ops, ae) \
17382 { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17383
17384 #define UF(mnem, op, nops, ops, ae) \
17385 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL }
17386
17387 /* Neon data-processing. ARM versions are unconditional with cond=0xf.
17388 The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we
17389 use the same encoding function for each. */
17390 #define NUF(mnem, op, nops, ops, enc) \
17391 { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \
17392 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17393
17394 /* Neon data processing, version which indirects through neon_enc_tab for
17395 the various overloaded versions of opcodes. */
17396 #define nUF(mnem, op, nops, ops, enc) \
17397 { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM##op, N_MNEM##op, \
17398 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17399
17400 /* Neon insn with conditional suffix for the ARM version, non-overloaded
17401 version. */
17402 #define NCE_tag(mnem, op, nops, ops, enc, tag) \
17403 { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \
17404 THUMB_VARIANT, do_##enc, do_##enc }
17405
17406 #define NCE(mnem, op, nops, ops, enc) \
17407 NCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17408
17409 #define NCEF(mnem, op, nops, ops, enc) \
17410 NCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17411
17412 /* Neon insn with conditional suffix for the ARM version, overloaded types. */
17413 #define nCE_tag(mnem, op, nops, ops, enc, tag) \
17414 { #mnem, OPS##nops ops, tag, N_MNEM##op, N_MNEM##op, \
17415 ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc }
17416
17417 #define nCE(mnem, op, nops, ops, enc) \
17418 nCE_tag (mnem, op, nops, ops, enc, OT_csuffix)
17419
17420 #define nCEF(mnem, op, nops, ops, enc) \
17421 nCE_tag (mnem, op, nops, ops, enc, OT_csuffixF)
17422
17423 #define do_0 0
17424
17425 static const struct asm_opcode insns[] =
17426 {
17427 #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */
17428 #define THUMB_VARIANT &arm_ext_v4t
17429 tCE("and", 0000000, _and, 3, (RR, oRR, SH), arit, t_arit3c),
17430 tC3("ands", 0100000, _ands, 3, (RR, oRR, SH), arit, t_arit3c),
17431 tCE("eor", 0200000, _eor, 3, (RR, oRR, SH), arit, t_arit3c),
17432 tC3("eors", 0300000, _eors, 3, (RR, oRR, SH), arit, t_arit3c),
17433 tCE("sub", 0400000, _sub, 3, (RR, oRR, SH), arit, t_add_sub),
17434 tC3("subs", 0500000, _subs, 3, (RR, oRR, SH), arit, t_add_sub),
17435 tCE("add", 0800000, _add, 3, (RR, oRR, SHG), arit, t_add_sub),
17436 tC3("adds", 0900000, _adds, 3, (RR, oRR, SHG), arit, t_add_sub),
17437 tCE("adc", 0a00000, _adc, 3, (RR, oRR, SH), arit, t_arit3c),
17438 tC3("adcs", 0b00000, _adcs, 3, (RR, oRR, SH), arit, t_arit3c),
17439 tCE("sbc", 0c00000, _sbc, 3, (RR, oRR, SH), arit, t_arit3),
17440 tC3("sbcs", 0d00000, _sbcs, 3, (RR, oRR, SH), arit, t_arit3),
17441 tCE("orr", 1800000, _orr, 3, (RR, oRR, SH), arit, t_arit3c),
17442 tC3("orrs", 1900000, _orrs, 3, (RR, oRR, SH), arit, t_arit3c),
17443 tCE("bic", 1c00000, _bic, 3, (RR, oRR, SH), arit, t_arit3),
17444 tC3("bics", 1d00000, _bics, 3, (RR, oRR, SH), arit, t_arit3),
17445
17446 /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism
17447 for setting PSR flag bits. They are obsolete in V6 and do not
17448 have Thumb equivalents. */
17449 tCE("tst", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17450 tC3w("tsts", 1100000, _tst, 2, (RR, SH), cmp, t_mvn_tst),
17451 CL("tstp", 110f000, 2, (RR, SH), cmp),
17452 tCE("cmp", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17453 tC3w("cmps", 1500000, _cmp, 2, (RR, SH), cmp, t_mov_cmp),
17454 CL("cmpp", 150f000, 2, (RR, SH), cmp),
17455 tCE("cmn", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17456 tC3w("cmns", 1700000, _cmn, 2, (RR, SH), cmp, t_mvn_tst),
17457 CL("cmnp", 170f000, 2, (RR, SH), cmp),
17458
17459 tCE("mov", 1a00000, _mov, 2, (RR, SH), mov, t_mov_cmp),
17460 tC3("movs", 1b00000, _movs, 2, (RR, SH), mov, t_mov_cmp),
17461 tCE("mvn", 1e00000, _mvn, 2, (RR, SH), mov, t_mvn_tst),
17462 tC3("mvns", 1f00000, _mvns, 2, (RR, SH), mov, t_mvn_tst),
17463
17464 tCE("ldr", 4100000, _ldr, 2, (RR, ADDRGLDR),ldst, t_ldst),
17465 tC3("ldrb", 4500000, _ldrb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17466 tCE("str", 4000000, _str, _2, (MIX_ARM_THUMB_OPERANDS (OP_RR,
17467 OP_RRnpc),
17468 OP_ADDRGLDR),ldst, t_ldst),
17469 tC3("strb", 4400000, _strb, 2, (RRnpc_npcsp, ADDRGLDR),ldst, t_ldst),
17470
17471 tCE("stm", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17472 tC3("stmia", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17473 tC3("stmea", 8800000, _stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17474 tCE("ldm", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17475 tC3("ldmia", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17476 tC3("ldmfd", 8900000, _ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17477
17478 TCE("swi", f000000, df00, 1, (EXPi), swi, t_swi),
17479 TCE("svc", f000000, df00, 1, (EXPi), swi, t_swi),
17480 tCE("b", a000000, _b, 1, (EXPr), branch, t_branch),
17481 TCE("bl", b000000, f000f800, 1, (EXPr), bl, t_branch23),
17482
17483 /* Pseudo ops. */
17484 tCE("adr", 28f0000, _adr, 2, (RR, EXP), adr, t_adr),
17485 C3(adrl, 28f0000, 2, (RR, EXP), adrl),
17486 tCE("nop", 1a00000, _nop, 1, (oI255c), nop, t_nop),
17487
17488 /* Thumb-compatibility pseudo ops. */
17489 tCE("lsl", 1a00000, _lsl, 3, (RR, oRR, SH), shift, t_shift),
17490 tC3("lsls", 1b00000, _lsls, 3, (RR, oRR, SH), shift, t_shift),
17491 tCE("lsr", 1a00020, _lsr, 3, (RR, oRR, SH), shift, t_shift),
17492 tC3("lsrs", 1b00020, _lsrs, 3, (RR, oRR, SH), shift, t_shift),
17493 tCE("asr", 1a00040, _asr, 3, (RR, oRR, SH), shift, t_shift),
17494 tC3("asrs", 1b00040, _asrs, 3, (RR, oRR, SH), shift, t_shift),
17495 tCE("ror", 1a00060, _ror, 3, (RR, oRR, SH), shift, t_shift),
17496 tC3("rors", 1b00060, _rors, 3, (RR, oRR, SH), shift, t_shift),
17497 tCE("neg", 2600000, _neg, 2, (RR, RR), rd_rn, t_neg),
17498 tC3("negs", 2700000, _negs, 2, (RR, RR), rd_rn, t_neg),
17499 tCE("push", 92d0000, _push, 1, (REGLST), push_pop, t_push_pop),
17500 tCE("pop", 8bd0000, _pop, 1, (REGLST), push_pop, t_push_pop),
17501
17502 /* These may simplify to neg. */
17503 TCE("rsb", 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb),
17504 TC3("rsbs", 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb),
17505
17506 #undef THUMB_VARIANT
17507 #define THUMB_VARIANT & arm_ext_v6
17508
17509 TCE("cpy", 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy),
17510
17511 /* V1 instructions with no Thumb analogue prior to V6T2. */
17512 #undef THUMB_VARIANT
17513 #define THUMB_VARIANT & arm_ext_v6t2
17514
17515 TCE("teq", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17516 TC3w("teqs", 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst),
17517 CL("teqp", 130f000, 2, (RR, SH), cmp),
17518
17519 TC3("ldrt", 4300000, f8500e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17520 TC3("ldrbt", 4700000, f8100e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17521 TC3("strt", 4200000, f8400e00, 2, (RR_npcsp, ADDR), ldstt, t_ldstt),
17522 TC3("strbt", 4600000, f8000e00, 2, (RRnpc_npcsp, ADDR),ldstt, t_ldstt),
17523
17524 TC3("stmdb", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17525 TC3("stmfd", 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17526
17527 TC3("ldmdb", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17528 TC3("ldmea", 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm),
17529
17530 /* V1 instructions with no Thumb analogue at all. */
17531 CE("rsc", 0e00000, 3, (RR, oRR, SH), arit),
17532 C3(rscs, 0f00000, 3, (RR, oRR, SH), arit),
17533
17534 C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm),
17535 C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm),
17536 C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm),
17537 C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm),
17538 C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm),
17539 C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm),
17540 C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm),
17541 C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm),
17542
17543 #undef ARM_VARIANT
17544 #define ARM_VARIANT & arm_ext_v2 /* ARM 2 - multiplies. */
17545 #undef THUMB_VARIANT
17546 #define THUMB_VARIANT & arm_ext_v4t
17547
17548 tCE("mul", 0000090, _mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17549 tC3("muls", 0100090, _muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul),
17550
17551 #undef THUMB_VARIANT
17552 #define THUMB_VARIANT & arm_ext_v6t2
17553
17554 TCE("mla", 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17555 C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas),
17556
17557 /* Generic coprocessor instructions. */
17558 TCE("cdp", e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17559 TCE("ldc", c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17560 TC3("ldcl", c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17561 TCE("stc", c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17562 TC3("stcl", c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17563 TCE("mcr", e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17564 TCE("mrc", e100010, ee100010, 6, (RCP, I7b, APSR_RR, RCN, RCN, oI7b), co_reg, co_reg),
17565
17566 #undef ARM_VARIANT
17567 #define ARM_VARIANT & arm_ext_v2s /* ARM 3 - swp instructions. */
17568
17569 CE("swp", 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17570 C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn),
17571
17572 #undef ARM_VARIANT
17573 #define ARM_VARIANT & arm_ext_v3 /* ARM 6 Status register instructions. */
17574 #undef THUMB_VARIANT
17575 #define THUMB_VARIANT & arm_ext_msr
17576
17577 TCE("mrs", 1000000, f3e08000, 2, (RRnpc, rPSR), mrs, t_mrs),
17578 TCE("msr", 120f000, f3808000, 2, (wPSR, RR_EXi), msr, t_msr),
17579
17580 #undef ARM_VARIANT
17581 #define ARM_VARIANT & arm_ext_v3m /* ARM 7M long multiplies. */
17582 #undef THUMB_VARIANT
17583 #define THUMB_VARIANT & arm_ext_v6t2
17584
17585 TCE("smull", 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17586 CM("smull","s", 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17587 TCE("umull", 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17588 CM("umull","s", 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17589 TCE("smlal", 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17590 CM("smlal","s", 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17591 TCE("umlal", 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull),
17592 CM("umlal","s", 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull),
17593
17594 #undef ARM_VARIANT
17595 #define ARM_VARIANT & arm_ext_v4 /* ARM Architecture 4. */
17596 #undef THUMB_VARIANT
17597 #define THUMB_VARIANT & arm_ext_v4t
17598
17599 tC3("ldrh", 01000b0, _ldrh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17600 tC3("strh", 00000b0, _strh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17601 tC3("ldrsh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17602 tC3("ldrsb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17603 tCM("ld","sh", 01000f0, _ldrsh, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17604 tCM("ld","sb", 01000d0, _ldrsb, 2, (RRnpc_npcsp, ADDRGLDRS), ldstv4, t_ldst),
17605
17606 #undef ARM_VARIANT
17607 #define ARM_VARIANT & arm_ext_v4t_5
17608
17609 /* ARM Architecture 4T. */
17610 /* Note: bx (and blx) are required on V5, even if the processor does
17611 not support Thumb. */
17612 TCE("bx", 12fff10, 4700, 1, (RR), bx, t_bx),
17613
17614 #undef ARM_VARIANT
17615 #define ARM_VARIANT & arm_ext_v5 /* ARM Architecture 5T. */
17616 #undef THUMB_VARIANT
17617 #define THUMB_VARIANT & arm_ext_v5t
17618
17619 /* Note: blx has 2 variants; the .value coded here is for
17620 BLX(2). Only this variant has conditional execution. */
17621 TCE("blx", 12fff30, 4780, 1, (RR_EXr), blx, t_blx),
17622 TUE("bkpt", 1200070, be00, 1, (oIffffb), bkpt, t_bkpt),
17623
17624 #undef THUMB_VARIANT
17625 #define THUMB_VARIANT & arm_ext_v6t2
17626
17627 TCE("clz", 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz),
17628 TUF("ldc2", c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17629 TUF("ldc2l", c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17630 TUF("stc2", c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17631 TUF("stc2l", c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc),
17632 TUF("cdp2", e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp),
17633 TUF("mcr2", e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17634 TUF("mrc2", e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg),
17635
17636 #undef ARM_VARIANT
17637 #define ARM_VARIANT & arm_ext_v5exp /* ARM Architecture 5TExP. */
17638 #undef THUMB_VARIANT
17639 #define THUMB_VARIANT &arm_ext_v5exp
17640
17641 TCE("smlabb", 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17642 TCE("smlatb", 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17643 TCE("smlabt", 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17644 TCE("smlatt", 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17645
17646 TCE("smlawb", 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17647 TCE("smlawt", 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla),
17648
17649 TCE("smlalbb", 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17650 TCE("smlaltb", 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17651 TCE("smlalbt", 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17652 TCE("smlaltt", 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal),
17653
17654 TCE("smulbb", 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17655 TCE("smultb", 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17656 TCE("smulbt", 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17657 TCE("smultt", 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17658
17659 TCE("smulwb", 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17660 TCE("smulwt", 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17661
17662 TCE("qadd", 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17663 TCE("qdadd", 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17664 TCE("qsub", 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17665 TCE("qdsub", 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, t_simd2),
17666
17667 #undef ARM_VARIANT
17668 #define ARM_VARIANT & arm_ext_v5e /* ARM Architecture 5TE. */
17669 #undef THUMB_VARIANT
17670 #define THUMB_VARIANT &arm_ext_v6t2
17671
17672 TUF("pld", 450f000, f810f000, 1, (ADDR), pld, t_pld),
17673 TC3("ldrd", 00000d0, e8500000, 3, (RRnpc_npcsp, oRRnpc_npcsp, ADDRGLDRS),
17674 ldrd, t_ldstd),
17675 TC3("strd", 00000f0, e8400000, 3, (RRnpc_npcsp, oRRnpc_npcsp,
17676 ADDRGLDRS), ldrd, t_ldstd),
17677
17678 TCE("mcrr", c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17679 TCE("mrrc", c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17680
17681 #undef ARM_VARIANT
17682 #define ARM_VARIANT & arm_ext_v5j /* ARM Architecture 5TEJ. */
17683
17684 TCE("bxj", 12fff20, f3c08f00, 1, (RR), bxj, t_bxj),
17685
17686 #undef ARM_VARIANT
17687 #define ARM_VARIANT & arm_ext_v6 /* ARM V6. */
17688 #undef THUMB_VARIANT
17689 #define THUMB_VARIANT & arm_ext_v6
17690
17691 TUF("cpsie", 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi),
17692 TUF("cpsid", 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi),
17693 tCE("rev", 6bf0f30, _rev, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17694 tCE("rev16", 6bf0fb0, _rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17695 tCE("revsh", 6ff0fb0, _revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev),
17696 tCE("sxth", 6bf0070, _sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17697 tCE("uxth", 6ff0070, _uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17698 tCE("sxtb", 6af0070, _sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17699 tCE("uxtb", 6ef0070, _uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17700 TUF("setend", 1010000, b650, 1, (ENDI), setend, t_setend),
17701
17702 #undef THUMB_VARIANT
17703 #define THUMB_VARIANT & arm_ext_v6t2
17704
17705 TCE("ldrex", 1900f9f, e8500f00, 2, (RRnpc_npcsp, ADDR), ldrex, t_ldrex),
17706 TCE("strex", 1800f90, e8400000, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17707 strex, t_strex),
17708 TUF("mcrr2", c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17709 TUF("mrrc2", c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c),
17710
17711 TCE("ssat", 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat),
17712 TCE("usat", 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat),
17713
17714 /* ARM V6 not included in V7M. */
17715 #undef THUMB_VARIANT
17716 #define THUMB_VARIANT & arm_ext_v6_notm
17717 TUF("rfeia", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17718 UF(rfeib, 9900a00, 1, (RRw), rfe),
17719 UF(rfeda, 8100a00, 1, (RRw), rfe),
17720 TUF("rfedb", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17721 TUF("rfefd", 8900a00, e990c000, 1, (RRw), rfe, rfe),
17722 UF(rfefa, 9900a00, 1, (RRw), rfe),
17723 UF(rfeea, 8100a00, 1, (RRw), rfe),
17724 TUF("rfeed", 9100a00, e810c000, 1, (RRw), rfe, rfe),
17725 TUF("srsia", 8c00500, e980c000, 2, (oRRw, I31w), srs, srs),
17726 UF(srsib, 9c00500, 2, (oRRw, I31w), srs),
17727 UF(srsda, 8400500, 2, (oRRw, I31w), srs),
17728 TUF("srsdb", 9400500, e800c000, 2, (oRRw, I31w), srs, srs),
17729
17730 /* ARM V6 not included in V7M (eg. integer SIMD). */
17731 #undef THUMB_VARIANT
17732 #define THUMB_VARIANT & arm_ext_v6_dsp
17733 TUF("cps", 1020000, f3af8100, 1, (I31b), imm0, t_cps),
17734 TCE("pkhbt", 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt),
17735 TCE("pkhtb", 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb),
17736 TCE("qadd16", 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17737 TCE("qadd8", 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17738 TCE("qasx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17739 /* Old name for QASX. */
17740 TCE("qaddsubx", 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17741 TCE("qsax", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17742 /* Old name for QSAX. */
17743 TCE("qsubaddx", 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17744 TCE("qsub16", 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17745 TCE("qsub8", 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17746 TCE("sadd16", 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17747 TCE("sadd8", 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17748 TCE("sasx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17749 /* Old name for SASX. */
17750 TCE("saddsubx", 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17751 TCE("shadd16", 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17752 TCE("shadd8", 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17753 TCE("shasx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17754 /* Old name for SHASX. */
17755 TCE("shaddsubx", 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17756 TCE("shsax", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17757 /* Old name for SHSAX. */
17758 TCE("shsubaddx", 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17759 TCE("shsub16", 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17760 TCE("shsub8", 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17761 TCE("ssax", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17762 /* Old name for SSAX. */
17763 TCE("ssubaddx", 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17764 TCE("ssub16", 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17765 TCE("ssub8", 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17766 TCE("uadd16", 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17767 TCE("uadd8", 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17768 TCE("uasx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17769 /* Old name for UASX. */
17770 TCE("uaddsubx", 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17771 TCE("uhadd16", 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17772 TCE("uhadd8", 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17773 TCE("uhasx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17774 /* Old name for UHASX. */
17775 TCE("uhaddsubx", 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17776 TCE("uhsax", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17777 /* Old name for UHSAX. */
17778 TCE("uhsubaddx", 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17779 TCE("uhsub16", 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17780 TCE("uhsub8", 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17781 TCE("uqadd16", 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17782 TCE("uqadd8", 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17783 TCE("uqasx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17784 /* Old name for UQASX. */
17785 TCE("uqaddsubx", 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17786 TCE("uqsax", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17787 /* Old name for UQSAX. */
17788 TCE("uqsubaddx", 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17789 TCE("uqsub16", 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17790 TCE("uqsub8", 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17791 TCE("usub16", 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17792 TCE("usax", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17793 /* Old name for USAX. */
17794 TCE("usubaddx", 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17795 TCE("usub8", 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17796 TCE("sxtah", 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17797 TCE("sxtab16", 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17798 TCE("sxtab", 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17799 TCE("sxtb16", 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17800 TCE("uxtah", 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17801 TCE("uxtab16", 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17802 TCE("uxtab", 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah),
17803 TCE("uxtb16", 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth),
17804 TCE("sel", 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd),
17805 TCE("smlad", 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17806 TCE("smladx", 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17807 TCE("smlald", 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17808 TCE("smlaldx", 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17809 TCE("smlsd", 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17810 TCE("smlsdx", 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17811 TCE("smlsld", 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17812 TCE("smlsldx", 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal),
17813 TCE("smmla", 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17814 TCE("smmlar", 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17815 TCE("smmls", 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17816 TCE("smmlsr", 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17817 TCE("smmul", 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17818 TCE("smmulr", 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17819 TCE("smuad", 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17820 TCE("smuadx", 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17821 TCE("smusd", 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17822 TCE("smusdx", 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17823 TCE("ssat16", 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16),
17824 TCE("umaal", 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal),
17825 TCE("usad8", 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd),
17826 TCE("usada8", 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla),
17827 TCE("usat16", 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16),
17828
17829 #undef ARM_VARIANT
17830 #define ARM_VARIANT & arm_ext_v6k
17831 #undef THUMB_VARIANT
17832 #define THUMB_VARIANT & arm_ext_v6k
17833
17834 tCE("yield", 320f001, _yield, 0, (), noargs, t_hint),
17835 tCE("wfe", 320f002, _wfe, 0, (), noargs, t_hint),
17836 tCE("wfi", 320f003, _wfi, 0, (), noargs, t_hint),
17837 tCE("sev", 320f004, _sev, 0, (), noargs, t_hint),
17838
17839 #undef THUMB_VARIANT
17840 #define THUMB_VARIANT & arm_ext_v6_notm
17841 TCE("ldrexd", 1b00f9f, e8d0007f, 3, (RRnpc_npcsp, oRRnpc_npcsp, RRnpcb),
17842 ldrexd, t_ldrexd),
17843 TCE("strexd", 1a00f90, e8c00070, 4, (RRnpc_npcsp, RRnpc_npcsp, oRRnpc_npcsp,
17844 RRnpcb), strexd, t_strexd),
17845
17846 #undef THUMB_VARIANT
17847 #define THUMB_VARIANT & arm_ext_v6t2
17848 TCE("ldrexb", 1d00f9f, e8d00f4f, 2, (RRnpc_npcsp,RRnpcb),
17849 rd_rn, rd_rn),
17850 TCE("ldrexh", 1f00f9f, e8d00f5f, 2, (RRnpc_npcsp, RRnpcb),
17851 rd_rn, rd_rn),
17852 TCE("strexb", 1c00f90, e8c00f40, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17853 strex, t_strexbh),
17854 TCE("strexh", 1e00f90, e8c00f50, 3, (RRnpc_npcsp, RRnpc_npcsp, ADDR),
17855 strex, t_strexbh),
17856 TUF("clrex", 57ff01f, f3bf8f2f, 0, (), noargs, noargs),
17857
17858 #undef ARM_VARIANT
17859 #define ARM_VARIANT & arm_ext_sec
17860 #undef THUMB_VARIANT
17861 #define THUMB_VARIANT & arm_ext_sec
17862
17863 TCE("smc", 1600070, f7f08000, 1, (EXPi), smc, t_smc),
17864
17865 #undef ARM_VARIANT
17866 #define ARM_VARIANT & arm_ext_virt
17867 #undef THUMB_VARIANT
17868 #define THUMB_VARIANT & arm_ext_virt
17869
17870 TCE("hvc", 1400070, f7e08000, 1, (EXPi), hvc, t_hvc),
17871 TCE("eret", 160006e, f3de8f00, 0, (), noargs, noargs),
17872
17873 #undef ARM_VARIANT
17874 #define ARM_VARIANT & arm_ext_v6t2
17875 #undef THUMB_VARIANT
17876 #define THUMB_VARIANT & arm_ext_v6t2
17877
17878 TCE("bfc", 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc),
17879 TCE("bfi", 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi),
17880 TCE("sbfx", 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17881 TCE("ubfx", 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx),
17882
17883 TCE("mls", 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla),
17884 TCE("movw", 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16),
17885 TCE("movt", 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16),
17886 TCE("rbit", 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit),
17887
17888 TC3("ldrht", 03000b0, f8300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17889 TC3("ldrsht", 03000f0, f9300e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17890 TC3("ldrsbt", 03000d0, f9100e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17891 TC3("strht", 02000b0, f8200e00, 2, (RRnpc_npcsp, ADDR), ldsttv4, t_ldstt),
17892
17893 /* Thumb-only instructions. */
17894 #undef ARM_VARIANT
17895 #define ARM_VARIANT NULL
17896 TUE("cbnz", 0, b900, 2, (RR, EXP), 0, t_cbz),
17897 TUE("cbz", 0, b100, 2, (RR, EXP), 0, t_cbz),
17898
17899 /* ARM does not really have an IT instruction, so always allow it.
17900 The opcode is copied from Thumb in order to allow warnings in
17901 -mimplicit-it=[never | arm] modes. */
17902 #undef ARM_VARIANT
17903 #define ARM_VARIANT & arm_ext_v1
17904
17905 TUE("it", bf08, bf08, 1, (COND), it, t_it),
17906 TUE("itt", bf0c, bf0c, 1, (COND), it, t_it),
17907 TUE("ite", bf04, bf04, 1, (COND), it, t_it),
17908 TUE("ittt", bf0e, bf0e, 1, (COND), it, t_it),
17909 TUE("itet", bf06, bf06, 1, (COND), it, t_it),
17910 TUE("itte", bf0a, bf0a, 1, (COND), it, t_it),
17911 TUE("itee", bf02, bf02, 1, (COND), it, t_it),
17912 TUE("itttt", bf0f, bf0f, 1, (COND), it, t_it),
17913 TUE("itett", bf07, bf07, 1, (COND), it, t_it),
17914 TUE("ittet", bf0b, bf0b, 1, (COND), it, t_it),
17915 TUE("iteet", bf03, bf03, 1, (COND), it, t_it),
17916 TUE("ittte", bf0d, bf0d, 1, (COND), it, t_it),
17917 TUE("itete", bf05, bf05, 1, (COND), it, t_it),
17918 TUE("ittee", bf09, bf09, 1, (COND), it, t_it),
17919 TUE("iteee", bf01, bf01, 1, (COND), it, t_it),
17920 /* ARM/Thumb-2 instructions with no Thumb-1 equivalent. */
17921 TC3("rrx", 01a00060, ea4f0030, 2, (RR, RR), rd_rm, t_rrx),
17922 TC3("rrxs", 01b00060, ea5f0030, 2, (RR, RR), rd_rm, t_rrx),
17923
17924 /* Thumb2 only instructions. */
17925 #undef ARM_VARIANT
17926 #define ARM_VARIANT NULL
17927
17928 TCE("addw", 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17929 TCE("subw", 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w),
17930 TCE("orn", 0, ea600000, 3, (RR, oRR, SH), 0, t_orn),
17931 TCE("orns", 0, ea700000, 3, (RR, oRR, SH), 0, t_orn),
17932 TCE("tbb", 0, e8d0f000, 1, (TB), 0, t_tb),
17933 TCE("tbh", 0, e8d0f010, 1, (TB), 0, t_tb),
17934
17935 /* Hardware division instructions. */
17936 #undef ARM_VARIANT
17937 #define ARM_VARIANT & arm_ext_adiv
17938 #undef THUMB_VARIANT
17939 #define THUMB_VARIANT & arm_ext_div
17940
17941 TCE("sdiv", 710f010, fb90f0f0, 3, (RR, oRR, RR), div, t_div),
17942 TCE("udiv", 730f010, fbb0f0f0, 3, (RR, oRR, RR), div, t_div),
17943
17944 /* ARM V6M/V7 instructions. */
17945 #undef ARM_VARIANT
17946 #define ARM_VARIANT & arm_ext_barrier
17947 #undef THUMB_VARIANT
17948 #define THUMB_VARIANT & arm_ext_barrier
17949
17950 TUF("dmb", 57ff050, f3bf8f50, 1, (oBARRIER_I15), barrier, t_barrier),
17951 TUF("dsb", 57ff040, f3bf8f40, 1, (oBARRIER_I15), barrier, t_barrier),
17952 TUF("isb", 57ff060, f3bf8f60, 1, (oBARRIER_I15), barrier, t_barrier),
17953
17954 /* ARM V7 instructions. */
17955 #undef ARM_VARIANT
17956 #define ARM_VARIANT & arm_ext_v7
17957 #undef THUMB_VARIANT
17958 #define THUMB_VARIANT & arm_ext_v7
17959
17960 TUF("pli", 450f000, f910f000, 1, (ADDR), pli, t_pld),
17961 TCE("dbg", 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg),
17962
17963 #undef ARM_VARIANT
17964 #define ARM_VARIANT & arm_ext_mp
17965 #undef THUMB_VARIANT
17966 #define THUMB_VARIANT & arm_ext_mp
17967
17968 TUF("pldw", 410f000, f830f000, 1, (ADDR), pld, t_pld),
17969
17970 /* AArchv8 instructions. */
17971 #undef ARM_VARIANT
17972 #define ARM_VARIANT & arm_ext_v8
17973 #undef THUMB_VARIANT
17974 #define THUMB_VARIANT & arm_ext_v8
17975
17976 tCE("sevl", 320f005, _sevl, 0, (), noargs, t_hint),
17977
17978 #undef ARM_VARIANT
17979 #define ARM_VARIANT & fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */
17980 #undef THUMB_VARIANT
17981 #define THUMB_VARIANT NULL
17982
17983 cCE("wfs", e200110, 1, (RR), rd),
17984 cCE("rfs", e300110, 1, (RR), rd),
17985 cCE("wfc", e400110, 1, (RR), rd),
17986 cCE("rfc", e500110, 1, (RR), rd),
17987
17988 cCL("ldfs", c100100, 2, (RF, ADDRGLDC), rd_cpaddr),
17989 cCL("ldfd", c108100, 2, (RF, ADDRGLDC), rd_cpaddr),
17990 cCL("ldfe", c500100, 2, (RF, ADDRGLDC), rd_cpaddr),
17991 cCL("ldfp", c508100, 2, (RF, ADDRGLDC), rd_cpaddr),
17992
17993 cCL("stfs", c000100, 2, (RF, ADDRGLDC), rd_cpaddr),
17994 cCL("stfd", c008100, 2, (RF, ADDRGLDC), rd_cpaddr),
17995 cCL("stfe", c400100, 2, (RF, ADDRGLDC), rd_cpaddr),
17996 cCL("stfp", c408100, 2, (RF, ADDRGLDC), rd_cpaddr),
17997
17998 cCL("mvfs", e008100, 2, (RF, RF_IF), rd_rm),
17999 cCL("mvfsp", e008120, 2, (RF, RF_IF), rd_rm),
18000 cCL("mvfsm", e008140, 2, (RF, RF_IF), rd_rm),
18001 cCL("mvfsz", e008160, 2, (RF, RF_IF), rd_rm),
18002 cCL("mvfd", e008180, 2, (RF, RF_IF), rd_rm),
18003 cCL("mvfdp", e0081a0, 2, (RF, RF_IF), rd_rm),
18004 cCL("mvfdm", e0081c0, 2, (RF, RF_IF), rd_rm),
18005 cCL("mvfdz", e0081e0, 2, (RF, RF_IF), rd_rm),
18006 cCL("mvfe", e088100, 2, (RF, RF_IF), rd_rm),
18007 cCL("mvfep", e088120, 2, (RF, RF_IF), rd_rm),
18008 cCL("mvfem", e088140, 2, (RF, RF_IF), rd_rm),
18009 cCL("mvfez", e088160, 2, (RF, RF_IF), rd_rm),
18010
18011 cCL("mnfs", e108100, 2, (RF, RF_IF), rd_rm),
18012 cCL("mnfsp", e108120, 2, (RF, RF_IF), rd_rm),
18013 cCL("mnfsm", e108140, 2, (RF, RF_IF), rd_rm),
18014 cCL("mnfsz", e108160, 2, (RF, RF_IF), rd_rm),
18015 cCL("mnfd", e108180, 2, (RF, RF_IF), rd_rm),
18016 cCL("mnfdp", e1081a0, 2, (RF, RF_IF), rd_rm),
18017 cCL("mnfdm", e1081c0, 2, (RF, RF_IF), rd_rm),
18018 cCL("mnfdz", e1081e0, 2, (RF, RF_IF), rd_rm),
18019 cCL("mnfe", e188100, 2, (RF, RF_IF), rd_rm),
18020 cCL("mnfep", e188120, 2, (RF, RF_IF), rd_rm),
18021 cCL("mnfem", e188140, 2, (RF, RF_IF), rd_rm),
18022 cCL("mnfez", e188160, 2, (RF, RF_IF), rd_rm),
18023
18024 cCL("abss", e208100, 2, (RF, RF_IF), rd_rm),
18025 cCL("abssp", e208120, 2, (RF, RF_IF), rd_rm),
18026 cCL("abssm", e208140, 2, (RF, RF_IF), rd_rm),
18027 cCL("abssz", e208160, 2, (RF, RF_IF), rd_rm),
18028 cCL("absd", e208180, 2, (RF, RF_IF), rd_rm),
18029 cCL("absdp", e2081a0, 2, (RF, RF_IF), rd_rm),
18030 cCL("absdm", e2081c0, 2, (RF, RF_IF), rd_rm),
18031 cCL("absdz", e2081e0, 2, (RF, RF_IF), rd_rm),
18032 cCL("abse", e288100, 2, (RF, RF_IF), rd_rm),
18033 cCL("absep", e288120, 2, (RF, RF_IF), rd_rm),
18034 cCL("absem", e288140, 2, (RF, RF_IF), rd_rm),
18035 cCL("absez", e288160, 2, (RF, RF_IF), rd_rm),
18036
18037 cCL("rnds", e308100, 2, (RF, RF_IF), rd_rm),
18038 cCL("rndsp", e308120, 2, (RF, RF_IF), rd_rm),
18039 cCL("rndsm", e308140, 2, (RF, RF_IF), rd_rm),
18040 cCL("rndsz", e308160, 2, (RF, RF_IF), rd_rm),
18041 cCL("rndd", e308180, 2, (RF, RF_IF), rd_rm),
18042 cCL("rnddp", e3081a0, 2, (RF, RF_IF), rd_rm),
18043 cCL("rnddm", e3081c0, 2, (RF, RF_IF), rd_rm),
18044 cCL("rnddz", e3081e0, 2, (RF, RF_IF), rd_rm),
18045 cCL("rnde", e388100, 2, (RF, RF_IF), rd_rm),
18046 cCL("rndep", e388120, 2, (RF, RF_IF), rd_rm),
18047 cCL("rndem", e388140, 2, (RF, RF_IF), rd_rm),
18048 cCL("rndez", e388160, 2, (RF, RF_IF), rd_rm),
18049
18050 cCL("sqts", e408100, 2, (RF, RF_IF), rd_rm),
18051 cCL("sqtsp", e408120, 2, (RF, RF_IF), rd_rm),
18052 cCL("sqtsm", e408140, 2, (RF, RF_IF), rd_rm),
18053 cCL("sqtsz", e408160, 2, (RF, RF_IF), rd_rm),
18054 cCL("sqtd", e408180, 2, (RF, RF_IF), rd_rm),
18055 cCL("sqtdp", e4081a0, 2, (RF, RF_IF), rd_rm),
18056 cCL("sqtdm", e4081c0, 2, (RF, RF_IF), rd_rm),
18057 cCL("sqtdz", e4081e0, 2, (RF, RF_IF), rd_rm),
18058 cCL("sqte", e488100, 2, (RF, RF_IF), rd_rm),
18059 cCL("sqtep", e488120, 2, (RF, RF_IF), rd_rm),
18060 cCL("sqtem", e488140, 2, (RF, RF_IF), rd_rm),
18061 cCL("sqtez", e488160, 2, (RF, RF_IF), rd_rm),
18062
18063 cCL("logs", e508100, 2, (RF, RF_IF), rd_rm),
18064 cCL("logsp", e508120, 2, (RF, RF_IF), rd_rm),
18065 cCL("logsm", e508140, 2, (RF, RF_IF), rd_rm),
18066 cCL("logsz", e508160, 2, (RF, RF_IF), rd_rm),
18067 cCL("logd", e508180, 2, (RF, RF_IF), rd_rm),
18068 cCL("logdp", e5081a0, 2, (RF, RF_IF), rd_rm),
18069 cCL("logdm", e5081c0, 2, (RF, RF_IF), rd_rm),
18070 cCL("logdz", e5081e0, 2, (RF, RF_IF), rd_rm),
18071 cCL("loge", e588100, 2, (RF, RF_IF), rd_rm),
18072 cCL("logep", e588120, 2, (RF, RF_IF), rd_rm),
18073 cCL("logem", e588140, 2, (RF, RF_IF), rd_rm),
18074 cCL("logez", e588160, 2, (RF, RF_IF), rd_rm),
18075
18076 cCL("lgns", e608100, 2, (RF, RF_IF), rd_rm),
18077 cCL("lgnsp", e608120, 2, (RF, RF_IF), rd_rm),
18078 cCL("lgnsm", e608140, 2, (RF, RF_IF), rd_rm),
18079 cCL("lgnsz", e608160, 2, (RF, RF_IF), rd_rm),
18080 cCL("lgnd", e608180, 2, (RF, RF_IF), rd_rm),
18081 cCL("lgndp", e6081a0, 2, (RF, RF_IF), rd_rm),
18082 cCL("lgndm", e6081c0, 2, (RF, RF_IF), rd_rm),
18083 cCL("lgndz", e6081e0, 2, (RF, RF_IF), rd_rm),
18084 cCL("lgne", e688100, 2, (RF, RF_IF), rd_rm),
18085 cCL("lgnep", e688120, 2, (RF, RF_IF), rd_rm),
18086 cCL("lgnem", e688140, 2, (RF, RF_IF), rd_rm),
18087 cCL("lgnez", e688160, 2, (RF, RF_IF), rd_rm),
18088
18089 cCL("exps", e708100, 2, (RF, RF_IF), rd_rm),
18090 cCL("expsp", e708120, 2, (RF, RF_IF), rd_rm),
18091 cCL("expsm", e708140, 2, (RF, RF_IF), rd_rm),
18092 cCL("expsz", e708160, 2, (RF, RF_IF), rd_rm),
18093 cCL("expd", e708180, 2, (RF, RF_IF), rd_rm),
18094 cCL("expdp", e7081a0, 2, (RF, RF_IF), rd_rm),
18095 cCL("expdm", e7081c0, 2, (RF, RF_IF), rd_rm),
18096 cCL("expdz", e7081e0, 2, (RF, RF_IF), rd_rm),
18097 cCL("expe", e788100, 2, (RF, RF_IF), rd_rm),
18098 cCL("expep", e788120, 2, (RF, RF_IF), rd_rm),
18099 cCL("expem", e788140, 2, (RF, RF_IF), rd_rm),
18100 cCL("expdz", e788160, 2, (RF, RF_IF), rd_rm),
18101
18102 cCL("sins", e808100, 2, (RF, RF_IF), rd_rm),
18103 cCL("sinsp", e808120, 2, (RF, RF_IF), rd_rm),
18104 cCL("sinsm", e808140, 2, (RF, RF_IF), rd_rm),
18105 cCL("sinsz", e808160, 2, (RF, RF_IF), rd_rm),
18106 cCL("sind", e808180, 2, (RF, RF_IF), rd_rm),
18107 cCL("sindp", e8081a0, 2, (RF, RF_IF), rd_rm),
18108 cCL("sindm", e8081c0, 2, (RF, RF_IF), rd_rm),
18109 cCL("sindz", e8081e0, 2, (RF, RF_IF), rd_rm),
18110 cCL("sine", e888100, 2, (RF, RF_IF), rd_rm),
18111 cCL("sinep", e888120, 2, (RF, RF_IF), rd_rm),
18112 cCL("sinem", e888140, 2, (RF, RF_IF), rd_rm),
18113 cCL("sinez", e888160, 2, (RF, RF_IF), rd_rm),
18114
18115 cCL("coss", e908100, 2, (RF, RF_IF), rd_rm),
18116 cCL("cossp", e908120, 2, (RF, RF_IF), rd_rm),
18117 cCL("cossm", e908140, 2, (RF, RF_IF), rd_rm),
18118 cCL("cossz", e908160, 2, (RF, RF_IF), rd_rm),
18119 cCL("cosd", e908180, 2, (RF, RF_IF), rd_rm),
18120 cCL("cosdp", e9081a0, 2, (RF, RF_IF), rd_rm),
18121 cCL("cosdm", e9081c0, 2, (RF, RF_IF), rd_rm),
18122 cCL("cosdz", e9081e0, 2, (RF, RF_IF), rd_rm),
18123 cCL("cose", e988100, 2, (RF, RF_IF), rd_rm),
18124 cCL("cosep", e988120, 2, (RF, RF_IF), rd_rm),
18125 cCL("cosem", e988140, 2, (RF, RF_IF), rd_rm),
18126 cCL("cosez", e988160, 2, (RF, RF_IF), rd_rm),
18127
18128 cCL("tans", ea08100, 2, (RF, RF_IF), rd_rm),
18129 cCL("tansp", ea08120, 2, (RF, RF_IF), rd_rm),
18130 cCL("tansm", ea08140, 2, (RF, RF_IF), rd_rm),
18131 cCL("tansz", ea08160, 2, (RF, RF_IF), rd_rm),
18132 cCL("tand", ea08180, 2, (RF, RF_IF), rd_rm),
18133 cCL("tandp", ea081a0, 2, (RF, RF_IF), rd_rm),
18134 cCL("tandm", ea081c0, 2, (RF, RF_IF), rd_rm),
18135 cCL("tandz", ea081e0, 2, (RF, RF_IF), rd_rm),
18136 cCL("tane", ea88100, 2, (RF, RF_IF), rd_rm),
18137 cCL("tanep", ea88120, 2, (RF, RF_IF), rd_rm),
18138 cCL("tanem", ea88140, 2, (RF, RF_IF), rd_rm),
18139 cCL("tanez", ea88160, 2, (RF, RF_IF), rd_rm),
18140
18141 cCL("asns", eb08100, 2, (RF, RF_IF), rd_rm),
18142 cCL("asnsp", eb08120, 2, (RF, RF_IF), rd_rm),
18143 cCL("asnsm", eb08140, 2, (RF, RF_IF), rd_rm),
18144 cCL("asnsz", eb08160, 2, (RF, RF_IF), rd_rm),
18145 cCL("asnd", eb08180, 2, (RF, RF_IF), rd_rm),
18146 cCL("asndp", eb081a0, 2, (RF, RF_IF), rd_rm),
18147 cCL("asndm", eb081c0, 2, (RF, RF_IF), rd_rm),
18148 cCL("asndz", eb081e0, 2, (RF, RF_IF), rd_rm),
18149 cCL("asne", eb88100, 2, (RF, RF_IF), rd_rm),
18150 cCL("asnep", eb88120, 2, (RF, RF_IF), rd_rm),
18151 cCL("asnem", eb88140, 2, (RF, RF_IF), rd_rm),
18152 cCL("asnez", eb88160, 2, (RF, RF_IF), rd_rm),
18153
18154 cCL("acss", ec08100, 2, (RF, RF_IF), rd_rm),
18155 cCL("acssp", ec08120, 2, (RF, RF_IF), rd_rm),
18156 cCL("acssm", ec08140, 2, (RF, RF_IF), rd_rm),
18157 cCL("acssz", ec08160, 2, (RF, RF_IF), rd_rm),
18158 cCL("acsd", ec08180, 2, (RF, RF_IF), rd_rm),
18159 cCL("acsdp", ec081a0, 2, (RF, RF_IF), rd_rm),
18160 cCL("acsdm", ec081c0, 2, (RF, RF_IF), rd_rm),
18161 cCL("acsdz", ec081e0, 2, (RF, RF_IF), rd_rm),
18162 cCL("acse", ec88100, 2, (RF, RF_IF), rd_rm),
18163 cCL("acsep", ec88120, 2, (RF, RF_IF), rd_rm),
18164 cCL("acsem", ec88140, 2, (RF, RF_IF), rd_rm),
18165 cCL("acsez", ec88160, 2, (RF, RF_IF), rd_rm),
18166
18167 cCL("atns", ed08100, 2, (RF, RF_IF), rd_rm),
18168 cCL("atnsp", ed08120, 2, (RF, RF_IF), rd_rm),
18169 cCL("atnsm", ed08140, 2, (RF, RF_IF), rd_rm),
18170 cCL("atnsz", ed08160, 2, (RF, RF_IF), rd_rm),
18171 cCL("atnd", ed08180, 2, (RF, RF_IF), rd_rm),
18172 cCL("atndp", ed081a0, 2, (RF, RF_IF), rd_rm),
18173 cCL("atndm", ed081c0, 2, (RF, RF_IF), rd_rm),
18174 cCL("atndz", ed081e0, 2, (RF, RF_IF), rd_rm),
18175 cCL("atne", ed88100, 2, (RF, RF_IF), rd_rm),
18176 cCL("atnep", ed88120, 2, (RF, RF_IF), rd_rm),
18177 cCL("atnem", ed88140, 2, (RF, RF_IF), rd_rm),
18178 cCL("atnez", ed88160, 2, (RF, RF_IF), rd_rm),
18179
18180 cCL("urds", ee08100, 2, (RF, RF_IF), rd_rm),
18181 cCL("urdsp", ee08120, 2, (RF, RF_IF), rd_rm),
18182 cCL("urdsm", ee08140, 2, (RF, RF_IF), rd_rm),
18183 cCL("urdsz", ee08160, 2, (RF, RF_IF), rd_rm),
18184 cCL("urdd", ee08180, 2, (RF, RF_IF), rd_rm),
18185 cCL("urddp", ee081a0, 2, (RF, RF_IF), rd_rm),
18186 cCL("urddm", ee081c0, 2, (RF, RF_IF), rd_rm),
18187 cCL("urddz", ee081e0, 2, (RF, RF_IF), rd_rm),
18188 cCL("urde", ee88100, 2, (RF, RF_IF), rd_rm),
18189 cCL("urdep", ee88120, 2, (RF, RF_IF), rd_rm),
18190 cCL("urdem", ee88140, 2, (RF, RF_IF), rd_rm),
18191 cCL("urdez", ee88160, 2, (RF, RF_IF), rd_rm),
18192
18193 cCL("nrms", ef08100, 2, (RF, RF_IF), rd_rm),
18194 cCL("nrmsp", ef08120, 2, (RF, RF_IF), rd_rm),
18195 cCL("nrmsm", ef08140, 2, (RF, RF_IF), rd_rm),
18196 cCL("nrmsz", ef08160, 2, (RF, RF_IF), rd_rm),
18197 cCL("nrmd", ef08180, 2, (RF, RF_IF), rd_rm),
18198 cCL("nrmdp", ef081a0, 2, (RF, RF_IF), rd_rm),
18199 cCL("nrmdm", ef081c0, 2, (RF, RF_IF), rd_rm),
18200 cCL("nrmdz", ef081e0, 2, (RF, RF_IF), rd_rm),
18201 cCL("nrme", ef88100, 2, (RF, RF_IF), rd_rm),
18202 cCL("nrmep", ef88120, 2, (RF, RF_IF), rd_rm),
18203 cCL("nrmem", ef88140, 2, (RF, RF_IF), rd_rm),
18204 cCL("nrmez", ef88160, 2, (RF, RF_IF), rd_rm),
18205
18206 cCL("adfs", e000100, 3, (RF, RF, RF_IF), rd_rn_rm),
18207 cCL("adfsp", e000120, 3, (RF, RF, RF_IF), rd_rn_rm),
18208 cCL("adfsm", e000140, 3, (RF, RF, RF_IF), rd_rn_rm),
18209 cCL("adfsz", e000160, 3, (RF, RF, RF_IF), rd_rn_rm),
18210 cCL("adfd", e000180, 3, (RF, RF, RF_IF), rd_rn_rm),
18211 cCL("adfdp", e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18212 cCL("adfdm", e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18213 cCL("adfdz", e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18214 cCL("adfe", e080100, 3, (RF, RF, RF_IF), rd_rn_rm),
18215 cCL("adfep", e080120, 3, (RF, RF, RF_IF), rd_rn_rm),
18216 cCL("adfem", e080140, 3, (RF, RF, RF_IF), rd_rn_rm),
18217 cCL("adfez", e080160, 3, (RF, RF, RF_IF), rd_rn_rm),
18218
18219 cCL("sufs", e200100, 3, (RF, RF, RF_IF), rd_rn_rm),
18220 cCL("sufsp", e200120, 3, (RF, RF, RF_IF), rd_rn_rm),
18221 cCL("sufsm", e200140, 3, (RF, RF, RF_IF), rd_rn_rm),
18222 cCL("sufsz", e200160, 3, (RF, RF, RF_IF), rd_rn_rm),
18223 cCL("sufd", e200180, 3, (RF, RF, RF_IF), rd_rn_rm),
18224 cCL("sufdp", e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18225 cCL("sufdm", e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18226 cCL("sufdz", e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18227 cCL("sufe", e280100, 3, (RF, RF, RF_IF), rd_rn_rm),
18228 cCL("sufep", e280120, 3, (RF, RF, RF_IF), rd_rn_rm),
18229 cCL("sufem", e280140, 3, (RF, RF, RF_IF), rd_rn_rm),
18230 cCL("sufez", e280160, 3, (RF, RF, RF_IF), rd_rn_rm),
18231
18232 cCL("rsfs", e300100, 3, (RF, RF, RF_IF), rd_rn_rm),
18233 cCL("rsfsp", e300120, 3, (RF, RF, RF_IF), rd_rn_rm),
18234 cCL("rsfsm", e300140, 3, (RF, RF, RF_IF), rd_rn_rm),
18235 cCL("rsfsz", e300160, 3, (RF, RF, RF_IF), rd_rn_rm),
18236 cCL("rsfd", e300180, 3, (RF, RF, RF_IF), rd_rn_rm),
18237 cCL("rsfdp", e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18238 cCL("rsfdm", e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18239 cCL("rsfdz", e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18240 cCL("rsfe", e380100, 3, (RF, RF, RF_IF), rd_rn_rm),
18241 cCL("rsfep", e380120, 3, (RF, RF, RF_IF), rd_rn_rm),
18242 cCL("rsfem", e380140, 3, (RF, RF, RF_IF), rd_rn_rm),
18243 cCL("rsfez", e380160, 3, (RF, RF, RF_IF), rd_rn_rm),
18244
18245 cCL("mufs", e100100, 3, (RF, RF, RF_IF), rd_rn_rm),
18246 cCL("mufsp", e100120, 3, (RF, RF, RF_IF), rd_rn_rm),
18247 cCL("mufsm", e100140, 3, (RF, RF, RF_IF), rd_rn_rm),
18248 cCL("mufsz", e100160, 3, (RF, RF, RF_IF), rd_rn_rm),
18249 cCL("mufd", e100180, 3, (RF, RF, RF_IF), rd_rn_rm),
18250 cCL("mufdp", e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18251 cCL("mufdm", e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18252 cCL("mufdz", e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18253 cCL("mufe", e180100, 3, (RF, RF, RF_IF), rd_rn_rm),
18254 cCL("mufep", e180120, 3, (RF, RF, RF_IF), rd_rn_rm),
18255 cCL("mufem", e180140, 3, (RF, RF, RF_IF), rd_rn_rm),
18256 cCL("mufez", e180160, 3, (RF, RF, RF_IF), rd_rn_rm),
18257
18258 cCL("dvfs", e400100, 3, (RF, RF, RF_IF), rd_rn_rm),
18259 cCL("dvfsp", e400120, 3, (RF, RF, RF_IF), rd_rn_rm),
18260 cCL("dvfsm", e400140, 3, (RF, RF, RF_IF), rd_rn_rm),
18261 cCL("dvfsz", e400160, 3, (RF, RF, RF_IF), rd_rn_rm),
18262 cCL("dvfd", e400180, 3, (RF, RF, RF_IF), rd_rn_rm),
18263 cCL("dvfdp", e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18264 cCL("dvfdm", e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18265 cCL("dvfdz", e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18266 cCL("dvfe", e480100, 3, (RF, RF, RF_IF), rd_rn_rm),
18267 cCL("dvfep", e480120, 3, (RF, RF, RF_IF), rd_rn_rm),
18268 cCL("dvfem", e480140, 3, (RF, RF, RF_IF), rd_rn_rm),
18269 cCL("dvfez", e480160, 3, (RF, RF, RF_IF), rd_rn_rm),
18270
18271 cCL("rdfs", e500100, 3, (RF, RF, RF_IF), rd_rn_rm),
18272 cCL("rdfsp", e500120, 3, (RF, RF, RF_IF), rd_rn_rm),
18273 cCL("rdfsm", e500140, 3, (RF, RF, RF_IF), rd_rn_rm),
18274 cCL("rdfsz", e500160, 3, (RF, RF, RF_IF), rd_rn_rm),
18275 cCL("rdfd", e500180, 3, (RF, RF, RF_IF), rd_rn_rm),
18276 cCL("rdfdp", e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18277 cCL("rdfdm", e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18278 cCL("rdfdz", e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18279 cCL("rdfe", e580100, 3, (RF, RF, RF_IF), rd_rn_rm),
18280 cCL("rdfep", e580120, 3, (RF, RF, RF_IF), rd_rn_rm),
18281 cCL("rdfem", e580140, 3, (RF, RF, RF_IF), rd_rn_rm),
18282 cCL("rdfez", e580160, 3, (RF, RF, RF_IF), rd_rn_rm),
18283
18284 cCL("pows", e600100, 3, (RF, RF, RF_IF), rd_rn_rm),
18285 cCL("powsp", e600120, 3, (RF, RF, RF_IF), rd_rn_rm),
18286 cCL("powsm", e600140, 3, (RF, RF, RF_IF), rd_rn_rm),
18287 cCL("powsz", e600160, 3, (RF, RF, RF_IF), rd_rn_rm),
18288 cCL("powd", e600180, 3, (RF, RF, RF_IF), rd_rn_rm),
18289 cCL("powdp", e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18290 cCL("powdm", e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18291 cCL("powdz", e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18292 cCL("powe", e680100, 3, (RF, RF, RF_IF), rd_rn_rm),
18293 cCL("powep", e680120, 3, (RF, RF, RF_IF), rd_rn_rm),
18294 cCL("powem", e680140, 3, (RF, RF, RF_IF), rd_rn_rm),
18295 cCL("powez", e680160, 3, (RF, RF, RF_IF), rd_rn_rm),
18296
18297 cCL("rpws", e700100, 3, (RF, RF, RF_IF), rd_rn_rm),
18298 cCL("rpwsp", e700120, 3, (RF, RF, RF_IF), rd_rn_rm),
18299 cCL("rpwsm", e700140, 3, (RF, RF, RF_IF), rd_rn_rm),
18300 cCL("rpwsz", e700160, 3, (RF, RF, RF_IF), rd_rn_rm),
18301 cCL("rpwd", e700180, 3, (RF, RF, RF_IF), rd_rn_rm),
18302 cCL("rpwdp", e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18303 cCL("rpwdm", e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18304 cCL("rpwdz", e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18305 cCL("rpwe", e780100, 3, (RF, RF, RF_IF), rd_rn_rm),
18306 cCL("rpwep", e780120, 3, (RF, RF, RF_IF), rd_rn_rm),
18307 cCL("rpwem", e780140, 3, (RF, RF, RF_IF), rd_rn_rm),
18308 cCL("rpwez", e780160, 3, (RF, RF, RF_IF), rd_rn_rm),
18309
18310 cCL("rmfs", e800100, 3, (RF, RF, RF_IF), rd_rn_rm),
18311 cCL("rmfsp", e800120, 3, (RF, RF, RF_IF), rd_rn_rm),
18312 cCL("rmfsm", e800140, 3, (RF, RF, RF_IF), rd_rn_rm),
18313 cCL("rmfsz", e800160, 3, (RF, RF, RF_IF), rd_rn_rm),
18314 cCL("rmfd", e800180, 3, (RF, RF, RF_IF), rd_rn_rm),
18315 cCL("rmfdp", e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18316 cCL("rmfdm", e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18317 cCL("rmfdz", e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18318 cCL("rmfe", e880100, 3, (RF, RF, RF_IF), rd_rn_rm),
18319 cCL("rmfep", e880120, 3, (RF, RF, RF_IF), rd_rn_rm),
18320 cCL("rmfem", e880140, 3, (RF, RF, RF_IF), rd_rn_rm),
18321 cCL("rmfez", e880160, 3, (RF, RF, RF_IF), rd_rn_rm),
18322
18323 cCL("fmls", e900100, 3, (RF, RF, RF_IF), rd_rn_rm),
18324 cCL("fmlsp", e900120, 3, (RF, RF, RF_IF), rd_rn_rm),
18325 cCL("fmlsm", e900140, 3, (RF, RF, RF_IF), rd_rn_rm),
18326 cCL("fmlsz", e900160, 3, (RF, RF, RF_IF), rd_rn_rm),
18327 cCL("fmld", e900180, 3, (RF, RF, RF_IF), rd_rn_rm),
18328 cCL("fmldp", e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18329 cCL("fmldm", e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18330 cCL("fmldz", e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18331 cCL("fmle", e980100, 3, (RF, RF, RF_IF), rd_rn_rm),
18332 cCL("fmlep", e980120, 3, (RF, RF, RF_IF), rd_rn_rm),
18333 cCL("fmlem", e980140, 3, (RF, RF, RF_IF), rd_rn_rm),
18334 cCL("fmlez", e980160, 3, (RF, RF, RF_IF), rd_rn_rm),
18335
18336 cCL("fdvs", ea00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18337 cCL("fdvsp", ea00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18338 cCL("fdvsm", ea00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18339 cCL("fdvsz", ea00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18340 cCL("fdvd", ea00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18341 cCL("fdvdp", ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18342 cCL("fdvdm", ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18343 cCL("fdvdz", ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18344 cCL("fdve", ea80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18345 cCL("fdvep", ea80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18346 cCL("fdvem", ea80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18347 cCL("fdvez", ea80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18348
18349 cCL("frds", eb00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18350 cCL("frdsp", eb00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18351 cCL("frdsm", eb00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18352 cCL("frdsz", eb00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18353 cCL("frdd", eb00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18354 cCL("frddp", eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18355 cCL("frddm", eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18356 cCL("frddz", eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18357 cCL("frde", eb80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18358 cCL("frdep", eb80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18359 cCL("frdem", eb80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18360 cCL("frdez", eb80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18361
18362 cCL("pols", ec00100, 3, (RF, RF, RF_IF), rd_rn_rm),
18363 cCL("polsp", ec00120, 3, (RF, RF, RF_IF), rd_rn_rm),
18364 cCL("polsm", ec00140, 3, (RF, RF, RF_IF), rd_rn_rm),
18365 cCL("polsz", ec00160, 3, (RF, RF, RF_IF), rd_rn_rm),
18366 cCL("pold", ec00180, 3, (RF, RF, RF_IF), rd_rn_rm),
18367 cCL("poldp", ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm),
18368 cCL("poldm", ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm),
18369 cCL("poldz", ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm),
18370 cCL("pole", ec80100, 3, (RF, RF, RF_IF), rd_rn_rm),
18371 cCL("polep", ec80120, 3, (RF, RF, RF_IF), rd_rn_rm),
18372 cCL("polem", ec80140, 3, (RF, RF, RF_IF), rd_rn_rm),
18373 cCL("polez", ec80160, 3, (RF, RF, RF_IF), rd_rn_rm),
18374
18375 cCE("cmf", e90f110, 2, (RF, RF_IF), fpa_cmp),
18376 C3E("cmfe", ed0f110, 2, (RF, RF_IF), fpa_cmp),
18377 cCE("cnf", eb0f110, 2, (RF, RF_IF), fpa_cmp),
18378 C3E("cnfe", ef0f110, 2, (RF, RF_IF), fpa_cmp),
18379
18380 cCL("flts", e000110, 2, (RF, RR), rn_rd),
18381 cCL("fltsp", e000130, 2, (RF, RR), rn_rd),
18382 cCL("fltsm", e000150, 2, (RF, RR), rn_rd),
18383 cCL("fltsz", e000170, 2, (RF, RR), rn_rd),
18384 cCL("fltd", e000190, 2, (RF, RR), rn_rd),
18385 cCL("fltdp", e0001b0, 2, (RF, RR), rn_rd),
18386 cCL("fltdm", e0001d0, 2, (RF, RR), rn_rd),
18387 cCL("fltdz", e0001f0, 2, (RF, RR), rn_rd),
18388 cCL("flte", e080110, 2, (RF, RR), rn_rd),
18389 cCL("fltep", e080130, 2, (RF, RR), rn_rd),
18390 cCL("fltem", e080150, 2, (RF, RR), rn_rd),
18391 cCL("fltez", e080170, 2, (RF, RR), rn_rd),
18392
18393 /* The implementation of the FIX instruction is broken on some
18394 assemblers, in that it accepts a precision specifier as well as a
18395 rounding specifier, despite the fact that this is meaningless.
18396 To be more compatible, we accept it as well, though of course it
18397 does not set any bits. */
18398 cCE("fix", e100110, 2, (RR, RF), rd_rm),
18399 cCL("fixp", e100130, 2, (RR, RF), rd_rm),
18400 cCL("fixm", e100150, 2, (RR, RF), rd_rm),
18401 cCL("fixz", e100170, 2, (RR, RF), rd_rm),
18402 cCL("fixsp", e100130, 2, (RR, RF), rd_rm),
18403 cCL("fixsm", e100150, 2, (RR, RF), rd_rm),
18404 cCL("fixsz", e100170, 2, (RR, RF), rd_rm),
18405 cCL("fixdp", e100130, 2, (RR, RF), rd_rm),
18406 cCL("fixdm", e100150, 2, (RR, RF), rd_rm),
18407 cCL("fixdz", e100170, 2, (RR, RF), rd_rm),
18408 cCL("fixep", e100130, 2, (RR, RF), rd_rm),
18409 cCL("fixem", e100150, 2, (RR, RF), rd_rm),
18410 cCL("fixez", e100170, 2, (RR, RF), rd_rm),
18411
18412 /* Instructions that were new with the real FPA, call them V2. */
18413 #undef ARM_VARIANT
18414 #define ARM_VARIANT & fpu_fpa_ext_v2
18415
18416 cCE("lfm", c100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18417 cCL("lfmfd", c900200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18418 cCL("lfmea", d100200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18419 cCE("sfm", c000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18420 cCL("sfmfd", d000200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18421 cCL("sfmea", c800200, 3, (RF, I4b, ADDR), fpa_ldmstm),
18422
18423 #undef ARM_VARIANT
18424 #define ARM_VARIANT & fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */
18425
18426 /* Moves and type conversions. */
18427 cCE("fcpys", eb00a40, 2, (RVS, RVS), vfp_sp_monadic),
18428 cCE("fmrs", e100a10, 2, (RR, RVS), vfp_reg_from_sp),
18429 cCE("fmsr", e000a10, 2, (RVS, RR), vfp_sp_from_reg),
18430 cCE("fmstat", ef1fa10, 0, (), noargs),
18431 cCE("vmrs", ef00a10, 2, (APSR_RR, RVC), vmrs),
18432 cCE("vmsr", ee00a10, 2, (RVC, RR), vmsr),
18433 cCE("fsitos", eb80ac0, 2, (RVS, RVS), vfp_sp_monadic),
18434 cCE("fuitos", eb80a40, 2, (RVS, RVS), vfp_sp_monadic),
18435 cCE("ftosis", ebd0a40, 2, (RVS, RVS), vfp_sp_monadic),
18436 cCE("ftosizs", ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18437 cCE("ftouis", ebc0a40, 2, (RVS, RVS), vfp_sp_monadic),
18438 cCE("ftouizs", ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic),
18439 cCE("fmrx", ef00a10, 2, (RR, RVC), rd_rn),
18440 cCE("fmxr", ee00a10, 2, (RVC, RR), rn_rd),
18441
18442 /* Memory operations. */
18443 cCE("flds", d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18444 cCE("fsts", d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst),
18445 cCE("fldmias", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18446 cCE("fldmfds", c900a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18447 cCE("fldmdbs", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18448 cCE("fldmeas", d300a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18449 cCE("fldmiax", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18450 cCE("fldmfdx", c900b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18451 cCE("fldmdbx", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18452 cCE("fldmeax", d300b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18453 cCE("fstmias", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18454 cCE("fstmeas", c800a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmia),
18455 cCE("fstmdbs", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18456 cCE("fstmfds", d200a00, 2, (RRnpctw, VRSLST), vfp_sp_ldstmdb),
18457 cCE("fstmiax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18458 cCE("fstmeax", c800b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmia),
18459 cCE("fstmdbx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18460 cCE("fstmfdx", d200b00, 2, (RRnpctw, VRDLST), vfp_xp_ldstmdb),
18461
18462 /* Monadic operations. */
18463 cCE("fabss", eb00ac0, 2, (RVS, RVS), vfp_sp_monadic),
18464 cCE("fnegs", eb10a40, 2, (RVS, RVS), vfp_sp_monadic),
18465 cCE("fsqrts", eb10ac0, 2, (RVS, RVS), vfp_sp_monadic),
18466
18467 /* Dyadic operations. */
18468 cCE("fadds", e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18469 cCE("fsubs", e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18470 cCE("fmuls", e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18471 cCE("fdivs", e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18472 cCE("fmacs", e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18473 cCE("fmscs", e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18474 cCE("fnmuls", e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18475 cCE("fnmacs", e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18476 cCE("fnmscs", e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18477
18478 /* Comparisons. */
18479 cCE("fcmps", eb40a40, 2, (RVS, RVS), vfp_sp_monadic),
18480 cCE("fcmpzs", eb50a40, 1, (RVS), vfp_sp_compare_z),
18481 cCE("fcmpes", eb40ac0, 2, (RVS, RVS), vfp_sp_monadic),
18482 cCE("fcmpezs", eb50ac0, 1, (RVS), vfp_sp_compare_z),
18483
18484 /* Double precision load/store are still present on single precision
18485 implementations. */
18486 cCE("fldd", d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18487 cCE("fstd", d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst),
18488 cCE("fldmiad", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18489 cCE("fldmfdd", c900b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18490 cCE("fldmdbd", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18491 cCE("fldmead", d300b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18492 cCE("fstmiad", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18493 cCE("fstmead", c800b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmia),
18494 cCE("fstmdbd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18495 cCE("fstmfdd", d200b00, 2, (RRnpctw, VRDLST), vfp_dp_ldstmdb),
18496
18497 #undef ARM_VARIANT
18498 #define ARM_VARIANT & fpu_vfp_ext_v1 /* VFP V1 (Double precision). */
18499
18500 /* Moves and type conversions. */
18501 cCE("fcpyd", eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18502 cCE("fcvtds", eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18503 cCE("fcvtsd", eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18504 cCE("fmdhr", e200b10, 2, (RVD, RR), vfp_dp_rn_rd),
18505 cCE("fmdlr", e000b10, 2, (RVD, RR), vfp_dp_rn_rd),
18506 cCE("fmrdh", e300b10, 2, (RR, RVD), vfp_dp_rd_rn),
18507 cCE("fmrdl", e100b10, 2, (RR, RVD), vfp_dp_rd_rn),
18508 cCE("fsitod", eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt),
18509 cCE("fuitod", eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt),
18510 cCE("ftosid", ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18511 cCE("ftosizd", ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18512 cCE("ftouid", ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt),
18513 cCE("ftouizd", ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt),
18514
18515 /* Monadic operations. */
18516 cCE("fabsd", eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18517 cCE("fnegd", eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18518 cCE("fsqrtd", eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18519
18520 /* Dyadic operations. */
18521 cCE("faddd", e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18522 cCE("fsubd", e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18523 cCE("fmuld", e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18524 cCE("fdivd", e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18525 cCE("fmacd", e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18526 cCE("fmscd", e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18527 cCE("fnmuld", e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18528 cCE("fnmacd", e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18529 cCE("fnmscd", e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18530
18531 /* Comparisons. */
18532 cCE("fcmpd", eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm),
18533 cCE("fcmpzd", eb50b40, 1, (RVD), vfp_dp_rd),
18534 cCE("fcmped", eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm),
18535 cCE("fcmpezd", eb50bc0, 1, (RVD), vfp_dp_rd),
18536
18537 #undef ARM_VARIANT
18538 #define ARM_VARIANT & fpu_vfp_ext_v2
18539
18540 cCE("fmsrr", c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2),
18541 cCE("fmrrs", c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2),
18542 cCE("fmdrr", c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn),
18543 cCE("fmrrd", c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm),
18544
18545 /* Instructions which may belong to either the Neon or VFP instruction sets.
18546 Individual encoder functions perform additional architecture checks. */
18547 #undef ARM_VARIANT
18548 #define ARM_VARIANT & fpu_vfp_ext_v1xd
18549 #undef THUMB_VARIANT
18550 #define THUMB_VARIANT & fpu_vfp_ext_v1xd
18551
18552 /* These mnemonics are unique to VFP. */
18553 NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt),
18554 NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div),
18555 nCE(vnmul, _vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18556 nCE(vnmla, _vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18557 nCE(vnmls, _vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18558 nCE(vcmp, _vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18559 nCE(vcmpe, _vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp),
18560 NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push),
18561 NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop),
18562 NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz),
18563
18564 /* Mnemonics shared by Neon and VFP. */
18565 nCEF(vmul, _vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul),
18566 nCEF(vmla, _vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18567 nCEF(vmls, _vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar),
18568
18569 nCEF(vadd, _vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18570 nCEF(vsub, _vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i),
18571
18572 NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18573 NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg),
18574
18575 NCE(vldm, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18576 NCE(vldmia, c900b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18577 NCE(vldmdb, d100b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18578 NCE(vstm, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18579 NCE(vstmia, c800b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18580 NCE(vstmdb, d000b00, 2, (RRnpctw, VRSDLST), neon_ldm_stm),
18581 NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18582 NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str),
18583
18584 nCEF(vcvt, _vcvt, 3, (RNSDQ, RNSDQ, oI32z), neon_cvt),
18585 nCEF(vcvtr, _vcvt, 2, (RNSDQ, RNSDQ), neon_cvtr),
18586 nCEF(vcvtb, _vcvt, 2, (RVS, RVS), neon_cvtb),
18587 nCEF(vcvtt, _vcvt, 2, (RVS, RVS), neon_cvtt),
18588
18589
18590 /* NOTE: All VMOV encoding is special-cased! */
18591 NCE(vmov, 0, 1, (VMOV), neon_mov),
18592 NCE(vmovq, 0, 1, (VMOV), neon_mov),
18593
18594 #undef THUMB_VARIANT
18595 #define THUMB_VARIANT & fpu_neon_ext_v1
18596 #undef ARM_VARIANT
18597 #define ARM_VARIANT & fpu_neon_ext_v1
18598
18599 /* Data processing with three registers of the same length. */
18600 /* integer ops, valid types S8 S16 S32 U8 U16 U32. */
18601 NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su),
18602 NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su),
18603 NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18604 NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18605 NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18606 NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18607 NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su),
18608 NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su),
18609 /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */
18610 NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18611 NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18612 NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su),
18613 NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su),
18614 NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18615 NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18616 NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_rshl),
18617 NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_rshl),
18618 /* If not immediate, fall back to neon_dyadic_i64_su.
18619 shl_imm should accept I8 I16 I32 I64,
18620 qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */
18621 nUF(vshl, _vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm),
18622 nUF(vshlq, _vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm),
18623 nUF(vqshl, _vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm),
18624 nUF(vqshlq, _vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm),
18625 /* Logic ops, types optional & ignored. */
18626 nUF(vand, _vand, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18627 nUF(vandq, _vand, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18628 nUF(vbic, _vbic, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18629 nUF(vbicq, _vbic, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18630 nUF(vorr, _vorr, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18631 nUF(vorrq, _vorr, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18632 nUF(vorn, _vorn, 3, (RNDQ, oRNDQ, RNDQ_Ibig), neon_logic),
18633 nUF(vornq, _vorn, 3, (RNQ, oRNQ, RNDQ_Ibig), neon_logic),
18634 nUF(veor, _veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic),
18635 nUF(veorq, _veor, 3, (RNQ, oRNQ, RNQ), neon_logic),
18636 /* Bitfield ops, untyped. */
18637 NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18638 NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18639 NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18640 NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18641 NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield),
18642 NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield),
18643 /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */
18644 nUF(vabd, _vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18645 nUF(vabdq, _vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18646 nUF(vmax, _vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18647 nUF(vmaxq, _vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18648 nUF(vmin, _vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su),
18649 nUF(vminq, _vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su),
18650 /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall
18651 back to neon_dyadic_if_su. */
18652 nUF(vcge, _vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18653 nUF(vcgeq, _vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18654 nUF(vcgt, _vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp),
18655 nUF(vcgtq, _vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp),
18656 nUF(vclt, _vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18657 nUF(vcltq, _vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18658 nUF(vcle, _vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv),
18659 nUF(vcleq, _vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv),
18660 /* Comparison. Type I8 I16 I32 F32. */
18661 nUF(vceq, _vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq),
18662 nUF(vceqq, _vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq),
18663 /* As above, D registers only. */
18664 nUF(vpmax, _vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18665 nUF(vpmin, _vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d),
18666 /* Int and float variants, signedness unimportant. */
18667 nUF(vmlaq, _vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18668 nUF(vmlsq, _vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar),
18669 nUF(vpadd, _vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d),
18670 /* Add/sub take types I8 I16 I32 I64 F32. */
18671 nUF(vaddq, _vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18672 nUF(vsubq, _vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i),
18673 /* vtst takes sizes 8, 16, 32. */
18674 NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst),
18675 NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst),
18676 /* VMUL takes I8 I16 I32 F32 P8. */
18677 nUF(vmulq, _vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul),
18678 /* VQD{R}MULH takes S16 S32. */
18679 nUF(vqdmulh, _vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18680 nUF(vqdmulhq, _vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18681 nUF(vqrdmulh, _vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh),
18682 nUF(vqrdmulhq, _vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh),
18683 NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18684 NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18685 NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute),
18686 NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute),
18687 NUF(vaclt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18688 NUF(vacltq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18689 NUF(vacle, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv),
18690 NUF(vacleq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv),
18691 NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18692 NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18693 NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step),
18694 NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step),
18695
18696 /* Two address, int/float. Types S8 S16 S32 F32. */
18697 NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg),
18698 NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg),
18699
18700 /* Data processing with two registers and a shift amount. */
18701 /* Right shifts, and variants with rounding.
18702 Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */
18703 NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18704 NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18705 NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm),
18706 NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm),
18707 NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18708 NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18709 NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm),
18710 NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm),
18711 /* Shift and insert. Sizes accepted 8 16 32 64. */
18712 NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli),
18713 NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli),
18714 NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri),
18715 NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri),
18716 /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */
18717 NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm),
18718 NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm),
18719 /* Right shift immediate, saturating & narrowing, with rounding variants.
18720 Types accepted S16 S32 S64 U16 U32 U64. */
18721 NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18722 NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow),
18723 /* As above, unsigned. Types accepted S16 S32 S64. */
18724 NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18725 NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u),
18726 /* Right shift narrowing. Types accepted I16 I32 I64. */
18727 NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18728 NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow),
18729 /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */
18730 nUF(vshll, _vshll, 3, (RNQ, RND, I32), neon_shll),
18731 /* CVT with optional immediate for fixed-point variant. */
18732 nUF(vcvtq, _vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt),
18733
18734 nUF(vmvn, _vmvn, 2, (RNDQ, RNDQ_Ibig), neon_mvn),
18735 nUF(vmvnq, _vmvn, 2, (RNQ, RNDQ_Ibig), neon_mvn),
18736
18737 /* Data processing, three registers of different lengths. */
18738 /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */
18739 NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal),
18740 NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long),
18741 NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long),
18742 NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long),
18743 /* If not scalar, fall back to neon_dyadic_long.
18744 Vector types as above, scalar types S16 S32 U16 U32. */
18745 nUF(vmlal, _vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18746 nUF(vmlsl, _vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long),
18747 /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */
18748 NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18749 NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide),
18750 /* Dyadic, narrowing insns. Types I16 I32 I64. */
18751 NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18752 NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18753 NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18754 NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow),
18755 /* Saturating doubling multiplies. Types S16 S32. */
18756 nUF(vqdmlal, _vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18757 nUF(vqdmlsl, _vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18758 nUF(vqdmull, _vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long),
18759 /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types
18760 S16 S32 U16 U32. */
18761 nUF(vmull, _vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull),
18762
18763 /* Extract. Size 8. */
18764 NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I15), neon_ext),
18765 NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I15), neon_ext),
18766
18767 /* Two registers, miscellaneous. */
18768 /* Reverse. Sizes 8 16 32 (must be < size in opcode). */
18769 NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev),
18770 NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev),
18771 NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev),
18772 NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev),
18773 NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev),
18774 NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev),
18775 /* Vector replicate. Sizes 8 16 32. */
18776 nCE(vdup, _vdup, 2, (RNDQ, RR_RNSC), neon_dup),
18777 nCE(vdupq, _vdup, 2, (RNQ, RR_RNSC), neon_dup),
18778 /* VMOVL. Types S8 S16 S32 U8 U16 U32. */
18779 NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl),
18780 /* VMOVN. Types I16 I32 I64. */
18781 nUF(vmovn, _vmovn, 2, (RND, RNQ), neon_movn),
18782 /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */
18783 nUF(vqmovn, _vqmovn, 2, (RND, RNQ), neon_qmovn),
18784 /* VQMOVUN. Types S16 S32 S64. */
18785 nUF(vqmovun, _vqmovun, 2, (RND, RNQ), neon_qmovun),
18786 /* VZIP / VUZP. Sizes 8 16 32. */
18787 NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp),
18788 NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp),
18789 NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp),
18790 NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp),
18791 /* VQABS / VQNEG. Types S8 S16 S32. */
18792 NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18793 NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg),
18794 NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg),
18795 NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg),
18796 /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */
18797 NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long),
18798 NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long),
18799 NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long),
18800 NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long),
18801 /* Reciprocal estimates. Types U32 F32. */
18802 NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est),
18803 NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est),
18804 NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est),
18805 NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est),
18806 /* VCLS. Types S8 S16 S32. */
18807 NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls),
18808 NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls),
18809 /* VCLZ. Types I8 I16 I32. */
18810 NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz),
18811 NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz),
18812 /* VCNT. Size 8. */
18813 NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt),
18814 NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt),
18815 /* Two address, untyped. */
18816 NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp),
18817 NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp),
18818 /* VTRN. Sizes 8 16 32. */
18819 nUF(vtrn, _vtrn, 2, (RNDQ, RNDQ), neon_trn),
18820 nUF(vtrnq, _vtrn, 2, (RNQ, RNQ), neon_trn),
18821
18822 /* Table lookup. Size 8. */
18823 NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18824 NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx),
18825
18826 #undef THUMB_VARIANT
18827 #define THUMB_VARIANT & fpu_vfp_v3_or_neon_ext
18828 #undef ARM_VARIANT
18829 #define ARM_VARIANT & fpu_vfp_v3_or_neon_ext
18830
18831 /* Neon element/structure load/store. */
18832 nUF(vld1, _vld1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18833 nUF(vst1, _vst1, 2, (NSTRLST, ADDR), neon_ldx_stx),
18834 nUF(vld2, _vld2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18835 nUF(vst2, _vst2, 2, (NSTRLST, ADDR), neon_ldx_stx),
18836 nUF(vld3, _vld3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18837 nUF(vst3, _vst3, 2, (NSTRLST, ADDR), neon_ldx_stx),
18838 nUF(vld4, _vld4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18839 nUF(vst4, _vst4, 2, (NSTRLST, ADDR), neon_ldx_stx),
18840
18841 #undef THUMB_VARIANT
18842 #define THUMB_VARIANT &fpu_vfp_ext_v3xd
18843 #undef ARM_VARIANT
18844 #define ARM_VARIANT &fpu_vfp_ext_v3xd
18845 cCE("fconsts", eb00a00, 2, (RVS, I255), vfp_sp_const),
18846 cCE("fshtos", eba0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18847 cCE("fsltos", eba0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18848 cCE("fuhtos", ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18849 cCE("fultos", ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18850 cCE("ftoshs", ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18851 cCE("ftosls", ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18852 cCE("ftouhs", ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16),
18853 cCE("ftouls", ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32),
18854
18855 #undef THUMB_VARIANT
18856 #define THUMB_VARIANT & fpu_vfp_ext_v3
18857 #undef ARM_VARIANT
18858 #define ARM_VARIANT & fpu_vfp_ext_v3
18859
18860 cCE("fconstd", eb00b00, 2, (RVD, I255), vfp_dp_const),
18861 cCE("fshtod", eba0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18862 cCE("fsltod", eba0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18863 cCE("fuhtod", ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18864 cCE("fultod", ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18865 cCE("ftoshd", ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18866 cCE("ftosld", ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18867 cCE("ftouhd", ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16),
18868 cCE("ftould", ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32),
18869
18870 #undef ARM_VARIANT
18871 #define ARM_VARIANT &fpu_vfp_ext_fma
18872 #undef THUMB_VARIANT
18873 #define THUMB_VARIANT &fpu_vfp_ext_fma
18874 /* Mnemonics shared by Neon and VFP. These are included in the
18875 VFP FMA variant; NEON and VFP FMA always includes the NEON
18876 FMA instructions. */
18877 nCEF(vfma, _vfma, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18878 nCEF(vfms, _vfms, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_fmac),
18879 /* ffmas/ffmad/ffmss/ffmsd are dummy mnemonics to satisfy gas;
18880 the v form should always be used. */
18881 cCE("ffmas", ea00a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18882 cCE("ffnmas", ea00a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic),
18883 cCE("ffmad", ea00b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18884 cCE("ffnmad", ea00b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm),
18885 nCE(vfnma, _vfnma, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18886 nCE(vfnms, _vfnms, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul),
18887
18888 #undef THUMB_VARIANT
18889 #undef ARM_VARIANT
18890 #define ARM_VARIANT & arm_cext_xscale /* Intel XScale extensions. */
18891
18892 cCE("mia", e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18893 cCE("miaph", e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18894 cCE("miabb", e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18895 cCE("miabt", e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18896 cCE("miatb", e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18897 cCE("miatt", e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia),
18898 cCE("mar", c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar),
18899 cCE("mra", c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra),
18900
18901 #undef ARM_VARIANT
18902 #define ARM_VARIANT & arm_cext_iwmmxt /* Intel Wireless MMX technology. */
18903
18904 cCE("tandcb", e13f130, 1, (RR), iwmmxt_tandorc),
18905 cCE("tandch", e53f130, 1, (RR), iwmmxt_tandorc),
18906 cCE("tandcw", e93f130, 1, (RR), iwmmxt_tandorc),
18907 cCE("tbcstb", e400010, 2, (RIWR, RR), rn_rd),
18908 cCE("tbcsth", e400050, 2, (RIWR, RR), rn_rd),
18909 cCE("tbcstw", e400090, 2, (RIWR, RR), rn_rd),
18910 cCE("textrcb", e130170, 2, (RR, I7), iwmmxt_textrc),
18911 cCE("textrch", e530170, 2, (RR, I7), iwmmxt_textrc),
18912 cCE("textrcw", e930170, 2, (RR, I7), iwmmxt_textrc),
18913 cCE("textrmub", e100070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18914 cCE("textrmuh", e500070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18915 cCE("textrmuw", e900070, 3, (RR, RIWR, I7), iwmmxt_textrm),
18916 cCE("textrmsb", e100078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18917 cCE("textrmsh", e500078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18918 cCE("textrmsw", e900078, 3, (RR, RIWR, I7), iwmmxt_textrm),
18919 cCE("tinsrb", e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18920 cCE("tinsrh", e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18921 cCE("tinsrw", e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr),
18922 cCE("tmcr", e000110, 2, (RIWC_RIWG, RR), rn_rd),
18923 cCE("tmcrr", c400000, 3, (RIWR, RR, RR), rm_rd_rn),
18924 cCE("tmia", e200010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18925 cCE("tmiaph", e280010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18926 cCE("tmiabb", e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18927 cCE("tmiabt", e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18928 cCE("tmiatb", e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18929 cCE("tmiatt", e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia),
18930 cCE("tmovmskb", e100030, 2, (RR, RIWR), rd_rn),
18931 cCE("tmovmskh", e500030, 2, (RR, RIWR), rd_rn),
18932 cCE("tmovmskw", e900030, 2, (RR, RIWR), rd_rn),
18933 cCE("tmrc", e100110, 2, (RR, RIWC_RIWG), rd_rn),
18934 cCE("tmrrc", c500000, 3, (RR, RR, RIWR), rd_rn_rm),
18935 cCE("torcb", e13f150, 1, (RR), iwmmxt_tandorc),
18936 cCE("torch", e53f150, 1, (RR), iwmmxt_tandorc),
18937 cCE("torcw", e93f150, 1, (RR), iwmmxt_tandorc),
18938 cCE("waccb", e0001c0, 2, (RIWR, RIWR), rd_rn),
18939 cCE("wacch", e4001c0, 2, (RIWR, RIWR), rd_rn),
18940 cCE("waccw", e8001c0, 2, (RIWR, RIWR), rd_rn),
18941 cCE("waddbss", e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18942 cCE("waddb", e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18943 cCE("waddbus", e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18944 cCE("waddhss", e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18945 cCE("waddh", e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18946 cCE("waddhus", e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18947 cCE("waddwss", eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18948 cCE("waddw", e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18949 cCE("waddwus", e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18950 cCE("waligni", e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni),
18951 cCE("walignr0", e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18952 cCE("walignr1", e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18953 cCE("walignr2", ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18954 cCE("walignr3", eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18955 cCE("wand", e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18956 cCE("wandn", e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18957 cCE("wavg2b", e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18958 cCE("wavg2br", e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18959 cCE("wavg2h", ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18960 cCE("wavg2hr", ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18961 cCE("wcmpeqb", e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18962 cCE("wcmpeqh", e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18963 cCE("wcmpeqw", e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18964 cCE("wcmpgtub", e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18965 cCE("wcmpgtuh", e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18966 cCE("wcmpgtuw", e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18967 cCE("wcmpgtsb", e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18968 cCE("wcmpgtsh", e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18969 cCE("wcmpgtsw", eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18970 cCE("wldrb", c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18971 cCE("wldrh", c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
18972 cCE("wldrw", c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
18973 cCE("wldrd", c500100, 2, (RIWR, ADDR), iwmmxt_wldstd),
18974 cCE("wmacs", e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18975 cCE("wmacsz", e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18976 cCE("wmacu", e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18977 cCE("wmacuz", e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18978 cCE("wmadds", ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18979 cCE("wmaddu", e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18980 cCE("wmaxsb", e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18981 cCE("wmaxsh", e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18982 cCE("wmaxsw", ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18983 cCE("wmaxub", e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18984 cCE("wmaxuh", e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18985 cCE("wmaxuw", e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18986 cCE("wminsb", e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18987 cCE("wminsh", e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18988 cCE("wminsw", eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18989 cCE("wminub", e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18990 cCE("wminuh", e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18991 cCE("wminuw", e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18992 cCE("wmov", e000000, 2, (RIWR, RIWR), iwmmxt_wmov),
18993 cCE("wmulsm", e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18994 cCE("wmulsl", e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18995 cCE("wmulum", e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18996 cCE("wmulul", e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18997 cCE("wor", e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18998 cCE("wpackhss", e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
18999 cCE("wpackhus", e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19000 cCE("wpackwss", eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19001 cCE("wpackwus", e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19002 cCE("wpackdss", ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19003 cCE("wpackdus", ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19004 cCE("wrorh", e700040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19005 cCE("wrorhg", e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19006 cCE("wrorw", eb00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19007 cCE("wrorwg", eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19008 cCE("wrord", ef00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19009 cCE("wrordg", ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19010 cCE("wsadb", e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19011 cCE("wsadbz", e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19012 cCE("wsadh", e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19013 cCE("wsadhz", e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19014 cCE("wshufh", e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh),
19015 cCE("wsllh", e500040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19016 cCE("wsllhg", e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19017 cCE("wsllw", e900040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19018 cCE("wsllwg", e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19019 cCE("wslld", ed00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19020 cCE("wslldg", ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19021 cCE("wsrah", e400040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19022 cCE("wsrahg", e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19023 cCE("wsraw", e800040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19024 cCE("wsrawg", e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19025 cCE("wsrad", ec00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19026 cCE("wsradg", ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19027 cCE("wsrlh", e600040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19028 cCE("wsrlhg", e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19029 cCE("wsrlw", ea00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19030 cCE("wsrlwg", ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19031 cCE("wsrld", ee00040, 3, (RIWR, RIWR, RIWR_I32z),iwmmxt_wrwrwr_or_imm5),
19032 cCE("wsrldg", ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm),
19033 cCE("wstrb", c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19034 cCE("wstrh", c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh),
19035 cCE("wstrw", c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw),
19036 cCE("wstrd", c400100, 2, (RIWR, ADDR), iwmmxt_wldstd),
19037 cCE("wsubbss", e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19038 cCE("wsubb", e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19039 cCE("wsubbus", e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19040 cCE("wsubhss", e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19041 cCE("wsubh", e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19042 cCE("wsubhus", e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19043 cCE("wsubwss", eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19044 cCE("wsubw", e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19045 cCE("wsubwus", e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19046 cCE("wunpckehub",e0000c0, 2, (RIWR, RIWR), rd_rn),
19047 cCE("wunpckehuh",e4000c0, 2, (RIWR, RIWR), rd_rn),
19048 cCE("wunpckehuw",e8000c0, 2, (RIWR, RIWR), rd_rn),
19049 cCE("wunpckehsb",e2000c0, 2, (RIWR, RIWR), rd_rn),
19050 cCE("wunpckehsh",e6000c0, 2, (RIWR, RIWR), rd_rn),
19051 cCE("wunpckehsw",ea000c0, 2, (RIWR, RIWR), rd_rn),
19052 cCE("wunpckihb", e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19053 cCE("wunpckihh", e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19054 cCE("wunpckihw", e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19055 cCE("wunpckelub",e0000e0, 2, (RIWR, RIWR), rd_rn),
19056 cCE("wunpckeluh",e4000e0, 2, (RIWR, RIWR), rd_rn),
19057 cCE("wunpckeluw",e8000e0, 2, (RIWR, RIWR), rd_rn),
19058 cCE("wunpckelsb",e2000e0, 2, (RIWR, RIWR), rd_rn),
19059 cCE("wunpckelsh",e6000e0, 2, (RIWR, RIWR), rd_rn),
19060 cCE("wunpckelsw",ea000e0, 2, (RIWR, RIWR), rd_rn),
19061 cCE("wunpckilb", e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19062 cCE("wunpckilh", e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19063 cCE("wunpckilw", e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19064 cCE("wxor", e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19065 cCE("wzero", e300000, 1, (RIWR), iwmmxt_wzero),
19066
19067 #undef ARM_VARIANT
19068 #define ARM_VARIANT & arm_cext_iwmmxt2 /* Intel Wireless MMX technology, version 2. */
19069
19070 cCE("torvscb", e12f190, 1, (RR), iwmmxt_tandorc),
19071 cCE("torvsch", e52f190, 1, (RR), iwmmxt_tandorc),
19072 cCE("torvscw", e92f190, 1, (RR), iwmmxt_tandorc),
19073 cCE("wabsb", e2001c0, 2, (RIWR, RIWR), rd_rn),
19074 cCE("wabsh", e6001c0, 2, (RIWR, RIWR), rd_rn),
19075 cCE("wabsw", ea001c0, 2, (RIWR, RIWR), rd_rn),
19076 cCE("wabsdiffb", e1001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19077 cCE("wabsdiffh", e5001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19078 cCE("wabsdiffw", e9001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19079 cCE("waddbhusl", e2001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19080 cCE("waddbhusm", e6001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19081 cCE("waddhc", e600180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19082 cCE("waddwc", ea00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19083 cCE("waddsubhx", ea001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19084 cCE("wavg4", e400000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19085 cCE("wavg4r", e500000, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19086 cCE("wmaddsn", ee00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19087 cCE("wmaddsx", eb00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19088 cCE("wmaddun", ec00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19089 cCE("wmaddux", e900100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19090 cCE("wmerge", e000080, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_wmerge),
19091 cCE("wmiabb", e0000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19092 cCE("wmiabt", e1000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19093 cCE("wmiatb", e2000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19094 cCE("wmiatt", e3000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19095 cCE("wmiabbn", e4000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19096 cCE("wmiabtn", e5000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19097 cCE("wmiatbn", e6000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19098 cCE("wmiattn", e7000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19099 cCE("wmiawbb", e800120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19100 cCE("wmiawbt", e900120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19101 cCE("wmiawtb", ea00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19102 cCE("wmiawtt", eb00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19103 cCE("wmiawbbn", ec00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19104 cCE("wmiawbtn", ed00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19105 cCE("wmiawtbn", ee00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19106 cCE("wmiawttn", ef00120, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19107 cCE("wmulsmr", ef00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19108 cCE("wmulumr", ed00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19109 cCE("wmulwumr", ec000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19110 cCE("wmulwsmr", ee000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19111 cCE("wmulwum", ed000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19112 cCE("wmulwsm", ef000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19113 cCE("wmulwl", eb000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19114 cCE("wqmiabb", e8000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19115 cCE("wqmiabt", e9000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19116 cCE("wqmiatb", ea000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19117 cCE("wqmiatt", eb000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19118 cCE("wqmiabbn", ec000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19119 cCE("wqmiabtn", ed000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19120 cCE("wqmiatbn", ee000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19121 cCE("wqmiattn", ef000a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19122 cCE("wqmulm", e100080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19123 cCE("wqmulmr", e300080, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19124 cCE("wqmulwm", ec000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19125 cCE("wqmulwmr", ee000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19126 cCE("wsubaddhx", ed001c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm),
19127
19128 #undef ARM_VARIANT
19129 #define ARM_VARIANT & arm_cext_maverick /* Cirrus Maverick instructions. */
19130
19131 cCE("cfldrs", c100400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19132 cCE("cfldrd", c500400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19133 cCE("cfldr32", c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19134 cCE("cfldr64", c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19135 cCE("cfstrs", c000400, 2, (RMF, ADDRGLDC), rd_cpaddr),
19136 cCE("cfstrd", c400400, 2, (RMD, ADDRGLDC), rd_cpaddr),
19137 cCE("cfstr32", c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr),
19138 cCE("cfstr64", c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr),
19139 cCE("cfmvsr", e000450, 2, (RMF, RR), rn_rd),
19140 cCE("cfmvrs", e100450, 2, (RR, RMF), rd_rn),
19141 cCE("cfmvdlr", e000410, 2, (RMD, RR), rn_rd),
19142 cCE("cfmvrdl", e100410, 2, (RR, RMD), rd_rn),
19143 cCE("cfmvdhr", e000430, 2, (RMD, RR), rn_rd),
19144 cCE("cfmvrdh", e100430, 2, (RR, RMD), rd_rn),
19145 cCE("cfmv64lr", e000510, 2, (RMDX, RR), rn_rd),
19146 cCE("cfmvr64l", e100510, 2, (RR, RMDX), rd_rn),
19147 cCE("cfmv64hr", e000530, 2, (RMDX, RR), rn_rd),
19148 cCE("cfmvr64h", e100530, 2, (RR, RMDX), rd_rn),
19149 cCE("cfmval32", e200440, 2, (RMAX, RMFX), rd_rn),
19150 cCE("cfmv32al", e100440, 2, (RMFX, RMAX), rd_rn),
19151 cCE("cfmvam32", e200460, 2, (RMAX, RMFX), rd_rn),
19152 cCE("cfmv32am", e100460, 2, (RMFX, RMAX), rd_rn),
19153 cCE("cfmvah32", e200480, 2, (RMAX, RMFX), rd_rn),
19154 cCE("cfmv32ah", e100480, 2, (RMFX, RMAX), rd_rn),
19155 cCE("cfmva32", e2004a0, 2, (RMAX, RMFX), rd_rn),
19156 cCE("cfmv32a", e1004a0, 2, (RMFX, RMAX), rd_rn),
19157 cCE("cfmva64", e2004c0, 2, (RMAX, RMDX), rd_rn),
19158 cCE("cfmv64a", e1004c0, 2, (RMDX, RMAX), rd_rn),
19159 cCE("cfmvsc32", e2004e0, 2, (RMDS, RMDX), mav_dspsc),
19160 cCE("cfmv32sc", e1004e0, 2, (RMDX, RMDS), rd),
19161 cCE("cfcpys", e000400, 2, (RMF, RMF), rd_rn),
19162 cCE("cfcpyd", e000420, 2, (RMD, RMD), rd_rn),
19163 cCE("cfcvtsd", e000460, 2, (RMD, RMF), rd_rn),
19164 cCE("cfcvtds", e000440, 2, (RMF, RMD), rd_rn),
19165 cCE("cfcvt32s", e000480, 2, (RMF, RMFX), rd_rn),
19166 cCE("cfcvt32d", e0004a0, 2, (RMD, RMFX), rd_rn),
19167 cCE("cfcvt64s", e0004c0, 2, (RMF, RMDX), rd_rn),
19168 cCE("cfcvt64d", e0004e0, 2, (RMD, RMDX), rd_rn),
19169 cCE("cfcvts32", e100580, 2, (RMFX, RMF), rd_rn),
19170 cCE("cfcvtd32", e1005a0, 2, (RMFX, RMD), rd_rn),
19171 cCE("cftruncs32",e1005c0, 2, (RMFX, RMF), rd_rn),
19172 cCE("cftruncd32",e1005e0, 2, (RMFX, RMD), rd_rn),
19173 cCE("cfrshl32", e000550, 3, (RMFX, RMFX, RR), mav_triple),
19174 cCE("cfrshl64", e000570, 3, (RMDX, RMDX, RR), mav_triple),
19175 cCE("cfsh32", e000500, 3, (RMFX, RMFX, I63s), mav_shift),
19176 cCE("cfsh64", e200500, 3, (RMDX, RMDX, I63s), mav_shift),
19177 cCE("cfcmps", e100490, 3, (RR, RMF, RMF), rd_rn_rm),
19178 cCE("cfcmpd", e1004b0, 3, (RR, RMD, RMD), rd_rn_rm),
19179 cCE("cfcmp32", e100590, 3, (RR, RMFX, RMFX), rd_rn_rm),
19180 cCE("cfcmp64", e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm),
19181 cCE("cfabss", e300400, 2, (RMF, RMF), rd_rn),
19182 cCE("cfabsd", e300420, 2, (RMD, RMD), rd_rn),
19183 cCE("cfnegs", e300440, 2, (RMF, RMF), rd_rn),
19184 cCE("cfnegd", e300460, 2, (RMD, RMD), rd_rn),
19185 cCE("cfadds", e300480, 3, (RMF, RMF, RMF), rd_rn_rm),
19186 cCE("cfaddd", e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm),
19187 cCE("cfsubs", e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm),
19188 cCE("cfsubd", e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm),
19189 cCE("cfmuls", e100400, 3, (RMF, RMF, RMF), rd_rn_rm),
19190 cCE("cfmuld", e100420, 3, (RMD, RMD, RMD), rd_rn_rm),
19191 cCE("cfabs32", e300500, 2, (RMFX, RMFX), rd_rn),
19192 cCE("cfabs64", e300520, 2, (RMDX, RMDX), rd_rn),
19193 cCE("cfneg32", e300540, 2, (RMFX, RMFX), rd_rn),
19194 cCE("cfneg64", e300560, 2, (RMDX, RMDX), rd_rn),
19195 cCE("cfadd32", e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19196 cCE("cfadd64", e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19197 cCE("cfsub32", e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19198 cCE("cfsub64", e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19199 cCE("cfmul32", e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19200 cCE("cfmul64", e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm),
19201 cCE("cfmac32", e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19202 cCE("cfmsc32", e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm),
19203 cCE("cfmadd32", e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19204 cCE("cfmsub32", e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad),
19205 cCE("cfmadda32", e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19206 cCE("cfmsuba32", e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad),
19207 };
19208 #undef ARM_VARIANT
19209 #undef THUMB_VARIANT
19210 #undef TCE
19211 #undef TCM
19212 #undef TUE
19213 #undef TUF
19214 #undef TCC
19215 #undef cCE
19216 #undef cCL
19217 #undef C3E
19218 #undef CE
19219 #undef CM
19220 #undef UE
19221 #undef UF
19222 #undef UT
19223 #undef NUF
19224 #undef nUF
19225 #undef NCE
19226 #undef nCE
19227 #undef OPS0
19228 #undef OPS1
19229 #undef OPS2
19230 #undef OPS3
19231 #undef OPS4
19232 #undef OPS5
19233 #undef OPS6
19234 #undef do_0
19235 \f
19236 /* MD interface: bits in the object file. */
19237
19238 /* Turn an integer of n bytes (in val) into a stream of bytes appropriate
19239 for use in the a.out file, and stores them in the array pointed to by buf.
19240 This knows about the endian-ness of the target machine and does
19241 THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
19242 2 (short) and 4 (long) Floating numbers are put out as a series of
19243 LITTLENUMS (shorts, here at least). */
19244
19245 void
19246 md_number_to_chars (char * buf, valueT val, int n)
19247 {
19248 if (target_big_endian)
19249 number_to_chars_bigendian (buf, val, n);
19250 else
19251 number_to_chars_littleendian (buf, val, n);
19252 }
19253
19254 static valueT
19255 md_chars_to_number (char * buf, int n)
19256 {
19257 valueT result = 0;
19258 unsigned char * where = (unsigned char *) buf;
19259
19260 if (target_big_endian)
19261 {
19262 while (n--)
19263 {
19264 result <<= 8;
19265 result |= (*where++ & 255);
19266 }
19267 }
19268 else
19269 {
19270 while (n--)
19271 {
19272 result <<= 8;
19273 result |= (where[n] & 255);
19274 }
19275 }
19276
19277 return result;
19278 }
19279
19280 /* MD interface: Sections. */
19281
19282 /* Calculate the maximum variable size (i.e., excluding fr_fix)
19283 that an rs_machine_dependent frag may reach. */
19284
19285 unsigned int
19286 arm_frag_max_var (fragS *fragp)
19287 {
19288 /* We only use rs_machine_dependent for variable-size Thumb instructions,
19289 which are either THUMB_SIZE (2) or INSN_SIZE (4).
19290
19291 Note that we generate relaxable instructions even for cases that don't
19292 really need it, like an immediate that's a trivial constant. So we're
19293 overestimating the instruction size for some of those cases. Rather
19294 than putting more intelligence here, it would probably be better to
19295 avoid generating a relaxation frag in the first place when it can be
19296 determined up front that a short instruction will suffice. */
19297
19298 gas_assert (fragp->fr_type == rs_machine_dependent);
19299 return INSN_SIZE;
19300 }
19301
19302 /* Estimate the size of a frag before relaxing. Assume everything fits in
19303 2 bytes. */
19304
19305 int
19306 md_estimate_size_before_relax (fragS * fragp,
19307 segT segtype ATTRIBUTE_UNUSED)
19308 {
19309 fragp->fr_var = 2;
19310 return 2;
19311 }
19312
19313 /* Convert a machine dependent frag. */
19314
19315 void
19316 md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp)
19317 {
19318 unsigned long insn;
19319 unsigned long old_op;
19320 char *buf;
19321 expressionS exp;
19322 fixS *fixp;
19323 int reloc_type;
19324 int pc_rel;
19325 int opcode;
19326
19327 buf = fragp->fr_literal + fragp->fr_fix;
19328
19329 old_op = bfd_get_16(abfd, buf);
19330 if (fragp->fr_symbol)
19331 {
19332 exp.X_op = O_symbol;
19333 exp.X_add_symbol = fragp->fr_symbol;
19334 }
19335 else
19336 {
19337 exp.X_op = O_constant;
19338 }
19339 exp.X_add_number = fragp->fr_offset;
19340 opcode = fragp->fr_subtype;
19341 switch (opcode)
19342 {
19343 case T_MNEM_ldr_pc:
19344 case T_MNEM_ldr_pc2:
19345 case T_MNEM_ldr_sp:
19346 case T_MNEM_str_sp:
19347 case T_MNEM_ldr:
19348 case T_MNEM_ldrb:
19349 case T_MNEM_ldrh:
19350 case T_MNEM_str:
19351 case T_MNEM_strb:
19352 case T_MNEM_strh:
19353 if (fragp->fr_var == 4)
19354 {
19355 insn = THUMB_OP32 (opcode);
19356 if ((old_op >> 12) == 4 || (old_op >> 12) == 9)
19357 {
19358 insn |= (old_op & 0x700) << 4;
19359 }
19360 else
19361 {
19362 insn |= (old_op & 7) << 12;
19363 insn |= (old_op & 0x38) << 13;
19364 }
19365 insn |= 0x00000c00;
19366 put_thumb32_insn (buf, insn);
19367 reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM;
19368 }
19369 else
19370 {
19371 reloc_type = BFD_RELOC_ARM_THUMB_OFFSET;
19372 }
19373 pc_rel = (opcode == T_MNEM_ldr_pc2);
19374 break;
19375 case T_MNEM_adr:
19376 if (fragp->fr_var == 4)
19377 {
19378 insn = THUMB_OP32 (opcode);
19379 insn |= (old_op & 0xf0) << 4;
19380 put_thumb32_insn (buf, insn);
19381 reloc_type = BFD_RELOC_ARM_T32_ADD_PC12;
19382 }
19383 else
19384 {
19385 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19386 exp.X_add_number -= 4;
19387 }
19388 pc_rel = 1;
19389 break;
19390 case T_MNEM_mov:
19391 case T_MNEM_movs:
19392 case T_MNEM_cmp:
19393 case T_MNEM_cmn:
19394 if (fragp->fr_var == 4)
19395 {
19396 int r0off = (opcode == T_MNEM_mov
19397 || opcode == T_MNEM_movs) ? 0 : 8;
19398 insn = THUMB_OP32 (opcode);
19399 insn = (insn & 0xe1ffffff) | 0x10000000;
19400 insn |= (old_op & 0x700) << r0off;
19401 put_thumb32_insn (buf, insn);
19402 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19403 }
19404 else
19405 {
19406 reloc_type = BFD_RELOC_ARM_THUMB_IMM;
19407 }
19408 pc_rel = 0;
19409 break;
19410 case T_MNEM_b:
19411 if (fragp->fr_var == 4)
19412 {
19413 insn = THUMB_OP32(opcode);
19414 put_thumb32_insn (buf, insn);
19415 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25;
19416 }
19417 else
19418 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12;
19419 pc_rel = 1;
19420 break;
19421 case T_MNEM_bcond:
19422 if (fragp->fr_var == 4)
19423 {
19424 insn = THUMB_OP32(opcode);
19425 insn |= (old_op & 0xf00) << 14;
19426 put_thumb32_insn (buf, insn);
19427 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20;
19428 }
19429 else
19430 reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9;
19431 pc_rel = 1;
19432 break;
19433 case T_MNEM_add_sp:
19434 case T_MNEM_add_pc:
19435 case T_MNEM_inc_sp:
19436 case T_MNEM_dec_sp:
19437 if (fragp->fr_var == 4)
19438 {
19439 /* ??? Choose between add and addw. */
19440 insn = THUMB_OP32 (opcode);
19441 insn |= (old_op & 0xf0) << 4;
19442 put_thumb32_insn (buf, insn);
19443 if (opcode == T_MNEM_add_pc)
19444 reloc_type = BFD_RELOC_ARM_T32_IMM12;
19445 else
19446 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19447 }
19448 else
19449 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19450 pc_rel = 0;
19451 break;
19452
19453 case T_MNEM_addi:
19454 case T_MNEM_addis:
19455 case T_MNEM_subi:
19456 case T_MNEM_subis:
19457 if (fragp->fr_var == 4)
19458 {
19459 insn = THUMB_OP32 (opcode);
19460 insn |= (old_op & 0xf0) << 4;
19461 insn |= (old_op & 0xf) << 16;
19462 put_thumb32_insn (buf, insn);
19463 if (insn & (1 << 20))
19464 reloc_type = BFD_RELOC_ARM_T32_ADD_IMM;
19465 else
19466 reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE;
19467 }
19468 else
19469 reloc_type = BFD_RELOC_ARM_THUMB_ADD;
19470 pc_rel = 0;
19471 break;
19472 default:
19473 abort ();
19474 }
19475 fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel,
19476 (enum bfd_reloc_code_real) reloc_type);
19477 fixp->fx_file = fragp->fr_file;
19478 fixp->fx_line = fragp->fr_line;
19479 fragp->fr_fix += fragp->fr_var;
19480 }
19481
19482 /* Return the size of a relaxable immediate operand instruction.
19483 SHIFT and SIZE specify the form of the allowable immediate. */
19484 static int
19485 relax_immediate (fragS *fragp, int size, int shift)
19486 {
19487 offsetT offset;
19488 offsetT mask;
19489 offsetT low;
19490
19491 /* ??? Should be able to do better than this. */
19492 if (fragp->fr_symbol)
19493 return 4;
19494
19495 low = (1 << shift) - 1;
19496 mask = (1 << (shift + size)) - (1 << shift);
19497 offset = fragp->fr_offset;
19498 /* Force misaligned offsets to 32-bit variant. */
19499 if (offset & low)
19500 return 4;
19501 if (offset & ~mask)
19502 return 4;
19503 return 2;
19504 }
19505
19506 /* Get the address of a symbol during relaxation. */
19507 static addressT
19508 relaxed_symbol_addr (fragS *fragp, long stretch)
19509 {
19510 fragS *sym_frag;
19511 addressT addr;
19512 symbolS *sym;
19513
19514 sym = fragp->fr_symbol;
19515 sym_frag = symbol_get_frag (sym);
19516 know (S_GET_SEGMENT (sym) != absolute_section
19517 || sym_frag == &zero_address_frag);
19518 addr = S_GET_VALUE (sym) + fragp->fr_offset;
19519
19520 /* If frag has yet to be reached on this pass, assume it will
19521 move by STRETCH just as we did. If this is not so, it will
19522 be because some frag between grows, and that will force
19523 another pass. */
19524
19525 if (stretch != 0
19526 && sym_frag->relax_marker != fragp->relax_marker)
19527 {
19528 fragS *f;
19529
19530 /* Adjust stretch for any alignment frag. Note that if have
19531 been expanding the earlier code, the symbol may be
19532 defined in what appears to be an earlier frag. FIXME:
19533 This doesn't handle the fr_subtype field, which specifies
19534 a maximum number of bytes to skip when doing an
19535 alignment. */
19536 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
19537 {
19538 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
19539 {
19540 if (stretch < 0)
19541 stretch = - ((- stretch)
19542 & ~ ((1 << (int) f->fr_offset) - 1));
19543 else
19544 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
19545 if (stretch == 0)
19546 break;
19547 }
19548 }
19549 if (f != NULL)
19550 addr += stretch;
19551 }
19552
19553 return addr;
19554 }
19555
19556 /* Return the size of a relaxable adr pseudo-instruction or PC-relative
19557 load. */
19558 static int
19559 relax_adr (fragS *fragp, asection *sec, long stretch)
19560 {
19561 addressT addr;
19562 offsetT val;
19563
19564 /* Assume worst case for symbols not known to be in the same section. */
19565 if (fragp->fr_symbol == NULL
19566 || !S_IS_DEFINED (fragp->fr_symbol)
19567 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19568 || S_IS_WEAK (fragp->fr_symbol))
19569 return 4;
19570
19571 val = relaxed_symbol_addr (fragp, stretch);
19572 addr = fragp->fr_address + fragp->fr_fix;
19573 addr = (addr + 4) & ~3;
19574 /* Force misaligned targets to 32-bit variant. */
19575 if (val & 3)
19576 return 4;
19577 val -= addr;
19578 if (val < 0 || val > 1020)
19579 return 4;
19580 return 2;
19581 }
19582
19583 /* Return the size of a relaxable add/sub immediate instruction. */
19584 static int
19585 relax_addsub (fragS *fragp, asection *sec)
19586 {
19587 char *buf;
19588 int op;
19589
19590 buf = fragp->fr_literal + fragp->fr_fix;
19591 op = bfd_get_16(sec->owner, buf);
19592 if ((op & 0xf) == ((op >> 4) & 0xf))
19593 return relax_immediate (fragp, 8, 0);
19594 else
19595 return relax_immediate (fragp, 3, 0);
19596 }
19597
19598
19599 /* Return the size of a relaxable branch instruction. BITS is the
19600 size of the offset field in the narrow instruction. */
19601
19602 static int
19603 relax_branch (fragS *fragp, asection *sec, int bits, long stretch)
19604 {
19605 addressT addr;
19606 offsetT val;
19607 offsetT limit;
19608
19609 /* Assume worst case for symbols not known to be in the same section. */
19610 if (!S_IS_DEFINED (fragp->fr_symbol)
19611 || sec != S_GET_SEGMENT (fragp->fr_symbol)
19612 || S_IS_WEAK (fragp->fr_symbol))
19613 return 4;
19614
19615 #ifdef OBJ_ELF
19616 if (S_IS_DEFINED (fragp->fr_symbol)
19617 && ARM_IS_FUNC (fragp->fr_symbol))
19618 return 4;
19619
19620 /* PR 12532. Global symbols with default visibility might
19621 be preempted, so do not relax relocations to them. */
19622 if ((ELF_ST_VISIBILITY (S_GET_OTHER (fragp->fr_symbol)) == STV_DEFAULT)
19623 && (! S_IS_LOCAL (fragp->fr_symbol)))
19624 return 4;
19625 #endif
19626
19627 val = relaxed_symbol_addr (fragp, stretch);
19628 addr = fragp->fr_address + fragp->fr_fix + 4;
19629 val -= addr;
19630
19631 /* Offset is a signed value *2 */
19632 limit = 1 << bits;
19633 if (val >= limit || val < -limit)
19634 return 4;
19635 return 2;
19636 }
19637
19638
19639 /* Relax a machine dependent frag. This returns the amount by which
19640 the current size of the frag should change. */
19641
19642 int
19643 arm_relax_frag (asection *sec, fragS *fragp, long stretch)
19644 {
19645 int oldsize;
19646 int newsize;
19647
19648 oldsize = fragp->fr_var;
19649 switch (fragp->fr_subtype)
19650 {
19651 case T_MNEM_ldr_pc2:
19652 newsize = relax_adr (fragp, sec, stretch);
19653 break;
19654 case T_MNEM_ldr_pc:
19655 case T_MNEM_ldr_sp:
19656 case T_MNEM_str_sp:
19657 newsize = relax_immediate (fragp, 8, 2);
19658 break;
19659 case T_MNEM_ldr:
19660 case T_MNEM_str:
19661 newsize = relax_immediate (fragp, 5, 2);
19662 break;
19663 case T_MNEM_ldrh:
19664 case T_MNEM_strh:
19665 newsize = relax_immediate (fragp, 5, 1);
19666 break;
19667 case T_MNEM_ldrb:
19668 case T_MNEM_strb:
19669 newsize = relax_immediate (fragp, 5, 0);
19670 break;
19671 case T_MNEM_adr:
19672 newsize = relax_adr (fragp, sec, stretch);
19673 break;
19674 case T_MNEM_mov:
19675 case T_MNEM_movs:
19676 case T_MNEM_cmp:
19677 case T_MNEM_cmn:
19678 newsize = relax_immediate (fragp, 8, 0);
19679 break;
19680 case T_MNEM_b:
19681 newsize = relax_branch (fragp, sec, 11, stretch);
19682 break;
19683 case T_MNEM_bcond:
19684 newsize = relax_branch (fragp, sec, 8, stretch);
19685 break;
19686 case T_MNEM_add_sp:
19687 case T_MNEM_add_pc:
19688 newsize = relax_immediate (fragp, 8, 2);
19689 break;
19690 case T_MNEM_inc_sp:
19691 case T_MNEM_dec_sp:
19692 newsize = relax_immediate (fragp, 7, 2);
19693 break;
19694 case T_MNEM_addi:
19695 case T_MNEM_addis:
19696 case T_MNEM_subi:
19697 case T_MNEM_subis:
19698 newsize = relax_addsub (fragp, sec);
19699 break;
19700 default:
19701 abort ();
19702 }
19703
19704 fragp->fr_var = newsize;
19705 /* Freeze wide instructions that are at or before the same location as
19706 in the previous pass. This avoids infinite loops.
19707 Don't freeze them unconditionally because targets may be artificially
19708 misaligned by the expansion of preceding frags. */
19709 if (stretch <= 0 && newsize > 2)
19710 {
19711 md_convert_frag (sec->owner, sec, fragp);
19712 frag_wane (fragp);
19713 }
19714
19715 return newsize - oldsize;
19716 }
19717
19718 /* Round up a section size to the appropriate boundary. */
19719
19720 valueT
19721 md_section_align (segT segment ATTRIBUTE_UNUSED,
19722 valueT size)
19723 {
19724 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
19725 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
19726 {
19727 /* For a.out, force the section size to be aligned. If we don't do
19728 this, BFD will align it for us, but it will not write out the
19729 final bytes of the section. This may be a bug in BFD, but it is
19730 easier to fix it here since that is how the other a.out targets
19731 work. */
19732 int align;
19733
19734 align = bfd_get_section_alignment (stdoutput, segment);
19735 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
19736 }
19737 #endif
19738
19739 return size;
19740 }
19741
19742 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
19743 of an rs_align_code fragment. */
19744
19745 void
19746 arm_handle_align (fragS * fragP)
19747 {
19748 static char const arm_noop[2][2][4] =
19749 {
19750 { /* ARMv1 */
19751 {0x00, 0x00, 0xa0, 0xe1}, /* LE */
19752 {0xe1, 0xa0, 0x00, 0x00}, /* BE */
19753 },
19754 { /* ARMv6k */
19755 {0x00, 0xf0, 0x20, 0xe3}, /* LE */
19756 {0xe3, 0x20, 0xf0, 0x00}, /* BE */
19757 },
19758 };
19759 static char const thumb_noop[2][2][2] =
19760 {
19761 { /* Thumb-1 */
19762 {0xc0, 0x46}, /* LE */
19763 {0x46, 0xc0}, /* BE */
19764 },
19765 { /* Thumb-2 */
19766 {0x00, 0xbf}, /* LE */
19767 {0xbf, 0x00} /* BE */
19768 }
19769 };
19770 static char const wide_thumb_noop[2][4] =
19771 { /* Wide Thumb-2 */
19772 {0xaf, 0xf3, 0x00, 0x80}, /* LE */
19773 {0xf3, 0xaf, 0x80, 0x00}, /* BE */
19774 };
19775
19776 unsigned bytes, fix, noop_size;
19777 char * p;
19778 const char * noop;
19779 const char *narrow_noop = NULL;
19780 #ifdef OBJ_ELF
19781 enum mstate state;
19782 #endif
19783
19784 if (fragP->fr_type != rs_align_code)
19785 return;
19786
19787 bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
19788 p = fragP->fr_literal + fragP->fr_fix;
19789 fix = 0;
19790
19791 if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
19792 bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
19793
19794 gas_assert ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) != 0);
19795
19796 if (fragP->tc_frag_data.thumb_mode & (~ MODE_RECORDED))
19797 {
19798 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6t2))
19799 {
19800 narrow_noop = thumb_noop[1][target_big_endian];
19801 noop = wide_thumb_noop[target_big_endian];
19802 }
19803 else
19804 noop = thumb_noop[0][target_big_endian];
19805 noop_size = 2;
19806 #ifdef OBJ_ELF
19807 state = MAP_THUMB;
19808 #endif
19809 }
19810 else
19811 {
19812 noop = arm_noop[ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v6k) != 0]
19813 [target_big_endian];
19814 noop_size = 4;
19815 #ifdef OBJ_ELF
19816 state = MAP_ARM;
19817 #endif
19818 }
19819
19820 fragP->fr_var = noop_size;
19821
19822 if (bytes & (noop_size - 1))
19823 {
19824 fix = bytes & (noop_size - 1);
19825 #ifdef OBJ_ELF
19826 insert_data_mapping_symbol (state, fragP->fr_fix, fragP, fix);
19827 #endif
19828 memset (p, 0, fix);
19829 p += fix;
19830 bytes -= fix;
19831 }
19832
19833 if (narrow_noop)
19834 {
19835 if (bytes & noop_size)
19836 {
19837 /* Insert a narrow noop. */
19838 memcpy (p, narrow_noop, noop_size);
19839 p += noop_size;
19840 bytes -= noop_size;
19841 fix += noop_size;
19842 }
19843
19844 /* Use wide noops for the remainder */
19845 noop_size = 4;
19846 }
19847
19848 while (bytes >= noop_size)
19849 {
19850 memcpy (p, noop, noop_size);
19851 p += noop_size;
19852 bytes -= noop_size;
19853 fix += noop_size;
19854 }
19855
19856 fragP->fr_fix += fix;
19857 }
19858
19859 /* Called from md_do_align. Used to create an alignment
19860 frag in a code section. */
19861
19862 void
19863 arm_frag_align_code (int n, int max)
19864 {
19865 char * p;
19866
19867 /* We assume that there will never be a requirement
19868 to support alignments greater than MAX_MEM_FOR_RS_ALIGN_CODE bytes. */
19869 if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
19870 {
19871 char err_msg[128];
19872
19873 sprintf (err_msg,
19874 _("alignments greater than %d bytes not supported in .text sections."),
19875 MAX_MEM_FOR_RS_ALIGN_CODE + 1);
19876 as_fatal ("%s", err_msg);
19877 }
19878
19879 p = frag_var (rs_align_code,
19880 MAX_MEM_FOR_RS_ALIGN_CODE,
19881 1,
19882 (relax_substateT) max,
19883 (symbolS *) NULL,
19884 (offsetT) n,
19885 (char *) NULL);
19886 *p = 0;
19887 }
19888
19889 /* Perform target specific initialisation of a frag.
19890 Note - despite the name this initialisation is not done when the frag
19891 is created, but only when its type is assigned. A frag can be created
19892 and used a long time before its type is set, so beware of assuming that
19893 this initialisationis performed first. */
19894
19895 #ifndef OBJ_ELF
19896 void
19897 arm_init_frag (fragS * fragP, int max_chars ATTRIBUTE_UNUSED)
19898 {
19899 /* Record whether this frag is in an ARM or a THUMB area. */
19900 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19901 }
19902
19903 #else /* OBJ_ELF is defined. */
19904 void
19905 arm_init_frag (fragS * fragP, int max_chars)
19906 {
19907 /* If the current ARM vs THUMB mode has not already
19908 been recorded into this frag then do so now. */
19909 if ((fragP->tc_frag_data.thumb_mode & MODE_RECORDED) == 0)
19910 {
19911 fragP->tc_frag_data.thumb_mode = thumb_mode | MODE_RECORDED;
19912
19913 /* Record a mapping symbol for alignment frags. We will delete this
19914 later if the alignment ends up empty. */
19915 switch (fragP->fr_type)
19916 {
19917 case rs_align:
19918 case rs_align_test:
19919 case rs_fill:
19920 mapping_state_2 (MAP_DATA, max_chars);
19921 break;
19922 case rs_align_code:
19923 mapping_state_2 (thumb_mode ? MAP_THUMB : MAP_ARM, max_chars);
19924 break;
19925 default:
19926 break;
19927 }
19928 }
19929 }
19930
19931 /* When we change sections we need to issue a new mapping symbol. */
19932
19933 void
19934 arm_elf_change_section (void)
19935 {
19936 /* Link an unlinked unwind index table section to the .text section. */
19937 if (elf_section_type (now_seg) == SHT_ARM_EXIDX
19938 && elf_linked_to_section (now_seg) == NULL)
19939 elf_linked_to_section (now_seg) = text_section;
19940 }
19941
19942 int
19943 arm_elf_section_type (const char * str, size_t len)
19944 {
19945 if (len == 5 && strncmp (str, "exidx", 5) == 0)
19946 return SHT_ARM_EXIDX;
19947
19948 return -1;
19949 }
19950 \f
19951 /* Code to deal with unwinding tables. */
19952
19953 static void add_unwind_adjustsp (offsetT);
19954
19955 /* Generate any deferred unwind frame offset. */
19956
19957 static void
19958 flush_pending_unwind (void)
19959 {
19960 offsetT offset;
19961
19962 offset = unwind.pending_offset;
19963 unwind.pending_offset = 0;
19964 if (offset != 0)
19965 add_unwind_adjustsp (offset);
19966 }
19967
19968 /* Add an opcode to this list for this function. Two-byte opcodes should
19969 be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse
19970 order. */
19971
19972 static void
19973 add_unwind_opcode (valueT op, int length)
19974 {
19975 /* Add any deferred stack adjustment. */
19976 if (unwind.pending_offset)
19977 flush_pending_unwind ();
19978
19979 unwind.sp_restored = 0;
19980
19981 if (unwind.opcode_count + length > unwind.opcode_alloc)
19982 {
19983 unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE;
19984 if (unwind.opcodes)
19985 unwind.opcodes = (unsigned char *) xrealloc (unwind.opcodes,
19986 unwind.opcode_alloc);
19987 else
19988 unwind.opcodes = (unsigned char *) xmalloc (unwind.opcode_alloc);
19989 }
19990 while (length > 0)
19991 {
19992 length--;
19993 unwind.opcodes[unwind.opcode_count] = op & 0xff;
19994 op >>= 8;
19995 unwind.opcode_count++;
19996 }
19997 }
19998
19999 /* Add unwind opcodes to adjust the stack pointer. */
20000
20001 static void
20002 add_unwind_adjustsp (offsetT offset)
20003 {
20004 valueT op;
20005
20006 if (offset > 0x200)
20007 {
20008 /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */
20009 char bytes[5];
20010 int n;
20011 valueT o;
20012
20013 /* Long form: 0xb2, uleb128. */
20014 /* This might not fit in a word so add the individual bytes,
20015 remembering the list is built in reverse order. */
20016 o = (valueT) ((offset - 0x204) >> 2);
20017 if (o == 0)
20018 add_unwind_opcode (0, 1);
20019
20020 /* Calculate the uleb128 encoding of the offset. */
20021 n = 0;
20022 while (o)
20023 {
20024 bytes[n] = o & 0x7f;
20025 o >>= 7;
20026 if (o)
20027 bytes[n] |= 0x80;
20028 n++;
20029 }
20030 /* Add the insn. */
20031 for (; n; n--)
20032 add_unwind_opcode (bytes[n - 1], 1);
20033 add_unwind_opcode (0xb2, 1);
20034 }
20035 else if (offset > 0x100)
20036 {
20037 /* Two short opcodes. */
20038 add_unwind_opcode (0x3f, 1);
20039 op = (offset - 0x104) >> 2;
20040 add_unwind_opcode (op, 1);
20041 }
20042 else if (offset > 0)
20043 {
20044 /* Short opcode. */
20045 op = (offset - 4) >> 2;
20046 add_unwind_opcode (op, 1);
20047 }
20048 else if (offset < 0)
20049 {
20050 offset = -offset;
20051 while (offset > 0x100)
20052 {
20053 add_unwind_opcode (0x7f, 1);
20054 offset -= 0x100;
20055 }
20056 op = ((offset - 4) >> 2) | 0x40;
20057 add_unwind_opcode (op, 1);
20058 }
20059 }
20060
20061 /* Finish the list of unwind opcodes for this function. */
20062 static void
20063 finish_unwind_opcodes (void)
20064 {
20065 valueT op;
20066
20067 if (unwind.fp_used)
20068 {
20069 /* Adjust sp as necessary. */
20070 unwind.pending_offset += unwind.fp_offset - unwind.frame_size;
20071 flush_pending_unwind ();
20072
20073 /* After restoring sp from the frame pointer. */
20074 op = 0x90 | unwind.fp_reg;
20075 add_unwind_opcode (op, 1);
20076 }
20077 else
20078 flush_pending_unwind ();
20079 }
20080
20081
20082 /* Start an exception table entry. If idx is nonzero this is an index table
20083 entry. */
20084
20085 static void
20086 start_unwind_section (const segT text_seg, int idx)
20087 {
20088 const char * text_name;
20089 const char * prefix;
20090 const char * prefix_once;
20091 const char * group_name;
20092 size_t prefix_len;
20093 size_t text_len;
20094 char * sec_name;
20095 size_t sec_name_len;
20096 int type;
20097 int flags;
20098 int linkonce;
20099
20100 if (idx)
20101 {
20102 prefix = ELF_STRING_ARM_unwind;
20103 prefix_once = ELF_STRING_ARM_unwind_once;
20104 type = SHT_ARM_EXIDX;
20105 }
20106 else
20107 {
20108 prefix = ELF_STRING_ARM_unwind_info;
20109 prefix_once = ELF_STRING_ARM_unwind_info_once;
20110 type = SHT_PROGBITS;
20111 }
20112
20113 text_name = segment_name (text_seg);
20114 if (streq (text_name, ".text"))
20115 text_name = "";
20116
20117 if (strncmp (text_name, ".gnu.linkonce.t.",
20118 strlen (".gnu.linkonce.t.")) == 0)
20119 {
20120 prefix = prefix_once;
20121 text_name += strlen (".gnu.linkonce.t.");
20122 }
20123
20124 prefix_len = strlen (prefix);
20125 text_len = strlen (text_name);
20126 sec_name_len = prefix_len + text_len;
20127 sec_name = (char *) xmalloc (sec_name_len + 1);
20128 memcpy (sec_name, prefix, prefix_len);
20129 memcpy (sec_name + prefix_len, text_name, text_len);
20130 sec_name[prefix_len + text_len] = '\0';
20131
20132 flags = SHF_ALLOC;
20133 linkonce = 0;
20134 group_name = 0;
20135
20136 /* Handle COMDAT group. */
20137 if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0)
20138 {
20139 group_name = elf_group_name (text_seg);
20140 if (group_name == NULL)
20141 {
20142 as_bad (_("Group section `%s' has no group signature"),
20143 segment_name (text_seg));
20144 ignore_rest_of_line ();
20145 return;
20146 }
20147 flags |= SHF_GROUP;
20148 linkonce = 1;
20149 }
20150
20151 obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0);
20152
20153 /* Set the section link for index tables. */
20154 if (idx)
20155 elf_linked_to_section (now_seg) = text_seg;
20156 }
20157
20158
20159 /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional
20160 personality routine data. Returns zero, or the index table value for
20161 and inline entry. */
20162
20163 static valueT
20164 create_unwind_entry (int have_data)
20165 {
20166 int size;
20167 addressT where;
20168 char *ptr;
20169 /* The current word of data. */
20170 valueT data;
20171 /* The number of bytes left in this word. */
20172 int n;
20173
20174 finish_unwind_opcodes ();
20175
20176 /* Remember the current text section. */
20177 unwind.saved_seg = now_seg;
20178 unwind.saved_subseg = now_subseg;
20179
20180 start_unwind_section (now_seg, 0);
20181
20182 if (unwind.personality_routine == NULL)
20183 {
20184 if (unwind.personality_index == -2)
20185 {
20186 if (have_data)
20187 as_bad (_("handlerdata in cantunwind frame"));
20188 return 1; /* EXIDX_CANTUNWIND. */
20189 }
20190
20191 /* Use a default personality routine if none is specified. */
20192 if (unwind.personality_index == -1)
20193 {
20194 if (unwind.opcode_count > 3)
20195 unwind.personality_index = 1;
20196 else
20197 unwind.personality_index = 0;
20198 }
20199
20200 /* Space for the personality routine entry. */
20201 if (unwind.personality_index == 0)
20202 {
20203 if (unwind.opcode_count > 3)
20204 as_bad (_("too many unwind opcodes for personality routine 0"));
20205
20206 if (!have_data)
20207 {
20208 /* All the data is inline in the index table. */
20209 data = 0x80;
20210 n = 3;
20211 while (unwind.opcode_count > 0)
20212 {
20213 unwind.opcode_count--;
20214 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20215 n--;
20216 }
20217
20218 /* Pad with "finish" opcodes. */
20219 while (n--)
20220 data = (data << 8) | 0xb0;
20221
20222 return data;
20223 }
20224 size = 0;
20225 }
20226 else
20227 /* We get two opcodes "free" in the first word. */
20228 size = unwind.opcode_count - 2;
20229 }
20230 else
20231 {
20232 gas_assert (unwind.personality_index == -1);
20233
20234 /* An extra byte is required for the opcode count. */
20235 size = unwind.opcode_count + 1;
20236 }
20237
20238 size = (size + 3) >> 2;
20239 if (size > 0xff)
20240 as_bad (_("too many unwind opcodes"));
20241
20242 frag_align (2, 0, 0);
20243 record_alignment (now_seg, 2);
20244 unwind.table_entry = expr_build_dot ();
20245
20246 /* Allocate the table entry. */
20247 ptr = frag_more ((size << 2) + 4);
20248 /* PR 13449: Zero the table entries in case some of them are not used. */
20249 memset (ptr, 0, (size << 2) + 4);
20250 where = frag_now_fix () - ((size << 2) + 4);
20251
20252 switch (unwind.personality_index)
20253 {
20254 case -1:
20255 /* ??? Should this be a PLT generating relocation? */
20256 /* Custom personality routine. */
20257 fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1,
20258 BFD_RELOC_ARM_PREL31);
20259
20260 where += 4;
20261 ptr += 4;
20262
20263 /* Set the first byte to the number of additional words. */
20264 data = size > 0 ? size - 1 : 0;
20265 n = 3;
20266 break;
20267
20268 /* ABI defined personality routines. */
20269 case 0:
20270 /* Three opcodes bytes are packed into the first word. */
20271 data = 0x80;
20272 n = 3;
20273 break;
20274
20275 case 1:
20276 case 2:
20277 /* The size and first two opcode bytes go in the first word. */
20278 data = ((0x80 + unwind.personality_index) << 8) | size;
20279 n = 2;
20280 break;
20281
20282 default:
20283 /* Should never happen. */
20284 abort ();
20285 }
20286
20287 /* Pack the opcodes into words (MSB first), reversing the list at the same
20288 time. */
20289 while (unwind.opcode_count > 0)
20290 {
20291 if (n == 0)
20292 {
20293 md_number_to_chars (ptr, data, 4);
20294 ptr += 4;
20295 n = 4;
20296 data = 0;
20297 }
20298 unwind.opcode_count--;
20299 n--;
20300 data = (data << 8) | unwind.opcodes[unwind.opcode_count];
20301 }
20302
20303 /* Finish off the last word. */
20304 if (n < 4)
20305 {
20306 /* Pad with "finish" opcodes. */
20307 while (n--)
20308 data = (data << 8) | 0xb0;
20309
20310 md_number_to_chars (ptr, data, 4);
20311 }
20312
20313 if (!have_data)
20314 {
20315 /* Add an empty descriptor if there is no user-specified data. */
20316 ptr = frag_more (4);
20317 md_number_to_chars (ptr, 0, 4);
20318 }
20319
20320 return 0;
20321 }
20322
20323
20324 /* Initialize the DWARF-2 unwind information for this procedure. */
20325
20326 void
20327 tc_arm_frame_initial_instructions (void)
20328 {
20329 cfi_add_CFA_def_cfa (REG_SP, 0);
20330 }
20331 #endif /* OBJ_ELF */
20332
20333 /* Convert REGNAME to a DWARF-2 register number. */
20334
20335 int
20336 tc_arm_regname_to_dw2regnum (char *regname)
20337 {
20338 int reg = arm_reg_parse (&regname, REG_TYPE_RN);
20339
20340 if (reg == FAIL)
20341 return -1;
20342
20343 return reg;
20344 }
20345
20346 #ifdef TE_PE
20347 void
20348 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
20349 {
20350 expressionS exp;
20351
20352 exp.X_op = O_secrel;
20353 exp.X_add_symbol = symbol;
20354 exp.X_add_number = 0;
20355 emit_expr (&exp, size);
20356 }
20357 #endif
20358
20359 /* MD interface: Symbol and relocation handling. */
20360
20361 /* Return the address within the segment that a PC-relative fixup is
20362 relative to. For ARM, PC-relative fixups applied to instructions
20363 are generally relative to the location of the fixup plus 8 bytes.
20364 Thumb branches are offset by 4, and Thumb loads relative to PC
20365 require special handling. */
20366
20367 long
20368 md_pcrel_from_section (fixS * fixP, segT seg)
20369 {
20370 offsetT base = fixP->fx_where + fixP->fx_frag->fr_address;
20371
20372 /* If this is pc-relative and we are going to emit a relocation
20373 then we just want to put out any pipeline compensation that the linker
20374 will need. Otherwise we want to use the calculated base.
20375 For WinCE we skip the bias for externals as well, since this
20376 is how the MS ARM-CE assembler behaves and we want to be compatible. */
20377 if (fixP->fx_pcrel
20378 && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg)
20379 || (arm_force_relocation (fixP)
20380 #ifdef TE_WINCE
20381 && !S_IS_EXTERNAL (fixP->fx_addsy)
20382 #endif
20383 )))
20384 base = 0;
20385
20386
20387 switch (fixP->fx_r_type)
20388 {
20389 /* PC relative addressing on the Thumb is slightly odd as the
20390 bottom two bits of the PC are forced to zero for the
20391 calculation. This happens *after* application of the
20392 pipeline offset. However, Thumb adrl already adjusts for
20393 this, so we need not do it again. */
20394 case BFD_RELOC_ARM_THUMB_ADD:
20395 return base & ~3;
20396
20397 case BFD_RELOC_ARM_THUMB_OFFSET:
20398 case BFD_RELOC_ARM_T32_OFFSET_IMM:
20399 case BFD_RELOC_ARM_T32_ADD_PC12:
20400 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
20401 return (base + 4) & ~3;
20402
20403 /* Thumb branches are simply offset by +4. */
20404 case BFD_RELOC_THUMB_PCREL_BRANCH7:
20405 case BFD_RELOC_THUMB_PCREL_BRANCH9:
20406 case BFD_RELOC_THUMB_PCREL_BRANCH12:
20407 case BFD_RELOC_THUMB_PCREL_BRANCH20:
20408 case BFD_RELOC_THUMB_PCREL_BRANCH25:
20409 return base + 4;
20410
20411 case BFD_RELOC_THUMB_PCREL_BRANCH23:
20412 if (fixP->fx_addsy
20413 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20414 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20415 && ARM_IS_FUNC (fixP->fx_addsy)
20416 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20417 base = fixP->fx_where + fixP->fx_frag->fr_address;
20418 return base + 4;
20419
20420 /* BLX is like branches above, but forces the low two bits of PC to
20421 zero. */
20422 case BFD_RELOC_THUMB_PCREL_BLX:
20423 if (fixP->fx_addsy
20424 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20425 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20426 && THUMB_IS_FUNC (fixP->fx_addsy)
20427 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20428 base = fixP->fx_where + fixP->fx_frag->fr_address;
20429 return (base + 4) & ~3;
20430
20431 /* ARM mode branches are offset by +8. However, the Windows CE
20432 loader expects the relocation not to take this into account. */
20433 case BFD_RELOC_ARM_PCREL_BLX:
20434 if (fixP->fx_addsy
20435 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20436 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20437 && ARM_IS_FUNC (fixP->fx_addsy)
20438 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20439 base = fixP->fx_where + fixP->fx_frag->fr_address;
20440 return base + 8;
20441
20442 case BFD_RELOC_ARM_PCREL_CALL:
20443 if (fixP->fx_addsy
20444 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20445 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
20446 && THUMB_IS_FUNC (fixP->fx_addsy)
20447 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
20448 base = fixP->fx_where + fixP->fx_frag->fr_address;
20449 return base + 8;
20450
20451 case BFD_RELOC_ARM_PCREL_BRANCH:
20452 case BFD_RELOC_ARM_PCREL_JUMP:
20453 case BFD_RELOC_ARM_PLT32:
20454 #ifdef TE_WINCE
20455 /* When handling fixups immediately, because we have already
20456 discovered the value of a symbol, or the address of the frag involved
20457 we must account for the offset by +8, as the OS loader will never see the reloc.
20458 see fixup_segment() in write.c
20459 The S_IS_EXTERNAL test handles the case of global symbols.
20460 Those need the calculated base, not just the pipe compensation the linker will need. */
20461 if (fixP->fx_pcrel
20462 && fixP->fx_addsy != NULL
20463 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
20464 && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP)))
20465 return base + 8;
20466 return base;
20467 #else
20468 return base + 8;
20469 #endif
20470
20471
20472 /* ARM mode loads relative to PC are also offset by +8. Unlike
20473 branches, the Windows CE loader *does* expect the relocation
20474 to take this into account. */
20475 case BFD_RELOC_ARM_OFFSET_IMM:
20476 case BFD_RELOC_ARM_OFFSET_IMM8:
20477 case BFD_RELOC_ARM_HWLITERAL:
20478 case BFD_RELOC_ARM_LITERAL:
20479 case BFD_RELOC_ARM_CP_OFF_IMM:
20480 return base + 8;
20481
20482
20483 /* Other PC-relative relocations are un-offset. */
20484 default:
20485 return base;
20486 }
20487 }
20488
20489 /* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
20490 Otherwise we have no need to default values of symbols. */
20491
20492 symbolS *
20493 md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
20494 {
20495 #ifdef OBJ_ELF
20496 if (name[0] == '_' && name[1] == 'G'
20497 && streq (name, GLOBAL_OFFSET_TABLE_NAME))
20498 {
20499 if (!GOT_symbol)
20500 {
20501 if (symbol_find (name))
20502 as_bad (_("GOT already in the symbol table"));
20503
20504 GOT_symbol = symbol_new (name, undefined_section,
20505 (valueT) 0, & zero_address_frag);
20506 }
20507
20508 return GOT_symbol;
20509 }
20510 #endif
20511
20512 return NULL;
20513 }
20514
20515 /* Subroutine of md_apply_fix. Check to see if an immediate can be
20516 computed as two separate immediate values, added together. We
20517 already know that this value cannot be computed by just one ARM
20518 instruction. */
20519
20520 static unsigned int
20521 validate_immediate_twopart (unsigned int val,
20522 unsigned int * highpart)
20523 {
20524 unsigned int a;
20525 unsigned int i;
20526
20527 for (i = 0; i < 32; i += 2)
20528 if (((a = rotate_left (val, i)) & 0xff) != 0)
20529 {
20530 if (a & 0xff00)
20531 {
20532 if (a & ~ 0xffff)
20533 continue;
20534 * highpart = (a >> 8) | ((i + 24) << 7);
20535 }
20536 else if (a & 0xff0000)
20537 {
20538 if (a & 0xff000000)
20539 continue;
20540 * highpart = (a >> 16) | ((i + 16) << 7);
20541 }
20542 else
20543 {
20544 gas_assert (a & 0xff000000);
20545 * highpart = (a >> 24) | ((i + 8) << 7);
20546 }
20547
20548 return (a & 0xff) | (i << 7);
20549 }
20550
20551 return FAIL;
20552 }
20553
20554 static int
20555 validate_offset_imm (unsigned int val, int hwse)
20556 {
20557 if ((hwse && val > 255) || val > 4095)
20558 return FAIL;
20559 return val;
20560 }
20561
20562 /* Subroutine of md_apply_fix. Do those data_ops which can take a
20563 negative immediate constant by altering the instruction. A bit of
20564 a hack really.
20565 MOV <-> MVN
20566 AND <-> BIC
20567 ADC <-> SBC
20568 by inverting the second operand, and
20569 ADD <-> SUB
20570 CMP <-> CMN
20571 by negating the second operand. */
20572
20573 static int
20574 negate_data_op (unsigned long * instruction,
20575 unsigned long value)
20576 {
20577 int op, new_inst;
20578 unsigned long negated, inverted;
20579
20580 negated = encode_arm_immediate (-value);
20581 inverted = encode_arm_immediate (~value);
20582
20583 op = (*instruction >> DATA_OP_SHIFT) & 0xf;
20584 switch (op)
20585 {
20586 /* First negates. */
20587 case OPCODE_SUB: /* ADD <-> SUB */
20588 new_inst = OPCODE_ADD;
20589 value = negated;
20590 break;
20591
20592 case OPCODE_ADD:
20593 new_inst = OPCODE_SUB;
20594 value = negated;
20595 break;
20596
20597 case OPCODE_CMP: /* CMP <-> CMN */
20598 new_inst = OPCODE_CMN;
20599 value = negated;
20600 break;
20601
20602 case OPCODE_CMN:
20603 new_inst = OPCODE_CMP;
20604 value = negated;
20605 break;
20606
20607 /* Now Inverted ops. */
20608 case OPCODE_MOV: /* MOV <-> MVN */
20609 new_inst = OPCODE_MVN;
20610 value = inverted;
20611 break;
20612
20613 case OPCODE_MVN:
20614 new_inst = OPCODE_MOV;
20615 value = inverted;
20616 break;
20617
20618 case OPCODE_AND: /* AND <-> BIC */
20619 new_inst = OPCODE_BIC;
20620 value = inverted;
20621 break;
20622
20623 case OPCODE_BIC:
20624 new_inst = OPCODE_AND;
20625 value = inverted;
20626 break;
20627
20628 case OPCODE_ADC: /* ADC <-> SBC */
20629 new_inst = OPCODE_SBC;
20630 value = inverted;
20631 break;
20632
20633 case OPCODE_SBC:
20634 new_inst = OPCODE_ADC;
20635 value = inverted;
20636 break;
20637
20638 /* We cannot do anything. */
20639 default:
20640 return FAIL;
20641 }
20642
20643 if (value == (unsigned) FAIL)
20644 return FAIL;
20645
20646 *instruction &= OPCODE_MASK;
20647 *instruction |= new_inst << DATA_OP_SHIFT;
20648 return value;
20649 }
20650
20651 /* Like negate_data_op, but for Thumb-2. */
20652
20653 static unsigned int
20654 thumb32_negate_data_op (offsetT *instruction, unsigned int value)
20655 {
20656 int op, new_inst;
20657 int rd;
20658 unsigned int negated, inverted;
20659
20660 negated = encode_thumb32_immediate (-value);
20661 inverted = encode_thumb32_immediate (~value);
20662
20663 rd = (*instruction >> 8) & 0xf;
20664 op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf;
20665 switch (op)
20666 {
20667 /* ADD <-> SUB. Includes CMP <-> CMN. */
20668 case T2_OPCODE_SUB:
20669 new_inst = T2_OPCODE_ADD;
20670 value = negated;
20671 break;
20672
20673 case T2_OPCODE_ADD:
20674 new_inst = T2_OPCODE_SUB;
20675 value = negated;
20676 break;
20677
20678 /* ORR <-> ORN. Includes MOV <-> MVN. */
20679 case T2_OPCODE_ORR:
20680 new_inst = T2_OPCODE_ORN;
20681 value = inverted;
20682 break;
20683
20684 case T2_OPCODE_ORN:
20685 new_inst = T2_OPCODE_ORR;
20686 value = inverted;
20687 break;
20688
20689 /* AND <-> BIC. TST has no inverted equivalent. */
20690 case T2_OPCODE_AND:
20691 new_inst = T2_OPCODE_BIC;
20692 if (rd == 15)
20693 value = FAIL;
20694 else
20695 value = inverted;
20696 break;
20697
20698 case T2_OPCODE_BIC:
20699 new_inst = T2_OPCODE_AND;
20700 value = inverted;
20701 break;
20702
20703 /* ADC <-> SBC */
20704 case T2_OPCODE_ADC:
20705 new_inst = T2_OPCODE_SBC;
20706 value = inverted;
20707 break;
20708
20709 case T2_OPCODE_SBC:
20710 new_inst = T2_OPCODE_ADC;
20711 value = inverted;
20712 break;
20713
20714 /* We cannot do anything. */
20715 default:
20716 return FAIL;
20717 }
20718
20719 if (value == (unsigned int)FAIL)
20720 return FAIL;
20721
20722 *instruction &= T2_OPCODE_MASK;
20723 *instruction |= new_inst << T2_DATA_OP_SHIFT;
20724 return value;
20725 }
20726
20727 /* Read a 32-bit thumb instruction from buf. */
20728 static unsigned long
20729 get_thumb32_insn (char * buf)
20730 {
20731 unsigned long insn;
20732 insn = md_chars_to_number (buf, THUMB_SIZE) << 16;
20733 insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20734
20735 return insn;
20736 }
20737
20738
20739 /* We usually want to set the low bit on the address of thumb function
20740 symbols. In particular .word foo - . should have the low bit set.
20741 Generic code tries to fold the difference of two symbols to
20742 a constant. Prevent this and force a relocation when the first symbols
20743 is a thumb function. */
20744
20745 bfd_boolean
20746 arm_optimize_expr (expressionS *l, operatorT op, expressionS *r)
20747 {
20748 if (op == O_subtract
20749 && l->X_op == O_symbol
20750 && r->X_op == O_symbol
20751 && THUMB_IS_FUNC (l->X_add_symbol))
20752 {
20753 l->X_op = O_subtract;
20754 l->X_op_symbol = r->X_add_symbol;
20755 l->X_add_number -= r->X_add_number;
20756 return TRUE;
20757 }
20758
20759 /* Process as normal. */
20760 return FALSE;
20761 }
20762
20763 /* Encode Thumb2 unconditional branches and calls. The encoding
20764 for the 2 are identical for the immediate values. */
20765
20766 static void
20767 encode_thumb2_b_bl_offset (char * buf, offsetT value)
20768 {
20769 #define T2I1I2MASK ((1 << 13) | (1 << 11))
20770 offsetT newval;
20771 offsetT newval2;
20772 addressT S, I1, I2, lo, hi;
20773
20774 S = (value >> 24) & 0x01;
20775 I1 = (value >> 23) & 0x01;
20776 I2 = (value >> 22) & 0x01;
20777 hi = (value >> 12) & 0x3ff;
20778 lo = (value >> 1) & 0x7ff;
20779 newval = md_chars_to_number (buf, THUMB_SIZE);
20780 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
20781 newval |= (S << 10) | hi;
20782 newval2 &= ~T2I1I2MASK;
20783 newval2 |= (((I1 ^ S) << 13) | ((I2 ^ S) << 11) | lo) ^ T2I1I2MASK;
20784 md_number_to_chars (buf, newval, THUMB_SIZE);
20785 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
20786 }
20787
20788 void
20789 md_apply_fix (fixS * fixP,
20790 valueT * valP,
20791 segT seg)
20792 {
20793 offsetT value = * valP;
20794 offsetT newval;
20795 unsigned int newimm;
20796 unsigned long temp;
20797 int sign;
20798 char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
20799
20800 gas_assert (fixP->fx_r_type <= BFD_RELOC_UNUSED);
20801
20802 /* Note whether this will delete the relocation. */
20803
20804 if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
20805 fixP->fx_done = 1;
20806
20807 /* On a 64-bit host, silently truncate 'value' to 32 bits for
20808 consistency with the behaviour on 32-bit hosts. Remember value
20809 for emit_reloc. */
20810 value &= 0xffffffff;
20811 value ^= 0x80000000;
20812 value -= 0x80000000;
20813
20814 *valP = value;
20815 fixP->fx_addnumber = value;
20816
20817 /* Same treatment for fixP->fx_offset. */
20818 fixP->fx_offset &= 0xffffffff;
20819 fixP->fx_offset ^= 0x80000000;
20820 fixP->fx_offset -= 0x80000000;
20821
20822 switch (fixP->fx_r_type)
20823 {
20824 case BFD_RELOC_NONE:
20825 /* This will need to go in the object file. */
20826 fixP->fx_done = 0;
20827 break;
20828
20829 case BFD_RELOC_ARM_IMMEDIATE:
20830 /* We claim that this fixup has been processed here,
20831 even if in fact we generate an error because we do
20832 not have a reloc for it, so tc_gen_reloc will reject it. */
20833 fixP->fx_done = 1;
20834
20835 if (fixP->fx_addsy)
20836 {
20837 const char *msg = 0;
20838
20839 if (! S_IS_DEFINED (fixP->fx_addsy))
20840 msg = _("undefined symbol %s used as an immediate value");
20841 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20842 msg = _("symbol %s is in a different section");
20843 else if (S_IS_WEAK (fixP->fx_addsy))
20844 msg = _("symbol %s is weak and may be overridden later");
20845
20846 if (msg)
20847 {
20848 as_bad_where (fixP->fx_file, fixP->fx_line,
20849 msg, S_GET_NAME (fixP->fx_addsy));
20850 break;
20851 }
20852 }
20853
20854 temp = md_chars_to_number (buf, INSN_SIZE);
20855
20856 /* If the offset is negative, we should use encoding A2 for ADR. */
20857 if ((temp & 0xfff0000) == 0x28f0000 && value < 0)
20858 newimm = negate_data_op (&temp, value);
20859 else
20860 {
20861 newimm = encode_arm_immediate (value);
20862
20863 /* If the instruction will fail, see if we can fix things up by
20864 changing the opcode. */
20865 if (newimm == (unsigned int) FAIL)
20866 newimm = negate_data_op (&temp, value);
20867 }
20868
20869 if (newimm == (unsigned int) FAIL)
20870 {
20871 as_bad_where (fixP->fx_file, fixP->fx_line,
20872 _("invalid constant (%lx) after fixup"),
20873 (unsigned long) value);
20874 break;
20875 }
20876
20877 newimm |= (temp & 0xfffff000);
20878 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20879 break;
20880
20881 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
20882 {
20883 unsigned int highpart = 0;
20884 unsigned int newinsn = 0xe1a00000; /* nop. */
20885
20886 if (fixP->fx_addsy)
20887 {
20888 const char *msg = 0;
20889
20890 if (! S_IS_DEFINED (fixP->fx_addsy))
20891 msg = _("undefined symbol %s used as an immediate value");
20892 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
20893 msg = _("symbol %s is in a different section");
20894 else if (S_IS_WEAK (fixP->fx_addsy))
20895 msg = _("symbol %s is weak and may be overridden later");
20896
20897 if (msg)
20898 {
20899 as_bad_where (fixP->fx_file, fixP->fx_line,
20900 msg, S_GET_NAME (fixP->fx_addsy));
20901 break;
20902 }
20903 }
20904
20905 newimm = encode_arm_immediate (value);
20906 temp = md_chars_to_number (buf, INSN_SIZE);
20907
20908 /* If the instruction will fail, see if we can fix things up by
20909 changing the opcode. */
20910 if (newimm == (unsigned int) FAIL
20911 && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
20912 {
20913 /* No ? OK - try using two ADD instructions to generate
20914 the value. */
20915 newimm = validate_immediate_twopart (value, & highpart);
20916
20917 /* Yes - then make sure that the second instruction is
20918 also an add. */
20919 if (newimm != (unsigned int) FAIL)
20920 newinsn = temp;
20921 /* Still No ? Try using a negated value. */
20922 else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
20923 temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
20924 /* Otherwise - give up. */
20925 else
20926 {
20927 as_bad_where (fixP->fx_file, fixP->fx_line,
20928 _("unable to compute ADRL instructions for PC offset of 0x%lx"),
20929 (long) value);
20930 break;
20931 }
20932
20933 /* Replace the first operand in the 2nd instruction (which
20934 is the PC) with the destination register. We have
20935 already added in the PC in the first instruction and we
20936 do not want to do it again. */
20937 newinsn &= ~ 0xf0000;
20938 newinsn |= ((newinsn & 0x0f000) << 4);
20939 }
20940
20941 newimm |= (temp & 0xfffff000);
20942 md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
20943
20944 highpart |= (newinsn & 0xfffff000);
20945 md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
20946 }
20947 break;
20948
20949 case BFD_RELOC_ARM_OFFSET_IMM:
20950 if (!fixP->fx_done && seg->use_rela_p)
20951 value = 0;
20952
20953 case BFD_RELOC_ARM_LITERAL:
20954 sign = value > 0;
20955
20956 if (value < 0)
20957 value = - value;
20958
20959 if (validate_offset_imm (value, 0) == FAIL)
20960 {
20961 if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL)
20962 as_bad_where (fixP->fx_file, fixP->fx_line,
20963 _("invalid literal constant: pool needs to be closer"));
20964 else
20965 as_bad_where (fixP->fx_file, fixP->fx_line,
20966 _("bad immediate value for offset (%ld)"),
20967 (long) value);
20968 break;
20969 }
20970
20971 newval = md_chars_to_number (buf, INSN_SIZE);
20972 if (value == 0)
20973 newval &= 0xfffff000;
20974 else
20975 {
20976 newval &= 0xff7ff000;
20977 newval |= value | (sign ? INDEX_UP : 0);
20978 }
20979 md_number_to_chars (buf, newval, INSN_SIZE);
20980 break;
20981
20982 case BFD_RELOC_ARM_OFFSET_IMM8:
20983 case BFD_RELOC_ARM_HWLITERAL:
20984 sign = value > 0;
20985
20986 if (value < 0)
20987 value = - value;
20988
20989 if (validate_offset_imm (value, 1) == FAIL)
20990 {
20991 if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
20992 as_bad_where (fixP->fx_file, fixP->fx_line,
20993 _("invalid literal constant: pool needs to be closer"));
20994 else
20995 as_bad (_("bad immediate value for 8-bit offset (%ld)"),
20996 (long) value);
20997 break;
20998 }
20999
21000 newval = md_chars_to_number (buf, INSN_SIZE);
21001 if (value == 0)
21002 newval &= 0xfffff0f0;
21003 else
21004 {
21005 newval &= 0xff7ff0f0;
21006 newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
21007 }
21008 md_number_to_chars (buf, newval, INSN_SIZE);
21009 break;
21010
21011 case BFD_RELOC_ARM_T32_OFFSET_U8:
21012 if (value < 0 || value > 1020 || value % 4 != 0)
21013 as_bad_where (fixP->fx_file, fixP->fx_line,
21014 _("bad immediate value for offset (%ld)"), (long) value);
21015 value /= 4;
21016
21017 newval = md_chars_to_number (buf+2, THUMB_SIZE);
21018 newval |= value;
21019 md_number_to_chars (buf+2, newval, THUMB_SIZE);
21020 break;
21021
21022 case BFD_RELOC_ARM_T32_OFFSET_IMM:
21023 /* This is a complicated relocation used for all varieties of Thumb32
21024 load/store instruction with immediate offset:
21025
21026 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit,
21027 *4, optional writeback(W)
21028 (doubleword load/store)
21029
21030 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel
21031 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit
21032 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction)
21033 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit
21034 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit
21035
21036 Uppercase letters indicate bits that are already encoded at
21037 this point. Lowercase letters are our problem. For the
21038 second block of instructions, the secondary opcode nybble
21039 (bits 8..11) is present, and bit 23 is zero, even if this is
21040 a PC-relative operation. */
21041 newval = md_chars_to_number (buf, THUMB_SIZE);
21042 newval <<= 16;
21043 newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE);
21044
21045 if ((newval & 0xf0000000) == 0xe0000000)
21046 {
21047 /* Doubleword load/store: 8-bit offset, scaled by 4. */
21048 if (value >= 0)
21049 newval |= (1 << 23);
21050 else
21051 value = -value;
21052 if (value % 4 != 0)
21053 {
21054 as_bad_where (fixP->fx_file, fixP->fx_line,
21055 _("offset not a multiple of 4"));
21056 break;
21057 }
21058 value /= 4;
21059 if (value > 0xff)
21060 {
21061 as_bad_where (fixP->fx_file, fixP->fx_line,
21062 _("offset out of range"));
21063 break;
21064 }
21065 newval &= ~0xff;
21066 }
21067 else if ((newval & 0x000f0000) == 0x000f0000)
21068 {
21069 /* PC-relative, 12-bit offset. */
21070 if (value >= 0)
21071 newval |= (1 << 23);
21072 else
21073 value = -value;
21074 if (value > 0xfff)
21075 {
21076 as_bad_where (fixP->fx_file, fixP->fx_line,
21077 _("offset out of range"));
21078 break;
21079 }
21080 newval &= ~0xfff;
21081 }
21082 else if ((newval & 0x00000100) == 0x00000100)
21083 {
21084 /* Writeback: 8-bit, +/- offset. */
21085 if (value >= 0)
21086 newval |= (1 << 9);
21087 else
21088 value = -value;
21089 if (value > 0xff)
21090 {
21091 as_bad_where (fixP->fx_file, fixP->fx_line,
21092 _("offset out of range"));
21093 break;
21094 }
21095 newval &= ~0xff;
21096 }
21097 else if ((newval & 0x00000f00) == 0x00000e00)
21098 {
21099 /* T-instruction: positive 8-bit offset. */
21100 if (value < 0 || value > 0xff)
21101 {
21102 as_bad_where (fixP->fx_file, fixP->fx_line,
21103 _("offset out of range"));
21104 break;
21105 }
21106 newval &= ~0xff;
21107 newval |= value;
21108 }
21109 else
21110 {
21111 /* Positive 12-bit or negative 8-bit offset. */
21112 int limit;
21113 if (value >= 0)
21114 {
21115 newval |= (1 << 23);
21116 limit = 0xfff;
21117 }
21118 else
21119 {
21120 value = -value;
21121 limit = 0xff;
21122 }
21123 if (value > limit)
21124 {
21125 as_bad_where (fixP->fx_file, fixP->fx_line,
21126 _("offset out of range"));
21127 break;
21128 }
21129 newval &= ~limit;
21130 }
21131
21132 newval |= value;
21133 md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE);
21134 md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE);
21135 break;
21136
21137 case BFD_RELOC_ARM_SHIFT_IMM:
21138 newval = md_chars_to_number (buf, INSN_SIZE);
21139 if (((unsigned long) value) > 32
21140 || (value == 32
21141 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
21142 {
21143 as_bad_where (fixP->fx_file, fixP->fx_line,
21144 _("shift expression is too large"));
21145 break;
21146 }
21147
21148 if (value == 0)
21149 /* Shifts of zero must be done as lsl. */
21150 newval &= ~0x60;
21151 else if (value == 32)
21152 value = 0;
21153 newval &= 0xfffff07f;
21154 newval |= (value & 0x1f) << 7;
21155 md_number_to_chars (buf, newval, INSN_SIZE);
21156 break;
21157
21158 case BFD_RELOC_ARM_T32_IMMEDIATE:
21159 case BFD_RELOC_ARM_T32_ADD_IMM:
21160 case BFD_RELOC_ARM_T32_IMM12:
21161 case BFD_RELOC_ARM_T32_ADD_PC12:
21162 /* We claim that this fixup has been processed here,
21163 even if in fact we generate an error because we do
21164 not have a reloc for it, so tc_gen_reloc will reject it. */
21165 fixP->fx_done = 1;
21166
21167 if (fixP->fx_addsy
21168 && ! S_IS_DEFINED (fixP->fx_addsy))
21169 {
21170 as_bad_where (fixP->fx_file, fixP->fx_line,
21171 _("undefined symbol %s used as an immediate value"),
21172 S_GET_NAME (fixP->fx_addsy));
21173 break;
21174 }
21175
21176 newval = md_chars_to_number (buf, THUMB_SIZE);
21177 newval <<= 16;
21178 newval |= md_chars_to_number (buf+2, THUMB_SIZE);
21179
21180 newimm = FAIL;
21181 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
21182 || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21183 {
21184 newimm = encode_thumb32_immediate (value);
21185 if (newimm == (unsigned int) FAIL)
21186 newimm = thumb32_negate_data_op (&newval, value);
21187 }
21188 if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE
21189 && newimm == (unsigned int) FAIL)
21190 {
21191 /* Turn add/sum into addw/subw. */
21192 if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM)
21193 newval = (newval & 0xfeffffff) | 0x02000000;
21194 /* No flat 12-bit imm encoding for addsw/subsw. */
21195 if ((newval & 0x00100000) == 0)
21196 {
21197 /* 12 bit immediate for addw/subw. */
21198 if (value < 0)
21199 {
21200 value = -value;
21201 newval ^= 0x00a00000;
21202 }
21203 if (value > 0xfff)
21204 newimm = (unsigned int) FAIL;
21205 else
21206 newimm = value;
21207 }
21208 }
21209
21210 if (newimm == (unsigned int)FAIL)
21211 {
21212 as_bad_where (fixP->fx_file, fixP->fx_line,
21213 _("invalid constant (%lx) after fixup"),
21214 (unsigned long) value);
21215 break;
21216 }
21217
21218 newval |= (newimm & 0x800) << 15;
21219 newval |= (newimm & 0x700) << 4;
21220 newval |= (newimm & 0x0ff);
21221
21222 md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE);
21223 md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE);
21224 break;
21225
21226 case BFD_RELOC_ARM_SMC:
21227 if (((unsigned long) value) > 0xffff)
21228 as_bad_where (fixP->fx_file, fixP->fx_line,
21229 _("invalid smc expression"));
21230 newval = md_chars_to_number (buf, INSN_SIZE);
21231 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21232 md_number_to_chars (buf, newval, INSN_SIZE);
21233 break;
21234
21235 case BFD_RELOC_ARM_HVC:
21236 if (((unsigned long) value) > 0xffff)
21237 as_bad_where (fixP->fx_file, fixP->fx_line,
21238 _("invalid hvc expression"));
21239 newval = md_chars_to_number (buf, INSN_SIZE);
21240 newval |= (value & 0xf) | ((value & 0xfff0) << 4);
21241 md_number_to_chars (buf, newval, INSN_SIZE);
21242 break;
21243
21244 case BFD_RELOC_ARM_SWI:
21245 if (fixP->tc_fix_data != 0)
21246 {
21247 if (((unsigned long) value) > 0xff)
21248 as_bad_where (fixP->fx_file, fixP->fx_line,
21249 _("invalid swi expression"));
21250 newval = md_chars_to_number (buf, THUMB_SIZE);
21251 newval |= value;
21252 md_number_to_chars (buf, newval, THUMB_SIZE);
21253 }
21254 else
21255 {
21256 if (((unsigned long) value) > 0x00ffffff)
21257 as_bad_where (fixP->fx_file, fixP->fx_line,
21258 _("invalid swi expression"));
21259 newval = md_chars_to_number (buf, INSN_SIZE);
21260 newval |= value;
21261 md_number_to_chars (buf, newval, INSN_SIZE);
21262 }
21263 break;
21264
21265 case BFD_RELOC_ARM_MULTI:
21266 if (((unsigned long) value) > 0xffff)
21267 as_bad_where (fixP->fx_file, fixP->fx_line,
21268 _("invalid expression in load/store multiple"));
21269 newval = value | md_chars_to_number (buf, INSN_SIZE);
21270 md_number_to_chars (buf, newval, INSN_SIZE);
21271 break;
21272
21273 #ifdef OBJ_ELF
21274 case BFD_RELOC_ARM_PCREL_CALL:
21275
21276 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21277 && fixP->fx_addsy
21278 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21279 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21280 && THUMB_IS_FUNC (fixP->fx_addsy))
21281 /* Flip the bl to blx. This is a simple flip
21282 bit here because we generate PCREL_CALL for
21283 unconditional bls. */
21284 {
21285 newval = md_chars_to_number (buf, INSN_SIZE);
21286 newval = newval | 0x10000000;
21287 md_number_to_chars (buf, newval, INSN_SIZE);
21288 temp = 1;
21289 fixP->fx_done = 1;
21290 }
21291 else
21292 temp = 3;
21293 goto arm_branch_common;
21294
21295 case BFD_RELOC_ARM_PCREL_JUMP:
21296 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21297 && fixP->fx_addsy
21298 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21299 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21300 && THUMB_IS_FUNC (fixP->fx_addsy))
21301 {
21302 /* This would map to a bl<cond>, b<cond>,
21303 b<always> to a Thumb function. We
21304 need to force a relocation for this particular
21305 case. */
21306 newval = md_chars_to_number (buf, INSN_SIZE);
21307 fixP->fx_done = 0;
21308 }
21309
21310 case BFD_RELOC_ARM_PLT32:
21311 #endif
21312 case BFD_RELOC_ARM_PCREL_BRANCH:
21313 temp = 3;
21314 goto arm_branch_common;
21315
21316 case BFD_RELOC_ARM_PCREL_BLX:
21317
21318 temp = 1;
21319 if (ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
21320 && fixP->fx_addsy
21321 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21322 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21323 && ARM_IS_FUNC (fixP->fx_addsy))
21324 {
21325 /* Flip the blx to a bl and warn. */
21326 const char *name = S_GET_NAME (fixP->fx_addsy);
21327 newval = 0xeb000000;
21328 as_warn_where (fixP->fx_file, fixP->fx_line,
21329 _("blx to '%s' an ARM ISA state function changed to bl"),
21330 name);
21331 md_number_to_chars (buf, newval, INSN_SIZE);
21332 temp = 3;
21333 fixP->fx_done = 1;
21334 }
21335
21336 #ifdef OBJ_ELF
21337 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
21338 fixP->fx_r_type = BFD_RELOC_ARM_PCREL_CALL;
21339 #endif
21340
21341 arm_branch_common:
21342 /* We are going to store value (shifted right by two) in the
21343 instruction, in a 24 bit, signed field. Bits 26 through 32 either
21344 all clear or all set and bit 0 must be clear. For B/BL bit 1 must
21345 also be be clear. */
21346 if (value & temp)
21347 as_bad_where (fixP->fx_file, fixP->fx_line,
21348 _("misaligned branch destination"));
21349 if ((value & (offsetT)0xfe000000) != (offsetT)0
21350 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000)
21351 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21352
21353 if (fixP->fx_done || !seg->use_rela_p)
21354 {
21355 newval = md_chars_to_number (buf, INSN_SIZE);
21356 newval |= (value >> 2) & 0x00ffffff;
21357 /* Set the H bit on BLX instructions. */
21358 if (temp == 1)
21359 {
21360 if (value & 2)
21361 newval |= 0x01000000;
21362 else
21363 newval &= ~0x01000000;
21364 }
21365 md_number_to_chars (buf, newval, INSN_SIZE);
21366 }
21367 break;
21368
21369 case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CBZ */
21370 /* CBZ can only branch forward. */
21371
21372 /* Attempts to use CBZ to branch to the next instruction
21373 (which, strictly speaking, are prohibited) will be turned into
21374 no-ops.
21375
21376 FIXME: It may be better to remove the instruction completely and
21377 perform relaxation. */
21378 if (value == -2)
21379 {
21380 newval = md_chars_to_number (buf, THUMB_SIZE);
21381 newval = 0xbf00; /* NOP encoding T1 */
21382 md_number_to_chars (buf, newval, THUMB_SIZE);
21383 }
21384 else
21385 {
21386 if (value & ~0x7e)
21387 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21388
21389 if (fixP->fx_done || !seg->use_rela_p)
21390 {
21391 newval = md_chars_to_number (buf, THUMB_SIZE);
21392 newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3);
21393 md_number_to_chars (buf, newval, THUMB_SIZE);
21394 }
21395 }
21396 break;
21397
21398 case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
21399 if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
21400 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21401
21402 if (fixP->fx_done || !seg->use_rela_p)
21403 {
21404 newval = md_chars_to_number (buf, THUMB_SIZE);
21405 newval |= (value & 0x1ff) >> 1;
21406 md_number_to_chars (buf, newval, THUMB_SIZE);
21407 }
21408 break;
21409
21410 case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
21411 if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
21412 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21413
21414 if (fixP->fx_done || !seg->use_rela_p)
21415 {
21416 newval = md_chars_to_number (buf, THUMB_SIZE);
21417 newval |= (value & 0xfff) >> 1;
21418 md_number_to_chars (buf, newval, THUMB_SIZE);
21419 }
21420 break;
21421
21422 case BFD_RELOC_THUMB_PCREL_BRANCH20:
21423 if (fixP->fx_addsy
21424 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21425 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21426 && ARM_IS_FUNC (fixP->fx_addsy)
21427 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21428 {
21429 /* Force a relocation for a branch 20 bits wide. */
21430 fixP->fx_done = 0;
21431 }
21432 if ((value & ~0x1fffff) && ((value & ~0x0fffff) != ~0x0fffff))
21433 as_bad_where (fixP->fx_file, fixP->fx_line,
21434 _("conditional branch out of range"));
21435
21436 if (fixP->fx_done || !seg->use_rela_p)
21437 {
21438 offsetT newval2;
21439 addressT S, J1, J2, lo, hi;
21440
21441 S = (value & 0x00100000) >> 20;
21442 J2 = (value & 0x00080000) >> 19;
21443 J1 = (value & 0x00040000) >> 18;
21444 hi = (value & 0x0003f000) >> 12;
21445 lo = (value & 0x00000ffe) >> 1;
21446
21447 newval = md_chars_to_number (buf, THUMB_SIZE);
21448 newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21449 newval |= (S << 10) | hi;
21450 newval2 |= (J1 << 13) | (J2 << 11) | lo;
21451 md_number_to_chars (buf, newval, THUMB_SIZE);
21452 md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
21453 }
21454 break;
21455
21456 case BFD_RELOC_THUMB_PCREL_BLX:
21457 /* If there is a blx from a thumb state function to
21458 another thumb function flip this to a bl and warn
21459 about it. */
21460
21461 if (fixP->fx_addsy
21462 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21463 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21464 && THUMB_IS_FUNC (fixP->fx_addsy))
21465 {
21466 const char *name = S_GET_NAME (fixP->fx_addsy);
21467 as_warn_where (fixP->fx_file, fixP->fx_line,
21468 _("blx to Thumb func '%s' from Thumb ISA state changed to bl"),
21469 name);
21470 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21471 newval = newval | 0x1000;
21472 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21473 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21474 fixP->fx_done = 1;
21475 }
21476
21477
21478 goto thumb_bl_common;
21479
21480 case BFD_RELOC_THUMB_PCREL_BRANCH23:
21481 /* A bl from Thumb state ISA to an internal ARM state function
21482 is converted to a blx. */
21483 if (fixP->fx_addsy
21484 && (S_GET_SEGMENT (fixP->fx_addsy) == seg)
21485 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
21486 && ARM_IS_FUNC (fixP->fx_addsy)
21487 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t))
21488 {
21489 newval = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
21490 newval = newval & ~0x1000;
21491 md_number_to_chars (buf+THUMB_SIZE, newval, THUMB_SIZE);
21492 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BLX;
21493 fixP->fx_done = 1;
21494 }
21495
21496 thumb_bl_common:
21497
21498 #ifdef OBJ_ELF
21499 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4
21500 && fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21501 fixP->fx_r_type = BFD_RELOC_THUMB_PCREL_BRANCH23;
21502 #endif
21503
21504 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
21505 /* For a BLX instruction, make sure that the relocation is rounded up
21506 to a word boundary. This follows the semantics of the instruction
21507 which specifies that bit 1 of the target address will come from bit
21508 1 of the base address. */
21509 value = (value + 1) & ~ 1;
21510
21511 if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
21512 {
21513 if (!(ARM_CPU_HAS_FEATURE (cpu_variant, arm_arch_t2)))
21514 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21515 else if ((value & ~0x1ffffff)
21516 && ((value & ~0x1ffffff) != ~0x1ffffff))
21517 as_bad_where (fixP->fx_file, fixP->fx_line,
21518 _("Thumb2 branch out of range"));
21519 }
21520
21521 if (fixP->fx_done || !seg->use_rela_p)
21522 encode_thumb2_b_bl_offset (buf, value);
21523
21524 break;
21525
21526 case BFD_RELOC_THUMB_PCREL_BRANCH25:
21527 if ((value & ~0x0ffffff) && ((value & ~0x0ffffff) != ~0x0ffffff))
21528 as_bad_where (fixP->fx_file, fixP->fx_line, BAD_RANGE);
21529
21530 if (fixP->fx_done || !seg->use_rela_p)
21531 encode_thumb2_b_bl_offset (buf, value);
21532
21533 break;
21534
21535 case BFD_RELOC_8:
21536 if (fixP->fx_done || !seg->use_rela_p)
21537 md_number_to_chars (buf, value, 1);
21538 break;
21539
21540 case BFD_RELOC_16:
21541 if (fixP->fx_done || !seg->use_rela_p)
21542 md_number_to_chars (buf, value, 2);
21543 break;
21544
21545 #ifdef OBJ_ELF
21546 case BFD_RELOC_ARM_TLS_CALL:
21547 case BFD_RELOC_ARM_THM_TLS_CALL:
21548 case BFD_RELOC_ARM_TLS_DESCSEQ:
21549 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
21550 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21551 break;
21552
21553 case BFD_RELOC_ARM_TLS_GOTDESC:
21554 case BFD_RELOC_ARM_TLS_GD32:
21555 case BFD_RELOC_ARM_TLS_LE32:
21556 case BFD_RELOC_ARM_TLS_IE32:
21557 case BFD_RELOC_ARM_TLS_LDM32:
21558 case BFD_RELOC_ARM_TLS_LDO32:
21559 S_SET_THREAD_LOCAL (fixP->fx_addsy);
21560 /* fall through */
21561
21562 case BFD_RELOC_ARM_GOT32:
21563 case BFD_RELOC_ARM_GOTOFF:
21564 if (fixP->fx_done || !seg->use_rela_p)
21565 md_number_to_chars (buf, 0, 4);
21566 break;
21567
21568 case BFD_RELOC_ARM_GOT_PREL:
21569 if (fixP->fx_done || !seg->use_rela_p)
21570 md_number_to_chars (buf, value, 4);
21571 break;
21572
21573 case BFD_RELOC_ARM_TARGET2:
21574 /* TARGET2 is not partial-inplace, so we need to write the
21575 addend here for REL targets, because it won't be written out
21576 during reloc processing later. */
21577 if (fixP->fx_done || !seg->use_rela_p)
21578 md_number_to_chars (buf, fixP->fx_offset, 4);
21579 break;
21580 #endif
21581
21582 case BFD_RELOC_RVA:
21583 case BFD_RELOC_32:
21584 case BFD_RELOC_ARM_TARGET1:
21585 case BFD_RELOC_ARM_ROSEGREL32:
21586 case BFD_RELOC_ARM_SBREL32:
21587 case BFD_RELOC_32_PCREL:
21588 #ifdef TE_PE
21589 case BFD_RELOC_32_SECREL:
21590 #endif
21591 if (fixP->fx_done || !seg->use_rela_p)
21592 #ifdef TE_WINCE
21593 /* For WinCE we only do this for pcrel fixups. */
21594 if (fixP->fx_done || fixP->fx_pcrel)
21595 #endif
21596 md_number_to_chars (buf, value, 4);
21597 break;
21598
21599 #ifdef OBJ_ELF
21600 case BFD_RELOC_ARM_PREL31:
21601 if (fixP->fx_done || !seg->use_rela_p)
21602 {
21603 newval = md_chars_to_number (buf, 4) & 0x80000000;
21604 if ((value ^ (value >> 1)) & 0x40000000)
21605 {
21606 as_bad_where (fixP->fx_file, fixP->fx_line,
21607 _("rel31 relocation overflow"));
21608 }
21609 newval |= value & 0x7fffffff;
21610 md_number_to_chars (buf, newval, 4);
21611 }
21612 break;
21613 #endif
21614
21615 case BFD_RELOC_ARM_CP_OFF_IMM:
21616 case BFD_RELOC_ARM_T32_CP_OFF_IMM:
21617 if (value < -1023 || value > 1023 || (value & 3))
21618 as_bad_where (fixP->fx_file, fixP->fx_line,
21619 _("co-processor offset out of range"));
21620 cp_off_common:
21621 sign = value > 0;
21622 if (value < 0)
21623 value = -value;
21624 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21625 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21626 newval = md_chars_to_number (buf, INSN_SIZE);
21627 else
21628 newval = get_thumb32_insn (buf);
21629 if (value == 0)
21630 newval &= 0xffffff00;
21631 else
21632 {
21633 newval &= 0xff7fff00;
21634 newval |= (value >> 2) | (sign ? INDEX_UP : 0);
21635 }
21636 if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
21637 || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2)
21638 md_number_to_chars (buf, newval, INSN_SIZE);
21639 else
21640 put_thumb32_insn (buf, newval);
21641 break;
21642
21643 case BFD_RELOC_ARM_CP_OFF_IMM_S2:
21644 case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2:
21645 if (value < -255 || value > 255)
21646 as_bad_where (fixP->fx_file, fixP->fx_line,
21647 _("co-processor offset out of range"));
21648 value *= 4;
21649 goto cp_off_common;
21650
21651 case BFD_RELOC_ARM_THUMB_OFFSET:
21652 newval = md_chars_to_number (buf, THUMB_SIZE);
21653 /* Exactly what ranges, and where the offset is inserted depends
21654 on the type of instruction, we can establish this from the
21655 top 4 bits. */
21656 switch (newval >> 12)
21657 {
21658 case 4: /* PC load. */
21659 /* Thumb PC loads are somewhat odd, bit 1 of the PC is
21660 forced to zero for these loads; md_pcrel_from has already
21661 compensated for this. */
21662 if (value & 3)
21663 as_bad_where (fixP->fx_file, fixP->fx_line,
21664 _("invalid offset, target not word aligned (0x%08lX)"),
21665 (((unsigned long) fixP->fx_frag->fr_address
21666 + (unsigned long) fixP->fx_where) & ~3)
21667 + (unsigned long) value);
21668
21669 if (value & ~0x3fc)
21670 as_bad_where (fixP->fx_file, fixP->fx_line,
21671 _("invalid offset, value too big (0x%08lX)"),
21672 (long) value);
21673
21674 newval |= value >> 2;
21675 break;
21676
21677 case 9: /* SP load/store. */
21678 if (value & ~0x3fc)
21679 as_bad_where (fixP->fx_file, fixP->fx_line,
21680 _("invalid offset, value too big (0x%08lX)"),
21681 (long) value);
21682 newval |= value >> 2;
21683 break;
21684
21685 case 6: /* Word load/store. */
21686 if (value & ~0x7c)
21687 as_bad_where (fixP->fx_file, fixP->fx_line,
21688 _("invalid offset, value too big (0x%08lX)"),
21689 (long) value);
21690 newval |= value << 4; /* 6 - 2. */
21691 break;
21692
21693 case 7: /* Byte load/store. */
21694 if (value & ~0x1f)
21695 as_bad_where (fixP->fx_file, fixP->fx_line,
21696 _("invalid offset, value too big (0x%08lX)"),
21697 (long) value);
21698 newval |= value << 6;
21699 break;
21700
21701 case 8: /* Halfword load/store. */
21702 if (value & ~0x3e)
21703 as_bad_where (fixP->fx_file, fixP->fx_line,
21704 _("invalid offset, value too big (0x%08lX)"),
21705 (long) value);
21706 newval |= value << 5; /* 6 - 1. */
21707 break;
21708
21709 default:
21710 as_bad_where (fixP->fx_file, fixP->fx_line,
21711 "Unable to process relocation for thumb opcode: %lx",
21712 (unsigned long) newval);
21713 break;
21714 }
21715 md_number_to_chars (buf, newval, THUMB_SIZE);
21716 break;
21717
21718 case BFD_RELOC_ARM_THUMB_ADD:
21719 /* This is a complicated relocation, since we use it for all of
21720 the following immediate relocations:
21721
21722 3bit ADD/SUB
21723 8bit ADD/SUB
21724 9bit ADD/SUB SP word-aligned
21725 10bit ADD PC/SP word-aligned
21726
21727 The type of instruction being processed is encoded in the
21728 instruction field:
21729
21730 0x8000 SUB
21731 0x00F0 Rd
21732 0x000F Rs
21733 */
21734 newval = md_chars_to_number (buf, THUMB_SIZE);
21735 {
21736 int rd = (newval >> 4) & 0xf;
21737 int rs = newval & 0xf;
21738 int subtract = !!(newval & 0x8000);
21739
21740 /* Check for HI regs, only very restricted cases allowed:
21741 Adjusting SP, and using PC or SP to get an address. */
21742 if ((rd > 7 && (rd != REG_SP || rs != REG_SP))
21743 || (rs > 7 && rs != REG_SP && rs != REG_PC))
21744 as_bad_where (fixP->fx_file, fixP->fx_line,
21745 _("invalid Hi register with immediate"));
21746
21747 /* If value is negative, choose the opposite instruction. */
21748 if (value < 0)
21749 {
21750 value = -value;
21751 subtract = !subtract;
21752 if (value < 0)
21753 as_bad_where (fixP->fx_file, fixP->fx_line,
21754 _("immediate value out of range"));
21755 }
21756
21757 if (rd == REG_SP)
21758 {
21759 if (value & ~0x1fc)
21760 as_bad_where (fixP->fx_file, fixP->fx_line,
21761 _("invalid immediate for stack address calculation"));
21762 newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
21763 newval |= value >> 2;
21764 }
21765 else if (rs == REG_PC || rs == REG_SP)
21766 {
21767 if (subtract || value & ~0x3fc)
21768 as_bad_where (fixP->fx_file, fixP->fx_line,
21769 _("invalid immediate for address calculation (value = 0x%08lX)"),
21770 (unsigned long) value);
21771 newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
21772 newval |= rd << 8;
21773 newval |= value >> 2;
21774 }
21775 else if (rs == rd)
21776 {
21777 if (value & ~0xff)
21778 as_bad_where (fixP->fx_file, fixP->fx_line,
21779 _("immediate value out of range"));
21780 newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
21781 newval |= (rd << 8) | value;
21782 }
21783 else
21784 {
21785 if (value & ~0x7)
21786 as_bad_where (fixP->fx_file, fixP->fx_line,
21787 _("immediate value out of range"));
21788 newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
21789 newval |= rd | (rs << 3) | (value << 6);
21790 }
21791 }
21792 md_number_to_chars (buf, newval, THUMB_SIZE);
21793 break;
21794
21795 case BFD_RELOC_ARM_THUMB_IMM:
21796 newval = md_chars_to_number (buf, THUMB_SIZE);
21797 if (value < 0 || value > 255)
21798 as_bad_where (fixP->fx_file, fixP->fx_line,
21799 _("invalid immediate: %ld is out of range"),
21800 (long) value);
21801 newval |= value;
21802 md_number_to_chars (buf, newval, THUMB_SIZE);
21803 break;
21804
21805 case BFD_RELOC_ARM_THUMB_SHIFT:
21806 /* 5bit shift value (0..32). LSL cannot take 32. */
21807 newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f;
21808 temp = newval & 0xf800;
21809 if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I))
21810 as_bad_where (fixP->fx_file, fixP->fx_line,
21811 _("invalid shift value: %ld"), (long) value);
21812 /* Shifts of zero must be encoded as LSL. */
21813 if (value == 0)
21814 newval = (newval & 0x003f) | T_OPCODE_LSL_I;
21815 /* Shifts of 32 are encoded as zero. */
21816 else if (value == 32)
21817 value = 0;
21818 newval |= value << 6;
21819 md_number_to_chars (buf, newval, THUMB_SIZE);
21820 break;
21821
21822 case BFD_RELOC_VTABLE_INHERIT:
21823 case BFD_RELOC_VTABLE_ENTRY:
21824 fixP->fx_done = 0;
21825 return;
21826
21827 case BFD_RELOC_ARM_MOVW:
21828 case BFD_RELOC_ARM_MOVT:
21829 case BFD_RELOC_ARM_THUMB_MOVW:
21830 case BFD_RELOC_ARM_THUMB_MOVT:
21831 if (fixP->fx_done || !seg->use_rela_p)
21832 {
21833 /* REL format relocations are limited to a 16-bit addend. */
21834 if (!fixP->fx_done)
21835 {
21836 if (value < -0x8000 || value > 0x7fff)
21837 as_bad_where (fixP->fx_file, fixP->fx_line,
21838 _("offset out of range"));
21839 }
21840 else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT
21841 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21842 {
21843 value >>= 16;
21844 }
21845
21846 if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
21847 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT)
21848 {
21849 newval = get_thumb32_insn (buf);
21850 newval &= 0xfbf08f00;
21851 newval |= (value & 0xf000) << 4;
21852 newval |= (value & 0x0800) << 15;
21853 newval |= (value & 0x0700) << 4;
21854 newval |= (value & 0x00ff);
21855 put_thumb32_insn (buf, newval);
21856 }
21857 else
21858 {
21859 newval = md_chars_to_number (buf, 4);
21860 newval &= 0xfff0f000;
21861 newval |= value & 0x0fff;
21862 newval |= (value & 0xf000) << 4;
21863 md_number_to_chars (buf, newval, 4);
21864 }
21865 }
21866 return;
21867
21868 case BFD_RELOC_ARM_ALU_PC_G0_NC:
21869 case BFD_RELOC_ARM_ALU_PC_G0:
21870 case BFD_RELOC_ARM_ALU_PC_G1_NC:
21871 case BFD_RELOC_ARM_ALU_PC_G1:
21872 case BFD_RELOC_ARM_ALU_PC_G2:
21873 case BFD_RELOC_ARM_ALU_SB_G0_NC:
21874 case BFD_RELOC_ARM_ALU_SB_G0:
21875 case BFD_RELOC_ARM_ALU_SB_G1_NC:
21876 case BFD_RELOC_ARM_ALU_SB_G1:
21877 case BFD_RELOC_ARM_ALU_SB_G2:
21878 gas_assert (!fixP->fx_done);
21879 if (!seg->use_rela_p)
21880 {
21881 bfd_vma insn;
21882 bfd_vma encoded_addend;
21883 bfd_vma addend_abs = abs (value);
21884
21885 /* Check that the absolute value of the addend can be
21886 expressed as an 8-bit constant plus a rotation. */
21887 encoded_addend = encode_arm_immediate (addend_abs);
21888 if (encoded_addend == (unsigned int) FAIL)
21889 as_bad_where (fixP->fx_file, fixP->fx_line,
21890 _("the offset 0x%08lX is not representable"),
21891 (unsigned long) addend_abs);
21892
21893 /* Extract the instruction. */
21894 insn = md_chars_to_number (buf, INSN_SIZE);
21895
21896 /* If the addend is positive, use an ADD instruction.
21897 Otherwise use a SUB. Take care not to destroy the S bit. */
21898 insn &= 0xff1fffff;
21899 if (value < 0)
21900 insn |= 1 << 22;
21901 else
21902 insn |= 1 << 23;
21903
21904 /* Place the encoded addend into the first 12 bits of the
21905 instruction. */
21906 insn &= 0xfffff000;
21907 insn |= encoded_addend;
21908
21909 /* Update the instruction. */
21910 md_number_to_chars (buf, insn, INSN_SIZE);
21911 }
21912 break;
21913
21914 case BFD_RELOC_ARM_LDR_PC_G0:
21915 case BFD_RELOC_ARM_LDR_PC_G1:
21916 case BFD_RELOC_ARM_LDR_PC_G2:
21917 case BFD_RELOC_ARM_LDR_SB_G0:
21918 case BFD_RELOC_ARM_LDR_SB_G1:
21919 case BFD_RELOC_ARM_LDR_SB_G2:
21920 gas_assert (!fixP->fx_done);
21921 if (!seg->use_rela_p)
21922 {
21923 bfd_vma insn;
21924 bfd_vma addend_abs = abs (value);
21925
21926 /* Check that the absolute value of the addend can be
21927 encoded in 12 bits. */
21928 if (addend_abs >= 0x1000)
21929 as_bad_where (fixP->fx_file, fixP->fx_line,
21930 _("bad offset 0x%08lX (only 12 bits available for the magnitude)"),
21931 (unsigned long) addend_abs);
21932
21933 /* Extract the instruction. */
21934 insn = md_chars_to_number (buf, INSN_SIZE);
21935
21936 /* If the addend is negative, clear bit 23 of the instruction.
21937 Otherwise set it. */
21938 if (value < 0)
21939 insn &= ~(1 << 23);
21940 else
21941 insn |= 1 << 23;
21942
21943 /* Place the absolute value of the addend into the first 12 bits
21944 of the instruction. */
21945 insn &= 0xfffff000;
21946 insn |= addend_abs;
21947
21948 /* Update the instruction. */
21949 md_number_to_chars (buf, insn, INSN_SIZE);
21950 }
21951 break;
21952
21953 case BFD_RELOC_ARM_LDRS_PC_G0:
21954 case BFD_RELOC_ARM_LDRS_PC_G1:
21955 case BFD_RELOC_ARM_LDRS_PC_G2:
21956 case BFD_RELOC_ARM_LDRS_SB_G0:
21957 case BFD_RELOC_ARM_LDRS_SB_G1:
21958 case BFD_RELOC_ARM_LDRS_SB_G2:
21959 gas_assert (!fixP->fx_done);
21960 if (!seg->use_rela_p)
21961 {
21962 bfd_vma insn;
21963 bfd_vma addend_abs = abs (value);
21964
21965 /* Check that the absolute value of the addend can be
21966 encoded in 8 bits. */
21967 if (addend_abs >= 0x100)
21968 as_bad_where (fixP->fx_file, fixP->fx_line,
21969 _("bad offset 0x%08lX (only 8 bits available for the magnitude)"),
21970 (unsigned long) addend_abs);
21971
21972 /* Extract the instruction. */
21973 insn = md_chars_to_number (buf, INSN_SIZE);
21974
21975 /* If the addend is negative, clear bit 23 of the instruction.
21976 Otherwise set it. */
21977 if (value < 0)
21978 insn &= ~(1 << 23);
21979 else
21980 insn |= 1 << 23;
21981
21982 /* Place the first four bits of the absolute value of the addend
21983 into the first 4 bits of the instruction, and the remaining
21984 four into bits 8 .. 11. */
21985 insn &= 0xfffff0f0;
21986 insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4);
21987
21988 /* Update the instruction. */
21989 md_number_to_chars (buf, insn, INSN_SIZE);
21990 }
21991 break;
21992
21993 case BFD_RELOC_ARM_LDC_PC_G0:
21994 case BFD_RELOC_ARM_LDC_PC_G1:
21995 case BFD_RELOC_ARM_LDC_PC_G2:
21996 case BFD_RELOC_ARM_LDC_SB_G0:
21997 case BFD_RELOC_ARM_LDC_SB_G1:
21998 case BFD_RELOC_ARM_LDC_SB_G2:
21999 gas_assert (!fixP->fx_done);
22000 if (!seg->use_rela_p)
22001 {
22002 bfd_vma insn;
22003 bfd_vma addend_abs = abs (value);
22004
22005 /* Check that the absolute value of the addend is a multiple of
22006 four and, when divided by four, fits in 8 bits. */
22007 if (addend_abs & 0x3)
22008 as_bad_where (fixP->fx_file, fixP->fx_line,
22009 _("bad offset 0x%08lX (must be word-aligned)"),
22010 (unsigned long) addend_abs);
22011
22012 if ((addend_abs >> 2) > 0xff)
22013 as_bad_where (fixP->fx_file, fixP->fx_line,
22014 _("bad offset 0x%08lX (must be an 8-bit number of words)"),
22015 (unsigned long) addend_abs);
22016
22017 /* Extract the instruction. */
22018 insn = md_chars_to_number (buf, INSN_SIZE);
22019
22020 /* If the addend is negative, clear bit 23 of the instruction.
22021 Otherwise set it. */
22022 if (value < 0)
22023 insn &= ~(1 << 23);
22024 else
22025 insn |= 1 << 23;
22026
22027 /* Place the addend (divided by four) into the first eight
22028 bits of the instruction. */
22029 insn &= 0xfffffff0;
22030 insn |= addend_abs >> 2;
22031
22032 /* Update the instruction. */
22033 md_number_to_chars (buf, insn, INSN_SIZE);
22034 }
22035 break;
22036
22037 case BFD_RELOC_ARM_V4BX:
22038 /* This will need to go in the object file. */
22039 fixP->fx_done = 0;
22040 break;
22041
22042 case BFD_RELOC_UNUSED:
22043 default:
22044 as_bad_where (fixP->fx_file, fixP->fx_line,
22045 _("bad relocation fixup type (%d)"), fixP->fx_r_type);
22046 }
22047 }
22048
22049 /* Translate internal representation of relocation info to BFD target
22050 format. */
22051
22052 arelent *
22053 tc_gen_reloc (asection *section, fixS *fixp)
22054 {
22055 arelent * reloc;
22056 bfd_reloc_code_real_type code;
22057
22058 reloc = (arelent *) xmalloc (sizeof (arelent));
22059
22060 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
22061 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
22062 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
22063
22064 if (fixp->fx_pcrel)
22065 {
22066 if (section->use_rela_p)
22067 fixp->fx_offset -= md_pcrel_from_section (fixp, section);
22068 else
22069 fixp->fx_offset = reloc->address;
22070 }
22071 reloc->addend = fixp->fx_offset;
22072
22073 switch (fixp->fx_r_type)
22074 {
22075 case BFD_RELOC_8:
22076 if (fixp->fx_pcrel)
22077 {
22078 code = BFD_RELOC_8_PCREL;
22079 break;
22080 }
22081
22082 case BFD_RELOC_16:
22083 if (fixp->fx_pcrel)
22084 {
22085 code = BFD_RELOC_16_PCREL;
22086 break;
22087 }
22088
22089 case BFD_RELOC_32:
22090 if (fixp->fx_pcrel)
22091 {
22092 code = BFD_RELOC_32_PCREL;
22093 break;
22094 }
22095
22096 case BFD_RELOC_ARM_MOVW:
22097 if (fixp->fx_pcrel)
22098 {
22099 code = BFD_RELOC_ARM_MOVW_PCREL;
22100 break;
22101 }
22102
22103 case BFD_RELOC_ARM_MOVT:
22104 if (fixp->fx_pcrel)
22105 {
22106 code = BFD_RELOC_ARM_MOVT_PCREL;
22107 break;
22108 }
22109
22110 case BFD_RELOC_ARM_THUMB_MOVW:
22111 if (fixp->fx_pcrel)
22112 {
22113 code = BFD_RELOC_ARM_THUMB_MOVW_PCREL;
22114 break;
22115 }
22116
22117 case BFD_RELOC_ARM_THUMB_MOVT:
22118 if (fixp->fx_pcrel)
22119 {
22120 code = BFD_RELOC_ARM_THUMB_MOVT_PCREL;
22121 break;
22122 }
22123
22124 case BFD_RELOC_NONE:
22125 case BFD_RELOC_ARM_PCREL_BRANCH:
22126 case BFD_RELOC_ARM_PCREL_BLX:
22127 case BFD_RELOC_RVA:
22128 case BFD_RELOC_THUMB_PCREL_BRANCH7:
22129 case BFD_RELOC_THUMB_PCREL_BRANCH9:
22130 case BFD_RELOC_THUMB_PCREL_BRANCH12:
22131 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22132 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22133 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22134 case BFD_RELOC_VTABLE_ENTRY:
22135 case BFD_RELOC_VTABLE_INHERIT:
22136 #ifdef TE_PE
22137 case BFD_RELOC_32_SECREL:
22138 #endif
22139 code = fixp->fx_r_type;
22140 break;
22141
22142 case BFD_RELOC_THUMB_PCREL_BLX:
22143 #ifdef OBJ_ELF
22144 if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4)
22145 code = BFD_RELOC_THUMB_PCREL_BRANCH23;
22146 else
22147 #endif
22148 code = BFD_RELOC_THUMB_PCREL_BLX;
22149 break;
22150
22151 case BFD_RELOC_ARM_LITERAL:
22152 case BFD_RELOC_ARM_HWLITERAL:
22153 /* If this is called then the a literal has
22154 been referenced across a section boundary. */
22155 as_bad_where (fixp->fx_file, fixp->fx_line,
22156 _("literal referenced across section boundary"));
22157 return NULL;
22158
22159 #ifdef OBJ_ELF
22160 case BFD_RELOC_ARM_TLS_CALL:
22161 case BFD_RELOC_ARM_THM_TLS_CALL:
22162 case BFD_RELOC_ARM_TLS_DESCSEQ:
22163 case BFD_RELOC_ARM_THM_TLS_DESCSEQ:
22164 case BFD_RELOC_ARM_GOT32:
22165 case BFD_RELOC_ARM_GOTOFF:
22166 case BFD_RELOC_ARM_GOT_PREL:
22167 case BFD_RELOC_ARM_PLT32:
22168 case BFD_RELOC_ARM_TARGET1:
22169 case BFD_RELOC_ARM_ROSEGREL32:
22170 case BFD_RELOC_ARM_SBREL32:
22171 case BFD_RELOC_ARM_PREL31:
22172 case BFD_RELOC_ARM_TARGET2:
22173 case BFD_RELOC_ARM_TLS_LE32:
22174 case BFD_RELOC_ARM_TLS_LDO32:
22175 case BFD_RELOC_ARM_PCREL_CALL:
22176 case BFD_RELOC_ARM_PCREL_JUMP:
22177 case BFD_RELOC_ARM_ALU_PC_G0_NC:
22178 case BFD_RELOC_ARM_ALU_PC_G0:
22179 case BFD_RELOC_ARM_ALU_PC_G1_NC:
22180 case BFD_RELOC_ARM_ALU_PC_G1:
22181 case BFD_RELOC_ARM_ALU_PC_G2:
22182 case BFD_RELOC_ARM_LDR_PC_G0:
22183 case BFD_RELOC_ARM_LDR_PC_G1:
22184 case BFD_RELOC_ARM_LDR_PC_G2:
22185 case BFD_RELOC_ARM_LDRS_PC_G0:
22186 case BFD_RELOC_ARM_LDRS_PC_G1:
22187 case BFD_RELOC_ARM_LDRS_PC_G2:
22188 case BFD_RELOC_ARM_LDC_PC_G0:
22189 case BFD_RELOC_ARM_LDC_PC_G1:
22190 case BFD_RELOC_ARM_LDC_PC_G2:
22191 case BFD_RELOC_ARM_ALU_SB_G0_NC:
22192 case BFD_RELOC_ARM_ALU_SB_G0:
22193 case BFD_RELOC_ARM_ALU_SB_G1_NC:
22194 case BFD_RELOC_ARM_ALU_SB_G1:
22195 case BFD_RELOC_ARM_ALU_SB_G2:
22196 case BFD_RELOC_ARM_LDR_SB_G0:
22197 case BFD_RELOC_ARM_LDR_SB_G1:
22198 case BFD_RELOC_ARM_LDR_SB_G2:
22199 case BFD_RELOC_ARM_LDRS_SB_G0:
22200 case BFD_RELOC_ARM_LDRS_SB_G1:
22201 case BFD_RELOC_ARM_LDRS_SB_G2:
22202 case BFD_RELOC_ARM_LDC_SB_G0:
22203 case BFD_RELOC_ARM_LDC_SB_G1:
22204 case BFD_RELOC_ARM_LDC_SB_G2:
22205 case BFD_RELOC_ARM_V4BX:
22206 code = fixp->fx_r_type;
22207 break;
22208
22209 case BFD_RELOC_ARM_TLS_GOTDESC:
22210 case BFD_RELOC_ARM_TLS_GD32:
22211 case BFD_RELOC_ARM_TLS_IE32:
22212 case BFD_RELOC_ARM_TLS_LDM32:
22213 /* BFD will include the symbol's address in the addend.
22214 But we don't want that, so subtract it out again here. */
22215 if (!S_IS_COMMON (fixp->fx_addsy))
22216 reloc->addend -= (*reloc->sym_ptr_ptr)->value;
22217 code = fixp->fx_r_type;
22218 break;
22219 #endif
22220
22221 case BFD_RELOC_ARM_IMMEDIATE:
22222 as_bad_where (fixp->fx_file, fixp->fx_line,
22223 _("internal relocation (type: IMMEDIATE) not fixed up"));
22224 return NULL;
22225
22226 case BFD_RELOC_ARM_ADRL_IMMEDIATE:
22227 as_bad_where (fixp->fx_file, fixp->fx_line,
22228 _("ADRL used for a symbol not defined in the same file"));
22229 return NULL;
22230
22231 case BFD_RELOC_ARM_OFFSET_IMM:
22232 if (section->use_rela_p)
22233 {
22234 code = fixp->fx_r_type;
22235 break;
22236 }
22237
22238 if (fixp->fx_addsy != NULL
22239 && !S_IS_DEFINED (fixp->fx_addsy)
22240 && S_IS_LOCAL (fixp->fx_addsy))
22241 {
22242 as_bad_where (fixp->fx_file, fixp->fx_line,
22243 _("undefined local label `%s'"),
22244 S_GET_NAME (fixp->fx_addsy));
22245 return NULL;
22246 }
22247
22248 as_bad_where (fixp->fx_file, fixp->fx_line,
22249 _("internal_relocation (type: OFFSET_IMM) not fixed up"));
22250 return NULL;
22251
22252 default:
22253 {
22254 char * type;
22255
22256 switch (fixp->fx_r_type)
22257 {
22258 case BFD_RELOC_NONE: type = "NONE"; break;
22259 case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
22260 case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
22261 case BFD_RELOC_ARM_SMC: type = "SMC"; break;
22262 case BFD_RELOC_ARM_SWI: type = "SWI"; break;
22263 case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
22264 case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
22265 case BFD_RELOC_ARM_T32_OFFSET_IMM: type = "T32_OFFSET_IMM"; break;
22266 case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break;
22267 case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
22268 case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
22269 case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
22270 case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
22271 default: type = _("<unknown>"); break;
22272 }
22273 as_bad_where (fixp->fx_file, fixp->fx_line,
22274 _("cannot represent %s relocation in this object file format"),
22275 type);
22276 return NULL;
22277 }
22278 }
22279
22280 #ifdef OBJ_ELF
22281 if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32)
22282 && GOT_symbol
22283 && fixp->fx_addsy == GOT_symbol)
22284 {
22285 code = BFD_RELOC_ARM_GOTPC;
22286 reloc->addend = fixp->fx_offset = reloc->address;
22287 }
22288 #endif
22289
22290 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
22291
22292 if (reloc->howto == NULL)
22293 {
22294 as_bad_where (fixp->fx_file, fixp->fx_line,
22295 _("cannot represent %s relocation in this object file format"),
22296 bfd_get_reloc_code_name (code));
22297 return NULL;
22298 }
22299
22300 /* HACK: Since arm ELF uses Rel instead of Rela, encode the
22301 vtable entry to be used in the relocation's section offset. */
22302 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22303 reloc->address = fixp->fx_offset;
22304
22305 return reloc;
22306 }
22307
22308 /* This fix_new is called by cons via TC_CONS_FIX_NEW. */
22309
22310 void
22311 cons_fix_new_arm (fragS * frag,
22312 int where,
22313 int size,
22314 expressionS * exp)
22315 {
22316 bfd_reloc_code_real_type type;
22317 int pcrel = 0;
22318
22319 /* Pick a reloc.
22320 FIXME: @@ Should look at CPU word size. */
22321 switch (size)
22322 {
22323 case 1:
22324 type = BFD_RELOC_8;
22325 break;
22326 case 2:
22327 type = BFD_RELOC_16;
22328 break;
22329 case 4:
22330 default:
22331 type = BFD_RELOC_32;
22332 break;
22333 case 8:
22334 type = BFD_RELOC_64;
22335 break;
22336 }
22337
22338 #ifdef TE_PE
22339 if (exp->X_op == O_secrel)
22340 {
22341 exp->X_op = O_symbol;
22342 type = BFD_RELOC_32_SECREL;
22343 }
22344 #endif
22345
22346 fix_new_exp (frag, where, (int) size, exp, pcrel, type);
22347 }
22348
22349 #if defined (OBJ_COFF)
22350 void
22351 arm_validate_fix (fixS * fixP)
22352 {
22353 /* If the destination of the branch is a defined symbol which does not have
22354 the THUMB_FUNC attribute, then we must be calling a function which has
22355 the (interfacearm) attribute. We look for the Thumb entry point to that
22356 function and change the branch to refer to that function instead. */
22357 if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
22358 && fixP->fx_addsy != NULL
22359 && S_IS_DEFINED (fixP->fx_addsy)
22360 && ! THUMB_IS_FUNC (fixP->fx_addsy))
22361 {
22362 fixP->fx_addsy = find_real_start (fixP->fx_addsy);
22363 }
22364 }
22365 #endif
22366
22367
22368 int
22369 arm_force_relocation (struct fix * fixp)
22370 {
22371 #if defined (OBJ_COFF) && defined (TE_PE)
22372 if (fixp->fx_r_type == BFD_RELOC_RVA)
22373 return 1;
22374 #endif
22375
22376 /* In case we have a call or a branch to a function in ARM ISA mode from
22377 a thumb function or vice-versa force the relocation. These relocations
22378 are cleared off for some cores that might have blx and simple transformations
22379 are possible. */
22380
22381 #ifdef OBJ_ELF
22382 switch (fixp->fx_r_type)
22383 {
22384 case BFD_RELOC_ARM_PCREL_JUMP:
22385 case BFD_RELOC_ARM_PCREL_CALL:
22386 case BFD_RELOC_THUMB_PCREL_BLX:
22387 if (THUMB_IS_FUNC (fixp->fx_addsy))
22388 return 1;
22389 break;
22390
22391 case BFD_RELOC_ARM_PCREL_BLX:
22392 case BFD_RELOC_THUMB_PCREL_BRANCH25:
22393 case BFD_RELOC_THUMB_PCREL_BRANCH20:
22394 case BFD_RELOC_THUMB_PCREL_BRANCH23:
22395 if (ARM_IS_FUNC (fixp->fx_addsy))
22396 return 1;
22397 break;
22398
22399 default:
22400 break;
22401 }
22402 #endif
22403
22404 /* Resolve these relocations even if the symbol is extern or weak.
22405 Technically this is probably wrong due to symbol preemption.
22406 In practice these relocations do not have enough range to be useful
22407 at dynamic link time, and some code (e.g. in the Linux kernel)
22408 expects these references to be resolved. */
22409 if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE
22410 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM
22411 || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM8
22412 || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE
22413 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM
22414 || fixp->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2
22415 || fixp->fx_r_type == BFD_RELOC_ARM_THUMB_OFFSET
22416 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM
22417 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE
22418 || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12
22419 || fixp->fx_r_type == BFD_RELOC_ARM_T32_OFFSET_IMM
22420 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12
22421 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM
22422 || fixp->fx_r_type == BFD_RELOC_ARM_T32_CP_OFF_IMM_S2)
22423 return 0;
22424
22425 /* Always leave these relocations for the linker. */
22426 if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22427 && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22428 || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22429 return 1;
22430
22431 /* Always generate relocations against function symbols. */
22432 if (fixp->fx_r_type == BFD_RELOC_32
22433 && fixp->fx_addsy
22434 && (symbol_get_bfdsym (fixp->fx_addsy)->flags & BSF_FUNCTION))
22435 return 1;
22436
22437 return generic_force_reloc (fixp);
22438 }
22439
22440 #if defined (OBJ_ELF) || defined (OBJ_COFF)
22441 /* Relocations against function names must be left unadjusted,
22442 so that the linker can use this information to generate interworking
22443 stubs. The MIPS version of this function
22444 also prevents relocations that are mips-16 specific, but I do not
22445 know why it does this.
22446
22447 FIXME:
22448 There is one other problem that ought to be addressed here, but
22449 which currently is not: Taking the address of a label (rather
22450 than a function) and then later jumping to that address. Such
22451 addresses also ought to have their bottom bit set (assuming that
22452 they reside in Thumb code), but at the moment they will not. */
22453
22454 bfd_boolean
22455 arm_fix_adjustable (fixS * fixP)
22456 {
22457 if (fixP->fx_addsy == NULL)
22458 return 1;
22459
22460 /* Preserve relocations against symbols with function type. */
22461 if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION)
22462 return FALSE;
22463
22464 if (THUMB_IS_FUNC (fixP->fx_addsy)
22465 && fixP->fx_subsy == NULL)
22466 return FALSE;
22467
22468 /* We need the symbol name for the VTABLE entries. */
22469 if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
22470 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
22471 return FALSE;
22472
22473 /* Don't allow symbols to be discarded on GOT related relocs. */
22474 if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32
22475 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32
22476 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF
22477 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32
22478 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32
22479 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32
22480 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32
22481 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32
22482 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GOTDESC
22483 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_CALL
22484 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_CALL
22485 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_DESCSEQ
22486 || fixP->fx_r_type == BFD_RELOC_ARM_THM_TLS_DESCSEQ
22487 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2)
22488 return FALSE;
22489
22490 /* Similarly for group relocations. */
22491 if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC
22492 && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2)
22493 || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0)
22494 return FALSE;
22495
22496 /* MOVW/MOVT REL relocations have limited offsets, so keep the symbols. */
22497 if (fixP->fx_r_type == BFD_RELOC_ARM_MOVW
22498 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT
22499 || fixP->fx_r_type == BFD_RELOC_ARM_MOVW_PCREL
22500 || fixP->fx_r_type == BFD_RELOC_ARM_MOVT_PCREL
22501 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW
22502 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT
22503 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW_PCREL
22504 || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT_PCREL)
22505 return FALSE;
22506
22507 return TRUE;
22508 }
22509 #endif /* defined (OBJ_ELF) || defined (OBJ_COFF) */
22510
22511 #ifdef OBJ_ELF
22512
22513 const char *
22514 elf32_arm_target_format (void)
22515 {
22516 #ifdef TE_SYMBIAN
22517 return (target_big_endian
22518 ? "elf32-bigarm-symbian"
22519 : "elf32-littlearm-symbian");
22520 #elif defined (TE_VXWORKS)
22521 return (target_big_endian
22522 ? "elf32-bigarm-vxworks"
22523 : "elf32-littlearm-vxworks");
22524 #elif defined (TE_NACL)
22525 return (target_big_endian
22526 ? "elf32-bigarm-nacl"
22527 : "elf32-littlearm-nacl");
22528 #else
22529 if (target_big_endian)
22530 return "elf32-bigarm";
22531 else
22532 return "elf32-littlearm";
22533 #endif
22534 }
22535
22536 void
22537 armelf_frob_symbol (symbolS * symp,
22538 int * puntp)
22539 {
22540 elf_frob_symbol (symp, puntp);
22541 }
22542 #endif
22543
22544 /* MD interface: Finalization. */
22545
22546 void
22547 arm_cleanup (void)
22548 {
22549 literal_pool * pool;
22550
22551 /* Ensure that all the IT blocks are properly closed. */
22552 check_it_blocks_finished ();
22553
22554 for (pool = list_of_pools; pool; pool = pool->next)
22555 {
22556 /* Put it at the end of the relevant section. */
22557 subseg_set (pool->section, pool->sub_section);
22558 #ifdef OBJ_ELF
22559 arm_elf_change_section ();
22560 #endif
22561 s_ltorg (0);
22562 }
22563 }
22564
22565 #ifdef OBJ_ELF
22566 /* Remove any excess mapping symbols generated for alignment frags in
22567 SEC. We may have created a mapping symbol before a zero byte
22568 alignment; remove it if there's a mapping symbol after the
22569 alignment. */
22570 static void
22571 check_mapping_symbols (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
22572 void *dummy ATTRIBUTE_UNUSED)
22573 {
22574 segment_info_type *seginfo = seg_info (sec);
22575 fragS *fragp;
22576
22577 if (seginfo == NULL || seginfo->frchainP == NULL)
22578 return;
22579
22580 for (fragp = seginfo->frchainP->frch_root;
22581 fragp != NULL;
22582 fragp = fragp->fr_next)
22583 {
22584 symbolS *sym = fragp->tc_frag_data.last_map;
22585 fragS *next = fragp->fr_next;
22586
22587 /* Variable-sized frags have been converted to fixed size by
22588 this point. But if this was variable-sized to start with,
22589 there will be a fixed-size frag after it. So don't handle
22590 next == NULL. */
22591 if (sym == NULL || next == NULL)
22592 continue;
22593
22594 if (S_GET_VALUE (sym) < next->fr_address)
22595 /* Not at the end of this frag. */
22596 continue;
22597 know (S_GET_VALUE (sym) == next->fr_address);
22598
22599 do
22600 {
22601 if (next->tc_frag_data.first_map != NULL)
22602 {
22603 /* Next frag starts with a mapping symbol. Discard this
22604 one. */
22605 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22606 break;
22607 }
22608
22609 if (next->fr_next == NULL)
22610 {
22611 /* This mapping symbol is at the end of the section. Discard
22612 it. */
22613 know (next->fr_fix == 0 && next->fr_var == 0);
22614 symbol_remove (sym, &symbol_rootP, &symbol_lastP);
22615 break;
22616 }
22617
22618 /* As long as we have empty frags without any mapping symbols,
22619 keep looking. */
22620 /* If the next frag is non-empty and does not start with a
22621 mapping symbol, then this mapping symbol is required. */
22622 if (next->fr_address != next->fr_next->fr_address)
22623 break;
22624
22625 next = next->fr_next;
22626 }
22627 while (next != NULL);
22628 }
22629 }
22630 #endif
22631
22632 /* Adjust the symbol table. This marks Thumb symbols as distinct from
22633 ARM ones. */
22634
22635 void
22636 arm_adjust_symtab (void)
22637 {
22638 #ifdef OBJ_COFF
22639 symbolS * sym;
22640
22641 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22642 {
22643 if (ARM_IS_THUMB (sym))
22644 {
22645 if (THUMB_IS_FUNC (sym))
22646 {
22647 /* Mark the symbol as a Thumb function. */
22648 if ( S_GET_STORAGE_CLASS (sym) == C_STAT
22649 || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
22650 S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
22651
22652 else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
22653 S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
22654 else
22655 as_bad (_("%s: unexpected function type: %d"),
22656 S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
22657 }
22658 else switch (S_GET_STORAGE_CLASS (sym))
22659 {
22660 case C_EXT:
22661 S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
22662 break;
22663 case C_STAT:
22664 S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
22665 break;
22666 case C_LABEL:
22667 S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
22668 break;
22669 default:
22670 /* Do nothing. */
22671 break;
22672 }
22673 }
22674
22675 if (ARM_IS_INTERWORK (sym))
22676 coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
22677 }
22678 #endif
22679 #ifdef OBJ_ELF
22680 symbolS * sym;
22681 char bind;
22682
22683 for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
22684 {
22685 if (ARM_IS_THUMB (sym))
22686 {
22687 elf_symbol_type * elf_sym;
22688
22689 elf_sym = elf_symbol (symbol_get_bfdsym (sym));
22690 bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info);
22691
22692 if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name,
22693 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
22694 {
22695 /* If it's a .thumb_func, declare it as so,
22696 otherwise tag label as .code 16. */
22697 if (THUMB_IS_FUNC (sym))
22698 elf_sym->internal_elf_sym.st_target_internal
22699 = ST_BRANCH_TO_THUMB;
22700 else if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
22701 elf_sym->internal_elf_sym.st_info =
22702 ELF_ST_INFO (bind, STT_ARM_16BIT);
22703 }
22704 }
22705 }
22706
22707 /* Remove any overlapping mapping symbols generated by alignment frags. */
22708 bfd_map_over_sections (stdoutput, check_mapping_symbols, (char *) 0);
22709 /* Now do generic ELF adjustments. */
22710 elf_adjust_symtab ();
22711 #endif
22712 }
22713
22714 /* MD interface: Initialization. */
22715
22716 static void
22717 set_constant_flonums (void)
22718 {
22719 int i;
22720
22721 for (i = 0; i < NUM_FLOAT_VALS; i++)
22722 if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
22723 abort ();
22724 }
22725
22726 /* Auto-select Thumb mode if it's the only available instruction set for the
22727 given architecture. */
22728
22729 static void
22730 autoselect_thumb_from_cpu_variant (void)
22731 {
22732 if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1))
22733 opcode_select (16);
22734 }
22735
22736 void
22737 md_begin (void)
22738 {
22739 unsigned mach;
22740 unsigned int i;
22741
22742 if ( (arm_ops_hsh = hash_new ()) == NULL
22743 || (arm_cond_hsh = hash_new ()) == NULL
22744 || (arm_shift_hsh = hash_new ()) == NULL
22745 || (arm_psr_hsh = hash_new ()) == NULL
22746 || (arm_v7m_psr_hsh = hash_new ()) == NULL
22747 || (arm_reg_hsh = hash_new ()) == NULL
22748 || (arm_reloc_hsh = hash_new ()) == NULL
22749 || (arm_barrier_opt_hsh = hash_new ()) == NULL)
22750 as_fatal (_("virtual memory exhausted"));
22751
22752 for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
22753 hash_insert (arm_ops_hsh, insns[i].template_name, (void *) (insns + i));
22754 for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
22755 hash_insert (arm_cond_hsh, conds[i].template_name, (void *) (conds + i));
22756 for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
22757 hash_insert (arm_shift_hsh, shift_names[i].name, (void *) (shift_names + i));
22758 for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
22759 hash_insert (arm_psr_hsh, psrs[i].template_name, (void *) (psrs + i));
22760 for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++)
22761 hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template_name,
22762 (void *) (v7m_psrs + i));
22763 for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++)
22764 hash_insert (arm_reg_hsh, reg_names[i].name, (void *) (reg_names + i));
22765 for (i = 0;
22766 i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt);
22767 i++)
22768 hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template_name,
22769 (void *) (barrier_opt_names + i));
22770 #ifdef OBJ_ELF
22771 for (i = 0; i < ARRAY_SIZE (reloc_names); i++)
22772 {
22773 struct reloc_entry * entry = reloc_names + i;
22774
22775 if (arm_is_eabi() && entry->reloc == BFD_RELOC_ARM_PLT32)
22776 /* This makes encode_branch() use the EABI versions of this relocation. */
22777 entry->reloc = BFD_RELOC_UNUSED;
22778
22779 hash_insert (arm_reloc_hsh, entry->name, (void *) entry);
22780 }
22781 #endif
22782
22783 set_constant_flonums ();
22784
22785 /* Set the cpu variant based on the command-line options. We prefer
22786 -mcpu= over -march= if both are set (as for GCC); and we prefer
22787 -mfpu= over any other way of setting the floating point unit.
22788 Use of legacy options with new options are faulted. */
22789 if (legacy_cpu)
22790 {
22791 if (mcpu_cpu_opt || march_cpu_opt)
22792 as_bad (_("use of old and new-style options to set CPU type"));
22793
22794 mcpu_cpu_opt = legacy_cpu;
22795 }
22796 else if (!mcpu_cpu_opt)
22797 mcpu_cpu_opt = march_cpu_opt;
22798
22799 if (legacy_fpu)
22800 {
22801 if (mfpu_opt)
22802 as_bad (_("use of old and new-style options to set FPU type"));
22803
22804 mfpu_opt = legacy_fpu;
22805 }
22806 else if (!mfpu_opt)
22807 {
22808 #if !(defined (EABI_DEFAULT) || defined (TE_LINUX) \
22809 || defined (TE_NetBSD) || defined (TE_VXWORKS))
22810 /* Some environments specify a default FPU. If they don't, infer it
22811 from the processor. */
22812 if (mcpu_fpu_opt)
22813 mfpu_opt = mcpu_fpu_opt;
22814 else
22815 mfpu_opt = march_fpu_opt;
22816 #else
22817 mfpu_opt = &fpu_default;
22818 #endif
22819 }
22820
22821 if (!mfpu_opt)
22822 {
22823 if (mcpu_cpu_opt != NULL)
22824 mfpu_opt = &fpu_default;
22825 else if (mcpu_fpu_opt != NULL && ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5))
22826 mfpu_opt = &fpu_arch_vfp_v2;
22827 else
22828 mfpu_opt = &fpu_arch_fpa;
22829 }
22830
22831 #ifdef CPU_DEFAULT
22832 if (!mcpu_cpu_opt)
22833 {
22834 mcpu_cpu_opt = &cpu_default;
22835 selected_cpu = cpu_default;
22836 }
22837 #else
22838 if (mcpu_cpu_opt)
22839 selected_cpu = *mcpu_cpu_opt;
22840 else
22841 mcpu_cpu_opt = &arm_arch_any;
22842 #endif
22843
22844 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
22845
22846 autoselect_thumb_from_cpu_variant ();
22847
22848 arm_arch_used = thumb_arch_used = arm_arch_none;
22849
22850 #if defined OBJ_COFF || defined OBJ_ELF
22851 {
22852 unsigned int flags = 0;
22853
22854 #if defined OBJ_ELF
22855 flags = meabi_flags;
22856
22857 switch (meabi_flags)
22858 {
22859 case EF_ARM_EABI_UNKNOWN:
22860 #endif
22861 /* Set the flags in the private structure. */
22862 if (uses_apcs_26) flags |= F_APCS26;
22863 if (support_interwork) flags |= F_INTERWORK;
22864 if (uses_apcs_float) flags |= F_APCS_FLOAT;
22865 if (pic_code) flags |= F_PIC;
22866 if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard))
22867 flags |= F_SOFT_FLOAT;
22868
22869 switch (mfloat_abi_opt)
22870 {
22871 case ARM_FLOAT_ABI_SOFT:
22872 case ARM_FLOAT_ABI_SOFTFP:
22873 flags |= F_SOFT_FLOAT;
22874 break;
22875
22876 case ARM_FLOAT_ABI_HARD:
22877 if (flags & F_SOFT_FLOAT)
22878 as_bad (_("hard-float conflicts with specified fpu"));
22879 break;
22880 }
22881
22882 /* Using pure-endian doubles (even if soft-float). */
22883 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure))
22884 flags |= F_VFP_FLOAT;
22885
22886 #if defined OBJ_ELF
22887 if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick))
22888 flags |= EF_ARM_MAVERICK_FLOAT;
22889 break;
22890
22891 case EF_ARM_EABI_VER4:
22892 case EF_ARM_EABI_VER5:
22893 /* No additional flags to set. */
22894 break;
22895
22896 default:
22897 abort ();
22898 }
22899 #endif
22900 bfd_set_private_flags (stdoutput, flags);
22901
22902 /* We have run out flags in the COFF header to encode the
22903 status of ATPCS support, so instead we create a dummy,
22904 empty, debug section called .arm.atpcs. */
22905 if (atpcs)
22906 {
22907 asection * sec;
22908
22909 sec = bfd_make_section (stdoutput, ".arm.atpcs");
22910
22911 if (sec != NULL)
22912 {
22913 bfd_set_section_flags
22914 (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
22915 bfd_set_section_size (stdoutput, sec, 0);
22916 bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
22917 }
22918 }
22919 }
22920 #endif
22921
22922 /* Record the CPU type as well. */
22923 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt2))
22924 mach = bfd_mach_arm_iWMMXt2;
22925 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt))
22926 mach = bfd_mach_arm_iWMMXt;
22927 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale))
22928 mach = bfd_mach_arm_XScale;
22929 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick))
22930 mach = bfd_mach_arm_ep9312;
22931 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e))
22932 mach = bfd_mach_arm_5TE;
22933 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5))
22934 {
22935 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22936 mach = bfd_mach_arm_5T;
22937 else
22938 mach = bfd_mach_arm_5;
22939 }
22940 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4))
22941 {
22942 if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t))
22943 mach = bfd_mach_arm_4T;
22944 else
22945 mach = bfd_mach_arm_4;
22946 }
22947 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m))
22948 mach = bfd_mach_arm_3M;
22949 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3))
22950 mach = bfd_mach_arm_3;
22951 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s))
22952 mach = bfd_mach_arm_2a;
22953 else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2))
22954 mach = bfd_mach_arm_2;
22955 else
22956 mach = bfd_mach_arm_unknown;
22957
22958 bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
22959 }
22960
22961 /* Command line processing. */
22962
22963 /* md_parse_option
22964 Invocation line includes a switch not recognized by the base assembler.
22965 See if it's a processor-specific option.
22966
22967 This routine is somewhat complicated by the need for backwards
22968 compatibility (since older releases of gcc can't be changed).
22969 The new options try to make the interface as compatible as
22970 possible with GCC.
22971
22972 New options (supported) are:
22973
22974 -mcpu=<cpu name> Assemble for selected processor
22975 -march=<architecture name> Assemble for selected architecture
22976 -mfpu=<fpu architecture> Assemble for selected FPU.
22977 -EB/-mbig-endian Big-endian
22978 -EL/-mlittle-endian Little-endian
22979 -k Generate PIC code
22980 -mthumb Start in Thumb mode
22981 -mthumb-interwork Code supports ARM/Thumb interworking
22982
22983 -m[no-]warn-deprecated Warn about deprecated features
22984
22985 For now we will also provide support for:
22986
22987 -mapcs-32 32-bit Program counter
22988 -mapcs-26 26-bit Program counter
22989 -macps-float Floats passed in FP registers
22990 -mapcs-reentrant Reentrant code
22991 -matpcs
22992 (sometime these will probably be replaced with -mapcs=<list of options>
22993 and -matpcs=<list of options>)
22994
22995 The remaining options are only supported for back-wards compatibility.
22996 Cpu variants, the arm part is optional:
22997 -m[arm]1 Currently not supported.
22998 -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
22999 -m[arm]3 Arm 3 processor
23000 -m[arm]6[xx], Arm 6 processors
23001 -m[arm]7[xx][t][[d]m] Arm 7 processors
23002 -m[arm]8[10] Arm 8 processors
23003 -m[arm]9[20][tdmi] Arm 9 processors
23004 -mstrongarm[110[0]] StrongARM processors
23005 -mxscale XScale processors
23006 -m[arm]v[2345[t[e]]] Arm architectures
23007 -mall All (except the ARM1)
23008 FP variants:
23009 -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
23010 -mfpe-old (No float load/store multiples)
23011 -mvfpxd VFP Single precision
23012 -mvfp All VFP
23013 -mno-fpu Disable all floating point instructions
23014
23015 The following CPU names are recognized:
23016 arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620,
23017 arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700,
23018 arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c,
23019 arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9,
23020 arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e,
23021 arm10t arm10e, arm1020t, arm1020e, arm10200e,
23022 strongarm, strongarm110, strongarm1100, strongarm1110, xscale.
23023
23024 */
23025
23026 const char * md_shortopts = "m:k";
23027
23028 #ifdef ARM_BI_ENDIAN
23029 #define OPTION_EB (OPTION_MD_BASE + 0)
23030 #define OPTION_EL (OPTION_MD_BASE + 1)
23031 #else
23032 #if TARGET_BYTES_BIG_ENDIAN
23033 #define OPTION_EB (OPTION_MD_BASE + 0)
23034 #else
23035 #define OPTION_EL (OPTION_MD_BASE + 1)
23036 #endif
23037 #endif
23038 #define OPTION_FIX_V4BX (OPTION_MD_BASE + 2)
23039
23040 struct option md_longopts[] =
23041 {
23042 #ifdef OPTION_EB
23043 {"EB", no_argument, NULL, OPTION_EB},
23044 #endif
23045 #ifdef OPTION_EL
23046 {"EL", no_argument, NULL, OPTION_EL},
23047 #endif
23048 {"fix-v4bx", no_argument, NULL, OPTION_FIX_V4BX},
23049 {NULL, no_argument, NULL, 0}
23050 };
23051
23052 size_t md_longopts_size = sizeof (md_longopts);
23053
23054 struct arm_option_table
23055 {
23056 char *option; /* Option name to match. */
23057 char *help; /* Help information. */
23058 int *var; /* Variable to change. */
23059 int value; /* What to change it to. */
23060 char *deprecated; /* If non-null, print this message. */
23061 };
23062
23063 struct arm_option_table arm_opts[] =
23064 {
23065 {"k", N_("generate PIC code"), &pic_code, 1, NULL},
23066 {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL},
23067 {"mthumb-interwork", N_("support ARM/Thumb interworking"),
23068 &support_interwork, 1, NULL},
23069 {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL},
23070 {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL},
23071 {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float,
23072 1, NULL},
23073 {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL},
23074 {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL},
23075 {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL},
23076 {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0,
23077 NULL},
23078
23079 /* These are recognized by the assembler, but have no affect on code. */
23080 {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL},
23081 {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL},
23082
23083 {"mwarn-deprecated", NULL, &warn_on_deprecated, 1, NULL},
23084 {"mno-warn-deprecated", N_("do not warn on use of deprecated feature"),
23085 &warn_on_deprecated, 0, NULL},
23086 {NULL, NULL, NULL, 0, NULL}
23087 };
23088
23089 struct arm_legacy_option_table
23090 {
23091 char *option; /* Option name to match. */
23092 const arm_feature_set **var; /* Variable to change. */
23093 const arm_feature_set value; /* What to change it to. */
23094 char *deprecated; /* If non-null, print this message. */
23095 };
23096
23097 const struct arm_legacy_option_table arm_legacy_opts[] =
23098 {
23099 /* DON'T add any new processors to this list -- we want the whole list
23100 to go away... Add them to the processors table instead. */
23101 {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23102 {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")},
23103 {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23104 {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")},
23105 {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23106 {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")},
23107 {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23108 {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")},
23109 {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23110 {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")},
23111 {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23112 {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")},
23113 {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23114 {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")},
23115 {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23116 {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")},
23117 {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23118 {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")},
23119 {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23120 {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")},
23121 {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23122 {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")},
23123 {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23124 {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")},
23125 {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23126 {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")},
23127 {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23128 {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")},
23129 {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23130 {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")},
23131 {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23132 {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")},
23133 {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23134 {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")},
23135 {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23136 {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")},
23137 {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23138 {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")},
23139 {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23140 {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")},
23141 {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23142 {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")},
23143 {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23144 {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")},
23145 {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23146 {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")},
23147 {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23148 {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23149 {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23150 {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")},
23151 {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23152 {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")},
23153 {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23154 {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")},
23155 {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23156 {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")},
23157 {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23158 {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")},
23159 {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23160 {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")},
23161 {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23162 {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")},
23163 {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23164 {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")},
23165 {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23166 {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")},
23167 {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23168 {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")},
23169 {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")},
23170 {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4,
23171 N_("use -mcpu=strongarm110")},
23172 {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4,
23173 N_("use -mcpu=strongarm1100")},
23174 {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4,
23175 N_("use -mcpu=strongarm1110")},
23176 {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")},
23177 {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")},
23178 {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")},
23179
23180 /* Architecture variants -- don't add any more to this list either. */
23181 {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23182 {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")},
23183 {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23184 {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")},
23185 {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23186 {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")},
23187 {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23188 {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")},
23189 {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23190 {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")},
23191 {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23192 {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")},
23193 {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23194 {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")},
23195 {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23196 {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")},
23197 {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23198 {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")},
23199
23200 /* Floating point variants -- don't add any more to this list either. */
23201 {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")},
23202 {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")},
23203 {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")},
23204 {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE,
23205 N_("use either -mfpu=softfpa or -mfpu=softvfp")},
23206
23207 {NULL, NULL, ARM_ARCH_NONE, NULL}
23208 };
23209
23210 struct arm_cpu_option_table
23211 {
23212 char *name;
23213 size_t name_len;
23214 const arm_feature_set value;
23215 /* For some CPUs we assume an FPU unless the user explicitly sets
23216 -mfpu=... */
23217 const arm_feature_set default_fpu;
23218 /* The canonical name of the CPU, or NULL to use NAME converted to upper
23219 case. */
23220 const char *canonical_name;
23221 };
23222
23223 /* This list should, at a minimum, contain all the cpu names
23224 recognized by GCC. */
23225 #define ARM_CPU_OPT(N, V, DF, CN) { N, sizeof (N) - 1, V, DF, CN }
23226 static const struct arm_cpu_option_table arm_cpus[] =
23227 {
23228 ARM_CPU_OPT ("all", ARM_ANY, FPU_ARCH_FPA, NULL),
23229 ARM_CPU_OPT ("arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL),
23230 ARM_CPU_OPT ("arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL),
23231 ARM_CPU_OPT ("arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23232 ARM_CPU_OPT ("arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL),
23233 ARM_CPU_OPT ("arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23234 ARM_CPU_OPT ("arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23235 ARM_CPU_OPT ("arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23236 ARM_CPU_OPT ("arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23237 ARM_CPU_OPT ("arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23238 ARM_CPU_OPT ("arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23239 ARM_CPU_OPT ("arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23240 ARM_CPU_OPT ("arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23241 ARM_CPU_OPT ("arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23242 ARM_CPU_OPT ("arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23243 ARM_CPU_OPT ("arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL),
23244 ARM_CPU_OPT ("arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23245 ARM_CPU_OPT ("arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23246 ARM_CPU_OPT ("arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23247 ARM_CPU_OPT ("arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23248 ARM_CPU_OPT ("arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23249 ARM_CPU_OPT ("arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23250 ARM_CPU_OPT ("arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23251 ARM_CPU_OPT ("arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23252 ARM_CPU_OPT ("arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23253 ARM_CPU_OPT ("arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23254 ARM_CPU_OPT ("arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23255 ARM_CPU_OPT ("arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL),
23256 ARM_CPU_OPT ("arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23257 ARM_CPU_OPT ("arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23258 ARM_CPU_OPT ("arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23259 ARM_CPU_OPT ("arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23260 ARM_CPU_OPT ("arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23261 ARM_CPU_OPT ("strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23262 ARM_CPU_OPT ("strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23263 ARM_CPU_OPT ("strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23264 ARM_CPU_OPT ("strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23265 ARM_CPU_OPT ("strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23266 ARM_CPU_OPT ("arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23267 ARM_CPU_OPT ("arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"),
23268 ARM_CPU_OPT ("arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23269 ARM_CPU_OPT ("arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23270 ARM_CPU_OPT ("arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23271 ARM_CPU_OPT ("arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL),
23272 ARM_CPU_OPT ("fa526", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23273 ARM_CPU_OPT ("fa626", ARM_ARCH_V4, FPU_ARCH_FPA, NULL),
23274 /* For V5 or later processors we default to using VFP; but the user
23275 should really set the FPU type explicitly. */
23276 ARM_CPU_OPT ("arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23277 ARM_CPU_OPT ("arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23278 ARM_CPU_OPT ("arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23279 ARM_CPU_OPT ("arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"),
23280 ARM_CPU_OPT ("arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23281 ARM_CPU_OPT ("arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23282 ARM_CPU_OPT ("arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"),
23283 ARM_CPU_OPT ("arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23284 ARM_CPU_OPT ("arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL),
23285 ARM_CPU_OPT ("arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"),
23286 ARM_CPU_OPT ("arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23287 ARM_CPU_OPT ("arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23288 ARM_CPU_OPT ("arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23289 ARM_CPU_OPT ("arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23290 ARM_CPU_OPT ("arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23291 ARM_CPU_OPT ("arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"),
23292 ARM_CPU_OPT ("arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL),
23293 ARM_CPU_OPT ("arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23294 ARM_CPU_OPT ("arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23295 ARM_CPU_OPT ("arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2,
23296 "ARM1026EJ-S"),
23297 ARM_CPU_OPT ("arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL),
23298 ARM_CPU_OPT ("fa606te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23299 ARM_CPU_OPT ("fa616te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23300 ARM_CPU_OPT ("fa626te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23301 ARM_CPU_OPT ("fmp626", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23302 ARM_CPU_OPT ("fa726te", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL),
23303 ARM_CPU_OPT ("arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"),
23304 ARM_CPU_OPT ("arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL),
23305 ARM_CPU_OPT ("arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2,
23306 "ARM1136JF-S"),
23307 ARM_CPU_OPT ("arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL),
23308 ARM_CPU_OPT ("mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, "MPCore"),
23309 ARM_CPU_OPT ("mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, "MPCore"),
23310 ARM_CPU_OPT ("arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL),
23311 ARM_CPU_OPT ("arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL),
23312 ARM_CPU_OPT ("arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL),
23313 ARM_CPU_OPT ("arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL),
23314 ARM_CPU_OPT ("cortex-a5", ARM_ARCH_V7A_MP_SEC,
23315 FPU_NONE, "Cortex-A5"),
23316 ARM_CPU_OPT ("cortex-a7", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23317 FPU_ARCH_NEON_VFP_V4,
23318 "Cortex-A7"),
23319 ARM_CPU_OPT ("cortex-a8", ARM_ARCH_V7A_SEC,
23320 ARM_FEATURE (0, FPU_VFP_V3
23321 | FPU_NEON_EXT_V1),
23322 "Cortex-A8"),
23323 ARM_CPU_OPT ("cortex-a9", ARM_ARCH_V7A_MP_SEC,
23324 ARM_FEATURE (0, FPU_VFP_V3
23325 | FPU_NEON_EXT_V1),
23326 "Cortex-A9"),
23327 ARM_CPU_OPT ("cortex-a15", ARM_ARCH_V7A_IDIV_MP_SEC_VIRT,
23328 FPU_ARCH_NEON_VFP_V4,
23329 "Cortex-A15"),
23330 ARM_CPU_OPT ("cortex-r4", ARM_ARCH_V7R, FPU_NONE, "Cortex-R4"),
23331 ARM_CPU_OPT ("cortex-r4f", ARM_ARCH_V7R, FPU_ARCH_VFP_V3D16,
23332 "Cortex-R4F"),
23333 ARM_CPU_OPT ("cortex-r5", ARM_ARCH_V7R_IDIV,
23334 FPU_NONE, "Cortex-R5"),
23335 ARM_CPU_OPT ("cortex-m4", ARM_ARCH_V7EM, FPU_NONE, "Cortex-M4"),
23336 ARM_CPU_OPT ("cortex-m3", ARM_ARCH_V7M, FPU_NONE, "Cortex-M3"),
23337 ARM_CPU_OPT ("cortex-m1", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M1"),
23338 ARM_CPU_OPT ("cortex-m0", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0"),
23339 ARM_CPU_OPT ("cortex-m0plus", ARM_ARCH_V6SM, FPU_NONE, "Cortex-M0+"),
23340 /* ??? XSCALE is really an architecture. */
23341 ARM_CPU_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23342 /* ??? iwmmxt is not a processor. */
23343 ARM_CPU_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL),
23344 ARM_CPU_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP_V2, NULL),
23345 ARM_CPU_OPT ("i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL),
23346 /* Maverick */
23347 ARM_CPU_OPT ("ep9312", ARM_FEATURE (ARM_AEXT_V4T, ARM_CEXT_MAVERICK),
23348 FPU_ARCH_MAVERICK,
23349 "ARM920T"),
23350 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL }
23351 };
23352 #undef ARM_CPU_OPT
23353
23354 struct arm_arch_option_table
23355 {
23356 char *name;
23357 size_t name_len;
23358 const arm_feature_set value;
23359 const arm_feature_set default_fpu;
23360 };
23361
23362 /* This list should, at a minimum, contain all the architecture names
23363 recognized by GCC. */
23364 #define ARM_ARCH_OPT(N, V, DF) { N, sizeof (N) - 1, V, DF }
23365 static const struct arm_arch_option_table arm_archs[] =
23366 {
23367 ARM_ARCH_OPT ("all", ARM_ANY, FPU_ARCH_FPA),
23368 ARM_ARCH_OPT ("armv1", ARM_ARCH_V1, FPU_ARCH_FPA),
23369 ARM_ARCH_OPT ("armv2", ARM_ARCH_V2, FPU_ARCH_FPA),
23370 ARM_ARCH_OPT ("armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA),
23371 ARM_ARCH_OPT ("armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA),
23372 ARM_ARCH_OPT ("armv3", ARM_ARCH_V3, FPU_ARCH_FPA),
23373 ARM_ARCH_OPT ("armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA),
23374 ARM_ARCH_OPT ("armv4", ARM_ARCH_V4, FPU_ARCH_FPA),
23375 ARM_ARCH_OPT ("armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA),
23376 ARM_ARCH_OPT ("armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA),
23377 ARM_ARCH_OPT ("armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA),
23378 ARM_ARCH_OPT ("armv5", ARM_ARCH_V5, FPU_ARCH_VFP),
23379 ARM_ARCH_OPT ("armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP),
23380 ARM_ARCH_OPT ("armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP),
23381 ARM_ARCH_OPT ("armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP),
23382 ARM_ARCH_OPT ("armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP),
23383 ARM_ARCH_OPT ("armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP),
23384 ARM_ARCH_OPT ("armv6", ARM_ARCH_V6, FPU_ARCH_VFP),
23385 ARM_ARCH_OPT ("armv6j", ARM_ARCH_V6, FPU_ARCH_VFP),
23386 ARM_ARCH_OPT ("armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP),
23387 ARM_ARCH_OPT ("armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP),
23388 ARM_ARCH_OPT ("armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP),
23389 ARM_ARCH_OPT ("armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP),
23390 ARM_ARCH_OPT ("armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP),
23391 ARM_ARCH_OPT ("armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP),
23392 ARM_ARCH_OPT ("armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP),
23393 ARM_ARCH_OPT ("armv6-m", ARM_ARCH_V6M, FPU_ARCH_VFP),
23394 ARM_ARCH_OPT ("armv6s-m", ARM_ARCH_V6SM, FPU_ARCH_VFP),
23395 ARM_ARCH_OPT ("armv7", ARM_ARCH_V7, FPU_ARCH_VFP),
23396 /* The official spelling of the ARMv7 profile variants is the dashed form.
23397 Accept the non-dashed form for compatibility with old toolchains. */
23398 ARM_ARCH_OPT ("armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23399 ARM_ARCH_OPT ("armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23400 ARM_ARCH_OPT ("armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23401 ARM_ARCH_OPT ("armv7-a", ARM_ARCH_V7A, FPU_ARCH_VFP),
23402 ARM_ARCH_OPT ("armv7-r", ARM_ARCH_V7R, FPU_ARCH_VFP),
23403 ARM_ARCH_OPT ("armv7-m", ARM_ARCH_V7M, FPU_ARCH_VFP),
23404 ARM_ARCH_OPT ("armv7e-m", ARM_ARCH_V7EM, FPU_ARCH_VFP),
23405 ARM_ARCH_OPT ("armv8-a", ARM_ARCH_V8A, FPU_ARCH_VFP),
23406 ARM_ARCH_OPT ("xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP),
23407 ARM_ARCH_OPT ("iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP),
23408 ARM_ARCH_OPT ("iwmmxt2", ARM_ARCH_IWMMXT2,FPU_ARCH_VFP),
23409 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23410 };
23411 #undef ARM_ARCH_OPT
23412
23413 /* ISA extensions in the co-processor and main instruction set space. */
23414 struct arm_option_extension_value_table
23415 {
23416 char *name;
23417 size_t name_len;
23418 const arm_feature_set value;
23419 const arm_feature_set allowed_archs;
23420 };
23421
23422 /* The following table must be in alphabetical order with a NULL last entry.
23423 */
23424 #define ARM_EXT_OPT(N, V, AA) { N, sizeof (N) - 1, V, AA }
23425 static const struct arm_option_extension_value_table arm_extensions[] =
23426 {
23427 ARM_EXT_OPT ("crypto", FPU_ARCH_CRYPTO_NEON_VFP_ARMV8,
23428 ARM_FEATURE (ARM_EXT_V8, 0)),
23429 ARM_EXT_OPT ("fp", FPU_ARCH_VFP_ARMV8,
23430 ARM_FEATURE (ARM_EXT_V8, 0)),
23431 ARM_EXT_OPT ("idiv", ARM_FEATURE (ARM_EXT_ADIV | ARM_EXT_DIV, 0),
23432 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23433 ARM_EXT_OPT ("iwmmxt",ARM_FEATURE (0, ARM_CEXT_IWMMXT), ARM_ANY),
23434 ARM_EXT_OPT ("iwmmxt2",
23435 ARM_FEATURE (0, ARM_CEXT_IWMMXT2), ARM_ANY),
23436 ARM_EXT_OPT ("maverick",
23437 ARM_FEATURE (0, ARM_CEXT_MAVERICK), ARM_ANY),
23438 ARM_EXT_OPT ("mp", ARM_FEATURE (ARM_EXT_MP, 0),
23439 ARM_FEATURE (ARM_EXT_V7A | ARM_EXT_V7R, 0)),
23440 ARM_EXT_OPT ("simd", FPU_ARCH_NEON_VFP_ARMV8,
23441 ARM_FEATURE (ARM_EXT_V8, 0)),
23442 ARM_EXT_OPT ("os", ARM_FEATURE (ARM_EXT_OS, 0),
23443 ARM_FEATURE (ARM_EXT_V6M, 0)),
23444 ARM_EXT_OPT ("sec", ARM_FEATURE (ARM_EXT_SEC, 0),
23445 ARM_FEATURE (ARM_EXT_V6K | ARM_EXT_V7A, 0)),
23446 ARM_EXT_OPT ("virt", ARM_FEATURE (ARM_EXT_VIRT | ARM_EXT_ADIV
23447 | ARM_EXT_DIV, 0),
23448 ARM_FEATURE (ARM_EXT_V7A, 0)),
23449 ARM_EXT_OPT ("xscale",ARM_FEATURE (0, ARM_CEXT_XSCALE), ARM_ANY),
23450 { NULL, 0, ARM_ARCH_NONE, ARM_ARCH_NONE }
23451 };
23452 #undef ARM_EXT_OPT
23453
23454 /* ISA floating-point and Advanced SIMD extensions. */
23455 struct arm_option_fpu_value_table
23456 {
23457 char *name;
23458 const arm_feature_set value;
23459 };
23460
23461 /* This list should, at a minimum, contain all the fpu names
23462 recognized by GCC. */
23463 static const struct arm_option_fpu_value_table arm_fpus[] =
23464 {
23465 {"softfpa", FPU_NONE},
23466 {"fpe", FPU_ARCH_FPE},
23467 {"fpe2", FPU_ARCH_FPE},
23468 {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */
23469 {"fpa", FPU_ARCH_FPA},
23470 {"fpa10", FPU_ARCH_FPA},
23471 {"fpa11", FPU_ARCH_FPA},
23472 {"arm7500fe", FPU_ARCH_FPA},
23473 {"softvfp", FPU_ARCH_VFP},
23474 {"softvfp+vfp", FPU_ARCH_VFP_V2},
23475 {"vfp", FPU_ARCH_VFP_V2},
23476 {"vfp9", FPU_ARCH_VFP_V2},
23477 {"vfp3", FPU_ARCH_VFP_V3}, /* For backwards compatbility. */
23478 {"vfp10", FPU_ARCH_VFP_V2},
23479 {"vfp10-r0", FPU_ARCH_VFP_V1},
23480 {"vfpxd", FPU_ARCH_VFP_V1xD},
23481 {"vfpv2", FPU_ARCH_VFP_V2},
23482 {"vfpv3", FPU_ARCH_VFP_V3},
23483 {"vfpv3-fp16", FPU_ARCH_VFP_V3_FP16},
23484 {"vfpv3-d16", FPU_ARCH_VFP_V3D16},
23485 {"vfpv3-d16-fp16", FPU_ARCH_VFP_V3D16_FP16},
23486 {"vfpv3xd", FPU_ARCH_VFP_V3xD},
23487 {"vfpv3xd-fp16", FPU_ARCH_VFP_V3xD_FP16},
23488 {"arm1020t", FPU_ARCH_VFP_V1},
23489 {"arm1020e", FPU_ARCH_VFP_V2},
23490 {"arm1136jfs", FPU_ARCH_VFP_V2},
23491 {"arm1136jf-s", FPU_ARCH_VFP_V2},
23492 {"maverick", FPU_ARCH_MAVERICK},
23493 {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1},
23494 {"neon-fp16", FPU_ARCH_NEON_FP16},
23495 {"vfpv4", FPU_ARCH_VFP_V4},
23496 {"vfpv4-d16", FPU_ARCH_VFP_V4D16},
23497 {"fpv4-sp-d16", FPU_ARCH_VFP_V4_SP_D16},
23498 {"neon-vfpv4", FPU_ARCH_NEON_VFP_V4},
23499 {"fp-armv8", FPU_ARCH_VFP_ARMV8},
23500 {"neon-fp-armv8", FPU_ARCH_NEON_VFP_ARMV8},
23501 {"crypto-neon-fp-armv8",
23502 FPU_ARCH_CRYPTO_NEON_VFP_ARMV8},
23503 {NULL, ARM_ARCH_NONE}
23504 };
23505
23506 struct arm_option_value_table
23507 {
23508 char *name;
23509 long value;
23510 };
23511
23512 static const struct arm_option_value_table arm_float_abis[] =
23513 {
23514 {"hard", ARM_FLOAT_ABI_HARD},
23515 {"softfp", ARM_FLOAT_ABI_SOFTFP},
23516 {"soft", ARM_FLOAT_ABI_SOFT},
23517 {NULL, 0}
23518 };
23519
23520 #ifdef OBJ_ELF
23521 /* We only know how to output GNU and ver 4/5 (AAELF) formats. */
23522 static const struct arm_option_value_table arm_eabis[] =
23523 {
23524 {"gnu", EF_ARM_EABI_UNKNOWN},
23525 {"4", EF_ARM_EABI_VER4},
23526 {"5", EF_ARM_EABI_VER5},
23527 {NULL, 0}
23528 };
23529 #endif
23530
23531 struct arm_long_option_table
23532 {
23533 char * option; /* Substring to match. */
23534 char * help; /* Help information. */
23535 int (* func) (char * subopt); /* Function to decode sub-option. */
23536 char * deprecated; /* If non-null, print this message. */
23537 };
23538
23539 static bfd_boolean
23540 arm_parse_extension (char *str, const arm_feature_set **opt_p)
23541 {
23542 arm_feature_set *ext_set = (arm_feature_set *)
23543 xmalloc (sizeof (arm_feature_set));
23544
23545 /* We insist on extensions being specified in alphabetical order, and with
23546 extensions being added before being removed. We achieve this by having
23547 the global ARM_EXTENSIONS table in alphabetical order, and using the
23548 ADDING_VALUE variable to indicate whether we are adding an extension (1)
23549 or removing it (0) and only allowing it to change in the order
23550 -1 -> 1 -> 0. */
23551 const struct arm_option_extension_value_table * opt = NULL;
23552 int adding_value = -1;
23553
23554 /* Copy the feature set, so that we can modify it. */
23555 *ext_set = **opt_p;
23556 *opt_p = ext_set;
23557
23558 while (str != NULL && *str != 0)
23559 {
23560 char *ext;
23561 size_t len;
23562
23563 if (*str != '+')
23564 {
23565 as_bad (_("invalid architectural extension"));
23566 return FALSE;
23567 }
23568
23569 str++;
23570 ext = strchr (str, '+');
23571
23572 if (ext != NULL)
23573 len = ext - str;
23574 else
23575 len = strlen (str);
23576
23577 if (len >= 2 && strncmp (str, "no", 2) == 0)
23578 {
23579 if (adding_value != 0)
23580 {
23581 adding_value = 0;
23582 opt = arm_extensions;
23583 }
23584
23585 len -= 2;
23586 str += 2;
23587 }
23588 else if (len > 0)
23589 {
23590 if (adding_value == -1)
23591 {
23592 adding_value = 1;
23593 opt = arm_extensions;
23594 }
23595 else if (adding_value != 1)
23596 {
23597 as_bad (_("must specify extensions to add before specifying "
23598 "those to remove"));
23599 return FALSE;
23600 }
23601 }
23602
23603 if (len == 0)
23604 {
23605 as_bad (_("missing architectural extension"));
23606 return FALSE;
23607 }
23608
23609 gas_assert (adding_value != -1);
23610 gas_assert (opt != NULL);
23611
23612 /* Scan over the options table trying to find an exact match. */
23613 for (; opt->name != NULL; opt++)
23614 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23615 {
23616 /* Check we can apply the extension to this architecture. */
23617 if (!ARM_CPU_HAS_FEATURE (*ext_set, opt->allowed_archs))
23618 {
23619 as_bad (_("extension does not apply to the base architecture"));
23620 return FALSE;
23621 }
23622
23623 /* Add or remove the extension. */
23624 if (adding_value)
23625 ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value);
23626 else
23627 ARM_CLEAR_FEATURE (*ext_set, *ext_set, opt->value);
23628
23629 break;
23630 }
23631
23632 if (opt->name == NULL)
23633 {
23634 /* Did we fail to find an extension because it wasn't specified in
23635 alphabetical order, or because it does not exist? */
23636
23637 for (opt = arm_extensions; opt->name != NULL; opt++)
23638 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23639 break;
23640
23641 if (opt->name == NULL)
23642 as_bad (_("unknown architectural extension `%s'"), str);
23643 else
23644 as_bad (_("architectural extensions must be specified in "
23645 "alphabetical order"));
23646
23647 return FALSE;
23648 }
23649 else
23650 {
23651 /* We should skip the extension we've just matched the next time
23652 round. */
23653 opt++;
23654 }
23655
23656 str = ext;
23657 };
23658
23659 return TRUE;
23660 }
23661
23662 static bfd_boolean
23663 arm_parse_cpu (char *str)
23664 {
23665 const struct arm_cpu_option_table *opt;
23666 char *ext = strchr (str, '+');
23667 size_t len;
23668
23669 if (ext != NULL)
23670 len = ext - str;
23671 else
23672 len = strlen (str);
23673
23674 if (len == 0)
23675 {
23676 as_bad (_("missing cpu name `%s'"), str);
23677 return FALSE;
23678 }
23679
23680 for (opt = arm_cpus; opt->name != NULL; opt++)
23681 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23682 {
23683 mcpu_cpu_opt = &opt->value;
23684 mcpu_fpu_opt = &opt->default_fpu;
23685 if (opt->canonical_name)
23686 strcpy (selected_cpu_name, opt->canonical_name);
23687 else
23688 {
23689 size_t i;
23690
23691 for (i = 0; i < len; i++)
23692 selected_cpu_name[i] = TOUPPER (opt->name[i]);
23693 selected_cpu_name[i] = 0;
23694 }
23695
23696 if (ext != NULL)
23697 return arm_parse_extension (ext, &mcpu_cpu_opt);
23698
23699 return TRUE;
23700 }
23701
23702 as_bad (_("unknown cpu `%s'"), str);
23703 return FALSE;
23704 }
23705
23706 static bfd_boolean
23707 arm_parse_arch (char *str)
23708 {
23709 const struct arm_arch_option_table *opt;
23710 char *ext = strchr (str, '+');
23711 size_t len;
23712
23713 if (ext != NULL)
23714 len = ext - str;
23715 else
23716 len = strlen (str);
23717
23718 if (len == 0)
23719 {
23720 as_bad (_("missing architecture name `%s'"), str);
23721 return FALSE;
23722 }
23723
23724 for (opt = arm_archs; opt->name != NULL; opt++)
23725 if (opt->name_len == len && strncmp (opt->name, str, len) == 0)
23726 {
23727 march_cpu_opt = &opt->value;
23728 march_fpu_opt = &opt->default_fpu;
23729 strcpy (selected_cpu_name, opt->name);
23730
23731 if (ext != NULL)
23732 return arm_parse_extension (ext, &march_cpu_opt);
23733
23734 return TRUE;
23735 }
23736
23737 as_bad (_("unknown architecture `%s'\n"), str);
23738 return FALSE;
23739 }
23740
23741 static bfd_boolean
23742 arm_parse_fpu (char * str)
23743 {
23744 const struct arm_option_fpu_value_table * opt;
23745
23746 for (opt = arm_fpus; opt->name != NULL; opt++)
23747 if (streq (opt->name, str))
23748 {
23749 mfpu_opt = &opt->value;
23750 return TRUE;
23751 }
23752
23753 as_bad (_("unknown floating point format `%s'\n"), str);
23754 return FALSE;
23755 }
23756
23757 static bfd_boolean
23758 arm_parse_float_abi (char * str)
23759 {
23760 const struct arm_option_value_table * opt;
23761
23762 for (opt = arm_float_abis; opt->name != NULL; opt++)
23763 if (streq (opt->name, str))
23764 {
23765 mfloat_abi_opt = opt->value;
23766 return TRUE;
23767 }
23768
23769 as_bad (_("unknown floating point abi `%s'\n"), str);
23770 return FALSE;
23771 }
23772
23773 #ifdef OBJ_ELF
23774 static bfd_boolean
23775 arm_parse_eabi (char * str)
23776 {
23777 const struct arm_option_value_table *opt;
23778
23779 for (opt = arm_eabis; opt->name != NULL; opt++)
23780 if (streq (opt->name, str))
23781 {
23782 meabi_flags = opt->value;
23783 return TRUE;
23784 }
23785 as_bad (_("unknown EABI `%s'\n"), str);
23786 return FALSE;
23787 }
23788 #endif
23789
23790 static bfd_boolean
23791 arm_parse_it_mode (char * str)
23792 {
23793 bfd_boolean ret = TRUE;
23794
23795 if (streq ("arm", str))
23796 implicit_it_mode = IMPLICIT_IT_MODE_ARM;
23797 else if (streq ("thumb", str))
23798 implicit_it_mode = IMPLICIT_IT_MODE_THUMB;
23799 else if (streq ("always", str))
23800 implicit_it_mode = IMPLICIT_IT_MODE_ALWAYS;
23801 else if (streq ("never", str))
23802 implicit_it_mode = IMPLICIT_IT_MODE_NEVER;
23803 else
23804 {
23805 as_bad (_("unknown implicit IT mode `%s', should be "\
23806 "arm, thumb, always, or never."), str);
23807 ret = FALSE;
23808 }
23809
23810 return ret;
23811 }
23812
23813 struct arm_long_option_table arm_long_opts[] =
23814 {
23815 {"mcpu=", N_("<cpu name>\t assemble for CPU <cpu name>"),
23816 arm_parse_cpu, NULL},
23817 {"march=", N_("<arch name>\t assemble for architecture <arch name>"),
23818 arm_parse_arch, NULL},
23819 {"mfpu=", N_("<fpu name>\t assemble for FPU architecture <fpu name>"),
23820 arm_parse_fpu, NULL},
23821 {"mfloat-abi=", N_("<abi>\t assemble for floating point ABI <abi>"),
23822 arm_parse_float_abi, NULL},
23823 #ifdef OBJ_ELF
23824 {"meabi=", N_("<ver>\t\t assemble for eabi version <ver>"),
23825 arm_parse_eabi, NULL},
23826 #endif
23827 {"mimplicit-it=", N_("<mode>\t controls implicit insertion of IT instructions"),
23828 arm_parse_it_mode, NULL},
23829 {NULL, NULL, 0, NULL}
23830 };
23831
23832 int
23833 md_parse_option (int c, char * arg)
23834 {
23835 struct arm_option_table *opt;
23836 const struct arm_legacy_option_table *fopt;
23837 struct arm_long_option_table *lopt;
23838
23839 switch (c)
23840 {
23841 #ifdef OPTION_EB
23842 case OPTION_EB:
23843 target_big_endian = 1;
23844 break;
23845 #endif
23846
23847 #ifdef OPTION_EL
23848 case OPTION_EL:
23849 target_big_endian = 0;
23850 break;
23851 #endif
23852
23853 case OPTION_FIX_V4BX:
23854 fix_v4bx = TRUE;
23855 break;
23856
23857 case 'a':
23858 /* Listing option. Just ignore these, we don't support additional
23859 ones. */
23860 return 0;
23861
23862 default:
23863 for (opt = arm_opts; opt->option != NULL; opt++)
23864 {
23865 if (c == opt->option[0]
23866 && ((arg == NULL && opt->option[1] == 0)
23867 || streq (arg, opt->option + 1)))
23868 {
23869 /* If the option is deprecated, tell the user. */
23870 if (warn_on_deprecated && opt->deprecated != NULL)
23871 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23872 arg ? arg : "", _(opt->deprecated));
23873
23874 if (opt->var != NULL)
23875 *opt->var = opt->value;
23876
23877 return 1;
23878 }
23879 }
23880
23881 for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++)
23882 {
23883 if (c == fopt->option[0]
23884 && ((arg == NULL && fopt->option[1] == 0)
23885 || streq (arg, fopt->option + 1)))
23886 {
23887 /* If the option is deprecated, tell the user. */
23888 if (warn_on_deprecated && fopt->deprecated != NULL)
23889 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c,
23890 arg ? arg : "", _(fopt->deprecated));
23891
23892 if (fopt->var != NULL)
23893 *fopt->var = &fopt->value;
23894
23895 return 1;
23896 }
23897 }
23898
23899 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23900 {
23901 /* These options are expected to have an argument. */
23902 if (c == lopt->option[0]
23903 && arg != NULL
23904 && strncmp (arg, lopt->option + 1,
23905 strlen (lopt->option + 1)) == 0)
23906 {
23907 /* If the option is deprecated, tell the user. */
23908 if (warn_on_deprecated && lopt->deprecated != NULL)
23909 as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg,
23910 _(lopt->deprecated));
23911
23912 /* Call the sup-option parser. */
23913 return lopt->func (arg + strlen (lopt->option) - 1);
23914 }
23915 }
23916
23917 return 0;
23918 }
23919
23920 return 1;
23921 }
23922
23923 void
23924 md_show_usage (FILE * fp)
23925 {
23926 struct arm_option_table *opt;
23927 struct arm_long_option_table *lopt;
23928
23929 fprintf (fp, _(" ARM-specific assembler options:\n"));
23930
23931 for (opt = arm_opts; opt->option != NULL; opt++)
23932 if (opt->help != NULL)
23933 fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help));
23934
23935 for (lopt = arm_long_opts; lopt->option != NULL; lopt++)
23936 if (lopt->help != NULL)
23937 fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help));
23938
23939 #ifdef OPTION_EB
23940 fprintf (fp, _("\
23941 -EB assemble code for a big-endian cpu\n"));
23942 #endif
23943
23944 #ifdef OPTION_EL
23945 fprintf (fp, _("\
23946 -EL assemble code for a little-endian cpu\n"));
23947 #endif
23948
23949 fprintf (fp, _("\
23950 --fix-v4bx Allow BX in ARMv4 code\n"));
23951 }
23952
23953
23954 #ifdef OBJ_ELF
23955 typedef struct
23956 {
23957 int val;
23958 arm_feature_set flags;
23959 } cpu_arch_ver_table;
23960
23961 /* Mapping from CPU features to EABI CPU arch values. Table must be sorted
23962 least features first. */
23963 static const cpu_arch_ver_table cpu_arch_ver[] =
23964 {
23965 {1, ARM_ARCH_V4},
23966 {2, ARM_ARCH_V4T},
23967 {3, ARM_ARCH_V5},
23968 {3, ARM_ARCH_V5T},
23969 {4, ARM_ARCH_V5TE},
23970 {5, ARM_ARCH_V5TEJ},
23971 {6, ARM_ARCH_V6},
23972 {9, ARM_ARCH_V6K},
23973 {7, ARM_ARCH_V6Z},
23974 {11, ARM_ARCH_V6M},
23975 {12, ARM_ARCH_V6SM},
23976 {8, ARM_ARCH_V6T2},
23977 {10, ARM_ARCH_V7A_IDIV_MP_SEC_VIRT},
23978 {10, ARM_ARCH_V7R},
23979 {10, ARM_ARCH_V7M},
23980 {14, ARM_ARCH_V8A},
23981 {0, ARM_ARCH_NONE}
23982 };
23983
23984 /* Set an attribute if it has not already been set by the user. */
23985 static void
23986 aeabi_set_attribute_int (int tag, int value)
23987 {
23988 if (tag < 1
23989 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23990 || !attributes_set_explicitly[tag])
23991 bfd_elf_add_proc_attr_int (stdoutput, tag, value);
23992 }
23993
23994 static void
23995 aeabi_set_attribute_string (int tag, const char *value)
23996 {
23997 if (tag < 1
23998 || tag >= NUM_KNOWN_OBJ_ATTRIBUTES
23999 || !attributes_set_explicitly[tag])
24000 bfd_elf_add_proc_attr_string (stdoutput, tag, value);
24001 }
24002
24003 /* Set the public EABI object attributes. */
24004 static void
24005 aeabi_set_public_attributes (void)
24006 {
24007 int arch;
24008 char profile;
24009 int virt_sec = 0;
24010 int fp16_optional = 0;
24011 arm_feature_set flags;
24012 arm_feature_set tmp;
24013 const cpu_arch_ver_table *p;
24014
24015 /* Choose the architecture based on the capabilities of the requested cpu
24016 (if any) and/or the instructions actually used. */
24017 ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used);
24018 ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt);
24019 ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu);
24020
24021 if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any))
24022 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v1);
24023
24024 if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_any))
24025 ARM_MERGE_FEATURE_SETS (flags, flags, arm_ext_v4t);
24026
24027 /* Allow the user to override the reported architecture. */
24028 if (object_arch)
24029 {
24030 ARM_CLEAR_FEATURE (flags, flags, arm_arch_any);
24031 ARM_MERGE_FEATURE_SETS (flags, flags, *object_arch);
24032 }
24033
24034 /* We need to make sure that the attributes do not identify us as v6S-M
24035 when the only v6S-M feature in use is the Operating System Extensions. */
24036 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_os))
24037 if (!ARM_CPU_HAS_FEATURE (flags, arm_arch_v6m_only))
24038 ARM_CLEAR_FEATURE (flags, flags, arm_ext_os);
24039
24040 tmp = flags;
24041 arch = 0;
24042 for (p = cpu_arch_ver; p->val; p++)
24043 {
24044 if (ARM_CPU_HAS_FEATURE (tmp, p->flags))
24045 {
24046 arch = p->val;
24047 ARM_CLEAR_FEATURE (tmp, tmp, p->flags);
24048 }
24049 }
24050
24051 /* The table lookup above finds the last architecture to contribute
24052 a new feature. Unfortunately, Tag13 is a subset of the union of
24053 v6T2 and v7-M, so it is never seen as contributing a new feature.
24054 We can not search for the last entry which is entirely used,
24055 because if no CPU is specified we build up only those flags
24056 actually used. Perhaps we should separate out the specified
24057 and implicit cases. Avoid taking this path for -march=all by
24058 checking for contradictory v7-A / v7-M features. */
24059 if (arch == 10
24060 && !ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)
24061 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)
24062 && ARM_CPU_HAS_FEATURE (flags, arm_ext_v6_dsp))
24063 arch = 13;
24064
24065 /* Tag_CPU_name. */
24066 if (selected_cpu_name[0])
24067 {
24068 char *q;
24069
24070 q = selected_cpu_name;
24071 if (strncmp (q, "armv", 4) == 0)
24072 {
24073 int i;
24074
24075 q += 4;
24076 for (i = 0; q[i]; i++)
24077 q[i] = TOUPPER (q[i]);
24078 }
24079 aeabi_set_attribute_string (Tag_CPU_name, q);
24080 }
24081
24082 /* Tag_CPU_arch. */
24083 aeabi_set_attribute_int (Tag_CPU_arch, arch);
24084
24085 /* Tag_CPU_arch_profile. */
24086 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a))
24087 profile = 'A';
24088 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r))
24089 profile = 'R';
24090 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_m))
24091 profile = 'M';
24092 else
24093 profile = '\0';
24094
24095 if (profile != '\0')
24096 aeabi_set_attribute_int (Tag_CPU_arch_profile, profile);
24097
24098 /* Tag_ARM_ISA_use. */
24099 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v1)
24100 || arch == 0)
24101 aeabi_set_attribute_int (Tag_ARM_ISA_use, 1);
24102
24103 /* Tag_THUMB_ISA_use. */
24104 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v4t)
24105 || arch == 0)
24106 aeabi_set_attribute_int (Tag_THUMB_ISA_use,
24107 ARM_CPU_HAS_FEATURE (flags, arm_arch_t2) ? 2 : 1);
24108
24109 /* Tag_VFP_arch. */
24110 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_armv8))
24111 aeabi_set_attribute_int (Tag_VFP_arch, 7);
24112 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_fma))
24113 aeabi_set_attribute_int (Tag_VFP_arch,
24114 ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32)
24115 ? 5 : 6);
24116 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_d32))
24117 {
24118 fp16_optional = 1;
24119 aeabi_set_attribute_int (Tag_VFP_arch, 3);
24120 }
24121 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v3xd))
24122 {
24123 aeabi_set_attribute_int (Tag_VFP_arch, 4);
24124 fp16_optional = 1;
24125 }
24126 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v2))
24127 aeabi_set_attribute_int (Tag_VFP_arch, 2);
24128 else if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1)
24129 || ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd))
24130 aeabi_set_attribute_int (Tag_VFP_arch, 1);
24131
24132 /* Tag_ABI_HardFP_use. */
24133 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1xd)
24134 && !ARM_CPU_HAS_FEATURE (flags, fpu_vfp_ext_v1))
24135 aeabi_set_attribute_int (Tag_ABI_HardFP_use, 1);
24136
24137 /* Tag_WMMX_arch. */
24138 if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt2))
24139 aeabi_set_attribute_int (Tag_WMMX_arch, 2);
24140 else if (ARM_CPU_HAS_FEATURE (flags, arm_cext_iwmmxt))
24141 aeabi_set_attribute_int (Tag_WMMX_arch, 1);
24142
24143 /* Tag_Advanced_SIMD_arch (formerly Tag_NEON_arch). */
24144 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_armv8))
24145 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 3);
24146 else if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_v1))
24147 {
24148 if (ARM_CPU_HAS_FEATURE (flags, fpu_neon_ext_fma))
24149 {
24150 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 2);
24151 }
24152 else
24153 {
24154 aeabi_set_attribute_int (Tag_Advanced_SIMD_arch, 1);
24155 fp16_optional = 1;
24156 }
24157 }
24158
24159 /* Tag_VFP_HP_extension (formerly Tag_NEON_FP16_arch). */
24160 if (ARM_CPU_HAS_FEATURE (flags, fpu_vfp_fp16) && fp16_optional)
24161 aeabi_set_attribute_int (Tag_VFP_HP_extension, 1);
24162
24163 /* Tag_DIV_use.
24164
24165 We set Tag_DIV_use to two when integer divide instructions have been used
24166 in ARM state, or when Thumb integer divide instructions have been used,
24167 but we have no architecture profile set, nor have we any ARM instructions.
24168
24169 For ARMv8 we set the tag to 0 as integer divide is implied by the base
24170 architecture.
24171
24172 For new architectures we will have to check these tests. */
24173 gas_assert (arch <= TAG_CPU_ARCH_V8);
24174 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v8))
24175 aeabi_set_attribute_int (Tag_DIV_use, 0);
24176 else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_adiv)
24177 || (profile == '\0'
24178 && ARM_CPU_HAS_FEATURE (flags, arm_ext_div)
24179 && !ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_any)))
24180 aeabi_set_attribute_int (Tag_DIV_use, 2);
24181
24182 /* Tag_MP_extension_use. */
24183 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_mp))
24184 aeabi_set_attribute_int (Tag_MPextension_use, 1);
24185
24186 /* Tag Virtualization_use. */
24187 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_sec))
24188 virt_sec |= 1;
24189 if (ARM_CPU_HAS_FEATURE (flags, arm_ext_virt))
24190 virt_sec |= 2;
24191 if (virt_sec != 0)
24192 aeabi_set_attribute_int (Tag_Virtualization_use, virt_sec);
24193 }
24194
24195 /* Add the default contents for the .ARM.attributes section. */
24196 void
24197 arm_md_end (void)
24198 {
24199 if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4)
24200 return;
24201
24202 aeabi_set_public_attributes ();
24203 }
24204 #endif /* OBJ_ELF */
24205
24206
24207 /* Parse a .cpu directive. */
24208
24209 static void
24210 s_arm_cpu (int ignored ATTRIBUTE_UNUSED)
24211 {
24212 const struct arm_cpu_option_table *opt;
24213 char *name;
24214 char saved_char;
24215
24216 name = input_line_pointer;
24217 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24218 input_line_pointer++;
24219 saved_char = *input_line_pointer;
24220 *input_line_pointer = 0;
24221
24222 /* Skip the first "all" entry. */
24223 for (opt = arm_cpus + 1; opt->name != NULL; opt++)
24224 if (streq (opt->name, name))
24225 {
24226 mcpu_cpu_opt = &opt->value;
24227 selected_cpu = opt->value;
24228 if (opt->canonical_name)
24229 strcpy (selected_cpu_name, opt->canonical_name);
24230 else
24231 {
24232 int i;
24233 for (i = 0; opt->name[i]; i++)
24234 selected_cpu_name[i] = TOUPPER (opt->name[i]);
24235
24236 selected_cpu_name[i] = 0;
24237 }
24238 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24239 *input_line_pointer = saved_char;
24240 demand_empty_rest_of_line ();
24241 return;
24242 }
24243 as_bad (_("unknown cpu `%s'"), name);
24244 *input_line_pointer = saved_char;
24245 ignore_rest_of_line ();
24246 }
24247
24248
24249 /* Parse a .arch directive. */
24250
24251 static void
24252 s_arm_arch (int ignored ATTRIBUTE_UNUSED)
24253 {
24254 const struct arm_arch_option_table *opt;
24255 char saved_char;
24256 char *name;
24257
24258 name = input_line_pointer;
24259 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24260 input_line_pointer++;
24261 saved_char = *input_line_pointer;
24262 *input_line_pointer = 0;
24263
24264 /* Skip the first "all" entry. */
24265 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24266 if (streq (opt->name, name))
24267 {
24268 mcpu_cpu_opt = &opt->value;
24269 selected_cpu = opt->value;
24270 strcpy (selected_cpu_name, opt->name);
24271 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24272 *input_line_pointer = saved_char;
24273 demand_empty_rest_of_line ();
24274 return;
24275 }
24276
24277 as_bad (_("unknown architecture `%s'\n"), name);
24278 *input_line_pointer = saved_char;
24279 ignore_rest_of_line ();
24280 }
24281
24282
24283 /* Parse a .object_arch directive. */
24284
24285 static void
24286 s_arm_object_arch (int ignored ATTRIBUTE_UNUSED)
24287 {
24288 const struct arm_arch_option_table *opt;
24289 char saved_char;
24290 char *name;
24291
24292 name = input_line_pointer;
24293 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24294 input_line_pointer++;
24295 saved_char = *input_line_pointer;
24296 *input_line_pointer = 0;
24297
24298 /* Skip the first "all" entry. */
24299 for (opt = arm_archs + 1; opt->name != NULL; opt++)
24300 if (streq (opt->name, name))
24301 {
24302 object_arch = &opt->value;
24303 *input_line_pointer = saved_char;
24304 demand_empty_rest_of_line ();
24305 return;
24306 }
24307
24308 as_bad (_("unknown architecture `%s'\n"), name);
24309 *input_line_pointer = saved_char;
24310 ignore_rest_of_line ();
24311 }
24312
24313 /* Parse a .arch_extension directive. */
24314
24315 static void
24316 s_arm_arch_extension (int ignored ATTRIBUTE_UNUSED)
24317 {
24318 const struct arm_option_extension_value_table *opt;
24319 char saved_char;
24320 char *name;
24321 int adding_value = 1;
24322
24323 name = input_line_pointer;
24324 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24325 input_line_pointer++;
24326 saved_char = *input_line_pointer;
24327 *input_line_pointer = 0;
24328
24329 if (strlen (name) >= 2
24330 && strncmp (name, "no", 2) == 0)
24331 {
24332 adding_value = 0;
24333 name += 2;
24334 }
24335
24336 for (opt = arm_extensions; opt->name != NULL; opt++)
24337 if (streq (opt->name, name))
24338 {
24339 if (!ARM_CPU_HAS_FEATURE (*mcpu_cpu_opt, opt->allowed_archs))
24340 {
24341 as_bad (_("architectural extension `%s' is not allowed for the "
24342 "current base architecture"), name);
24343 break;
24344 }
24345
24346 if (adding_value)
24347 ARM_MERGE_FEATURE_SETS (selected_cpu, selected_cpu, opt->value);
24348 else
24349 ARM_CLEAR_FEATURE (selected_cpu, selected_cpu, opt->value);
24350
24351 mcpu_cpu_opt = &selected_cpu;
24352 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24353 *input_line_pointer = saved_char;
24354 demand_empty_rest_of_line ();
24355 return;
24356 }
24357
24358 if (opt->name == NULL)
24359 as_bad (_("unknown architecture `%s'\n"), name);
24360
24361 *input_line_pointer = saved_char;
24362 ignore_rest_of_line ();
24363 }
24364
24365 /* Parse a .fpu directive. */
24366
24367 static void
24368 s_arm_fpu (int ignored ATTRIBUTE_UNUSED)
24369 {
24370 const struct arm_option_fpu_value_table *opt;
24371 char saved_char;
24372 char *name;
24373
24374 name = input_line_pointer;
24375 while (*input_line_pointer && !ISSPACE (*input_line_pointer))
24376 input_line_pointer++;
24377 saved_char = *input_line_pointer;
24378 *input_line_pointer = 0;
24379
24380 for (opt = arm_fpus; opt->name != NULL; opt++)
24381 if (streq (opt->name, name))
24382 {
24383 mfpu_opt = &opt->value;
24384 ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt);
24385 *input_line_pointer = saved_char;
24386 demand_empty_rest_of_line ();
24387 return;
24388 }
24389
24390 as_bad (_("unknown floating point format `%s'\n"), name);
24391 *input_line_pointer = saved_char;
24392 ignore_rest_of_line ();
24393 }
24394
24395 /* Copy symbol information. */
24396
24397 void
24398 arm_copy_symbol_attributes (symbolS *dest, symbolS *src)
24399 {
24400 ARM_GET_FLAG (dest) = ARM_GET_FLAG (src);
24401 }
24402
24403 #ifdef OBJ_ELF
24404 /* Given a symbolic attribute NAME, return the proper integer value.
24405 Returns -1 if the attribute is not known. */
24406
24407 int
24408 arm_convert_symbolic_attribute (const char *name)
24409 {
24410 static const struct
24411 {
24412 const char * name;
24413 const int tag;
24414 }
24415 attribute_table[] =
24416 {
24417 /* When you modify this table you should
24418 also modify the list in doc/c-arm.texi. */
24419 #define T(tag) {#tag, tag}
24420 T (Tag_CPU_raw_name),
24421 T (Tag_CPU_name),
24422 T (Tag_CPU_arch),
24423 T (Tag_CPU_arch_profile),
24424 T (Tag_ARM_ISA_use),
24425 T (Tag_THUMB_ISA_use),
24426 T (Tag_FP_arch),
24427 T (Tag_VFP_arch),
24428 T (Tag_WMMX_arch),
24429 T (Tag_Advanced_SIMD_arch),
24430 T (Tag_PCS_config),
24431 T (Tag_ABI_PCS_R9_use),
24432 T (Tag_ABI_PCS_RW_data),
24433 T (Tag_ABI_PCS_RO_data),
24434 T (Tag_ABI_PCS_GOT_use),
24435 T (Tag_ABI_PCS_wchar_t),
24436 T (Tag_ABI_FP_rounding),
24437 T (Tag_ABI_FP_denormal),
24438 T (Tag_ABI_FP_exceptions),
24439 T (Tag_ABI_FP_user_exceptions),
24440 T (Tag_ABI_FP_number_model),
24441 T (Tag_ABI_align_needed),
24442 T (Tag_ABI_align8_needed),
24443 T (Tag_ABI_align_preserved),
24444 T (Tag_ABI_align8_preserved),
24445 T (Tag_ABI_enum_size),
24446 T (Tag_ABI_HardFP_use),
24447 T (Tag_ABI_VFP_args),
24448 T (Tag_ABI_WMMX_args),
24449 T (Tag_ABI_optimization_goals),
24450 T (Tag_ABI_FP_optimization_goals),
24451 T (Tag_compatibility),
24452 T (Tag_CPU_unaligned_access),
24453 T (Tag_FP_HP_extension),
24454 T (Tag_VFP_HP_extension),
24455 T (Tag_ABI_FP_16bit_format),
24456 T (Tag_MPextension_use),
24457 T (Tag_DIV_use),
24458 T (Tag_nodefaults),
24459 T (Tag_also_compatible_with),
24460 T (Tag_conformance),
24461 T (Tag_T2EE_use),
24462 T (Tag_Virtualization_use),
24463 /* We deliberately do not include Tag_MPextension_use_legacy. */
24464 #undef T
24465 };
24466 unsigned int i;
24467
24468 if (name == NULL)
24469 return -1;
24470
24471 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
24472 if (streq (name, attribute_table[i].name))
24473 return attribute_table[i].tag;
24474
24475 return -1;
24476 }
24477
24478
24479 /* Apply sym value for relocations only in the case that
24480 they are for local symbols and you have the respective
24481 architectural feature for blx and simple switches. */
24482 int
24483 arm_apply_sym_value (struct fix * fixP)
24484 {
24485 if (fixP->fx_addsy
24486 && ARM_CPU_HAS_FEATURE (selected_cpu, arm_ext_v5t)
24487 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE))
24488 {
24489 switch (fixP->fx_r_type)
24490 {
24491 case BFD_RELOC_ARM_PCREL_BLX:
24492 case BFD_RELOC_THUMB_PCREL_BRANCH23:
24493 if (ARM_IS_FUNC (fixP->fx_addsy))
24494 return 1;
24495 break;
24496
24497 case BFD_RELOC_ARM_PCREL_CALL:
24498 case BFD_RELOC_THUMB_PCREL_BLX:
24499 if (THUMB_IS_FUNC (fixP->fx_addsy))
24500 return 1;
24501 break;
24502
24503 default:
24504 break;
24505 }
24506
24507 }
24508 return 0;
24509 }
24510 #endif /* OBJ_ELF */